

 [image: High Performance Web Sites]

 High Performance Web Sites

Steve Souders

Editor
Andy Oram

Copyright © 2008 Steve Souders

[image:]

O'Reilly Media

Praise for High Performance Web Sites

"If everyone would implement just 20% of Steve's guidelines, the
 Web would be a dramatically better place. Between this book and Steve's
 YSlow extension, there's really no excuse for having a sluggish web site
 anymore."
—Joe Hewitt, Developer of Firebug debugger and Mozilla's DOM
 Inspector

"Steve Souders has done a fantastic job of distilling a massive,
 semi-arcane art down to a set of concise, actionable, pragmatic
 engineering steps that will change the world of web performance."
—Eric Lawrence, Developer of the Fiddler Web Debugger,
 Microsoft Corporation

"As the stress and performance test lead for Zillow.com, I have been talking to all
 of the developers and operations folks to get them on board with the
 rules Steve outlined in this book, and they all ask how they can get a
 hold of this book. I think this should be a mandatory read for all new
 UE developers and performance engineers here."
—Nate Moch, www.zillow.com

"High Performance Web Sites is an essential
 guide for every web developer. Steve offers straightforward, useful
 advice for making virtually any site noticeably faster."
—Tony Chor, Group Program Manager, Internet Explorer team,
 Microsoft Corporation

Foreword

You're lucky to be holding this book. More importantly, your web
 site's users are lucky. Implement even a few of the
 14 techniques Steve shares in this groundbreaking book and your site will
 be faster immediately. Your users will thank you.
Here is why it matters. As a frontend engineer, you hold a
 tremendous amount of power and responsibility. You're the users' last line
 of defense. The decisions you make directly shape their experience. I
 believe our number one job is to take care of them and to give them what
 they want—quickly. This book is a toolbox to create happy users (and
 bosses, too). Best of all, once you put these techniques in place—in most
 cases, a one-time tweak—you'll be reaping the rewards far into the
 future.
This book will change your approach to performance optimization.
 When Steve began researching performance for our Platform Engineering
 group at Yahoo!, I believed performance was mainly a backend issue. But he
 showed that frontend issues account for 80% of total time. I thought
 frontend performance was about optimizing images and keeping CSS and
 JavaScript external, but the 176 pages and 14 rules you're holding in your
 hand right now are proof that it's much more.
I've applied his findings to several sites. Watching already-fast
 sites render nearly twice as quickly is tremendous. His methodology is
 sound, his data valid and extensive, and his findings compelling and
 impactful.
The discipline of frontend engineering is still young, but the book
 in your hands is an important step in the maturation of our craft.
 Together we'll raise expectations about the Web by creating better and
 faster (and therefore more enjoyable) interfaces and experiences.
Cheers to faster surfing!
–Nate Koechley
Senior Frontend Engineer Yahoo! User Interface (YUI) Team,
 Platform Engineering, Yahoo! Inc. San Francisco, August,
 2007

Preface

In eighth grade, my history class studied the efficiency experts of
 the Industrial Revolution. I was enthralled by the techniques they used to
 identify and overcome bottlenecks in manufacturing. The most elegant
 improvement, in my mind, was the adjustable stepstool that afforded
 workers of different heights the ability to more easily reach the conveyor
 belt—a simple investment that resulted in improved performance for the
 life of the process.
Three decades later, I enjoy comparing the best practices in this
 book to that 19th-century stepstool. These best practices enhance an
 existing process. They require some upfront investment, but the cost is
 small—especially in comparison to the gains. And once these improvements
 are put in place, they continue to boost performance over the life of the
 development process. I hope you'll find these rules for building high
 performance web sites to be elegant improvements that benefit you and your
 users.
How This Book Is Organized

After two quick introductory chapters, I jump into the main part
 of this book: the 14 performance rules. Each rule is described, one per
 chapter, in priority order. Not every rule applies to every site, and
 not every site should apply a rule the same way, but each is worth
 considering. The final chapter of this book shows how to analyze web
 pages from a performance perspective, including some case
 studies.
Chapter 1,
 explains that at least 80 percent of the time it takes to display a web
 page happens after the HTML document has been downloaded, and describes
 the importance of the techniques in this book.
Chapter 2, provides a short description of
 HTTP, highlighting the parts that are relevant to performance.
Chapter 3,
 describes why extra HTTP requests have the biggest impact on
 performance, and discusses ways to reduce these HTTP requests including
 image maps, CSS sprites, inline images using data: URLs, and combining scripts and
 stylesheets.
Chapter 4, highlights
 the advantages of using a content delivery network.
Chapter 5, digs into
 how a simple HTTP header dramatically improves your web pages by using
 the browser's cache.
Chapter 6, explains how
 compression works and how to enable it for your web servers, and
 discusses some of the compatibility issues that exist today.
Chapter 7,
 reveals how stylesheets affect the rendering of your page.
Chapter 8, shows
 how scripts affect rendering and downloading in the browser.
Chapter 9, discusses
 the use of CSS expressions and the importance of quantifying their
 impact.
Chapter 10, talks
 about the tradeoffs of inlining your JavaScript and CSS versus putting
 them in external files.
Chapter 11, highlights the
 often-overlooked impact of resolving domain names.
Chapter 12, quantifies the
 benefits of removing whitespace from your JavaScript.
Chapter 13, warns against
 using redirects, and provides alternatives that you can use
 instead.
Chapter 14, reveals
 what happens if a script is included twice in a page.
Chapter 15, describes how
 ETags work and why the default implementation is bad for anyone with
 more than one web server.
Chapter 16, emphasizes
 the importance of keeping these performance rules in mind when using
 Ajax.
Chapter 17, gives examples of
 how to identify performance improvements in real-world web sites.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, file
 extensions, pathnames, directories, Unix utilities, and general
 emphasis.

	Constant width
	Indicates computer code in a broad sense. This includes
 commands, options, switches, variables, attributes, keys,
 functions, types, classes, namespaces, methods, modules,
 properties, parameters, values, objects, events, event handlers,
 XML tags, HTML tags, macros, the contents of files, and the output
 from commands.

HTTP requests and responses are designated graphically as shown in
 the following example.
GET / HTTP/1.1 is an HTTP request header
HTTP/1.1 200 OK is an HTTP response header

Code Examples

Online examples can be found on this book's companion web
 site:
	http://stevesouders.com/hpws

Examples are included in each chapter in the context in which they
 are discussed. They are also listed here for easy review.
	No Image Map (Chapter 3)
	http://stevesouders.com/hpws/imagemap-no.php

	Image Map (Chapter 3)
	http://stevesouders.com/hpws/imagemap.php

	CSS Sprites (Chapter 3)
	http://stevesouders.com/hpws/sprites.php

	Inline Images (Chapter 3)
	http://stevesouders.com/hpws/inline-images.php

	Inline CSS Images (Chapter 3)
	http://stevesouders.com/hpws/inline-css-images.php

	Separate Scripts (Chapter 3)
	http://stevesouders.com/hpws/combo-none.php

	Combined Scripts (Chapter 3)
	http://stevesouders.com/hpws/combo.php

	CDN (Chapter 4)
	http://stevesouders.com/hpws/ex-cdn.php

	No CDN (Chapter 4)
	http://stevesouders.com/hpws/ex-nocdn.php

	No Expires (Chapter 5)
	http://stevesouders.com/hpws/expiresoff.php

	Far Future Expires (Chapter 5)
	http://stevesouders.com/hpws/expireson.php

	Nothing Gzipped (Chapter 6)
	http://stevesouders.com/hpws/nogzip.html

	HTML Gzipped (Chapter 6)
	http://stevesouders.com/hpws/gzip-html.html

	Everything Gzipped (Chapter 6)
	http://stevesouders.com/hpws/gzip-all.html

	CSS at the Bottom (Chapter 7)
	http://stevesouders.com/hpws/css-bottom.php

	CSS at the Top (Chapter 7)
	http://stevesouders.com/hpws/css-top.php

	CSS at the Top Using @import (Chapter 7)
	http://stevesouders.com/hpws/css-top-import.php

	CSS Flash of Unstyled Content (Chapter 7)
	http://stevesouders.com/hpws/css-fouc.php

	Scripts in the Middle (Chapter 8)
	http://stevesouders.com/hpws/js-middle.php

	Scripts Block Downloads (Chapter 8)
	http://stevesouders.com/hpws/js-blocking.php

	Scripts at the Top (Chapter 8)
	http://stevesouders.com/hpws/js-top.php

	Scripts at the Bottom (Chapter 8)
	http://stevesouders.com/hpws/js-bottom.php

	Scripts Top vs. Bottom (Chapter 8)
	http://stevesouders.com/hpws/move-scripts.php

	Deferred Scripts (Chapter 8)
	http://stevesouders.com/hpws/js-defer.php

	Expression Counter (Chapter 9)
	http://stevesouders.com/hpws/expression-counter.php

	One-Time Expressions (Chapter 9)
	http://stevesouders.com/hpws/onetime-expressions.php

	Event Handler (Chapter 9)
	http://stevesouders.com/hpws/event-handler.php

	Inlined JS and CSS (Chapter 10)
	http://stevesouders.com/hpws/inlined.php

	External JS and CSS (Chapter 10)
	http://stevesouders.com/hpws/external.php

	Cacheable External JS and CSS (Chapter 10)
	http://stevesouders.com/hpws/external-cacheable.php

	Post-Onload Download (Chapter 10)
	http://stevesouders.com/hpws/post-onload.php

	Dynamic Inlining (Chapter 10)
	http://stevesouders.com/hpws/dynamic-inlining.php

	Small Script Normal (Chapter 12)
	http://stevesouders.com/hpws/js-small-normal.php

	Small Script Minified (Chapter 12)
	http://stevesouders.com/hpws/js-small-minify.php

	Small Script Obfuscated (Chapter 12)
	http://stevesouders.com/hpws/js-small-obfuscate.php

	Large Script Normal (Chapter 12)
	http://stevesouders.com/hpws/js-large-normal.php

	Large Script Minified (Chapter 12)
	http://stevesouders.com/hpws/js-large-minify.php

	Large Script Obfuscated (Chapter 12)
	http://stevesouders.com/hpws/js-large-obfuscate.php

	XMLHttpRequest Beacon (Chapter 13)
	http://stevesouders.com/hpws/xhr-beacon.php

	Image Beacon (Chapter 13)
	http://stevesouders.com/hpws/redir-beacon.php

	Duplicate Scripts—Not Cached (Chapter 14)
	http://stevesouders.com/hpws/dupe-scripts.php

	Duplicate Scripts—Cached (Chapter 14)
	http://stevesouders.com/hpws/dupe-scripts-cached.php

	Duplicate Scripts—10 Cached (Chapter 14)
	http://stevesouders.com/hpws/dupe-scripts-cached10.php

In general, you may use the code in this book and these online
 examples in your programs and documentation. You do not need to contact
 us for permission unless you're reproducing a significant portion of the
 code. For example, writing a program that uses several chunks of code
 from this book does not require permission. Selling or distributing a
 CD-ROM of examples from O'Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product's documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 "High Performance Web Sites by Steve Souders.
 Copyright 2007 Steve Souders, 978-0-596-52930-7."
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata and any
 additional information. You can access this page at: http://www.oreilly.com/catalog/9780596529864
To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O'Reilly Network, see our web site at:
	http://www.oreilly.com

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

Acknowledgments

Ash Patel and Geoff Ralston were the Yahoo! executives who asked
 me to start a center of expertise focused on performance. Several
 Yahoo!s helped answer questions and discuss ideas: Ryan Troll, Doug
 Crockford, Nate Koechley, Mark Nottingham, Cal Henderson, Don Vail, and
 Tenni Theurer. Andy Oram, my editor, struck the balance of patience and
 prodding necessary for a first-time author. Several people helped review
 the book: Doug Crockford, Havi Hoffman, Cal Henderson, Don Knuth, and
 especially Jeffrey Friedl, Alexander Kirk, and Eric Lawrence.
This book was completed predominantly in spare hours on the
 weekends and late at night. I thank my wife and daughters for giving me
 those hours on the weekends to work. I thank my parents for giving me
 the work ethic to do the late-night hours.

Chapter 1. The Importance of Frontend Performance

Most of my web career has been spent as a backend engineer. As such,
 I dutifully approached each performance project as an exercise in backend
 optimization, concentrating on compiler options, database indexes, memory
 management, etc. There's a lot of attention and many books devoted to
 optimizing performance in these areas, so that's where most people spend
 time looking for improvements. In reality, for most web pages, less than
 10–20% of the end user response time is spent getting the HTML document
 from the web server to the browser. If you want to dramatically reduce the
 response times of your web pages, you have to focus on the other 80–90% of
 the end user experience. What is that 80–90% spent on? How can it be
 reduced? The chapters that follow lay the groundwork for understanding
 today's web pages and provide 14 rules for making them faster.
Tracking Web Page Performance

In order to know what to improve, we need to know where the user
 spends her time waiting. Figure 1-1 shows the HTTP traffic when
 Yahoo!'s home page (http://www.yahoo.com) is
 downloaded using Internet Explorer. Each bar is one HTTP request. The
 first bar, labeled html, is the
 initial request for the HTML document. The browser parses the HTML and
 starts downloading the components in the page. In this case, the
 browser's cache was empty, so all of the components had to be
 downloaded. The HTML document is only 5% of the total response time. The
 user spends most of the other 95% waiting for the components to
 download; she also spends a small amount of time waiting for HTML,
 scripts, and stylesheets to be parsed, as shown by the blank gaps
 between downloads.
[image: Downloading in Internet Explorer, empty cache]

Figure 1-1. Downloading http://www.yahoo.com in
 Internet Explorer, empty cache

Figure 1-2 shows the
 same URL downloaded in Internet Explorer a second time. The HTML
 document is only 12% of the total response time. Most of the components
 don't have to be downloaded because they're already in the browser's
 cache.
[image: Downloading in Internet Explorer, primed cache]

Figure 1-2. Downloading http://www.yahoo.com in
 Internet Explorer, primed cache

Five components are requested in this second page view:
	One redirect
	This redirect was downloaded previously, but the browser is
 requesting it again. The HTTP response's status code is 302
 ("Found" or "moved temporarily") and there is no caching
 information in the response headers, so the browser can't cache
 the response. I'll discuss HTTP in Chapter 2.

	Three uncached images
	The next three requests are for images that were not
 downloaded in the initial page view. These are images for news
 photos and ads that change frequently.

	One cached image
	The last HTTP request is a conditional
 GETrequest. The image is cached,
 but because of the HTTP response headers, the browser has to check
 that the image is up-to-date before showing it to the user.
 Conditional GET requests are also described in Chapter 2.

Where Does the Time Go?

Looking at the HTTP traffic in this way, we see that at least 80%
 of the end user response time is spent on the components in the page. If
 we dig deeper into the details of these charts, we start to see how
 complex the interplay between browsers and HTTP becomes. Earlier, I
 mentioned how the HTTP status codes and headers affect the browser's
 cache. In addition, we can make these observations:
	The cached scenario (Figure 1-2) doesn't have as
 much download activity. Instead, you can see a blank space with no
 downloads that occurs immediately following the HTML document's HTTP
 request. This is time when the browser is parsing HTML, JavaScript,
 and CSS, and retrieving components from its cache.

	Varying numbers of HTTP requests occur in parallel. Figure 1-2 has a maximum of
 three HTTP requests happening in parallel, whereas in Figure 1-1, there are as many as
 six or seven simultaneous HTTP requests. This behavior is due to the
 number of different hostnames being used, and whether they use
 HTTP/1.0 or HTTP/1.1. Chapter 8 explains these
 issues in the section "Parallel Downloads."

	Parallel requests don't happen during requests for scripts.
 That's because in most situations, browsers block additional HTTP
 requests while they download scripts. See Chapter 8 to understand
 why this happens and how to use this knowledge to improve page load
 times.

Figuring out exactly where the time goes is a
 challenge. But it's easy to see where the time does
 not go—it does not go into
 downloading the HTML document, including any backend processing. That's
 why frontend performance is important.

The Performance Golden Rule

This phenomenon of spending only 10–20% of the response time
 downloading the HTML document is not isolated to Yahoo!'s home page.
 This statistic holds true for all of the Yahoo! properties I've analyzed
 (except for Yahoo! Search because of the small number of components in
 the page). Furthermore, this statistic is true across most web sites.
 Table 1-1 shows 10 top
 U.S. web sites extracted from http://www.alexa.com. Note that all of these except AOL
 were in the top 10 U.S. web sites. Craigslist.org was in the top 10,
 but its pages have little to no images, scripts, and stylesheets, and
 thus was a poor example to use. So, I chose to include AOL in its
 place.
Table 1-1. Percentage of time spent downloading the HTML document for 10
 top web sites
	 	Empty
 cache
	Primed
 cache

	AOL
	6%
	14%

	Amazon
	18%
	14%

	CNN
	19%
	8%

	eBay
	2%
	8%

	Google
	14%
	36%

	MSN
	3%
	5%

	MySpace
	4%
	14%

	Wikipedia
	20%
	12%

	Yahoo!
	5%
	12%

	YouTube
	3%
	5%

All of these web sites spend less than 20% of the total response
 time retrieving the HTML document. The one exception is Google in the
 primed cache scenario. This is because http://www.google.com had only six components, and all
 but one were configured to be cached by the browser. On subsequent page
 views, with all those components cached, the only HTTP requests were for
 the HTML document and an image beacon.
In any optimization effort, it's critical to profile current
 performance to identify where you can achieve the greatest improvements.
 It's clear that the place to focus is frontend performance.
First, there is more potential for improvement in focusing on the
 frontend. If we were able to cut backend response times in half, the end
 user response time would decrease only 5–10% overall. If, instead, we
 reduce the frontend performance by half, we would reduce overall
 response times by 40–45%.
Second, frontend improvements typically require less time and
 fewer resources. Reducing backend latency involves projects such as
 redesigning application architecture and code, finding and optimizing
 critical code paths, adding or modifying hardware, distributing
 databases, etc. These projects take weeks or months. Most of the
 frontend performance improvements described in the following chapters
 involve best practices, such as changing web server configuration files
 (Chapter 5 and Chapter 6); placing scripts and
 stylesheets in certain places within the page (Chapter 7 and Chapter 8); and combining
 images, scripts, and stylesheets (Chapter 3). These projects take
 hours or days—much less than the time required for most backend
 improvements.
Third, frontend performance tuning has been proven to work. Over
 50 teams at Yahoo! have reduced their end user response times by
 following the best practices described here, many by 25% or more. In
 some cases, we've had to go beyond these rules and identify improvements
 more specific to the site being analyzed, but generally, it's possible
 to achieve a 25% or greater reduction just by following these best
 practices.
At the beginning of every new performance improvement project, I
 draw a picture like that shown in Figure 1-1 and explain the
 Performance Golden Rule:
Only 10–20% of the end user response time is spent downloading
 the HTML document. The other 80–90% is spent downloading all the
 components in the page.

The rest of this book offers precise guidelines for reducing that
 80–90% of end user response time. In demonstrating this, I'll cover a
 wide span of technologies: HTTP headers, JavaScript, CSS, Apache, and
 more.
Because some of the basic aspects of HTTP are necessary to
 understand parts of the book, I highlight them in Chapter 2.
After that come the 14 rules for faster performance, each in its
 own chapter. The rules are listed in general order of priority. A rule's
 applicability to your specific web site may vary. For example, Rule 2 is
 more appropriate for commercial web sites and less feasible for personal
 web pages. If you follow all the rules that are applicable to your web
 site, you'll make your pages 25–50% faster and improve the user
 experience. The last part of the book shows how to analyze the 10 top
 U.S. web sites from a performance perspective.

Chapter 2. HTTP Overview

Before diving into the specific rules for making web pages faster,
 it's important to understand the parts of the HyperText Transfer Protocol
 (HTTP) that affect performance. HTTP is how browsers and servers
 communicate with each other over the Internet. The HTTP specification was
 coordinated by the World Wide Web Consortium (W3C) and Internet
 Engineering Task Force (IETF), resulting in RFC 2616. HTTP/1.1 is the most
 common version today, but some browsers and servers still use
 HTTP/1.0.
HTTP is a client/server protocol made up of requests and responses.
 A browser sends an HTTP request for a specific URL, and a server hosting
 that URL sends back an HTTP response. Like many Internet services, the
 protocol uses a simple, plaintext format. The types of requests are GET,
 POST, HEAD, PUT, DELETE, OPTIONS, and TRACE. I'm going to focus on the GET
 request, which is the most common.
A GET request includes a URL followed by headers. The HTTP response
 contains a status code, headers, and a body. The following example shows
 the possible HTTP headers when requesting the script yahoo_2.0.0-b2.js.
GET /us.js.yimg.com/lib/common/utils/2/yahoo_2.0.0-b2.js HTTP/1.1
Host: us.js2.yimg.com
User-Agent: Mozilla/5.0 (...) Gecko/20061206 Firefox/1.5.0.9

HTTP/1.1 200 OK
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GMT
Content-Length: 355

var YAHOO=...
Compression

The size of the response is reduced using compression if both the
 browser and server support it. Browsers announce their support of
 compression using the Accept-Encoding
 header. Servers identify compressed responses using the Content-Encoding header.
GET /us.js.yimg.com/lib/common/utils/2/yahoo_2.0.0-b2.js HTTP/1.1
Host: us.js2.yimg.com
User-Agent: Mozilla/5.0 (...) Gecko/20061206 Firefox/1.5.0.9
Accept-Encoding: gzip,deflate

HTTP/1.1 200 OK
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GMT
Content-Length: 255
Content-Encoding: gzip

^_\;213^H^@^@^@^@^@^@^Cl\217\315j\3030^P\204_E\361IJ...
Notice how the body of the response is compressed. Chapter 6 explains how to turn on
 compression, and warns about edge cases that can arise due to proxy
 caching. The Vary and Cache-Control headers are also
 discussed.

Conditional GET Requests

If the browser has a copy of the component in its cache, but isn't
 sure whether it's still valid, a conditional GET request is made. If the
 cached copy is still valid, the browser uses the copy from its cache,
 resulting in a smaller response and a faster user experience.
Typically, the validity of the cached copy is derived from the
 date it was last modified. The browser knows when the component was last
 modified based on the Last-Modified
 header in the response (refer to the previous sample responses). It uses
 the If-Modified-Since header to send
 the last modified date back to the server. The browser is essentially
 saying, "I have a version of this resource with the following last
 modified date. May I just use it?"
GET /us.js.yimg.com/lib/common/utils/2/yahoo_2.0.0-b2.js HTTP/1.1
Host: us.js2.yimg.com
User-Agent: Mozilla/5.0 (...) Gecko/20061206 Firefox/1.5.0.9
Accept-Encoding: gzip,deflate
If-Modified-Since: Wed, 22 Feb 2006 04:15:54 GMT
HTTP/1.1 304 Not Modified
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GM
If the component has not been modified since the specified date,
 the server returns a "304 Not Modified" status code and skips sending
 the body of the response, resulting in a smaller and faster response. In
 HTTP/1.1 the ETag and If-None-Match headers are another way to make
 conditional GET requests. Both approaches are discussed in Chapter 15.

Expires

Conditional GET requests and 304 responses help pages load faster,
 but they still require making a roundtrip between the client and server
 to perform the validity check. The Expires header eliminates the need to check
 with the server by making it clear whether the browser can use its
 cached copy of a component.
HTTP/1.1 200 OK
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GMT
Expires: Wed, 05 Oct 2016 19:16:20 GMT
When the browser sees an Expires header in the response, it saves the
 expiration date with the component in its cache. As long as the
 component hasn't expired, the browser uses the cached version and avoids
 making any HTTP requests. Chapter 5 talks about the Expires and Cache-Control headers in more detail.

Keep-Alive

HTTP is built on top of Transmission Control Protocol (TCP). In
 early implementations of HTTP, each HTTP request required opening a new
 socket connection. This is inefficient because many HTTP requests in a
 web page go to the same server. For example, most requests for images in
 a web page all go to a common image server. Persistent Connections (also known as
 Keep-Alive in HTTP/1.0) was
 introduced to solve the inefficiency of opening and closing multiple
 socket connections to the same server. It lets browsers make multiple
 requests over a single connection. Browsers and servers use the Connection header to indicate Keep-Alive
 support. The Connection header looks
 the same in the server's response.
GET /us.js.yimg.com/lib/common/utils/2/yahoo_2.0.0-b2.js HTTP/1.1
Host: us.js2.yimg.com
User-Agent: Mozilla/5.0 (...) Gecko/20061206 Firefox/1.5.0.9
Accept-Encoding: gzip,deflate
Connection: keep-alive

HTTP/1.1 200 OK
Content-Type: application/x-javascript
Last-Modified: Wed, 22 Feb 2006 04:15:54 GMT
Connection: keep-alive
The browser or server can close the connection by sending a
 Connection: close header.
 Technically, the Connection:
 keep-alive header is not required in HTTP/1.1, but most
 browsers and servers still include it.
Pipelining, defined in HTTP/1.1, allows for sending multiple
 requests over a single socket without waiting for a response. Pipelining
 has better performance than persistent connections. Unfortunately,
 pipelining is not supported in Internet Explorer (up to and including
 version 7), and it's turned off by default in Firefox through version 2.
 Until pipelining is more widely adopted, Keep-Alive is the way browsers
 and servers can more efficiently use socket connections for HTTP. This
 is even more important for HTTPS because establishing new secure socket
 connections is more time consuming.

There's More

This chapter contains just an overview of HTTP and focuses only on
 the aspects that affect performance. To learn more, read the HTTP
 specification (http://www.w3.org/protocols/rfc2616/rfc2616.html) and
 HTTP: The Definitive Guide by David Gourley and
 Brian Totty (O'Reilly; http://www.oreilly.com/catalog/httptdg). The parts
 highlighted here are sufficient for understanding the best practices
 described in the following chapters.

Chapter 3. Rule 1: Make Fewer HTTP Requests

The Performance Golden Rule, as
 explained in Chapter 1,
 reveals that only 10–20% of the end user response time involves retrieving
 the requested HTML document. The remaining 80–90% of the time is spent
 making HTTP requests for all the components (images, scripts, stylesheets,
 Flash, etc.) referenced in the HTML document. Thus, a simple way to
 improve response time is to reduce the number of components, and, in turn,
 reduce the number of HTTP requests.
Suggesting the idea of removing components from the page often
 creates tension between performance and product design. In this chapter, I
 describe techniques for eliminating HTTP requests while avoiding the
 difficult tradeoff decisions between performance and design. These
 techniques include using image maps, CSS sprites, inline images, and
 combined scripts and stylesheets. Using these techniques reduces response
 times of the example pages by as much as 50%.
Image Maps

In its simplest form, a hyperlink associates the destination URL
 with some text. A prettier alternative is to associate the hyperlink
 with an image, for example in navbars and buttons. If you use multiple
 hyperlinked images in this way, image maps may be a way to reduce the
 number of HTTP requests without changing the page's look and feel. An
 image map allows you to associate
 multiple URLs with a single image. The destination URL is chosen based
 on where the user clicks on the image.
Figure 3-1 shows an example of five
 images used in a navbar. Clicking on an image takes you to the
 associated link. This could be done with five separate hyperlinks, using
 five separate images. It's more efficient, however, to use an image map
 because this reduces the five HTTP requests to just one HTTP request.
 The response time is faster because there is less HTTP overhead.
[image: Image map candidate]

Figure 3-1. Image map candidate

You can try this out for yourself by visiting the following URLs.
 Click on each link to see the roundtrip retrieval time.
	No Image Map
	http://stevesouders.com/hpws/imagemap-no.php

	Image Map
	http://stevesouders.com/hpws/imagemap.php

When using Internet Explorer 6.0 over DSL (~900 Kbps), the image
 map retrieval was 56% faster than the retrieval for
 the navbar with separate images for each hyperlink (354 milliseconds
 versus 799 milliseconds). That's because the image map has four fewer
 HTTP requests.
There are two types of image maps. Server-side image maps submit all clicks to
 the same destination URL, passing along the x,y coordinates of where the
 user clicked. The web application maps the x,y coordinates to the
 appropriate action. Client-side image
 maps are more typical because they map the user's click to an
 action without requiring a backend application. The mapping is achieved
 via HTML's MAP tag. The HTML for
 converting the navbar in Figure 3-1 to an
 image map shows how the MAP tag is
 used:

<map name="map1">
 <area shape="rect" coords="0,0,31,31" href="home.html" title="Home">
 <area shape="rect" coords="36,0,66,31" href="gifts.html" title="Gifts">
 <area shape="rect" coords="71,0,101,31" href="cart.html" title="Cart">
 <area shape="rect" coords="106,0,136,31" href="settings.html" title="Settings">
 <area shape="rect" coords="141,0,171,31" href="help.html" title="Help">
</map>
There are drawbacks to using image maps. Defining the area
 coordinates of the image map, if done manually, is tedious and
 error-prone, and it is next to impossible for any shape other than
 rectangles. Creating image maps via DHTML won't work in Internet
 Explorer.
If you're currently using multiple images in a navbar or other
 hyperlinks, switching to an image map is an easy way to speed up your
 page.

CSS Sprites

Like image maps, CSS sprites
 allow you to combine images, but they're much more flexible. The concept
 reminds me of a Ouija board, where the planchette (the viewer that all
 participants hold on to) moves around the board stopping over different
 letters. To use CSS sprites, multiple images are combined into a single
 image, similar to the one shown in Figure 3-2. This is the "Ouija
 board."
[image: CSS sprites combine multiple images into a single image]

Figure 3-2. CSS sprites combine multiple images into a single image

The "planchette" is any HTML element that supports background
 images, such as a SPAN or DIV. The HTML element is positioned over the
 desired part of the background image using the CSS background-position property. For example, you
 can use the "My" icon for an element's background image as
 follows:
<div style="background-image: url('a_lot_of_sprites.gif');
 background-position: −260px −90px;
 width: 26px; height: 24px;">
</div>
I modified the previous image map example to use CSS sprites. The
 five links are contained in a DIV
 named navbar. Each link is wrapped
 around a SPAN that uses a single
 background image, spritebg.gif, as
 defined in the #navbar span rule.
 Each SPAN has a different class that
 specifies the offset into the CSS sprite using the background-position property:
<style>
#navbar span {
 width:31px;
 height:31px;
 display:inline;
 float:left;
 background-image:url(/images/spritebg.gif);
}
.home { background-position:0 0; margin-right:4px; margin-left: 4px;}
.gifts { background-position:-32px 0; margin-right:4px;}
.cart { background-position:-64px 0; margin-right:4px;}
.settings { background-position:-96px 0; margin-right:4px;}
.help { background-position:-128px 0; margin-right:0px;}
</style>

<div id="navbar" style="background-color: #F4F5EB; border: 2px ridge #333; width:
180px; height: 32px; padding: 4px 0 4px 0;">

</div>
It is about as fast as the image map example: 342 milliseconds
 versus 354 milliseconds, respectively, but this difference is too small
 to be significant. More importantly, it is 57%
 faster than the alternative of using separate images.
	CSS Sprites
	http://stevesouders.com/hpws/sprites.php

Whereas the images in an image map must be contiguous, CSS sprites
 don't have that limitation. The many pros (and some cons) of CSS sprites
 are explained well in Dave Shea's authoritative web article, "CSS
 Sprites: Image Slicing's Kiss of Death." I touched on some of the
 benefits of CSS sprites already: they reduce HTTP requests by combining
 images and are more flexible than image maps. One surprising benefit is
 reduced download size. Most people would expect the combined image to be
 larger than the sum of the separate images because the combined image
 has additional area used for spacing. In fact, the combined image tends
 to be smaller than the sum of the separate images as a result of
 reducing the amount of image overhead (color tables, formatting
 information, etc.).
If you use a lot of images in your pages for backgrounds, buttons,
 navbars, links, etc., CSS sprites are an elegant solution that results
 in clean markup, fewer images to deal with, and faster response
 times.

