

 [image: First Edition]

 Even Faster Web Sites

Steve Souders

Editor
Andy Oram

Copyright © 2009 Steve Souders

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly
 Media, Inc. Even Faster Web Sites, the image of a
 blackbuck antelope, and related trade dress are trademarks of O’Reilly
 Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Credits

Even Faster Web Sites contains six chapters
 contributed by the following authors.
Dion Almaer is the cofounder of Ajaxian.com, the leading source of the
 Ajax community. For his day job, Dion coleads a new group at Mozilla
 focusing on developer tools for the Web, something he has been passionate
 about doing for years. He is excited for the opportunity, and he gets to
 work with Ben Galbraith, his partner in crime on Ajaxian and now at Mozilla.
 Dion has been writing web applications since Gopher, has been fortunate
 enough to speak around the world, has published many articles and a book, and, of course, covers life, the
 universe, and everything else on his blog at http://almaer.com/blog.
Douglas Crockford was born in the wilds of Minnesota, but left when he was only
 six months old because it was just too damn cold. He turned his back on a
 promising career in television when he discovered computers. He has worked
 in learning systems, small business systems, office automation, games,
 interactive music, multimedia, location-based entertainment, social systems,
 and programming languages. He is the inventor of Tilton, the ugliest
 programming language that was not specifically designed to be an ugly
 programming language. He is best known for having discovered that there are
 good parts in JavaScript. This was an important and unexpected discovery. He
 discovered the JSON (JavaScript Object
 Notation) data interchange format. He is currently working on making
 the Web a secure and reliable software-delivery platform. He has his work
 cut out for him.
Ben Galbraith is the codirector of developer tools at Mozilla and the
 cofounder of Ajaxian.com. Ben has long juggled
 interests in both business and tech, having written his first computer
 program at 6 years old, started his first business at 10, and entered the IT
 workforce at 12. He has delivered hundreds of technical presentations
 worldwide, produced several technical conferences, and coauthored more than
 a half-dozen books. He has enjoyed a variety of business and technical roles
 throughout his career, including CEO, CIO, CTO, and Chief Software Architect
 roles in medical, publishing, media, manufacturing, advertising, and
 software industries. He lives in Palo Alto, California with his wife and five
 children.
Tony Gentilcore is a software engineer at Google. There, he has helped make
 the Google home and search results pages lightning fast. He finds that the
 days seem to fly by while writing web performance tools and techniques. Tony
 is also the creator of the popular Firefox extension, Fasterfox.
Dylan Schiemann is CEO of SitePen and cofounder of the Dojo Toolkit,
 an open source JavaScript toolkit for rapidly building web sites and
 applications, and is an expert in the
 technologies and opportunities of the Open Web. Under his guidance, SitePen has grown from a small development
 firm to a leading provider of inventive tools, skilled software engineers,
 knowledgeable consulting services, and top-notch training and advice.
 Dylan’s commitment to R&D has enabled SitePen to be a major contributor
 to and creator of pioneering open source web development toolkits and
 frameworks such as Dojo, cometD, Direct Web Remoting (DWR), and Persevere.
 Prior to SitePen, Dylan developed web applications for companies such as
 Renkoo, Informatica, Security FrameWorks, and Vizional Technologies. He is a
 cofounder of Comet Daily, LLC, a board member at Dojo Foundation, and a
 member of the advisory board at Aptana. Dylan earned his master’s in
 physical chemistry from UCLA and his B.A. in mathematics from Whittier
 College.
Stoyan Stefanov is a Yahoo! frontend developer, focusing on web application
 performance. He is also the architect
 of the performance extension YSlow 2.0 and cocreator of the Smush.it image optimization
 tool. Stoyan is a speaker, book author (Object-Oriented JavaScript from Packt
 Publishing), and blogger at http://phpied.com, http://jspatterns.com, and YUIblog.
Nicole Sullivan is an evangelist, frontend performance consultant, and CSS
 Ninja. She started the Object-Oriented CSS open source project, which
 answers the question, How do you scale CSS for millions of visitors or
 thousands of pages? She also consulted with the W3C for their beta redesign,
 and she is the cocreator of Smush.it, an image optimization service in the
 cloud. She is passionate about CSS, web standards, and scalable frontend
 architecture for large commercial websites. Nicole speaks about performance
 at conferences around the world, most recently at The Ajax Experience,
 ParisWeb, and Web Directions North. She blogs at http://stubbornella.org.
Nicholas C. Zakas is the author of Professional JavaScript for Web
 Developers, Second Edition (Wrox) and coauthor of
 Professional Ajax, Second Edition (Wrox). Nicholas is
 principal frontend engineer for the Yahoo! home page and is also a contributor to the Yahoo! User Interface (YUI)
 library. He blogs regularly at his site, http://www.nczonline.net.

Preface

Vigilant: alertly watchful, especially to avoid
 danger
Anyone browsing this book—or its predecessor, High
 Performance Web Sites—understands the dangers of a slow
 web site: frustrated users, negative brand perception, increased operating expenses, and loss of
 revenue. We have to constantly work to make our web sites faster. As we make
 progress, we also lose ground. We have to be alert for the impact of each
 bug fix, new feature, and system upgrade on our web site’s speed. We have to
 be watchful, or the performance improvements made today can easily be lost
 tomorrow. We have to be vigilant.
Vigil: watch kept on a festival eve
According to the Latin root of vigil, our watch
 ends with celebration. Web sites can indeed be faster—dramatically so—and we
 can celebrate the outcome of our care and attention. It’s true! Making web
 sites faster is attainable. Some of the world’s most popular web sites have
 reduced their load times by 60% using the techniques described in this book.
 Smaller web properties benefit as well. Ultimately, users benefit.
Vigilante: a self-appointed doer of
 justice
It’s up to us as developers to guard our users’ interests. At your
 site, evangelize performance. Implement these techniques. Share this book
 with a coworker. Fight for a faster user experience. If your company doesn’t
 have someone focused on performance, appoint yourself to that role.
 Performance vigilante—I like the sound of that.
How This Book Is Organized

This book is a follow-up to my first book, High Performance Web
 Sites (O’Reilly). In that book, I lay out 14 rules for
 better web performance:
	Rule 1: Make Fewer HTTP Requests

	Rule 2: Use a Content Delivery Network

	Rule 3: Add an Expires
 Header

	Rule 4: Gzip Components

	Rule 5: Put Stylesheets at the Top

	Rule 6: Put Scripts at the Bottom

	Rule 7: Avoid CSS Expressions

	Rule 8: Make JavaScript and CSS External

	Rule 9: Reduce DNS Lookups

	Rule 10: Minify JavaScript

	Rule 11: Avoid Redirects

	Rule 12: Remove Duplicate Scripts

	Rule 13: Configure ETags

	Rule 14: Make Ajax Cacheable

I call them “rules” because there is little ambiguity about their
 adoption. Consider these statistics for the top 10 U.S. web sites[1] for March 2007:
	Two sites used CSS sprites.

	26% of resources had a future Expires header.

	Five sites compressed their HTML, JavaScript, and CSS.

	Four sites minified their JavaScript.

The same statistics for April 2009 show that these rules are gaining
 traction:
	Nine sites use CSS sprites.

	93% of resources have a future Expires header.

	Ten sites compress their HTML, JavaScript, and CSS.

	Nine sites minify their JavaScript.

The rules from High Performance Web
 Sites still apply and are where most web companies
 should start. Progress is being made, but there’s still more work to be
 done on this initial set of rules.
But the Web isn’t standing still, waiting for us to catch up.
 Although the 14 rules from High Performance Web
 Sites still apply, the growth in web page content and
 Web 2.0 applications introduces a new set of performance challenges.
 Even Faster Web Sites provides the best practices
 needed by developers to make these next-generation web sites
 faster.
The chapters in this book are organized into three areas: JavaScript
 performance (Chapters 1–7), network performance (Chapters 8–12),
 and browser performance (Chapters 13 and 14). A
 roundup of the best tools for analyzing performance comes in the Appendix A.
Six of the chapters were written by contributing authors:
	Chapter 1, Understanding Ajax Performance, by Douglas Crockford

	Chapter 2, Creating Responsive Web Applications, by Ben Galbraith and Dion Almaer

	Chapter 7, Writing Efficient JavaScript, by Nicholas C. Zakas

	Chapter 8, Scaling with Comet, by Dylan Schiemann

	Chapter 9, Going Beyond Gzipping, by Tony Gentilcore

	Chapter 10, Optimizing Images,
 by Stoyan Stefanov and Nicole Sullivan

These authors are experts in each of these areas. I wanted you to
 hear from them directly, in their
 own voices. To help identify these chapters, the name(s) of the
 contributing author(s) are on the chapter’s opening page.
JavaScript Performance

In my work analyzing today’s web sites, I consistently see that
 JavaScript is the key to better-performing web applications, so I’ve
 started the book with these chapters.
Douglas Crockford wrote Chapter 1, Understanding Ajax Performance.
 Doug describes how Ajax changes the way browsers and servers interact,
 and how web developers need to understand this new relationship to
 properly identify opportunities for improving performance.
Chapter 2, Creating Responsive Web Applications, by Ben Galbraith and Dion Almaer, ties
 JavaScript performance back to what really matters: the user experience.
 Today’s web applications invoke complex functions at the click of a
 button and must be evaluated on the basis of what they’re forcing the
 browser to do. The web applications that succeed will be written by
 developers who understand the effects of their code on response time.
I wrote the next four chapters. They focus on the mechanics of
 JavaScript—the best way to package it and load it, and where to insert
 it in your pages. Chapter 3, Splitting the Initial Payload, describes the situation facing many web
 applications today: a huge JavaScript download at the beginning of the
 page that blocks rendering as well as further downloads. The key is to
 break apart this monolithic JavaScript for more efficient
 loading.
Chapters 4 and 5 go together. In today’s most popular
 browsers, external scripts block everything else in the page. Chapter 4, Loading Scripts Without Blocking, explains how to avoid these pitfalls when
 loading external scripts. Loading scripts asynchronously presents a
 challenge when inlined code depends on them. Luckily, there are several
 techniques for coupling inlined code with the asynchronous scripts on
 which they depend. These techniques are presented in Chapter 5, Coupling Asynchronous Scripts.
Chapter 6, Positioning Inline Scripts, presents performance best practices that
 apply to inline scripts, especially the impact they have on blocking
 parallel downloads.
I think of Chapter 7, Writing Efficient JavaScript, written by Nicholas C. Zakas, as the
 complement to Doug’s chapter (Chapter 1). Whereas Doug describes the
 Ajax landscape, Nicholas zooms in on several specific techniques for
 speeding up JavaScript.

Network Performance

Web applications aren’t desktop applications—they have to be
 downloaded over the Internet each time they are used. The adoption of
 Ajax has resulted in a new style of data communication between servers
 and clients. Some of the biggest opportunities for growth in the web
 industry are in emerging markets where Internet connectivity is a
 challenge, to put it mildly. All of these factors highlight the need for
 improved network performance.
In Chapter 8, Scaling with Comet, Dylan Schiemann describes an architecture
 that goes beyond Ajax to provide high-volume, low-latency communication
 for real-time applications such as chat and document
 collaboration.
Chapter 9, Going Beyond Gzipping, describes how turning on compression
 isn’t enough to guarantee optimal delivery of your web site’s content.
 Tony Gentilcore reveals a little-known phenomenon that severely hinders
 the network performance of 15% of the world’s Internet users.
Stoyan Stefanov and Nicole Sullivan team up to contribute Chapter 10, Optimizing Images. This is a
 thorough treatment of the topic. This chapter reviews all popular image
 formats, presents numerous image optimization techniques, and describes
 the image compression tools of choice.
The remaining chapters were written by me. Chapter 11, Sharding Dominant Domains,
 reminds us of the connection limits in the popular browsers of today, as
 well as the next generation of browsers. It includes techniques for
 successfully splitting resources
 across multiple domains.
Chapter 12, Flushing the Document Early, walks through the benefits and many
 gotchas of using chunked encoding to start rendering the page even
 before the full HTML document has arrived.

Browser Performance

Iframes are an easy and frequently used technique for embedding
 third-party content in a web page. But they come with a cost. Chapter 13, Using Iframes Sparingly,
 explains the downsides of iframes and offers a few alternatives.
Chapter 14, Simplifying CSS Selectors, presents the theories about how complex
 selectors can impact performance, and then does an objective analysis to
 pinpoint the situations that are
 of most concern.
The Appendix A, describes the tools that I recommend for
 analyzing web sites and discovering the most important performance
 improvements to work on.

[1] AOL, eBay, Facebook, Google Search, Live Search, MSN.com,
 MySpace, Wikipedia, Yahoo!, and YouTube, according to Alexa.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, file
 extensions, pathnames, and directories

	Constant width
	Indicates commands, options, switches, variables, attributes,
 keys, functions, types, classes, namespaces, methods, modules,
 properties, parameters, values, objects, events, event handlers, XML
 tags, HTML tags, macros, the contents of files, and the output from
 commands

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user

	Constant width italic
	Shows text that should be replaced with user-supplied
 values

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596522308

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
 and the O’Reilly Network, see our
 web site at:
	http://www.oreilly.com

Using Code Examples

You may use the code in this book in your programs and
 documentation. You do not need to contact us for permission unless you’re
 reproducing a significant portion of the code. For example, writing a
 program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from this book
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Even Faster Web Sites, by Steve Souders. Copyright
 2009 Steve Souders, 978-0-596-52230-8.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
 library that lets you easily search thousands of top tech books, cut and
 paste code samples, download chapters, and find quick answers when you
 need the most accurate, current information. Try it for free at http://my.safaribooksonline.com.

Acknowledgments

I first want to thank the contributing authors: Dion Almaer, Doug
 Crockford, Ben Galbraith, Tony Gentilcore, Dylan Schiemann, Stoyan
 Stefanov, Nicole Sullivan, and Nicholas Zakas. They’ve made this a special
 book. Each of them is an expert in his or her own right. Most of them have
 written their own books. By sharing their expertise, they’ve helped create
 something unique.
I want to thank all the reviewers: Julien Lecomte, Matthew Russell,
 Bill Scott, and Tenni Theurer. I extend an especially strong thank you to
 Eric Lawrence and Andy Oram. Eric reviewed both this book as well as
 High Performance Web
 Sites. In both cases, he provided incredibly thorough
 and knowledgeable feedback. Andy was my editor on High Performance Web
 Sites. More than anyone else, he is responsible for
 improving how this book reads, making it flow smoothly from line to line,
 section to section, and chapter to chapter.
A special thank you goes to my editor, Mary Treseler. Coordinating a
 book with multiple authors is an opportunity that many editors will pass
 over. I’m glad that she took on this project and helped guide it from a
 bunch of ideas to what you’re holding in your hands now.
I work with many people at Google who have a penchant for web
 performance. Tony Gentilcore is the
 creator of Fasterfox and
 the author of Chapter 9. He’s also my
 officemate. Several times a day we’ll stop to discuss web performance.
 Steve Lamm, Lindsey Simon, and Annie Sullivan are strong advocates for
 performance who I work with frequently. Other Googlers who have
 contributed to what I know about web performance include Jacob
 Hoffman-Andrews, Kyle Scholz, Steve Krulewitz, Matt Gundersen, Gavin
 Doughtie, and Bryan McQuade.
Many of the insights in this book come from my friends outside
 Google. They know that if they tell me about a good performance tip, it’s
 likely to end up in a book or blog post. These performance cohorts include
 Dion Almaer, Artur Bergman, Doug Crockford, Ben Galbraith, Eric Goldsmith,
 Jon Jenkins, Eric Lawrence, Mark Nottingham, Simon Perkins, John Resig,
 Alex Russell, Eric Schurman, Dylan Schiemann, Bill Scott, Jonas Sicking,
 Joseph Smarr, and Tenni Theurer.
I’ve inevitably forgotten to mention someone in these lists. I
 apologize, and want to thank all of you for taking the time to send me
 email and talk to me at conferences. Hearing your lessons learned and
 success stories keeps me going. It’s important to know there are so many
 of us who are working to make the Web a faster place.
Thank you to my parents for being proud to have a son who’s an
 author. Most importantly, thank you to my wife and three daughters. I
 promise to take a break now.

Chapter 1. Understanding Ajax Performance

Douglas Crockford

Premature optimization is the root of all evil.
—Donald Knuth

Trade-offs

The design and construction of a computer program can involve
 thousands of decisions, each representing a trade-off. In difficult
 decisions, each alternative has significant positive and negative
 consequences. In trading off, we hope to obtain a near optimal good while minimizing the bad.
 Perhaps the ultimate trade-off is:
I want to go to heaven, but I don’t want to die.

More practically, the Project Triangle:
Fast. Good. Cheap. Pick Two.

predicts that even under ideal circumstances, it is not possible to
 obtain fast, good, and cheap. There must be a trade-off.
In computer programs, we see time versus memory trade-offs in the
 selection of algorithms. We also see expediency or time to market traded
 against code quality. Such trades can have a large impact on the
 effectiveness of incremental development.
Every time we touch the code, we are trading off the potential of
 improving the code against the possibility of injecting a bug. When we
 look at the performance of programs, we must consider all of these
 trade-offs.

Principles of Optimization

When looking at optimization, we want to reduce the overall cost of the
 program. Typically, this cost is the perceived execution time of the
 program, although we could optimize on other factors. We then should focus
 on the parts of the program that contribute most significantly to its
 cost.
For example, suppose that by profiling we discover the cost of a
 program’s four modules.
	Module
	A
	B
	C
	D

	Cost
	54%
	4%
	30%
	12%

If we could somehow cut the cost of Module B in half, we would
 reduce the total cost by only 2%. We would get a better result by cutting
 the cost of Module A by 10%. There is little benefit from optimizing
 components that do not contribute significantly to the cost.
The analysis of applications is closely related to the analysis of
 algorithms. When looking at execution time, the place where programs spend
 most of their time is in loops. The return on optimization of code that is
 executed only once is negligible. The benefits of optimizing inner loops
 can be significant.
For example, if the cost of a loop is linear with respect to the
 number of iterations, then we can say it is
 O(n), and we can graph its
 performance as shown in Figure 1-1.
[image: Performance of a loop]

Figure 1-1. Performance of a loop

The execution time of each iteration is reflected in the slope of
 the line: the greater the cost, the steeper the slope. The fixed overhead
 of the loop determines the elevation of its starting point. There is
 usually little benefit in reducing the fixed overhead. Sometimes there is
 a benefit in increasing the fixed overhead if the cost of each increment
 can be reduced. That can be a good trade-off.
In addition to the plot of execution time, there are three lines—the
 Axes of Error—that our line must not intersect (see Figure 1-2). The first is the Inefficiency line. Crossing this line
 reduces the user’s ability to concentrate. This can also make people
 irritable. The second is the Frustration line. When this line is
 crossed, the user is aware that he is being forced to wait. This invites
 him to think about other things, such as the desirability of competing web
 applications. The third is the Failure line. This is when the user
 refreshes or closes the browser because the application appears to have
 crashed, or the browser itself produces a dialog suggesting that the
 application has failed and that the user should take action.
[image: The Axes of Error]

Figure 1-2. The Axes of Error

There are three ways to avoid intersecting the Axes of Error: reduce the cost of each iteration, reduce the
 number of iterations, or redesign the application.
When loops become nested, your options are reduced. If the cost of the loop is
 O(n log n),
 O(n2),
 or worse, reducing the time per iteration is not effective (see Figure 1-3). The only effective options are
 to reduce n or to replace the algorithm. Fiddling
 with the cost per iteration will be effective only when
 n is very small.
[image: Performance of a nested loop]

Figure 1-3. Performance of a nested loop

Programs must be designed to be correct. If the program isn’t right,
 it doesn’t matter if it is fast. However, it is important to determine
 whether it has performance problems as early as possible in the
 development cycle. In testing web applications, test with slow machines
 and slow networks that more closely mimic those of real users. Testing in
 developer configurations is likely to mask performance problems.

Ajax

Refactoring the code can reduce its apparent complexity, making
 optimization and other transformations more likely to yield benefits. For
 example, adopting the YSlow rules can have a huge impact on the delivery time of
 web pages (see http://developer.yahoo.com/yslow/).
Even so, it is difficult for web applications to get under
 the Inefficiency line because of the size
 and complexity of web pages. Web pages are big, heavy, multipart things. Page replacement
 comes with a significant cost. For applications where the difference
 between successive pages is
 relatively small, use of Ajax techniques can produce a significant
 improvement.
Instead of requesting a replacement page as a result of a user
 action, a packet of data is sent to the server (usually encoded as JSON
 text) and the server responds with another packet (also typically JSON-encoded)
 containing data. A JavaScript program uses that data to update the
 browser’s display. The amount of data transferred is significantly reduced, and the time between
 the user action and the visible feedback is also significantly reduced. The amount of
 work that the server must do is reduced. The
 amount of work that the browser must do is reduced. The amount of
 work that the Ajax programmer must do, unfortunately, is likely to
 increase. That is one of the trade-offs.
The architecture of an Ajax application is significantly different from most other
 sorts of applications because it is divided between two systems. Getting
 the division of labor right is essential if the Ajax approach is to have a
 positive impact on performance. The packets should be as small as
 possible. The application should be constructed as a conversation between
 the browser and the server, in which the two halves communicate in a
 concise, expressive, shared language. Just-in-time data delivery allows
 the browser side of the application to keep n small,
 which tends to keep the loops fast.
A common mistake in Ajax applications is to send all of the application’s data
 to the browser. This reintroduces the latency problems that Ajax is
 supposed to avoid. It also enlarges the volume of data that must be
 handled in the browser, increasing n and again
 compromising performance.

Browser

Ajax applications are challenging to write because the browser was not
 designed to be an application platform. The scripting language and the Document Object Model (DOM) were intended to support
 applications composed of simple forms. Surprisingly, the browser gets
 enough right that it is possible to use it to deliver sophisticated
 applications. Unfortunately, it
 didn’t get everything right, so the level of difficulty can be high. This
 can be mitigated with the use of Ajax libraries (e.g., http://developer.yahoo.com/yui/). An Ajax library uses the expressive power of JavaScript to raise the DOM to
 a practical level, as well as repairing many of the hazards that can
 prevent applications from running acceptably on the many brands of
 browsers.
Unfortunately, the DOM API is very inefficient and mysterious. The greatest cost in
 running programs tends to be the DOM, not JavaScript. At the Velocity 2008
 conference, the Microsoft Internet Explorer 8 team shared this performance
 data on how time is spent in the Alexa 100 pages.[2]
	Activity
	Layout
	Rendering
	HTML
	Marshaling
	DOM
	Format
	JScript
	Other

	Cost
	43.16%
	27.25%
	2.81%
	7.34%
	5.05%
	8.66%
	3.23%
	2.5%

The cost of running JavaScript is insignificant compared to the other things
 that the browser spends time on. The Microsoft team also gave an example
 of a more aggressive Ajax application, the opening of an email
 thread.
	Activity
	Layout
	Rendering
	HTML
	Marshaling
	DOM
	Format
	JScript
	Other

	Cost
	9.41%
	9.21%
	1.57%
	7.85%
	12.47%
	38.97%
	14.43%
	3.72%

The cost of the script is still less than 15%. Now CSS processing is the greatest cost. Understanding the
 mysteries of the DOM and working to suppress its impact is clearly a
 better strategy than attempting to speed up the script. If you could
 heroically make the script run twice as fast, it would barely be
 noticed.

[2] http://en.oreilly.com/velocity2008/public/schedule/detail/3290

Wow!

There is a tendency among application designers to add
 wow features to Ajax applications. These are intended to invoke a reaction
 such as, “Wow, I didn’t know browsers could do that.” When used badly, wow
 features can interfere with the productivity of users by distracting them
 or forcing them to wait for animated sequences to play out. Misused wow
 features can also cause unnecessary DOM manipulations, which can come with
 a surprisingly high cost.
Wow features should be used only when they genuinely improve the
 experience of the user. They should not be used to show off or to
 compensate for deficiencies in functionality or usability.
Design for things that the browser can do well. For example, viewing a database as an
 infinitely scrolling list requires that the browser hold on to and display
 a much larger set than it can manage efficiently. A better alternative is
 to have a very effective paginating
 display with no scrolling at all. This provides better performance and can
 be easier to use.

JavaScript

Most JavaScript engines were optimized for quick time to market, not
 performance, so it is natural to assume that JavaScript is always the
 bottleneck. Typically, however, the bottleneck is not JavaScript, but the DOM, so fiddling with scripts will have
 little effectiveness.
Fiddling should be avoided. Programs should be coded for correctness
 and clarity. Fiddling tends to work against clarity, which can increase
 the susceptibility of the program to
 attract bugs.
Fortunately, competitive pressure is forcing the browser makers to
 improve the efficiency of their JavaScript engines. These improvements
 will enable new classes of applications in the browser.
Avoid obscure idioms that might be faster unless you can prove that
 they will have a noticeable impact on your application. In most cases,
 they will have no noticeable impact except to degrade the quality of your
 code. Do not tune to the quirks of particular browsers. The browsers are
 still in development and may ultimately favor better coding
 practices.
If you feel you must fiddle, measure first. Our intuitions of the
 true costs of a program are usually wrong. Only by measuring can you have
 confidence that you are having a positive effect on performance.

Summary

Everything is a trade-off. When optimizing for performance, do not
 waste time trying to speed up code that does not consume a significant
 amount of the time. Measure first. Back out of any optimization that does
 not provide an enjoyable benefit.
Browsers tend to spend little time running JavaScript. Most of their
 time is spent in the DOM. Ask your browser maker to provide better
 performance measurement tools.
Code for quality. Clean, legible, well-organized code is easier to
 get right, easier to maintain, and easier to optimize. Avoid tricks except
 when they can be proven to substantially improve performance.
Ajax techniques, when used well, can make applications faster. The
 key is in establishing a balance between the browser and the server. Ajax
 provides an effective alternative to page replacement, turning the browser
 into a powerful application platform, but your success is not guaranteed.
 The browser is a challenging platform and your intuitions about
 performance are not reliable. The chapters that follow will help you
 understand how to make even faster web sites.

Chapter 2. Creating Responsive Web Applications

Ben Galbraith

Dion Almaer

With the rise of Ajax, web site performance is no longer just about the quick
 realization of a web site. An ever-increasing number of web sites, once loaded, will use
 JavaScript to dynamically change the page and load new content
 on the fly. Such sites have much in common with traditional desktop client
 programs, and optimizing the performance of these applications requires a
 different set of techniques from traditional web sites.
From a high level, user interfaces for web applications and
 traditional desktop applications share a common goal: respond to the user’s
 input as fast as possible. When it comes to responding to a user’s request
 to load a web site, the browser itself handles much of the responsiveness burden. It
 opens network connections to the requested site, parses the HTML, requests
 the associated resources, and so forth. Based on a careful analysis of this
 process, we can optimize our pages to render as fast as possible, but the
 browser is ultimately in control of loading and realizing the page.
When it comes to responding to user input to the web site itself (when
 that input doesn’t result in the browser loading a new page), we web
 developers are in control. We must ensure that the JavaScript that executes
 as a result of such input is responsive. To better understand just how much
 control we have over responsiveness, we’re going to take a minute to explain
 how browser user interfaces work.
As shown in Figure 2-1, when a user interacts
 with a browser, the operating system receives input from various devices
 attached to the computer, such as the keyboard or mouse. It works out which
 application should receive these inputs, and it packages them up as
 individual events and places them in a queue for that application, known as
 an event queue.
It’s up to the web browser, like any GUI application, to process the
 individual events placed in its queue. It does so by pulling them from the
 queue in first-in, first-out order and deciding what to do about the event.
 Generally, the browser will do one of two things based on these events:
 handle the event itself (such as display a menu, browse the Web, show a
 preference screen, etc.) or execute JavaScript code in the web page itself
 (e.g., JavaScript code in an onclick
 handler in the page), as shown in Figure 2-2.
[image: All user input is routed via the operating system into an event queue]

Figure 2-1. All user input is routed via the operating system into an event
 queue

[image: The browser uses a single thread to process events in the queue and execute user code]

Figure 2-2. The browser uses a single thread to process events in the queue and
 execute user code

The important takeaway here is that this process is essentially
 single-threaded. That is, the browser uses a single thread to pull an event from the queue
 and either do something itself (“Web browsing” in Figure 2-2) or execute
 JavaScript. As such, it can do only one of these tasks at a time, and each
 of these tasks can prevent the other tasks from occurring.
Any time spent by the browser executing a page’s JavaScript is time
 that it cannot spend responding to other user events. It is therefore vital
 that any JavaScript in a page execute as fast as possible. Otherwise, the
 web page and the browser itself may become sluggish or freeze up
 entirely.
Note that this discussion of browser and operating system behavior
 with respect to input handling and events is a broadly applicable
 generalization; details vary. Regardless of variances, all browsers execute
 all JavaScript code in a page on a single thread (excepting the use of Web
 Workers, discussed later in this chapter), making the developer practices
 advocated in this chapter completely applicable.
What Is Fast Enough?

It’s fine to say that code needs to execute “as fast as possible,” but sometimes code
 needs to do things that simply take time. For instance, encryption
 algorithms, complex graphics rendering, and image manipulation are
 examples of computations that are time-consuming to perform, regardless of
 how much effort a developer puts forth to make them “as fast as
 possible.”
However, as Doug mentioned in Chapter 1, developers seeking to create
 responsive, high-performance web sites can’t—and shouldn’t—go about
 achieving that goal by optimizing every single piece of code as they write
 it. The opposite is true: a developer should optimize only what isn’t fast
 enough.
It is therefore vital to define exactly what is “fast enough” in
 this context. Fortunately, that’s already been done for us.
Jakob Nielsen is a well-known and well-regarded expert in the field of
 web usability; the following quote[3] addresses the issue of “fast enough”:
The response time guidelines for web-based applications are the
 same as for all other applications. These guidelines have been the same
 for 37 years now, so they are also not likely to change with whatever
 implementation technology comes next.
0.1 second: Limit for users
 feeling that they are directly manipulating objects in the UI. For
 example, this is the limit from the time the user selects a column in a
 table until that column should highlight or otherwise give feedback that
 it’s selected. Ideally, this would also be the response time for sorting
 the column—if so, users would feel that they are sorting the
 table.
1 second: Limit for users
 feeling that they are freely navigating the command space without having
 to unduly wait for the computer. A delay of 0.2–1.0 seconds does mean
 that users notice the delay and thus feel the computer is “working” on
 the command, as opposed to having the command be a direct effect of the
 users’ actions. Example: If sorting a table according to the selected
 column can’t be done in 0.1 seconds, it certainly has to be done in 1
 second, or users will feel that the UI is sluggish and will lose the
 sense of “flow” in performing their task. For delays of more than 1
 second, indicate to the user that the computer is working on the
 problem, for example by changing the shape of the cursor.
10 seconds: Limit for users
 keeping their attention on the task. Anything slower than 10 seconds
 needs a percent-done indicator as well as a clearly signposted way for
 the user to interrupt the operation. Assume that users will need to
 reorient themselves when they return to the UI after a delay of more
 than 10 seconds. Delays of longer than 10 seconds are only acceptable
 during natural breaks in the user’s work, for example when switching
 tasks.

In other words, if your JavaScript code takes longer than 0.1 seconds to execute,
 your page won’t have that slick, snappy feel; if it takes longer than 1
 second, the application feels sluggish; longer than 10 seconds, and the
 user will be extremely frustrated. These are the definitive guidelines to
 use for defining “fast enough.”

[3] http://www.useit.com/papers/responsetime.html

Measuring Latency

Now that you know the threshold for fast enough, the next step is to
 explore how you can measure the speed of JavaScript execution to determine whether it falls outside
 the ranges mentioned earlier (we’ll leave it to you to determine just how
 fast you wish your page to be; we aim to keep all interface latency
 smaller than 0.1 seconds).
The easiest, most straightforward, and probably least precise way to
 measure latency is via human observation; simply use the application on
 your target platforms and ensure that performance is adequate. Since
 ensuring adequate human interface performance is only about pleasing
 humans, this is actually a fine way to perform such measurements
 (obviously, few humans will be able to quantify delays reliably in terms
 of precise whole or fractional second measurements; falling back to
 coarser categorizations such as “snappy,” “sluggish,” “adequate,” and so
 on does the job).
However, if you desire more precise measurements, there are two
 options you can choose: manual code instrumentation (logging)
 or automated code instrumentation (profiling).
Manual code instrumentation is really straightforward. Let’s say you
 have an event handler registered on your page, as in:
<div onclick="myJavaScriptFunction()"> ... </div>
A simple way to add manual instrumentation would be to locate the
 definition of myJavaScriptFunction()
 and add timing to the function:
function myJavaScriptFunction() {
 var start = new Date().getMilliseconds();

 // some expensive code is here

 var stop = new Date().getMilliseconds();
 var executionTime = stop - start;
 alert("myJavaScriptFunction() executed in " + executionTime +
 " milliseconds");
}
The preceding code will produce a pop-up dialog that displays the
 execution time; one millisecond represents 1/1,000 of a second, so 100
 milliseconds represent the 0.1-second “snappiness” threshold mentioned
 earlier.
Note
Many browsers offer a built-in instance named console that provides a log() function (Firefox makes this available
 with the popular Firebug plug-in); we greatly prefer console.log() to alert().

There are tools to perform an automated measurement of code
 execution time, but such tools are typically used for a different purpose.
 Instead of being used to determine the precise execution duration of a
 function, such tools—called profilers—are usually
 used to determine the relative amount of time spent executing a set of
 functions; that is, they are used to find the
 bottleneck or slowest-running chunks of code.
The popular Firebug extension
 for Firefox includes a JavaScript code profiler; it generates output
 such as that shown in Figure 2-3.
[image: Firebug’s profiler]

Figure 2-3. Firebug’s profiler

The “Time” column represents the total amount of time the JavaScript interpreter spent inside a given function during
 the period of profiling. Often, a function invokes other functions; the
 “Own Time” column represents the amount of time spent inside a specific
 function and not any other functions that it may have invoked.
While you might think these and the other temporal-related columns
 represent a precise measurement of function execution time, it turns out
 that profilers are subject to something like the observer
 effect in physics: the act of observing the performance of code
 modifies the performance of the code.
Profilers can take two basic strategies representing a basic
 trade-off: either they can intrude on the code being measured by adding
 special code to collect performance statistics (basically automating the
 creation of code as in the previous listing), or they can passively
 monitor the runtime by checking what piece of code is being executed at a
 particular moment in time. Of these two approaches, the latter does less
 to distort the performance of the code being profiled, but at the cost of
 lower-quality data.
Firebug subjects results to a further distortion because its
 profiler executes inside Firefox’s own process, which creates the
 potential for it to rob the code it is measuring of performance.
Nevertheless, the “Percent” column of Firebug’s output demonstrates
 the power of measuring relative execution time: you can perform a
 high-level task in your page’s interface (e.g., click the Send button) and
 then check Firebug’s profiler to see which functions spent the most time
 executing, and focus your optimization efforts on those.
When Latency Goes Bad

It turns out that if your JavaScript code ties up the browser
 thread for a particularly long time, most browsers will intervene and
 give the user the opportunity to interrupt your code. There is no
 standard behavior governing how browsers make the determination to give the user this
 opportunity. (For details on individual browser behavior, see http://www.nczonline.net/blog/2009/01/05/what-determines-that-a-script-is-long-running/.)
The lesson is simple: don’t introduce potentially long-running,
 poorly performing code into your web page.

Threading

Once you’ve identified code that performs inadequately, of course the next step is
 to go about optimizing it. However, sometimes the task to perform is
 simply expensive and cannot be magically optimized to take less time. Are
 such scenarios fated to bring sluggish horror to a user interface? Will no
 solution emerge to keep our users happy?
The traditional solution in such cases is to use
 threads to push such expensive code off the thread
 used to interact with the user. In our scenario, this would let the
 browser continue to process events from the event queue and
 keep the interface responsive while the long-running code merrily executes
 on a different thread (and the operating system takes responsibility for
 making sure that both the browser user interface thread and the background
 thread equitably share the computer’s resources).
However, JavaScript doesn’t support threads, so there’s no way for JavaScript code to
 create a background thread to execute expensive code. Further, this isn’t
 likely to change anytime soon.
Brendan Eich, the creator of JavaScript and Mozilla’s chief technical officer,
 has made his position on this issue clear:[4]
You must be [as tall as an NBA player] to hack on threaded
 systems, and that means most programmers should run away crying. But
 they don’t. Instead, as with most other sharp tools, the temptation is
 to show how big one is by picking up the nearest single-threaded code
 and jamming it into a multi-threaded embedding, or tempting race-condition fate otherwise. Occasionally the
 results are infamous, but too often, with only virtual fingers and limbs
 lost, no one learns.
Threads violate abstractions six ways to Sunday. Mainly by
 creating race conditions, deadlock hazards, and pessimistic locking
 overhead. And still they don’t scale up to handle the megacore teraflop
 future.
So my default answer to questions such as, “When will you add
 threads to JavaScript?” is: “over your dead body!”

Given Brendan’s influence in the industry and on the future of
 JavaScript (which is considerable), and the broad degree to which this
 position is shared, it is safe to say that threads will not be coming to
 JavaScript anytime soon.
However, there are alternatives. The basic problem with threads is
 that different threads can have access to and modify the same variables.
 This causes all sorts of problems when Thread A modifies variables that
 Thread B is actively modifying, and so on. You might think these sorts of
 issues could be kept straight by decent programmers, but it turns out
 that, as Brendan said, even the best of us make pretty horrible mistakes
 in this department.

[4] http://weblogs.mozillazine.org/roadmap/archives/2007/02/threads_suck.html

Ensuring Responsiveness

What’s needed is a way to have the benefit of threads—tasks executing in
 parallel—without the hazards of the threads getting into each other’s
 business. Google implemented just such an API in its popular Gears browser plug-in: the
 WorkerPool API. It essentially allows the main browser JavaScript thread to create background “workers” that
 receive some simple “message” (i.e., standalone state, not references to
 shared variables) from the browser thread when they are kicked off and
 return a message upon completion.
Experience with this API in Gears has led many browsers (e.g.,
 Safari 4, Firefox 3.1) to implement support for “workers” natively based
 on a common API defined in the HTML 5 specification. This feature is known
 as “Web Workers.”
Web Workers

Let’s consider how to use the Web Worker API to decrypt a value. The following
 listing shows how to create and kick off a worker:
// create and begin execution of the worker
var worker = new Worker("js/decrypt.js");

// register an event handler to be executed when the worker
// sends the main thread a message
worker.onmessage = function(e) {
 alert("The decrypted value is " + e.data);
}

// send a message to the worker, in this case the value to decrypt
worker.postMessage(getValueToDecrypt());
Now let’s take a look at the hypothetical contents of js/decrypt.js:
// register a handler to receive messages from the main thread
onmessage = function(e) {
 // get the data passed to us
 var valueToDecrypt = e.data;

 // TODO: implement decryption here

 // return the value to the main thread
 postMessage(decryptedValue);
}
Any potentially expensive (i.e., long-running) JavaScript
 operations that your page performs should be delegated to workers, as
 that will keep your application running lickety-split.

Gears

If you find yourself supporting a browser that doesn’t support the Web Worker API, there are
 a few alternatives. We mentioned Google’s Gears plug-in in the preceding
 section; you can use the Gears plug-in to bring something very much like
 Web Workers to Internet Explorer, to older versions of Firefox, and to older versions of Safari.
The Gears worker API is similar but not identical to the Web
 Worker API. Here are the previous two code listings converted to the
 Gears API, starting with the code executed on the main thread to spawn a
 worker:
// create a worker pool, which spawns workers
var workerPool = google.gears.factory.create('beta.workerpool');

// register the event handler that receives the message from the worker
workerPool.onmessage = function(ignore1, ignore2, e) {
 alert("The decrypted value is + " e.body);
}

// create a worker
var workerId = workerPool.createWorkerFromUrl("js/decrypt.js");

// send a message to the worker
workerPool.sendMessage(getValueToDecrypt(), workerId);
And here is the Gears version of js/decrypt.js:
var workerPool = google.gears.workerPool;
workerPool.onmessage = function(ignore1, ignore2, e) {
 // get the data passed to us
 var valueToDecrypt = e.body;

 // TODO: implement decryption here

 // return the value to the main thread
 workerPool.sendMessage(decryptedValue, e.sender);
}
More on Gears
It is interesting to note some of the history of the Gears
 Worker Pool because it came from a very practical place. The Gears
 plug-in was built by a team at Google that was trying to push the
 browser to do more than it currently was able (this was before Google
 Chrome—but even with Chrome, Google wants as many users as possible to
 do great things with its web applications).
Imagine if you wanted to build Gmail Offline; what would you
 need? First, you’d need a way to cache documents locally and to have
 an intercept so that when the browser tries to access http://mail.google.com/, it gets the page back instead
 of a message stating that you are offline. Second, it needs a way to
 store your email, both new and old. This could be done in many forms,
 but since SQLite is well known and already in most new browsers and
 bundled in many operating systems, why not use that? Here’s where the
 problem lies.
We have been talking about the issues with a single-threaded
 browser. Now imagine operations such as writing new messages to the
 database or performing long queries. We can’t freeze the UI while the
 database does its work—the latency could be enormous! The Gears team
 needed a way to get around this. Since the Gears plug-in can do
 whatever it wants, it can easily work around the lack of threads in
 JavaScript. But since the need for concurrency is a general problem,
 why not give this ability to the outside world? Hence the “Worker
 Pool” API, which led to the HTML 5 standard “Web Workers.”
The two APIs look subtly different, but this is because Web
 Workers is sort of like version 2.0 of the pioneering Gears API; Gears
 should support the standard API soon. There are already “shim”
 libraries that bridge the existing Gears API and the standard Web
 Worker API, and these shims can be used to work even without Gears or
 Web Workers (by using setTimeout(),
 described in this chapter).

Timers

Another approach, common before Gears and Web Workers, was simply
 to split up long-running operations into separate chunks and use
 JavaScript timers to control the execution. For example:
var functionState = {};

function expensiveOperation() {
 var startTime = new Date().getMilliseconds();
 while ((new Date().getMilliseconds() - startTime) < 100) {
 // TODO: implement expensive operation in such a way
 // that it performs work in iterative chunks that complete
 // in less than 100 ms and shove state in "functionState"
 // outside this function; good luck with that ;-)
 }

 if (!functionState.isFinished) {
 // re-enter expensiveOperation 10 ms after exiting; experiment
 // with larger values to strike the right balance between UI
 // responsiveness and performance
 setTimeout(expensiveOperation(), 10);
 }
}
Splitting up the operation in the manner just illustrated will
 result in a responsive interface, but as the comment in the listing
 indicates, it may not be straightforward (or even feasible) to structure
 the operation in that way. See Yielding Using Timers
 for more details on using setTimeout() in this
 manner.
There’s another fundamental issue with this approach. Most modern
 computers have multiple “cores,” which means that they have the ability
 to execute multiple threads in a truly concurrent fashion (whereas previous
 computers have only emulated concurrency through fast task switching).
 Implementing task switching manually via JavaScript as we’ve done in the
 listing can’t take advantage of such architectures; you are therefore
 leaving processing power on the table by forcing one of the cores to do
 all of the processing.
Thus, it is possible to perform long-running operations on the
 browser’s main thread and maintain a responsive interface, but it’s
 easier and more efficient to use workers.
XMLHttpRequest
A discussion of threading wouldn’t be complete without touching
 briefly on the famed enabler of the Ajax revolution: XMLHttpRequest, or “XHR” for short. Using XHR, a web page may send a message and
 receive a response entirely from the JavaScript environment, a feat
 that enables rich interactivity without loading new pages.
XHR has two basic execution modes: synchronous and asynchronous.
 In the asynchronous mode, XHR is essentially a Web Worker but with a
 specialized API; indeed, coupled with other features of the
 in-progress HTML 5 specification, you can re-create the functionality
 of XHR with a worker. In the synchronous mode, XHR acts as though it
 performs all of its work on the browser’s main thread and will
 therefore introduce user interface latency that lasts as long as XHR
 takes to send its request and parse the response from the server.
 Therefore, never use XHR in synchronous mode, as it can lead to
 unpredictable user interface latency well outside of tolerable
 ranges.

Effects of Memory Use on Response Time

There’s another key aspect to creating responsive web pages: memory
 management. Like many modern high-level languages that abstract away
 low-level memory management, most JavaScript runtimes implement garbage collection (or “GC”
 for short). Garbage collection can be a magical thing, relieving
 developers from tedious details that feel more like accounting than
 programming.
However, automatic memory management comes with a cost. All but
 the most sophisticated of GC
 implementations “stop the world” when they perform their collections;
 that is, they freeze the entire runtime (including what we’ve been
 calling the main browser JavaScript thread) while they walk the entire
 “heap” of created objects, searching for those that are no longer being
 used and are therefore eligible for recycling into unused memory.
For most applications, GC is truly transparent; the runtime is
 frozen for short enough periods of time that it escapes the user’s
 attention entirely. However, as an application’s memory footprint
 increases in size, the time required to walk through the entire heap
 searching for objects that are no longer in use grows and can eventually
 reach levels that a user does notice.
When this occurs, the application begins to be intermittently
 sluggish on somewhat regular intervals; as the problem gets worse, the
 entire browser may freeze on these intervals. Both cases lead to a
 frustrating user experience.
Most modern platforms provide sophisticated tools that enable you
 to monitor the performance of the runtime’s GC process and to view the
 current set of objects on the heap in order to diagnose GC-related
 problems. Unfortunately, JavaScript runtimes don’t fall into that
 category. To make matters worse, no tools exist that can inform
 developers when collections occur or how much time they are spending
 performing their work; such tools would be very helpful to verify that
 observed latency is related to GC.
This tool gap is a serious detriment toward the development of
 large-scale browser-hosted JavaScript applications. Meanwhile,
 developers must guess whether GC is responsible for UI delays.

Virtual Memory

There is another danger associated with memory: paging. Operating
 systems have two classes of memory they make available to applications:
 physical and virtual. Physical memory is mapped to
 extremely fast RAM chips in the underlying computer; virtual
 memory is mapped to a much slower mass storage device (e.g.,
 hard drive) that makes up for its relative pokiness with much larger
 available storage space.
If your web page’s memory requirements grow sufficiently large,
 you may force the operating system to start paging,
 an extremely slow process whereby other processes are forced to
 relinquish their real memory to make room for the browser’s increased
 appetite. The term paging is used because all
 modern operating systems organize memory into individual
 pages, the term used to describe the smallest unit
 of memory that is mapped to either real or virtual memory. When paging
 occurs, pages are transferred from real to virtual memory (i.e., from
 RAM to a hard drive) or vice versa.
The performance degradation caused by paging is a bit different
 from GC pauses; paging results in a general, pervasive sluggishness
 whereas GC pauses tend to manifest themselves as discrete, individual
 pauses that occur in intervals—though the lengths of the pauses grow
 over time. Regardless of their differences, either one of these problems
 represents significant threats to your goal of creating a responsive
 user interface.

Troubleshooting Memory Issues

As we mentioned earlier, we know of no good memory troubleshooting tools for
 browser-hosted JavaScript applications. The state of the art is to
 observe the memory footprint of the browser process (see the section “Measuring Memory Use” at
 http://blog.pavlov.net/2008/03/11/firefox-3-memory-usage/
 for details on how to measure process memory usage in Windows and OS X),
 and if it grows larger than is tolerable during the course of your
 application, check whether your code has any opportunities for memory
 usage optimizations.
Once you’ve determined that you have a memory problem, you should
 look for opportunities to clean up after yourself where you haven’t yet
 done so. You can do this in two ways:
	Use the delete keyword to
 remove JavaScript objects that are no longer needed from
 memory.

	Remove nodes that are no longer necessary from the web page
 DOM.

The following code listing demonstrates how to perform both of
 these tasks:
var page = { address: "http://some/url" };

page.contents = getContents(page.address);

...

// later, the contents are no longer necessary
delete page.contents;

...

var nodeToDelete = document.getElementById("redundant");

// remove the node from the DOM (which can only be done via
// call to removeChild() from parent node) and
// simultaneously delete the node from memory
delete nodeToDelete.parent.removeChild(nodeToDelete);
Obviously, there is significant room for improvement in the area
 of memory usage optimization for web pages. At Mozilla, we are currently
 developing tools to address this problem. In fact, by the time you read
 this, you should be able to find one or more such tools by visiting http://labs.mozilla.com.

Summary

Ajax ushered in a new era of long-running, JavaScript-centric web
 pages. Such web pages are really browser-hosted applications and are
 subject to the same user interface guidelines of any other application. It
 is vital that such applications keep the user interface responsive by minimizing
 operations performed on the main application thread.
Web Workers are a powerful new tool that can be used to offload
 complex operations that threaten UI responsiveness. The Gears plug-in and
 JavaScript timers can be used when Web Workers are unavailable.
Poorly managed memory can lead to UI performance problems. While
 there’s a shortage of good tools to troubleshoot memory problems,
 developers can generally observe browser memory usage and take steps to
 minimize their application’s memory footprint when problems arise. The
 good news is that memory troubleshooting tools are in development.

Chapter 3. Splitting the Initial Payload

The growing adoption of Ajax and DHTML (Dynamic HTML) means today’s web
 pages have more JavaScript and CSS than ever before. Web applications are
 becoming more like desktop applications, and just like desktop applications,
 a large percentage of the application code isn’t used at startup. Advanced
 desktop applications have a plug-in architecture that allows for modules to
 be loaded dynamically, a practice that many Web 2.0 applications could
 benefit from. In this chapter I show some popular Web 2.0 applications that
 load too much code upfront, and I discuss approaches for making pages load
 more dynamically.
Kitchen Sink

Facebook has 14
 external scripts totaling 786 KB uncompressed.[5] Figuring out how much of that JavaScript is necessary for the initial page to render is
 difficult to do, even for a core Facebook frontend engineer. Some of those
 14 external scripts are critical to rendering the initial page, but others
 were included because they support
 Ajax and DHTML functionality, such as the drop-down menus
 and the Comment and Like features shown in Figure 3-1.
It’s critical to render a web page as quickly as possible. Doing so engages the user
 and creates a responsive experience for her. Imagine if the Facebook
 JavaScript could be split into two parts: what’s needed to render the
 initial page, and everything else. Rather than bog down the user’s first
 impression with “everything else,” the initial JavaScript download should
 include only what’s necessary for the initial rendering. The remaining
 JavaScript payload can be loaded later.
[image: Facebook Ajax and DHTML features]

Figure 3-1. Facebook Ajax and DHTML features

This raises several questions:
	How much does this save?

	How do you find where to split the code?

	What about race conditions?

	How do you download “everything else” later?

The first three questions are tackled in this chapter. How to load
 “everything else” is the topic of Chapter 4.

[5] Fourteen scripts are downloaded when logged-in users visit this
 page. If the user is not logged in, fewer scripts are used.

Savings from Splitting

It turns out that Facebook executes only 9% of the downloaded
 JavaScript functions by the time the onload event is called. This is computed by
 using Firebug’s JavaScript profiler to count all the functions
 executed up to the onload
 event.[6] The counting stops at the onload event because
 functionality needed after this point can, and should, be downloaded after
 the initial page has rendered. I call this a post-onload
 download. (See Chapter 4 for various lazy-loading
 techniques.)
Table 3-1 shows
 the percentage of functions downloaded that are not executed before the
 onload event for 10 top U.S. web sites.
 On average, 75% of the functions downloaded are not executed during the
 initial rendering of the page. Thus, if downloading of these unexecuted
 functions was deferred, the size of the initial JavaScript download would
 be dramatically reduced.
Admittedly, the 75% estimate might be exaggerated; some of the
 unexecuted functions might be required for error handling or other special
 conditions. The estimate is still useful to illustrate the point that much
 of the JavaScript downloaded initially could be deferred. The average
 total amount of JavaScript is 252 KB uncompressed. This percentage is in
 terms of function count, not size. If we assume a constant function size,
 75% represents an average 189 KB that doesn’t have to be downloaded until
 after the onload event, making the
 initial page render more quickly.
Table 3-1. Percentage of JavaScript functions executed before onload
	Web site
	% of functions not executed
	JavaScript size uncompressed

	http://www.aol.com/
	71%
	115 KB

	http://www.ebay.com/
	56%
	183 KB

	http://www.facebook.com/
	91%
	786 KB

	http://www.google.com/search?q=flowers
	56%
	15 KB

	http://search.live.com/results.aspx?q=flowers
	75%
	17 KB

	http://www.msn.com/
	69%
	131 KB

	http://www.myspace.com/
	87%
	297 KB

	http://en.wikipedia.org/wiki/Flowers
	79%
	114 KB

	http://www.yahoo.com/
	88%
	321 KB

	http://www.youtube.com/
	84%
	240 KB

[6] Firebug is the preeminent web development tool, available at
 http://getfirebug.com/.

Finding the Split

Firebug’s JavaScript profiler shows the names of all the functions
 that were executed by the time of the onload event. This list can be used to manually
 split the JavaScript code into one file loaded as part of the initial page
 rendering and another file to be downloaded later. However, because some
 of the unused functions may still be necessary for error-handling and
 other conditional code paths, splitting the code into an initial download
 that is complete without undefined symbols is a challenge. JavaScript’s
 higher-order features, including function scoping and eval, make the challenge even more
 complicated.
Doloto
 is a system developed by
 Microsoft Research for automatically splitting JavaScript into clusters. The first cluster contains the
 functions needed for initializing the web page. The remaining clusters are
 loaded on demand the first time the missing code needs to execute, or they
 are lazy-loaded after the initial flurry of JavaScript activity is over.
 When applied to Gmail, Live Maps, Redfin, MySpace, and Netflix, Doloto
 reduced the initial JavaScript
 download size by up to 50% and reduced the application load time by 20% to
 40%.
Doloto’s decisions about where to split the code are based on a
 training phase and can result in the JavaScript being split into multiple
 downloads. For many web applications, it is preferable to define a single
 split at the onload event, after
 which the remaining JavaScript is immediately downloaded using the
 nonblocking techniques described in Chapter 4. Waiting to start the
 additional downloads on demand after the user has pulled down a menu or
 clicked on a page element forces the user to wait for the additional
 JavaScript to arrive. This wait can be avoided if all the additional
 JavaScript is downloaded after the initial page rendering. Until Doloto or
 other systems are publicly available, developers need to split their code
 manually. The following section discusses some of the issues to keep in
 mind when doing this.

Undefined Symbols and Race Conditions

The challenge in splitting your JavaScript code is to avoid
 undefined symbols. This problem arises if the JavaScript
 being executed references a symbol that has, mistakenly, been relegated to
 a later download. In the Facebook example, for instance, I suggest that the JavaScript for drop-down
 menus should be loaded later. But if the drop-down menu is displayed before the
 required JavaScript is downloaded, there’s a window in which the user can
 click on the drop-down menu and the required JavaScript won’t be
 available. My suggestion would then have created a race condition where
 the JavaScript is racing to download while the user is racing to click the
 menu. In most cases, the JavaScript will win the race, but there is a
 definite possibility that the user may click first and experience an
 undefined symbol error when the (yet to be downloaded) drop-down menu
 function is called.
In a situation where the delayed code is associated with a UI
 element, the problem can be avoided by changing the element’s appearance.
 In this case, the menu could contain a “Loading…” spinner, alerting the
 user that the functionality is not yet available.
Another option is to attach handlers to UI elements in the
 lazy-loaded code. In this example, the menu would be rendered initially as
 static text. Clicking on it would not execute any JavaScript. The
 lazy-loaded code would both contain the menu functionality and would
 attach that behavior to the menu using attachEvent in Internet Explorer and addEventListener in all other browsers.[7]
In situations where the delayed code is not associated with
 a UI element, the solution to this problem is to use stub
 functions. A stub function is a function with the
 same name as the original function but with an empty function body or
 temporary code in place of the original. The previous section described
 Doloto’s ability to download additional JavaScript modules on demand.
 Doloto implements this on-demand feature by inserting stub
 functions in the initial download that, when invoked, dynamically download
 additional JavaScript code. When the additional JavaScript code is
 downloaded, the original function definitions overwrite the stub
 functions.
A simpler approach is to include an empty stub function for each
 function that is referenced but relegated to the later download. If
 necessary, the stub function should return a stub value, such as an empty
 string. If the user tries to invoke a DHTML feature before the full
 function implementation is downloaded, nothing happens. A slightly more
 advanced solution has each stub function record the user’s requests and
 invokes those actions when the lazy-loaded JavaScript arrives.

