

 [image: cover]

[image: cover-image]

Practical Asterisk 1.4 and 1.6

Stefan Wintermeyer
Stephen Bosch

[image: image]

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Editor-in-Chief
Mark L. Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Technical Editors
L.D. Paniak
John Kennedy

Managing Editor
John Fuller

Full-Service Production Manager
Julie B. Nahil

Project Editor
Kim Arney

Copy Editor
Keith Cline

Indexer
Jack Lewis

Proofreader
Linda Begley

Cover Designer
Chuti Prasertsith

Compositor
Kim Arney

Library of Congress Cataloging-in-Publication Data

Wintermeyer, Stefan.
 Practical Asterisk 1.4 and 1.6 : from beginner to expert / Stefan
Wintermeyer, Stephen Bosch.
 p. cm.
 Includes index.
 ISBN 978-0-321-52566-6 (pbk. : alk. paper) 1. Internet telephony.
2. Asterisk (Computer file) 3. Telephone—Private branch exchanges.
I. Bosch, Stephen. II. Title.
 TK5105.8865.W56 2009
 621.385--dc22
 2009039861

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

Copyright © 2010 by Pearson Education Deutschland GmbH

First published in the German language under the title Asterisk 1.4 + 1.6 by Addison-Wesley, an imprint of Pearson Education Deutschland GmbH, München.

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the “GNU Free Documentation License” section.

ISBN-13: 978-0-321-52566-6
ISBN-10: 0-321-52566-3

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.

First printing, December 2009

For grandaunt Helga.

—SW

For my father, who showed me how much fun tinkering could be.

—SB

Contents

Foreword

Preface

Acknowledgments

About the Authors

Chapter 1 How to Get the Most Out of This Book

1.1 What Is Asterisk?

1.2 Who Should Read This Book?

1.2.1 The Beginner

1.2.2 The Journeyman

1.2.3 The Expert

1.3 Updates and Versions of the Book

1.4 Reader Contributions and Feedback

1.5 Additional Resources

Chapter 2 Installation and “Hello World”

2.1 Installing Asterisk on the Server

2.2 Calling “Hello World” from the CLI

2.2.1 Configuring Asterisk

2.2.2 Starting Asterisk and Calling “Hello World”

2.2.3 Stopping Asterisk

2.3 Calling “Hello World” with a SIP Phone

2.3.1 Configuring the SIP Phone and sip.conf

2.3.2 Starting Asterisk and the Phone

2.4 Building a Minimal Phone System with Two SIP Phones

2.4.1 Configuring Voicemail

2.5 Rights Administration with Contexts

2.5.1 The Originating Context

2.5.2 Call Destination: Contexts in extensions.conf

2.6 Calls to and from the Public Switched Telephone Network

2.6.1 Calling the PSTN

2.6.2 Taking Calls from the PSTN

Chapter 3 Dialplan Fundamentals

3.1 Contexts

3.2 Extensions

3.2.1 Fundamental Applications

3.2.2 Priorities

3.3 Pattern Matching

3.3.1 Pattern Elements

3.3.2 Testing a Pattern Using dialplan show

3.3.3 Pattern-Matching Order

3.4 Include Statements

3.4.1 Order of Execution When Using Include Statements

3.4.2 Time-Conditional Include Statements

3.5 The ${EXTEN} Variable and the ${CALLERID(num)} Function

3.5.1 ${EXTEN}

3.5.2 ${CALLERID(num)}

Chapter 4 Case Study: A Typical Business Telephone System

4.1 The Numbering Plan

4.2 Choosing the Infrastructure

4.2.1 Network

4.2.2 Server Hardware

4.3 Base Configuration

4.3.1 A sip.conf for 100 Users

4.3.2 The Dialplan

4.4 What Next?

Chapter 5 Dialplan Programming

5.1 Programming “How-To”

5.1.1 Program Structure

5.1.2 Using Set()

5.1.3 Labels and Goto()

5.1.4 While() Loops

5.1.5 GotoIf() Conditional

5.1.6 Gosub() Subroutines

5.2 Variables

5.2.1 Expanding Variables in an Extension

5.2.2 General Considerations

5.2.3 Defining Global Variables in extensions.conf

5.2.4 Defining Variables with Set()

5.2.5 Inheritance of Channel Variables

5.2.6 System Channel Variables

5.2.7 Manipulating Variables

5.3 Special Extensions

5.3.1 The h Extension

5.3.2 The i Extension

5.3.3 The o and a Extensions

5.3.4 The t and T Extensions

5.3.5 The s Extension

5.4 Macros

5.5 Deprecated Features

Chapter 6 Asterisk Extension Language

6.1 CLI Commands for AEL

6.2 aelparse

6.3 Comparing extensions.conf with extensions.ael

6.3.1 Line Termination

6.3.2 Contexts, Extensions, and Priorities

6.3.3 Comments

6.3.4 Includes

6.3.5 Global Variables

6.3.6 Expressions and Variable Assignment

6.3.7 Labels, goto, and jump

6.3.8 Conditionals

6.3.9 Loops

6.3.10 Macros

6.3.11 Hints

6.3.12 Filtering by Caller ID

6.4 Choosing between extensions.ael and extensions.conf

Chapter 7 Protocols

7.1 Network Protocols

7.1.1 Transmission Control Protocol

7.1.2 User Datagram Protocol

7.2 Channels

7.3 Peers, Users, and Friends

7.4 IAX Versus SIP

Chapter 8 Making Connections

8.1 Codecs

8.1.1 What Does a Codec Do?

8.1.2 Performance

8.1.3 Configuring Codecs

8.1.4 Commonly Used Codecs

8.1.5 Bandwidth and Trunking

8.2 Integrated Services Digital Network

8.2.1 ISDN Basics

8.2.2 Choosing an ISDN Card

8.2.3 Media Gateways

8.3 Analog Telephony

8.3.1 Connecting Analog Devices

8.3.2 Analog Telephone Adapter

Chapter 9 Voicemail

9.1 Example Implementations

9.1.1 An Example Home System

9.1.2 An Example Business System

9.3 Dialplan Applications

9.3.1 VoiceMail

9.3.2 VoiceMailMain

9.4 voicemail.conf

9.4.1 [general]

9.4.2 [zonemessages]

9.4.3 Defined Contents

9.4.4 Mailboxes

9.5 Dial-by-Name

9.6 Saving Passwords in voicemail.conf

Chapter 10 Interactive Voice Response

10.1 A Simple IVR

10.1.1 Timeouts

10.1.2 Invalid Input (the i Extension)

10.1.3 Pauses

10.2 Multilevel IVR Systems

10.3 Text-to-Speech

10.3.1 Installing Cepstral TTS

Chapter 11 The Asterisk Database

11.1 The Asterisk Database

11.1.1 Writing Values to the Database

11.1.2 Reading Values from the Database

11.1.3 Deleting Values from the Database

11.2 Database Access from the Command-Line Interface

11.2.1 Writing Values to the Database

11.2.2 Reading Values from the Database

11.2.3 Deleting Values from the Database

11.2.4 Displaying Database Contents

11.3 Database Access from the System Shell

11.4 Database Backup

11.5 Application Example: Call Forwarding

11.5.1 Simple Call Forwarding

11.5.2 Complex Call Forwarding

11.6 Application Example: Calling Card

Chapter 12 Queues

12.1 Extension for Testing Hold Music

12.2 musiconhold.conf

12.3 queues.conf

12.3.1 Announcement Sound Files

12.4 agents.conf

12.5 Extensions

12.5.1 Sending Callers to the Queue

12.5.2 AgentLogin() and AgentCallbackLogin()

12.6 Log File

12.6.1 Importing the Queue Log into MySQL

Chapter 13 Features

13.1 Call Transfer

13.1.1 Blind Transfer

13.1.2 Attended Transfer

13.2 Call Parking

Chapter 14 Conferencing

14.1 Installation and the Timing Device

14.2 Defining Conference Rooms

14.3 Access from the Dialplan

14.4 Announcing the Number of Conference Participants

Chapter 15 External Control of Asterisk

15.1 asterisk -rx “command”

