

 [image: Time Management for System Administrators]

 Time Management for System Administrators

Thomas A. Limoncelli

Editor
Mike Loukides

Editor
David Brickner

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

About the Author

Thomas A. Limoncelli is an
 internationally respected author and speaker on many topics, including
 system administration, networking, and security. A system administrator
 since 1988, he now speaks at conferences around the world on topics
 ranging from firewall security to time management. He has worked for
 Cibernet, Dean For America, Lumeta, Bell Labs/Lucent, AT&T, and Mentor
 Graphics. He and Christine Hogan co-authored The Practice of
 System and Network Administration (Addison Wesley). He holds a
 B.A. in Computer Science from Drew University in Madison, New Jersey. He
 publishes a blog on www.EverythingSysadmin.com.

Foreword

Note to self:
Dear Self, (because what else are you going to say?)
Remember to upgrade the LDAP server. Remember to patch the security
 hole in zlib and every other package that links to it. (On second thought,
 are there packages that don't link to it?) Remember
 to plan for another 10x upgrade in storage capacity. Remember to debug the
 boss's Outlook problems or, at the very least, have the necessary goat
 entrails on hand to begin the process. Remember to redo the Oracle
 installation. See if there are any Wikis that would work better than the
 one we are using. Rewrite the user account system, and this time make sure
 it deals with the cases they swore would never occur in the physical
 world. Be sure that it is Sarbanes-Oxley compliant, ISO9000 certified, and
 Kosher l'Pesach. Check that your staff's projects are all humming along
 nicely. Read the LISA conference proceedings from the last two years to
 make sure you aren't missing anything useful for your infrastructure.
 Then, if you have time left over, start planning what you are going to do
 next week.
No, the fact that "plan a vacation" didn't hit the list again for
 the 73rd consecutive week shouldn't bother you. Nor should the incident
 where your spouse literally tipped over laughing after hearing you were
 going to write a foreword for a time management book. Or should it?
Perhaps you should just take heart in the Henry Kissinger quote,
 "There cannot be a crisis next week. My schedule is already full."
Well, anyway. Got to get back to work.
Yours in Service,
me
Does this sound familiar to you (well, besides the spouse part,
 which really did happen to me)?
Tom's first book, co-written with Christine Hogan (now Lear), has
 become a seminal work in the sysadmin field. The Practice of
 System and Network Administration does a superb job of telling
 you how to build a sane and organized infrastructure by following a number
 of best practices. But there's only one chapter in that tome that tells
 you how to keep yourself sane and organized during this process. That's
 where this book comes in.
But why do sysadmins need their own time management book? I know
 I've read my fair share of generic texts on this subject over the years.
 In this book, Tom does an excellent job of nailing the facets of the job
 that make time management particularly tricky for our profession. I just
 want to add on to this by describing a few parts of the typical sysadmin
 persona that further complicates matters.
First off, most sysadmins are tenacious problem solvers. They will
 attach themselves to a problem like a bulldog and not let go until the
 problem relents. Other tasks, such as appointments and life support (like
 food or sleep), become secondary as they persevere, and work on the
 problem either in person or in their head far beyond the usual time
 limits. For people who habitually say, "Just one sec, I almost have this
 fixed," time management can be a challenge.
A second common trait I've noticed in myself and in my colleagues is
 a genuine desire to help people, to support them in the use of an
 unfriendly or unforgiving technology, and to make things work so other
 people can get things done. This trait is definitely commendable, but if
 it gets noticed that you can and are able to help, others will ask you for
 it more and more. The universe gravitates toward clue, so the end result
 is a life I usually describe as "one big tech support call." When my
 grandmother was still alive, I would visit her in Florida periodically.
 Every time I would go, she and all of her friends would bring me their
 digital watches to set. And you know what? I loved it. Still, one's life
 doesn't always run as planned when pleas for help can come at any time. I
 bet Superman had time management issues as well.
Closely related to system administrators' desire to help when they
 can is their attraction to crisis response and saving the day. Most
 sysadmins can't repel down the side of a building ("hut..hut..hut..") but
 you know they'd do it if they could. The one-person-cavalry-to-the-rescue
 fetish is not a sustainable rationale for staying in the profession, but
 it sure does a good job of initially drawing people into the field.
The last facet of the sysadmin persona I want to address is also
 endearing, but it tends to exasperate the sysadmin's non-sysadmin
 significant other(s) and flush all attempts at time management down the
 toilet. By and large, sysadmins find what they do to be fun. All of this
 tinkering, integrating, installing, building, reinstalling, puttering,
 etc., is fun. So fun, in fact, that they work all day and then go home and
 do it some more.
I once shared a bus ride with a professional chef who told me she
 hated to cook on her days off. "Postmen don't like to take long walks when
 they come home from work" is how she put it. Most of the sysadmins I know
 have never heard of this idea. You'll find them (and me, as my spouse
 would be quick to point out) curled up at home in front of a laptop
 "mucking about" virtually all the time. The notion of "play" and "work"
 are best described as a quantum superposition blur for a sysadmin. This is
 great because it means we enjoy what we do, but it's horrible because we
 can't (or won't) stop doing it. It is hard to manage your time if it is so
 nebulous.
So all is lost, right? Luckily, no. Time management for sysadmins
 would be futile if sysadmins didn't have two things on their side:
	Themselves

	Tom Limoncelli

As I said before, sysadmins love to tinker, organize, integrate and
 optimize. I have a fond memory of watching a close sysadmin friend of mine
 in the checkout line of a supermarket bagging his groceries. Every item
 was carefully considered and then placed in a bag right in the optimal
 spot like one big game of Tetris. If we could only turn these skills on
 ourselves and use them to help with the gnarly time management
 difficulties we face....
Well, we can. And that's where Tom comes in. He's figured out how to
 do just that. Tom's been working on the problems associated with time
 management and staying sane in this profession for years. Ever since I met
 him at my first LISA conference around 10 years ago, I've had the
 privilege of watching him grapple with this subject in several different
 contexts—from splitting AT&T Bell Lab's network in half to keeping a
 political candidate's technical infrastructure going. In each situation,
 he's been able to bring his years of sysadmin experience, his keen
 understanding of people, and a sharp sense of humor to the problem.
Now, sit back, keep your hands in the car and the safety bar down,
 and enjoy, as Tom helps you bring time management and sanity to your world
 as well.
September 2005 (in the sysadmin profession for 20
 years)
—David N. Blank-Edelman

Preface

"Time Management for System
 Administrators?"
Uh-huh.
"You mean, like, how to use PDAs, vCal, calendar servers, and
 stuff?"
No, not at all. System administrators should be able to figure those
 things out without needing a book.
"So why shouldn't we just buy one of the other 10 zillion time
 management books out on the market?"
Because they suck. Well, they don't suck. They
 just don't speak to "us." They speak to some generic person you and I
 can't relate to. I'm a geek. A system administrator. A networking wonk. My
 home life looks a lot like my work life—you should see the killer server
 I've set up at home. Once I've finished tweaking it, I'm going to set up
 the same thing at work. Very few occupations are like that. Brain surgeons
 don't come home excited about trying a new technique on their cat, hoping
 that it works so they can try it on patients.
(Shoos cat out of the room.) "I'm not letting you near my cat
 anymore."
Listen, what I'm trying to say is that system administration is not
 a job. It's a lifestyle. We need time management books that speak to our
 lifestyle, in our own words, and solve our problems.
"Lifestyle?"
Lifestyle, workstyle, whatever. No other job pulls people in so many
 directions at once. Users interrupt us constantly with requests,
 preventing us from getting anything done. Computers have their own needs
 that pull is in many directions. Our managers want us to get long-term
 projects done, but they flood us with requests for quick fixes that
 prevent us from getting to those long-term projects!
In our field, good mentors are rare. If our boss is technical, he
 can mentor us on technical issues but not on time management. If our boss
 is nontechnical, he can't mentor us because he "lacks clue" about the
 demands of our job.
"And what makes you so qualified?"
Well, first of all, a long time ago I took a bunch of time
 management training and realized that 80 percent of what was taught didn't
 apply to SAs. But I retained the 20 percent that did. Then, over the
 years, I've refined the techniques, developed a lot of my own, and even
 started teaching seminars on the topic. This book captures what's in that
 training.
"Well, you still haven't convinced me."
Let me give you an example. You know the difference between an
 interpreted language and a compiled language, right?
"Sure! Interpreted languages are slower because they have to
 reinterpret each line of code every time they see it. Compiled languages
 spend a lot of time up front processing the entire program and turning it
 into machine language, which then can run much more quickly than the
 interpreted counterpart."
Exactly.
"So you want me to compile my life?"
That would be cool, but no. But we can learn a lot from
 compilers—spend a little time up front so you don't have to repeat a
 process multiple times later. For example, at a previous site, it was my
 job to change the backup tapes. This was before inexpensive tape jukeboxes
 eliminated a lot of that work. We had three main servers in the computer
 room, plus eight small servers scattered around the building. A tape
 didn't need to be changed if there was "a lot of room" left, but it took a
 long time and a lot of guesswork to predict if I could skip changing the
 tape for that server. If I misjudged how much free tape would be needed to
 complete tomorrow's backups, some of them would fail. Failure was bad—I
 didn't want that! The process really stressed me out. Then I realized that
 I was acting like an interpreter revisiting every step each day, stressing
 out over each detail. I needed to do the analysis once and stick with
 those decisions.
The first decision I made was "tape is cheap, my time isn't." So,
 rather than try to optimize every bit of tape, I was going to waste a
 little tape and gain a lot of time.
The next decision I made was "don't sweat the small stuff." The data
 in those eight small servers scattered around the complex were a lot less
 important than the data in the computer room. Yet, I was stressing out
 about them. I had to stop caring (and stressing) about the things that
 didn't matter. SAs have trouble setting priorities.
I decided I needed to do analysis once and reuse it every day. I
 needed to be like a compiled language instead of an interpreted language:
 precompile a decision and use it over and over. My analysis was that the
 servers in the computer room needed to be changed almost every day.
 Therefore, I would change them every day without doing any analysis of how
 much space was left on the tapes. If I wasted a little tape, I wasn't
 going to care.
However, the smaller, scattered servers rarely needed changing. I
 would change those tapes every Monday, plus the day after any of the
 backups failed due to a full tape.
"So you decided that failure was OK."
Yes. I stopped worrying about perfection where it didn't matter.
 Perfectionism is often overkill and a real time waster.
The inventors of the Internet were brilliant at this. They realized
 they'd never get anywhere if they waited for the underlying communication
 links to be perfect, and so they developed protocols that worked around
 imperfections.
"But my boss expects perfection."
Actually, your boss has priorities, too, and she realizes that
 tradeoffs must be made. We'll talk about managing your boss in Chapter 8.
"Please tell me that all your advice there won't relate to compilers
 and interpreters."
Oh, I promise. Not everything will be an analogy. However, you will
 see some important themes:
	Keep all your time-management stuff in one place.

	Use your brain for what you are working on right now, and use
 external storage for everything else.

	Develop routines for things that happen periodically.

	Pre-compute decisions by developing habits and mantras.

	Maintain focus during project time.

	Improve your social life by applying these tools outside of
 work, too.

"Are you going to work that into some cute acronym?"
I promise I won't. What's important to know for now is that I have
 constructed each chapter to group together particular problem areas for
 system administrators. They build on each other.
	Preface
	An introduction to the book and the topics covered in it.
 You're reading this right now.

	Chapter 1, Time
 Management Principles
	What makes us so special? It's mostly the volume of
 interruptions we get and the huge number of simultaneous projects
 we're asked to do. But there's more to it than that. This chapter
 introduces the principles that will be used throughout the rest of
 the book.

	Chapter 2, Focus
 Versus Interruptions
	This chapter teaches you how to deal with an interrupting
 customer without sounding like a jerk. You won't be able to
 accomplish much without managing your interruptions.

	Chapter 3,
 Routines
	This chapter shows you how to turn chaos into routine. Our
 jobs are full of chaos—anything we can turn into a routine means a
 little less chaos and a lot less stress. When we develop routines
 for our tasks, they become habits and we're less likely to forget
 them.

	Chapter 4, The
 Cycle System
	This chapter introduces you to my "Cycle System," which is a
 way to manage your to do list. It teaches you how to juggle many
 demands without dropping anything. Even if you have 100 hours of
 tasks on your plate, you can manage them all and still work only 8
 hours a day.

	Chapter 5, The
 Cycle System: To Do Lists and Schedules
	This chapter focuses upon the actual day-to-day work of
 putting The Cycle System into practice, creating your schedule and
 to do list. It also gives you tips and strategies for dealing with
 too much work.

	Chapter 6, The
 Cycle System: Calendar Management
	SAs have lots of meetings and appointments. If we can manage
 them better, not only do we no longer miss appointments, but we can
 schedule more fun into our social lives. In this chapter, I extend
 The Cycle System to include our calendar.

	Chapter 7, The
 Cycle System: Life Goals
	This chapter teaches you how to identify long-term goals, both
 personal and professional, and how to make sure you achieve them.
 Where do you want to be in 10 years? You're more likely to get there
 if you do a little bit of planning now.

	Chapter 8,
 Prioritization
	A good juggler can juggle many objects but has to stop the
 whole juggle when a single mistake is made. A great juggler knows
 how to extend a juggle by dropping a ball or two so the others can
 stay in play. In this chapter, I discuss a few different ways to
 prioritize so that The Cycle System works even better.

	Chapter 9,
 Stress Management
	A short chapter about how I learned to manage stress.

	Chapter 10,
 Email Management
	We all get too much email. Here are a few realistic tips for
 getting control over the flood of email you receive.

	Chapter 11,
 Eliminating Time Wasters
	One way to have more time is to eliminate time wasters. In
 this chapter, I talk about how to identify and eliminate
 them.

	Chapter 12,
 Documentation
	This chapter explores ways to document without pain. When we
 document, we help our time management two ways. First, we spend less
 time trying to remember how to do something because we can refer to
 our notes. Second, it makes it easier to have someone else take over
 the task, completely removing it from our to do list. The problem is
 finding a realistic way to get in the habit of documenting. The
 solution is called a Wiki.

	Chapter 13,
 Automation
	What's better than having a computer do your job for you?
 There are many novel and easy ways to start automating tasks today,
 even if you don't know a lot about programming. This chapter
 explains a few methods to automate a lot with little effort.

	Epilogue
	A few concluding suggestions about what to do with the free
 time you'll have after applying the techniques in this book.

How to Read This Book

"Is all this really going to help me?"
Absolutely! Amazingly enough, if you read this book, your entire
 life will be transformed instantly and all of your problems will be
 fixed. You'll be better looking, too!
"Really?"
[image:]

Figure 1.

No. This book won't fix all your problems instantly. In fact, I
 hope you've dealt with enough salespeople to know that anyone who
 promises that a product works instantly and solves all of your problems
 isn't telling the truth.
"So what will this book do?"
This book will give you a framework for managing your time. It's a
 system that works for me and others, and it can be adopted to your
 workstyle. The techniques will replace your old, bad habits with better
 habits. The truth is that you've spent your entire life developing the
 bad habits that are with you today, and it will take some time to
 develop good ones. In fact, psychologists tell us that it takes 21 days
 of doing a new behavior to develop it into a habit.
"So, I'm 21 days away from...."
Well, for you, it may take longer. Did I ever tell you the story
 of my first experience with time management?
"No."
I took a two-day class. For a month afterward, I didn't use a
 single technique. It just seemed like too much work to change my ways!
 Then I had a really busy week, with more things to do than I could keep
 track of. So, I pulled out the leather-bound organizer that I received
 as part of the class and struggled to remember some of the techniques.
 Using the workbook from the class, I pieced together what I was supposed
 to have learned.
"And what happened?"
I got more done in that day than I had in ages, and I was much
 less stressed about the tasks I put off for later.
Over the next few months, I kept going back to the course book to
 refresh my memory or pick up new techniques. It was a struggle but
 eventually the techniques became second nature. More importantly, I
 found new techniques that are specific to system administration. Soon I
 was teaching my techniques to coworkers, then I found myself teaching
 seminars—now it's all here in this book.
"How long before you didn't have to think so hard to do the
 techniques?"
About a month. About a year. It depended on which technique. I
 expect that's how people will use this book. You'll read it—ignore half
 of it—then keep coming back to it for "new" advice. It took me a few
 decades to develop my bad habits. It took quite some time to break those
 habits and develop new ones.
The sooner you get started, the sooner the change will come. Start
 today.
"Well, that all sounds really good, but with people stopping by my
 office every five minutes, I'm not going to have time to read this
 book."
That's a good point. Let's make a deal: I'll cover dealing with
 interruptions in the first chapter, and you promise to try every
 technique at least once.
"It's a deal."

Audience

This book is for IT workers, system administrators, network
 administrators, operators, help desk personnel, and the many, many other
 similar job titles that can be found in the IT industry. It is written
 for people who are early in their career, but industry veterans will
 find these techniques to be equally useful. If you don't think you have
 time to read this book, you need this book.
This book is not for programmers. Beta readers told me that
 programmers should find this book extremely useful, but I feel that
 programmers have different issues and therefore deserve their own book.
 If you're a programmer, buy this book as a gift for the system
 administrator who supports you. If you happen to read it before it gets
 gift-wrapped, I won't tell.

About This Book

This is a "technique" book. The art of time management can be done
 with a paper and pencil or a fancy PDA. The first part of the book helps
 you deal with the basics of time management—better ways to deal with the
 interruptions that keep you from getting work done, and managing your to
 do list so that you don't forget any requests and are able to get them
 done on time, or at least based on your priorities. This book will help
 you turn chaotic, unplanned activities into easier-to-use routines that
 are less likely to be forgotten. After that, I expand the techniques and
 teach you to apply them to managing your calendar/datebook, email,
 stress, and life goals. Lastly, I cover techniques that can accelerate
 your career: eliminating time wasters, using documentation to save
 yourself time, and tips for automating what you do so that it is less
 error prone and takes less of your time.
Now that you know what this book is about, I should explain what
 this book is not about. This book is not about how to use a PDA, nor
 which personal information management software to use. It is not a
 comparison of 50 to do list management software packages. It is not "the
 missing manual" for PalmOS or Microsoft Windows Mobile 2003 Second
 Edition Operating System. This book is about you and how to improve your
 life through better time management.

Assumptions This Book Makes

This book makes no assumptions about the expertise and/or
 technical savvy of the reader. However, people earlier in their system
 administration career may find it more useful. The more stressed out you
 are about your job, the more valuable this book will be.
Chapter 13 contains actual
 code samples, so some prior knowledge is required to understand and
 apply these examples, but they're nothing the typical administrator
 doesn't already know.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Plain text
	Indicates menu titles, menu options, menu buttons, and
 keyboard accelerators (such as Alt and Ctrl).

	Italic
	Indicates new terms, URLs, email addresses, filenames, file
 extensions, pathnames, directories, and Unix utilities.

	Constant width
	Indicates commands, options, switches, variables,
 attributes, keys, functions, types, classes, namespaces, methods,
 modules, properties, parameters, values, objects, events, event
 handlers, XML tags, HTML tags, macros, the contents of files, or
 the output from commands.

	Constant width
 bold
	Shows commands or other text that should be typed literally
 by the user.

	Constant width italic
	Shows text that should be replaced with user-supplied
 values.

Tip
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you're reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O'Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product's documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 "Time Management for System Administrators by
 Thomas A. Limoncelli. Copyright 2006 O'Reilly Media, Inc.,
 0-596-00783-3."
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the U.S. or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/timemgmt

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

You can contact the author at his web site or via email:
	Web: http://www.everythingsysadmin.com
	Email:timebook@everythingsysadmin.com

For more information about our books, conferences, Resource
 Centers, and the O'Reilly Network, see our web site at:
	http://www.oreilly.com

Safari® Enabled

[image: image with no caption]

When you see a Safari® Enabled icon on the cover of
 your favorite technology book, that means the book is available online
 through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

Acknowledgments

This book would not be possible without the help of Chris Polk,
 who supported me both emotionally and technically throughout the entire
 project. Every chapter was influenced by her helpful suggestions.
Thanks to David Blank-Edelman for his touching Foreword, and to
 Illiad for his User Friendly comic strips. I feel
 doubly blessed to have both of you involved.
I'd also like to thank the O'Reilly staff for their help,
 especially Mike Loukides for bringing this project to O'Reilly and
 helping to define the book, and David Brickner who got the book into
 shape so it could be published. David took an OK book and turned it into
 a great book. I couldn't have done it without him. Marlowe Shaeffer, my
 production editor, brought these pages to life. Thanks to everyone at
 O'Reilly!
If I see farther than others, it's because I stand on the
 shoulders of greatness. Some of these great people are: Mary Clark,
 Benji Feen, Doug Furlong, Trey Harris, Jennifer Joy, Andy Lester, R. A.
 Lichtensteiger, John Linderman, Les Lloyd, Ralph Loura, Tina Mancuso,
 Cliff Miller, Adam Moskowitz, Daisy Nguyen, Cat Okita, JP, Victor
 Raymond, Tom Reingold, Michael Richichi, Strata Rose-Chalup, Glenn Seib,
 Frank J. T. Wojcik, and apologies to anyone I have forgotten!

Chapter 1. Time Management Principles

Wait! Before we get started, let's do something to make sure we
 actually finish.
I realize that as a system administrator (SA), you are flooded with
 constant interruptions. The phone rings, a customer![*] stops by with questions, your email reader beeps with the
 arrival of a new message, and someone on Instant Messenger (IM) is trying
 to raise your attention. Heck, I bet someone's interrupted you while
 reading this paragraph.
I'm not going to cover how to deal with interruptions until the next
 chapter, and I hope you don't take offense, but at this rate, I'm worried
 you won't get that far. To mitigate this problem I'm going to share a tip
 from Chapter 2, which, if you
 implement, will shield you from interruptions between now and when we can
 deal with the subject of interruptions properly.
Suppose you are in an environment with two SAs. You and your
 coworker can agree to establish a mutual
 interruption shield . Before lunch, you field all the interruptions so that
 your coworker can work on projects. After lunch, your coworker fields all
 the interruptions and lets you work on projects. Obviously, if there is an
 emergency or an urgent request that only you can handle, you'll drop what
 you're doing. However, you'll find that by organizing your days like this,
 you'll see an immediate improvement in the amount of project work you get
 done. You may also find some time to read this book.
This method works particularly well when there are a lot of SAs. I
 was once part of a very large admin team, and we were able to assign time
 slots of "interruption catching" that let the entire rest of the team
 focus on project work for all but one hour a day.
This method can be adapted to a solo SA, too. If you are a solo SA,
 talk with your manager about how you could improvise some kind of
 equivalent system. For example, management can make the users aware that
 afternoons are reserved for "project time ," and non-urgent requests should be emailed to you (or to
 your request-tracking system) for processing the next morning. This might
 match the natural flow of an office. For example, if most interruptions
 happen in the morning, it will be easier to schedule the afternoon as
 "project time." It may be more appropriate to do that only when a special,
 visible project is coming due. For example, your boss assigns you a
 project that will benefit many aspects of the company. This is an
 opportunity to ask for special dispensation so that the project can get
 done quickly.
There are also physical things you can do to protect your "project
 time." Obviously, if you have an office, you can close your door to
 prevent casual drop-ins and social visits. A more effective technique is
 to make sure that customers must walk past your Tier 1 (customer-facing)
 system administrators in order to get to Tier 2 people (you). If you are
 the senior SA, re-arrange your seating so that people must pass by a
 junior SA on their way to you. The role of a junior SA is to handle 80
 percent of the interruptions and let the 20 percent that only you can do,
 get to you. Physical location is key to this. Walk 50 feet from your desk,
 turn around, and walk back to where you sit while imagining you are a
 typical customer. What do you see? Make sure it is the person who is
 supposed to be customer-facing and working on all the Tier 1 support
 requests.
Go away and arrange your mutual interruption shield right now. I'll
 wait.
Hey, what part of "right now" didn't you understand? You didn't make
 that arrangement, did you? Please do it now before you continue. I really
 want you to be able to read this book.
[image:]

Figure 1-1.

What's So Difficult About Time Management?

Ah, now we can really begin!
Time management is difficult for SAs because we are constantly
 being interrupted. How can we get anything done if we are constantly
 pausing to fix emergencies or respond to requests that arrive in person,
 via email, or via the newest source of interruptions, instant messages
 (IMs)? How many times have you told your boss that a project would take
 two uninterrupted days to complete, which means a month of actual time?
 Returning to a task takes a long time. If an interruption takes one
 minute, and it takes two minutes to return to your project, you're
 actually traveling backward in time! H. G. Wells would be impressed!
 Worst of all, returning to your project after an interruption can lead
 to errors. Often, when I'm debugging a problem, I find the actual
 "error" was that I skipped a step after returning from an
 interruption!
Management judges an SA by whether projects get done. Customers,
 however, judge you by whether you are available to them. These two
 priorities play against each other, and you're stuck in the middle. If
 you are infinitely available to customers, you will never have time to
 complete the projects that management wants to see completed. Yet, who
 approves your pay raises?
Why a book on time management just for SAs? This book needs to be
 different from your average "time management" book because SAs are
 different. In particular:
	Our problems are different.
 SAs have an unusually high number of interruptions that prevent us
 from getting our projects done.

	Our solutions are
 different. SAs can handle more high-tech solutions such
 as request trackers, email filtering with procmail, automation
 scripts, and other tools unsuitable for the average, non-technical
 person.

	We lack quality mentoring.
 SAs need to learn the fundamentals of to do list management,
 calendar management, and life-goal management just like anyone else.
 However, our normal career path usually doesn't lend itself to learn
 these things. Our mentors are technical peers, often on email lists,
 and often in different parts of the world. There are fewer
 opportunities to learn by watching, as a supervisor often learns
 from a director.

[*] In this book, I will use the term "customer" to denote any
 internal or external user of your computers, network, applications,
 and so on. I prefer "customer" over "user" because it better
 represents the relationship SAs should have with the people they
 serve.

The Principles of Time Management for SAs

There are six principles that I base all my techniques on. I don't
 claim that any of these are my own invention, but I certainly put my own
 spin on them. You will see these principles throughout the book:
	One "database" for time management information (use one
 organizer).

	Conserve your brain power for what's important (conserve
 RAM).

	Develop routines and stick with them (reuse code libraries;
 don't reinvent the wheel).

	Develop habits and mantras (replace runtime calculations with
 precomputed decisions).

	Maintain focus during "project time" (be like a kernel
 semaphore).

	Manage your social life with the same tools you use for your
 work life (social life isn't an optional feature).

Let's take a look at each one of these principles in greater
 detail.
One "Database" for Time Management Information

The central tool for time management is your Personal Digital
 Assistant (PDA) or Personal Analog Assistant (PAA), which you will use
 to store your to do list, calendar, and life goals lists. I'm sure you
 know what a PDA is: a Palm Pilot, Zaurus, or similar product. A PAA is
 the paper equivalent. You've seen these in many shapes and forms and
 by names such as organizer, binder, planner, datebook, or even
 Filofax.
Whether you choose to use a PDA or PAA, it will become the
 platform for just about every technique in the rest of the book. By
 putting all your information in one place, you won't have to jump
 between different systems. If you have disorganized habits, this will
 be the tool for getting organized. If you are overly organized, this
 will be your tool for slimming down to a simple, basic system that
 saves you time and prevents you from spending time organizing your
 organization.
I'm going to use the term organizer to mean either a PDA or PAA. It
 doesn't matter how hi-tech or low-tech you go. When I specifically
 mention PDA or PAA, I'll be referring to a technique or example that
 can only be performed with that particular kind of organizer.
We're going to make sure that your organizer is something you
 can trust. What you write in your organizer won't be forgotten,
 deleted, or lost, and it won't disappear like invisible ink. Until you
 trust your organizer, you aren't going to be as facile with the rest
 of your time management techniques. Developing this trust, like
 forming a new habit, takes time.

Conserve Your Brain Power for What's Important

It's important to have an uncluttered brain. A cluttered brain
 is full of distractions that prevent you from staying focused. You're
 going to learn to use external storage for anything you aren't focused
 on right now.
Don't take it personally, but your brain isn't as good at
 recalling things as a piece of paper or a computer. Don't use your
 brain to track tasks or appointments. Use your organizer, a
 request-tracking database, a Wiki, or anything other than your
 brain.
Your brain only has a certain amount of capacity. It's either
 RAM or CPU power, depending on how you envision the brain. If you
 clutter your brain with the knowledge of all the tasks you need to do
 in the future, that's taking space away from the task you are working
 on right now.
In fact, when I'm working on Project A but worried about Project
 B, the best thing I can do is to write Project B down in my to do list
 and try to get it out of my head. Then, I can focus on Project A. I
 trust the to do list to "remember" B for me, so I don't have to
 continue to waste mental energy on it.
It might be apocryphal, but it is believed that Albert
 Einstein's closet contained seven identical suits—one for each day of
 the week. This was, the story goes, so that he could conserve his
 brain power for physics and not waste it on the mundane task of
 deciding what to wear each day. Maybe this is why Steve Jobs always
 wears black turtlenecks. (Personally, I have many pairs of the exact
 same socks, but that's just so I never have more than one unmatched
 sock when I do laundry.)
With the help of this book, you're going to eliminate the excuse
 "I forgot" from your vocabulary. You may miss a deadline for other
 reasons, but it won't be because you were trying to remember so many
 things that it slipped your mind.
Getting tasks, instructions, and knowledge out of your brain and
 onto paper or in a digital repository is the first step to getting
 help with those tasks. While our brains are single-user, and no one, I
 hope, can read our minds, external formats are multiuser and open up
 the possibility of others helping us with our work. For example,
 documenting a procedure and putting it on a web site means other
 people can study and hopefully do the procedure. Using a
 request-tracker database means other SAs can take items, customers can
 see the progress of their requests, and management can gather
 statistics. Why try to memorize the list of services that need to be
 tested after an operating system is upgraded? Keep the list in a
 spreadsheet rather than your brain. Now you can share the spreadsheet
 with others to see if you are missing anything.

Develop Routines and Stick with Them

A good software developer tries to be lazy: if a bit of code
 works, he reuses it as often as possible. I write a lot of Perl code.
 People think I'm a Perl expert. The reality is that I know about 10
 really good Perl idioms, and I reuse them over and over. Rarely is a
 program truly written from scratch. You're going to manage your time
 the same way. You're going to turn regular activity into
 routines so you spend less time planning things that are going
 to happen anyway.
I used to spend hours each week playing phone tag to figure out
 when I could talk with my boss. Now we meet at the same time every
 week for a brief status meeting. No more guessing. It's a routine we
 have. Establishing this routine saves us both time and reduces the
 "thinking" we have to do each week.
To make sure that I don't spend a lot of time managing all my
 time management techniques, I work them into a routine, too. At the
 start of the day, before I've even checked my email, I review my to do
 list and set priorities for the day.
It's important to stick with your routines because other people
 start to count on them. That helps them plan their days. Everyone is
 helped.

Develop Habits and Mantras

Habits are routines you do without having to think. Mantras are
 mental triggers for rules of thumb.
I refill my gas tank every Sunday. It's a good habit. Sometimes
 I can't even remember why I do it, but I trust the habit and use it.
 Ah! That's right! It all started because I was often late for work on
 Monday morning and didn't want to be more late
 because I had to stop to fill my tank. Now it's a habit. Unless my
 tank is completely full, I always fill my tank on Sunday.
Rules of thumb are like habits that don't happen regularly. They are ways to mentally
 record responses that are generally good for particular situations.
 When I activate a rule of thumb, I have a mantra, or saying, that goes
 along with it. For small tasks that I'm likely to procrastinate on, my
 mantra is:
Sooner is better than later.

For example, I once had to periodically empty the
 water-collection bucket on a portable air-conditioning unit in a small
 computer closet. (Yes, in the long term, the better solution is to
 install a drain pipe or to use a cooler that evaporates the water into
 the exhaust. This was a temporary solution.) The bucket had two
 levels--"Time to empty the bucket," and "You idiot, you should have
 emptied it already." It could take a week before the water level
 reached the first mark, which gave me a good excuse to ignore the
 bucket for days at a time. This caused three problems. First, emptying
 the bucket when it was very full was much more difficult than emptying
 it when it was fairly full—splish-splash. Second, as luck would have
 it, most times I noticed that the water level was too high to ignore,
 it always seemed to be at the end of the day when I had to be
 somewhere after work. Now I would be late because I had to spend 15
 minutes emptying the water. Third and most important, I ran the
 constant risk of overflowing the bucket. Though a detector on the unit
 automatically shut off the air-conditioning before the bucket
 overflowed, this fail-safe could result in a room temperature hot
 enough to fry all the computers.
As you can guess, all of this was improved when I employed my
 "Sooner is better than later" mantra. The first time I noticed the
 water level above the first mark, I said to myself, "Sooner is better
 than later" and emptied the bucket. Problem solved. This mantra is
 closely related to the adage, "A stitch in time saves nine."
Eventually habits and mantras become second nature. Developing
 habits and mantras are investments we make so that our brain isn't
 cluttered in the long run. When they become second nature, they stay
 out of the way of our usual thoughts and thus don't risk violating our
 principle to conserve RAM.
Here's another mantra that has served me well:
Trust the process.

In a few chapters, I'll recommend spending five minutes each
 morning planning your day. Ironically, it is the hectic days when you
 are most tempted to skip the five minutes of planning, yet it is those
 days that planning is most beneficial. I say to myself, "Trust the
 process," and do the planning. I'm always glad I did.
When your brain is full of negative or toxic thoughts such as,
 "I'll do it later," or "I'm too busy to stop for five minutes to plan
 my day," a mantra has the power to fill your brain with a positive
 thought, squeezing out the negativity. If you can act during the
 fleeting moment that the mantra fills your brain, you'll be taking
 positive action before the negative thought can return.
That's a really important point. You can train yourself to fake
 out your brain!

Maintain Focus During "Project Time"

Earlier in this chapter I talked about the importance of
 managing interruptions. That's all part of maintaining focus . Interruptions are the natural enemy of focus. You'll
 learn to use your organizer and other techniques to maintain
 focus.
Distractions are so, um, distracting! Think about how an
 operating system works. When time-critical operations need to be done,
 the kernel locks out all other tasks and works on exactly one task
 until that task is complete. For example, when memory is being
 allocated to a task, the kernel locks out all other memory-table
 access so that this one happens correctly, without multiple processes
 all trying to modify the allocation tables at the same time. As an SA,
 you want the same kind of laser focus when you're working.
Operating system designers go to great lengths to make sure that
 a process can return from an interruption quickly (especially the
 constant swapping between processes in a multitasking operating
 system). They do this because they know that time spent returning from
 an interruption is wasted time and should be minimized. You should do
 the same.

Manage Your Social Life with the Same Tools You Use for Your
 Work Life

Last but not least, don't forget to have fun. The same tools we
 use to make sure there's enough time for our important projects at
 work can be used to make sure we don't miss out on the social
 life and family life that we want to have.
No one's dying thought is, "Gosh, I wish I had spent more time
 at the office."
By using the same tools for organizing your work and non-work
 life, you increase the practice you get at using these techniques! The
 more practice, the faster you develop better organization habits. You
 are also leveraging some good, proven techniques rather than
 reinventing the wheel.
This isn't to say that your social life will become structured
 and scheduled down to the minute. There's nothing wrong with
 scheduling an evening of goofing off!

It Won't Be Easy

I'm told that when teaching, it's better to tell people how
 difficult it's going to be early in the process so that they aren't so
 disappointed when they realize it isn't all milk and honey (or Jolt and
 chocolate). I'm told that it's a lot better than promising people "easy,
 fast results" and having them give up at the first challenge, possibly
 blaming themselves for not achieving the instant results
 promised.
Therefore, let me be perfectly clear: this may be the most
 difficult journey on which you've ever embarked. You've spent your
 entire life developing the bad time management habits you have right
 now; you can't fight that inertia over night. It's going to take long
 hours of practice. You are going to stumble through a lot of this, come
 back a month later, reread a chapter, and realize that you've been doing
 it wrong. At times it will seem like there is no hope, that these
 techniques are a waste of time and more difficult than just muddling
 though the old way.
I can assure you that you'll have all these feelings because I
 felt them all, too.
But now I'm writing this book. I must have survived. So will
 you.
Every time things look grim and difficult, just remember that
 change comes in small steps. Keep trying. Stick with the program.
 Squeeze those negative thoughts from your brain by saying to yourself,
 "Trust the process" and give it another try.
When you least expect it, someone will say to you, "You're so
 organized! I wish I knew how you do it all so well!" and you'll realize
 that you haven't had to refer back to this book in ages. Success!

Summary

	Time management is particularly difficult for system
 administrators because we have unique problems (a mix of projects
 and interruptions), our technical mentors don't have good time
 management skills, and our nontechnical managers don't understand
 our work. One asset at our disposal is that we are highly technical
 people and can easily use technical solutions to manage our
 time.

	External interruptions (customers) and self-imposed
 interruptions (Instant Messages, new email notifications, and so on)
 kill productivity. Returning from an interruption takes time and
 introduces errors into your work.

Poker Chips
Everyone has advice about how to avoid procrastination. Search
 Google for "avoiding procrastination" and you'll get back over 19,000
 links. You'll find work sheets from university counseling centers that
 help you get in touch with the sources of your procrastination. You'll
 find books and articles. You'll find top 10 lists of reasons why
 people procrastinate and how to counteract them. You'll find
 professional life coaches who will (in person or via phone) coach you
 through this and other life difficulties (for a fee). Feel free to try
 what appeals to you. In fact, do that right now.
I think the most important thing to remember is that
 procrastination is natural. It comes from fear and self-doubt. We all
 fear change. We all doubt our ability to succeed.
Instead of focusing on your self-doubt, focus on its
 opposite—your self-esteem.
 Self-esteem is like a stack of poker chips. If you are playing poker
 and you only have a few chips, you can only make small bets. This
 means you can't win a lot of money. In fact, you'll have to fold more
 often rather than risk losing your last chip. When you have a lot of
 chips, you can make big bets that pay off big. You can take risks. You
 can try things that you wouldn't have tried when you had fewer chips.
 You can win big!
When we have little self-esteem, we are more likely to give up
 or not even try. Without trying, we are never in the position to
 succeed. So, we don't. When we have high self-esteem, we're more
 willing to take risks and put ourselves in a position to have the
 opportunity to win.
Understand why self-esteem is like a big pile of poker
 chips?
Here's the magic: the poker chips of self-esteem only exist in
 your head, so you can create more!
In poker, the chips are real, physical objects. You can't just
 twinkle your nose and make poker chips appear. On the other hand, in
 life, you can do any kind of ritual to make more self-esteem chips
 appear magically. My "Sooner is better than later" mantra gives me the
 chips I need to overcome procrastination. A hug from someone you love
 magically makes more chips appear. The quiet support of a friend
 helping you to sit down and read this book makes even more chips
 appear. Therapy is all about increasing your chips. If shouting out
 loud, "Yes, I can!" makes more self-esteem chips, then shout all you
 want.
Pretty neat, eh?
Experts agree: buying this book automagically gives you a huge
 boost to the number of poker chips you have at your disposal. Turn the
 page and get to work.

	Arrange a mutual interruption shield with coworkers so that
 someone else deflects interruptions when you need to get projects
 done.

	Use one database for all time management information. Keeping
 everything in one place helps you stay organized.

	Conserve brain power for what's important. Use your brain for
 the work on hand and an organizer to record to do items, dates, and
 notes.

	Develop routines and stick with them. Rather than constantly
 reinventing the wheel or repeating decision-making processes, work
 things into routines.

	Develop habits and mantras. They help remind you to reuse
 previous good decisions.

	Maintain focus during "project time." You will work better
 when you focus on one thing at a time.

	Manage your social life with the same tools you use for your
 work life. Your non-work life is important, and you should manage it
 with the same tools you use for your work life so that you don't
 miss out on the fun things either.

Chapter 2. Focus Versus Interruptions

How many times have you told your boss that something will take a
 day of uninterrupted time, which means it will be done a month from now?
 SAs say this because their project work is constantly interrupted with
 requests from customers and management alike.
But when a system administrator says, "Users are always bothering
 me!" what he really means is, "I wish I could maintain focus on my
 tasks."
When we are focused and can work uninterrupted, we can get anything
 done. Focus is concentrated effort. When we are focused, we get our work
 done in less time, and our newly found free time can be used for more work
 or social activities. It's like eliminating unused peripherals from your
 laptop—the battery lasts longer and you can do more work or spend more
 time playing a game.
Interruptions are the natural enemy of focus. They steal time from
 us both directly and indirectly. The direct way they steal time is
 obvious: an interruption that stalls us for t minutes delays task completion by t minutes. That's easy. However, the indirect
 way that they steal time is more insidious. When you return from an
 interruption, you have to spend p
 minutes to figure out where you left off. If you were interrupted during
 the third step of a multipart process, do you return to step three or step
 four? Figuring out where you left off is extra work that steals time from
 the project. I confess that in my career as an SA the biggest technical
 mistakes I've made can be traced to an interruption that led me to skip a
 step or forget to verify the previous step I had been working on. I
 returned to step four instead of three—oops. If the time spent recovering
 from those mistakes is s, then the
 total delay as the result of an interruption is t+p+s, which can be longer than the task
 itself!
Unfortunately, as an SA, interruptions are a fact of life. We must
 deal with our customers' needs—it's a job requirement. But balancing those
 needs with our project goals can be a hassle and a strain on personal
 relations with our coworkers. You might say that this chapter teaches you
 how to keep yourself focused and deal with interruptions without being a
 jerk.
[image:]

Figure 2-1.

The Focused Brain

Focus is about dedicating as much of your brain as possible to a
 particular task. The brain has many parts: the front part is dealing
 with whatever you are thinking about right now (the CPU and L1/L2 cache,
 if you will), the back part is where you store stuff (the RAM), and the
 far back part is where you store long-term knowledge (your hard drive).
 Focus deals with what I'll unscientifically call the front of your
 brain.
When you focus, you are trying to dedicate 100 percent of the
 front of your brain to your current task. To best understand this, let's
 look at an unfocused brain. Pretend you're trying to concentrate on a
 task, for example, writing a new Perl program to automate a procedure.
 However your mind is also cluttered with thoughts about the meeting you
 have in an hour, the three other tasks you have to do today, the milk
 you must buy on the way home, and you are still worrying about something
 your boss said to you this morning. All those things are taking up space
 in the front part of your brain, stealing capacity away from that Perl
 program you are writing! How good do you think that Perl program is
 going to be with all that other stuff filling up the front of your
 brain?
You wouldn't think that just trying to remember that you need to
 buy milk after work would take cycles away from your task at hand, but
 it does. Part of the brain is used to keep that memory alive. DRAM chips
 work the same way. They have to keep refreshing their memory or the
 information disappears. (Interestingly enough, SRAM doesn't require
 constant refreshing and is much more expensive.) Keeping a memory alive
 in the front of your brain is just as much "work" as doing any other
 physical task.
Clear all those "need to remember" things out of your brain by
 delegating responsibility for remembering to some other system. Set an
 alarm to ring before the meeting starts, write those three tasks on a to
 do list (see Chapter 5), write
 "milk" on your shopping list, and write down that you are going to visit
 your boss first thing in the morning to find out what he really meant
 (see Chapter 8). Now, you can rid
 your mind of those items and free up space for that task you're working
 on. Don't worry about forgetting those things; trust the systems you've
 delegated them to.
Sure, you're a smart person. You might be
 able to remember all those things and work at the same time, but why
 would you want to? I'm dumb as toast compared to most people I work
 with, but I use these techniques to level the playing field. If you are
 a smart person, you can have the effectiveness of people who are
 super-smart. And if you are super-smart, well, why are you reading this
 book? Give the rest of us a break!
Difficulty Falling Asleep?
Falling asleep is about letting your brain calm down. How can
 you calm down if you are expecting it to remember something for
 tomorrow? You can't do both at once.
Keep a pad of paper and a pen next to your bed. When something
 is keeping you awake, write it down and try falling asleep again. I
 bet you'll be asleep soon.
This technique also works if something is worrying you or making
 you angry. Worry keeps us awake because we're trying to remember to do
 something about what's worrying us. Anger keeps us awake because we're
 trying to remember to stay angry! If you write down what's worrying
 you or making you angry, your brain can relax a little because you
 know the pad of paper will be there in the morning.
Even better—call your phone number at work and leave yourself
 voice mail. This works from anywhere there is a phone. This also
 eliminates the chance that you'll forget to take your note into
 work!
Many cell phones and MP3 players include voice
 recorders . Get in the habit of using them so you don't lose your
 good ideas.