Inline Images

It's possible to include images in your web page without any
 additional HTTP requests by using the data: URL scheme. Although this approach is
 not currently supported in Internet Explorer, the savings it can bring
 to other browsers makes it worth mentioning.
We're all familiar with URLs that include the http: scheme. Other schemes include the
 familiar ftp:, file:, and mailto: schemes. But there are many more
 schemes, such as smtp:, pop:, dns:,
 whois:, finger:, daytime:, news:, and urn:. Some of these are officially registered;
 others are accepted because of their common usage.
The data: URL scheme was first
 proposed in 1995. The specification (http://tools.ietf.org/html/rfc2397) says it "allows
 inclusion of small data items as 'immediate' data." The data is in the
 URL itself following this format:
data:[<mediatype>][;base64],<data>
An inline image of a red star is specified as:
<IMG ALT="Red Star"
SRC="
lvrKy/FvcPewsO9VVfajo+w6O/zl5estLv/8/AAAAAAAAAAAAAAAACH5BAEA
AAsALAAAAAAMAAwAAAQzcElZyryTEHyTUgknHd9xGV+qKsYirKkwDYiKDBia
tt2H1KBLQRFIJAIKywRgmhwAIlEEADs=">
I've seen data: used only for
 inline images, but it can be used anywhere a URL is specified, including
 SCRIPT and A tags.
The main drawback of the data:
 URL scheme is that it's not supported in Internet Explorer (up to and
 including version 7). Another drawback is its possible size limitations,
 but Firefox 1.5 accepts inline images up to 100K. The base64 encoding
 increases the size of images, so the total size downloaded is
 increased.
The navbar from previous sections is implemented using inline
 images in the following example.
	Inline Images
	http://stevesouders.com/hpws/inline-images.php

Because data: URLs are embedded
 in the page, they won't be cached across different pages. You might not
 want to inline your company logo, because it would make every page grow
 by the encoded size of the logo. A clever way around this is to use CSS
 and inline the image as a background. Placing this CSS rule in an
 external stylesheet means that the data is cached
 inside the stylesheet. In the following example, the background images
 used for each link in the navbar are implemented using inline images in
 an external stylesheet.
	Inline CSS Images
	http://stevesouders.com/hpws/inline-css-images.php

The external stylesheet contains a rule for each SPAN that includes an inlined background
 image:
.home { background-image: url(...);}
.gift { background-image: url(...);}
.cart { background-image: url(...);}
.settings { background-image: url(...);}
.help { background-image: url(...);}
The file_get_contents PHP
 function makes it easy to create inline images by reading the image from
 disk and inserting the contents into the page. In my example, the URL of
 the external stylesheet points to a PHP template: http://stevesouders.com/hpws/inline-css-images-css.php.
 The use of file_get_contents is
 illustrated in the PHP template that generated the stylesheet shown
 above:
.home { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/home.gif")) ?>);}
.gift { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/gift.gif")) ?>);}
.cart { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/cart.gif")) ?>);}
.settings { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/settings.gif")) ?>);}
.help { background-image: url(data:image/gif;base64,
 <?php echo base64_encode(file_get_contents("../images/help.gif")) ?>);}
Comparing this example to the previous examples, we see that it
 has about the same response time as image maps and CSS sprites, which
 again is more than 50% faster than the original method of having
 separate images for each link. Putting the inline image in an external
 stylesheet adds an extra HTTP request, but has the additional benefit of
 being cached with the stylesheet.

Combined Scripts and Stylesheets

JavaScript and CSS are used on most web sites today. Frontend
 engineers must choose whether to "inline" their JavaScript and CSS
 (i.e., embed it in the HTML document) or include it from external script
 and stylesheet files. In general, using external scripts and stylesheets
 is better for performance (this is discussed more in Chapter 10). However, if you
 follow the approach recommended by software engineers and modularize
 your code by breaking it into many small files, you decrease performance
 because each file results in an additional HTTP request.
Table 3-1 shows that 10
 top web sites average six to seven scripts and one to two stylesheets on
 their home pages. These web sites were selected from http://www.alexa.com, as described in Chapter 1. Each of these sites
 requires an additional HTTP request if it's not cached in the user's
 browser. Similar to the benefits of image maps and CSS sprites,
 combining these separate files into one file reduces the number of HTTP
 requests and improves the end user response time.
Table 3-1. Number of scripts and stylesheets for 10 top sites
	Web
 site
	Scripts
	Stylesheets

	http://www.amazon.com
	3
	1

	http://www.aol.com
	18
	1

	http://www.cnn.com
	11
	2

	http://www.ebay.com
	7
	2

	http://froogle.google.com
	1
	1

	http://www.msn.com
	9
	1

	http://www.myspace.com
	2
	2

	http://www.wikipedia.org
	3
	1

	http://www.yahoo.com
	4
	1

	http://www.youtube.com
	7
	3

To be clear, I'm not suggesting combining scripts with
 stylesheets. Multiple scripts should be combined into a single script,
 and multiple stylesheets should be combined into a single stylesheet. In
 the ideal situation, there would be no more than one script and one
 stylesheet in each page.
The following examples show how combining scripts improves the end
 user response time. The page with the combined scripts loads
 38% faster. Combining stylesheets produces similar
 performance improvements. For the rest of this section I'll talk only
 about scripts (because they're used in greater numbers), but everything
 discussed applies equally to stylesheets.
	Separate Scripts
	http://stevesouders.com/hpws/combo-none.php

	Combined Scripts
	http://stevesouders.com/hpws/combo.php

For developers who have been trained to write modular code
 (whether in JavaScript or some other programming language), this
 suggestion of combining everything into a single file seems like a step
 backward, and indeed it would be bad in your development environment to
 combine all your JavaScript into a single file. One page might need
 script1, script2, and script3, while another page needs script1, script3, script4, and script5. The solution is to follow the model
 of compiled languages and keep the JavaScript modular while putting in
 place a build process for generating a target file from a set of
 specified modules.
It's easy to imagine a build process that includes combining
 scripts and stylesheets—simply concatenate the appropriate files into a
 single file. Combining files is easy. This step could also be an
 opportunity to minify the files (see Chapter 12). The difficult part can be
 the growth in the number of combinations. If you have a lot of pages
 with different module requirements, the number of combinations can be
 large. With 10 scripts you could have over a thousand combinations!
 Don't go down the path of forcing every page to have every module
 whether they need it or not. In my experience, a web site with many
 pages has a dozen or so different module combinations. It's worth the
 time to analyze your pages and see whether the combinatorics is
 manageable.

Conclusion

This chapter covered the techniques we've used at Yahoo! to reduce
 the number of HTTP requests in web pages without compromising the pages'
 design. The rules described in later chapters also present guidelines
 that help reduce the number of HTTP requests, but they focus primarily
 on subsequent page views. For components that are not critical to the
 initial rendering of the page, the post-onload
 download technique described in Chapter 10 helps by postponing
 these HTTP requests until after the page is loaded.
This chapter's rule is the one that is most effective in reducing
 HTTP requests for first-time visitors to your web site; that's why I put
 it first, and why it's the most important rule. Following its guidelines
 improves both first-time views and subsequent views. A fast response
 time on that first page view can make the difference between a user who
 abandons your site and one who comes back again and again.
Make fewer HTTP
 requests.

Chapter 4. Rule 2: Use a Content Delivery Network

The average user's bandwidth increases every year, but a user's
 proximity to your web server still has an impact on a page's response
 time. Web startups often have all their servers in one location. If they
 survive the startup phase and build a larger audience, these companies
 face the reality that a single server location is no longer
 sufficient—it's necessary to deploy content across multiple,
 geographically dispersed servers.
As a first step to implementing geographically dispersed content,
 don't attempt to redesign your web application to
 work in a distributed architecture. Depending on the application, a
 redesign could include daunting tasks such as synchronizing session state
 and replicating database transactions across server locations. Attempts to
 reduce the distance between users and your content could be delayed by, or
 never pass, this redesign step.
The correct first step is found by recalling the Performance Golden Rule, described in Chapter 1:
Only 10–20% of the end user response time is spent downloading the
 HTML document. The other 80–90% is spent downloading all the components
 in the page.

If the application web servers are closer to
 the user, the response time of one HTTP request is
 improved. On the other hand, if the component web
 servers are closer to the user, the response times of
 many HTTP requests are improved. Rather than starting
 with the difficult task of redesigning your application in order to
 disperse the application web servers, it's better to first disperse the
 component web servers. This not only achieves a bigger reduction in
 response times, it's also easier thanks to content delivery networks.
Content Delivery Networks

A content delivery network (CDN) is a collection of web servers
 distributed across multiple locations to deliver content to users more
 efficiently. This efficiency is typically discussed as a performance
 issue, but it can also result in cost savings. When optimizing for
 performance, the server selected for delivering content to a specific
 user is based on a measure of network proximity. For example, the CDN
 may choose the server with the fewest network hops or the server with
 the quickest response time.
Some large Internet companies own their own CDN, but it's cost
 effective to use a CDN service provider. Akamai Technologies, Inc. is
 the industry leader. In 2005, Akamai acquired Speedera Networks, the
 primary low-cost alternative. Mirror Image Internet, Inc. is now the
 leading alternative to Akamai. Limelight Networks, Inc. is another
 competitor. Other providers, such as SAVVIS Inc., specialize in niche
 markets such as video content delivery.
Table 4-1 shows
 10 top Internet sites in the U.S. and the CDN service providers they
 use.
Table 4-1. CDN service providers used by top sites
	Web
 site
	CDN

	http://www.amazon.com
	Akamai

	http://www.aol.com
	Akamai

	http://www.cnn.com
	
	http://www.ebay.com
	Akamai, Mirror
 Image

	http://www.google.com
	
	http://www.msn.com
	SAVVIS

	http://www.myspace.com
	Akamai,
 Limelight

	http://www.wikipedia.org
	
	http://www.yahoo.com
	Akamai

	http://www.youtube.com
	

You can see that:
	Five use Akamai

	One uses Mirror Image

	One uses Limelight

	One uses SAVVIS

	Four either don't use a CDN or use a homegrown CDN
 solution

Smaller and noncommercial web sites might not be able to afford
 the cost of these CDN services. There are several free CDN services
 available. Globule (http://www.globule.org) is an
 Apache module developed at Vrije Universiteit in Amsterdam. CoDeeN
 (http://codeen.cs.princeton.edu) was built at
 Princeton University on top of PlanetLab. CoralCDN (http://www.coralcdn.org) is run out of New York
 University. They are deployed in different ways. Some require that end
 users configure their browsers to use a proxy. Others require developers
 to change the URL of their components to use a different hostname. Be
 wary of any that use HTTP redirects to point users to a local server, as
 this slows down web pages (see Chapter 13).
In addition to improved response times, CDNs bring other benefits.
 Their services include backups, extended storage capacity, and caching.
 A CDN can also help absorb spikes in traffic, for example, during times
 of peak weather or financial news, or during popular sporting or
 entertainment events.
One drawback to relying on a CDN is that your response times can
 be affected by traffic from other web sites, possibly even those of your
 competitors. A CDN service provider typically shares its web servers
 across all its clients. Another drawback is the occasional inconvenience
 of not having direct control of the content servers. For example,
 modifying HTTP response headers must be done through the service
 provider rather than directly by your ops team. Finally, if your CDN
 service provider's performance degrades, so does yours. In Table 4-1, you can see that
 eBay and MySpace each use two CDN service providers, a smart move if you
 want to hedge your bets.
CDNs are used to deliver static content, such as images, scripts,
 stylesheets, and Flash. Serving dynamic HTML pages involves specialized
 hosting requirements: database connections, state management,
 authentication, hardware and OS optimizations, etc. These complexities
 are beyond what a CDN provides. Static files, on the other hand, are
 easy to host and have few dependencies. That is why a CDN is easily
 leveraged to improve the response times for a geographically dispersed
 user population.

The Savings

The two online examples discussed in this section demonstrate the
 response time improvements gained from using a CDN. Both examples
 include the same test components: five scripts, one stylesheet, and
 eight images. In the first example, these components are hosted on the
 Akamai Technologies CDN. In the second example, they are hosted on a
 single web server.
	CDN
	http://stevesouders.com/hpws/ex-cdn.php

	No CDN
	http://stevesouders.com/hpws/ex-nocdn.php

The example with components hosted on the CDN loaded 18% faster
 than the page with all components hosted from a single web server (1013
 milliseconds versus 1232 milliseconds). I tested this over DSL (~900
 Kbps) from my home in California. Your results will vary depending on
 your connection speed and geographic location. The single web server is
 located near Washington, DC. The closer you live to Washington, DC, the
 less of a difference you'll see in response times in the CDN
 example.
If you conduct your own response time tests to gauge the benefits
 of using a CDN, it's important to keep in mind that the location from
 which you run your test has an impact on the results. For example, based
 on the assumption that most web companies choose a data center close to
 their offices, your web client at work is probably located close to your
 current web servers. Thus, if you run a test from your browser at work,
 the response times without using a CDN are often
 best case. It's important to remember that most of your users are not
 located that close to your web servers. To measure the true impact of
 switching to a CDN, you need to measure the response times from multiple
 geographic locations. Services such as Keynote Systems (http://www.keynote.com) and Gomez (http://www.gomez.com) are helpful for conducting such
 tests.
At Yahoo!, this factor threw us off for awhile. Before switching
 Yahoo! Shopping to Akamai, our preliminary tests were run from a lab at
 Yahoo! headquarters, located near a Yahoo! data center. The response
 time improvements gained by switching to Akamai's CDN—as measured from
 that lab—were less than 5% (not very impressive). We knew the response
 time improvements would be better when we exposed the CDN change to our
 live users, spread around the world. When we exposed the change to end
 users, there was an overall 20% reduction in response times on the
 Yahoo! Shopping site, just from moving all the static components to a
 CDN.
Use a content delivery
 network.

Chapter 5. Rule 3: Add an Expires Header

Fast response time is not your only consideration when designing web
 pages. If it were, then we'd all take Rule 1 to an extreme and place no
 images, scripts, or stylesheets in our pages. However, we all understand
 that images, scripts, and stylesheets can enhance the user experience,
 even if it means that the page will take longer to load. Rule 3, described
 in this chapter, shows how you can improve page performance by making sure
 these components are configured to maximize the browser's caching
 capabilities.
Today's web pages include many components and that number continues
 to grow. A first-time visitor to your page may have to make several HTTP
 requests, but by using a future Expires
 header, you make those components cacheable. This avoids unnecessary HTTP
 requests on subsequent page views. A future Expires header is most often used with images,
 but it should be used on all components, including
 scripts, stylesheets, and Flash. Most top web sites are not currently
 doing this. In this chapter, I point out these sites and show why their
 pages aren't as fast as they could be. Adding a future Expires header incurs some additional
 development costs, as described in the section "Revving Filenames."
Expires Header

Browsers (and proxies) use a cache to reduce the number of HTTP
 requests and decrease the size of HTTP responses, thus making web pages
 load faster. A web server uses the Expires header to tell the web client that it
 can use the current copy of a component until the specified time. The
 HTTP specification summarizes this header as "the date/time after which
 the response is considered stale." It is sent in the HTTP
 response.
Expires: Thu, 15 Apr 2010 20:00:00 GMT
This is a far future Expires
 header, telling the browser that this response won't be stale
 until April 15, 2010. If this header is returned for an image in a page,
 the browser uses the cached image on subsequent page views, reducing the
 number of HTTP requests by one. See Chapter 2 for
 a review of the Expires header and
 HTTP.

Max-Age and mod_expires

Before I explain how better caching improves performance, it's
 important to mention an alternative to the Expires header. The Cache-Control header was introduced in
 HTTP/1.1 to overcome limitations with the Expires header. Because the Expires header uses a specific date, it has
 stricter clock synchronization requirements between server and client.
 Also, the expiration dates have to be constantly checked, and when that
 future date finally arrives, a new date must be provided in the server's
 configuration.
Alternatively, Cache-Control
 uses the max-age directive to specify
 how long a component is cached. It defines the freshness window in
 seconds. If less than max-age seconds
 have passed since the component was requested, the browser will use the
 cached version, thus avoiding an additional HTTP request. A far future
 max-age header might set the
 freshness window 10 years in the future.
Cache-Control: max-age=315360000
Using Cache-Control with
 max-age overcomes the limitations of
 Expires, but you still might want an
 Expires header for browsers that
 don't support HTTP/1.1 (even though this is probably less than 1% of
 your traffic). You could specify both response headers, Expires and Cache-Control max-age. If both are present,
 the HTTP specification dictates that the max-age directive will override the Expires header. However, if you're
 conscientious, you'll still worry about the clock synchronization and
 configuration maintenance issues with Expires.
Fortunately, the mod_expires
 Apache module (http://httpd.apache.org/docs/2.0/mod/mod_expires.html)
 lets you use an Expires header that
 sets the date in a relative fashion similar to max-age. This is done via the ExpiresDefault directive. In this example, the
 expiration date for images, scripts, and stylesheets is set 10 years
 from the time of the request:
<FilesMatch "\.(gif|jpg|js|css)$">
 ExpiresDefault "access plus 10 years"
</FilesMatch>
The time can be specified in years, months, weeks, days, hours,
 minutes, or seconds. It sends both an Expires header and a Cache-Control max-age header in the
 response.
Expires: Sun, 16 Oct 2016 05:43:02 GMT
Cache-Control: max-age=315360000
The actual value for the expiration date varies depending on when
 the request is received, but in this case, it's always 10 years out.
 Since Cache-Control takes precedence
 and is expressed in seconds relative to the request, clock
 synchronization issues are avoided. There is no fixed date to worry
 about updating, and it works in HTTP/1.0 browsers. The best solution to
 improve caching across all browsers is to use an Expires header set with ExpiresDefault.
A survey of 10 top web sites (see Table 5-1) shows that of the seven that
 use these headers, five use both Expires and Cache-Control max-age. One uses only Expires and another uses only Cache-Control max-age. Sadly, three don't use
 either.
Table 5-1. Usage of Expires and max-age
	Web
 site
	Expires
	max-age

	http://www.amazon.com
	 	
	http://www.aol.com
	✓
	✓

	http://www.cnn.com
	 	
	http://www.ebay.com
	✓
	✓

	http://www.google.com
	✓
	
	http://www.msn.com
	✓
	✓

	http://www.myspace.com
	 	✓

	http://www.wikipedia.org
	✓
	✓

	http://www.yahoo.com
	✓
	✓

	http://www.youtube.com
	 	

Empty Cache vs. Primed Cache

Using a far future Expires
 header affects page views only after a user has already visited your
 site. It has no effect on the number of HTTP requests when a user visits
 your site for the first time and the browser's cache is empty.
 Therefore, the impact of this performance improvement depends on how
 often users hit your pages with a primed cache. It's likely that a
 majority of your traffic comes from users with a primed cache. Making
 your components cacheable improves the response time for these
 users.
When I say "empty cache" or "primed cache," I mean the state of
 the browser's cache relative to your page. The cache is "empty" if none
 of your page's components are in the cache. The browser's cache might
 contain components from other web sites, but that doesn't help your
 page. Conversely, the cache is "primed" if all of your page's cacheable
 components are in the cache.
The number of empty versus primed cache page views depends on the
 nature of the web application. A site like "word of the day" might only
 get one page view per session from the typical user. There are several
 reasons why the "word of the day" components might not be in the cache
 the next time a user visits the site:
	Despite her desire for a better vocabulary, a user may visit
 the page only weekly or monthly, rather than daily.

	A user may have manually cleared her cache since her last
 visit.

	A user may have visited so many other web sites that her cache
 filled up, and the "word of the day" components were pushed
 out.

	The browser or an antivirus application may have cleared the
 cache when the browser was closed.

With only one page view per session, it's not very likely that
 "word of the day" components are in the cache, so the percentage of
 primed cache page views is low.
On the other hand, a travel or email web site might get multiple
 page views per user session and the number of primed cache page views is
 likely to be high. In this instance, more page views will find your
 components in the browser's cache.
We measured this at Yahoo! and found that the number of
 unique users who came in at least once a day with a primed
 cache ranged from 40–60%, depending on the Yahoo! property.
 That same study revealed that the number of page views with a
 primed cache was 75–85%.[1] Note that the first statistic measures "unique users"
 while the second measures "page views." The percentage of page views
 with a primed cache is higher than the percentage of unique users with a
 primed cache because many Yahoo! properties receive multiple page views
 per session. Users show up once during the day with an empty cache, but
 make several subsequent page views with a primed cache.
These browser cache statistics illustrate why it's important to
 optimize the primed cache experience. We want the 40–60% of users and
 75–85% of page views with a primed cache to be optimized. The
 percentages for your site may vary, but if users typically visit your
 site at least once a month or have multiple page views per session, the
 statistics are probably similar. By using a far future Expires header you increase the number of
 components that are cached by the browser and reused on subsequent page
 views without sending a single byte over the user's Internet
 connection.

[1] * Tenni Theurer, "Performance
 Research, Part 2: Browser Cache Usage - Exposed!", http://yuiblog.com/blog/2007/01/04/performance-research-part-2.

More Than Just Images

Using a far future Expires
 header on images is fairly common, but this best practice should not be
 limited to images. A far future Expires header should be included on any
 component that changes infrequently, including scripts, stylesheets, and
 Flash components. Typically, an HTML document won't have a future
 Expires header because it contains
 dynamic content that is updated on each user request.
In the ideal situation, all the components in a page would have a
 far future Expires header, and
 subsequent page views would make just a single HTTP request for the HTML
 document. When all of the document's components are read from the
 browser's cache, the response time is cut by 50% or more.
I surveyed 10 top Internet sites in the U.S and recorded how many
 of the images, scripts, and stylesheets had an Expires or a Cache-Control max-age header set at least 30
 days in the future. As shown in Table 5-2, the news isn't good.
 Three types of components are tallied: images, stylesheets, and scripts.
 Table 5-2 shows the number of
 components that are cacheable for at least 30 days out of the total
 number of components of each type. Let's see to what extent these sites
 employ the practice of making their components cacheable:
	Five sites make a majority of their
 images cacheable for 30 days or more.

	Four sites make a majority of their
 stylesheets cacheable for 30 days or
 more.

	Two sites make a majority of their
 scripts cacheable for 30 days or more.

Table 5-2. Components with an Expires header
	Web
 site
	Images
	Stylesheets
	Scripts
	Median Last-Modified
 Δ

	http://www.amazon.com
	0/62
	0/1
	0/3
	114 days

	http://www.aol.com
	23/43
	1/1
	6/18
	217 days

	http://www.cnn.com
	0/138
	0/2
	2/11
	227 days

	http://www.ebay.com
	16/20
	0/2
	0/7
	140 days

	http://froogle.google.com
	1/23
	0/1
	0/1
	454 days

	http://www.msn.com
	32/35
	1/1
	3/9
	34 days

	http://www.myspace.com
	0/18
	0/2
	0/2
	1 day

	http://www.wikipedia.org
	6/8
	1/1
	2/3
	1 day

	http://www.yahoo.com
	23/23
	1/1
	4/4
	-

	http://www.youtube.com
	0/32
	0/3
	0/7
	26 days

The overall percentage from Table 5-2 indicates that 74.7% of
 all components were either not cacheable or were cacheable for less than
 30 days. One possible explanation is that these components shouldn't be
 cached. For example, a news site such as cnn.com, with 0 out of 138 images
 cacheable, may have many news photos that should be constantly refreshed
 in case of updates, rather than cached in the user's browser. The
 Last-Modified header allows us to see
 when a component was last modified. If components weren't cached because
 they change frequently, we'd expect to see recent Last-Modified dates.
Table 5-2 shows the
 median Last-Modified delta (the difference between the current date and
 the Last-Modified date) for all uncached components. In the case of
 cnn.com the median Last-Modified
 delta is 227 days. Half of the uncached components had not been modified
 in over 227 days, so image freshness is not the issue here.
This was the case at Yahoo!, as well. In the past, Yahoo! did not
 make scripts, stylesheets, nor some images cacheable. The logic behind
 not caching these components was that the user should request them every
 time in order to get updates because they changed frequently. However,
 when we discovered how infrequently the files changed in practice, we
 realized that making them cacheable resulted in a better user
 experience. Yahoo! chose to make them cacheable even at the cost of
 additional development expense, as described in the next section.

Revving Filenames

If we configure components to be cached by browsers and proxies,
 how do users get updates when those components change? When an Expires header is present, the cached version
 is used until the expiration date. The browser doesn't check for any
 changes until after the expiration date has passed. That's why using the
 Expires header significantly reduces
 response times—browsers read the components straight from disk without
 generating any HTTP traffic. Thus, even if you update the component on
 your servers, users who have already been to your site will most likely
 not get the updated component (since the previous version is in their
 cache).
To ensure users get the latest version of a component, change the
 component's filename in all of your HTML pages. Mark Nottingham's web
 article "Caching Tutorial for Web Authors and Webmasters" says:
The most effective solution is to change any links to them; that
 way, completely new representations will be loaded fresh from the
 origin server.

Depending on how you construct your HTML pages, this practice may
 be either trivial or painful. If you generate your HTML pages
 dynamically using PHP, Perl, etc., a simple solution is to use variables
 for all your component filenames. With this approach, updating a
 filename across all your pages is as simple as changing the variable in
 one location. At Yahoo! we often make this step part of the build
 process: a version number is embedded in the component's filename (for
 example, yahoo_2.0.6.js) and the
 revved filename is automatically updated in the global mapping.
 Embedding the version number not only changes the filename, it also
 makes it easier to find the exact source code files when
 debugging.

Examples

The following two examples demonstrate the performance improvement
 achieved by using a far future Expires header. Both examples include the same
 components: six images, three scripts, and one stylesheet. In the first
 example, these components do not have a far future
 Expires header. In the second
 example, they do.
	No Expires
	http://stevesouders.com/hpws/expiresoff.php

	Far Future Expires
	http://stevesouders.com/hpws/expireson.php

Adding the far future Expires
 header drops the response time for subsequent page views from ~600
 milliseconds to ~260 milliseconds, a 57% reduction
 when tested over DSL at 900 Kbps. With more components in the page,
 response times improve even more. If your pages average more than six
 images, three scripts, and one stylesheet, your pages should show a
 speed up greater than the 57% I found in my example.
Where exactly do these response time savings come from? As I
 mentioned earlier, a component with a far future Expires header is cached, and on subsequent
 requests the browser reads it straight from disk, avoiding an HTTP
 request. However, I didn't describe the converse. If a component
 does not have a far future Expires header, it's still stored in the
 browser's cache. On subsequent requests the browser checks the cache and
 finds that the component is expired (in HTTP terms it is "stale"). For
 efficiency, the browser sends a conditional GET request
 to the origin server. See Chapter 2 for an
 example. If the component hasn't changed, the origin server avoids
 sending back the entire component and instead sends back a few headers
 telling the browser to use the component in its cache.
Those conditional requests add up. That's where the savings come
 from. Most of the time, as we saw when looking at the 10 top web sites,
 the component hasn't changed and the browser is going to read it from
 disk anyway. You can cut your response times in half by using the
 Expires header to avoid these
 unnecessary HTTP requests.
Add a far future Expires header to your
 components.

Chapter 6. Rule 4: Gzip Components

The time it takes to transfer an HTTP request and response across
 the network can be significantly reduced by decisions made by frontend
 engineers. It's true that the end user's bandwidth speed, Internet service
 provider, proximity to peering exchange points, and other factors are
 beyond the control of the development team. However, there are more
 variables that affect response times. Rules 1 and 3 address response times
 by eliminating unnecessary HTTP requests. If there is no HTTP request then
 there is no network activity—the ideal situation. Rule 2 improves response
 times by bringing the HTTP response closer to the user.
Rule 4, examined in this chapter, reduces response times by reducing
 the size of the HTTP response. If an HTTP request results in a smaller
 response, the transfer time decreases because fewer packets must travel
 from the server to the client. This effect is even greater for slower
 bandwidth speeds. This chapter shows how to use gzip encoding to compress
 HTTP responses, and thus reduce network response times. This is the
 easiest technique for reducing page weight and it also has the biggest
 impact. There are other ways you can reduce the HTML document's page
 weight (strip comments and shorten URLs, for example), but they are
 typically less effective and require more work.
How Compression Works

The same file compression that has been used for decades to reduce
 file sizes in email messages and on FTP sites is also used to deliver
 compressed web pages to browsers. Starting with HTTP/1.1, web clients
 indicate support for compression with the Accept-Encoding header in the HTTP
 request.
Accept-Encoding: gzip, deflate
If the web server sees this header in the request, it may compress
 the response using one of the methods listed by the client. The web
 server notifies the web client of this via the Content-Encoding header in the
 response.
Content-Encoding: gzip
Gzip is currently the most popular and effective compression
 method. It is a free format (i.e., unencumbered by patents or other
 restrictions) developed by the GNU project and standardized by RFC 1952.
 The only other compression format you're likely to see is deflate, but it's much less popular. In fact,
 I have seen only one site that uses deflate: msn.com. Browsers that support deflate also
 support gzip, but several browsers that support gzip do not support
 deflate, so gzip is the preferred method of compression.

What to Compress

Servers choose what to gzip based on file type, but are typically
 too limited in what they are configured to compress. Many web sites gzip
 their HTML documents. It's also worthwhile to gzip your scripts and
 stylesheets, but many web sites miss this opportunity (in fact, it's
 worthwhile to compress any text response including XML and JSON, but the
 focus here is on scripts and stylesheets since they're the most
 prevalent). Image and PDF files should not be
 gzipped because they are already compressed. Trying to gzip them not
 only wastes CPU resources, it can also potentially increase file
 sizes.
There is a cost to gzipping: it takes additional CPU cycles on the
 server to carry out the compression and on the client to decompress the
 gzipped file. To determine whether the benefits outweigh the costs you
 would have to consider the size of the response, the bandwidth of the
 connection, and the Internet distance between the client and the server.
 This information isn't generally available, and even if it were, there
 would be too many variables to take into consideration. Generally, it's
 worth gzipping any file greater than 1 or 2K. The mod_gzip_minimum_file_size directive controls
 the minimum file size you're willing to compress. The default value is
 500 bytes.
I looked at the use of gzip on 10 of the most popular U.S. web
 sites. Nine sites gzipped their HTML documents, seven sites gzipped
 most of their scripts and stylesheets, and only
 five gzipped all of their scripts and stylesheets.
 The sites that don't compress all of their HTML, stylesheets, and
 scripts are missing the opportunity to reduce the page weight by up to
 70%, as we'll see in the next section, "The Savings." A survey of major web sites and what they
 choose to compress is shown in Table 6-1.
Table 6-1. Gzip use for 10 popular U.S. web sites
	Web site
	Gzip HTML
	Gzip scripts
	Gzip stylesheets

	http://www.amazon.com
	✓
	 	
	http://www.aol.com
	✓
	some
	some

	http://www.cnn.com
	 	 	
	http://www.ebay.com
	✓
	 	
	http://froogle.google.com
	✓
	✓
	✓

	http://www.msn.com
	✓
	deflate
	deflate

	http://www.myspace.com
	✓
	✓
	✓

	http://www.wikipedia.org
	✓
	✓
	✓

	http://www.yahoo.com
	✓
	✓
	✓

	http://www.youtube.com
	✓
	some
	some

The Savings

Gzipping generally reduces the response size by about 70%. Table 6-2 shows examples of size
 reductions for scripts and stylesheets (small and large). In addition to
 gzip, the results for deflate are also shown.
Table 6-2. Compression sizes using gzip and deflate
	File type
	Uncompressed size
	Gzip size
	Gzip savings
	Deflate size
	Deflate savings

	Script
	3,277
 bytes
	1076 bytes
	67%
	1112 bytes
	66%

	Script
	39,713
 bytes
	14,488
 bytes
	64%
	16,583
 bytes
	58%

	Stylesheet
	968 bytes
	426 bytes
	56%
	463 bytes
	52%

	Stylesheet
	14,122
 bytes
	3,748
 bytes
	73%
	4,665
 bytes
	67%

It's clear from Table 6-2 why gzip is typically the
 choice for compression. Gzip reduces the response by about 66% overall,
 while deflate reduces the response by 60%. For these files, gzip
 compresses ~6% more than deflate.

Configuration

The module used for configuring gzip depends on your version of
 Apache: Apache 1.3 uses mod_gzip
 while Apache 2.x uses mod_deflate.
 This section describes how to configure each module, and focuses on
 Apache because it is the most popular web server on the Internet.
Apache 1.3: mod_gzip

Gzip compression for Apache 1.3 is provided by the mod_gzip module. There are many mod_gzip configuration directives, and these
 are described on the mod_gzip web
 site (http://www.schroepl.net/projekte/mod_gzip). Here are
 the most commonly used directives:
	mod_gzip_on
	Enables mod_gzip.

	mod_gzip_item_include
mod_gzip_item_exclude
	Define which requests to gzip or not to gzip based on file
 type, MIME type, user agent, etc.