15.2 Call Files

15.2.1 Making a Call Automatically

15.2.2 Parameters

15.2.3 Hotel Wake-Up Call Example

15.3 The Asterisk Manager Interface

15.3.1 Creating an AMI User

15.3.2 Talking to the AMI

15.3.3 AMI Commands

15.3.4 Getting the Number of Voicemail Messages with Expect

15.3.5 StarAstAPI for PHP

15.3.6 Getting the Number of Mailbox Messages with PHP

15.4 The Asynchronous JavaScript Asterisk Manager

15.4.1 Getting the Number of Voicemail Messages with AJAM

15.4.2 AJAX and AJAM Considerations

Chapter 16 Asterisk Gateway Interface

16.1 Data Streams

16.1.1 STDIN

16.1.2 STDOUT

16.1.3 STDERR

16.2 Examples in Various Programming Languages

16.2.1 Perl

16.2.2 PHP

16.2.3 Ruby and Adhearsion

16.2.4 Other Programming Languages

Chapter 17 Fax Server

17.1 Installing IAXmodem

17.1.1 Configuring IAXmodem

17.1.2 Configuring faxgetty and Logging

17.2 Installing Hylafax

17.3 Receiving Faxes

17.4 Sending Faxes

17.5 Sending Received Faxes as E-Mail

Chapter 18 Busy Lamp Field, Hints, Pickup

18.1 Controlling Indicators

18.1.1 sip.conf

18.1.2 Hints

18.2 Subscriptions

18.3 Configuring Telephones for BLF

18.3.1 BLF on the Aastra 480i

18.3.2 Polycom Soundpoint IP 501

18.4 Testing the Hints

18.5 Configuring Pickup

18.5.1 extensions.conf for Pickup

18.5.2 Configuring the Phones for Pickup

18.5.3 Configuring Group Pickup

18.6 Advanced BLF Indicators in Asterisk 1.6

Appendix A Installation Instructions for Asterisk 1.4

A.1 LibPRI

A.2 DAHDI

A.3 Asterisk

Appendix B Dialplan Applications

B.1 AbsoluteTimeout()

B.2 AddQueueMember()

B.3 ADSIProg()

B.4 AgentCallbackLogin()

B.5 AgentLogin()

B.6 AgentMonitorOutgoing()

B.7 AGI()

B.8 AlarmReceiver()

B.9 AMD()

B.10 Answer()

B.11 AppendCDRUserField()

B.12 Authenticate()

B.13 Background()

B.14 BackgroundDetect()

B.15 Bridge()

B.16 Busy()

B.17 ChangeMonitor()

B.18 ChanIsAvail()

B.19 ChannelRedirect()

B.20 ChanSpy()

B.21 CheckGroup()

B.22 ClearHash()

B.23 Congestion()

B.24 ContinueWhile()

B.25 ControlPlayback()

B.26 Curl()

B.27 Cut()

B.28 DAHDIBarge()

B.29 DAHDIRAS()

B.30 DAHDIScan()

B.31 DAHDISendKeypadFacility()

B.32 DateTime()

B.33 DBdel()

B.34 DBdeltree()

B.35 DBget()

B.36 DBput()

B.37 DeadAGI()

B.38 Dial()

B.39 Dictate()

B.40 DigitTimeout()

B.41 Directory()

B.42 DISA()

B.43 DumpChan()

B.44 DUNDiLookup()

B.45 EAGI()

B.46 Echo()

B.47 EndWhile()

B.48 EnumLookup()

B.49 Eval()

B.50 Exec()

B.51 ExecIf()

B.52 ExecIfTime()

B.53 ExitWhile()

B.54 ExtenSpy()

B.55 ExternalIVR()

B.56 FastAGI()

B.57 Festival()

B.58 Flash()

B.59 FollowMe()

B.60 ForkCDR()

B.61 GetCPEID()

B.62 GetGroupCount()

B.63 GetGroupMatchCount()

B.64 Gosub()

B.65 GosubIf()

B.66 Goto()

B.67 GotoIf()

B.68 GotoIfTime()

B.69 Hangup()

B.70 HasNewVoicemail()

B.71 HasVoicemail()

B.72 IAX2Provision()

B.73 ICES()

B.74 ImportVar()

B.75 Incomplete()

B.76 JabberSend()

B.77 JabberStatus()

B.78 KeepAlive()

B.79 Log()

B.80 LookupBlacklist()

B.81 LookupCIDName()

B.82 Macro()

B.83 MacroExclusive()

B.84 MacroExit()

B.85 MacroIf()

B.86 mailboxExists()

B.87 Math()

B.88 MD5()

B.89 MD5Check()

B.90 MeetMe()

B.91 MeetMeAdmin()

B.92 MeetMeChannelAdmin()

B.93 MeetMeCount()

B.94 Milliwatt()

B.95 MinivmAccMess()

B.96 MinivmDelete()

B.97 MinivmGreet()

B.98 MinivmNotify()

B.99 MinivmRecord()

B.100 MixMonitor()

B.101 Monitor()

B.102 Morsecode()

B.103 MP3Player()

B.104 MSet()

B.105 MusicOnHold()

B.106 NBScat()

B.107 NoCDR()

B.108 NoOp()

B.109 ODBCFinish()

B.110 Page()

B.111 Park()

B.112 ParkAndAnnounce()

B.113 ParkedCall()

B.114 PauseMonitor()

B.115 PauseQueueMember()

B.116 Pickup()

B.117 PickupChan()

B.118 Playback()

B.119 Playtones()

B.120 PrivacyManager()

B.121 Proceeding()

B.122 Progress()

B.123 Queue()

B.124 QueueLog()

B.125 RaiseException()

B.126 Random()

B.127 Read()

B.128 ReadExten()

B.129 ReadFile()

B.130 RealTime()

B.131 RealTimeUpdate()

B.132 ReceiveFAX()

B.133 Record()

B.134 RemoveQueueMember()

B.135 ResetCDR()

B.136 ResponseTimeout()

B.137 RetryDial()

B.138 Return()

B.139 Ringing()

B.140 SayAlpha()

B.141 SayDigits()

B.142 SayNumber()

B.143 SayPhonetic()

B.144 SayUnixTime()

B.145 SendDTMF()

B.146 SendFAX()

B.147 SendImage()

B.148 SendText()

B.149 SendURL()

B.150 Set()

B.151 SetAccount()

B.152 SetAMAFlags()

B.153 SetCallerID()

B.154 SetCallerPres()

B.155 SetCDRUserField()

B.156 SetCIDName()

B.157 SetCIDNum()

B.158 SetGlobalVar()

B.159 SetGroup()

B.160 SetLanguage()

B.161 SetMusicOnHold()

B.162 SetRDNIS()

B.163 SetTransferCapability()

B.164 SetVar()

B.165 SIPAddHeader()

B.166 SIPdtmfMode()

B.167 SIPGetHeader()

B.168 SMS()

B.169 SoftHangup()

B.170 Sort()

B.171 StackPop()

B.172 StartMusicOnHold()

B.173 StopMixMonitor()

B.174 StopMonitor()

B.175 StopMusicOnHold()

B.176 StopPlaytones()

B.177 System()

B.178 Transfer()

B.179 TryExec()

B.180 TrySystem()

B.181 TXTCIDName()

B.182 UnpauseMonitor()

B.183 UnpauseQueueMember()

B.184 UserEvent()

B.185 Verbose()

B.186 VMAuthenticate()

B.187 VoiceMail()

B.188 VoiceMailMain()

B.189 Wait()

B.190 WaitExten()

B.191 WaitForNoise()