An Environment to Encourage Focus

Lack of focus doesn't just come from external interruptions. We
 are also to blame—we turn on music, we have magically updating screen
 backgrounds, we have IRC chat rooms scrolling and instant message
 clients trying to catch our attention. Clutter distracts the eye, which
 distracts the brain. A messy desktop (both physical and on the computer)
 is full of distractions.
Spend a few minutes cleaning up your desk. Personally, I find it
 very difficult to clean my desk, so I've developed an office cleaning
 mantra:
When in doubt, throw it out.

I then follow this three-step plan:
	File the things that can be filed.

	Take the unfinished items and put them in a stack to be done
 soon.

	Put all the remaining stuff in a large envelope marked, "If I
 haven't opened this three months from now, I can throw it out." Then
 seal the envelope.

Three months from now it will take extreme willpower to throw out
 the envelope without looking at the contents. The point is that I don't
 spend a lot of time thinking about each item and worrying that I might
 need it later. When deciding to throw out the envelope I repeat the
 following mantra:
When in doubt, throw it out. If I ever do need it, I can ask the
 source for a copy.

I've also found it useful to take down posters, calendars, and
 other things that are in my direct line of vision. I still have many
 posters, they just aren't in my direct view. When I'm sitting at my desk
 facing my computer, I want blank walls, nothing distracting.
Finally, once you have a visually uncluttered work environment, do
 the same for your computer. Remove icons from your desktop; turn off all
 instant messenger clients, music players, stock tickers, and news
 tickers; and close your email program. I'm an email addict, and if I
 know I have new email, I read it. I could spend my whole day just
 waiting for the next email message. Instead, it's much better to open
 your email program every two to three hours, read everything, and close
 the program. I don't worry about missing urgent messages. If it is so
 urgent that the world will end, I'm sure someone will walk by my office
 and tell me (or perhaps I'll see a vision telling me what to do).
	 	Two things that have added to my productivity: a significant
 reduction in playing computer games and staying off IM when I need to
 get work done.
	
	 	--Victor Raymond http://www.livejournal.com/users/badger2305

Spend a few minutes right now doing all these things.
No, really, stop reading and do them. I promise you this book will
 be here when you're done. I know you like the things that distract you
 and hate to see them go. They like you, too. That's why they are always
 popping up and saying, "Look at me! Look at me!" Get rid of them.
Tip
Don Aslett has written a number of books about getting rid of
 clutter both in the home and in the office. My favorite is
 Clutter's Last Stand: It's Time to De-Junk Your
 Life! (Adams Media Corporation). The advice is very
 practical and his writing style is often hilarious.

I've met people who say they work better with a lot of
 distractions, like having a TV or radio playing in the background. When
 we're younger and don't care as much about discipline, having a lot of
 distractions doesn't seem like as much of a problem. We also have fewer
 responsibilities and deadlines, plus less pressure to get things done.
 As we get older our needs change, and the environment we're comfortable
 working in changes, too. Try decluttering your work environment for one
 week and see if it helps. It may jolt you out of habits developed when
 you were, essentially, a different person.
Multitasking

System administration is a job where multitasking is the norm.
 We are downloading the new ISOs of our favorite Linux distro while
 restoring a file from a backup tape, and reading email while
 responding to an IM; meanwhile, we have 15 open windows each doing
 something different. We rock!
This is a good thing. If it is going to take an hour to download
 an ISO image, the best use of our time is to start it, then do
 something else. Once the download starts successfully, it doesn't need
 our attention. We can check back on it later.
The problem is that sometimes we overextend ourselves. We get
 confused. We make mistakes and have to make a detour to fix the
 problems we've caused. I've also watched system administrators with so
 many open windows that they spent more time finding the right window
 to perform a task than doing the work in that window.
Here are some tricks that help me:
	Be aware of which tasks to multitask
 and which not to. Good tasks to multitask are "hurry up
 and wait" tasks, such as downloading a large file, compiling a
 large program, or waiting for a long backup or restore to
 complete. Anything else shouldn't be multitasked. Do one task at a
 time well rather than many things at once poorly. Give the top
 priority your undivided attention. To make sure you don't forget
 to return to the other tasks, record them in your to do list (see
 Chapter 5).

	Be aware of your stress and sleep
 level. If you are tired or under a lot of stress,
 multitask less. There are days when I'm tired, in a bad mood, and
 very frustrated. Suddenly I realize that I'm working on so many
 things at once that I'm not getting anything done. I shut down all
 my windows, my IMs, my iTunes, and so on. I take a deep breath.
 Then I pick the one thing that is my top priority and do it with
 no other multitasking. It feels so good.

	Organize your windows with a virtual
 window manager. Rather than have 50 windows open on one
 screen, a virtual window manager lets you group windows into
 screens. For example, I might have six virtual screens. One I use
 for reading email, another is for monitoring my systems, and still
 another is where I work on issues in our request tracking system,
 and so on. Rather than having all those windows cluttering one
 screen, they are well-organized and out of the way when I'm not
 working in them.

	Organize your windows the same way
 every time. You'll spend less time searching for the
 right window, and reduce the risk of typing a command into the
 wrong window, if you always arrange the windows on your screen (or
 virtual screens) in the same way. For example:
	When comparing two versions of the same document, I
 always put the window displaying the older version on the left
 and the newer version's window on the right.

	I once worked with machines in London that have failover
 pairs in the United States. I always put the London window on
 the right (my reasoning was a mnemonic: London is east of the
 United States).

	When writing Perl code, I always use the same three
 window arrangements: a text editor (wide window, top left),
 the place where I run/test the program and/or prepare input
 (narrow window, top right), and the place where I review the
 output (wide window across the bottom).

	When I am viewing log files of multiple machines to see
 their combined interaction, I always place the windows in the
 order that the data is flowing (top to bottom).

	Use windows to make a nice work
 space. Command (shell) windows are free, so don't be
 stingy. It drives me crazy to see a junior system administrator
 who uses too few windows. A common example is on Unix or Linux
 systems when one is debugging an email problem. I've witnessed
 junior admins who send a test message, then try to type the
 command to display the tail of the email log file quickly enough
 to catch the lines related to their test message. Then they
 display whether the email was delivered properly, which scrolls
 the log off the top of the window, losing critical information.
 Then they edit the configuration, save the file, exit, and send a
 new test message. Stop the insanity! Don't just dive in, prepare
 your workspace. Create four windows:
	A wide one that runs tail -f
 /var/log/mail.log to display the logfile in real
 time, printing more lines as they appear in the log. Just let
 that run while performing the other steps.

	A small window that has the command echo test | mail -s test
 testuser@example.com. You will use command
 history to repeat that command over and over every time you
 need to send a test message.

	The next window will be where you edit the mail system's
 configuration file. You will save the file, but don't exit the
 editor. Leave it running.

	The last window is where you check to see whether the
 email arrived.

Now you can see all the related displays at the same time,
 which makes it easier to do your job. You can shift between the
 various facets of what you are doing by moving your eyes, not
 typing commands. Much better.

Peak Time for Focus

Some people find it easier to focus at certain times of the day.
 Part of creating an environment to encourage focus is figuring out the
 best time to be focused, i.e., when it takes the least amount of
 effort for you to stay focused. When I schedule mental activity for my
 peak focus time it feels like I've switched to my "big brain." Take a
 moment to think about the different parts of the day. Do you find your
 brain works better in the morning? Mid-morning? After lunch?
 Afternoon? Late afternoon? At night? Rarely do technical people call
 themselves "morning people," but that might be unrelated to your
 ability to focus once you are out of bed.
Your peak time for physical activity may be different than your
 peak time for mental activity. If you're like me, you feel sleepy
 after eating lunch and find yourself nodding at your workstation and
 unable to maintain focus. Take advantage of what would otherwise be a
 "down" mental period and spend this time doing physical work, such as
 installing new hardware in a rack or running cables.
Once you've determined your peak focus time, how can you use it
 to your best advantage? Rearrange your day so that you work on
 projects during peak time. If you have a regularly scheduled meeting
 during that time, move it. Don't use peak time to catch up with email
 or make phone calls. Those might be important tasks, but they don't
 require your big brain. (In Chapter
 5, I discuss more about planning your day.)

The First-Hour Rule

The first-hour rule is that the first hour of the workday is usually the
 quietest hour in an office. I'm not a morning person, but if I can
 drag myself into work early, I can get much more done in the first
 hour than during the entire rest of the day because of the lack of
 interruptions.
How do you spend the first hour of the day? I bet you spend it
 catching up with email and voice mail. Instead of letting these tasks
 consume your first hour, why not check your email for subject lines
 that look important (or email that's from your boss), read those, and
 then shut off your email reader. Now spend that first hour on a
 project. You won't have nearly as many interruptions, and the email
 will be there when you're done. Besides, if you go in really early, no
 one is in the office to read any of your responses, so what's the
 rush?
If you have a network monitoring system (and you should) you can
 check the dashboard view and then be confident that everything is OK
 and you don't have to look for more detailed system status
 information. For example, I use the open source program Nagios
 (http://www.nagios.org) to monitor the services
 I'm responsible for, such as email servers, routers, web servers, etc.
 When I arrive in the morning, I can look at the summary page and see
 that all indicators are green and be confident that I can spend my
 first hour on projects, not worrying that something's down and I don't
 know it. I started my Nagios configuration very small, just monitoring
 whether a certain router was up and whether the SMTP port was
 answering on our email server. From there I grew the configuration as
 each outage helped me find something else that should be monitored.
 (More information about Nagios can be found in O'Reilly's
 Essential System Administration.)
Tip
If the first hour rule works well for you, turn it into the
 first two hours rule by coming to the office an hour earlier.

Amusement Park Time Management
Let's apply the first hour strategy to amusement parks. An
 amusement park ride typically lasts four minutes, and it takes about
 a minute to walk to the next one. That's five minutes per ride. If
 you didn't have to wait in line, you could ride 20 attractions per
 hour! If there are 60 rides at a typical amusement park, you could
 be done in a dizzying three hours. That's the time between breakfast
 and lunch!
However, the park is usually busy, and if you wait in line for
 25 minutes for each ride, you'll only get to ride 2 per hour (25 + 4
 + 1 or 30 minutes each ride). At that rate, the same park would take
 three 10-hour days.
Who has time for that?
If only you could stack the deck and get the whole park almost
 completely to yourself so there is no waiting. This turns out to be
 easy! Many parks open an hour earlier than they advertise. If you
 show up then, you practically have the entire park to yourself. For
 example, Disneyland varies the opening time throughout the year.
 There is a phone number to call to find out tomorrow's opening time.
 Whatever time this says, show up an hour earlier and you'll find the
 gate is open. It's true!
In that first hour you can go on 20 rides because the park
 will be essentially empty. As more guests arrive and the lines
 lengthen over the next couple of hours, you might get to slightly
 fewer rides. When the lines grow long, eat an early lunch while
 everyone else wastes time waiting in line. At noon, the ride lines
 become shorter because everyone (except you) is silly enough to want
 to eat lunch right at noon. Soon you will have been on every ride
 you want, and you can spend the evening and night repeating the
 rides you really enjoyed, or attend the other attractions at the
 park.
Meanwhile, everyone else will either have to stay three times
 longer than you or only experience one-third of the park.
Some parks charge for express lane tickets that let you skip
 to the front of the line. Now that you know the math, you can make a
 much better decision about whether those tickets are worth the
 price.

Interruptions

Interruptions are unavoidable. They are a natural part of the
 business flow. It is up to us to manage them well.
Being interrupt driven means doing tasks as
 they arrive as opposed to doing tasks based on some business-driven
 priority scheme. Sure, many times our business directive is to do
 interruptions as they arrive, but as you advance in your career, I
 assure you that this will be less and less so. Think about the
 organizational structure at a retail store. The clerk working the
 counter is interrupt driven: a customer comes to the counter, the clerk
 takes his order, makes change, answers questions, and so on. The clerk's
 boss, on the other hand, has a schedule of things that must be done: she
 opens the store, orders products, schedules staff, and so on. Yes, the
 manager stops for interruptions (questions from staff, emergencies,
 etc.), but that's a fraction of her job.
When we are interrupt driven, we're letting our interrupters
 manage our time. We're handing control of our workflow to someone else.
 Now, I'm all in favor of being customer focused, but only you know what
 your priorities are. If you control when you do tasks, you can
 intelligently group and prioritize them in ways that save time. For
 example, you can collect all the tasks in a particular part of the
 building and do them in a cluster. This reduces the amount of time spent
 walking up and down between floors. Chapter 8 shows how doing tasks in the
 order they are requested can be non-optimal and suggests a number of
 prioritization strategies that will save you time.
Of course, the fastest way to deal with an interruption is to
 scream, "Get out of my face!" at the requester and slam the door.
 However, I can't recommend this technique unless you want to get fired.
 I have met SAs who recommend being gruff, "scary," or even a "bastard
 operator from hell" to deter customer requests. I think SAs can do
 better than to follow this advice.

Directing Interruptions Away from You

Let's begin by trying to eliminate the single most annoying
 interruption that exists: someone interrupting you when he should be
 going to someone else. Is this the right way to handle such
 interruptions?
"Tom, there's a problem with the web server."
"Great! I look forward to your results when you talk to the people
 responsible for the web servers."
No, that would be rude. The great thing about being a system
 administrator is that everyone assumes that you are all knowing and all
 powerful. Sadly, most of us are only all powerful within a certain scope
 of responsibility. While it may be annoying to be asked about systems
 outside your scope, you really can't get angry at someone for trying.
 Have you ever intentionally asked the wrong person
 a question? Not likely. So when you get annoyed at someone for making a
 request that "is obviously not my job," put yourself in that person's
 shoes. He didn't know a better place to go. Chances are, it's a
 compliment: you're the smartest person he could think of to ask for help
 (or the smart people were at lunch). Most organizations don't make it
 really obvious who is the most appropriate person to go to for help with
 particular problems.
Until you make it clear who to turn to for help, you can't really
 get upset that people don't go to the right person. I use several
 methods to communicate to people the right way to seek help: web pages,
 signs, email signatures, and so on. When I was at Bell Labs, we had
 posters all over the walls leading to the SA area that read, "Stop! Have
 you sent email to 'help'?" At another organization, the first thing I
 did was to install an internal web site that gave users a list of
 specialty areas and directed them to the right person given a particular
 situation. Web browsers were configured to open this page on startup,
 and soon everyone became familiar with the information on the
 page.
"Hey, Is There Something Wrong?"
Customers often bother me just to ask, "Hey, do you know that
 something is wrong?" Having a monitoring system like Nagios that lets
 them check for themselves can reduce these interruptions. However, if
 your system is very stable, there are going to be few chances for them
 to develop the habit of checking the status web page first. The least
 you can do is to make it a link on your intranet home page.
When someone notices an outage that Nagios hasn't been
 configured to test, I make a big deal out of thanking him, even going
 so far as to send a follow-up email pointing out that that situation
 is now being tested for in Nagios and that we appreciate him making us
 aware of the issue because it has enabled us to improve our monitoring
 system.

How do you advertise the right way to get help? Stop for a moment
 and look around your office. Walk 50 feet from your desk. Now turn and
 walk back toward your desk while pretending to be a typical user and see
 what she sees. Does the path naturally lead her to interrupt you or
 someone else? What can be done to guide the customer to an appropriate
 person who isn't you? If you have a formal, tiered support system, are
 customers directed to the right people? How can they be directed better?
 Maybe a big sign or whiteboard that explains people's responsibilities
 would prevent a big heap of interruptions. It would be fun to make
 overhead signs like at an airport, but instead of signs for Concourse A,
 Baggage Claim, and Ground Transportation, you would hang signs that tell
 people where to go for help with Email, Internet Outages, and
 Printers.
Can customers be trained to go to the right place for help? Maybe.
 The first step is to make sure they're being properly told what to do,
 then to make sure they get significantly better service when they follow
 the directions. Punishing someone for not following directions rarely
 works. Ask any animal trainer and they'll agree: positive reinforcement
 works better than punishment (in the long term). People not following
 directions is usually a warning sign that the directions aren't clear to
 them, aren't visible enough, or that the directions don't work.
Alas, people will still come to you when you are trying to focus,
 which leads us to the next section.

You Can Say "Go Away" Without Being a Jerk

When someone interrupts us, how do we tell him to go away without
 sounding like a jerk? The key is to acknowledge their request
 respectfully.
As discussed in the previous chapter, there are times when our job
 is to be the interrupt catcher, the person fielding interruptions so
 that other SAs can focus on projects. However, there are times when we
 are in designated "project time" and need to stay focused. What do we do
 when interrupted during those times?
First, it's important to understand what customers expect of us.
 Fundamentally, customers will be satisfied if they feel they
 have been acknowledged. You don't have to fix their problem
 for them to be acknowledged. They just need to feel that they've been
 heard and get confirmation that their request will be completed.
When someone stops by my office and asks me to do something that
 I'm going to put off until later, I make sure he feels acknowledged both
 verbally and visually. First, I say, "I understand your issue. Let me
 write it down so I don't forget it." Then I write down his request as he
 watches. I say what I write as I'm writing it. It usually sounds like,
 "[Person] needs [such and such] by [date]." Then I turn to him and ask,
 "Did I capture that right?" When he says "yes," it gives closure to the
 issue. Having achieved closure, he usually leaves on his own, if I don't
 ruin it by saying something to continue the conversation. I've found it
 best to say "Thank you," while giving a nod. Anything else just reopens
 the dialog. Closure makes it difficult for them to start to push for
 immediate action. If he does push for immediate action, then I know I
 have misunderstood the urgency of his request, and we can discuss the
 time requirements. But now, I'm driving the conversation, which means
 I'm in the position of power during negotiations.
Automated systems need to acknowledge people, too. When customers
 send email to a request-tracking system, they should receive an
 autoreply with the issue's ID number. If they submit an issue through a
 web-based system, they should immediately be able to view the issue
 status so they can be confident that it actually is in the database.
 People hate to feel they are submitting a request to a black hole. A
 personal response is wonderful but unrealistic. An automated response
 acknowledging the receipt of the request is sufficient. No response
 keeps customers in suspense and is unfair. Lack of response is one
 reason why I don't like to submit bug reports to certain vendors. It's
 very trendy to have software automatically submit a bug report when it
 crashes. Netscape has FullCircle, Microsoft has their feedback agent,
 and Apple Mac OS X has something similar. They all leave me dissatisfied
 because I never receive any kind of acknowledgment. I have no way of
 knowing that it's not just some kind of feel-good hoax set up to make
 customers think the vendor cares while they actually discard the
 submissions. I don't expect to receive a phone call from a product
 manager saying, "Hey, remember that crash you had last week? Thanks for
 submitting the report! We've fixed it and named you Customer of the
 Month!" However, it would be nice to receive email to acknowledge the
 submission. (I should note that when Tom Reingold was at Bell Labs, he
 not only called and congratulated the submitter of every 1,000th
 request, he took them to lunch and used it as an opportunity to ask them
 how they would like to see service improved. So there!)
Sure, all customers want their requests completed, but you can't
 always get what you want, and everyone knows it. However, if people
 don't feel acknowledged, they won't be happy. At worst they will feel
 ignored; at best they will assume you aren't doing something when you
 are.
Don't customers want everything right now? No. I believe that
 customers know, deep down, that they can't always get that. If they ask
 you to order a new PC, they expect the request to be acknowledged, but
 they know that even with overnight shipping, they're not going to be
 able to stand in your office waiting for it to arrive. They will be
 satisfied with an acknowledgment and a date on which they can expect the
 order to arrive.
Customers Want to See Action More Than They Want to Receive
 Action
Once I was in my office and a customer rushed in.
"Server XYZ is down!" he said, in a panic.
"I'm on it!" I replied.
I turned to my workstation, typing occasionally. From what the
 customer could see, it seemed like I had simply returned to my work
 and was completely ignoring his panicked request.
This was in the early days of remote serial console or long-haul
 KVM switches. I was actually hard at work fixing the problem, but
 visually the customer wasn't seeing me do anything different than when
 he arrived.
He became upset. The customer's expectation for "fixing a down
 server" involved me jumping up, running down the hall, fiddling with
 the funny combination lock on the machine room, then laying hands on
 the server. Because I wasn't meeting his expectations, he expressed
 his dissatisfaction in rather colorful language. He thought I was just
 going to sit there and do nothing to see if the server came up on its
 own. I was able to clear up the confusion by showing him what was on
 my screen.
When this happens now, I assume that the customer does not know
 about console servers and long-haul KVM switches. First, I verify that
 the server is down while I announce what test I'm doing. "Let's try
 pinging it!" I announce. "I can't reach it." But then instead of
 dashing off to the data center, I say something like, "Hey, have you
 seen this? I can access the console remotely as if I'm in the computer
 room!" I turn the monitor so the customer can see what I'm doing, show
 off the technology a little, and then go to work fixing the
 problem.
Soon they get bored and go away, satisfied that I'm working on
 the problem.
My little demo slows me down a bit, but it is still faster than
 actually walking to the computer room, and the customer is much more
 satisfied because she receives visual proof that I'm attending to his
 request.
"Bored but satisfied" is so much better than "panicked and
 impatiently waiting."

Conversely, customers will be the least satisfied if they
 feel ignored. This has nothing to do with whether
 they really are being ignored. If you start working on their request but
 they don't know you have, they will assume you haven't. That sucks, but
 it's true.
Hopefully I've convinced you that acknowledgment is important, and
 managing your time based on your priorities is important. So how do we
 combine the two? By using the process of delegate, record, or do.
That leads us to the next section.
Delegate, Record, or Do

When someone interrupts you with a request during your
 designated project time, you have a few options:
	Delegate it. If someone
 else can do it, delegate it to him.

	Record it. If only you
 can do the request, but it isn't urgent, record the request. Be
 sure to do so in a way that the customer trusts; don't just
 promise to remember it.

	Do it. If the request is
 truly urgent, such as a service outage, drop what you are working
 on and do the request.

I admit that I actually pause to think, "Delegate, record, or
 do." It helps me focus on what I'm going to do with this person who
 is, alas, breaking my focus. The following sections provide more
 detail about this process.
Delegate it

If you have set up a mutual interruption shield as discussed
 in the opening of Chapter 1,
 you can refer the person to your shield partner. You don't have to
 say, "I'm sorry, but this is my project time, so I'm going to shove
 you on someone else." You can say it very politely.
Since people need a visual, positive confirmation that they've
 been heard and taken seriously, I think the best technique is to
 pick up the phone and call your shield partner to delegate the
 request while the customer watches. People don't want to have to
 re-explain themselves to each person they get delegated to, so I
 always try to explain the issue to the delegate. I can often explain
 it in technical terms, which is more efficient than the customer's
 original request.
Here's the general form: I say out loud, "Ah, let me ask Mary
 to do this" (I pick up the phone and dial Mary). "Hi, Mary. Joe is
 here. He needs X and Y. I'm sending him over to you." I look at the
 customer and say, "Stop by Mary's office, and she'll help you." Now
 Joe has received excellent acknowledgement of his request, and Mary
 is prepared to handle the task.
Tip
As technically inclined people, we often forget what it's
 like to be a nontechnical customer making a request. It may have
 been difficult, and possibly scary, to figure out how to phrase
 the request, so taking the time to explain it to Mary in your
 language makes it easier for Joe.

Sometimes the request is rather complicated, and I don't want
 to risk the miscommunication I can introduce by repeating a request
 incorrectly. However, I can still help focus the issue. For example,
 "Hi, Mary. Joe is here. He has a rather complicated request related
 to the web server. I'm going to send him over to you right
 now."
Of course, there are times when you are in a hurry and just
 can't call Mary. I think it is obnoxious to answer a request with a
 question like, "Did you talk with Mary?" A better way to express
 this is to simply say, "Mary is on call right now. Could you speak
 to her about this?" It sounds more official and orderly. People find
 a certain comfort to following an official process.
If your coworker says she doesn't know how to do the task you
 are trying to delegate to her, you have a few different options. You
 can use this as an opportunity to teach her how to do the task. That
 way, she'll know how to do it in the future. Otherwise, you might
 ask the customer if the task can wait—if it can, record it.

Record it

If the task can wait, you can record it for later action.
 Record it in a place where it won't get lost. Make sure the customer
 sees you record the request so that he has visible confirmation that
 he isn't being ignored.
If you use The Cycle System, as described in Chapter 5, enter the request into
 your to do list. This is appropriate for smaller tasks that will be
 done soon.
For larger tasks, my favorite place to record a request is in
 a request-tracker application. I've found that the open source tool
 RT by Best Practical (http://www.BestPractical.com) is better than
 a lot of the commercial systems around. (O'Reilly recently published
 a book called RT Essentials
 that covers all the details of configuring, administrating, and
 using RT.) Emailing to RT automatically starts a new issue to track.
 If you haven't set up RT yet, a poor man's alternative is to email
 yourself the request. While you're at it, email yourself a reminder
 to install RT.
To make sure that the customer sees me taking action, I say
 out loud, "Let me record this in my to do list so I don't forget,"
 or "Let me create an RT entry." Then as you type the message, speak
 what you are typing. "Jill needs a new printer installed. It is in
 the box just inside her office. She needs it by this Thursday at 9
 a.m."
Warning
Always record a time in your deadline. A Thursday
 deadlinecan lead to trouble when a customer assumes you meant
 Thursday morning, but you actually meant Thursday close of
 business.

I then turn to the customer, who has heard what I've typed,
 and say, "Anything else I should capture?" This helps eliminate
 miscommunication. It also gives them the satisfaction of thinking
 that they're in control—which they are, sort of.
After clicking submit, send, or whatever the software
 requires, say something reassuring like, "I got it!" and return to
 the work you were doing before you were interrupted. Recording the
 request in RT, a PDA, or a to do list system shows professionalism
 that is reassuring to your customer. Writing on little scraps of
 paper or 3M Post-it Notes has the opposite effect.
Never try to remember the item in your brain only. I've
 already discussed keeping the front part of your brain free for more
 important things. Don't try to remember the customer's request.
 You're a smart person (and good-looking, too), but don't trust your
 brain to do something that paper can do better. Record it, then let
 it go. Free your brain. Which leads us to....
The Hallway Ambush
When someone stops me in the hallway and asks me to do
 something, I record it in my to do list. However, if I am without
 my organizer, I would rather refuse to acknowledge the request
 than trust my brain to remember it. I'm honest but blunt. I say
 something like, "OK, so I agree that's the best course of action.
 However, I'm in the middle of something, and I don't have my PDA
 with me. I don't want to risk forgetting this. Could you do me a
 favor and email me the words 'install web monkey' and that will
 jog my memory." By giving the person the exact words to use, the
 task becomes less of a burden on her. However, this tactic also
 unburdens your brain from having to remember the exact
 request.
If this situation happens while I'm near a computer that can
 send email, I'll ask the person at the computer to email me the
 reminder, even if they weren't part of the conversation!
Oh, and that reminds me. How dare you go somewhere without
 your PDA/PAA! Always keep it with you.

Do it

The third option is to do the request immediately. Your focus
 will be lost, but at least you made two good attempts to first
 deflect the task. If a request should take less than two minutes, it
 can be less work to do it than to record it and pick it up
 later.
Of course, if the issue is an emergency or a major outage,
 there's no other good choice. Heck, the major outage might also
 affect you, so it's worth doing right away.
I highly recommend that your organization create its own
 definition of major outage. This can give
 newer SAs direction and guidance, and if it's stated on your policy
 web site, it can set expectations with your customers. For example,
 a LAN group I worked with once defined a major outage to be any
 outage affecting more than 10 people. Other businesses define a
 major outage based on whether a deadline is in jeopardy or a Service
 Level Agreement (SLA) will be missed.
Before you do the customer's request, take a moment to record
 where you left off, or at least save your work. That makes it easier
 to return to the task. It also helps you focus on the new task
 because your brain isn't cluttered with trying to remember where you
 left off.

Summary

	Focus is important. You gain focus by removing distractions
 and dealing efficiently with interruptions.

	Interruptions are, essentially, someone else controlling your
 time. Interruptions are the natural enemy of focus, and, therefore,
 time management.

	Interruptions are bad because they delay your current work but
 also because returning to the prior task can lead to errors. Fixing
 those errors can take more time than the original task.

	Removing distractions helps you to keep focus: clean your desk
 and your computer desktop, and remove distractions from your office.
 Disable IM, new email notifiers, and so on.

	Everyone has a different peak time for mental and physical
 activity. Discover yours, and then schedule appropriate tasks for
 those times.

	The first hour of the day can be your most productive, since
 it has the fewest interruptions. Getting to work slightly earlier
 than coworkers increases this productive time. Don't waste that time
 with maintenance tasks; use it for important projects.

Some General Advice
Sadly, this book can't give much advice about how to do the
 task. I don't even know what operating system you are using. I can,
 however, give you these general recommendations:
	Measure twice, cut once.
 Be extra sure before you make a change you can't undo.

	Make a backup before you change a
 file. Having a backup of a file can get you out of
 trouble. However, this only works if you make the backup
 first!

	If all else fails, read the
 manual. When you can't figure out the solution, try the
 resources that you often forget to access.

	When debugging, change one thing at
 a time. By changing one thing at a time, you see which
 change actually affected the system. This avoids confusion as the
 debugging process proceeds.

	Always test your work.
 Some people never seem to make mistakes. I find that they are the
 people who do a lot of testing—we just don't see it.

	You aren't done until your customer
 tests it, too. You may think you've tested things
 sufficiently, but until the customer has done his own tests, you
 really don't know whether you've fixed his problem.

	The strangest problems often turn
 out to be misconfigured DNS. DNS is critical to so many
 subsystems, often in obscure ways, that a problem with DNS can
 mask itself as other problems. This goes for a client that can't
 reach its DNS servers, as well as a host with invalid DNS data
 describing it, or a client trying to reach a host with invalid DNS
 data.

	The delegate, record, or do process permits you to take back
 control of your time. Use this when your project work is
 interrupted. Delegating the task means
 handing it off to someone else. Recording the
 task lets you acknowledge the request, but schedule it for later.
 Doing the task is your last resort, but it
 should be used for emergencies and outages.

	When you record it, you gain the ability to plan and schedule
 rather than being interrupt driven. This is something we discuss
 further in Chapter 8.

	When you acknowledge a request, you should do it in a visually
 meaningful way. Make sure the person sees you record it, and confirm
 it with her.

	Customers would rather have a request acknowledged than not
 know whether it was received, even if this means the request is
 being delayed.

	Request-tracking systems like RT let you record requests in a
 central database that other system administrators can access and
 that customers can use to check a request's status.

	Never trust your brain to remember a request. Record the
 request on paper or digitally. Your brain has better things to
 do.

Just Start
Once you get started, it won't be as difficult as you thought.
 In fact, often we don't begin a task because we make excuses about how
 much time something will take, but once we get started, we find out
 that the task is relatively quick.
A friend who promised to give me feedback on chapters of this
 book as they were written was weeks late with her notes on Chapter 1. She kept putting off
 getting started because she told herself she couldn't start until she
 found a full two-hour block to do a really good job. It turned out
 that Chapter 1 was less than 10
 pages and only required about a half-hour to review.
If she had just started—instead of making up rules about when
 she could start—she would have been done much sooner.

Chapter 3. Routines

The term "routine" has a bad reputation. How many times have you
 seen advertisements for products that promise to "get you out of that old
 routine" or refer to a "boring routine?" Boring is bad, right?
No! As a system administrator I crave boredom. I want an entire week
 when things happen on schedule, projects get done on time, software
 installs without trouble, and documentation gives me the right answer.
 "Give me just one boring day!" I shout when a big server crashes or a
 customer comes to me with an impossible but urgent request.
What I wouldn't give for an entire boring month!
There are technical means to improve the situation. We can make
 things more boring (in a good way!) through long-term planning and
 suitable infrastructure that makes things run smoother. For example:
 automating new machine installation so that every host starts out the
 same, controlling and enforcing updates so all hosts stay in sync, keeping
 security infrastructure in place so that it is ubiquitous and less
 burdensome, and so on. There are books about those topics already—I happen
 to prefer The Practice of System and Network
 Administration (Addison Wesley).
I don't want to make system administration 100 percent boring—I
 don't think that's actually possible. As long as there are new software
 packages to try or new hardware platforms to explore, there will always be
 plenty of fun in system administration.
There will also be a certain amount of chaos. System administration
 deals with the real world, and the real world is full of chaos.
However, I do want to eliminate the frustrating chaos that keeps me
 from having fun. Here's a little something about routines to keep in
 mind:
Routines give us a way to think once, do many.

Programmers figured this out a long time ago. They reuse code
 libraries rather than reinventing every new feature every time. Why
 reinvent the print function for each program you write? Sure, C's printf function isn't the most efficient way to
 print formatted data, but imagine how crazy (and inefficient) it would be
 if every program ever written reinvented a way to print data.
Routines are very powerful because they enable us to think less,
 reserving brain cycles for more important tasks. This is similar to saving
 brainpower by writing down our appointments and to do items instead of
 trying to memorize them.
[image:]

Figure 3-1.

Sample Routines

We can do the same thing in time management: develop routines
 whenever possible. Here are some examples.
Routine #1: Gas Up on Sunday

I refill my car's gas tank every Sunday. It's a routine I've
 developed, and it has served me well.
It all started when I realized that I'm often late to work on
 Monday morning, and I'm doubly late when I realize that I don't have
 enough gas to get to the office. I tried to get out of the house
 earlier on Mondays but that failed. Finally, I realized that it would
 be smart of me to fill up on Sunday so it was one less thing to do on
 Monday morning. It worked.
I used to procrastinate about filling my gas tank. As a result,
 there was a little extra chaos in my life, as random appointments
 would be delayed by my need to stop for gas.
I didn't just procrastinate, I fretted! "Should I get gas now? I
 think I can make it." "Gosh, I'm running behind; maybe I'll get gas
 tomorrow. I'm sure I'll remember to leave the house early." "Oh, I was
 going to get gas last night, but I was so tired I forgot. Oh, damn." A
 lot of brain energy spent on something so simple.
Now that kind of chaos is eliminated from the first half of my
 week—sometimes the whole week if I don't do much driving.
It's a nice, simple routing that works for me.
The part of my brain that actively thinks about things had one
 less thing to think about (getting gas), and soon the habit was in the
 automatic part of my brain. When I'm driving on Sunday, I fill my gas
 tank.
The key to a good routine is that with enough practice you start
 doing it without having to think about it. Less thinking about gas
 means more brainpower left over for other things. Eventually, you
 might actually forget why you established the routine. That's OK. In
 fact, it's a good thing. You don't have to think about breathing; it's
 an autonomic function of the brain. Imagine how distracted you would
 be if every few seconds you had to stop, recall why breathing is
 important, decide to breathe, then concentrate to move your muscles to
 inhale and exhale!
One Sunday I was filling up my tank, and I mentioned to my
 passenger that I always get gas on Sunday. He asked me why, and I
 couldn't remember. I just knew that I had been doing it for a long
 time, that I started doing it to correct a problem, and that it had
 successfully solved the problem for nearly a decade.
Wow! Talk about autonomic! It took me a minute or two to
 remember the original reason. How cool would it be if other things in
 our life that we fret about became automatic functions?

Routine #2: Always Bring My Organizer

In theory, I want my organizer wherever I might need it. I know
 I need it at work. That's obvious. I sometimes need it at home. Should
 I leave it at work if I don't think I'll need it at home that evening?
 Should I leave it in my car or take it into the house? "Nah, I'll
 leave it here. I won't need it tonight."
Then it turns out that I do need it, and since I'm too lazy to
 go out to my car, I agree to Thursday night dinner with friends, as I
 don't recall any conflicts with that date. I then either miss the
 appointment (since I didn't record it), or it turns out that I do have
 a conflict and I have to reschedule, which creates a lot of work for
 me and all the other people involved.
Is rescheduling more work than running out to my car to get the
 darn organizer? Of course. But I don't go to the car because when I'm
 in the moment, it feels like less work to try to remember the
 appointment. I want the easier option that exists right now, not in
 some theoretical future when I might be wrong. Look at me! I just
 saved a trip to the car!
A worse scenario is when I get into my car in the morning to
 drive to work and find I don't have my organizer with me. I think,
 "Where is it? Well, it's not here. Did I bring it home? I don't know.
 I must have left it at work."
Of course, when I get to work I discover that my organizer
 actually was at home. Now I have to spend the day without it. To do
 list items get confused, appointments are missed—it's awful.
To help me develop this routine I found an excellent mantra to
 use:
If I ask "Should I bring my organizer?" the answer is
 "Yes."

That has a domino effect that works well. When I'm leaving work,
 I know to take my organizer. When I'm leaving for work, if my
 organizer isn't in my car, I know I have to go into the house to find
 it. Since I always take it with me, I know I couldn't possibly have
 left it at work the night before.
This is why in 14 years I've lost my organizer only once. Every
 time I leave a room, go home from work, get into a car, get out of a
 car—everywhere I go—I know I should have my organizer in my hand.
 Because of this absolute consistency, the habit was able to develop
 very quickly and indelibly in my mind. Sometimes we misplace things
 because we lose track of them. We put an item down, and later we leave
 the room without it because we aren't in the habit of taking it with
 us all the time. Because we don't always have our organizer with us,
 our brain rationalizes that it's OK that we don't have it with us
 right now. I have developed a habit, almost a
 tactile addiction, to having that organizer in my hand.
Warning
The one time I lost my organizer I was in a rush and was
 distracted by having to carry many things at once. I would like to
 point out that the limo company returned my organizer by overnight
 air the next day. I was very lucky.

What are the things that you find yourself without? Why don't
 you carry them with you all the time?
Take a moment to consider the following items that might be
 easier to always have with you than to waste brainpower on deciding
 whether you should bring them along:
	Your PDA or PAA

	Your cell phone and/or pager

	A pen

	Your wallet, purse, etc.

	ID cards

	Keys (metal and electronic)

	Your medical ID cards, insurance information, etc.

	A laptop (for some people)

Oh, sure, let them laugh at you for wearing a pocket protector.
 We know the value of always having a pen on hand.

Routine #3: Regularly Meet with My Boss

I need "face time" with my boss. I like to be independent, but
 that has its limits. Scheduling meetings with my boss is a major time
 investment. If I add up all the bits of time I spend Instant Messaging
 her, talking to her secretary, and so on, it can take me 30 minutes to
 arrange for 15 minutes of time with my boss. That's just crazy.
So instead, we've agreed to meet or speak on the phone every
 Tuesday at 10 a.m., whether we need to or not. Now that 15 minutes
 takes zero time to arrange.
You might want to do something similar with your boss,
 especially if you don't feel you get to talk with your boss enough.
 Five minutes of status updates every day at 9 a.m. can be more useful
 to you, and less annoying to him, than grabbing him throughout the
 day.
Oddly enough, this also helps if your boss says you require too
 much of his attention. If half your attempts to see your boss are just
 to schedule time for larger discussions, it might be better to have a
 regularly scheduled meeting time with him. It consolidates the
 meetings.

Routine #4: The Check-In-with-Staff Walk-Around

There was a time at Bell Labs when I managed 15 other system
 administrators. I wanted to be a hands-off manager—the other SAs were
 all smart, hardworking, and independent. I mostly left everyone alone.
 However, I soon learned that they felt ignored. I needed to spend more
 time with them.
If You Have to Ask, the Answer Is "Yes"
Over the years, I've decided the answer to these questions is
 always "yes." I can now stop wasting brainpower trying to make a
 decision each time the issue comes up.
	Would this be a good time to save the file I'm working
 on?

	Should I take my organizer with me (versus leaving it
 here)?

	Should I add this to my to do list?

	Should I check my calendar before I agree to this
 appointment?

	Should I write this on my calendar?

	Should I check to see whether I have plans after work
 before I agree to stay late?

	Should I check to see whether I have any early
 appointments before I decide to play one more game of
 Half Life this morning?

	Should I do The Cycle today (versus slacking off)?

	Should I fill my car's gas tank now (versus
 procrastinating until it is an emergency)?

	Should I do this small task or chore now (versus
 procrastinating and hoping nobody notices or the task doesn't
 turn into an emergency)?

The answer to all of these questions is "yes." This list was
 developed over 10 painful years of getting into trouble (in small
 and big ways) by thinking about the question, weighing the benefits
 of both choices, and making a thoughtful but wrong decision. I was
 trying to be smart. It took me a long time to realize, "Stop
 thinking! The answer is 'yes!'" Don't weigh the issues; don't waste
 brainpower making a decision; don't convince yourself that just this
 one time things will be different! If you have to ask yourself the
 question, the answer is "Yes!"
In most cases, it takes longer to make a decision about a task
 than to do the task. Opening up my PDA and checking my calendar
 takes 10 seconds, but I can spend just as much time rationalizing
 that today my memory is good enough to not need to check.
Many of those questions are equivalent to asking, "Should I
 trust my memory or my organizer's memory?" We already know that our
 memory is faulty; otherwise, we wouldn't be using an organizer,
 right? Use it!
It took me nearly 10 years to develop a rule for each of those
 questions, and, by amazing coincidence, for each of them the answer
 was the same. Save yourself many painful experiences and believe me:
 the answer is "Yes!"

However, scheduling mini meetings with 15 people would have
 taken longer than the meetings themselves and wouldn't have worked in
 the chaotic environment of system administration. Therefore, every
 Monday and Thursday at 9 a.m., I would do my "walk-around." I would
 walk a particular path that went by each person's office. Their
 offices were, essentially, in three different clusters, so it was
 almost like having three mini status meetings. I would stop in, say
 "hello," and this would present them with an opportunity to bring up
 issues.
It would take me half a day to do this, but it was a really good
 opportunity to troubleshoot problems in real time, remove roadblocks,
 and solve the problem of people feeling ignored.
Our weekly staff meeting was on Tuesday morning. The Monday
 walk-around usually resolved a lot of issues that would normally tie
 up the Tuesday meeting, so we reduced the time allotted to our staff
 meetings. Shorter meetings are cool.
I was surprised at how well it worked. I was also surprised that
 anyone noticed. Alas, one day I was walking towards a cluster of
 offices, and I overheard someone saying, "Here comes Tom for his
 Thursday visit," followed by a little laughter.
OK, they were mocking me. Did I change? Did I vary the schedule
 to be less predictable and obvious? No. I'm too thickheaded for
 that.
However, I did notice that over time my staff started planning
 their schedule around my walks. Sometimes I would arrive and they'd
 have a list of issues on the whiteboard ready to discuss.
Here are two takeaways from this story:
	Develop a routine that solves your problems.

	Perform the routine on a predictable schedule, and others
 will plan their schedules around you.

Routine #5: The Check-In-with-Customers Walk-Around

If you are supporting a number of people who are in the same
 building as you, you can increase customer satisfaction by doing a
 walk-around once a day to visit customers, talk with them, answer
 questions, fix problems as you see them, record bigger problems to be
 worked on later, and so on. If anything, it develops a better rapport
 with your customers. That alone is very valuable.
One person I worked with had a very shy, smart, but not so
 computer-savvy group of customers. They had a tendency to not report
 problems because of their shyness, and possibly because the previous
 system administrator was a bit of a grouch. As a result, they were
 living with many inefficient workarounds—most of which my coworker
 could easily fix to make their lives better.
When I learned that my coworker was doing a daily walk-around to
 troubleshoot problems, I was appalled! Doing this went against our
 policy of recording all issues in our request-tracking system! It was
 an affront to our attempts to get people to send email to "help" to
 report problems. How could this be a good thing?
I soon learned that it was a great thing. People tend to not
 report little annoyances, figuring that the problems can't be fixed
 (especially people who aren't computer-savvy). The walk-arounds
 dramatically reduced the number of annoyances and greatly increased
 the group's productivity. It also helped foster a better relationship
 between my coworker and her customers, so much so that they began to
 include her in planning for major projects, which increased her
 ability to solve problems before they happened.
Do not use this technique if you have a problem saying no to
 people. Part of the reason it worked so well was that my coworker
 employed something like the delegate, record, do process of Chapter 2. I'll call her system
 fix, redirect , or sympathize .
	Fix. If the problem was
 easy to fix (less than two minutes), she'd fix it right then and
 there.