[7] See http://www.quirksmode.org/js/events_advanced.html for
 more information.

Case Study: Google Calendar

A good example of splitting the initial payload is Google Calendar. Figure 3-2 shows the HTTP requests
 that are made when Google Calendar is requested. I call these
 charts HTTP waterfall charts. Each horizontal
 bar represents one request. The resource type is shown on the left. The
 horizontal axis represents time, so the placement of the bars shows at
 what point during page load each resource was requested and
 received.
[image: Google Calendar HTTP waterfall chart]

Figure 3-2. Google Calendar HTTP waterfall chart

Google Calendar requests five scripts totaling 330 KB uncompressed.
 The payload is split into an initial script of 152 KB that is requested
 early (the third bar from the top). The blocking behavior of this script
 is mitigated by the fact that it contains less than half of the total
 JavaScript. The rest of the JavaScript payload is requested last, after
 the page has been allowed to render.
By splitting their JavaScript, the Google Calendar team creates a
 page that renders more quickly than it would have if all of the JavaScript
 were loaded in one file. Splitting a web application’s JavaScript is not a
 simple task. It requires determining the functions needed for initial
 rendering, finding all required code dependencies, stubbing out other
 functions, and lazy-loading the remaining JavaScript. Further automation
 for these tasks is needed. Microsoft’s Doloto project describes such a
 system, but as of this writing, it’s not available publicly. Until tools
 such as this are made available, developers will have to roll up their
 sleeves and do the heavy lifting themselves.
This chapter has focused on splitting JavaScript, but splitting
 CSS stylesheets is also beneficial. The savings are less
 than those gained by splitting JavaScript because the total size of
 stylesheets is typically less than JavaScript, and downloading CSS does
 not have the blocking characteristics that downloading JavaScript
 has.[8] This is another opportunity for further research and tool
 development.

[8] Firefox 2 is the one exception.

Chapter 4. Loading Scripts Without Blocking

SCRIPT tags have a negative
 impact on page performance because of their blocking behavior.
 While scripts are being downloaded and executed, most browsers won’t
 download anything else. There are times when it’s necessary to have this
 blocking, but it’s important to identify situations when JavaScript can be
 loaded independent of the rest of the page.
When these opportunities arise, we want to load the JavaScript in such a
 way that it does not block other downloads. Luckily, there are several
 techniques for doing this that make pages load faster. This chapter explains
 these techniques, compares how they affect the browser and performance, and
 describes the circumstances that make one approach preferred over
 another.
Scripts Block

JavaScript is included in a web page as an inline script or an external script. An
 inline script includes all the JavaScript in the HTML document itself using the SCRIPT tag:
<script>
function displayMessage(msg) {
 alert(msg);
}
</script>
External scripts pull in the JavaScript from a separate file using
 the SCRIPT SRC
 attribute:
<script src='A.js'></script>
The SRC attribute specifies the
 URL of the external file that needs to be loaded. The browser reads the
 script file from the cache, if available, or makes an HTTP request to
 fetch the script.
Normally, most browsers download components in parallel, but that’s not the
 case for external scripts. When the browser starts downloading an external
 script, it won’t start any additional downloads until the script has been
 completely downloaded, parsed, and executed. (Any downloads that were
 already in progress are not blocked.)
Figure 4-1 shows the HTTP
 requests for the Scripts Block Downloads example.[9]
	Scripts Block Downloads
	http://stevesouders.com/cuzillion/?ex=10008&title=Scripts+Block+Downloads

This page has two scripts at the top, A.js and B.js, followed by an image, a stylesheet, and
 an iframe. The scripts are each programmed to take one second to download
 and one second to execute. The white gaps in the HTTP profile indicate
 where the scripts are executed. This shows that while scripts are being
 downloaded and executed, all other downloads are blocked. Only after the
 scripts have finished are the image, stylesheet, and iframe merrily
 downloaded in parallel.
[image: Scripts block parallel downloads]

Figure 4-1. Scripts block parallel downloads

The reason browsers block while downloading and executing a script
 is that the script may make changes to the page or JavaScript namespace
 that affect whatever follows. The typical example cited is when A.js uses document.write to alter the page. Another
 example is when A.js is a
 prerequisite for B.js. The developer
 is guaranteed that scripts are executed in the order in which
 they appear in the HTML document so that A.js is downloaded and executed before
 B.js. Without this guarantee, race
 conditions could result in JavaScript errors if B.js is downloaded and executed before
 A.js.
Although it’s clear that scripts must be
 executed sequentially, there’s no reason they have to
 be downloaded sequentially. That’s where Internet
 Explorer 8 comes in. The behavior shown in Figure 4-1 is true for most browsers,
 including Firefox 3.0 and earlier and Internet Explorer 7 and earlier.
 However, Internet Explorer 8’s download profile, shown in Figure 4-2, is different.
 Internet Explorer 8 is the first browser that supports downloading scripts
 in parallel.
[image: Internet Explorer 8 downloads scripts without blocking]

Figure 4-2. Internet Explorer 8 downloads scripts without blocking

The ability of Internet Explorer 8 to download scripts in parallel makes
 pages load faster, but as shown in Figure 4-2, it doesn’t entirely
 solve the blocking problem. It is true that A.js and B.js are downloaded in parallel, but the image
 and iframe are still blocked until the scripts are downloaded and
 executed. Safari 4 and Chrome 2 are similar—they download scripts in
 parallel, but block other resources that follow.[10]
What we really want is to have scripts downloaded in parallel with
 all the other components in the page. And we want this in all browsers.
 The techniques discussed in the next section explain how to do just
 that.

[9] This and other examples are generated from Cuzillion, a tool I
 built specifically for this chapter. See the Appendix A for more information about
 Cuzillion.

[10] As of this writing, Firefox does not yet support parallel script
 downloads, but that is expected soon.

Making Scripts Play Nice

There are several techniques for downloading external scripts without having
 your page suffer from their blocking behavior. One technique I
 don’t suggest doing is inlining all of your
 JavaScript. In a few situations (home pages, small amounts of JavaScript),
 inlining your JavaScript is acceptable, but generally it’s better to serve
 your JavaScript in external files because of the page size and caching
 benefits derived. (For more information about these trade-offs, see
 High Performance Web
 Sites, “Rule 8: Make JavaScript and CSS External.”)
The techniques listed here provide the benefits of external scripts
 without the slowdowns imposed from blocking:
	XHR Eval

	XHR Injection

	Script in Iframe

	Script DOM Element

	Script Defer

	document.write Script
 Tag

The following sections describe each of these techniques in more
 detail, followed by a comparison of how they affect the browser and which
 technique is best under different circumstances.
XHR Eval

In this technique, an XMLHttpRequest (XHR) retrieves the JavaScript
 from the server. When the response is complete, the content is executed
 using the eval command as shown
 in this example page.
	XHR Eval
	http://stevesouders.com/cuzillion/?ex=10009&title=Load+Scripts+using+XHR+Eval

As you can see in the HTTP profile in Figure 4-3, the XMLHttpRequest doesn’t block the other
 components in the page—all five resources are downloaded in parallel.
 The scripts are executed after they finish downloading. (This execution
 time doesn’t show up on the HTTP waterfall chart because no network
 activity is involved.)
[image: Loading scripts using XHR Eval]

Figure 4-3. Loading scripts using XHR Eval

The main drawback of this approach is that the XMLHttpRequest must be served from the same
 domain as the main page. The relevant source code from the XHR Eval
 example follows:[11]
var xhrObj = getXHRObject();
xhrObj.onreadystatechange =
 function() {
 if (xhrObj.readyState == 4 && 200 == xhrObj.status) {
 eval(xhrObj.responseText);
 }
 };
xhrObj.open('GET', 'A.js', true); // must be same domain as main page
xhrObj.send('');

function getXHRObject() {
 var xhrObj = false;
 try {
 xhrObj = new XMLHttpRequest();
 }
 catch(e){
 var progid = ['MSXML2.XMLHTTP.5.0', 'MSXML2.XMLHTTP.4.0',
'MSXML2.XMLHTTP.3.0', 'MSXML2.XMLHTTP', 'Microsoft.XMLHTTP'];
 for (var i=0; i < progid.length; ++i) {
 try {
 xhrObj = new ActiveXObject(progid[i]);
 }
 catch(e) {
 continue;
 }
 break;
 }
 }
 finally {
 return xhrObj;
 }
}

XHR Injection

Like XHR Eval, the XHR Injection technique uses an XMLHttpRequest to retrieve the JavaScript. But
 instead of using eval, the JavaScript
 is executed by creating a script DOM element and injecting the XMLHttpRequest response into the script. Using
 eval is potentially slower than using
 this mechanism.
	XHR Injection
	http://stevesouders.com/cuzillion/?ex=10015&title=XHR+Injection

The XMLHttpRequest must be
 served from the same domain as the main page. The relevant source code
 from the XHR Injection example follows:
var xhrObj = getXHRObject(); // defined in the previous example
xhrObj.onreadystatechange =
 function() {
 if (xhrObj.readyState == 4) {
 var scriptElem = document.createElement('script');
 document.getElementsByTagName('head')[0].appendChild(scriptElem);
 scriptElem.text = xhrObj.responseText;
 }
 };
xhrObj.open('GET', 'A.js', true); // must be same domain as main page
xhrObj.send('');

Script in Iframe

Iframes are loaded in parallel with other components in the main page.
 Whereas iframes are typically used to include one HTML page within
 another, the Script in Iframe technique leverages them to load
 JavaScript without blocking, as shown by the Script in Iframe
 example.
	Script in Iframe
	http://stevesouders.com/cuzillion/?ex=10012&title=Script+in+Iframe

The implementation is done entirely in HTML:
<iframe src='A.html' width=0 height=0 frameborder=0 id=frame1></iframe>
Note that this technique uses A.html instead of A.js. This is necessary because the iframe
 expects an HTML document to be returned. All that is needed is to
 convert the external script to an inline script within an HTML
 document.
Similar to the XHR Eval and XHR Injection approaches, this
 technique requires that the iframe URL be served from the same domain as
 the main page. (Browser cross-site security restrictions prevent
 JavaScript access from an iframe to a cross-domain parent and vice
 versa.) Even when the main page and iframe are served from the same
 domain, it’s still necessary to modify your JavaScript to create a
 connection between them. One approach is to have the parent reference
 JavaScript symbols in the iframe via the frames array or document.getElementById:
// access the iframe from the main page using "frames"
window.frames[0].createNewDiv();

// access the iframe from the main page using "getElementById"
document.getElementById('frame1').contentWindow.createNewDiv();
The iframe references its parent using the parent variable:
// access the main page from within the iframe using "parent"
function createNewDiv() {
 var newDiv = parent.document.createElement('div');
 parent.document.body.appendChild(newDiv);
}
Iframes also have an innate cost. In fact, they’re the most
 expensive DOM element by at least an order of magnitude, as discussed in
 Chapter 13.

Script DOM Element

Rather than using the SCRIPT tag in
 HTML to download a script file, this technique uses JavaScript to create
 a script DOM element and set the SRC property dynamically. This can be done
 with just a few lines of JavaScript:
var scriptElem = document.createElement('script');
scriptElem.src = 'http://anydomain.com/A.js';
document.getElementsByTagName('head')[0].appendChild(scriptElem);
Creating a script this way does not block other components during
 download. As opposed to the
 previous techniques, Script DOM Element allows you to fetch the
 JavaScript from a server other than the one used to fetch the main page.
 The code to implement this
 technique is short and simple. Your external script file can be used as
 is and doesn’t need to be refactored as in the XHR Eval and Script in
 Iframe approaches.
	Script DOM Element
	http://stevesouders.com/cuzillion/?ex=10010&title=Script+Dom+Element

Script Defer

Internet Explorer supports the SCRIPT DEFER
 attribute as a way for developers to tell the browser that the script
 does not need to be loaded immediately. This is a safe attribute to use
 when a script does not contain calls to document.write and no other scripts in the
 page depend on it. When Internet Explorer downloads the deferred script,
 it allows other downloads to be done in parallel.
	Script Defer
	http://stevesouders.com/cuzillion/?ex=10013&title=Script+Defer

The DEFER attribute is an easy
 way to avoid the bad blocking behavior of scripts with the addition of a
 single word:
<script defer src='A.js'></script>
Although DEFER is part
 of the HTML 4 specification, it is implemented only in Internet
 Explorer and in some newer browsers.

document.write Script Tag

This last technique uses document.write to put
 the SCRIPT HTML tag into the
 page.
	document.write
 Script Tag
	http://stevesouders.com/cuzillion/?ex=10014&title=document.write+Script+Tag

This technique, similar to Script Defer, results in parallel
 script loading in Internet Explorer only. Although it allows multiple
 scripts to be downloaded in parallel (provided all the document.write lines occur in the same script
 block), other types of resources
 remain blocked while scripts are downloading:
document.write("<script type='text/javascript' src='A.js'><\/script>");

[11] If you’re using a JavaScript library, it probably has a
 wrapper for XMLHttpRequest, such
 as jQuery.ajax or dojo.xhrGet. Use that instead of writing
 your own wrapper.

Browser Busy Indicators

All of the techniques described in the preceding section improve how JavaScript is
 downloaded by allowing multiple resources to be downloaded in parallel.
 But these techniques differ in certain other aspects. One area of
 differentiation is how they affect the user’s perception of whether the
 page is loaded. Browsers offer multiple browser busy
 indicators that give the user clues that the page is still
 loading.
Figure 4-4 shows four browser
 busy indicators: the status bar, the progress bar, the tab icon, and the
 cursor. The status bar shows the URL of the current download. The progress
 bar moves across the bottom of the window as downloads complete. The logo
 spins while downloads are happening. The cursor changes to an hourglass or
 similar cursor to indicate that the page is busy.
The other two browser busy indicators are blocked rendering and
 blocked onload event. Blocked
 rendering is very obtrusive to the user experience. When scripts are being
 downloaded in the typical manner using SCRIPT SRC, nothing
 below the script is rendered.
 Freezing the page before it’s fully rendered is a severe way of showing
 the browser is busy.
[image: Busy indicators in the browser]

Figure 4-4. Busy indicators in the browser

Typically, the page’s onload
 event doesn’t fire until all resources have been downloaded. This may
 affect the user experience if the status bar takes longer to say “Done”
 and setting focus on the default input field is delayed.
Whereas most of these browser busy indicators are triggered when
 downloading JavaScript in the usual SCRIPT
 SRC way, none of them are triggered by the XHR Eval and XHR
 Injection techniques when using Internet Explorer, Firefox, and Opera. The busy indicators
 that are triggered vary depending on the technique used and the browser
 being tested.
Table 4-1 shows
 which busy indicators occur for each of the JavaScript download
 techniques. XHR Eval and XHR Injection trigger the fewest busy indicators.
 The other techniques have mixed behavior. Although busy indicators vary
 across browsers, they’re generally consistent across different browser
 versions.
Table 4-1. Browser busy indicators triggered by JavaScript downloads
	Technique
	Status bar
	Progress bar
	Logo
	Cursor
	Block render
	Block onload

	Normal Script Src
	FF, Saf, Chr
	IE, FF, Saf
	IE, FF, Saf, Chr
	FF, Chr
	IE, FF, Saf, Chr, Op
	IE, FF, Saf, Chr, Op

	XHR Eval
	Saf, Chr
	Saf
	Saf, Chr
	Saf, Chr
	--
	--

	XHR Injection
	Saf, Chr
	Saf
	Saf, Chr
	Saf, Chr
	--
	--

	Script in Iframe
	IE, FF, Saf, Chr
	FF, Saf
	IE, FF, Saf, Chr
	FF, Chr
	--
	IE, FF, Saf, Chr, Op

	Script DOM Element
	FF, Saf, Chr
	FF, Saf
	FF, Saf, Chr
	FF, Chr
	--
	FF, Saf, Chr

	Script Defer[a]
	FF, Saf, Chr
	FF, Saf
	FF, Saf, Chr
	FF, Chr, Op
	FF, Saf, Chr, Op
	IE, FF, Saf, Chr, Op

	document.write Script Tag[b]
	FF, Saf, Chr
	IE, FF, Saf
	IE, FF, Saf, Chr
	FF, Chr, Op
	IE, FF, Saf, Chr, Op
	IE, FF, Saf, Chr, Op

	[a] Script Defer achieves parallel downloads in Firefox 3.1
 and later.

[b] Note that document.write Script Tag achieves
 parallel downloads only in Internet Explorer, Safari 4, and
 Chrome 2.

Note
Abbreviations are as follows: (Chr) Chrome 1.0.154 and 2.0.156;
 (FF) Firefox 2.0, 3.0, and 3.1; (IE) Internet Explorer 6, 7, and 8; (Op)
 Opera 9.63 and 10.00 alpha; (Saf) Safari 3.2.1 and 4.0 (developer
 preview).

It’s important to understand how each technique behaves with regard
 to the browser busy indicators. In some cases, the busy indicators are
 desirable for a better user experience: they let the user know the page is
 working. In other situations, it would be better not to show any busy
 activity, thus encouraging users to start interacting with the
 page.

Ensuring (or Avoiding) Ordered Execution

In many cases, a web page contains multiple scripts that have a particular
 dependency order. Using the normal SCRIPT
 SRC approach guarantees that the scripts are downloaded and executed in the order in which
 they are listed in the page. However, using certain of the advanced
 downloading techniques described previously does not carry such a
 guarantee. Because the scripts are downloaded in parallel, they may get
 executed in the order in which they arrive—the fastest response to arrive
 being executed first—rather than the order in which they were listed. This
 can lead to race conditions resulting in undefined symbol errors.
Some of the techniques do ensure ordered execution, but they vary
 depending on the browser. For Internet Explorer, the Script Defer and document.write Script Tag approaches that guarantee scripts are
 executed in the order listed, regardless of which is downloaded first. For
 instance, the IE Ensure Ordered Execution example contains three scripts
 that are loaded using Script Defer. Even though the first script (with
 sleep=3 in the URL) finishes
 downloading last, it is still the first to be executed.
	IE Ensure Ordered Execution
	http://stevesouders.com/cuzillion/?ex=10017&title=IE+Ensure+Ordered+Execution

Because the Script Defer and document.write Script Tag techniques don’t
 achieve parallel script downloads in Firefox, you need to use a different technique whenever one
 script depends on another. The Script DOM Element approach guarantees that
 scripts are executed in the order listed in Firefox. The FF Ensure Ordered
 Execution example contains three scripts that are loaded using the Script
 DOM Element approach. Even though the first script (with sleep=3 in the URL) finishes downloading last,
 it is still the first to be executed.
	FF Ensure Ordered Execution
	http://stevesouders.com/cuzillion/?ex=10018&title=FF+Ensure+Ordered+Execution

It’s not always important to ensure that scripts are executed in the
 order specified. Sometimes you actually want the browser to execute
 whatever script happens to come first, because that produces a page that
 loads faster. One example is a web page containing multiple widgets (A, B,
 and C) with associated scripts (A.js,
 B.js, and C.js) that do not have any interdependencies.
 Even though the page might list the widget scripts in that order, a better
 user experience would result from executing whichever widget script is
 received first. The XHR Eval and XHR Injection techniques achieve this.
 The Avoid Ordered Execution example executes the first script downloaded,
 even though it’s not the first script listed in the page.
	Avoid Ordered Execution
	http://stevesouders.com/cuzillion/?ex=10019&title=Avoid+Ordered+Execution

Summarizing the Results

I’ve presented several advanced techniques for downloading external scripts and
 various trade-offs between them. Table 4-2 summarizes the
 results.
Table 4-2. Summary of advanced script downloading techniques
	Technique
	Parallel downloads
	Domains can differ
	Existing scripts
	Busy indicators
	Ensures order
	Size (bytes)

	Normal Script Src
	(IE8, Saf4)[a]
	Yes
	Yes
	IE, Saf4, (FF, Chr)[b]
	IE, Saf4, (FF, Chr, Op)[c]
	~50

	XHR Eval
	IE, FF, Saf, Chr, Op
	No
	No
	Saf, Chr
	--
	~500

	XHR Injection
	IE, FF, Saf, Chr, Op
	No
	Yes
	Saf, Chr
	--
	~500

	Script in Iframe
	IE, FF, Saf, Chr, Op[d]
	No
	No
	IE, FF, Saf, Chr
	--
	~50

	Script DOM Element
	IE, FF, Saf, Chr, Op
	Yes
	Yes
	FF, Saf, Chr
	FF, Op
	~200

	Script Defer
	IE, Saf4, Chr2, FF3.1
	Yes
	Yes
	IE, FF, Saf, Chr, Op
	IE, FF, Saf, Chr, Op
	~50

	document.write Script Tag
	(IE, Saf4, Chr2, Op)[e]
	Yes
	Yes
	IE, FF, Saf, Chr, Op
	IE, FF, Saf, Chr, Op
	~100

	[a] Scripts are downloaded in parallel with other scripts,
 but other types of resources are blocked from downloading.

[b] These browsers do not, however, support parallel
 downloads with this technique.

[c] See note a above.

[d] An interesting performance boost in Opera is that in
 addition to the script iframes being downloaded in parallel,
 the code is executed in parallel, too.

[e] See note b above.

Note
Abbreviations are as follows: (Chr) Chrome 1.0.154 and 2.0.156;
 (FF) Firefox 2.0 and 3.1; (IE) Internet Explorer 6, 7, and 8; (Op) Opera
 9.63 and 10.00 alpha; (Saf) Safari 3.2.1 and 4.0 (developer
 preview).

These techniques allow scripts to be downloaded in parallel with all
 the other resources in the page, something that browsers don’t do by
 default, even newer browsers. This can significantly speed up your web
 page. This is especially important for Web 2.0 applications, where the
 number and size of external scripts are greater than in other web
 pages.
The document.write Script Tag
 technique is less preferred because it parallelizes
 downloads only in a subset of browsers and blocks parallel downloads for
 anything other than script resources. Script Defer also parallelizes downloads in only some
 browsers.
XHR Eval, XHR Injection, and Script in Iframe carry the requirement that your scripts reside on the same
 hostname as the main page. To use the XHR Eval and Script in Iframe
 techniques, you must refactor your scripts slightly, whereas the XHR
 Injection and Script DOM Element approaches can download your existing
 script files without any changes. An estimate of the number of characters
 added to the page to implement each technique is shown in the “Size”
 column in Table 4-2.
The different effects that each technique has on the browser’s busy
 indicators bring in another set of considerations. If you’re downloading
 scripts that are incidental to the initial rendering of the page (i.e.,
 “lazy-loading”), techniques that make the page appear complete are
 preferred, such as XHR Eval and XHR Injection. If you want to indicate to
 the user that the page is still loading while the browser downloads
 scripts, Script in Iframe is better because it triggers more browser busy
 indicators.
The final issue of ordered execution favors some techniques over
 others depending on whether load order matters. If you want scripts to be
 downloaded in parallel with other resources but executed in a specific
 order, it’s necessary to mix techniques by browser. If load order doesn’t
 matter, XHR Eval and XHR Injection can be used.

And the Winner Is

My conclusion is that there is no single best solution. The
 preferred approach depends on your requirements. Figure 4-5 shows the decision
 tree for selecting the best technique for downloading scripts.
[image: Decision tree for selecting script loading technique]

Figure 4-5. Decision tree for selecting script loading technique

There are six possible outcomes in this decision tree:
	Different Domains, No Order
	XHR Eval, XHR Injection, and Script in Iframe can’t be used under these conditions because the
 domain of the main page is different from the domain of the script.
 Script Defer shouldn’t be used because it forces scripts to be
 loaded in order, whereas the page loads faster if scripts are
 executed as soon as they arrive. For this situation, Script DOM
 Element is the best alternative. In Firefox, load order is preserved
 even though that’s not desired. Note that both of these techniques
 trigger the busy indicators, so there’s no way to avoid that.
 Examples of web pages that match this situation are pages that
 contain JavaScript-enabled ads and widgets. The scripts for these
 ads and widgets are likely on domains that differ from the main
 page, but they don’t have any interdependencies, so load order
 doesn’t matter.

	Different Domains, Preserve Order
	As before, because the domains of the main page and scripts
 are different, XHR Eval, XHR Injection, and Script in Iframe are not
 viable alternatives. To ensure load order, Script Defer should be
 used for Internet Explorer and Script DOM Element for Firefox. Note
 that both of these techniques trigger the busy indicators. An
 example of a page that matches these requirements is a page pulling
 in multiple JavaScript files from different servers that have
 interdependencies.

	Same Domain, No Order, No Busy Indicators
	XHR Eval and XHR Injection are the only techniques that do not
 trigger the busy indicators. Of the two XHR techniques, I prefer XHR
 Injection because it can be used without refactoring the existing
 scripts. This technique would apply to a web page that wanted to
 download its own JavaScript file in the background, as described in Chapter 3.

	Same Domain, No Order, Show Busy Indicators
	XHR Eval, XHR Injection, and Script in Iframe are the only
 techniques that do not preserve load order across both Internet
 Explorer and Firefox. Script in Iframe seems to be the best choice
 because it triggers the busy indicators and increases the size of
 the page only slightly, but I prefer XHR Injection because it can be
 used without any refactoring of the existing scripts and it’s
 already a choice for other decision tree outcomes. Additional
 client-side JavaScript is required to activate the busy indicators:
 the status bar and cursor can be activated when the XHR is sent and
 then deactivated when the XHR returns. I call this “Managed XHR
 Injection.”

	Same Domain, Preserve Order, No Busy Indicators
	XHR Eval and XHR Injection are the only techniques that do not
 trigger the busy indicators. Of the two XHR techniques, I prefer XHR
 Injection because it can be used without refactoring the existing
 scripts. To preserve load order, another type of “Managed XHR
 Injection” is needed. In this case, the XHR responses are queued if
 necessary to handle the situation where a script that needs to be
 loaded later in the order is
 not executed until all the preceding scripts have been downloaded
 and executed. An example of a
 page in this situation is one where multiple interdependent scripts need to be
 downloaded in the background.

	Same Domain, Preserve Order, Show Busy Indicators
	Script Defer for Internet Explorer and Script DOM Element for Firefox are the preferred
 solutions here. Managed XHR Injection and Managed XHR Eval are other
 valid alternatives, but they add more code to the main page and are
 more complicated to implement.

The next step is to implement this logic in code by providing a
 simple function that developers can use to make sure they load scripts in
 the optimal way. A prototype for such a function would look like
 this:
function loadScript(url, bPreserveOrder, bShowBusy);
To avoid downloading more JavaScript than necessary, a backend
 implementation in a language invoked by the server, such as Perl, PHP, or
 Python, would be the most useful. In their backend templates, web
 developers would call this function and the appropriate technique would be
 inserted into the HTML document response. Providing support for these
 advanced best practices in development frameworks is the appropriate next step for getting wider
 adoption.

Chapter 5. Coupling Asynchronous Scripts

Chapter 4 explains
 how to load external scripts asynchronously. When scripts
 are loaded the normal way (<script
 src="url"></script>), they block all other
 downloads in the page, and any elements below the script are blocked from
 rendering. Loading scripts asynchronously avoids this blocking behavior,
 resulting in a page that loads and feels faster.
The performance benefit of loading scripts without blocking comes at a cost. Whenever
 code is executed asynchronously, race conditions are possible. In the case
 of external scripts, the concern is inline scripts that use symbols defined
 in the external script. If the external script is loaded asynchronously
 without thought to the inlined code, race conditions may result in undefined symbol errors.
When there is a code dependency between an asynchronously loaded
 external script and an inline script, the two scripts have to be coupled in such a
 way as to guarantee execution order. Not surprisingly, there’s no easy way
 to do this across all browsers. The problem and several solutions are
 presented in this chapter, broken down into the following sections:
	Code Example: menu.js
	The example used throughout this chapter is described in this
 section. It creates the scenario of an inline script that depends on
 an external script.

	Race Conditions
	The asynchronous loading techniques from Chapter 4 are tested to show that
 all of them produce undefined symbol errors when there’s an inline
 script with code dependencies. This shows that techniques to couple
 external and inline scripts are needed.

	Preserving Order Asynchronously
	Five techniques are described that solve the problem of coupling
 an inline script with the asynchronously loaded external script on
 which it depends.

	Multiple External Scripts
	The problem gets harder when there are multiple external scripts
 that depend on each other, followed by an inline script with code
 dependencies. Two solutions are presented.

	General Solution
	With a thorough understanding of the trade-offs involved, the
 best alternatives are combined to solve the coupling problem for a
 single script and multiple scripts across all major browsers.

	Asynchronicity in the Real World
	Two real-world opportunities for asynchronous scripts coupled
 with inlined code are explored: Google Analytics wrapped by Dojo and
 YUI Loader.

Code Example: menu.js

Ensuring execution order was one of the traits discussed in Chapter 4. That discussion focused on
 the execution order of external scripts, but most web pages that load
 external scripts also include inline
 scripts that use the external script’s symbols, such as pages that use
 Google
 Analytics and popular JavaScript frameworks such as jQuery and
 the Yahoo! UI
 Library.
To illustrate this situation, I created the Normal Script Src
 example that has an external script followed by an inline script with code
 dependencies. The external script, menu.js, provides functionality to draw a
 drop-down menu, as shown in Figure 5-1.
	Normal Script Src
	http://stevesouders.com/efws/couple-normal.php

The Normal Script Src implementation, shown in the following code
 sample, starts by loading menu.js in
 the normal way. The inline script that follows creates the menu. The
 inline script defines aExamples, an
 array of menu items. The init function
 calls EFWS.Menu.createMenu, passing in
 an element ID ('examplesbtn') and the
 array of menu items. The 'examplesbtn'
 element is what the menu is attached to—in this case, the button in the
 page labeled “Examples”:
<script src="menu.js" type="text/javascript"></script>

<script type="text/javascript">
var aExamples =
 [
 ['couple-normal.php', 'Normal Script Src'],
 ['couple-xhr-eval.php', 'XHR Eval'],
 ...
];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

init();
</script>
[image: menu.js example]

Figure 5-1. menu.js example

The menu.js example is the
 scenario that motivates this chapter and that is encountered in many web
 sites today. The page contains an external script and an inline script.
 The inline script depends on the external script, so it’s critical that
 the execution order be preserved—the external script must be downloaded,
 parsed, and executed before the inline script.
In addition, this is a perfect opportunity for asynchronous script
 loading so that the downloading of other resources in the page isn’t
 blocked. The “other resources” in this example page is an image. The image
 is configured to take one second to download, while menu.js takes two seconds. If the script is
 loaded the normal way, the image is blocked from downloading, as shown in
 Figure 5-2.
[image: Normal Script Src HTTP waterfall chart]

Figure 5-2. Normal Script Src HTTP waterfall chart

If menu.js was loaded
 asynchronously, the image wouldn’t be blocked and the page would load
 faster. Furthermore, menu.js is a
 good candidate for asynchronous loading because it doesn’t render any part
 of the visible page. It provides functionality that is accessible only
 after the page has rendered. The question is: can we load menu.js asynchronously without triggering any
 undefined symbol errors in the inline script?

Race Conditions

The Normal Script Src example doesn’t produce any undefined symbol errors, but
 menu.js blocks the image download,
 making the page load more slowly. To improve performance, it would be
 better to load menu.js
 asynchronously, but we need to determine whether execution order is
 preserved, or whether a race condition produces undefined symbol
 errors.
I converted the Normal Script Src example to use the nonblocking
 techniques from Chapter 4. In
 each example, I programmatically answer two questions: Was the script
 loaded without blocking? Was the execution order preserved?
	XHR Eval
	http://stevesouders.com/efws/couple-xhr-eval.php

	XHR Injection
	http://stevesouders.com/efws/couple-xhr-injection.php

	Script in Iframe
	http://stevesouders.com/efws/couple-script-iframe.php

	Script DOM Element
	http://stevesouders.com/efws/couple-script-dom.php

	Script Defer
	http://stevesouders.com/efws/couple-script-defer.php

	document.write
 Script Tag
	http://stevesouders.com/efws/couple-doc-write.php

Table 5-1 shows
 the results of running these examples across major browsers. None of the
 techniques perform downloads in parallel while preserving execution order for a specific browser. The one exception is
 the Script DOM Element approach in Firefox.
Table 5-1. Ensuring execution order for external and inline scripts
	Technique
	Download script and image in parallel
	Ensure execution order

	Normal Script Src
	IE8, Saf4, Chr2
	IE, FF, Saf, Chr, Op

	XHR Eval
	IE, FF, Saf, Chr, Op
	--

	XHR Injection
	IE, FF, Saf, Chr, Op
	--

	Script in Iframe
	IE, FF, Saf, Chr, Op[a]
	--

	Script DOM Element
	IE, FF, Saf, Chr
	FF, Op

	Script Defer
	IE, (Saf4, Chr2)[b]
	FF, Saf, Chr, Op

	document.write
 Script Tag
	Saf4, Chr2
	IE, FF, Saf, Chr, Op

	[a] An interesting performance boost in Opera is that in
 addition to the script iframes being downloaded in parallel,
 the code is executed in parallel, too.

[b] In these newer browsers, scripts download in parallel by
 default. The DEFER
 attribute has no effect.

Note
Abbreviations are as follows: (Chr) Chrome 1.0.154 and 2.0.156;
 (FF) Firefox 2.0 and 3.1; (IE) Internet Explorer 6, 7, and 8; (Op) Opera
 9.63 and 10.00 alpha; (Saf) Safari 3.2.1 and 4.0 (developer
 preview).

Newer browsers show a brighter future. Internet Explorer 8, Safari 4, and Chrome 2 achieve
 parallelization and execution order using the normal SCRIPT tags (<script
 src="url"></script>). However, scripts loaded
 in Internet Explorer 8 and Chrome 2 still block certain other resources
 from loading, such as the image in these test pages. It’s also important,
 perhaps more important, to speed up pages in the mainstream browsers that
 are still popular, including Internet Explorer 6 and 7. What’s needed is a
 way to load scripts asynchronously and preserve
 execution order across browsers. The coupling techniques described in the
 following section do just that.

Preserving Order Asynchronously

When external scripts are loaded the normal way, inlined code is blocked
 from executing and race conditions aren’t a concern. Once we start loading
 scripts asynchronously, one of the techniques presented in this section is
 needed to couple the inlined code with the external script on which it
 depends. The coupling techniques are:
	Hardcoded Callback

	Window Onload

	Timer

	Script Onload

	Degrading Script Tags

Script Onload is likely to be your best choice, but I walk through some of
 the other techniques first in order to highlight the issues.
The coupling examples in this section use the Script DOM Element
 approach as the asynchronous loading technique, as described in Chapter 4. This approach uses
 JavaScript to create a script element and set its SRC attribute to menu.js. The code shown here is taken from the
 Script DOM
 Element example:
<script type="text/javascript">
var domscript = document.createElement('script');
domscript.src = "menu.js";
document.getElementsByTagName('head')[0].appendChild(domscript);
</script>

<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

init();
</script>
This is my preferred nonblocking technique because it is lightweight
 and scripts can be loaded from domains that differ from the main page. As
 shown in Figure 5-3, this
 technique successfully downloads the external script (two seconds long) in
 parallel with the image (one second). However, this approach produces
 undefined symbol errors in Internet Explorer, Safari, and Chrome because
 the inlined code is executed before the asynchronously loaded script has
 arrived. The Script DOM Element approach does not preserve order in these
 three browsers, as confirmed by their absence in the “Ensure execution
 order” column in Table 5-1. The coupling
 techniques discussed in the following sections solve these race condition
 problems.
[image: Script DOM Element HTTP waterfall chart]

Figure 5-3. Script DOM Element HTTP waterfall chart

Technique 1: Hardcoded Callback

A simple coupling technique is to have the external script call a function in the
 inlined code. In our example, this is done by adding a call to init at the bottom of the external script (now
 called menu-with-init.js). This
 approach is demonstrated in the Hardcoded Callback example.
	Hardcoded Callback
	http://stevesouders.com/efws/hardcoded-callback.php

The inlined code has a few modifications. The call to init is removed—that’s now being called from
 the external script. The definitions of aExamples and init are moved above the insertion of
 menu-with-init.js, so they will be
 available when menu-with-init.js
 finishes loading:
<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

var domscript = document.createElement('script');
domscript.src = "menu.js";
document.getElementsByTagName('head')[0].appendChild(domscript);
</script>
If the web developer controls both the main page and the external
 script, this is a viable technique. However, it’s not always possible to
 embed a callback in third-party JavaScript modules. Also, this approach
 isn’t very flexible—changing the callback interface requires
 coordinating a change in the external script.

Technique 2: Window Onload

This approach kicks off the execution of the inlined code by way of the window’s
 onload handler. This preserves
 execution order as long as the external script is guaranteed to have
 been downloaded and executed before window.onload. Some, but not all, of the
 asynchronous loading techniques make this guarantee:
	Script in Iframe ensures execution order in Internet Explorer,
 Firefox, Safari, Chrome, and Opera.

	Script DOM Element ensures execution order in Firefox, Safari,
 and Chrome.

	Script Defer ensures execution order in Internet
 Explorer.

Using one of these script loading techniques and coupling the
 inline script via window.onload achieves parallel
 downloading while preserving execution order, as demonstrated in the Window Onload
 example.
	Window Onload
	http://stevesouders.com/efws/window-onload.php

This example uses the Script in Iframe approach to load the
 external script, since that blocks the onload event across most browsers. Instead of
 loading menu.js, the code is
 embedded in menu.php and loaded as
 an iframe. The inlined code is modified to tie init
 to the window’s onload event. This is
 done using either addEventListener
 or attachEvent, depending on the
 browser. This is better than simply doing window.onload=init because it ensures
 that any existing onload handlers are
 not affected:
<iframe src="menu.php" width=0 height=0 frameborder=0></iframe>

<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

if (window.addEventListener) {
 window.addEventListener("load", init, false);
}
else if (window.attachEvent) {
 window.attachEvent("onload", init);
}
</script>
There are two downsides to the Window Onload coupling technique.
 First, you have to make sure the script is asynchronously loaded in a
 way that blocks the onload event.
 (That’s why I switched from my preferred Script DOM Element technique to
 Script in Iframe.) Second, the inlined code might be executed later than
 necessary. If the page contained more resources (images, Flash, etc.),
 the external script might finish well before the onload event fired. Typically, it’s preferred
 to call the inlined code as soon as the external script is finished
 downloading and executing. In this example, calling the inlined code
 earlier would make the menu available sooner.

Technique 3: Timer

The Timer technique uses a polling approach to ensure that dependencies are
 loaded before the inlined code is executed. This is done using setTimeout as shown in
 the Timer example.
	Timer
	http://stevesouders.com/efws/timer.php

This example’s inlined code is modified to include a new function,
 initTimer, which checks whether the
 required namespace (EFWS) exists. If
 so, init is called. If not, initTimer is called again
 after a specified amount of time (300 milliseconds):
<script type="text/javascript">
var domscript = document.createElement('script');
domscript.src = "menu.js";
document.getElementsByTagName('head')[0].appendChild(domscript);

var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

function initTimer() {
 if ("undefined" === typeof(EFWS)) {
 setTimeout(initTimer, 300);
 }
 else {
 init();
 }
}

initTimer();
</script>
If the timer value used in setTimeout is too small, this polling
 technique could add overhead to the page. Conversely, setting it too
 large will cause an undesirable delay between when the external script
 is loaded and when the inlined code is called. One edge case that this
 simplified code sample doesn’t address is when menu.js fails to load, in which case the
 polling will continue indefinitely. Finally, this approach increases
 maintenance slightly in that a specific symbol from the external script
 is used to determine when it’s done loading. If that symbol changes in
 the external script, the inlined code would need to be updated.

Technique 4: Script Onload

The previous coupling techniques add brittleness, delays, and overhead to the
 page. The Script Onload approach addresses all of these issues by
 attaching to the script’s onload
 event.
	Script Onload
	http://stevesouders.com/efws/script-onload.php

The changes in this example involve the script element’s onload and onreadystatechange handlers. Both are set
 to call init. We prevent init from being called twice in Opera by
 adding the onloadDone flag:
<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

var domscript = document.createElement('script');
domscript.src = "menu.js";
domscript.onloadDone = false;
domscript.onload = function() {
 domscript.onloadDone = true;
 init();
};
domscript.onreadystatechange = function() {
 if ("loaded" === domscript.readyState && ! domscript.onloadDone) {
 domscript.onloadDone = true;
 init();
 }
}
document.getElementsByTagName('head')[0].appendChild(domscript);
</script>
Script Onload is the preferred technique for coupling
 asynchronously loaded external scripts with inline scripts.
 It doesn’t reference any of the symbols in the external script, so
 maintenance is simpler. The inlined code is executed as early as
 possible, immediately after the external script is done loading. Using
 events requires minimal processing.

Technique 5: Degrading Script Tags

This technique is based on John Resig’s blog post, “Degrading Script
 Tags”. John is a JavaScript evangelist from Mozilla and the
 creator of jQuery, the popular JavaScript framework. He describes
 this technique as a way to couple the jQuery external script with
 inlined code that accesses the jQuery symbols. This pattern uses one
 SCRIPT tag to include an external
 script and the inlined code that uses it, like this:
<script src="jquery.js" type="text/javascript">
jQuery("p").addClass("pretty");
</script>
The idea is that the inlined code is executed after the external
 script successfully loads. This pattern has several benefits:
	Cleaner
	There is one SCRIPT tag
 instead of two.

	Clearer
	The inlined code’s dependency on the external script is more
 obvious.

	Safer
	If the external script fails to load, the inlined code is
 not executed, avoiding undefined symbol errors.

There’s one downside: today’s browsers don’t support such syntax!
 John confirms that browsers load the external script but ignore the inlined
 code. However, he provides a code sample that shows this can be made to
 work with a slight addition to the external script. I’ve applied this
 technique in the Degrading Script Tags Normal example.
	Degrading Script Tags Normal
	http://stevesouders.com/efws/degrading-script-tag-normal.php

The inline script follows John’s pattern. It uses one SCRIPT tag to both specify the external script and inline the dependent
 code:
<script src="menu-degrading.js" type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

init();
</script>
The addition of a few lines of JavaScript at the bottom of
 menu-degrading.js is needed to make
 this work. This new code iterates over all the script elements in the
 page, searching for the one with a src that contains “menu-degrading.js”.
 Basically, the external script is searching for itself in the DOM. When
 it finds the appropriate script element, it evaluates the script’s
 innerHTML:
var scripts = document.getElementsByTagName("script");
var cntr = scripts.length;
while (cntr) {
 var curScript = scripts[cntr-1];
 if (-1 != curScript.src.indexOf("menu-degrading.js")) {
 eval(curScript.innerHTML);
 break;
 }
 cntr--;
}
The Degrading
 Script Tags Normal example works in all the browsers tested:
 Internet Explorer 6 through 8, Firefox 2 and 3, Safari 3 and 4, Chrome 1
 and 2, and Opera 9 and 10. However, the external script is not loaded
 asynchronously. (Notice that the image isn’t loaded until three seconds
 into the page, instead of the usual one second.) To avoid the blocking
 behavior of scripts, it’s necessary to combine this pattern with one of
 the asynchronous script loading techniques. I’ve done this in the
 Degrading Script Tags Async example.
	Degrading Script Tags Async
	http://stevesouders.com/efws/degrading-script-tag.php

This example uses the same external script, menu-degrading.js, which has the extra code
 to find the script and evaluate its innerHTML. But instead of using the SCRIPT tag to pull in the external script, the
 Script DOM Element nonblocking technique is used. The inlined code is
 added to the script element dynamically by setting the script element’s text
 property (or innerHTML in the case of
 Opera) to "init();":
<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

var domscript = document.createElement('script');
domscript.src = "menu-degrading.js";
if (-1 != navigator.userAgent.indexOf("Opera")) {
 domscript.innerHTML = "init();";
}
else {
 domscript.text = "init();";
}
document.getElementsByTagName('head')[0].appendChild(domscript);
</script>
I like this technique for its elegance and simplicity. But this
 pattern is less well known than Script Onload; it is likely to catch
 most developers by surprise. It has less overhead (no event handlers are
 used). It provides a coupling mechanism that is both practical and
 elegant even when the external script is not loaded asynchronously. The
 primary drawback is that this technique requires modifying the external
 script, something that is not always possible, especially when using
 third-party JavaScript libraries. At least for now, the Script Onload coupling
 technique is the best choice.

Multiple External Scripts

The examples so far focus on coupling a single external script with
 inlined code. This is useful in many situations where the JavaScript
 framework being used is contained in a single file, such as Google
 Analytics and jQuery.
 Often, however, we have multiple external scripts and an inline script, all of which must be
 executed in the order specified. None of the techniques described so far,
 both here and in Chapter 4,
 provide a means to preserve order while loading multiple scripts
 asynchronously. There is no complete solution to this problem, primarily
 due to browser inconsistencies.
This section describes the two best techniques for loading multiple
 scripts asynchronously while preserving execution order across the
 external scripts and inline script. The Managed XHR technique works, but
 it is restricted to scripts with the same domain as the main page. The DOM
 Element and Doc Write technique works for scripts on a different domain,
 but the code varies depending on the User Agent and this technique doesn’t
 load all resource types asynchronously across all browsers.
In order to have an example that uses multiple scripts, I created
 menutier.js. This new script extends
 the menu functionality to give a tiered or grouped menu, as shown in Figure 5-4 (notice the shaded group headings). In
 addition, menutier.js depends on
 menu.js, so their execution order
 must be preserved. A tiered menu is created in the inlined code by calling
 EFWS.Menu.createTieredMenu. This sets
 up the situation we’re trying to analyze: multiple external scripts and an
 inline script that must be executed in order. Furthermore, menutier.js is configured to return before
 menu.js on which it depends. Are we
 headed for trouble? Let’s look at how the Managed XHR and DOM Element and
 Doc Write techniques load the external scripts in parallel while
 preserving execution order.
Managed XHR

“Managed XHR” is the name used in Chapter 4 for the asynchronous
 loading technique that manages XMLHttpRequest (XHR) requests and responses.
 The management code is necessary to control the busy indicators and
 preserve execution order. I didn’t include any code in Chapter 4, but this section presents
 the execution order part of the implementation.
The XHR Injection technique does not preserve execution order in
 any browser, as shown in Table 5-1. The EFWS.Script module wraps this technique with
 code that queues up the XHR responses and makes sure they are executed
 in order. The implementation requires fewer than 100 lines of
 code:
[image: menutier.js example]

Figure 5-4. menutier.js example

<script type="text/javascript">
EFWS.Script = {
 queuedScripts: new Array(),

 loadScriptXhrInjection: function(url, onload, bOrder) {
 var iQ = EFWS.Script.queuedScripts.length;
 if (bOrder) {
 var qScript = {response: null, onload: onload, done: false};
 EFWS.Script.queuedScripts[iQ] = qScript;
 }

 var xhrObj = EFWS.Script.getXHRObject();
 xhrObj.onreadystatechange = function() {
 if (xhrObj.readyState == 4) {
 if (bOrder) {
 EFWS.Script.queuedScripts[iQ].response =
 xhrObj.responseText;
 EFWS.Script.injectScripts();
 }
 else {
 eval(xhrObj.responseText);
 if (onload) {
 onload();
 }
 }
 }
 };
 xhrObj.open('GET', url, true);
 xhrObj.send('');
 },

 injectScripts: function() {
 var len = EFWS.Script.queuedScripts.length;
 for (var i = 0; i < len; i++) {
 var qScript = EFWS.Script.queuedScripts[i];
 if (! qScript.done) {
 if (! qScript.response) {
 // STOP! need to wait for this response
 break;
 }
 else {
 eval(qScript.response);
 if (qScript.onload) {
 qScript.onload();
 }
 qScript.done = true;
 }
 }
 }
 },

 getXHRObject: function() {
 var xhrObj = false;
 try {
 xhrObj = new XMLHttpRequest();
 }
 catch(e){
 var aTypes = ["Msxml2.XMLHTTP.6.0",
 "Msxml2.XMLHTTP.3.0",
 "Msxml2.XMLHTTP",
 "Microsoft.XMLHTTP"];
 var len = aTypes.length;
 for (var i=0; i < len; i++) {
 try {
 xhrObj = new ActiveXObject(aTypes[i]);
 }
 catch(e) {
 continue;
 }
 break;
 }
 }
 finally {
 return xhrObj;
 }
 }
};
</script>
The queuedScripts array holds
 scripts that are queued for execution. Each queued script is an object
 with three properties:
	Response
	The XHR response (a JavaScript string)

	Onload
	A function to invoke once the script is loaded
 (optional)

	bOrder
	True if this script must
 be executed in order with regard to other scripts (default is
 false)

Developers call EFWS.Script.loadScriptXhrInjection, passing in
 the URL of the external script to load, an onload function, and a Boolean indicating
 whether execution order should be preserved. If order doesn’t matter,
 the XHR response is injected into the page as soon as it returns. When
 order does matter, the XHR response is added to the queuedScripts array and EFWS.Script.injectScripts is called. This
 function iterates over the queued scripts and injects any unexecuted
 responses, provided that all its dependencies have already been loaded.
 The Managed XHR example demonstrates this code.
	Managed XHR
	http://stevesouders.com/efws/managed-xhr.php

The modified inline script follows. The first few lines are
 similar to the earlier examples; arrays of menu items and URLs are
 created. The init function makes the
 call to EFWS.Menu.createTieredMenu.
 The last two lines are where Managed XHR is used:
<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];
var aSubmenus =
 [
 ["Race Conditions", aRaceConditions],
 ["Workarounds", aWorkarounds],
 ["Multiple Scripts", aMultipleScripts],
 ["General Solution", aLoadScripts]
];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

EFWS.Script.loadScriptXhrInjection("menu.js", null, true);
EFWS.Script.loadScriptXhrInjection("menutier.js", init, true);
</script>
The first call to EFWS.Script.loadScriptXhrInjection loads
 menu.js with execution order preserved. The second call causes
 menutier.js to be downloaded. It
 also is specified to be loaded in order, and init is passed in as this script’s onload function.
The HTTP waterfall chart for this example, Figure 5-5, shows a short request for
 the HTML document, followed by requests for the three resources in the
 page: menu.js (two-second
 response), menutier.js (one-second
 response), and the image (one-second response). All of the resources in
 the page load in parallel and execution order is preserved (no undefined
 symbol errors occur).
[image: Managed XHR HTTP waterfall chart]

Figure 5-5. Managed XHR HTTP waterfall chart

Managed XHR solves the problem across all the major browsers.
 However, this technique won’t work if the external scripts are hosted on
 a different domain than the main page, due to the same-origin policy for
 XMLHttpRequest.[12] The DOM Element and Doc Write technique is the solution to
 use when your scripts are on a different domain than the main page.

DOM Element and Doc Write

Managed XHR works well for loading external and inline scripts in the order
 specified, while also loading scripts without blocking other resources
 in the page. Unfortunately, it can be used only for scripts on the same
 domain as the main page. It’s not unusual for external scripts to reside
 on a domain that differs from the main page, especially when hosting
 your scripts on a Content Delivery Network (CDN) or using a third-party
 JavaScript library. The DOM Element and Doc Write example creates this
 situation by requesting menu.js and
 menutier.js from http://souders.org, while the main page
 still resides on http://stevesouders.com.
	DOM Element and Doc Write
	http://stevesouders.com/efws/dom-and-docwrite.php

Three asynchronous loading techniques can be used for scripts on a
 different domain: Script DOM Element, Script Defer, and document.write Script Tag. (See Chapter 4 for a description of each
 technique.) These techniques behave differently depending on the
 browser. Table 5-2
 shows the results of measuring three traits, listed in priority
 order:
	Is the execution order of scripts preserved?

	Do scripts load in parallel with other scripts?

	Do scripts load in parallel with other resources (images,
 stylesheets, etc.)?

Table 5-2. Loading scripts asynchronously while preserving order
	Technique	Preserve order
	Scripts load in parallel
	Other resources load in parallel

	Script DOM Element
	FF, Op
	FF, Op, IE, Saf, Chr
	IE, FF, Saf, Chr

	Script Defer
	IE, Saf, Chr, FF, Op
	IE
	IE

	document.write
 Script Tag
	IE, Saf, Chr, FF, Op
	IE, Op
	

Note
Abbreviations are as follows: (Chr) Chrome 1.0.154 and 2.0.156;
 (FF) Firefox 2.0, 3.0, and 3.1; (IE) Internet Explorer 6, 7, and 8;
 (Op) Opera 9.63 and 10.00 alpha; (Saf) Safari 3.2.1 and 4.0 (developer
 preview).

Script DOM Element is the preferred technique for Firefox and Opera. In all other cases, document.write Script Tag is used. Script
 Defer is not used, even for Internet Explorer, because it can produce
 unexpected behavior when combined with DHTML techniques. I extended the
 EFWS.Script module to include these
 techniques:
EFWS.Script = {
 loadScriptDomElement: function(url, onload) {
 var domscript = document.createElement('script');
 domscript.src = url;
 if (onload) {
 domscript.onloadDone = false;
 domscript.onload = onload;
 domscript.onreadystatechange = function() {
 if ("loaded" === domscript.readyState &&
 domscript.onloadDone) {
 domscript.onloadDone = true;
 domscript.onload();
 }
 }
 }
 document.getElementsByTagName('head')[0].appendChild(domscript);
 },

 loadScriptDocWrite: function(url, onload) {
 document.write('<scr' + 'ipt src="' + url +
 '" type="text/javascript"></scr' + 'ipt>');
 if (onload) {
 EFWS.addHandler(window, "load", onload);
 }
 },

 queuedScripts: new Array(),
 loadScriptXhrInjection: function(url, onload, bOrder) { ... },
 injectScripts: function() { ... },
 getXHRObject: function() { ... }
};

EFWS.addHandler = function(elem, type, func) {
 if (elem.addEventListener) {
 elem.addEventListener(type, func, false);
 }
 else if (elem.attachEvent) {
 elem.attachEvent("on" + type, func);
 }
};
In addition to loading scripts without blocking and preserving
 execution order, we also want to couple the external script with inlined
 code. After all, that’s the point of this chapter. In EFWS.Script.loadScriptDomElement, this is done
 by adding onload and onreadystatechange callbacks to the external
 script, as described in Technique 4: Script Onload.
 Although it’s less preferred, we use Window Onload as the coupling
 technique in EFWS.Script.loadScriptDocWrite because the
 other techniques aren’t possible when using document.write to insert the external
 script.
The inlined code in this section’s example uses these new
 techniques, with special casing based on the browser:
<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];
var aSubmenus = [["Race Conditions", aRaceConditions], ...];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

if (-1 != navigator.userAgent.indexOf('Firefox') ||
 -1 != navigator.userAgent.indexOf('Opera')) {
 EFWS.Script.loadScriptDomElement("http://souders.org/efws/menu.js");
 EFWS.Script.loadScriptDomElement("http://souders.org/efws/menutier.js", init);
}
else {
 EFWS.Script.loadScriptDocWrite("http://souders.org/efws/menu.js");
 EFWS.Script.loadScriptDocWrite("http://souders.org/efws/menutier.js", init);
}
</script>
Combining Script DOM Element and document.write Script Tag accomplishes our
 primary goals. Execution order of external scripts is preserved across
 all browsers. The inlined code is successfully coupled with the external
 script on which it depends. Asynchronous loading is achieved to
 different degrees across browsers:
	Firefox loads all resources in parallel.

	Internet Explorer and Opera load scripts in parallel with
 other scripts, but other resources (images, stylesheets, etc.) are
 blocked.