Most web hosting services have mod_gzip turned on for text/html by default. The most important
 configuration change you should make is to explicitly compress scripts
 and stylesheets. You can do this using the following Apache 1.3
 directives:
mod_gzip_item_include file \.js$
mod_gzip_item_include mime ^application/x-javascript$
mod_gzip_item_include file \.css$
mod_gzip_item_include mime ^text/css$
The gzip command-line utility offers an option that controls the
 degree of compression, trading off CPU usage for size reduction, but
 there is no configuration directive to control the compression level
 in mod_gzip. If the CPU load caused
 by streaming compression is an issue, consider caching the compressed
 responses, either on disk or in memory. Compressing your responses and
 updating the cache manually adds to your maintenance work and can
 become a burden. Fortunately, there are options for mod_gzip to automatically save the gzipped
 content to disk and update that gzipped content when the source
 changes. Use the mod_gzip_can_negotiate and mod_gzip_update_static directives to do
 this.

Apache 2.x: mod_deflate

Compression in Apache 2.x is done with the mod_deflate module. Despite the name of the
 module, it does compression using gzip. The basic configuration shown
 in the previous section for compressing scripts and stylesheets is
 done in one line:
AddOutputFilterByType DEFLATE text/html text/css application/x-javascript
Unlike mod_gzip, mod_deflate contains a directive for
 controlling the level of compression: DeflateCompressionLevel. For more
 configuration information, see the Apache 2.0 mod_deflate documentation at http://httpd.apache.org/docs/2.0/mod/mod_deflate.html.

Proxy Caching

The configuration described so far works fine when the browser
 talks directly to the web server. The web server determines whether to
 compress the response based on Accept-Encoding. The browser caches the
 response, whether or not it has been compressed, based on other HTTP
 headers in the response such as Expires and Cache-Control (see Chapter 5).
When the browser sends the request through a proxy it gets more
 complicated. Suppose that the first request to the proxy for a certain
 URL comes from a browser that does not support
 gzip. This is the first request to the proxy, so its cache is empty. The
 proxy forwards that request to the web server. The web server's response
 is uncompressed. That uncompressed response is cached by the proxy and
 sent on to the browser. Now, suppose the second request to the proxy for
 the same URL comes from a browser that does support
 gzip. The proxy responds with the (uncompressed) contents in its cache,
 missing the opportunity to use gzip. The situation is worse if the
 sequence is reversed: when the first request is from a browser that
 supports gzip and the second request is from a browser that doesn't. In
 this case, the proxy has a compressed version of the contents in its
 cache and serves that version to all subsequent browsers whether they
 support gzip or not.
The way around this problem is to add the Vary header in the response from your web
 server. The web server tells the proxy to vary the cached responses
 based on one or more request headers. Because the decision to compress
 is based on the Accept-Encoding
 request header, it makes sense to include Accept-Encoding in the server's Vary response header.
Vary: Accept-Encoding
This causes the proxy to cache multiple versions of the response,
 one for each value of the Accept-Encoding request header. In our
 previous example, the proxy would cache two versions of each response:
 the compressed content for when Accept-Encoding is gzip and the uncompressed content for when
 Accept-Encoding is not specified at
 all. When a browser hits the proxy with the request header Accept-Encoding: gzip it receives the
 compressed response. Browsers without an Accept-Encoding request header receive the
 uncompressed response. By default, mod_gzip adds the Vary: Accept-Encoding header to all responses
 to provoke the right behavior from the proxy. For more information about
 Vary, visit http://www.w3.org/protocols/rfc2616/rfc2616-sec14.html#sec14.44.

Edge Cases

The coordination of compression between servers and clients seems
 simple, but it must work correctly. The page could easily break if
 either the client or server makes a mistake (sending gzipped content to
 a client that can't understand it, forgetting to declare a compressed
 response as gzip-encoded, etc.). Mistakes don't happen often, but there
 are edge cases to take into
 consideration.
Approximately 90% of today's Internet traffic travels through
 browsers that claim to support gzip. If a browser says it supports gzip
 you can generally trust it. There are some known bugs with unpatched
 early versions of Internet Explorer, specifically Internet Explorer 5.5
 and Internet Explorer 6.0 SP1, and Microsoft has published two Knowledge
 Base articles documenting the problem (http://support.microsoft.com/kb/313712/en-us and http://support.microsoft.com/kb/312496/en-us). There are
 other known problems, but they occur on browsers that represent less
 than 1% of Internet traffic. A safe approach is to serve compressed
 content only for browsers that are proven to support it, such as
 Internet Explorer 6.0 and later and Mozilla 5.0 and later. This is
 called a browser whitelist
 approach.
With this approach you may miss the opportunity to serve
 compressed content to a few browsers that would have supported it. The
 alternative—serving compressed content to a browser that
 can't support it—is far worse. Using mod_gzip in Apache 1.3, a browser whitelist is
 specified using mod_gzip_item_include
 with the appropriate User-Agent
 values:
mod_gzip_item_include reqheader "User-Agent: MSIE [6-9]"
mod_gzip_item_include reqheader "User-Agent: Mozilla/[5-9]"
In Apache 2.x use the BrowserMatch directive:
BrowserMatch ^MSIE [6-9] gzip
BrowserMatch ^Mozilla/[5-9] gzip
Adding proxy caches to the mix complicates the handling of these
 edge case browsers. It's not possible to share your browser whitelist
 configuration with the proxy. The directives used to set up the browser
 whitelist are too complex to encode using HTTP headers. The best you can
 do is add User-Agent to the Vary header as another criterion for the
 proxy.
Vary: Accept-Encoding,User-Agent
Once again, mod_gzip takes care
 of this automatically by adding the User-Agent field to the Vary header when it detects that you're using
 a browser whitelist. Unfortunately, there are thousands of different
 values for User-Agent. It's unlikely
 that the proxy is able to cache all the combinations of Accept-Encoding and User-Agent for all the URLs it proxies. The
 mod_gzip documentation (http://www.schroepl.net/projekte/mod_gzip/cache.htm) goes
 as far as to say, "using filter rules evaluating the UserAgent HTTP
 header will lead to totally disabling any caching for response packets."
 Because this virtually defeats proxy caching, another approach is to
 disable proxy caching explicitly using a Vary:
 * or Cache-Control: private
 header. Because the Vary: * header
 prevents the browser from using cached components, the Cache-Control: private header is preferred and
 is used by both Google and Yahoo!. Keep in mind that this disables proxy
 caching for all browsers and therefore increases
 your bandwidth costs because proxies won't cache your content.
This decision about how to balance between compression and proxy
 support is complex, trading off fast response times, reduced bandwidth
 costs, and edge case browser bugs. The right answer for you depends on
 your site:
	If your site has few users and they're a niche audience (for
 example, an intranet or all using Firefox 1.5), edge case browsers
 are less of a concern. Compress your content and use Vary: Accept-Encoding. This improves the
 user experience by reducing the size of components and leveraging
 proxy caches.

	If you're watching bandwidth costs closely, do the same as in
 the previous case: compress your content and use Vary: Accept-Encoding. This reduces the
 bandwidth costs from your servers and increases the number of
 requests handled by proxies.

	If you have a large, diverse audience, can afford higher
 bandwidth costs, and have a reputation for high quality, compress
 your content and use Cache-Control:
 Private. This disables proxies but avoids edge case
 bugs.

There is one more proxy edge case worth pointing out. The problem
 is that, by default, ETags (explained in Chapter 15) don't reflect whether the
 content is compressed, so proxies might serve the wrong content to a
 browser. The issue is described in Apache's bug database (http://issues.apache.org/bugzilla/show_bug.cgi?id=39727).
 The best solution is to disable ETags. Since that's also the solution
 proposed in Chapter 15, I go into
 more detail about ETags there.

Gzip in Action

Three examples for Rule 4 demonstrate the different degrees of
 compression you can deploy across your site.
	Nothing Gzipped
	http://stevesouders.com/hpws/nogzip.html

	HTML Gzipped
	http://stevesouders.com/hpws/gzip-html.html

	Everything Gzipped
	http://stevesouders.com/hpws/gzip-all.html

In addition to the 48.6K HTML document, each example page contains
 a 59.9K stylesheet and a 68.0K script. Table 6-3 shows how the total page
 size varies with the amount of compression that is performed.
 Compressing the HTML document, stylesheet, and script reduces this page
 size from 177.6K to 46.4K, a size reduction of
 73.8%! Compression typically reduces the content size by
 approximately 70%, but it varies depending on the amount of whitespace
 and character repetition.
Table 6-3. Page weight savings for different levels of compression
	Example
	Components (HTML, CSS,
 JS)
	Total
 size
	Size
 savings
	Response
 time
	Time
 savings

	Nothing
 Gzipped
	48.6K, 59.9K,
 68.0K
	177.6K
	-
	1562 ms
	-

	HTML
 Gzipped
	13.9K, 59.9K,
 68.0K
	141.9K
	34.7K
 (19.7%)
	1411 ms
	151 ms
 (9.7%)

	Everything
 Gzipped
	13.9K, 14.4K,
 18.0K
	46.4K
	130.2K
 (73.8%)
	731 ms
	831 ms
 (53.2%)

The page with everything compressed loads ~831 milliseconds faster
 than the noncompressed example, a response time reduction of
 53.2%. This was measured over a 900 Kbps DSL line. The
 absolute response time values vary depending on Internet connection,
 CPU, browser, geographic location, etc. However, the relative savings
 remain about the same. A simple change in your web server configuration,
 compressing as many components as possible, dramatically improves the
 speed of your web pages.
Gzip your scripts and
 stylesheets.

Chapter 7. Rule 5: Put Stylesheets at the Top

A team running a major portal at Yahoo! added several DHTML features
 to their page while trying to ensure there was no adverse effect on
 response times. One of the more complex DHTML features, a pop-up DIV for sending email messages, was not part of
 the actual rendering of the page—it was accessible only after the page had
 loaded and the user clicked on the button to send the email message. Since
 it wasn't used to render the page, the frontend engineer put the CSS for
 the pop-up DIV in an external
 stylesheet and added the corresponding LINK tag at the bottom of the page with the
 expectation that including it at the end would make the page load
 faster.
The logic behind this made sense. Many other components (images,
 stylesheets, scripts, etc.) were required to render the page. Since
 components are (in general) downloaded in the order in which they appear
 in the document, putting the DHTML feature's stylesheet last would allow
 the more critical components to be downloaded first, resulting in a
 faster-loading page.
Or would it?
In Internet Explorer (still the most popular browser) the resulting
 page was noticeably slower than the old design. While trying to find ways
 to speed up the page, we discovered that moving the DHTML feature's
 stylesheet to the top of the document, in the HEAD, made the page load faster. This
 contradicted what we expected. How could putting the stylesheet first,
 thus delaying the critical components in the page, actually improve the
 page load time? Further investigation led to the creation of Rule
 5.
Progressive Rendering

Frontend engineers who care about performance want a page to load
 progressively; that is, we want the browser to display whatever content
 it has as soon as possible. This is especially important for pages with
 a lot of content and for users on slower Internet connections. The
 importance of giving users visual feedback has been well researched and
 documented. In his web article, [2] Jakob Nielson, pioneering usability engineer, stresses the
 importance of visual feedback in terms of a progress
 indicator.
Progress indicators have three main advantages: They reassure
 the user that the system has not crashed but is working on his or her
 problem; they indicate approximately how long the user can be expected
 to wait, thus allowing the user to do other activities during long
 waits; and they finally provide something for the user to look at,
 thus making the wait less painful. This latter advantage should not be
 underestimated and is one reason for recommending a graphic progress
 bar instead of just stating the expected remaining time in
 numbers.

In our case the HTML page is the progress
 indicator. When the browser loads the page progressively, the header,
 the navigation bar, the logo at the top, etc. all serve as visual
 feedback for the user who is waiting for the page. This improves the
 overall user experience.
The problem with putting stylesheets near the bottom of the
 document is that it prohibits progressive rendering in many browsers.
 Browsers block rendering to avoid having to redraw elements of the page
 if their styles change. Rule 5 has less to do with the actual time to
 load the page's components and more to do with how the browser reacts to
 the order of those components. In fact, the page that feels
 slower is ironically the page that loads the visible
 components faster. The browser delays showing any
 visible components while it and the user wait for the stylesheet at the
 bottom. The examples in the following section demonstrate this
 phenomenon, which I call the "Blank White Screen."

[2] * Jakob Nielson, "Response Times:
 The Three Important Limits," http://www.useit.com/papers/responsetime.html.

sleep.cgi

While building the examples of this phenomenon, I developed a tool
 that I've found extremely useful for showing how delayed components
 affect web pages: sleep.cgi. It's a
 simple Perl CGI program that takes the following parameters:
	sleep
	How long (in seconds) the response should be delayed. The
 default is 0.

	type
	The type of component to return. Possible values are
 gif, js, css, html, and swf. The default value is gif.

	expires
	One of three values: −1
 (returns an Expires header in
 the past), 0 (no Expires header is returned), and
 1 (returns an Expires header in the future). The
 default is 1.

	last
	A value of −1 returns a
 Last-Modified header with a
 date equal to the file's timestamp. A value of 0 results in no Last-Modified header being returned. The
 default is −1.

	redir
	A value of 1 causes a 302
 response that redirects back to the exact same URL with redir=1 removed.

The first example requires some slow images and a slow stylesheet.
 Those are achieved with the following requests to sleep.cgi:

<link rel="stylesheet" href="/bin/sleep.cgi?type=css&sleep=1&expires=-1&last=0">
Both the image and stylesheet use the expires=−1 option to get a response that has
 an Expires header in the past. This
 prevents the components from being cached so that you can run the test
 repeatedly and get the same experience each time (I also add a unique
 timestamp to each component's URL to further prevent caching). In order
 to reduce the variables in this test, I specify last=0 to remove the Last-Modified header from the response. The
 image request has a two-second delay (sleep=2), while the stylesheet is delayed only
 one second (sleep=1). This ensures
 that any delay seen is not due to the stylesheet's response time, but
 instead to its blocking behavior (which is what the page is
 testing).
Being able to exaggerate the response times of components makes it
 possible to visualize their effects on page loading and response times.
 I've made the Perl code available so others can use it for their own
 testing (http://stevesouders.com/hpws/sleep.txt).
 Copy the code into an executable file named sleep.cgi and place it in an executable
 directory on your web server.

Blank White Screen

This section shows two web pages that differ in just one respect:
 whether the stylesheet is at the top or bottom of the page. What a
 difference it makes to the user experience!
CSS at the Bottom

The first example demonstrates the harm of putting stylesheets
 at the bottom of the HTML document.
	CSS at the Bottom
	http://stevesouders.com/hpws/css-bottom.php

Notice how putting stylesheets near the end of the document can
 delay page loading. This problem is harder to track down because it
 only happens in Internet Explorer and depends on how the page is
 loaded. After working with the page, you'll notice that it
 occasionally loads slowly. When this happens, the page is completely
 blank until all the content blasts onto the screen at once, as
 illustrated in Figure 7-1. Progressive
 rendering has been thwarted. This is a bad user experience because
 there is no visual feedback to reassure the user that her request is
 being handled correctly. Instead, the user is left to wonder whether
 anything is happening. That's the moment when a user abandons your web
 site and navigates to your competitor.
[image: The blank white screen]

Figure 7-1. The blank white screen

Here are the cases where putting stylesheets at the bottom of
 the document causes the blank white screen problem to surface in
 Internet Explorer:
	In a new window
	Clicking the "new window" link in the example page opens
 "CSS at the Bottom" in a new window. Users often open new
 windows when navigating across sites, such as when going from a
 search results page to the actual target page.

	As a reload
	Clicking the Refresh button, a normal user behavior, is
 another way to trigger a blank white screen. Minimize and
 restore the window while the page is loading to see the blank
 white screen.

	As a home page
	Setting the browser's default page to http://stevesouders.com/hpws/css-bottom.php and
 opening a new browser window causes the blank white screen. Rule
 5 is important for any team that wants its web site to be used
 as a home page.

CSS at the Top

To avoid the blank white screen, move the stylesheet to the top
 in the document's HEAD. Doing this
 in the sample web site I've called "CSS at the Top" solves all the
 problem scenarios. No matter how the page is loaded—whether in a new
 window, as a reload, or as a home page—the page renders
 progressively.
	CSS at the Top
	http://stevesouders.com/hpws/css-top.php

Solved! There's just one more complexity to point out.
There are two ways you can include a stylesheet in your
 document: the LINK tag and the
 @import rule. An example LINK tag looks like this:
<link rel="stylesheet" href="styles1.css">
This is an example of a STYLE
 block with an @import rule:
<style>
@import url("styles2.css");
</style>
A STYLE block can contain
 multiple @import rules, but
 @import rules must precede all
 other rules. I've seen cases where this is overlooked, and developers
 spend time trying to determine why the stylesheet isn't loaded from an
 @import rule. For this reason, I
 prefer using the LINK tag (one less
 thing to keep track of). Beyond the easier syntax, there are also
 performance benefits to using LINK
 instead of @import. The @import rule causes the blank white screen
 phenomenon, even if used in the document HEAD, as shown in the following
 example.
	CSS at the Top Using @import
	http://stevesouders.com/hpws/css-top-import.php

Using the @import rule causes
 an unexpected ordering in how the components are downloaded. Figure 7-2 shows the HTTP traffic for all three
 examples. Each page contains eight HTTP requests:
	One HTML page

	Six images

	One stylesheet

The components in css-bottom.php and css-top.php are downloaded in the order in
 which they appear in the document. However, even though css-top-import.php has the stylesheet at
 the top in the document HEAD, the
 stylesheet is downloaded last because it uses
 @import. As a result, it has the
 blank white screen problem, just like css-bottom.php.
Figure 7-2 also shows that the
 overall time for each page to load (including all of the page's
 components) is the same: about 7.3 seconds. It's surprising that the
 pages that feel slower, css-bottom.php and css-top-import.php, actually download all
 the page's necessary components faster. They finish downloading the
 HTML page and all six images in 6.3 seconds, while css-top.php takes 7.3 seconds to download
 the page's required components. It takes css-top.php one second longer because it
 downloads the stylesheet early on, even though it's not needed for
 rendering. This delays the download of the six images by about one
 second. Even though the necessary components take longer to download,
 css-top.php displays more quickly
 because it renders progressively.
[image: Loading components]

Figure 7-2. Loading components

Great! We know what to do: put stylesheets in the
 document HEAD
 using the LINK
 tag. But if you're like me you're asking
 yourself, "Why does the browser work this way?"

Flash of Unstyled Content

The blank white screen phenomenon is due to browser behavior.
 Remember that our stylesheet wasn't even used to render the page—only to
 affect the DHTML feature for sending email messages. Even when Internet
 Explorer had all the necessary components, it waited to render them
 until the unnecessary stylesheet was also downloaded. The location of
 the stylesheet in the page doesn't affect download times, but it does
 affect rendering. David Hyatt has a great explanation of why the browser
 does this.[3]
If stylesheets are still loading, it is wasteful to construct
 the rendering tree, since you don't want to paint anything at all
 until all stylesheets have been loaded and parsed. Otherwise you'll
 run into a problem called FOUC (the flash of unstyled content
 problem), where you show content before it's ready.

The following example demonstrates this problem.
	CSS Flash of Unstyled Content
	http://stevesouders.com/hpws/css-fouc.php

In this example, the document uses one of the CSS rules from the
 stylesheet, but the stylesheet is (incorrectly) placed at the bottom.
 When the page loads progressively the text is displayed first, followed
 by the images as they arrive. Finally, when the stylesheet is
 successfully downloaded and parsed, the already-rendered text and images
 are redrawn using the new styles. This is the "flash of unstyled
 content" in action. It should be avoided.
The blank white screen is the browser's attempt to be forgiving to
 frontend engineers who mistakenly put their stylesheets too far down in
 the document. The blank white screen is the foil of the FOUC problem.
 The browser can delay rendering until all the stylesheets are
 downloaded, causing the blank white screen. By contrast, the browser can
 render progressively and risk flashing the user. Neither choice is
 ideal.

[3] * David Hyatt, "Surfin' Safari"
 blog, http://weblogs.mozillazine.org/hyatt/archives/2004_05.html#005496.

What's a Frontend Engineer to Do?

So how can you avoid both the blank white screen and the flash of
 unstyled content?
In the "CSS Flash of Unstyled Content" example, the flash doesn't
 always happen; it depends on your browser and how you load the page.
 Earlier in this chapter, I explained that the blank white screen happens
 in Internet Explorer only when the page is loaded in a new window, as a
 reload, or as a home page. In these cases, Internet Explorer chooses the
 blank white screen. However, if you click on a link, use a bookmark, or
 type a URL, Internet Explorer chooses the second alternative: risking
 FOUC.
Firefox is more consistent—it always chooses the second
 alternative (FOUC). All the examples behave identically in Firefox: they
 render progressively. For the first three examples, Firefox's behavior
 works to the user's benefit because the stylesheet is not required for
 rendering the page, but in the "CSS Flash of Unstyled Content" example,
 the user is less fortunate. The user experiences the FOUC problem
 precisely because Firefox renders progressively.
When browsers behave differently, what's a frontend engineer to
 do?
You can find the answer in the HTML specification (http://www.w3.org/tr/html4/struct/links.html#h-12.3):
Unlike A, [LINK] may only appear in the HEAD section of a
 document, although it may appear any number of times.

Browsers have a history of supporting practices that violate the
 HTML specification in order to make older, sloppier web pages work, but
 when it comes to handling the placement of stylesheets, Internet
 Explorer and Firefox are nudging the web development community to follow
 the specification. Pages that violate the specification (by putting the
 LINK outside of the HEAD section) still render, but risk a
 degraded user experience.
In their effort to improve one of the most visited pages on the
 Web, the Yahoo! portal team initially made it worse by moving the
 stylesheet to the bottom of the page. They found the optimal solution by
 following the HTML specification and leaving it at the top. Neither of
 the alternatives—the blank white screen or flash of unstyled content—are
 worth the risk. If you have a stylesheet that's not required to render
 the page, with some extra effort you can load it dynamically after the
 document loads, as described in the section "Post-Onload Download" in Chapter 10. Otherwise, whether
 your stylesheets are necessary to render the page or not, there's one
 rule to follow.
Put your stylesheets in the
 document HEAD using the LINK tag.

Chapter 8. Rule 6: Put Scripts at the Bottom

Chapter 7 described
 how stylesheets near the bottom of the page prohibit progressive
 rendering, and how moving them to the document HEAD eliminates the problem. Scripts (external
 JavaScript files) pose a similar problem, but the solution is just the
 opposite: it's better to move scripts from the top of the page to the
 bottom (when possible). This enables progressive rendering and achieves
 greater download parallelization. Let's first look at an example of these
 problems.
Problems with Scripts

The best way to demonstrate the issues with scripts is by using an
 example that has a script in the middle of the page.
	Scripts in the Middle
	http://stevesouders.com/hpws/js-middle.php

This script is programmed to take 10 seconds to load, so it's easy
 to see the problem—the bottom half of the page takes about 10 seconds to
 appear (see the section "sleep.cgi" in Chapter 7 for an explanation
 of how components are configured to have specific load times). This
 occurs because the script blocks parallel downloading. We'll come back
 to this problem after a review of how browsers download in
 parallel.
The other problem with the example page has to do with progressive
 rendering. When using stylesheets, progressive rendering is blocked
 until all stylesheets have been downloaded. That's why it's best to move
 stylesheets to the document HEAD, so
 they are downloaded first and rendering isn't blocked. With scripts,
 progressive rendering is blocked for all content
 below the script. Moving scripts lower in the page
 means more content is rendered progressively.

Parallel Downloads

The biggest impact on response time is the number of components in
 the page. Each component generates an HTTP request when the cache is
 empty, and sometimes even when the cache is primed. Knowing that the
 browser performs HTTP requests in parallel, you may ask why the number
 of HTTP requests affects response time. Can't the browser download them
 all at once?
The explanation goes back to the HTTP/1.1 specification, which
 suggests that browsers download two components in parallel per hostname
 (http://www.w3.org/protocols/rfc2616/rfc2616-sec8.html#sec8.1.4).
 Many web pages download all their components from a single hostname.
 Viewing these HTTP requests reveals a stair-step pattern, as shown in
 Figure 8-1.
[image: Downloading two components in parallel]

Figure 8-1. Downloading two components in parallel

If a web page evenly distributed its components across two
 hostnames, the overall response time would be about twice as fast. The
 HTTP requests would behave in the pattern shown in Figure 8-2, with four
 components downloaded in parallel (two per hostname). To give a visual
 cue as to how much faster this page loads, the horizontal width of the
 box is the same as in Figure 8-1.
[image: Downloading four components in parallel]

Figure 8-2. Downloading four components in parallel

Limiting parallel downloads to two per hostname is a guideline. By
 default, both Internet Explorer and Firefox follow the guideline, but
 users can override this default behavior. Internet Explorer stores the
 value in the Registry Editor.[4]
You can modify this default setting in Firefox by using the
 network.http.max-persistent-connections-per-server
 setting in the about:config page.
 It's interesting to note that for HTTP/1.0, Firefox's default is to
 download eight components in parallel per hostname. Figure 8-3 shows that Firefox's
 settings for HTTP/1.0 result in the fastest response time for this
 hypothetical page. It's even faster than that shown in Figure 8-2, even though only
 one hostname is used.
[image: Downloading eight components in parallel (default for Firefox HTTP/1.0)]

Figure 8-3. Downloading eight components in parallel (default for Firefox
 HTTP/1.0)

Most web sites today use HTTP/1.1, but the idea of increasing
 parallel downloads beyond two per hostname is intriguing. Instead of
 relying on users to modify their browser settings, frontend engineers
 could simply use CNAMEs (DNS aliases) to split their components across
 multiple hostnames. Maximizing parallel downloads doesn't come without a
 cost. Depending on your bandwidth and CPU speed, too many parallel
 downloads can degrade performance. Research at Yahoo! shows that
 splitting components across two hostnames leads to better performance
 than using 1, 4, or 10 hostnames.[5]

[4] * For more information about
 overriding this default, see Microsoft's web article "How to
 configure Internet Explorer to have more than two download
 sessions," http://support.microsoft.com/?kbid=282402.

[5] * Tenni Theurer, "Performance
 Research, Part 4: Maximizing Parallel Downloads in the Carpool
 Lane," http://yuiblog.com/blog/2007/04/11/performance-research-part-4/.

Scripts Block Downloads

The benefits of downloading components in parallel are clear.
 However, parallel downloading is actually disabled
 while a script is downloading—the browser won't start any other
 downloads, even on different hostnames. One reason for this behavior is
 that the script may use document.write to alter the page content, so
 the browser waits to make sure the page is laid out
 appropriately.
Another reason that the browser blocks parallel downloads when
 scripts are being loaded is to guarantee that the scripts are executed
 in the proper order. If multiple scripts were downloaded in parallel,
 there's no guarantee the responses would arrive in the order specified.
 For example, if the last script was smaller than scripts that appear
 earlier on the page, it might return first. If there were dependencies
 between the scripts, executing them out of order would result in
 JavaScript errors. The following example demonstrates how scripts block
 parallel downloads.
	Scripts Block Downloads
	http://stevesouders.com/hpws/js-blocking.php

This page contains the following components in this order:
	An image from host1

	An image from host2

	A script from host1 that takes 10 seconds to load

	An image from host1

	An image from host2

Given the description of how browsers download in parallel, you
 would expect that the two images from host2 would be downloaded in
 parallel, along with the first two components from host1. Figure 8-4 shows what really
 happens.
[image: Scripts block downloads]

Figure 8-4. Scripts block downloads

In both Internet Explorer and Firefox, the browser starts by
 downloading the first image from host1 and host2. Next, the script from
 host1 is downloaded. Here's where the unexpected behavior occurs. While
 the script is being downloaded (exaggerated to 10 seconds to illustrate
 the point), the second image from host1 and host2 are blocked from
 downloading. Not until the script is finished loading are the remaining
 components in the page downloaded.

Worst Case: Scripts at the Top

At this point, the effects that scripts can have on web pages are
 clear:
	Content below the script is blocked from rendering.

	Components below the script are blocked from being
 downloaded.

If scripts are put at the top of the page, as they usually are,
 everything in the page is below the script, and the
 entire page is blocked from rendering and downloading until the script
 is loaded. Try out the following example.
	Scripts at the Top
	http://stevesouders.com/hpws/js-top.php

Because this entire page is blocked from rendering, it results in
 the blank white screen phenomenon described in Chapter 7. Progressive
 rendering is critical for a good user experience, but slow scripts delay
 the feedback users crave. Also, the reduction of parallelized downloads
 delays how quickly images are displayed in the page. Figure 8-5 shows how the
 components in the page are downloaded later than desired.
[image: Script at the top blocks the entire page]

Figure 8-5. Script at the top blocks the entire page

Best Case: Scripts at the Bottom

The best place to put scripts is at the bottom of the page. The
 page contents aren't blocked from rendering, and the viewable components
 in the page are downloaded as early as possible. Figure 8-6 shows how the long
 request for the script has less of an effect on the page when it is
 placed at the bottom. You can see this by visiting the following
 example.
	Scripts at the Bottom
	http://stevesouders.com/hpws/js-bottom.php

[image: Scripts at the bottom have the least impact]

Figure 8-6. Scripts at the bottom have the least impact

The benefit is really highlighted by viewing the pages with
 scripts at the top versus scripts at the bottom side-by-side. You can
 see this in the following example.
	Scripts Top vs. Bottom
	http://stevesouders.com/hpws/move-scripts.php

Putting It in Perspective

These examples use a script that takes 10 seconds to download.
 Hopefully, the delay isn't as long for any scripts you use, but it is
 possible for a script to take longer than expected and for the user's
 bandwidth to affect the response time of a script. The effect that
 scripts have on your pages might be less than shown here, but it could
 still be noticeable. Having multiple scripts in your page compounds the
 problem.
In some situations, it's not easy to move scripts to the bottom.
 If, for example, the script uses document.write to insert part of the page's
 content, it can't be moved lower in the page. There might also be
 scoping issues. In many cases, there are ways to work around these
 situations.
An alternative suggestion that comes up often is to use deferred scripts. The DEFER attribute indicates that the script does
 not contain document.write, and is a
 clue to browsers that they can continue rendering. You can see this in
 the following example.
	Deferred Scripts
	http://stevesouders.com/hpws/js-defer.php

Unfortunately, in Firefox, even deferred scripts block rendering
 and parallel downloads. In Internet Explorer, components lower in the
 page are downloaded slightly later. If a script can be deferred, it can
 also be moved to the bottom of the page. That's the best thing to do to
 speed up your web pages.
Move scripts to the bottom of the
 page.

Chapter 9. Rule 7: Avoid CSS Expressions

CSS expressions are a powerful (and dangerous) way to set CSS
 properties dynamically. They're supported in Internet Explorer version 5
 and later. Let's start with a conventional CSS rule for setting the
 background color:
background-color: #B8D4FF;
For a more dynamic page, the background color could be set to
 alternate every hour using CSS expressions.
background-color: expression((new Date()).getHours()%2 ? "#B8D4FF" : "#F08A00");
As shown here, the expression
 method accepts a JavaScript expression. The CSS property is set to the
 result of evaluating the JavaScript expression.
The expression method is simply
 ignored by other browsers, so it is a useful tool for setting properties
 in Internet Explorer to create a consistent experience across browsers.
 For example, Internet Explorer does not support the min-width property. CSS expressions are one way
 to solve this problem. The following example ensures that a page width is
 always at least 600 pixels, using an expression that Internet Explorer
 respects and a static setting honored by other browsers:
width: expression(document.body.clientWidth < 600 ? "600px" : "auto");
min-width: 600px;
Most browsers ignore the width
 property here because they don't support CSS expressions and instead use
 the min-width property. Internet
 Explorer ignores the min-width property
 and instead sets the width property
 dynamically based on the width of the document. CSS expressions are
 re-evaluated when the page changes, such as when it is resized. This
 ensures that as the user resizes his browser, the width is adjusted
 appropriately. The frequency with which CSS expressions are evaluated is
 what makes them work, but it is also what makes CSS expressions bad for
 performance.
Updating Expressions

The problem with expressions is that they are evaluated more
 frequently than most people expect. Not only are they evaluated whenever
 the page is rendered and resized, but also when the page is scrolled and
 even when the user moves the mouse over the page. Adding a counter to
 the CSS expression allows us to keep track of when and how often a CSS
 expression is evaluated.
	Expression Counter
	http://stevesouders.com/hpws/expression-counter.php

The CSS expression counter example has the following CSS
 rule:
P {
 width: expression(setCntr(), document.body.clientWidth<600 ? "600px" : "auto");
 min-width: 600px;
 border: 1px solid;
}
The setCntr() function
 increments a global variable and writes the value in the text field in
 the page. There are 10 paragraphs in the page. Loading the page executes
 the CSS expression 40 times. Subsequent to that, the CSS expression is
 evaluated 10 times for various events including resize, scrolling, and
 mouse movements. Moving the mouse around the page can easily generate
 more than 10,000 evaluations. The danger of CSS expressions is evident
 in this example. Worst of all, clicking in the text input field locks up
 Internet Explorer, and you have to kill the process.