	Redirect. If the problem
 couldn't be fixed in a few minutes, she would help the customer
 send email to "help" to create a ticket in the request-tracking
 system. This was a group that wasn't used to creating tickets, so
 it was scary for them. Walking them through the process made it
 less intimidating.

	Sympathize. Many times
 the issue was just something that couldn't be fixed, or it was a
 known problem that wouldn't be fixed for a while. My coworker
 found that the best thing to do was to show sympathy without being
 condescending. "Yeah," she would sigh, "it's crummy that it works
 that way." The person would agree and feel better now that their
 complaint was acknowledged. Then my coworker would say, "I don't
 think there's a way around that, but I'll keep an ear out for a
 solution." This benefited the customer in that it validated that
 something was annoying and unfixable, rather than leaving it a
 mystery. It benefited my coworker in that it prevented the
 unsolvable requests from entering the request-tracking system but
 gave her a way to gain an understanding of what the general issues
 were. Some were noted in her PDA. When she did learn of a
 solution, she could return to the customer with the solution and
 look like a miracle worker.

The important thing is that she didn't try to solve every
 problem right then and there. Sometimes the walk-around was a more
 efficient way to collect requests that would be done later. Other
 times she was developing relationships with customers that would help
 her understand those customers' long-term needs. Other times it was
 simply a way to offer sympathy to get people beyond the unsolvable
 problems of our world.
I imagine that when my coworker started using the walk-around
 technique, she was overwhelmed by how many issues were being reported.
 As I mentioned, do not employ this technique if you have a problem
 saying no to customers. This technique requires discipline, or you'll
 end up spending the entire day with the first person you talk with.
 However, over time, the initial flood of requests will be dealt with,
 and the walk-around can become more of a maintenance mode kind of
 thing.

Routine #6: Pre-Compile Manual Backup-Tape Changes

In the Preface, I told an anecdote about changing the backup
 tapes. It was a complicated task with eight different tape servers
 that may or may not have needed a fresh tape each day. Each day I
 would spend time calculating which tapes were full enough to warrant a
 new tape (i.e., the next night's backups wouldn't fit in the remaining
 free tape). Then I would walk around to all eight servers, scattered
 all over the building, with the new tapes.
Eventually, I realized that I could avoid all the calculations
 if I changed the "big servers" every day and the "little servers" once
 or twice a week. That was a big savings, not just in my time but in my
 brain resources.
Again, this was a case of "stop thinking, just do." Sure, I
 wasted some tape by estimating rather than doing a perfect job, but my
 time was more valuable than the tape.
The other part of the story is that I tended to change the tapes
 at the end of the day. If I was deeply involved in a project (I
 usually was), then I wouldn't realize how late it was and would be
 scrambling to change the tapes. Usually I would be late to leave work,
 and the need to change the tapes would just make me later. Whether I
 was going home after work or to one of my many volunteer
 responsibilities, I would end up angry and upset because "those darn
 tapes made me late...again!"
This was a case of needing to figure out a better schedule. I
 realized this mantra:
If it has to be done every day, do it early in the day.

After I did my morning planning using The Cycle, I would list
 "change tapes" as an A priority every day.
As a result, there was one less thing weighing heavy on my mind
 all day, and I could be more focused and less stressed. I arrived home
 happier and less late. I started the day feeling like I had
 accomplished something right off the bat, and I had!

Routine #7: During Outages, Communicate to Management

Once upon a time there was a network outage. To make matters
 worse, there was miscommunication from the system administrators to
 management and the customers. Management felt they should have been
 told earlier about the problem. The system administrators felt they
 should be left alone to solve the problem. I'm sure this kind of thing
 has never happened to you...not.
After this event, we decided to develop a routine for the
 future. After all, this wouldn't be the last outage.
The routine was simple: after an hour, a particular manager (the
 boss of the chief system administrator) would be notified of an
 outage, even if it was late at night. The system administrators would
 then update this person every half hour until the problem was
 resolved. The manager would notify upper management and customers (if
 the outage didn't prevent communication to the customers) so the SAs
 could focus on solving the problem.
It was a simple routine and it worked well. Too bad we didn't
 have it in place before the first calamity.
If your company is particularly visible (hello Amazon, Google,
 and Yahoo!), such a routine should involve the Public Relations
 department. It's important to have this routine worked out before your
 first major outage, no matter how difficult it is to discuss. Some
 outages are so big that news reporters will want to know what's going
 on. You can imagine how messy things can get. This was more common
 long ago when anything with the words "Internet" or "computer
 security" was spiffy enough to draw in the news media. (Now the media
 has become jaded, and "Microsoft security hole affects millions of
 businesses" is unfortunately no longer considered news.) Nonetheless,
 if your business is high profile, it is important to have a media
 strategy worked out with the PR department ahead of time. Know whom to
 refer to if reporters start calling. If you don't have such a plan in
 place, the best answer you can give is, "No comment;" then hang up the
 phone before you are tempted to say anything else. It's very tempting
 to say something to a reporter, but many system administrators have
 learned that the best thing to do during an outage is to work on the
 technical issues and let PR deal with the media.

Routine #8: Use Automatic Checks While Performing Certain
 Tasks

I've developed the following habit so that I don't lock my keys
 in the car: when I'm about to close my door, I hold the door with my
 right hand and squeeze my left hand to make sure I feel my keys in it.
 Only if I'm holding my keys do I then close the door. I have a similar
 ritual when leaving my house.
Not that I've locked myself out a lot, but the few times it
 happened always seemed to be at the worst possible times and took
 several hours to remedy.
How does this relate to system administration? There are many
 automatic checks we can introduce into our work:
	When I leave a secured room, I make sure I feel my access
 card-key in my pocket. (Related rule: I never put my card-key down
 on a table, floor, whatever, even just for a second. It always
 goes in my pocket and my pocket is where it goes.)

	When I'm near equipment, I always pause to check for air
 flow. In particular, I make sure fans are not blocked by cables or
 other devices.

	Any time a new hire joins the company, I always stop by to
 introduce myself, welcome her, fix any immediate problems she has,
 and explain how to get computer help in the future. If I can fix
 her immediate problems, it can help her get started sooner, and
 the sooner I can train her to create tickets (rather than call me
 directly), the better I can manage my time.

	When I see a person I don't recognize, I always smile, stop,
 introduce myself, and ask for the person's name. I then ask to
 read it off his ID badge, telling him it will help me to remember
 it because "I'm a visual learner." New people think I'm being
 friendly. I'm really checking for trespassers.

	Before I disconnect a network cable I set up a continuous
 "ping" (one per second), which should start failing when I
 disconnect the correct cable.

	Every time I add a new rule to my firewall, I first set up a
 demonstration of what I want to block and show that it isn't
 blocked. Then I add the firewall rule. Then I repeat the
 demonstration and show that it now fails. (If I don't do the demo
 before I add the rule, I can't be sure the rule works for the
 reason I think it does.)

A More Useful Ping
It can be useful to have ping produce a beep for every
 successful ping. That way you can be elsewhere in the room
 disconnecting cables and not have to keep running back to your
 screen to see whether the pings are working.
Linux ping has an
 -a (audible) switch, which
 produces a beep.
Solaris and other Unix systems without the -a option can use the following trick. The
 output of "ping" happens to include a colon only on lines that
 report success. You simply pass the output through the tr command to translate each colon into a
 Ctrl-G (the "bell" character).
 $ ping -s 64.32.179.56 | tr : ^G
(Solaris requires the -s
 option to make it a continuous ping. Others do not.)
To get a Ctrl-G to appear on the command line, you may have to
 precede it with a Ctrl-V. That is, you type:
 $ ping -s 64.32.179.56 | tr : CTRL-V CTRL-G

Routine #9: Always Back Up a File Before You Edit

When I'm about to edit a configuration file, I always make a
 backup. I don't waste time thinking, "Gosh, is this file important
 enough?" If I have to ask, the answer is "Yes." I make backups the
 same way every time so there is no time wasted figuring out the best
 way. My system is to copy the file to a file with today's date on it.
 For example, named.conf is copied
 to named.conf-20060120 (January
 20, 2006). I used to use the file's "last modified" date, but I found
 that it was much better to use today's date, which leaves a trail of
 when I made changes. In Unix, I can check the file into an RCS
 repository, which gives me infinite history of the file's changes
 (more on that in Chapter
 13).
It's tempting to convince yourself, "I'm making a small change
 that I'll be able to manually undo" or "I'm an expert, I can't mess
 this up." However, hindsight has found that a backup is better.
 Especially three weeks from now when you can't figure out why that
 service has stopped functioning.

Routine #10: Record "To Take" Items for Trips

I travel a lot. I used to forget to bring things, and when I
 hadn't, I'd still be nervous that I might have forgotten to bring
 something. Who needs that kind of stress?
Now, I write a "things to pack" list on the righthand side of my
 to do list for the day I'll be traveling. For weeks (or months)
 leading up to the trip, anytime I think of something I should bring on
 the trip I pop open my organizer and write it on that list. Since I
 always have the organizer with me, I never fail to record an
 idea.
When I pack, I check off the items as they go into my
 suitcase.
I also create a second list of the things to have in hand when I
 leave. That's usually my tickets, my wallet, my suitcases, and so on.
 I use this list to help me pack the car. If someone else is picking me
 up, this list includes the items I keep near my front door so they are
 there when my ride arrives.
I use these lists for both work and nonwork trips. I'd hate to
 get out of the habit just because I was traveling for pleasure. I
 reuse these lists to form my next list. I have culled items from past
 lists to create a master checklist that I keep in my Notes
 section.

How to Develop Your Own Routines

Now that you've seen some example routines that work for me, how
 can you develop routines for yourself? Here are some things to look
 for:
	Repeated events that aren't
 scheduled. Often there is a task or meeting that you
 repeat many times a week (or month) that isn't scheduled regularly.
 Would things be helped if it was scheduled in advance? Are you
 spending more energy scheduling the meeting than preparing for it?
 If so, develop a schedule. Propose either a regular time and day or
 a series of dates and times and get agreement up front.

	Maintenance tasks. A lot of
 IT is like gardening: you have to weed a little each week; you can't
 do all your weeding in a marathon weekend at the beginning of the
 summer and then not weed for the rest of the season. If it has to be
 done a little each day, week, or month, make it into a routine. If
 you are cleaning out a storage room, do an hour of work each day. If
 you are auditing your user database for people who have left the
 company, review 100 accounts each day until you are done.

	Relationships and career
 networking. Relationships require maintenance and are
 also similar to gardening (they grow if you work diligently, starve
 if they are ignored, and die if they get too much attention). There
 are four groups of people you need to maintain relationships with:
 your customers (or your single point of contact for each customer
 group), your staff (who report to you), your peers, and your
 boss(es). Do you routinely touch base with each of them? The key to
 networking (the career kind, not the data kind) is to maintain
 relationships throughout the year, not just when you are looking for
 a new job. Schedule lunch once a month with your mentor or a person
 who is part of your network.

	When procrastinating takes longer than
 action. If you find yourself spending more time thinking
 about a task than it would take to do the task, just do it.
 (Thinking of doing a task is not to be confused with the thinking a
 task may require.)

	Things you forget often.
 The next time you find yourself in a bind because you forgot
 something, develop a routine to prevent future occurrences. Hang
 your keys in the same place each night when you come home, and
 you'll develop the habit of grabbing them every time you leave. Or,
 if you must take something with you when you leave, use it to block
 the door so you'll be sure to see it on your way out. It's important
 to communicate these routines with your significant other(s). It
 does no good to always place your wallet and keys on the entrance
 hall table if your partner is always going to "put them away"
 somewhere else.

	Inconsequential or low-priority tasks
 that can be skipped occasionally but shouldn't be. There
 are often tasks that can be skipped once and nothing bad will
 happen. However, skip them too many times and you're in trouble.
 This includes things like changing backup tapes, ordering supplies,
 and so on. Put "order supplies" (or whatever the task is) in your
 PDA/PAA repeating reminders list for every Monday. It's better to
 ignore the reminder when there's nothing to order (or do) than to
 forget to do it at all.

	Developing new skills. Some
 people complain that they never have time for training. Others
 schedule one training class a year whether they know what it will
 be. It's never going to happen if you don't make it happen.

	Keeping up-to-date. It is
 better to schedule one hour a week of "closed-door time" for
 magazine reading than to try to get caught up every few months.
 Throw out all unread magazines once a month—if you didn't get to it
 by the time the next issue arrives, you won't get to it. If you
 don't have an office with a door you can close, find some other
 space that is far away from walk-in traffic.

Meet Regularly with SPOC
When I was at Bell Labs, each system administrator served two to
 three groups of customers (we all supported the entire network, but
 each SA was supposed to focus on a particular customer segment). We
 were required to meet with the Single Point of Contact (SPOC) for each
 group, along with the department head (the person who paid the bills
 for that group).
It was difficult to get on the department heads' schedules, but
 they gave in when they were promised the meeting would be kept to 15
 minutes and would always start on time.
The department heads found that it was revolutionary to actually
 be able to communicate their needs directly to the IT staff rather
 than playing cat-and-mouse games. They would often ask to extend the
 meeting beyond 15 minutes, or they would use the first 15 minutes to
 set goals, and the system administrator and SPOC would continue the
 meeting to work on the issues raised.
Some department heads resisted, saying that they delegated "all
 that kind of thing" to their SPOC. However, we found that without the
 person who paid the bills in the room, the meetings were not as
 effective. Eventually, we were successful at having regular meetings
 with every customer group SPOC and department head because our
 listening skills, and later actions, demonstrated the value of the
 meetings.

Deleting Old Routines

Sometimes you have to update your routines.
In the "gas tank" story, earlier in this chapter, I pointed out
 that eventually I forgot why I had started such a routine but I
 continued doing it. That sounds a little dangerous. Without knowing why
 I was doing something, is it right to keep doing it?
I guess it comes down to faith in myself. Since I created the
 routine, I know I have already settled any ethical dilemmas. And I'm
 talking about changing backup tapes and filling gas tanks, not
 life-or-death decisions.
I find that routines delete themselves by becoming obsolete. When
 I got a promotion and someone else took responsibility for changing the
 backup tapes, the routine I had developed expired on its own.
Routines also modify themselves and evolve. This isn't a Perl
 script that, if left unmodified, will fail after the files it affects
 have been migrated to a new server. This is you. You're human. You see
 things as they happen and adjust.
Of course, I try to be flexible. When someone challenges my
 adherence to a particular routine, I keep an open mind and listen to his
 concerns. Sometimes he is even right.

Summary

	A good routine saves you work and reduces the amount of time
 you spend making decisions.

	Routines give you a way to "think once, do many."

	Develop the routine of always recording your appointments and
 to do items in your organizer and always having your organizer with
 you.

The more routines we develop, the less brainpower we have to put
 into small matters, and the more brain power we have to focus on the fun
 and creative parts of being a system administrator. Throughout your day,
 look for opportunities to create your own routines. Red flags for such
 opportunities include:
	Repeated events that aren't scheduled

	Maintenance tasks

	Relationships and career networking

	When procrastinating takes longer than the task

	Things you forget often

	Inconsequential or low-priority tasks that can be skipped
 occasionally but shouldn't be

	Developing new skills

	Keeping up-to-date

Schedule Reading Time
Never get caught up reading all those computer-industry
 magazines that come to your mailbox? Schedule a one-hour reading time
 each week. Find a place to hide, and read as much as you can. Throw
 out what you weren't able to read, which keeps your reading material
 fresh.

Chapter 4. The Cycle System

In 1997, I received an award for my political activism. In addition
 to my full-time system administration job and very active social life, I
 spent my spare time involved in four nonprofits, one of which I had been
 president of, another that I had founded. Someone asked me how I kept it
 all coordinated. I smiled and thanked them for the compliment, and
 politely held back from saying, "I'm a system administrator! I manage
 chaos for a living!"
The truth is that I had figured out how to keep track of the flood
 of requests and to do items that came my way without losing any of them.
 It's easy to look like you know what you're doing when you have good
 follow-through .
Your customers value your ability to follow through more than they
 value any other skill you have. Nothing ruins your reputation like
 agreeing to do something and forgetting to do it. The secret to perfect
 follow-through is to record all requests and track each request until
 completion. My key to perfect follow-though is a system I call
 The Cycle because it repeats every day, and the output of one day is
 the input to the next. Sort of like in grade-school science where you draw
 a circular diagram that shows how a frog starts life as an egg, becomes a
 tadpole, grows legs, turns into a froglet, becomes an adult frog, and
 gives birth to more eggs, which starts the cycle all over again. This
 system is just like that, except that each cycle is 24 hours, and you
 don't have to live in a pond.
The Cycle uses three tools: a combined to do list and today's
 schedule, a calendar, and a list of long-term life goals. Store all these
 tools in one place. The process is the same whether you use a PDA or an
 old-fashioned planner or organizer (PAA) that can be found in a stationery
 store.
Keeping all three databases in one place is important
 because:
	The three databases interact with each other. You want to be
 able to easily flip between them.

	It's easier to track the location of one thing rather than three
 things.

	You need to keep the databases with you all the time, and it's
 easier to carry a bundle than it is to carry three individual
 items.

This chapter explains The Cycle System in general. Chapters 5, 6, and 7 will explain The Cycle System's parts:
 to do lists and schedules, the calendar, and life goals. These might be
 the most important chapters you read in your system administration
 career.
[image:]

Figure 4-1.

Don't Trust Your Brain

System administrators in general are smart people. You're smart.
 I'm smart. We're all smart. We've achieved our stature through
 brainpower, not brawn. Sure, our good looks help, but deep down ours is
 a "brain" job. On average, people have a short-term memory capacity of
 seven items, plus or minus two. What about the average reader of
 this book? I bet you're closer to eight, nine, or,
 heck, you in the back row reading the comic book might be as high as ten
 (plus or minus three).
Turning to my personal to do list, I see about 20 items. Damn.
 That's a lot more than 10.
There's no way I can trust my brain to remember 20 items. I need a
 little external storage. So do you.
I hope you aren't insulted when I say "Don't trust your
 brain."
I don't trust mine. That's why I write down every
 request, every time. Whether I use a PDA or PAA, when someone
 asks me to do something, I write it down. This has become the
 mantra:
Write down every request, every time.

My brain feels a little insulted by this lack of trust. When
 someone asks me to do something my brain starts yelling, "I'll remember
 it! Put down that PDA, Tom! Trust me this time!" However, all the
 inspiration I need to record the request is to hark back to those times
 when I've had to face a customer who was upset that I hadn't completed
 his request and deliver the rather lame excuse, "I forgot."
In Chapter 2, I discussed
 delegate, record, or do. When we delegate a task, we don't have to
 record it, though it is sometimes wise to record that we should follow
 up with the delegate to make sure the request was accomplished. (We are,
 so to speak, our brother's keeper.)
Also, if we are going to do the task, we
 don't have to write it down. If someone asks, "Please pass the salt," I
 don't write in my to do list, "pass the salt," and then cross it off my
 to do list. That would be silly. However, if someone asks me to do
 something and I say, "Sure, right after I'm finished with this," then I
 write it down. Don't confuse "when I'm finished" with doing something
 right away. In fact, for me, the biggest temptation to not write
 something down is when I think I'll remember it because it's what I'm
 going to be doing next.
Our poor brains. So insulted by the suggestion that they can't
 remember everything. However, remember that our brain is also where our
 ego is kept. Sometimes our ego oversteps its boundary and oversells its
 buddy the brain. When you hear yourself think, "I don't need to write
 this one down," or "I'll make an exception this time, how could I
 possibly forget this request?" just remember that it's your brain—ego
 big as Montana—overpromising like a Microsoft salesperson trying to meet
 his monthly quota.
	 	I used to think that the brain was the most wonderful organ in
 my body. Then I remembered who was telling me this.
	
	 	--Emo Philips

If it makes your brain feel less insulted, just remember that by
 not filling it with boring lists of to do items, we are reserving it for
 the powerhouse tasks. In Chapter
 1, I mentioned the story about Albert Einstein trying to reserve
 as much of his brain as possible for physics by eliminating other
 brainwork, like deciding what to wear each day. Legend also has it that
 Einstein didn't memorize addresses or phone numbers, even his own. The
 important ones were written on a slip of paper in his wallet so as not
 to use up precious brain capacity. When someone would ask him for his
 own phone number he would tell them that it's in the phone book and
 politely ask them to look it up. Be like Einstein; reserve your brain
 for system administration.
If I don't have my organizer with me when someone makes a request
 (this usually happens when I'm on the way to the men's room), I am very
 forthright with putting the onus on the requester to make sure her
 request gets recorded. For example, I'll say, "Gosh, I'm running to a
 meeting and I really don't want to forget this request. Could you
 promise to send email to 'help' [which creates a ticket in our request
 tracking system] that says, 'Glenn. I need x-y-z. Ask Tom for details.'"
 I know that I have to put the responsibility of remembering the request
 on my organizer or back on the person making the request. Anything but
 my brain.
I don't trust my brain to remember stuff. Paper, on the other
 hand, I trust. Once something is written down, it's there. If I have a
 list of 10 to do items on a piece of paper I don't have to worry that
 one might vanish. Disappearing ink is something that only exists in
 cartoons, and a dog has never eaten my homework.
I also trust PDAs. I do fear a PDA breaking or somehow losing my
 data, but that's why when I do use one, it gets synced to a file server
 that is backed up. When compared to the number of times my brain forgets
 things, PDAs are nearly as reliable as paper.
The Perfect PDA Environment
When PDAs were new and models were few, I worked in an
 environment that standardized on a particular model. The system
 administration team would configure the PDA to sync to the user's home
 directory on the file server. Thus, the user's data was backed up
 regularly.
When a PDA broke, we had a spare. Slap it into the person's sync
 cradle and they were back in business instantly. Since everyone had
 the same PDA, the person would simply keep the spare while we took
 care of replacing the broken unit.
This was quite luxurious for the PDA users in our group. Today
 there is more variety in PDA hardware, which makes it more difficult
 to provide this service, but it can still be approximated with a
 little coordination.

Why Other Systems Fail

Before I reveal The Cycle System, I want to explain some systems
 commonly used by system administrators that don't work: The Scattered
 Notes System and The Ever-Growing To Do List of Doom.
The Scattered Notes System involves writing notes on random bits of paper or having
 multiple to do lists scattered about. My favorite is when I see a video
 monitor encircled with yellow rectangular sticky notes. Is each one an
 action item? A reminder? A phone number? Who knows? What is the priority
 of these? What if one falls off? There's too much chaos.
When you get assignments at a meeting, you start a new list. Now
 you are managing two lists. Then you lose one list because it got thrown
 out with other papers. Now you're missing meetings and failing to meet
 deadlines. Not a good situation.
The other extreme is The Ever-Growing To Do List of Doom . Usually someone realizes that having many lists or
 scraps of paper isn't a good way to track things, so he buys a notebook
 and declares that this will be his one list. No more confusion, right?
 He diligently carries this notebook everywhere. Any new assignments get
 written in the notebook, and old tasks get crossed out as they're
 completed. The process works great at first, but then it starts to break
 down. It's difficult to prioritize work. Older items get forgotten since
 our eyes tend to look only at the last (newest) few items.
The most important failure of this system, and why I call it a
 list of doom, is that it's pretty damn depressing. The list never ends.
 You work and work and work, and the list never seems to get any shorter!
 You cross off items that you complete, but new items appear at the end.
 The number of pages starts to accordion out as you cross off items in
 the middle, but there's that one item waaaaaay at the beginning that is
 just never going to get done. Soon you are flipping through pages of
 crossed-out items to find the one item that isn't crossed out. You feel
 stressed because you fear missing an incomplete item hidden in pages of
 crossed-out items.
Worst of all, this is a total self-esteem killer. You never get
 that big feeling of accomplishment from having completed the list
 because the list never gets completed. It's the List of Doom.
	 	Newman: I'm a United States postal worker.
George: Aren't those the guys that always go crazy and come back
 with a gun and shoot everybody?
Newman: Sometimes.
Jerry: Why is that?
Newman: Because the mail never stops. It just keeps coming and
 coming and coming, there's never a letup. It's relentless. Every day
 it piles up more and more and more! And you gotta get it out, but the
 more you get it out, the more it keeps coming in. And then the bar
 code reader breaks and it's Publisher's Clearing House day!
	
	 	--Seinfeld, episode #418, "The Old
 Man"

If The Scattered Notes System is too chaotic and The Ever-Growing
 To Do List of Doom is too depressing, then The Cycle is, as Goldilocks
 would say, "just right." It utilizes a device (either PDA or PAA) that
 you can carry everywhere with the bonus benefit of keeping everything in
 one place. The Cycle gives you a feeling of completion and
 accomplishment at the end of each day when you complete the day's
 list.

Systems That Succeed

I've explained why follow-through is important, that we shouldn't
 trust our brains, and the qualities of systems that fail. Now I'll
 explain what makes a system that will succeed.
A good system has the following qualities:
	Portable. You can take it
 everywhere.

	Reliable. It remembers
 everything you need, so you don't have to.

	Manageable chunks. Not a
 million little notes, not one List of Doom.

The elements we need to make a good system are:
	Calendar. A place to record
 recurring meetings, appointments, holidays, and so on.

	Life-goals list. A few
 blank pages to keep our long term goals and other notes.

	A day-by-day section. For
 each day we have:
	To do list. A
 prioritized list just for that day.

	Schedule. An
 hour-by-hour schedule for that day.

The essence of the system is the day-by-day page, which should be
 big enough for both that day's schedule and that day's to do list.
 FranklinCovey and Filofax sell stationery like that (see Figure 4-1). Alternatively, you
 can keep this information in a PDA. We're going to take our organizer
 with us everywhere we go so that if someone asks us to do something, we
 can record it right away and not be tempted to scribble it on a slip of
 paper that will be lost before we can copy it into our PAA/PDA.

The Cycle

The Cycle is the evolution of a system that has worked for me for
 over 10 years. It's relatively lightweight, yet it includes all the
 pieces a system administrator needs.
[image: FranklinCovey, Filofax, and others sell "one page per day" sheets where you record your to do list and daily time schedule]

Figure 4-1. FranklinCovey, Filofax, and others sell "one page per day"
 sheets where you record your to do list and daily time
 schedule

There are four parts in our organizer:
	365 to do lists per year.
 We're going to have one to do list for each day of the year. Today's
 to do list records the tasks you need to do today. If you know
 something needs to be done on a particular day, write it on that to
 do list. Items left over at the end of the day will be moved to the
 next day's list. (If you use a PAA, you'll only need to keep the
 next month's worth of sheets with you. Otherwise, it will be
 difficult to carry!)

	Today's schedule. Each day
 we'll plan our day in one-hour increments.

	An appointment calendar.
 This will be used to record all of our appointments, meetings,
 social plans, and so on. Events that are further in the future than
 the current month are written on the calendar until they can be
 transferred to a particular day's schedule .

	Notes. Our organizer will
 also be used to store other notes and lists. For example, in Chapter 7, we'll create lists of
 short- and long-term plans.

The Cycle goes like this: each day starts by investing 10 minutes
 to plan my day. The planning process is simple:
	Create today's schedule. On
 today's schedule I block out time for all my meetings and
 appointments. All these events should already be listed on my
 calendar (I cover how this happens in Chapter 6). I count how many hours
 are remaining. Those are my work hours for the day.

	Create today's to do list
 . On today's to do list, I have a list of all the to
 do items I have on my plate for that day. These to do items are
 culled from phone calls, meetings, my calendar, our request-tracking
 system, and the previous day's to do list.

	Prioritize and reschedule.
 For each item, I estimate how much time the item will take to
 accomplish. I total the time estimates. If the total time is more
 than my total work hours, I move individual items to the next day's
 list. We'll talk about techniques for selecting what to move
 later.

	Work the plan. I spend the
 day working on the tasks in my list and attending
 meetings/appointments. I stay focused. When something is complete, I
 mark it with an X.

	Finish the day. At the end
 of the day, I move all the unfinished tasks to the next day's list.
 I mark the items that were moved with a hyphen.

	Leave the office. Now I can
 leave the office. I am happy with the knowledge that every item on
 my list was managed—it was either done or moved to the next day.
 Nothing was forgotten.

	Repeat. The next day The
 Cycle starts over again. Each day's to do list comes prepopulated
 with items moved from previous days.

By having a new list each day, we will get that good feeling of
 accomplishment when we have managed every item on today's list. When we
 finish our list early, we can reward ourselves by working on a "fun"
 project, or go home early if we have that kind of flexibility. When we
 have more work than can be completed today, we can feel good that we
 have a way to manage overflow.
We can do long- and medium-term planning instead of the constant
 scramble to keep our heads above water. We can break a task into smaller
 parts and schedule each part for a particular day. We can schedule time
 across the next month, or even year, to achieve a long-term goal by
 writing down reminders on various pages.
We also have a calendar to keep all of our appointments. Use one
 calendar for both work and social life because one calendar is easier to
 track than two. A combined calendar ensures that we don't miss something
 fun because we didn't check our social calendar and decided to work
 late.
Sound too mechanical? Too inflexible? You'll see how flexible it
 can be. This entire planning process will take about 10 minutes each day
 and save you hours of frustration. Does planning your entire day sound
 unrealistic? What about when new tasks are added to your to do list
 throughout the day? I promise we'll cover that in Chapter 5. You have to learn to crawl
 before you can learn to walk.

Summary

	Follow-through is the ability to make sure all requests are
 captured and then managed to completion (or rejection). Customers
 (the people you serve) and managers (the people who determine your
 next pay raise) value follow-through because they want to see their
 requests and projects completed, not dropped.

	Good follow-through is the key to good raises and
 promotions.

	Don't let requests become stillborn—capture all of them. When
 a customer sees you in the hall and requests something, don't trust
 your memory. If you can't write the request down, ask the customer
 to send the request via email or the request-tracking software. That
 way the onus is on the customer to make sure you don't forget his
 request.

	Nothing insults, infuriates, or frustrates a customer more
 than giving a system administrator a request and having it be
 forgotten.

	The more tasks you have, the harder it is to track them. Soon
 you are spending more time tracking the tasks than doing
 them.

	To remember requests, record them in a reliable way. The human
 brain is not as reliable as paper or electronic devices. Record
 requests the moment you receive them. Write down every request,
 every time. Reserve your brain for more important tasks.

	To do list systems fail for many reasons. Scattered notes get
 lost. A single list becomes a depressing Ever-Growing To Do List of
 Doom. These can kill self-esteem.

	The Cycle System uses a calendar for meetings, dates, and
 appointments; a life-goal list for long-term plans; a to do list for
 today (and every day); and a schedule for today that lets you plan
 your work.

	Every day begins by investing 10 minutes to plan your day.
 Examine your calendar to see how much time you have for meetings and
 appointments. You will use the remainder of your time for your to do
 list. You determine whether you have enough time to do what's on
 your to do list and manage any overflow. You manage the overflow by
 moving low-priority items to future days or renegotiating with
 customers.

Get Started Now!
When you begin using The Cycle it will seem awkward and
 difficult. However, as time goes on, it will become more comfortable.
 You will customize it as you start to see how it can best fit into
 your lifestyle. Psychologists say it takes 21 days to form a new
 habit; 21 days of doing the same thing over and over to make your
 brain treat it like a habit that can be done effortlessly. However,
 Tom's "one-day rule" is that you'll never get to day 21 if you don't
 get started. So plan on doing your new habit for one day, and make
 that day today. The other 20 will be a lot easier.

Chapter 5. The Cycle System: To Do Lists and Schedules

Now that I've teased you with an overview of The Cycle System in
 Chapter 4, we continue with a
 sequence of three chapters that explore the elements from the most
 immediate concern to the most long-term elements. This chapter is
 concerned with managing our to do list, the "now." The next chapter will discuss
 calendars, which are how we manage the coming days and months. Finally, we
 will examine long-term goal-setting in Chapter 7. Since The Cycle is a loop,
 there may be times when I'll gloss over a point that doesn't make sense
 until the other chapters have been read. You may want to cycle over these
 three chapters more than once.
All system administrators have one thing in common: we have too much
 to do and not enough hours in the day to do it. Luckily, much of this
 chapter deals with managing overflow. Beginning with a sample day, and
 then another and another, let's watch how the system works.
[image:]

Figure 5-1.

A Sample Day

Let's work through a single-day example to see how the system
 works.
When you enter the office each morning, you should immediately
 focus and start this process. Otherwise, you will be caught by the
 interruptions and distractions that surround you: your voice mail light
 is flashing, people are stopping by, the coffee machine is calling you,
 and you are curious what Dilbert and the group at
 User Friendly are doing today. You decide to check
 your email and...hours later realize you've wasted half your day.
So STOP. Don't check your email
 or read the news sites. Instead, close your door (if you are lucky
 enough to have one) and follow the steps of The Cycle.
Take the Time to Plan First
"Can't I check my email first?"
No. Planning your day takes 10 minutes. Email can wait.
"What if there is an emergency and someone emailed me about
 it?"
Small emergencies can wait 10 minutes. Big emergencies are
 usually signaled by nonemail notifications, such as smoke and fire or
 people standing outside your door.
Here's a compromise—bring up the "dashboard" view of your
 network monitoring software. If it says there aren't any services
 down, then you don't need to check your email. (Shouldn't your
 monitoring software have paged you already?)
Friends tell me that they have the self-control to open up their
 email reader, look for important messages, and then turn it off. I
 don't have such self-control. I've tried checking for important
 messages only, but I always end up reading all my email, which leads
 to starting projects, and suddenly I realize I never planned my day.
 Trust me, the emergencies can wait 10 minutes.

Step 1: Create Today's Schedule

You begin the day by setting up today's schedule. You're going
 to look at your calendar to see what meetings and appointments you've
 committed to and use that as the basis to mark out blocks of time on
 your daily schedule. The remaining time can be used to work on your to
 do list. You'll use the power of arithmetic to calculate how much time
 you have.
Let's pretend you look at your calendar and see the items in
 Figure 5-1.
[image: Calendar appointments]

Figure 5-1. Calendar appointments

It looks like you have one-hour meetings at 10:00 a.m. and at
 3:00 p.m. Therefore, you block out those times on today's schedule.
 You also like lunch, so you block out noon to 1 p.m. Next, you
 calculate how much time you have left for your to do list. It is 8:30
 a.m., and you want to leave at 5:30 p.m., or in about nine hours. With
 three hours already blocked out, you are left with six hours to
 allocate to your remaining tasks. Figure 5-2 shows you what the
 day already looks like.

Step 2: Create Today's To Do List

Now you create the list of to do items that are on your plate
 for today and calculate how much work (in hours) you have. Normally,
 you'd have some items already scheduled. You'll add any others that
 come to mind (that brilliant idea you had while walking through the
 parking lot), and if this is the first day of the month, you'll
 process your life-goals list (more about that in Chapter 7).
Since this is the first day you're using The Cycle, your to do
 list is blank. However, you can add some items that you know you have
 to do. Write them in your own shorthand, not full sentences. When you
 write it into the to do list, it looks like Figure 5-3.
As you can see, the shorthand only has to be enough for you to
 understand the task. You can record as many other details, such as
 phone numbers, usernames, etc., as you think are necessary, but try to
 keep it succinct.
[image: A day with blocked-out time]

Figure 5-2. A day with blocked-out time

[image: Monday—to do items in your organizer]

Figure 5-3. Monday—to do items in your organizer

If you have voice mail waiting, this is a good time to listen to
 it and transcribe any messages. I tend to write down an item for each
 message that I get, even if the message requires no action on my part.
 In that case, I can mark the item as "done" right then and there. It
 gives me a feeling of accomplishment.
How much work do you have today? Use a column in the to do list
 to write an estimate of the time each item will take (Figure 5-4), and then total the
 estimates.
[image: Monday—time estimates added]

Figure 5-4. Monday—time estimates added

In this example, you can count the hours items (marked with an
 "h") quickly to see there are eight, and then total up the fractional
 parts (unlabeled times are in minutes) and find that they total one
 hour. Therefore, the amount of work on your to do list totals nine
 hours.

Step 3: Prioritize and Reschedule

Next, you mark each item based on a simple priority system. I
 tried a priority system in which I ranked items from 1 to 100, and it
 was too complicated. A friend pointed out that there are really three
 priorities in life:
	The deadline is today, and it really needs to be done
 now.

	The deadline is soon.

	Everything else

For the sake of simplicity, let's call these A, B, and C tasks,
 and that's how you will mark the tasks on your priority list. Figure 5-5 shows you how I have
 prioritized tasks for this first day.
[image: Monday—priorities added]

Figure 5-5. Monday—priorities added

Dealing with overflow

You have nine hours of tasks on your to do list, but only six
 hours of time to spend working on them. How can you handle the
 overflow?
The wrong thing to do is to stay late. Your social life is
 valuable. You don't do your employer any favors by ignoring social
 time and becoming irritable. You work better when you eat right, get
 plenty of sleep regularly, exercise, and participate in nonwork
 activities.
The easiest thing to do is to shift the C priorities and
 enough of the B priorities to the next day. That's one of the
 benefits of having one to do list assigned to each day. We can move
 items around. Here are some ideas that work well:
	Move lowest-priority tasks to the
 next day. This is the most common choice for me. The
 reason you set priorities is because everything can't be done at
 once. Therefore, you take a few of the C and B priorities and
 move them to tomorrow.

	Bite off today's chunk.
 Bite off a more manageable portion of the task and move the rest
 to tomorrow. For example, installing the new tape backup system
 involves many, many steps. Today you can unpack it and make sure
 all the parts are there and that the cables will reach. Tomorrow
 you can recruit a volunteer to help lift the system into the
 rack and install it. The next day you can configure the drivers.
 You are fine as long as you are making progress and completing
 all the tasks by your deadline. Once you have broken a task into
 multiple parts, write each part on a different day's to do list.
 This is a good method for tasks that are a high risk for being
 stalled by unexpected roadblocks. For example, you want to do
 the first bite-sized chunk right away because, in doing so, you
 will discover any missing parts that might take a while to
 replace. You want to learn that a cable is missing now, not the
 day of the deadline.

	Shorten the task (reduce the scope
 of the task). Sometimes you can find ways to make a
 task take less time. For example, when installing Bob's PC, you
 might realize that Bob is a chatty person and the task will take
 half as long if you do the installation without him standing
 there. Alternatively, maybe you were going to put a number of
 extra software packages on his machine. However, Bob is fairly
 technical and you know that if you don't install some of the
 extras, he is capable of installing them himself. In fact, maybe
 he'll appreciate being allowed to do things his way. If he needs
 the additional packages, he will ask for them, or you can tell
 him what you didn't install and offer to come back later to
 install them. Now Bob gets the instant gratification of using
 his PC, and you can move on to other tasks. Of course, you'll
 write "Finish installing Bob's software" on your to do list for
 tomorrow so you don't forget.

	Change the time
 estimate. You should always overestimate how long
 something will take. It's just safer that way. However,
 sometimes you may go too far, and you will find you can reduce
 your time estimate to make things fit while still being
 realistic about the time commitment.

	Delegate. Sometimes you
 can find someone else to take on a task. Junior SAs look forward
 to being given more challenging assignments that let them learn
 new skills. Of course, you don't always have the authority to
 delegate, which brings us to the next suggestion.

	Ask your boss for help
 prioritizing. When you have a full to do list,
 prioritized and annotated with realistic time estimates, you can
 really wow your boss by showing the list to her and asking for
 help setting priorities. If you've never done this, it might
 sound like I'm describing some kind of fantasy land, but the
 truth is that managers often feel like they have very little
 power over what their staff does, and it is quite a breath of
 fresh air to be asked, "Am I prioritizing these correctly?" (Of
 course, if you do this every day you'll get dinged on the "works
 independently" question on your yearly evaluation.) Once when I
 did this, my boss was able to clarify the priorities he wanted
 me to work on, which helped me in general. Another time, my boss
 saw a few to do items that he hadn't realized the team was
 involved with and eliminated them (his words were, "Joe Schmoe
 needs to learn to do that himself. I'm going to have a talk with
 his manager"). Sometimes I've had entire categories of tasks
 removed ("Tell Joe we no longer support that, and if he has a
 problem he should talk with me"), and occasionally my boss has
 delegated tasks to other coworkers. I find most SAs don't know
 that this option exists and yet, used judiciously, it can be the
 most powerful time management tool around.

	Delay a meeting or
 appointment. Delaying a meeting can be really bad.
 Rescheduling can be a nightmare, or annoy many people, or
 possibly delay a project. However, you can voluntarily miss a
 meeting or send a delegate. If you are supposed to attend a
 two-hour meeting—just to make sure that when the new server is
 discussed you can point out that it only comes in blue, not
 red—send a delegate to do that. (And if it starts a major
 discussion, the delegate can call you into the meeting.)
 Postponing an appointment is better than missing an appointment.
 I've found that when I postpone an appointment in person or via
 phone (i.e., not via email, which is not very interactive) often
 the person is able to shorten the appointment (cut to the
 chase). Oh, all he really wanted was to know whether the server
 was going to be red or blue? Well, it's going to be blue.

	Work late. I'm listing
 this option purely for completeness. This has got to be the
 worst option. Most people have four to five productive hours in
 them each day. Anything more is spinning your wheels. That's why
 books like Extreme Programming (O'Reilly)
 and PeopleWare (Dorset House) recommend
 eliminating overtime. However, it's also part of the SA's job to
 work late sometimes. As we discussed in the section "Delegate, Record, or
 Do" in Chapter 2,
 when there is an emergency, customers expect all hands to be
 working on the issue until it is resolved.

Back to our example to do list:
Let's move low-priority tasks to the next
 day. You have one C priority called "Investigate mon
 s'ware." Let's move this to the next day.
If you are using a PDA, you bump the entry to the next day's
 list. If you are using a PAA, mark the entry with a hyphen to
 indicate that it was moved, and hand copy the entry to the next
 day's to do list.
You've reduced today's workload by one hour. You still need to
 eliminate two more hours.
Luckily, you also have a B priority (GCC upgrade) that can be
 moved to the next day. You move it the same way as you did the C
 priorities (PDA: bump it; PAA: mark it with a hyphen in today's list
 and handwrite it into tomorrow's list). Now your list looks like
 Figure 5-6 and matches
 your number of available hours.
[image: A fully loaded Monday with overflow priorities moved to Tuesday]

Figure 5-6. A fully loaded Monday with overflow priorities moved to
 Tuesday

Dealing with Long-Term Projects
How do you deal with a long term-project? When a to do item
 is going to take six months, how do you work that into the time
 estimates for today?
It is important to break big projects into smaller steps or
 milestones. Very big projects often have project managers who do
 that for you. For your own projects, you need to do this for
 yourself. Take a moment to break the project into parts and
 estimate how long each will take. Write each milestone on the to
 do list of the day you are supposed to start working on it, or
 mark it on your calendar if it is far enough out. It's this kind
 of planning that really impresses managers.
On my daily to do list, I write the name of the project and
 the current milestone. That way I'm reminded of the larger goal as
 I work on each daily task. For example, I might write "Network
 Reorg—map current network."

Step 4: Work the Plan

Spend the day working as close to the plan as possible. First do
 the A items, then the B items, and then, if you have time, the C
 items.
It can be useful to have some kind of alarm or reminder to tell
 you when your meetings and appointments are so that you don't have to
 keep interrupting yourself to look at the clock.
When you finish one task, start on the next task. Keep the
 momentum going.
Many people have told me that they spend a lot of time trying to
 decide what to do next. A simple solution is to do all the A
 priorities in the order they appear on the list, and then do the same
 with the Bs and the Cs. We'll improve upon that system in Chapter 8, but for now, you can't do
 too badly by just doing them in order. The items higher on the page
 tend to be things that were copied from previous days. In other words,
 items you've put off tend to bubble up to the top of the list and will
 get taken care of first.
Try to take advantage of your momentum by moving onto the next
 task after you complete a task. Do this even if a task took less time
 than you had planned; it will make up for time lost when another task
 takes longer than expected.
Once in a while, pause to stretch. If you finish a task early,
 take a quick walk around the building. Being in IT generally means you
 don't get enough exercise. Carry a file folder so it looks like you
 are on your way to something important—nobody will be the
 wiser.
Once you've finished all your As, start working on the Bs. If
 you finish those, congratulate yourself by working on the most fun C
 item on the list.