	The results are mixed in Safari and Chrome. Safari 3.2 and
 Chrome 1.0 don’t load any resources in parallel. However, using
 these same techniques in Safari 4 and Chrome 2.0 results in all
 resources loading in parallel.

As shown in this section, there’s no easy cross-browser solution
 to loading multiple scripts asynchronously while preserving execution
 order. One option to consider is combining all your scripts into a
 single script. This is one of the best practices from High Performance Web
 Sites (“Rule 1: Make Fewer HTTP Requests”) because it
 reduces download time. The additional benefit is that there’s a more
 robust solution for loading single scripts asynchronously while coupling
 with inline code.

[12] http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy_for_XMLHttpRequest

General Solution

This chapter presents many techniques, along with web page examples
 and code samples. It’s valuable to understand the trade-offs, but what’s
 needed is a general solution for loading scripts asynchronously while
 preserving execution order and coupling with inlined code. Building on top
 of the EFWS.Script functionality built
 so far, I add two new functions that hide all the details: EFWS.Script.loadScript for loading a single
 script, and EFWS.Script.loadScripts for
 loading multiple scripts.
Single Script

The best technique for loading a single script asynchronously is Script DOM
 Element. It works across all browsers and is lightweight. The Script
 Onload pattern is the best choice for coupling inlined code with an
 external script. EFWS.Script.loadScriptDomElement implements
 both of these techniques, so the general solution for single scripts is
 just a wrapper for this function:
EFWS.Script = {
 loadScript: function(url, onload) {
 EFWS.Script.loadScriptDomElement(url, onload);
 },

 loadScriptDomElement: function(url, onload) { ... },
 loadScriptDocWrite: function(url, onload) { ... },
 queuedScripts: new Array(),
 loadScriptXhrInjection: function(url, onload, bOrder) { ... },
 injectScripts: function() { ... },
 getXHRObject: function() { ... }
};
This greatly simplifies the menu.js example. The inlined code becomes
 just a few lines—the array of menu
 items, the init function, and a call
 to EFWS.Script.loadScript:
<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

EFWS.Script.loadScript("menu.js", init);
</script>
The loadScript example demonstrates this code.
	loadScript
	http://stevesouders.com/efws/loadscript.php

Multiple Scripts

The name of the general solution function for multiple scripts is
 EFWS.Script.loadScripts. Multiple External Scripts discusses the techniques used in
 this situation. Managed XHR is the preferred solution when scripts are
 from the same domain as the main
 page. Asynchronously loading scripts from a different domain while preserving execution order is
 trickier because of fewer options and inconsistencies across browsers.
 The approach that’s described in DOM Element and Doc Write uses the Script DOM Element and
 document.write Script Tag techniques,
 depending on the browser. To show both cases, there are two examples
 that use this new EFWS.Script.loadScripts function.
	loadScripts Same Domain
	http://stevesouders.com/efws/loadscripts-same.php

	loadScripts Different Domain
	http://stevesouders.com/efws/loadscripts-diff.php

The code for EFWS.Script.loadScripts follows.
 EFWS.Script.loadScripts accepts an array of script
 URLs and a function to call after the last external script is done
 executing. EFWS.Script.loadScripts
 starts off by iterating over the script URLs to determine whether
 they’re all from the same domain as the main page. This is done because
 a single technique must be used if
 all the external scripts are to be loaded in order. If they are from the same domain, EFWS.Script.loadScriptXhrInjection is chosen
 as the script loading function. If
 the scripts are served from a different domain, then EFWS.Script.loadScriptDomElement is
 used for Firefox and Opera, and EFWS.Script.loadScriptDocWrite is used for all
 others. (See Multiple External Scripts for an
 explanation of why these alternatives are chosen.)
EFWS.Script = {
 loadScripts: function(aUrls, onload) {
 // first pass: see if any of the scripts are on a different domain
 var nUrls = aUrls.length;
 var bDifferent = false;
 for (var i = 0; i < nUrls; i++) {
 if (EFWS.Script.differentDomain(aUrls[i])) {
 bDifferent = true;
 break;
 }
 }

 // pick the best loading function
 var loadFunc = EFWS.Script.loadScriptXhrInjection;
 if (bDifferent) {
 if (-1 != navigator.userAgent.indexOf('Firefox') ||
 -1 != navigator.userAgent.indexOf('Opera')) {
 loadFunc = EFWS.Script.loadScriptDomElement;
 }
 else {
 loadFunc = EFWS.Script.loadScriptDocWrite;
 }
 }

 // second pass: load the scripts
 for (var i = 0; i < nUrls; i++) {
 loadFunc(aUrls[i], (i+1 == nUrls ? onload : null), true);
 }
 },

 differentDomain: function(url) {
 if (0 === url.indexOf('http://') || 0 === url.indexOf('https://')) {
 var mainDomain = document.location.protocol + "://" +
 document.location.host + "/";
 return (0 !== url.indexOf(mainDomain));
 }

 return false;
 },

 loadScript: function(url, onload) { ... },
 loadScriptDomElement: function(url, onload) { ... },
 loadScriptDocWrite: function(url, onload) { ... },
 queuedScripts: new Array(),
 loadScriptXhrInjection: function(url, onload, bOrder) { ... },
 injectScripts: function() { ... },
 getXHRObject: function() { ... }
};
Once the appropriate loading function is determined, a second pass
 through the array of script URLs is performed to load each script. It’s
 important to note that true is passed
 as the third argument to the script loading function. This is critical
 when EFWS.Script.loadScriptXhrInjection is the
 loading function so that responses are executed in the specified order.
 This parameter is ignored by EFWS.Script.loadScriptDomElement and EFWS.Script.loadScriptDocWrite, because those
 techniques preserve script
 execution order by default—that’s why they were chosen.
The loadScripts Same Domain example uses menu.js and menutier.js, but now the script loading code
 is one line:
<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];
var aSubmenus = [["Race Conditions", aRaceConditions], ...];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

EFWS.Script.loadScripts(["menu.js", "menutier.js"], init);
</script>
The loadScripts Different Domain example uses menu.js and menutier.js served from http://souders.org. The script loading
 code is still just one (wrapped) line of code:
<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];
var aSubmenus = [["Race Conditions", aRaceConditions], ...];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

EFWS.Script.loadScripts(["http://souders.org/efws/menu.js",
 "http://souders.org/efws/menutier.js"], init);
</script>
In these examples, EFWS.Script.loadScripts successfully loads
 scripts asynchronously while preserving execution order. The
 asynchronous loading of other resources (the image in this case) varies
 by browser, as documented earlier in Table 5-2. Firefox 2 and 3,
 Safari 4, and Chrome 2 load the image in parallel with the scripts,
 resulting in a waterfall chart such as that shown in Figure 5-6. The image is
 blocked from downloading in Internet Explorer 6 through 8, Opera, Safari
 3, and Chrome 1, resulting in a longer load time as shown in Figure 5-7. Although the
 asynchronous loading of the image has mixed results, the scripts are
 loaded in parallel in all browsers except Safari 3 and Chrome 1.
[image: loadScripts Different Domain HTTP waterfall chart, Firefox 3]

Figure 5-6. loadScripts Different Domain HTTP waterfall chart, Firefox
 3

[image: loadScripts Different Domain HTTP waterfall chart, Internet Explorer 7]

Figure 5-7. loadScripts Different Domain HTTP waterfall chart, Internet
 Explorer 7

Asynchronicity in the Real World

In this section, I review how some popular JavaScript frameworks do
 script loading.
Google Analytics and Dojo

I’ve mentioned Google
 Analytics in this chapter. It is a service from Google that web
 developers can use to gather web site metrics. The functionality is
 wrapped inside http://www.google-analytics.com/ga.js. The Google Analytics Help Center recommends adding
 this external script to a web site using document.write:[13]
<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." :
"http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-
analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
var pageTracker = _gat._getTracker("UA-xxxxxx-x");
pageTracker._trackPageview();
</script>
This is a great example to analyze in the context of this chapter.
 The external script is a good candidate for asynchronous loading since
 it isn’t used for rendering the visible page. The inline script depends
 on the external script, so execution order must be preserved and they
 must be coupled together.
The document.write Script Tag
 approach in the Google Analytics recommendation has some
 benefits. The URL is dynamically modified to load over HTTPS if
 appropriate. The execution order of the external script and inlined code
 is preserved across all browsers.
A drawback of the document.write Script Tag technique is that it
 blocks other resources from being downloaded. The dojox.analytics.Urchin module addresses this issue, as described in the first line from
 The Dojo Foundation’s documentation page:[14]
This class is used to delay loading of the popular Google
 Analytics Tracker, formerly known as Urchin. The synchronous nature of
 <script> tags causes page rendering to stall until loading of
 remote files has completed, and this module alleviates that.

dojox.analytics.Urchin is part
 of the Dojo JavaScript
 toolkit. As the documentation points out, Urchin is the former
 name for the Google Analytics module. This explains why the Dojo module
 is named Urchin.js. The key functions in this
 module are _loadGA, _checkGA, and _gotGA:[15]
_loadGA: function(){
 // summary: load the ga.js file and begin initialization process
 var gaHost = ("https:" == document.location.protocol) ? "https://ssl." :
"http://www.";
 dojo.create('script', {
 src: gaHost + "google-analytics.com/ga.js"
 }, dojo.doc.getElementsByTagName("head")[0]);
 setTimeout(dojo.hitch(this, "_checkGA"), this.loadInterval);
},

_checkGA: function(){
 // summary: sniff the global _gat variable Google defines and either check
again
 // or fire onLoad if ready.
 setTimeout(dojo.hitch(this, !window["_gat"] ? "_checkGA" : "_gotGA"),
this.loadInterval);
},

_gotGA: function(){
 // summary: initialize the tracker
 this.tracker = _gat._getTracker(this.acct);
 this.tracker._initData();
 this.GAonLoad.apply(this, arguments);
},
The _loadGA function uses the
 Script DOM Element asynchronous loading technique. It calls dojo.create to create a script element,
 setting its src to http://www.google-analytics.com/ga.js or https://ssl.google-analytics.com/ga.js, depending on the
 protocol of the main page. The script element is appended to the
 document’s head.
Coupling ga.js with the
 inlined code is done with a timer. Every loadInterval (420 milliseconds), _checkGA is called to see whether window["_gat"] (the Google Analytics object)
 is defined. If so, _gotGA is called
 to instantiate the Google Analytics tracker. This coupling approach is
 similar to the Timer technique described in Technique 3: Timer.
Comparing this implementation to EFWS.Script.loadScript, we see that both use
 the Script DOM Element approach. Using this technique allows the script
 to be downloaded without blocking other resources
 and works in all major browsers. The coupling technique is different,
 though. Instead of the Timer technique, EFWS.Script.loadScript uses the Script Onload
 technique. The Timer technique has disadvantages:
	If the script fails to load, the timer will continue
 indefinitely.

	This approach requires more maintenance. If ga.js changes and no longer defines
 _gat, then _checkGA would have to be updated. The
 Script Onload approach doesn’t rely on any of the symbols in
 ga.js.

	There can be a delay of up to 420 milliseconds between when
 ga.js is done loading and when
 _gotGA is called. That’s enough
 time for the user to leave the page before the tracker can do its
 work. The Script Onload approach calls the inlined code as soon as
 the external script is loaded.

For these reasons, Script Onload is the coupling technique
 chosen in EFWS.Script.loadScript.

YUI Loader Utility

Google Analytics is a good example for analyzing how to load a
 single script asynchronously while coupling it with inlined code.
 The YUI Loader Utility is the example I’ve chosen to examine
 how multiple scripts are loaded. This utility is part of the Yahoo! UI Library and is
 described as follows:[16]
The YUI Loader Utility is a client-side JavaScript component
 that allows you to load specific YUI components and their dependencies
 into your page via script. YUI Loader can operate as a holistic
 solution by loading all of your necessary YUI components, or it can be
 used to add one or more components to a page on which some YUI content
 already exists.

YUI Loader’s objective is to provide anytime loading and
 dependency calculation. It improves page performance by pulling in only
 the modules that are necessary and combining those into a single HTTP
 request, thanks to combo-handling.[17] I converted the example that uses menu.js and menutier.js to use YUI Loader in order to see
 whether scripts get loaded in parallel.
	YUI Loader
	http://stevesouders.com/efws/yuiloader.php

This example starts by loading the YUI Loader itself from http://yui.yahooapis.com/2.6.0/build/yuiloader/yuiloader-min.js.
 An instance of YUILoader is created
 and addModule is used to load
 menu.js and menutier.js. The init
 function is specified to be called after these scripts are successfully
 loaded. Everything is kicked off by calling insert:
<script type="text/javascript"
src="http://yui.yahooapis.com/2.6.0/build/yuiloader/yuiloader-min.js">
</script>

<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];
var aSubmenus = [["Race Conditions", aRaceConditions], ...];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

var loader = new YAHOO.util.YUILoader();
loader.addModule({ name: "menu", type: "js", fullpath: "menu.js"});
loader.addModule({ name: "menutier", type: "js", fullpath: "menutier.js"});
loader.require("menu");
loader.require("menutier");
loader.onSuccess = init;
loader.insert();
</script>
We can look at how YUI Loader is implemented in http://yui.yahooapis.com/2.6.0/build/yuiloader/yuiloader.js
 (the commented, unminified version of the code). The scripts are
 inserted by the _node function in a
 way similar to the Script DOM Element approach. The _track function uses the Script Onload
 coupling technique. YUI’s implementation is extremely thorough, with
 special handling for browser edge cases.
The most important observation is that YUI Loader does not load
 the scripts in parallel, even though Script DOM Element is used. YUI
 Loader explicitly loads scripts sequentially, waiting for the first
 script to return before requesting the next one. This can be seen in the
 example’s HTTP waterfall chart, shown in Figure 5-8. The scripts are the last
 two requests. Comparing this to Figures 5-6 and 5-7, we see that EFWS.Script.loadScripts loads the scripts in
 parallel, resulting in a faster page.
[image: YUI Loader HTTP waterfall chart]

Figure 5-8. YUI Loader HTTP waterfall chart

The sequential loading behavior of YUI Loader causes the scripts
 to take longer to load than EFWS.Script.loadScripts in all browsers except
 Safari 3 and Chrome 1. To be fair, YUI Loader is capable of loading
 scripts anytime, even after the document has loaded. EFWS.Script.loadScripts, with its use of
 document.write in some browsers, can
 be used only while the document is loading.
For pages with external scripts in the main page, loading them
 asynchronously with EFWS.Script.loadScripts improves performance,
 and this benefit is more pronounced as the number of scripts increases.
 A simpler alternative is to concatenate the scripts together, as
 recommended in Rule 1 from High Performance Web
 Sites. But that’s not always possible. Across the top
 10 U.S. web sites, the average number of external scripts is 6.5 (see
 Table 11-1). Loading
 these scripts in parallel, while preserving execution order and coupling
 inlined code, is critical to making today’s popular web sites faster for
 users.

[13] http://www.google.com/support/analytics/bin/answer.py?hl=en&answer=55488

[14] http://docs.dojocampus.org/dojox/analytics/Urchin

[15] http://bugs.dojotoolkit.org/browser/dojox/trunk/analytics/Urchin.js.
 Copyright (c) 2004–2008, The Dojo Foundation. All rights reserved.
 See http://dojotoolkit.org/license
 for details.

[16] http://developer.yahoo.com/yui/yuiloader/

[17] http://yuiblog.com/blog/2008/10/17/loading-yui/

Chapter 6. Positioning Inline Scripts

The previous three chapters focused on the impact of
 external scripts. This chapter focuses on
 inline scripts (JavaScript included in the HTML
 document directly). Even though inline scripts don’t introduce additional
 HTTP requests, they can block resources in the page from being downloaded in
 parallel. They can also thwart progressive rendering. This chapter explains
 why the decisions of when and where to inline JavaScript have an impact on
 page performance.
Inline Scripts Block

Chapter 5 describes how external scripts block parallel downloads and
 rendering. It’s not surprising that inline scripts have the same behavior
 for the same reasons (preserving execution order and document.write dependencies). The Inline Scripts
 Block example demonstrates this
 behavior.
	Inline Scripts Block
	http://stevesouders.com/cuzillion/?ex=10100&title=Inline+Scripts+Block

Figure 6-1 shows
 the HTTP requests issued for this page. In addition to the HTML document,
 there are two image requests, each configured to take one second. An
 inline script is inserted between these two images. The inline script is
 represented by a line in Figure 6-1. It does not
 generate an HTTP request, but the impact it has is observable.
[image: Inline scripts block parallel downloads (six seconds)]

Figure 6-1. Inline scripts block parallel downloads (six seconds)

The inline script is configured to take five seconds to execute.
 This is what causes the four seconds of whitespace between the two image
 requests in Figure 6-1.
 The inline script starts executing in parallel with the first image
 request. After one second, the image response is received, but the inline
 script continues to execute for another four seconds. While the inline
 script is executing, all other downloads are blocked. It’s not until the
 inline script finishes (five seconds into the page) that the second image
 finally starts to download, resulting in an overall load time of six
 seconds.
In addition to blocking parallel downloads, inline scripts block
 rendering. When the Inline Scripts Block page is loaded, nothing in the
 page is painted for at least five seconds. The best way to observe this is
 to first set the browser location to another page or about:blank, and then visit the Inline Scripts
 Block URL. Five seconds pass before anything is rendered. This is
 surprising because some plain text is in the HTML document (the
 “Cuzillion” header, the “Examples” and “Help” links, etc.) before the
 inline script, but the browser doesn’t render this until the inline script
 has finished executing.
If your site uses inline scripts, it’s important to understand how
 they block downloads and rendering, and to avoid this behavior if
 possible. Several workarounds are available:
	Move inline scripts to the bottom.

	Initiate the JavaScript execution using an asynchronous
 callback.

	Use the SCRIPT DEFER
 attribute.

Each technique is explained in the following sections.
Move Inline Scripts to the Bottom

Parallel downloading and progressive rendering are achieved by
 moving inline scripts below all the resources in the page.[18] The benefit of moving inline scripts to the bottom is
 demonstrated in the following example.
	Move Inline Scripts to the Bottom
	http://stevesouders.com/efws/inline-scripts-bottom.php

Figure 6-2 shows
 the two image requests downloading in parallel. The five-second inline
 script executes in parallel as well, resulting in an overall page load
 time of five seconds, one second faster than the baseline page. Although
 this technique avoids blocking downloads, rendering is still blocked. If
 your inline scripts don’t take very long (fewer than 300 milliseconds)
 to execute, this technique is an easy way to speed up your pages. Inline
 scripts that take longer to execute should use one of the remaining two
 techniques.
[image: Inline scripts block parallel downloads (five seconds)]

Figure 6-2. Inline scripts block parallel downloads (five seconds)

Initiate Execution Asynchronously

You can instruct a browser to execute an inline script
 asynchronously so that the browser has an opportunity to perform
 parallel downloads and progressive rendering. A simple asynchronous
 callback technique is to use setTimeout, as shown
 in the following example:
function longCode() {
 var tStart = Number(new Date());
 while((tStart + 5000) > Number(new Date())) {};
}

setTimeout(longCode, 0);
The function longCode kicks off
 JavaScript that takes five seconds to execute. In our first attempt at
 using setTimeout, we might use a
 value of zero milliseconds for the delay, as in the following
 example.
	Inline Scripts via setTimeout (0
 milliseconds)
	http://stevesouders.com/efws/inline-scripts-settimeout.php?d=0

The results are similar to the Move Inline Scripts to the Bottom
 technique: the images are downloaded in parallel and the page takes five
 seconds to load. But unlike the previous technique, using setTimeout has the added benefit of
 progressive rendering in Internet Explorer. Before the inline script
 starts executing, there is enough time for Internet Explorer to render
 the text at the top of the page (“Cuzillion,” the “Examples” and “Help”
 links, etc.).
Although setTimeout with a
 delay of zero milliseconds allows progressive rendering in Internet
 Explorer, Firefox rendering is still blocked. We need to increase the
 number of milliseconds to 250 to achieve progressive rendering in
 Firefox, which we do in the next example.
	Inline Scripts via setTimeout (250
 milliseconds)
	http://stevesouders.com/efws/inline-scripts-settimeout.php?d=250

The magic number 250 comes from the default value for nglayout.initialpaint.delay. This is the
 “number of milliseconds to wait before first displaying the
 page.”[19] If longCode kicks off
 before 250 milliseconds, all rendering is blocked until it finishes
 executing. If, however, we wait 250 milliseconds before calling longCode, Firefox is able to render the text
 at the top of the page.
In both cases (zero milliseconds for Internet Explorer and 250
 milliseconds for Firefox), only the text is rendered quickly. The
 images, even though they return after one second, are not painted until
 longCode finishes five seconds into
 the page. The paint events are queued up at the one-second mark, but the
 browser isn’t able to act on those events while longCode executes. The browser is
 single-threaded, while JavaScript executes all paint events are
 blocked.[20] We get around this in the next example by increasing the
 number of setTimeout milliseconds to
 a value slightly longer than the one-second download time of the
 images—for example, 1,500 milliseconds.
	Inline Scripts via setTimeout (1,500
 milliseconds)
	http://stevesouders.com/efws/inline-scripts-settimeout.php?d=1500

Now the images are painted as soon as they download. Because it
 takes only one second to render everything in the page, the onload event fires after one second, as opposed to five seconds. One
 downside of using a 1,500-millisecond delay is that longCode doesn’t finish executing until 6,500
 milliseconds into the page (1,500-millisecond delay plus
 5,000-millisecond execute time). If we want to asynchronously kick off
 longCode without blocking the browser
 from rendering the page, a better practice is to launch the code using
 the onload event:
function longCode() {
 var tStart = Number(new Date());
 while((tStart + 5000) > Number(new Date())) {};
}

window.onload = longCode;
As shown in the following example, using the onload event lets the text and images on the
 page render as soon as they are available, and executes the inline
 script as early in the page as possible without blocking downloads and
 rendering.
	Inline Scripts via onload
	http://stevesouders.com/efws/inline-scripts-onload.php

If your inline scripts are short, using setTimeout with a delay of zero milliseconds
 is a good compromise between fast rendering and fast JavaScript
 execution. If your scripts are long, using onload is a better choice. The best solution
 is to yield every 300 milliseconds or so using setTimeout, but this can necessitate a
 significant redesign of your code to make it reentrant. See Yielding Using Timers for an in-depth discussion of this
 technique.

Use Script Defer

The SCRIPT DEFER attribute for inline scripts is supported only in Internet
 Explorer and Firefox 3.1. Typically, people use it in conjunction
 with downloading external scripts, as described in Chapter 4. But the DEFER attribute is also applicable to inline
 scripts, where it allows the browser to continue parsing and rendering
 the page and postpone execution of the inline script. We can use
 Cuzillion to create an example of inline scripts that use the DEFER attribute.
	Inline Scripts and Defer
	http://stevesouders.com/cuzillion/?ex=10101&title=Inline+Scripts+and+Defer

Using DEFER in browsers that support it allows both images to be
 downloaded in parallel, resulting in an overall page load time of five
 seconds (faster than the six-second baseline). However, nothing is
 rendered in the page until the five-second script completes. DEFER is an easy workaround to enable parallel
 downloads, but it works only on inline scripts in Internet Explorer and
 Firefox 3.1, and still blocks progressive rendering. Using setTimeout is a better alternative.

[18] This is similar to the advice from High Performance Web
 Sites, “Rule 6: Put Scripts at the
 Bottom.”

[19] http://kb.mozillazine.org/Nglayout.initialpaint.delay

[20] See Chapter 2
 for more discussion of the impact of JavaScript on browser
 responsiveness.

Preserving CSS and JavaScript Order

The typical way to load external scripts is with the SCRIPT SRC
 attribute:
<script src="A.js" type="text/javascript"></script>
<script src="B.js" type="text/javascript"></script>
When scripts are loaded this way, they block parallel downloads, as
 described in Chapter 4. The main
 reason browsers download only one script at a time is to ensure proper
 execution order. Executing B.js
 before A.js might result in
 unexpected behavior or undefined
 symbols due to code dependencies.
Preserving the order of JavaScript is critical, and this is true for CSS as well.
 Given the cascading nature of styles, loading them in different orders may
 yield undesired results. To provide consistent behavior, browsers ensure
 that CSS is applied in the order specified. The Stylesheets in Order
 example confirms that stylesheets are applied in the order specified,
 regardless of the order in which the HTTP responses are received.
	Stylesheets in Order
	http://stevesouders.com/efws/stylesheets-order.php

This example has two stylesheets that define a rule with the same
 name. The first stylesheet is programmed to take longer to download, as
 shown in Figure 6-3. The
 first stylesheet specifies a gray background whereas the second stylesheet
 specifies an orange background. The color that wins out is orange, which
 means the second stylesheet was applied last even though it finished
 downloading first. This shows that browsers apply stylesheets in the order
 in which they are listed in the page, regardless of the order in which
 they are downloaded.
[image: Stylesheets applied in order in Internet Explorer]

Figure 6-3. Stylesheets applied in order in Internet Explorer

The application of CSS is preserved across stylesheets and inline
 styles as well. In the CSS in Order example, the same long stylesheet from
 Figure 6-3 (with a gray
 background) is followed by an inline style (with an orange background).
 Again, the browser waits for the long stylesheet to download and applies
 it before the inline style to ensure that CSS is applied in the order
 specified in the page.
	CSS in Order
	http://stevesouders.com/efws/css-order.php

It’s useful to know that browsers make sure to apply CSS in the
 order specified in the page. But what does this have to do with inline
 scripts? The next section pulls it all together.

Danger: Stylesheet Followed by Inline Script

In the previous section, we confirmed that browsers apply CSS (stylesheets as well as inline styles) in the
 order in which they appear in the HTML document. Earlier in this chapter,
 we verified that inline scripts block other browser activity (downloads
 and rendering). These insights are fairly well known in the web
 development community. What is less well known is that browsers also apply
 CSS and JavaScript sequentially, and that this behavior can significantly
 delay downloaded resources when a stylesheet is followed by an inline
 script. This sequence causes subsequent resources to be blocked until the
 stylesheet is downloaded and the inline script is executed. The following
 sections explain why this problem occurs.
Inline Scripts Aren’t Blocked by Most Downloads

Inline scripts can execute while images and iframes are being
 downloaded, as shown in this example.
	Inline Scripts After Image and Iframe
	http://stevesouders.com/cuzillion/?ex=10102&title=Inline+Scripts+After

Figure 6-4
 contains the HTTP profile for the Inline Scripts After Image and Iframe
 example. This shows three resources that each take two seconds to
 download: an image, an iframe, and
 another image. Between each of these is an inline script that takes one
 second to execute. The key events in the page load timeline are
 explained in the list that follows.
[image: Inline scripts after an image and an iframe (four seconds)]

Figure 6-4. Inline scripts after an image and an iframe (four
 seconds)

	0 seconds
	The first image starts downloading. The first inline script
 starts executing in parallel with the image download.

	1 second
	The first inline script finishes. This opens the door for
 the iframe to start downloading and for the second inline script
 to start executing. The second inline script executes while the
 iframe is being downloaded.

	2 seconds
	The second inline script finishes executing, allowing the
 final image to start downloading.

	4 seconds
	The final image finishes downloading.

Because inline scripts execute while images and iframes are being
 downloaded, the overall page loads in just four seconds. Their
 interaction with stylesheets, however, blocks parallel downloads, as
 explained in the next section.

Inline Scripts Are Blocked by Stylesheets

The interaction between stylesheets and inline scripts is very
 different than with other resources. This is because browsers preserve
 the order in which CSS and JavaScript are parsed, as shown in this
 example.
	Inline Scripts After Stylesheet
	http://stevesouders.com/cuzillion/?ex=10103&title=Inline+Scripts+after

The Inline Scripts After Stylesheet example is like the previous
 example, but the first image and iframe are replaced with stylesheets.
 As before, all of the resources take two seconds to download, and the
 inline scripts each take one second to execute. Figure 6-5 shows the HTTP
 profile. The overall load time is eight seconds, as compared to four
 seconds for the previous example! The page load timeline reveals why
 this page takes twice as long to load.
[image: Inline scripts after stylesheets (eight seconds)]

Figure 6-5. Inline scripts after stylesheets (eight seconds)

	0 seconds
	The first stylesheet starts downloading. The first inline
 script is blocked from executing until the stylesheet is
 downloaded and parsed.

	2 seconds
	The first stylesheet finishes downloading. The first inline
 script starts executing.

	3 seconds
	The first inline script finishes executing. The second
 stylesheet starts downloading.

	5 seconds
	The second stylesheet finishes downloading. The second
 inline script starts executing.

	6 seconds
	The second inline script finishes executing. The image
 starts downloading.

	8 seconds
	The image finishes downloading.

The way in which browsers process CSS and JavaScript sequentially
 causes this example to take twice as long as the previous one. This
 example shows that when confronted with a stylesheet followed by an
 inline script, browsers wait until the stylesheet is fully downloaded
 before starting to execute the inline script. Why is this? It’s possible
 that the inline script contains code that depends on the styles applied
 from the stylesheet. I have seen and written JavaScript that does this.
 Further evidence that such JavaScript exists in the real world is the
 addition of getElementsByClassName
 in HTML 5.[21] Browsers download the stylesheet and execute the inline
 script sequentially in order to guarantee reproducible results.
This example also confirms that inline scripts block the download
 of any resources that follow them. Although resources typically download
 in parallel with stylesheets, the combination of these two constraints
 produces the key insight of this chapter: stylesheets followed
 by an inline script block any subsequent resources from
 downloading.

This Does Happen

The previous examples illustrate the blocking that occurs when a
 stylesheet is followed by an inline script, but they seem, at least to
 me, a bit contrived. Fortunately (or unfortunately), because this
 behavior has not been widely examined or publicized, it’s easy to find
 examples of this problem in the real world. Among the 10 top U.S. sites,
 four (eBay, MSN, MySpace, and Wikipedia) have a stylesheet followed by
 an inline script. This causes resources after the stylesheet to be
 downloaded later than necessary, resulting in a slower page.
Figure 6-6 shows
 part of eBay’s HTTP profile, where the sequence of a stylesheet
 followed by an inline script causes two scripts to be blocked from
 downloading until the stylesheet is finished downloading. The arrow
 shows where the downloading could have started if not for this
 problem.
[image: eBay stylesheet followed by inline script]

Figure 6-6. eBay stylesheet followed by inline script

Similarly, as shown in Figure 6-7, MSN has fewer parallel downloads than desired because an
 image is blocked by a stylesheet. In Figure 6-8, we see a
 MySpace script downloaded later because it’s blocked by an
 inline script that occurs after the five stylesheets.
[image: MSN stylesheet followed by inline script]

Figure 6-7. MSN stylesheet followed by inline script

[image: MySpace stylesheet followed by inline script]

Figure 6-8. MySpace stylesheet followed by inline script

Wikipedia is shown in Figure 6-9. The script at the
 end of the HTTP profile is blocked from downloading because of a
 preceding stylesheet followed by an inline script. As a side note, this
 HTTP waterfall chart was produced using Internet Explorer 7, which
 supports two connections per hostname. And yet, this chart shows four
 connections working in parallel. That’s because Wikipedia downgrades its
 traffic to HTTP/1.0, which increases the number of connections to four
 per hostname. (See Downgrading to HTTP/1.0.) However,
 the benefit of increased parallel downloads is forfeited when the script
 is downloaded due to the preceding stylesheet being followed by an
 inline script.
[image: Wikipedia stylesheet followed by inline script]

Figure 6-9. Wikipedia stylesheet followed by inline script

All of these problems are easily fixed. The solution is
 to place inline scripts so that they do not appear between a stylesheet
 and any other resource. The inline script should be placed
 either above the stylesheet or below the other resource. If the other
 resource is a script, there might be a code dependency between the
 inline script and the external script. For that reason, my general
 recommendation is to move the inline script above the stylesheet. This
 will avoid any code dependency issues. If you’re certain there are no
 code dependencies, moving the inline script below the visible resources
 allows these resources to load sooner, resulting in better progressive
 rendering.

[21] http://dev.w3.org/html5/spec/Overview.html#dom-getelementsbyclassname

Chapter 7. Writing Efficient JavaScript

Nicholas C. Zakas

Today’s web applications are powered by a large amount of JavaScript code.
 Whereas early web sites used JavaScript to perform simple tasks, the
 language is now used to run the entire user interface in many places. The
 result can be thousands of lines of JavaScript code to execute every time a
 user interaction takes place. Performance, therefore, is not just about how
 long it takes for the page to load, but also about how it responds as it’s
 being used. The best way to ensure a fast, enjoyable user interface is to
 write JavaScript as efficiently as possible for all
 browsers.[22]
This chapter covers some of the hidden performance issues in
 JavaScript and how to address them. Some changes concern small code
 structure issues while others may require revisiting your algorithm. The
 important thing to remember is that there is no silver bullet when trying to
 improve performance; no one thing will work in 100% of the cases. Only when
 various techniques are combined can you realize the largest performance improvement.
Managing Scope

When JavaScript code is being executed, an execution context
 is created. The execution context (also sometimes called the
 scope) defines the environment in which code is to be executed. A global
 execution context is created upon page load, and additional execution
 contexts are created as functions are executed, ultimately creating an
 execution context stack where the topmost context is the active
 one.
Each execution context has a scope chain associated with it, which
 is used for identifier resolution. The scope chain contains one or more
 variable objects that define in-scope identifiers for the execution
 context. The global execution context has only one variable object in its
 scope chain, and this object defines all of the global variables and functions available in JavaScript. When
 a function is created (but not executed), its internal
 [[Scope]] property is assigned to
 contain the scope chain of the execution context in which it was created
 (internal properties cannot be accessed through JavaScript, so you cannot
 access this property directly). Later, when execution flows into a
 function, an activation object is created and initialized with values for
 this, arguments, named arguments, and any variables local to the
 function. The activation object appears first in the execution context’s
 scope chain and is followed by the objects contained in the function’s
 [[Scope]] property.
During code execution, identifiers such as variable and function
 names are resolved by searching the scope chain of the execution context.
 Identifier resolution begins at the front of the scope chain and proceeds
 toward the back. Consider the following code:
function add(num1, num2){
 return num1 + num2;
}

var result = add(5, 10);
When this code is executed, the add function has a [[Scope]] property that contains only the global
 variable object. As execution flows into the add function, a new execution context is
 created, and an activation object containing this, arguments, num1, and num2 is placed into the scope chain. Figure 7-1 illustrates the
 behind-the-scenes object relationships that occur while the add function is being executed.
[image: Relationship of execution context and scope chain]

Figure 7-1. Relationship of execution context and scope chain

Inside the add function, the
 identifiers num1 and num2 need to be resolved when the function is
 executing. This resolution is performed by inspecting each object in the
 scope chain until the specific identifier is found. The search begins at
 the first object in the scope chain, which is the activation object
 containing the local variables for the function. If the identifier isn’t
 found there, the next object in the scope chain is inspected for the
 identifier. When the identifier is found, the search stops. In the case of
 this example, the identifiers num1 and
 num2 exist in the local activation
 object and so the search never goes on to the global object.
Understanding scopes and scope chain management in JavaScript is
 important because identifier resolution performance is directly related to
 the number of objects to search in the scope chain. The farther up the
 scope chain an identifier exists, the longer the search goes on and the
 longer it takes to access that variable; if scopes aren’t managed
 properly, they can negatively affect the execution time of your
 script.
Use Local Variables

Local variables are, by far, the fastest identifiers both to read from and write to in
 JavaScript. Because they exist in the activation object of the executing
 function, identifier resolution involves inspecting a single object in
 the scope chain. The amount of time necessary to read the
 value of a variable increases with each step along the scope chain, so
 the greater the identifier depth, the slower the access is going to be.
 This effect can be seen in every browser except Google Chrome using v8 and Safari 4+ using the Nitro JavaScript engine, both of which are so fast that
 the identifier depth has little effect on access speed.
To determine the exact performance impact of identifier depth, I
 ran an experiment involving 200,000 variable operations. I alternated
 between reads and writes, accessing the variables from different
 identifier depths. The page I used for this experiment is located at http://www.nczonline.net/experiments/javascript/performance/identifier-depth/.
Figure 7-2
 illustrates the amount of time it takes to write to a variable based on
 scope chain depth, and Figure 7-3 illustrates the
 amount of time it takes to read from an identifier based on its scope
 chain depth (a depth of 1 signifies a local identifier).
[image: Variable read time compared to identifier depth]

Figure 7-2. Variable read time compared to identifier depth

[image: Variable write time compared to identifier depth]

Figure 7-3. Variable write time compared to identifier depth

As these figures clearly indicate, identifiers are accessed
 significantly faster when they are higher in the scope chain. You can
 take advantage of this knowledge by using local variables whenever
 possible. A good rule of thumb is to store any out-of-scope variables in
 a local variable whenever it’s used more than once within the function.
 For example:
function createChildFor(elementId){
 var element = document.getElementById(elementId),
 newElement = document.createElement("div");

 element.appendChild(newElement);
}
This function has two references to the global variable document. Since
 document is being used more than
 once, it should be stored in a local variable for faster reference, such
 as here:
function createChildFor(elementId){
 var doc = document, //store in a local variable
 element = doc.getElementById(elementId),
 newElement = doc.createElement("div");

 element.appendChild(newElement);
}
The rewritten version of the function stores document in a local variable called doc. Since doc exists in the first part of the scope
 chain, it can be resolved faster than document. Keep in mind that the global
 variable object is always the last object in the scope chain, and so
 global identifier resolution is always the most expensive.
Note
A very common mistake that leads to performance issues is to
 omit the var keyword when assigning
 a variable’s value for the first time. Assignment to an undeclared
 variable automatically results in a global variable being
 created.

Scope Chain Augmentation

The scope chain for a given execution context typically remains unchanged
 during code execution. There are, however, two statements that
 temporarily augment the scope chain of an execution context. The first
 is the with statement, which is designed to allow easy access to object
 properties by making them appear as local variables. For example:
var person = {
 name: "Nicholas",
 age: 30
};

function displayInfo(){
 var count = 5;
 with(person){
 alert(name + " is " + age);
 alert("Count is " + count);
 }
}

displayInfo();
In this code, the person object
 is passed into a with block. This
 allows you to access the name and
 age properties as though they were
 locally defined. What actually happens, though, is that a new variable
 object is pushed to the front of the execution context’s scope chain.
 This variable object contains all of the properties of the specified
 object (in this case, person) so that
 they can be accessed without using dot notation. Figure 7-4 shows how the
 scope chain for displayInfo is
 augmented while the with statement is
 being executed.
[image: Scope chain augmentation using the with statement]

Figure 7-4. Scope chain augmentation using the with statement

Though it seems very convenient when an object’s properties are
 being used repeatedly, this extra object in the scope chain hurts local
 identifier resolution. While code within a with statement is being executed, the local
 function variables now exist in the second object in the scope chain instead
 of the first, automatically slowing down identifier access. In the
 previous example, the count variable
 now takes longer to access because it’s not in the first object of the
 scope chain. Once the with statement
 finishes executing, the scope chain is restored to its previous state.
 Due to this major downside, it’s recommended to avoid
 using the with statement.
The second statement that augments the scope chain is
 the catch clause of a
 try-catch block. The catch clause behaves in a manner similar to
 the with statement where it adds a
 variable object to the front of the scope chain while it executes the
 code in the block. That variable object contains an entry for the named
 exception object specified by catch.
 However, the catch clause is executed
 only when an error occurs during execution of the try clause, making it somewhat less
 problematic than the with statement,
 though you should take care not to execute too much code within the
 catch clause to minimize the
 performance impact.
Minding scope chain depth is an easy way to get performance
 improvements with a small amount of work. Avoid unnecessarily augmenting
 the scope chain and inadvertently slowing down execution.

[22] All of the research in this chapter is based on experiments run on
 Firefox versions 3.0 and 3.1 beta 2, Google Chrome 1.0, Internet
 Explorer versions 7 and 8 beta 2, Safari versions 3.0–3.2, and Opera
 version 9.62. When the version numbers aren’t mentioned, all tested
 versions of the browser are relevant.

Efficient Data Access

Where data is stored in a script contributes directly to the amount of
 time it takes to execute. In general, there are four places from which
 data can be accessed in a script:
	Literal value

	Variable

	Array item

	Object property

Reading data always incurs a performance cost, and that cost depends on which of these
 four locations the data is stored in.
In most browsers, the cost of reading a value from a literal versus
 a local variable is so small as to be negligible; you should
 feel free to mix and match literals and local variables without worrying about a
 performance penalty. The real difference comes when you move to reading
 data from an array or object. Accessing values from one of these data
 structures requires a lookup of the location in which the data is stored,
 either by index (for array) or by property name (for objects).
To test the data access times based on data location, I created an
 experiment that reads values from each of these locations 200,000 times.
 You can find the experiment online at http://www.nczonline.net/experiments/javascript/performance/data-access/.
 The result of running this experiment on multiple browsers is that there is almost an even split across
 browsers as to which is faster: Internet Explorer, Opera, and Firefox 3 all access array items faster than object
 properties; Chrome, Safari, Firefox 2, and Firefox 3.1+ access object properties
 faster than array items (see Figure 7-5).
[image: Data access time across browsers]

Figure 7-5. Data access time across browsers

The important lesson to take from this information is to always
 store frequently accessed values in
 a local variable. Consider the following code:
function process(data){
 if (data.count > 0){
 for (var i=0; i < data.count; i++){
 processData(data.item[i]);
 }
 }
}
This snippet accesses the value of data.count multiple times. At first glance, it
 looks like this value is used twice: once in the if statement and once in the for loop. In reality, though, data.count is accessed data.count plus 1 times in this function, since
 the control statement (i <
 data.count) is executed each time through the loop. The function
 will run faster if this value is stored in a local variable and then
 accessed from there:
function process(data){
 var count = data.count;
 if (count > 0){
 for (var i=0; i < count; i++){
 processData(data.item[i]);
 }
 }
}
The rewritten version of this function accesses data.count only once, at the beginning in order
 to store it in a local variable. The local variable count is used in its place elsewhere in the function, limiting the
 number of times an object property must be accessed to retrieve this
 value. This function will run faster than the previous function because
 the number of object property lookups has been reduced.
The effect of data access is exaggerated as the value’s data
 structure depth increases. For example, data.count is faster to access than data.item.count, which is faster to access than
 data.item.subitem.count. When dealing
 with properties, the number of times a dot is used (for property lookup)
 directly relates to the amount of time it takes to access that value.
 Figure 7-6 shows the
 relative data access times by property depth across browsers. The tests
 for this research are part of the data access experiment located at http://www.nczonline.net/experiments/javascript/performance/data-access/.
[image: Access times for object properties by depth]

Figure 7-6. Access times for object properties by depth

A good approach to take when dealing with data access is to store in
 a local variable any object property or array item that is used more than
 once in a function.
Note
For most browsers, there is virtually no difference between using
 dot notation for object property access (data.count) and bracket notation (data["count"]). The one exception is Safari,
 where bracket notation is significantly slower than dot notation. This
 holds true even for Safari 4 and later using the Nitro JavaScript
 engine.

Using local variables is especially important when dealing with
 HTMLCollection objects (those returned
 from DOM methods such as getElementsByTagName and
 properties such as element.childNodes).
 Each HTMLCollection object is
 actually a live query being run against the DOM document every time a
 property is accessed. For example:
var divs = document.getElementsByTagName("div");
for (var i=0; i < divs.length; i++){ //Avoid!
 var div = divs[i];
 process(div);
}
The first line of this code creates a query that returns
 every <div> element on
 the page and stores that query in divs.
 Each time divs has a property accessed
 either by name or by index, the DOM actually reexecutes that query against
 the entire page; in this code, it occurs each time divs.length or divs[i] is accessed. These property lookups take
 longer than the average non-DOM object property or array item lookup. It’s
 therefore important to store such values in local variables whenever
 possible to avoid the requerying penalty associated with HTMLCollection objects. For example:
var divs = document.getElementsByTagName("div");
for (var i=0, len=divs.length; i < len; i++){ //Better
 var div = divs[i];
 process(div);
}
This example stores the length of the divs
 HTMLCollection in a local variable, limiting the number of times
 the object is accessed directly. In the previous version of this code,
 divs was accessed twice per iteration:
 once to retrieve the object in the given position, and once to check the
 length. This new version eliminates direct length-checking with each
 iteration.
Note
Generally speaking, interacting with DOM objects is always more
 expensive than interacting with non-DOM objects. Due to DOM behavior,
 property lookups typically take longer than non-DOM property lookups.
 The HTMLCollection object is the
 worst-performing object in the DOM. If you need to repeatedly access
 members of an HTMLCollection, it is more efficient to
 copy them into an array first.

Flow Control

Next to data access, flow control is perhaps the most important aspect of
 JavaScript relating to performance. JavaScript, as with most programming
 languages, has a number of flow control statements that determine which
 part of the code should be executed next. There’s a series of conditional
 and loop statements that enable developers to precisely control how
 execution flows from one part of the code to another. Choosing the right
 option at each point can dramatically affect how fast your script
 runs.
Fast Conditionals

The classic question of whether to use a switch statement or a series of if and else
 statements is not unique to JavaScript and has spurred discussions in
 nearly every programming language that has these constructs. The real
 issue is not between individual statements, of course, but rather
 relates to the speed with which each is able to handle a range of
 conditional statements. The details of this section are based on tests
 that you can run at http://www.nczonline.net/experiments/javascript/performance/conditional-branching/.
The if statement

Discussions usually begin surrounding complex if statements such as this:
if (value == 0){
 return result0;
} else if (value == 1){
 return result1;
} else if (value == 2){
 return result2;
} else if (value == 3){
 return result3;
} else if (value == 4){
 return result4;
} else if (value == 5){
 return result5;
} else if (value == 6){
 return result6;
} else if (value == 7){
 return result7;
} else if (value == 8){
 return result8;
} else if (value == 9){
 return result9;
} else {
 return result10;
}
Typically, this type of construct is frowned upon. The major
 problem is that the deeper into the statement the execution flows, the
 more conditions have to be evaluated. It will take longer to complete
 the execution when value is 9 than
 if value is 0 because every other
 condition must be evaluated beforehand. As the overall number of
 conditions increases, so does the performance hit for going deep into
 the conditions. While having a large number of if conditions isn’t advisable, there are
 steps you can take to increase the overall performance.
The first step is to arrange the conditions in decreasing order
 of frequency. Since exiting after the first condition is the fastest
 operation, you want to make sure that happens as often as possible.
 Suppose the most common case in the previous example is that value will equal 5 and the second most
 common is that value will equal 9.
 In that case, you know five conditions will be evaluated before
 getting to the most common case and nine before getting to the second
 most common case; this is incredibly inefficient. Even though the
 increasing numeric order of the conditions makes it easier to read, it
 should actually be rewritten as follows:
if (value == 5){
 return result5;
} else if (value == 9){
 return result9;
} else if (value == 0){
 return result0;
} else if (value == 1){
 return result1;
} else if (value == 2){
 return result2;
} else if (value == 3){
 return result3;
} else if (value == 4){
 return result4;
} else if (value == 6){
 return result6;
} else if (value == 7){
 return result7;
} else if (value == 8){
 return result8;
} else {
 return result10;
}
Now the two most common conditions appear at the top of the
 if statement, ensuring optimal
 performance for these cases.
Another way to optimize if
 statements is to organize the conditions into a series of branches,
 following a binary search algorithm to find the valid condition. This
 is advisable in the case where a large number of conditions are
 possible and no one or two will occur with a high enough rate to
 simply order according to frequency. The goal is to minimize the
 number of conditions to be evaluated for as many of the conditions as
 possible. If all of the conditions for value in the example will occur with the
 same relative frequency, the if
 statements can be rewritten as follows:
if (value < 6){

 if (value < 3){
 if (value == 0){
 return result0;
 } else if (value == 1){
 return result1;
 } else {
 return result2;
 }
 } else {
 if (value == 3){
 return result3;
 } else if (value == 4){
 return result4;
 } else {
 return result5;
 }
 }

} else {

 if (value < 8){
 if (value == 6){
 return result6;
 } else {
 return result7;
 }
 } else {
 if (value == 8){
 return result8;
 } else if (value == 9){
 return result9;
 } else {
 return result10;
 }

 }
}
This code ensures that there will never be any more than four
 conditions evaluated. Instead of evaluating each condition to find the
 right value, the conditions are separated first into a series of
 ranges before identifying the actual value. The overall performance of
 this example is improved because the cases where eight and nine
 conditions need to be evaluated have been removed. The maximum number
 of condition evaluations is now four, creating an average savings of
 about 30% off the execution time of the previous version. Keep in
 mind, also, that an else statement
 has no condition to evaluate. However, the problem remains that each
 additional condition ends up taking more time to execute, affecting
 not only the performance but also the maintainability of this code.
 This is where the switch statement
 comes in.

The switch statement

The switch statement
 simplifies both the appearance and the performance of
 multiple conditions. You can rewrite the previous example using a
 switch statement as follows:
switch(value){
 case 0:
 return result0;
 case 1:
 return result1;
 case 2:
 return result2;
 case 3:
 return result3;
 case 4:
 return result4;
 case 5:
 return result5;
 case 6:
 return result6;
 case 7:
 return result7;
 case 8:
 return result8;
 case 9:
 return result9;
 default:
 return result10;
}
This code clearly indicates the conditions as well as the return
 values in an arguably more readable form. The switch statement has the added benefit of
 allowing fall-through conditions, which allow you to specify the same
 result for a number of different values without creating complex
 nested conditions. The switch
 statement is often cited in other programming languages as the
 hands-down better option for evaluating multiple conditions. This
 isn’t because of the nature of the switch statement, but rather because of how
 compilers are able to optimize switch statements for faster evaluation.
 Since most JavaScript engines don’t have such optimizations,
 performance of the switch statement
 is mixed.
Firefox handles switch
 statements very well, with each condition’s evaluation executing in
 roughly the same amount of time regardless of the order in which they
 are defined. That means the case of value equal to 0 will take roughly the same
 amount of time to execute as when value is 9. Other browsers, however, aren’t
 nearly as good. Internet Explorer, Opera, Safari, and Chrome all show
 noticeable increases in the execution time as you get deeper into the
 switch statement. Those increases,
 however, are smaller than the increases experienced with each
 additional condition of an if
 statement. You can therefore improve the performance of switch statements by ordering the conditions
 in decreasing rate of frequency (the same as if statement optimization).
In JavaScript, if statements
 are generally faster than switch statements when there are just
 one or two conditions to be evaluated. When there
 are more than two conditions, and the conditions are simple (not
 ranges), the switch statement tends
 to be faster. This is because the amount of time it takes to execute a
 single condition in a switch
 statement is often less than it takes to execute a single condition in
 an if statement, making the
 switch statement optimal only when
 there are a larger number of conditions.

Another option: Array lookup

There are more than two solutions for dealing with conditionals in
 JavaScript. Alongside the if
 statement and the switch statement
 is a third approach: looking up values in arrays. The example for this
 section maps a given number to a specific result, which is exactly
 what arrays are for. Instead of writing a large if statement or switch statement, you can use the following
 code:
//define the array of results
var results = [result0, result1, result2, result3, result4, result5, result6,
result7,
 result8, result9, result10]

//return the correct result
return results[value];
Instead of using conditional statements, all of the results are
 stored in an array whose index maps to the value variable. Retrieving the appropriate
 result is simply a matter of array value lookup. Although array lookup
 times also increase the deeper into the array you go, the incremental
 increase is so small that it is irrelevant relative to the increases
 in each condition evaluation for if
 and switch statements. This makes
 array lookup ideal whenever there are a large number of conditions to
 be met, and the conditions can be represented by discrete values such
 as numbers or strings (for strings, you can use an Object to store the results rather than an
 Array).
It’s not practical to use array lookup for small numbers of
 results because array lookup is often slower than evaluating a small
 number of conditions. Array lookups can be very helpful when there are
 a large number of ranges because they eliminate the need to test both
 upper and lower bounds; you can simply fill in that range of indexes
 in the array with the appropriate value and do a straight array
 lookup.

The fastest conditionals

The three techniques presented here—the if statement, the switch statement, and array lookup—each have
 their uses in optimizing code execution:
	Use the if statement
 when:
	There are no more than two discrete values for which to
 test.

	There are a large number of values that can be easily
 separated into ranges.

	Use the switch statement
 when:
	There are more than two but fewer than 10 discrete
 values for which to test.

	There are no ranges for conditions because the values
 are nonlinear.

	Use array lookup when:
	There are more than 10 values for which to
 test.

	The results of the conditions are single values rather
 than a number of actions to be taken.

Fast Loops

As mentioned in Chapter 1,
 loops are a frequent source of performance issues in JavaScript, and the
 way you write loops drastically changes its execution time. Once again,
 JavaScript developers don’t get to rely on compiler optimizations that
 make loops faster regardless of the initial code, so it’s important to
 understand the various ways to write loops and how they affect
 performance.
Simple loop performance boosts

There are four different types of loops in JavaScript. In this
 section, we will discuss three of them: the for loop,
 the do-while loop, and the while loop. (The
 fourth type is a for-in loop that is used to iterate over object
 properties, but I won’t cover it here because its purpose is very
 unique.) The various loop types are coded as follows:
//unoptimized code
var values = [1,2,3,4,5];

//for loop
for (var i=0; i < values.length; i++){
 process(values[i]);
}

//do-while loop
var j=0;
do {
 process(values[j++]);
} while (j < values.length);

//while loop
var k=0;
while (k < values.length){
 process(values[k++]);
}
Each of the loops in this example achieves the same result: all
 items in the values array are
 passed into the process function.
 These are the most common constructs used for iterating over a number
 of values in an array. Each of these loops runs in about the same
 amount of time because they’re doing roughly the same amount of work.
 There are, however, ways to improve the performance.
Perhaps the most glaring issue in each loop is the constant
 comparison of the iterator variable against the array length. As
 mentioned earlier in this chapter, property lookup is a much more
 expensive operation than local variable access. This code is
 retrieving the value of values.length every time the loop executes
 to see whether the terminal condition has been reached. This is
 incredibly inefficient given that the length of the array won’t change
 while the loop is being executed. Using a local variable instead of a
 property lookup can speed up the loops:
var values = [1,2,3,4,5];
var length = values.length;

//for loop
for (var i=0; i < length; i++){
 process(values[i]);
}

//do-while loop
var j=0;
do {
 process(values[j++]);
} while (j < length);

//while loop
var k=0;
while (k < length){
 process(values[k++]);
}
Each loop now uses the local variable length as its comparison point instead of
 values.length,
 eliminating a property lookup each time through the loop. This
 technique is especially important when dealing with HTMLCollection
 objects because, as mentioned previously, every property access on
 such an object is actually a query against the DOM for all nodes
 matching some criteria. That makes a property lookup on an HTMLCollection very expensive and, when
 included in the terminal condition of a loop, adds significant
 execution time to the overall loop.
Another simple way to improve the performance of a loop is to
 decrement the iterator toward 0 rather than incrementing toward the
 total length. Making this simple change can result in savings of up to
 50% off the original execution time, depending on the complexity of
 each iteration. For example:
var values = [1,2,3,4,5];
var length = values.length;

//for loop
for (var i=length; i--;){
 process(values[i]);
}

//do-while loop
var j=length;
do {
 process(values[--j]);
} while (j);

//while loop
var k=length;
while (k--){
 process(values[k]);
}
Each of these loops is now even faster by virtue of changing the
 terminal condition to a comparison against 0 (note that the terminal
 condition evaluates to true once
 the iterator variable equals 0). The performance of each type of loop
 is comparable, so you needn’t worry about choosing among the three
 variations for speed purposes.
Note
Be careful when using the native indexOf method for arrays. This method can
 take significantly longer to iterate over each array item than using
 a regular loop. If speed is your primary concern, use one of the
 three loop types mentioned in this section.