Working Around the Problem

Most CSS experts are familiar with CSS expressions and how to
 avoid the pitfalls highlighted by the previous example. Two techniques
 for avoiding problems created by CSS expressions are creating one-time
 expressions and using event handlers instead of CSS
 expressions.
One-Time Expressions

If the CSS expression has to be evaluated only once, it can
 overwrite itself as part of its execution. The background style
 defined at the beginning of this chapter is a good candidate for this
 approach:
<style>
P {
 background-color: expression(altBgcolor(this));
}
</style>

<script type="text/javascript">
function altBgcolor(elem) {
 elem.style.backgroundColor = (new Date()).getHours()%2 ? "#F08A00" : "#B8D4FF";
}
</script>
The CSS expression calls the altBgcolor() function, which sets the
 style's background-color property
 to an explicit value, and this replaces the CSS expression. This style
 is associated with the 10 paragraphs in the page. Even after resizing,
 scrolling, and moving the mouse around the page, the CSS expression is
 evaluated only 10 times, much better than the tens of thousands in the
 previous example.
	One-Time Expressions
	http://stevesouders.com/hpws/onetime-expressions.php

Event Handlers

In most situations where I've seen CSS expressions used, it was
 possible to find an alternative that didn't require them. CSS
 expressions benefit from being automatically tied to events in the
 browser, but that's also their downfall. Instead of using CSS
 expressions, the frontend engineer can do the "heavy lifting" by tying
 the desired dynamic behavior to the appropriate event using event
 handlers. This avoids the evaluation of the expression during
 unrelated events. The event handler example demonstrates a fix to the
 min-width problem by setting the
 style's width property with the
 onresize event, avoiding tens of
 thousands of unnecessary evaluations during mouse movements,
 scrolling, etc.
	Event Handler
	http://stevesouders.com/hpws/event-handler.php

This example uses the setMinWidth(
) function to resize all paragraph elements when the browser
 is resized:
function setMinWidth() {
 setCntr();
 var aElements = document.getElementsByTagName("p");
 for (var i = 0; i < aElements.length; i++) {
 aElements[i].runtimeStyle.width = (document.body.clientWidth<600 ?
"600px" : "auto");
 }
}

if (−1 != navigator.userAgent.indexOf("MSIE")) {
 window.onresize = setMinWidth;
}
This sets the width dynamically when the browser is resized, but
 it does not size the paragraph appropriately when it is first
 rendered. Therefore, the page also uses the approach shown in the
 "One-Time Expressions" section to set the initial
 width using CSS expressions, while overwriting the CSS expression
 after its first evaluation.

Conclusion

This is one of the few rules that addresses performance of the
 page after it has been loaded, which is generally
 when CSS expressions cause problems. However, in some cases, CSS
 expressions can affect the load time of a page, too. One property at
 Yahoo! had a CSS expression that caused a 20-second delay during the
 initial rendering of the page. This result was unexpected and took a
 while to diagnose. Similarly, who would have thought the CSS expression
 used in the "Expression Counter" example would cause Internet Explorer
 to lock up if the user clicked in a text field? A full discussion of
 complicated CSS incompatibilities, such as min-width and position: fixed, is beyond the scope of this
 book, and that's the point—using CSS expressions without a deep
 understanding of the underlying implications is dangerous.
Avoid CSS expressions.

Chapter 10. Rule 8: Make JavaScript and CSS External

Many of the performance rules in this book deal with how external
 components are managed, such as serving them via a CDN (Rule 2), making
 sure they have a far future Expires
 header (Rule 3), and compressing their contents (Rule 4). However, before
 these considerations arise, you should ask a more basic question: should
 JavaScript and CSS be contained in external files or inlined in the page
 itself? As we'll see, using external files is generally better.
Inline vs. External

Let's first start with the tradeoffs in placing JavaScript and CSS
 inline versus using external files.
In Raw Terms, Inline Is Faster

I have generated two examples that demonstrate how inlining
 JavaScript and CSS results in faster response times than making them
 external files.
	Inlined JS and CSS
	http://stevesouders.com/hpws/inlined.php

	External JS and CSS
	http://stevesouders.com/hpws/external.php

The inline example involves one HTML document that is 87K, with
 all of the JavaScript and CSS in the page itself. The external example
 contains an HTML document (7K), one stylesheet (59K), and three
 scripts (1K, 11K, and 9K) for a total of 87K. Although the total
 amount of data downloaded is the same, the inline example is 30–50%
 faster than the external example. This is primarily because the
 external example suffers from the overhead of multiple HTTP requests
 (see Chapter 3 about
 the importance of minimizing HTTP requests). The external example even
 benefits from the stylesheet and scripts being downloaded in parallel,
 but the difference of one HTTP request compared to five is what makes
 the inline example faster.
Despite these results, using external files in the real world
 generally produces faster pages. This is due to a benefit of external
 files that is not captured by these examples: the opportunity for the
 JavaScript and CSS files to be cached by the browser. HTML documents,
 at least those that contain dynamic content, are typically not
 configured to be cached. When this is the case (when the HTML
 documents are not cached), the inline JavaScript and CSS is downloaded
 every time the HTML document is requested. On the other hand, if the
 JavaScript and CSS are in external files cached by the browser, the
 size of the HTML document is reduced without increasing the number of
 HTTP requests.
The key factor, then, is the frequency with which external
 JavaScript and CSS components are cached relative to the number of
 HTML documents requested. This factor, although difficult to quantify,
 can be gauged using the following metrics.

Page Views

The fewer page views per user, the stronger the argument for
 inlining JavaScript and CSS. Imagine that a typical user visits your
 site once per month. Between visits, it's likely that any external
 JavaScript and CSS files have been purged from the browser's cache,
 even if the components have a far future Expires header (see Chapter 5 for more information
 about using a far future Expires
 header).
On the other hand, if a typical user has many page views, the
 browser is more likely to have external components (with a far future
 Expires header) in its cache. The
 benefit of serving JavaScript and CSS using external files grows along
 with the number of page views per user per month or page views per
 user per session.

Empty Cache vs. Primed Cache

Knowing the potential for users to cache external components is
 critical to comparing inlining versus external files. We measured this
 at Yahoo! and found that the number of unique users coming in at least
 once a day with a primed cache ranges from 40–60% depending on the
 Yahoo! property.[6] The same study revealed that the number of page views
 with a primed cache is 75–85%. Note that the first statistic measures
 "unique users" while the second measures "page views." The percentage
 of page views with a primed cache is higher than the percentage of
 unique users with a primed cache because many users perform multiple
 page views per session. Users may show up once during the day with an
 empty cache, but make several subsequent page views with a primed
 cache. See more information about this research in Chapter 5.
These metrics vary depending on the type of web site. Knowing
 these statistics helps in estimating the potential benefit of using
 external files versus inlining. If the nature of your site results in
 higher primed cache rates for your users, the benefit of using
 external files is greater. If a primed cache is less likely, inlining
 becomes a better choice.

Component Reuse

If every page on your site uses the same JavaScript and CSS,
 using external files will result in a high reuse rate for these
 components. Using external files becomes more advantageous in this
 situation because the JavaScript and CSS components are already in the
 browser's cache while users navigate across pages.
The opposite end of the spectrum is also easy to comprehend—if
 no two pages share the same JavaScript and CSS, the reuse rate will be
 low. The difficulty is that most web sites aren't this black and
 white. This raises a separate but related issue: where do you draw the
 boundaries when packaging JavaScript and CSS into external
 files?
The debate starts with the premise that fewer files are better
 (see Chapter 3 for a
 more detailed analysis). In a typical situation, the reuse of
 JavaScript and CSS across pages is neither 100% overlapping nor 100%
 disjointed. In this middle-case scenario, one extreme is to make a
 separate set of external files for each page. The downside of this
 approach is that every page subjects the user to another set of
 external components and resulting HTTP requests that slow down
 response times. This alternative makes the most sense on sites where a
 typical user visits only one page and there is little cross-page
 traffic.
The other extreme is to create a single file that is the union
 of all the JavaScript, and create another single file for all of the
 CSS. This has the benefit of subjecting the user to only one HTTP
 request, but it increases the amount of data downloaded on a user's
 first page view. In this case, users will be downloading more
 JavaScript and CSS than is necessary for the page currently being
 viewed. Also, this single file must be updated whenever any of the
 individual scripts or stylesheets changes, invalidating the version
 currently cached by all users. This alternative makes the most sense
 on sites with a high number of sessions per user per month, where the
 typical session includes visits to multiple different pages.
If your site doesn't fit nicely into one of these extremes, the
 best answer is a compromise. Categorize your pages into a handful of
 page types and then create a single script and stylesheet for each
 one. These are not as easy to maintain as a single file, but are
 typically much easier to maintain than different scripts and
 stylesheets for each page, and they result in less superfluous
 JavaScript and CSS being downloaded for any given page.
Ultimately, your decision about the boundaries for JavaScript
 and CSS external files affects the degree of component reuse. If you
 can find a balance that results in a high reuse rate, the argument is
 stronger for deploying your JavaScript and CSS as external files. If
 the reuse rate is low, inlining might make more sense.

[6] * Tenni Theurer, "Performance
 Research, Part 2: Browser Cache Usage - Exposed!", http://yuiblog.com/blog/2007/01/04/performance-research-part-2/.

Typical Results in the Field

In analyzing the tradeoffs between inlining versus using external
 files, the key is the frequency with which external JavaScript and CSS
 components are cached relative to the number of HTML documents
 requested. In the previous section, I described three metrics (page
 views, empty cache vs. primed cache, and component reuse) that can help
 you determine the best option. The right answer for any specific web
 site depends on these metrics.
Many web sites fall in the middle of these metrics. They get 5–15
 page views per user per month, with 2–5 page views per user per session.
 Empty cache visits are in the same range as Yahoo!: 40–60% of unique
 users per day have a primed cache, and 75–85% of page views per day are
 performed with a primed cache. There's a fair amount of JavaScript and
 CSS reuse across pages, resulting in a handful of files that cover every
 major page type.
For sites that have these metrics, the best solution is generally
 to deploy the JavaScript and CSS as external files. This is demonstrated
 by the example where the external components can be cached by the
 browser. Loading this page repeatedly and comparing the results to those
 of the first example, "Inlined JS and CSS," shows that using external
 files with a far future Expires
 header is the fastest approach.
	Cacheable External JS and CSS
	http://stevesouders.com/hpws/external-cacheable.php

Home Pages

The only exception I've seen where inlining is preferable is with
 home pages. A home page is the URL chosen as the browser's default page,
 such as Yahoo! home page (http://www.yahoo.com)
 and My Yahoo! (http://my.yahoo.com). Let's look at
 the three metrics from the perspective of home pages:
	Page views
	Home pages have a high number of page views per month. By
 definition, whenever the browser is opened, the home page is
 visited. However, there is often only one page view per
 session.

	Empty cache vs. primed cache
	The primed cache percentage might be lower than other sites.
 For security reasons, many users elect to clear the cache every
 time they close the browser. The next time they open the browser
 it generates an empty cache page view of the home page.

	Component reuse
	The reuse rate is low. Many home pages are the only page a
 user visits on the site, so there is really no reuse.

Analyzing these metrics, there's an inclination toward inlining
 over using external files. Home pages have one more factor that tips the
 scale toward inlining: they have a high demand for responsiveness, even
 in the empty cache scenario. If a company decides to launch a campaign
 encouraging users to set their home pages to the company's site, the
 last thing they want is a slow home page. For the company's home page
 campaign to succeed, the page must be fast.
There's no single answer that applies to all home pages. The
 factors highlighted here must be evaluated for the home page in
 question. If inlining is the right answer, you'll find helpful
 information in the next section, which describes two techniques that
 have the benefit of inlining while taking advantage of external files
 (when possible).

The Best of Both Worlds

Even if all the factors point to inlining, it still feels
 inefficient to add all that JavaScript and CSS to the page and not take
 advantage of the browser's cache. Two techniques are described here that
 allow you to gain the benefits of inlining, as well as caching external
 files.
Post-Onload Download

Some home pages, like Yahoo! home page and My Yahoo!, typically
 have only one page view per session. However, that's not the case for
 all home pages. Yahoo! Mail is a good example of a home page that
 often leads to secondary page views (pages that are accessed after the
 initial page, such as those for viewing or composing email
 messages).
For home pages that are the first of many page views, we want to
 inline the JavaScript and CSS for the home page, but leverage external
 files for all secondary page views. This is accomplished by
 dynamically downloading the external components in the home page after
 it has completely loaded (via the onload event). This places the external
 files in the browser's cache in anticipation of the user continuing on
 to other pages.
	Post-Onload Download
	http://stevesouders.com/hpws/post-onload.php

The post-onload download JavaScript code associates the doOnload function with the document's
 onload event. After a one-second
 delay (to make sure the page is completely rendered), the appropriate
 JavaScript and CSS files are downloaded. This is done by creating the
 appropriate DOM elements (script
 and link, respectively) and
 assigning the specific URL:
<script type="text/javascript">
function doOnload() {
 setTimeout("downloadComponents()", 1000);
}

window.onload = doOnload;

// Download external components dynamically using JavaScript.
function downloadComponents() {
 downloadJS("http://stevesouders.com/hpws/testsma.js");
 downloadCSS("http://stevesouders.com/hpws/testsm.css");
}

// Download a script dynamically.
function downloadJS(url) {
 var elem = document.createElement("script");
 elem.src = url;
 document.body.appendChild(elem);
}

// Download a stylesheet dynamically.
function downloadCSS(url) {
 var elem = document.createElement("link");
 elem.rel = "stylesheet";
 elem.type = "text/css";
 elem.href = url;
 document.body.appendChild(elem);
}
</script>
In these pages, the JavaScript and CSS are loaded twice into the
 page (inline then external). To work, your code has to deal with
 double definition. Scripts, for
 example, can define but can't
 execute any functions (at least none that the
 user notices). CSS that uses relative metrics (percentages or em) may be problematic if applied twice.
 Inserting these components into an invisible IFrame is a more advanced
 approach that avoids these problems.

Dynamic Inlining

If a home page server knew whether a component was in the
 browser's cache, it could make the optimal decision about whether to
 inline or use external files. Although there is no way for a server to
 see what's in the browser's cache, cookies can be used as an
 indicator. By returning a session-based cookie with the component, the
 home page server can make a decision about inlining based on the
 absence or presence of the cookie. If the cookie is absent, the
 JavaScript or CSS is inlined. If the cookie is present, it's likely
 the external component is in the browser's cache and external files
 are used. The "Dynamic Inlining" example demonstrates this
 technique.
	Dynamic Inlining
	http://stevesouders.com/hpws/dynamic-inlining.php

Since every user starts off without the cookie, there has to be
 a way to bootstrap the process. This is accomplished by using the
 post-onload download technique from the previous example. The first
 time a user visits the page, the server sees that the cookie is absent
 and it generates a page that inlines the components. The server then
 adds JavaScript to dynamically download the external files (and set a
 cookie) after the page has loaded. The next time the page is visited,
 the server sees the cookie and generates a page that uses external
 files.
The PHP code that handles the dynamic behavior is shown
 below:
<?php
if ($_COOKIE["CA"]) {
 // If the cookie is present, it's likely the component is cached.
 // Use external files since they'll just be read from disk.
 echo <<<OUTPUT
<link rel="stylesheet" href="testsm.css" type="text/css">
<script src="testsma.js" type="text/javascript"></script>
OUTPUT;
}
else {
 // If the cookie is NOT present, it's likely the component is NOT cached.
 // Inline all the components and trigger a post-onload download of the files.
 echo "<style>\n" . file_get_contents("testsm.css") . "</style>\n";
 echo "<script type=\"text/javascript\">\n" . file_get_contents("testsma.js") .
"</script>\n";
 // Output the Post-Onload Download JavaScript code here.
 echo <<<ONLOAD
<script type="text/javascript">
function doOnload() {
 setTimeout("downloadComponents()", 1000);
}

window.onload = doOnload;

// Download external components dynamically using JavaScript.
function downloadComponents() {
 document.cookie = "CA=1";
[snip...]
ONLOAD;
}
?>
I didn't show all of the post-onload download JavaScript code
 (as indicated by "[snip...]") since that was included earlier in the
 "Post-Onload Download" section. However, I did show
 just enough to illustrate how the CA cookie is set in the downloadComponents function. This is the
 only change, but it's key to leveraging the cache on subsequent page
 views.
The beauty of this approach is how forgiving it is. If there's a
 mismatch between the state of the cookie and the state of the cache,
 the page still works. It's not as optimized as it could be. The
 session-based cookie technique errs on the side of inlining even
 though the components are in the browser's cache—if the user reopens
 the browser, the session-based cookie is absent but the components may
 still be cached. Changing the cookie from session-based to short-lived
 (hours or days) addresses this issue, but moves toward erring on the
 side of using external files when they're not truly in the browser's
 cache. Either way, the page still works, and across all users there is
 an improvement in response times by more intelligently choosing
 between inlining versus using external files.
Put your JavaScript and CSS in external
 files.

Chapter 11. Rule 9: Reduce DNS Lookups

The Internet is based on finding servers through IP addresses.
 Because IP addresses are hard to remember, URLs typically contain
 hostnames instead, but the IP address is still necessary for the browser
 to make its request. That's the role of the Domain Name System (DNS). DNS
 maps hostnames to IP addresses, just as phonebooks map people's names to
 their phone numbers. When you type www.yahoo.com into your browser, a DNS
 resolver is contacted by the browser and returns that server's IP
 address.
This explanation highlights another benefit of DNS—a layer of
 indirection between URLs and the actual servers that host them. If a
 server is replaced with one that has a different IP address, DNS allows
 users to use the same hostname to connect to the new server. Or, as is the
 case with www.yahoo.com,
 multiple IP addresses can be associated with a hostname, providing a high
 degree of redundancy for a web site.
However, DNS has a cost. It typically takes 20–120 milliseconds for
 the browser to look up the IP address for a given hostname. The browser
 can't download anything from this hostname until the DNS lookup is
 completed. The response time depends on the DNS resolver (typically
 provided by your ISP), the load of requests on it, your proximity to it,
 and your bandwidth speed. After reviewing how DNS works from the browser's
 perspective, I'll describe what you can do to reduce the amount of time
 your pages spend doing DNS lookups.
DNS Caching and TTLs

DNS lookups are cached for better performance. This caching can
 occur on a special caching server maintained by the user's ISP or local
 area network, but here we'll explore DNS caching on the individual
 user's computer. As shown in Figure 11-1, after a user requests a
 hostname, the DNS information remains in the operating system's DNS
 cache (the "DNS Client service" on Microsoft Windows), and further
 requests for that hostname don't require more DNS lookups, at least not
 for a while.
[image: DNS caching from the browser's perspective]

Figure 11-1. DNS caching from the browser's perspective

Simple enough? Hold on a minute—most browsers have their own
 caches, separate from the operating system's cache. As long as the
 browser keeps a DNS record in its own cache, it doesn't bother the
 operating system with a request for the record. Only after the browser's
 cache discards the record does it ask the operating system for the
 address—and then the operating system either satisfies the request out
 of its cache or sends a request to a remote server, which is where
 potential slowdowns occur.
To make things yet more complicated, designers realize that IP
 addresses change and that caches consume memory. Therefore, the DNS
 records have to be periodically flushed from the cache, and several
 different configuration settings determine how often they are
 discarded.
Factors Affecting DNS Caching

First, the server has a say in how long records should be
 cached. The DNS record returned from a lookup contains a time-to-live
 (TTL) value. This tells the client how long the record can be
 cached.
Although operating system caches respect the TTL, browsers often
 ignore it and set their own time limits. Furthermore, the Keep-Alive
 feature of the HTTP protocol, discussed in Chapter 2, can override both the TTL and the
 browser's time limit. In other words, as long as the browser and the
 web server are happily communicating and keeping their TCP connection
 open, there's no reason for a DNS lookup.
Browsers put a limit on the number of DNS records cached,
 regardless of the time the records have been in the cache. If the user
 visits many different sites with different domain names in a short
 period of time, earlier DNS records are discarded and the domain must
 be looked up again.
Remember, however, that if the browser discards a DNS record,
 the operating system cache might still have it, and that saves the day
 because no query has to be sent over the network, thereby avoiding
 what could be noticeable delays.

TTL Values

The maximum TTL values sent to clients for 10 top U.S. web sites
 range from one minute to one hour, as shown in Table 11-1.
Table 11-1. TTL values
	Domain
	TTL

	http://www.amazon.com
	1 minute

	http://www.aol.com
	1 minute

	http://www.cnn.com
	10
 minutes

	http://www.ebay.com
	1 hour

	http://www.google.com
	5
 minutes

	http://www.msn.com
	5
 minutes

	http://www.myspace.com
	1 hour

	http://www.wikipedia.org
	1 hour

	http://www.yahoo.com
	1 minute

	http://www.youtube.com
	5
 minutes

Why do these values vary so much? It's probably a mixture of
 intentional and historical factors. An interesting RFC[7] provides more details about the format of DNS records
 and common mistakes made when configuring them. Its first suggestion
 is to avoid making the TTL values too short, with a recommended value
 of one day!
These top web sites, given their large numbers of users, strive
 to have DNS resolvers quickly failover when a server, virtual IP
 address (VIP), or co-location goes offline. That's the reason for
 Yahoo!'s short TTL. MySpace, on the other hand, is located in one
 co-location facility. Failover is less critical given their current
 network topology, so a longer TTL is chosen because it reduces the
 number of DNS lookups, which in turn reduces the load on their name
 servers.
Making DNS configuration recommendations is beyond the scope of
 this book. What is most relevant, however, is how DNS caching affects
 the performance of web pages. Let's view DNS caching from the
 browser's perspective to determine how many DNS lookups your web pages
 cause.
The average TTL value received by the client for a DNS record is
 half of the maximum TTL value. That's because the DNS resolver itself
 has a TTL associated with its DNS record. When the browser does a DNS
 lookup, the DNS resolver returns the amount of time remaining in the
 TTL for its record. If the maximum TTL is 5 minutes, the TTL returned
 by the DNS resolver ranges from 1 to 300 seconds, with an average
 value of 150 seconds. The TTL received for a given hostname varies
 each time the DNS lookup is performed.

[7] *"Common DNS Data File
 Configuration Errors," http://tools.ietf.org/html/rfc1537.

The Browser's Perspective

As discussed earlier in the "Factors Affecting DNS Caching" section, a lot of
 independent variables determine whether a particular browser request for
 a hostname makes a remote DNS request. There is a DNS specification
 (http://tools.ietf.org/html/rfc1034), but it gives
 clients flexibility in how the DNS cache works. I'll focus on Internet
 Explorer and Firefox on Microsoft Windows, since they are the most
 popular platforms.
The DNS cache on Microsoft Windows is managed by the DNS Client
 service. You can view and flush the DNS Client service using the
 ipconfig command:
ipconfig /displaydns
ipconfig /flushdns
Rebooting also clears the DNS Client service cache. In addition to
 the DNS Client service, Internet Explorer and Firefox browsers have
 their own DNS caches. Restarting the browser clears the browser cache,
 but not the DNS Client service cache.
Internet Explorer

Internet Explorer's DNS cache is controlled by three registry
 settings: DnsCacheTimeout, KeepAliveTimeout, and ServerInfoTimeOut, which can be created in
 the following registry key:
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\InternetSettings\
There are two Microsoft Support articles describing how these
 settings affect the DNS cache.[8] These articles report the following default values for
 these settings:
	DnsCacheTimeout: 30
 minutes

	KeepAliveTimeout: 1
 minute

	ServerInfoTimeOut: 2
 minutes

What's implied (but not explained very well) is that DNS server
 TTL values less than 30 minutes have little effect on how frequently
 the browser does DNS lookups. Once the browser caches a DNS record, it
 is used for 30 minutes. If there is an error, the DNS lookup is
 refreshed sooner than that; under normal conditions, a short (under 30
 minutes) TTL value won't increase the number of DNS lookups made in
 Internet Explorer.
The role that Keep-Alive plays is also important. By default, a
 persistent TCP connection is used until it has been idle for one
 minute. Because the connection persists, a DNS lookup is not required
 (the benefits of Keep-Alive are discussed in Chapter 2). This is an additional benefit—Keep-Alive
 avoids repeated DNS lookups by reusing the existing
 connection.
The ServerInfoTimeOut value
 of two minutes says that even without Keep-Alive, if a hostname is
 reused every two minutes without failure, a DNS lookup is not
 required. In tests using Internet Explorer, if a hostname is reused at
 least every two minutes, no DNS lookups are done even beyond 30
 minutes (assuming there are no failures reaching that IP
 address).
This is important information for network operations centers
 when trying to divert traffic by making DNS changes. If the IP
 addresses that the traffic is being diverted from are left running, it
 will take at least 30 minutes for Internet Explorer users with the old
 DNS record to get the DNS update. Users actively hitting the site (at
 least once every two minutes) will keep going to the old IP address
 and never get the DNS update until a failure occurs.

Firefox

Firefox is quite a bit simpler to figure out. It has the
 following configuration settings:
	network.dnsCacheExpiration: 1
 minute

	network.dnsCacheEntries:
 20

	network.http.keep-alive.timeout: 5
 minutes

DNS records are cached for one minute beyond their TTLs. Because
 of this low value, setting your TTLs low (less than an hour) is likely
 to increase the number of DNS lookups required by your pages in
 Firefox.
Surprisingly, only 20 records are cached in Firefox by default.
 This means that users who visit a lot of sites in different domains
 will be slowed down by DNS lookups more than Internet Explorer users
 with the same behavior.
Firefox's Keep-Alive timeout is higher than Internet Explorer's:
 five minutes versus one minute. Making sure your servers support
 Keep-Alive reduces the number of DNS lookups required by users
 navigating your web site.
Fasterfox (http://fasterfox.mozdev.org) is
 a well-known Firefox add-on for measuring and improving Firefox
 performance. As a point of comparison, Fasterfox changes these DNS
 settings to have the following values:
	network.dnsCacheExpiration: 1
 hour

	network.dnsCacheEntries:
 512

	network.http.keep-alive.timeout: 30
 seconds

[8] * "How Internet Explorer uses the
 cache for DNS host entries," http://support.microsoft.com/default.aspx?scid=kb;en-us;263558.
"How to change the default keep-alive time-out value in
 Internet Explorer," http://support.microsoft.com/kb/813827.

Reducing DNS Lookups

When the client's DNS cache is empty (for both the browser and the
 operating system), the number of DNS lookups is equal to the number of
 unique hostnames in the web page. This includes the hostnames used in
 the page's URL, images, script files, stylesheets, Flash objects, etc.
 Reducing the number of unique hostnames reduces the number of DNS
 lookups. Google (http://www.google.com) is the
 preeminent example of this, with only one DNS lookup necessary for the
 page.
Reducing the number of unique hostnames has the potential to
 reduce the amount of parallel downloading that takes place in the page.
 Avoiding DNS lookups cuts response times, but reducing parallel
 downloads may increase response times. As described in Chapter 8 in the section
 "Parallel Downloads," some amount of parallelization
 is good, even if it increases the number of hostnames. In the case of
 Google.com, there are only two
 components in the page. Because components are downloaded two per
 hostname in parallel, using one hostname minimizes the number of
 possible DNS lookups while maximizing parallel downloads.
Most pages today have a dozen or more components—not nearly as
 lean as Google. My guideline is to split these components across at
 least two but no more than four hostnames. This results in a good
 compromise between reducing DNS lookups and allowing a high degree of
 parallel downloads.
The advantage of using Keep-Alive, described in Chapter 2, is that it reuses an existing connection,
 thereby improving response times by avoiding TCP/IP overhead. As
 described here, making sure your servers support Keep-Alive also reduces
 DNS lookups, especially for Firefox users.
Reduce DNS lookups by using Keep-Alive and
 fewer domains.

Chapter 12. Rule 10: Minify JavaScript

JavaScript, being an interpreted language, is great for building web
 pages. Interpreted languages excel when developing user interfaces where
 rapid prototyping is the norm. Without a compilation step, though, the
 responsibility falls on the frontend engineer to optimize the JavaScript
 before final deployment. One aspect of this, gzipping, is discussed in
 Chapter 6. In this chapter, I
 describe another step that should be integrated into the JavaScript
 deployment process: minification.
Minification

Minification is the practice
 of removing unnecessary characters from code to reduce its size, thereby
 improving load times. When code is minified, all comments are removed,
 as well as unneeded whitespace characters (space, newline, and tab). In
 the case of JavaScript, this improves response time performance because
 the size of the downloaded file is reduced.
Table 12-1 shows how
 many of the 10 top U.S. web sites practice JavaScript minification— 4
 out of 10 minify their JavaScript code.
Table 12-1. Minification practices across 10 top web sites
	Web
 site
	External scripts
 minified?

	http://www.amazon.com/
	No

	http://www.aol.com/
	No

	http://www.cnn.com/
	No

	http://www.ebay.com
	Yes

	http://froogle.google.com/
	Yes

	http://www.msn.com/
	Yes

	http://www.myspace.com/
	No

	http://www.wikipedia.org/
	No

	http://www.yahoo.com/
	Yes

	http://www.youtube.com/
	No

Let's look at what the others could have saved if they had
 minified. But first, I need to mention a more aggressive alternative to
 minification: obfuscation.

Obfuscation

Obfuscation is an alternative optimization
 that can be applied to source code. Like minification, it removes
 comments and whitespace, but it also munges the code. As part of
 munging, function and variable names are converted into smaller strings
 making the code more compact, as well as harder to read. This is
 typically done to make it more difficult to reverse-engineer the code,
 but munging can help performance because it reduces the code size beyond
 what is achieved by minification.
Assuming that thwarting reverse-engineering is not your objective,
 the question arises about whether to minify or obfuscate. Minification
 is a safe, fairly straightforward process. Obfuscation, on the other
 hand, is more complex. There are three main drawbacks to obfuscating
 your JavaScript code:
	Bugs
	Because obfuscation is more complex, there's a higher
 probability of introducing errors into the code as a result of the
 obfuscation process itself.

	Maintenance
	Since obfuscators change JavaScript symbols, any symbols
 that should not be changed (for example, API functions) have to be
 tagged so that the obfuscator leaves them unaltered.

	Debugging
	Obfuscated code is more difficult to read. This makes
 debugging problems in your production environment more
 difficult.

Although I've never seen problems introduced from minification, I
 have seen bugs caused by obfuscation. Given the large amount of
 JavaScript maintained at Yahoo!, my guidelines recommend minification
 over obfuscation. The ultimate decision has to consider the additional
 size reductions achieved from obfuscation. In the next section, we'll do
 some real minifying and obfuscating.