Step 5: Finish the Day

It's rare that you will complete everything on your to do list,
 but you do want to make sure that the items are all managed. An item
 is managed if you've given it sufficient
 attention on that day.
A half-hour before the end of your day, look at the remaining
 items. If there are any As that aren't complete, you need to manage
 that situation. Call the person expecting the task to be completed and
 come up with a contingency plan. Or, if these are self-imposed
 deadlines (and they often are), copy the items to the next day.
In our example, you had enough time to unpack your tape library,
 make sure it came with the right cables, and even pantomime the
 process of mounting it in the rack to make sure the cables would reach
 and so on. However, you weren't able to find anyone to help you lift
 it into the rack. Therefore, you managed the item by noting what you
 did accomplish (checking off the items) and copying the remaining
 parts of the project to the next day.
With a PDA, you would bump the item to Tuesday's list. With a
 PAA, you can write in "unpacked and checked" next to the item, mark it
 with a hyphen, and write "mount tape library" on Tuesday's
 list.
Any remaining Bs and Cs should also be moved to the next day. In
 our example, there aren't any to be moved because we moved them
 already. Our lists now look like Figure 5-7. As you can see, it
 took us six hours to complete five hours of tasks.
[image: Monday's to do list at the end of the day]

Figure 5-7. Monday's to do list at the end of the day

Step 6: Leave the Office

Figure 5-7 shows a
 list on which every item in the Done? column has a mark. You've
 managed every item on your list. No, they aren't all completed, but
 they were managed. Sometimes managing an item means making sure it got
 the appropriate amount of attention; for low-priority items, that
 means they were moved to tomorrow. The important thing is that they
 were not forgotten.
You can look at your to do list and get the satisfaction of
 knowing you've managed everything on your plate today. Congratulate
 yourself. Smile. Put your coat on and go home happy. You deserve
 it.
I used to leave work every day feeling terrible. I felt like I
 had worked and worked, but I felt no sense of accomplishment. When I
 use The Cycle, I'm able to look at my list of items, see that each one
 was managed, and feel closure. I can leave the office with a smile on my face.

Step 7: Repeat

Let's pretend it's Tuesday. You can repeat The Cycle with
 today's list of items.
Today I'll introduce some advanced topics and show you how to
 manage them. In particular, you'll see how The Cycle works with a
 request-tracking system, voice mail messages, and
 interruptions.
Create today's schedule

You should start each day by checking your calendar for any
 appointments and filling them into your day's schedule. Today you
 have no meetings, so your hour-by-hour schedule is blank except for
 one hour for lunch, which leaves you eight hours for work out of
 your typical nine-hour day.
So far, so good!

Create today's (Tuesday's) to do list

Yesterday, four new tasks were added to your plate. Let's call
 them Task1, Task2, Task3, and Task4. They're low-priority tasks
 delegated to you during the staff meeting. They were not as
 important as the tasks you had to do yesterday, so you recorded them
 directly onto the first to do list that you thought was realistic,
 which happened to be today's (Tuesday's). This is in addition to the
 tasks that you managed yesterday by placing them on today's to do
 list.
When you arrived at your office today, your voice mail light
 was flashing, so you listened to the three messages and recorded
 them in your to do list, even if they didn't require any
 action.
It turns out that the first one was a company-wide notice
 about the east entrance of your building being blocked. You're
 so glad they're wasting time for everyone in
 the company because obviously you would never
 have realized what all the construction equipment and the big
 freakin' signs that say East Exit Closed could
 possibly have meant. Since this doesn't require any action from you,
 you promptly cross the item out.
The next message is from your Cisco salesperson. You record
 the number, since you're going to call him back (but before you
 cross out the item, you will verify that your contact
 database—described in Chapter
 12—has the same number listed). The third message is a
 salesperson cold-calling you. You're not going to return that call,
 so you just write "junk" and mark an X in the Done? column. Your
 Tuesday list now looks like Figure 5-8.
The day hasn't started, and you've already completed two
 items! You rule!
You might be wondering why you write down a task that you
 immediately mark as completed. You do this because it becomes a log
 of your phone calls, which can be a good "cover your ass" measure.
 This is one reason I prefer a PAA to a PDA. With a PAA, it's less
 effort to write junk items that immediately get crossed off.
[image: Tuesday—after listening to your voice mail]

Figure 5-8. Tuesday—after listening to your voice mail

I've already mentioned a couple of times that having some kind
 of request-tracking system is a good idea. How do you handle that in
 The Cycle System? You designate a specific amount of time each day
 to work on your tickets. I once had a job where I was expected to
 spend one-third of my day working on such requests. Therefore, every
 day I added a two-hour task called Tickets to my list. I wouldn't
 handle those tickets only during a two-hour block in the morning,
 but rather I used Tickets as a time holder for those moments in the
 day when I needed to work on tickets because one of them had become
 an unexpected priority.
I also get a lot of interruptions, about one hour's worth a
 day. These interruptions are an important part of serving my
 customers' needs, so I also allocate time for them.
Tip
If I've set up a mutual interruption shield, I write "MIS"
 for the time I'm the shield. Any project work I get done during
 that time is a bonus.

Now you can calculate how many hours of work you have to do,
 and it turns out to be 11.25 hours! With only 8 hours to do 11.25
 hours of work, it's time to prioritize. Any "due today" items
 immediately become A priority. The tape library issue was an A
 yesterday, which we half-completed. Therefore, finishing that task
 is obviously an A priority today.

Prioritize and reschedule

How do you prioritize the Tickets and Interruptions items?
 Well, they have to be done every day, so they should be As. However,
 Interruptions is sort of a buffer just in case you are interrupted,
 so you can be flexible and mark that item as a B.
There are a few Bs and lots of Cs (which is normal). Thus, you
 have something that looks like Figure 5-9.
[image: Tuesday's tasks after filling in all time estimates and priorities]

Figure 5-9. Tuesday's tasks after filling in all time estimates and
 priorities

Yesterday, the sum of the As and Bs was more hours than could
 fit into your day, so you had to use our techniques to shift work to
 the next day. Today, the sum of the As and Bs is only 6.25 hours.
 Because that will fit in your eight-hour day, there isn't any
 overflow that we have to move.
I've found that if I only have a few As and complete them
 early in the day, the rest of the day is more relaxed. I do my Bs
 and as many of the other tasks as possible, and when the end of the
 day comes, I move the incomplete work to the next day without guilt.
 It's a lot less stressful this way, and it allows me to deal with
 interruptions a lot better. Let's use that technique today.
You won't slide any tasks onto Wednesday's to do list right
 now. As you'll see, you'll do that at the end of the day, if
 necessary.

Work the plan

Now you work on the As until they are complete. Working on
 tickets might generate more action items for you. For example, if a
 request is not going to be completed in one sitting, you can add it
 to your to do list. Let's say ticket #43001 from RT involves fixing
 a nightly batch job and then verifying that the fix worked. You can
 fix the problem, then create a to do item on the next day to verify
 that the change fixed the problem (Figure 5-10).
[image: Adding a request-tracking ticket to Wednesday]

Figure 5-10. Adding a request-tracking ticket to Wednesday

If another ticket involves ordering software and installing
 it, you might order the software today and then write an item for
 the day that you expect it to arrive.
I use my organizer to track any ticket that I'm actively
 working on. The list of tickets that I own, however, is much longer;
 therefore, I don't include them in my personal to do list. I use my
 to do list only to track the things I'm actively working on and
 things that I need to do on a specific date in the future.
PDA Integration for Request-Tracking Software
I have not seen request-tracking software that integrates with PDAs. I'm sure it exists, I
 just haven't seen it yet.
If a request-tracking system were integrated into PDA
 software, I might track tickets I was actively working on as As or
 Bs, and all on-hold tickets would be tracked as Zs. I could
 imagine that when a ticket grows closer to its deadline, the
 system would automatically promote it to an A priority. The key
 feature of such a system would be to insert tickets into my to do
 list but not require everything in my list to be a ticket. If I
 include "pick up laundry" in my to do list, I don't want the
 system to enter that into the corporate database.

Next, you work on the Bs. Since Interruptions is a buffer, you
 don't have to stand around doing nothing if nobody interrupts
 you.

Finish the day and leave the office

At the end of the day, you spend a few minutes managing the
 remaining items. The tasks that haven't been completed are moved to
 the next day, and you leave the office with a smile on your face
 knowing that you've managed all of your tasks.

Other Tips

The system is flexible enough that as you face new situations, you
 can adapt the system to handle them. This section lists some of the
 techniques I've found useful.
Large Projects

When dealing with a large project, split it into individual steps and sprinkle
 the tasks across to do lists on different days. For example, write a
 step on each Monday during the month that the task must be
 completed.

What to Do When You Finish Early

What should you do when a miracle happens and you run out of
 things to do? I think you should reward yourself. Here are some good
 reward ideas:
	Get a head start on tomorrow's tasks.

	Dig deep into that pile of dream projects that you've always
 wanted to do.

	Read from that stack of magazines that's been
 accumulating.

	Go through your request tracker and clean up old
 tickets.

	Clean your office, your email inbox, your computer room, or
 lab.

	Visit your boss's office and ask for more work. (Just
 kidding!)

	Sit in your office for 15 minutes doing nothing. Trouble
 will find you.

	If you have a flexible work environment, why not take the
 rest of the day off? You deserve it!

New Tasks Given to You During the Day

Let's suppose you've planned the perfect day. You have
 calculated each task down to the minute, and you know you'll be done
 and ready to leave right at the end of the day.
Of course, thinking like this is asking for trouble. It's days
 like this that your boss comes into your office around 2 p.m. with a
 "brilliant" idea that includes many multihour tasks, thereby
 disrupting your perfect plan.
That is, of course, why I only recommend planning rough
 estimates of how long tasks will take.
So, what do you do when new tasks are thrown at you all day
 long? We've already seen the technique of scheduling one hour per day
 for interruptions, but when a much longer project interrupts (say, a
 three-hour outage), we must reshuffle.
Calculate how much time you have left in the day and see whether
 your A and B priorities will fit into that time. If not, use the
 techniques to shift them to the next day. Usually all the Bs and Cs
 get shifted. If there isn't enough time for your A priorities, you
 need to talk with the person expecting those tasks to be completed. It
 may be your boss, who will hopefully understand and help you
 reprioritize your tasks. However, it may be someone else, and he
 deserves at least an email explaining that there was an emergency and
 that his request will be completed tomorrow.

Personal Tasks

I use the same to do list system for managing my personal to do
 tasks. Everything from laundry to shopping items goes in my organizer.
 That way, I get more practice at using the system, which benefits me
 at work.
If I used a different system for work and nonwork activities, I
 would have to carry around two different organizers—carrying one is
 enough!
Since I use a PAA, I can position items on the page. That is, I
 write my personal items toward the bottom of each day's to do sheet.
 That breaks it into two different lists on the same page. If you use a
 PDA, there may be another trick you can perform, such as assigning the
 task to a category.
When I leave work, I always check my nonwork items to see
 whether there is anything I need to do on the way home.

Setting Up a PAA for Use with The Cycle

If you use a PAA (paper notebook), you can find filler paper that
 fits all of the following needs at a stationery store. You will
 need:
	12 full-page calendars (one for each month).

	Enough note paper for each day of the year. Stationery stores
 have such paper preprinted with the dates January 1 through December
 31. It usually has room for today's schedule on one side and today's
 to do list on the other. All you need to do is load the next 30 days
 once a month.

	Extra note pages kept in the back for keeping your list of
 life goals, other lists, and notes as you see fit (optional).

	A binder or notebook to keep it all together.

If your projects are small, you might be able to make due with a
 small datebook. Larger ones contain at least a few lines per day to keep
 notes. However, you might not be able to keep many to do items in such a
 book.

Setting Up a PDA for Use with The Cycle

If you use a PDA, you have many choices. PDAs usually come with
 software that lets you keep an appointment calendar, to do lists, and
 notes. However, there is a wealth of aftermarket add-on packages that
 can greatly enhance the experience.
DateBook (DB) V (http://www.pimlicosoftware.com) won my favor
 early on because it makes implementing the "to do list per day" concept
 very easy. I like to think of it as finishing what Palm set out to do. A
 Palm-based PDA without DateBook V is a toy. DB V makes to do entry very fast through the
 use of templates, uses color effectively to highlight what's important,
 and can give advanced warning of an event. This last feature is
 particularly useful to me. Before DB V, I had to enter a reminder for
 someone's birthday and plug in an additional reminder a week early so
 that I had time to buy a gift. With DB V, I can simply request advance
 warning of an anniversary or birthday. DB V is only available for
 PalmOS. One of the nice things about DB is that it maintains its data in
 the normal PalmOS data structures, so all your items sync just as you
 would hope they do.
Life Balance (LB) (http://www.llamagraphics.com) is not just great
 software, it's a great philosophy. LB has all the important features of
 The Cycle (to do lists, calendars, and so on), but it adds the important
 concept of being aware that your life needs balance. Maybe you've
 decided you want to split your time between three projects plus home
 life. If you've been ignoring one of those categories, to do items from
 that area will start appearing higher in your priority list. Eventually
 your life is back in balance. It's a great concept and many people swear
 by this software. It's available for Mac OS X and Windows, and it syncs
 to a PalmOS version.
Once, while I was teaching my Time Management for System
 Administrators seminar, someone said that when he's done with one task,
 he wishes someone else would pick the next task for him. He said he
 spends too much time worrying about what to do next. That's when someone
 else chimed in about Life Balance. You program it with how you want your
 life balanced, and it sees to it that you meet those goals.
Another nice thing about Life Balance is that rather than putting
 each to do item in a category such as Work or Home, you mark each item
 with the location(s) in which you are able to do that task. So, the next
 time you are at the grocery store (or your boss's office), you click on
 that place, and Life Balance shows a list of things that need to be done
 there. Very convenient!
What do I use? I've tried a variety of platforms. However, I must
 admit that I always returned to the first platform I learned: a
 leather-bound binder with preprinted paper filler for each day of the
 year. I think that if the first platform I used had been a peanut butter
 and banana sandwich, I would always return to it, because once I develop
 a habit, I tend to stick with it.
In all other aspects of my life, I'm fairly high-tech and upgrade
 to new systems regularly. I switch computers and operating systems
 constantly. I used email long before it was a household word, I set up
 one of the largest WiFi networks before it was called WiFi, and I bought
 a Tivo before most of my friends knew it existed. However, for my time
 management, I like paper. I like to write in large letters, scribble,
 draw arrows and circles. When someone starts rattling off information to
 me, I like to be able to start writing it down immediately, not wait for
 a microprocessor to get out of sleep mode. I used the same large-size
 (8.5" × 11") leather-bound binder from 1991 until 2004, and then
 switched to a smaller (5.5" × 8.5") one (but still leather!) in January
 of 2005.
I'm just a creature of habit.
The point is that what you use is what works for you. Try them all
 (especially the software—they usually have a free trial download).
 Borrow a few PDAs from friends and coworkers, even if it is just for a
 few minutes during lunch. Spend time in a stationery store getting a
 feel for various date books and planner systems.
Take Responsibility When Vendors Don't Follow Through
Follow-through doesn't just mean tracking issues. Follow-through
 is about results. A coworker of mine couldn't understand why his boss
 was unhappy with his performance when a project was delayed because a
 vendor hadn't returned a call placed two weeks earlier. It wasn't his
 fault that the vendor hadn't called back, right?
That's not how the world works. You can't assume that a vendor
 will call back. You have to take responsibility for a project's timely
 completion. Here are some tips:
	Call the vendor once a day until you
 connect. Call every day. Don't wait for them to take
 the initiative.

	Call the vendor early in the
 morning. If you reach them early in the day, they can
 spend the rest of the day working their bureaucracy to get you the
 answer or result you need. If you call them at the end of the day,
 then your request gets forgotten by morning. (They haven't read
 this book.)

	Log that you've called the vendor in
 your organizer. The log may prove useful when things go
 really wrong.

	Always leave voice mail.
 You need to leave proof that you called. Without leaving a
 message, it's the same as not calling. You don't have to be
 original each time. Simply say, "This is [your name here]. Please
 call me at [your phone number]. I need [status update/whatever]
 about [project]. Thank you." If you don't give a reason for
 calling, you'll end up playing phone tag. If you say what you
 need, the vendor can work on it whether or not they are able to
 reach you. However, be brief and leave your phone number at the
 beginning of the message, not the end.

Related to this, the order isn't "in" until a shipper's tracking
 number and/or delivery date is provided.
I've been stung many times by vendors (and purchasing
 departments) that were late to ship something. "Oh, I'd been sitting
 on this order for a week because there's a form you need to fax me."
 Why didn't they tell me? Don't these people work on commission? Have
 they found some magical business model where not
 shipping a product makes them money?
The wrong question to ask, and I know this because I used it
 unsuccessfully for years, is, "Do you need anything else from me?"
 Silly me. I thought that a highly motivated salesperson would take
 this opportunity to finish the deal so he could get commission. No,
 the real problem is that not all roadblocks involve me. Maybe a credit
 approval needs to be finished or a design needs to receive an internal
 sign-off. Technically, those involve someone from the purchasing
 department, not me. People don't want to feel that they are making
 work for you, so they are polite and answer no to this question. In
 reality, if I know of the roadblocks that aren't in my control, at
 least I can manage them—i.e., I can start calling the purchasing
 department to make sure they clear the roadblock.
Therefore, when it seems like everything is done, I ask the
 magic question: "Can you tell me what date it will arrive?" Suddenly
 it clicks in the salesperson's brain to tell me that I really am done
 or to list the roadblocks: the product isn't available until next
 spring, or that while I've filled out the credit application, he
 hasn't submitted it to his finance department. These are both real
 examples.
Once I get a delivery date, the question changes to, "Can you
 give me a tracking number?" That's the real proof that the order
 hasn't hit any snags. For important projects, I call every day until I
 receive a tracking number. I always call in the morning, and I always
 leave a polite message if I'm transferred to someone's voice
 mail.

Summary

	The day is spent working based on the plan. Mark completed
 items with an X and items moved to the next day with a
 hyphen.

	Toward the end of the day, manage any incomplete items so that
 the people who made the requests are not surprised to learn of the
 delay.

	By the end of the day, all items have been managed, meaning
 they have either been completed or somehow worked into future days.
 The point is, rather than going home feeling like you still have a
 huge burden, you can go home feeling that all tasks have been
 managed. You can go home with a smile, knowing that you did today's
 work. Tomorrow's work will tend to itself.

	If you finish early, reward yourself. You can do a personal
 project, get caught up on work-related reading, clean/organize your
 office, get ahead on tomorrow's tasks, and so on. If you have a
 flexible work environment, you can go home early.

	When new tasks are given to you during the day, you can
 schedule them for tomorrow or reshuffle today's plan to fit them in.
 If you consistently get new tasks throughout the day that have to be
 done "right now," you can allocate a certain amount of interruption
 time each day when you create your plan.

	Personal tasks can be managed using the same system. By using
 one system for both work and nonwork tasks, you get more practice at
 using The Cycle, you have only one system to carry around, and you
 benefit from not forgetting the nonwork stuff that makes your life
 better.

	The system you use isn't as important as having a system. That
 is, The Cycle System works for me—if you have a different system
 that works for you, use it. However, if you are reading this book,
 there is a good chance you don't have a system. Try The Cycle for a
 while, then start customizing it for your work habits and
 lifestyle.

	The Cycle can be done with either a PDA or the pen-and-paper
 equivalent, a PAA. Each of these has pros and cons. Try both and use
 the one that works for you.

Chapter 6. The Cycle System: Calendar Management

Chapter 5 was the closeup look
 at how to plan an individual day using a to do list as part of The Cycle
 System introduced in Chapter 4. In
 this chapter, we'll see how effective calendar management keeps track of your routines and links
 individual days into a coherent whole.
Every organizer has a calendar section, sometimes called a datebook.
 The calendar is both a repository for information you need for a given day
 (appointments, deadlines, birthdays, milestones) and a wide-view tool for
 long-range planning (career advancement, long-term project completion,
 vacation planning).
Calendars let us see the big picture. Early in my career as a system
 administrator, I was constantly worried that I wasn't seeing the big
 picture of what I was doing. I always seemed to be working hard just to
 stay in one place. What turned that around for me was thinking in terms of
 calendars. Sure, the daily to do list helps me think about what I'm doing
 today, but with a big calendar, I could see the big picture.
[image:]

Figure 6-1.

How to Use Your Calendar

The Cycle uses the calendar part of your organizer for three
 primary purposes. First, to block out time for events and
 meetings that are further in the future than today's schedule.
 Second, to list any reminders or milestones such as birthdays and anniversaries. Finally, if you use
 a PAA, the calendar is where you can record to do items that are further
 in the future than your current daily filler paper permits. Here are
 descriptions of calendar items in more detail:
	Appointments and meetings.
 Any time you agree to an appointment or meeting, record it in the
 calendar. Use the calendar to block out future responsibilities.
 This also helps you to prevent conflicts.

	Milestones. Record
 birthdays, anniversaries, and other important dates in the
 calendar—for example, company holidays and when coworkers are going
 to be on vacation.

	Future to do items.
 Finally, if you use a PAA, you can use your calendar to record to do
 items that are far in the future. For example, chances are that only
 the next month's worth of per-day to do list sheets fit in your PAA.
 If you have to do maintenance on a fancy color printer two months
 after it is installed, you can mark that to do item on your calendar
 two months after installation and transfer it to your daily to do
 list when that day arrives.

It's rather simple: always record everything, and always use your
 calendar to guide your day.
When you take 10 minutes to plan your day, start by reviewing what
 you've recorded in the calendar entry for today. It points out meetings
 and appointments that you've committed to; use this information to make
 your day's schedule. To do items noted in your calendar are transferred
 onto today's to do list. Milestones and deadlines may translate into
 additional to do items.
The calendar squares on my PAA are fairly large. I like that. It
 gives me enough room to use the different parts of the square for
 different purposes. At the very top I write in birthdays and
 anniversaries. Slighty lower I mark vacations and anything that will
 last multiple days. I use the very bottom to list my nighttime activity.
 Since I usually only have one such activity, I reserve the last line for
 that. The middle I fill in proportionally with the commitments of the
 day. Lunch in the center, morning appointments above, and afternoon
 appointments below. See Figure
 6-1 for an example.
The difficult part is developing the habit of recording
 everything. The remaining parts of this section give tips and tricks
 that will help you do that.
[image: Sample square from my calendar]

Figure 6-1. Sample square from my calendar

Never Miss a Meeting or Event

Are you the kind of person who misses meetings and appointments?
 Do you find yourself apologizing to people at work because you've
 agreed to meet with them about an issue, but then you didn't show up?
 You had an excellent reason; there was something else you were working
 on, and you forgot. The bad news is that "I forgot" is not a good
 excuse.
Nothing hurts your reputation more than being a no-show for a
 meeting with a customer. The first step to being seen as reliable is
 to always be there when you say you will be. Of course, missing the
 fun and/or beneficial events in life isn't good for you either.
Being on time demonstrates responsibility and projects an image
 of reliability to the people you work with. It shows respect for other
 people's meetings when you attend them on time, and then they
 reciprocate when they attend your meetings.
The key to never missing a meeting is this: always use your
 calendar. Write down all your appointments; don't commit to an
 appointment until you've checked your calendar for conflicts.
And, most importantly, don't rely on your brain. An organizer is
 the right tool for recording dates; your brain isn't. I've said this
 several times already, and it's only Chapter 6. You'll hear me say this
 again: save your brain for higher-level thinking. Use your organizer
 for storing information. Don't trust your brain.
I have a little confession. I used to miss appointments all the
 time. Worse yet, I would double-book myself. When making appointments,
 I'd agree to a date without checking my calendar. It was arrogant, but
 I would think to myself, "Hmm...June 4th. That date sounds familiar,
 but I can't remember anything on that date, so it must be free." Of
 course, the reason it was such a familiar date was because I had
 something scheduled then!
It was embarrassing. Calling someone to reschedule wastes time
 and creates work for the other person. The time I've spent fixing
 double bookings in my life is time I'll never get back. Luckily, that
 is a thing of the past for me because I'm tenacious about recording
 everything in my calendar.
OK, another confession. The excuse I made to myself for not
 checking my calendar was that I was too embarrassed to say to someone,
 "Please wait a moment while I get my calendar." I had an irrational
 fear that asking people to wait for me was a huge burden on them. Of
 course, it wasn't, and the hassle of asking someone to reschedule was
 an even bigger burden for them. I know it's silly, but I had developed
 a very bad habit. (Others have shared with me that they fear it will
 make them sound pompous and self-important: "Look at me! I'm so
 in-demand that I have a calendar to track all my appointments. I'll
 pencil you in.")
Finally, I decided that I had to break this bad habit. I
 remember the fear I felt the first time I asked someone to wait while
 I check my calendar. I made a big production out of it. "OK, that
 sounds good. Would you hold on while I get my calendar to make sure
 I'm available?" I then waited for her to respond as if I had asked her
 something crazy such as whether I could borrow money, or for her to
 name the capitol of Wisconsin. I think I broke into a sweat. Finally,
 she responded: yes, it was OK with her. Moments later, I returned with
 my calendar. She wasn't upset that I had made her wait. She understood
 my need to get my calendar. Heck, she did it herself. My rush-rush
 personality wasn't crushed by the delay. The world hadn't
 ended.
I hope that learning that about me will make you feel like your
 insecurities aren't so bad. If I can survive that, you can,
 too.
So, take a moment right now and start using your calendar. Pick
 an event and write it down (if you don't have any, make an appointment
 with yourself to have lunch tomorrow).
The first time you do something is always the most difficult.
 Maybe you've never used that part of your PDA, or you may have to run
 to the stationery store to buy filler paper for your PAA.
I'll wait (even if you have to run to the store).
OK, are you back? Did you record your appointment?
There, that wasn't so bad, was it?
Always Call If You Are Going to Be Late or Miss an
 Appointment
It is better to call someone when the meeting is supposed to
 be starting than to leave him wondering where you are. Even if your
 lateness is embarrassing, in this age of ubiquitous cell phones,
 there's no excuse for not calling. In an office environment, it can
 be useful to have a list of phone extensions in the various meeting
 rooms so that you can quickly get ahold of anyone.
A brief statement, such as "I'm calling because I'm going to
 be late ," is a lot better than a rambling five-minute
 apology after you have already arrived late.
Of course, never lie. Telling the truth is better because then
 you don't have to remember who you've lied to or what lie you told.
 That's a lot of extra work for your brain, which we want to reserve
 for what's important.

One Calendar for Business and Social Life

Balance is important. Work, family life, social life, volunteer
 work, personal projects, sleep—these are all important things. I'm a
 firm believer in using one calendar for all of them.
The reason to maintain one consolidated calendar (or merged
 calendar view) is that it helps prevent your work life from overrunning
 your nonwork life. When you are about to agree to work late, you can
 look at your calendar and verify that you are actually free.
I used to leave work and then realize that I had a party or
 something fun to go to. I would drive like a maniac to get there before
 it ended. When I did arrive, I was too angry with myself for being late
 or forgetful to really enjoy the party. Now if there is something fun
 after work, it's part of my daily plan. Being on time for a party is as
 important to me as finishing a project on deadline. I give my full
 effort during the day, but nighttime is my time.
Most PDA software lets you keep multiple calendars but merge them
 into one display. In fact, it can be useful to configure your PDA
 synchronization software to not sync personal items onto your work PC
 (and work items onto your personal PC). You might not want your party
 plans synced to your work computer.
Automated Reminders for PAA Users
Unlike a PDA, a PAA can't be programmed to beep when it's time
 to leave for an appointment. What can you do instead?
Program another system to beep or alert you about the day's
 appointments. Make it part of your morning routine. Keep your PAA as
 the master calendar but program some software-based system with
 today's appointments.
Some good reminder systems:
	Windows and Mac users can use any of the various alarm clock
 programs that are out there. Search on Google for "software alarm
 clock," and you'll find many, ranging from free to medium
 priced.

	Applications like Mac iCal, Windows Outlook, and open source
 tools like Evolution and KOrganizer can alert you when an
 appointment grows near (this is useful if you are always near the
 machine running said software).

	Set some kind of alarm for your next appointment, either on
 your watch or cell phone.

	Users of Unix systems such as Mac OS X, BSD, Debian Linux,
 and HP Tru64 Unix have the "leave" command to alert them when to
 leave for an appointment.

	Program a server to send a reminder to your cell phone or
 pager at the appropriate time. Unix/Linux users will find it
 useful to enable the "at" service and use it to send email to your
 cell phone at a certain time:
 $ at 11:50
 > echo Meet Bob for lunch | mail 19085552323@teleflip.com
 > ^D

Remember, when setting an alarm, always set it to give yourself
 enough time to get to the appointment, whether that is two minutes to
 walk down the hall or two hours to drive to another location.

Repeating Tasks

History repeats itself. So do status and staff meetings, oil
 changes, El Niño, and a good burrito. A lot of the routines developed in
 the previous chapter become recurring events. One of the benefits of a
 PDA over a PAA is that recurring events can be scheduled once, and the
 PDA does the work of calculating all the subsequent dates.
Here are some of the things you might want to put into your
 calendar:
	Weekly meetings.

	Regular appointments.

	Upcoming conferences.

	Vacation plans.

	Deadlines.

	Party invites. (I record them when I RSVP. I even record them
 when I so that I don't accidentally repeat my rejection.)

	Your kid's soccer schedule.

	The date your company's quarterly report tends to come
 out.

	Every single birthday you ever hear mentioned. (Include
 celebrities! It can be fun to point out, on April 20, that today is
 Tito Puente's birthday.)

	Talk Like A Pirate Day (September 19), Towel Day (May 25), and
 System Administrator Appreciation Day (July 28).

Take a moment to record those things in your PDA right now. Then
 develop the habit of recording any new date the moment you hear
 it.
We Record What We Value
Writing something in your calendar is also a demonstration that
 you value it. When you agree to meet a customer at a certain time and
 place, it shows that you value the appointment when you record it
 right in front of her. This is true for work-related and social
 appointments. Imagine if you asked someone out on a date and then,
 after negotiating a mutually agreeable time and place, she opens her
 organizer and writes down the date. Feels rather validating, doesn't
 it?
An instructor at a time management class told me how he
 discovered that his very young daughter understood that a recorded
 appointment is one that won't be forgotten. After agreeing to take her
 to the zoo the following weekend, she pulled out a big green crayon
 and leaned over to his PAA and wrote "ZOO!" in two-inch-tall letters.
 It was completely adorable.

Repeating Tasks on a PAA

If you use a PAA, there are ways to not forget recurring events.
 It basically comes down to being your own reminder system. I keep a
 weekly, monthly, and yearly list of reminders in my PAA. On every
 Monday, I read the weekly sheet and fill in any items for the
 remaining week. On the first of each month, I read the monthly sheet
 and fill in this month's commitments. On the first day of the year, I
 fill in the yearly items.
Not to put too fine a point on it, here's exactly what I
 do:
The bookmark I use in my PAA is a clear plastic holder for a
 small piece of paper. On that piece of paper I have recorded all my
 weekly meetings. On Monday I mark my weekly meetings on the schedules
 for every day this week. If I'm having a light week, I just use the
 list on my bookmark for reference each day.
The monthly commitments are processed when I load the next 30
 days' worth of sheet-per-day filler into my PAA. That can be any time
 of the month. Though, for monthly meetings, it can be better to just
 mark the calendar for the remainder of the year. One nonprofit I work
 with publishes a list of all its meetings for the next year every
 December. When I receive that sheet, I just mark all the meetings in
 my calendar right then and there.
The yearly commitments are mostly birthdays and such. Those I
 keep in a list on my computer. (I lied earlier. It made the sentence
 structure more readable.) When I buy new filler paper each year, I use
 that list to mark these dates. My tradition is to spend time on New
 Year's Day every year copying the yearly dates into their space on my
 calendar.
A PDA can also record dates far in the future, such as
 conferences, etc. The filler paper I buy for my PAA comes with a sheet
 for listing dates in future years. When I change paper each year, I
 refer to those pages and fill in the appropriate calendar spaces for
 this year. I have been able to reschedule conflicts for graduations
 and weddings two and three years in advance.

Know Your Personal Rhythms

Nature is full of rhythms. As you accept requests for meetings and
 appointments, it's a good idea to consider your personal
 rhythms .
There are two hours each day that I'm able to get a lot
 done.
The first is the hour before most people arrive in the office. I'm
 not a morning person, but I find that if I can drag my lazy self into
 the office an hour early, in that first hour I can get more work done
 than I can the rest of the day because there's nobody else around. It's
 important not to waste that hour on things like email. Use it for a
 project that can't get done without your full attention. (See Chapter 2 for more examples.)
The other hour is your high-energy hour. There is a part of the
 day that you are able to concentrate better than you can the rest of the
 day. I call this my "big brain hour." This is a different hour for
 everyone. For some it is the afternoon, for others it is late at night
 or early in the morning. This is a real biological phenomenon (Google
 "circadian rhythms"). NASA uses it to schedule shift work in space
 missions. Many people take advantage of it to schedule their most
 difficult tasks during the time of day when they naturally have more
 energy and ability to concentrate.
Take some time in the next week to find when in the day you are
 most able to concentrate. You might set your computer to beep once an
 hour. When you hear it beep, write down on a scale of 0 to 10 your
 energy level and your ability to concentrate. Find the time that both of
 them are high.
Once you find a pattern, try to modify your schedule around
 it.
Schedule your brain work around the time of day when you
 concentrate the best. Reserve that time for the most important
 (high-impact) projects. Try to schedule meetings away from that time,
 unless your meetings require serious brain power. Most don't.
Your high-energy time might change as you grow older. When I was
 younger, that time for me was right around 2 a.m.; now, it's more like 2
 p.m.

Know Your Company's Rhythms

Business is full of rhythms, too. If you identify the rhythms of
 your company's year, you can make sure your plans are in concert with
 those rhythms. Anything else is like trying to swim upstream. Your
 calendar is the long-range planning tool that lets you do this.
Every business has a light time of the year and a heavy time of
 the year. You can plan your system administration tasks and goals around
 these patterns.
I used to work at a software company that produced three software
 releases each year. Every 120 days, a new release would ship. The first
 month was mostly spent developing marketing requirements and feature
 lists. There were 60 days of development, two weeks of quality assurance
 (QA), and two weeks of manufacturing of the software and manuals. Day
 120 was shipping day. Then the entire cycle began again. Because it ran
 like clockwork three times a year, it was a system administrator's
 dream.
During the first month of the cycle, most of the employees were in
 meetings and the network was quiet. As long as email was running, nearly
 any other function could be taken down for maintenance and upgrades. The
 "tool group" planned which OS/compiler releases would be used for the
 next version during the last days of the prior release cycle. The first
 month of the current cycle was when the system administration teams
 would deploy those tools. During the development stage, outages were
 tolerated if they were scheduled. Regular system administrator activity
 could happen. However, toward the end of each 120-day cycle, planned
 outages were banned. This was a very intense part of the cycle, when new
 code releases were being shipped to QA almost daily. As a result, this
 was the best time for system administrators to take time off. A skeleton
 crew was always around to deal with emergencies, but, otherwise, this is
 when the system administrators scheduled their vacations. Once the
 software "went gold" and was in manufacturing, stability was only
 important in the parts of the system that manufacturing relied on.
 Everyone else was celebrating. Then the cycle began again.
By planning the system administration work around the company's
 business cycle, everything went very smoothly.
Another common business cycle is the December holiday rush. For
 example, it is often true that retailers make half their sales during
 the holiday shopping season, often losing money the rest of the year.
 During the holiday rush, the network that supports the business must be
 completely stable. An hour of downtime can cost millions. Therefore,
 there is little IT work scheduled for that time. There is plenty of
 unscheduled work, mostly dealing with emergencies and tuning overloaded
 servers. Developers are pushed away so that they aren't tempted to make
 "helpful" changes when the risk would be too big. The busiest time for
 everyone is often a few months earlier, during the mad rush to get the
 new systems up and running. The lightest time is the first week of the
 year, when people most need time to recuperate.
Schools have an obvious cycle. There are projects related to the
 major milestones of the year: arrival of new students, registration,
 budget process, finals, graduation, summer.
Hiring has a certain periodic pattern also. For example, if you
 need to hire entry-level people just out of school, the hiring process
 often starts by advertising at colleges in February with the hopes of
 filling jobs with new graduates in May. Similarly, people with more
 experience might be older and, if they have kids, will want to move
 between school years, not during. Other factors may affect
 end-of-the-year hiring. Rarely have I been able to get hiring approval
 in December, sometimes because the people who approve such things are on
 vacation, but often because no new hires are permitted so as to keep the
 end-of-year numbers looking good. Schedule your hiring around these
 cycles.
I love working in cyclic industries. It makes planning things a
 lot easier. In fact, when I'm not in a cyclic industry, I try to find
 the unofficial cycle, or, when possible, move the company into a cycle.
 One software company I worked at had no consistency in their software
 releases, and I became the advocate for an n-month cycle until one was adopted. The
 benefits are company-wide: marketing, operations, and budgeting can plan
 around the cycle, and it nearly eliminates the problem of developers
 scheduling vacations at inopportune times.
Your company has a similar business cycle. It might be as fast as
 once a month or as long as a year. If you work at NASA, it might be as
 long as a multiyear space mission. If you work in politics, it might be
 as regular as the legislative cycle or the campaign cycle.
Take some time to figure out your company's cycle. You might want
 to ask your boss what he thinks the business cycle is. Once that is
 done, consider the following questions:
	What is the business cycle for this company?

	How can I better schedule my projects?

	When is the optimal time to schedule my time off?

	Can the system administration group better schedule its
 projects?

	Can we turn the system administration processes into cycles
 that are linked to the light and busy parts of the business
 cycle?

	If the business pattern is random, can we influence the
 business to make it more regular? Or can we simply establish a
 periodic IT schedule and see whether others plan around it?

Summary

	Managing your calendar is important to you and your career.
 People associate punctuality with responsibility and reliability.
 People who miss appointments and forget about meetings don't get
 promotions.

	Without a well-managed calendar, you risk missing important
 work and nonwork events. It is important to keep balance among work,
 family life, social life, volunteer work, personal projects, sleep,
 and so on. Your calendar can help you do that.

	It is important to have a place to write down appointments (or
 meetings, events, and so on). Write down any appointments that you
 schedule. Don't agree to an appointment until you've checked your
 calendar.

	Your calendar fits into The Cycle System by being where you
 record appointments, dates, milestones, and other information. When
 you plan your day, you start by using the calendar to plan today's
 schedule and to add items to today's to do list.

	If you use a PAA, you can organize what you write into each
 calendar square. I write birthdays and anniversaries at the top,
 then any vacations and multiday events. I use the middle part of the
 square to make a mini schedule for the day: morning appointments
 first, lunch in the middle, and afternoon appointments next. I
 reserve the very bottom to write my plans for the evening.

	When agreeing to appointments, consider your personal rhythms.
 If you have the choice, plan brain work during the hours that you
 are best at focusing.

	When making plans with others, always check your calendar
 before you agree to the appointment. Don't be embarrassed to make
 the other person wait for you to find and open your
 organizer.

	Automate the reminders of appointments. Set alarms on your PDA
 or use other technology (alarm clocks and so on) if you use a
 PAA.

	PAA users can record repeating events by making a list of
 weekly, monthly, and yearly repeating events. On the first day of
 the week, write the weekly appointments into your calendar. On the
 first day of the month, write the monthly appointments. On the first
 day of the year, fill out your yearly repeating events.

	Most companies have a yearly rhythm. For example, retail often
 has a busy time around December. If you identify the rhythm, you can
 plan your projects around it. If you don't, you will find yourself
 swimming upstream. If your company doesn't have a defined rhythm,
 define one for yourself.

Chapter 7. The Cycle System: Life Goals

At 60, I want to retire and have the financial means to live
 comfortably.
In the next three years, I want to get promoted to team leader of my
 group.
In the next month, I want to learn more about Linux kernel
 internals.
In the next 24 hours, I want to have all my laundry washed and folded.
Someday, I want to date a porn star.
You can achieve anything you want if you set your mind to it. Most
 people don't follow a logical process of setting goals, figuring out the
 steps to reach those goals, and then taking those steps. Instead, they
 expect that things will "just happen."
After becoming extremely efficient in my time management, I realized
 that I had just spent a year being really good at what I was already
 doing. However, I was still basically in the same place as I was a year
 before. I hadn't moved to my dream home, the IT environment I managed
 hadn't really changed, and I was no closer to dating a porn star. I was
 spinning my wheels.
The truth is that you will achieve more if you set goals. Studies
 have found that successful people set goals and work toward them. Recent
 studies have also found that most unsuccessful people think that if they
 don't do anything, opportunities will still present themselves. In other
 words, unsuccessful people hope to be lucky. Hard work beats luck. Friends
 have told me that chess is a game of luck: the more they practice, the
 luckier they get. Success is the same way.
However, I'm intrigued by evidence that setting a goal without
 working toward it is better than not setting goals at all. This makes
 sense when you think about it. If you haven't determined what your goals
 are, you can't spot the few opportunities that do cross your path by
 chance. Suppose your boss asks your team if anyone would like to help
 planning next year's budget. That sounds like a lot of work with no
 reward. I'd completely understand if you wanted to avoid it. However, if
 you had determined that one of your goals was to be promoted to team
 leader, you would see this as an opportunity to be involved in the
 long-range planning for the group. If your goal was to move into
 management, you might see this as an opportunity to see how the budget
 process works to better prepare you for management. Alternatively, if your
 goal is to stay technical and prevent any effort by others to promote you
 into management, this is also an opportunity: it's an opportunity to not
 accidentally raise your hand! (I've seen too many good technical people
 accidentally fall into management against their will.)
The techniques covered so far in this book are excellent for getting
 all those little things done and getting through your day, but what about
 the big things that take years to achieve?
Begin with the end in mind by asking the big questions:
	What do I want my IT organization to be like two years from
 now?

	What do I want to have accomplished in my career five years from
 now?

	Where do I want to be socially and financially 10 years from
 now?

	What do I want my life to be like when I retire?

The technique here is very simple. You're going to figure out your
 goals, prioritize them, then work out the steps that will help you reach
 those goals. Then, you'll turn those steps into to do items and sprinkle
 them throughout your calendar.
Maybe this is all coming too fast. You're drowning in an endless sea
 of time management troubles. That's OK. Skim this chapter now, and reread
 this chapter when you feel you've graduated from the basics.
[image:]

Figure 7-1.

The Secret Trick

The big secret is to write down your goals. When they are in your
 head, they aren't as fleshed out as you think they are. They are
 nebulous. They can't be evaluated, shared with others, or worked
 on.
The process of writing them down forces you to make them concrete.
 It's also a lot easier to prioritize a list that is written down.
Written goals can be shared with others. If you have a significant
 other, you can share your goals with him or her and discuss them. We
 forget that our loved ones aren't mindreaders. By sharing our goals, we
 get support and a reality check. We are more likely to achieve a goal if
 we have told others about it. There's something about telling someone
 our goals that motivates us to act on them.
It is easy to accidentally write vague goals. You can make a goal
 significantly more concrete by answering these questions in each goal
 statement:
	What do I want to achieve?

	When do I want to have achieved
 it?

Everyone forgets the when. It's easy to never begin if you don't
 set a deadline. In the chapter opening, I was careful to include a
 specific deadline for each goal.
It is also important that goals are measurable. The goals in the
 chapter opening were mostly measurable. "Living comfortably" could be
 more specific: a retirement income of 70 percent my current income.
 Learning "more" about Linux kernel internals isn't measurable. I can fix
 that by adding a milestone to be achieved, like writing a simple device
 driver.
Tip
There are other people you might want to consult when setting
 goals. Your family, religious leaders, boss, neighbors, close friends,
 and so on. Each person reading this book has a different list of who
 she thinks is appropriate to consult with. Who is on your list?

In preparation for writing down your goals, take a moment to think
 about your values . What do you see as your personal mission? Do you
 believe in helping others or letting others help themselves? Do you want
 to be rich or happy (or can both be achieved)? Do you value independence
 or cooperation? Do you value community or self-interest?
Your work-life and home-life values may differ. At home, you may
 be the nurturing parent, loving all your children equally and helping
 them to succeed. At work, things may be more competitive or
 role-oriented.