Avoid the for-in loop

Another variation of the for
 loop is the for-in loop, whose purpose is to iterate over
 the enumerable properties of a JavaScript object. Typical usage is as
 follows:
for (var prop in object){
 if (object.hasOwnProperty(prop)){ //to filter out prototype properties
 process(object[prop]);
 }
}
This code iterates over the properties in a given object,
 using the hasOwnProperty
 method to ensure that only instance properties are processed.
Because the for-in loop has a specific purpose, there is
 little you can do to change its performance. The terminal condition
 cannot be altered, and the order of the properties to iterate over
 cannot be changed. Further, a for-in
 loop is typically much slower than any of the other loops because it
 requires resolving every enumerable property on a particular object.
 That, in turn, means the object’s prototype and entire prototype chain
 must be examined to extract these properties. Traversing the prototype
 chain, just like traversing the scope chain, takes time and slows down
 the performance of the entire loop.
If you know the specific properties you’re interested in, it’s
 much faster to create a standard loop (for, do-while,
 or while) and iterate over an array
 of names, such as:
//known properties to iterate over
var props = ["name", "age", "title"];

//while loop
var i=props.length;
while (i--){
 process(object[props[i]]);
}
This loop runs much faster than the for-in
 loop, and not simply because of the small number of properties in the
 props array. Even increasing the
 number of properties over which to iterate would yield significantly
 better performance than the for-in
 loop. The loop in this example takes advantage of all the normal loop
 performance enhancements and still allows iteration over a known set
 of object properties.
Naturally, this approach works only when you know the object
 properties to iterate over; when dealing with unknown properties, as
 with JSON objects, a for-in
 loop may still be necessary.

Unrolling loops

It is a common practice in several programming languages to unroll small loops
 to improve performance. The basis of this practice is that limiting
 the number of iterations can mitigate the performance overhead of a
 loop. The implementation of such a solution is typically called
 unrolling the loop, which means making each
 iteration do the work of multiple iterations. Consider the following
 loop:
var i=values.length;
while (i--){
 process(values[i]);
}
If there are only five items in the values array, it is actually faster to
 remove the loop and do the work on each value individually:
//unrolled loop
process(values[0]);
process(values[1]);
process(values[2]);
process(values[3]);
process(values[4]);
Of course, this approach is arguably less maintainable, as it
 takes more code to write and any change to the number of items in the
 values array requires changes to
 the code. Further, the performance gains for such a small number of
 statements aren’t worth the maintenance overhead. This technique can
 be quite useful, however, when you’re dealing with a large number of
 values and a potentially large number of iterations.
Tom Duff, a computer programmer working for Lucasfilm at the time, first
 proposed a construct for unrolling loops in the C programming
 language. This pattern became known as Duff’s Device and was later converted to JavaScript by
 Jeff Greenberg, who also published one of the first
 comprehensive studies on JavaScript performance optimization (which is still available
 at http://home.earthlink.net/~kendrasg/info/js_opt/).
 Greenberg’s Duff’s Device
 implementation is as follows:
var iterations = Math.ceil(values.length / 8);
var startAt = values.length % 8;
var i = 0;

do {
 switch(startAt){
 case 0: process(values[i++]);
 case 7: process(values[i++]);
 case 6: process(values[i++]);
 case 5: process(values[i++]);
 case 4: process(values[i++]);
 case 3: process(values[i++]);
 case 2: process(values[i++]);
 case 1: process(values[i++]);
 }
 startAt = 0;
} while (--iterations > 0);
The idea behind Duff’s Device is that each trip through the loop
 does the work of between one and eight iterations of a normal loop.
 This is done by first determining the number of iterations by dividing
 the total number of array values by eight. Duff found that eight was
 an optimal number to use for this processing (it’s not arbitrary).
 Since not all array lengths will be equally divisible by eight, you
 must also calculate how many items won’t be processed by using the
 modulus operator. The startAt
 variable, therefore, contains the number of additional items to be
 processed. This variable is used only the first time through the loop,
 to do the extra work, and then is set back to zero so that each
 subsequent trip through the loop results in a full eight items being
 processed. Duff’s Device runs faster than a normal loop over a large
 number of iterations, but it can be made even faster.
The book Speed Up Your Site (New Riders)
 introduced a version of Duff’s Device in JavaScript that moves the
 processing of the extra array items outside the main loop, allowing
 the switch statement to
 be removed and resulting in an even faster way of processing a large
 number of items:
var iterations = Math.floor(values.length / 8);
var leftover = values.length % 8;
var i = 0;

if (leftover > 0){
 do {
 process(values[i++]);
 } while (--leftover > 0);
}

do {
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
} while (--iterations > 0);
This code executes faster over a large number of array items
 primarily due to the removal of
 the switch statement from the main
 loop. As discussed earlier in this chapter, conditionals do have
 performance overhead; removing that overhead from the algorithm speeds
 up the processing. The separation of processing into two discrete
 loops allows this augmentation.
Duff’s Device, and the modified version presented here, is
 useful primarily with large arrays. For small arrays, the performance
 gain is minimal compared to standard loops. Therefore, you should
 attempt to use Duff’s Device only if you notice a performance bottleneck relating to a loop that must
 process a large number of items.

String Optimization

String manipulation is a very common occurrence in JavaScript. There are multiple ways to
 deal with string processing, depending on the particular task, and each
 task brings with it specific performance considerations. There are a
 number of different ways to manipulate strings, whether it be using
 built-in string methods and operators or intermixing the use of regular
 expressions and arrays. The exact technique to use for optimal performance
 is tied directly to the type of manipulation being performed.
String Concatenation

Traditionally, string concatenation has been one of the
 poorest-performing aspects of JavaScript. Typically, string
 concatenation is done using the plus operator (+), such
 as in the following:
var text = "Hello";
text += " "
text += "World!";
Early browsers had no optimization for such operations. Since
 strings are immutable, that meant creating intermediate strings to
 contain the concatenation result. This constant creation and destruction of
 strings behind the scenes led to very poor string concatenation
 performance.
Having discovered this, developers turned to the JavaScript Array object
 for help. One of the Array object’s
 methods is join, which concatenates
 all items in the array and inserts a given string between the items.
 Instead of using the plus operator, each string is added to an array and
 the join method is called
 when all items have been added. For example:
var buffer = [],
 i = 0;
buffer[i++] = "Hello";
buffer[i++] = " ";
buffer[i++] = "World!";

var text = buffer.join("");
In this code, each string is added into the buffer array. The join method is called after all strings are in
 the array, returning the concatenated string and storing it in the
 variable text. Adding the items
 directly into the appropriate index is slightly faster than calling
 push for each value. This technique
 proved to be much faster in early browsers than using the plus operator
 because no intermediate strings are being created and destroyed.
 However, browser string optimizations have changed the string
 concatenation picture.
Firefox was the first browser to optimize string concatenation. Beginning with
 version 1.0, the array technique is actually slower than using the plus
 operator in all cases. Other browsers have also optimized string
 concatenation, so Safari, Opera, Chrome, and Internet Explorer 8 also show
 better performance using the plus operator. Internet Explorer prior to
 version 8 didn’t have such an optimization, and so the array technique
 is always faster than the plus operator.
This doesn’t necessarily mean browser detection should be used
 whenever string concatenation is necessary. There are two factors to
 consider when determining the most appropriate way to concatenate
 strings: the size of the strings being concatenated and the number of
 concatenations.
All browsers can comfortably complete the task in less than one
 millisecond using the plus operator when the size of the strings is relatively
 small (20 characters or less) and the number of concatenations is also
 relatively small (1,000 concatenations or less). There is no reason to
 consider anything other than using the plus operator if this is your
 situation.
As you increase the number of concatenations for small strings, or
 the size of the strings with a small number of concatenations, the
 performance gets significantly worse in Internet Explorer through
 version 7. Also, as the size of the strings increases, the performance
 difference between using the plus operator and the array technique
 decreases in Firefox. As the number of concatenations increases, the
 difference between the two techniques decreases in Safari as well. The
 only browsers where the plus operator remains consistently and
 significantly faster with varying string size and concatenation numbers
 are Chrome and Opera.
With all of the performance variance across browsers, the
 technique to use is heavily dependent on the use case as well as on the
 browsers you’re targeting. If your users largely use Internet Explorer 6
 or 7, it may be worth using the array technique all the time because
 that will affect the largest number of people. The performance decrease
 of the array technique in other browsers is typically much less than the
 performance increase gained in Internet Explorer, so try to balance your
 users’ experience based on their browsers rather than trying to target
 specific situations and browser versions. In most common cases, however,
 using the plus operator is preferred.

Trimming Strings

One of the most glaring omissions of JavaScript strings is the lack of a
 native trim method used to remove leading and trailing whitespace. The
 most common implementation of a trim function is as
 follows:
function trim(text){
 return text.replace(/^\s+|\s+$/g, "");
}
This implementation uses a regular expression that matches one or
 more whitespace characters at the beginning or end of the string. The
 string’s replace method is used
 to replace any matches with an empty string. This implementation,
 however, has a performance issue based in the regular expression.
The performance impact comes from two aspects of the regular
 expression: the pipe operator, indicating that there are two patterns to
 match, and the g flag, indicating
 that the pattern should be applied globally. Taking this into mind, you
 can rewrite the function to be a bit faster by breaking up the regular
 expression into two and getting rid of the g flag:
function trim(text){
 return text.replace(/^\s+/, "").replace(/\s+$/, "");
}
Breaking the single replace
 method into two calls allows each regular expression to become much
 simpler and, therefore, faster. This method is faster than the original,
 but you can optimize it even further.
Steven
 Levithan, after performing research on the fastest way to
 execute string trimming in JavaScript, arrived at the following
 function:
function trim(text){
 text = text.replace(/^\s+/, "");
 for (var i = text.length - 1; i >= 0; i--) {
 if (/\S/.test(text.charAt(i))) {
 text = text.substring(0, i + 1);
 break;
 }
 }
 return text;
}
This trim function consistently
 performs better than other variations. The source of the speed is
 keeping the regular expressions as simple as possible. The first line
 removes leading whitespace and then the for loop is used to strip trailing whitespace.
 The loop uses a very simple, single-character regular expression that
 matches nonwhitespace characters. This information is used to either
 remove a character from the string or break the loop. The resulting
 function performs faster than the previous versions across all browsers.
 For Levithan’s complete analysis, see his post at http://blog.stevenlevithan.com/archives/faster-trim-javascript.
As with string concatenation, the speed of string trimming matters
 only if it is performed with enough frequency during execution. The
 second trim function in this section
 performs fine for smaller strings over the course of a few calls; the
 third trim function is significantly
 faster when used on longer strings.
Note
The next version of the ECMAScript specification, code-named
 ECMAScript 3.1, defines a native
 trim method for strings; it is
 likely that this native version will be faster than any of the
 functions in this section. When available, the native function should
 be used.

Avoid Long-Running Scripts

One of the critical performance issues with JavaScript is that code execution
 freezes a web page. Because JavaScript is a single-threaded language, only one script
 can be run at a time per window or tab. This means that all user
 interaction is necessarily halted while JavaScript code is being executed.
 This is an important feature of browsers since JavaScript may change the
 underlying page structure during its execution, with the possibility of
 nullifying or altering the response to user interaction.
If JavaScript code isn’t carefully crafted, it’s possible to freeze
 the web page for an extended period of time and ultimately cause the
 browser to stop responding. Most browsers will detect long-running scripts
 and notify the user of a problem with a dialog box asking whether the
 script should be allowed to proceed.
Exactly what causes the browser to display the long-running script dialog varies
 depending on the vendor:
	Internet Explorer monitors the number of statements that have been
 executed by a script. When a maximum number of statements have been
 executed, 5 million by default, the long-running script dialog is
 displayed (as shown in Figure 7-7).

	Firefox monitors the amount of time a script is taking to
 execute. When a script takes longer than a preset amount of time, 10
 seconds by default, the long-running script dialog is
 displayed.

	Safari also uses the execution time to determine whether a
 script is long-running. The default timeout is set to five seconds,
 after which the long-running script dialog is displayed.

	Chrome as of version 1.0 has no set limit on how long
 JavaScript is allowed to run. The process will crash when it has run
 out of memory.

	Opera is the only browser that doesn’t protect against
 long-running scripts. Scripts are allowed to continue until execution
 is complete.

[image: Internet Explorer 7 long-running script dialog]

Figure 7-7. Internet Explorer 7 long-running script dialog

If you ever see the long-running script dialog, it’s an indication
 that the JavaScript code needs to be refactored. Generally speaking, no
 single continuous script execution should take longer than 100
 milliseconds; anything longer than that and the web page will almost
 certainly appear to be running slowly to the user. Brendan Eich, the creator of JavaScript, is also quoted as
 saying, “[JavaScript] that executes in whole seconds is probably doing
 something wrong....”
The most common reasons why a script takes too long to execute
 include:
	Too much DOM interaction
	DOM manipulation is more expensive than any other
 JavaScript process. Minimizing DOM interactions significantly cuts
 the JavaScript runtime. Most browsers update the DOM only after the
 entire script has finished executing, which slows the perceived
 responsiveness of the web page to the user.

	Loops that do too much
	Any loop that either runs too many times or performs too many
 operations with each iteration can cause long-running script issues.
 It helps separate out functionality whenever possible. The effect is
 worsened when loops are used to perform DOM manipulations, sometimes
 causing the browser to completely freeze without ever showing the
 long-running script dialog.

	Too much recursion
	JavaScript engines put a limit on the amount of recursion that scripts
 can use. Rewriting the code to avoid recursion helps ameliorate the
 issue.

Sometimes simple code refactoring, keeping these issues in mind, can
 prevent runaway scripts. There may, however, be times when complex
 processes must necessarily be executed for the web application to function
 correctly. In that case, the code must be restructured to yield
 periodically, as explained in the next section.
Yielding Using Timers

The single-threaded nature of JavaScript means that only one script can be
 executed in a window or tab at any given point in time. No user
 interactions can be processed during this time and so it’s necessary to
 introduce breaks in long-executing JavaScript code. On simple web pages,
 the breaks occur naturally as the user interacts with the page. In
 complex web applications, it’s often necessary to insert the breaks
 yourself. The easiest way to do this is to use a timer.
Timers are created using the setTimeout function,
 passing in the function to execute as well as a delay (in milliseconds)
 before the function should be executed. When the delay has passed, the
 code to execute is placed into a queue. The JavaScript engine uses this
 queue to determine what to do next. When a script finishes executing,
 the JavaScript engine yields to allow other browser tasks to catch up.
 The web page display is typically updated during this time in relation
 to changes made via the script. Once the display has been updated, the
 JavaScript engine checks for more scripts to run on the queue. If
 another script is waiting, it is executed and the process repeats; if
 there are no more scripts to execute, the JavaScript engine remains idle
 until another script appears in
 the queue.
When you create a timer, you’re actually scheduling some code to
 be inserted into the JavaScript engine’s queue to be executed later.
 That insertion happens after the amount of time specified when calling
 setTimeout. In essence, timers push
 code execution off into the future, where all long-running script limits
 are reset. Consider the following code:
window.onload = function(){

 //Page Load

 //create first timer
 setTimeout(function(){

 //Delayed Script 1

 setTimeout(function(){

 //Delayed Script 2

 }, 100);

 //Delayed Script 1, continued

 }, 100);

};
In this example, a script is run when the page loads. That script
 calls setTimeout to create the first
 timer. When that timer executes, it calls setTimeout again to create a second timer. The
 second delayed script cannot start running, however, until the first has
 finished executing and the browser has updated the display. Figure 7-8 shows the timeline
 for this code execution, indicating that no two scripts are run at the
 same time.
Timers are the de facto standard for splitting up JavaScript code
 execution in browsers. Whenever a script is taking too long to complete,
 look to delay parts of the execution until later.
Note that very small timer delays can also cause the browser to
 become unresponsive. It’s recommended to never use a delay of zero
 milliseconds, as this isn’t enough time for all browsers to properly
 update their display. In general, delays between 50 and 100 milliseconds
 are appropriate and allow browsers enough idle time to perform necessary
 display updates.
[image: JavaScript code execution with timers]

Figure 7-8. JavaScript code execution with timers

Timer Patterns for Yielding

Array processing is one of the most frequent causes of long-running scripts. Typically, this
 is because processing must be done on each member of the array, and so
 the execution time increases directly in proportion to the number of
 items in the array. If the array processing doesn’t have to be executed
 synchronously, it is a good candidate for splitting up using
 timers.
In my book, Professional JavaScript for Web
 Developers, Second Edition (Wrox), I describe a simple
 function that can be used to split up the processing of arrays using
 timers:
function chunk(array, process, context){
 setTimeout(function(){
 var item = array.shift();
 process.call(context, item);

 if (array.length > 0){
 setTimeout(arguments.callee, 100);
 }
 }, 100);
}
The chunk function accepts
 three arguments: an array of data to process, a function with which to
 process each item, and an optional context argument in which the
 processing function should be executed (by default, all functions passed
 into setTimeout are run in the global
 context, so this is equal to window). Processing of the items is done using
 timers, and so the code execution yields after each item has been
 processed. The next item to process is always at the front of the array
 and is removed before being processed. Afterward, a check is made to
 determine whether there are any further values left to process. If so, a
 new timer is created and the function is called again via arguments.callee. Note
 that the chunk function uses the
 passed-in array as a “to do” list of items to process and so is altered
 once execution is complete. You can use the function as follows:
var names = ["Nicholas", "Steve", "Doug", "Bill", "Ben", "Dion"],
 todo = names.concat(); //clone the array

chunk(todo, function(item){
 console.log(item);
});
The code in this simple example outputs each name in the names array to the console (available in Firefox with Firebug
 installed, Internet Explorer 8+, Safari 2+, and all versions of Chrome).
 The processing function is very short but could easily be replaced with
 something more complex. The chunk
 function is best used with long arrays where each item requires
 significant processing.
Another popular pattern is to perform small, sequential parts of a
 larger operation using timers. Julien Lecomte presented this pattern in his blog post, “Running CPU
 Intensive JavaScript Computations in a Web Browser”, in which he
 showed how sorting of a large data set could be achieved using an
 inefficient algorithm (bubble sort) without incurring a long-running
 script issue. The following is an adaptation of Lecomte’s code:
function sort(array, onComplete){

 var pos = 0;

 (function(){

 var j, value;

 for (j=array.length; j > pos; j--){
 if (array[j] < array[j-1]){
 value = data[j];
 data[j] = data[j-1];
 data[j-1] = value;
 }
 }

 pos++;

 if (pos < array.length){
 setTimeout(arguments.callee,10);
 } else {
 onComplete();
 }

 })();

}
The sort function splits up each traversal through the array for sorting,
 allowing the browser to continue functioning while this processing
 occurs. The inner anonymous function is called immediately to do the
 first traversal and then is called subsequently via a timer by passing
 arguments.callee into setTimeout. When the array is finally sorted, the onComplete function is called to notify the developer that the data is ready
 to be used. The function can be used as follows:
sort(values, function(){
 alert("Done!");
});
When sorting an array with a large number of items, the difference
 in browser responsiveness is immediately apparent.

Summary

The speed with which JavaScript executes is very dependent on how it
 is written. In this chapter, you learned several ways to speed up
 JavaScript code execution:
	Managing your scope is important, since out-of-scope variables
 take longer to access than local variables. Try to avoid constructs
 that artificially augment the scope chain, such as the with statement and the catch clause of a try-catch
 statement. If an out-of-scope value is being used more than once,
 store it in a local variable to minimize the performance
 penalty.

	The way you store and access data can greatly impact the
 performance of your script. Literal values and local variables are
 always the fastest; you incur a performance penalty for accessing
 array items and object properties. If an array item or object property
 is used more than once, store it in a local variable to speed up
 access to the value.

	Flow control is also an important determinant of script
 execution speed. There are three ways to handle conditionals: the
 if statement, the switch statement, and array lookup. The
 if statement is best used with a
 small number of discrete values or a range of values; the switch statement is best used when there are
 between 3 and 10 discrete values to test for; array lookup is most
 efficient for a larger number of discrete values.

	Loops are frequently found to be bottlenecks in JavaScript. To
 make a loop the most efficient, reverse the order in which you process
 the items so that the control condition compares the iterator to zero.
 This is far faster than comparing a value to a nonzero number and
 significantly speeds up array processing. If there are a large number
 of required iterations, you may also want to consider using Duff’s
 Device to speed up execution.

	Be careful when using HTMLCollection objects. Each time a property
 is accessed on one of these objects, it requires a query of the DOM
 for matching nodes. This is an expensive operation that can be avoided
 by accessing HTMLCollection
 properties only when necessary and storing frequently used values
 (such as the length property) in
 local variables.

	Common string operations may have unintended performance
 implications. String concatenation is much slower in Internet Explorer
 than in other browsers, but it’s not worth worrying about unless
 you’re dealing with more than 1,000 concatenations. You can optimize
 string concatenation in Internet Explorer by using an array to store
 the individual strings and then calling join() to merge them together. Trimming
 strings may also be expensive, depending on the size of the string.
 Make sure to use the most optimal algorithm if trimming is a large
 part of your script.

	Browsers have limits on how long JavaScript can run, capping
 either the number of statements or the amount of time the JavaScript
 engine is allowed to run. You can circumvent these limits, and prevent
 the browser from displaying a warning about the long-running script,
 by using timers to split up the amount of work.

Chapter 8. Scaling with Comet

Dylan Schiemann

Sometimes Ajax just isn’t fast enough.
When data needs to be asynchronously sent from the server to the client, Ajax
 alone is often inadequate. Comet is a catchall term describing the collection of techniques, protocols, and implementations that address
 making low-latency data transit to the browser both viable and scalable.
 Comet is not an acronym, but a humorous play on the term
 Ajax coined by Alex Russell.[23]
Goals of Comet include delivering data from the server to the client
 at any time, improving speed and scalability over traditional Ajax, and
 developing event-driven web applications.
Ajax and the introduction of background HTTP requests are clearly the
 defining technology that enables the performance possible in today’s web
 applications. However, browsers and the traditional request/response pattern
 used in HTTP are ill-equipped to scale to the needs of more demanding
 real-time applications such as chat, financial information, and document
 collaboration. All of these applications require low-latency data transit to
 deliver on user experience expectations.
In this chapter, I’ll briefly cover how Comet works, and I’ll discuss
 the techniques that are common today and the performance pros and cons of
 each. I’ll conclude with solutions to cross-domain Comet and to other web
 application implementation issues when using Comet techniques.
How Comet Works

Comet works by taking advantage of less commonly used features of the HTTP specification. Through the more intelligent management
 of longer-lived connections, and by reducing the server-side resources per
 connection, Comet can easily provide more simultaneous connections than a
 traditional web server, and faster data transit between the client and the
 server.
Large-scale applications must use asynchronous connection handling
 because traditional server architectures require the use of one thread per
 connection. For high-concurrency applications, Comet servers
 generally leverage event libraries such as libevent,[24] epoll,[25] and kqueue,[26] depending on the operating system. Operating systems handle
 asynchronous I/O in various ways, the traditional method being select or poll. Your application can use these constructs
 to ask the operating system which sockets are ready to be written to or
 read from, to avoid ever incurring a blocking read or write.
What if the scale of your application is not large, but you want the
 benefits of Comet? Even a site of 50,000 visits per day with a typical
 connection time of three minutes averages only 92 open connections.
 Although you may need to raise the max thread count on your server, 92
 threads is not a terrible approach for smaller but high-performance web sites.
The use of one thread per connection for high-performance Comet-based sites is problematic, so most Comet servers
 either significantly reduce the resource overhead per thread, or make use
 of microthreads or processes. For example, ErlyComet[27] is written in Erlang, which is a virtual machine and microthreads-based
 functional language. Because a
 connection is represented by a process, and Erlang’s event-driven approach
 makes it easy for processes to communicate with each other via message
 passing, Erlang makes it very easy to scale the number of connections,
 even on different servers.
By contrast, PHP makes for a very poor choice as a Comet server language
 because of its threading model, so most PHP web applications that wish to
 use Comet make use of an off-board approach.[28] To make this work, a Comet client is written in PHP that
 communicates with the Comet server written in another language. While
 programming languages for Comet servers in general do not matter (there is
 no shortage of attempts at PHP Comet servers), languages such as C, Erlang, and Python are better suited for creating a
 Comet server, and there are a number of great Comet servers written in
 Java as well. The term on-board is used when your web server
 is the same as your Comet server.
While on-board Comet provides the benefits of simplicity and often
 lives on the same domain, off-board Comet is much more common for
 larger-scale web sites, or for sites where the primary development
 language is not well suited to Comet performance. For example, a site such
 as Facebook would probably use an off-board solution for its chat
 application, whereas a site such as Meebo uses an on-board solution since virtually all of its
 site traffic uses Comet techniques.
On the client side, the common techniques include polling, long
 polling, forever frame (iframe), XHR streaming, and soon, WebSocket. In
 conjunction with these techniques for establishing a Comet connection, a
 number of protocols exist for sending messages between the client and the
 server. A toolkit such as the Dojo Toolkit,
 or a library such as js.io, can handle many
 of these complexities for you automatically, but understanding how these
 techniques work without a toolkit is essential to understanding how to
 evaluate and optimize Comet performance.

[23] Both Ajax and Comet live under the kitchen sink.

[24] http://monkey.org/~provos/libevent/

[25] http://linux.die.net/man/4/epoll

[26] http://people.freebsd.org/~jlemon/papers/kqueue.pdf

[27] http://code.google.com/p/erlycomet/

[28] http://cometdaily.com/2008/05/22/on-board-vs-off-board-comet/

Transport Techniques

I’m now going to walk you through four different approaches to implementing the
 low-latency data communications that are the foundation of Comet: polling,
 long polling, forever frame, and XHR streaming.
Polling

Communication can easily become blocked or deadlocked in many browsers
 because of the limit on the maximum number of simultaneous connections
 allowed per server (see Chapter 11).
 The naïve approach that developers first take to solve the limit of
 connections is simple polling, where a web site or
 application makes a request every x
 milliseconds to check whether there are new updates to display in the
 user interface. A very simple polling example might look something like
 this:[29]
setTimeout(function(){xhrRequest({"foo":"bar"})}, 2000);

function xhrRequest(data){
 var xhr = new XMLHttpRequest();
 // handle the data to send it as parameters on the request
 xhr.open("get", "http://localhost/foo.php", true);
 xhr.onreadystatechange = function(){
 if(xhr.readyState == 4){
 // handle update from server
 }
 };
 xhr.send(null);
}
Simple polling is the least optimized but simplest Comet
 technique.

Long Polling

Polling is workable when messages are generated server side at known
 intervals. For instance, in a stock tracking application when new price
 updates are available on the server every five seconds, the polling
 interval on the browser can be matched to ensure that there is always
 one request per data element. Otherwise, HTTP requests are wasted and
 consume valuable CPU time and bandwidth. But polling can cause serious
 issues, even in cases when the data interval is known but the server is
 overloaded. Consider the case when the server hasn’t yet responded to
 the previous request for data; now, a second or even third request is
 sent, bombarding the server with useless additional requests. Of course,
 you can change the polling interval to poll five seconds after each
 successful request, but there are much better Comet techniques than
 polling.
A far more adaptive method is long polling,
 where the browser makes a request to the server, and the server responds
 only when it has new data available. To support long polling, the server
 ends up holding on to a large collection of unanswered requests and
 their corresponding connections. The server “holds on” to the request’s
 connection by returning a Transfer-Encoding:
 chunked or Connection:
 close response. When data is ready for a particular client or
 set of clients, those connections are identified and a response
 containing the payload is sent back to the browser. The browser
 immediately makes a request back to the server. If the connection drops,
 the client will attempt to reestablish a connection with the server.
 Although the request/response cycle is client-initiated, as with
 polling, all data flow occurs on the server’s schedule rather than on
 the client’s, allowing a more perfect approximation of the server→client
 data flow. Additionally, server oversaturation isn’t as large a concern
 because the client won’t make additional requests until after the server
 actually responds. Long polling became a mainstream technique with the
 introduction of the web-based chat client Meebo.
A typical implementation of the long-polling Comet technique
 involves the use of a Comet client, typically but not always written in
 JavaScript, and a Comet server, with versions available in almost every
 language. So, how do you create a Comet client? Let’s examine a
 plain-vanilla long-polling example:
function longPoll(url, callback) {
 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 // send another request to reconnect to the server
 callback(xhr.responseText);
 xhr.open('GET', url, true);
 xhr.send(null);
 }
 }
 // connect to the server to open a request
 xhr.open('POST', url, true);
 xhr.send(null);
}
In the longPoll method, after
 creating an XMLHttpRequest with
 the given URL, we define what to do when the readyState of the XHR is 4 and data is
 returned. In this case, we open a new connection and send the response
 to a callback function listening for new data to be returned.
This approach solves the most common use case from the browser
 perspective: conserving available requests. It also gets rid of a large
 number of useless requests, and feels more instantaneous to the
 user.[30]
However, both polling and long polling introduce a new problem for
 traditional web servers that are not optimized to handle large numbers
 of long-held or long-lived connections, but rather are optimized to open
 and close connections as quickly as possible. Apache, for example, is
 designed to handle approximately 10,000 simultaneous connections per
 server, whereas a good Comet server should be able to handle more than
 50,000 long-held connections to be cost-effective in delivering
 real-time applications. Fortunately, a number of viable commercial and
 open source servers exist today to address this problem. The Comet
 Maturity Guide compares the quality of a number of options on
 the market today.
There are other approaches to optimizing polling and long polling.
 For example, Meebo implements a hybrid of long polling and polling,
 with a contracted maximum duration of a
 connection that both the client and the server adhere to,
 making it easier to reestablish
 failed connections. Others have implemented a technique called smart polling, which is polling that
 has a decrease in the frequency of a request when data is not received.
 For example, you might poll every second when data is being returned,
 but for each request that receives an empty response, you may delay each
 subsequent request by a factor of 1.5 (e.g., 1s, 1.5s, 2.25s, etc.).
 Finally, if you have a long-polling connection open and you need to make
 an XHR, you can always abort the long-polling XHR to free a connection,
 and then restart the long-polling connection once the non-Comet XHR is complete.
It’s important to choose the right alternative if you run into
 limitations in the number of connections available in the browser, or if
 you experience excessive load on your Comet server.

Forever Frame

While long polling is the most common technique in use today,
 Comet originally spawned from the forever-frame technique, where a
 hidden iframe is opened and the request is made for a document
 that relies on HTTP 1.1’s chunked encoding. Chunked encoding
 was designed for the incremental loading of very large documents, so you
 can think of the forever-frame technique as a very large document that
 is incrementally written to. A very simple example of forever frame is
 as follows:
function foreverFrame(url, callback) {
 var iframe = body.appendChild(document.createElement("iframe"));
 iframe.style.display = "none";
 iframe.src = url + "?callback=parent.foreverFrame.callback";
 this.callback = callback;
}
And a series of messages from the server might look like
 this:
<script>
parent.foreverFrame.callback("the first message");
</script>
<script>
parent.foreverFrame.callback("the second message");
</script>
Various browser hacks are necessary to invoke incremental
 rendering, such as adding a
 element or a few kilobytes of whitespace after each
 script block is sent with data wrapped in a function call to the parent
 Comet client. (See Chapter 12 for
 more information about chunked encoding and browser exceptions.) To keep
 the iframe document from becoming very large in terms of file size, one
 optimization is to remove nodes from the iframe document after they are
 parsed.
The forever-frame technique was initially doomed within Internet Explorer because of a rather annoying user
 experience: the constant clicking sound of a page load completing.
 Internet Explorer treats each chunked encoding event as a page load.
 Gmail Talk popularized the essential workaround for this
 problem through the use of the htmlfile ActiveX object (http://msdn2.microsoft.com/en-us/library/Aa752574.aspx),
 making the forever-frame technique a viable solution. Here’s a fragment
 on a solution for Internet Explorer:
function foreverFrame(url, callback){
 // http://cometdaily.com/2007/11/18/ie-activexhtmlfile-transport-part-ii/
 // note, do not use 'var tunnel...'
 htmlfile = new ActiveXObject("htmlfile");
 htmlfile.open();
 htmlfile.write(
 "<html><script>" +
 "document.domain='" + document.domain + "';" +
 "</script></html>");
 htmlfile.close();
 var ifrDiv = tunnel.createElement("div");
 htmlfile.body.appendChild(ifrDiv);
 ifrDiv.innerHTML = "<iframe src='" + url + "'></iframe>";
 foreverFrame.callback = callback;
}
foreverFrame creates, opens,
 and writes an HTML document into an htmlfile object, and sets the document.domain variable, which is essential
 for cross-subdomain Comet, or the more common case of the Comet server
 running on a different port than your normal web server. An iframe is
 then created inside the htmlfile’s
 body, and this iframe document is then used for your Comet connection.
 Using this technique, Internet Explorer no longer plays a click event and
 its accompanying sound. Garbage collection may prevent the cleanup and
 removal of the connection, so an onunload function is
 necessary to remove the reference to htmlfile and explicitly call the garbage
 collector:
function foreverFrameClose() {
 htmlfile = null;
 CollectGarbage();
}

XHR Streaming

The cleanest API for communication with the server is through
 an XMLHttpRequest, since
 it provides direct access to the response text and headers, and this is
 normally the transport mechanism used for polling and long polling.
 Several browsers provide support
 for streaming through XHR, including Firefox, Safari, Chrome, and Internet Explorer 8. Like the forever-frame
 technique, XHR streaming allows successive messages to be sent from the
 server without requiring a new HTTP request after each response.
While the lack of support for streaming in Internet Explorer
 versions 7 and earlier precludes complete reliance on a streaming-based
 protocol, we can certainly leverage streaming when it is available to
 improve performance. When available, XHR streaming is currently the
 best-performing Comet transport in the browser since it does not require
 the overhead of an iframe or script tags (as the forever-frame technique
 does), and can continuously utilize a single HTTP response (which long
 polling doesn’t do). While it is unfortunate that Internet Explorer does
 not support it, XHR streaming is still a valuable progressive
 enhancement. Users can upgrade browsers and instantly enjoy the benefit
 of improved performance.
XHR streaming is achieved with a standard XMLHttpRequest, but you can listen
 for onreadystatechange
 events with a readyState of 3 to
 access data that has been sent from the server (prior to the response
 being finished; that is, a readyState
 of 4), which allows you to handle data as it is received, without
 waiting for the connection to close:
function xhrStreaming(url, callback){
 xhr = new XMLHttpRequest();
 xhr.open('POST', url, true);
 var lastSize;
 xhr.onreadystatechange = function(){
 var newTextReceived;
 if(xhr.readyState > 2){
 // get the newest text
 newTextReceived =
 xhr.responseText.substring(lastSize);
 lastSize = xhr.responseText.length;
 callback(newTextReceived);
 }
 if(xhr.readyState == 4){
 // create a new request if the response is finished
 xhrStreaming(url, callback);
 }
 }
 xhr.send(null);
}
While XHR streaming certainly opens the door to more efficient
 network utilization and reduced resource consumption for both client and
 server, you should be aware that in certain situations, streaming can
 actually negatively impact server efficiency. Some servers, when used in
 long-polling situations, defer the allocation of socket buffers until a
 response is ready and can almost immediately dispose of the buffer since
 the response will be finished as soon as it is sent. With streaming,
 these buffers are created and must be maintained for the life of the
 connection. Of course, this is a matter of how the server is optimized,
 and different servers perform differently.
On the client side, XHR streaming can potentially cause
 performance issues. If a streaming response is continued for too long,
 the browser suffers from excess memory usage. Several thousand
 successive messages on a single response can bring Firefox to its knees.
 You can easily correct this issue by simply finishing the response after
 each 100 messages (or after a byte limit, such as 50 KB), and creating a
 fresh new request (as long polling does for each message) for subsequent
 messages.
One of the added responsibilities when using XHR streaming is
 message partitioning. The browser receives a stream of text from the
 server, but must pull out the individual messages. Firefox supports a
 special content type, multipart/x-mixed-replace,
 which you can use to separate messages within the stream.[31] However, this is not widely supported, and as it turns
 out, you can write a JavaScript parser that pulls out individual
 messages and is actually faster than Firefox’s multipart handler.

Future Transports

Work is currently being done in the HTML 5 working group on WebSocket,[32] which would provide a web-safe TCP
 socket to greatly simplify the approach to tunneling from the
 client to the server. WebSocket would likely replace all forms of Comet
 connection techniques if it becomes widely adopted by browser vendors in
 a performant manner.
If WebSocket is adopted across the major browsers and has the
 expected performance metrics, it would quickly replace the other
 transport techniques described in this section.

[29] For simplicity, we are ignoring extra handling for legacy
 browsers and error handling, but most JavaScript libraries provide
 an Ajax/XHR request function, so your working code may be
 different.

[30] http://cometdaily.com/2007/11/06/comet-is-always-better-than-polling/

[31] http://cometdaily.com/2008/01/17/proposal-for-native-comet-support-for-browsers/

[32] http://cometdaily.com/2008/07/04/html5-websocket/

Cross-Domain

It is worth noting that long polling does not support cross-domain requests if the
 browser does not support cross-domain XHR, but the forever-frame technique does at least support
 cross-subdomain. We can also get cross-subdomain XHR with various
 workarounds such as the one by Abe Fettig,[33] or in modern browsers that support cross-domain XHR, or with
 HTML 5’s postMessage.[34]
XHR traditionally has a more restrictive security model than iframes
 or script tags that are included or inserted into a document. Thus,
 another option exists under the moniker callback polling or JSONP
 polling, which allows cross-domain polling through the
 insertion of script tags for each new request rather than relying on the
 XHR. This technique relies on the JSONP[35] technique for establishing implicit trust across domains.
 JSONP simply wraps the response from the server into a user-provided
 function, which then gets called with the return data. JSONP is not the
 be-all and end-all of security, but it establishes the same level of trust
 you would get from adding a script reference to a third-party
 domain.
JSONP works by returning data in a script that is evaluated, and the
 name of the function is specified in the request made to the server
 using <script> blocks
 instead of XHR. Support for cross-domain Comet is important for several
 reasons: requests to different domains don’t count against the
 two-connection limit,[36] connections can be made to retrieve data from third-party
 services, and your Comet server can run on a separate server from your
 HTTP server, allowing for separate Comet-optimized servers and traditional
 HTTP-optimized servers (traditional servers are often
 suboptimal for Comet and vice versa).
The following example shows usage of this technique, which allows
 you to return data from another domain back to your current domain, by
 using the implicit trust of this technique:
function callbackPolling(url, callback){
 // create a script element that will load the response from the server
 var script = document.createElement("script");
 script.type = "text/javascript";
 script.src = url + "callback=callbackPolling.callback";
 callbackPolling.callback = function(data){
 // send a new request to wait for the next server-sent message
 callbackPolling(url, callback);
 // call the callback
 callback(data);
 };
 // add the element to initiate loading
 document.getElementsByTagName("head")[0].appendChild(script);
}
It is important to note that in Firefox, successive script additions are always evaluated in
 order for any given page. Consequently, if you are using this technique to
 wait for a response from the server and in the meantime you wish to make
 another JSONP request in the same frame/page, you won’t receive a response
 until the first script is evaluated, which could take an indefinite amount
 of time since it is waiting for a message from the server. To overcome
 this issue, you can create separate iframes to encompass each JSONP
 request. With each request in a separate frame, the responses can be
 evaluated in parallel as soon as they are received.

[33] http://www.fettig.net/weblog/2005/11/30/xmlhttprequest-subdomain-update/

[34] http://www.whatwg.org/specs/web-apps/current-work/#crossDocumentMessages

[35] http://ajaxian.com/archives/jsonp-json-with-padding

[36] This is primarily an issue for Internet Explorer 6 and 7.
 Browser connection limits are explained in Chapter 11.

Effects of Implementation on Applications

Our goals with client-side Comet performance are to reduce latency of data
 transit, conserve and manage HTTP connections, route messages, and handle
 cross-domain issues. On the server side, performance optimizations are
 made by conserving and sharing the number of HTTP connections, and by
 minimizing the memory, CPU, I/O, and bandwidth requirements for each
 connection.
Managing Connections

Servers will keep an HTTP connection open indefinitely for each user, resulting
 in many open connections even if data is minimal. There are two
 constraints with connections: memory and CPU. No matter what, each
 connection is going to incur some memory overhead from the OS and our
 language. If we use one thread (or process) per connection, we incur an
 entire execution stack memory overhead, typically 2 MB, though this can
 be lowered until it is almost reasonable. Additionally, as our thread
 count increases past our processor count, we will end up with
 thrashing, where our operating system spends more
 cycles switching threads on to processors than it spends executing our
 actual code. For this reason, we need to opt for an asynchronous network
 architecture.
The problem with select or
 poll is that these methods cause the
 operating system to examine each and every socket you have open to
 determine which ones are ready. This means that a call to select, even one that reveals that no sockets
 are ready to be read from, is cheap when there are few sockets, but
 takes an increasing amount of CPU time as the number of sockets
 increases. We can avoid this problem by using alternative techniques
 that avoid this O(n)
 examination of sockets, such as kqueue on FreeBSD/OS X, epoll on Linux, and completion ports on Windows. There are network libraries in most major
 languages that wrap these details into coherent, cross-platform APIs,
 such as libevent in C, java.nio,
 and Twisted
 Python.
Performance optimization techniques vary widely based on usage
 scenarios. For example, consider chat, which typically has many users
 connected but only a few of them receiving data at any given time. In
 this case, being able to manage a large number of idle connections
 through server-side sharing of connections is useful. The web sites
 Orbited and
 Willow Chat are
 highly optimized for this usage
 scenario.
In other examples, such as a real-time stock quote monitoring
 application, many connections are updated constantly and few idle
 connections exist. Jetty, Lightstreamer, and Liberator are optimized for this
 case.

Measuring Performance

Measuring Comet performance has been discussed in numerous places and
 alluded to throughout this chapter. Tests have been done, for example,
 to figure out how many resources are needed to create a one-million-user
 Comet server.[37] The key requirements to achieving this scale are
 straightforward in principle: utilize as few system resources as
 possible per connection, and write solid tests[38] to measure performance.
Servers must minimize the use of resources, while also optimizing
 the number of long-held connections based on the frequency and payload
 size of the amount of data to send to each client. Larger payloads and
 more frequent sending of data increase the latency and reduce the number
 of maximum possible connections of a Comet server.
Because Comet is really just a performance optimization of
 HTTP and connection management, performance measurement
 techniques are actually quite similar to those for measuring any
 large-scale web application.

Protocols

A Comet connection differs from the communication semantics applied over the
 connection. Comet connections allow either server→client communication
 only, or bidirectional
 communication. Various protocols are then layered on top of the
 connection to provide more functionality and better semantics than
 simply “read” and “write,” such as Bayeux’s Publish-Subscribe (PubSub) model.
Bayeux,[39] is a protocol for transporting asynchronous messages
 (primarily over HTTP), with low latency between a web server, created as
 part of the cometD[40] project at the Dojo Foundation. Having a simple, extensible protocol is
 extremely beneficial for interoperability between various Comet servers
 and clients.
The PubSub paradigm is one approach commonly used with protocols
 such as Bayeux, with other protocols such as XMPP more common for chat applications.
The Dojo Toolkit provides all of the transport level handling
 of long polling and callback polling (including multiple frames for
 parallel JSONP requests) in its cometD module, and it also handles
 Bayeux service negotiation and communication. Consequently, you can use
 Dojo with a Bayeux-compatible server simply by instantiating the cometD
 module and letting it handle the transport details:
dojox.cometd.init("/cometd");
dojox.cometd.subscribe("/some/topic", function(message){
 // callback function
});

[37] http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-3/

[38] http://aleccolocco.blogspot.com/2008/10/gazillion-user-comet-server-with.html

[39] Bayeux is also the name of the tapestry showing the events
 leading up to the 1066 Norman invasion of England that includes
 Halley’s Comet, which was believed to be a sign of impending
 doom.

[40] The D stands for daemon, much like the
 d in httpd.

Summary

Unlike Ajax, Comet is a complex set of performance optimization
 techniques that impact the client side, the server side, and communication
 between the two. It’s still very early in the process of finding the right
 set of solutions for solving the Comet problem, but with the emergence of
 WebSocket, and solutions for handling millions of users, the complexity
 will decrease over time.

Chapter 9. Going Beyond Gzipping

Tony Gentilcore

Besides proper configuration of HTTP caching headers, enabling gzip
 compression is typically the most important technique for speeding up your
 web page. A chapter was devoted to compression in Steve Souders’ first book,
 High Performance Web
 Sites. Now that all browsers support gzip and all
 responsible web developers have enabled gzipping, that chapter is closed, right? Not
 quite.
Even if you have enabled gzipping, there is a good chance that a small
 but significant portion of visitors to your site are not receiving
 compressed responses. The exact percentage varies greatly across different
 demographics and geographies, but a large web site in the United States
 should expect that roughly 15% of visitors don’t indicate gzip compression
 support. This chapter explains why the percentage is higher than expected,
 how that affects performance, and what developers can do about it.
Why Does This Matter?

With such a small percentage, you might ask, “What’s the big deal?” Let’s take
 a look at what happens to 10 popular web sites when gzipping is
 disabled.
In this experiment, the page load time[41] for 10 popular web sites was measured by loading each web
 site 100 times in Internet Explorer 7.0 on Windows XP Pro. The cache
 remained primed between iterations to better represent the typical
 experience. All requests traveled through a proxy (Eric Lawrence’s
 Fiddler[42]) on the same machine. In the control group the proxy did
 nothing, but in the experimental group it stripped the request’s Accept-Encoding HTTP header so that compression was suppressed. Table 9-1 shows the absolute
 and percent increase when compression was disabled.
Table 9-1. Page load time increase with compression disabled
	Web site
	Total download size increase (on first
 load)
	Page load time increase (1000/384 Kbps
 DSL)
	Page load time increase (56 Kbps
 modem)

	http://www.google.com
	10.3 KB (44%)
	0.12s (12%)
	1.3s (25%)

	http://www.yahoo.com
	331 KB (126%)
	1.2s (64%)
	9.4s (137%)

	http://www.myspace.com
	441 KB (143%)
	8.7s (243%)
	42s (326%)

	http://www.youtube.com
	236 KB (151%)
	3.3s (56%)
	21s (87%)

	http://www.facebook.com
	348 KB (175%)
	9.4s (414%)
	63s (524%)

	http://www.live.com
	41.9 KB (41%)
	0.83s (53%)
	9.2s (99%)

	http://www.msn.com
	195 KB (77%)
	1.6s (32%)
	13s (85%)

	http://www.ebay.com
	245 KB (92%)
	1.7s (59%)
	3.5s (67%)

	http://en.wikipedia.org
	125 KB (51%)
	5.0s (146%)
	21s (214%)

	http://www.aol.com
	715 KB (111%)
	7.4s (47%)
	32s (60%)

	Average
	269 KB
 (109%)
	3.9s
 (91%)
	22s
 (140%)

With compression disabled, in an empty cache state on the first
 load, the total size of all resources that had to be downloaded more than
 doubled. Note that this number does not indicate the gzip compression
 ratio because the total download size is taken to be the sum of all
 resources downloaded, including images and Flash. Gzip compression is
 generally applied only to textual resources such as HTML, CSS, and JavaScript files.
For DSL users, the average page load time increased from 4.3 to 8.3
 seconds, a 91% increase. Dial-up users have it much worse, with an average
 page load time increase of from 15 to 37 seconds, a 140% increase.
With this data in hand, we can get back to the original question:
 “Should I care about the users who miss out on compression?” A naïve
 attempt at answering this question would be to calculate the average
 benefit across all requests: 15% of users times a 91% slowdown equals a
 14% slowdown averaged over all requests. If your mean page load time is
 four seconds, that means on average it is slowing your users by only
 560ms. You may not think anyone is going to leave your web site in that
 half of a second, so why care?
This is a case where looking at the averaged benefit does not tell
 the real story. In actuality, 85% of users are unaffected, but the 15% of
 users who are affected are affected in a big way. An additional four
 seconds is enough to cause users to abandon your web site. It is important
 to understand why content may not be compressed and whether there is
 anything developers can do.

[41] Page load time was taken to be the time between the OnBeforeNavigate2 and OnDocumentComplete events.

[42] http://www.fiddlertool.com/

What Causes This?