The Savings

The most popular tool for minifying JavaScript code is JSMin
 (http://crockford.com/javascript/jsmin), developed
 by Douglas Crockford, a fellow Yahoo!. The JSMin source code is
 available in C, C#, Java, JavaScript, Perl, PHP, Python, and Ruby. The
 tool of choice is less clear in the area of JavaScript obfuscation. Dojo
 Compressor (renamed ShrinkSafe and moved to http://dojotoolkit.org/docs/shrinksafe) is the one I've
 seen used the most. For the purposes of our comparison, I used these two
 tools. As a demonstration, let's use these tools on event.js from the Yahoo! User Interface (YUI)
 library (http://developer.yahoo.com/yui). The
 source code for the first function follows:
YAHOO.util.CustomEvent = function(type, oScope, silent, signature) {
 this.type = type;
 this.scope = oScope || window;
 this.silent = silent;
 this.signature = signature || YAHOO.util.CustomEvent.LIST;
 this.subscribers = [];

 if (!this.silent) {
 }

 var onsubscribeType = "_YUICEOnSubscribe";
 if (type !== onsubscribeType) {
 this.subscribeEvent =
 new YAHOO.util.CustomEvent(onsubscribeType, this, true);

 }
};
The same function passed through JSMin has all unneeded whitespace
 removed:
YAHOO.util.CustomEvent=function(type,oScope,silent,signature){this.type=type;this.
scope=oScope||window;this.silent=silent;this.signature=signature||YAHOO.util.
CustomEvent.LIST;this.subscribers=[];if(!this.silent){}
var onsubscribeType="_YUICEOnSubscribe";if(type!==onsubscribeType){this.subscribeEv
ent=new YAHOO.util.CustomEvent(onsubscribeType,this,true);}};
Dojo Compressor removes most whitespace, but additionally shortens
 variable names. Notice how _1 has
 replaced type as the first parameter
 to the CustomEvent function:
YAHOO.util.CustomEvent=function(_1,_2,_3,_4){
this.type=_1;
this.scope=_2||window;
this.silent=_3;
this.signature=_4||YAHOO.util.CustomEvent.LIST;
this.subscribers=[];
if(!this.silent){
}
var _5="_YUICEOnSubscribe";
if(_1!==_5){
this.subscribeEvent=new YAHOO.util.CustomEvent(_5,this,true);
}
};
Table 12-2 shows some
 potential savings for the six companies who didn't minify their
 JavaScript files. I downloaded the JavaScript files used on each site's
 home page. The table shows the original size of each site's JavaScript
 files, as well as the size reductions gained by running them through
 JSMin and Dojo Compressor. On average, JSMin reduced the size of
 JavaScript files by 21%, while Dojo Compressor achieved a 25%
 reduction.
Table 12-2. Size reductions from using JSMin and Dojo Compressor
	Web
 site
	Original
 size
	JSMin
 savings
	Dojo Compressor
 savings

	http://www.amazon.com/
	204K
	31K (15%)
	48K (24%)

	http://www.aol.com/
	44K
	4K (10%)
	4K (10%)

	http://www.cnn.com/
	98K
	19K (20%)
	24K (25%)

	http://www.myspace.com/
	88K
	23K (27%)
	24K (28%)

	http://www.wikipedia.org/
	42K
	14K (34%)
	16K (38%)

	http://www.youtube.com/
	34K
	8K (22%)
	10K (29%)

	Average
	85K
	17K (21%)
	21K (25%)

At what point do the additional savings from obfuscation justify
 the additional risks? Looking at these six examples, I would argue that
 all of them should simply minify their JavaScript code, thus avoiding
 the possible problems that obfuscation can cause. The one exception is
 Amazon, where an additional 17K (9%) would be saved by using
 obfuscation. A select few properties at Yahoo!, with large JavaScript
 payloads (>100K) obfuscate their JavaScript code. As we'll see below,
 the delta between minification and obfuscation decreases when combined
 with gzip compression.

Examples

To demonstrate the benefits of minification and obfuscation, I
 have generated two scripts of different sizes: a small script (50K) and
 a large script (377K). The small script drops to 13K after minification
 and 12K after obfuscation. The large script is reduced to 129K after
 minification and 123K after obfuscation. Testing both files under these
 three states results in the following six examples.
	Small Script Normal
	http://stevesouders.com/hpws/js-small-normal.php

	Small Script Minified
	http://stevesouders.com/hpws/js-small-minify.php

	Small Script Obfuscated
	http://stevesouders.com/hpws/js-small-obfuscate.php

	Large Script Normal
	http://stevesouders.com/hpws/js-large-normal.php

	Large Script Minified
	http://stevesouders.com/hpws/js-large-minify.php

	Large Script Obfuscated
	http://stevesouders.com/hpws/js-large-obfuscate.php

As shown in Table 12-3,
 minification and obfuscation perform about the same, but are
 significantly faster than the normal case. For the small script,
 minification and obfuscation are 100–110ms (17–19%) faster than the
 normal case. For the large script, minification and obfuscation are
 331–341ms (30–31%) faster than the normal case.
Table 12-3. Response times for minified and obfuscated scripts
	Script
 size
	Normal
	Minified
	Obfuscated

	Small
 (50K)
	581 ms
	481 ms
	471 ms

	Large
 (377K)
	1092 ms
	761 ms
	751 ms

As mentioned in the previous section, the difference between
 minification and obfuscation decreases when combined with gzip
 compression; this is demonstrated by these examples. Minifying scripts
 reduces response times without carrying the risks that come with
 obfuscation.

Icing on the Cake

There are a couple other ways to squeeze waste out of your
 JavaScript.
Inline Scripts

The discussion thus far has focused on external JavaScript
 files. Inline JavaScript blocks should also be minified, though this
 practice is less evident on today's web sites. Table 12-4 shows that
 although 4 of the 10 top web sites minify their external scripts, only
 3 minify their inline scripts.
Table 12-4. Inline minification practices across 10 top web sites
	Web
 site
	External scripts
 minified?
	Inline scripts
 minified?

	http://www.amazon.com
	no
	no

	http://www.aol.com
	no
	no

	http://www.cnn.com
	no
	no

	http://www.ebay.com
	yes
	no

	http://froogle.google.com
	yes
	yes

	http://www.msn.com
	yes
	yes

	http://www.myspace.com
	no
	no

	http://www.wikipedia.org
	no
	no

	http://www.yahoo.com
	yes
	yes

	http://www.youtube.com
	no
	no

In practice, minifying inline scripts is easier than minifying
 external scripts. Whatever page generation platform you use (PHP,
 Python, Perl CGI, etc.), there is probably a version of JSMin that can
 be integrated with it. Once the functionality is available, all
 inlined JavaScript can be minified before being echoed to the HTML
 document.

Gzip and Minification

Rule 4 stresses the importance of compressing content and
 recommends using gzip to accomplish this, resulting in a typical size
 reduction of 70%. Gzip compression decreases file sizes more than
 minification—that's why it's in Rule 4 and this is Rule 10. I've heard
 people question whether minification is even worthwhile if gzip
 compression has already been enabled.
Table 12-5 is
 similar to Table 12-2,
 except the responses are gzipped. When gzipped, the average size of
 the JavaScript payload drops from 85K (see Table 12-2) to 23K (see Table 12-5), a reduction of 73%.
 It's reassuring to see that the guidelines of Rule 4 hold true for
 these six web sites. Table 12-5 shows that minifying
 the files in addition to gzipping them reduces the payload by an
 average of 4K (20%) over gzip alone. It's interesting that obfuscation
 and gzip perform about the same as minification and gzip, another
 reason to just stick with minification and avoid the additional risks
 of obfuscation.
Table 12-5. Size reductions with JSMin and Dojo Compressor after gzip
 compression
	Web site
	Original size after
 gzip
	JSMin savings after
 gzip
	Dojo Compressor
 savings after gzip

	http://www.amazon.com
	48K
	7K (16%)
	6K (13%)

	http://www.aol.com
	16K
	1K (8%)
	1K (8%)

	http://www.cnn.com
	29K
	6K (19%)
	6K (20%)

	http://www.myspace.com
	23K
	4K (19%)
	4K (19%)

	http://www.wikipedia.org
	13K
	5K (37%)
	5K (39%)

	http://www.youtube.com
	10K
	2K (19%)
	2K (20%)

	Average
	23K
	4K (20%)
	4K (20%)

In summary, the main numbers to compare are:
	85K: JavaScript size without JSMin and gzip
 compression

	68K: JavaScript size with only JSMin (21% savings)

	23K: JavaScript size with only gzip compression (73%
 savings)

	19K: JavaScript size with JSMin and gzip compression (78%
 savings)

Gzip compression has the biggest impact, but minification
 further reduces file sizes. As the use and size of JavaScript
 increases, so will the savings gained by minifying your JavaScript
 code.

Minifying CSS

The savings from minifying CSS are typically less than the
 savings from minifying JavaScript because CSS generally has fewer
 comments and less whitespace than JavaScript. The greatest potential
 for size savings comes from optimizing CSS—merging identical classes,
 removing unused classes, etc. This is a complex problem, given the
 order-dependent nature of CSS (the essence of why it's called
 cascading). This area warrants further research
 and tool development. The best solution might be one that removes
 comments and whitespace, and does straightforward optimizations such
 as using abbreviations (like "#606" instead of "#660066") and removing
 unnecessary strings ("0" instead of "0px").
Minify your JavaScript source
 code.

Chapter 13. Rule 11: Avoid Redirects

A redirect is used to reroute
 users from one URL to another. There are different kinds of redirects—301
 and 302 are the most popular. Redirects are usually done for HTML
 documents, but they may also be used when requesting components in the
 page (images, scripts, etc.). There are different reasons for implementing
 redirects, including web site redesign, tracking traffic flow, counting ad
 impressions, and creating URLs that are easier for users to remember.
 We'll examine all of these aspects in this chapter, but the main thing to
 remember is that redirects make your pages
 slower.
Types of Redirects

When web servers return a redirect to the browser, the response
 has a status code in the 3xx range. This indicates that further action
 is required of the user agent in order to fulfill the request. There are
 several 3xx status codes:
	300 Multiple Choices (based on Content-Type)

	301 Moved Permanently

	302 Moved Temporarily (a.k.a. Found)

	303 See Other (clarification of 302)

	304 Not Modified

	305 Use Proxy

	306 (no longer used)

	307 Temporary Redirect (clarification of 302)

"304 Not Modified" is not really a redirect—it's used in response
 to conditional GET requests to avoid downloading data that is already
 cached by the browser, as explained in Chapter 2.
 Status code 306 is deprecated.
The 301 and 302 status codes are the ones used most often. Status
 codes 303 and 307 were added in the HTTP/1.1 specification to clarify
 the (mis)use of 302, but the adoption of 303 and 307 is almost
 nonexistent, as most web sites continue to use 302. Here's an example of
 the headers in a 301 response.
HTTP/1.1 301 Moved Permanently
Location: http://stevesouders.com/newuri
Content-Type: text/html
The browser automatically takes the user to the URL specified in
 the Location field. All the
 information necessary for a redirect is in the headers. The body of the
 response is typically empty. Despite their names, neither a 301 nor a
 302 response is cached in practice unless additional headers, such as
 Expires or Cache-Control, indicate that it should
 be.
There are other ways to automatically redirect users to a
 different URL. The meta refresh tag
 included in the head of an HTML document redirects the user after the
 number of seconds specified in the content attribute:
<meta http-equiv="refresh" content="0; url=http://stevesouders.com/newuri">
JavaScript is also used to perform redirects by setting the
 document.location to the desired URL.
 If you must do a redirect, the preferred technique is to use the
 standard 3xx HTTP status codes, primarily to ensure the Back button
 works correctly. For more information about this, see the W3C web
 article "Use standard redirects: don't break the back button!" at http://www.w3.org/qa/tips/reback.

How Redirects Hurt Performance

Figure 13-1 shows how
 redirects slow down the user experience. The first HTTP request is the
 redirect. Nothing is displayed to the user until the redirect is
 completed and the HTML document is downloaded.
[image: Redirects slow down web pages]

Figure 13-1. Redirects slow down web pages

In Chapter 7, I
 talk about the importance of downloading stylesheets quickly; otherwise,
 the page is blocked from rendering. Similarly, Chapter 8 explains how
 external scripts block the page from rendering and inhibit parallel
 downloads. The delays caused by redirects are even worse because they
 delay the delivery of the entire HTML document. Nothing in the page can
 be rendered and no components can be downloaded until the HTML document
 has arrived. Inserting a redirect between the user and the HTML document
 delays everything in the page.
Redirects are typically used with requests for the HTML document,
 but occasionally you'll see them used for components in the page. Figure 13-2 shows the HTTP
 requests for Google Toolbar. It contains four redirects.
[image: Multiple redirects including an image]

Figure 13-2. Multiple redirects including an image

The sequence of requests and redirects is complex, so I'll walk
 through them one at a time:
	The initial URL http://toolbar.google.com is requested.

	A 302 response is received with a Location of http://toolbar.google.com/t4.

	http://toolbar.google.com/t4/ is
 requested.

	This HTML document redirects the user to http://www.google.com/tools/firefox/toolbar/index.html
 using JavaScript.

	The JavaScript redirect results in a 302 response with the
 Location http://www.google.com/tools/firefox/toolbar/ft3/intl/en/index.html.
 At this point there have been a total of three redirects—one done
 with JavaScript and two using the 302 status code.

	Six images are downloaded.

	A seventh image is requested at http://toolbar.google.com/t3/intl/search.gif.

	This seventh image request results in a 302 response with the
 Location http://toolbar.google.com/intl/search.gif.

	The final three images are requested.

The first four HTTP requests (redirect, HTML, script, and
 redirect) are used to get the user to the desired HTML document. These
 redirects account for more than half of the end user response
 time.
Redirects are used frequently. Table 13-1 shows that 7 out of
 10 top U.S. web sites use redirects—2 on the initial page and 5 when you
 navigate to secondary pages. Perhaps one or more of the redirects in the
 Google Toolbar page could have been avoided. Let's look at some typical
 uses of redirects and alternatives that don't have such a negative
 impact on end user response times.
Table 13-1. Redirects used across 10 top web sites
	Web
 site
	Uses
 redirects

	http://www.amazon.com
	No

	http://www.aol.com
	Yes—secondary
 page

	http://www.cnn.com
	Yes—initial
 page

	http://www.ebay.com
	Yes—secondary
 page

	http://www.google.com
	No

	http://www.msn.com
	Yes—initial
 page

	http://www.myspace.com
	Yes—secondary
 page

	http://www.wikipedia.org
	Yes—secondary
 page

	http://www.yahoo.com
	Yes—secondary
 page

	http://www.youtube.com
	No

Alternatives to Redirects

Redirects are an easy way to solve many problems, but it's better
 to use alternative solutions that don't slow down page loading. The
 following sections discuss some of the typical situations in which
 redirects are used, and alternatives that are better for your
 users.
Missing Trailing Slash

One of the most wasteful redirects happens frequently and web
 developers are generally not aware of it. It occurs when a trailing
 slash (/) is missing from a URL
 that should otherwise have one. For example, the redirect illustrated
 in Figure 13-1 was generated by
 going to http://astrology.yahoo.com/astrology.
 This request results in a 301 response containing a redirect to http://astrology.yahoo.com/astrology/. The only
 difference is the addition of a trailing slash.
There are good reasons for sending a redirect when the trailing
 slash is missing: it allows autoindexing (going to the index.html by
 default) and makes it possible to retrieve URLs in the page that are
 relative to the current directory (e.g., logo.gif). However, many popular web pages
 don't rely on autoindexing, instead relying on specific URLs and
 handlers. Additionally, URLs are often relative to the root and not to
 the current directory.
Note that a redirect does not happen if the trailing slash is
 missing after the hostname. For example, http://www.yahoo.com does not generate a redirect.
 However, the resultant URL seen in your browser does contain the
 trailing slash: http://www.yahoo.com/. The
 automatic appearance of the trailing slash is caused because the
 browser must specify some path when it makes the GET request. If there
 is no path, as in http://www.yahoo.com, then it
 uses simply the document root (/):
GET / HTTP/1.1
Sending a redirect when a trailing slash is missing is the
 default behavior for many web servers, including Apache. The Alias directive is an easy workaround.
 Another alternative is to use the mod_rewrite module, but Alias is simpler.[9] The problem with the Astrology site could be resolved by
 adding the following to the Apache configuration:
Alias /astrology /usr/local/apache/htdocs/astrology/index.html
If you're using handlers in Apache 2.0, a cleaner solution is
 available in the form of the DirectorySlash directive (for more
 information, visit http://httpd.apache.org/docs/2.0/mod/mod_dir.html).
 Assuming there is a handler named astrologyhandler, the use of DirectorySlash would look as
 follows:
<Location /astrology>
 DirectorySlash Off
 SetHandler astrologyhandler
</Location>
None of these alternatives solves the problem of finding URLs
 relative to the current directory, so the URLs of components in the
 page should be made relative to the root. Also, make sure you
 understand the order in which various modules are run (notably
 mod_dir and mod_autoindex) because using DirectorySlash this way could have security
 implications.
In summary, if your web site contains directories and uses
 autoindexing, it is likely that users are suffering a redirect to
 reach the intended page. You can check your web logs to see how many
 301 status codes were issued, which can help you determine whether it
 is worthwhile to fix the missing trailing slash problem.

Connecting Web Sites

Imagine the situation where a web site backend is rewritten. As
 often happens, the URLs in the new implementation might be different.
 An easy way to transition users from the old URLs to the new ones is
 to use redirects. Redirects are a way of integrating the two code
 bases using a well-defined API: URLs.
Connecting an old web site to a new one is just one
 manifestation of this common use for redirects. Others include
 connecting different parts of a web site and directing the user based
 on certain conditions (type of browser, type of user account, etc.).
 Using a redirect to connect two web sites is simple and requires
 little additional coding.
Several of the redirects in the Google Toolbar page load (shown
 in Figure 13-2) are used
 for just this purpose—to connect web sites. There are different parts
 of the backend web site (T4,
 firefox, and FT3). As new versions of the backend
 components are released (such as T5 and FT4), they can be linked to the main web
 site by simply updating the redirects.
Although redirects reduce the complexity for developers, it
 degrades the user experience, as described in the earlier section
 "How Redirects Hurt Performance." There are
 alternatives for integrating two backends that, while creating more
 work for developers than a simple redirect, are not daunting and
 improve the user experience:
	Alias, mod_rewrite, and DirectorySlash (described previously in
 the "Missing Trailing Slash" section) require
 committing to an interface (handlers or filenames) in addition to
 URLs, but are simple to implement.

	If the two backends reside on the same server, it's likely
 that the code itself could be linked. For example, the older
 handler code could call the new handler code
 programmatically.

	If the domain name changes, a CNAME (a DNS record that
 creates an alias pointing from one domain name to another) can be
 used to make both hostnames point to the same server(s). If this
 is possible, the techniques mentioned here (Alias, mod_rewrite, DirectorySlash, and directly linking
 code) are viable.

Tracking Internal Traffic

Redirects are often used to track the flow of user traffic. This
 is seen on the Yahoo! home page (http://www.yahoo.com) where many of the navigation
 links are wrapped by a redirect. For example, the URL for the Sports
 link is http://www.yahoo.com/r/26. Clicking on
 this link results in a 301 response with the Location set to http://sports.yahoo.com/. The traffic patterns of
 people leaving Yahoo!'s home page can be discerned by analyzing the
 web server logs from www.yahoo.com. In this case, the
 number of people leaving to go to Yahoo! Sports is equal to the number
 of /r/26 entries in the
 logs.
An alternative is to use Referer[10] logging to track traffic patterns. Every HTTP request
 contains the URL of the page from which it was generated, i.e., the
 referer (in some cases there is no referring page, such as when the
 user types the URL or uses bookmarks). In this example, when the user
 navigates to the Sports page from the Yahoo! home page, the access
 logs from sports.yahoo.com contain a
 Referer value of http://www.yahoo.com/. Using
 Referer logging avoids sending the user through a redirect, thus
 improving response times. The difficulty with this approach, however,
 is that for Yahoo! home page to gather statistics on everyone leaving
 its site, Yahoo! has to analyze the logs of all the destination web
 sites (Sports, Mail, Calendar, Movies, etc.).
For internal traffic—i.e., traffic from web sites within the
 same company—it's worthwhile to avoid redirects by setting up Referer
 logging to improve end user response times. If the destination web
 site belongs to a different company, it might not be possible to
 analyze the logs for Referers. This situation is discussed in the next
 section.

Tracking Outbound Traffic

When you're trying to track user traffic, you might find that
 links are taking users away from your web site. In this situation, the
 use of Referer is not practical.
This is the situation faced by Yahoo! Search. Yahoo! solves the
 tracking problem by wrapping each search result link in a redirect.
 The URL of the search result goes to rds.yahoo.com and contains the
 ultimate destination as a parameter in the URL. For example, here's a
 search result link going to the entry for "Performance" at
 Wikipedia:
http://rds.yahoo.com/[...]5742/**http%3a//en.wikipedia.org/wiki/Performance
Clicking on this search result accesses rds.yahoo.com, which returns a 302
 response with the Location set to
 http://en.wikipedia.org/wiki/performance.
 Administrators can then track where users are going by analyzing the
 ** parameters from web server logs
 on rds.yahoo.com. The
 redirect slows retrieval of the destination page, which has a negative
 impact on the user's experience.
An alternative to redirects for outbound traffic is to use a
 beacon—an HTTP request that
 contains tracking information in the URL. The tracking information is
 extracted from the access logs on the beacon web server(s). The beacon
 response is typically a one-pixel by one-pixel transparent image,
 although a 204 response is a more elegant solution because it's
 smaller, never cached, and by definition does not alter the state of
 the browser.
In the case of Yahoo! Search, the goal would be to send a beacon
 whenever the user clicks on a search result link. This is done using
 the onclick handler for each link
 (when JavaScript is enabled). The onclick handler calls a JavaScript function
 that requests an image, where the image URL contains the information
 being tracked (i.e., the link that was clicked):
<a href="http://en.wikipedia.org/wiki/Performance"
 onclick="resultBeacon(this)">Performance - Wikipedia

<script type="text/javascript">
var beacon;
function resultBeacon(anchor) {
 beacon = new Image();
 beacon.src = "http://rds.yahoo.com/?url=" + escape(anchor.href);
}
</script>
Be warned: beacons have a number of nuances that make reliable
 implementation challenging. The challenge in this situation is the
 race condition between sending the beacon while the page itself is
 being unloaded. The image beacon's onload handler can be used to ensure the
 beacon has been delivered before unloading the document:
<a href="http://en.wikipedia.org/wiki/Performance"
 onclick="resultBeacon(this); return false;">Performance - Wikipedia

<script type="text/javascript">
var beacon;
function resultBeacon(anchor) {
 beacon = new Image();
 beacon.onload = gotoUrl;
 beacon.onerror = gotoUrl;
 beacon.anchor = anchor;
 beacon.src = "http://rds.yahoo.com/?url=" + escape(anchor.href);
}

function gotoUrl() {
 document.location = beacon.anchor.href;
}
</script>
This approach is likely to be as slow as using a redirect
 because both techniques require an additional HTTP request. Another
 approach is to use XMLHttpRequest
 to send the beacon, but to only wait until the request reaches
 readyState 2 (sent) before
 unloading the page. This is faster than waiting for the entire HTTP
 response of a redirect, but you'll have to decide whether the
 complexity is justified. For more information about using
 XMLHttpRequest, visit http://www.w3.org/tr/xmlhttprequest. A code sample is
 too complex to show here, but you can see one in the "XMLHttpRequest
 Beacon" example. There is also an example of the more typical image
 beacon.
	XMLHttpRequest Beacon
	http://stevesouders.com/hpws/xhr-beacon.php

	Image Beacon
	http://stevesouders.com/hpws/redir-beacon.php

Even if these approaches are too complex for most links, they
 work well for links that use the target attribute:
<a href="http://en.wikipedia.org/wiki/Performance"
 onclick="resultBeacon(this)"
 target="_blank">Performance - Wikipedia
In this case, there is no race condition and a simple image
 beacon works fine. This approach works well, for example, when
 tracking impressions (clicks) for pop-up ads. Clicking on a pop-up ad
 does not unload the current document, allowing the image beacon
 request to be completed without interruption.

Prettier URLs

Another motivation for redirects is to make URLs prettier and
 easier to remember. In the earlier "Missing Trailing Slash" section, I explained how http://astrology.yahoo.com/astrology redirects the user
 to http://astrology.yahoo.com/astrology/ (the
 same URL with a "/" appended). A redirect that affects far more users
 is from http://astrology.yahoo.com to http://astrology.yahoo.com/astrology/. Clearly, http://astrology.yahoo.com is prettier and easier to
 remember, so it's good for users that this simple URL works.
The Google Toolbar redirects described in the "How Redirects Hurt Performance" section are another
 example of using redirects to support a prettier and
 easier-to-remember URL. Imagine how difficult it would be to type or
 remember http://www.google.com/tools/firefox/toolbar/ft3/intl/en/index.html.
 It's much easier to remember http://toolbar.google.com.
The key is to find a way to have these simpler URLs without the
 redirects. Rather than forcing users to undergo an additional HTTP
 request, it would be better to avoid the redirect using Alias, mod_rewrite, DirectorySlash, and directly linking code,
 as described in the earlier section "Connecting Web Sites."
Find ways to avoid
 redirects.

[9] * For more information about the
 Apache mod_rewrite module,
 visit http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html.

[10] * This misspelling of "referrer"
 is so prevalent that it became part of the HTTP
 specification.

Chapter 14. Rule 12: Remove Duplicate Scripts

It hurts performance to include the same JavaScript file twice in
 one page. This mistake isn't as unusual as you might think. A review of
 the 10 top U.S. web sites shows that two of them (CNN and YouTube) contain
 a duplicated script.
How does this happen? How does it affect performance? How can it be
 avoided? Let's take a look.
Duplicate Scripts—They Happen

Two main factors increase the odds of a script being duplicated in
 a single web page: team size and number of scripts.
It takes a significant amount of resources to develop a web site,
 especially if it's a top destination. In addition to the core team
 building the site, other teams contribute to the HTML in the page for
 things such as advertising, branding (logos, headers, footers, etc.),
 and data feeds (news stories, sports scores, TV listings, etc.). With so
 many people from different teams adding HTML to the page, it's easy to
 imagine how the same script could be added twice. For example, two
 developers might be contributing JavaScript code that requires
 manipulating cookies, so each of them includes the company's cookies.js script. Both developers are
 unaware that the other has already added the script to the page.
As shown in Table 14-1, the average number
 of scripts in the 10 top U.S. sites is greater than six (this
 information is also given in Table 3-1 from Chapter 3). The two sites that
 have duplicate scripts also happen to have an above-average number of
 scripts (CNN has 11; YouTube has 7). The more scripts in the page, the
 more likely it is that one of the scripts will be included
 twice.
Table 14-1. Number of scripts and stylesheets for 10 top sites
	Web
 site
	Scripts
	Stylesheets

	http://www.amazon.com
	3
	1

	http://www.aol.com
	18
	1

	http://www.cnn.com
	11
	2

	http://www.bay.com
	7
	2

	http://froogle.google.com
	1
	1

	http://www.msn.com
	9
	1

	http://www.myspace.com
	2
	2

	http://www.wikipedia.org
	3
	1

	http://www.yahoo.com
	4
	1

	http://www.youtube.com
	7
	3

Duplicate Scripts Hurt Performance

There are two ways that duplicate scripts hurt performance:
 unnecessary HTTP requests and wasted JavaScript execution.
Unnecessary HTTP requests happen in Internet Explorer, but not in
 Firefox. In Internet Explorer, if an external script is included twice
 and is not cacheable, the browser generates two HTTP requests during
 page loading. This is demonstrated in the "Duplicate Scripts—Not Cached"
 example.
	Duplicate Scripts—Not Cached
	http://stevesouders.com/hpws/dupe-scripts.php

This won't be an issue for people who follow the advice in Chapter 5 and add a far future
 Expires header to their scripts, but
 if they don't, and they make the mistake of including the script twice,
 the user has to endure an extra HTTP request. Chapter 8 explains how
 downloading scripts has an especially negative impact on response times.
 Subjecting the user to an extra HTTP request for a script doubles that
 negative impact.
Even if the script is cacheable, extra HTTP requests occur when
 the user reloads the page. The following example includes scripts that
 are cacheable.
	Duplicate Scripts—Cached
	http://stevesouders.com/hpws/dupe-scripts-cached.php

Load this page once to fill the cache, and then click the "Example
 2 - Duplicate Scripts - Cached" link to load it again. Since the script
 is cached, no HTTP requests are made for the script, but if you click
 the browser's Refresh button, two HTTP requests are made. Specifically,
 two conditional GET requests are made. For more information, see the
 section "Conditional GET Requests" in Chapter 2.
In addition to generating unnecessary HTTP requests in Internet
 Explorer, time is wasted evaluating the script multiple times. This
 redundant JavaScript execution happens in both Firefox and Internet
 Explorer, regardless of whether the script is cacheable. In the previous
 examples, the duplicated script increments a counter that is displayed
 in the page. Because the script is included twice and evaluated twice,
 the value of the counter is 2.
The problem of superfluous downloads and evaluations occurs for
 each additional instance of a script in the page. In the following
 example, the same script is included 10 times, which results in 10
 evaluations. When you reload the page, 10 HTTP requests are made (only
 in Internet Explorer).
	Duplicate Scripts—10 Cached
	http://stevesouders.com/hpws/dupe-scripts-cached10.php

To summarize:
	Including the same script multiple times in a page makes it
 slower.

	In Internet Explorer, extra HTTP requests are made if the
 script is not cacheable or when the page is reloaded.

	In both Firefox and Internet Explorer, the script is evaluated
 multiple times.

Avoiding Duplicate Scripts

One way to avoid accidentally including the same script twice is
 to implement a script management module in your templating system. The
 typical way to include a script is to use the SCRIPT tag in your HTML page:
<script type="text/javascript" src="menu_1.0.17.js"></script>
An alternative in PHP would be to create a function called
 insertScript:
<?php insertScript("menu.js") ?>
While we're tackling the duplicate script issue, we'll add
 functionality to handle dependencies and versioning of scripts. A simple
 implementation of insertScript
 follows:
<?php
function insertScript($jsfile) {
 if (alreadyInserted($jsfile)) {
 return;
 }
 pushInserted($jsfile);

 if (hasDependencies($jsfile)) {
 $dependencies = getDependencies($jsfile);
 Foreach ($dependencies as $script) {
 insertScript($script);
 }
 }
 echo '<script type="text/javascript" src="' . getVersion($jsfile) . '"></script>";
}
?>
The first time a script is inserted, we'll reach pushInserted. This adds the script to the
 alreadyInserted list for the page. If
 that script is accidentally inserted again, the test for alreadyInserted will not add the script again,
 thus solving the duplicate script issue.
If this script has dependencies, those prerequisite scripts are
 inserted. In this example, menu.js
 might depend on events.js and
 utils.js. You can capture these
 dependency relationships using a hash or database. For simpler sites,
 dependencies can be maintained manually. For more complex sites, you may
 choose to automate the generation of dependencies by scanning the
 scripts to find symbol definitions.
Finally, the script is echoed to the page. A key function here is
 getVersion. This function looks up
 the script (in this case menu.js)
 and returns the filename with the appropriate version appended (e.g.,
 menu_1.0.17.js). In Chapter 5, I mention the advantage
 of adding a version number to a component's filename; when using a far
 future Expires header the filename
 has to be changed whenever the file contents are changed (see the
 section "Revving Filenames" in Chapter 5). Centralizing this
 functionality inside insertScript is
 another benefit of this script management module. Whenever a script is
 modified, all the pages start using the new filename after a simple
 update to the getVersion code. Pages
 start using the new version immediately without having to modify any of
 the PHP templates.
Make sure scripts are included only
 once.

Chapter 15. Rule 13: Configure ETags

Reducing the number of HTTP requests necessary to render your page
 is the best way to accelerate the user experience. You can achieve this by
 maximizing the browser's ability to cache your components, but the
 ETag header thwarts caching when a web
 site is hosted on more than one server. In this chapter, I explain what
 ETags are and how their default implementation slows down web
 pages.
What's an ETag?

Entity tags (ETags) are a mechanism that
 web servers and browsers use to validate cached components. Before
 jumping into the details of ETags, let's review how components are
 cached and validated.
Expires Header

As the browser downloads components, it stores them in its
 cache. On subsequent page views, if the cached component is "fresh,"
 the browser reads it from disk and avoids making an HTTP request. A
 component is fresh if it hasn't expired, based on the value in the
 Expires header. Let's look at an
 example.
When a component is requested, the server of origin has the
 option to send an Expires header
 back in the response:
Expires: Thu, 15 Apr 2010 20:00:00 GMT
Chapter 5 recommends
 setting an expiration date in the far future. How far is "far" depends
 on the component in question. An ad image might have to expire daily,
 whereas a company logo could expire in 10 years. The HTTP
 specification (http://www.w3.org/protocols/rfc2616/rfc2616-sec14.html#sec14.21)
 suggests servers should not set an Expires date more than one year in the
 future, but this is a guideline; browsers support Expires dates further in the future than one
 year. It's most efficient to avoid HTTP requests by setting the
 expiration date so far in the future that the components are unlikely
 to expire.