Setting Goals

How to Get Control of Your Time and Your Life
 (Signet) is a classic book on time management. The book brings out the
 necessity of listing your short-, medium-, and long-term goals, and
 encourages you to categorize them into A, B, and C priorities, with A
 being the highest priority.
Let's do just that.
Take a big sheet of paper and divide it into six sections, as
 shown in Figure 7-1 (people
 with lots of goals or large handwriting might want to use multiple
 sheets of paper).
[image: Goal planning sheet]

Figure 7-1. Goal planning sheet

You're going to fill in each box with a list of life goals in that
 category. You can add additional timeframes if you feel your goals are
 grouped differently.
Now spend some time listing your goals. To help you get started,
 here are some guidelines:
	1 month
	Typically these are the smaller projects on your mind.
 Completing projects that have started, replacing a piece of
 equipment, and so on.

	1 year
	These are the bigger projects. Often they include various
 reorganizations you'd like to make, both technical ("replace
 current directory service with a single-sign-on system") or
 organizational ("reorganize group into customer-focused
 teams").

	5 year
	These are the biggest projects, often including
 life-changing goals such as career moves ("get an MBA and move
 into management") or life changes ("get married").

Don't worry about their order or whether your goals are good
 enough for anyone else to see. Just list them. I'll wait.
Really. I'll wait. Don't continue to the next paragraph until
 you've completed your chart. Not in your head, but on real paper.
You didn't list them did you? You figured you'd come back to this
 chapter some other time and fill out the table. All the exercises in
 this book have one thing in common: they don't work unless you do them.
 So now pull out a sheet of paper and start writing!
I'll wait....
Really....
Are you back? Good.
Now go back and make sure each goal is measurable. Could another
 person examine the situation and determine that the goal has been met?
 Can you use numbers or tangible results as evidence of completion?
 Review your list now and make sure. Again, I'll wait.
Next, for each goal, work out which are As, which are Bs, and
 which are Cs. As you absolutely must do, Bs are the next most important,
 and Cs are the good ideas or "would be nice" items that are low
 priority. This is similar to the priority scheme used in Chapter 4.
Go mark them now. I can't stress enough the importance of doing
 these exercises as you come across them.
That wasn't as easy as you thought, was it? Did you want to mark
 everything with an A? I know I did. Prioritization can take as long as,
 or longer, than writing the initial list.
Tip
You might also want to write "lifetime goals," such as where you
 want to be when you retire (both geographically and financially). Due
 to the way compound interest boosts investments, the sooner you start
 your financial planning, the better.

Planning Your Next Steps

To achieve these goals, you must determine the steps required to
 get there. You need to break down each goal into the specific tasks that
 you can write on your to do list. You might want to do this in a word
 processor so that you can cut and paste into your PDA or print the list
 and hole-punch it so that it fits in your PAA.
If you aren't sure of the steps, write what you can think of or
 write down "Research how to do this" and some ideas of where to do the
 research.
Don't worry about writing the steps in chronological order.
 Sometimes we have to work backward. You ask yourself, "How would I get
 there?" and write that step, and then ask yourself, "But how would I
 have gotten there?" and write the step necessary to
 do that. Eventually, you work backward through the process until you
 have all the steps you need.
As an example, I'll write my next steps for the goals listed in
 the beginning of this chapter:
	At 60, I want to retire and have the financial means to live
 comfortably.
	Make an appointment with a financial planner.

	Implement the retirement plan suggested by the
 planner.

	Research retirement communities. (How much do they cost?
 Do they have payment plans? What amenities should I
 expect?)

	Research insurance for long-term care facilities or other
 options in case of Alzheimer's or other situations.

	Within the next three years, I want to get promoted to team
 leader of my group.
	Make an appointment with my boss to talk about career
 goals.

	Read a book on managing people.

	In the next month, I want to learn more about Linux
 internals.
	Ask for recommendations on a sage-members mailing
 list.

	Purchase a book.

	Spend one hour a night reading the book until it's
 complete.

	Write a nontrivial program using what I've learned.

	In the next 24 hours, I want to have all my laundry washed and
 folded.
	Buy laundry detergent.

	Wash laundry in washing machine.

	Move laundry to dryer.

	Fold and put away laundry.

	I want to date a porn star.
	Hang out in places where I'm more likely to meet porn
 stars.

	Research where such places might be.

(You'll notice some of these steps are in an odd order. As I said,
 sometimes we work backward.)
These steps aren't written in stone. Often we discover unexpected
 subgoals along the way. Dorothy wanted to meet the Wizard of Oz so he
 could help her get home, but as soon as she met him, she learned she had
 to do a hit job before the return home would be possible. Life is like
 that.

Schedule the Steps

Now that you know what you want to achieve and the steps that will
 bring you there, you can sprinkle your next steps throughout your
 calendar as to do items.
Due to business patterns or family responsibilities, you might
 have more free time during a certain time of the month or year. Pick the
 time that you think will most likely assure success. (If you are off by
 a day, don't worry. The Cycle System will move the steps to the next
 day.)
Look at the steps you've recorded and consider what the best order
 should be. Write the first one or two items from each list on the
 appropriate day's to do list. Let's use "Learn more about Linux
 internals" as an example. If today is Monday, I write the "Ask for
 recommendations" step on today's to do list. I should have
 recommendations by Wednesday, so turn to Wednesday's to do list and
 write, "Purchase a book based on sage-members recommendations." I'm too
 cheap to pay for overnight shipping from Amazon, so on the following
 Monday's to do list, write, "One hour of reading Linux kernel internals
 book." I write that same item on Tuesday's through Friday's lists, or if
 I'm using a PDA, I use the "repeating to do item" feature. I don't know
 how long it will take to read the entire book, but I can set a goal of
 having done the last item in that list (write a nontrivial program using
 what I've learned) a week later. If I don't add these items to my to do
 list, they will never get done.
The 24-hour goal of doing laundry was a joke; it is more of a task
 than a goal. However, it is a good example of how to link goals to a to
 do list. I put the first three steps on the place reserved for "after
 work to do items." I put the last item (fold and put away) on the to do
 list for the next day.
If you have a lot of goals, this process may seem intimidating.
 However, this just means that you need to spread your goals out more or
 downgrade some of the priorities.
It's easy with a PDA to schedule to do items far in advance.
 However, I find it better to not schedule any single item too far in
 advance; otherwise, it gets lost. Or I read the item and don't remember
 what it means. Instead, I schedule the next one, possibly two, steps for
 each goal. When the step is done, I have a better idea of how much time
 to allocate for the following steps.
A PAA only has a certain amount of room in it, so you generally
 only keep the next month of page-per-day sheets in your binder.
 Therefore, you can't plan your next steps too far in advance. What you
 can do is mark your next steps in your calendar as you would an
 appointment. Three months from now, you can "make an appointment" to
 start a particular step. For example, three months from now you might
 mark in your calendar, "Research long-term care facilities."
A benefit of this technique is that you don't feel so rushed, but
 you are still slowly moving toward reaching your various goals.
Take a moment to enter at least one step from each goal into your
 PDA or organizer.

Revisit Your Goals Regularly

What you have now is a good start. However, you need a way to make
 sure you keep with the system. On the first day of the month, every
 month, take a moment to plan your goals. Close your office door (or go
 to a quiet place) and do the following:
	Goal review. Review and
 update your goal list. Cross out any completed goals. If you've
 jotted down any new goals since the last goal review, decide if they
 still sound like good ideas. If they do, prioritize them. Evaluate
 your prioritization of existing goals vis-à-vis the new goals you've
 added.

	Step review. Review and
 update your next steps list. As steps are marked "done," schedule
 later steps into your to do lists, as before.

Over time, you'll get much better at figuring out how to schedule
 the next steps into your calendar. I try to sprinkle them into Mondays
 so that when I plan my week, I can make room for them, sliding them to a
 better day if needed.
How can you remember to do this? Set a repeated event in your PDA
 called "Goal & Next Step Review." Have it repeat on the first of
 every month or the first Monday of every month. Now you'll always have a
 reminder to do this process.
If you use a PAA, set up a sheet of "repeating events" that is
 reviewed at the start of each month. Every time I load the next month's
 worth of page-per-day sheets, I go through the "repeating events" sheet
 and use it to mark the various goal steps in my calendar.

Summary

	To achieve your long-term goals, you need to know what they
 are and work toward them.

	If you don't write down your goals, you end up spinning your
 wheels or depending on luck.

	Goals should be measurable: they need a tangible result or
 numeric measurement that, for example, someone else could
 check.

	Goals should have deadlines: knowing when a goal should be
 achieved helps set the pace.

	Begin by listing your one-month, one-year, and five-year goals
 for work and your life. Prioritize them. List steps required to
 achieve these goals. Sprinkle the next step of each goal into future
 to do lists. Once a month, review the goals and steps, reprioritize
 if needed, and sprinkle more "next steps" into your to do
 lists.

	Work the next steps as part of your regular to do list
 management. Gradually, each goal will be achieved or managed.

	Revisit your goals regularly. Add new ones and eliminate old
 ones. Revise the steps accordingly.

Chapter 8. Prioritization

This is a "bottom up" chapter on setting priorities. First, I'll
 discuss something I alluded to in Chapter
 5: techniques for prioritizing the tasks at hand—today's to do
 list . Then I'll cover prioritizing bigger things, such as
 projects. Lastly I'll talk about setting priorities for, or managing, your
 boss.
[image:]

Figure 8-1.

Prioritizing Your To Do Lists

There you are at your desk facing today's daily to do list. Dozens
 of items. How do you decide what to do first?
This section is about prioritizing these items. Different
 situations call for different schemes. In previous chapters, we used a
 very simple scheme: if it has to be done today, it's an A priority; if
 it has to be done soon (but not today), it's a B priority; and
 everything else is a C priority.
"So what do you do if all your items are A priorities?"
Read this chapter.
Doing Tasks in List Order

System administrators frequently tell me they spend a lot of
 time each day fretting about what to do next. I know that when I stare
 at my to do list, I can spend five or more minutes just reading the
 list, obsessing over which should be the next item to work on. Total
 up all the time spent wasted that way, and it's a lot of time.
If you are wasting time fretting about what to do next, stop.
 Make the decision simple and just start at the top of the list and
 work your way down, doing each item in order. In the time you might
 spend fretting, you would complete a couple of the smaller items. In
 addition, because of the way you move items you couldn't complete to
 the following day, it's common for older items to bubble to the top of
 the list. Getting these older items done is a great way to start a
 day.
Tip
One of my chores as a kid was to take out the trash every
 Monday and Thursday night. I hated it. I would complain and
 procrastinate and make all sorts of trouble trying to get out of the
 task. (I think I complained just because that's what kids do when
 faced with chores.) Though our house was a big, three-story
 Victorian, it couldn't have taken me more than 10 minutes to empty
 all the wastebaskets. But what was the fun in that? I had enough
 delay tactics to waste at least a half-hour before I even got
 started! There are many situations where just doing the task takes
 much less time than the efforts we make to avoid the work.

Doing your to do items in the order they appear is a great way
 to avoid procrastination. To quote the Nike slogan, "Just do
 it."
If your list is short enough that you can do all the items in
 one day, then this scheme makes even more sense. If it doesn't matter
 if a task gets done early in the day or late in the day, who cares in
 what order it's completed?
This is very much like network congestion. If a network is
 lightly loaded it's easy to do audio, video, telephony, or other
 time-critical services. However, with a congested network, these
 services work a lot better with some kind of sophisticated
 prioritization scheme, or quality of service (QoS) system. When the
 network load is light, any scheme will work. When the network load is
 heavy, we need something more structured. When our task list is
 simple, any prioritization scheme will work. When we are flooded with
 requests, we need something more sophisticated.
To extend my analogy a little further, did you know that QoS
 often isn't about treating some packets better? It's really about
 treating some packets worse! Technically, what's going on inside a QoS
 switch is very interesting. When there is no congestion, it operates
 the same as a non-QoS switch. Packets come in, packets go out.
 However, when congestion happens, a non-QoS switch simply drops the
 most recently arrived packet. In other words, there's no buffer space
 left for a new packet, so it ignores that packet. A QoS-enabled switch
 handles congestion differently. When the buffer is full, it doesn't
 drop the newly arrived packet; instead, it picks a lower-priority
 packet in the "middle" of the buffer to drop. In other words, when you
 pay an ISP for better QoS on certain traffic, you are really paying to
 not be dropped during congestion. You are literally bribing the ISP to
 drop someone else's packet when the network is congested!
Task prioritization is similar. We have a finite amount of time
 and resources. When we are overloaded, we have a tendency to growl at
 the next new request we get. In reality, we need a way to look at our
 current task list and decide if there are lower-priority items to
 delay or possibly drop. (Sadly, we can't take bribes!)

Prioritizing Based on Customer Expectations

Here's a little secret I picked up from Ralph Loura when he was
 my boss at Bell Labs. If you have a list of tasks, doing them in any
 order takes (approximately) the same amount of time. However, if you
 do them in an order that is based on customers' expectations, your
 customers will perceive you as working faster. Same amount of work for
 you, better perception from your customers. Pretty cool, huh?
What are your customer expectations? Sure, all customers would
 love all requests to be completed immediately, but, in reality, they
 do have some concept that things take time. It may be an unrealistic
 expectation, and certainly it is often based on a misunderstanding of
 technology, but we can place user expectations in a few broad
 categories:
	Some requests should be
 quick. Examples include resetting a password, requests
 to allocate an IP address, and deleting a protected file. One
 thing these requests have in common is that they are often minor
 tasks that hold up a larger task. Imagine the frustration a user
 experiences when she can't do anything until a password is reset,
 but you take hours before doing it.

	"Hurry up and wait" tasks will start
 soon. Tasks that are precursors to other tasks are
 expected to happen early on. For example, ordering a small
 hardware item usually involves a lot of work to push the order
 through purchasing, then a long wait for it to arrive. After that,
 the item can be installed. If the wait is going to be two weeks,
 there is an expectation that the ordering will happen quickly so
 that the two-week wait won't stretch into three weeks.

	Some requests take a long
 time. Examples include installing a new PC, creating a
 service from scratch, or anything that requires a purchasing
 process. Even if the vendor offers overnight shipping, people
 accept that overnight is not right now.

	All other work stops to fix an
 outage. The final category is outages. Not only is
 there an expectation that during an outage all other work will
 stop so the issue can be resolved, there is also an expectation
 that the entire team will work on the project. Customers generally
 do not know that there is a division of labor within an SA
 team.

Now that you understand your customers' expectations better, how
 can you put this to good use? Let's suppose you had the tasks in Figure 8-1 on your to do
 list.
[image: Tasks that aren't prioritized by customer expectations]

Figure 8-1. Tasks that aren't prioritized by customer
 expectations

If you did the tasks in the order listed, you could be pretty
 satisfied with your performance. You did everything on the day it was
 requested—6.5 hours of solid work (plus one hour for lunch). Good for
 you.
However, you have not done a good job of meeting your customer's
 perception of how long things should have taken. The person who made
 request T7 had to wait all day for something he perceived should take
 two minutes. If I were that customer, I would be pretty upset. For the
 lack of an IP address, the installation of a new piece of lab
 equipment was delayed all day.
(Actually, what's more likely to happen is that the frustrated,
 impatient customer wouldn't wait all day. He'll ping IP addresses
 until he finds one that isn't in use—at that moment—and temporarily
 borrow that address. If this is your unlucky day, the address selected
 will conflict with something and cause an outage, which could ruin
 your entire day. But I digress....)
Let's reorder the tasks based on customer perception of how long
 things should take. Tasks that are perceived to take little time will
 be batched up and done early in the day. Other tasks will happen
 later. However, you will make one exception to the rule, as you'll
 soon see. Figure 8-2 shows
 the reordered tasks.
[image: Tasks ordered based on customer expectations]

Figure 8-2. Tasks ordered based on customer expectations

You begin the day by doing the two tasks (T1 and T7) that
 customers expect to happen quickly and that most certainly will hold
 up other, larger projects. You succeed in meeting the perceived amount
 of time these tasks take.
The next task (T5) involves a "hurry up and wait" situation. No
 matter how quickly you order the item, it is going to take a day or
 two to arrive. Putting the order through sooner rather than later can
 prevent a lot of dissatisfaction on the other end.
Your next task (T4) is done in 30 minutes. Check.
Task T2 doesn't take very long, but the expectation for a new
 user account to be created is usually not measured in minutes and
 hours, but in deadlines. If the person's first day on the job is
 tomorrow, it is expected that her accounts will be created before she
 arrives, whether it takes one minute or one day, whether you do it
 early or late in the day. However, since the task is deadline driven,
 it is important that it gets done.
If there were an outage (caused, possibly, by two hosts being
 configured for the same IP address), and all work stops to fix an
 outage, the previously outlined schedule would be disrupted. However,
 I would still work to meet the expectation that the new account be
 created before the person arrived. Other tasks might be delayed for a
 day, which is understandable given the major outage. But for a task
 like creating an account, I would stay late rather than miss the
 deadline.
Installing a new server (T3) is one of those "black hole tasks."
 It should take a few minutes to mount the server in the rack, maybe an
 hour to load the operating system, a little longer to configure the
 system. At least vendors seem to think that's true. We system
 administrators know that it's never that easy. The first time you rack
 mount that particular product, it always takes hours to figure out the
 oddball mounting system the vendor has created. Server operating
 systems are often loaded, erased, loaded, erased, as you carefully
 adjust settings each time to get things just right. (This box is going
 to be around for years, so we might as well invest some time in
 getting things right.) Finally, configuration never goes as quickly as
 we hope it will. Therefore, we leave these black hole tasks until
 after we've completed the tasks that are expected to happen
 quickly.
We bent the prioritization rules for the last task (T6). Based
 on the expected time for completion, one would think I'd have done it
 earlier in the day, perhaps before or after T3. However, at every site
 I've worked at, Usenet NetNews is considered a low priority,
 recreational activity provided as a bonus to employees. (I've never
 worked at an ISP, where the situation may be different.) Thus, fixing
 a minor issue with it is a low priority and goes to the end of the
 list. The general rule is: when all parties agree that a task is low
 priority (or there is a management edict), move the task to the end of
 the list. Think of it this way: if someone complained that one of the
 other tasks wasn't completed, would you want to stand in front of your
 boss and explain that the customer's request was delayed because you
 were fixing a minor issue with Usenet? No, not at all.
Simple? Sure. It can take a little practice, but your customers
 will notice the difference.
Delegate, record, do revisited

When I explain this system to people, the main objection I
 hear from them is that their to do list is not static. They do not
 begin their day with a fixed list of things that need to be done.
 New items are added to their list all day.
That's why we use the delegate, record, do technique from
 Chapter 2 for dealing with
 interruptions. We can use our customers' expectations to influence
 which of these three actions we take.
A request for resetting a password should happen quickly
 because it's holding up other work. Therefore, it might be faster to
 do it than to delegate it to someone else. And you certainly don't
 want to record the task for later when it means delaying a person's
 entire schedule.

Mutual interruption shield revisited

Not only does this technique work for prioritizing your
 personal to do list, but you can use it to plan on a larger scale.
 Use it to organize your entire computer support department!
Remember the mutual interruption shield technique from Chapter 1? Essentially, you
 implement this system to make sure that people's expectations are
 matched. Your coworker catches all interrupts for half of the day so
 that you can get projects done, and you reverse roles for the other half of the
 day. What you're really doing is making sure that there is someone
 to do the tasks that customers expect will happen quickly.
Most helpdesks have Tier 1 members who answer the phone and
 only push an issue to the Tier 2 staff when they are stumped. This
 is, essentially, creating a mutual interruption shield for the
 entire team while providing response times that match customer
 expectations!
Prioritizing based on customer expectations and using the
 mutual interruption shield replicates the helpdesk tier system,
 which validates the combination. Or, one might say that the tier
 structure is validated by the fact that it aims to reach the goal of
 meeting customer expectations. Either way, it's pretty cool,
 huh?

Project Priorities

The previous sections described ways to prioritize individual
 tasks. Now I'll present some useful techniques for prioritizing
 projects.
Prioritization for Impact

Let's say that you and your fellow SAs brainstormed 20 great
 projects to do next year. However, you only have the budget and people
 to accomplish a few of them. Which projects should you pick?
In general, I find I get better results when I choose projects
 on a "biggest impact first" basis.
It's tempting to pick the easy projects and do them first. You
 know how to do them, and there isn't much controversy around them, so
 at least you'll know that they'll be completed.
It's very tempting to pick out the fun projects, or the
 politically safe projects, or the projects that are the obvious next
 steps based on past projects.
Ignore those temptations and find the projects that will have
 the biggest positive impact on your organization's goals. In fact, I
 assert that it is better to do one big project that will have a large,
 positive impact than many easy projects that are superficial. I've
 seen it many times. An entire team working on one goal works better
 than everyone having a different project. This is because we work
 better when we work together.
Here's another way to look at it. All projects can fit into one
 of the four categories listed in Figure 8-3.
[image: Project impact versus effort]

Figure 8-3. Project impact versus effort

It's obvious to do category A first. An easy project that will
 have a big impact is rare, and when such a project magically appears
 in front of us, it's obvious to do it. (Warning: be careful, a
 project's A status may be a mirage.)
It's also obvious to avoid category D projects. A project that
 is difficult and won't change much shouldn't be attempted.
However, most projects are either in category B or C and it is
 human nature to be drawn to the easy C projects. You can fill your
 year with easy projects, list many accomplishments, and come away
 looking very good. However, highly successful companies train their
 management to reward workers who take on category B projects—the
 difficult but necessary ones.
Once you think about it in terms of return on investment (ROI),
 it makes sense. You are going to spend a certain amount of money this
 year. Do you spend it on many small projects, each of which will not
 have a big impact? No, you look at the biggest positive impact and put
 all your investment into that effort.
It is important to make sure these big impact projects are
 aligned with your company's goals. It is important for the company and
 important for you, too. You will be more valued that way.

Requests from Your Boss

If your boss asks you to do something, and it's a quick task (not
 a major project), do it right away. For example, if your boss asks you
 to find out approximately how many PCs use the old version of Windows,
 get back to him with a decent estimate in a few minutes.
It helps to understand the big picture. Usually such requests are
 made because your boss is putting together a much larger plan or budget
 and you can hold up your boss's entire day by not getting back to him
 with an answer quickly. Perhaps he is working out the staffing and cost
 estimates to bring all PCs up to the latest release of Windows. The
 entire project would be held up while waiting for your answer.
Why does this matter? Well, your boss decides your next salary
 review. Do I need to say more?
Maybe I do. Your boss will have a fixed amount of money he can
 dole out for all raises. If he gives more to Moe, then Larry is going to
 get less. When your boss is looking at the list of people in the team,
 do you want him to look at your name and think, "He sure did get me an
 estimate of the number of out-of-date Windows quickly. Gosh, he always
 gets me the things I need quickly." Or, do you want your boss to be
 thinking, "You know, the entire budget was held up for a day because I
 was waiting for that statistic." Or worse yet, "All the times I looked
 foolish in front of my boss because of a missed deadline, it was because
 I was waiting for so-and-so to get me a piece of information. So-and-so
 isn't getting a good raise this year."
Managing Your Boss

Many people think that management is a one-way street. I
 disagree. Management is a relationship, and you share influence in how
 the relationship evolves. It is difficult to get anything done, or to
 have a satisfying career, if you do not have a good relationship with
 your manager. Alternatively, with a good relationship you can get more
 done, have increased job satisfaction, and accelerate your
 career.
If you do a web search for "manage your boss," you will find
 many excellent articles. This is a sign that many people feel the need
 to have a better relationship with their boss. Schedule some time to
 read a few of them.
I think the three most important keys to managing your boss are
 to use him to help advance your career, to know when to use upward
 delegation , and to understand and contribute to his goals.
Make sure your boss knows your career goals

Make sure your boss knows where you want to be two, five, or
 ten years from now. Your boss doesn't have ESP. In fact, if you are
 doing your job well, he may be hoping that you want to stay right
 where you are. It's less chaotic for him if everyone just wants to
 stay put. But that's not your career goal, right? You want to move
 into a more senior role, or move into management, or possibly you
 are just doing this job until you've saved enough money to pay your
 bills while you struggle to become a full-time artist, actor, or
 author.
The key is to make sure that your boss knows your goals. So,
 tell him your goals and dreams. Don't be shy, but don't sound like a
 broken record. Once a year you should discuss, in a private
 one-on-one meeting, where you want your career to go. I remember the
 day I walked into Les Lloyd's office and said, "Les, I may be a
 freshman now, but someday I want to be one of the student managers
 here at the computer center." He thought for a moment and told me
 what accomplishments I needed to have under my belt before he would
 consider me for the position. I worked my ass off that summer and
 soon he announced my promotion. I have had similar experiences at
 jobs after graduation.

Upward delegate only when it leverages your boss's
 authority

Upward delegation means giving an
 action item to your boss. The key is to know when to do it and when
 not to. If you try to give your boss an action item when it isn't
 appropriate, it looks like you are avoiding doing your work.
Here's an appropriate case: you are having trouble convincing
 a customer that her department has to pay for a server. Either she
 wants your IT team to pay for it, or she doesn't feel that the
 server is needed. Asking your boss to help explain the situation to
 her is appropriate because it leverages his authority. He has the
 authority to speak to the business issues involved, while your
 credentials are relevant to technical aspects. Your boss's authority
 also leverages his knowledge of the political power structure of
 your organization. He may know that it is a lost cause, or whether
 it would be appropriate to go over the customer's head.
Solve Problems at the Right Level
Don't debate technical issues with vice presidents, and
 don't solve a political issue with technology.
Managers usually want to speak to people at their level.
 Vice presidents generally communicate with other vice presidents.
 Directors generally communicate best with other directors. If you
 need to cross this line, communicate to the peer who reports to
 the person you want to speak with, or go through your boss, who is
 much more able to navigate the organizational structure.

To clarify this point, let's look at a situation where it
 would not be appropriate to upward delegate. The server has been
 purchased and is waiting to be installed. Would it be appropriate to
 ask your boss to install it? Generally, the answer is no. Such a
 task does not leverage his authority. If he is technical, he may
 have more experience and be able to install the server faster than
 you, but if he has delegated it to you, trying to push it back up to
 him simply looks like you are shirking your responsibility.
On the other hand, if you do not know how to install such a
 server, asking for help is appropriate. In that case, you are not
 asking for your boss to do the task, you are asking for training. It
 is leveraging his authority to ask for
 training. A manager's primary responsibility is to allocate
 resources. He can decide whether it is appropriate to train you
 personally or delegate the task to a coworker. By asking him for
 training, you are making a request that is appropriate because you
 are asking for the allocation of training resources.

Understand and help accomplish your boss's goals

If you want your manager to help you, you have to help him.
 "But why? It's his job to do things like career management, right?"
 Well, technically yes, but you get more flies with honey than
 vinegar. Your manager will spend more energy making you a success if
 it's obvious that you spend time making him a success.
More specifically, success in this case means meeting your
 boss's goals. Earlier I wrote that you shouldn't expect your boss to
 have ESP and be able to guess your career goals. Likewise, don't try
 to use your ESP to guess your boss's goals. More experienced
 coworkers might have a good understanding of what motivates your
 boss, and you should listen to them for guidelines. However, nothing
 beats talking directly to your boss.
I've had a number of bosses who surprised me when, privately,
 I asked them what their goals were and how I could help them meet
 those goals. The way I phrased my query was something like: "What
 metrics does your boss use to evaluate your performance? If I know
 how you are measured, I can contribute to the team more effectively
 by keeping those goals in mind."
In one case, my boss explained to me the specific technical
 projects he wanted to see completed that year. He had "sold" these
 projects to management, and they were expecting them to be
 completed. I soon realized that much of the work I did had little to
 do with those projects, and I redirected my priorities to make my
 boss a success. He noticed, and I benefited.
Another time, I was told the criteria that determined whether
 my boss got a bonus at the end of the year. It sounded greedy at
 first, but then I realized, who am I to judge? So I redirected my
 priorities to make sure that those criteria were met. My goal was,
 essentially, to make sure my boss's bonus was maximized. That would
 put me in the best position to get what I wanted, whether it was a
 raise, a promotion, or just a super-duper cool new computer on my
 desk. Is this unethical? Certainly not (as long as I didn't do
 anything unethical to meet those goals, of course).
This brings up an interesting conundrum. What if my boss had
 said the criteria he was measured by was something that I felt
 wasn't good for the company? For example, if I felt that what the
 company needed most was to strive for technical excellence, but he
 was being measured by growth metrics? You have to trust the judgment
 of the superiors who set up your boss's criteria. Or, strive for
 both goals. Sound difficult? Well, if you're smart enough to know
 more about what's right for your company than your boss's boss, it
 shouldn't be very difficult to find a way to meet both goals at the
 same time.
I don't think it's cynical to give higher management exactly
 what they ask for. However, sometimes your boss is measured in a way
 that unintentionally promotes bad behavior. For example, I once
 visited an IT helpdesk whose manager was rewarded based on whether
 he was able to decrease the average initial response time to
 customer requests. (You can see where this is going, right?) Soon,
 everyone he managed was answering calls on the first ring (or very
 soon after receiving an electronic trouble ticket) and putting the
 caller on hold. Service wasn't getting any better, but they were
 meeting their metrics. The following year, management started
 measuring performance based on average time to resolution. As you
 can guess, tickets were closed very quickly whether or not the issue
 was really resolved. The statement, "I'll close this ticket; you
 reopen it if my suggestion didn't fix your problem" became
 commonplace. Again, customer satisfaction didn't improve.
If management thinks the only way to drive a business is on
 metrics, but is incompetent at creating metrics that successfully
 encourage the desired behavior, then they should either learn how to
 make better metrics or not manage using metrics.
Tip
A friend once worked at an ISP that measured the sales team
 based on T1's booked, with no penalty if the order was cancelled
 later. The boss encouraged everyone to get customers to sign
 contracts and cancel when the technician came to perform the
 installation. Unethical? Maybe at first, but after more than a
 year of this, the management that set up the criteria didn't
 change the criteria. Therefore, they must not have seen this as a
 problem, right? The boss, and his staff, enjoyed a long string of
 bonuses for meeting their superiors' goals. Did the ISP eventually
 go out of business? Absolutely. The Internet is a better place for
 having one fewer ISP with incompetent management.

A friend asked his boss what his boss's goals were and was
 completely surprised by what his boss revealed. His boss was getting
 near retirement and really just wanted a quiet last year with no
 surprises. He was, essentially, told not to work very hard for the
 next year because work meant new projects, and new projects meant
 new risks. The boss really just wanted to sail through to his last
 day. My friend realized he had three choices: (1) have a relaxing
 year, (2) work hard to position himself for a promotion to succeed
 his boss, or (3) update his resume and start job hunting. He chose
 the first option. It was his most enjoyable year at the company. He
 spent the time sending himself to various kinds of training
 conferences and workshops. Coincidentally, the training positioned
 him for a promotion. After his boss retired, he was promoted to
 replace his boss. I guess it all worked out in the end.
When you visibly contribute to making your boss a success, it
 opens many doors. He will spend extra effort helping you with your
 career path, you will increasingly receive first pick at the "fun"
 projects, and it opens the possibilities to small but important
 rewards such as cool equipment. Of course, it can't hurt your
 potential to receive better raises and bonuses. Best of all, if your
 boss is successful enough to receive a promotion, an ethical boss
 will take you with him.
From that perspective, the ultimate criterion for how to
 prioritize your work is to center it around what will make your boss
 a success.
	 	Action expresses priorities.
	
	 	--Mahatma Gandhi

Summary

	When you have a lot to do, prioritization becomes more
 important. When you have more to do than you have time for,
 prioritization is extremely important. When you have very little to
 do, any prioritization scheme works pretty well.

	Doing tasks in order works fine when you have a small number
 of tasks. Since older items bubble up to the top of the list, they
 will tend to get done. This is a good scheme to use when you are
 otherwise at a loss for what to do. Doing the first task on your
 list is better than spending time fretting about which task to do
 first.

	Prioritizing based on customer expectation means first doing
 the tasks that customers expect will be done quickly. Customers
 expect small requests to be done quickly if the problem will delay
 their larger projects. You spend the same amount of time working and
 have more satisfied customers when you prioritize this way.

	When deciding which projects should have higher priority, base
 the decision on impact. A high-impact project that requires a large
 effort to complete will benefit you more than a low-impact project
 that is easy to achieve.

	Requests from your boss should have special priority. Your
 boss's requests often have dependencies that you are unaware of.
 Don't be the reason his larger project is delayed!

	To manage your boss, you must do three things: make sure your
 boss knows your career goals, use upward delegation only when it
 leverages his authority, and understand his goals and be part of
 accomplishing them. When you do these three things, you are in
 better sync with your boss, and he becomes more flexible with your
 requests because he knows that you have his best interest in
 mind.

Chapter 9. Stress Management

Stressed? Of course you are! You're a system administrator!
I'm not a doctor, and I'm not an expert on stress, but I will share
 with you what little I've learned over the years. I'm quite a stress
 puppy—ask anyone I've worked with. However, I think I manage it better
 than I used to.
This chapter is about some common sources of stress and what to do about them, some advice about vacation time,
 and a little story about how I learned to relax. It is advice that I've
 found myself giving time and time again, sometimes when lecturing on the
 road or when socializing with fellow system administrators or coworkers. A
 lot of this is more philosophy than science. It is not a complete or
 scholarly discourse on the subject, but it should give you some useful
 advice and point you in the right direction to find more
 information.
Stress is the wear and tear that our bodies and minds feel when
 things change. There is positive stress and negative stress. Positive
 stress adds anticipation and excitement to our lives, helps us be
 creative, helps us win a race or an election, or pushes us beyond what we
 previously thought were our limits. Negative stress is destructive. It
 causes heart disease, depression, and gray hairs. Managing stress is a big
 part of maintaining good mental health.
Oddly enough, the same situation can be positive stress for one
 person and negative stress for another. It's all about how we deal with
 it. For example, people have different reactions to compliments from a
 manager. For some, such a thing would be good. Others might have the
 opposite reaction. They might think, "Oh, now I'll always be expected to
 be so successful! I can't handle the pressure!" They might think, "He said
 that in front of everyone. Now they all hate me!" and worry that the rest
 of the group might be jealous and vengeful.
It is not what happens to us that causes stress, it is how we react
 to what happens to us. I've found Feeling Good: The New Mood
 Therapy (Collins) and The Feeling Good
 Handbook (Plume) to be extremely helpful and highly regarded
 books in the area of managing stress in productive ways. Many people have
 turned their lives around with the help of these books.
We must work hard at relaxing so that we get good at it. We have to
 intentionally set aside time to relax and develop the discipline to not
 postpone it. It's mental hygiene. You can skip brushing your teeth now and
 then, but in the long run you will suffer. Similarly, you can skip the
 things you do for mental hygiene now and then, but in the long run you
 will suffer. The more you practice relaxation, the better you get at
 it.
The smokers I know all seem to be so relaxed at work. I don't think
 it's all about the nicotine. I think it's the fact that they take
 themselves out of the office every couple hours (we don't permit smoking
 inside the building). That breaks up the day. Stress builds a little, then
 is reduced by going outside. Their stress builds, then they go outside.
 I'm not recommending smoking, but I do encourage you to go outside every
 couple of hours, stretch your legs, and get some perspective.
[image:]

Figure 9-1.

Overload and Conflicting Directions

As a system administrator, I find my two biggest sources of stress
 are feeling overloaded and being given conflicting directions from management.
When I feel overloaded, I remind myself about the techniques for
 to do list management in Chapter
 5. I close my office door (or steal a conference room), get some
 peace, and focus on The Cycle techniques. Soon, I realize that what got
 me feeling overloaded was that I was skipping steps. I go through the
 steps and plan the remainder of my day, moving to do items to the next
 day, and so on. It feels good to manage all of my tasks.
When I'm really overloaded, that doesn't
 work, and I have to seek a higher power, most particularly my boss. A
 good boss can help prioritize your workload when you are overloaded. It
 is not a weakness to confess that you are overloaded. Asking for help is
 a sign of strength. It takes a lot of courage to ask for help, and even
 more to accept the advice offered.
If your boss isn't around, anyone can help. Explaining the
 situation to someone can really help with the stress. Even if they don't
 have any advice, at least you feel like you've been heard. Often that's
 half the battle. Being heard by others feels good. However, they usually
 do have advice or can give you reassurance about the things that are
 unsettling. That always makes me feel better.
The act of explaining something out loud to someone helps us solve
 our own problems. How many times have you realized the solution to a
 problem while explaining it to someone else? Life is full of those
 moments when you tell someone, "So there's this problem, see? If I...."
 Suddenly you realize the answer, and there is no need to continue
 talking. It happens all the time.
The Practice of Programming (Addison Wesley)
 tells the story of one person at Bell Labs who was known for helping
 many people solve their highly technical problems. Sadly, he couldn't
 always stop what he was doing to listen to someone, so he had a teddy
 bear in his office. When he was busy, he would tell people to "talk to
 the bear." It worked very well. Soon he found people stopping by his
 office and going straight to the bear.
Detecting when you are so stressed that you need to pause and use
 these techniques can be a problem. When I'm super-stressed, I'm not able
 to recognize that this is the exact time to stop what I'm doing and
 destress. I once had an arrangement with a coworker where we had a code
 word we would use that would mean, "You're too stressed to see how
 stressed you are." It was a code word so that it could be said in front
 of others without embarrassment. He did it for me and I did it for him.
 It was very helpful.
Receiving conflicting directions is another common stressor for
 system administrators. Often, system administrators have more than one
 boss. Each boss gives you conflicting priorities. You try your best to
 please both, which is fine until you get overloaded.
In a perfect world, you can get both bosses into a room and let
 them duke it out. Sadly, that isn't always possible. If you are able to
 make that happen, it is a good idea to have your bosses write out your
 priorities so that you can refer to it the next time there is a
 conflict. Of course, if you have to refer to this memorandum of
 understanding too much, it may be better to seek out an organizational
 change that fixes the root cause of the problem. You might also consider
 talking to your favorite of the two bosses about working exclusively for
 him or her.
The inability to resolve such an issue is one of the leading
 causes of system administrators seeking employment elsewhere. And for
 good reason. Maybe a good stress reliever is to update your resume and
 read the employment section of a newspaper.
Sleep Mitigates Stress
Adequate sleep fixes a slew of problems. Everyone is different
 and needs a different amount of sleep. Getting the right amount helps
 you deal with stress better.
During a particularly stressful week, I find that if I get an
 extra hour of sleep I'm able to manage stress better. I feel better,
 I'm more relaxed, and I get along with people easier.
The problem is that getting an extra hour of sleep is difficult.
 We usually can't sleep an hour late, so our only choice is to go to
 sleep an hour earlier. That's hard! There's so much good TV to watch,
 books to read, chatrooms to play in, web sites to visit, games to
 play, and so on.
The only way I'm able to get myself into bed earlier is with a
 little help. I ask my significant other to be involved (in other
 words, force me to do it). If you don't have a significant other, have
 a friend call and nag you. Or, set an alarm that can ring to remind
 you to go to sleep.
I can't just go to sleep earlier. It's a process. I have to do
 nothing for a half-hour to wind down enough to be ready to sleep. It's
 pretty difficult for me to do nothing, but I usually get there in
 about 15 minutes. I think of it as a countdown. At T-120, I stop
 eating or drinking. At T-30, I wash up. At T-15, I start doing
 nothing. At T-0, I turn off the lights and crawl into bed. At T+5
 I'm...zzzzzzz.

Vacation Time

Let me tell you a little secret about vacation time.
Companies don't give you time off because they want to be nice to
 you. They aren't doing it to be charitable.
They're doing it because you're difficult to work with when you
 are stressed. Let me say that a little more forcefully: when you
 postpone taking time off, you become a pain in the ass to everyone in
 the office, and we don't like working with you. You're irritable,
 difficult, and disagreeable. SO TAKE TIME OFF, DAMN IT!
Sorry for yelling, but it's for your own good.
A successful vacation takes your mind off work enough so that it
 can relax. It may take several days to forget about work enough so that
 you are in full relaxation mode. Only then can your body repair itself.
 I need at least three days to get to relaxation mode, and then six or
 more days of relaxation to really feel refreshed. Add a couple travel
 days and a day to get back into the swing of things, and we're talking
 12 to 14 days for a really successful vacation. You deserve at least as
 much.
Let's look at some common vacation mistakes that system
 administrators make:
	Using an occasional vacation day to
 run errands, do laundry, etc. That's not a vacation.
 That's using vacation time, but it doesn't meet the goal of
 relaxing. Maybe you can use comp time for errands or come into work
 early and take an hour or two off during the day to run
 errands.

	Taking a long weekend.
 That's sort of like a vacation, but it skips the multiday process of
 getting to relaxation mode. Plus, when I try this, I end up with a
 backlog of weekend chores. That creates even more stress. A series
 of long weekends doesn't count either.

	Bringing your laptop and checking
 email every few hours while on vacation. If you check
 email during your vacation, you never really relax. Every time you
 check your email you put your brain back in work mode and you need
 another three days to return to relax mode. Most hotels provide
 Internet access for a small charge. I want a hotel that, for a small
 charge, promises that I will be completely prevented from getting
 anywhere near any kind of Internet access.

Not checking email is difficult. Very difficult. When I take a
 real vacation I have to coordinate to have my VPN access shut off, or I
 will not be able to prevent myself from reading email. It's a
 sickness.
The first few days of a vacation I tend to have work on my mind. I
 find that if I'm having trouble letting go, it can be useful to write
 down what's on my mind so that it will be there when I return to work.
 Otherwise, I'll try to keep the idea in my brain, and that just prevents
 me from letting go.
I've heard system administrators brag about not taking vacation.
 "This company can't survive without me! I'm proud that I haven't had a
 vacation in years." I cringe when I hear this. As a manager, I fear an
 SA may develop a martyr complex. A person with a martyr
 complex assumes that because she is paying such a great
 price to keep the company running, everyone owes her something. She
 becomes impossible to work with. I find that a person in this situation
 eventually feels overwhelmed, cornered, and unable to escape. The person
 who feels this way typically leaves the company soon, often
 unexpectedly, and I lose a technically talented person who is difficult
 to replace.
Tip
I feel less cornered when I can leave a job easily and without
 guilt. Keeping good documentation helps that. Chapter 12 explains how to make it
 easier to document processes.

A long vacation has another business benefit—it helps determine
 where your coverage and/or documentation is lacking. Good system
 administrators assume that they may be hit by a truck tomorrow and the
 company should be able to continue without them. Taking a long vacation
 is one way to test that theory without suffering bodily harm.
Here's my advice about taking a vacation:
	Two weeks before you leave, figure out what coverage is needed
 and spend time training the person who is covering for you.

	The week before you leave, make sure that the person can do
 those tasks without asking questions.

	The day before you leave, do not do anything as root or
 Administrator. You don't want to make any changes that can't be
 fixed. If the temptation is great, distract yourself: spend the day
 writing documentation.

	When you return, take time to see where the coverage gaps
 occurred. It is common to find that something stopped working and
 that your company lived without it until you returned. What was it
 that broke? What could have been documented?

"But how could I ever train someone to know
 everything that I know?" You don't have to. He only
 has to know enough so that your company can survive a week or two. For
 example, maybe one of your jobs is to generate a certain set of reports
 each week. The person who covers for you doesn't have to know how to
 create new report templates, just how to run the ones that exist. If a
 new report template is needed, it can wait until you get back. If it is
 a real emergency, people can print out a few reports and cut and paste
 the bits of paper into the format they need. (In reality, the person who
 needs the report will understand because she takes vacations,
 too.)
Here's another example: maybe you are in charge of backups. The
 person covering for you needs to know how to do any daily tape changes
 and how to restore a deleted file or directory. He doen't need to know
 how to add a new disk volume to the schedule or how to readjust the
 schedule. It is unlikely that a new disk will be added to the system
 while you are away, and if some manager has a brilliant new backup
 schedule she'd like to see implemented, waiting another week should be
 fine. Of course, if a catastrophic failure happened and RAID or other
 failover systems weren't able to save the data, you might have to come
 back from vacation early, but how often does that happen? (And if it
 would result in losing millions of dollars per day, why is only one
 person trained in your disaster-recovery process? But I
 digress....)
When you have someone trained to cover for you, it's important to
 make sure that you coordinate vacations so that you both aren't out at
 the same time. This is a normal business practice. In fact, at most
 companies I know, the CEO coordinates time off with the CFO, and the VP
 of engineering coordinates with a direct report. We are at least as
 important and should do the same.