B.192 WaitForRing()

B.193 WaitForSilence()

B.194 WaitMusicOnHold()

B.195 WaitUntil()

B.196 While()

B.197 Zapateller()

B.198 ZapBarge()

B.199 ZapRAS()

B.200 ZapScan()

B.201 ZapSendKeypadFacility()

Appendix C Dialplan Functions

C.1 AGENT()

C.2 ARRAY()

C.3 BASE64_DECODE()

C.4 BASE64_ENCODE()

C.5 BLACKLIST

C.6 CALLERID()

C.7 CDR()

C.8 CHANNEL()

C.9 CHECKSIPDOMAIN()

C.10 CURL()

C.11 CUT()

C.12 DB()

C.13 DB_DELETE()

C.14 DB_EXISTS()

C.15 DUNDILOOKUP()

C.16 ENUMLOOKUP()

C.17 ENV()

C.18 EVAL()

C.19 EXISTS()

C.20 FIELDQTY()

C.21 FILTER()

C.22 GLOBAL()

C.23 GROUP()

C.24 GROUP_COUNT()

C.25 GROUP_LIST()

C.26 GROUP_MATCH_COUNT()

C.27 IAXPEER()

C.28 IF()

C.29 IFTIME()

C.30 ISNULL()

C.31 KEYPADHASH()

C.32 LANGUAGE()

C.33 LEN()

C.34 MATH()

C.35 MD5()

C.36 MUSICCLASS()

C.37 ODBC_SQL()

C.38 ODBC_USER_DATABASE()

C.39 QUEUEAGENTCOUNT()

C.40 QUEUE_MEMBER_COUNT()

C.41 QUEUE_MEMBER_LIST()

C.42 QUOTE()

C.43 RAND()

C.44 REGEX()

C.45 SET()

C.46 SHA1()

C.47 SIPCHANINFO()

C.48 SIPPEER()

C.49 SIP_HEADER()

C.50 SORT()

C.51 STAT()

C.52 STRFTIME()

C.53 STRPTIME()

C.54 TIMEOUT()

C.55 TXTCIDNAME()

C.56 URIDECODE()

C.57 URIENCODE()

C.58 VMCOUNT()

Appendix D AGI Command Summary

D.1 ANSWER

D.2 ASYNCAGI BREAK

D.3 CHANNEL STATUS

D.4 CONTROL STREAM FILE

D.5 DATABASE DEL

D.6 DATABASE DELTREE

D.7 DATABASE GET

D.8 DATABASE PUT

D.9 EXEC

D.10 GET DATA

D.11 GET FULL VARIABLE

D.12 GET OPTION

D.13 GET VARIABLE

D.14 GOSUB

D.15 HANGUP

D.16 NOOP

D.17 RECEIVE CHAR

D.18 RECEIVE TEXT

D.19 RECORD FILE

D.20 SAY ALPHA

D.21 SAY DATE

D.22 SAY DATETIME

D.23 SAY DIGITS

D.24 SAY NUMBER

D.25 SAY PHONETIC

D.26 SAY TIME

D.27 SEND IMAGE

D.28 SEND TEXT

D.29 SET AUTOHANGUP

D.30 SET CALLERID

D.31 SET CONTEXT

D.32 SET EXTENSION

D.33 SET MUSIC

D.34 SET PRIORITY

D.35 SET VARIABLE

D.36 STREAM FILE

D.37 TDD MODE

D.38 VERBOSE

D.39 WAIT FOR DIGIT

Appendix E AMI Command Summary

E.1 AbsoluteTimeout

E.2 AgentCallbackLogin

E.3 AgentLogoff

E.4 Agents

E.5 AGI

E.6 Atxfer

E.7 Bridge

E.8 Challenge

E.9 ChangeMonitor

E.10 Command

E.11 CoreSettings

E.12 CoreShowChannels

E.13 CoreStatus

E.14 CreateConfig

E.15 DAHDIDialOffhook

E.16 DAHDIDNDoff

E.17 DAHDIDNDon

E.18 DAHDIHangup

E.19 DAHDIRestart

E.20 DAHDIShowChannels

E.21 DAHDITransfer

E.22 DBDel

E.23 DBDelTree

E.24 DBGet

E.25 DBPut

E.26 Events

E.27 ExtensionState

E.28 GetConfig

E.29 GetConfigJSON

E.30 Getvar

E.31 Hangup

E.32 IAXnetstats

E.33 IAXpeerlist

E.34 IAXpeers

E.35 JabberSend

E.36 ListCategories

E.37 ListCommands

E.38 Login

E.39 Logoff

E.40 MailboxCount

E.41 MailboxStatus

E.42 MeetmeList

E.43 MeetmeMute

E.44 MeetmeUnmute

E.45 ModuleCheck

E.46 ModuleLoad

E.47 Monitor

E.48 Originate

E.49 Park

E.50 ParkedCalls

E.51 PauseMonitor

E.52 Ping

E.53 PlayDTMF

E.54 QueueAdd

E.55 QueueLog

E.56 QueuePause

E.57 QueuePenalty

E.58 QueueRemove

E.59 QueueRule

E.60 Queues

E.61 QueueStatus

E.62 QueueSummary

E.63 Redirect

E.64 Reload

E.65 SendText

E.66 SetCDRUserField

E.67 Setvar

E.68 ShowDialPlan

E.69 SIPnotify

E.70 SIPpeers

E.71 SIPqualifypeer

E.72 SIPshowpeer

E.73 SIPshowregistry

E.74 Status

E.75 StopMonitor

E.76 UnpauseMonitor

E.77 UpdateConfig

E.78 UserEvent

E.79 VoicemailUsersList

E.80 WaitEvent

E.81 ZapDialOffhook

E.82 ZapDNDoff

E.83 ZapDNDon

E.84 ZapHangup

E.85 ZapRestart

E.86 ZapShowChannels

E.87 ZapTransfer

Appendix F Configuration Templates

F.1 Creating Templates

F.2 Using Templates

Appendix G Upgrading from 1.4 to 1.6

G.1 AEL

G.2 Core

G.3 Voicemail

G.4 Dialplan Applications and Functions

G.5 CDR

G.6 Audio Formats

G.7 Channel Drivers

G.8 Configuration

G.9 Asterisk Manager Interface

Appendix H From Zaptel to DAHDI

H.1 DAHDI

H.2 Interview with Kevin P. Fleming

Appendix I IAX vs. SIP

Appendix J GNU Free Documentation License

0 PREAMBLE

1 APPLICABILITY AND DEFINITIONS

2 VERBATIM COPYING

3 COPYING IN QUANTITY

4 MODIFICATIONS

5 COMBINING DOCUMENTS

6 COLLECTIONS OF DOCUMENTS

7 AGGREGATION WITH INDEPENDENT WORKS

8 TRANSLATION

9 TERMINATION

10 FUTURE REVISIONS OF THIS LICENSE

11 RELICENSING

Index

Foreword

You are reading the English version of my second Asterisk book. I wrote the book in German, and Stephen Bosch translated it into English and adapted the content for a North American reader. Nonetheless, this book was the result of collaboration. The first version was published under the GNU Free Documentation License (GFDL), and more than 100 people contributed by sending error reports or by writing new sections. A special thanks goes to my colleague, Philipp Kempgen, who wrote many sections for this new edition. You can find the German edition at www.das-asterisk-buch.de and the English version at www.the-asterisk-book.com.

I encourage you to take a closer look at the current online edition, especially when it comes to hardware and driver-related information.

The past few years have been active ones in the VoIP world. My work with Asterisk has brought me to many new places, such as Huntsville, Alabama (home of Digium, the developer of Asterisk); Toronto, Canada (home of Sangoma, a manufacturer of telephony interface hardware); and Bucharest, Romania (home of the Yate project, an open source telephony engine). I learned much about Asterisk, but also a lot about Yate (http://yate.null.ro) and FreeSwitch (www.freeswitch.org), both interesting open source VoIP alternatives.