Conditional GET Requests

In the event a cached component does expire (or the user
 explicitly reloads the page), the browser can't reuse it without first
 checking that it is still valid. This is called a conditional GET request (see the section
 "Conditional GET Requests" in Chapter 2). It's unfortunate that the browser has to
 make this HTTP request to perform a validity check, but it's more
 efficient than simply downloading every component that has expired. If
 the component in the browser's cache is valid (i.e., it matches what's
 on the origin server), instead of returning the entire component, the
 origin server returns a "304 Not Modified" status code.
There are two ways in which the server determines whether the
 cached component matches the one on the origin server:
	By comparing the last-modified date

	By comparing the entity tag

Last-Modified Date

The component's last-modified date is returned by the origin
 server via the Last-Modified
 response header.
GET /i/yahoo.gif HTTP/1.1
Host: us.yimg.com
HTTP/1.1 200 OK
Last-Modified: Tue, 12 Dec 2006 03:03:59 GMT
Content-Length: 1195
In this example, the browser caches the component (in this case,
 the Yahoo! logo) along with its last-modified date. The next time
 http://us.yimg.com/i/yahoo.gif is requested, the
 browser uses the If-Modified-Since
 header to pass the last-modified date back to the origin server for
 comparison. If the last-modified date on the origin server matches
 that sent by the browser, a 304 response is returned and the 1195
 bytes of data don't have to be sent.
GET /i/yahoo.gif HTTP/1.1
Host: us.yimg.com
If-Modified-Since: Tue, 12 Dec 2006 03:03:59 GMT

HTTP/1.1 304 Not Modified

Entity Tags

ETags provide another way to determine whether the component in
 the browser's cache matches the one on the origin server ("entity" is
 another word for what I've been calling a "component": images,
 scripts, stylesheets, etc.). ETags were introduced in HTTP/1.1. An
 ETag is a string that uniquely identifies a specific version of a
 component. The only format constraint is that the string must be
 quoted. The origin server specifies the component's ETag using the
 ETag response header.
GET /i/yahoo.gif HTTP/1.1
Host: us.yimg.com

HTTP/1.1 200 OK
Last-Modified: Tue, 12 Dec 2006 03:03:59 GMT
ETag: "10c24bc-4ab-457e1c1f"
Content-Length: 1195
ETags were added to provide a more flexible mechanism for
 validating entities than the last-modified date. If, for example, an
 entity changes based on the User-Agent or Accept-Language headers, the state of the
 entity can be reflected in the ETag.
Later, if the browser has to validate a component, it uses the
 If-None-Match header to pass the
 ETag back to the origin server. If the ETags match, a 304 status code
 is returned, reducing the response by 1195 bytes.
GET /i/yahoo.gif HTTP/1.1
Host: us.yimg.com
If-Modified-Since: Tue, 12 Dec 2006 03:03:59 GMT
If-None-Match: "10c24bc-4ab-457e1c1f"

HTTP/1.1 304 Not Modified

The Problem with ETags

The problem with ETags is that they are typically constructed
 using attributes that make them unique to a specific server hosting a
 site. ETags won't match when a browser gets the original component from
 one server and later makes a conditional GET request that goes to a
 different server—a situation that is all too common on web sites that
 use a cluster of servers to handle requests. By default, both Apache and
 IIS embed data in the ETag that dramatically reduces the odds of the
 validity test succeeding on web sites with multiple servers.
The ETag format for Apache 1.3 and 2.x is inode-size-timestamp. Inodes are used by
 filesystems to store information such as file type, owner, group, and
 access mode. Although a given file may reside in the same directory
 across multiple servers and have the same file size, permissions,
 timestamp, etc., its inode is different from one server to the
 next.
IIS 5.0 and 6.0 have a similar issue with ETags. The format for
 ETags on IIS is Filetimestamp:ChangeNumber. ChangeNumber is a counter used to track
 configuration changes to IIS. It's unlikely that the ChangeNumber is the same across all IIS
 servers behind a web site.
The end result is that ETags generated by Apache and IIS for the
 exact same component won't match from one server to another. If the
 ETags don't match, the user doesn't receive the small, fast 304 response
 that ETags were designed for; instead, they'll get a normal 200 response
 along with all the data for the component. If you host your web site on
 just one server, this isn't a problem, but if you use a cluster of
 servers, components have to be downloaded much more often than is
 required, which degrades performance.
The unnecessary reloading of components also has a performance
 impact on your servers and increases your bandwidth costs. If you have
 n servers in your cluster in
 round-robin rotation, the probability that the ETag in the user's cache
 will match the server they land on next is 1/n. If you have 10 servers, the user has a
 10% chance of getting the correct 304 response, leaving a 90% chance of
 getting a wasteful 200 response and full data download.
This ETag issue also degrades the effectiveness of proxy caches.
 The ETag cached by users behind the proxy frequently won't match the
 ETag cached by the proxy, resulting in unnecessary requests back to the
 origin server. Instead of one 304 response between the user and the
 proxy, there are two (slower, bigger) 200 responses: one from the origin
 server to the proxy, and another from the proxy to the user. The default
 format of ETags has also been cited as a possible security
 vulnerability.[11]
It gets worse.
The If-None-Match header takes
 precedence over If-Modified-Since.
 You might hope that if the ETags didn't match but the last-modified date
 was the same, a "304 Not Modified" response would be sent, but that's
 not the case. According to the HTTP/1.1 specification (http://www.w3.org/protocols/rfc2616/rfc2616-sec13.html#sec13.3.4),
 if both of these headers are in the request, the origin server "MUST NOT
 return a response status of 304 (Not Modified) unless doing so is
 consistent with all of the conditional header fields in the request." It
 would actually be better if the If-None-Match header wasn't even there. That's
 the solution discussed in the next section.

[11] * See the "Apache http daemon file
 inode disclosure vulnerability" web article at http://www3.ca.com/securityadvisor/vulninfo/vuln.aspx?id=7196
 for more information.

ETags: Use 'Em or Lose 'Em

If you have multiple servers hosting your web site and you're
 using Apache or IIS with the default ETag configuration, your users are
 getting slower pages, your servers have a higher load, you're consuming
 greater bandwidth, and proxies aren't caching your content efficiently.
 "But wait!" you say, "I followed Rule 3 and added a far future Expires header to my components. There
 shouldn't be any conditional GET requests."
Even if your components have a far future Expires header, a conditional GET request is
 still made whenever the user clicks Reload or Refresh. There's no way
 around it—the problem with ETags has to be addressed.
One option is to configure your ETags to take advantage of their
 flexible validation capabilities. One example might be a script that
 varies depending on whether the browser is Internet Explorer. Using PHP
 to generate the script, you could set the ETag header to reflect the browser
 state:
<?php
if (strpos($_SERVER["HTTP_USER_AGENT"], "MSIE")) {
 header("ETag: MSIE");
}
else {
 header("ETag: notMSIE");
}
?>
If you have components that have to be validated based on
 something other than the last-modified date, ETags are a powerful way of
 doing that.
If you don't have the need to customize ETags, it is best to
 simply remove them. Both Apache and IIS have identified ETags as a
 performance issue, and suggest changing the contents of the Etag (see
 http://www.apacheweek.com/issues/02-01-18, http://support.microsoft.com/?id=922733, and http://support.microsoft.com/kb/922703 for more
 details).
Apache versions 1.3.23 and later support the FileETag directive. With this directive, the
 inode value can be removed from the
 ETag, leaving size and timestamp as the remaining components of the
 ETag. Similarly, in IIS you can set the ChangeNumber to be identical across all
 servers, leaving the file timestamp as the only other piece of
 information in the ETag.
Following these suggestions leaves an ETag that contains just the
 size and timestamp (Apache) or just the timestamp (IIS). However,
 because this is basically duplicate information, it's better to just
 remove the ETag altogether—the Last-Modified header provides sufficiently
 equivalent information, and removing the ETag reduces the size of the
 HTTP headers in both the response and subsequent requests. The Microsoft
 Support articles referenced in this section describe how to remove
 ETags. In Apache, you can remove Etags by simply adding the following
 line to your Apache configuration file:
FileETag none

ETags in the Real World

Table 15-1 shows
 that 6 out of 10 top U.S. web sites use ETags on a majority of their
 components. To be fair, three of them have modified the ETag format to
 remove inode (Apache) or ChangeNumber (IIS). Four or more contain ETags
 that haven't been modified and therefore cause the performance problems
 discussed previously.
Table 15-1. ETags observed across 10 top web sites
	Web
 Site
	Components with
 ETags
	Fixed

	http://www.amazon.com
	0% (0/24)
	n/a

	http://www.aol.com
	5% (3/63)
	yes

	http://www.cnn.com
	83%
 (157/190)
	no

	http://www.ebay.com
	86%
 (57/66)
	no

	http://www.google.com
	0% (0/5)
	n/a

	http://www.msn.com
	72%
 (42/58)
	no

	http://www.myspace.com
	84%
 (32/38)
	yes and no

	http://www.wikipedia.org
	94%
 (16/17)
	unknown

	http://www.yahoo.com
	0% (0/34)
	n/a

	http://www.youtube.com
	70%
 (43/61)
	yes

An example of a component with different ETags across the cluster
 of servers is http://stc.msn.com/br/hp/en-us/css/15/blu.css from http://msn.com. The HTTP headers from the first request
 in the example contains an ETag value of 80b31d5a4776c71:6e0.
GET /br/hp/en-us/css/15/blu.css HTTP/1.1
Host: stc.msn.com

HTTP/1.1 200 OK
Last-Modified: Tue, 03 Apr 2007 23:25:23 GMT
ETag: "80b31d5a4776c71:6e0"
Content-Length: 647
Server: Microsoft-IIS/6.0
On the first reload, the ETag matches and a 304 response is sent.
 The Content-Length header is missing
 from the response because the 304 status code tells the browser to use
 the content from its cache.
GET /br/hp/en-us/css/15/blu.css HTTP/1.1
Host: stc.msn.com
If-Modified-Since: Tue, 03 Apr 2007 23:25:23 GMT
If-None-Match: "80b31d5a4776c71:6e0"
HTTP/1.1 304 Not Modified
ETag: "80b31d5a4776c71:6e0"
Last-Modified: Tue, 03 Apr 2007 23:25:23 GMT
On the second reload, the ETag changes to 80b31d5a4776c71:47b. Instead of a fast 304
 response with no content, a larger 200 response with the full content is
 returned.
GET /br/hp/en-us/css/15/blu.css HTTP/1.1
Host: stc.msn.com
If-Modified-Since: Tue, 03 Apr 2007 23:25:23 GMT
If-None-Match: "80b31d5a4776c71:6e0"
HTTP/1.1 200 OK
Last-Modified: Tue, 03 Apr 2007 23:25:23 GMT
ETag: "80b31d5a4776c71:47b"
Content-Length: 647
Server: Microsoft-IIS/6.0
Even though the ETag changed, we know this is the same component.
 The size (647 bytes) is the same. The last-modified date (03 April 2007
 23:25:23) is the same. The ETags are almost the same. Let's look at the
 ETag headers more closely:
ETag: "80b31d5a4776c71:6e0"
ETag: "80b31d5a4776c71:47b"
The Server header in the
 response confirms that this is from IIS. As described earlier, the
 default ETag format for IIS is Filetimestamp:ChangeNumber. Both ETags have
 the same value for Filetimestamp
 (80b31d5a4776c71). This isn't a
 surprise because the Last-Modified
 header shows that both components have the same modification date. The
 ChangeNumber is the part of the ETag
 that differs. Although disappointing, this also isn't a surprise
 because, as stated in the Microsoft Support articles referenced earlier,
 this is precisely what causes the performance issues. Removing ChangeNumber from the ETag or removing the
 ETag altogether would avoid these unnecessary and inefficient downloads
 of data that's already in the browser's cache.
Reconfigure or remove
 ETags.

Chapter 16. Rule 14: Make Ajax Cacheable

People frequently ask whether the performance rules in this book
 apply to Web 2.0 applications. They definitely do! The rule discussed in
 this chapter is, however, the first rule that resulted from working with
 Web 2.0 applications at Yahoo!. In this chapter, I describe what Web 2.0
 means, how Ajax fits into Web 2.0, and an important performance
 improvement you can make to Ajax.
Web 2.0, DHTML, and Ajax

The relationship between Web 2.0, DHTML, and Ajax is illustrated
 in Figure 16-1 This figure
 doesn't show that Ajax is used only in DHTML or that DHTML is used only
 by Web 2.0 applications, but rather it is meant to show that Web 2.0
 includes many concepts, one of which is DHTML, and that Ajax is one of
 the key technologies in DHTML. A discussion of Web 2.0 and what it
 includes is a book (or more) by itself, but we do want to have a common
 understanding of these terms. Below, I give brief definitions with
 references for more information.
[image: Relationship between Web 2.0, DHTML, and Ajax]

Figure 16-1. Relationship between Web 2.0, DHTML, and Ajax

Web 2.0

O'Reilly Media first used the term "Web 2.0" in 2004, the first
 year they held the Web 2.0 conference. The term pertains not as much
 to technology as the social and business aspects of how the
 next-generation Internet will be used. It alludes to web sites
 evolving into Internet communities rich in wikis, blogs, and podcasts.
 Key concepts of Web 2.0 include a rich, application-like user
 interface and the aggregation of information from multiple web
 services. In effect, the web page becomes more and more like an
 application with well-defined inputs and outputs. DHTML and Ajax are
 technologies for implementing these concepts. In his web article "Web
 2.0 Compact Definition: Trying Again" (http://radar.oreilly.com/archives/2006/12/web_20_compact.html),
 Tim O'Reilly provides one of the most referenced definitions of Web
 2.0.

DHTML

Dynamic HTML allows the presentation of an HTML page to change
 after the page has loaded. This is accomplished using JavaScript and
 CSS interacting with the Document Object Model (DOM) in the browser.
 Examples include links that change when the user hovers the mouse over
 them, tree controls that expand and collapse, and cascading menus
 within the page. More complex DHTML pages may redraw the entire page
 based on the user's intention; for example, changing from viewing an
 email inbox to a form for composing an email message. Ajax is a
 technology used in DHTML so that the client can retrieve and display
 new information requested by the user without reloading the
 page.

Ajax

The term "Ajax" was coined in 2005 by Jesse James Garrett.
 [12] Ajax stands for "Asynchronous JavaScript and XML"
 (although today there are alternatives to XML, most notably JSON).
 Ajax is not a single, licensable technology, but is instead a
 collection of technologies, primarily JavaScript, CSS, DOM, and
 asynchronous data retrieval. The goal of Ajax is to break out of the
 start-and-stop nature of interaction on the Web. Displaying a blank
 white screen to the user followed by repainting the entire window is
 not a good user experience. Instead, Ajax inserts a layer between the
 UI and web server. This Ajax layer resides on the client, interacting
 with the web server to get requested information, and interfacing with
 the presentation layer to update only the components necessary. It
 transforms the Web experience from "viewing pages" to "interacting
 with an application."
The technologies behind Ajax have been around much longer than
 the phrase itself. IFrames, first found in Internet Explorer 3 in
 1996, allow asynchronous loading of content within a page, and are
 still used today in some Ajax applications. XMLHttpRequest, what I consider the heart of
 Ajax, was available in Internet Explorer 5 in 1999 (under the name
 XMLHTTP), and in Mozilla in 2002.
 The proposed W3C XMLHttpRequest specification for Ajax was first
 released in April 2006.
I highly recommend using the Yahoo! UI (YUI) Connection Manager
 for Ajax development (http://developer.yahoo.com/yui/connection). It handles
 browser compatibility issues with XMLHttpRequest and has excellent
 documentation and code samples.

[12] * Jesse James Garrett, "Ajax: A
 New Approach to Web Applications," http://www.adaptivepath.com/publications/essays/archives/000385.php.

Asynchronous = Instantaneous?

One of the cited benefits of Ajax is that it provides
 instantaneous feedback to the user because it requests information
 asynchronously from the backend web server. In the article referenced
 earlier, Jesse James Garrett uses Google Suggest and Google Maps as
 examples of web interfaces where "everything happens almost
 instantly."
Be careful! Using Ajax is no guarantee that the user won't be
 twiddling his thumbs waiting for those "asynchronous JavaScript and XML"
 responses to return. I'd hate to use Google Maps and Yahoo! Maps on a
 dial-up connection. In many applications, whether or not the user is
 kept waiting depends on how Ajax is used. Frontend engineers once again
 shoulder the responsibility of identifying and following the best
 practices required to ensure a fast user experience.
A key factor to whether the user might be kept waiting is whether
 the Ajax requests are passive or active. Passive requests are made in anticipation of
 a future need. For example, in a web-based email client, a passive
 request might be used to download the user's address book before it's
 actually needed. By loading it passively, the client makes sure the
 address book is already in its cache when the user needs to address an
 email message. Active requests are
 made based on the user's current actions. An example is finding all the
 email messages that match the user's search criteria.
The latter example illustrates that even though active Ajax
 requests are asynchronous, the user may still be kept waiting for the
 response. It is true that, thanks to Ajax, the user won't have to endure
 a complete page reload, and the UI is still responsive while the user
 waits. Nevertheless, the user is most likely sitting, waiting for the
 search results to be displayed before taking any further action. It's
 important to remember that "asynchronous" does not imply
 "instantaneous." I definitely agree with Jesse James Garrett's final
 FAQ.

	Q:
	Do Ajax applications always deliver a better experience than
 traditional web applications?

	A:
	Not necessarily. Ajax gives interaction designers more
 flexibility. However, the more power we have, the more caution we
 must use in exercising it. We must be careful to use Ajax to
 enhance the user experience of our applications, not degrade
 it.

I also agree with his other comment:
It's going to be fun.

Let's have some fun exploring how to enhance the user experience
 with Ajax while avoiding the typical pitfalls that can degrade
 it.

Optimizing Ajax Requests

The previous section makes it clear that it's possible that the
 user will be kept waiting when making active Ajax requests. To improve
 performance, it's important to optimize these requests. The techniques
 for optimizing active Ajax requests are equally applicable to passive
 Ajax requests, but since active requests have a greater impact on the
 user experience, you should start with them.
To find all the active Ajax requests in your web application,
 start your favorite packet sniffer. (The section "How the Tests Were Done" in Chapter 17 mentions my favorite packet
 sniffer: IBM Page Detailer.) After your web application has loaded,
 start using it while watching for Ajax requests that show up in the
 packet sniffer. These are the active Ajax requests that have to be
 optimized for better performance.
The most important way to improve these active Ajax requests is to
 make the responses cacheable, as discussed in Chapter 5. Some of the other 13
 rules we've already covered are also applicable to Ajax requests:
	Rule 4: Gzip Components

	Rule 9: Reduce DNS Lookups

	Rule 10: Minify JavaScript

	Rule 11: Avoid Redirects

	Rule 13: ETags—Use 'Em or Lose 'Em

However, Rule 3 is the most important. It might not be fair for me
 to create a new rule that simply reapplies previous rules in a new
 context, but I've found that, because Ajax is so new and different,
 these performance improvements have to be called out explicitly.

Caching Ajax in the Real World

Let's take a look at some examples to see how Ajax adheres to
 these performance guidelines in the real world.
Yahoo! Mail

In our first example, we'll look at the Ajax version of Yahoo!
 Mail (http://mail.yahoo.com), which is in beta
 at the time of this writing.
When the user starts the Ajax version of Yahoo! Mail, it
 downloads the body of the user's first three email messages. This is a
 smart passive Ajax request. There's a good chance the user will click
 on one or more of these email messages, so having them already
 downloaded in the client means that the user sees her email messages
 without having to wait for any Ajax responses.
If the user wants to view an email message that's not in the
 first three, an active Ajax request is made. The user is waiting for
 this response so she can read the email message. Let's look at the
 HTTP headers.
GET /ws/mail/v1/formrpc?m=GetMessage[snip...] HTTP/1.1
Host: us.mg0.mail.yahoo.com
Accept-Encoding: gzip,deflate
HTTP/1.1 200 OK
Date: Mon, 23 Apr 2007 23:22:57 GMT
Cache-Control: no-store, private
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/xml; charset=UTF-8
Content-Encoding: gzip
Connection: keep-alive
Now imagine that the user leaves Yahoo! Mail to visit another
 web site. Later, she returns to Yahoo! Mail and again clicks on the
 fourth email message. Not surprisingly, the exact same request is sent
 again because the previous Ajax response was not saved in the
 browser's cache. It wasn't cached because the response contains a
 Cache-Control header with the value
 no-store, and an Expires header with a date in the past. Both
 of these tell the browser not to cache the response. And yet, if her
 inbox hasn't changed, the content is identical in both
 responses.
If these headers were replaced with a far future Expires header (see Chapter 5) the response would be
 cached and read off disk, resulting in a faster user experience. This
 might seem counterintuitive to some developers—after all, this is a
 dynamically generated response that contains information relevant to
 only one user in the world. It doesn't seem to make sense to cache
 this data. The critical thing to remember is that this one user might
 make that request multiple times in a day or week. If you can make the
 response cacheable for her, it may make the difference between a slow
 user experience and a fast one.
Making this Ajax response cacheable requires more work than
 simply changing the HTTP headers. The personalized and dynamic nature
 of the response has to be reflected in what's cached. The best way to
 do this is with query string parameters. For example, this response is
 valid only for the current user. This can be addressed by putting the
 username in the query string:
/ws/mail/v1/formrpc?m=GetMessage&yid=steve_souders
It's also important that the exact message is reflected. We
 wouldn't want to say &msg=4,
 because what's "fourth" in the inbox is constantly changing. Instead,
 a message ID that is unique across all messages for this user would
 solve the problem:
/ws/mail/v1/formrpc?m=GetMessage&yid=steve_souders&msgid=001234
It's possible that the responses are not being cached for data
 privacy reasons. The Cache-Control:
 no-store header is commonly used with data that is
 considered private. When this header is used, the response is not
 written to disk at all. However, the HTTP specification warns that you
 shouldn't rely on this mechanism to ensure data privacy, as malicious
 or compromised caches may ignore the Cache-Control: no-store header
 altogether.
A better alternative for handling data privacy is using a secure
 communications protocol such as Secure Sockets Layer (SSL). SSL
 responses are cacheable (only for the current browser session in
 Firefox), so it provides a compromise: data privacy is ensured while
 cached responses improve performance during the current
 session.
Walking through the other relevant performance rules, we can
 find several positive performance traits in this implementation. The
 response is gzipped (Rule 4). The domain is used in many other
 requests in the page, which helps to avoid additional DNS lookups
 (Rule 9). The XML response is minified as much as possible (Rule 10).
 It doesn't use redirects (Rule 11). And the ETags are removed (Rule
 13).

Google Spreadsheets

Google Docs & Spreadsheets (http://docs.google.com) offers an Ajax spreadsheet
 application, which is in beta at the time of this writing.
In a typical workflow, the user creates a spreadsheet and saves
 it in his list of documents. Let's examine what happens when the user
 returns and opens the spreadsheet. Figure 16-2 shows the HTTP traffic
 when the spreadsheet is opened—10 active Ajax requests are made. On a
 side note, this illustrates that Ajax requests are not exclusively
 XML-fetched using XMLHttpRequest.
 In Google Spreadsheets, the Ajax requests are HTML and JavaScript.
 Some of these are requested using XMLHttpRequest, but IFrames are also
 used.
[image: Active Ajax requests in Google Spreadsheets]

Figure 16-2. Active Ajax requests in Google Spreadsheets

If the user closes the spreadsheet and reopens it, 10 requests
 are made again. That's because none of the requests is cacheable. Most
 of the requests are fairly small, but one of the HTML requests is 47K
 (before compression). Let's look at the HTTP headers for that
 request.
GET /ar?id=[snip...]&srow=0&erow=100 HTTP/1.1
Host: spreadsheets.google.com
Accept-Encoding: gzip,deflate
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Cache-Control: private
Content-Encoding: gzip
Date: Tue, 24 Apr 2007 23:37:13 GMT
Again, it's no surprise that the Ajax request is made every time
 the user opens the spreadsheet. The response does not have a header
 telling the browser to cache it. In my test, I wasn't modifying the
 spreadsheet, so this response was identical every time I opened my
 spreadsheet. In fact, 8 of the 10 requests were identical, so it
 raises the question of whether they could have been cached.
Just as in the Yahoo! Mail example, caching the spreadsheet is
 not as easy as adding a far future Expires header. If the user modifies the
 spreadsheet, we need to ensure that cached requests affected by the
 changes aren't reused. Again, a simple solution is to use the query
 string. The Google Spreadsheets backend could save a timestamp
 representing when the last modifications were made, and embed this in
 the query string of the Ajax requests:
/ar?id=[snip...]&srow=0&erow=100&t=1177458941
Although the Ajax requests aren't cacheable, other performance
 guidelines are implemented successfully. The response is gzipped (Rule
 4). As with most Google sites, domain lookups are minimized (Rule 9).
 The scripts are minified (Rule 10). It doesn't use redirects (Rule
 11). And the ETags are removed (Rule 13).
Make sure your Ajax requests follow the
 performance guidelines, especially having a far future Expires
 header.

Chapter 17. Deconstructing 10 Top Sites

What follows is an examination of 10 top U.S. web sites using the
 rules and tools described in this book. This analysis gives examples of
 how to identify performance improvements in real-world web sites. My hope
 is that after walking through these examples you will look at web sites
 with the critical eye of a performance advocate.
Page Weight, Response Time, YSlow Grade

Table 17-1 shows
 the page weight, response time, and YSlow grade for the home pages of 10
 top U.S. web sites as measured in early 2007. YSlow is a performance
 tool developed at Yahoo! that produces a single score (A is best, F is
 worst) for how well a page satisfies the performance rules described in
 this book. See the upcoming section "How the Tests Were Done" for more information.
Table 17-1. Performance summary of 10 top U.S. web sites
	 	Page
 weight
	Response
 time
	YSlow
 grade

	Amazon
	405K
	15.9 sec
	D

	AOL
	182K
	11.5 sec
	F

	CNN
	502K
	22.4 sec
	F

	eBay
	275K
	9.6 sec
	C

	Google
	18K
	1.7 sec
	A

	MSN
	221K
	9.3 sec
	F

	MySpace
	205K
	7.8 sec
	D

	Wikipedia
	106K
	6.2 sec
	C

	Yahoo!
	178K
	5.9 sec
	A

	YouTube
	139K
	9.6 sec
	D

Not surprisingly, page weight and response time are strongly
 correlated, with a correlation coefficient of 0.94, as shown in Figure 17-1. This makes sense—adding
 more components or larger components to the page makes it slower.
 Plotting page weight and response time throughout the development
 process is a worthwhile analysis for any web page undergoing performance
 improvements.
[image: Page weight and response time are correlated]

Figure 17-1. Page weight and response time are correlated

YSlow grades are a strong indicator of the response time of a
 page, as shown in Figure 17-2. A high (good) YSlow
 grade indicates a well-built page that is fast and lean. A page with a
 low (bad) YSlow grade is probably going to be slow and heavier. Since
 the YSlow grade is inversely related to response time and page weight,
 the inverse YSlow grade is plotted in Figure 17-2. YSlow grades are
 typically indicated as A, B, C, D, or F, but behind the letter grade is
 a numeric score on the scale 0–100.
[image: YSlow grade is inversely correlated to page weight and response time]

Figure 17-2. YSlow grade is inversely correlated to page weight and response
 time

Yahoo! doesn't quite follow the curve. It has the second-best
 YSlow grade (its score is A, at 95, which is slightly lower than
 Google's A, a perfect 100) and response time, even though it's the
 fourth-heaviest page. The Yahoo! home page team is a long-time consumer
 of these performance best practices, and therefore scores well in YSlow
 and is able to squeeze more speed out of their page. Amazon's YSlow
 grade also doesn't reflect the page weight and response time. The main
 reason for this is the large number of images in their page
 (approximately 74 images). YSlow doesn't subtract points for images, so
 the Amazon page scores well, but performs slowly.
In general, we see that following these best practices results in
 a faster page. The correlation coefficient for inverse YSlow grade and
 response time is 0.76, indicating a strong correlation. This has been my
 experience in working with product teams at Yahoo!. As pages are changed
 to adopt one rule after another, their response times get faster and
 faster. In the next section, "How the Tests Were Done," I review the tools and
 measurements used in this analysis. After that, we'll jump into the
 performance analysis of these 10 top web sites.

How the Tests Were Done

Reviewing these 10 top web sites illustrates how performance best
 practices are followed in real world pages. A problem in doing an
 analysis of this type is that the subject of the analysis is a moving
 target—these web sites are constantly changing. For example, during my
 analysis one web site switched from IIS to Apache. It's possible, and
 likely, that the page I analyzed is not the one you'll see if you visit
 that web site today. Ideally, the page you find will implement the
 suggestions and other best practices highlighted here, and will perform
 well and load quickly.
The charts of HTTP requests were generated by IBM Page Detailer
 (http://alphaworks.ibm.com/tech/pagedetailer).
 This is my preferred packet sniffer. It works across all HTTP clients. I
 like the way IBM Page Detailer indicates how the HTTP requests are
 associated to the corresponding HTML document. The HTTP chart makes it
 easy to identify bottlenecks in component downloads. The bars are
 color-coded to indicate the type of component being
 downloaded.
The response times were measured using Gomez's web monitoring
 services (http://www.gomez.com). The
 response time is defined as the time from when the
 request is initiated to when the page's onload event fires. Each URL was measured
 thousands of times over low broadband (56K-512K); the average value is
 what is shown here.
I used Firebug (http://www.getfirebug.com)
 to analyze the JavaScript and CSS in the various pages. Firebug is a
 critical tool for any frontend engineer. Its strongest feature is the
 ability to debug JavaScript code, but that's just a fraction of what it
 can do. Firebug also provides functionality to inspect the DOM, tweak
 CSS, execute JavaScript, and explore the page's HTML.
The main tool used to analyze the performance of these pages was
 YSlow (http://developer.yahoo.com/yslow). I built
 YSlow for Yahoo! development teams to help them identify the changes
 that could lead to the greatest improvements in performance. Joe Hewitt,
 Firebug's author, provided support for the integration of YSlow with
 Firebug. This is an ideal combination since frontend engineers already
 use Firebug during development.
YSlow crawls the page's DOM to find all the components in the
 page. It uses XMLHttpRequest to find
 the response time and size of each component, as well as the HTTP
 response headers. This, along with other information gathered from
 parsing the page's HTML is used to score each rule, as shown in Figure 17-3. The overall YSlow grade is a weighted average of
 each rule's score. YSlow provides other tools as well, including a
 summary of the page's components and an analysis of all the JavaScript
 in the page using JSLint (http://jslint.com).
[image: YSlow]

Figure 17-3. YSlow

Amazon

[image:]

Figure 17-4. http://www.amazon.com

Amazon (http://www.amazon.com) is a
 relatively heavy page with a total page weight of 405K and 84 HTTP
 requests. Given the size and number of components in the page, the
 biggest performance improvement for Amazon would be to add a far future
 Expires header to their components
 (Rule 3). Only 3 out of 84 components have an Expires header. They use only one stylesheet
 and three scripts. The scripts are loaded one after the other, so it
 would be a simple improvement to combine them into a single HTTP
 request. The stylesheet and scripts should be gzipped. The three scripts
 are minified to a large degree, but further savings could be gained by
 removing all comments and extraneous carriage returns.
Even with the performance improvements identified by YSlow, the
 sheer number of images in the page (74) is a challenge. Nineteen of
 these images are used as backgrounds in CSS rules. Converting them into
 CSS sprites would reduce the total HTTP requests from 84 to
 66.
Looking at the subset of HTTP requests shown in the waterfall
 chart in Figure 17-5, we see that because
 these images are all requested from the same hostname, only two images
 are downloaded in parallel, increasing the total page load time.
 Splitting this large number of images across two hostnames would double
 the amount of parallel downloads, significantly reducing the end user
 response time. Two is the number of hostnames recommended in Chapter 8 in the "Parallel Downloads" section.
[image: Amazon HTTP requests]

Figure 17-5. Amazon HTTP requests

AOL

[image:]

Figure 17-6. http://www.aol.com

The HTTP requests for AOL (http://www.aol.com) show a high degree of parallelization
 of downloads in the first half, but in the second half, the HTTP
 requests are made sequentially (see Figure 17-7). In turn, the page load time is
 increased. There are two interesting implementation details here:
 downgrading to HTTP/1.0 and multiple scripts.
[image: AOL HTTP requests]

Figure 17-7. AOL HTTP requests

In the first half, where there is greater parallelization, the
 responses have been downgraded from HTTP/1.1 to HTTP/1.0. I discovered
 this by looking at the HTTP headers where the request method specifies
 HTTP/1.1, whereas the response states
 HTTP/1.0.
GET /_media/aolp_v21/bctrl.gif HTTP/1.1
Host: www.aolcdn.com
HTTP/1.0 200 OK
For HTTP/1.0, the specification recommends up to four parallel
 downloads per hostname, versus HTTP/1.1's guideline of two per hostname.
 Greater parallelization is achieved as a result of the web server
 downgrading the HTTP version in the response.
Typically, I've seen this result from outdated server
 configurations, but it's also possible that it's done intentionally to
 increase the amount of parallel downloading. At Yahoo!, we tested this,
 but determined that HTTP/1.1 had better overall performance because it
 supports persistent connections by default (see the section "Keep-Alive" in Chapter 2).
There are no parallel downloads in much of the second half of
 AOL's HTTP traffic because most of these requests are scripts. As
 described in Chapter 8,
 all other downloading is blocked while the browser downloads external
 scripts. This results in a small number of requests spreading out over a
 longer time period than if they were done in parallel.
These scripts appear to be used for ads, but the insertion of the
 scripts seems inefficient. The scripts come in pairs. The first script
 contains:
document.write('<script type="text/javascript" src="http://twx.doubleclick.net/adj/
TW.AOLCom/Site_WS[snip...]script>\n');
This causes the second script to be downloaded from http://twx.doubleclick.net. It contains the content of
 the ad:
document.write('<!-- Template Id = 4140 Template Name = AOL - Text - WS Portal ATF DR
2-line (291×30) -->\nFree Credit Score[snip...]');
There are 6 ads done this way, totaling 12 external scripts that
 have to be downloaded. If each ad could be called and downloaded using
 just one script per ad, six HTTP requests could be eliminated. These
 additional requests have a significant impact on the page load time
 because they're scripts that block all other downloads.
The other areas for greatest improvement are:
	Rule 3: Add an Expires Header
	More than 30 images aren't cached because they don't have an
 Expires header.