Now that you realize this is a real problem affecting real users,
 the next logical step is to figure out what is going on so that you might
 stand a chance of fixing it.
Quick Review

Let’s start with a review of how compression works. All modern
 browsers (since the 4.x generation, circa 1998)
 support gzip compression and indicate that to web servers by supplying
 the Accept-Encoding HTTP
 header:
Accept-Encoding: gzip, deflate
When this header is present in the request and gzip compression is
 enabled on your web server, in compliance with RFC 2616 section 14.3[43] it responds with a compressed response marked by
 the Content-Encoding
 header:
Content-Encoding: gzip

The Culprit

If all modern browsers send the Accept-Encoding header, why are 15% of
 responses being served uncompressed? Surely, 15% of people aren’t using
 browsers that are more than 10 years old. An analysis of a large sample
 of web server logs gave a clue to the culprit. Some requests arrived
 with mangled Accept-Encoding
 headers:
Accept-EncodXng: gzip, deflate
X-cept-Encoding: gzip, deflate
XXXXXXXXXXXXXXX: XXXXXXXXXXXXX
---------------: -------------
~~~~~~~~~~~~~~~: ~~~~~~~~~~~~~
But these mangled headers did not account for the full number of
      requests that are served without compression. Many more requests
      identified as real users in modern browsers (not bots) were simply
      missing the Accept-Encoding header
      altogether. Why would anyone or anything intentionally slow down users’
      web browsing experience by disabling compression? The culprits fall into
      two main categories: web proxies and PC security software.
What do these have in common? They both need to observe (or, if
      you prefer, spy on) the responses sent by the web server. Observing a
      response is cheaper in terms of CPU usage if the response does not have
      to be decompressed first. This, unfortunately, ignores the fact that, from the end user’s
      perspective, the increased network time usually far outweighs the CPU
      time that would be necessary for the observing program to unzip the
      response.[44] For this reason, I like to refer to the technique of
      stripping the Accept-Encoding header for the purpose of
      observing the responses as turtle tapping. Turtle
      tapping is the way a turtle might perform wire tapping: very
      slowly.

Examples of Popular Turtle Tappers



Table 9-2 shows
      several popular client software programs and web proxies along with how
      they modify the client’s Accept-Encoding request header.[45] This list is by no means comprehensive. For instance,
      there are many add-ons for the popular Squid web proxy that strip or
      mangle the header to filter or observe web content.
Table 9-2. Software modifications to the Accept-Encoding header
	Software
	Accept-Encoding modification

	Ad Muncher
	Stripped

	CA Internet Security Suite
	Accept-EncodXng: gzip,
              deflate

	CEQURUX
	Stripped

	Citrix Application Firewall
	Stripped

	ISA 2006
	Stripped

	McAfee Internet Security 6.0
	XXXXXXXXXXXXXXX:
              +++++++++++++

	Norton Internet Security 2005
	---------------:
              -------------

	Novell iChain 2.3
	Stripped

	Novell Client Firewall
	Stripped

	WebWasher
	Stripped

	ZoneAlarm Pro 5.5
	XXXXXXXXXXXXXXX:
              XXXXXXXXXXXXX




It is also interesting to examine how the percentage of turtle
      tapping victims varies with geography. The majority of requests coming
      from some Middle Eastern countries don’t have a valid Accept-Encoding header. It is possible this
      could be due to a national firewall. Upward of 20% of users in the
      United States and Russia suffer from this problem. The European Union
      and Asian nations seem to have the best handle on this problem with
      fewer than 10% of users affected.



[43] http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3

[44] Especially considering that unzipping is typically three to
          four times faster than zipping.

[45] Older or newer versions may not behave the same way, and it
          may be possible to change the program’s behavior depending on the
          configuration.



How to Help These Users?



Now that you have a good understanding of the problem’s cause and
    effect, let’s move on to the real work: helping these users get the fast
    experience they deserve (not to mention helping you get the benefit that
    happy users provide to your web site). Of course, the correct solution to
    this problem is to appeal to the vendors of software that strips or
    mangles the Accept-Encoding header. In
    fact, the problem is fixed in some newer versions. For instance,
    Norton Internet Security 2009 no longer causes this
    problem.
However, it will be some time before all existing users of these
    programs have switched or upgraded. Until then, this chapter discusses
    three approaches to mitigating this problem, each increasing in
    aggressiveness.
Design to Minimize Uncompressed Size



This may seem too obvious to bear repeating, but it cannot be stressed
      enough: sending smaller responses makes pages
      faster. This is why compressing responses is such an
      effective technique despite its CPU cost on both the client and the
      server. Good web developers know to do everything in their power to make
      HTML, CSS, and JavaScript as compact as possible. However, we have all
      been taught to think of long repeated strings as practically free
      because gzip compression makes them essentially disappear. As a result,
      we don’t do much to optimize them. This assumption is completely invalid
      when considering users that cannot receive compressed responses.
Finding repetitive content that can be factored out is a bit of an
      art that varies highly across unique web sites. These are a few
      generally applicable techniques that can reduce your page’s uncompressed
      size without increasing the compressed size.
Use event delegation



Often, several elements on a page require a similar event handler. Common
        examples that appear in most of the top 10 web sites are drop-down
        boxes, click-tracking links, and hover animations. The cost of
        specifying each handler in terms of page size adds up very
        quickly.[46]
For example, at the time of this writing, http://facebook.com includes a
        drop-down box with roughly 50 language options. Each language anchor
        in the drop-down requires an extra 133 uncompressed bytes to attach
        the onclick handler:
<a href="http://es-la.facebook.com/" onclick="return wait_for_load(this, event,
function() { intl_set_cookie_locale("", "es_LA"); return false;
});">Español</a>
Multiplying that waste times 50 links means about 6.7 KB of
        waste is being transferred to users that don’t support compression.
        The distinct information repeated for each anchor is the URL, locale
        code, and language name.
Event delegation is the name commonly given
        to the technique of attaching a single event handler to a parent
        element that contains all of the elements that need to respond to the
        event. When the event is triggered on the child element, it bubbles up
        to the parent where it is handled. That single handler can distinguish
        which child element is the target of the event and receive additional
        parameters via some attribute on that element.
For example, to improve our facebook.com example, the links
        could be coded as follows:
<div class="menu_content" onclick="return intl_set_cookie_locale(event)">
  ...
  <a href="http://es-la.facebook.com/" class="es_LA">Español</a>
  ...
</div>
The new event delegation handler gets the locale, which was
        previously passed as a parameter, from the target element’s
        class:
<script>
  function intl_set_cookie_locale(e) {
    e = e || window.event;  // Get event object.
    var targetElement = e.target || e.srcElement;  // Get target element.
    var newLocale = targetElement.class;  // Get the new locale.
    ...
    // Use newLocale to set the cookie.
    ...
    return false;  // Cancel the anchor's href action.
  }
</script>
The small amount of additional code to make the delegation work
        is insignificant because it can be placed in an external, cacheable
        JavaScript file instead of in the root document, which has to be
        downloaded every time the user visits the page.

Use relative URLs



We are all familiar with path-relative URLs (e.g.,
        /index.html instead of
        http://www.example.com/index.html). But as
        described by RFC 1808,[47] there are several lesser-known ways to make URLs relative
        that are supported by nearly all browsers going back to circa 1995.
        For example, with the notable exception of slashdot.org, almost no major web
        site employs protocol relative links (e.g.,
        //www.example.com instead of
        http://www.example.com). Given the number of URLs
        on typical pages, the bloat of all those nonrelative URLs can quickly
        add up to a significant portion of the page size. Given a base URL of
        http://www.example.com/path/page.html, the
        relative URLs shown in Table 9-3 may be
        used.
Table 9-3. Relative equivalents of
          http://www.example.com/path/page.html
	Fully specified destination URL
	Relative equivalent

	http://subdomain.example.com/
	//subdomain.example.com

	http://www.example.com/path/page2.html
	page2.html

	http://www.example.com/index.html
	/index.html

	http://www.example.com/path2/page.html
	../path2/page.html

	http://www.example.com/path/page.html#f=bar
	#f=bar

	http://www.example.com/path/page.html?q=foo
	?q=foo




For dynamically generated URLs, it is trivial to write a
        function that will make each URL as relative as possible given the
        base URL of the page it includes.

Strip whitespace



Your users don’t care how readable your code is, but they do care
        how fast your site is. Line breaks and proper indentation are
        invaluable to developers, but they should always be stripped by an
        automated process before being served to users. As discussed in
        High Performance Web
        Sites, many tools are available to do this for
        JavaScript. Some of the most popular are YUI
        Compressor, ShrinkSafe, and
        JSMin. For CSS, YUI Compressor does the best job. In HTML, the problem is a bit trickier because whitespace
        can be significant in many contexts. However, if you are willing to
        indicate the places where significant whitespace is needed, most major
        template languages have an option to strip leading and trailing
        whitespace as well as line breaks.

Strip attribute quotes



Before discussing stripping quotes around HTML attributes, two disclaimers need to be mentioned.
        First, if your web page is written in XHTML, attributes must be
        quoted. Second, HTML attributes should always be written with double
        quotes in place to avoid accidentally introducing bugs when attribute
        values change from a value that doesn’t require quotes to one that
        does. However, according to the HTML 4.01 specification section
        3.2.2,[48] it is valid to omit quotes around attributes that
        contain only letters, numbers, hyphens, periods, underscores, and
        colons (matching the regular expression [a-zA-Z0-9\-._:]).
To improve download time, it is beneficial to strip unnecessary
        quotes via an automated process before serving to the user.

Avoid inline styling



Another way in which the uncompressed page size is often
        unnecessarily inflated is by repeatedly styling content inline instead
        of relying on CSS. For example, at the time of this writing, wikipedia.org contains 4 KB of
        repeated inline style attributes throughout the main HTML document.
        This will gzip away quite efficiently, but it adds up to a significant
        amount of extra data to download when compression has been
        suppressed.

Alias JavaScript names



Several commonly used DOM methods were given unfortunately long
        names in JavaScript. Compression usually makes repeating these
        names practically free. However, in the uncompressed case they can be
        quite expensive. Fortunately, JavaScript also allows us to overcome
        this problem by creating references (or aliases) to these long
        names.
The first place to look for aliasing opportunities is functions
        that are used frequently throughout your script. For instance, some
        popular JavaScript libraries alias document.getElementById as the variable
        $:
var $ = document.getElementById;
Throughout your script, you can then simply write $("foo") instead of writing document.getElementById("foo"). This
        saves 22 uncompressed bytes per use. It is usually wise to alias any
        method used more than three times.
The second place where aliases are beneficial is when accessing
        chained properties of an object.[49] This is best illustrated with an example:
// Wasteful
var foo = $("foo");
foo.style.left = "0";
foo.style.right = "0";
foo.style.height = "10px";
foo.style.width = "10px";

// Better
var foo = $("foo").style;
foo.left = "0";
foo.right = "0";
foo.height = "10px";
foo.width = "10px";

Real-world savings



How well do these techniques work? Table 9-4 shows the size
        reduction of the uncompressed root document achieved by applying each
        technique on the same set of popular web pages.[50]
Table 9-4. Size reduction achieved on popular web pages
	Web site
	Event delegation
	Relative URLs
	Strip space
	Strip quotes
	Use CSS
	Total

	http://www.google.com
	1.8%
	3.4%
	--
	--
	0.4%
	5.6%

	http://www.yahoo.com
	--
	0.8%
	3.3%
	0.6%
	0.5%
	5.2%

	http://www.myspace.com
	4.0%
	2.2%
	9.0%
	1.5%
	1.8%
	18.5%

	http://www.youtube.com
	8.3%
	0.6%
	7.1%
	2.3%
	1.2%
	19.5%

	http://www.facebook.com
	12.9%
	1.7%
	1.1%
	2.6%
	0.3%
	18.6%

	http://www.live.com
	8.5%
	0.9%
	0.2%
	0.9%
	0.3%
	10.8%

	http://www.msn.com
	--
	3.0%
	0.1%
	1.7%
	--
	4.8%

	http://www.ebay.com
	0.2%
	1.7%
	1.2%
	1.6%
	1.2%
	5.9%

	http://en.wikipedia.org
	--
	1.6%
	2.1%
	1.8%
	5.2%
	10.7%

	http://www.aol.com
	10.4%
	2.4%
	1.4%
	1.8%
	0.5%
	16.5%

	Average
	4.6%
	2.8%
	2.6%
	1.5%
	1.1%
	11.6%




Applying all of these techniques trimmed the uncompressed size
        by anywhere from 5% to 20% (with an average of 11.6%). These
        optimizations are certainly worthwhile given that relative URLs,
        stripping whitespace, and stripping attribute quotes can be performed
        via an automated process. Furthermore, event delegation, JavaScript
        aliasing, and avoiding inline styles lead to more maintainable code
        that is also faster in the browser.
However, an 11.6% reduction simply pales in comparison to
        applying gzip, which reduces the same root documents by an average of
        72.1%. Going back to the original timing tests, if applying gzip
        reduces page size by 72.1% and 3.9 seconds, we might expect that a
        reduction of 11.6% would lead to a speed gain of about 630ms.
To beat this problem, we are going to have to look beyond such
        workarounds and toward a method of reducing the number of responses
        that are served without compression.


Educate Users



Once your page’s uncompressed size is as small as possible, another
      potential solution to help the victims of turtle tapping is to inform
      them of the problem. There is ample precedence for this type of helpful
      message on the Web. For users of the Firebug Firefox extension, Gmail
      displays a bright red dialog at the top of the page that reads, “Firebug
      is known to make Gmail slow unless it is configured correctly.” Surf the
      Web for a while with Internet Explorer 6.0 and you’ll notice messages
      prompting you to upgrade your browser.
This technique can be applied if the request does not contain a
      valid Accept-Encoding header.
      Displaying a brief, informative message such as the following could help
      your user correct the problem:
Your Internet connection is slowed because it does not allow compression.
                       Fix this                 Hide
The “Fix this” link points to a page that explains the types of
      software that cause this and how to disable or upgrade them. The “Hide”
      link sets a cookie so that the message is never displayed again.
Unfortunately, this too is not an adequate solution. Users behind
      a proxy that is preventing compression are powerless to change anything
      beyond perhaps complaining to an administrator. There is one more
      strategy, described next, that can be used to help these users.

Direct Detection of Gzip Support



After all else has failed, if uncompressed responses are still causing pain for your
      site, there is one guerrilla tactic that may be considered: to directly
      test for compression support rather than relying on the Accept-Encoding header. This may sound
      dangerous initially, but if properly tested, it can be safe. It is
      important to get this right because you don’t want to risk a single
      false positive. Expect that direct detection will allow you to compress
      roughly half of the requests that are missing compression.
Performing the test



If the Accept-Encoding header
        is missing from the request, conditionally output a hidden iframe as
        the last element of the page <body>:
<iframe src="/test_gzip.html" style="display:none"></iframe>
This will load a test_gzip.html document, which you set up
        as follows:
	Disable caching so that the current connection is always
            tested.

	Compress the contents, regardless of the request
            headers.

	Use JavaScript to set a session-only cookie indicating that
            the browser supports gzip.



If the client supports compression, a cookie indicating that
        fact will be sent with subsequent requests. If the client truly does
        not support compression, the hidden iframe will just load garbled text
        that won’t be seen and won’t set the supports_gzip cookie.
There are many ways to accomplish this. Here is an example
        written in PHP:
<?php
  function flush_gzip() {
    $contents = ob_get_contents();
    ob_end_clean();
    header('Content-Type: text/html');
    header('Content-Encoding: gzip');
    header('Cache-Control: no-cache');
    header('Expires: -1');
    print("\x1f\x8b\x08\x00\x00\x00\x00\x00");
    $size = strlen($contents);
    $contents = gzcompress($contents, 9);
    $contents = substr($contents, 0, $size);
    print($contents);
  }

  ob_start();
  ob_implicit_flush(0);
?>

<html>
  <body>
    <script>
      document.cookie="supports_gzip=1";
    </script>
  </body>
</html>

<?php
  flush_gzip();
?>

Using the result



Now your subsequent web pages of the same Content-Type can be compressed if the
        supports_gzip cookie exists. When
        forcing compression based on the presence of the cookie, make sure
        that the response is not publicly cacheable, and don’t bother to
        output the test_gzip iframe
        again.
Again, the implementation will vary based on your environment.
        Here is a PHP example that uses the same flush_gzip method defined previously:
<?php
  // flush_gzip() definition omitted for brevity.

  ob_start();
  ob_implicit_flush(0);
?>

<html>
  <!-- Your page goes here. -->
</html>

<?php
  if (isset($_COOKIE["supports_gzip"])) {
    flush_gzip();
  } else {
    flush();
  }
?>

Measuring the effectiveness



Always keep track of two important statistics when considering
        or using direct detection of gzip support. The first is the percentage
        of requests that don’t indicate compression support via the Accept-Encoding header. If that percentage
        is too low, the technique of directly detecting compression support is
        not worth the hassle. The second is the percentage of requests that
        are missing the Accept-Encoding
        header but are found to support compression. This can be measured only
        after direct detection. Direct
        detection should continue to be
        employed only if this percentage remains high.




[46] For interactive pages, reducing the number of event handlers
            can have an even more significant performance benefit in terms of
            JavaScript execution time.

[47] http://www.w3.org/Addressing/rfc1808.txt

[48] http://www.w3.org/TR/html4/intro/sgmltut.html#h-3.2.2

[49] Aliasing in tight loops can also significantly improve
            JavaScript execution performance.

[50] JavaScript aliasing was not feasible to test.



Chapter 10. Optimizing Images

Stoyan Stefanov

Nicole Sullivan





The single most important thing you can do to improve performance is put your site on a diet—take off (and keep off)
  all the bytes you put on under the stress of chasing the next killer
  feature. Optimizing images is one way to do just that. Historically, the
  question of which features to include was considered a business rather than
  an engineering decision, so page weight has rarely been discussed in
  performance circles, and yet it is extremely important to overall response
  time.
Response time for web pages is almost exactly correlated to page weight, and
  images tend to account for half of the size of typical web pages (see Figure 10-1). Most importantly,
  images are an easy place to improve performance without removing features.
  Often, we can make substantial improvements in the size of an image with
  little to no reduction in quality.
[image: Images as a percentage of page weight for the Alexa top 10 global web sites]

Figure 10-1. Images as a percentage of page weight for the Alexa top 10 global
    web sites


In this chapter, we focus on nonlossy
  optimizations, which result in a smaller overall file size with no loss in
  quality. Pixel for pixel, the visual quality of the original and final
  images is the same. The reduction in size often results from removing
  metadata, better compression of color or pixel information, or (in the case
  of PNG) removing chunks that are not necessary for the Web.
If you don’t optimize images, you send extra data over the wire that
  adds nothing to the user experience. It seems like a no-brainer to follow
  the practices we’ll recommend in this chapter, but image optimization falls
  in the blurry space between engineering and design, and has historically
  been a neglected part of the performance puzzle.
In this chapter, we’ll cover:
	Characteristics of different image formats for the Web (GIF, JPEG,
      and PNG)

	Automating lossless optimization

	The AlphaImageLoader
      filter

	Optimizing sprites

	Other image optimizations



Two Steps to Simplify Image Optimization



Image optimization is simpler when it is broken down into two steps, each of which
    is owned by a different stakeholder in the creation of a web site:
	Optimizing images begins with a qualitative decision about the
        number of colors, resolution, or accuracy required for a given image.
        These changes are lossy optimizations that result in an
        overall loss of quality. The image might have fewer colors, or in the
        case of the JPEG format, less detailed encoding. Although 60% to 70%
        quality is the accepted standard for JPEG, some images or contexts may
        require more or less quality. For instance, glossy images of
        celebrities may require a larger file size than autogenerated charts
        or tiny thumbnails. These decisions are creative decisions and should
        be made by the designer, using tools such as the Save for the Web
        feature in Photoshop. The designer may also choose to do “spatial” or “zonal” compression—for
        example, choosing 80% quality for Brangelina’s face and only 30% quality
        for the night background.

	Once the quality choice has been made, use nonlossy compression to squeak the
        last bytes out of the image. Unlike the preceding step, this one begs
        for an engineering solution.
        Doing the same work by hand would be much more time-consuming. In fact, fantastic open
        source tools exist for optimizing images. You can write a script that
        goes over all of your image files, determines the type of each, and
        runs a utility to optimize the file.





Image Formats



The first step in producing optimal images is to understand the
    features of each of the three formats used on the Web today—JPEG, PNG, and
    GIF—and choosing the right one for each specific case. Let’s start the
    discussion of the different formats with just a few bits of background
    information.
Background



This section discusses the traits of images that affect how you use
      them on the Web and that factor into your choice of a format.
Graphics versus photos



Both the image format you use and the ways to optimize it depend on
        which of the following categories the image falls into:
	Graphics
	Examples of graphics are logos, diagrams, graphs, most
              cartoons, and icons. These images usually contain continuous
              lines or other sharp transitions in color. The number of
              distinct colors in a graphic is relatively small.

	Photos
	Photos usually have millions of colors and contain smooth color
              transitions and gradients. Imagine, for example, a picture of a
              sunset you take with your camera. An image of a painting (such
              as the Mona Lisa) is also closer to a photo
              than a graphic.



In terms of formats, GIFs are often used for graphics, whereas JPEG is the preferred format for photos. PNG comes in two kinds, of which palette PNG is even better suited
        for graphics than GIF.

Pixels and RGB



Images consist of pixels, where a pixel is
        the smallest piece of image information. Different color models can be
        used to describe a pixel, but the RGB color model is the one usually used for computer
        graphics.
In the RGB color model, a pixel is described based on the amount
        of red (R), green (G), and blue (B) it contains. R, G, and B are
        called components (a.k.a.
        channels), and the intensity of each component
        has a value from 0 to 255. The hexadecimal representation of the
        channel values, often used in HTML and CSS, ranges from 00 to FF.
        Mixing different intensities of the three channels gives you different
        colors. For example:
	Red is rgb(255, 0, 0) or
            hex #FF0000.

	Blue is rgb(0, 0, 255) or
            hex #0000FF.

	A shade of gray will likely have equal parts of each color;
            for example, rgb(238, 238, 238)
            or hex #EEEEEE.




Truecolor versus palette image formats



Using the RGB color model, how many distinct colors can you
        represent in a graphic? The answer is more than 16 million: 255 * 255 *
        255 (or 224) gives you 16,777,216
        combinations. Image formats that can represent this many colors are
        called truecolor image formats;
        examples are JPEG and the truecolor type of PNG.
To save space when storing the image information in a file, one
        technique is to create a list of all the unique colors found in the
        image. The list of colors is called a palette
        (also called an index). Having the list of colors,
        you can represent the image by keeping track of which palette entry
        corresponds to each pixel.
The palette can contain any RGB value, but the most common
        palette image formats—GIF and
        PNG8—limit the number of palette entries to 256. This
        doesn’t mean you can pick from only 256 predefined colors. On the
        contrary, any of the 16+ million colors are up for grabs, but you can
        only have up to 256 of them in a single image.

Transparency and alpha channel (RGBA)



RGBA is not a distinct color model, but more of an extension to RGB.
        The extra component A represents alpha
        transparency and also has values from 0 to 255, although different
        programs and libraries define it as a percentage from 0% to 100% or
        values from 0 to 127. The alpha channel describes how much you can see
        through the image pixel.
Let’s say you have a web page that has a background pattern and
        a blue image on top of it. If a pixel in the image has zero alpha
        transparency, the background behind the image will not be visible. If
        the alpha transparency value is the maximum 100%, the pixel will not
        be visible at all and the background will “shine through.” A medium
        value of, say, 50% will let you see both the background and the pixel.
        Figure 10-2 shows some
        examples.

Interlacing



When a large image downloads over a slow Internet connection, it is drawn
        as it arrives, one row at a time from top to bottom, so it grows down
        slowly. To improve the user experience, some image formats support
        interlacing, in which successive samples of the
        image are shown. Interlacing lets the user see a rough version of the
        image while waiting for the details, giving the psychological effect
        of eliminating the feeling that the page is delayed.
[image: Examples of images with variable transparency produced using PHP with the GD library, which declares alpha values from 0 to 127]

Figure 10-2. Examples of images with variable transparency produced using
          PHP with the GD library,
          which declares alpha values from 0 to 127




Characteristics of the Different Formats



With this background under our belts, let’s see how GIF, JPEG, and PNG
      differ.
GIF



GIF, an abbreviation for Graphics Interchange Format, is a
        palette image format. Here are some of its features:
	Transparency
	GIF allows for a binary (yes/no) type of transparency—a
              pixel is either fully transparent (not containing
              a color) or fully opaque (containing a solid color). This means
              that alpha (variable) transparency is not supported; instead,
              one of the colors in the palette is marked to represent
              transparency, and transparent pixels are assigned that color.
              So, if your GIF has transparent pixels, this will “cost” you one
              palette entry.

	Animation
	The GIF format supports animation. An animated image consists of
              a number of frames; it’s like having several images contained in
              the same file. GIF animations are generally perceived as
              annoying because of their abuse in the early years of the Web,
              when they were used for blinking text, rotating @ signs, and so
              on. They still have some application today; for example, for ad
              banners (although this is mainly a Flash domain now) or little
              “Loading…” indicators in Rich Internet Applications (RIAs).

	Nonlossy
	The GIF format is nonlossy, which means you can open a GIF, do
              some editing, and save it without losing quality.

	Horizontal scanning
	When writing a GIF file, a compression
              algorithm (called LZW) is used to
              reduce the file size. When compressing the GIF, the pixels are
              scanned horizontally, top to bottom. This results in a better
              compression when you have areas of horizontally repeating
              colors. For example, a 500×10-pixel image (width: 500px;
              height: 10px) containing stripes—meaning horizontal lines of the
              same color—will have a smaller file size than the same image
              rotated to 90 degrees (width: 10px; height: 500px) when the
              stripes become vertical.

	Interlacing
	GIF supports optional interlacing.



The 256-color limit for GIFs makes them unsuitable for photos,
        which usually require a much greater number of colors. GIFs are better
        suited for graphics (icons, logos, diagrams), but as you’ll see later
        in this chapter, PNG8 is a superior format for graphics. Therefore, you should usually use GIFs only
        for animation.
There used to be a patent issue with LZW, the lossless data
        compression algorithm used by the GIF format, but the patents expired
        in 2004, so GIF can be used freely now.

JPEG



JPEG stands for Joint Photographic Experts Group, the organization that
        developed the standard. JPEG is the de facto standard for storing
        photos. This format reduces the information required to show a picture
        through techniques that take into account the human eye’s perception
        of color and light intensities, so it can store high-resolution images
        in greatly compressed files. Here are some of its features:
	Lossy
	JPEG is a lossy format that accepts a user-specified quality
              setting, which determines how much image information is lost.
              The quality values range from 0 to 100, but even a value of 100
              will result in some quality loss.
When you do multiple edits of the same image, it’s best to
              use a nonlossy format to store the intermediate results and then
              save as JPEG once you’re done with the changes. Otherwise,
              you’ll lose some quality every time you save.
A few operations can be performed losslessly, such
              as:
	Rotation (only to 90, 180, or 270 degrees)

	Cropping

	Flipping (horizontal or vertical)

	Switching from baseline to progressive and vice
                  versa

	Editing image metadata



The last of these operations is particularly valuable for
              our purposes. We’ll exploit it later to automate the
              optimization of JPEGs.

	Transparency and animation
	JPEG doesn’t support transparency or animation.

	Interlacing
	In addition to the default baseline JPEG, there’s also a
              progressive JPEG, which supports interlacing.
              Internet Explorer doesn’t render the progressive
              JPEG in stages, but it successfully displays the whole image
              once it arrives.



JPEG is the best format for photographic images on the Web and is also widely used
        in digital cameras. It is not suitable for graphics, however, because
        of the artifacts of the lossy compression around lines or other sharp
        transitions of color.

PNG



PNG (Portable Network Graphics) was created to address shortcomings of the GIF format and
        its patent complications. In fact, the joke goes that PNG is a
        recursive acronym that stands for “PNG is
        Not GIF.” Here are some of
        its features:
	Truecolor and palette PNGs
	The PNG format has several subtypes, but they can roughly
              be divided into two: palette PNGs and truecolor PNGs. You can use palette PNGs as
              replacements for GIFs, and you can use truecolor PNGs instead of
              JPEGs.

	Transparency
	PNG supports full alpha transparency, although there are two
              quirks in Internet Explorer version 6 that we’ll describe
              later.

	Animation
	Although experiments and actual implementations exist,
              currently there’s no cross-browser support for animated
              PNGs.

	Nonlossy
	Unlike JPEG, PNG is a nonlossy format: multiple edits do not
              degrade quality. This makes the truecolor PNG a suitable format
              for storing intermediate stages of editing a JPEG.

	Horizontal scanning
	Like GIFs, PNGs that have areas of horizontally repeating
              colors will compress better than those with vertically repeating
              colors.

	Interlacing
	PNG supports interlacing and uses an algorithm that is superior
              to GIF; it allows for a better “preview” of the actual image,
              but interlaced PNGs have bigger file sizes.





More About PNG



Let’s take a look at a few more details that will give you a
      better understanding of the PNG format.
PNG8, PNG24, and PNG32



You might come across the names PNG8, PNG24, or PNG32. Let’s
        clarify their meaning:
	PNG8
	Another name for palette PNG

	PNG24
	Another name for truecolor PNG that has no alpha
              channel

	PNG32
	Another name for truecolor PNG with alpha channel



There are other variations, such as grayscale PNGs with and
        without alpha, but they are used much more rarely.

Comparing PNG to the other formats



It’s clear that GIFs are designed for graphics, JPEGs for
        photographs, and various types of PNGs for both. This section compares
        PNG to the other formats and offers some extra details about
        PNG.

Comparison to GIF



Except for animation support, palette PNGs have all the features of
        GIFs. In addition, they support alpha transparency and generally
        compress better, resulting in smaller file sizes. So, whenever
        possible, you should use PNG8 rather than
        GIF.
One exception is that very small images with very few colors
        might compress better as GIFs. But such small imagery should be part
        of a CSS sprite, because the “price” of an HTTP request will greatly
        outweigh the saving of a few bits. Chances are the sprite image will
        compress better as a PNG.

Comparison to JPEG



When you have an image with more than 256 colors, you need a
        truecolor image format—a
        truecolor PNG or a JPEG. JPEGs compress better and, in general,
        JPEG is the format for photos. But since JPEGs are lossy and there are artifacts around
        sharp transitions of color, there are cases when a PNG is
        better:
	When the image has slightly more than 256 colors, you might
            be able to convert the image to PNG8 without any visible quality
            loss. It’s quite surprising how sometimes you can strip out more
            than 1,000 colors and still not notice the difference.

	When artifacts are unacceptable—for example, a color-rich
            graphic or a screenshot of a software menu—a PNG is the preferred
            choice.




PNG transparency quirks



Two quirks in Internet Explorer 6 are related to PNG and
        transparency:
	Any semitransparent pixels in a palette PNG appear as fully
            transparent in Internet Explorer 6.

	Alpha transparent pixels in a truecolor PNG appear as a
            background color (most often gray).



The first issue means PNG8 behaves like GIF in Internet Explorer
        6. This is not so bad and still allows you to select PNG instead of
        GIF for all your graphical images. PNG8, therefore, offers
        “progressively enhanced” semitransparent images that look great in all
        modern browsers and degrade to GIF-like transparency in Internet
        Explorer 6.
The second issue is a little more serious and there are various
        workarounds that boil down to the use of the proprietary CSS property AlphaImageLoader or the use of VML. As you’ll see later in this chapter, AlphaImageLoader comes at a cost in
        performance and user experience and you should avoid it when possible.
        The VML workaround has the drawback of adding extra markup and code.
        In conclusion, always try to achieve the design using PNG8.

PNG8 and image editing software



Unfortunately, most image-editing programs, including Photoshop,
        can only save PNG8 with binary transparency. One notable exception
        is Adobe
        Fireworks, which has excellent alpha transparency support. There are also command-line
        tools such as pngquant
        and pngnq that
        allow you to convert truecolor PNGs to palette PNGs.
Here’s an example of a pngquant command, where the number 256
        specifies the maximum number of colors in the palette:
pngquant 256 source.png



Automated Lossless Image Optimization



Now that you know about the different image formats, let’s see how you
    can optimize your images. The beauty of the process you’re about to see is
    that:
	It’s automated and doesn’t require human interaction.

	All operations are lossless, so you don’t have to worry that the
        image quality will degrade.

	It uses freely available command-line tools.



Each image type requires different handling, but it’s usually
    predictable and easy to automate in a script. This section discusses the
    following tasks:
	Crushing PNGs

	Stripping JPEG metadata

	Converting single-image (nonanimated) GIFs to PNGs

	Optimizing GIF animations



Crushing PNGs



PNGs store image information in “chunks.” This makes the format extensible because you can add more
      functionality to it using custom chunks, and programs that do not
      understand your new extensions can safely ignore them. But most of the
      chunks are not needed for web display, and you can safely remove them.
      An additional benefit is that stripping the so-called gamma chunk
      actually improves the cross-browser visual results, because each browser treats gamma
      corrections slightly differently.
Pngcrush



Our favorite tool for PNG optimization is pngcrush. You can
        run it like this:
pngcrush -rem alla -brute -reduce src.png dest.png
Let’s take a look at the options:
	-rem alla
	Removes all chunks except the one controlling transparency
              (alpha).

	-brute
	Tries more than 100 different methods for optimization in
              addition to the default 10. It’s slower and most of the time
              doesn’t improve much. But if you’re doing this process offline,
              you can afford the one or two more seconds this option takes, in
              case it finds a way to cut the image size further. Remove this
              option in performance-sensitive scenarios.

	-reduce
	Tries to reduce the number of colors in the palette, if
              possible.

	src.png
	The source image.

	dest.png
	The destination (result) image.




Other PNG optimization tools



Pngcrush hits a pretty good middle ground that balances
        execution speed against optimization results. But if you want to
        achieve the best possible results and you’re prepared to spend a
        little more time on optimization, you can try some of the other tools.
        Results vary, depending on the image. You can even run all the tools
        in succession.
Notable tools include:
	PNGOUT
	Binary-only, Windows, closed source

	OptiPNG
	Cross-platform, open source, command-line
              interface

	PngOptimizer
	Windows, open source, GUI and command-line
              interfaces



One “heavy-duty” tool is also available: PNGslim.
        It’s a batch file for Windows that runs a number of other tools. Its
        main activity is to run PNGOUT hundreds of times with different
        options. PNGOUT is the slowest of all the tools we’ve tried, so you
        should be prepared to allow PNGslim plenty of time to run—sometimes
        hours to optimize a single file.


Stripping JPEG Metadata



JPEG files contain metadata such as the following:
	Comments

	Application-specific (e.g., Photoshop) internal
          information

	EXIF information such as camera make and model, the date the
          photo was taken, the geolocation of the photo, thumbnails, or even
          audio



This metadata is not used for image display and can safely be
      removed. Metadata handling, luckily, is one of the lossless JPEG
      operations mentioned earlier in this chapter, so you can remove the
      unneeded parts of the file without losing visual quality.
A tool called jpegtran does
      the transformation on the command line:
jpegtran -copy none -optimize src.jpg > dest.jpg
The options in this example are:
	-copy none
	Instructs that no meta information should be carried
            over

	-optimize
	Causes jpegtran to optimize the Huffman tables used for
            compression

	src.jpg
	Your image before optimization

	dest.jpg
	The optimized file



The command writes to standard output, so to create the final
      file, this example just redirects output to a file named dest.jpg.
Warning
Strip meta information only from images you own. By stripping
        metadata from someone else’s JPEG, you might also strip any copyright
        or authorship data, which is illegal.

Jpegtran takes an all-or-nothing approach to handling metadata.
      For more fine-grained metadata editing, use ExifTool.

Converting GIF to PNG



As we discussed, the PNG8 format supports everything that GIF
      does, so converting a GIF to PNG8 should result in no visible changes.
      You can use ImageMagick to do the
      conversion from the command line as simply as:
convert source.gif destination.png
You can also force the PNG8 format by using:
convert source.gif PNG8:destination.png
This is probably not necessary, since GIFs are likely to be
      converted to PNG8 anyway. ImageMagick picks the appropriate format based
      on the number of colors.
Once you’ve converted the GIF to PNG, don’t forget to
      crush the PNG result (as shown earlier in this
      chapter).
You can also use ImageMagick’s identify
      utility to programmatically determine whether the GIF file
      contains an animation. For example:
identify -format %m my.gif
This command will simply return “GIF” for nonanimated GIFs. For
      GIF animations it will return a string such as “GIFGIFGIF…” repeating
      “GIF” once for every frame. If you’re running a script to convert files,
      checking for the presence of “GIFGIF” in the first six-character
      substring of the output will let you know you’re dealing with an
      animated file. In that case, you can skip to the next step.

Optimizing GIF Animations



Now that all your single-image GIFs are PNGs, your PNGs are crushed, and
      your JPEGs are optimized, the last things left to optimize are the GIF
      animations. One tool that can help you is Gifsicle. Since the
      animations consist of frames and some parts of the image don’t change
      from one frame to another, Gifsicle optimizes animations by removing the
      duplicate pixel information from successive frames. The way to run it
      is:
gifsicle -O2 src.gif > dest.gif

Smush.it



Smush.it is an online tool for image optimization, created by the authors of this chapter. It does what we
      just described in the previous four sections, applying lossless image
      compression to a variety of file types. Smush.it has a
      convenient Firefox extension companion that allows you to visit any
      page and optimize all the images on that page in one shot. You can
      always check how much you can save by following these steps.
Do note that Smush.it underperforms with JPEGs because it doesn’t
      strip the JPEG metadata, since we don’t want to involuntarily strip
      copyright information and “orphan”
      a JPEG. If you roll out your own “smushing” tool using the techniques
      and tools described earlier and you’re sure it’s appropriate to remove
      the metadata, do so using jpegtran’s –copy
      none option.

Progressive JPEGs for Large Images



When reviewing the different file formats, we mentioned that there are
      progressive JPEGs that render progressively in the
      browser, allowing the user to see a low-resolution version of the image
      while the file is still being transferred. The question is whether
      progressive JPEGs are smaller or bigger than nonprogressive
      equivalents.
After experimenting
      with more than 10,000 images chosen at random from the Web using the
      Yahoo! image search API, we’ve reached the conclusion that you cannot
      tell for sure. In fact, results can be all over the map. But a trend did
      emerge: images bigger than 10 KB usually compress better as progressive
      JPEGs. Smaller images are better as nonprogressive,
      baseline JPEGs. Figure 10-3 summarizes our
      findings, charting the original file size against the difference caused
      by optimization. The graphic ends at 30 KB, but the trend remains flat,
      meaning that the benefit of progressive encoding increases with
      file size.
[image: Relationship between file size (X) and the benefit of progressive JPEGs. The y-axis shows the difference between the file size of the baseline image and the progressive image; the greater the Y value, the better it is to use progressive encoding]

Figure 10-3. Relationship between file size (X) and the benefit of
        progressive JPEGs. The y-axis shows the difference between the file
        size of the baseline image and the progressive image; the greater the
        Y value, the better it is to use progressive encoding




Alpha Transparency: Avoid AlphaImageLoader



Much sought after in the world of web design, cross-browser alpha transparency is harder to
    achieve than you might expect. The PNG specification was written more than
    a decade ago, but lousy browser implementation means we’re still looking
    for the one perfect solution. Support for truecolor PNG has evolved very
    slowly. Internet Explorer 6 still has significant market share, but it
    suffers from serious technical limitations in handling PNG alpha
    transparency.
In this section, we’ll take a closer look at alpha
    filters, which force support for alpha transparency in older
    versions of Internet Explorer. In particular, Internet Explorer offers a
    filter called AlphaImageLoader
    that has become quite popular. Drawing on experimentation
    and practice at Yahoo!, and backed up by hard data, we’ve concluded that
    you should not use AlphaImageLoader to
    fix Internet Explorer 6 transparency problems. We’ll explain why this is so and
    show practical examples of progressively enhanced PNG8 to work around these
    limitations.
Effects of Alpha Transparency



As you saw earlier, transparency comes in two flavors. The first is a
      kind of binary transparency: each pixel is either fully transparent or
      fully opaque. The second is alpha transparency, which allows you to have
      variable levels of opacity.
The lack of support for true alpha transparency in Internet Explorer 6 has been a challenge for web
      developers who wanted to have smooth transitions and drop shadows. For
      instance, the lefthand side of Figure 10-4 shows an effect
      we’d like to achieve (partial transparency that allows some of the
      background to show through); the righthand side shows the inclusion of
      the background color (in this case, white), which we have to live with
      when only binary transparency is supported. Solid-color backgrounds work
      equally well for both image formats, as they allow the binary
      transparent image to perfectly mimic the effect of full alpha
      transparency. However, the same icon could not be reused if the
      background color was not identical.
[image: Alpha and binary transparency in My Yahoo! weather icons; the squares are a typical pattern used in image editing programs to denote transparency]

Figure 10-4. Alpha and binary transparency in My Yahoo! weather icons; the
        squares are a typical pattern used in image editing programs to denote
        transparency


Typically, alpha transparency is used in cases where the
      background is variable, as in a photograph, graphic, or gradient. In these cases, it is
      harder to fall back on simulating transparency because it is impossible
      to be certain which colors will be behind a given portion of the
      image.
Perfect alpha transparency allows the image of the cloud to be put
      over any background and it will display beautifully. Binary transparency
      (on the right side of Figure 10-4) requires a
      slightly more creative approach: the designer is forced to approximate
      transparency by including a small portion of the background color around
      the graphic.
Gradient backgrounds (see Figure 10-5) require more careful attention
      to the edges of the cloud overlay. If too much of the fluffy edge or
      drop shadow is left around the image, it will look too dark in some
      areas and too light in others. It helps to leave as little background
      color as possible. In Figure 10-6, it’s obvious that
      too much color was kept around the graphic. The mid-tone is too light at
      the top of the image and too dark at the bottom.
[image: Gradients and transparency]

Figure 10-5. Gradients and transparency


[image: A real-world example that shows the weather icon above a variable background on the My Yahoo! page; the design has all of the challenges discussed: gradients, solid colors, and patterns]

Figure 10-6. A real-world example that shows the weather icon above a
        variable background on the My Yahoo! page; the design has all of the
        challenges discussed: gradients, solid colors, and patterns


Mountaintop corners



Another example is the ubiquitous rounded corner module. It is important to avoid
        including the background color of the module and the contour in one
        image because combining them will drastically increase HTTP
        requests. Rather than having one image for the contour that
        can be combined with multiple backgrounds, you will have many images
        representing all the possible combinations.
Separating contour and page background colors from the block
        background color or image allows for scalable CSS. However, it is
        interesting to note that separating the two requires a very careful
        selection of pixels and reliance on the eye’s tendency to smooth
        transitions. Dan Cederholm first wrote about this in his article “Mountaintop
        Corners” for A List Apart.
The difference between the two dark blocks in the module in
        Figure 10-7 may seem
        subtle, but when there is a high contrast between module, background,
        and foreground colors, the edge can seem “chewed off” rather than
        completely smooth. To achieve a uniform look and feel across browsers,
        developers began to use the AlphaImageLoader filter for Internet
        Explorer.
[image: Binary and alpha transparency in rounded corner modules]

Figure 10-7. Binary and alpha transparency in rounded corner
          modules




AlphaImageLoader



Internet Explorer does not natively support alpha transparency. Proprietary
      filters are used to fill the gap; however, the performance costs of this
      choice are significant. To understand the drawbacks of the method, let’s
      look at what not to do (see Example 10-1).
Example 10-1. Using AlphaImageLoader to add rounded corners to PNGs
.myModule .corner{
  background-image: url(corner.png);
  _background-image: none;
  _filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(
     src='corner.png',
     sizingMethod='scale'
  );
}


In Example 10-1,
      the initial underscores are a hack that causes the attributes to be
      applied only to versions of Internet Explorer older than version
      7:
	The _background-image
          attribute removes the original background, corner.png.

	The _filter attribute
          reloads the same image using Microsoft’s AlphaImageLoader filter.



Only Internet Explorer 6 (or earlier) requires this hack. Internet Explorer 7 and later support alpha
      transparency natively, as do Firefox, Safari, and Opera. All these browsers ignore the
      rules with initial underscores, because the properties simply aren’t recognized.
Warning
If you forget to use the underscore hack, Internet Explorer 7
        will use the filter despite having native support for alpha
        transparency.


Problems with AlphaImageLoader



There are both maintenance costs and direct performance costs associated
      with using alpha filters:
	Code forking
	Even the minimal amount of code forking in the prior example
            is dangerous from a maintenance point of view. When we write
            exceptions to CSS rules, the files tend to grow over time. Also,
            assuming we were using a CSS sprite to reduce HTTP requests, as
            recommended in High Performance
            Web Sites, background-position would not be
            supported when the alpha filter is used. In
            this case, the clip property is
            often used to simulate background image positioning in Internet
            Explorer.

	Freezing the browser
	When an alpha filter is applied, the page does not render progressively. The user will
            see a blank page until all the necessary components are
            downloaded. Page elements can still be downloaded in parallel, but
            the display will be blocked because Internet Explorer will not
            render anything until every last bit of CSS comes down the wire,
            and the CSS has a dependency on a filtered image. (For more
            information about rendering, see http://www.phpied.com/rendering-styles.) If you
            have several AlphaImageLoader
            filters on the page, they are processed serially, multiplying the
            problem. If you have five images, each delayed 2 seconds on the
            server, the browser freezes for a total of 10 seconds.

	Increased memory consumption
	Another negative effect of using AlphaImageLoader is the increase in
            memory that is required to process and apply the filters. These
            days we might be tempted to think our visitors’ computers have a
            virtually inexhaustible supply of memory, but that might not be
            the case for older computers, which are the ones more likely to
            run Internet Explorer 6 and earlier.



All this overhead applies to the image every time it appears on
      the page because the filter doesn’t change the image, but rather the
      HTML element to which the style is applied. If a sprite is used on 20
      HTML elements on the page, there isn’t one performance penalty, but 20! Furthermore,
      each element is processed synchronously in a single UI thread. Often, this filter is
      used for “play” buttons that overlay video (see Figure 10-8). In this case,
      any performance penalty will be assessed for each video on the
      page.
[image: Video player at Yahoo! Search that had the alpha transparency from the “play” button removed, to improve performance]

Figure 10-8. Video player at Yahoo! Search that had the alpha transparency
        from the “play” button removed, to improve performance


In the wild: A Yahoo! Search case study



Lab tests are an excellent way to estimate the performance impact
        of code changes, but there’s nothing like testing an idea in the wild,
        with millions of requests coming from real users and their myriad
        browser configurations, geographic locations, connection speeds,
        hardware, and operating systems.
Based on lab tests, we estimated the performance “price” of the
        AlphaImageLoader filter to be
        approximately eight milliseconds per HTML element on which the filter
        is applied. Previously, the search team used a truecolor PNG and
        filter for their main sprite, which appeared 12 times in the page.
        Therefore, we expected approximately a 96-millisecond improvement, but
        we were eager to see whether a real user test would replicate our
        results.
The experiment compared two identical search results pages, one
        with the AlphaImageLoader filter and the other
        without. The results set comprised two distinct populations, which
        showed a 50- to 100-millisecond improvement. The response time for
        users of Internet Explorer 6 showed a 100-millisecond improvement,
        whereas the response time for users of Internet Explorer 5 showed a
        50-millisecond improvement.
A 100-millisecond improvement (one-tenth of a second) seems
        small, but Amazon experimental data showed that a 100-millisecond
        increase in response time correlated to a 1% drop in sales.
        Understanding the direct link between revenue and performance can help
        justify the minimal investment required to switch from truecolor PNG
        to PNG8.
Based on this experiment, we recommend that you avoid AlphaImageLoader whenever possible. How can
        you avoid it? In the next section, we’ll show some techniques to avoid
        using a filter altogether.


Progressively Enhanced PNG8 Alpha Transparency



If you’ve decided you just have to have alpha transparency, but you
      don’t want the performance penalty associated with Microsoft’s
      proprietary alpha filters, you can apply progressive enhancement to
      PNG8. This creates an image that uses alpha transparency where it’s available, but doesn’t
      rely on it. Follow these steps to achieve the best result:
	Create a binary transparency image that uses only fully opaque
          or fully transparent pixels.

	Write the CSS necessary to use the image.

	Verify that the image works well without alpha
          transparency.

	Add in the partially transparent pixels that will be displayed
          by better browsers. You can do this by layering the two image
          formats in Photoshop or your tool of choice, and saving the output
          as a separate file. To save the final image as PNG8 with alpha
          transparency you will need to use Fireworks or a command-line tool such as pngnq. We don’t suggest allowing the software to
          autoconvert from truecolor PNG to PNG8, as the binary-transparent
          version is unlikely to be of acceptable quality.



To learn more about progressively enhanced PNG8, read Alex Walker’s SitePoint article, “PNG8—The
      Clear Winner”.
Warning
You can use PNG8 to progressively enhance images for which there
        is a clear binary transparent fallback. An image that has no fully
        opaque pixels would be rendered completely transparent by Internet
        Explorer 6.

For example, PNG8 progressive enhancement could be used on modules
      that overlay a variable background, such as the drop shadow popover
      above the Yahoo! Travel map shown in Figures 10-9 and 10-10.
[image: Internet Explorer getting a simplified version with a clean 3-pixel border]

Figure 10-9. Internet Explorer getting a simplified version with a clean
        3-pixel border


[image: Better browsers such as Internet Explorer 7 and 8, Firefox, Safari, and Opera also get a drop shadow]

Figure 10-10. Better browsers such as Internet Explorer 7 and 8, Firefox,
        Safari, and Opera also get a drop shadow


Note
The human eye is very sensitive to variations in silhouette
        because humans identify objects,
        especially people, based on shape. Pay close attention to the edges of graphics.
        Mistakes are more noticeable when they affect the outline of an icon
        or image.



Optimizing Sprites



Dave Shea coined the term CSS sprites to refer to a process of
    combining multiple background images into one larger image and using
    background position to show or hide only a portion of that image in an
    HTML element (http://www.alistapart.com/articles/sprites/). The technique
    was later used by Yahoo! to improve performance by reducing the number of HTTP
    requests for the tiny icons on Yahoo!’s home page. There are two
    approaches to optimizing sprites: the “everything and the kitchen sink”
    approach and the modular object-oriented approach. To figure out which is
    best for your site, ask the following questions:
	How many pages does your site have?

	Is your site modular? (Hint: it should be!)

	How much time can your team spend on site maintenance?



The answers can help you make the traditional trade-offs between the
    number of sprite(s), the maintenance cost, and the total number of unique
    pages. You can have any two, but not all three (see Figure 10-11).
[image: The sprite dilemma: choose any two]

Figure 10-11. The sprite dilemma: choose any two


Über-Sprite Versus Modular Sprite



If a site has very few pages, it is best to
      sprite everything in the site into one über-sprite that includes all the
      images used on the site. Google uses an über-sprite for its search results page, as
      shown in Figure 10-12.
[image: Google Search has only two pages; thus, it can have an über-sprite without significant maintenance costs]