Asterisk has come a long way since I first used it. I didn’t use that very first installation for very long; I didn’t understand the concept, and documentation was typical for open source software (i.e., “read the source code”). The same may be said of my first experience with Linux. Today, I wouldn’t dream of being without either of them.

Asterisk has changed my way of thinking about PBXes. In the future, everyone will be more likely to think of a PBX as software rather than hardware.

The transition from the old, hardware-oriented way of doing things to the new software-oriented way is not without its challenges. In my daily work as an Asterisk consultant, I often see conflict between the former data guys and the former telephony guys. I hope to bring their respective worlds closer together with this book.

I welcome your feedback, praise, and criticism. Please send it to me at stefan.wintermeyer@amooma.de

—Stefan Wintermeyer

It has been a special privilege to work with Stefan on the translation of this book into English. Although Stefan speaks English quite well, he knew that a competent English version would need a dedicated translator. To be entrusted with this task has been an honor. I was also charged with some of the adaptations and changes for the English edition, including the chapter on ISDN.

A technical translation is a special kind of beast. Details are critical, and there isn’t much room for nuance, so I hope that the book you have in your hands proves to be both readable and helpful. Like Stefan, I welcome your feedback. Please send it to me at sbosch@vodacomm.ca.

—Stephen Bosch

Preface

Perhaps it was folly to strive to make a book for everyone, but only audacious goals pave the path to excellence. This book does indeed try to be useful for both the new user and the expert.

Chapter 1 provides guideposts for the beginner, journeyman, and expert. Chapter 2 offers detailed instructions for the configuration of a basic system, with pointers to the installation instructions in the appendix. Chapter 3 is an introduction to the dialplan, truly the heart of Asterisk, which leads into Chapter 4, a practical business case example that lays out what is involved in designing a system for actual deployment.

The next chapters go into more depth for the more experienced Asterisk user. Chapter 5 covers the use of dialplan applications and functions for building voice applications. Chapter 6 looks at the new Asterisk Extensions Language, which introduces familiar programming language format to the dialplan. With it, you can build concise, readable, and maintainable dialplans. Asterisk uses a variety of network and IP telephony protocols in its work, which we review in Chapter 7. Chapter 8 looks at the audio codecs and wire transports Asterisk uses to connect to devices and telephone networks, including ISDN, and takes a brief look at the associated hardware.

Then we look at the feature set of Asterisk. Asterisk provides a fully functional voicemail system. Learn how to configure and use it in Chapter 9. Chapter 10 shows you how to build interactive voice response (IVR) systems using Asterisk. Useful applications need a database, and Asterisk provides one, the Asterisk database, covered in Chapter 11. Call queues, arguably the backbone of any call center, are covered in Chapter 12.

The very brief Chapter 13 looks at two basic but common business telephone features: call transfer and pickup. Teleconferencing can be a powerful collaboration tool, and Asterisk has built-in conferencing functions, which are addressed in Chapter 14.

There are many ways to have Asterisk interact with external programs. Chapter 15 shows you how to control Asterisk from external applications, scripts, or the system shell with shell commands, call files, or the Asterisk Manager Interface. Chapter 16 introduces the Asterisk Gateway Interface, Asterisk’s principal method for interacting with external applications.

You can extend Asterisk for faxing with IAXmodem and Hylafax. Learn how to do this in Chapter 17.

Finally, Chapter 18 addresses a frequent request: setting up busy lamp field (extension monitoring) and hints for SIP telephones. We look at Aastra and Polycom examples.

The appendixes in this book are extensive and are meant to be used frequently. Appendix A contains very detailed instructions for installing Asterisk on Debian Etch. Appendices B, C, D, and E have command and function summaries for the dialplan and the AGI and AMI interfaces. Appendix F provides examples for using dialplan templates.

Although Asterisk 1.4 is now the production-ready version, 1.6 is in development and can be used. Appendix G tells you what you need to know to migrate successfully.

Appendix H covers the renaming of Zaptel to DAHDI. This has implications for operation, which are addressed here.

Which should you choose, IAX or SIP? It’s a matter of debate. We provide some input in Appendix I.

You can read sequentially or follow your interests. Just remember that some of the examples build on previous examples.

Acknowledgments

The first edition of this book was published in 2006 in Germany. In the interim, we received lots of useful feedback from the Asterisk community. We want to say a big thank you to everybody who helped us.

In the first edition, we acknowledged everybody by name, but we’ve decided not to do that this time because the e-mail addresses were harvested by spammers and many of the contributors have expressly asked to remain anonymous.

Nevertheless, we want to thank you sincerely for all your feedback and effort! Without your help, the book could not have become as good as it has.

Acknowledgments from Stefan Wintermeyer

First and foremost, I want to thank my editor, Boris Karnikowski. Without his patience, not even the first edition would have seen the light of day. The second edition was incrementally delayed 12 months. I am also thankful that he agreed to allow the book to be published under the GNU Free Documentation License. There are few publishers and editors who have the courage to take such a step. Thanks, Boris!

I also want to thank my colleagues at AMOOMA, Peter Kozak and Sören Sprenger. Special thanks go to Philipp Kempgen. The depth and breadth of this book owes itself to your efforts.

Friederike Daenecke’s editing work was miraculous. She went through the entire manuscript in a little under three weeks.

Kevin Fleming of Digium provided very prompt and invaluable technical assistance.

The staff at Sangoma were also very helpful. In particular, thanks go to Konrad Hammel and Doug Vilim.

Special thanks go to my wife. Without her support, I wouldn’t be able to keep my head above water on these many projects.

Acknowledgments from Philipp Kempgen

Thanks to my family, Jeannie, Coco, Kanji, and all those who get the short end of the stick a little too often.

Acknowledgments from Stephen Bosch

Thanks to Debra Williams Cauley for your humane and generous spirit, your (apparently inexhaustible!) patience, and your persistence. You are a real professional. To you and everyone else at Pearson: I am grateful.

About the Authors

Stefan Wintermeyer is the founder and director of AMOOMA GmbH, a leading provider of Asterisk telephony solutions in Europe. He was Germany’s first Digium-Certified Asterisk Professional and continues to share his knowledge in conferences, seminars, and workshops.

Stephen Bosch is an Asterisk consultant and writer who divides his time between Aschaffenburg, Germany, and Calgary, Alberta, Canada. When not making telephone calls with Asterisk, he sails.

1. How to Get the Most Out of This Book

First, thank you for buying this book. It’s only through the interest of readers like you that a project such as this is possible.

We wrote this book because Asterisk doesn’t come with an instruction manual. Many of the resources recommended by the Asterisk community are in the form of wikis and websites, which are inconsistently updated and often contain incorrect information. We want this book to serve as that missing manual for Asterisk. In other words, we sought to create the kind of book we were looking for: a readable text that can be read in chapter order or used as a handbook.

1.1 What Is Asterisk?

Asterisk is a telephone system, but different. It’s not hardware. It’s software that you can download via the Internet. The only thing you need to get started is an ordinary PC, the Asterisk software, this book, and interest in doing so.

Asterisk works with a variety of telephony technologies, including analog, ISDN, and VoIP. With an Asterisk system, an employee can work at home with an IP phone and make calls in the office system as though she were in the office. The possibilities are limitless, both to extend the functionality of your system and to save money. Telephony remains somewhat complex, however, and a move to Asterisk is not without its challenges. Therefore, you need to familiarize yourself with both the general technology and with Asterisk itself.

Let’s explore the difference between Asterisk and a conventional telephone system by way of an analogy from childhood.