	Rule 4: Gzip Components
	One of the stylesheets and 20 of the scripts aren't
 compressed.

	Rule 9: Reduce DNS Lookups
	Eleven domains are used, meaning delays from extra DNS
 lookups are more likely.

There are four beacons served in the page, and three more are sent
 after the page has finished loading. A nice performance aspect of these
 beacons is that they use the "204 No Content" status code. This status
 code is ideal for beacons because it does not contain an entity body,
 making the responses smaller.

CNN

[image:]

Figure 17-8. http://www.cnn.com

CNN (http://www.cnn.com) is the heaviest of
 the 10 top web sites in both total page weight (502K) and number of HTTP
 requests (198!). The main reason for this is the use of images to
 display text. For example, the image http://i.a.cnn.net/cnn/element/img/1.5/main/tabs/topstories.gif
 is the text "Top Stories," as shown in Figure 17-9.
[image: Text rendered in an image]

Figure 17-9. Text rendered in an image

Over 70 images contain only text. Capturing text as an image
 allows for a customized appearance that may not be possible with text
 fonts. The tradeoff, as seen in the download statistics, is an increase
 in page weight and HTTP requests, resulting in a slower user experience.
 Also, internationalization is more challenging, as each translation
 requires a new set of images. Rule 1 tells us that reducing the number
 of components is the most important step to faster performance.
 Replacing these images with text would yield the biggest performance
 improvement for this page.
Similarly, there are 16 images used for CSS backgrounds. If these
 were combined into a few CSS sprites, as described in Chapter 3, 10 or more HTTP
 requests would be eliminated. Combining the 10 separate JavaScript files
 together would eliminate another 9 HTTP requests.
Further, more than 140 of the components in the page do not have
 an Expires header and thus are not
 cached by the browser (Rule 3). None of the stylesheets or scripts is
 gzipped (Rule 4) and most of the scripts aren't minified (Rule 10). The
 stylesheets add up to 87K and the scripts are 114K, so gzipping and
 minifying would significantly reduce the total page weight. Over 180 of
 the components have the default ETag from Apache. As described in Chapter 15, this means that it's
 unlikely the more efficient 304 status code can be used when conditional
 GET requests are made. This is especially bad in this case because most
 components must be validated since they don't have a future Expires header.

eBay

[image:]

Figure 17-10. http://www.ebay.com

The YSlow grade for eBay (http://www.ebay.com) is very close to a B. With a little
 bit of work it would perform well. The main problems are with Rules 1,
 3, 9, and 13.
	Rule 1: Make Fewer HTTP Requests
	The eBay page has 10 scripts and 3 stylesheets. A simple fix
 would be to use the combination technique described in Chapter 3. Four of the
 scripts are loaded close together at the top of the page, and
 three are at the bottom of the page. These should be combined into
 a top script and a footer script, reducing 10 scripts to 5. The
 three stylesheets are all loaded close together and should also be
 combined.

	Rule 3: Add an Expires Header
	One script and one stylesheet have an Expires header that is only nine hours
 in the future. According to the Last-Modified date, the stylesheet
 hasn't been modified in 3 days, and the script in 24 days. These
 are likely assets that change over time, but given the number of
 users of the site, it would be better to use a far future Expires header to make these files
 cacheable. Additionally, there are five IFrames without an
 Expires header. These are used
 to insert ad images, some of which don't have an Expires header as well.

	Rule 9: Reduce DNS Lookups
	Nine different domains are used in the eBay page. Typically,
 a domain count this high includes several domains from third-party
 advertisers, but in this case, there are seven domains related to
 eBay, and only two used by third-party advertisers.

	Rule 13: ETags—Configure ETags
	Fifty-two components are served from IIS using the default
 ETag. As explained in Chapter 15, this causes components
 to be downloaded much more frequently than necessary. This is
 exacerbated by the fact that these components have an expiration
 date that is at most 45 days in the future. As the components
 become stale and the conditional GET request is made, the ETag is
 likely to spoil the chances of getting a fast "304 Not Modified"
 response, and instead end up sending back the entire component
 even though it already resides on the user's disk.

The use of IFrames to serve ads is worth discussing. IFrames
 achieve a clear separation between ads and the actual web page, allowing
 those teams and systems to work independently. The downside is that each
 IFrame is an additional HTTP request that typically (as in this case) is
 not cached.
Using IFrames to serve ads is further justified because ads often
 contain their own JavaScript code. If the ad content is coming from a
 third party and includes JavaScript, placing it in an IFrame sandboxes
 the JavaScript code, resulting in greater security (the third party's
 JavaScript code cannot access the web page's namespace). However, in
 eBay's page, the ads served in IFrames include no JavaScript.
 Furthermore, only one contains third-party content. Inserting the ads
 during HTML page generation would eliminate these five HTTP requests for
 IFrames.
An additional improvement would be to split the bulk of the images
 across two hostnames. Thirty-six of the 41 images come from http://pics.ebaystatic.com. In HTTP/1.1, only two
 components per hostname are downloaded in parallel (see Chapter 8). This has a
 negative effect on the degree of HTTP request parallelization (see Figure 17-11).
[image: eBay HTTP requests]

Figure 17-11. eBay HTTP requests

Most of these 36 images are downloaded in the middle of the graph,
 where you can see a clear stairstep pattern of just two requests at a
 time. If these were split across http://pics1.ebaystatic.com and http://pics2.ebaystatic.com, for example, four images
 could be downloaded in parallel, thus speeding up the overall page load
 time. There is a trade-off in performance between splitting images
 across multiple hostnames and reducing DNS lookups (Rule 9), but in this
 case, downloading 36 images, 4 at a time, is worth an extra DNS
 lookup.
A nice performance trait is that three of the scripts are
 downloaded at the bottom of the page. These scripts are related to the
 user's eBay "Favorites" and are probably not required for rendering the
 page. eBay has followed the recommended practice here of loading scripts
 at the bottom, which Chapter 8 explained as
 valuable because it doesn't block downloading and rendering.

Google

[image:]

Figure 17-12. http://www.google.com

Google is known for its simple and fast page design. Its home
 page, http://www.google.com, is just 18K in total
 page size and issues just 3 HTTP requests (the HTML document and 2
 images). However, even in this simple page there are several performance
 optimizations worth noting.
The Google page is just three HTTP requests, but Figure 17-13 shows five HTTP requests.
[image: Google HTTP requests]

Figure 17-13. Google HTTP requests

The two extra requests aren't really part of the page. One is
 http://www.google.com/favicon.ico (see Figure 17-14). Favicons are used to
 associate a visual image with a URL. They are displayed next to the URL
 at the top of the browser, next to each URL in the list of Bookmarks or
 Favorites, and in tabs (for tab-enabled browsers). Browsers fetch them
 the first time a web site is loaded. If a web site doesn't have a
 favicon, a default icon is used.
[image:]

Figure 17-14. http://www.google.com/favicon.ico

The second extra request is for http://www.google.com/images/nav_logo3.png, shown in
 Figure 17-15. This is a CSS
 sprite, a combination of images that was described in Chapter 3. I say it is not part
 of the page because it is loaded after the page is done, as part of the
 onload event in the Google home
 page:
onload="sf();if(document.images){new Image().src='/images/nav_logo3.png'}"
The sf() function call sets
 the input focus to the search field. The second statement creates an
 image object using new Image(). The
 image object's src attribute is set
 to /images/nav_logo3.png. This is a
 typical way to load images dynamically, except for one thing: the new
 image isn't assigned to a variable. There is no easy way for the page to
 access this image later. That's OK, though, because this page has no
 intention of using the image. The nav_logo3.png image is downloaded in
 anticipation of future pages the user is expected to visit. Notice how
 this CSS sprite has the next and previous arrows used to page through
 the search results. It also contains images used in other pages, such as
 a checkout button and shopping cart.
[image:]

Figure 17-15. http://www.google.com/images/nav_logo3.png

This is called preloading. In
 situations where the next page the user will visit is highly
 predictable, components needed by that subsequent page are downloaded in
 the background. In the Google page, however, there is one problem:
 nav_logo3.png isn't used by any
 subsequent pages. After submitting a search from http://www.google.com, the user goes to http://www.google.com/search. The search results page
 loads http://www.google.com/images/nav_logo.png
 (no "3" after "logo"). As shown in Figure 17-16, nav_logo.png is similar to nav_logo3.png. It's also a CSS
 sprite.
[image:]

Figure 17-16. http://www.google.com/images/nav_logo.png

Why did the Google home page preload nav_logo3.png if it's not used on the search
 results page? It's possible it's preloaded for other Google sites, but I
 visited http://froogle.google.com, http://catalogs.google.com, http://books.google.com, and several others. None of them
 used nav_logo3.png. Perhaps this is
 left over from a previous design and just hasn't been cleaned up. It
 could also be a foreshadowing of a future site integration strategy
 (hence the "3"). Despite this apparently wasteful download on the Google
 home page, don't be dissuaded. Preloading is a good strategy for
 improving the page load times of secondary pages on your site.
Another interesting performance optimization in the Google home
 page is the use of the SCRIPT DEFER
 attribute. In Chapter 8,
 I describe how the DEFER attribute
 doesn't completely resolve the negative performance impacts that scripts
 have when they block downloads and rendering. However, that was in
 regard to external scripts; in this case, the script is inlined:
<script type="text/javascript" defer><!--
function qs(el){...
function togDisp(e){...
function stopB(e){...
document.onclick=function(event){...
//--;>
</script>
Using the DEFER attribute
 avoids possible rendering delays by telling the browser to continue
 rendering and execute the JavaScript later, but I've never seen it used
 for inline scripts. The justification for using it with an inline script
 may be that parsing and executing the JavaScript code could delay
 rendering the page. In this case, however, a problem is that after this
 SCRIPT block, there is a link that
 relies on the togDisp function to
 display a pop-up DIV of "more"
 links:
more
If using the DEFER attribute
 allowed the page to render without executing the togDisp function definition, a race condition
 would be created. If the "more" link is rendered and the user clicks on
 it before the JavaScript is executed, an error would occur. The use of
 DEFER on inline scripts is an area
 for further investigation.
These suggestions, however, are far beyond the typical performance
 improvements needed on most sites. The Google page scores a perfect 100
 in YSlow—it is one of the fastest pages on the Internet.

MSN

[image:]

Figure 17-17. http://www.msn.com

The MSN home page (http://www.msn.com),
 ranks in the middle among the sites examined in this chapter when it
 comes to total size and number of HTTP requests. It fails to meet some
 basic performance guidelines, due especially to the way ads are
 inserted. However, it has several positive performance traits not seen
 in any of the other web sites analyzed here. Let's start by looking at
 how MSN does ads, because this will come up in several of the following
 recommendations.
MSN uses IFrames to insert five ads into the page. As discussed
 earlier, with regard to eBay, using IFrames is an easy way to remove
 dependencies between the ads system and the HTML page generation system.
 However, each IFrame results in an additional HTTP request. In the case
 of MSN, each IFrame's SRC attribute
 is set to about:blank, which doesn't
 generate any HTTP traffic. However, each IFrame contains an external
 script that inserts an ad into the page using JavaScript and document.write. Integrating the ad system and
 the HTML page generation system would preclude the need for these five
 HTTP requests. Instead of requesting a script that contains multiple
 document.write statements, that
 JavaScript could be inlined in the HTML document.
	Rule 1: Make Fewer HTTP Requests
	The MSN home page has four scripts (other than the scripts
 used for ads), three of which are loaded very close together and
 could be combined. It also has over 10 CSS background images.
 These could be combined using CSS sprites.

	Rule 3: Add an Expires Header
	One script is not cacheable because its expiration date is
 set in the past. The five scripts used to insert ads also have an
 expiration date in the past, and so they aren't cacheable. It's
 likely the JavaScript couldn't be cached, but if the ads were
 inserted into the HTML page itself, these five external script
 files wouldn't be required.

	Rule 4: Gzip Components
	Two scripts and two stylesheets are not gzipped. Also, the
 five scripts used to serve ads are not gzipped.

	Rule 9: Reduce DNS Lookups
	Twelve domains are used in the MSN home page. This is more
 than most web pages, but we'll discuss later how this is a benefit
 in increasing parallel downloads.

	Rule 10: Minify JavaScript
	The five scripts used to serve ads are not minified.

	Rule 13: ETags—Configure ETags
	Most of the components in the page have ETags that follow
 the default format for IIS. The same images downloaded from
 different servers have different ETags, meaning they will be
 downloaded more frequently than needed.

Several noteworthy performance optimizations exist in the MSN home
 page:
	It uses a CSS sprite (http://stc.msn.com/br/hp/en-us/css/19/decoration/buttons.gif),
 one of the few 10 top web sites to do so (the others are AOL and
 Yahoo!). This sprite is shown in Figure 17-18.
[image: Images stored in MSN site's sprite]

Figure 17-18. Images stored in MSN site's sprite

	The entire HTML document is minified. None of the other web
 sites do this.

	Components are split across multiple hostnames for increased
 parallelized downloads, as shown in Figure 17-19. This is done in a very deliberate
 way—all CSS images are from a different hostname from the other
 images displayed in the page.

[image: MSN HTTP requests]

Figure 17-19. MSN HTTP requests

MSN clearly has people on its staff focused on some aspects of
 performance. However, integrating the ads with the HTML page and fixing
 a few web server configuration settings would greatly improve the
 performance of their page.

MySpace

[image:]

Figure 17-20. http://www.myspace.com

It's a challenge for web sites geared toward user-generated
 content to achieve fast performance—the content is varied and changes
 frequently. Nevertheless, there are some simple changes that would
 improve the response time of MySpace (http://www.myspace.com).
	Rule 1: Make Fewer HTTP Requests
	Combining scripts and stylesheets would reduce the number of
 HTTP requests. The page has six scripts, three of which are loaded
 close together at the top of the page and could easily be
 combined. The three stylesheets are also loaded close together at
 the top of the page, making it easy to combine them as
 well.

	Rule 3: Add an Expires Header
	The MySpace page has over a dozen images with no Expires header. Some of the images in
 the page understandably wouldn't benefit from an Expires header because they rotate
 frequently, such as in the new videos and new people sections of
 the page. However, some of the images that are used on every page
 also do not have an Expires
 header.

	Rule 9: Reduce DNS Lookups
	The impact of DNS lookups would be reduced by eliminating
 some of the 10 unique domains used in the page.

	Rule 10: Minify JavaScript
	Four scripts, totaling over 20K, are not minified.

As shown in Figure 17-21, there's a
 high degree of parallelized HTTP requests in the middle of the page, but
 the beginning of the page is negatively affected by the blocking
 behavior of scripts and stylesheets (this blocking behavior is described
 in Chapter 8). Combining
 these files would lessen the impact. The effect is worse here because
 the HTTP requests were measured in Firefox. In addition to scripts
 blocking parallel downloads (in both Firefox and Internet Explorer),
 stylesheets also block parallel downloads (only in Firefox).
 Nevertheless, combining scripts and doing the same for stylesheets would
 improve the performance for both Firefox and Internet Explorer.
[image: MySpace HTTP requests]

Figure 17-21. MySpace HTTP requests

Wikipedia

[image:]

Figure 17-22. http://www.wikipedia.org

The Wikipedia page is relatively small and fast. It would be
 faster if the 10 images used as navigation icons at the bottom of the
 page were converted to a CSS sprite. Further, there are two stylesheets
 that should be combined. These simple improvements would reduce the
 page's HTTP requests from 16 to just 6: the HTML document, 1 stylesheet,
 3 images, and 1 CSS sprite.
None of the images has an Expires header. This is the second-most
 important performance improvement for Wikipedia. Some of the images
 haven't been modified in over a year. Adding a far future Expires header would improve the response time
 for millions of users, without adding much burden to the development
 process when images change.
Also, the stylesheets should be gzipped. They currently total
 about 22K, and gzipping them would reduce the number of bytes downloaded
 to 16K.
Most of Wikipedia's images are in PNG format. The PNG format is
 frequently chosen over GIF because of its smaller file size, as well as
 greater color depth and transparency options. It's likely that using the
 PNG format saved Wikipedia several kilobytes of data to download (it's
 not possible to convert their PNG images to GIF for comparison because
 of the loss of color depth). However, even after choosing the PNG
 format, further optimization can bring the file sizes down even more.
 For example, optimizing Wikipedia's 12 PNG images brought the total size
 from 33K down to 28K, a 15% savings. There are several PNG optimizers
 available—I used PngOptimizer (http://psydk.org/pngoptimizer.php). Adding a PNG
 optimization step to their development process would improve Wikipedia's
 performance.

Yahoo!

[image:]

Figure 17-23. http://www.yahoo.com

Yahoo! (http://www.yahoo.com) is the
 fourth-heaviest page in total bytes among the ones examined in this
 chapter, but second in response time and YSlow grade. The Yahoo! home
 page team has been engaged with my performance team for years, and is
 constantly tracking and working to improve response times. As a result,
 their YSlow scores are high, and they are able to squeeze more speed out
 of their page.
Yahoo!'s home page has four CSS sprite images. It has been using
 sprites for years and was the first web site in which I encountered the
 use of sprites. One of these sprites is icons_1.5.gif. Looking at the list of
 components, we see that this image is downloaded twice. On further
 investigation, the issue is that two URLs reference the exact same
 image:
http://us.js2.yimg.com/us.js.yimg.com/i/ww/sp/icons_1.5.gif
http://us.i1.yimg.com/us.yimg.com/i/ww/sp/icons_1.5.gif
How does a mistake like this happen? Template variables are most
 likely used to build these URLs. The CSS rules that include this
 background image are both inlined in the HTML document, so presumably
 both had access to the same template variables. The us.js2.yimg.com hostname is used
 for all of the scripts, and us.i1.yimg.com is used solely for
 images and Flash. Most likely, the "JavaScript" hostname, us.js2.yimg.com, was accidentally
 used for this CSS background image.
This look at the use of hostnames reveals some nice performance
 optimizations in the Yahoo! home page. They have split their components
 across multiple hostnames, resulting in an increase in simultaneous
 downloads, as shown in Figure 17-24. Also, they have chosen the
 domain yimg.com, which is different
 from the page's hostname, yahoo.com. As a result, the HTTP requests
 to yimg.com will not be encumbered
 with any cookies that exist in the yahoo.com domain. When I'm logged in to
 my personal Yahoo! Account, my yahoo.com cookies are over 600 bytes, so
 this adds up to a savings of over 25K across all the HTTP requests in
 the page.
[image: Yahoo! HTTP requests]

Figure 17-24. Yahoo! HTTP requests

The names of two elements are intriguing: onload_1.3.4.css and onload_1.4.8.js. In Chapter 7 and Chapter 8 I talk about the
 negative impact that stylesheets and scripts have on performance
 (stylesheets block rendering in the page, and scripts block rendering
 and downloading for anything after them in the page). An optimization
 around this that I described in Chapter 10 is downloading these
 components after the page has finished loading, thus eliminating the
 negative blocking effect. This more extreme approach is applicable only
 when the stylesheet or script is not necessary for the rendering of the
 initial page. In the case of the Yahoo! home page, this stylesheet and
 script are most likely used for DHTML actions that occur
 after the page has loaded. For example, clicking on
 the "More Yahoo! Services" link displays a DHTML list of links to other
 Yahoo! properties. This functionality, which happens after the page has
 loaded, is contained in onload_1.3.4.css.
The main improvements that could be made to the Yahoo! home page,
 other than removing the duplicate CSS background image described
 earlier, would be to reduce the number of domains (seven) and combine
 the three scripts that are loaded as part of the page. Minifying the
 HTML document (as MSN does) would reduce it from 117K to 29K. Overall,
 the Yahoo! home page demonstrates several advanced performance
 optimizations and has a fast response time given the content and
 functionality included in the page.

YouTube

[image:]

Figure 17-25. http://www.youtube.com

YouTube's home page (http://www.youtube.com)
 isn't very heavy, but it has a low YSlow grade and ends up in the bottom
 half of response times. Figure 17-26 shows
 that there isn't very much parallelization at the beginning and end.
 Increasing the level of parallelization in these areas would make the
 greatest improvement to response times.
[image: YouTube HTTP requests]

Figure 17-26. YouTube HTTP requests

In the beginning of the page load, the main hurdle to
 parallelization is the six scripts downloaded back-to-back. As explained
 in Chapter 8, scripts
 block all other downloads, no matter what their hostnames are.
 Additionally, the scripts aren't minified. Combining these six scripts
 into a single script and minifying them would decrease the download
 time. Also, if any of these scripts could be downloaded later in the
 page, the initial part of the page would be downloaded and rendered
 sooner.
At the end of the page, decreased parallelization results from
 downloading 15 images from a single hostname (img.youtube.com). YouTube only uses
 four unique hostnames in their page. It would be worth the cost of an
 extra DNS lookup to split these 15 downloads across two hostnames and
 double the amount of simultaneous downloads.
Sadly, not a single component has a far future Expires header (Rule 3). Most of the
 components in the page are user-generated images that rotate frequently.
 Adding an Expires header to these
 might have little benefit, but the other components in the page don't
 change so often. Eleven of the components haven't changed in six months
 or more. Adding a far future Expires
 header to these components would improve the response times for
 subsequent page views.
YouTube uses the Apache web server, and their components still
 contain Etags, but YouTube has made the extra effort to modify the ETag
 syntax to improve their cacheability, as explained in Chapter 15.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	204 No Content status code, AOL
		AOL, AOL

	300 Multiple Choices (based on Content-Type) status
 code, Types of Redirects
	301 Moved Permanently status code, Types of Redirects
	302 Moved Temporarily (a.k.a. Found) status code, Types of Redirects
	303 See Other (clarification of 302) status code, Types of Redirects
	304 Not Modified status code, Types of Redirects, Conditional GET Requests
	304 responses, Expires
	305 Use Proxy status code, Types of Redirects
	306 status code (no longer used), Types of Redirects
	307 Temporary Redirect (clarification of 302) status
 code, Types of Redirects

A
	Accept-Encoding, Proxy Caching
	ads, serving, eBay
	Ajax, Rule 14: Make Ajax Cacheable, Web 2.0, DHTML, and Ajax, Web 2.0, Ajax, Ajax, Asynchronous = Instantaneous?, Asynchronous = Instantaneous?, Optimizing Ajax Requests, Optimizing Ajax Requests, Yahoo! Mail, Google Spreadsheets, Google Spreadsheets
		active requests, Asynchronous = Instantaneous?
	caching examples, Optimizing Ajax Requests, Yahoo! Mail, Google Spreadsheets
		Google Docs & Spreadsheets, Google Spreadsheets
	Yahoo! Mail, Yahoo! Mail

	defined, Web 2.0
	far future Expires header, Google Spreadsheets
	optimizing requests, Optimizing Ajax Requests
	passive requests, Asynchronous = Instantaneous?
	relationship between Web 2.0, DHTML, and Ajax, Web 2.0, DHTML, and Ajax
	technologies behind, Ajax
	Yahoo! UI (YUI) Connection Manager for Ajax, Ajax

	Akamai Technologies, Inc., Content Delivery Networks
	Alias directive, Missing Trailing Slash, Connecting Web Sites
	Amazon, The Performance Golden Rule, Amazon, Amazon, Amazon
		CSS sprites, Amazon
	Expires header, Amazon
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, Amazon

	AOL, The Performance Golden Rule, AOL, AOL, AOL, AOL, AOL, AOL, AOL, AOL
		204 No Content status code, AOL
	beacons, AOL
	DNS lookups, AOL
	Expires header, AOL
	gzip, AOL
	HTTP requests, AOL
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, AOL
	scripts, AOL

	Apache 1.3 mod_gzip module, The Savings
	Apache 2.x mod_deflate module, Apache 1.3: mod_gzip
	application web servers, proximity to users, Conclusion
	autoindexing, Missing Trailing Slash

B
	beacons, Tracking Outbound Traffic, Tracking Outbound Traffic, AOL
		AOL, AOL
	warning, Tracking Outbound Traffic

	BrowserMatch directive, Edge Cases
	browsers, when they act differently, What's a Frontend Engineer to Do?

C
	cache, DNS, The Browser's Perspective
	cache, empty versus primed, Page Views
	Cache-Control header, Max-Age and mod_expires, Max-Age and mod_expires, Empty Cache vs. Primed Cache, Gzip in Action
		max-age directive, Max-Age and mod_expires, Empty Cache vs. Primed Cache
		top 10 U.S. web sites, Empty Cache vs. Primed Cache

	Cacheable External JS and CSS (example), Typical Results in the Field
	CDN (example), The Savings
	client-side image maps, CSS Sprites
	CNAMEs (DNS aliases), Parallel Downloads, Connecting Web Sites
	CNN, The Performance Golden Rule, CNN, CNN, CNN
		CSS sprites, CNN
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, CNN
	text as image, CNN

	CoDeeN, Content Delivery Networks
	Combined Scripts (example), Conclusion
	component web servers, proximity to users, Conclusion
	components, More Than Just Images, Revving Filenames, sleep.cgi, Blank White Screen, Component Reuse, What's an ETag?, What's an ETag?, Conditional GET Requests, Conditional GET Requests, Conditional GET Requests, Entity Tags, The Problem with ETags, ETags in the Real World
		delayed, sleep.cgi
	ensuring users get latest version, Revving Filenames
	exaggerating response times of, Blank White Screen
	example with changing ETag, ETags in the Real World
	far future Expires header, More Than Just Images
	how they are cached and validated, What's an ETag?, What's an ETag?, Conditional GET Requests, Conditional GET Requests, Entity Tags
		conditional GET requests, Conditional GET Requests
	ETags, Entity Tags
	Expires header, What's an ETag?
	Last-Modified response header, Conditional GET Requests

	reuse, Component Reuse
	unnecessary reloading, The Problem with ETags
	ways server determines whether component matches one on
 origin server, Conditional GET Requests

	compression, Compression, How Compression Works, What to Compress, The Savings, Edge Cases, Gzip in Action
		edge cases, Edge Cases
	how it works, How Compression Works
	HTTP, Compression
	page weight savings, Gzip in Action
	sizes using deflate and gzip, The Savings
	what to compress, What to Compress

	conditional GET requests, Where Does the Time Go?, Compression, Conditional GET Requests, Expires, Expires, Conditional GET Requests
		ETags, Expires
	If-None-Match headers, Expires

	content delivery network (CDN), Conclusion, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks, The Savings, The Savings
		Akamai Technologies, Inc., Content Delivery Networks
	benefits, Content Delivery Networks
	CoDeeN, Content Delivery Networks
	CoralCDN, Content Delivery Networks
	defined, Content Delivery Networks
	drawbacks, The Savings
	Globule, Content Delivery Networks
	Limelight Networks, Inc., Content Delivery Networks
	Mirror Image Internet, Inc., Content Delivery Networks
	response time improvements, The Savings
	SAVVIS Inc., Content Delivery Networks
	service providers, Content Delivery Networks, Content Delivery Networks, Content Delivery Networks
		free, Content Delivery Networks
	top 10 U.S. web sites, Content Delivery Networks

	Speedera Networks, Content Delivery Networks

	content, geographically dispersed, Conclusion
	CoralCDN, Content Delivery Networks
	Crockford, Douglas, Obfuscation
	CSS, CSS Sprites, CSS Sprites, Combined Scripts and Stylesheets, CSS at the Bottom, CSS at the Top, CSS at the Top, Flash of Unstyled Content, Putting It in Perspective, Rule 7: Avoid CSS Expressions, Updating Expressions, Updating Expressions, Working Around the Problem, Working Around the Problem, Event Handlers, Rule 8: Make JavaScript and CSS External, Inline vs. External, Inline vs. External, Page Views, Page Views, Component Reuse, Typical Results in the Field, Home Pages, Post-Onload Download, Dynamic Inlining, Gzip and Minification, Amazon, CNN, Google, MSN, Wikipedia, Yahoo!
		combined, Combined Scripts and Stylesheets
	dynamic inlining, Dynamic Inlining
	examples, CSS Sprites, CSS at the Bottom, CSS at the Top, CSS at the Top, Flash of Unstyled Content, Updating Expressions
		CSS at the Bottom, CSS at the Bottom
	CSS at the Top, CSS at the Top
	CSS at the Top Using @import, CSS at the Top
	CSS Flash of Unstyled Content, Flash of Unstyled Content
	CSS Sprites, CSS Sprites
	Expression Counter, Updating Expressions

	expressions, Putting It in Perspective, Rule 7: Avoid CSS Expressions, Updating Expressions, Working Around the Problem, Working Around the Problem, Event Handlers
		event handlers, Event Handlers
	one-time expressions, Working Around the Problem
	techniques for avoiding problems, Working Around the Problem
	updating, Updating Expressions
	what makes them bad for performance, Putting It in Perspective

	home pages, Home Pages
	inline versus external, Inline vs. External, Inline vs. External, Page Views, Page Views, Component Reuse, Typical Results in the Field
		component reuse, Component Reuse
	empty cache versus primed cache, Page Views
	inline examples, Inline vs. External
	page views, Page Views
	tradeoffs, Typical Results in the Field

	minifying, Gzip and Minification
	post-onload download, Post-Onload Download
	sprites, CSS Sprites, Amazon, CNN, Google, MSN, Wikipedia, Yahoo!
		Amazon, Amazon
	CNN, CNN
	Google, Google
	MSN, MSN
	Wikipedia, Wikipedia
	Yahoo!, Yahoo!