Figure 10-12. Google Search has only two pages; thus, it can have an
        über-sprite without significant maintenance costs


On the other hand, if your site has more pages, you need a
      different sprite strategy or the maintenance costs will be very
      expensive. The goal is to make it easy to remove stale modules from your
      site; otherwise, a once-performant site will become clunky. You can
      achieve this by spriting together images that belong to the same object.
      For example:
	All four corners from one rounded corner box

	The left and right sliding doors of your module headers

	The two to four images that make up a button

	Tab states such as current, hover, and normal



In a modular approach, these sprites would not be combined with
      other sprites.

Highly Optimized CSS Sprites



Sometimes optimizing sprites is more complex than optimizing
      images. Diverse resources combined in one sprite may be harder to
      compress well. Following these best practices will make your sprite as
      small as possible:
	Combine like colors; for example, sprite
          icons with a similar color palette.

	Avoid unnecessary whitespace, making
          images easier to process on mobile devices.

	Arrange elements horizontally instead of
          vertically. The sprite will be slightly smaller.

	Limit colors to stay within the 256-color
          limit of PNG8.

	Optimize individual images, and then the
          sprite. Color reduction will be easier with a limited
          palette.

	Reduce anti-aliased pixels via size and
          alignment. If an icon is slightly off-square, you can often reduce
          the anti-aliased pixels by aligning the image horizontally or
          vertically.

	Avoid diagonal gradients, which cannot be
          tiled.

	Avoid alpha transparency in Internet Explorer 6 or
          quarantine images that require true alpha transparency in a separate
          sprite.

	Change the gradient color every two to three
          pixels, rather than every pixel.

	Be careful with logos. They are very
          recognizable, so even small changes are likely to be noticed.





Other Image Optimizations



The remainder of this chapter discusses some additional
    image-related optimizations that can help your pages load faster. These
    concern how you use the image files rather than the images
    themselves.
Avoid Scaling Images



Unnecessary download overhead occurs when a 500×500-pixel image is
      scaled down in the HTML, like so:
<img src="image.jpg" width="100" height="100" alt="my image" />
This way, you cause the browser to scale down the image and show a
      smaller 100×100-pixel version of it. But the browser still needs to
      download the big image. You can achieve significant savings if you
      resize the image on the server side and serve the smaller version. As an
      additional selling point, be aware that some browsers don’t do as good a
      job at scaling down as, for example, ImageMagick does, so the result of forcing the browser to
      do the scaling is degraded image quality and bigger
      downloads.

Crush Generated Images



If you’re building a reporting application or module, chances are you’ll need
      to generate different graphs or charts on the fly. When you generate
      those types of images, keep in mind the following two points:
	It is advisable to choose PNG over GIF, PNG8 being most
          preferred.

	Don’t forget to crush the result before serving it.



An image found in the Google Chart API
      documentation makes a good example (see Figure 10-13). If you’re not familiar
      with it, Chart is an excellent API that allows you to generate graphs by
      passing arguments in the URL. Let’s take a look at how this service can
      be improved to generate images that are smaller.
[image: An example generated graph image]

Figure 10-13. An example generated graph image


Figure 10-13 contains 1,704
      colors, and the file size is 17,027 bytes. Two simple optimizations
      reduce the file size by more than half:
	Running this image through pngcrush results in an image that is 12,882 bytes, a
          savings of 24% with no loss in quality.

	Going one step further to convert the image to PNG8
          using pngquant removes about 1,500 colors that the viewer
          doesn’t notice. The new file size is 7,710 bytes, a savings of 55%
          from the original.



An additional benefit from writing the generated images to disk
      and crushing them is that when a second request for the same image
      arrives, you don’t need to regenerate the image; you can serve the one
      that has already been cached and optimized.
Here is a simple piece of code that implements this advice using
      PHP with the GD image
      library:
<?php
header ('Content-type: image/png');

// name of the image file
$cachedir = 'myimagecache/';
$file = $cachedir . 'myimage.png';

// if in the cache, serve
if (file_exists($file)) {
    echo file_get_contents($file);
    die();
}

// new GD image
$im = @imagecreatetruecolor(200, 200);
// ... the rest of the image generation ...
imagepng($im, $file); // save
imagedestroy($im);    // cleanup

// crush the image
$cmd = array();
$cmd[] = "pngcrush -rem alla $file.png $file";
$cmd[] = "rm -f $file.png";
exec(implode(';', $cmd));

// spit out the new image
echo file_get_contents($file);
?>
Another option, instead of reading the file with file_get_contents, is to use a redirect to
      point the browser to the new location. Add an Expires: header for browsers that support
      redirect caching, because they’ll reuse the image instead of downloading
      it on subsequent visits.

Favicons



Favicons are those small images named /favicon.ico that sit in the web root and are
      displayed next to the URL in the browser’s address bar (see Figure 10-14).
[image: Wikipedia favicon]

Figure 10-14. Wikipedia favicon


This page component is often ignored because it’s small and
      supposedly cached. But caching is not as universal as we often think.
      This is true for any type of component, and favicons are no exception.
      Yahoo! Search noticed that it serves its favicon to 9% of
      all page views.
There are several points regarding favicons that significantly
      improve performance:
	Make sure to create a favicon. Since the browser will request
          this file anyway, there’s no reason to return a 404 Page Not Found
          error, especially if your 404 handler consumes a database connection
          or other expensive resources.

	Consider adding an Expires: header
          when serving favicons. You cannot afford to cache “forever” if you
          serve the file from /favicon.ico because you cannot rename
          the file if you decide to change it. But you can still cache for
          several months or even a year. Check the last modification date of
          your favicon file for an idea of how often you usually change it.
          And, if an emergency should arise, you can change the file name
          using a <link> tag, as
          explained next.

	You have an option to include the favicon using a <link> tag
          in the head. This way, you control the URL requested by the browser,
          as opposed to the predefined /favicon.ico:
<link rel="shortcut icon" href="http://CDN/myicon.ico" />
This is great, because you can serve the favicon from a CDN
          and cache it “forever,” sharing the same file among all your
          sites.
Be aware of one trade-off, though: if you do it this
          way, Firefox will request the favicon early in the
          waterfall, as opposed to at the very end after all other components
          are downloaded. On the other hand, if you serve the file from
          /favicon.ico, there’s no reason
          to add the <link>
          tag.

	Make the icon small. The ICO format can contain several images
          of different dimensions; for example, 16×16, 32×32, and so on.
          This will increase the file size of your icon, so it’s best to use
          only one 16×16 image. This generally results in a file size of
          about 1 KB. As a rule of thumb, if your icon is bigger than 1 KB,
          you have room for improvement.

	Optimize the file with the free Windows utility
          called Pixelformer,
          experimenting with different palette sizes.




Apple Touch Icon



Similar to favicons are so-called Apple touch icon files used by iPhone/iPod devices. An
      Apple touch icon is just a PNG file in the root of your web server,
      57×57 pixels in size, called apple-touch-icon.png. Again, if you want to
      serve this icon from a CDN and add a far-future Expires: header to it,
      you can use a <link> tag, like
      so:
<link rel="apple-touch-icon" href="http://CDN/any-name.png" />
Desktop browsers request this file much less often than they
      request favicons; the iPhone client will ask for it only when the user
      adds your page to his home screen.


Summary



In this chapter, you familiarized yourself with quite a few topics
    related to images, and you’re now better prepared to ace your next image
    optimization project. Let’s rehash some of the highlights:
	Start by choosing the appropriate format: JPEG for photos, GIF
        for animations, and PNG for everything else. Strive for PNG8 whenever
        possible.

	Crush PNGs, optimize GIF animations, and strip JPEG metadata
        from the images you own. Use progressive JPEG encoding for JPEGs more
        than 10 KB in file size.

	Avoid AlphaImageLoader.

	Use and optimize CSS sprites.

	Create modular sprites if your site has more than two to three
        pages.

	Don’t scale images in HTML.

	Generated images should be crushed, too. Once generated, they
        should be cached for as long as possible. Convert images to PNG8 and
        determine whether 256 colors is acceptable.

	Don’t forget favicons and Apple touch icons. Even if you don’t
        refer to them in your HTML markup, they are still page components and
        should be small and cacheable.




Chapter 11. Sharding Dominant Domains



Some web pages have all their HTTP requests served from one domain.
  Other sites spread their resources across multiple domains. Rule 9 from
  High Performance Web
  Sites says to reduce DNS lookups, but sometimes
  increasing the number of domains is better for performance, even at the cost
  of adding more DNS lookups. The key is to find the web page’s critical path.
  If the critical path results from too many resources being served from one
  domain, splitting them across multiple domains—what I call domain
  sharding—may make the page load more quickly.
Critical Path



Figure 11-1 shows the HTTP
    profile for eBay. The horizontal axis represents response time. A steep slope,
    as shown on the righthand side of the chart, reflects a lot of downloads
    in a short period of time. This is a sign of a fast page. In contrast, a
    flat slope such as the one shown in the first five HTTP requests means the
    browser is bogged down with a slow response or long-executing JavaScript.
    In this case, eBay’s critical path is blocked by the HTML document in the
    first request, by JavaScript downloads in the fourth and fifth requests,
    and by JavaScript execution as indicated by the whitespace following the
    fourth and fifth requests.
Yahoo!’s HTTP profile, shown in Figure 11-2, has a different critical
    path. The majority of the time loading this page is spent downloading
    images two at a time.[51] All of the resources in the page are downloaded from a
    single domain: l.yimg.com. Some browsers, including
    Internet Explorer 6 and 7, limit the number of parallel downloads to two
    per server. (Internet Explorer 8 and Firefox 3 increase this to six per
    server, as discussed in Newer Browsers.) The impact of
    this two-per-server limit is evident in Figure 11-2—no more than two resources
    are downloaded in parallel at any given time. As a result, the HTTP
    profile forms a stair-step pattern that increases the time to load the
    page.
[image: Critical path for]

Figure 11-1. Critical path for http://www.ebay.com/


[image: Critical path for]

Figure 11-2. Critical path for http://www.yahoo.com/


When downloading resources from a single domain is the bottleneck, splitting resources across
    multiple domains speeds up the page by increasing the number of parallel
    downloads. This is demonstrated by the following examples.
	One Domain
	http://stevesouders.com/efws/domains1.php

	Two Domains
	http://stevesouders.com/efws/domains2.php



Each of these examples contains the 22 images from Yahoo!’s page.
    The One Domain example downloads all of the images from
    l.yimg.com, whereas the Two Domains example splits
    the images across two domains: l.yimg.com and
    d.yimg.com.[52] The Two Domains example loads 27% faster than the One Domain
    example (654 milliseconds versus 892 milliseconds over a 7,000 Kbps
    connection).
Figure 11-3 shows the HTTP
    profile for the One Domain and Two Domains examples. The waterfall at the
    top, in which only one domain is used, shows that only two resources are
    downloaded at any given time. In the waterfall at the bottom, on the other
    hand, we see four resources being downloaded simultaneously, which results
    in a faster-loading page.



[51] This profile was produced using Internet Explorer 7.

[52] I discovered that d.yimg.com was used by
        http://news.yahoo.com for downloading
        images.



Who’s Sharding?



Table 11-1 shows
    which of the top web sites split resources across multiple domains. The total number of
    images, scripts, and stylesheets for each site is also shown.
Table 11-1. Use of multiple domains among top web sites
	Web site
	Images
	Scripts
	Stylesheets
	Number of domains

	http://www.aol.com/
	59
	6
	2
	3

	http://www.ebay.com/
	33
	5
	2
	3

	http://www.facebook.com/
	96
	14
	14
	10

	http://www.google.com/search?q=flowers
	3
	1
	0
	N/A

	http://search.live.com/results.aspx?q=flowers
	6
	1
	4
	5

	http://www.msn.com/
	45
	7
	3
	3

	http://www.myspace.com/
	16
	14
	2
	3

	http://en.wikipedia.org/wiki/Flowers
	33
	6
	9
	2

	http://www.yahoo.com/
	28
	4
	1
	1

	http://www.youtube.com/
	23
	7
	1
	5




[image: One domain versus two domains]

Figure 11-3. One domain versus two domains


Most of these sites shard their resources across multiple domains.
    It’s especially clear that this is intentional for sites such as YouTube,
    where the domain names form a sequence:
    i1.ytimg.com, i2.ytimg.com,
    i3.ytimg.com, and i4.ytimg.com.
    Many of these top sites have similar sequences in their sharded
    domains:
	AOL
	o.aolcdn.com,
          portal.aolcdn.com,
          www.aolcdn.com

	eBay
	include.ebaystatic.com,
          pics.ebaystatic.com,
          rtm.ebaystatic.com

	Facebook
	b.static.ak.fbcdn.net,
          external.ak.fbcdn.net,
          photos-[b,d,f,g,h].ak.fbcdn.net,
          platform.ak.fbcdn.net,
          profile.ak.facebook.com,
          static.ak.fbcdn.net

	Live Search
	search.live.com,
          ts[1,2,3,4].images.live.com

	MSN.com
	tk2.st[b,c,j].s-msn.com

	MySpace
	cms.myspacecdn.com,
          rma.myspacecdn.com,
          x.myspacecdn.com,
          creative.myspace.com,
          largeassets.myspacecdn.com,
          x.myspace.com

	Wikipedia
	en.wikipedia.org,
          upload.wikimedia.org

	YouTube
	i[1,2,3,4].ytimg.com,
          s.ytimg.com



Google’s main page contains only two resources. They can be
    downloaded in parallel on one domain, so splitting across domains is not
    applicable. Yahoo! downloads most of its resources on one domain. It would
    benefit from splitting these across multiple domains. AOL and Wikipedia
    are an interesting story. They use just a few domains for a relatively
    large number of resources. One reason for this might be because they
    downgrade some of their responses from HTTP/1.1 to HTTP/1.0. The pros and
    cons of this are discussed in the following section.

Downgrading to HTTP/1.0



AOL and Wikipedia shard their resources across a relatively small number of domains. Even
    so, they achieve a high level of parallel downloads. Figure 11-4 shows the initial HTTP profile
    for Wikipedia when loaded in Internet Explorer 7. All of these resources
    are served from one domain: en.wikipedia.org.
    Internet Explorer 7 normally uses only two connections to a single server,
    but in this case we see that four connections are being used. This happens
    because Wikipedia downgrades its responses to HTTP/1.0.
HTTP/1.1 is used by most web clients and servers today, but HTTP/1.0 is still supported.
    When HTTP/1.1 is used, many browsers follow the limit of two connections per server as
    recommended in the HTTP/1.1
    RFC. However, Internet Explorer 6 and 7 open more connections when
    HTTP/1.0 is used. The normal limit of two connections per server is
    increased to four when HTTP/1.0 is used. Similarly, Firefox 2 uses two connections for HTTP/1.1, but increases
    that to eight connections in the presence of HTTP/1.0.
[image: Wikipedia parallel downloads]

Figure 11-4. Wikipedia parallel downloads


A lower number of connections per server are recommended for
    HTTP/1.1 because of persistent connections. By default,
    HTTP/1.0 closes the TCP connection after each response. Establishing a new
    TCP connection for every request takes time. To reduce this overhead,
    HTTP/1.1 uses persistent connections and performs multiple requests and
    responses using a single connection. Persistent connections are typically
    held open longer and thus impose a greater burden on servers that have a
    finite number of connections available. Hence, the recommended number of
    connections per server is reduced to
    two for HTTP/1.1.
By downgrading to HTTP/1.0, AOL and Wikipedia achieve a higher level
    of parallel downloads, but this benefit is gained at the cost of losing
    persistent connections. Or is it? As an alternative to persistent
    connections, HTTP/1.0 supports the Keep-Alive option to reuse existing
    connections. There are differences between HTTP/1.0 Keep-Alive and
    HTTP/1.1 persistent connections, but they are subtle:
	Persistent connections are the default in HTTP/1.1. Once the
        HTTP version is specified as “HTTP/1.1,” no additional header is
        necessary to declare support for persistent connections. But
        Keep-Alive is not the default for HTTP/1.0. Clients and servers must
        send the Connection:
        Keep-Alive header.

	There are risks involved in using HTTP/1.0 Keep-Alive
        connections through a proxy. A proxy that doesn’t understand the
        Connection: Keep-Alive header and
        just blindly forwards it to the origin server might establish a hung
        connection while it waits for the origin server to close the
        connection. The origin server won’t close the connection because it’s
        establishing a Keep-Alive connection. Therefore, clients must be sure
        not to send Connection: Keep-Alive
        when talking to a proxy, which in fact all major browsers do.

	HTTP/1.0 Keep-Alive responses must use the Content-Length
        header to indicate the ending boundary between separate responses on a
        single connection. This means that dynamic content, where the total
        size is not known when the response is started, cannot take advantage
        of HTTP/1.0 Keep-Alive.

	Chunked transfer-encoding, introduced in HTTP/1.1,
        cannot be used with HTTP/1.0. Chunked encoding allows the server to
        send back data in chunks. This is most applicable for large responses
        generated dynamically, where the total size is not known but the
        server wants to start transferring the response as the content becomes
        available. (See Chapter 12 for
        more discussion about chunked encoding.)



These differences don’t present any significant drawbacks to
    downgrading to HTTP/1.0 for static content. Popular browsers already send
    the Connection: Keep-Alive header and
    remove it when using a proxy. The size of static
    content is known when the request begins, so a Content-Length header can always be sent and
    there isn’t a need for chunked encoding. It’s possible that using chunked
    encoding for large resources, such as a 500 KB script, could result in
    faster downloading and parsing, but in practice none of the top sites use
    chunked encoding with their static content.
Users who access AOL and Wikipedia using Internet Explorer 6 and 7
    benefit from the decision to downgrade to HTTP/1.0. They get resources
    downloaded four at a time and still benefit from reusing TCP connections
    thanks to Keep-Alive. Most other browsers, however, don’t increase the
    connections per server based on HTTP version, as shown in Table 11-2.
Table 11-2. Connections per server
	Browser
	HTTP/1.1
	HTTP/1.0

	IE 6, 7
	2
	4

	IE 8
	6
	6

	Firefox 2
	2
	8

	Firefox 3
	6
	6

	Safari 3, 4
	4
	4

	Chrome 1, 2
	6
	6

	Opera 9, 10
	4
	4




If you have a large number of Internet Explorer 6 and 7 users, you
    might want to consider downgrading to HTTP/1.0. Doing so increases
    parallel downloads (for Internet Explorer 6 and 7) without the cost of an
    extra DNS lookup. But if you want all of your users to benefit from
    increased parallelization, domain sharding is the preferred solution.

Rolling Out Sharding



Several operational questions typically arise when considering
    splitting resources across multiple domains.
IP Address or Hostname



Browsers enforce the “maximum connections per server” constraint
      based on the hostname in the URL, not the IP address to which it resolves, as shown in the
      Different Hostnames, Same IP example.
	Different Hostnames, Same IP
	http://stevesouders.com/efws/hostnames.php



This example has four images: two from
      stevesouders.com and two from www.stevesouders.com. These hostnames
      have the same IP address. When loaded in Internet Explorer 6 and 7, all
      four images are downloaded in parallel. The browser has treated each
      hostname as a separate server, and consequently opened two connections
      for each one, even though these two hostnames resolve to the same IP
      address.
This is good news for people who want to split their content
      across multiple domains. It’s not necessary to deploy additional
      servers. Instead, a CNAME record for the new domain can be used. A CNAME is
      just an alias from one domain name to another. Even though the
      domain names point to the same servers, the browser still opens the
      maximum number of connections for each unique hostname.

How Many Domains



In Critical Path, you saw that splitting
      content across two domains is better than splitting across one. Would
      three domains be better than two? How about 10? Research
      published by Yahoo! shows that increasing the number of domains
      from one to two improves performance, but increasing it above two has a
      negative effect on load times. The final answer depends on the number
      and size of resources, but sharding across two domains is a good rule of
      thumb.

How to Split Resources



Given a specific resource, what’s the best algorithm for assigning
      it to one of multiple possible domains? A key feature of any splitting algorithm is that
      a specific resource always be assigned to the same domain. This ensures
      that, if the resource has already been cached, the URL for subsequent
      requests matches the URL in the cache.
One way to do this is to use a hashing function that converts the
      resource’s filename into an integer that determines the chosen domain.
      Another alternative is to assign resources to domains based on the
      resource type. For example, stylesheets and images might be assigned to
      domain 1, while every other type of resource is assigned to domain 2.
      This might result in a lopsided distribution of resources across
      domains, but might actually be beneficial in that images could start
      downloading from domain 2 in parallel with stylesheets and scripts on
      domain 1.

Newer Browsers



Internet Explorer 8 and Firefox 3 both increase the number of connections per server from two to six.
      Striving to increase the number of parallel downloads for older browsers
      could result in too many parallel downloads for these next-generation
      browsers. If the browser opens too many connections, it could overload
      the server as well as degrade download efficiency on the client.
Sites that use several domains, such as Facebook and YouTube, may need to alter their splitting
      algorithm based on browser type. If you choose to split your static
      resources across multiple domains, follow the guideline of splitting
      across just two domains. This strikes a balance of improving performance
      for today’s browsers as well as tomorrow’s.


Chapter 12. Flushing the Document Early



The Performance Golden Rule reminds us to focus our performance improvements
  on the frontend—that’s where most of the time is spent loading web
  pages.[53] Occasionally, there are exceptions to this rule where the
  backend takes a long time to generate the HTML document. Such a page might
  require intensive database queries or responses from other web services
  before the HTML content is returned.
Unfortunately, while the backend chugs away, everything on the user’s
  end is on hold. Rather than letting the browser sit idle and leaving the
  user waiting for feedback, this chapter explains how to start the page loading even before the HTML document is
  completed.
Flush the Head



In most cases, the browser waits for the HTML document to arrive before it
    starts rendering the page and downloading the page’s resources. This is
    shown by the Simple Page example.
	Simple Page
	http://stevesouders.com/efws/simple.php



This example page contains two images and a script. The HTML
    document and its three resources are all programmed to take two seconds to
    return. The HTTP waterfall chart for Simple Page is shown in Figure 12-1. As expected, the HTML
    document is downloaded first. Once it arrives, the browser parses the
    HTML, renders the first few lines of text, and starts downloading the
    page’s resources.
[image: Simple Page HTTP waterfall chart]

Figure 12-1. Simple Page HTTP waterfall chart


The two images, served from 1.cuzillion.com,
    are downloaded in parallel. The script is also downloaded in parallel,
    because it comes after the images and is hosted on a different hostname,
    2.cuzillion.com. The overall page load time is four
    seconds.
Figure 12-2 shows the same page,
    but in this case the images and script start downloading before the HTML
    document has fully arrived. The result is a page that takes only two
    seconds to load—half the time of the original example.
[image: Flush HTTP waterfall chart]

Figure 12-2. Flush HTTP waterfall chart


This speedup was achieved by adding a call to PHP’s flush function.
    Running the Flush example makes it clear that this is a much faster
    page.
	Flush
	http://stevesouders.com/efws/flush-nogzip.php



To understand how flush works,
    and the complications that ensue, we need to understand how HTML documents
    are generated.[54] As the server parses the PHP page, all output is written to
    STDOUT. Rather than being sent immediately, one character, word, or line
    at a time, the output is queued up and sent to the browser in larger
    chunks. This is more efficient because it results in fewer packets being
    sent from the server to the browser. Each packet sent incurs some network
    latency, so it’s usually better to send a small number of large packets,
    rather than a large number of small packets.
Calling flush() causes anything
    queued up in STDOUT to be sent immediately. However, simply flushing
    STDOUT isn’t enough to achieve the type of speedup experienced in the
    preceding example. The call to flush
    has to be made in the right place. Let’s look at the PHP source code for
    the Flush example:
<html>
<body>

<p>
This is the Flush example.
</p>

<img src="http://1.cuzillion.com/...">
<img src="http://1.cuzillion.com/...">
<script src="http://2.cuzillion.com/..." type="text/javascript"></script>

<?php
flush();
long_slow_function();
?>

<p>
This sentence is after the long, slow function.
</p>

</body>
</html>
Remember, the motivation for this chapter is those occasions when
    you have an HTML document that takes a long time to generate. That is
    represented in our PHP code by the call to long_slow_function (in this case a two-second
    sleep). The call to flush() is made
    right before this long backend delay.
Whether this speeds up the page depends on what you include in the
    HTML before the call to flush(). In
    this example, there is a line of text (“This is the Flush example”) and
    three resources (two images and one script). This is exactly what’s needed
    to combat the two shortcomings of a slow HTML document: blocked rendering
    and blocked downloads. By including the line of text in the flushed HTML,
    the user is given visual feedback that the page is loading. By including
    the three resources in the flushed output, the browser starts downloading
    resources even while it waits for the rest of the HTML document. This is
    the key performance insight from this chapter; getting resources
    downloading early is the primary benefit that flushing provides.
This seems pretty simple, yet reading the comments on the flush documentation page reveals that
    it’s not as simple as it looks.



[53] See Rule 1 from High Performance Web
      Sites.

[54] Although this discussion focuses on PHP, these concepts are
        applicable to other templating frameworks as well.



Output Buffering



Perhaps the biggest confusion around getting flushing to work in PHP involves output buffering. As explained earlier, PHP output is
    written to STDOUT. Output buffering adds another
    layer where output is queued before it goes to STDOUT.
The first step is to determine whether output buffering is turned on
    in your PHP configuration, and how big the buffer is. This is controlled
    by the output_buffering
    directive in php.ini.[55] Part of the confusion stems from the fact that the default
    value changed in PHP 4.3.5. Before that, output buffering was enabled by
    default with a buffer size of 4,096 bytes, equivalent to this line in your
    php.ini:
output_buffering = 4096
With PHP 4.3.5, the default changed to output buffering being
    disabled:
output_buffering = 0
You can use this PHP code to find out the value of output_buffering and what version of PHP is
    running on your server:
<?php
echo "<br>output_buffering = " . ini_get('output_buffering');
echo "<br>PHP version = " . phpversion();
?>
If output buffering is on for your server, in addition to using
    flush, you’ll also have to use ob_flush and its related functions, as shown by
    the Flush Output Buffering example.
	Flush Output Buffering
	http://stevesouders.com/efws/ob/flush-nogzip-ob.php



The PHP code, with the added lines in bold, is shown in the sample
    that follows. The most intuitive new function calls are ob_start and ob_flush; ob_start opens a new output buffer while
    ob_flush flushes the contents of this
    output buffer to STDOUT. Once the output buffer is flushed, we still need
    the call to flush() in order to flush
    STDOUT:
<?php
while (ob_get_level() > 0) {
    ob_end_flush();
}
ob_start();
?>
<html>
<body>

<p>
This is the Flush Output Buffering example.
</p>

<img src="http://1.cuzillion.com/...">
<img src="http://1.cuzillion.com/...">
<script src="http://2.cuzillion.com/..." type="text/javascript"></script>

<?php
ob_flush();
flush();
long_slow_function();
?>

<p>
This sentence is after the long, slow function.
</p>

</body>
</html>
The while loop calls ob_end_flush as
    long as ob_get_level() is greater than
    zero. Forgetting this step is where many developers go wrong. This loop
    ensures that any output buffers that are already open are flushed and
    removed. Without doing this, the call to ob_start might not be the only output buffer
    opened. Output buffers in PHP are stacked. If our call to ob_start opened a second output buffer, the
    subsequent call to ob_flush would flush
    this second output buffer into the first output buffer, but not to STDOUT.
    Consequently, the call to flush would
    have no effect, since STDOUT would be empty. Confirming whether output
    buffering is enabled and, if so, using the ob_ functions solves these issues.


[55] http://www.php.net/manual/en/outcontrol.configuration.php#ini.output-buffering



Chunked Encoding



The flush examples won’t be faster when using web servers or clients that
    support only HTTP/1.0. That’s because they don’t support chunked
    encoding.
HTTP/1.0 responses are returned as one block of data, the size of
    which is communicated in the Content-Length header.
    The browser needs to know the size of the data in order to know when the
    response ends. Because the HTML document is sent as one block, the browser
    can’t start rendering the page and downloading resources until the whole
    response arrives.[56]
HTTP/1.1 introduced the Transfer-Encoding:
    chunked response header.[57] With chunked encoding, the HTML document can be returned in multiple blocks of data.
    Each chunk of the response starts with its own size indicator. This allows
    the browser to parse each chunk as soon as it arrives, resulting in a page
    that loads faster.
Chunked encoding fosters faster pages in two other ways, both
    related to dynamic pages. Without chunked encoding, responses must contain
    a Content-Length header. This means the
    server can’t start sending the response until it finishes stitching the
    entire response together and measuring its size. With chunked encoding,
    the server can start transmitting the response sooner, because it only
    needs to know the size of each chunk being sent.
The second performance opportunity made possible by chunked encoding
    comes by use of the Trailer
    header.[58] In some situations, it’s not possible to know whether a
    header is needed or what its value should be until the HTML document has
    been created. For example, during
    generation of the HTML content, results from a database query or web
    service request might determine the value for a Cookie or ETag response header.
Normally, these headers must be sent in the beginning of the
    response, which means the server can’t start sending the response until
    these time-consuming database queries or web service calls have completed.
    Alternatively, when chunked encoding is used, these headers can be sent
    later. The first chunk is sent immediately and uses the Trailer header to list
    the headers that will come later:
Trailer: Cookie
Trailer: ETag
The Cookie and ETag headers can then be included at the end of
    the HTML response.[59]
Chunked encoding makes it possible to start sending parts of the
    HTML document immediately, even before the total size and other headers
    are known. To gain the benefits of flushing the document early, you’ll
    need to make sure chunked encoding is working. Fortunately, Apache and
    other web servers take care of this for you. If you’re trying to get
    flushing to work, make sure to confirm the presence of Transfer-Encoding: chunked in the HTML
    document’s response headers.


[56] A possible alternative if Content-Length is not known is for the
        server to close the connection, but this defeats the benefits of
        persistent connections.

[57] http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.41

[58] http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.40

[59] As of this writing, browser support for trailers is mixed. More
        research and evangelism are needed to ensure cross-browser
        support.



Flushing and Gzip



In the previous example, the HTML document was not gzipped. Gzipping the HTML document is critical for all
    web sites, but it adds another level of complexity in getting flushing to
    work. If the earlier flush examples are gzipped, the flushing doesn’t
    work, as the Flush Gzip No Padding example shows.
	Flush Gzip No Padding
	http://stevesouders.com/efws/flush-gzip-no-padding.php



In this case, flushing is thwarted because of how Apache buffers
    output when compression is enabled. Apache 2.x uses
    mod_deflate for compression.[60] This module has a buffer that is 8,096 bytes by default. You
    can reduce the size of this buffer using the DeflateBufferSize
    directive. If that’s not an option, you can make flushing work if you add
    more than 8 KB of padding (after compression) to the HTML document, as
    shown by the Flush Gzip Padding example.
	Flush Gzip Padding
	http://stevesouders.com/efws/flush-gzip-padding.php



Adding the padding causes the deflate buffer to fill up and get
    flushed to the browser. The padding is tricky. Normally, you could use
    PHP’s str_pad function:
echo str_pad('', 20000);
That won’t work in this situation; compression is enabled, so the
    padding is compressed to less than the necessary 8 KB. The Flush Gzip
    Padding example has a 20 KB comment of nonrepeating strings, so even when
    compressed it exceeds the 8,096-byte size of the deflate buffer, allowing
    the flush to proceed.
Adding 20 KB to your pages is a high price to pay. Luckily, Apache
    2.2.8 and later fix this issue and don’t require this padding trick. At
    the time of this writing, the company hosting my web site is still running
    Apache 2.0. I tested this on servers using Apache 2.2.8 and confirmed that
    the page is compressed and flushing works, even without the
    padding.


[60] http://httpd.apache.org/docs/2.0/mod/mod_deflate.html



Other Intermediaries



Proxies and antivirus software are two intermediaries that have the potential to obstruct the
    performance benefits of flushing. If these intermediaries are used to filter
    content, rather than forwarding the flushed blocks of data, they may wait
    until the entire response is received and scanned before forwarding on to
    the web client.
Another issue involves proxies that downgrade all responses to
    HTTP/1.0; since HTTP/1.0 doesn’t support chunked encoding, flushing
    doesn’t work with these proxies. One example is the Squid proxy. Its Wiki states that HTTP/1.1 is not yet
    supported, and one of the major reasons is “Chunked encoding [is]
    missing”.[61]
I’ve seen developers spend hours debugging why flushing wasn’t
    working, only to realize they were
    connected to the Internet through a company proxy that breaks flushing. To
    determine whether you’re behind a proxy, you can check your browser’s
    network connection settings. Sometimes it’s hard to tell whether you’re
    set up to use a proxy, especially with configuration options such as
    “Automatically detect settings” (Internet Explorer) and “Auto-detect proxy
    settings for this network” (Firefox 3.0). In
    addition to checking my browser settings, I look for headers such
    as Proxy-Connection, X-Forwarded-For, and Via or a status containing “HTTP/1.0” in the
    HTML document response. If any of these are present, you’re probably going
    through a proxy that may prevent flushing from working.


[61] http://wiki.squid-cache.org/Features/HTTP11



Domain Blocking During Flushing



Mainstream browsers, such as Internet Explorer 6 and 7 and Firefox 2, support only two
    connections per server. This limits the number of parallel downloads that
    can be performed on any single domain. There are ways to work around this
    limitation, as described in Chapter 11.
    Most of the issues with domain blocking arise in the context of resources
    in the page. With flushing, however, we also need to keep in mind that the
    HTML document request can affect parallel downloads.
In the examples so far, I’ve been careful to put the two images on a
    different domain (1.cuzillion.com) than the main page
    (stevesouders.com). Why is this important? There are
    only two images, so even in Internet Explorer 7 (with only two connections
    per server) there shouldn’t be any blocking behavior.
This sounds right, but as soon as we see the results we understand
    that because we’re using chunked encoding, the HTML document response is
    still using one connection—this
    leaves only one other connection for other resources that are on the same
    domain. The Flush Domain Blocking example creates this situation—in it the
    two images are served from stevesouders.com.
	Flush Domain Blocking
	http://stevesouders.com/efws/flush-domain-blocking-nogzip.php



Loading this in Internet Explorer 7 results in the HTTP waterfall
    chart shown in Figure 12-3. Comparing this to
    Figure 12-2, we see that this page is
    almost twice as slow, even though flushing is working. The reason it’s
    slow is that the second image is blocked until the HTML document returns.
    The HTML document and the first image have used up the two connections to
    stevesouders.com, so the second image has to
    wait.
[image: Flush Domain Blocking HTTP waterfall chart]

Figure 12-3. Flush Domain Blocking HTTP waterfall chart


If you leverage flushing’s greatest benefit of downloading resources
    early, it’s easy to exceed the two connections allowed to a single server.
    Keep this in mind as you might need to fetch the initial resources from a
    domain that’s not blocked by the HTML document.

Browsers: The Last Hurdle



As if getting flushing to work wasn’t hard enough, you’ll get thrown
    off track if you’re using Safari or Chrome with these examples. Even
    though both support chunked encoding, they won’t start rendering the
    page until they’ve received a minimum threshold of data: Safari is around 1 KB, Chrome is around 2 KB.[62]
The Flush
    example has only ~600 bytes in the first chunk, and as a result,
    the benefits of flushing aren’t seen in Safari and Chrome. To get flushing
    to work in Safari, the Flush 1K example includes an additional 1 KB of
    HTML in the initial chunk. Similarly, the Flush 2K example includes an
    extra 2 KB of HTML and works in Chrome.
	Flush 1K
	http://stevesouders.com/efws/flush-nogzip-1k.php

	Flush 2K
	http://stevesouders.com/efws/flush-nogzip-2k.php



This is an issue in my examples because the HTML is minimal. In
    real-world pages, with inline style and script blocks and more page
    markup, it’s likely that the flushed HTML exceeds 2 KB. If you want
    flushing to work across all browsers, make sure you flush after the 2 KB
    mark.


[62] Internet Explorer has a similar minimum threshold, but it’s only
        255 bytes, so it’s unlikely to trip you up.



Flushing Beyond PHP



This chapter, as well as most wikis and forums related to flushing,
    focuses on PHP. If you use a different HTML templating framework, don’t
    fear; there’s probably a way to get the performance gains from chunked
    encoding, and it’s probably done with a function named “flush.”
Experienced Perl programmers at some point have written scripts where
    the printed output needed to be flushed from STDOUT immediately. These
    aficionados know that setting $| to a
    nonzero value is the way to accomplish this. Lesser known is the technique
    for doing this with the FileHandle
    autoflush method.[63] The Flush Perl example uses this technique.
	Flush Perl
	http://stevesouders.com/efws/flush-nogzip.cgi



The call to autoflush is at the
    top of the script:
use FileHandle;
STDOUT->autoflush(1);
Python file objects[64] and Ruby’s IO class[65] have a flush function. It’s likely that no matter what language you’re
    using on the backend, there’s a way to flush STDOUT.


[63] http://perldoc.perl.org/FileHandle.html

[64] http://www.python.org/doc/2.5.2/lib/bltin-file-objects.html

[65] http://www.ruby-doc.org/core/classes/IO.html#M002303



The Flush Checklist



Getting flushing to work isn’t always easy. If you’re trying to
    flush your PHP page, but are having trouble getting it to work, here’s the
    checklist to walk through:
	Is output buffering on? If so, you have to use the ob_ functions.

	Do you see the Transfer-Encoding:
        chunked response header? Chunked encoding is typically
        required for flushing to work.

	Is the response gzipped? If so, and you’re running a version of
        Apache earlier than 2.2.8, you have to add padding to your
        page.

	Are you behind a proxy or using antivirus software? These might
        buffer the chunks before sending them through to the browser.

	Are any of the resources referenced in the flushed chunk being
        blocked because they’re fetched from the same domain as the HTML
        document?

	Are you testing only in Safari or Chrome? The flushed HTML must
        be more than 2 KB to see the benefits in these browsers.



There are many variables to sort out—it’s almost like trying to get
    the stars to align—but the results are worth it. In our set of top 10 web
    sites, 5 use chunked encoding: AOL, Facebook, Google Search, MySpace, and
    Yahoo!. Keep in mind that even though these sites support chunked
    encoding, it’s not necessarily the case that they are flushing the
    document early. The HTTP profile for Google Search, in Figure 12-4, most clearly shows the
    benefits of flushing.
[image: Google Search HTTP waterfall chart]

Figure 12-4. Google Search HTTP waterfall chart


By flushing the document early, Google pages start downloading
    resources and rendering content more quickly. This is a benefit that all
    users will appreciate, especially those with slow Internet connections and
    high latency.

Chapter 13. Using Iframes Sparingly



Iframes, also called inline frames, allow for one HTML document to be embedded inside another.[66] Iframes are best used for integrating HTML content, such as an
  ad, that’s from a web site different from that serving the main page.
A benefit of using iframes for this purpose is that their document is entirely
  independent from the parent document. Relative URLs inside the iframe are
  resolved relative to the iframe’s base URI, not the parent’s. User agents
  can give the iframe focus for printing, bookmarking, saving, and so forth.
  Perhaps most important, JavaScript included in the iframe has limited access
  to the parent. For example, an iframe from a different domain can’t access the parent’s cookies. This is an important
  consideration when web developers must allow third-party content, such as
  ads, in their pages but they don’t have control over this content.
What’s the downside? You guessed it—slower performance. Chapter 4 describes how iframes are used
  to improve performance in terms of loading scripts asynchronously. It is
  true that iframes can make pages load faster, if used properly.
  Unfortunately, iframes are often used in a way that hurts performance. It’s important to know the performance penalties
  inflicted by iframes and how to avoid them.
The Most Expensive DOM Element



The Cost of Elements test page measures how long it takes to create
    different types of DOM elements.
	Cost of Elements
	http://stevesouders.com/efws/costofelements.php



Using this page, I tested how long it takes to load 100 elements of the following types: A, DIV, SCRIPT,
    STYLE, and IFRAME. I ran each test 10 times in Chrome (1.0, 2.0), Firefox (2.0, 3.0, 3.1beta2), Internet Explorer (6, 7, 8beta2), Opera (9.63, 10.00alpha), and Safari (3.2, 4.0 developer preview). Figure 13-1 shows the median
    time to create 100 elements of each type.
[image: Time to load 100 elements of various types]

Figure 13-1. Time to load 100 elements of various types


Figure 13-1 shows
    that iframes are one to two orders of magnitude more expensive to create
    than other types of DOM elements. In these tests, the DOM elements are
    empty. It’s possible that a large script or style block could take longer
    to load than certain types of iframes, but this test compares the baseline
    cost. Given the much larger cost of iframes, they should be used in small
    numbers with caution.



[66] http://www.w3.org/TR/html4/present/frames.html#edef-IFRAME



Iframes Block Onload



We want the onload event to fire as quickly as possible. There are several reasons
    for this:
	When onload fires, the
        browser’s busy indicators stop and the user is given feedback that the
        page is ready. For example, “Done” is displayed in the status bar.
        Thus, if onload fires quickly,
        there’s a greater chance that the user perceives the page to be
        fast.

	Developers frequently initiate UI actions with the onload event; for example, setting focus to
        a login field. As users become trained to wait for this action, it’s
        important for onload to fire as
        soon as possible so that the user’s wait is short.

	Developers sometimes associate important actions with the
        window’s unload event; for example, JavaScript code to reduce memory
        leaks.[67] Unfortunately, in some browsers, onunload will not
        fire unless the onload event has
        fired.[68] If onload takes too
        long and the user quickly leaves the page, then the onunload code never executes.[69]



It makes sense that the onload
    event shouldn’t fire until all critical content on the page has loaded,
    but often an iframe contains content that is not critical to the user’s
    engagement with the page. A good example of this is iframes that contain
    ads. Ads may be critical to the web site’s business, but the user
    experience should not be degraded waiting for ads to load. When used in
    the typical fashion, iframes block the onload event. It’s important, therefore, to
    investigate whether there’s a way to load iframes without delaying the
    main page’s onload event.
The Iframe Blocking Onload example shows that iframes block the
    parent window’s onload event.
	Iframe Blocking Onload
	http://stevesouders.com/efws/iframe-onload-blocking.php



In this example, the iframe is used in the typical way, setting the
    iframe’s URL with the HTML SRC
    attribute, like so:
<iframe src="url"></iframe>
There are four variations of this example, accessible through the
    links in the page:
	Empty iframe
	The iframe takes four seconds to return but doesn’t contain
          any resources.

	Iframe with image
	The iframe returns immediately but contains an image that
          takes four seconds to return.

	Iframe with script
	The iframe returns immediately but contains an external script
          that takes four seconds to return.

	Iframe with stylesheet
	The iframe returns immediately but contains a stylesheet that
          takes four seconds to return.



The parent window’s onload time is shown at the top of the page.
    Since the parent window contains only one resource (the iframe), we know
    the iframe has blocked the onload event
    if the onload time is greater than four seconds. The result is the same
    across all major browsers: iframes block the parent
    window’s onload
    event when used in the typical way.
There’s an easy workaround to this blocking behavior, but it works
    only in Safari and Chrome. Instead of setting the iframe’s URL with the
    HTML SRC attribute, we set it
    dynamically with JavaScript:
<iframe id=iframe1 src=""></iframe>
<script type="text/javascript">
document.getElementById('iframe1').src = "url";
</script>
This technique is used in the Iframe Not Blocking Onload
    example.
	Iframe Not Blocking Onload
	http://stevesouders.com/efws/iframe-onload-nonblocking.php



In Safari and Chrome, the onload time is a few hundred milliseconds.
    Since this is much less than four seconds, we know that the iframe and its
    components are not blocking the parent window’s onload event. Unfortunately, this technique
    doesn’t work in Internet Explorer,
    Firefox, and Opera. For a majority of users, the blocking behavior of
    iframes prolongs the time before the page is “Done.”


[67] “Understanding and Solving Internet Explorer Leak Patterns,”
            http://msdn.microsoft.com/en-us/library/bb250448.aspx.

[68] This is true in Internet Explorer 6 through 8, Safari 3 and
            4, and Chrome 1 and 2.

[69] There are workarounds to this problem—for example, http://blog.moxiecode.com/2008/04/08/unload-event-never-fires-in-ie/—but
            there will continue to be developers, unaware of the issue, who
            use the unload event.



Parallel Downloads with Iframes



This section explores the download behavior of iframes and the main page.
    In general, resources in an iframe are downloaded in parallel with
    resources in the main page. In some cases, however, the main page can
    cause resources in the iframe to be blocked from downloading.
Script Before Iframe



External scripts in the main page that are loaded in the typical way (<script
      src="url"></script>) block all resources that
      follow. Therefore, an iframe and its resources are blocked from
      downloading if they are preceded by an external script. This is
      demonstrated in the Script Before Iframe example.
	Script Before Iframe
	http://stevesouders.com/efws/script-before-iframe.php



In this example, the script takes four seconds to return. The
      iframe has no delay, but it contains an image, a stylesheet, and a
      script that are each configured to take four seconds to return. Figure 13-2 shows the HTTP waterfall charts for this example in Internet
      Explorer, Firefox, Safari, Chrome, and Opera. (Safari, Chrome, and Opera
      perform similarly and so are grouped together.) As expected, we see that
      the script in the main page blocks the iframe request; this causes the
      iframe’s resources to be delayed. The way scripts block iframes is
      similar across all browsers, but in the next two sections we’ll see that
      Internet Explorer and Firefox diverge from the behavior shown here,
      while Safari, Chrome, and Opera all perform the same.
[image: Script before iframe]

Figure 13-2. Script before iframe



Stylesheet Before Iframe



Chapter 7 discusses the
      blocking behavior inflicted on pages that contain a stylesheet followed by an inline
      script. Stylesheets also have an unexpected blocking interaction with
      iframes in Internet Explorer and Firefox. The Stylesheet Before Iframe
      example shows what happens.
	Stylesheet Before Iframe
	http://stevesouders.com/efws/stylesheet-before-iframe.php



Normally, stylesheets don’t block other resources, and in Figure 13-3 we see that this is true for
      Safari, Chrome, and Opera. However, in Internet Explorer and Firefox,
      the stylesheet blocks requests associated with the iframe. In Internet
      Explorer, the iframe request is blocked. In Firefox, the stylesheet and
      iframe download in parallel, but the iframe’s resources are blocked by
      the stylesheet.[70]
[image: Stylesheet before iframe]

Figure 13-3. Stylesheet before iframe



Stylesheet After Iframe



Moving the stylesheet below the iframe would presumably avoid this
      blocking behavior. This is true in Internet Explorer, but not in
      Firefox, as shown by the Stylesheet After Iframe example.
	Stylesheet After Iframe
	http://stevesouders.com/efws/stylesheet-after-iframe.php



Firefox’s waterfall chart, as shown in Figure 13-4, takes eight seconds to load.
      The other major browsers are all down to four seconds. Although it’s not
      worthwhile to move stylesheets lower in the page—any gains from not
      blocking iframes are lost because rendering is delayed—it is worth
      noting that if the iframe’s resources were in the main page itself, the
      blocking wouldn’t happen. When deciding whether iframes are an
      appropriate solution, this blocking behavior is an important consideration.
[image: Stylesheet after iframe]

Figure 13-4. Stylesheet after iframe





[70] Performance in Firefox 2 is worse because stylesheets block
          all downloads. This was fixed in Firefox 3.0.



Connections per Hostname



Browsers have a limit on the number of connections they open to a single hostname.
    The number of connections determines how many resources can be downloaded
    in parallel. Internet Explorer 6 and 7 and Firefox 2 open only two
    connections per server. Newer browsers open a higher number—between four
    and eight connections per server. (See Table 11-2 for a full breakout by browser.) The
    following sections explore how these browsers enforce these limits across
    iframes, tabs, and windows.
Connection Sharing in Iframes



One might hope that because an iframe is “entirely independent of the document in which
      it is embedded,”[71] resources downloaded as part of the iframe would use a
      connection pool that is separate from the main page. The Iframe
      Connections example tests whether this is true.
	Iframe Connections
	http://stevesouders.com/efws/parent-connections.php



The Iframe Connections example downloads five images in the parent
      document and another five images as part of the iframe. All 10 images
      are from the same server (1.cuzillion.com) and are
      configured to take two seconds to respond. Figure 13-5 shows the HTTP
      waterfall chart for this example loaded in Internet Explorer 7.
[image: Iframe Connections HTTP waterfall chart for Internet Explorer 7]

Figure 13-5. Iframe Connections HTTP waterfall chart for Internet Explorer
        7


The first two requests are for the parent HTML document and
      iframe, respectively. The remaining requests are for the 10 images
      served from 1.cuzillion.com. Internet Explorer 7
      opens two connections per hostname. We see in Figure 13-5 that this limited
      pool of only two connections is shared by all the requests in the parent
      document as well as the iframe. This is the case for all major
      browsers.
Using an iframe does not increase the number of parallel downloads
      for a given hostname.

Connection Sharing Across Tabs and Windows



It’s both surprising and disappointing that the connection limits
      apply across an iframe and its parent. This raises the question: is the
      connection pool similarly limited across multiple browser tabs and
      windows?
To answer this question, I created two URLs:
http://stevesouders.com/efws/connections1.php
http://stevesouders.com/efws/connections2.php
Similar to the previous example, each of these pages contains 5
      images served from 1.cuzillion.com, for a total of
      10 images. The test involves opening two tabs in a browser and loading
      the URLs simultaneously. If the connection pool is shared, the 10 images
      will take longer to download. If each browser tab has its own connection
      pool, the images will download in parallel and the overall load time
      will be faster. The same test is done using two instances of the same
      browser loading the URLs in separate windows.
I ran these tests on Internet Explorer 8.0 beta 2, Firefox 3.1b2,
      Safari 4 developer preview, Chrome 2.0, and Opera 10.0 alpha. The
      results are that the connection pool is shared across tabs and windows
      for all these browsers. Figure 13-6 shows the HTTP
      waterfall chart for Internet Explorer 8.0 beta 2.
[image: Connections shared across windows in Internet Explorer 8]

Figure 13-6. Connections shared across windows in Internet Explorer
        8


The two test URLs are the first two short requests. The longer
      requests are the images. Internet Explorer 8 opens a maximum of six
      connections per server. This pool of six connections is used to download
      the five images in connections1.php
      and the first image in connections2.php. At that point, the
      remaining images in connections2.php are blocked, even though
      they’re being fetched in a separate window.
This section is a digression from the main topic of iframes, but
      it’s worth noting this behavior of connection limits being applied
      across tabs and windows. For companies that host multiple properties on
      a single domain, this could have a negative impact on performance if
      users open multiple web applications simultaneously. For example,
      several Google applications are hosted from http://www.google.com:
	Google
          Calendar

	Google
          Finance

	Google
          Reader

	Google
          Search

	iGoogle



Most of the resources used by these web sites also come from
      http://www.google.com. If a user opened two or
      more simultaneously, he would compete for the open connections,
      resulting in slower load times. Although this doesn’t happen frequently,
      it does happen. For example, I have a script that opens Google Calendar,
      Google Reader, and iGoogle every morning when I start my browser. These
      web sites are impacted because they must share connections even though
      they are loaded in separate tabs.



[71] http://www.w3.org/TR/html4/struct/objects.html#h-13.5



Summarizing the Cost of Iframes



Even blank iframes are expensive. They are one to two orders of magnitude more
    expensive than other DOM
    elements.
When used in the typical way (<iframe
    src="url"></iframe>), iframes block the
    onload event. This prolongs the
    browser’s busy indicators, resulting in a page that is perceived to be
    slower. Setting the iframe’s SRC
    dynamically avoids this problem in Safari and Chrome. For other browsers,
    setting the SRC after the onload event avoids the problem.
Although iframes don’t directly block resource downloads in the main
    page, there are ways that the main page can block the iframe’s downloads.
    In addition to the expected behavior of scripts, stylesheet downloads in
    the main page block the iframe’s downloads in both Internet Explorer and
    Firefox.
The browser’s limited connections per server are shared across the
    main page and iframes, even though an iframe is an entirely independent
    document. Web sites that host most of their resources on a single domain
    should keep this in mind.
With all of these costs, it’s often best to avoid the use of
    iframes, and yet a quick survey shows that they are still used frequently.
    Five of the top 10 U.S. web sites use iframes: AOL, Facebook, MSN.com,
    MySpace, and YouTube. These sites use iframes primarily for serving ads.
    This is to be expected, given that iframes are an easy way to include
    content from a third-party site, especially dynamic content such as a
    rotating ad.
An alternative way to insert ads with better performance would be
    for the main page to create a DIV to
    hold the contents of the ad. When the main page requests the ad’s external
    script (using an asynchronous technique as described in Chapter 4), the ID of this DIV could be included in the script’s URL. The
    ad’s JavaScript would then insert the ad in the page by setting the
    innerHTML of the DIV. This approach is also more compatible with
    “expando” ads—those ads that take over a large part of the window and thus
    cannot be constrained by an iframe. The use of iframes is declining as
    these other techniques for inserting ads become more prevalent, much to
    the benefit of web page performance.

Chapter 14. Simplifying CSS Selectors



Much of this book focuses on JavaScript performance. What about CSS?
  Most published information about CSS understandably focuses on layout,
  design, and the relationship between content, markup, and code.[72] There are a few best practices focused on CSS
  performance:
	Place stylesheets in the HEAD
      of the document to promote progressive rendering. (See High Performance Web
      Sites, Chapter 5.)

	Don’t use CSS expressions in Internet Explorer, as they may be
      executed thousands of times, resulting in a sluggish page. (See
      High Performance Web
      Sites, Chapter 7.)

	Avoid too much inline styling as it increases download size. (See
      Chapter 9 of this book.)



Another topic that has garnered attention is the cost of inefficient
  CSS selectors. A selector is the initial list of