Most of us grew up with toys of two basic types. With the first type, everything came “ready to go” (for example, teddy bears or Hot Wheels cars). The second type offered some room for variation and creativity (for example, Lego blocks or Lincoln Logs). With the “ready to go” toys, the fun was right there when you opened the package, but you were limited to play as conceived by the toy company. With the blocks/logs, you didn’t get a finished toy. To get one, you had to come up with a design and then build it, but you could build anything you wanted, within the limitations of the pieces available.

That, in a nutshell, is exactly how it is with Asterisk. It is delivered in pieces. Think of a design, and suddenly anything is possible. Best of all, you can improve the resulting “toy” any time with new pieces.

Both Asterisk and conventional telephone systems have their pros and cons.

The main advantages of a conventional telephone system include the following:

• Unpack and you’re done! You can start making calls almost immediately.

• Limited instructions are required.

The main disadvantages of a conventional telephone system include the following:

• Expansion is usually very expensive, and not all functions are supported or even available.

• It’s a black box. You have no way to find out what’s happening inside, which can be vital when troubleshooting.

The main advantages of a software-based Asterisk system include the following:

• You can build new solutions to problems any time. All you need is an appropriate design.

• You can combine components to create new systems and solutions.

The main disadvantages of Asterisk include the following:

• You start with just a bunch of components. Building them into a system requires some patience.

• You need some skill. Success doesn’t come quickly.

1.2 Who Should Read This Book?

Not everybody has to start at square one, nor does every interested person want to become an Asterisk professional. This book takes that into account and presents material that will prove to be a valuable reference for beginners, novices, and experts alike.

1.2.1 The Beginner

Absolute beginners should read this book in chapter order because the chapters build on each other. At a minimum, read Chapter 2, “Installation and ‘Hello World,’” and 5, “Dialplan Fundamentals,” and you’ll be able to put together increasingly complex telephone systems.

Beginners often have questions about what equipment is best to buy and which service to order, so we’ve provided this brief FAQ for those who need some guidance.

Q:
How do I choose a VoIP provider? What do I need to watch out for?

A: When starting out, choose a SIP provider that offers free accounts so that you can gather some experience. Which provider you choose for the long term can depend on many factors. Here are just a few things to consider:

• Does the provider offer only SIP or also IAX? Do you need IAX?

• How good is the support? For VoIP, good support can be critical.

• How are services priced? This is not always obvious.

Q:
Which digital interface card should I use?

A: Get comfortable using only SIP trunks and extensions to start. Once you understand the dialplan and contexts, you can proceed to Chapter 8, “Making Connections,” where you will find tips for choosing the right digital card for your application.

Q:
Which phones are standard, and what do they cost?

A: There aren’t really “standard” phones. You have several options:

• A SIP telephone. (This is the simplest option.)

• An analog telephone using an ATA (analog telephone adapter) connected to the network.

• An analog telephone using an FXS port on an analog interface card.

• A digital telephone (such as a Nortel Meridian phone) using a suitable digital telephone adapter connected to the network.

• An ISDN phone using a port on a T1 card. These phones are sold almost exclusively in Europe where ISDN termination is much more common. Before the arrival of VoIP, they were the most feature-filled devices; currently, however, they are functionally indistinguishable from VoIP phones and can cost three times as much. If you have the option, it’s best to go with a SIP telephone.

• Exotic constructs. You can, for example, connect a channel bank to a T1 interface card and attach analog phones to the channel bank. Such constructions generally prove useful in retrofit applications. If you’re starting from scratch, keep it simple.

As for pricing, this changes constantly. There are countless suppliers. Inquire frequently and compare. Quality VoIP hardware is becoming more and more affordable.

1.2.2 The Journeyman

It is impossible to guess what an intermediate Asterisk user knows and doesn’t know. Even if you have good command of a subject, there are always aspects to it that might be new to you. If you have some practical experience, you may want to skip Chapter 2 or just skim it. Personally, though, we recommend that you read it anyway. After all, reviewing the fundamentals almost always pays off.

Leaf through all the other chapters afterward. When writing this book, we focused on practical examples. Just reading the sample configurations may give you some new ideas.

1.2.3 The Expert

You can skip Chapter 2 and just go on a discovery tour of the book. You’ll find numerous practical examples you can integrate immediately into your own practice; the examples may even give you a few ideas about how to expand your system.

Beyond that, we hope this book will be a valuable reference. All the important application and function parameters are included and explained, usually with working examples. We placed particular emphasis on comparisons between the different Asterisk versions (1.2 to 1.6).

1.3 Updates and Versions of the Book

This book is being developed just as a typical open source project would be. What you are holding in your hands is a printed version of the stable branch. You can access updates and errata at www.the-asterisk-book.com.

You’ll find the current SVN version there. That’ll be the next edition, but for now it is on the bleeding edge. The procedures contained there may not have been tested and may not even be recommended. Therefore, a warning: Use that material only if you know what you’re doing.

1.4 Reader Contributions and Feedback

We intend this book to be a living text, and so have released it under the GNU Free Documentation License (see Appendix J, “GNU Free Documentation License”). You can find the most current version of the book at www.the-asterisk-book.com.

If you have suggestions for improvements, include them in an e-mail to stefan.wintermeyer@amooma.de. If you have more comprehensive improvements to contribute, attach them in ASCII text format or directly in DocBook format to your e-mail.

Thanks in advance for your interest in this project!

This book will never be perfect or ever really “finished.” The subject is too complex and changes too rapidly. Remember that you can always find the most current (and most bleeding-edge) version of the book at www.the-asterisk-book.com. Accordingly, this FAQ is intended for the web version of the book. If you find an error in this book, please check the website first to see whether the error has already been fixed.

Q:
I tried something from the book, but it didn’t work as described. Should I report this?

A: Yes, absolutely! When reporting, provide the URL and any relevant error messages.

Q:
How can I report an error?

A: The easiest way is via e-mail to the author, Stefan Wintermeyer (stefan.wintermeyer@amooma.de).

Q:
In what format is the book written?

A: The source for the book is written in DocBook format. You can learn more about DocBook at www.docbook.org.

Q:
Why isn’t there a wiki, where anybody can make changes?

A: First, because the book is printed, a print deadline has to be set. A constantly changing text makes it impossible for the editors to keep up and maintain consistency in the resulting printed material. Second, there are already numerous Asterisk wikis on the Internet. Their chief advantage (quick and easy changes) also leads to their chief disadvantage: plenty of painfully outdated and outright incorrect information. Using DocBook and managing changes means we have a more structured, more readable text that is as accurate as human beings can make it. If the entire text were in a wiki, it would make export for printing very difficult.

Q:
What editor do I need to write in DocBook format?

A: That’s almost a “religious” question. Some people like emacs, others like vi. The author and contributors use XMLmind XML Editor most of the time. You can obtain it from www.xmlmind.com/xmleditor.

Q:
Can I obtain the original DocBook files?

A: Yes. If you have extensive changes to make, you are welcome to work on the original files. Write an e-mail to the author, Stefan Wintermeyer (stefan.wintermeyer@amooma.de).

Q:
You didn’t cover XYZ! Unbelievable. It’s so important! What were you thinking?

A: Contact the author and briefly describe the subject. (If you’re willing to write a chapter and make it available under the GNU FDL, let Stefan know. He’ll send you a sample DocBook chapter.)

Q:
How is the website generated?

A: A script pulls the DocBook sources from the SVN and uses them to generate the HTML pages.

1.5 Additional Resources

You have a problem and weren’t able to find the answer in this book? Here are your options:

• www.voip-info.org

This site is dedicated to VoIP in general and to Asterisk, and it offers solutions to most problems. Unfortunately, many of the articles contain errors. If you find one, fix it! The next visitor will be grateful.

• IRC channel

There is an Asterisk IRC channel, #asterisk at irc.freenode.net. It’s sometimes possible to get a quick answer to your question there, but be warned: Some channel participants have a low tolerance for laziness. You improve your chances of success by thinking your question through carefully. Generally, the motto “explaining your problem is half the solution” applies.