Yoga, Meditation, and Massage

From an early age I had bizarre misconceptions about yoga,
 meditation, and massage. I thought they were strange things that should
 be ignored. How wrong I was! They are all excellent techniques
 for relaxing the body and mind. They are important parts of a
 good relaxation and stress management program to maintain top mental
 health.
But before I go on, let me embarrass myself by telling you what I
 thought they were:
	Yoga. I thought yoga was
 some kind of weird exercise that people did to become more flexible.
 Bad experiences with gymnastics at an early age convinced me that I
 could never be flexible, so I ignored yoga. Why would I need to be
 physically flexible?

	Meditation. I thought
 meditation was some kind of religious thing. In particular,
 something that wasn't part of my religion, so I turned a blind eye
 to the topic (or should I say a blind third eye?).

	Massage. I had two
 conflicting misconceptions about massage. The first was that I
 thought it was some kind of self-indulgent pampering that rich
 people did. I ain't rich, so I ignored it out of hand. Second, as a
 young child, I saw Peter Sellers play the role of a masseur on
 The Muppet Show. He twisted Kermit's body in
 all sorts of crazy ways. I couldn't understand why anyone would
 subject himself to that.

It's funny how early impressions stay with us for so long.
When I was in my mid-20s, I signed up for a class on relaxation
 that met one night a week for eight weeks. I wouldn't have taken it if I
 knew it was going to teach things like yoga, meditation, and massage. As
 I said, those were "weird" things that I ignored. They tricked
 me!
The idea of the class was to give people a taste of various
 techniques. It wasn't expected that everyone would enjoy all of them.
 However, if there was a single one that worked well for you, you could
 explore that further. Sort of like the fried appetizer special at
 Denny's.
Here's what I learned:
	Yoga. Yoga is the practice
 of an ancient discovery concerning relaxation. By putting your body
 in certain positions and holding those positions, the body relaxes.
 The muscles relax. When that happens—the mind relaxes. Who
 knew?

	Meditation. Meditation is
 an intentional quieting of the mind. If you can shut out all other
 noise and thoughts, your mind can relax and your body will follow.
 The better you get at it, the more amazing it gets. Oh, how wrong I
 had been.

	Massage. Massage is the
 physical manipulation of the muscles to relax them. I have back
 pains, and it was quite amazing to learn that it's not my back that
 hurts, it's the muscles in my back getting so tight that they hurt.
 They don't relax (loosen) all the way because of the pain, which
 means they stay tight, which hurts. That pain makes them tighten
 more, and the cycle builds on itself. Massage relaxes the muscles
 and brings them to a calm, relaxed state. I find that a monthly
 massage keeps my muscles from ever getting too tight (sort of
 similar to how rebooting Windows servers once a month helps them
 stay fresh).

I bring all this up because maybe you have been avoiding these
 things because of misconceptions. I encourage you to explore these
 techniques. Trying them for yourself is the only way to find out if you
 like them. You probably won't find all of them appealing. However, only
 one needs to work for you.
There are centers all over the country that offer such training.
 They usually advertise in holistic healing or naturally living catalogs
 that you might find in your local health food store. Places such as
 Omega Institute in Rhinebeck, New York (near Woodstock; http://www.eomega.com) have
 introductory weekends that are an excellent starting point. Your local
 YMCA, community college, or high school adult program may also have
 resources. Ask around.

Summary

	System administration is a stressful job. Therefore, managing
 stress well is part of doing your job well.

	Often, the causes of stress that are most pressing are the
 feeling of being overloaded and of being pulled in multiple
 directions by multiple bosses with different priorities.

	Feeling overloaded can be greatly helped by time management
 techniques, especially The Cycle System.

	Stress caused by conflicting priorities needs to be fixed at
 the root of the problem by maintaining communication with the
 sources of the conflict or by bringing the involved parties into the
 same room at the same time for dialog.

	Relaxation is something that can be managed and practiced. You
 can manage it by setting aside time to purposefully relax with
 techniques like yoga, meditation, and massage.

	You need to work hard at relaxing so that you get good at it.
 Just as it takes time to change the oil in your car, you must set
 aside time to intentionally relax.

	Vacation time is not a gift from your employer. It is part of
 your relaxation regiment and stress-reduction program. It is what
 you do to maintain your mental health. Postponing vacation time is
 like postponing brushing your teeth. It may seem convenient to skip
 it now, but in the long term it is not healthy. If you squander your
 vacation time by using it for a day off to run errands, it does not
 serve its stress-reduction purpose.

	I hate to be gruesome, but good SAs assume that a truck may
 hit them tomorrow and the company should be able to continue in
 their absence. Taking a long vacation is one way to test the
 coverage plan and system documentation without suffering bodily
 harm. You want to discover the gaps in coverage when you are away
 for a week or two on vacation so that you can fix them when you
 return.

	Take a break. Breathe. Nobody's last words were ever "I wish I
 had spent more time at the office." Relax—it's only 1s and
 0s.

Chapter 10. Email Management

How we manage our email says a lot about how we manage our time.
 Most system administrators let email manage them, not the other way
 around. This chapter discusses dos and don'ts for managing email. I
 propose a better way to manage email, how to deal with the backlog you may
 currently have, and other email-related issues.
[image:]

Figure 10-1.

Managing Your Email

Your email reader is not the most effective time-management tool.
 Anyone who has tried to use his inbox as his to do list quickly
 discovers this. It works great for a day or two, then suddenly you get a
 flood of emails, and it all goes to hell in a handbasket. Messages are
 mixed with to do items, and there is no way to prioritize or keep track
 of things.
Therefore, my recommendation is to keep your inbox clean.
To keep your inbox clean, you need to have a plan for what you're
 going to do with every email message you receive. Each possibility has
 to end with "delete the message," or your inbox will start to fill up.
 In fact, if you don't delete it soon, you'll be stuck going back over
 old messages to figure out what to do with them. That means you'll read
 each email message twice (maybe more) before acting on it—not very
 efficient.
When dealing with interruptions in Chapter 2, we used a system called
 delegate, record, do. For dealing with email, we have a few more
 options:
	Filter

	Delete unread

	Read and...
	Delete

	File

	Reply, then delete

	Delegate or forward, then delete

	Do now, then delete

I know to an experienced email user like you these points seem
 obvious and self-explanatory, but indulge me. You might know how to
 manage email, but are you really doing it? The following sections go
 into more detail and include tips I've picked up along the way.
Filter

Email filters are a big part of my email management. By having email
 automatically filtered based on content, subject, or whom the email is
 from, I can set up routines.
The bulk of my email comes from email lists that I subscribe to.
 I create a folder for each mailing list I'm on and set up automatic
 filters to file messages from each mailing list to their appropriate
 folder.
I group the folders into two parent folders or groups. The first
 group is the folders (mailing lists) I read every day. To me, this is
 like reading the daily newspaper. I try to keep this group small—small
 enough that I can read all the messages that accumulate each day in 15
 minutes.
The other group of folders is for my less-important mailing
 lists. For these, if I haven't gotten around to reading the folder by
 Friday, I empty the entire folder without reading any of the contents.
 This prevents me from accumulating megabytes of outdated messages. I
 delete with confidence: if it was really important, I would have seen
 it elsewhere, too.
I also have one unofficial group of mailing lists. These are the
 lists that receive messages so rarely that it doesn't make sense to
 set up a filter for them. They might as well go to my inbox directly.
 An example of this is the list that announces new releases of the Unix
 sendmail program. The announcements are rare enough that it's OK to
 let them go to my inbox, and setting up a filter would be more work
 than it is worth. Managing a lot of usually empty folders would be a
 pain.
I have another rule about email lists. Once a month I evaluate
 the lists I'm subscribed to and unsubscribe from one of them. This is
 a routine (see Chapter 6) that I
 schedule for the first of each month. Some months this is easy: I've
 joined a list that turned out not to be very useful. Other months it's
 not so easy, but I do it anyway. Otherwise, I'm going to end up on
 every email list on the planet. This is similar to what some people do
 to keep their closets organized: when they buy new clothes, they get
 rid of an equal number of old clothes. Here's a mantra for you:
If you aren't sure if an email list is useful, it
 isn't.

Delete Unread

The next category of email messages are the ones that I can
 delete without reading . These are usually maintenance announcements from the
 building supervisor, spam, or other "blast" email that I know has
 little relevance to my life.
When I was at Bell Labs, I would often receive a printed
 announcement in my office mailbox telling me that construction would
 be blocking a particular entrance. I would also receive email about
 this, often multiple times. Of course, if I was driving anywhere near
 that entrance, I would see tons of construction and signs notifying me
 to turn back. Eventually, I realized that unless the message mentioned
 something that affected computers (power, cooling, etc.), I could
 delete those messages without reading them.

Read and...

Email that we read has to be processed somehow. My goal is to
 touch each email only once. By touch, I mean deal
 with it and send it to its final resting place. If I don't have time
 to read a message, I let it sit unread. I've found that when I choose
 to leave a partially read email in my mailbox to finish reading later,
 I always end up reading the whole thing again. Thus, I'm reading at
 least part of it twice, which isn't very efficient. So, I've created a
 rule for myself: if I start to read a message, I have to finish it and
 then act upon it using one of the methods listed here.
Server-Side Email Filtering
I prefer to do my email filtering on the server side. That
 usually requires using an IMAP-based system or prohibits the use of
 a POP-based system. While most email clients nowadays will filter
 messages as they arrive, filtering them on the server has some
 significant benefits.
First of all, I use a variety of email clients on many
 different machines. I can't be expected to keep the filters in sync
 on all of the machines. IMAP handles that well.
Second, the filters I can do on a server are done at arrival
 time, not when I run the client. In other words, the filters trigger
 even when I'm not around or I don't have my email client running.
 That means I can construct filters that do things such as send a
 copy to your pager or cell phone or run a command to process the
 message.
At one company I worked for, the secretaries would email
 everyone in the entire building when there was leftover food after a
 sales presentation. I would often miss these announcements because I
 was in the machine room. That was, of course, until I set up
 server-side filtering . Any email with a subject line containing "lunch" or
 "food" would be copied to my pager (this was before cell phones).
 Often, I would get to the food before anyone else.
Now I also receive copies on my cell phone that mention lunch,
 food, dinner, the word "urgent," or anything that comes from my
 boss, my boss's boss, my significant other, and a few other
 important people. It not only helps me focus (I'm not checking my
 email all the time), but it helps me not miss the really important
 emails.
If your email server permits you to reach a Unix/Linux command
 line, there is a good chance you can use procmail (http://www.procmail.org) for your
 server-side filtering. I'm such a fan of procmail that I often tell
 people, "If you aren't using procmail, you're working too
 hard."
Some IMAP4-based email servers have server-side filtering
 using something called Sieve. Made popular with the Cyrus IMAP
 server for Unix/Linux, Sieve is an open standard for server-side
 filtering. That means that any client can be used to update the
 filters on any server that conforms to IETF RFC 3028 (http://www.ietf.org/rfc/rfc3028.txt). The
 home page for Sieve is http://www.cyrusoft.com/sieve/.

Delete

We all have messages that we can read and delete right away.
 These are the messages that require no action from us. Items that
 I'm cced on often fall into this category, as do emails that just
 acknowledge that someone received an email that I sent.
I receive a lot of automated messages from various systems.
 Request Tracker from Best Practical bccs me on any changes to
 requests in certain categories or queues. This lets me keep tabs on
 what's going on. Unless I need to chime in, I can read and delete
 these.

File

I try not to file a lot of email. I know many people who file
 every message they receive. They have 500 folders and spend a few
 minutes deciding the perfect folder for each message. I prefer,
 "When in doubt, throw it out." If I discover that I need that
 information a few days later, I can find it in my trash folder. If I
 need it much later, I can go to the original source or find some
 poor fool who spends his time meticulously filing every message he
 receives.
Some people set up a filter to save a copy of every incoming
 email message (excluding those from mailing lists) to an archive
 folder. Then they are confident that they can delete any message
 without fretting. If they later discover that they shouldn't have
 deleted something, they can go to the archive. I believe that as
 disk space becomes cheaper, this will become more popular. Someday
 email will include special features to handle this better.
Warning
There are legal implications to archiving all email. Check
 your corporate email retention policy.

The email that I do save goes into one of two folders: Save
 and Receipts. If it is something documenting a financial exchange, I
 put it in the Receipts folder. Otherwise, it goes in my Save folder.
 I used to have a million little folders, one for every occasion. It
 turns out that scrolling through all those folders was more time
 than it was worth. If I need it, it's in Save or Receipts.

Reply, then delete

Email that requires a reply should get a reply right away so
 that people aren't kept waiting.
The Feathers Email Folder
Besides Save and Receipts, I have one other folder called
 Feathers.
When someone compliments me, it is a "feather in my cap."
 Therefore, any time I get a thank-you email or anything
 complimentary, I move the message to this folder. When I'm having
 a depressing day, I flip though these messages to cheer myself
 up.
This folder is also useful when I have to write my yearly
 performance review.

The problem is that sometimes the reply will require a lot of
 work, and I won't have time for it right then. In that case, I put
 the email into my to do list management system so that it won't be
 lost, but I can still delete it from my inbox.
For example, my reply is usually, "I've added this to the to
 do list. I'll get back to you with a full answer by [insert date]."
 I then forward the email to our request-tracking system.
With a system like RT from Best Practical (http://bestpractical.com),
 you can do this in one step. Simply forward the entire message
 (attachments and all) to the person and bcc the email address that
 creates new RT tickets. Add a message to the top saying, "Hi! I got
 your message. I should get back to you by [insert date] with an
 answer."
No muss, no fuss.
Sometimes it's more appropriate to record the request in your
 organizer and send email to the person when you expect to have an
 answer.
Either way, the message is recorded and no longer needs to be
 in your inbox.
(If you don't have a request-tracking system, I highly
 recommend you make it a top priority to install one. Some of the
 best ones are free, including the aforementioned RT.)
I used to think it was polite to reply to every email I
 received. Polite? I thought it was my duty! Now I actually reply to
 very little email. If someone sent me a joke, I don't reply with,
 "Thanks, it was hilarious" or the more annoying, "Gosh, I've been on
 that interweb since 1987 and I've seen that a million times." I just
 delete it and move on.
Unless, of course, the email asks for a specific reply. Then I
 forward it back to the person with a quick answer. By including the
 entire message, I don't have to explain context. Life is too short
 to write long memos.

Delegate or forward, then delete

Some email requires delegating a task to someone else. I
 always cc the person who made the request so she knows who it has
 been delegated to. Sometimes I create a to do item in my organizer
 to follow up on the item on a particular day, which helps me stay in
 the loop and verify that the task wasn't dropped.
Sometimes forwarded email—messages to my boss or my team to
 keep them updated—doesn't require follow up. I also don't reply to
 emails spreading the latest hilarious Internet joke—such as when I
 learned about a seven-year-old boy in England, named Craig Shergold,
 trying to get into the Guinness Book of World
 Records by amassing the largest postcard collection. Oh,
 wait, that's an urban legend.

Do Now, Then Delete

Requests that are important or quick to execute should be done
 now. Usually these are requests from the boss or simple requests that
 would take less time to do than to submit into a request-tracking
 system or organizer. If something takes less than two minutes to
 complete, it is less work to do it now than to spend time recording it
 to do later.

Jump Starting the Process

The difficult part about this system can be getting started. If
 you have 2,000 email messages in your inbox, this system must sound like
 some kind of unrealistic fantasy.
My recommendation? Forget the really old stuff and move
 forward.
Some mail clients have special archive functions. However, it is
 just as easy to create a folder called "DeadItems-2005-11-19" (or
 whatever the date is) and move all items older than that date into that
 folder.
Now you have a clean inbox, and if someone does need you to pull
 something out of your old archive, it's all right there.
And if you don't touch that folder for a full year, burn it onto a
 CD-ROM, delete it, whatever, just get it out of your mailbox. If you
 haven't touched it for a year, there is little chance you'll touch it
 ever. Your email client will run faster now that it doesn't have to
 manage such a huge index.
I'm still waiting for someone to write a program that will seek
 out all email older than a year and burn them onto a CD-ROM, along with
 a little Java program that would let me search and browse the messages,
 and even restore selected items to my mail reader. Alas, such a beast
 doesn't exist. I even have a cool name for the technique: "Pickled
 Email" (like the food-preserving process). If you invent such a tool,
 you are free to use that name—no charge.
Does it sound impossible to just let go of 2,000 email
 messages?
Let me ask you this: when are those 2,000 email messages actually
 going to get processed?
Next month?
How long have you been saying "next month"?
Before I developed the previously described technique, I tried two
 other methods unsuccessfully:
	Random 100 a day. I used to
 think that if every day I could process and delete 100 old messages,
 I could clean out my inbox in a month. However, when I tried to do
 that, my inbox just got bigger! I couldn't keep it up for a full
 month. Plus, processing 100 messages can take more than an hour.
 That's 20 to 30 hours—more than half a week—to complete this
 project. I could do other things with that time.

	By person. Another
 technique that I tried was to process my inbox by person. I'd deal
 with all the messages from a particular person. They'd get a flood
 of mail: "Do you still need this?" "What about this?" "Hey, I
 finally read this, it was hilarious. Thanks!" Then I was done with
 that person forever...or until the next time I got behind in reading
 email.

Though the by-person technique also failed for me, it did have a
 benefit over processing 100 messages a day: it let me set priorities. I
 could pick the more important people in my life rather than a smattering
 of messages from random people.
However, realistically, once you have more than 1,000 or so
 messages in your inbox, I think you have to accept that those messages
 are never going to really get processed.
Sorry, they just aren't.
I know it's difficult to accept because it was difficult for me,
 too. However, one day I looked at the oldest messages in that big pile
 and realized that some of them were more than five years old—from
 another era.
If you reply to an email that is that old, people often think you
 are crazy, or they question if your reply was caught in a stuck queue,
 or they make a joke about time travel.
What's the worst that could happen? If the email was truly urgent,
 you would have already received another request, or you would have
 gotten in trouble. Huge inboxes are full of messages that are,
 essentially, dead.
So, if they are never going to get processed, why not move them to
 an archive and forget about them? Your mail client will work faster
 without all those messages eating up memory and other resources. It will
 start up faster, too.

Summary

	Most system administrators receive more email than they know
 what to do with. If you don't manage your email, email will manage
 you. Get control over your email and you'll be a long way toward
 regaining control over your time.

	Your inbox is a lousy way to manage your to do list.

	The goal is to get to an empty inbox. To do that, all actions
 you take on an email must end with either deleting or filing the
 message. To that end, I recommend a project that involves handling
 each message in one of these ways: filter, delete unread, read and
 process, or do and delete.
	Filter. Use filtering
 software to pre-process your email and automate many
 tasks.

	Delete unread. Certain
 kinds of messages can be deleted safely without reading.

	Read and process.
 Whether the email needs to be read, forwarded, recorded in an
 organizer or request tracker, or filed, make sure you complete
 the task and remove it from your Inbox. Don't let it
 linger.

	Do and delete. If a
 task can be done in a few minutes, do it now then delete the
 message.

	To deal with the backlog you may have accumulated until now, I
 recommend that you save it somewhere and forget about it. If a
 message was really important, someone would have come after you.
 Email is ephemeral. The older a message gets, the less value it
 has.

Chapter 11. Eliminating Time Wasters

This chapter helps you identify time wasters and explores ways to
 eliminate them.
Let me tell you a little about myself. I love reading Usenet
 newsgroups (NetNews). I can read bulletin boards for hours. Before the Web
 existed, Usenet was where I spent most of my online time. I would have
 been an A student if it hadn't been for Usenet. Darn Usenet!
In my defense, I was quite good at reading Usenet. I tried every new
 release of every NewsReader on an eternal quest for the one that would
 enable me to read the most articles in the shortest amount of time. I
 actually did benchmarks.
I could whip through articles like you wouldn't believe.
 Seriously—other Usenet aficionados would watch me and ask for tips.
Then one day I came up with the most amazing optimization to the
 process. I decided to stop reading Usenet all together. I gained a couple
 of hours each day.
The ultimate process improvement is to eliminate the process.
 Eliminate, don't automate. (But if you must automate, read Chapter 13.)
The problem is identifying what is worthwhile and what is worth
 eliminating.
What Is a Time Waster?

I define a time waster as any activity that
 has a low ratio of benefit to time spent.
Everything has some kind of benefit. Spending five hours playing
 video games has an entertainment benefit. However, other things have
 benefits that might be more valuable to you. For example, spending the
 same
[image:]

Figure 11-1.

amount of time to increase your quality of living by doing home
 repairs has longer-lasting benefits than blasting millions of pixilated
 aliens.
The things that waste our time at work are different—phone calls
 with people who never stop talking, inefficient processes, waiting
 around for all our lunch buddies to assemble so we can leave for lunch,
 etc.

Avoiding the Tempting Time Wasters

Some time wasters are just irresistable. It comes down to
 "everything in moderation." Short conversations around the watercooler
 break up the boredom and monotony of the workday and let us return to
 work refreshed. Multihour conversations about nonwork topics, on the
 other hand, are not so valuable.
The problem is that it is difficult to do things in moderation. As
 Oscar Wilde said, "I can resist everything but temptation." It's
 difficult to say to yourself, "I'll just play video games for a minute"
 or "I'll just look at the subject lines of my email and only read the
 important ones." Soon you're deleting spam, replying to requests, and
 then you look at your clock and see that a few hours have passed.
So what works?
I can avoid temptation if I set up rules of thumb and mantras for
 myself (see Chapter 3) and then
 find ways to enforce them.
It would be nice if every five minutes our brains would think,
 "Gosh, what's the benefit of what I'm doing right now?" That would help
 us recognize when we've fallen into a time waster and snap out of it.
 Sadly, we're not built that way.
I've found that it's better to set up rules for myself. Rules such
 as "When this alarm goes off, I'm going to stop playing this game." At
 home, I have an old-fashioned kitchen timer with a loud bell that
 requires two hands to turn off (one to hold the device, the other to
 turn a knob to 0). Thus, I can't just slap an off button and return to
 my video game. (I also enjoy the irony of being surrounded by technology
 but using an antique timer.)
In the office, I'd feel silly with the mechanical timer going off
 all the time, and the noise would disturb my coworkers. Therefore, I use
 other alarms and reminders, such as iCal.
Rule of thumb: set an alarm before doing something "just for a
 minute."

While I find that I can be much more productive in an office with
 the door closed (due to the lack of interruptions and noise), there are
 times when having a coworker with me makes it easier to avoid
 temptation.
	 	Nothing makes it easier to resist temptation than a proper
 bringing-up, a sound set of values—and witnesses.
	
	 	--Franklin P. Jones

Working with someone on a project can make it easier to stay
 focused. First of all, if I am interrupted, I have the excuse, "Sorry,
 I'm working with someone right now. Can you come back later?" However,
 the bigger reason it works is that I just don't even think about the
 temptations. For example, I can't check my other email inbox, the one I
 use for personal stuff, right in front of my coworker.

Common Time Wasters

Here are some common work time wasters and advice about how to better manage
 them.
	Junk items in your to do list
 . Everyone's to do list has a few junk items. Show
 your to do list to your manager and see if she faints. Maybe she'll
 eliminate some items, maybe she'll even take responsibility for
 speaking to the person who made the request. There may be routine
 (repeated) items on your list that your manager didn't know about.
 Once, I showed my to do list to my manager, and he saw that every
 morning I scheduled 15 minutes a day to manually check and fix a
 problem we'd been having. Ah, finally he saw the value in getting
 that system replaced!

	Too many email lists
 . How many mailing lists are you on—10, 20, 100? I
 remove myself from one email list each month. It's a repeating item
 on my first-of-the-month to do list. I find that during the course
 of the month I subscribe to email lists that look interesting. If I
 don't remove myself from lists every so often, I'll eventually be on
 every list on the planet. (See Chapter 10 for more email
 tips.)

	Bulletin boards, Usenet , etc. The signal-to-noise ratio is so low
 on most bulletin boards that they rarely have much work-related value.

	Chat systems. While I
 recognize that many people use IRC and Instant Message systems for
 work-related tasks, nonwork use of chat systems seems to have very
 little benefit, especially during work hours.

	The office "drop by." I
 find that people are more likely to drop by and chat if my desk
 faces the door. Turn your chair so people can't catch your eye from
 the hallway.

	Salespeople and recruiters
 . I used to find it terribly difficult to get off the
 phone with salespeople and recruiters who would call me. I found the secret
 was to say, "Thank you, I'm not interested," and hang up. Only once
 in 10 years did I accidentally hang up on someone whom I shouldn't
 have. He called back.

	Manual processes. There are
 many programming languages that are geared toward making it easy for
 system administrators to automate their tasks. Perl is the most
 popular. Python and Ruby are growing in popularity. Look for a book
 on that programming language at your local computer bookstore. The
 O'Reilly Cookbook series is also extremely
 helpful for automating tasks. More on the topic of automating
 processes in Chapter
 13.

Office Socializing

Technical people, contrary to popular stereotype, can be very
 social people. There are certainly business benefits to the bonding
 and networking that comes from standing around the watercooler,
 talking with coworkers. However, there are limits.
Once, I had a coworker who liked to talk about politics and
 could spend an entire afternoon pontificating (he didn't let others
 talk much) about current events. The benefit of participating in these
 conversations was very little, and yet they would draw many people out
 of their cubicles. I disagreed with him, nearly always, so I was often
 drawn in because I didn't want his opinions to go unchallenged. In
 fact, I think those who disagreed with him were more tempted to stop
 working and join in the debates.
Alas, these conversations were one big waste of time. I couldn't
 even claim that these sessions had some kind of team-building benefit
 as his beliefs were very disturbing and off-putting at times. I
 couldn't put an end to them—I wasn't his manager, and no manager
 seemed to find a problem with what was going on—but at least I didn't
 have to get sucked in. Thus, I learned to detect this situation and
 either bring the discussion back to something work related or to
 quietly go back to my desk.
Think about all the time that you have spent talking with
 coworkers about The Lord of The Rings; the newest
 comic book to be turned into a movie; which is better—Emacs or vi,
 Windows or Linux; or whatever else we geeks talk about. Were any of
 these discussions valuable? Sure, if you have a light amount of work,
 there is value to social discussions. But when they carry on for more
 than an hour?
I believe that most people don't even realize how much time they
 spend on this habit. Make a point of timing the next marathon
 conversation about why Babylon 5 was better than
 Star Trek. You'll be surprised at how difficult
 it can be to detect when you're in such a conversation and equally
 surprised at how long the conversaion can be.
Be conscious of these conversations. Get good at detecting when
 they have gone from quick discussion to time waster, and walk
 away.

Wasteful Meetings

We can often find ourselves deluged with meeting after meeting.
 That's OK if work is getting done, but learn how to detect when
 meetings are wasteful .
There are many kinds of meetings, but let's group them into two
 general types: status meetings and work meetings. Status
 meetings are just that: people reporting on progress on
 their aspects of a project. Work meetings are
 when people try to get work done.
It can be a waste of everyone's time if you try to problem-solve
 during a status meeting. If something can't be resolved quickly, pick a
 time for the involved parties to work it out—don't waste everyone's
 time. I find it useful to have that meeting immediately after the
 current meeting. People not involved can leave or drop off the
 conference call. Everyone is already together, so there's usually no
 scheduling conflicts to work out.
When I email an announcement of a meeting, I indicate whether it
 is a work or status meeting. This makes it clear what people should
 expect and puts them in the right mindset. It also makes it easier for
 the facilitator to cut off inappropriate discussions when they
 arise.
As a participant, I realized that I had an influence on whether
 the meeting was going to be a waste of time. Being on time significantly
 improved the meeting's efficiency. Being prepared (reading the material
 being reviewed, etc.) meant I wasn't dragging the meeting down. If I was
 presenting material, emailing copies to everyone a day early made other
 people better prepared (though that meant I had to be prepared a day
 early). I always send an email reminder about meetings 24 hours in
 advance. This reduces the number of people who arrive late or people who
 disrupt the meeting's effectiveness by not showing up at all.
Tips for Meeting Facilitators
	Always send a reminder email 24 hours in advance.

	Make it clear whether this is a status or work
 meeting.

	List the full date ("Friday, Dec 2," not just
 "tomorrow").

	List the time. If you work across time zones, list the time
 and time zone; don't assume people know your time zone. Better
 yet, include the time converted to all appropriate zones.

	Include URLs to the documents people will need. Even if this
 is the third meeting about a particular document, keep including
 the URL. (Include the document as an attachment only when you have
 no other choice or when some members don't have access to your
 Wiki.)

	Include a written agenda—a simple outline of the issues to
 be covered.

	Show up five minutes early, or earlier if there is
 audio/visual equipment to be set up.

	If you want people to show up on time, don't announce that
 the meeting starts at 2 p.m., announce that it starts at 1:54 p.m.
 People will show up to find out why it starts at such a strange
 time.

	Always start on time. If people are constantly late, start
 on time and put the most important items first. Don't repeat the
 items for latecomers; tell them the info will be in the minutes.
 People will start coming on time. (They'll hate you, but they'll
 be on time.)

I learned to hold back from having side conversations. I realized
 that while I felt my witty comments were a gift to all who heard them,
 they derailed meetings more than I had realized; so, I learned to keep
 my mouth shut.
As WiFi technology became more pervasive, I found that I could IM
 my witty comments to just a friend or two, which satisfied my need to be
 heard without causing too much distraction. Finally, for meetings that
 were a complete waste of my time, but unavoidable, I could bring a
 laptop and get work done, keeping an ear open for the important bits.
 However, I did find that when I was doing this, it was polite to sit in
 a less visible spot, and it was OK to do this only if there was a large
 crowd of people.
Of course, work isn't the only place where we waste time.
Standing Around a Video Store Deciding What to Rent

Ever spend an hour walking around a video store trying to figure out what you want to rent? Do friends
 and coworkers often mention movies that sound great, but once you walk
 into the store you can't remember any of them? It happens to all of
 us.
There is a solution.
In your organizer, keep a list of movies that people mention.
 PDA users can create a note called "Videos." PAA users can put a sheet
 of paper under "V" in the A-Z notes section. Any time someone mentions
 a movie that you'd like to see, write it down.
Now when you enter a video store, open to that list and rent the
 first thing on the list. You'll spend more time watching movies and
 less time trying to remember their names.
Alternatively, there is a service called Netflix (http://netflix.com) that lets
 you rent DVDs by mail. Their web site lets you maintain a queue of
 movies you'd like to see. When you return a DVD, they immediately mail
 you the first available DVD on your list. Now, when a coworker
 mentions a great movie, you can log into the Netflix web site and add
 it to your queue. You can even add films that haven't been released
 yet. They'll float to the top of the list and you'll get them when
 they are released. That's perfect for all those "wait until it's out
 on video" recommendations.
The web site lets you rearrange the items on your queue. There
 are utilities for Windows and Mac that let you manipulate your list a
 little easier than you can from the Netflix web site—Netflix Freak for
 Mac OS X is very popular.

Watching Less Bad TV

Let me make one thing clear: I love TV. I'm not one of those
 elitists who goes around proudly announcing that they don't watch,
 nay, don't even own a TV. I think TV is great. In the last 15 years,
 it has gone from being a total wasteland to a wasteland filled with
 pearls. The problem is keeping the pearls and avoiding the
 waste.
From a time management perspective, the problem with TV is that
 it expects us to schedule our lives around when shows are broadcast,
 not when we want to watch a particular show.
As a result, when we do turn on the TV, we don't watch what we
 want to watch, we watch the best show that happens to be on at that
 moment. Very inefficient.
Then came DVRs . They enable you to record shows to a hard disk and
 watch them any time you want. There are many brands, but
 Tivo has the most geek appeal because there's a Linux box
 under the hood.
I bought my Tivo to help me watch less TV,
 and watch higher-quality shows when I am watching TV. In other words,
 when I did have time for TV, I wanted the pearls; I didn't want to
 settle for the best thing on right now.
After using my Tivo for a few months, I found that I was
 watching more and more TV. I needed to reverse this trend.
That's when I invented Tom's Three Tivo Rules to help me watch
 less TV:
	Rule 1
	If you watch all the way to the end of the program, you
 have to delete it. Don't give me any of that "Oh, I'll want to
 watch that again" logic. You don't have enough time to watch
 everything that gets recorded, let alone watch it a second
 time.

	Rule 2
	If you add anything to the list of shows that are
 automatically recorded (Season Passes), you have to delete
 something of equal length and frequency. Alternative: each month
 you have to delete at least one hour worth of Season
 Passes.

	Rule 3
	If it's about to get old enough to be automatically
 deleted, let it expire. No extending the date. Archiving it to
 tape because "I'll find time to watch it later" isn't allowed
 (see Rule 1 about how much free time you have). Dude, ya just
 gotta learn to let it go. For me, the only exceptions to this
 rule are the three shows at the top of my list. I practically
 bought my Tivo so that I'd never miss these programs:
 The Daily Show, The West
 Wing, and 24.

These are my personal rules. They were devised to help me use
 Tivo to reduce the amount of TV that I watch. Your mileage may
 vary.

Laundry and Housecleaning

Housework can take a lot of time. If you do not have
 laundry facilities where you live, spending a couple hours each
 week at a laundromat can be significant, especially if you have very
 little free time outside work. I'm a fan of "by the pound" laundry
 services. In my neighborhood, there are two places that will wash and
 fold my clothes for 85 cents per pound. Rather than killing half a day
 each week, I spend a few minutes dropping off my clothes on the way to
 work, and I pick them up on the way home or the next day.
It costs me about $20 per week. While $80 each month sounds like
 a lot of money, it starts to make sense when it frees up time that I
 can spend socially, doing activism, or writing this book. It's worth
 it.
Housework is another drag on one's time. A visit from a cleaning
 service once or twice a month can save a lot of time and make your
 place more presentable. Typical service includes vacuuming all carpets
 and floors, washing the kitchen floor, dusting all surfaces, and
 cleaning all bathrooms from top to bottom.
A clean house has many benefits. It's easier to host social
 events if you have a clean house. People are more willing to show up
 if your home isn't a disaster area. The time you save by having a
 cleaning service can be used to host more social nights at your place.
 Despite the modern convenience of staying in touch with friends via
 Instant Messenger, having friends over to hang out is highly valuable
 and builds stronger friendships than IM can. It's also cheaper than a
 night out, which can offset the cost of the cleaning.
An unexpected benefit you will discover is that a cleaning
 service forces you to clean up and straighten your messes the day
 before the service arrives. The precleaning twice a month keeps my
 personal clutter in check.
A cleaning service is most economical when the cost is divided
 by a few people. If you share a house with others, having a cleaning
 service every other week can be a godsend, and it helps to avoid
 arguments about whose turn it is to clean. Plus, I can't imagine four
 typical male system administrators sharing a house and it not looking
 like a disaster area and smelling like a locker room. This fixes many
 problems.

Hardware/Software Installation

Speaking of paying people to do work for you, when I have the
 budget, I find it useful to pay for installation of the
 hardware/software that we buy at work. This is particularly important
 for something that we'll never be repeating.
As an example, let's look at the process of installing a large
 backup/restore system and tape library. The installation has two
 parts. First, we do the installation of the hardware and software.
 This phase ends when we have one server being backed up properly. The
 second part is the ongoing add-change-delete of systems that are being
 backed up.
The learning curve for the first part is huge, and yet the
 payoff is very small. We will spend days, possibly weeks, setting up
 everything, battling bad manuals and crazy hardware problems. We won't
 be using this knowledge again because once the system is installed, we
 won't be installing another one. What might take us weeks could take a
 VAR or reseller a day or two because they have done it many times.
 It's their specialty. They know what the pitfalls are and how to avoid
 them.
The second part has a much better payoff. Learning how to add a
 new backup server, configure it to back up a new disk, and remove
 servers or disks has an excellent payoff. It is knowledge gained that
 we will use time and time again.
Another example is automated OS installation. Setting up a
 system to automatically load the OS and related applications on a
 workstation can be complicated, but it has a huge payoff, especially
 if you reload machines often or purchase many new machines. Examples
 of this kind of thing include Microsoft RIS, Solaris JumpStart, Red
 Hat KickStart, and FreeBSD NetBoot. It can be much more cost efficient
 to pay someone to set up the system and teach you how to make
 maintenance modifications (adding new software, and so on) rather than
 struggle through the initial installation alone.
This kind of consulting can be expensive and, therefore, it must
 be thought of during the budgeting process. Even though installation
 charges may be 20, 50, or even 100 percent as high as the purchase
 price of the hardware and software, paying someone to do the initial
 installation can be well worth it. Especially if this will free you up
 to work on other projects.
If you do take this advice, remember to shadow the person and
 have them explain what they are doing as they do it. That way, you get
 the benefit of his experience and understanding of how the system
 works, which is useful when you need to debug a problem. It may take
 some of your time, but not as much as if you try to do the
 installation yourself.

Others

There are plenty of other time-wasting activities that we can
 all manage much better. Hopefully the previous list has included a
 good sampling of work-related and personal time wasters to jog your
 memory and help you start thinking about the time wasters in your life
 that you can either manage better or eliminate completely. Of course,
 what's a waste of time for one person is an important part of life to
 someone else. Everyone is different.

Strategic Versus Tactical

For a system administrator, the ultimate time waster is any task
 that could be eliminated if only we had time to build the infrastructure
 to make such busywork go away. In other words, the ultimate time
 management technique for a system administrator is a good IT
 infrastructure.
Strategic tasks are those dealing with long-term planning, like
 constructing a security policy, getting buy-in from management, and
 deploying the policy. Tactical tasks are specific tasks related to a
 particular process, such as formatting a hard drive or installing a new
 PC.
The problem is that we get so caught up with tactical tasks that
 we never feel that we have time for strategic work. We're so busy
 mopping the floor that we don't have time to fix the leaking
 faucet.
You won't need to spend time handing out IP addresses if you
 deploy a DHCP server. You won't find yourself spending days fixing
 security problems if you have a modern and pervasive security program
 with things like automatically updating virus/malware/spam detection,
 self-defending networks, and policies that are supported by the highest
 levels of management. You won't spend afternoons debugging oddball
 Windows problems that turn out to be slight misconfigurations if you
 have an infrastructure that automates operating system installation so
 that every new machine starts out right. You won't spend nights
 restoring data from backup tapes if you have a server infrastructure
 that includes proper power, cooling, and redundant storage (RAID). (Not
 that RAID replaces the need for disaster recovery backups.)
The key is to make time for the strategic projects. Get them onto
 your calendar and schedule time for the individual steps in your to do
 list. My rule is to always have one strategic project going on. I'd like
 to have 50, but if I spread myself too thin, I won't get any of them
 done. It's better to pick one good project that gets done than to start
 50 that never get finished. The advice in the section "Prioritization
 for Impact" in Chapter 8 will help
 you narrow down the project. Get consensus on which project will have
 the biggest impact, and get the whole team working on it until it's
 complete.
If you are looking for a good book on this topic, I recommend
 The Practice of System and Network Administration.
 It's more than 700 pages and very complete. I am, however, a little
 biased.

Summary

	A time waster is any activity that has a low ratio of benefit
 to time spent. Rather than trying to do these activities more
 efficiently, it is better to try to eliminate them.

	Certain activities can expand to fill all your time. You can
 snap out of it by setting a time limit. Make self-imposed rules such
 as, "When I start to do [insert activity], I will set an alarm to
 remind me to stop 10 minutes from now."

	Nothing makes it easier to resist temptation than a witness.
 Sharing an office with a coworker can eliminate any inclination to
 do nonwork activities while you're at work.

	There are many time wasters in modern life: junk items on the
 to do list, email lists, chatrooms, nonwork discussions at work,
 unwanted salespeople and recruiters, manual processes that could be
 automated, and so on. Once identified, they can be
 eliminated.

	At home, you can manage time wasters better by using a digital
 video recorder to manage your TV, "videos to rent" lists and Netflix
 so you spend less time wandering around video stores, and laundry
 and housecleaning services so you have more free time for
 fun.

	Learning to install something that will only be installed once
 has limited payback. For complicated installations like centralized
 backup/restore systems, budgeting to have installation done by the
 vendor or VAR can be a significant win.

	For a system administrator, the ultimate time waster is any
 task that could be eliminated if only you had time to build the
 infrastructure to make such busywork go away. In other words, the
 ultimate time management technique for a system administrator is a
 good IT infrastructure. By thinking strategically, you can eliminate
 tactical tasks over the long term. In other words, you can stop
 mopping the floor and fix the leaking faucet.

Chapter 12. Documentation

This chapter is about how a good documentation repository can help
 us as system administrators, especially in our effort to manage our time
 better.
But first, let's talk about why we dislike, fear, and generally
 avoid writing documentation.
We're suspicious of anyone who asks us to document what we do
 because it sounds like the precursor to being fired. If we document what
 we do, we can be replaced. Alternatively, the request to have everything
 documented comes from outside our group, usually from someone who has
 gotten "ISO 9001 fever" and doesn't realize that documenting processes is
 a means to an end, not the other way around.
It can be very difficult to start writing a document.
 "Documentation" summons an intimidating image of a 1,000-page book
 describing everything we do, how it's done, and how things work. Where the
 heck would we start if we had to write that?
System administrators are often perfectionists. We could never
 document everything. Why start a project if it can't
 be finished? Because of the time it takes to write, documentation often
 becomes outdated during the writing. Why write something that will be
 useless the day it is completed?
Besides, there is always a line of people outside our offices
 requesting that we do urgent things. That's always going to trump
 documenting. Writing requires long stretches of uninterrupted time. No
 system administrator has that, right?
Lastly, geeks hate printed documents. Why kill a tree?
This chapter proposes something so different that I hate to call it
 documentation. Instead, we're going to make an information repository that
 is accessible, updatable, and useful. Best of all, it will serve our time
 management needs.
[image:]

Figure 12-1.

Document What Matters to You

In place of big ol' scary documentation , what do system administrators need? You need
 repositories to store the information that will help you from a time
 management perspective. Your boss may have her reasons for wanting you
 to maintain documentation, but I recommend that your inspiration be
 something different—selfish. Build documentation repositories that serve
 you and your time management needs, not the seemingly irrelevant needs
 of your boss or quality department. Specifically, SAs need two
 repositories:
	Customer-facing repository
 . Documents that you want users of your network to
 have access to, such as the policies and procedures they should
 follow to get service.

	Internal IT repository. The
 info you need internally to help you do your job, such as contact
 info for vendors, written instructions for tasks, and so on.

The first repository saves you time by making customers more
 self-sufficient. It deflects them away from bothering you. Why should
 they call you to ask a question when they could read about it? This way,
 they will only call you when they need clarification. Many customers
 prefer the self-help route simply because it saves them from
 embarrassment when they ask silly questions.
The second repository is useful because you make it useful. In
 particular, you record all the processes, procedures, and reference
 materials that you need at your fingertips. It is
 another opportunity to store something digitally so that it doesn't take
 up space in your brain. It reduces the work your brain has to do so that
 you can be more focused. Focus is good.
I suggest two repositories because one needs to be freely
 accessible by all customers, while the other may contain sensitive
 information that should be restricted for security reasons.
In these two repositories, you should accumulate:
	How customers can request service or get help (possibly a
 simple decision tree)

	A single place to find all your written policies (with links
 to HR and Legal's equivalent pages)

	A list of vendors and their contacts, along with maintenance
 contact information

	A list of procedures of the things you have to do a lot or
 want someone else to be able to do

	A simple network diagram that someone joining your group (or
 helping out for the day) can use as a reference

You will put this information on a web site with a public area and
 a private area. To make it easy to start, I'll include a template for
 each repository. To make it easy to update, I recommend that you use a
 Wiki. If you're not familiar with Wikis, I describe them in detail in
 the upcoming section "Wiki Technology." For now, just remember that a
 Wiki is a web site that is very easy to update.
You can eliminate the fear of the repository never being done by
 declaring it to be a living document. Rather than
 something that has to be reprinted every time you make a change, you
 simply maintain the repository on the intranet. You'll update it any
 time you need to update it. "Done" doesn't mean it's complete and ready
 to print, it just means that the initial repository has been birthed and
 is ready to grow.
The Customer-Facing Repository

The first web site is publicly readable, and it contains IT
 customer documentation.
When a customer browses to your document repository, the main
 page should be very simple. Here's a template. Create a home page with
 the following headings:
	How to get help
	Include a few ways in a bulleted list.

	How to request new services
	List a few services that someone might need activated and
 provide a list or link for how she gets started. Some examples
 might be VPN access and how to request an external web
 space.