  arguments that indicates the elements of the page to which a CSS rule
  applies. This chapter explains the issues with regard to CSS selectors.
  There are some surprises. Although following the guidelines for optimal CSS
  selectors can make a difference in web site speed, it’s more important that
  web developers avoid a few common, yet costly, CSS selector patterns. All of
  this is revealed in the sections that follow.
Types of Selectors



This section defines the terminology around CSS selectors. Consider this
    example:
#toc > LI { font-weight: bold; }
This is a style rule or simply rule. The
    CSS selector is #toc >
    LI. This selector contains two simple
    selectors (#toc and LI) that are joined with the > combinator. The CSS
    selector determines which elements in the page, also called
    subjects, receive the specified styling.
The browser tries to match the CSS selectors with elements in the
    document. It’s this matching that is the cause for concern. The amount of
    matching the browser must perform depends on how the CSS selectors are
    written. Some types of CSS selectors cause more matching attempts and are
    thus more expensive than simpler selectors.
The various types of CSS selectors are presented in the following
    sections. They’re listed in approximate order from simplest (least costly)
    to most complex (most expensive). For more information, consult the section in the CSS2
    specification on selectors.
The example rules from this section are used in the CSS Selectors
    example. The use case for this example is styling for a table of contents.
    The page is shown in Figure 14-1
    with some of the applicable rules indicating where they have an
    effect.
	CSS Selectors
	http://stevesouders.com/efws/selectors.php



[image: CSS Selectors example with rules]

Figure 14-1. CSS Selectors example with rules


ID Selectors



Example: #toc { margin-left: 20px;
      }
Simple and efficient, this type of selector matches the unique
      element in the page with the specified ID. The example just shown
      matches the element whose ID attribute is toc. In the Table of Contents example, this
      rule matches an ordered list element: <ol id=toc>. This rule indents the
      list by 20 pixels on the left.

Class Selectors



Example: .chapter { font-weight: bold;
      }
Rules based on a class are specified with a dot (.) followed by the class name. Class selectors
      match all elements with a class attribute containing that name. This
      rule matches the list item elements in our Table of Contents example,
      making the font bold: <li
      class=chapter>.

Type Selectors



Example: A { text-decoration: none;
      }
Type selectors apply to all elements of the specified element
      type. This rule removes the underline from all anchors in the page, such
      as: <a href="#introduction">Introduction</a>. This is a
      lightweight way to add styling to all elements of a specified type,
      without having to add any extra characters (such as ID, class, or style)
      to each element.

Adjacent Sibling Selectors



Example: H1 + #toc { margin-top: 40px;
      }
Adjacent sibling selectors are created by chaining two simple selectors (in
      this case, H1 and #toc) with the + combinator. In our CSS Selectors page, this
      rule matches the toc element because
      its previous sibling is an H1
      element. As a result, the Table of Contents example is given an extra 40
      pixels of margin at the top.

Child Selectors



Example: #toc > LI { font-weight:
      bold; }
Child selectors are formed by combining two or more simple
      selectors with the > combinator.
      This rule matches all list items whose parent is the toc element. This rule achieves the same
      results as the class selector example, but the LI elements don’t need to specify a class,
      thus reducing the size of the resultant page.

Descendant Selectors



Example: #toc A { color: #444;
      }
The previous two selector types use the + and >
      combinators. Descendant selectors simply use a space (“ ”) as a
      combinator. Descendant rules are matched whenever the second selector
      subject is found to be a descendant (child, grandchild, etc.) of the
      first selector subject. In our page, all anchor (A) elements within the Table of Contents
      (toc) element are given a font color
      of “#444.” Notice that I’ve used shorthand to specify the color.
      Normally this color would be specified as “#444444,” but “#444” means
      the same thing and saves three bytes.

Universal Selectors



Example: * { font-family: Arial;
      }
Universal selectors, written using *, match every element in the document. This
      rule assigns the Arial font to all elements in the CSS Selectors example
      page.

Attribute Selectors



Example: [href="#index"] { font-style:
      italic; }
Attribute selectors match based on the existence or value of an
      element’s attributes. This rule causes the anchor element with href equal to "#index" to be drawn in italics. Attributes
      can be matched in four ways:
	Equality, using = as this
          rule does.

	Existence of the attribute, regardless of value: [href].

	Equality with one value in a space-separated list of values:
          [title~="Index"] matches <a title="the Index">.

	Equality with the first value in a hyphen-separated list of
          values: [LANG|=en] matches
          <p lang="en"> as well as
          <p lang="en-US">.



Class selectors are a specialized case of attribute selectors,
      where the attribute is class. The dot
      notation for class selectors (e.g., .chapter) is shorthand to avoid the lengthier
      attribute syntax ([class="chapter"]).

Pseudo-Classes and Pseudo-Elements



Example: A:hover { text-decoration:
      underline; }
The types of selectors presented so far have been based on information
      from the DOM. Some desired styling is not represented in the DOM.
      Pseudo-classes and pseudo-elements were created to address these
      situations. This rule draws an underline whenever the user hovers over
      an anchor; :hover is a
      pseudo-class. Other pseudo-classes include :first-child, :link, :visited, :active, :focus, and :lang. The pseudo-elements include :first-line, :first-letter, :before, and :after.




[72] See Nicole Sullivan’s “Object Oriented
      CSS” and Nate Koechley’s “Semantic
      Markup—Create, Support and Extract”.



The Key to Efficient CSS Selectors



The impact of CSS selectors on performance derives from the amount of time it takes the
    browser to match the selectors against the elements in the document.
    Developers have some control over how long this matching takes by writing
    their selectors to be more efficient. The path to efficient selectors
    starts by understanding how selector matching works.
Rightmost First



Consider the following rule:
#toc > LI { font-weight: bold; }
Most of us, especially those who read left to right, might assume
      that the browser matches this rule by moving from left to right, and
      thus, this rule doesn’t seem too expensive. In our minds, we imagine the
      browser working like this: find the unique toc element and apply this styling to its
      immediate children who are LI
      elements. We know that there is only one toc element, and it has only a few LI children, so this CSS selector should be
      pretty efficient.
In reality, CSS selectors are matched by moving from
      right to left! With this knowledge, our rule that at first
      seemed efficient is revealed to be fairly expensive. The browser must
      iterate over every LI element in the page and
      determine whether its parent is toc.
Our descendant selector example is even worse:
#toc A { color: #444; }
Instead of just checking for anchor elements inside toc, as would happen if it was read left to
      right, the browser has to check every anchor in the entire document. And
      instead of just checking each anchor’s parent, the browser has to climb
      the document tree looking for an ancestor with the ID toc. If the anchor being evaluated isn’t a
      descendant of toc, the browser has to
      walk the tree of ancestors until it reaches the document root.
David Hyatt, Safari and WebKit architect, reveals this information in one of
      the most-referenced articles on CSS selector performance, “Writing
      Efficient CSS for use in the Mozilla UI”:
The style system matches a rule by starting with the rightmost
        selector and moving to the left through the rule’s selectors. As long
        as your little subtree continues to check out, the style system will
        continue moving to the left until it either matches the rule or bails
        out because of a mismatch.



Writing Efficient CSS Selectors



Armed with the insight that selectors are matched right to left,
      we can take another look at our CSS selectors and tune them to be more
      efficient. Before we start, it would be nice to have some additional
      information, such as which CSS selectors are the most expensive, and
      some patterns for making it easier to fix them. Fortunately, David Hyatt’s
      article provides guidelines for writing efficient selectors:
	Avoid universal rules
	In addition to the traditional definition of universal
            selectors, Hyatt lumps adjacent sibling selectors, child
            selectors, descendant selectors, and attribute selectors into this
            category of “universal rules.” He recommends using ID, class, and
            tag selectors exclusively.

	Don’t qualify ID selectors
	Because there is only one element in the page with a given
            ID, there’s no need to add additional qualifiers. For example,
            DIV #toc is unnecessary and
            should be simplified to #toc.

	Don’t qualify class selectors
	Instead of qualifying class selectors for specific tags, extend the class
            name to be specific to the use case. For example, change LI .chapter to .li-chapter, or better yet, .list-chapter.

	Make rules as specific as possible
	Don’t be tempted to build long selectors, such as OL LI A. It’s better to create a class,
            such as .list-anchor, and add
            it to the appropriate elements.

	Avoid descendant selectors
	Descendant selectors are typically the most expensive to
            process. Child selectors are often what’s intended and can be more
            efficient. It’s even better to follow the next guideline to avoid
            child selectors as well.

	Avoid tag-child selectors
	If you have a child selector that is based on a tag, such as
            #toc > LI > A, use a
            class associated with each of those tag elements, such as .toc-anchor.

	Question all usages of the child selector
	This is another reminder to review all places where child
            selectors are used, and replace them with specific classes when
            possible.

	Rely on inheritance
	Learn which properties are inherited, and avoid rules that
            specify these inherited styles. For example, specify list-style-image on the list element
            instead of on each list item element. Consult the list of inherited
            properties to know which properties are inherited for
            which elements.



It’s interesting to note that David Hyatt’s article was first published in April 2000. I
      wonder—why is there renewed interest in this topic nine years later?
      David’s article, as the title states, was addressed to developers
      working on the Mozilla UI. Perhaps it’s taken this long for web pages to
      reach a similar level of performance loss with regard to CSS
      selectors.
Another factor is that today’s Web 2.0 applications have a longer
      session length—it’s not the load-clear-load Web 1.0 scenario. In this
      sense, Web 2.0 applications are more similar to the Mozilla UI, and the
      impact of inefficient CSS selectors may be more pronounced as huge
      portions of the DOM tree are created and removed, and DHTML code changes
      class names and style attributes. The findings in the next section
      support this view that the complexity and dynamic nature of web pages
      are what have brought focus to this area of performance analysis.


CSS Selector Performance



The veil has been lifted. We now see the inefficiencies in our CSS
    selectors. The revelation of selectors being read from right to left
    motivates many of us to rewrite our rules. With Doug Crockford’s guidance (see Chapter 1), we know that before we start
    fixing this possible performance issue, it’s important to first measure
    the impact of the issue so that we are sure to focus on the right
    problem.
Complex Selectors Impact Performance (Sometimes)



The results of an experiment to measure the performance of CSS
      selectors were published in three blog posts from Jon Sykes. Each post is a refinement on the previous one,
      so part 3 is the most informative.[73] His test comprises five pages. All the pages contain
      20,000 anchor elements, each with an ancestor tree of P, DIV,
      DIV, DIV, and BODY. Each page has different types of
      CSS:
	“No Style” has no CSS.

	“Tag” has one rule:
A { background-color: red; }

	“Class” has 20,000 class selectors, one for each anchor; for
          example:
class11 { background-color: red; }

	“Descender” has 20,000 descendant selectors, one for each
          anchor; for example:
div div div p a.class11 { background-color: red; }

	“Child” has 20,000 child selectors, one for each anchor; for
          example:
div > div > div > p > a.class11 { background-color: red; }



The results indeed show that “No Style” is faster than “Descender”
      and “Child.” In Internet Explorer and Safari, the load times of the
      slower pages are a multiple of the simple page. It’s clear that
      inefficient CSS selectors in numbers this large adversely affect
      performance.
What if the number of selectors is reduced to levels comparable to
      today’s web sites—do they still have an impact? Table 14-1 shows the number
      of CSS rules and DOM elements, as well as average DOM depth, for the top
      10 U.S. web sites. The total number of rules ranges from 92 to 2,882,
      with an average of 1,033.
Table 14-1. CSS rules and DOM elements in the top 10 U.S. web sites
	Web site
	Number of rules
	Number of DOM elements
	Average depth

	AOL
	2,289
	1,628
	13

	eBay
	305
	588
	14

	Facebook
	2,882
	1,966
	17

	Google
	92
	552
	8

	Live Search
	376
	449
	12

	MSN.com
	1,038
	886
	11

	MySpace
	932
	444
	9

	Wikipedia
	795
	1,333
	10

	Yahoo!
	800
	564
	13

	YouTube
	821
	817
	9

	Average
	1,033
	923
	12




Based on this information, I created a set of tests similar
      to Sykes’ experiments, but instead of 20,000 rules they
      contain only 1,000 rules. Also, to make the page size more consistent, I
      gave the baseline page and tag selector page 1,000 rules just like all
      the other pages; these are simple class rules that aren’t used by any
      elements. The pages themselves are part of the CSS Selectors Test
      example.
	CSS Selectors Test
	http://stevesouders.com/efws/css-selectors/tests.php



The focus of this experiment is to gauge the cost of complex
      selectors versus simple selectors. Figure 14-2 shows the
      difference in load times of the slowest test page (child or descendant
      selectors) and the simple baseline page. The average slowdown is just 30
      milliseconds.[74]
These tests show a much smaller savings from optimizing CSS
      selectors than what was found in Sykes’ tests. This is primarily due to
      the reduced number of rules coupled with the fact that the impact of CSS
      selectors increases at a nonlinear rate as the number of rules and DOM
      elements grows. Figure 14-3 shows the page
      load time in Internet Explorer 7 as the number of rules increases from
      1,000 to 20,000 for the more expensive child and descendant selector
      tests. This data reveals that Internet Explorer 7 hits a cliff at around
      18,000 rules. The tests with 20,000 rules are on the extreme end of this
      hockey stick.
[image: Load time difference for simple versus complex selector tests]

Figure 14-2. Load time difference for simple versus complex selector
        tests


[image: CSS selector hockey stick in Internet Explorer 7]

Figure 14-3. CSS selector hockey stick in Internet Explorer 7


These results indicate that more complex CSS selectors, such as
      child and descendant selectors, don’t always affect page performance.
      This doesn’t mean we shouldn’t optimize our CSS selectors. Even at
      real-world levels, certain types of selectors have a noticeable impact
      on performance.

CSS Selectors to Avoid



The tests from the previous section show that in some situations, even
      complex CSS selectors have little impact on performance, but that’s not
      always the case. Let’s look at a sample descendant selector from the
      earlier tests:
DIV DIV DIV P A.class0007 { ... }
At first glance, this seems likely to be an expensive selector to
      match. It’s a descendant selector, with five levels of ancestors to
      match. However, recalling that selectors are matched right to left, we
      realize why this descendant selector performs at about the same speed as
      a much simpler class selector. The amount of work performed by the
      browser is heavily affected by the rightmost argument, also called
      the key selector. In this case, the key
      selector is A.class0007. Only one
      element in the page matches this key selector, so the amount of time
      needed to match this selector is minimal.
In contrast, consider this rule:
A.class0007 * { ... }
In this rule, the key selector is *. Since this matches all elements, the
      browser has to check every element to see whether it is a descendant of
      an anchor with the class name class0007. The Universal Selector example has
      1,000 rules of this type.
	Universal Selector
	http://stevesouders.com/efws/css-selectors/universal.php



Figure 14-4 shows
      the difference in load times of the Universal Selector page and the
      Descendant
      Selector page. This is a significant change from Figure 14-2, where the average
      delta was just 30 milliseconds.
      The average slowdown here is more than two seconds!
When deciding where to optimize, remember to focus on CSS
      selectors where the key selector is likely to match
      a large number of elements in the page. It’s not just the universal
      selector that is troublesome. Here are some other examples that take
      significant time to load:
[image: Load time difference for universal selector]

Figure 14-4. Load time difference for universal selector


	A.class0007 DIV { ...
          }
	http://stevesouders.com/efws/css-selectors/csscreate.php?sel=A.class+DIV

	#id0007 > A { ...
          }
	http://stevesouders.com/efws/css-selectors/csscreate.php?sel=%23id+>+A

	.class0007 [href] { ...
          }
	http://stevesouders.com/efws/css-selectors/csscreate.php?sel=.class+[href]

	DIV:first-child { ...
          }
	http://stevesouders.com/efws/css-selectors/csscreate.php?sel=DIV%3Afirst-child



These examples are all created by the CSS Test Creator page.
      “0007” is used to indicate a counter that is incremented from 1 to the
      maximum number of rules (1,000 in this case). The CSS Test Creator makes
      it easy to try different types of selectors and measure the impact on
      load times, as well as reflow time, as discussed in the next section.

Reflow Time



All the examples so far have measured the impact of CSS selectors
      on load time. For Web 2.0 applications, a more important consideration
      is the time it takes the browser to apply styles and lay out elements
      while the user interacts with the page. This is called the reflow time. A reflow is triggered
      when certain properties of a DOM element’s style are modified using
      JavaScript. Given a DOM element called elem, each of the following lines of code
      triggers a reflow in most browsers:
elem.className = "newclass";
elem.style.cssText = "color: red";
elem.style.padding = "8px";
elem.style.display = "";
This is just a subset; the list of reflow triggers is much longer.
      Given their dynamic nature, Web 2.0 applications can easily trigger a
      reflow. A reflow doesn’t necessarily involve every element in the page.
      Browsers are optimized to re-layout only the elements that are affected
      (“dirty”). In the preceding examples, however, if elem is the document body or some other
      element with many descendants, the reflow can be costly.
A reflow requires that CSS rules be reapplied, which means the
      browser must once again match all the CSS selectors. If the CSS
      selectors are inefficient, the reflow may take a long time—long enough
      that users notice. All of the CSS selector
      test examples have a Measure Reflow button. When clicked, the
      body’s display property is toggled, as shown in the last line of the
      preceding code. The time it takes for the reflow to finish is displayed
      next to the button. The examples of expensive CSS selectors from the
      previous section have reflow times ranging from hundreds of milliseconds
      to seconds.
It’s important, therefore, to be wary of the impact of inefficient
      CSS selectors not only on page load time, but also on how your Web 2.0
      application behaves while the user interacts with it. If your JavaScript
      manipulates style properties and your page starts to feel sluggish,
      inefficient CSS selectors might be the cause.



[73] The original blog post, http://blog.archive.jpsykes.com/153/more-css-performance-testing-pt-3/,
          is no longer available.

[74] The results for Opera 9.63 were inconsistent and so are
          omitted.



Measuring CSS Selectors in the Real World



This chapter presents the results from multiple experiments, but all of these test
    pages are contrived examples. It’s difficult to translate the time savings
    shown by these tests into savings for real-world web sites. An ideal
    experiment would be to optimize the CSS selectors in the top 10 web sites
    and measure the effect on load time, but that’s not feasible.
To estimate the performance improvement that might be gained by
    optimizing CSS selectors, we can measure the reflow time. This is easy to
    do on existing web pages using Lindsey Simon’s Reflow
    Timer. This is a bookmarklet that runs in all major browsers. When
    launched, it toggles the body’s display property and displays the average
    reflow time. (I got the idea to add reflow time measurements to my test
    pages based on this tool.) Figure 14-5 shows the results of
    measuring reflow time. Reflow time ranges from 16 milliseconds (Google
    Search) to 391 milliseconds (Facebook).[75]
[image: Top 10 sites reflow time, total rules, and extreme selectors]

Figure 14-5. Top 10 sites reflow time, total rules, and extreme
      selectors


In addition to reflow time, Figure 14-5 also shows the
    number of rules and the number of extremely inefficient rules (rules with
    key selectors that match a large number of elements). The correlation
    coefficient between reflow time and the number of rules is 0.86. The
    correlation coefficient between reflow time and the number of extremely
    inefficient rules is 0.9. Both of these are high correlations, suggesting
    that the time it takes for a browser to apply styles is affected by both
    the number as well as the efficiency of CSS selectors.
If, like AOL and Facebook, your site use a large number of rules,
    many of which are extremely inefficient, optimizing your CSS selectors may
    make your page faster. You’d likely also benefit from reducing the number
    of rules. Having said that, keep in mind that there’s a cost associated
    with following David Hyatt’s guidelines for writing efficient CSS
    selectors: replacing expensive descendant selectors with class assignments
    for each affected element adds weight to your page and reduces the
    flexibility of your styles. The most important selectors to fix are those
    with a key selector (rightmost selector) that matches a large number of
    elements. Although the benefit of this performance improvement varies, web
    developers should be aware that certain types of CSS selectors can torpedo
    their page’s performance.


[75] Measured using Internet Explorer 7.



Appendix A. Performance Tools



Like all good engineers, web developers need to build up a set of
  tools to do a high-quality job. This appendix describes the tools I
  recommend for analyzing and improving web site performance. The tools are
  grouped into the following sections:
	Packet Sniffers
	When I sit down to analyze a web site, I start by looking at the
        HTTP requests for the web page in question. This makes it possible to
        identify the slow parts of the page. A packet sniffer that is handy
        and easy to use is the first tool to add to your kit. The tools
        included in this category are HttpWatch, Firebug Net Panel, AOL
        Pagetest, VRTA, IBM Page Detailer, Web Inspector Resources Panel,
        Fiddler, Charles, and Wireshark.

	Web Development Tools
	Page performance isn’t just about load time—JavaScript, CSS, and
        DOM structure play a significant role, especially for Web 2.0
        applications. Web development tools provide inspectors, profilers, and
        debuggers for analyzing web page behavior. This section includes
        Firebug, Web Inspector, and IE Developer Toolbar.

	Performance Analyzers
	Performance analyzers evaluate a given web page against a set of
        performance best practices. As I will explain, they vary a great deal
        in what they measure. This section describes YSlow, AOL Pagetest,
        VRTA, and neXpert.

	Miscellaneous
	This section includes a grab bag of tools I use regularly:
        Hammerhead, Smush.it, Cuzillion, and UA Profiler.



Packet Sniffers



Every web developer working on performance needs to look at how his
    web pages load, including all the resources within the page. This is done
    using a packet sniffer. The packet sniffers listed in
    this section range from tools that give a higher-level view of network
    traffic, such as HttpWatch, to lower-level tools that expose each packet
    sent over the network, such as Wireshark. In most of my web performance
    analysis, I use the higher-level network monitors; they are typically
    easier to configure and have a user interface that is more visual. In some
    situations, such as debugging chunked encoding, I drop down into one of
    the lower-level packet sniffers in order to see the contents and timing of
    each packet sent over the wire.
HttpWatch



HttpWatch is my
      preferred packet sniffer. HttpWatch depicts network
      traffic in a graphical way, as shown in Figure A-1. Most of the HTTP waterfall charts in this
      book were captured using HttpWatch. This graphical display makes it easy
      to spot performance delays.
HttpWatch is built by Simtec. You can try out the free download,
      but it’s limited to work on only a few major sites, such as Google and Yahoo!. You have to
      pay for the full-featured version, but it’s money well spent. HttpWatch
      runs on Microsoft Windows with Internet Explorer and Firefox.
[image: HttpWatch]

Figure A-1. HttpWatch



Firebug Net Panel



Firebug has many features critical to any web developer and is described
      more thoroughly in Web Development Tools. The Firebug
      Net Panel, however, deserves mention here. Net Panel displays HTTP
      waterfall charts, making it an easy alternative for developers who
      already have Firebug installed. I especially like Net Panel’s use of
      vertical lines to mark the DOMContentLoaded and onload events in the page load timeline, as
      shown in Figure A-2. This is a feature
      that other packet sniffers should adopt.
[image: Firebug Net Panel]

Figure A-2. Firebug Net Panel


One drawback of Net Panel is that the timing information can be
      affected by the web page itself. This is due to the fact that Firebug is
      implemented in JavaScript and therefore executes in the same Firefox
      process as the current web page. Because of this, if network events
      happen while JavaScript is executing in the main page, Net Panel is
      blocked from recording the correct timing information for those
      requests. Net Panel’s accuracy is sufficient in most situations, and its
      ease of use makes it a good choice. If you require more precise time
      measurements or have a page with long-running blocks of JavaScript, you
      should consider using one of the other packet sniffers mentioned in this
      section.
An additional constraint is that Firebug is a Firefox add-on, so
      it isn’t available in other browsers.

AOL Pagetest



AOL
      Pagetest is an Internet Explorer plug-in that produces HTTP
      waterfall charts. It also identifies areas for improving performance, as
      discussed in Performance Analyzers.

VRTA



VRTA
      from Microsoft focuses on improving network performance. Its HTTP waterfall chart is
      more detailed than other network monitors, putting an emphasis on reusing existing
      TCP connections. See Performance Analyzers for more
      information about VRTA.

IBM Page Detailer



IBM Page Detailer used to be my preferred packet sniffer, but IBM stopped
      selling the professional version. The basic version is
      still available, but it lacks many features that I consider
      mandatory, such as support for analyzing HTTPS requests and the ability
      to export data. IBM Page Detailer runs on Microsoft Windows.
I use IBM Page Detailer when analyzing browsers other than
      Internet Explorer and Firefox, such as Opera and Safari (since these
      browsers aren’t supported by HttpWatch). IBM Page Detailer can monitor
      network traffic for any process that uses HTTP. This is enabled by
      editing the wd_WS2s.ini file and
      adding the process’s name to the Executable line, like so:
Executable=(FIREFOX.EXE),(OPERA.EXE),(SAFARI.EXE)
There’s an interesting twist that prevents IBM Page Detailer from
      analyzing Chrome: Chrome has a separate process for the browser UI plus
      one for each tab. IBM Page Detailer attaches to the browser UI process,
      and so it doesn’t see any of the HTTP traffic for the actual web pages
      being loaded. Nevertheless, if support for HTTPS and exporting data
      isn’t required, IBM Page Detailer is a useful alternative.

Web Inspector Resources Panel



Safari’s Web Inspector, similar to Firebug, is a web development
      tool that includes a network monitor. See Web Development Tools for more information.

Fiddler



The main distinguishing feature of Fiddler,
      built by Eric Lawrence from the Microsoft Internet Explorer team,
      is that it supports a scripting capability that allows for setting
      breakpoints and manipulating HTTP traffic. One downside is that it acts
      as a proxy, and so it may alter the behavior of the browser (e.g., the
      number of open connections per server). If you need a scripting
      capability and are mindful of any side effects of using a proxy, I
      highly recommend Fiddler. It runs on Microsoft Windows.

Charles



Charles
      is an HTTP proxy, similar to Fiddler. It has many of the same features
      as Fiddler, including the ability to analyze both HTTP and HTTPS
      traffic, and bandwidth throttling. Charles supports Microsoft Windows,
      Mac OS X, and Linux.

Wireshark



Wireshark
      evolved from Ethereal. It analyzes HTTP requests at the
      packet level. Its UI is not as graphical as other network monitors. It
      also doesn’t have the concept of a “web page,” so it’s up to you to
      discern where the web page’s packets start and end. If you have to look
      at traffic at the packet level, such as to analyze chunked encoding,
      Wireshark is the best choice. It’s available on many platforms,
      including Microsoft Windows, Mac OS X, and Linux.



Web Development Tools



Packet sniffers show the network activity while a page is loading, but
    there’s more to a web page’s performance than just HTTP requests. Chapters
    1 and 2 discuss how JavaScript and
    modifications to the DOM can slow a page down. The web development tools
    presented in this section—Firebug, Web Inspector, and IE Developer
    Toolbar—include features such as DOM inspectors, JavaScript debuggers and
    profilers, CSS editors, and network monitors.
These tools are the tip of the iceberg. More extensive tools are
    needed to give developers visibility into memory consumption, CPU load,
    JavaScript execution, CSS application, and HTML parsing and rendering over
    the entire page load timeline. And this analysis is needed without
    altering normal browser behavior.
Firebug



Firebug is the most popular web development tool, with more than 14
      million (yes, million!) downloads. It was created by Joe Hewitt in
      January 2006. It includes inspectors for HTML, CSS, DOM, and layout.
      Firebug’s Net Panel, discussed in Packet Sniffers,
      provides an HTTP waterfall chart of network activity. Firebug also has a
      JavaScript command line and console, as well as a JavaScript debugger
      and profiler. The debugger and profiler are Firebug’s strongest
      features.
Firebug is an add-on to Firefox. Although porting the JavaScript debugging and
      profiling functionality to other browsers would be a tremendous
      undertaking, many of Firebug’s other features are available across
      browsers by virtue of Firebug Lite. Firebug Lite
      is a bookmarklet, and therefore it works in all the major browsers. It
      had a major upgrade by Azer Koçulu and now includes inspectors for HTML, DOM, and
      CSS, as well as a JavaScript command line and console. Providing a common UI across all browsers
      and a fairly complete set of features, Firebug Lite is the perfect
      recipe for solving nasty browser incompatibility bugs.
Developers love Firebug because of their ability to extend it.
      This open extension model makes it possible to add on to Firebug’s
      features in a way that also allows for that new functionality to be
      shared with other developers. You can find useful Firebug extensions at
      http://getfirebug.com/extensions/index.html.

Web Inspector



Safari’s Web Inspector had a significant upgrade at the end of
      2008. The Resources Panel, mentioned previously, is shown in Figure A-3. Web Inspector’s functionality is
      similar to Firebug. It has a console with autocompletion, a DOM and CSS
      inspector, and a JavaScript debugger and profiler.
[image: Safari Web Inspector]

Figure A-3. Safari Web Inspector



IE Developer Toolbar



The Internet
      Explorer Developer Toolbar has a feature set similar to Firebug
      Lite. It doesn’t have JavaScript debugging or profiling, but it does
      support validating HTML and CSS, DOM inspection, and pixel layout tools.
      The IE Developer Toolbar is targeted at Internet Explorer 6 and 7. The
      functionality has been built into Internet Explorer 8 under the
      Developer Tools menu item.


Performance Analyzers



YSlow was the first widely used performance “lint” tool. AOL Pagetest, VRTA, and
    neXpert were released subsequently. Each of these tools has its own set of
    performance best practices. I’ve aggregated all of these best practices in
    Table A-1, with an indication of which
    rules are evaluated by each particular tool. I’ve grouped the best
    practices into three categories:
	The rules included in High Performance Web
        Sites

	The best practices described in this book

	Other rules that I haven’t addressed but that are incorporated
        in at least one of these tools



Looking at Table A-1, it’s clear
    that there is little overlap in the best practices espoused by each tool.
    In one sense, this is good—bringing in different perspectives on the
    performance problem leads to the discovery of new best practices. But this
    diversity has a more important and unfavorable impact: confusion and
    fragmentation in the web development community. It’s unclear which set of
    best practices is best. The choice of tool might be dictated by
    development environment rather than by the content of the performance
    analysis.
Across the developers of these tools, there is more agreement on
    performance best practices than is reflected in Table A-1. The inconsistencies arise for
    several reasons. There’s a desire to introduce new best practices and to
    focus less on covering what has already been covered somewhere else.
    Development time is always an issue; developers may decide to skip the
    implementation of well-known best practices. Don’t underestimate the impact of personal interests;
    for instance, it’s clear that the developers of VRTA have more interest
    and familiarity with networking issues than I do.
Table A-1. Performance best practices
	Best practice
	YSlow
	Pagetest
	VRTA
	neXpert

	High Performance Web
            Sites
	 
	Combine JavaScript and CSS
	X
	X
	 	 
	Use CSS sprites
	X
	 	X
	 
	Use a CDN
	X
	X
	 	 
	Set Expires in the
            future
	X
	X
	X
	X

	Gzip text responses
	X
	X
	X
	X

	Put CSS at the top
	X
	 	 	 
	Put JavaScript at the bottom
	X
	 	 	 
	Avoid CSS expressions
	X
	 	 	 
	Make JavaScript and CSS external
	X
	 	 	 
	Reduce DNS lookups
	X
	 	 	 
	Minify JavaScript
	X
	X
	 	 
	Avoid redirects
	X
	 	X
	X

	Remove dupe scripts
	X
	 	 	 
	Remove ETags
	X
	X
	 	X

	Even Faster Web Sites
	 
	Don’t block the UI thread
	 	 	 	 
	Split JavaScript payload
	 	 	 	 
	Load scripts asynchronously
	 	 	X
	 
	Inline scripts before stylesheet
	 	 	 	 
	Write efficient JavaScript
	 	 	 	 
	Minimize uncompressed size
	 	 	 	 
	Optimize images
	 	X
	 	 
	Shard domains
	 	 	X
	 
	Flush the document early
	 	 	 	 
	Avoid iframes
	 	 	 	 
	Simplify CSS selectors
	 	 	X
	 
	Other
	 
	Use persistent connections
	 	X
	X
	X

	Reduce cookies
	 	X
	 	X

	Avoid network congestion
	 	 	X
	 
	Increase MTU, TCP window
	 	 	X
	 
	Avoid server congestion
	 	 	X
	 



Moving forward, web developers would be well served if it became
    possible for these and other tools to share a common set of performance
    best practices. I fully expect this will happen. These tools were created
    in the spirit of evangelizing a faster web experience for all users and to
    help developers easily identify where they can make the greatest
    improvement to their site’s speed. In that spirit, it makes sense to give
    developers tools that are more consistent regardless of their platform and
    tool of choice.
That’s the future. For now, the following sections provide
    descriptions of YSlow, AOL Pagetest, VRTA, and neXpert, as they exist
    today.
YSlow



I created YSlow while working at
      Yahoo!. It existed first as a bookmarklet, and then as a Greasemonkey
      script. Joe Hewitt was kind enough to explain how to port YSlow to be a
      Firebug extension. Swapnil Shinde did a lot of the coding to get it to work with Firebug.
      The motivation I gave Swapnil was that I was certain YSlow would be used
      by as many as 10,000 people. YSlow was released in July 2007 and crossed
      the 1 million download mark a year and a half later. The name is a play
      on the question “whY is this page
      Slow?”
YSlow contains the following rules which are echoed as chapters in
      High Performance Web
      Sites. When YSlow was released, I also posted
      summaries of each rule at http://developer.yahoo.com/performance/rules.html. That
      page has subsequently been updated by the folks at Yahoo! to include 34
      rules! Here are the original 13 rules that are still the basis for
      YSlow’s performance analysis:
	Rule 1: Make Fewer HTTP Requests

	Rule 2: Use a Content Delivery Network

	Rule 3: Add an Expires
          Header

	Rule 4: Gzip Components

	Rule 5: Put Stylesheets at the Top

	Rule 6: Put Scripts at the Bottom

	Rule 7: Avoid CSS Expressions

	Rule 8: Make JavaScript and CSS External

	Rule 9: Reduce DNS Lookups

	Rule 10: Minify JavaScript

	Rule 11: Avoid Redirects

	Rule 12: Remove Duplicate Scripts

	Rule 13: Configure ETags



YSlow, as an extension to Firebug, is available only within
      Firefox. It generates a score for each rule and an overall score based
      on a weighted average of the individual rule scores. It also displays a
      list of all the resources used in the page as well as overall statistics
      (number of requests, total page weight, etc.). It has other useful
      tools, including integration with JSLint and output of all the CSS and
      JavaScript into a single browser window for easy searching.

AOL Pagetest



AOL
      Pagetest and its web-based counterpart, WebPagetest, analyze web pages
      using these best practices:
	Enable browser caching of static assets

	Use one CDN for all static assets

	Combine static CSS and JavaScript files

	Gzip-encode all appropriate text assets

	Compress images

	Use persistent connections

	Proper cookie usage

	Minify JavaScript

	No ETag headers



AOL Pagetest is a plug-in for Internet Explorer. WebPagetest is
      accessible through any browser; it runs Internet Explorer on the backend
      server. In addition to performance analysis, both provide an HTTP
      waterfall chart, screenshots, page load times, and summary
      statistics.
The deployment of this functionality via the WebPagetest web site
      is intriguing. WebPagetest is fairly popular, but it hasn’t gotten the
      wide adoption it deserves. It lets you analyze any web site from any
      browser, without the hassle of downloading, installing, and configuring
      an application or plug-in. It does this by running AOL Pagetest in
      Internet Explorer on the WebPagetest site’s backend servers. WebPagetest
      users, from any browser, simply enter the URL of the site they want to
      analyze into the web-based form, and the results are presented a minute
      or so later. Figure A-4 shows the results for http://www.aol.com/.
Making WebPagetest available through a web page form makes it easy
      to use for everyone, including
      nondevelopers, but it does have some limitations. It’s important to
      remember that the results are always generated using Internet Explorer
      running in WebPagetest’s remote location. This can be confusing. Notice
      in Figure A-4 that I’m using Firefox; remembering
      that these results were produced using Internet Explorer is a challenge.
      Similarly, the results do not necessarily reflect your local conditions.
      If you’re trying to debug a problem with your current Internet
      connection, or you’re loading a page that depends on your current
      cookies, that can’t be captured by WebPagetest. AOL Pagetest (the
      downloaded, locally installed Internet Explorer plug-in) or the other
      packet sniffers mentioned in the previous section are the choice for
      analyzing your current browsing experience.
[image: WebPagetest]

Figure A-4. WebPagetest



VRTA



VRTA
      from Microsoft is short for Visual Round Trip Analyzer. It displays HTTP waterfall charts, but these are more
      detailed than those found in other tools. VRTA focuses on network
      optimization. One key aspect of this is reusing existing TCP
      connections. In most HTTP waterfall charts, each HTTP request is a
      separate horizontal bar. Instead, VRTA represents each TCP connection as
      a horizontal bar. This makes it easy to see how well TCP connections are
      being utilized. VRTA also shows a bit rate histogram, to show how well
      the available bandwidth is utilized.
In addition to its sophisticated network charts, VRTA evaluates
      the page download information against the following set of performance
      best practices:
	Open enough ports

	Limit the number of small files to be downloaded

	Load JavaScript files outside of the JavaScript engine

	Turn on keepalives

	Identify network congestion

	Increase network maximum transmission unit (MTU) or TCP window
          size

	Identify server congestion

	Check for unnecessary round trips

	Set expiration dates

	Think before you redirect

	Use compression

	Edit your CSS




neXpert



neXpert
      is also from Microsoft. It’s an add-on to Fiddler (see Packet Sniffers for more information about Fiddler). It
      uses Fiddler to gather information about the resources downloaded for a
      web page. neXpert analyzes this information against a set of performance
      best practices and produces a report of suggested improvements. neXpert
      goes further than other performance analyzers in that it predicts the
      impact these improvements might have on the web page’s load time. The
      list of performance best practices analyzed by neXpert includes the following:
	HTTP response codes

	Compression

	ETags

	Cache headers

	Connection header

	Cookies





Miscellaneous



The tools in this section address specific web performance areas not
    covered in the previous sections. I use all of these tools on a regular,
    if not daily, basis.
Hammerhead



Improving web performance requires measuring page load times. Although
      this sounds simple, in reality it’s extremely difficult to gather load
      time measurements in an accurate and statistically sound way that is
      representative of real-world users. There’s no single solution. Instead,
      multiple techniques are required, including measuring real-world
      traffic, bucket testing, and scripted or synthetic testing. The problem
      is that all of these techniques are costly, in terms of both dollars and
      calendar time.
I created Hammerhead to make it
      easier for developers to measure load times early in the development
      process. Hammerhead is an extension to Firebug. To test, or “hammer,” a
      set of web pages, enter the URLs into Hammerhead, along with the number
      of measurements desired. Figure A-5 shows an
      example.
[image: Hammerhead]

Figure A-5. Hammerhead


Hammerhead loads each URL the specified number of times and
      records each measurement, as well as the average and median load times.
      The pages are loaded with both an empty and a primed cache (Hammerhead
      manages the cache for you). Although Hammerhead measurements are
      gathered under just one set of test conditions (your development
      environment), they provide a quick and easy way to compare two or more
      web page alternatives.

Smush.it



Smush.it is a service for analyzing and optimizing images in your web
      page. It was created by Stoyan Stefanov and Nicole Sullivan, the authors of Chapter 10. Smush.it tells you how many bytes you
      can save by optimizing your images, as shown in Figure A-6. It even produces the optimized images for
      you as a single ZIP file for easy download. There is also a Smush.it
      bookmarklet and Firefox extension, so you can get similar functionality
      inside the browser.
[image: Smush.it]

Figure A-6. Smush.it



Cuzillion



Almost every day I wonder about or am asked about a performance edge
      case. Do external scripts load in parallel if there’s an inline script
      in between them? What if there’s an inline script and a stylesheet in
      between them? Is the behavior the same on Firefox 3.1 and Chrome
      2.0?
Instead of writing a new HTML page for each edge case that comes
      up, I use Cuzillion, shown in
      Figure A-7. It has a graphical web page “avatar”
      onto which you can drag-and-drop different types of resources (external
      scripts, inline scripts, stylesheets, inline style blocks, images, and
      iframes). Clicking on a resource exposes a variety of configuration
      settings such as the domain used for loading the resource and how long
      it takes to respond.
[image: Cuzillion]

Figure A-7. Cuzillion


I created Cuzillion while I was working on Chapter 4. I needed to test hundreds
      of test cases. Creating a test framework made this possible in a
      fraction of the time. The name comes from the tag line: “‘cuz there are
      a zillion pages to check.”

UA Profiler



When Google released Chrome, Dion Almaer (coauthor of Chapter 2) asked whether I was
      going to review it from a performance perspective. Rather than put
      Chrome through the paces manually, I created a set of HTML pages, each
      of which contains a specific test: are scripts loaded in parallel, do
      prefetch links work, and so forth. I then chained those pages together
      so that the tests would all run automatically.
UA
      Profiler, shown in Figure A-8, is this
      set of browser performance tests. In addition to providing a performance
      test suite for browsers, UA Profiler is also a repository for gathering
      test results to share with the larger web community. Anyone can point
      any web client (as long as it supports JavaScript) at UA Profiler and
      contribute another data point to the results database. By allowing the
      community to execute the tests, I avoid the cost of running a regression
      test lab, and also get results under a wider variety of test
      conditions.
[image: UA Profiler]

Figure A-8. UA Profiler


For web developers, UA Profiler is useful for confirming how a
      given browser will perform during a specific optimization. For example,
      if you’re adding future caching headers to a redirect but it still
      doesn’t seem to be cached, you can check UA Profiler to make sure you’re
      using a browser that supports redirect caching.


Index



A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	+ (plus) operator, String Concatenation, String Concatenation
	:active pseudo-class, Pseudo-Classes and Pseudo-Elements
	:after pseudo-element, Pseudo-Classes and Pseudo-Elements
	:before pseudo-element, Pseudo-Classes and Pseudo-Elements
	:first-child pseudo-class, Pseudo-Classes and Pseudo-Elements
	:first-letter pseudo-element, Pseudo-Classes and Pseudo-Elements
	:first-line pseudo-element, Pseudo-Classes and Pseudo-Elements
	:focus pseudo-class, Pseudo-Classes and Pseudo-Elements
	:hover pseudo-class, Pseudo-Classes and Pseudo-Elements
	:lang pseudo-class, Pseudo-Classes and Pseudo-Elements
	:link pseudo-class, Pseudo-Classes and Pseudo-Elements
	:visited pseudo-class, Pseudo-Classes and Pseudo-Elements
	_ (underscore hack), AlphaImageLoader


A
	A element, The Most Expensive DOM Element
	Accept-Encoding HTTP header, Why Does This Matter?, Quick Review, Examples of Popular Turtle Tappers
	Adobe Fireworks, PNG8 and image editing software, Progressively Enhanced PNG8 Alpha Transparency
	Ajax applications, Ajax, Ajax, Ajax, Ajax, Browser, Wow!, Kitchen Sink, Polling
		architectural considerations, Ajax
	browser challenges, Browser
	Facebook example, Kitchen Sink
	latency problems, Ajax
	performance considerations, Ajax
	wow features, Wow!
	XHR request function, Polling
	YSlow analyzer and, Ajax


	Ajax library, Browser
	Alexa web site, Browser
	aliases, Alias JavaScript names, IP Address or Hostname
		domain names, IP Address or Hostname
	JavaScript, Alias JavaScript names


	Almaer, Dion, Credits, Creating Responsive Web Applications, Summary, UA Profiler
	alpha transparency, Transparency and alpha channel (RGBA), PNG, PNG8 and image editing software, Alpha Transparency: Avoid AlphaImageLoader, Effects of Alpha Transparency, Mountaintop corners, AlphaImageLoader, In the wild: A Yahoo! Search case study
		Adobe Fireworks, PNG8 and image editing software
	AlphaImageLoader filter and, Alpha Transparency: Avoid AlphaImageLoader, AlphaImageLoader, In the wild: A Yahoo! Search case study
	effects of, Effects of Alpha Transparency, Mountaintop corners
	PNG format, PNG
	RGBA extension and, Transparency and alpha channel (RGBA)


	AlphaImageLoader filter, Alpha Transparency: Avoid AlphaImageLoader, AlphaImageLoader, In the wild: A Yahoo! Search case study
	animation, GIF, JPEG, PNG, Optimizing GIF Animations
		GIF format, GIF, Optimizing GIF Animations
	JPEG format, JPEG
	PNG format, PNG


	antivirus software, Other Intermediaries
	AOL, Downgrading to HTTP/1.0, Downgrading to HTTP/1.0, AOL Pagetest, AOL Pagetest
		domain sharding, Downgrading to HTTP/1.0, Downgrading to HTTP/1.0
	Pagetest plug-in, AOL Pagetest, AOL Pagetest


	Apple touch icon, Apple Touch Icon
	Array object (JavaScript), String Concatenation
	arrays, Another option: Array lookup, The fastest conditionals, Simple loop performance boosts, Unrolling loops, String Concatenation, Timer Patterns for Yielding
		Duff’s Device and, Unrolling loops
	indexOf method, Simple loop performance boosts
	join method, String Concatenation
	long-running scripts and, Timer Patterns for Yielding
	looking up values, Another option: Array lookup, The fastest conditionals


	asynchronous script loading, XHR Eval, XHR Injection, Script in Iframe, Script DOM Element, Script Defer, document.write Script Tag, Coupling Asynchronous Scripts, Coupling Asynchronous Scripts, Code Example: menu.js, Code Example: menu.js, Race Conditions, Preserving Order Asynchronously, Technique 5: Degrading Script Tags, Multiple External Scripts, DOM Element and Doc Write, Single Script, Multiple Scripts, Multiple Scripts
		document.write Script Tag technique, document.write Script Tag
	menu.js code example, Code Example: menu.js, Code Example: menu.js
	multiple external scripts, Multiple External Scripts, DOM Element and Doc Write, Multiple Scripts, Multiple Scripts
	preserving order, Preserving Order Asynchronously, Technique 5: Degrading Script Tags
	race conditions and, Coupling Asynchronous Scripts, Race Conditions
	Script Defer technique, Script Defer
	Script DOM Element technique, Script DOM Element
	Script in Iframe technique, Script in Iframe
	single scripts, Single Script
	undefined symbols and, Coupling Asynchronous Scripts
	XHR Eval technique, XHR Eval
	XHR Injection technique, XHR Injection


	attribute selectors, Attribute Selectors
	automated code instrumentation, Measuring Latency, Measuring Latency
	Axes of Error, Principles of Optimization, Principles of Optimization, Principles of Optimization, Principles of Optimization, Principles of Optimization, Ajax
		avoiding intersecting, Principles of Optimization
	defined, Principles of Optimization
	Failure line, Principles of Optimization
	Frustration line, Principles of Optimization
	Inefficiency line, Principles of Optimization, Ajax




B
	Bayeux PubSub model, Protocols
	browsers, Ajax, Browser, Wow!, Creating Responsive Web Applications, Creating Responsive Web Applications, What Is Fast Enough?, Measuring Latency, Measuring Latency, Threading, Troubleshooting Memory Issues, Scripts Block, Scripts Block, Scripts Block, Script Defer, Browser Busy Indicators, Browser Busy Indicators, Ensuring (or Avoiding) Ordered Execution, Race Conditions, Technique 5: Degrading Script Tags, Use Script Defer, Danger: Stylesheet Followed by Inline Script, Use Local Variables, Efficient Data Access, The switch statement, String Concatenation, Avoid Long-Running Scripts, XHR Streaming, AlphaImageLoader, Downgrading to HTTP/1.0, Newer Browsers, Flush the Head, The Flush Checklist, The Most Expensive DOM Element, Connections per Hostname, Connection Sharing Across Tabs and Windows
		Ajax challenges, Browser
	alpha transparency, AlphaImageLoader
	applying stylesheets, Danger: Stylesheet Followed by Inline Script
	busy indicators, Browser Busy Indicators, Browser Busy Indicators
	chunked encoding, Flush the Head, The Flush Checklist
	conditional logic, The switch statement
	costs of reading data, Efficient Data Access
	design recommendations, Wow!
	identifier resolution, Use Local Variables
	latency problems, Ajax
	loading elements, The Most Expensive DOM Element
	loading external scripts, Scripts Block, Scripts Block
	long-running scripts and, Avoid Long-Running Scripts
	measuring latency, Measuring Latency, Measuring Latency
	observing memory footprint, Troubleshooting Memory Issues
	ordered script execution, Ensuring (or Avoiding) Ordered Execution, Race Conditions
	parallel script downloads, Scripts Block
	response time considerations, What Is Fast Enough?
	responsiveness burden, Creating Responsive Web Applications
	script coupling limitations, Technique 5: Degrading Script Tags
	SCRIPT DEFER attribute, Script Defer, Use Script Defer
	server connections, Downgrading to HTTP/1.0, Newer Browsers, Connections per Hostname, Connection Sharing Across Tabs and Windows
	string concatenation, String Concatenation
	threading considerations, Creating Responsive Web Applications, Threading
	XHR streaming, XHR Streaming




C
	C language, How Comet Works, Managing Connections
	callback polling, Cross-Domain
	Cederholm, Dan, Mountaintop corners
	Charles proxy, Charles
	child selectors, Child Selectors, Writing Efficient CSS Selectors
	Chrome browser, Scripts Block, Race Conditions, Use Local Variables, Efficient Data Access, The switch statement, String Concatenation, Avoid Long-Running Scripts, XHR Streaming, Browsers: The Last Hurdle, The Most Expensive DOM Element
		chunked encoding and, Browsers: The Last Hurdle
	conditional logic, The switch statement
	efficient data access, Efficient Data Access
	identifier resolution, Use Local Variables
	loading elements, The Most Expensive DOM Element
	long-running scripts and, Avoid Long-Running Scripts
	ordered script execution, Race Conditions
	parallel script downloads, Scripts Block
	string concatenation, String Concatenation
	XHR streaming, XHR Streaming


	chunked encoding, Forever Frame, Downgrading to HTTP/1.0, Flush the Head, The Flush Checklist
		defined, Forever Frame, Downgrading to HTTP/1.0
	performance considerations, Flush the Head, The Flush Checklist


	class selectors, Class Selectors, Writing Efficient CSS Selectors
	client-server architecture, Protocols, Downgrading to HTTP/1.0
		Comet connections, Protocols
	HTTP support, Downgrading to HTTP/1.0


	CNAME record, IP Address or Hostname
	Comet, Scaling with Comet, How Comet Works, How Comet Works, Transport Techniques, Future Transports, Polling, Long Polling, Forever Frame, Forever Frame, XHR Streaming, Cross-Domain, Effects of Implementation on Applications, Protocols, Measuring Performance
		background, Scaling with Comet
	cross-domain considerations, Cross-Domain
	forever frame, Forever Frame
	functionality, How Comet Works, How Comet Works
	implementation effects, Effects of Implementation on Applications, Protocols
	incremental rendering, Forever Frame
	long polling, Long Polling
	measuring performance, Measuring Performance
	polling, Polling
	transport techniques, Transport Techniques, Future Transports
	XHR streaming, XHR Streaming


	Comet Maturity Guide, Long Polling
	cometD, Protocols
	concatenation, string, String Concatenation
	conditional logic, The if statement, The if statement, The switch statement, The switch statement, Another option: Array lookup, The fastest conditionals, The fastest conditionals, The fastest conditionals, Unrolling loops
		array lookup, Another option: Array lookup, The fastest conditionals
	if statement, The if statement, The if statement, The switch statement, The fastest conditionals
	switch statement, The switch statement, The fastest conditionals, Unrolling loops


	Connection: Keep-Alive header, Downgrading to HTTP/1.0
	Content-Encoding header, Quick Review
	Content-Length header, Downgrading to HTTP/1.0, Chunked Encoding
	Cookie header, Chunked Encoding
	coupling scripts, Code Example: menu.js, Code Example: menu.js, Race Conditions, Preserving Order Asynchronously, Technique 5: Degrading Script Tags, Multiple External Scripts, DOM Element and Doc Write, Single Script, Multiple Scripts, Multiple Scripts
		loading multiple scripts, Multiple Scripts, Multiple Scripts
	loading single scripts, Single Script
	menu.js code example, Code Example: menu.js, Code Example: menu.js
	multiple external scripts, Multiple External Scripts, DOM Element and Doc Write
	preserving order asynchronously, Preserving Order Asynchronously, Technique 5: Degrading Script Tags
	race conditions, Race Conditions


	critical path, domain sharding, Critical Path, Critical Path
	Crockford, Douglas, Credits, Trade-offs, Summary, What Is Fast Enough?, CSS Selector Performance
	CSS selectors, Simplifying CSS Selectors, Types of Selectors, Pseudo-Classes and Pseudo-Elements, ID Selectors, Class Selectors, Type Selectors, Adjacent Sibling Selectors, Child Selectors, Descendant Selectors, Universal Selectors, Attribute Selectors, Pseudo-Classes and Pseudo-Elements, Pseudo-Classes and Pseudo-Elements, The Key to Efficient CSS Selectors, Reflow Time, Writing Efficient CSS Selectors, Writing Efficient CSS Selectors, Writing Efficient CSS Selectors, Writing Efficient CSS Selectors, CSS Selectors to Avoid, CSS Selectors to Avoid, CSS Selectors to Avoid, Reflow Time, Measuring CSS Selectors in the Real World
		adjacent sibling selectors, Adjacent Sibling Selectors
	attribute selectors, Attribute Selectors
	child selectors, Child Selectors, Writing Efficient CSS Selectors
	class selectors, Class Selectors, Writing Efficient CSS Selectors
	defined, Simplifying CSS Selectors
	descendant selectors, Descendant Selectors, Writing Efficient CSS Selectors
	ID selectors, ID Selectors, Writing Efficient CSS Selectors
	key selectors, CSS Selectors to Avoid
	measuring, Measuring CSS Selectors in the Real World
	performance considerations, The Key to Efficient CSS Selectors, Reflow Time
	pseudo-classes, Pseudo-Classes and Pseudo-Elements
	pseudo-elements, Pseudo-Classes and Pseudo-Elements
	reflow time, Reflow Time
	selectors to avoid, CSS Selectors to Avoid, CSS Selectors to Avoid
	type selectors, Type Selectors
	types supported, Types of Selectors, Pseudo-Classes and Pseudo-Elements
	universal selectors, Universal Selectors


	CSS sprites, Optimizing Sprites, Highly Optimized CSS Sprites
	CSS stylesheets, Browser, Case Study: Google Calendar, Preserving CSS and JavaScript Order, Danger: Stylesheet Followed by Inline Script, This Does Happen, Why Does This Matter?, Strip whitespace, PNG transparency quirks, Stylesheet Before Iframe, Stylesheet After Iframe
		AlphaImageLoader property, PNG transparency quirks
	gzip compression, Why Does This Matter?
	iframes and, Stylesheet Before Iframe, Stylesheet After Iframe
	inline script cautions, Danger: Stylesheet Followed by Inline Script, This Does Happen
	preserving inline script order, Preserving CSS and JavaScript Order
	processing costs, Browser
	splitting, Case Study: Google Calendar
	stripping whitespace, Strip whitespace


	CSS2 specification, Types of Selectors
	Cuzillion tool, Scripts Block, Cuzillion


D
	data storage, Efficient Data Access, Efficient Data Access
	DeflateBufferSize directive, Flushing and Gzip
	Degrading Script Tags technique, Technique 5: Degrading Script Tags
	descendant selectors, Descendant Selectors, Writing Efficient CSS Selectors
	DIV element, Efficient Data Access, The Most Expensive DOM Element
	do-while loop, Simple loop performance boosts, Simple loop performance boosts
	Document Object Model, Browser (see DOM)
	document.getElementById method, Script in Iframe, Alias JavaScript names
	document.getElementsByClassName method, Inline Scripts Are Blocked by Stylesheets
	document.getElementsByTagName method, Efficient Data Access
	document.write Script Tag technique, document.write Script Tag, Summarizing the Results, Google Analytics and Dojo
	Dojo Foundation, Protocols
	Dojo Toolkit, How Comet Works, Protocols
	dojox.analytics.Urchin module, Google Analytics and Dojo
	Doloto system, Finding the Split, Undefined Symbols and Race Conditions
	DOM (Document Object Model), Browser, Browser, JavaScript, Efficient Data Access, Avoid Long-Running Scripts, The Most Expensive DOM Element
		API, Browser
	browser challenges, Browser
	cost of elements, The Most Expensive DOM Element
	efficient data access, Efficient Data Access
	long-running scripts and, Avoid Long-Running Scripts
	performance bottlenecks, JavaScript


	DOM Element and Doc Write technique, DOM Element and Doc Write, DOM Element and Doc Write