If you are new to IRC, you can learn more about it at http://en.wikipedia.org/wiki/Internet_Relay_Chat.

• Mailing lists

The Digium mailing lists are not for everybody. The list has very high volume, and a new list user can be quickly overwhelmed. Still, it has a few significant advantages: It’s read by Digium staff, and they often answer questions. You can also get more detailed answers than is typical for IRC. You can find out how to subscribe to the mailing lists at www.asterisk.org/support and http://lists.digium.com.

• E-mail me

If all else fails, you can always try contacting Stefan (stefan.wintermeyer@amooma.de). Just be warned that because of the volume of e-mail received, you might not receive a reply for several days.

2. Installation and “Hello World”

Some newcomers to Asterisk say it takes at least two days of studying web pages and documentation before you can get an Asterisk server to do anything at all. If you don’t like delving into the theoretical underpinnings of a complicated piece of software like Asterisk and would rather see something practical and working as soon as possible, this chapter is the place to start. In contrast to the rest of the book, this chapter should be read, and the examples followed, in sequence.

Note

The subject of this book is Asterisk, not Linux, and we assume that you have basic Linux administration skills. You should understand how to use a text editor and how to configure a network adapter. Commands are to be executed as the superuser root unless otherwise noted.

For the purposes of this introduction, it doesn’t matter whether you install Asterisk 1.4 or 1.6. All the basics described here apply to both versions. For production installations, the more stable version is recommended, so these examples feature Asterisk 1.4.

2.1 Installing Asterisk on the Server

As to which Linux distribution or Asterisk version to choose, opinions differ (as is so often the case in the open source world). Some stick with distribution-specific packages (e.g., .rpm or .deb), whereas others compile Asterisk from source code. For the examples in this book, it is best to install from source code. The reasons are simple: The versions found in distribution packages are almost never current,1 and packages often use nonstandard configurations.

1. You can’t really blame the distributors for this. New versions of Asterisk come out almost every month. No distributor on Earth could match that pace.

Refer to Appendix A, “Installation Instructions for Asterisk 1.4,” and install Asterisk 1.4.x on a fresh install of Debian Linux or even KNOPPIX. For practice, you might consider doing this in an x86 virtual machine (e.g., VMware). In either case, be it a physical server or a virtual machine, the system should have a sound card and an output device (e.g., speakers) so that you can make test calls to the console to determine whether your system is working.

Warning

Should you decide to try the install with a different distribution or with a different installation method and run into problems, try following the method described here first. It is often easier to work with a tested installation than it is to find the errors in an “off menu” configuration or environment.

2.2 Calling “Hello World” from the CLI

In this first example, we create a simple “Hello World” dialplan and call it from the Asterisk console, or CLI (command-line interface).

2.2.1 Configuring Asterisk

After a standard install, you should find these files in the /etc/asterisk directory:

[image: image]

That’s a long list, but don’t worry; we care about only one of them for our example: extensions.conf. To keep things simple, we’ll move the sample extensions.conf file created by make samples to /var/tmp/asterisk-etc-backup/ (so that we can retrieve it later if required):

[image: image]

Using your favorite console text editor2 enter the following text into /etc/asterisk/extensions.conf:

2. If you don’t have one, I recommend nano. Installing it in Debian is easy as superuser with apt-get -y install nano. Open the file you want to edit with nano
<filename>. The most important commands are displayed in the bottom portion of the screen.

[image: image]

2.2.2 Starting Asterisk and Calling “Hello World”

You might be surprised that just four lines are enough to configure Asterisk. Perhaps you thought Asterisk was more complicated than that. In any case, let’s give it a try. Start Asterisk with the command asterisk -c (the -c switch gives us the console):

[image: image]

With this console, you can operate a running Asterisk server and give it commands interactively and in real time. Let’s try generating a call to our “Hello World” extension with console dial 1001:

[image: image]

The command console dial 1001 calls extension 1001. This extension answers and plays the hello-world.gsm sound file from the /var/lib/asterisk/sounds directory.

Note

console dial behaves like a very simple telephone. You can use it to call an extension and listen to it via the sound card.

2.2.2.1 What Is an Extension?

An extension is a programming unit in a dialplan. Every extension consists of at least one line, written in the following format:

exten => extension_name,priority,application

Here, priority describes the sequence of the individual extension elements. Our extension 1001 has three priorities:

[image: image]

The applications are self-explanatory:

• Answer()

Answers and opens a new Asterisk channel (see Appendix B, “Dialplan Applications”).

• Playback(hello-world)

Plays the file hello-world.gsm in the current channel (see Appendix B).

• Hangup()

Hangs up and closes the channel (see Appendix B).

2.2.2.2 Increasing Verbosity

When you are debugging Asterisk, you’ll often find it helpful to increase the verbosity of the console messages. When Asterisk is started with asterisk -c, the verbose level is set to 0 (the allowed range is 0 to 10). You can increase this to level 5 from the console with the command core set verbose 5, which is a good level to use for debugging:

[image: image]

Now, when you enter the command console dial 1001, you see details about the dialplan execution:

[image: image]

You can also set the verbose level to 5 at start time with the switch -vvvvv (five v’s).

Warning

Don’t use core set debug to debug the dialplan! This is intended for developers doing Asterisk debugging. It is not very helpful for dialplan debugging, however.

2.2.3 Stopping Asterisk

Enter stop now, and Asterisk stops:

*CLI> stop now
debian:/etc/asterisk#

2.3 Calling “Hello World” with a SIP Phone

Having tested our extension 1001 from the console, we take the next logical step and try the call from a SIP telephone. If you don’t have a hardware SIP phone, you can use a software SIP phone that you install on a client computer. Many of these are freely available on the Internet.

Warning

If you want to install the software SIP phone and Asterisk on the same machine, you must set a custom port number for the SIP phone (e.g., 5061) because 5060 is already being used by Asterisk. Beginners, however, should start with a hardware SIP phone if at all possible. When starting out, minimize the potential for problems by not building unnecessary complexity into your test installation.

2.3.1 Configuring the SIP Phone and sip.conf

Before you can use a SIP phone with Asterisk, you need to create an account for it in your Asterisk configuration. We will move the sample sip.conf file to our backup directory, /var/tmp/asterisk-etc-backup/, in the same way we previously moved extensions.conf, with the command mv sip.conf /var/tmp/asterisk-etc-backup/:

debian:/etc/asterisk# mv sip.conf /var/tmp/asterisk-etc-backup/
debian:/etc/asterisk#

Now we create a new /etc/asterisk/sip.conf and enter the following:

[image: image]

Your SIP telephone must now be configured with the following account information:

• User: 2000

• Password: 1234

• SIP registrar: IP address of your Asterisk server

• SIP proxy: IP address of your Asterisk server

Tip

Some phones require that every field contain information, even if it is not relevant. Unfortunately, there are no general instructions that will apply to all phones. Experiment!

2.3.2 Starting Asterisk and the Phone

Now we start Asterisk in verbose level 5 with asterisk -vvvvvc:

[image: image]

Next, we start the SIP phone and wait for the registration message in the Asterisk console:

[image: image]

When you call extension 1001 from the SIP phone, you will hear the hello-world.gsm file played back to you.

2.3.2.1 Calling the Phone from the Asterisk Console

Because we can call an extension with console dial and we have successfully attached a SIP phone to the system, it should be possible to call that SIP phone from the console. To do this, we need to add an extension to /etc/asterisk/extensions.conf:

[image: image]

To apply these changes, you must either restart Asterisk or reload the dialplan. To restart Asterisk, enter stop now in the Asterisk console and asterisk -vvvvvc in the Linux shell. To reload the dialplan from within the running Asterisk, enter dialplan reload in the Asterisk console. Now you can dial the SIP phone with console dial 2000:

*CLI> console dial 2000

The dialplan application Dial() sets up a connection to a telephone. It uses a parameter consisting of two parts: the first, SIP, describes the technology used for establishing the connection (the SIP VoIP protocol in our example). The second part defines the target device using that technology (in this case, 2000). When using Dial(), no Answer() or Hangup() is required. Because we do not know in advance whether the called station will even accept the call, Dial() has additional intelligence for opening and closing the channel.