D
	data: URL scheme, Inline Images, Inline Images
		main drawback, Inline Images

	Deferred Scripts (example), Putting It in Perspective
	deflate, How Compression Works, The Savings
		compression sizes, The Savings

	delayed components, sleep.cgi
	DELETE request, The Performance Golden Rule
	DHTML, Web 2.0, DHTML, and Ajax, Web 2.0
		defined, Web 2.0
	relationship between Web 2.0, DHTML, and Ajax, Web 2.0, DHTML, and Ajax

	DirectorySlash, Missing Trailing Slash, Connecting Web Sites
	DNS (Domain Name Service), Edge Cases, Parallel Downloads, Rule 9: Reduce DNS Lookups, The Browser's Perspective
		aliases, Parallel Downloads
	browser whitelist approach, Edge Cases
	cache, The Browser's Perspective
	role of, Rule 9: Reduce DNS Lookups

	DNS lookups, Rule 9: Reduce DNS Lookups, DNS Caching and TTLs, Factors Affecting DNS Caching, TTL Values, The Browser's Perspective, The Browser's Perspective, Internet Explorer, Firefox, Reducing DNS Lookups, Reducing DNS Lookups, AOL, eBay, MSN, MySpace
		AOL, AOL
	browser perspective, The Browser's Perspective, The Browser's Perspective, Firefox
		Firefox, Firefox
	Internet Explorer, The Browser's Perspective

	caching and TTLs, DNS Caching and TTLs, TTL Values
		maximum TTL values sent to clients for top 10 U.S. web
 sites, TTL Values

	eBay, eBay
	factors affecting caching, Factors Affecting DNS Caching
	Keep-Alive, Internet Explorer, Reducing DNS Lookups
	MSN, MSN
	MySpace, MySpace
	reducing, Reducing DNS Lookups

	Dojo Compressor, The Savings, The Savings, Gzip and Minification
		size reductions, Gzip and Minification
		after gzip compression, Gzip and Minification

	size reductions using, The Savings

	downloads, Parallel Downloads, Parallel Downloads, Parallel Downloads, Scripts Block Downloads
		parallel, Parallel Downloads, Parallel Downloads, Parallel Downloads
		cost, Parallel Downloads
	limiting, Parallel Downloads

	scripts blocking, Scripts Block Downloads

	Duplicate Scripts—10 Cached (example), Avoiding Duplicate Scripts
	Duplicate Scripts—Cached (example), Duplicate Scripts Hurt Performance
	Duplicate Scripts—Not Cached (example), Duplicate Scripts Hurt Performance
	Dynamic Inlining (example), Dynamic Inlining

E
	eBay, The Performance Golden Rule, eBay, eBay, eBay, eBay, eBay, eBay, eBay, eBay
		DNS lookups, eBay
	ETags, eBay
	Expires header, eBay
	HTTP requests, eBay
	IFrames, eBay
	images, eBay
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, eBay
	scripts, eBay

	ETags, Conditional GET Requests, Edge Cases, Rule 13: Configure ETags, What's an ETag?, The Problem with ETags, The Problem with ETags, The Problem with ETags, The Problem with ETags, ETags: Use 'Em or Lose 'Em, ETags: Use 'Em or Lose 'Em, ETags in the Real World, ETags in the Real World, eBay, MSN, YouTube
		conditional GET requests, Conditional GET Requests
	defined, What's an ETag?
	eBay, eBay
	effectiveness of proxy caches, The Problem with ETags
	example of component with changing ETag, ETags in the Real World
	format for Apache 1.3 and 2.x, The Problem with ETags
	format for IIS, The Problem with ETags
	MSN, MSN
	options, ETags: Use 'Em or Lose 'Em
	problem with, The Problem with ETags
	removing, ETags: Use 'Em or Lose 'Em
	top 10 U.S. web sites, ETags in the Real World
	YouTube, YouTube

	event handlers, One-Time Expressions, Event Handlers
		example, One-Time Expressions

	Everything Gzipped (example), Gzip in Action
	examples, Image Maps, Image Maps, CSS Sprites, Inline Images, Inline Images, Combined Scripts and Stylesheets, Combined Scripts and Stylesheets, Content Delivery Networks, The Savings, Examples, Examples, Gzip in Action, Gzip in Action, Gzip in Action, CSS at the Bottom, CSS at the Top, CSS at the Top, Flash of Unstyled Content, Problems with Scripts, Scripts Block Downloads, Worst Case: Scripts at the Top, Best Case: Scripts at the Bottom, Best Case: Scripts at the Bottom, Putting It in Perspective, Updating Expressions, One-Time Expressions, Event Handlers, In Raw Terms, Inline Is Faster, In Raw Terms, Inline Is Faster, Typical Results in the Field, Post-Onload Download, Dynamic Inlining, Examples, Examples, Examples, Examples, Examples, Examples, Tracking Outbound Traffic, Tracking Outbound Traffic, Duplicate Scripts Hurt Performance, Duplicate Scripts Hurt Performance, Duplicate Scripts Hurt Performance
		Cacheable External JS and CSS, Typical Results in the Field
	CDN, Content Delivery Networks
	Combined Scripts, Combined Scripts and Stylesheets
	CSS at the Bottom, CSS at the Bottom
	CSS at the Top, CSS at the Top
	CSS at the Top Using @import, CSS at the Top
	CSS Flash of Unstyled Content, Flash of Unstyled Content
	CSS Sprites, CSS Sprites
	Deferred Scripts, Putting It in Perspective
	Duplicate Scripts—10 Cached, Duplicate Scripts Hurt Performance
	Duplicate Scripts—Cached, Duplicate Scripts Hurt Performance
	Duplicate Scripts—Not Cached, Duplicate Scripts Hurt Performance
	Dynamic Inlining, Dynamic Inlining
	Event Handler, Event Handlers
	Everything Gzipped, Gzip in Action
	Expression Counter, Updating Expressions
	External JS and CSS, In Raw Terms, Inline Is Faster
	Far Future Expires, Examples
	HTML Gzipped, Gzip in Action
	Image Beacon, Tracking Outbound Traffic
	Image Map, Image Maps
	Inline CSS Images, Inline Images
	Inline Images, Inline Images
	Inlined JS and CSS, In Raw Terms, Inline Is Faster
	Large Script Minified, Examples
	Large Script Normal, Examples
	Large Script Obfuscated, Examples
	No CDN, The Savings
	No Expires, Examples
	No Image Map, Image Maps
	Nothing Gzipped, Gzip in Action
	One-Time Expressions, One-Time Expressions
	Post-Onload Download, Post-Onload Download
	Scripts at the Bottom, Best Case: Scripts at the Bottom
	Scripts at the Top, Worst Case: Scripts at the Top
	Scripts Block Downloads, Scripts Block Downloads
	Scripts in the Middle, Problems with Scripts
	Scripts Top vs. Bottom, Best Case: Scripts at the Bottom
	Separate Scripts, Combined Scripts and Stylesheets
	Small Script Minified, Examples
	Small Script Normal, Examples
	Small Script Obfuscated, Examples
	XMLHttpRequest Beacon, Tracking Outbound Traffic

	Expires header, Expires, Expires Header, Expires Header, Max-Age and mod_expires, Max-Age and mod_expires, Empty Cache vs. Primed Cache, Empty Cache vs. Primed Cache, More Than Just Images, Revving Filenames, What's an ETag?, Amazon, AOL, eBay, MSN, MySpace, Wikipedia, YouTube
		alternative, Max-Age and mod_expires
	Amazon, Amazon
	AOL, AOL
	components, More Than Just Images, Revving Filenames
		ensuring users get latest version, Revving Filenames
	top 10 U.S. web sites, More Than Just Images

	defined, Expires Header
	eBay, eBay
	empty cache versus primed cache, Empty Cache vs. Primed Cache
	mod_expires, Max-Age and mod_expires
	MSN, MSN
	MySpace, MySpace
	top 10 U.S. web sites, Empty Cache vs. Primed Cache
	Wikipedia, Wikipedia
	YouTube, YouTube

	Expression Counter (example), Updating Expressions
	External JS and CSS (example), Inline vs. External

F
	Far Future Expires (example), Examples
	far future Expires header, Max-Age and mod_expires, Empty Cache vs. Primed Cache, Empty Cache vs. Primed Cache, More Than Just Images, Examples, Examples, Yahoo! Mail, Google Spreadsheets
		Ajax, Google Spreadsheets
	cached, Examples
	components, Empty Cache vs. Primed Cache
	definition, Max-Age and mod_expires
	examples, Examples
	page views, Empty Cache vs. Primed Cache

	Fasterfox, Firefox
	favicons, Google
	fileETag directive, ETags: Use 'Em or Lose 'Em
	file_get_contents PHP function, Inline Images
	Firebug, How the Tests Were Done
	Firefox, Keep-Alive, What's a Frontend Engineer to Do?, Parallel Downloads, Putting It in Perspective, Internet Explorer, Duplicate Scripts Hurt Performance
		deferred scripts, Putting It in Perspective
	DNS lookups, Internet Explorer
	duplicate scripts, Duplicate Scripts Hurt Performance
	parallel downloads, Parallel Downloads
	pipelining, Keep-Alive
	progressive rendering, What's a Frontend Engineer to Do?

	frontend performance, Tracking Web Page Performance

G
	Garrett, Jesse James, Web 2.0, Asynchronous = Instantaneous?
	geographically dispersed content, Rule 2: Use a Content Delivery Network
	GET requests, The Performance Golden Rule
	Globule, Content Delivery Networks
	Gomez, The Savings, How the Tests Were Done
		web monitoring services, How the Tests Were Done

	Google, The Performance Golden Rule, Google, Google, Google, Google
		CSS sprites, Google
	HTTP requests, Google
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, Google
	SCRIPT DEFER attribute, Google

	Google Docs & Spreadsheets, Google Spreadsheets
	Google Toolbar, redirects, Prettier URLs
	gzip, Rule 4: Gzip Components, How Compression Works, What to Compress, What to Compress, What to Compress, The Savings, The Savings, Apache 1.3: mod_gzip, Apache 1.3: mod_gzip, Proxy Caching, Edge Cases, Edge Cases, Edge Cases, Gzip in Action, Gzip and Minification, AOL, MSN, Wikipedia
		AOL, AOL
	command-line utility, Apache 1.3: mod_gzip
	compression, Edge Cases
		edge cases, Edge Cases

	compression sizes, The Savings
	configuring, The Savings, Apache 1.3: mod_gzip
		Apache 1.3 mod_gzip module, The Savings
	Apache 2.x mod_deflate module, Apache 1.3: mod_gzip

	examples, Gzip in Action
	how compression works, How Compression Works
	images and PDF files, What to Compress
	minification, Gzip and Minification
	mod_gzip documentation, Edge Cases
	MSN, MSN
	problems in IE, Edge Cases
	proxy caching, Proxy Caching
	top 10 U.S. web sites, What to Compress
	what to compress, What to Compress
	Wikipedia, Wikipedia

H
	HEAD request, The Performance Golden Rule
	Hewitt, Joe, How the Tests Were Done
	home pages, Home Pages
	hostnames, reducing, Reducing DNS Lookups
	HTML Gzipped (example), Gzip in Action
	HTTP, Where Does the Time Go?, The Performance Golden Rule, HTTP Overview, HTTP Overview, Compression, Conditional GET Requests, Conditional GET Requests, Expires, Expires, Keep-Alive, Keep-Alive, Keep-Alive, There's More
		304 responses, Expires
	compression, Compression
	Expires header, Expires
	GET request, HTTP Overview, Conditional GET Requests
		conditional, Conditional GET Requests

	GET requests, Conditional GET Requests
		conditional, Conditional GET Requests

	Keep-Alive, Keep-Alive
	overview, The Performance Golden Rule
	Persistent Connections, Keep-Alive
	pipelining, Keep-Alive
	specification, HTTP Overview, There's More
	traffic, Where Does the Time Go?

	HTTP requests, HTTP Overview, Rule 1: Make Fewer HTTP Requests, Rule 1: Make Fewer HTTP Requests, Image Maps, CSS Sprites, CSS Sprites, CSS Sprites, Inline Images, Combined Scripts and Stylesheets, Conclusion, AOL, eBay, Google, MSN, MSN, MySpace, Yahoo!
		AOL, AOL
	CSS sprites, CSS Sprites
	eBay, eBay
	Google, Google
	image maps, Rule 1: Make Fewer HTTP Requests, Image Maps, CSS Sprites, CSS Sprites
		client-side, CSS Sprites
	drawbacks, Image Maps
	server-side, CSS Sprites

	inline images, Inline Images
	JavaScript and CSS combined, Combined Scripts and Stylesheets
	MSN, MSN, MSN
	MySpace, MySpace
	post-onload download technique, Conclusion
	types of, HTTP Overview
	Yahoo!, Yahoo!

	http: scheme, Inline Images
	Hyatt, David, Flash of Unstyled Content

I
	IBM Page Detailer, How the Tests Were Done
	If-None-Match headers, Expires
	IFrames, eBay, MSN
		eBay, eBay
	MSN, MSN

	Image Beacon (example), Tracking Outbound Traffic
	Image Map (example), CSS Sprites
	image maps, Rule 1: Make Fewer HTTP Requests, Image Maps, CSS Sprites, CSS Sprites
		client-side, CSS Sprites
	drawbacks, Image Maps
	server-side, CSS Sprites

	images, Where Does the Time Go?, Inline Images, What to Compress, eBay
		cached and uncached, Where Does the Time Go?
	eBay, eBay
	gzipping, What to Compress
	inline, Inline Images

	Inline CSS Images (example), Inline Images
	inline images, Inline Images
	Inline Images (example), Inline Images
	Inlined JS and CSS (example), Inline vs. External
	inodes, The Problem with ETags
	internationalization, CNN
	Internet Explorer, Keep-Alive, Inline Images, Edge Cases, Edge Cases, Flash of Unstyled Content, Parallel Downloads, Putting It in Perspective, The Browser's Perspective, Avoiding Duplicate Scripts, Ajax
		data: scheme, Inline Images
	deferred scripts, Putting It in Perspective
	DNS lookups, The Browser's Perspective
	duplicate scripts, Avoiding Duplicate Scripts
	gzip bugs, Edge Cases
	parallel downloads, Parallel Downloads
	pipelining, Keep-Alive
	problems with gzip, Edge Cases
	progressive rendering, Flash of Unstyled Content
	XMLHTTP, Ajax

J
	JavaScript, Combined Scripts and Stylesheets, Rule 8: Make JavaScript and CSS External, Inline vs. External, Inline vs. External, Page Views, Page Views, Component Reuse, Typical Results in the Field, Home Pages, Post-Onload Download, Dynamic Inlining, Rule 10: Minify JavaScript, Minification, Minification, Obfuscation, The Savings, Icing on the Cake, Icing on the Cake, Duplicate Scripts—They Happen, Duplicate Scripts Hurt Performance, Avoiding Duplicate Scripts, Avoiding Duplicate Scripts, Avoiding Duplicate Scripts, Avoiding Duplicate Scripts, MSN, MySpace
		combined, Combined Scripts and Stylesheets
	dependencies and versioning, Avoiding Duplicate Scripts, Avoiding Duplicate Scripts
	duplicate scripts, Duplicate Scripts—They Happen, Duplicate Scripts Hurt Performance, Avoiding Duplicate Scripts
		avoiding, Avoiding Duplicate Scripts
	performance, Duplicate Scripts Hurt Performance

	dynamic inlining, Dynamic Inlining
	home pages, Home Pages
	inline scripts, Icing on the Cake
		minifying, Icing on the Cake

	inline versus external, Inline vs. External, Inline vs. External, Page Views, Page Views, Component Reuse, Typical Results in the Field
		component reuse, Component Reuse
	empty cache versus primed cache, Page Views
	inline examples, Inline vs. External
	page views, Page Views
	tradeoffs, Typical Results in the Field

	minification, Rule 10: Minify JavaScript, Minification, Obfuscation, The Savings, MSN, MySpace
		defined, Minification
	examples, The Savings
	MSN, MSN
	MySpace, MySpace
	savings, Obfuscation

	obfuscation, Minification
	post-onload download, Post-Onload Download
	script management module, Avoiding Duplicate Scripts
	squeezing waste out of, Icing on the Cake

	JSLint, How the Tests Were Done
	JSMin, The Savings, The Savings, Gzip and Minification
		size reductions, The Savings, Gzip and Minification
		after gzip compression, Gzip and Minification
	using, The Savings

K
	Keep-Alive, Keep-Alive, Internet Explorer, Firefox, Reducing DNS Lookups
		DNS lookups, Internet Explorer, Reducing DNS Lookups
	Firefox versus IE, Firefox

	Keynote Systems, The Savings

L
	Large Script Minified (example), Examples
	Large Script Normal (example), Examples
	Large Script Obfuscated (example), Examples
	Last-Modified dates, More Than Just Images
	Last-Modified header, More Than Just Images
	Last-Modified response header, Conditional GET Requests
	Limelight Networks, Inc., Content Delivery Networks

M
	max-age directive, Max-Age and mod_expires, Empty Cache vs. Primed Cache
		top 10 U.S. web sites, Empty Cache vs. Primed Cache

	minification, Minification, Minification
		defined, Minification
	top 10 U.S. web sites, Minification

	Mirror Image Internet, Inc., Content Delivery Networks
	mod_autoindex, Missing Trailing Slash
	mod_deflate module, Apache 1.3: mod_gzip
	mod_dir, Missing Trailing Slash
	mod_expires, Max-Age and mod_expires
	mod_gzip documentation, Edge Cases
	mod_gzip module, The Savings
	mod_gzip_minimum_file_size directive, What to Compress
	mod_rewrite module, Missing Trailing Slash
	MSN, The Performance Golden Rule, MSN, MSN, MSN, MSN, MSN, MSN, MSN, MSN, MSN, MSN
		CSS sprites, MSN
	DNS lookups, MSN
	ETags, MSN
	Expires header, MSN
	gzip, MSN
	HTTP requests, MSN, MSN
	IFrames, MSN
	JavaScript minification, MSN
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, MSN

	MySpace, The Performance Golden Rule, MySpace, MySpace, MySpace, MySpace, MySpace
		DNS lookups, MySpace
	Expires header, MySpace
	HTTP requests, MySpace
	JavaScript minification, MySpace
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, MySpace

N
	network.http.max-persistent-connections-per-server
 setting, Parallel Downloads
	New York University, Content Delivery Networks
	Nielson, Jakob, sleep.cgi
	No CDN (example), The Savings
	No compression (example), Gzip in Action
	No Expires (example), Examples
	No Image Map (example), CSS Sprites
	Nottingham, Mark, Revving Filenames

O
	O'Reilly, Tim, Web 2.0
	obfuscation, Minification
	One-Time Expressions (example), Event Handlers
	optimization alternative, Obfuscation
	OPTIONS request, The Performance Golden Rule

P
	page views, Page Views
	page weight, top 10 U.S. web sites, Page Weight, Response Time, YSlow Grade
	parallel downloads, Parallel Downloads, Parallel Downloads, Parallel Downloads
		cost, Parallel Downloads
	limiting, Parallel Downloads

	parallelization, AOL, YouTube
		YouTube, YouTube

	passive requests, Asynchronous = Instantaneous?
	PDF files, gzipping, What to Compress
	performance, Tracking Web Page Performance, Tracking Web Page Performance, Where Does the Time Go?, Where Does the Time Go?, Where Does the Time Go?, Where Does the Time Go?, Where Does the Time Go?, The Performance Golden Rule, The Performance Golden Rule, The Savings, The Savings, Page Weight, Response Time, YSlow Grade, How the Tests Were Done, Amazon, AOL, CNN, eBay, Google, MSN, MySpace, Wikipedia, Yahoo!, YouTube
		cached and uncached images, Where Does the Time Go?
	conditional GET requests, Where Does the Time Go?
	figuring where the time goes, Where Does the Time Go?
	frontend, Tracking Web Page Performance
	percentage of time spent downloading top 10 U.S. web
 sites, The Performance Golden Rule
	profiling, The Performance Golden Rule
	recommendations, Amazon, AOL, CNN, eBay, Google, MSN, MySpace, Wikipedia, Yahoo!, YouTube
		Amazon, Amazon
	AOL, AOL
	CNN, CNN
	eBay, eBay
	Google, Google
	MSN, MSN
	MySpace, MySpace
	Wikipedia, Wikipedia
	Yahoo!, Yahoo!
	YouTube, YouTube

	redirects, Where Does the Time Go?
	response time improvements gained from CDNs, The Savings
	response time tests, The Savings
	scripts, Where Does the Time Go?
	summary of top 10 U.S. web sites, Page Weight, Response Time, YSlow Grade
	top 10 U.S. web sites, How the Tests Were Done
		how tests were done, How the Tests Were Done

	tracking web page, Tracking Web Page Performance

	Performance Golden Rule, The Performance Golden Rule, The Performance Golden Rule
	Persistent Connections, Keep-Alive
	pipelining, Keep-Alive
	PlanetLab, Content Delivery Networks
	PNG images, Wikipedia
	POST request, The Performance Golden Rule
	Post-Onload Download (example), The Best of Both Worlds
	post-onload download technique, Conclusion
	preloading, Google
	Princeton University, Content Delivery Networks
	progressive rendering, Progressive Rendering
	proxy caching, Proxy Caching
		gzip, Proxy Caching

	PUT request, The Performance Golden Rule

R
	redirects, Where Does the Time Go?, Rule 11: Avoid Redirects, Types of Redirects, How Redirects Hurt Performance, How Redirects Hurt Performance, Alternatives to Redirects, Alternatives to Redirects, Connecting Web Sites, Connecting Web Sites, Tracking Outbound Traffic, Prettier URLs
		across top 10 U.S. web sites, Alternatives to Redirects
	alternatives, How Redirects Hurt Performance, Alternatives to Redirects, Connecting Web Sites, Connecting Web Sites, Tracking Outbound Traffic, Prettier URLs
		connecting web sites, Connecting Web Sites
	missing trailing slash, Alternatives to Redirects
	prettier URLs, Prettier URLs
	tracking internal traffic, Connecting Web Sites
	tracking outbound traffic, Tracking Outbound Traffic

	how performance is hurt, How Redirects Hurt Performance
	types of, Types of Redirects

	rendering, progressive, Progressive Rendering
	response times, The Savings, Blank White Screen, Parallel Downloads, Page Weight, Response Time, YSlow Grade
		biggest impact on, Parallel Downloads
	exaggerating for components, Blank White Screen
	tests, The Savings
	top 10 U.S. web sites, Page Weight, Response Time, YSlow Grade

S
	SAVVIS Inc., Content Delivery Networks
	schemes, Inline Images
	SCRIPT DEFER attribute (Google), Google
	scripts, Where Does the Time Go?, Rule 6: Put Scripts at the Bottom, Problems with Scripts, Parallel Downloads, Scripts Block Downloads, Worst Case: Scripts at the Top, Worst Case: Scripts at the Top, Putting It in Perspective, Duplicate Scripts—They Happen, Duplicate Scripts—They Happen, Duplicate Scripts Hurt Performance, Avoiding Duplicate Scripts, Avoiding Duplicate Scripts, Avoiding Duplicate Scripts, AOL, eBay, Yahoo!
		AOL, AOL
	at bottom of page, Worst Case: Scripts at the Top
	at top of page, Worst Case: Scripts at the Top
	blocking downloads, Scripts Block Downloads
	deferred, Putting It in Perspective
	dependencies and versioning, Avoiding Duplicate Scripts
	duplicate, Duplicate Scripts—They Happen, Duplicate Scripts Hurt Performance, Avoiding Duplicate Scripts
		avoiding, Avoiding Duplicate Scripts
	performance, Duplicate Scripts Hurt Performance

	eBay, eBay
	number for top 10 U.S. web sites, Duplicate Scripts—They Happen
	parallel downloads, Parallel Downloads
	problems with, Problems with Scripts
	script management module, Avoiding Duplicate Scripts
	Yahoo!, Yahoo!

	Scripts at the Bottom (example), Putting It in Perspective
	Scripts at the Top (example), Worst Case: Scripts at the Top
	Scripts Block Downloads (example), Scripts Block Downloads
	Scripts in the Middle (example), Problems with Scripts
	Scripts Top vs. Bottom (example), Putting It in Perspective
	Separate Scripts (example), Conclusion
	server-side image maps, CSS Sprites
	ServerInfoTimeOut value, Firefox
	Shea, Dave, Inline Images
	ShrinkSafe, The Savings
	sleep.cgi, sleep.cgi
	Small Script Minified (example), Examples
	Small Script Normal (example), Examples
	Small Script Obfuscated (example), Examples
	Speedera Networks, Content Delivery Networks
	stylesheets, Rule 5: Put Stylesheets at the Top, sleep.cgi, Blank White Screen, Blank White Screen, Blank White Screen, CSS at the Top, Flash of Unstyled Content, Flash of Unstyled Content, Flash of Unstyled Content, Duplicate Scripts—They Happen
		blank white screen, Blank White Screen, Flash of Unstyled Content
		avoiding, Flash of Unstyled Content

	examples of stylesheet at bottom versus at
 top, Blank White Screen, Blank White Screen, CSS at the Top
		CSS at bottom, Blank White Screen
	CSS at top, CSS at the Top

	flash of unstyled content, Flash of Unstyled Content, Flash of Unstyled Content
		avoiding, Flash of Unstyled Content

	number for top 10 U.S. web sites, Duplicate Scripts—They Happen
	problem with putting at bottom of documents, sleep.cgi

T
	text as image, CNN
	Theurer, Tenni, More Than Just Images
	top 10 U.S. web sites, The Performance Golden Rule, Combined Scripts and Stylesheets, Content Delivery Networks, Empty Cache vs. Primed Cache, More Than Just Images, What to Compress, TTL Values, Rule 10: Minify JavaScript, Icing on the Cake, How Redirects Hurt Performance, Duplicate Scripts—They Happen, ETags in the Real World, Page Weight, Response Time, YSlow Grade, Page Weight, Response Time, YSlow Grade, Page Weight, Response Time, YSlow Grade, Page Weight, Response Time, YSlow Grade, How the Tests Were Done
		CDN service providers, Content Delivery Networks
	components with Expires header, More Than Just Images
	ETags, ETags in the Real World
	Expires header and max-age directive, Empty Cache vs. Primed Cache
	gzip use, What to Compress
	how performance tests were done, How the Tests Were Done
	maximum TTL values sent to clients for, TTL Values
	minification, Rule 10: Minify JavaScript
	minifying inline scripts, Icing on the Cake
	number of scripts and stylesheets, Duplicate Scripts—They Happen
	page weight, Page Weight, Response Time, YSlow Grade
	percentage of time spent downloading, The Performance Golden Rule
	performance summary, Page Weight, Response Time, YSlow Grade
	redirects, How Redirects Hurt Performance
	response times, Page Weight, Response Time, YSlow Grade
	scripts and stylesheets, Combined Scripts and Stylesheets
	YSlow grade, Page Weight, Response Time, YSlow Grade

	TRACE request, The Performance Golden Rule
	TTLs, DNS Caching and TTLs, TTL Values
		DNS caching and, DNS Caching and TTLs, TTL Values
		maximum TTL values sent to clients for top 10 U.S. web
 sites, TTL Values

U
	URLs, prettier, Prettier URLs

V
	visual feedback, Progressive Rendering
	Vrije Universiteit, Content Delivery Networks

W
	Web 2.0, Rule 14: Make Ajax Cacheable, Web 2.0, DHTML, and Ajax, Web 2.0
		defined, Web 2.0
	relationship between Web 2.0, DHTML, and Ajax, Web 2.0, DHTML, and Ajax

	web page performance, Tracking Web Page Performance
	Wikipedia, The Performance Golden Rule, Wikipedia, Wikipedia, Wikipedia, Wikipedia, Wikipedia
		CSS sprites, Wikipedia
	Expires header, Wikipedia
	gzip, Wikipedia
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, Wikipedia
	PNG images, Wikipedia

X
	XMLHttpRequest, Tracking Outbound Traffic
	XMLHttpRequest Beacon (example), Tracking Outbound Traffic

Y
	Yahoo!, Tracking Web Page Performance, The Performance Golden Rule, The Performance Golden Rule, Yahoo!, Yahoo!, Yahoo!, Yahoo!, Yahoo!, Yahoo!
		CSS sprites, Yahoo!
	domains, Yahoo!
	HTTP requests, Yahoo!
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, Yahoo!
	scripts, Yahoo!
	two URLs referencing same image, Yahoo!

	Yahoo! Mail, Optimizing Ajax Requests
		Ajax caching example, Optimizing Ajax Requests

	Yahoo! Search, The Performance Golden Rule
	Yahoo! Shopping and Akamai's CDN, The Savings
	Yahoo! UI (YUI) Connection Manager for Ajax, Ajax
	YouTube, The Performance Golden Rule, YouTube, YouTube, YouTube, YouTube
		Etags, YouTube
	Expires header, YouTube
	parallelization, YouTube
	percentage of time downloading, The Performance Golden Rule
	performance recommendations, YouTube

	YSlow, Page Weight, Response Time, YSlow Grade, Page Weight, Response Time, YSlow Grade, How the Tests Were Done
		grades, Page Weight, Response Time, YSlow Grade, Page Weight, Response Time, YSlow Grade
		defined, Page Weight, Response Time, YSlow Grade
	top 10 U.S. web sites, Page Weight, Response Time, YSlow Grade

About the Author
Steve Souders works at Google on web performance and open source initiatives. His books High Performance Web Sites and Even Faster Web Sites explain his best practices for performance along with the research and real-world results behind them. Steve is the creator of YSlow, the performance analysis extension to Firebug with more than 1 million downloads. He serves as co-chair of Velocity, the web performance and operations conference sponsored by O'Reilly. Steve taught CS193H: High Performance Web Sites at Stanford, and he frequently speaks at such conferences as OSCON, Rich Web Experience, Web 2.0 Expo, and The Ajax Experience.

Steve previously worked at Yahoo! as the Chief Performance Yahoo!, where he blogged about web performance on Yahoo! Developer Network. He was named a Yahoo! Superstar. Steve worked on many of the platforms and products within the company, including running the development team for My Yahoo!. Prior to Yahoo! Steve worked at several small to mid-sized startups including two companies he co-founded, Helix Systems and CoolSync. He also worked at General Magic, WhoWhere?, and Lycos.

Colophon
The animal on the cover of High Performance Web
 Sites is a greyhound.
The fastest dog in the world, a greyhound can reach speeds of up to
 45 miles per hour, enabled by its streamlined, narrow body; large lungs,
 heart, and muscles; double suspension gallop (two periods of a gait when
 all four feet are off the ground); and the flexibility of its spine.
 Although greyhounds are incredibly fast, they are actually low-energy dogs
 and lack endurance, requiring less exercise time than most dogs. For this
 reason, they're often referred to as "45-mile-per-hour couch potatoes"
 because when not chasing smaller prey (such as rabbits and cats), they are
 content to spend their days sleeping.
Greyhounds are one of the oldest breeds of dogs, appearing in art
 and literature throughout history. In ancient Egypt, greyhounds were often
 mummified and buried with their owners, and hieroglyphics from 4000 B.C.E.
 show a dog closely resembling the modern greyhound. In Greek and Roman
 mythology, greyhounds were often depicted with gods and goddesses.
 Greyhounds appeared in the writings of Homer, Chaucer, Shakespeare, and
 Cervantes, and they are the only type of dog mentioned in the Bible.
 They've long been appreciated for their intelligence, graceful form,
 athleticism, and loyalty.
During the early 1920s, modern greyhound racing was introduced into
 the United States. Smaller and lighter than show greyhounds, track
 greyhounds are selectively bred and usually stand between 25–29 inches
 tall and weigh 60–70 pounds. These dogs instinctively chase anything that
 moves quickly (as they are sighthounds, not bloodhounds), hence the
 lure—the mechanical hare they chase around the track.
 Greyhound racing is still a very popular spectator sport in the United
 States and, like horse racing, is enjoyed as a form of parimutuel
 gambling.
Greyhound racing is very controversial as the dogs experience little
 human contact and spend most of their non-racing time in crates. Once
 greyhounds are too old to race (somewhere between three and five years of
 age), many are euthanized, though there are now many rescue programs that
 find homes for retired racers. Because greyhounds are naturally docile and
 even-tempered, most adjust well to adoption and make wonderful
 pets.
The cover image is from Cassell's Natural
 History. The cover font is Adobe ITC Garamond. The text font is
 Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
 font is LucasFont's TheSans Mono Condensed.

OEBPS/httpatomoreillycomsourceoreillyimages49265.png

OEBPS/httpatomoreillycomsourceoreillyimages49311.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49307.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49331.png

OEBPS/httpatomoreillycomsourceoreillyimages49285.png

OEBPS/httpatomoreillycomsourceoreillyimages49323.png

OEBPS/httpatomoreillycomsourceoreillyimages49317.png

OEBPS/httpatomoreillycomsourceoreillyimages49313.png

OEBPS/httpatomoreillycomsourceoreillyimages214127.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49289.png

OEBPS/oreilly_large.gif

OEBPS/httpatomoreillycomsourceoreillyimages49341.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49295.png

OEBPS/httpatomoreillycomsourceoreillyimages49333.png

OEBPS/httpatomoreillycomsourceoreillyimages49287.png

OEBPS/httpatomoreillycomsourceoreillyimages49347.png

OEBPS/httpatomoreillycomsourceoreillyimages49337.png

OEBPS/httpatomoreillycomsourceoreillyimages49301.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49273.png

OEBPS/httpatomoreillycomsourceoreillyimages49309.png

OEBPS/httpatomoreillycomsourceoreillyimages49271.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49283.png

OEBPS/httpatomoreillycomsourceoreillyimages49275.png

OEBPS/httpatomoreillycomsourceoreillyimages49303.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49279.png

OEBPS/httpatomoreillycomsourceoreillyimages49263.png

OEBPS/httpatomoreillycomsourceoreillyimages49299.png

OEBPS/httpatomoreillycomsourceoreillyimages49267.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49327.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49293.png

OEBPS/httpatomoreillycomsourceoreillyimages49281.png

OEBPS/httpatomoreillycomsourceoreillyimages49325.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49335.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49269.png

OEBPS/httpatomoreillycomsourceoreillyimages49315.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49343.png

OEBPS/httpatomoreillycomsourceoreillyimages49329.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49321.png

OEBPS/httpatomoreillycomsourceoreillyimages49277.png

OEBPS/httpatomoreillycomsourceoreillyimages49339.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49297.png

OEBPS/httpatomoreillycomsourceoreillyimages49319.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49345.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages49291.png

OEBPS/httpatomoreillycomsourceoreillyimages49305.png