	domain sharding, Sharding Dominant Domains, Critical Path, Critical Path, Who’s Sharding?, Who’s Sharding?, Downgrading to HTTP/1.0, Downgrading to HTTP/1.0, Rolling Out Sharding, Domain Blocking During Flushing
		critical path considerations, Critical Path, Critical Path
	defined, Sharding Dominant Domains
	flushing and, Domain Blocking During Flushing
	HTTP support, Downgrading to HTTP/1.0, Downgrading to HTTP/1.0
	rolling out, Rolling Out Sharding
	web site examples, Who’s Sharding?, Who’s Sharding?


	domains, Critical Path, How to Split Resources, Using Iframes Sparingly
		download bottlenecks, Critical Path
	iframes and, Using Iframes Sparingly
	splitting resources, How to Split Resources


	downloading scripts, Coupling Asynchronous Scripts (see loading scripts)
	Duff, Tom, Unrolling loops
	Duff’s Device, Unrolling loops


E
	eBay, This Does Happen
	ECMAScript specification, Trimming Strings
	Eich, Brendan, Threading, Avoid Long-Running Scripts
	encoding, chunked, Forever Frame (see chunked encoding)
	epoll technique, Managing Connections
	Erlang language, How Comet Works
	ErlyComet, How Comet Works
	ETag header, Chunked Encoding
	eval command, XHR Eval, XHR Eval
	event delegation, Use event delegation
	event queues, Creating Responsive Web Applications
	execution context, Managing Scope, Scope Chain Augmentation, Managing Scope, Managing Scope
		defined, Managing Scope
	managing, Managing Scope, Scope Chain Augmentation
	scope chain and, Managing Scope


	ExifTool, Stripping JPEG Metadata
	Expires: header, Favicons, Apple Touch Icon
	external scripts, Kitchen Sink, Case Study: Google Calendar, Scripts Block, Scripts Block, Scripts Block, Preserving CSS and JavaScript Order
		browser download process, Scripts Block, Scripts Block
	defined, Scripts Block
	SCRIPT SRC attribute and, Preserving CSS and JavaScript Order
	splitting initial payload, Kitchen Sink, Case Study: Google Calendar




F
	Facebook web site, Kitchen Sink, Savings from Splitting, How Comet Works, Newer Browsers
		domain sharding, Newer Browsers
	off-board approach, How Comet Works
	splitting initial payload, Kitchen Sink, Savings from Splitting


	favicons, Favicons
	Fettig, Abe, Cross-Domain
	Fiddler proxy, Fiddler
	Firebug tool, Firebug Net Panel, Firebug
	Firefox browser, Measuring Latency, Gears, Savings from Splitting, Finding the Split, Scripts Block, Browser Busy Indicators, Ensuring (or Avoiding) Ordered Execution, DOM Element and Doc Write, Use Script Defer, Efficient Data Access, The switch statement, String Concatenation, Avoid Long-Running Scripts, XHR Streaming, Cross-Domain, Smush.it, AlphaImageLoader, Favicons, Downgrading to HTTP/1.0, Newer Browsers, The Most Expensive DOM Element, Firebug
		alpha transparency, AlphaImageLoader
	browser busy indicators, Browser Busy Indicators
	conditional logic, The switch statement
	efficient data access, Efficient Data Access
	favicon support, Favicons
	Firebug add-on, Firebug
	Gears plug-in, Gears
	JavaScript code profiler, Measuring Latency, Savings from Splitting, Finding the Split
	loading elements, The Most Expensive DOM Element
	long-running scripts and, Avoid Long-Running Scripts
	ordered script execution, Ensuring (or Avoiding) Ordered Execution
	parallel script downloads, Scripts Block
	script coupling techniques, DOM Element and Doc Write
	SCRIPT DEFER attribute, Use Script Defer
	server connections, Downgrading to HTTP/1.0, Newer Browsers
	Smush.it tool support, Smush.it
	string concatenation, String Concatenation
	XHR streaming, XHR Streaming, Cross-Domain


	flow control, Flow Control
	flush function, Flush the Head, Flush the Head, Flushing Beyond PHP
	flushing, Flush the Head, Flush the Head, Output Buffering, Output Buffering, Chunked Encoding, Flushing and Gzip, Other Intermediaries, Other Intermediaries, Domain Blocking During Flushing, Flushing Beyond PHP, The Flush Checklist
		alternative support, Flushing Beyond PHP
	antivirus software and, Other Intermediaries
	checklist for, The Flush Checklist
	chunked encoding and, Chunked Encoding
	domain blocking during, Domain Blocking During Flushing
	gzip compression and, Flushing and Gzip
	output buffering and, Output Buffering, Output Buffering
	proxies and, Other Intermediaries
	Simple Page example, Flush the Head, Flush the Head


	for loop, Simple loop performance boosts, Simple loop performance boosts
	for-in loop, Simple loop performance boosts, Avoid the for-in loop
	forever-frame technique, Forever Frame, Forever Frame
	functions, Undefined Symbols and Race Conditions, Managing Scope, Managing Scope
		scope chains and, Managing Scope
	Scope property, Managing Scope
	stub, Undefined Symbols and Race Conditions




G
	Galbraith, Ben, Credits, Creating Responsive Web Applications, Summary
	garbage collection, Effects of Memory Use on Response Time
	GD image library, Crush Generated Images
	Gears browser plug-in, Ensuring Responsiveness, Gears
	Gentilcore, Tony, Credits, Going Beyond Gzipping, Measuring the effectiveness
	GIF format, Graphics versus photos, GIF, Comparison to GIF, Converting GIF to PNG, Optimizing GIF Animations
		characteristics, GIF
	converting to PNG, Converting GIF to PNG
	optimizing animations, Optimizing GIF Animations
	PNG comparison, Comparison to GIF
	typical uses, Graphics versus photos


	Gifsicle tool, Optimizing GIF Animations
	global variables, Managing Scope, Use Local Variables
	Gmail Talk, Forever Frame
	Google, Scripts Block, Über-Sprite Versus Modular Sprite
		(see also Chrome browser)
	CSS sprites, Über-Sprite Versus Modular Sprite


	Google Analytics, Code Example: menu.js, Multiple External Scripts, Google Analytics and Dojo, Google Analytics and Dojo
	Google Calendar, Case Study: Google Calendar
	Google Gears, Ensuring Responsiveness, Gears
	gradients, alpha transparency, Effects of Alpha Transparency
	graphics, Graphics versus photos, Graphics versus photos, Truecolor versus palette image formats, GIF, Effects of Alpha Transparency
		alpha transparency, Effects of Alpha Transparency
	defined, Graphics versus photos
	GIF format, Graphics versus photos
	PNG format, GIF
	RGB color model, Truecolor versus palette image formats


	Greenberg, Jeff, Unrolling loops
	gzip compression, Why Does This Matter?, Examples of Popular Turtle Tappers, Design to Minimize Uncompressed Size, Real-world savings, Real-world savings, Educate Users, Direct Detection of Gzip Support, Measuring the effectiveness, Flushing and Gzip
		direct detection, Direct Detection of Gzip Support, Measuring the effectiveness
	educating users, Educate Users
	effects of disabling, Why Does This Matter?, Examples of Popular Turtle Tappers
	flushing and, Flushing and Gzip
	minimizing uncompressed size, Design to Minimize Uncompressed Size, Real-world savings
	real-world savings, Real-world savings




H
	Hammerhead tool, Hammerhead
	Hardcoded Callback technique, Technique 1: Hardcoded Callback
	horizontal scanning, GIF, PNG
		GIF format, GIF
	PNG format, PNG


	hostname, IP Address or Hostname, Connections per Hostname, Connection Sharing Across Tabs and Windows
		browser connections, Connections per Hostname, Connection Sharing Across Tabs and Windows
	domain sharding, IP Address or Hostname


	HTML, Cross-Domain, Why Does This Matter?, Strip whitespace, Strip attribute quotes, Avoid inline styling, Chunked Encoding, Using Iframes Sparingly
		avoiding inline styling, Avoid inline styling
	chunked encoding, Chunked Encoding
	gzip compression, Why Does This Matter?
	iframe support, Using Iframes Sparingly
	postMessage method, Cross-Domain
	stripping attribute quotes, Strip attribute quotes
	stripping whitespace, Strip whitespace


	HTMLCollection object, Efficient Data Access, Efficient Data Access, Simple loop performance boosts
	HTTP specification, How Comet Works, Forever Frame, Cross-Domain, Managing Connections, Measuring Performance, Downgrading to HTTP/1.0, Downgrading to HTTP/1.0, Downgrading to HTTP/1.0, Flushing the Document Early, The Flush Checklist
		chunked encoding, Forever Frame, Downgrading to HTTP/1.0, Flushing the Document Early, The Flush Checklist
	Comet support, How Comet Works, Measuring Performance
	cross-domain considerations, Cross-Domain
	domain sharding, Downgrading to HTTP/1.0, Downgrading to HTTP/1.0
	managing connections, Managing Connections


	HTTP waterfall charts, Case Study: Google Calendar, Flush the Head, Script Before Iframe
	HttpWatch packet sniffer, HttpWatch
	Hyatt, David, Rightmost First, Writing Efficient CSS Selectors, Writing Efficient CSS Selectors, Measuring CSS Selectors in the Real World


I
	IBM Page Detailer, IBM Page Detailer
	ID selectors, ID Selectors, Writing Efficient CSS Selectors
	if statement, The if statement, The if statement, The switch statement, The fastest conditionals
	IFRAME element, The Most Expensive DOM Element
	iframes, Script in Iframe, Forever Frame, Using Iframes Sparingly, Using Iframes Sparingly, The Most Expensive DOM Element, Iframes Block Onload, Iframes Block Onload, Parallel Downloads with Iframes, Stylesheet After Iframe, Stylesheet Before Iframe, Stylesheet After Iframe, Connection Sharing in Iframes, Summarizing the Cost of Iframes
		benefits, Using Iframes Sparingly
	blocking onload event, Iframes Block Onload, Iframes Block Onload
	connection sharing, Connection Sharing in Iframes
	cost considerations, Script in Iframe, Summarizing the Cost of Iframes
	forever-frame technique, Forever Frame
	functionality, Using Iframes Sparingly
	loading elements, The Most Expensive DOM Element
	parallel downloads, Parallel Downloads with Iframes, Stylesheet After Iframe
	stylesheets and, Stylesheet Before Iframe, Stylesheet After Iframe


	image formats, Background, Graphics versus photos, Pixels and RGB, Pixels and RGB, Truecolor versus palette image formats, Transparency and alpha channel (RGBA), Transparency and alpha channel (RGBA), Interlacing, Characteristics of the Different Formats, PNG8 and image editing software
		background, Background
	characteristics, Characteristics of the Different Formats, PNG8 and image editing software
	graphics versus photos, Graphics versus photos
	interlacing, Interlacing
	pixels and, Pixels and RGB
	RGB color model, Pixels and RGB
	RGBA extension, Transparency and alpha channel (RGBA)
	transparency, Transparency and alpha channel (RGBA)
	truecolor versus palette, Truecolor versus palette image formats


	image optimization, Two Steps to Simplify Image Optimization, Image Formats, PNG8 and image editing software, Automated Lossless Image Optimization, Progressive JPEGs for Large Images, Alpha Transparency: Avoid AlphaImageLoader, Progressively Enhanced PNG8 Alpha Transparency, Optimizing Sprites, Highly Optimized CSS Sprites, Avoid Scaling Images, Crush Generated Images, Crush Generated Images, Favicons, Apple Touch Icon
		alpha transparency, Alpha Transparency: Avoid AlphaImageLoader, Progressively Enhanced PNG8 Alpha Transparency
	Apple touch icon, Apple Touch Icon
	automated, Automated Lossless Image Optimization, Progressive JPEGs for Large Images
	avoid scaling images, Avoid Scaling Images
	favicons, Favicons
	generated images, Crush Generated Images, Crush Generated Images
	image formats, Image Formats, PNG8 and image editing software
	optimizing sprites, Optimizing Sprites, Highly Optimized CSS Sprites
	process steps, Two Steps to Simplify Image Optimization


	ImageMagick, Converting GIF to PNG, Converting GIF to PNG, Avoid Scaling Images
		identify utility, Converting GIF to PNG


	index (palette), Truecolor versus palette image formats
	inline frames, Using Iframes Sparingly (see iframes)
	inline scripts, Scripts Block, Coupling Asynchronous Scripts, Code Example: menu.js, Code Example: menu.js, Race Conditions, Race Conditions, Preserving Order Asynchronously, Technique 5: Degrading Script Tags, Multiple External Scripts, DOM Element and Doc Write, Single Script, Multiple Scripts, Multiple Scripts, Inline Scripts Block, Use Script Defer, Preserving CSS and JavaScript Order, Danger: Stylesheet Followed by Inline Script, This Does Happen
		blocking parallel downloads, Inline Scripts Block, Use Script Defer
	coupling, Coupling Asynchronous Scripts
	defined, Scripts Block
	loading multiple scripts, Multiple Scripts, Multiple Scripts
	loading single scripts, Single Script
	menu.js code example, Code Example: menu.js, Code Example: menu.js
	multiple external scripts and, Multiple External Scripts, DOM Element and Doc Write
	ordered execution, Race Conditions
	preserving CSS/JavaScript order, Preserving CSS and JavaScript Order
	preserving order asynchronously, Preserving Order Asynchronously, Technique 5: Degrading Script Tags
	race conditions, Race Conditions
	stylesheet cautions, Danger: Stylesheet Followed by Inline Script, This Does Happen


	interlacing, Interlacing, GIF, JPEG, PNG
		functionality, Interlacing
	GIF format, GIF
	JPEG format, JPEG
	PNG format, PNG


	Internet Explorer browser, Browser, Gears, Scripts Block, Script Defer, document.write Script Tag, Browser Busy Indicators, Ensuring (or Avoiding) Ordered Execution, Race Conditions, Use Script Defer, Efficient Data Access, The switch statement, String Concatenation, Avoid Long-Running Scripts, Forever Frame, XHR Streaming, JPEG, PNG transparency quirks, Alpha Transparency: Avoid AlphaImageLoader, Effects of Alpha Transparency, AlphaImageLoader, Downgrading to HTTP/1.0, Newer Browsers, The Most Expensive DOM Element, IE Developer Toolbar
		Alexa performance data, Browser
	AlphaImageLoader filter, Alpha Transparency: Avoid AlphaImageLoader, AlphaImageLoader
	browser busy indicators, Browser Busy Indicators
	conditional logic, The switch statement
	Developer Toolbar, IE Developer Toolbar
	efficient data access, Efficient Data Access
	forever-frame technique, Forever Frame
	Gears plug-in, Gears
	loading elements, The Most Expensive DOM Element
	long-running scripts and, Avoid Long-Running Scripts
	ordered script execution, Ensuring (or Avoiding) Ordered Execution, Race Conditions
	parallel script downloads, Scripts Block, document.write Script Tag
	progressive JPEG, JPEG
	SCRIPT DEFER attribute, Script Defer, Use Script Defer
	server connections, Downgrading to HTTP/1.0, Newer Browsers
	string concatenation, String Concatenation
	transparency quirks, PNG transparency quirks, Effects of Alpha Transparency
	XHR streaming, XHR Streaming


	IP address, domain sharding, IP Address or Hostname


J
	java.nio package, Managing Connections
	JavaScript, Browser, Browser, Browser, JavaScript, Creating Responsive Web Applications, Creating Responsive Web Applications, What Is Fast Enough?, Measuring Latency, Measuring Latency, Measuring Latency, Threading, Ensuring Responsiveness, Web Workers, Timers, Effects of Memory Use on Response Time, Splitting the Initial Payload, Case Study: Google Calendar, Kitchen Sink, Savings from Splitting, Savings from Splitting, Finding the Split, Finding the Split, Undefined Symbols and Race Conditions, Scripts Block, Making Scripts Play Nice, And the Winner Is, Preserving CSS and JavaScript Order, Writing Efficient JavaScript, Managing Scope, Scope Chain Augmentation, Efficient Data Access, Efficient Data Access, Flow Control, Unrolling loops, String Optimization, Trimming Strings, Avoid Long-Running Scripts, Timer Patterns for Yielding, Avoid Long-Running Scripts, Summary, Why Does This Matter?, Alias JavaScript names
		Ajax library support, Browser
	Alexa performance data, Browser
	alias names, Alias JavaScript names
	bottleneck assumptions, JavaScript
	browser challenges, Browser
	code profiler support, Measuring Latency, Savings from Splitting, Finding the Split
	creating responsive applications, Creating Responsive Web Applications, Creating Responsive Web Applications
	Doloto support, Finding the Split, Undefined Symbols and Race Conditions
	efficient data access, Efficient Data Access, Efficient Data Access
	Facebook example, Kitchen Sink, Savings from Splitting
	flow control, Flow Control, Unrolling loops
	garbage collection considerations, Effects of Memory Use on Response Time
	gzip compression, Why Does This Matter?
	long-running scripts, Avoid Long-Running Scripts, Timer Patterns for Yielding
	managing scope, Managing Scope, Scope Chain Augmentation
	measuring latency, Measuring Latency, Measuring Latency
	performance considerations, Writing Efficient JavaScript, Summary
	preserving inline script order, Preserving CSS and JavaScript Order
	response time considerations, What Is Fast Enough?
	script download techniques, Making Scripts Play Nice, And the Winner Is
	SCRIPT tag support, Scripts Block
	splitting initial payload, Splitting the Initial Payload, Case Study: Google Calendar
	string manipulation, String Optimization, Trimming Strings
	threading limitations, Threading, Avoid Long-Running Scripts
	timer support, Timers
	Web Worker API, Web Workers
	WorkerPool API, Ensuring Responsiveness


	Jetty, Managing Connections
	JPEG format, Two Steps to Simplify Image Optimization, Graphics versus photos, JPEG, JPEG, Comparison to JPEG, Stripping JPEG Metadata, Progressive JPEGs for Large Images
		characteristics, JPEG
	lossy optimizations, Two Steps to Simplify Image Optimization
	PNG comparison, Comparison to JPEG
	progressive JPEG, JPEG, Progressive JPEGs for Large Images
	stripping metadata, Stripping JPEG Metadata
	typical uses, Graphics versus photos


	jpegtran tool, Stripping JPEG Metadata
	jQuery framework, Code Example: menu.js, Technique 5: Degrading Script Tags, Multiple External Scripts
	js.io library, How Comet Works
	JSMin, Strip whitespace
	JSON, Ajax, Avoid the for-in loop
		Ajax performance, Ajax
	for-in loop support, Avoid the for-in loop


	JSONP polling, Cross-Domain


K
	key selectors, CSS Selectors to Avoid
	Knuth, Donald, Trade-offs
	Koçulu, Azer, Firebug
	Koechley, Nate, Simplifying CSS Selectors
	kqueue technique, Managing Connections


L
	latency, Ajax, Measuring Latency, Measuring Latency, Effects of Implementation on Applications
		Ajax problems, Ajax
	Comet considerations, Effects of Implementation on Applications
	measuring, Measuring Latency, Measuring Latency


	Lawrence, Eric, Fiddler
	Lecomte, Julien, Timer Patterns for Yielding
	Levithan, Steven, Trimming Strings
	Liberator, Managing Connections
	Lightstreamer, Managing Connections
	link element (favicon), Favicons
	Linux operating system, Managing Connections
	literals, performance costs, Efficient Data Access
	loading scripts, Scripts Block, document.write Script Tag, Scripts Block, Making Scripts Play Nice, Browser Busy Indicators, Browser Busy Indicators, Ensuring (or Avoiding) Ordered Execution, Summarizing the Results, And the Winner Is, Coupling Asynchronous Scripts, Coupling Asynchronous Scripts, Code Example: menu.js, Code Example: menu.js, Race Conditions, Race Conditions, Preserving Order Asynchronously, Technique 5: Degrading Script Tags, Multiple External Scripts, DOM Element and Doc Write, Single Script, Multiple Scripts, Multiple Scripts, Preserving CSS and JavaScript Order, Script Before Iframe
		(see also asynchronous script loading)
	asynchronously, Coupling Asynchronous Scripts
	blocking behavior, Scripts Block, document.write Script Tag
	browser busy indicators, Browser Busy Indicators, Browser Busy Indicators
	loading multiple scripts, Multiple External Scripts, DOM Element and Doc Write, Multiple Scripts, Multiple Scripts
	loading single scripts, Single Script
	menu.js code example, Code Example: menu.js, Code Example: menu.js
	ordered execution, Scripts Block, Ensuring (or Avoiding) Ordered Execution, Race Conditions
	parallel downloads with iframes, Script Before Iframe
	preserving order asynchronously, Preserving Order Asynchronously, Technique 5: Degrading Script Tags
	race conditions, Race Conditions
	SCRIPT SRC attribute, Preserving CSS and JavaScript Order
	techniques for, Making Scripts Play Nice, Summarizing the Results, And the Winner Is


	local variables, Use Local Variables, Efficient Data Access
	logging (manual code instrumentation), Measuring Latency
	long polling, Long Polling
	loops, Principles of Optimization, Simple loop performance boosts, Unrolling loops, Simple loop performance boosts, Simple loop performance boosts, Simple loop performance boosts, Simple loop performance boosts, Simple loop performance boosts, Simple loop performance boosts, Simple loop performance boosts, Avoid the for-in loop, Unrolling loops, Unrolling loops, Avoid Long-Running Scripts, Alias JavaScript names, Output Buffering
		aliasing in, Alias JavaScript names
	do-while loop, Simple loop performance boosts, Simple loop performance boosts
	for loop, Simple loop performance boosts, Simple loop performance boosts
	for-in loop, Simple loop performance boosts, Avoid the for-in loop
	long-running scripts and, Avoid Long-Running Scripts
	nested, Principles of Optimization
	performance boosts, Simple loop performance boosts, Unrolling loops
	unrolling, Unrolling loops, Unrolling loops
	while loop, Simple loop performance boosts, Simple loop performance boosts, Output Buffering


	loops (optimizing), Principles of Optimization
	lossy optimization, Two Steps to Simplify Image Optimization, JPEG
		JPEG format, JPEG
	quality loss, Two Steps to Simplify Image Optimization


	LZW compression algorithm, GIF


M
	Managed XHR technique, Managed XHR, Managed XHR
	manual code instrumentation, Measuring Latency
	Meebo web site, How Comet Works, Long Polling
		on-board approach, How Comet Works
	optimizing polling, Long Polling


	memory, Effects of Memory Use on Response Time, Virtual Memory, Virtual Memory, Troubleshooting Memory Issues, Troubleshooting Memory Issues, Problems with AlphaImageLoader
		AlphaImageLoader filter and, Problems with AlphaImageLoader
	effects on response time, Effects of Memory Use on Response Time
	observing footprint in browsers, Troubleshooting Memory Issues
	physical, Virtual Memory
	troubleshooting issues, Troubleshooting Memory Issues
	virtual, Virtual Memory


	metadata, stripping from JPEG files, Stripping JPEG Metadata
	Microsoft, VRTA, VRTA, neXpert
		neXpert add-on, neXpert
	VRTA tool, VRTA, VRTA


	Microsoft Internet Explorer, Browser (see Internet Explorer)
	Microsoft Research, Finding the Split
	mountaintop corners, Mountaintop corners
	MSN, This Does Happen
	MySpace, This Does Happen


N
	nested loops, Principles of Optimization
	neXpert add-on, neXpert
	Nielsen, Jakob, What Is Fast Enough?
	Nitro JavaScript engine, Use Local Variables
	nonlossy compression, Two Steps to Simplify Image Optimization, GIF, PNG
		GIF format, GIF
	PNG format, PNG
	simplifying optimization, Two Steps to Simplify Image Optimization


	Norton Internet Security, How to Help These Users?


O
	object.hasOwnProperty method, Avoid the for-in loop
	off-board approach, How Comet Works
	on-board approach, How Comet Works
	onComplete function, Timer Patterns for Yielding
	onload event, Savings from Splitting, Finding the Split, Browser Busy Indicators, Technique 2: Window Onload, Technique 4: Script Onload, Initiate Execution Asynchronously, Iframes Block Onload, Iframes Block Onload
		browser busy indicators, Browser Busy Indicators
	executing inline scripts, Initiate Execution Asynchronously
	iframes blocking, Iframes Block Onload, Iframes Block Onload
	script coupling support, Technique 2: Window Onload, Technique 4: Script Onload
	splitting initial payload, Savings from Splitting, Finding the Split


	onreadystatechange event, Technique 4: Script Onload, XHR Streaming
	onunload function, Forever Frame, Iframes Block Onload
	Opera browser, Browser Busy Indicators, DOM Element and Doc Write, Efficient Data Access, The switch statement, String Concatenation, Avoid Long-Running Scripts, AlphaImageLoader, The Most Expensive DOM Element
		alpha transparency, AlphaImageLoader
	browser busy indicators, Browser Busy Indicators
	conditional logic, The switch statement
	efficient data access, Efficient Data Access
	loading elements, The Most Expensive DOM Element
	long-running scripts and, Avoid Long-Running Scripts
	script coupling techniques, DOM Element and Doc Write
	string concatenation, String Concatenation


	optimization, Principles of Optimization, Principles of Optimization, What Is Fast Enough?, What Is Fast Enough?, Threading, String Optimization, Trimming Strings, Optimizing Images, Optimizing Sprites, Highly Optimized CSS Sprites
		(see also image optimization)
	CSS sprites, Optimizing Sprites, Highly Optimized CSS Sprites
	determining “fast enough”, What Is Fast Enough?, What Is Fast Enough?
	principles of, Principles of Optimization, Principles of Optimization
	string, String Optimization, Trimming Strings
	threading considerations, Threading


	OptiPNG tool, Other PNG optimization tools
	Orbited web site, Managing Connections
	output buffering, Output Buffering, Output Buffering
	output_buffering directive, Output Buffering


P
	packet sniffers, Packet Sniffers
	palette image formats, Truecolor versus palette image formats
	palette PNG, Graphics versus photos, Truecolor versus palette image formats, PNG, PNG8, PNG24, and PNG32, PNG transparency quirks, PNG8 and image editing software, Progressively Enhanced PNG8 Alpha Transparency
		alpha transparency, Progressively Enhanced PNG8 Alpha Transparency
	alternate names, PNG8, PNG24, and PNG32
	converting from truecolor PNG, PNG8 and image editing software
	GIF format and, PNG
	graphics support, Graphics versus photos
	transparency quirks, PNG transparency quirks
	truecolor PNG versus, Truecolor versus palette image formats


	performance, Principles of Optimization, Principles of Optimization, Ajax, Browser, JavaScript, Creating Responsive Web Applications, Summary, What Is Fast Enough?, Measuring Latency, Measuring Latency, Threading, Ensuring Responsiveness, Troubleshooting Memory Issues, Virtual Memory, Coupling Asynchronous Scripts, Writing Efficient JavaScript, Managing Scope, Scope Chain Augmentation, Efficient Data Access, Efficient Data Access, Efficient Data Access, Flow Control, Simple loop performance boosts, Unrolling loops, Unrolling loops, String Optimization, Trimming Strings, Avoid Long-Running Scripts, Timer Patterns for Yielding, Summary, Scaling with Comet, Summary, Measuring Performance, Why Does This Matter?, Measuring the effectiveness, Optimizing Images, Problems with AlphaImageLoader, Flush the Head, The Flush Checklist, Using Iframes Sparingly, The Key to Efficient CSS Selectors, Reflow Time
		(see also image optimization)
	Ajax applications, Ajax
	Alexa performance data, Browser
	AlphaImageLoader filter and, Problems with AlphaImageLoader
	chunked encoding and, Flush the Head, The Flush Checklist
	costs of reading data, Efficient Data Access
	creating responsive applications, Creating Responsive Web Applications, Summary
	CSS selectors, The Key to Efficient CSS Selectors, Reflow Time
	DOM bottlenecks, JavaScript
	Duff’s Device and, Unrolling loops
	efficient data access and, Efficient Data Access, Efficient Data Access
	ensuring responsiveness, Ensuring Responsiveness, Troubleshooting Memory Issues
	flow control and, Flow Control
	gzip compression and, Why Does This Matter?, Measuring the effectiveness
	iframes and, Using Iframes Sparingly
	JavaScript considerations, Writing Efficient JavaScript, Summary
	loading scripts without blocking, Coupling Asynchronous Scripts
	long-running scripts and, Avoid Long-Running Scripts, Timer Patterns for Yielding
	loops and, Simple loop performance boosts, Unrolling loops
	managing execution context, Managing Scope, Scope Chain Augmentation
	measuring for Comet, Measuring Performance
	measuring latency, Measuring Latency, Measuring Latency
	principles of optimization, Principles of Optimization, Principles of Optimization
	response time considerations, What Is Fast Enough?
	scaling with Comet, Scaling with Comet, Summary
	string optimization and, String Optimization, Trimming Strings
	threading considerations, Threading
	virtual memory, Virtual Memory


	performance analyzers, Performance Analyzers, neXpert
	performance tools, Packet Sniffers, Web Development Tools, Hammerhead, UA Profiler
		miscellaneous, Hammerhead, UA Profiler
	packet sniffers, Packet Sniffers
	web development, Web Development Tools


	Perl language, Flushing Beyond PHP
	persistent connections, Downgrading to HTTP/1.0
	photos, Graphics versus photos, JPEG, Comparison to JPEG, Effects of Alpha Transparency
		alpha transparency, Effects of Alpha Transparency
	defined, Graphics versus photos
	JPEG format, JPEG, Comparison to JPEG


	PHP language, How Comet Works, Crush Generated Images, Flush the Head, Flush the Head, Output Buffering, Output Buffering, Flushing and Gzip
		Comet restraints, How Comet Works
	flush function, Flush the Head, Flush the Head
	GD image library, Crush Generated Images
	output buffering, Output Buffering, Output Buffering
	str_pad function, Flushing and Gzip


	physical memory, Virtual Memory
	Pixelformer utility, Favicons
	pixels, Pixels and RGB, GIF
		defined, Pixels and RGB
	transparency, GIF


	plus (+) operator, String Concatenation, String Concatenation
	PNG format, Graphics versus photos, Graphics versus photos, Truecolor versus palette image formats, Truecolor versus palette image formats, PNG, PNG, PNG, PNG8, PNG24, and PNG32, PNG8, PNG24, and PNG32, Comparison to GIF, Comparison to JPEG, PNG transparency quirks, PNG transparency quirks, PNG transparency quirks, Crushing PNGs, Converting GIF to PNG, Progressively Enhanced PNG8 Alpha Transparency
		characteristics, PNG
	converting from GIF, Converting GIF to PNG
	crushing PNGs, Crushing PNGs
	GIF comparison, Comparison to GIF
	JPEG comparison, Comparison to JPEG
	palette PNG, Graphics versus photos, Truecolor versus palette image formats, PNG, PNG8, PNG24, and PNG32, PNG transparency quirks, Progressively Enhanced PNG8 Alpha Transparency
	transparency quirks, PNG transparency quirks
	truecolor PNG, Truecolor versus palette image formats, PNG, PNG8, PNG24, and PNG32, PNG transparency quirks
	typical uses, Graphics versus photos


	pngcrush tool, Pngcrush, Crush Generated Images
	pngng tool, PNG8 and image editing software, Progressively Enhanced PNG8 Alpha Transparency
	PngOptimizer tool, Other PNG optimization tools
	PNGOUT tool, Other PNG optimization tools
	pngquant tool, PNG8 and image editing software, Crush Generated Images
	PNGslim tool, Other PNG optimization tools
	polling, Polling
	profiling (automated code instrumentation), Measuring Latency, Measuring Latency
	progressive JPEG, JPEG, Progressive JPEGs for Large Images
	Project Triangle, Trade-offs
	proxies, Other Intermediaries
	Proxy-Connection header, Other Intermediaries
	pseudo-classes, Pseudo-Classes and Pseudo-Elements
	pseudo-elements, Pseudo-Classes and Pseudo-Elements
	Publish-Subscribe (PubSub) model, Protocols
	Python language, How Comet Works, Flushing Beyond PHP


R
	race conditions, Undefined Symbols and Race Conditions, Ensuring (or Avoiding) Ordered Execution, Coupling Asynchronous Scripts, Race Conditions
		asynchronous script loading and, Coupling Asynchronous Scripts, Race Conditions
	ordered script execution and, Ensuring (or Avoiding) Ordered Execution
	splitting initial payload and, Undefined Symbols and Race Conditions


	reading data, Efficient Data Access
	recursion, long-running scripts and, Avoid Long-Running Scripts
	reflow time, Reflow Time
	Reflow Timer, Measuring CSS Selectors in the Real World
	relative URLs, Use relative URLs
	Resig, John, Technique 5: Degrading Script Tags
	response time, What Is Fast Enough?, What Is Fast Enough?, Effects of Memory Use on Response Time, Optimizing Images
		determining “fast enough”, What Is Fast Enough?, What Is Fast Enough?
	effects of memory, Effects of Memory Use on Response Time
	web page considerations, Optimizing Images


	RFC 1808, Use relative URLs
	RFC 2616, Quick Review, Downgrading to HTTP/1.0
	RGB color model, Pixels and RGB
	RGBA extension, Transparency and alpha channel (RGBA)
	RIAs (Rich Internet Applications), GIF
	Rich Internet Applications (RIAs), GIF
	rounded corners, Mountaintop corners
	Ruby language, Flushing Beyond PHP
	Russell, Alex, Scaling with Comet


S
	Safari browser, Gears, Scripts Block, Race Conditions, Use Local Variables, Efficient Data Access, The switch statement, String Concatenation, Avoid Long-Running Scripts, XHR Streaming, AlphaImageLoader, Browsers: The Last Hurdle, The Most Expensive DOM Element, Web Inspector Resources Panel, Web Inspector
		alpha transparency, AlphaImageLoader
	chunked encoding and, Browsers: The Last Hurdle
	conditional logic, The switch statement
	efficient data access, Efficient Data Access
	Gears plug-in, Gears
	identifier resolution, Use Local Variables
	loading elements, The Most Expensive DOM Element
	long-running scripts and, Avoid Long-Running Scripts
	ordered script execution, Race Conditions
	parallel script downloads, Scripts Block
	string concatenation, String Concatenation
	Web Inspector Resources Panel, Web Inspector Resources Panel, Web Inspector
	XHR streaming, XHR Streaming


	Schiemann, Dylan, Credits, Scaling with Comet, Summary
	scope, Managing Scope (see execution context)
	scope chain, Managing Scope, Managing Scope, Managing Scope, Use Local Variables, Scope Chain Augmentation, Scope Chain Augmentation
		augmenting, Scope Chain Augmentation, Scope Chain Augmentation
	functionality, Managing Scope
	functions and, Managing Scope
	global variables and, Managing Scope
	local variables and, Use Local Variables


	SCRIPT DEFER attribute, Script Defer, Inline Scripts Block, Use Script Defer
		functionality, Script Defer
	inline script blocking, Inline Scripts Block, Use Script Defer


	Script Defer technique, Script Defer, Summarizing the Results, And the Winner Is
	script DOM element, XHR Injection, Script DOM Element, Technique 5: Degrading Script Tags
		innerHTML property, Technique 5: Degrading Script Tags
	setting SRC property, Script DOM Element
	XHR Injection technique, XHR Injection


	Script DOM Element technique, Script DOM Element, Summarizing the Results, And the Winner Is
	Script in Iframe technique, Script in Iframe, Summarizing the Results, And the Winner Is
	Script Onload technique, Preserving Order Asynchronously, Technique 4: Script Onload
	SCRIPT SRC attribute, Scripts Block, Browser Busy Indicators, Preserving CSS and JavaScript Order
		browser busy indicators, Browser Busy Indicators
	functionality, Scripts Block
	loading external scripts, Preserving CSS and JavaScript Order


	SCRIPT tag, Loading Scripts Without Blocking, Scripts Block, document.write Script Tag, Coupling Asynchronous Scripts, Technique 5: Degrading Script Tags, Cross-Domain, The Most Expensive DOM Element
		blocking behavior, Loading Scripts Without Blocking, Coupling Asynchronous Scripts
	Degrading Script Tags technique, Technique 5: Degrading Script Tags
	document.write support, document.write Script Tag
	functionality, Scripts Block
	JSONP support, Cross-Domain
	loading, The Most Expensive DOM Element


	scripts, Loading Scripts Without Blocking (see coupling scripts; external scripts; inline scripts; loading
      scripts)
	setTimeout function (JavaScript), Gears, Timers, Technique 3: Timer, Initiate Execution Asynchronously, Yielding Using Timers
		inline script execution, Initiate Execution Asynchronously
	long-running scripts and, Yielding Using Timers
	shim libraries, Gears
	Timer technique, Timers, Technique 3: Timer


	sharding, domain, Sharding Dominant Domains (see domain sharding)
	Shea, Dave, Optimizing Sprites
	Shinde, Swapnil, YSlow
	ShrinkSafe, Strip whitespace
	sibling selectors, Adjacent Sibling Selectors
	Simon, Lindsey, Measuring CSS Selectors in the Real World
	slashdot.org, Use relative URLs
	smart polling, Long Polling
	Smush.it tool, Smush.it, Smush.it
	sort function, Timer Patterns for Yielding
	splitting initial payload, Kitchen Sink, Savings from Splitting, Finding the Split, Undefined Symbols and Race Conditions, Undefined Symbols and Race Conditions, Case Study: Google Calendar
		Facebook example, Kitchen Sink, Savings from Splitting
	finding the split, Finding the Split
	Google Calendar case study, Case Study: Google Calendar
	race conditions, Undefined Symbols and Race Conditions
	undefined symbols, Undefined Symbols and Race Conditions


	Squid proxy, Other Intermediaries
	Stefanov, Stoyan, Credits, Optimizing Images, Summary, Smush.it
	storing data, Efficient Data Access, Efficient Data Access
	strings, String Optimization, Trimming Strings, String Concatenation, Trimming Strings, Trimming Strings
		concatenating, String Concatenation
	optimizing, String Optimization, Trimming Strings
	replace method, Trimming Strings
	trimming, Trimming Strings


	str_pad function, Flushing and Gzip
	stub functions, Undefined Symbols and Race Conditions
	STYLE element, The Most Expensive DOM Element
	stylesheets, Case Study: Google Calendar (see CSS stylesheets)
	Sullivan, Nicole, Credits, Optimizing Images, Summary, Simplifying CSS Selectors
	switch statement, The switch statement, The fastest conditionals, Unrolling loops
	Sykes, Jon, Complex Selectors Impact Performance (Sometimes), Complex Selectors Impact Performance (Sometimes)
	symbols, undefined, Undefined Symbols and Race Conditions, Ensuring (or Avoiding) Ordered Execution, Coupling Asynchronous Scripts
		asynchronous script loading and, Coupling Asynchronous Scripts
	ordered script execution and, Ensuring (or Avoiding) Ordered Execution
	splitting initial payload and, Undefined Symbols and Race Conditions




T
	threading, Creating Responsive Web Applications, Threading, Threading, Threading, Timers, Avoid Long-Running Scripts, How Comet Works
		browser limitations, Creating Responsive Web Applications, Threading
	Comet considerations, How Comet Works
	JavaScript limitations, Threading, Avoid Long-Running Scripts
	performance considerations, Threading
	task switching and, Timers


	Timer technique, Technique 3: Timer
	timers, Timers, Yielding Using Timers, Timer Patterns for Yielding
		controlling execution, Timers
	long-running scripts and, Yielding Using Timers, Timer Patterns for Yielding


	Trailer header, Chunked Encoding
	Transfer-Encoding: chunked header, Chunked Encoding
	transparency, Transparency and alpha channel (RGBA), Transparency and alpha channel (RGBA), GIF, JPEG, PNG, PNG, PNG transparency quirks, PNG8 and image editing software, Alpha Transparency: Avoid AlphaImageLoader, Progressively Enhanced PNG8 Alpha Transparency
		alpha, Transparency and alpha channel (RGBA), PNG, PNG8 and image editing software, Alpha Transparency: Avoid AlphaImageLoader, Progressively Enhanced PNG8 Alpha Transparency
	defined, Transparency and alpha channel (RGBA)
	GIF format, GIF
	JPEG format, JPEG
	PNG format, PNG, PNG transparency quirks


	transport techniques, Polling, Long Polling, Forever Frame, Forever Frame, XHR Streaming, Future Transports
		forever-frame, Forever Frame, Forever Frame
	long polling, Long Polling
	polling, Polling
	WebSocket support, Future Transports
	XHR streaming, XHR Streaming


	trim function, Trimming Strings
	troubleshooting memory issues, Troubleshooting Memory Issues
	truecolor image formats, Truecolor versus palette image formats
	truecolor PNG, Truecolor versus palette image formats, PNG, PNG8, PNG24, and PNG32, PNG transparency quirks, PNG8 and image editing software
		alternate names, PNG8, PNG24, and PNG32
	converting to palette PNG, PNG8 and image editing software
	JPEG format and, PNG
	palette PNG versus, Truecolor versus palette image formats
	transparency quirks, PNG transparency quirks


	try-catch block, Scope Chain Augmentation
	Twisted Python, Managing Connections
	type selectors, Type Selectors


U
	UA Profiler tool, UA Profiler
	UI element, Undefined Symbols and Race Conditions
	underscore hack (_), AlphaImageLoader
	universal selectors, Universal Selectors
	unrolling the loop, Unrolling loops, Unrolling loops


V
	variables, Managing Scope, Use Local Variables, Efficient Data Access
		global, Managing Scope
	local, Use Local Variables, Efficient Data Access


	Velocity 2008 conference, Browser
	Via header, Other Intermediaries
	virtual memory, Virtual Memory
	Visual Round Trip Analyzer (VRTA), VRTA, VRTA
	VML, PNG transparency quirks
	VRTA (Visual Round Trip Analyzer), VRTA, VRTA


W
	Walker, Alex, Progressively Enhanced PNG8 Alpha Transparency
	waterfall charts, HTTP, Case Study: Google Calendar, Flush the Head, Script Before Iframe
	web applications, Creating Responsive Web Applications, Creating Responsive Web Applications, What Is Fast Enough?, Measuring Latency, Measuring Latency, Threading, Ensuring Responsiveness, Troubleshooting Memory Issues, Web Workers, Timers, Effects of Memory Use on Response Time, Virtual Memory, Troubleshooting Memory Issues, Splitting the Initial Payload, Case Study: Google Calendar, Case Study: Google Calendar, Polling, Effects of Implementation on Applications, Protocols
		ensuring responsiveness, Ensuring Responsiveness, Troubleshooting Memory Issues
	Google Calendar case study, Case Study: Google Calendar
	implementation effects, Effects of Implementation on Applications, Protocols
	measuring latency, Measuring Latency, Measuring Latency
	polling, Polling
	response time considerations, What Is Fast Enough?, Effects of Memory Use on Response Time
	responsiveness issues, Creating Responsive Web Applications, Creating Responsive Web Applications
	splitting initial payload, Splitting the Initial Payload, Case Study: Google Calendar
	threading considerations, Threading
	timer support, Timers
	troubleshooting memory issues, Troubleshooting Memory Issues
	virtual memory, Virtual Memory
	Web Worker API, Web Workers


	web development tools, Web Development Tools
	Web Inspector Resources Panel, Web Inspector Resources Panel, Web Inspector
	web pages, Ajax, Virtual Memory, Virtual Memory, Kitchen Sink, Savings from Splitting, Kitchen Sink, Finding the Split, Undefined Symbols and Race Conditions, Ensuring (or Avoiding) Ordered Execution, Avoid Long-Running Scripts, Optimizing Images, Problems with AlphaImageLoader, Flushing the Document Early, The Flush Checklist
		Ajax performance, Ajax
	challenges in splitting code, Undefined Symbols and Race Conditions
	chunked encoding, Flushing the Document Early, The Flush Checklist
	finding the split, Finding the Split
	frozen, Avoid Long-Running Scripts, Problems with AlphaImageLoader
	ordered execution of scripts, Ensuring (or Avoiding) Ordered Execution
	paging considerations, Virtual Memory
	performance issues, Virtual Memory
	rendering recommendations, Kitchen Sink
	response time considerations, Optimizing Images
	splitting initial payload, Kitchen Sink, Savings from Splitting


	web performance, Principles of Optimization (see performance)
	web sites, How This Book Is Organized, Polling, Who’s Sharding?, Who’s Sharding?
		domain sharding examples, Who’s Sharding?, Who’s Sharding?
	performance rules, How This Book Is Organized
	polling, Polling


	Web Worker API, Web Workers
	WebSocket, Future Transports
	while loop, Simple loop performance boosts, Simple loop performance boosts, Output Buffering
	whitespace, Strip whitespace
	Wikipedia, This Does Happen, Downgrading to HTTP/1.0, Downgrading to HTTP/1.0
		domain sharding, Downgrading to HTTP/1.0, Downgrading to HTTP/1.0
	stylesheets and inline scripts, This Does Happen


	Willow Chat, Managing Connections
	Window Onload technique, Technique 2: Window Onload
	Windows operating system, Managing Connections
	Wireshark, Wireshark
	with statement, Scope Chain Augmentation
	WorkerPool API, Ensuring Responsiveness


X
	X-Forwarded-For header, Other Intermediaries
	XHR (XMLHttpRequest), Timers, XHR Eval, XHR Eval, XHR Injection, Long Polling, XHR Streaming, Cross-Domain
		cross-domain considerations, Cross-Domain
	functionality, Timers
	loading techniques, XHR Eval, XHR Eval, XHR Injection
	long polling, Long Polling
	XHR streaming, XHR Streaming


	XHR Eval technique, XHR Eval, Summarizing the Results, And the Winner Is
	XHR Injection technique, XHR Injection, Summarizing the Results, And the Winner Is
	XMLHttpRequest, Timers (see XHR)
	XMPP protocol, Protocols


Y
	Yahoo!, Code Example: menu.js, Optimizing Sprites, How Many Domains
		CSS sprites, Optimizing Sprites
	domain sharding, How Many Domains
	YUI Library, Code Example: menu.js


	Yahoo! Search, In the wild: A Yahoo! Search case study, Favicons
	YouTube web site, Who’s Sharding?, Newer Browsers
	YSlow analyzer, Ajax, YSlow
	YUI Compressor, Strip whitespace
	YUI Loader Utility, YUI Loader Utility, YUI Loader Utility


Z
	Zakas, Nicholas C., Credits, Writing Efficient JavaScript, Summary




About the Author
Steve Souders works at Google on web performance and open source  initiatives. His books High Performance Web Sites and Even Faster Web Sites explain his best practices for performance along with the  research and real-world results behind them. Steve is the creator of  YSlow, the performance analysis extension to Firebug with more than 1  million downloads. He serves as co-chair of Velocity, the web  performance and operations conference sponsored by O'Reilly. Steve taught CS193H: High Performance Web Sites at Stanford, and he  frequently speaks at such conferences as OSCON, Rich Web Experience,  Web 2.0 Expo, and The Ajax Experience.

Steve previously worked at Yahoo! as the Chief Performance Yahoo!, where he blogged about web performance on Yahoo! Developer Network. He  was named a Yahoo! Superstar. Steve worked on many of the platforms and products within the company, including running the development  team for My Yahoo!. Prior to Yahoo! Steve worked at several small to mid-sized startups including two companies he co-founded, Helix Systems and CoolSync. He also worked at General Magic, WhoWhere?, and  Lycos.

Colophon
The animal on the cover of Even Faster Web
  Sites is a blackbuck antelope (Antilope
  cervicapra), an endangered species found mainly in India, also
  known as the Indian antelope. The V-shaped horns of the male blackbuck are
  ringed with several spiral twists and can be as long as 28 inches. The
  male’s upper body is black or dark brown, and its belly and the rings around
  its eyes are white. The female is light brown and does not normally have a
  horn. Blackbucks roam the plains in herds of 15 to 20, feeding on grasses,
  flowers, and fruits. On the open plain, the blackbuck is one of the fastest
  animals on earth, able to reach speeds of 45 mph and outrun most predators
  over long distances.
From the 18th through the early 20th centuries, the blackbuck antelope
  was the most hunted wild animal in India. In 1932, several species of Indian
  deer and antelope, including the blackbuck, were introduced to Texas for
  hunting and breeding. Today, these species live on private hunting ranches
  and roam the surrounding hill country. They are so plentiful—having
  multiplied to 19,000 throughout the state—that many have been shipped to
  India to repopulate the native habitat.
Now protected in India by the Wildlife Protection Act of 1972, the
  blackbuck population is steady at 50,000 native animals, plus 43,000
  descended from Texas and other populations. Although poaching is still a
  problem and humans have encroached on its land, its protected status gained
  attention in 2006 when Indian film star Salman Khan was sentenced to five
  years in jail for killing two blackbucks. According to Hindu mythology, the
  blackbuck is considered to be the vehicle of the moon god, Chandrama, and is
  believed to bestow prosperity wherever it lives.
The cover image is from the Dover Pictorial Archive. The cover font is
  Adobe ITC Garamond. The text font is Linotype Birka; the heading font is
  Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages300521.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300507.png
Internet Explorer
Main page §
Script  IEE—
Iframe
Image
Stylesheet
Script

Firefox
Main page
Script  IEE——
Iframe
Image
Stylesheet
Script

Safari, Chrome, Opera
Main page I
Script  IE—
Iframe
Image
Stylesheet
Script





OEBPS/httpatomoreillycomsourceoreillyimages300434.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300406.png.jpg
HR Eval
XHR Injection
Script in lfram
Script DOM Element:
Script Defer

AR TTecton
Script in lfram,
Script DOM Elenfent
Script Defer

Script DOM Element
Script De

Script DOM Element (FF)
Script Defer (IE)
3 ection
HR Eval

Managed XHR Injection
Managed XHR Eval lement (FF)
Script in Iframe 6)






OEBPS/oreilly_large.gif
O’REILLY





OEBPS/httpatomoreillycomsourceoreillyimages300454.png.jpg
indows Internet Explorer

‘ Stop running this script?

A script on this page is causing Intemet Explorer to run slowly.
Ift continues to run, your computer may becore
unresponsive.






OEBPS/httpatomoreillycomsourceoreillyimages300468.png.jpg
Location

San Francisco, CA
Mostly Cioudy’

# x
51°F

Mostly Cloudy

Tomorrow

Today

a4 A

Friday

61145 63" /45" 65° /49"





OEBPS/httpatomoreillycomsourceoreillyimages300394.png.jpg
facebook  Home

News Feed

7 Yahoo!

Siicon Valle, CA

Photos
1 ks
2 Video

~ Hore

Profilc

Friends  Inbox @

- —— T ot -
—— e ——

—. - p— - g -
- — e . - ——





OEBPS/httpatomoreillycomsourceoreillyimages300474.png.jpg
Europe

(oiimeies) | Top s

. France

b
7. Sweden
8. Porugal
.
bt

1
2ty
Coribbed| 3. ooland
4. Groace
Germany

Turkey

al Amer

Romania
Monaco
South América J

Top Cities
1. Paris
2. London
3. Rome
4. Amstordam
5. Barcolona
Florence
7. Dublin
Verice
Edinburgh
10, Istanbul

Ausiralia &
South Pacifc





OEBPS/httpatomoreillycomsourceoreillyimages300416.png
Document






OEBPS/httpatomoreillycomsourceoreillyimages300538.png.jpg
Examples | Help

Zilllon e e e e o ek e oom

1. add components, 2. arrange and modify, 3. create the page.

Create | _ Clear

image

/BODY>
/HTML>






OEBPS/httpatomoreillycomsourceoreillyimages300470.png.jpg
Full alpha transparency:
Smoother, but keep in mind,
most users will not zoom
into 300%






OEBPS/httpatomoreillycomsourceoreillyimages300377.jpg
R R R R RRRRRRRESEEEERRDREy ]
Essential Knowlege for Frontend Engineers

L\ { ]
Even Faster
Web Sites

O’REILLY*® Steve Souders






OEBPS/httpatomoreillycomsourceoreillyimages300396.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300472.png.jpg
Hips Dontlie
‘wew youtube. comiwatch?v=OyHiYqDZ15 - 72k - Cached

© Piay Video





OEBPS/httpatomoreillycomsourceoreillyimages300458.png
100.00%

75.00%

5000%

2500%

images &5 a parcaninge of Fage Weight for the Alaxa Top 10 Global Webeltes

aoo!

Google.

YouTube

Live MSN  MySpace Wikipedia Facebook

O Average image weight

Blogger Yahoo! Japan





OEBPS/httpatomoreillycomsourceoreillyimages300466.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300483.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300424.png
Document SN
Image |

Inline script I
Image





OEBPS/httpatomoreillycomsourceoreillyimages300450.png
100

20

. 80

3

g 70

s

8

S 60

g aliteral

850 alocal

5 variable

£w aArray item
- a0bject

property

20

X
& B

T
@ &« o
W o
& KL O

R w\‘? 1:@‘

|y

g e





OEBPS/httpatomoreillycomsourceoreillyimages300526.png
B - [+ roimasreon )lx

B B[ esay New  sed sconcs, cars sopre, colect. | | BB B e Gros- @

© Buy Sell MyeBay Community Help ]
ﬁll Hello! Sign in or register Ste Map )
i IAHCategunes I Search “-

Categories ¥ | Motors | Express | Stores Ja

(ol

$Siin

@ Live Help.

Whateverit is...you can get it on dﬂ
My Favorite Searches: Sign in to view your Favorite Searches

[“specialty Sites U Y YOT T T W T 1 The new eBav- MasterCard &

* |@record Mstop fglClear [E] View + 3 Summary Q Find - W Fiter - [ Save - 2 Heb v
Sared «__ | TmeChart Tme| sent| Receved Method | Resilt
1=J_00:00:00.000 _eBay - New & used electronics, cars, apparel, collctibles, sporting goods & more at low prices
R — 0.809 1037 GET 304
+0.262 0.018 300 GET 304 ‘application/x-ja. http:fin
tozs 1 00% = e E textess ftpi/in
+0.3%9 1 0.022 440 84 GET 304 text/css http:/fin
+0.351 0.027 440 300 GET 304 ‘application/x-ja. http:/fin
toa2 00w w02 ® e E image/ot /i
Toa oo 415 0 e E image/ot /i
toam oo a2 % e E image/ot /i
toan oo% a2 % e E image/ot o i
] i I []
Overview | Time Chart | Headers | Cookies | Cache | Query String | POST Data | Content | Stream |
005 06095 | [ imng Key o Strted| Duraten
2 Bocked +0000 <0001
= Send Tooo ooz
s wait +0.003 0.2
g [ cacheread ————»| || Receve to22 <oon
s 05565 CacheRead fo2ss 05w
£ ™ Too 022
5| Cache Read s th tin taken to read the content from the browser cache during Network foom 0232
2| (Cache) or 304 responses.

@ imeret w00% -






OEBPS/httpatomoreillycomsourceoreillyimages300519.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300438.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300418.png
Document






OEBPS/httpatomoreillycomsourceoreillyimages300511.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300528.png
#° mspect Cear [[Al HTML CSS 35 X Imsges Flsh | S~ ]~
Console WTML CSS Script DOM | Wet~ | G
200K nwkpedacrg 16K Sims

200 wpload.wiimeda.org 4K 140ms

200K ) 9 28 151ms

200 upload.wiimeda.org 6K8 153ms

200 upload.wiimeda.org 4K 1sams

200 upload.wiimedi.org 13K8 J3soms

200 upload.wiimeda.org 2K 183ms

200K ) 9 38 oms

200 upload.wiimedi.org 4788 130ms

200K ) g 268 131ms

200 upoad. o 268 133ms

200 upoad. o 3K 30ms

200 upoad. g 48 aoms

200 upload.wiimeda.org 2K8 aoms

200K uplosd 9 218 aoms
soK8

[#%






OEBPS/httpatomoreillycomsourceoreillyimages300456.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300460.png.jpg
alpha=80  alph:






OEBPS/httpatomoreillycomsourceoreillyimages300384.png
Time

Failure

Frustration

Inefficiency

Fixed time: startup and cleanup






OEBPS/httpatomoreillycomsourceoreillyimages300536.png.jpg
Performance just got a little bit easier.
I t Optimizing images by hand is time

consuming and painful. Smush it does it
for you.

Results

3 DOWNLOAD
Smushed .55 or from the SMUSHED IMAGES

size of your image(s). How did we do it? See bichod
the table below for more details.

Smushed images

Image Resultsize  Savings % Savings
start_your_free_trial git png 458KB 167KB 2672%
how_it_works gif.png 4.14KB 1.72K8 2037%
browse._selection gif.png 4.46KB 1.73KB 27.93%
free_trial_info.gf.png 433KB 184K8 2085%
bg_home._splitgf No savings
home._ram_free_trial jog 43.34KB 1.20KB 269%

5.gif.png 701 bytes 44 bytes 591%





OEBPS/httpatomoreillycomsourceoreillyimages300404.png.jpg
[ ‘Windows Internet Explorer T B Lo

5 ) = [ nttpstevesouders.comjasalion/2co=rihfiF2_08c1=bithF2_ 08¢

[ e et ven rovoes Took reb

W @ O cudlion

SN Examples | Hely
CUZillioN ‘w there are aszittion pages to check e

stevesouders.com

on domain1 with a
HTML ta

Browser Busy
Indicators

>

e % o0% -

Wiaitng for http://stevesouders.com/cualion/7co=hi hf [N






OEBPS/httpatomoreillycomsourceoreillyimages300515.png
Table of Contents
}

1~'“"°d"‘“°"£ .chapter { font-weight: bold; }

2.The Problem A { text-decoration: none; }
3.The Solution #toc A { color: #444; }

4. Issues for Further Research
5. Conclusion

6. Index
'\|[href="«index"] { font-stye: italic; )|

—
#toc { margin-left: 20px; }






OEBPS/httpatomoreillycomsourceoreillyimages300464.png.jpg
»





OEBPS/httpatomoreillycomsourceoreillyimages300422.png
Document [
yuiloader-min.js
Image
menu.js
menutier.js





OEBPS/httpatomoreillycomsourceoreillyimages300523.png.jpg
susoon:





OEBPS/httpatomoreillycomsourceoreillyimages300478.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300530.png.jpg
webnspectae Rl 0/

Documents

Stylesheets

gams

Ima

61ams

773ms

Seripts

a27ms

XHR

I Other

Total

RESOURCES

http: /www.apple.com/

scriptaculous s
images apole comglobal/scp...

apple_core.js
Imipes apa-com)glol scrprs

browserdetect s
images.apole.corglosalscrpis

prototypeds
Irapes.appi.com/giosascrp.

search_decorator js
images.appl.com/g ol scrpts

ticker.js
images.appl.comjhome/scrpts

shortcuts Js
Images apoie.com)gional s .

s_code_hijs
Tmsses.spsi.com)gionsl metr

base.css
images apple.comjglobalstyles

home.css.
imaces.aosle.com/homesties

Sort by Response Time ¢






OEBPS/httpatomoreillycomsourceoreillyimages300462.png.jpg
-l

2000

1500

1000

500

-1000

1500






OEBPS/httpatomoreillycomsourceoreillyimages300476.png.jpg
1. Paris
2. London

Caribbe: 3. Rome

4. Amstordam

5. Barcolona

Florence A T
Central America ) | 7 7. Dublin Ausiralia & ]
Verice South Pacifc
Edinburgh
10, Istanbul

South AmETET







OEBPS/httpatomoreillycomsourceoreillyimages300446.png
3 8 E 2
8 8 &8 8

2
8

N
\

Time (ms) per 200,000 writes

N o2 o
3 & 3

o

IS
)

—+—Firefox 3
—=—Firefox 3.1 Beta 3
Chrome 1
~ Chrome 2 Beta
—=—Internet Explorer 7
——Internet Explorer 8
——Opera 9.64
——Opera 10 Alpha
——Safari3.2
Safari 4 Beta





OEBPS/httpatomoreillycomsourceoreillyimages300505.png
Internet Explorer
Main page §
Script  IEE—
Iframe
Image
Stylesheet
Script

Firefox
Main page
Script  IEE——
Iframe
Image
Stylesheet
Script

Safari, Chrome, Opera
Main page I
Script  IE——
Iframe
Image
Stylesheet
Script





OEBPS/httpatomoreillycomsourceoreillyimages300392.png.jpg
%" Inspect Clear Profile

Consolev | HTML CsS

Script  DOM  Net

¥ Profile (1272.599ms, 93169 calls)

Q @0

Options

Function | Calls |percentr| Own Time | Time |Avg Min Max | File |
acsO 1548 959%  12205lms 12205lms  0.079ms 0.035ms  0.506ms Js/dojol...e/htmls

paint() 33 9.57% 121.851ms  562.094ms  17.033ms 4.454ms  33.065ms Js/dojo/.../th/thjs
measureText() 3226 7.88%  100.269ms 100.269ms  0.03lms 00llms  2.128ms

_getMarginBox() 516  6.84%  87.00lms  205.337ms  0.398ms  0.187ms  0.95ms

_abs() 516 6.56%  83.422ms  179.924ms  0.349ms  0.187ms  0.731ms

_getharginkxtents() S16  5.72%  7285ms  82513ms  Oléms  007ms  0.538ms Js/dojo]..e/htmljs
FllTextO 668  452%  57.552ms 57.552ms  0.086ms 0.032ms 14d6ms Js/dojol.canvas.s (line 40)
a0 2166  4.01% 51.037ms  115.366ms  0.053ms  0.025ms  0.294ms Js/dojo/..elpers js (line 85)
paintChildren() 375 3.88%  49.78ms  427395ms  Lléms  Oms 27.104ms js/dojo...th/thijs (ine 377)
paint() 160 3.86%  49.112ms  59.56ms 0.372ms  0.266ms  0.671ms Js/dojo/..onents.js (line 222)
_docScrol1() 516 2.85%  36325ms  43.7ms 0.085ms  0.045ms  0.244ms Js/dojo/..e/htmljs (line 1019)
getInsets() 26577 2.61% 33.17ms. 65.184ms. 0.002ms  0.00lms  0.104ms Js/dojo/.../th/thjs (line 327)
paintO 60 253 321%ms 107.06lms  1784ms 0.73lms  3.229ms js/dojo/..onents.js (ine 719)
paintSelf() 80 2.27% 28.872ms  34.094ms 0.426ms  0.307ms  0.951ms Js/dojo/..onents.js (line 355)
paintSelfO) 242 176%  22413ms  22.413ms  0.093ms  Oms 0.768ms Js/dojo]..onents s (line 177)
emptyInsets() 8151 1.75%  22.299ms  22.299ms  0.003ms  0.00lms  0.lms js/dojo/..elpers.js (line 103)
styleContext( 1613 L72%  2186ms  218ms  00ldms  0009ms  0.1S5ms Js/dojol...onents.js (ine 548)
requestQ) 2 17%  21679ms  21743ms  10872ms 103ms  11443ms Js/dojo/..serverjs (ine 58)
paintQ) 92 143% 18199ms 22.752ms  0.247ms 0.229ms  0.422ms

_toPixelValueQ) 4128 139%  17.655ms  17.655ms  0.004ms  0.002ms  0.169ms is/dojo/..e/htmLjs (ine 397)
Tayout) 92 137% 17475ms  116292ms  1264ms 0.48ms  5.746ms Jsldojo/..onents.s (line 86)
body() 1548 137%  17.406ms  17.406ms  0.0llms 0.004ms  0.05lms

]






OEBPS/httpatomoreillycomsourceoreillyimages300491.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300430.png
Document
Image  ———
frame I
Image |
| | | |

[ 1 2 4
seconds  second  seconds seconds





OEBPS/httpatomoreillycomsourceoreillyimages300487.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300493.png
Document —

Stylesheet
Image
Image
Image
Image
Image
Image
Image
Image
Image





OEBPS/httpatomoreillycomsourceoreillyimages300428.png
Document
Stylesheet
Stylesheet





OEBPS/httpatomoreillycomsourceoreillyimages300412.png
Document
menu.js
Image





OEBPS/httpatomoreillycomsourceoreillyimages300503.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300442.png
Activation object

this (global)
Execution context Scope chain arguments | [5,10]
S:opechain‘ ._j 0 num1 5
1 num2 10
Global object
this (global)
add function
result | undefined
num2 10






OEBPS/httpatomoreillycomsourceoreillyimages300436.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300408.png
Normal Saript 512
xR Eval

‘Saiptin Iframe.
‘Saipt DOM Element

‘Saipt Defer

Gocumenturite Saipt Tag
Hardeoded Calloack

Window Onlosd

Timer

‘Saipt Onloss

Degrading Sarpt Tegs
Mansged XHR

DO Element and DeoVirte
losdSaist

loadSaipts Ssme Domain
loagSaipts DiffDomain

YUI Loader






OEBPS/httpatomoreillycomsourceoreillyimages300432.png
Document [
Stylesheet | NEEG—_—:_—
Stylesheet I
Image I
| | | | | | | | |

0 1 2 3 4 5 6 7 8
seconds second seconds seconds seconds seconds seconds seconds seconds





OEBPS/httpatomoreillycomsourceoreillyimages300400.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300382.png
Slope: Time per itertion

Time
Fixed time: startup and cleanup






OEBPS/httpatomoreillycomsourceoreillyimages300388.png.jpg
Mouse moved
Mouse pressed
Mouse released

Key pressed

Key released






OEBPS/httpatomoreillycomsourceoreillyimages300532.png.jpg
FastView
0749
Repeat View
68939
wenmisin gt
prigey nssrins
—— il
fomttsn rT— il
” oo s
catEen S—
et
— v
Py ot

tentsess

(& [Rvson o (4





OEBPS/httpatomoreillycomsourceoreillyimages300402.png
Document
Script
Script
Image

Stylesheet

Iframe





OEBPS/httpatomoreillycomsourceoreillyimages300499.png
Document
Image
Image
Script





OEBPS/httpatomoreillycomsourceoreillyimages300513.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300440.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300398.png
Document ||
Script
Script I
Image
Stylesheet
Iframe






OEBPS/httpatomoreillycomsourceoreillyimages300481.png.jpg
J (]oowle >






OEBPS/httpatomoreillycomsourceoreillyimages300420.png
Document






OEBPS/httpatomoreillycomsourceoreillyimages300485.png.jpg
R ——
W htp: /wikipedia.org/

S Viha

=T





OEBPS/httpatomoreillycomsourceoreillyimages300390.png.jpg
JavaScript






OEBPS/httpatomoreillycomsourceoreillyimages300410.png
Document
menu.js
Image





OEBPS/httpatomoreillycomsourceoreillyimages300448.png
Activation object

name | ‘Nicholas'
age 30
Activation object
Execution context Scope chain this (global)
Scope chain | ._j 0 arquments | (1
1 count 5
2
Global object
this (global)
person (object)
displayinfo |(function),
num2 10






OEBPS/httpatomoreillycomsourceoreillyimages300540.png.jpg
~=loix|

Bl Edt Vew Hstory Bookmarks Tods Heb <] (= [ TR [ttpejstevesouders.comuaireport php

UA Profiler - Resu(ts

UA Profiler | Test | Results | FAQ.

tests:

This table summarizes the results gathered so far. Thanks for contributing your test results to this project.

g0 to Detailed Results

Cache
Resource

1 1
C55->JS | Expires | Redir

1

Brovaers| score Scripts | Stylesheets

| Chrome 0.2

Firefox 2

Opera 9.60

Safari 3.1

Bugs? Mistakes? Suggestions?

= B o [ e






OEBPS/httpatomoreillycomsourceoreillyimages300414.png.jpg
[Exemples ¥
Racs Conditions

Normsl Saipt Sto
xR Eval

XA Injection

Soiptin irame

Soipt DOM Element
Soipt Defer
ocumenturite Saipt Tag

single Saipt
Hardcoded Callback
Window Onloa
Timer

Soipt Onlosd
Degrading Seript Tags

iple Soipts

DO Element nd!wwme

(General Solution
loadSarist

loadSoips Ssme Domain
loadSaipts Dif Domain
YUI Loader






OEBPS/httpatomoreillycomsourceoreillyimages300509.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300517.png
IE6
IE7

IE8

Firefox 2.0
Firefox 3.0
Firefox 3.1
Safari 3
Safari 4
Opera 10
Chrome 1.0

Chrome 2.0

Delta load times (ms)






OEBPS/httpatomoreillycomsourceoreillyimages300426.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300444.png
Time (ms) per 200,000 reads
N & o © 3 B B B
8 8 3 38 8 & 3

o

—+—Firefox 3
—=—Firefox 3.1 Beta 3

Chrome 1

Chrome 2 Beta
—=—Internet Explorer 7
——Internet Explorer 8
——Opera 9.64
——Opera 10 Alpha

Safari 3.2

Safari 4 Beta





OEBPS/httpatomoreillycomsourceoreillyimages300386.png
/ Faiture

Frustration

® / Inefficiency

Time
Fixed time: startup and cleanup






OEBPS/httpatomoreillycomsourceoreillyimages300501.png
Document |

Image
Image
Script
Image

204





OEBPS/httpatomoreillycomsourceoreillyimages300489.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages300452.png
Firefox 3

Firefox 3.1 Beta 3
~Chrome 1
—=—Chrome 2 Beta
——Internet Explorer 7
——Internet Explorer &

I
8

——Opera 964
~~—Opera 10 Alpha
 Safari32

~ Safari4Beta

Time (ms) per 200,000 reads
3
8






OEBPS/httpatomoreillycomsourceoreillyimages300495.png
Document
Image
Image
Script





OEBPS/httpatomoreillycomsourceoreillyimages300497.png
Document
Image
Image
Script





OEBPS/httpatomoreillycomsourceoreillyimages300534.png.jpg
%" tnspect | Cache aTime [ Hammer Setup.

(=]~}
Console HTML €SS Script DOM et | Hammerhead | Optons
Step | | Reset | Done | ExportData 6 2
#ofloads: [ 9
Empty Cache Primed Cache oRL
Count Latest Median Avg Count Latest Median Avg
9 8266 5876 6174 9 5376 5376 5377 i fjwew.msnbc.msn.com/
9 3063 2500 2581 9 2234 2234 2227 it fjnews.yahoo com/
9 1953 1360 1472 9 828 937 977 HE X [ntplinewsgooglecom
Add URL |
Done

[0 [Qmms