In our example, the extension 2000 corresponds with the SIP target 2000, but this is, strictly speaking, coincidental. You could also write the extension like this:

exten => 55,1,Dial(SIP/2000)

Reload the dialplan, and now you can call the same SIP telephone with console dial 55.

2.3.2.2 Comments in the Configuration

Because the number sign (#) corresponds to a dual-tone multi-frequency (DTMF) tone, it cannot be used as the comment character. Instead, Asterisk configuration files use the semicolon (;) for indicating comments, as follows:

[image: image]

2.4 Building a Minimal Phone System with Two SIP Phones

What does the simplest possible working Asterisk system look like? Two phones and one Asterisk server.

We’ve already worked with all the individual pieces of this puzzle, and now we just have to put them together. To start, we configure two SIP phones in /etc/asterisk/sip.conf:

[image: image]

Next, we have to make extensions that call the SIP phones in /etc/asterisk/extensions.conf. We will leave the “Hello World” example in place for testing purposes; we can verify that each phone is working by dialing 1001 and listening for the “Hello World” message. The resulting dialplan looks like this:

[image: image]

Restart Asterisk and the phones (which you configure following the instructions in the previous section). After the phones have registered, you can call one phone from the other, or you can call the test extension from either phone.

2.4.1 Configuring Voicemail

Asterisk already includes a working voicemail module. We need only configure it for use via the /etc/asterisk/voicemail.conf file. First, we move the existing sample file to our sample backup directory:

debian:/etc/asterisk# mv voicemail.conf /var/tmp/asterisk-etc-backup/

Now we create a new /etc/asterisk/voicemail.conf file and enter the following:

[image: image]

Now the mailboxes are configured (yes, it really is that easy). Each entry starts with the access password, then the full name of the user, and finally the user’s e-mail address. The final step is to add a few more lines to /etc/asterisk/extensions.conf to attach this voicemail functionality to our telephones. Don’t forget to add ,20 to Dial():

[image: image]

Done! Start Asterisk with asterisk -vvvvvc and call one phone from the other. (In a running Asterisk, typing reload in the Asterisk CLI is sufficient to apply any changes to the configuration files.) After 20 seconds of ringing (the reason for the ,20 in Dial()), you are transferred to the voice mailbox. If the called station is busy, the call goes directly to the voice mailbox. Dial 2999 from any phone and you can access the voicemail menu for that phone.

Note

If your Asterisk server has a working Mail Transfer Agent (MTA) (e.g., send-mail or postfix), new voicemails are sent as e-mail attachments directly to the e-mail addresses specified in voicemail.conf.

If you want to secure your mailboxes with passwords, or would like to review the voicemail menus, see Chapter 9, “Voicemail.”

2.5 Rights Administration with Contexts

So far, we have been able to call any extension from any telephone. For a small, private system, this is sufficient. Large systems and systems connecting to other telephone networks need some way to manage calling rights (that is, the rules that determine which phones and users are allowed to make calls to where). Asterisk does this via contexts.

Think of a context as a kind of category. Each category contains rules about what can be dialed. To access the rules in a context, the phone must be a member of that context or have been directed to that context by another rule.

2.5.1 The Originating Context

We haven’t yet specified a context for the SIP phones we configured. In this case, Asterisk assumes the [default] context. If we want to specify specific contexts for specific telephones, we use the following syntax in sip.conf:

context = ContextName

We can set a context for all the phones in the [general] section, but this context can be overwritten on a per-telephone basis. Let’s take a look at a couple of examples.

2.5.1.1 A Context Example

ABC Co. has the SIP phones 10 and 11. They are both in the [internal] context. The sip.conf file looks like this:

[image: image]

You can achieve the same result more simply, though:

[image: image]

2.5.1.2 Example with Multiple Phones

ABC Co. has the SIP phones 10, 11, 12, and 20. The phones 10, 11, and 12 are standard staff phones in the [abc] context, and 20 is a courtesy phone at reception in the [visitor] context:

[image: image]

2.5.2 Call Destination: Contexts in extensions.conf

The dialplan, extensions.conf, is broken up into sections, or contexts. Each context is specified by a name in square brackets.

The following is a sample extensions.conf containing the three contexts, [default], [building-mgr], and [apple-pie]:

[image: image]

If the context is not specified for a SIP phone in sip.conf, Asterisk assumes the [default] context in extensions.conf.

2.6 Calls to and from the Public Switched Telephone Network

In this section, we connect our mini-system to the public switched telephone network (PSTN). Once we’ve done that, we can make and receive calls using our attached SIP phones.

2.6.1 Calling the PSTN

At this point, you have a working telephone system, which, although exciting, is not really useful, because it has no connection with the outside world. With just ten more minutes and a working Internet connection, you can have a working connection to the PSTN. To do this, you need an account with a SIP provider.

We will configure Asterisk so that you can make calls to the PSTN with the phones 2000 and 2001. First, the provider account must be defined in /etc/asterisk/sip.conf:

[image: image]

You must obtain the username (17984512232 in our example) and password (UHDZJD in our example) from the SIP provider; often you can do this through the provider’s customer website. Asterisk needs this information to register with the provider and make calls.

Warning

Most SIP providers charge a per-minute rate for local calls, and many require prepayment. An advantage is that there is no monthly flat rate for most SIP accounts.

Next we need an additional dialplan rule to allow outbound calls:

[image: image]

After these new entries have been entered, save the file and start Asterisk as before, with asterisk -vvvvvc so that we get the Asterisk console. Wait a few seconds for the SIP phones to register. Now simply dial a number.

Tip

When dialing through most VoIP providers, you need to dial the complete number, including the predial digit (1 in North America) and area or city code, even if the call is a local call in your calling area. For North America, this means you dial the predial digit, followed by the full ten-digit number including area code, even in regions that do not already have ten-digit local dialing. In our example, we provide an open dialing pattern that will pass on the digits exactly as dialed to the provider. (Later on, we show you some techniques that you can use in /etc/asterisk/extensions.conf so that you don’t need to dial the full number for local calls in areas where it is not normally required.)

If everything is working as it should, you will hear the remote line ringing and be able to observe the call progress in the console.

It’s a bit early to explain exactly how this works, but you’ll read more about that later.3

3. Not too much at once! For now, all you need to know is that the ${EXTEN} variable always contains the number dialed by the caller for the specific instance (see Chapter 5, “Dialplan Programming”).

2.6.2 Taking Calls from the PSTN

The last step is a small one: We want to be able to take incoming calls via our SIP provider on extension 2000. To do this, we need to add another context to /etc/asterisk/extensions.conf:

[image: image]

In our example, the number 17984512232 is the PSTN number (also called a DID or DN; more on that later) given to your account by your SIP provider. That the DID corresponds to the username is coincidental; it doesn’t have to.

You can, of course, configure voicemail for calls coming in from the PSTN:

[image: image]

If you were so inclined, you could just leave things like this and start using your new mini-PBX. But what fun would that be? This chapter was only meant to show you how quickly you can build a working Asterisk system. In the coming chapters, we fill in the gaps and show you just how much you can really do with Asterisk.

3. Dialplan Fundamentals

The dialplan is the heart of Asterisk, and everything it does begins here.