	Policies
	A bulleted list of links to the policies that you do have
 written, plus links to any equivalent pages for HR or
 Legal.

	A single place to find all your written
 policies
	With links to HR and the Legal department's equivalent
 pages.

This template should be sufficient for any small system
 administration group that doesn't have a similar web site yet. If you
 are an IT or CIO organization so large that you laugh at my little
 template, you probably have a huge home page/web site already and
 don't need such a template anyway. However, I'm surprised at how many
 CIO organizations have web sites that are missing at least one of the
 above items. I also find that large organizations are made up of
 smaller teams, each of which can benefit from its own
 repository.
IT policies are the rules by which users of your
 computers/networks live. These include security policies, service
 level agreements, acceptable use policies, ethics guidelines,
 privileged information/access guidelines, and so on. Under IT
 Policies, link to each written policy that you already have, whether
 these policies are in HTML, Word, or PDF format. If you don't have any
 policies, don't include this heading just yet. However, add any of the
 policies you think you should have to your to do list. If you are
 looking for inspiration on what policies to add or how to write them,
 read Chapter 7 (Security) and
 Chapter 9 (Ethics) of
 The Practice of System and Network
 Administration. I recommend starting with an acceptable use
 policy. If your legal department or HR maintains relevant policies,
 link to them. If these sections do nothing but highlight what policies
 you are missing, that's a good thing.
This template is only a start. Over time, you will realize
 things to add or changes to make.
If you have the time and resources, the next step is to improve
 this home page so that people will want to set it as their default web
 page. This will encourage people to go to your web site often and use
 it when they do need, for example, to refer to an IT policy. Add
 useful things like a Google search box, stock tickers, or company
 news. Set it as the default page on any new machine you
 install.

Internal IT Documentation

The second repository contains internal IT documentation: documents that are useful to you and the
 people on your team. These documents will contain information that is
 sensitive, and therefore it should be secured in some manner, possibly
 just by simple password protection. This repository is often a
 password-protected area of the other repository.
If you don't already have such a repository, here's a
 template:
	Vendor contacts and maintenance
 agreements . A link to a list of vendors and their contacts,
 along with maintenance contract information.

	Internal IT procedures
 . A list of procedures you do or want someone else
 to be able to do. Examples include checklists for setting up new
 users and cleaning up after departed ones.

	Network diagrams. Links
 to a simple network diagram that someone joining your group (or
 helping out for the day) can use as a reference. This may be a
 link to a page of diagrams.

Let's explore each of these a bit more.
Vendor contacts and maintenance agreements

Under Vendor Contacts, create a link to each vendor you deal
 with. The destination for each link should be a page for that vendor
 that lists the phone number of your salesperson, the support phone
 number, and info you will need when you call about a system problem.
 For example, for one vendor, I list the phone number, the items on
 their phone menu, and the answers to the questions that I know I'll
 be asked: the phone number they use to look up my profile, my
 maintenance contract number, etc. If a vendor has a unique
 maintenance contract for each piece of equipment I've bought from
 them, I put all that information in a table. That table also
 includes a link to the password-recovery procedure for that device,
 as well as a link to a locally cached copy of that procedure.
You might want to use some kind of server-side include feature
 to make one page that contains all the other pages. You can print
 the mega page every so often and keep a copy in your computer room
 for emergencies. If you're really cool, you'll write a script that
 will automatically print the document on the first of the month if
 it has changed since the previous month.
Every time I deal with a vendor, I use this page to contact
 them, even if the info is also in my personal address book. That way
 I know the page is up-to-date in the central repository. If I find
 it has become out-of-date, I update it right then and there.

Internal IT procedures

You'll never list every single procedure for everything you
 do, and you don't need to. However, my advice is that you document
 the tricky procedures that you don't do frequently and the
 procedures that you hate to do.
An example of a tricky procedure is breaking a RAID mirror,
 then reattaching/rebuilding it. You might "break the mirror" (i.e.,
 detach the main disk from its mirror) before doing an OS upgrade. If
 the upgrade fails, you can mount the half of the mirror that wasn't
 upgraded. If the upgrade succeeds, you can reattach and rebuild the
 mirror. The commands to do all those things are usually relatively
 tricky. Therefore, the next time you do this kind of thing, create a
 web page and record the commands that you used and make notes about
 how you constructed the commands. In the future, you can refer to
 this page and the whole thing will go faster.
If there are many ways to do something but only one of them is
 right for your environment, document that specific way (and why it
 is the right way). Often a HOWTO document found on the Web or as
 part of a software distribution lists many ways to do something, but
 you've learned that only one of those is appropriate for your
 environment. You might want to paste the entire HOWTO document into
 your repository and add commentary, such as "Use option 3," "Don't
 do that," or "This shortcut worked on Server B, but do the long
 version on all other systems." Use color for your comments to make
 them stand out. Be sure to respect the original document's
 copyright!
I often create documents that are simply checklists. It's not
 as intimidating as writing a huge document fully describing every
 little detail. I don't have a knack for remembering details, so
 checklists have become a way of life for me. Since the repository is
 easy to update, other people will contribute to the document over
 time. It often grows into a full document.
The other procedures you should document are the ones you
 don't like to do. Sure, it would be nice to document everything you
 do, but who has the time? Instead, document the processes that you
 don't like because that creates the materials needed to train
 someone else to do those processes. I personally hate creating
 accounts. Even though I've automated the process as much as I can,
 it's still a pain. Plenty of it can't be automated, especially my
 checklist of things such as "Visit the customer on his first day to
 see whether he has any questions" and "Repeat the visit a week later
 as a follow-up." So I documented the command that I run that creates
 the account, how I test to make sure the account was created
 properly, and other things that have to be done when a new employee
 joins. It isn't War and Peace; it isn't even in
 paragraph form. It's just a bulleted list with some annotations. But
 now that it's documented, I have a hope of foisting it off on
 someone else. In Chapter 2, I
 talked about delegating. A good document repository is an excellent
 way to make a task easier to delegate.
Heck, that's my general strategy to getting more staff. I
 document all the tasks that I hate to do, which I would give to an
 assistant if I had one. The next time there is a hiring opportunity,
 I can refer to the repository for a list of what to include in the
 job description for my new assistant: create accounts, change backup
 tapes, fix common printer problems, and so on. Gosh, isn't it an
 amazing coincidence that those things are already well-documented
 and ready for someone else to take over?
Hiring opportunities are rare, but that's OK. I don't need a
 full-time person. When the development group hires someone to
 maintain the software build system, there I am with the web page of
 procedures and tasks that I can foist off onto him. Ain't I a
 stinker?

Network diagrams

Finally, include your network diagrams . Link to the ones that already exist. If you don't
 have any, make a simple one to start off, like a WAN diagram or a
 diagram that shows your LAN and the name of the major servers, and
 then draw a big cloud that represents all your desktop/laptop hosts.
 At one job, I found that I repeatedly needed to draw a particular
 network diagram on a nearby whiteboard to illustrate my point. (The
 diagram was four dots representing our four sites, the five WAN
 links that connected them, and an arrow to a cloud representing the
 Internet connection.) Adding this simple, easy-to-reproduce diagram
 to the repository was a quick way to get started. In 10 minutes, you
 should be able to create your first diagram and put it
 online.
True hot-blooded system administrators probably insist on
 Visio with photorealistic server icons and accurate-to-the-millipica
 placements, but that is a rat hole. Ever start drawing a diagram and
 suddenly realize you've spent the entire day getting it just right?
 There's no cheese down that hole. Spend 10 minutes, not 10 hours. I
 actually prefer to use tools that don't let me do supremely detailed
 and perfect work so that I'm forced to get the essence of what the
 diagram should look like and not futz with the details. I often do
 diagrams with PowerPoint and store the original and PDF copy in the
 repository.
If you really can't control the desire to draw the perfect
 diagram, sketch it out on a whiteboard and take a picture with a
 cheap digital camera; store the picture in the repository. It's fast
 and it works really well. (If someone complains that they should be
 redrawn in a more serious drawing package, make sure he has write
 access to the repository and tell him, "I look forward to your
 results.")
Also document the important data flows in the company: how
 does email get in and out of the company, where are your directory
 servers, and so on.

Wiki Technology

To make a web site (repository) full of pages that are easy to
 update, use a Wiki. A Wiki is a concept, not a
 particular software package. There are many software packages that give
 you the Wiki feature. There is the original Wiki (Hawaiian for quick),
 then there is TWiki, KwikiKwiki, PHPWiki, etc. It's such a good idea
 that plenty of people have written software systems that give you the
 feature.
Tip
I ignored Wikis because I thought the name was stupid. I
 thought, "I could never use a system with a goofy name like that, even
 if it turned lead into gold." I didn't even investigate to find out
 what a Wiki was. Three years later, I started using a Wiki that
 someone else had installed and found it extremely helpful to my
 productivity. Oh, how I regret ignoring Wikis for so long.

So what the heck is a Wiki?
It is a web site in which anyone can edit any page, and linking
 pages is really easy.
Sounds crazy, right? I mean, if anyone can edit any page, what
 about vandalism? Someone could come along and delete things, put
 incorrect information into the system, and so on. It would be a
 disaster!
I promise you that there are some features that completely
 eliminate these problems. First, let's just consider the positive
 side:
	It's easy to add new pages.
 New pages can be added by anyone. If a junior admin is the first to
 deal with a new vendor, he can add a page for the vendor and start
 listing contact information and so on.

	Wikis are centralized and
 accessible. Anyone with a web browser can access them
 (allowing for any access controls in place). No special software is
 required on the client.

	Everyone can contribute.
 Anyone can edit any page when she sees a typo or has information to
 add. A document might start as a small checklist, then items are
 added by someone else, and someone else turns it into a full-blown
 process document.

	Wiki pages stay up-to-date.
 When anyone can edit any page, you've solved one of the biggest
 problems with documentation, which is that documents often become
 out-of-date the moment they are published. Instead, a Wiki is a set
 of pages that can be updated immediately by the person who spots the
 dated material.

The problem with document repositories is that there is usually a
 high barrier to use them. Users have to request an account, be given
 permission and access, etc.
Wiki Notation and Page Linking

A Wiki lowers the barrier for all of those issues. You don't
 have to be specially trained to know how to use one—lessons in HTML
 are not required. You don't need an account to read documents. If you
 don't have an account when you go to edit a document, you are given
 the opportunity to create one right then and there. Accounts are
 created with default permissions that let users do most basic
 functions. And best of all, while users can write in pure HTML, there
 is also "Wiki notation ," which lets them write plain text that the Wiki
 formats. For example, Wikis understand that words surrounded by
 asterisks, underscores, and other symbols are special. If you type
 like this, it is displayed
 like this. If you type _ _like this_ _, it is displayed like
 this. If you make a bulleted list by starting a series of lines with
 *, Wiki transforms those lines into an HTML bulleted list. Most people pick
 up these codes very quickly because they use them in email already,
 and, if they don't, there is plentiful online help explaining the
 formatting.
Creating links in Wiki is easy, too. If you include a URL, Wiki
 turns it into a link. However, linking to other Wiki pages is much
 more fun. Wiki pages have names that are in a special format called a
 WikiWord. Perl programmers know this as CamelCase or StudlyCaps. It is
 simply a single word with mixed capitalization. For example, you might
 name a page ListOfFavoriteThings. Any time you write a sentence on a
 Wiki page that includes ListOfFavoriteThings, the Wiki turns that word
 into a link to that page, even if there is no page by that name. In
 that case, clicking on that link gives the user the opportunity to
 create a page with that name. In other words, to create a new page,
 just make a link to it, click on that link, and start editing.
It's also easy to upload documents into a Wiki. The document
 becomes attached to that page. Therefore, any page can become a
 document container for PDFs, Microsoft Word documents, and so on.
 Once, I needed a way for nontechnical people to store Microsoft Word
 documents. I simply made a Wiki page called TheProjectName and showed
 them how to upload documents so that the documents were attached to
 that page. The Wiki displays a table of what files are attached to the
 page automatically. If a person can't grasp Wiki notation, at the
 least he can attach documents to a page. A division of labor is
 created: experts create Wiki pages and structure the repository,
 less-technical people attach documents to the structure created for
 them. As those less-technical people get comfortable with Wiki
 concepts, they make an easy transition to the more technical
 tasks.

Preventing Wiki Vandalism

There are social controls and technical features in Wikis that
 combine to make sure vandals and malcontents don't destroy
 repositories.
First of all, the social controls are quite simple: every change
 is logged to the person who made the change. You'd be amazed at how
 effective this is. I estimate that 90 percent of the reason that
 people don't just go changing things willy-nilly is due to the fact
 that they're being logged. This is especially true in a corporate
 environment.
There are also technical features that control vandals. All Wiki
 pages are kept in a system like RCS, CVS, Subversion, or Microsoft
 SourceSafe. Thus, there is infinite un-do. You can roll back changes
 easily, or compare different revisions to a page to see exactly what
 was changed. Knowing that your vandalism can be undone easily often
 takes the joy out of the act. If spray paint washed off with the next
 rainstorm, there would be no joy in writing, "Francine loves Harvey"
 on a nearby overpass.
Most Wikis have access control systems. Each page or set of
 pages can be restricted as to who can read, write, or rename the page.
 The default is that anyone can edit the page, thus encouraging "the
 Wiki way." However, you want your main page, menus, and other pages to
 be editable only by designated people.
Wiki purists claim that access controls like this aren't needed
 because the beauty of Wiki culture is that while it is easy for one
 person to vandalize a page, it is just as easy for someone else to
 correct the page. That's true, but I sleep better at night knowing
 that I'm the only person who can edit the page that lists the phone
 number of my IT department's helpdesk. In Wiki culture, "a Wiki with
 business features" is code for "a Wiki with access control."
The coup de grace against Wiki
 vandalization is email notification. Most Wiki systems can send email
 notifications anytime a page is changed. The email usually includes
 what got changed (an HTML "diff" report) so that you can quickly see
 if the change was benign or harmful. Some systems default to always
 notifying the original creator of a page. Some sites configure a Wiki
 so that any change triggers a notification to the webmaster. I think
 that's overkill.
Warning
While documenting "everything" is a fine goal, never list a
 password on a web page. Even if the page is password protected and
 on a secure server, this is just asking for trouble. For example, I
 once found a site that was supposedly secure because passwords were
 listed on a page that was only accessible via an SSL connection
 after entering a password. However, people with shell accounts on
 the machine could log in and read the file directly. Since this was
 the main departmental server, everyone had accounts.

The Wiki system that I have the most experience with is called
 TWiki (http://www.twiki.org). Its claim to fame is
 adding access control. Other systems are available from the ultra
 simple (one is written in awk) to the extremely full-featured. Some
 larger systems are including a Wiki as a feature, while some systems
 are built entirely around the Wiki concept, such as the infinitely fun
 and amazingly complete open source encyclopedia project, Wikipedia
 (http://www.wikipedia.org).

Summary

	A document repository can be a great time management
 tool.
	A repository for customers can give them the information
 they need so they can bother you less.

	A repository for internal IT information can help you by
 creating reference material that saves you time in the future.
 Checklists can be particularly useful—as are short notes
 describing how a tricky procedure was successfully done—so that
 others don't have to reinvent the wheel.

	A procedure that is sufficiently documented is easier to
 delegate to someone else. Thus, we can remove a task from our to
 do list by giving it to someone else.

	Wiki technology removes the entry barrier by making access
 easy and eliminating the need to learn HTML. By letting anyone edit
 (nearly) any page, the documents are more likely to be
 up-to-date.

	Creating a document repository for your IT operation does not
 need to be intimidating. You can control the scope of the repository
 by choosing what to document. The templates included in this chapter
 can help you get started. Wiki technology lets a document grow and
 evolve over time.

	It can be intimidating to start a new document. Wiki
 technology makes it easy to create a new document by handling all
 the linking for you. The initial document can be a simple checklist
 that will grow over time. You don't need to feel compelled to create
 the perfect document right from the start. Create something that is
 useful right now and let it evolve.

A Personal Information Repository
There is some information I want to take everywhere, but it is
 more than I can fit in a PDA. Certain information doesn't always need
 instant access, but some kind of access is valuable. Putting it on the
 Web makes it accessible nearly everywhere, especially with WiFi access
 being so common. Setting up a password-protected directory is
 relatively easy.
There is certain information that I keep in a Subversion
 repository. Subversion, like CVS or Microsoft SourceSafe, lets one
 access and update a repository of information from anywhere on the
 network. It's usually used for storing source code and tracking the
 changes. In theory, wherever I am, I can either download the latest
 version of the file repository or SSH to a machine that has access
 already established. I use my repository to store a very large address
 book and some other notes.

Chapter 13. Automation

Automating our tasks is a special treat. In what other career can we
 program machines to do our jobs for us? Oh, if only it were that easy.
 Automating something takes time, but the payback can be enormous.
This chapter doesn't attempt to teach Perl, Python, Ruby, Unix
 shell, VBasic, or Kix32. Instead, this chapter is about why we automate,
 what to automate, and how to automate. I'll also include some shortcuts
 that have helped me through the years.
Automation has the obvious benefit of reducing work for you because
 the task becomes quicker to do or—through Unix cron or Windows
 Scheduler—happens automatically without any intervention at all. An
 unexpected benefit is that an automated task is easier to delegate. Any
 task you can foist onto someone else is a special victory.
Is It Automated Enough?
Adam Moskowitz, a well-known SA, tells me that his litmus test for
 whether something is "automated enough" is that he can delegate the task
 to someone less skilled. For example, once, he automated his company's
 disk backups to the point that the company secretary was able to take
 over the daily tape-changing tasks. Each day, the system would send
 email to her and Adam with the status of the previous night's backup.
 Usually, the system would simply output instructions about which tapes
 to change. If there was a failure, she knew not to touch the system
 until Adam had fixed the problem. Over time, he was able to modify the
 software to handle more and more failure cases. Soon the system would go
 months without requiring his intervention.

In this chapter, I will use the terms script and program to mean
 different things. Script implies a short program,
 possibly only a few lines. A script is usually a BAT file, a few lines of
 Perl, or a small Unix shell file. I'll use the term
 program when I mean a longer program, one that
 requires more thought and planning. Programs are usually written with a
 more formal process that includes requirements gathering, development, and
 testing. Programs tend to be written in compiled languages like C++ and
 interpreted languages that are suited to large programs such as Perl, but this is not always the case. Perl
 programmers, for example, often refer to their code as a Perl script if it
 is small and a Perl Program if it is large.
[image:]

Figure 13-1.

What to Automate?

It's difficult to find time to automate processes, so we have to
 be choosy. We can't automate everything. The problems SAs typically deal
 with fall into four general categories :
	Simple things done once.
 Category 1 includes most of your daily work. If it is simple and you
 do it only once, there is no sense in automating it. It would take
 longer to automate than to do the task.

	Hard things done once.
 Category 2 contains the tasks that are a bit difficult to get right
 the first time, and by recording the final (working) command into a
 script, you get a free record of how to do the task next time. If
 you need to do it once, you'll need to do it again eventually.
 Things in this category also include multicommand sequences that are
 best tested one command at a time, building up until you have the
 entire sequence working. Then you can use the sequence with
 confidence that it will work.

	Simple things done often.
 Category 3 is the obvious case where automation will pay off with
 the most impact. The time you invest in automating the procedure
 will be paid off soon, since the task is one that you perform a lot.
 Always automate the boring, repetitive stuff.

	Hard things done often.
 Category 4 is where a lot of SAs get stuck because they have bitten
 off more than they can chew. This is the category where one should
 look into convincing management to allocate greater resources (time
 and money) into solving this problem. The result may be the purchase
 of a commercial product, integration of free and/or open source
 tools to accomplish the task, or development of an in-house
 solution.

Now, for the visual thinkers, it may help to see these categories
 as a chart (Figure
 13-1).
[image: Categories of SA tasks]

Figure 13-1. Categories of SA tasks

People are often surprised to see that I automate simple things
 done often. If they are simple, why automate at all? I automate a wide
 variety of processes within Categories 2 and 3, from the biggest tasks
 to the smallest command lines, for the same reason. Automating tasks
 gets me repeatability, scalability, and typo-free execution:
	Repeatability means I can do something
 consistently many times. For example, when configuring
 new machines, I want them all to start out with the same software
 configuration and preferences. Otherwise, supporting them is going
 to be a nightmare. If I automate the installation process, then it
 becomes repeatable, and each machine starts out the same. If I
 figured out something that works, I want to do it exactly that way
 every time.

	Automation can replace the need to
 memorize something complicated that is done rarely.
 Sometimes it just plain takes a long time to figure out the right
 set of command-line options to get something to work. I turn the
 single command into a script so that months from now I won't have to
 reinvent the wheel. That's long-term repeatability. For example, on
 Mac OS X, I can burn an ISO image onto a CD-ROM with the hdutil command. However, rather than
 reading the manual page each time to help me remember all the different
 options I like to use, I've encapsulated that one-line command into
 a script. Even if I don't use that script, I can refer to it to see
 what combination of options has worked for me.

	Scalability. This means
 that I can do the process no matter how large my network grows. Once
 I automate a process, I can run the script on all my machines,
 scaling my knowledge to affect all the hosts on my network. For
 example, modifying a particular SSH server setting is quite easy for
 one machine. A few seconds with a text editor, and
 sshd_config is changed. However, if I
 automate the process, I can then use that procedure on hundreds of
 machines, possibly letting it run overnight. I don't have to be
 there for each one. I don't have to care if there are 10 or 10,000
 machines being updated.

	Automation can help replace
 error-prone procedures. There are plenty of short
 procedures that are just plain difficult to type correctly every
 time. There is a short sequence of commands that I type a lot. In
 those few lines, I had to repeat a user's login ID (her name) three
 times and her Unix UID (the number) twice. It's simple to type but
 easy to make a typo. By turning this task into a script, I prevent
 the possibility of making a typo. Even though the sequence is only a
 few lines, it's worth having as a script.

How to Automate

To automate something, first you have to do it manually. Then you
 write code for each step. Next, you bring the little bits of code
 together, testing each addition as it is added. Finally, you test the
 entire system.
Step 1: Do It Manually

The first step to automating a process is to make sure you can
 do the process manually. Document each step, and make sure you can
 write code to do that step. Then put all the pieces together.
Many times a protégé has come to me asking for help automating
 something. "Oh, I've worked on this problem for hours! I'm completely
 stuck!" he'll say.
"OK," I reply, "show me how you would do this manually."
"I don't know. I can't figure that out."
"The root of your problem is just that, young padawan.
 Hmmm?"
As discussed in Chapter
 12, one of the benefits of documenting a procedure is that
 writing down the steps is the key to being able to automate something.
 I wasn't kidding. In fact, when I don't have time to automate
 something, I write the step-by-step procedure on my Wiki telling
 someone else how to do the task. When I do that, I've accomplished two
 things. First, I've contributed to the documentation of how our system
 works. Second, I've actually performed the first step of automating
 the process!
Tip
Document the steps, then automate them. If you can't write
 down the steps, you'll never figure out how to automate them.

The process of writing down the steps forces you to identify all
 the steps. Unlike keeping all of the steps in your head, you can show
 the document to other people to have them verify the process.
If you don't have a Wiki, you can use paper and a pencil or a
 text file. Do the steps manually and record the steps. Any command
 that you type should be pasted into the text document.

Step 2: Code Each Step

Turn each step into something that can be done from the command
 line or within a short program. Test each step individually. That is,
 you might write a series of small scripts, each one verifying that the
 code you have for that particular step is correct.
If any step involves a graphical user interface (GUI), you must
 find the command-line equivalents. Some operating systems make this
 easy. For example, HP-UX's System Administration Manager (SAM) has a
 button you can press to output the command-line equivalent of the
 action it is about to perform. Mac OS X has Automator and AppleScript
 that let you automate processes normally done though the GUI. Windows
 has many different tools that are similar. However, tools that
 automate the clicking of buttons may not be as useful as directly
 setting various registry keys or LDAP entries.
Recommended books for Microsoft Windows administrators:
	Windows Server Cookbook (O'Reilly). You
 can learn a lot from this book by reading it cover to cover.
 You'll be surprised at how many things you thought could only be
 done though the GUI that can be scripted easily by a series of
 registry updates. It will open your mind up to the possibilities.
 The examples are in many languages, usually VBasic and
 Perl.

	Perl for System
 Administration(O'Reilly). This book is particularly
 good if you manage both Unix and Windows systems. It is
 Perl-centric (obviously) and people with an Enterprise or Unix
 background may feel more comfortable with it. It is particularly
 good if you are a big user of ActiveDirectory and/or LDAP.

	Win32 Perl Scripting: The Administrator's
 Handbook (Sams). This is also a good book, especially
 if you are new to scripting.

Recommended books for Unix/Linux administrators:
	Perl for System Administration.(See the
 full description under Windows books.)

	UNIX System Administration Handbook
 (Prentice Hall PTR). This book not only teaches the fundamentals
 of Unix administration, it also includes many valuable resources
 and tools. Most examples use the command line, which means they
 can be scripted easily.

	Essential System Administration
 (O'Reilly). Another excellent book that includes many command-line
 examples.

	Advanced Bash-Scripting Guide. Visit
 http://www.tldp.org/guides.html.

Step 3: Bring the Steps Together

Once the code for each step works, you can bring the code for
 each step together into one big script.
Even when bringing the code together, it is best to add one step
 at a time. Test after each new step is added. This is called incremental development and is the best way
 to test automation. By testing after each small change, you are more
 certain that the entire shebang will work when you are done.
For example, when we hire a new person, we have to create his
 account in the LDAP directory, set up his web space on our internal
 web server, and test his account to make sure it was created properly.
 Each of these steps can be automated individually. We verify that we
 have working commands for each step. Then we put the first set of
 commands into a script and test just that. We make sure the
 command-line option-processing junk works, any debugging commands we
 want work, and so on. We run the script and make sure the LDAP entries
 are correct. Once that all works, we add the next group of commands
 and test that. We make sure the LDAP entries are still correct, and
 then check that the internal web space exists. Then we add the next
 step and test the entire thing again.

Step 4: Test It All Together

Finally, we test the entire thing. If we have tested each step
 as we added it to the program, there is actually very little
 testing to be done.
Programmers generally dislike testing. They want things to work
 on the first try. By integrating testing into each step along the way,
 the testing doesn't seem too laborious and, as a result, there is a
 lot less of it to do at the end.

Simple Things Done Often

Here are some automation examples that are simple things we do a
 lot. Windows system administrators take heed—these examples are fairly
 Unix/Linux-centric, but the general principles apply to all operating
 systems.
Command Shortcuts

Most command-line systems have some kind of alias facility. This
 enables you to create new commands out of old ones. The syntax is different for every kind
 of command line. Unix has many different shell (command-line)
 languages, the most popular being bash and csh. They are different in many ways, but
 what you'll notice here (mostly) is that bash requires an equals sign. I'll give
 examples for both shells.
Tip
The bash examples will
 work for any shell modeled after the original Bourne Shell by Steve
 Bourne (/bin/sh), such as the Korn Shell (/bin/ksh), and the Z Shell
 (/bin/zsh). Likewise, the csh
 examples will work for any shell with csh roots, including the Tenex
 C shell (/bin/tcsh).

Getting to the right directory

For example, I often need to change directory (cd) to a specific directory that has a
 very long path. This is a good example of where an alias is
 useful.
Bash:
 alias book='cd ~tal/projects/books/time/chapters'
csh:
 alias book 'cd ~tal/projects/books/time/chapters'
Now I can type book
 whenever I want to be in the right directory for working on my
 current book. If I start working on a new book, I update the alias.
 (I've been typing "book" for the last six or so years!)
This not only saves typing, it records the location so that
 you don't have to memorize it. One less thing that you have to
 remember is always a good idea.
To make an alias permanent, you have to add the above line to
 your .profile, .bashrc (bash), or .cshrc file (csh). These files are only
 read at login, so either log out and log back in, or source the
 files to read them in again:
Bash:
 . ~/.profile
csh:
 source ~/.cshrc
(Note: the bash command to source a file is the period, or
 dot.)
An alias can contain multiple commands. Separate them with
 semicolons. Here's an example where we need to change to a
 particular directory and set an environment variable based on
 whether we're using the A system or the B system:
Bash:
 alias inva='cd ~tal/projects/inventory/groupa ; export INVSTYLE=A'
 alias invb='cd ~tal/projects/inventory/groupb ; export INVSTYLE=B'
csh:
 alias inva 'cd ~tal/projects/inventory/groupa ; setenv INVSTYLE A'
 alias invb 'cd ~tal/projects/inventory/groupb ; setenv INVSTYLE B'
Instead of using a semicolon, use && to indicate "Do this next
 command only if the first one succeeded." This can be useful to
 protect against running a command while in the wrong directory. For
 example, you want to go to a particular directory and write a
 timestamp to a logfile. However, if the cd fails (the server is unavailable), you
 don't want to accidentally create a logfile in your current
 directory.
Bash:
 alias rank='cd /home/rank/data && date >>.log'
csh:
 alias rank 'cd /home/rank/data && date >>.log'
Warning
Don't try to turn one OS into another. Aliases are great,
 but don't overdo it. I've often seen people developing dozens of
 aliases so that they can type DOS commands in Unix. I think this
 is a bad idea. You're never going to learn Unix that way, and the
 next time you are on someone else's machine and don't have access
 to those aliases, you'll be stuck.

Hostname Shortcuts

If there are particular hostnames you type over and over, you can save some time by
 creating aliases. For example, if you are often dealing with a machine
 called ramanujan.company.com, you can create an
 alias (a DNS CNAME record) called ram.company.com. That's a little less
 typing.
The problem with this technique is that it can become a
 maintenance nightmare. If people start to depend on both names, you're
 stuck maintaining both names. So how can you create an alias that only
 you know about that won't bother other people?
Typically, if there is a machine I access a lot, I'm accessing
 it almost exclusively via Secure SHell (SSH). SSH is a secure
 (encrypted) replacement for telnet and rsh. You can also use it to copy files
 (scp, a replacement for rcp), and many programs, such as rsync, use SSH. Unix SSH (OpenSSH and its
 brothers) lets you set up host aliases for all users on a Unix machine
 or aliases that are private for you.
To affect only your SSH sessions, add aliases to the ~/.ssh/config file. To affect all users of
 the system, add aliases to either /etc/ssh_config or /etc/ssh/ssh_config, depending on how your
 system was configured. In this example, I create an alias, es, so that I don't have to type www.everythingsysadmin.com
 all the time:
 Host es
 HostName www.everythingsysadmin.com
Not only can I use ssh es
 where I used to type ssh www.everythingsysadmin.com
 , but the alias works for all SSH-related commands: scp, sftp, rsync, and so on. In fact, scripts and
 programs that I can't change will automatically pick up these
 settings. Some examples:
 $ ssh es
 $ scp file.txt es:/tmp/
 $ rsync ex:/home/project/alpha ~/project/alpha
I need to use ssh es so often
 that I actually created a shell alias to reduce my typing
 further:
Bash:
 alias es='ssh es'
csh:
 alias es 'ssh es'
The result is that I can now type es on the command line to log into the
 machine, or I can use es to refer
 to the machine when using scp or
 rsync. Same two letters either
 way. Cool, huh?
It is tempting to create two-letter aliases for every server in
 the world. However, you will soon find yourself spending more time
 remembering your coding system than using it. Personally, I limit
 myself to a few common machines that I access via SSH.
The ssh_config(5) manpage lists many other configuration
 options. For example, there is one machine that I occasionally access
 that requires a very specific combination of options on the command
 line. (It's a home-grown version of the SSH server that not only
 doesn't implement all the features but gets confused if you try to
 negotiate anything it doesn't understand.) The command I have to type
 to get it just right is:
 $ ssh -x -o RSAAuthentication=yes -o PasswordAuthentication=yes -o
 ChallengeResponseAuthentication=no -1 peter.example.net
I could have set up a shell alias, but instead I can modify the
 SSH configuration, and all systems that use SSH will do the right
 thing. If a script that I can't modify uses SSH to reach that machine,
 these settings will still be used.
The lines in my ~/.ssh/config file look like this:
 Host peter.example.net
 ForwardX11 no
 RSAAuthentication yes
 PasswordAuthentication yes
 ChallengeResponseAuthentication no
 Compression no
 Protocol 1
SSH clients for Windows tend to have a GUI that will let you
 save profile settings to be used for a particular host or
 hosts.
The more you learn about SSH, the more you can do with it. There
 are many good books and online tutorials on the finer points of SSH,
 such as SSH, The Secure Shell: The Definitive
 Guide (O'Reilly). If there is one thing every system
 administrator should, but may not, know about SSH, it is how to set up
 public/private keys to securely eliminate the need to type passwords
 when SSHing from one specific machine to another.

A Makefile for Every Host

This section applies to Unix/Linux systems. Windows folks might
 want to skip it.
Unix/Linux systems often maintain critical information in plain
 text files that are edited by hand. Sometimes, after editing a file,
 you have to run a command to inform the system that the information
 has changed.
SSH to the Right Server in a Web Farm Every Time
Suppose you have three servers:
 server1.example.com ,
 server2.example.com , and
 server3.example.com . You
 have many web sites divided among them, and remembering which site
 is on which server is getting to be a drag. Is www.everythingsysadmin.com
 on server 1 or 3? You think it's on 3, but someone may
 have moved it to 2 when you ran low on disk space. Why try to
 remember at all? No need to set up a configuration file, just SSH to
 the web site's hostname! For example, type
 ssh www.everythingsysadmin.com
 and soon you'll find yourself on the right machine. OK, that's
 pretty obvious, but you'd be surprised how often people forget that
 it works!

For example, after editing /etc/aliases (part of sendmail, Postfix,
 and various mail-transport-agent packages), you must run the newaliases command. That's pretty easy to
 remember, right?
After editing Postfix's transports file, should you run the
 newtransports command? No, that
 would be too obvious. You must run postmap
 transports. And there is the m4 command to run after editing .m4 files,
 and so on and so on.
Who has time to remember which command is used after which file
 is edited? Details like that are what computers are for.
make to the rescue! You might think of make as a programming tool—the program you
 run when compiling software. In reality, it lets you set up any kind
 of relationship involving the need to run a command to update one file
 if another changes.
Tip
make is one of the most
 powerful system administration tools ever invented. I hear
 programmers find it useful, too!

make has more features than
 Liz Taylor has had husbands, so I'll give a short introduction. (If
 you read the first two chapters of most books on make, you'll know 99 percent of what you
 need to for most system administration tasks and 10 times more than
 what your coworkers know.)

A Brief Introduction to make

make reads a configuration
 file aptly named Makefile. In
 this file, you will find recipes. They instruct make how to do its work.
Each recipe looks like this:
 whole: partA partB partC
 command that creates whole
The recipe begins with the file that is going to be created,
 then a colon, and then it lists the files needed to build the main
 file. In this example, the recipe is about whole and establishes a relationship between
 it and partA, partB, and partC. If partA, partB, or partC is ever updated, then we need to
 (re)run the command that generates whole.
A real-world example helps:
 aliases.db: aliases
 newaliases
 @echo Done updating aliases
This code means that if aliases is changed, regenerate aliases.db using the command newaliases. Then the recipe outputs "Done
 updating aliases" to announce its success.
Notice that the second and third lines of the recipe are
 indented. They must be indented with a tab, not multiple spaces. Why?
 My theory is that the original creator of make wanted to punish me every time I use
 cut-and-paste on a system that turns tabs into spaces. However, I
 don't take it personally.
The update doesn't happen automatically. You have to run
 make to make it happen:
 Server1# make aliases.db
 newaliases
 Done updating aliases
 Server1#
That's it! make read its
 configuration file, figured out that aliases was newer than aliases.db by checking the timestamp of the
 files, and determined that running newaliases would bring aliases.db up-to-date. If we run it
 again:
 Server1# make aliases.db
 Server1#
There's no output. Why? Because now the timestamps on the files
 indicate that there is no work to be done: aliases.db is newer than aliases. make is lazy and will calculate the minimum
 amount of work required to do what you ask. It makes these decisions
 based on the timestamps of the files.
Here's another Makefile
 code sample:
 file1.output: file1.input
 command1 <file.input >file.output

 file2.output: file2.input
 command2 file2.input >$@
In the first example, the command to be run uses stdin and stdout (file redirection using < and >) to read file.input and write file.output. The second example is similar,
 but the command takes the input filename on the command line and
 redirects the output to...what? Oh, $@ means "The file that this recipe is
 creating," or, in this case, file2.output. Why isn't it something simple
 like $me or $this? Who knows! You don't have to use
 $@, it just makes you look smarter
 than your coworkers.
make with no command-line
 parameters runs the first recipe in Makefile. It is traditional to name the
 first recipe all and have it run
 all the recipes you would expect as the default. This way, running
 make makes all the important
 recipes. It might not be literally all the recipes, but it is all the
 recipes you want to make by default. It might look like this:
 all: aliases.db access.db
make with no options then
 makes sure that aliases.db and
 access.db are up-to-date. Since
 there is no command as part of all,
 no file called all will be
 created. Thus, make always thinks
 that all is out-of-date ("Doesn't
 exist" equals "Is out of date"). You'll soon see why that is
 important.
Remember that make is lazy.
 If access.db is out-of-date but
 the other file isn't, it just runs the commands to bring access.db up-to-date. In fact, if bringing
 access.db up-to-date required
 something else, and that required something else, and so on, make would very intelligently do just the
 minimum work required.
In addition to all, I usually
 include a couple of other useful commands:
 reload:
 postfix reload

 stop:
 postfix stop

 start:
 postfix start
Think about what that means. If I run make reload, make is going to notice that there is no
 file called reload, so it will
 run postfix reload thinking that
 the command will create a file called reload. Ah ha! I fooled them, didn't I? The
 command I listed tells postfix to
 reload its configuration. That command doesn't create a file called
 reload at all! Therefore, the
 next time I run make reload,
 make will run the command again.
 In other words, if you want something to always happen, make sure the
 recipe simply doesn't create the file that make is expecting to create.
With the above code in my Makefile, I can reload, stop, and start
 postfix by typing make reload, make
 stop, or make start,
 respectively. If there are other things that should be stopped (for
 example, an IMAP server, web-based email client, and so on), I can
 include commands to do those things in the recipes. I don't have to
 remember all the commands.
This is a good time for me to point out a little lie that I told
 earlier. I said that each recipe begins with the file that is going to
 be created, followed by a colon, and then it lists the files that make
 up the main file. make doesn't
 know whether those files really make up the file to be created.
 There's no way it could tell. Those items listed after the colon are
 really just dependencies that must be up-to-date.
Here's a simple Makefile
 from a system that runs Postfix and includes recipes for rebuilding
 the index for aliases and access. You'll notice that at the top are
 some constants (NEWALISES, PDIR, and so on) that are used throughout
 the file. Also, a backward slash (\) at the end of the line is used to
 continue long lines:
 NEWALISES=/usr/sbin/newaliases
 PDIR=/etc/postfix
 POSTMAP=/usr/local/postfix/sbin/postmap

 # The "commands"

 all: $(PDIR)/aliases.pag $(PDIR)/aliases.dir \
 $(PDIR)/access.dir $(PDIR)/access.pag reload

 reload:
 postfix reload

 stop:
 postfix stop

 start:
 postfix start

 #
 # When aliases changes, generate the .pag and .dir files
 #
 $(PDIR)/aliases.pag $(PDIR)/aliases.dir: $(PDIR)/aliases
 $(NEWALIASES)

 #
 # When access changes, generate the .pag and .dir files
 #
 $(PDIR)/access.dir $(PDIR)/access.pag: $(PDIR)/access
 $(POSTMAP) $(PDIR)/access
Now I can edit either aliases or access and type make. I don't have to remember that the
 commands to update the indexes are extremely different. And I don't
 have to remember to tell postfix to reload its configuration each time
 because the all recipe includes
 that. The reload at the end of
 all will trigger that recipe every
 time.
make can also be useful for
 keeping files on various servers up-to-date. For example, let's
 suppose the aliases file in our
 example needs to be the same on both of our email servers. We decide
 that we'll update the file on this server, and push it to server2. That recipe might look like
 this:
 push.aliases.done: $(PDIR)/aliases
 scp $(PDIR)/aliases server2:$(PDIR)/aliases
 touch $@
We push the file to server2
 using scp, then touch a file
 called push.aliases.done. Since
 this file is created after the successful copy of the file, we can
 build recipes so that the push is only done if it's absolutely needed.
 We can also force the file to be recopied by simply deleting the
 push.aliases.done file and typing
 make. Traditionally, there is a
 recipe called clean that deletes
 all the *.done files and other
 machine-generated files.
There is nothing special about files that end with .done. It is simply customary to name-flag
 or timestamp files with .done at
 the end.
Here's a complete example. There are two files that need
 indexing if they change: aliases
 and access. If either of them has
 been reindexed, postfix is told to reload. They also are both pushed
 to server2 if they change. Finally,
 the command cd /etc && make
 is sent to server2 if and only if
 one or more of the files has been pushed to it.
By carefully constructing the recipes with proper dependencies,
 and touching *.done files where
 required, make will do the
 absolute minimal amount of work to bring the system up-to-date:
 #
 # Makefile for server1
 #

 NEWALISES=/usr/sbin/newaliases
 PDIR=/etc/postfix
 POSTMAP=/usr/local/postfix/sbin/postmap

 #
 # High-level "commands"
 #
 all: aliases.done access.done reload_if_needed.done push

 push: push.done

 reload:
 postfix reload

 stop:
 postfix stop

 start:
 postfix start

 reload_if_needed.done: aliases.done access.done
 postfix reload
 touch reload_if_needed.done

 clean:
 rm -f \
 $(PDIR)/aliases.pag $(PDIR)/aliases.dir \
 $(PDIR)/access.dir $(PDIR)/access.pag \
 push.aliases.done push.access.done reload_if_needed.done

 #
 # Recipes for particular files that need indexing/regeneration
 #

 # When aliases changes, generate the .pag and .dir files

 aliases.done: $(PDIR)/aliases.pag $(PDIR)/aliases.dir

 $(PDIR)/aliases.pag $(PDIR)/aliases.dir: $(PDIR)/aliases
 $(NEWALIASES)

 # When access changes, generate the .pag and .dir files

 access.done: $(PDIR)/access.dir $(PDIR)/access.pag

 $(PDIR)/access.dir $(PDIR)/access.pag: $(PDIR)/access
 $(POSTMAP) $(PDIR)/access

 #
 # pushes
 #

 push.done: push.aliases.done push.access.done
 ssh server2 "cd /etc && make"
 touch $@

 push.aliases.done: aliases.done
 scp $(PDIR)/aliases server2:$(PDIR)/aliases
 touch $@

 push.access.done: access.done
 scp $(PDIR)/access server2:$(PDIR)/access
 touch $@
This Makefile is a good
 starting point for you to use on your systems. It is rather
 sophisticated because we do things to make sure Postfix isn't reloaded
 unless absolutely necessary.
With a Makefile like this,
 you no longer have to remember a multitude of commands and which ones
 should be used for which updated files. You never have to worry about
 forgetting to type a command. Many complicated procedures are reduced
 to:
	Edit the appropriate file.

	Type make.

make can be the ultimate
 tool for bringing together many smaller automated processes. Once, I
 had to merge the processes and procedures for three large networks
 into one. Each network had a different way of managing its aliases,
 hosts, and other administrative files. As I learned the procedures for
 each network, I constructed a Makefile specific to that network's master
 server. The high-level recipe names were the same in all three
 networks, but the commands they ran to accomplish the work were
 specific to each network.
The strategy was to create a new master server that would
 eventually replace all the legacy servers. Initially, the new master's
 Makefile simply initiated a
 make on the three legacy masters
 via rsh (this was long before
 ssh). I then migrated recipes to
 the new master one at a time. For example, first I decided that the
 new master would be the single source for the aliases file. I merged the aliases files of
 the three legacy networks and put the result on the new master. Once
 it was tested there, I added recipes on the new master to push that
 merged file to the legacy masters as if it were their own. I continued
 this process for each file or database.
Since each change was small and specific, I could test it
 incrementally. After literally hundreds of small changes, all the
 servers were "singing from the same songbook." At that point, it was
 easy to eliminate the legacy masters and let the new master be the
 authoritative master for all clients.
Warning
Any file that is automatically pushed to other servers should
 always have a comment at the top of the file warning other system
 administrators where the file came from and where to edit it.
Here's the warning I use:
 # THIS FILE IS MAINTAINED ON: server1.example.com
 # Edit it with this command: xed file.txt
 # If you edit this file on any other machine,
 # it will be overwritten. BE CAREFUL!

Since the previous note mentioned xed, I should explain what it is. There are
 many programs called xed, but
 this one can be found on http://www.nightcoder.com/code/xed. This
 program calls whatever editor you usually use ($EDITOR can be set to vi, pico,
 emacs, and so on) after locking the
 file. It is a must for any site that has multiple system
 administrators working on the same machine. If you are using RCS to
 track changes to a file, it does all the "check in" and "check out"
 work for you. This gives you infinite undo and a logfile of who
 changed what. If you find that a system has been acting funny for the
 last month, just check the log to see who changed the file a month ago
 and, well, be nice—we all make mistakes.

Hard Things Done Once

When we find ourselves doing something very difficult, automating
 the task records what we've done. When we do it in the future, it will
 be easier. This is how we build up our little bag of tricks.
Encapsulating a Difficult Command

Sometimes it takes hours to work out exactly the right command
 required to do something. For example, there is a program that creates
 ISO images, the kind you burn onto CD-ROMs. Its manual page describes
 hundreds of options, but to make an image readable by Windows, Unix,
 and Mac systems, the command is simply:
 $ mkisofs -D -l -J -r -L -f -P "

 Author Name

 " -V "

 disk label

 " -copyright
 copyright.txt -o

 disk.iso /directory/of/files

Sure, you can do it from a GUI, but where's the fun (or ability
 to script) in that?
This command also lets you do things not found in most GUIs,
 such as the ability to specify a copyright note, author name, and so
 on.
This is a good example of something to work into a .BAT file (DOS) or a Unix/Linux shell
 script.
Here's a shell script called makeimage1 that uses this:
 #!/bin/bash

 mkisofs -D -l -J -r -L -f -P "Limoncelli" -V 'date -u +%m%d' $*
The 'date -u +%m%d' sets the
 volume name to the current date.
One of the things that held me back from writing good scripts
 was that I didn't know how to process command-line parameters. Here
 are instructions for copying all the command-line arguments into a
 script.
The $* in the makeimage1 script means "any items on the
 command line." So, if you typed:
 $ makeimage1 cdrom/
then the $* would be replaced
 by cdrom/.
Since $* works for multiple
 arguments, you can also do:
 $ makeimage1 cdrom/

 dir1/ dir2/

Then the $* would be replaced
 by all three components. In the case of mkisofs, this would merge all three
 directories into the CD-ROM image. You can refer to $1, $2,
 and so on, if you want to refer to specific items on the command line.
 In this example, $1 would refer to
 cdrom/, and $2 would refer to dir1/.
Another thing that prevented me from writing good scripts was
 not knowing how to process command-line flags like scriptname -q file1.txt. Thus, if a script I
 wanted to write was sophisticated enough to need command-line flags, I
 would use a different language or not write it at all. It turns out
 bash has a feature called
 getopt that does all the parsing
 for you, but the manual page for Bash isn't clear. It tells you how
 the getopt function works, but not
 how to use it. Finally, I found an example of how to use it and have
 been copying that example time and time again. It isn't important how
 it works; you don't even have to understand how it works or why it
 works to use it. You use it like this:
 args='getopt ab: $*'
 if [$? != 0]
 then
 echo "Usage: command [-a] [-b file.txt] file1 file2 ..."
 exit -1
 fi
 set -- $args
 for i
 do
 case "$i"
 in
 -a)
 FLAGA=1
 shift
 ;;
 -b)
 ITEMB="$2" ; shift
 shift
 ;;
 --)
 shift; break
 ;;
 esac
 done
This would be a command that has flags -a and -b. -b is
 special because it must be followed by an argument such as -b file.txt. It you look at the first line,
 the getopt command is followed by
 the letters that can be flags. There is a colon after any letter that
 requires an additional argument. Later, we see a case statement for
 each possible argument, with code that either sets a flag or sets a
 flag and remembers the argument.
What is this $2 business?
 What's the deal with the —)? What
 does set - mean? And what about
 Naomi? Those are all things you can look up later. Just follow the
 template and it all works.
(OK, if you really want to learn why all of that works, I highly
 recommend reading the Advanced Bash-Scripting
 Guide at http://www.tldp.org/LDP/abs/html.)
Here's a larger example that adds a couple additional things.
 First of all, it uses a function "usage" to print out the help
 message. An interesting thing about this function is that the "echo"
 lasts multiple lines. Neat, eh? Bash doesn't mind. Second, it makes
 sure that there are at least MINITEMS items on the command line after
 the options are processed. Finally, it demonstrates how to process
 flags that override defaults.
Please steal this code whenever you are turning a simple script
 into one that takes options and parameters:
 #!/bin/bash

 MINITEMS=1

 function usage
 {
 echo "
 Usage: $0 [-d] [-a author] [-c file.txt] [-h] dir1 [dir1 ...]

 -d debug, don't actual run command
 -a author name of the author
 -c copyright override default copyright file
 -h this help message
 "
 exit 1
 }

 # Set our defaults:
 DEBUG=false
 DEBUGCMD=
 AUTHOR=
 COPYRIGHT=copyright.txt

 # Process command-line arguments, possibly overriding defaults

 args='getopt da:c:h $*'
 if [$? != 0]
 then
 usage
 fi
 set -- $args
 for i
 do
 case "$i"
 in
 -h)
 usage
 shift
 ;;

 -a)
 AUTHOR="$2"; shift
 shift
 ;;

 -c)
 COPYRIGHT="$2"; shift
 shift
 ;;

 -d)
 DEBUG=true
 shift
 ;;

 --)
 shift; break;;
 esac
 done

 if $DEBUG ; then
 echo DEBUG MODE ENABLED.
 DEBUGCMD=echo
 fi

 # Make sure we have the minimum number of items on the command line.

 if $DEBUG ; then echo ITEM COUNT = $# ; fi

 if [$# -lt "$MINITEMS"]; then
 usage
 fi

 # If the first option is special, capture it:
 # THEITEM="$1" ; shift
 # Clone that line for each item you want to gather.
 # Make sure that you adjust the MINITEMS variable to suit your needs.

 # If you want to do something with each remaining item, do it here:
 #for i in $* ; do
 # echo Looky! Looky! I got $i
 #done

 if [! -z "$COPYRIGHT"];
 then
 if $DEBUG ; then echo Setting copyright to: $COPYRIGHT ; fi
 CRFLAG="-copyright $COPYRIGHT"
 fi

 LABEL='date -u +%Y%m%d'

 $DEBUGCMD mkisofs -D -l -J -r -L -f -P "$AUTHOR" -V $LABEL $CRFLAG $*

Building Up a Long Command Line

The best way to learn the Unix/Linux way of stringing commands
 together into one big pipe is to look over the shoulder of someone as
 she does it. I'll try to do that here by walking you through the steps
 I used to create a small utility.
Tip
Think Unix (Que) is an excellent book for
 learning how to link Unix/Linux tools to make bigger
 commands.

The single most powerful technology introduced by Unix/Linux is
 the ability to connect commands together like linking garden hoses. If
 you have one program that takes input and changes everything to
 uppercase, and another program that sorts the lines of a file, you can
 chain them together. The result is a command that converts the lines
 to uppercase and outputs the lines in sorted order. All you have to do
 is put a pipe symbol (|) between
 each command. The output of one command is fed into the next
 command:
 $ cat

 file | toupper | sort
For those of you unfamiliar with Unix/Linux, cat is the command that outputs a file.
 toupper is a program I wrote that
 changes text to uppercase. sort
 is the program that sorts lines of text. They all fit together quite
 nicely.
Let's use this to write a more complicated utility. How about a
 program that will determine which machine on your local network is
 most likely to be infected with a worm? We'll do it in one very long
 pipeline.
Sound amazing? Well, what this program will really do is find
 the hosts most likely to be infected—i.e., generate a list of which
 hosts require further investigation. However, I assure you that this
 technique will amaze your coworkers.
It's no replacement for a good malware or virus scanner.
 However, I picked this example because it is a good demonstration of
 some rudimentary shell-programming techniques, and you'll learn
 something about networking, too. When we're done, you'll have a simple
 tool you can use on your own network to detect this particular
 problem. I've used this tool to convince management to purchase a real
 virus scanner.
What's one sign that a machine is infected with some kind of
 worm? How about a quick test to see which machines are ARPing the
 most?
Spyware/worms/virii often try to connect to randomly selected
 machines on your network. When a machine tries to talk to a local IP
 address for the first time, it sends an ARP packet to find out its
 Ethernet (MAC) address. On the other hand, normal (uninfected)
 machines generally talk to a few machines only: the servers they use
 and their local router. Detecting a machine that is sending
 considerably more ARP packets than other machines on the network is
 often a sign that the machine is infected.
Let's build a simple shell pipeline to collect the next 100 ARP
 packets seen on your network and determine which hosts generated more
 ARP packets than their peers. It's sort of a "most likely to ARP"
 award. The last time I did this on a 50-host network, I found 2
 machines infested with worms.
These commands should work on any Unix/Linux or Unix-like
 system. You will need the tcpdump
 command and root access. The command which
 tcpdump tells you if you have tcpdump installed. Sniffing packets from
 your network has privacy concerns. Only do this if you have
 permission.
Here's the final command that I came up with (sorry to spoil the
 surprise):
 $ sudo tcpdump -l -n arp | grep 'arp who-has' | head -100 | \
 awk '{ print $NF }' |sort | uniq -c | sort -n
The command is too long to fit on one line of this book, so I
 put a backslash at the end of the first part to continue it across two
 lines. You don't have to type the backlash, and you shouldn't press
 Enter in its place.
The output looks like this:
 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
 listening on en0, link-type EN10MB (Ethernet), capture size 96 bytes
 1 192.168.1.104
 2 192.168.1.231
 5 192.168.1.251
 7 192.168.1.11
 7 192.168.1.148
 7 192.168.1.230
 8 192.168.1.254
 11 192.168.1.56
 21 192.168.1.91
 30 192.168.1.111
 101 packets captured
 3079 packets received by filter
 0 packets dropped by kernel
Ignore the headers. The middle lines show a count followed by an
 IP address. During my experiment, host 192.168.1.111 sent 30 ARP packets, while
 192.168.104 only sent 1. Most
 machines rarely ARPed in that time period, but two hosts had four to
 six times as many ARPs as some of the other machines! Those were my
 two problem children. A quick scan with some anti-virus software and
 they were as good as new.
Here's how I built this command line. I started with this
 command:
 $ sudo tcpdump -l -n arp
sudo means to run the next
 command as root. It will most likely ask for a password. If you don't
 use sudo in your environment, you
 might use something like it, or you can run this entire sequence as
 root. Just be careful. To err is human; to really screw up, be
 careless with root.
tcpdump listens to the
 local Ethernet. The -l flag is
 required if we're going to pipe the output to another program because,
 unlike other programs, tcpdump
 does something special with output buffering so that it runs faster.
 However, when piping the output, we need it to act more normal. The
 -n means don't do DNS lookups for
 each IP address we see. The arp
 means that we only want tcpdump
 to display ARP packets.
(If you are concerned about privacy of your network, I'd like to
 point out some good news. There isn't much private data available to
 your eyes if, at the sniffing end, you filter out everything besides
 ARP packets.)
Run the command yourself. In fact, you will learn more if you
 try each command as you read this. Nothing here deletes any data. Of
 course, it may be illegal to snoop packets on your network, so be
 warned. Only do this on a network where you have permission to snoop
 packets.
When I run the command, the output looks like:
 $ sudo tcpdump -n -l arp
 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
 listening on en0, link-type EN10MB (Ethernet), capture size 96 bytes
 19:10:48.212755 arp who-has 192.168.1.110 (85:70:48:a0:00:10) tell 192.168.
 1.10
 19:10:48.743185 arp who-has 192.168.1.96 tell 192.168.1.92
 19:10:48.743189 arp reply 192.168.1.2 is-at 00:0e:e7:7a:b2:24 19:10:48.
 743198 arp who-has 192.168.1.96 tell 192.168.1.111
 ^C
To get the output to stop, I press Ctrl-C. Otherwise, it will
 run forever.
If you get a permission error, you may not be running the
 command as root. tcpdump has to be run as root. You wouldn't want just anyone
 listening to your network, right?
After the header, we see these "arp who-has X tell Y" lines. Y
 is the host that asked the question. The question was, "Will the host
 at IP address X please respond so that I know your Ethernet (MAC)
 address?" The question is sent out as a broadcast, so we should see
 any ARP requests on our local LAN. However, we won't see many of the
 answers because they are sent as unicast packets, and we are on a
 switch. In this case, we see one reply because we're on the same hub
 as that machine (or maybe that is the machine running the command; I
 won't tell you which it is). That's OK because we only need to see one
 side of the question.
That's our data source. Now, let's transform the data into
 something we can use.
First, let's isolate just the lines of output that we want. In
 our case, we want the "arp who-has" lines:
 $ sudo tcpdump -l -n arp | egrep 'arp who-has'
We can run that and see that it is doing what we expect. The
 only problem now is that this command runs forever, waiting for us to
 stop it by pressing Ctrl-C. We want enough lines to do something
 useful, and then we'll process it all. So, let's take the first 100
 lines of data:
 $ sudo tcpdump -l -n arp | grep 'arp who-has' | head -100
Again, we run this and see that it comes out OK. Of course, I'm
 impatient and changed the 100 down
 to 10 when I was testing this.
 However, that gave me the confidence that it worked and that I could
 use 100 in the final command.
 You'll notice that there are a bunch of headers that are output, too.
 Those go to stderr (directly to the
 screen) and aren't going into the grep command.
So, now we have 100 lines of the kind of data we want. It's time
 to calculate the statistic we were looking for. That is, which hosts
 are generating the most ARP packets? Well, we're going to need to
 extract each host IP that generated an ARP and count it somehow. Let's
 start by extracting out the host IP address, which is always the sixth
 field of each line, so we can use this command to extract that field's
 data:
 awk '{ print $6 }'
That little bit of awk is a
 great idiom for extracting a particular column of text from each
 line.
I should point out that I was too lazy to count which field had
 the data I wanted. It looked like it was about the fifth word, so I
 first tried it with $5. That
 didn't work. So I tried $6. Oh
 yeah, I need to remember that awk
 counts starting fields with 1, not 0. The benefit of testing the
 command line as we build it is that we find these mistakes early on.
 Imagine if I had written the entire command line and then tried to
 find this bug?
I'm lazy and I'm impatient. I didn't want to wait for all 100
 ARPs to be collected. Therefore, I stored them once and kept reusing
 the results.
I stored them in a temporary file:
 $ sudo tcpdump -l -n arp | grep 'arp who-has' | head -100 >/tmp/x
Then I ran my awk command
 against the temp file:
 $ cat /tmp/x | awk '{ print $5 }'
 tell
 tell
 tell
 tell
 ...
Dang! It isn't the fifth. I'll try the sixth:
 $ cat /tmp/x | awk '{ print $6 }'
 192.168.1.110
 192.168.1.10
 192.168.1.92
 ...
Ah, that's better.
Anyway, I then realized I could be lazy in a different way.
 $NF means "the last field" and
 saves me from needing to count:
 $ cat /tmp/x | awk '{ print $NF }'
 192.168.1.110
 192.168.1.10
 192.168.1.92
 ...
Why isn't it $LF? That would
 be too easy. No, seriously, the NF means "number of fields." Thus,
 $NF means the field that is NFth
 fields in from the left. Whatever. Just remember that in awk you can type $NF when you want the last field on a
 line.
 $ sudo tcpdump -l -n arp | egrep 'arp who-has' | head -100 | awk '{ print $NF }'
So, now we get output that is a series of IP addresses. Test it
 and see.
(Really! Test it and see. I'll wait.)
Now, we want to count how many times each IP address appears in
 our list. There is an idiom that I use all the time for just this
 purpose:
 sort | uniq -c
This sorts the data, then runs uniq, which usually eliminates duplicates
 from a sorted list (well, technically it removes any adjacent
 duplicate lines...sorting the list just assures us that the same ones
 are all adjacent). The -c flag
 counts how many repetitions were seen and prepends the number to each
 line. The output looks like this:
 ...
 11 192.168.1.111
 7 192.168.1.230
 30 192.168.1.254
 8 192.168.1.56
 21 192.168.1.91
 ...
We're almost there! Now we have a count of how many times each
 host sent an ARP. The last thing we need to do is sort that list so we
 know who the most talkative hosts were. To do that, we sort the list
 numerically by adding | sort -n to
 the end:
 $ sudo tcpdump -l -n arp | egrep 'arp who-has' | head -100 | awk '{
print $NF }' |sort | uniq -c | sort -n
When we run that, we will see the sorted list. It will take a
 while to run on a network that isn't very busy. On a LAN with 50
 computers, this took nearly an hour to run when not a lot of people
 were around. However, that was after the machine with the spyware was
 eliminated. Before that, it only took a few minutes to collect 100 ARP
 packets.
On your home LAN with only one or two machines, this command may
 take days to run. Hosts are required to cache the ARP info they
 gather, so after a machine is running for a while, it should be very
 rare that it outputs an ARP if the only machine it talks to (on the
 local LAN) is your router.
However, on a network with 100 or so hosts, this will find
 suspect machines very quickly.
We now have a very simple tool we can use during a worm attack.
 This doesn't replace a multi-thousand-dollar Intrusion Detection
 System or a good antivirus/antispyware/antiworm system, but it sure
 can help you pinpoint a problem when it is happening. Best of all,
 it's free, and you learned something about shell programming.
If you'd like to hone your shell programming skills, here are
 some mini projects you can try:
	tcpdump outputs some
 informational messages to stderr. Is there a way to stop it from
 outputting those messages? If not, how could we get
 cleaner-looking output?

	Turn this one-line command into a shell script. Put this in
 your bin directory so you can
 use it in the future.

	Take the shell script and expand it so that you can specify
 which NIC to sniff or other options you find useful.

	tcpdump can be
 programmed to only gather ARP "who-has" packets, so you can
 eliminate the grep command.
 Learn enough about tcpdump to
 do this.

	tcpdump has the ability
 to replace the functionality of head
 -100. Learn enough about tcpdump to do this. Is it the exact
 same thing as head -100? Is it
 better or worse?

	awk is a complete
 programming language. Eliminate the "grep" as well as the "head"
 arguments using awk. Why do
 you think I chose to do it in three processes instead of just
 letting awk do it all?

Using Microsoft Excel to Avoid Writing a GUI

Writing the GUI for an application can be 90 percent of the
 battle. Here's a lazy way to make the user interface: maintain the
 data in Microsoft Excel, but write a macro that uploads the data to a
 server for processing.
Once, I created an entire application this way. We had a web
 site that listed various special events. I was tired of updating the
 web page manually, but I knew the secretary wasn't technical enough to
 maintain the web site herself.
I started planning out a user interface that would let anyone do
 updates. It was grand—a big MySQL database with a PHP frontend that
 would let people log in, do updates, add new events, and so on. The
 system would then generate the web pages listing the events
 automatically. It was wonderful on paper, and I'm sure if I'd had 100
 years to write the code, it would have been great.
Instead, I realized that only one person would actually be doing
 updates. Therefore, I gave her access to a spreadsheet that captured
 all the information that needed to be collected and to a macro that
 would save the file twice: once on the server as a tab-separated file
 and again as an XLS file. A process on the server would parse the
 tab-separated file and generate the web page automatically.
You can see the spreadsheet in Figure 13-2.
[image: Event spreadsheet]

Figure 13-2. Event spreadsheet

Making the button takes a few steps.
First, use the macro recorder to do what you want:
	Record the macro: Tools → Macro → Record New Macro.

	Name the macro "Save."

	Perform the actions to save the file as a tab-separated file
 on the network file server.

	Save the file as an MS Excel Workbook
 (.xls) in your file area.
It is important that the last place you save the file is the
 richest format (Workbook) because this choice sets the default
 save format. If someone saves the file using File → Save, you want it to
 default to this format.

	Click Stop on the macro record toolbar.

Next, create a button and attach the macro to it:
	View the Forms toolbar: View → Toolbars → Forms.

	Click on the Button (looks like a plain rectangle).

	Draw a button where you want it to appear in the
 spreadsheet.

	When asked, select the macro created earlier.

	If you need to edit the button later, Ctrl-click it.

Now, test this by clicking the button. Voilà! It works! Check
 the dates on the files to make sure that the file really got saved
 twice. (Yes, it may ask you twice whether it's OK to replace the file.
 Click Yes.)
If you want to clean up the macro a bit, that's easy, too. In
 fact, one of the first things I did was edit exactly where the file
 gets saved:
	Go to the macro editor: Tools → Macro → Macros.

	Select the macro we just created and click Edit.

	Save and exit when you are done.

Tip
In Microsoft macros, the line-continuation symbol is the
 underbar (_).

The final macro looks like this:
 Sub Save()
 '
 ' Macro recorded 5/22/2005 by Thomas Limoncelli
 '
 ActiveWorkbook.SaveAs Filename:= _
 "Y:\calendar\EventList.txt", FileFormat:= _
 xlText, CreateBackup:=False
 ActiveWorkbook.SaveAs Filename:= _
 "Y:\calendar\EventList.xls", FileFormat:= _
 xlNormal, Password:="", WriteResPassword:="", _
 ReadOnlyRecommended:=False _
 , CreateBackup:=False
 End Sub
Now that I have the tab-separated version being stored on a file
 server, it was easy to create a script that could pick up that file,
 extract out the useful lines, and generate the web page from
 it.
I have since used this technique in many situations in which I
 didn't want to have to write a user interface and the user already had
 MS Excel.

Letting Others Do Privileged Operations

Often we are asked to create a way for normal users to do things
 typically permitted only by an administrative account such as root. This can be quite dangerous and should
 be done with great care.
In Unix/Linux, there is a program called sudo that lets system administrators give a
 person the ability to run a command as another user. It is very
 restrictive, requiring the system administrator to configure it to
 specify exactly which user(s) can run which command(s) as which other
 user.
For example, you can configure it to permit a particular person to
 run a command as root. You can rely
 on sudo to make sure that only the
 people you specify have the ability to run this command as root, but it is important that the program
 check the parameters to make sure that privileged users are able to
 overstep their bounds.
Warning
Any kind of system that lets "normal" people do "privileged"
 operations is a risky system to build. Computer security history is
 fraught with well-meaning programmers accidentally creating security
 holes that let people run any command as root or administrator.
If you aren't sure what you are doing, research security books
 and FAQs for advice.

For example, if it requires root to run the Unix mount command to access a CD-ROM. It is a bad
 idea to configure sudo so that the
 person can run the mount command as
 root with any parameters. He could
 crash the system or break security. It is much better if you configure
 sudo to let the person run a new
 command (say, mountcd) as root. This command will make sure that he has
 specified the particular CD-ROM drives that the user is permitted to
 mount (with a logical default), and mounts that drive. You also want to
 give him an (unmountcd)
 command.
I like to build three layers when I automate something for other
 people:
	Layer 1. A program that
 does the basic task.

	Layer 2. A program that the
 user will run, with sudo, that
 collects her input, validates it, makes sure she isn't trying to do
 anything fishy, and then calls the first program.

	Layer 3. A more
 user-friendly way to access these previous layers, such as a web
 interface or menu program.

For example, at one company, we had a process for pushing a new
 version of the company web site to the world. It involved three
 different web servers (actually they were virtual servers on two
 different machines, but those details aren't important).
	www-draft.example.com
	The next release of our web site was developed here.

	www-qa.example.com
	The draft site would be copied here for QA to check over.
 Once the copy was made, the files were immediately made read-only.
 If QA approved this site, we needed to be able to verify that
 these exact bits were copied to the live site.

	www.example.com
	This was the live site that external people would
 see.

The web designers would ask the system administrators to copy
 their draft to www-qa.example.com. When the QA group
 approved the site, they would tell the system administrators to make the
 site go live.
Each of these two functions was automated:
	readyforqa
	Copied the draft site to the QA site.

	golive
	Copied the QA site to the live site.

Marketing demanded a way to make emergency updates when the QA
 department wasn't available. We created this command:
	emergency-draft-to-live
	Copied the draft site directly to the live site after asking
 "Are you sure?" a few times.

These three scripts comprised Layer 2, which I mentioned earlier.
 Layer 1 was a script that did the actual copying of one site's data to
 another site, making a backup along the way, and setting files to
 read-only (changing the ownership of the files, too). Layer 1 had to be
 done as root because it was
 changing ownership of files and accessing machines via secured
 channels.
sudo was programmed as
 described in Table
 13-1.
Table 13-1. Web update permission table
	 	Web developers
	QA
	Marketing

	 Readyforqa
	X
	 	X

	 Golive
	 	X
	
	 Emergency-draft-to-live
	 	 	X

We actually went through the effort of having management sign off
 on this chart, with real signatures, to make sure they understood that
 they were agreeing to what they thought they were agreeing to. The
 political process to get this approved was the difficult part. It took
 weeks. Presenting the information to management in the chart form made
 it a lot easier for a decision to be made. They could understand and
 update the chart themselves until they were happy with it. Translating
 the final chart into a sudo
 configuration file was the easy part.
Per Layer 3, we decided to make an easier way for people to access
 these commands. We considered a web interface, but, in this case, the
 users were satisfied with a menu program that presented them with a list
 of options that ran the appropriate command.
The menu ran without any additional privileges (i.e., not under
 sudo), but called the Layer 2
 programs using sudo as needed
 .

Summary

	Automation is great because it saves you time. It also permits
 you to push work to other, less-technical people.

	There are four types of problems that SAs typically deal
 with:
	Simple things done once

	Hard things done once

	Simple things done often

	Hard things done often

	"Hard things done once" and "Simple things done often" are the
 right things to try to automate. "Hard things done often," while
 tempting, is usually better served by off-the-shelf packages
 (commercial or free).

	To automate a process, first be sure you can do the steps
 manually. Then document each step, and make sure that you can
 automate each step. Then bring all of the steps together.

	You can save a lot of typing time by making aliases. This is
 true for command-line systems as well as for applications, such as
 SSH. Set the alias as close to the actual application as possible.
 For example, setting the alias in the SSH configuration file means
 all systems that leverage SSH will use the alias.

	The Unix/Linux make
 command is extremely powerful. It is not just for programmers. You
 can use it to automate system administration tasks. On Unix/Linux
 systems, especially servers, standardize on having a Makefile in /etc that automates common tasks such as
 reindexing aliases, cloning data, and so on.

	Bash and /bin/sh shell languages are more
 sophisticated and powerful than you may realize. The examples in
 this chapter reveal how to parse command-line options and even how
 to write a small malware detector!

	When writing a long command line, test each part as you write
 it.

	When writing code for other people, the user interface becomes
 more important. There are tricks and techniques to creating useful
 user interfaces. You can avoid the issue by shifting all data entry
 to a program like MS Excel or by providing a menu system or web
 interface that lets people access higher-privileged systems.

	When writing code to let users do privileged operations, be
 extremely careful. Build on security tools that already exist and
 have good credibility, such as sudo. Use a permission table to explain
 to management who will have access to what. It is their job to
 manage risk and your job to help them understand the issues. Get
 approval before you deploy the system.

	As you move through your career, you will find yourself
 automating more and more tasks. It is a good idea to learn a
 programming language suited for system administration functions,
 such as Perl, Python, Ruby, or Shell, as well as operating-specific
 techniques like those featured in the O'Reilly
 Cookbook series mentioned previously in this
 book.

Appendix A. Epilogue

Congratulations. You've made it all the way to the end of the book.
 So now what?
First, I recommend you reread the book. We learn through repetition.
 If you reread (or skim) the book while the topics are fresh in your mind,
 it will have a strong impact.
Second, practice makes perfect. The more you practice the techniques
 in this book, the better you will get at them. Suddenly, you'll find
 yourself knowing the techniques so well that you'll be able to customize
 them and improve them in ways that make sense for your particular
 lifestyle or situation. One reader found that he was better able to manage
 his daily to do lists when he swapped the sides of his organizer where he
 put his schedule and to do items. Who knew? Whatever floats your boat! I
 just recommend you try my way first to get a sense of the system.
Third, accept slippage. Sometimes you will lapse into your old
 habits. That's OK, as long as you recognize it and get back to using the
 techniques as soon as you can. It might be helpful to reread the
 appropriate chapter for some inspiration.
Fourth, you might consider reading some traditional time management
 books, ones not written for system administrators in particular. This book
 focuses on the things specific to the system administration lifestyle and
 leaves a lot of general topics to the other books that cover them very
 well. I recommend Getting Things Done by David Allen
 (http://www.davidco.com).
What to Do with All Your "New" Free Time?

The techniques in this book may save you hours, if not days, each
 week. If you save a little more than an hour per day, you can get the
 same amount of work done in a four-day workweek .
So, what will you do with all this free time ?
Please don't squander it. I beg you. When I first started applying
 time management techniques to my life, I used all the new free time I
 gained on my then-current addiction: reading more Usenet NetNews. I
 guess the contemporary equivalent is to spend it reading RSS feeds,
 blogs, web sites, and such. Many such things are time wasters. Please
 don't use your new-found free time to pack more
 time wasters into your life.
I have a better idea.
Use this new-found free time to fight injustice.
The most common injustice that I see every day is the way
 corporations steal our lives away from our families. We wake up one day
 to find that our children have grown up hardly knowing us, or that our
 significant others are leaving because they hardly see us. "How did the
 time pass so quickly?", we wonder to ourselves.
There used to be the so-called "implied social contract." We work
 for a company 40 hours a week and in return we are paid enough to live
 plus a pension to retire on. It was a fair deal. However corporations
 now expect more and more of our time with no increased benefit to us.
 Geeks typically work 60–70 hours a week only to be laid off en masse due
 to the bad business decisions of clueless CEOs that are paid hundreds,
 if not thousands, times our salary. When I was at AT&T/Lucent in the
 1990s, we were constantly reminded that we should expect less job
 security from the company whether or not we did a good job. We were told
 to praise the shift from guaranteed pensions to "every man for himself"
 401(k)s. And yet, in my final years working there, the management was
 shocked and dismayed to find less loyalty from the employees. Loyalty is
 a two-way street.
Want to do something radical? Revolutionary? Use the techniques in
 this book to reassert the 40-hour workweek and reclaim your family
 life:
	Go home after you've worked 40 hours
 in a week. Be as loyal to your employer as it is to you.
 Go home 8 hours after you've arrived each day or after working 40
 hours a week.

	Spend more time with your significant
 other(s). Give him/her a kiss that lasts a full 12
 seconds every day (not 12 little kisses; actually count to 12 for
 one long kiss. You'll be amazed at the difference!). Tell them how
 much you appreciate them. Schedule date nights. If your PDA has a
 "random" setting, schedule a random "I love you" call each day (and
 block out at least 15 minutes so it doesn't feel rushed).

	Spend more time with your
 kids. If you have children, spend time with them doing
 something other than watching TV. Not sure what to do? Try asking
 them. Still not sure? Go where geeks get all their answers: search
 Google for "free things to do with kids [your town name]". No kids
 of your own? Be the fun Aunt or Uncle you wish you'd had when you
 were a kid.

	Call your parents and other important
 people in your life. Schedule a periodic reminder to call
 your parents and block out a good hour for the conversation. They'll
 appreciate it, and you'll appreciate it even more when they're
 gone.

There are many other forms of injustice in this world. My parents
 raised me to believe that it was immoral to let people go hungry, that
 racism was bad because fairness means treating all people equally, and
 that peace was God's will. Therefore, my morals lead me to fight
 poverty, racism, and militarism wherever I can.
Find some injustice in the world that concerns you greatly and put
 your technical know-how into helping. Here are some ideas:
	Help a non-profit that fights
 injustice, web edition. Find their web site and offer to
 help maintain it. Better yet, install a Content Management System or
 blog software so that they can maintain it without your help. Make
 sure they have a one-click donation system like http://www.JustGiving.com.

	Help a non-profit that fights
 injustice, PC edition. Offer to visit their office once a
 week to check over their PCs and answer their general PC questions.
 Make sure they have virus/spyware scanners that update
 automatically. Make sure their data backups work. If they need new
 applications, help them find off-the-shelf solutions.

	Join your school board. As
 a geek, I was always dissatisfied with my school's lack of science
 education and the over-emphasis on sports. School board seats often
 go uncontested, or can be won with a campaign budget of a few
 hundred dollars. Then you have direct influence on the budget and
 priorities of your school system. Fund anti-bullying programs, chess
 clubs, straight-gay alliances, music, and the arts.

	Run for public office. The
 fact that there are so many ill-conceived laws governing technology
 is not going to change until enough geeks run for office.

Fighting injustice is like dropping acorns wherever you go.
 Sometimes, you return to a place and find something wonderful growing;
 other times, there is nothing. Most of the time, however, you'll never
 know how much you've changed the world or how many people's lives you've
 touched. You just have to trust that it was worth it.
Peace.

—Tom Limoncelli

About the Author
Thomas Limoncelli is a world-famous author and speaker on many topics including system administration, networking, and security. A system administrator since 1988, he now speaks at conferences around the world on topics ranging from firewall security to time management. He has worked for Cibernet, Dean For America, Lumeta, Bell Labs / Lucent, AT&T and Mentor Graphics. Along with Christine Hogan he is co-author of the book "The Practice of System and Network Administration" from Addison-Wesley. He holds a B.A. in C.S. from Drew University, Madison, New Jersey, USA. He publishes a blog on www.EverythingSysadmin.com

Colophon
Our look is the result of reader comments, our own experimentation,
 and feedback from distribution channels. Distinctive covers complement our
 distinctive approach to technical topics, breathing personality and life
 into potentially dry subjects.
The animal on the cover of Time Management for System
 Administrators is a wolverine (Gulo gulo).
 Long admired for their strength, cunning, fearlessness, and voracity,
 wolverines are still a mysterious but respected animal. Native Americans
 considered them to be mythical trickster heroes and links to the spirit
 world. Wolverines have been personified and glorified in poetry and
 folklore for centuries:
	 	Picture a weasel—and most of us can do that, for we have met that
 little demon of destruction, that small atom of insensate courage, that
 symbol of slaughter, sleeplessness, and tireless, incredible
 activity—picture that scrap of demoniac fury, multiply that mite some
 fifty times, and you have the likeness of a Wolverine.
	
	 	--Ernest Thompson Seton, 1909

Wolverines are the largest terrestrial member of the family
 Mustelidae, which includes weasels, skunks, minks,
 and otters. Like humans and bears, wolverines have plantigrade
 posture—they walk on the soles of their feet—helping them to move easily
 through soft, deep snow. Wolverines thrive in very cold climates—they are
 found throughout the holarctic taiga and tundra in North America and
 Eurasia—and they do not hibernate. During the day and night, solitary
 wolverines alternate between sleeping and foraging for food. However,
 their habits are not entirely known because they are difficult to track
 and study due to their large home range and low population density.
The wolverine is one of the smallest and most powerful predators at
 the top of the food chain. In fact, if a wolverine were the size of a
 bear, it would be the strongest animal on earth. But wolverines are still
 ferocious despite their diminutive stature. They are solidly built and
 immensely strong—a wolverine can drag a carcass three times its size for
 great distances. Wolverines don't hesitate to attack sheep, deer, or small
 bears, but their diet mostly consists of scavenging rather than hunting.
 Wolves and cougars will retreat from a freshly killed carcass when a pack
 of wolverines challenges them. However, wolverines don't subsist entirely
 on large ungulates; they also eat squirrels, hares, and berries. When food
 is scarce, wolverines will return to an abandoned carcass and feed on the
 pelt and frozen bones; their powerful dentition and associated musculature
 facilitate this foraging.
For centuries, humans hunted wolverines for their luscious fur,
 which is valued because frost brushes right off of it. With dwindling
 numbers and a slow reproductive rate, wolverines are climbing up the
 endangered species list as nimbly as they climb trees.
Marlowe Shaeffer was the production editor and proofreader for
 Time Management for System Administrators. John
 Santini was the copyeditor. Colleen Gorman and Darren Kelly provided
 quality control. Johnna Dinse wrote the index. Loranah Dimant provided
 production assistance.
Karen Montgomery designed the cover of this book, based on a series
 design by Edie Freedman. The cover image is from Wood's
 Illustrated Natural History. Karen Montgomery produced the
 cover layout with Adobe InDesign CS using Adobe's ITC Garamond
 font.
David Futato designed the interior layout. This book was converted
 by Keith Fahlgren to FrameMaker 5.5.6 with a format conversion tool
 created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses
 Perl and XML technologies. The text font is Linotype Birka; the heading
 font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
 Mono Condensed. The illustrations that appear in the book were produced by
 Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand
 MX and Adobe Photoshop CS. The tip and warning icons were drawn by
 Christopher Bing. This colophon was written by Marlowe Shaeffer.

OEBPS/httpatomoreillycomsourceoreillyimages121861.png.jpg
USER FRIENDLY by 1lliad

T

e

OEBPS/httpatomoreillycomsourceoreillyimages121891.png
Professional

Personal

1month

Tyear

syears

OEBPS/httpatomoreillycomsourceoreillyimages121885.png
15 ¥300I: check batch

OEBPS/httpatomoreillycomsourceoreillyimages121883.png
C /h | Znvestisation mon sware
2 &CCupyade
A b Mount fape, library
C b Taskl
C | Taskd
C h Task3
C /b Tasky
D e mm— L
A5 um:Cisco, Joe + OO-SSS-I
X
A b Tickets
8 h

Znderrvptions

OEBPS/httpatomoreillycomsourceoreillyimages243685.jpg
e = ———
Stop Working Late and Start Working Smart

Management

Jfor System Administrators

O’REILLY® Thomas A. Limoncelli

OEBPS/httpatomoreillycomsourceoreillyimages121898.png
Easy (small effort) Diffict (big effort)

Big posive impact A 8

Superficelimpact 4 o

OEBPS/httpatomoreillycomsourceoreillyimages121903.png.jpg
Y by

OEBPS/httpatomoreillycomsourceoreillyimages121894.png
Task __Description Expectation Actualwork _Time completed
T | Resetpassword Tminte [0mintes [9:10am.
T | Gestenewuseraccount Netdsy | 0mintes |930am.
Ahours(+1for
T | instollnew senver Nty | fhon 230pm.
T4 | Addnew (Glareatowebservr | Thour Wminges | 300pm.
TS| orderasotwarepackage | Thour Thowr 400pm.
T6 | Debug minorNethewseror | T0minutes | 25minutes | 425 pm.
T | Mocte P address mintes | Smintes | 430pm.

OEBPS/httpatomoreillycomsourceoreillyimages121900.png.jpg
USER FRIENDLY by 1lliad

OEBPS/httpatomoreillycomsourceoreillyimages121901.png.jpg
USER FRIENDLY by iliad

588

g B

ol

i

mw\

OEBPS/httpatomoreillycomsourceoreillyimages121877.png
RS

Create bob smith, bsmith
SES3

&CC upgrade
Netscan off-by-I
IDS demo
BobPC

Tape library

Znvestisation mon sware

OEBPS/httpatomoreillycomsourceoreillyimages121871.png
Shorthand

What we know It means

Create bob smith, bsmith
SS54331

Greatean acountfornew serBob Sith,ecod is
phoneuner (55452 inthe courifomaton
ed We migh ecod therdetis hre 5o we don't

forgetthem.

&CCupgrade

Installnew GCC software pacage

Netscan off-by-1

Filea bug reportvith the devlopers about the ff-by-|
oneerroryou found n Netscan

IDS demo Gl slespersonabout schedling a demoofa new 0S|
system

Bob PC Instllnew PCforBob

Tape library Instllnew tapeibrry for the new backupsystem

Znvestisation mon sware

Ivestigate new monitoing software toreplacethe
system weeusng now

OEBPS/httpatomoreillycomsourceoreillyimages121860.png.jpg
USER FRIGNDLY by 1lliad

OEBPS/httpatomoreillycomsourceoreillyimages121867.png
10-Il a.m. staff meeding
3-¥p.m. John

OEBPS/httpatomoreillycomsourceoreillyimages121869.png
530 Gro home!

OEBPS/httpatomoreillycomsourceoreillyimages121899.png.jpg
B L ARGl

OEBPS/httpatomoreillycomsourceoreillyimages121896.png
Task __Description Expectation Actualwork _Time completed
| hesetpassword Tminte | 10minates [9102
7| Mocterp asress mintes | smintes [915am,
5| Ordera software package 1hour 1hour 10:5m.
T4 | Addnew CGlareatovebserver | 1hour Jmintes | 10452
T | Cestenewuseracount Nexdsy | mintes {11058,
Ao+ |
T | installnewserver Notdyy | US| gspm
T6 | Debug minorNethewseror | T0minutes | 25minutes | 430pm.

OEBPS/httpatomoreillycomsourceoreillyimages121858.png
Satari

OEBPS/httpatomoreillycomsourceoreillyimages121857.png.jpg
‘OKAY PEOPLE! TAKE ONE. SCUSE ME. INT THAT.
& e GeeK ruBLic 10 BE YONTY

SErsEs
Serice RNOUCENENT YA
i Ta0h B e routy WREDEC
HEADED BOSS. \

ot sor
s
»4

TTS RiGHT vOUR ceere TiEse
SMLGABLE DO E0GE OMERS
BN 1T TS TOMAGE THE
B TELOLOREATED Biiiess

OEBPS/httpatomoreillycomsourceoreillyimages121865.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages121873.png
Create bob smith, bsmith
SES3

&CCupgrade
Netscan off-by-/

DS demo

Bob PC

Tape library
Znvestigaion mon sware

OEBPS/httpatomoreillycomsourceoreillyimages121892.png.jpg
SSER IRICANLY Ny A1 A

!
5
m
H
i
H

OEBPS/httpatomoreillycomsourceoreillyimages121907.png.jpg
e o

erdana

Iset Famet look Daa Window b
BZUEEEHES %

=10

1
2
3 [EVENT LISTING
3 Save
s
5
7_|NOTE: Be nice to this file!Don't madify the format
]
s
10 | Date Name Person Descrption
11| 6-Jan-06 Welcome Back John John's welcome back party
12| 10-Jan-06 Anniversary George Company Anniversary
13| 10-Feb-06 Larmy's Birthday Ringo Join us for Larry's Birthday
14
15
16
17
18
15

14> w\Events / I«

Ready

OEBPS/httpatomoreillycomsourceoreillyimages121888.png
10-Il a.m. staff meeding
Noon Lunch
3-4p.m. Tohn

OEBPS/httpatomoreillycomsourceoreillyimages121862.png.jpg
SAEN _FRICNRLY Wy RILLM

i
i

U5
5
HEH

OEBPS/httpatomoreillycomsourceoreillyimages121889.png.jpg
USER FRIENDLY by Illiad

OEBPS/httpatomoreillycomsourceoreillyimages121886.png.jpg
USER FRIENDLY by Illiad

s016ugss 1L P vou
B ATVOR FLice ToeHT.

A>Tt wust se
TiE DAYSTAR

T e T

OEBPS/httpatomoreillycomsourceoreillyimages121859.png.jpg
SR IR Sy Tuee

OEBPS/httpatomoreillycomsourceoreillyimages121864.png
2

Friday Today's schedule
December 2005 6
Done? Priority Time_ftem 7

8

OEBPS/httpatomoreillycomsourceoreillyimages121875.png
RS

Create bob smith, bsmith
SES3

&CC upgrade
Netscan off-by-I
IDS demo
BobPC

Tape library

Znvestisation mon sware

OEBPS/httpatomoreillycomsourceoreillyimages121902.png.jpg
USER FRIENDLY by Illiad

T sis TS oavE 1S
BoRNA B REAL CoOL"

OEBPS/httpatomoreillycomsourceoreillyimages121905.png
Simple things Hard things
Done once Doitmanually Automateit
Doneoften Automatet Buy orwiite softvare

OEBPS/httpatomoreillycomsourceoreillyimages121879.png
Crenk) 5
SSS-3
— 8 GCCupyade
Mt Mebsennofbbyt——

M T DEdheme————————
Mo

—— 4 3h Tapelibrary vnpacked & checked

— ¢ /n Znveskisation mon sware

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages121881.png
16 ZInvestisation mon sware
| GCCupgrade
h Movnd $ape library

h Taskl
h Taskd
1 Task3
th Task¥
X Emvtexi-bprcket—

X vm: Cisco, Joe +/ POO-SSS-IIlI

KN