In Asterisk 1.4, two important files in /etc/asterisk make up the dialplan. The first is extensions.conf, which uses the original and Digium-recommended priority model. The second is extensions.ael, which uses the newer Asterisk Extensions Language; we’ll look at that in more detail in a separate chapter. For now, we’ll use the traditional priority model because even in 1.4 and 1.6 extensions.ael is converted into priority format and added to extensions.conf when Asterisk is started.1

1. The exact definition of dialplan is a matter of some debate in the telephony world. In this book, we use the word in its Asterisk-specific sense.

Note

Should you use .conf or .ael? Digium says “.conf is the default.” For certain applications, however, AEL can make for a more readable and maintainable dialplan.

3.1 Contexts

The Asterisk dialplan is divided into sections, and each section is called a context. Any dialplan must begin with a [general] context where global configuration entries reside, but the subsequent contexts can have any name. Physical devices are bound to the dialplan through contexts. These devices are usually telephones, but can be other types of hardware (for example, SIP or Zap devices). The configuration for every device, be it a softphone, hardphone, or outgoing trunk, must specify the default context for that device. Here’s an example from a sip.conf file:

[image: image]

This SIP device called 2000 always initiates calls in the internal-phones context. This means that if a caller uses this phone to dial a number, Asterisk will look in the internal-phones context for an extension matching that number. If no matching extension is present, nothing happens.

Warning

A good understanding of contexts is essential for effective Asterisk programming and administration. If you’re not comfortable with contexts, follow the step-by-step example for a simple PBX system in Chapter 2, “Installation and ‘Hello World.’”

It pays to take the time necessary to become comfortable with the concept.

Contexts are defined by a name inside square brackets ([name]). Ideally, the name should be relevant and help to describe the intended use for the context. This name will also be used to refer to the context elsewhere, be it in other contexts or in other Asterisk configuration files. All lines following a context name are considered part of that context, until the next context name is encountered:

[image: image]

3.2 Extensions

Individual entries in extensions.conf are called extensions. Individual extensions are executed by Asterisk every time a call is initiated for that extension, but extensions.conf is only read into Asterisk once, at start time. This means that changes are not applied until the dialplan is reloaded or Asterisk restarted.

Note

An exception is the Asterisk RealTime Architecture (ARA). In an ARA system, the dialplan is stored in a database (e.g., MySQL) and read into Asterisk for each call, not simply when Asterisk is started. Therefore, an administrator can make dialplan changes on a running Asterisk server that take effect immediately. Nevertheless, this approach is not without significant disadvantages. You can learn more about ARA at www.voip-info.org/wiki/view/Asterisk+RealTime.

You can also refresh the dialplan during operation from the CLI (command-line interface) by entering the command reload now (which reloads all the configurations) or extensions reload (which reloads only the dialplan).

An extension consists of the following parts:

• Extension: A name or number

• Priority: A kind of program line number

• Application: An instruction that tells Asterisk what it should do with the call

The following is a template example of how you specify an extension line in extensions.conf:

exten => extension,priority,application

A real statement would look like this:

exten => 123,1,Answer()

Warning

The first priority in an extension must always be 1 (one); otherwise, Asterisk will never call the extension. Subsequent priorities must be incremented by 1 and not more. Asterisk does not recognize larger increments.

3.2.1 Fundamental Applications

To build the dialplan examples in this chapter, we need the following basic applications (all of which are described in greater detail in Appendix B, “Dialplan Applications”):

• Answer()

The Answer() application does just that. It answers a call. When a channel rings, Answer() tells Asterisk to “lift the virtual receiver.”

• Hangup()

Hangup() is the opposite of Answer(). An active connection is terminated, and Asterisk “hangs up” the virtual receiver.

• Playback(soundfile)

This tells Asterisk to play a specified sound file. By default, it plays files found in /var/lib/asterisk/sounds/, but you can also specify another source directory. No file extension is specified because the directory may contain the same sound in different formats. Asterisk will select the most appropriate format (more on that later).

• Wait(number)

Wait() defines a pause; number indicates the number of seconds to pause.

• NoOp(string)

This application does nothing. NoOp means “no operation.” It is useful, however, when you are trying to troubleshoot the dialplan. When NoOp(string) is executed, Asterisk prints string on the CLI, but only if the verbosity level is set to 3. (You can do this easily by entering the command set verbose 3 in the CLI.)

• VoiceMail(mailbox,u)

Lets the caller leave a voice message in the mailbox specified.

• VoiceMailMain()

Provides access to the voicemail system. The mailbox owner will use this to retrieve her messages.

3.2.2 Priorities

A typical extension is composed of multiple entries. Each entry has a priority so that Asterisk knows in what order it should execute the entries. If you’ve ever worked with early versions of BASIC, you might be familiar with line numbers; priorities work in much the same way, but with one important distinction. They are always executed in numeric order from smallest to largest, but there can be no skipping! If Asterisk executes an entry of priority n, then it will look for the next entry at n + 1. If it cannot find an entry at n + 1, it stops executing without displaying an error in the CLI.

3.2.2.1 A “Hello World” Example

The following extension will be invoked when a phone with the default context widgets dials 8888.

Asterisk picks up the line, plays the hello-world sound file (which is installed with Asterisk), and hangs up.

[image: image]

3.2.2.2 n Priority

To make it easier to work with priorities, Asterisk versions from 1.2 onward support the n priority. The n priority is like automatic line numbering; when Asterisk is running through the dialplan and encounters an entry with priority n, it simply executes it as though it were equivalent to the previous priority, plus 1. This is useful when you have extensions with many entries and you need to add or remove an entry, because it saves you from having to renumber the entire extension. The following example illustrates what a standard extension would look like:

[image: image]

You can define the same extension with the n priority:

[image: image]

You can start using the n priority at any point in the extension, as long as all the subsequent entries also use it:

[image: image]

3.3 Pattern Matching

In extensions.conf, patterns let us specify multiple number combinations in a single line.

Using what we know so far, we need to write a separate extension for each telephone number. As the system expands, this leads to unwieldy and error-prone dialplans. Suppose, for our example, we need numbers 100 to 109 to play the hello-world sound file. Our extensions.conf would look like this:

[image: image]

[image: image]

If we use a pattern, the same dialplan becomes instantly more compact and elegant:

[image: image]

The _10X extension describes the number range from 100 to 109.

Note

The terms pattern and regular expression are often casually interchanged. In general, what we are using in Asterisk is a pattern, although many programmers would use the term regular expression also.

3.3.1 Pattern Elements

Dialplan patterns always begin with the underscore (_) character:

exten => _pattern,priority,application

An Asterisk dialplan pattern can have the following elements:

• [abc]

The digits a, b, and c. For example, to match 34, 37, and 38

exten => _3[478],1,NoOp(Test)

• [a-b]

Any digit in the range a to b. For example, to match any number between 31 and 35

exten => _3[1-5],1,NoOp(Test)

(e.g., [25-8] is also acceptable for the digits 2,5,6,7,8)

• X

Any digit from 0 to 9. For example, to match any number between 300 and 399

exten => _3XX,1,NoOp(Test)

• Z

Any digit from 1 to 9. For example, to match any number between 31 and 39

exten => _3Z,1,NoOp(Test)

• N

Any digit from 2 to 9. For example, to match any number between 32 and 39

exten => _3N,1,NoOp(Test)

• *

Matches the asterisk (*) key

exten => _*7,1,NoOp(Test)

• #

Matches the number sign or pound key (#)

exten => _#7,1,NoOp(Test)

• _

Any number of digits of any kind. For example, to match all numbers that begin with 011

exten => _011.,1,NoOp(Test)

Warning

Don’t use the _. pattern! If you do, the pattern will include special extensions such as i, t, and h, and that will lead to unpredictable and probably undesirable behavior. Use _X. or _X if you need broad pattern matching.

• !

This special “wildcard” character will match as soon as the number dialed is unambiguous; i.e., when the number being dialed cannot match any other extension in the context. Once a match is made, the outgoing line is picked up and dialing proceeds in real time with direct feedback (this is known as overlap dialing).

Warning

A common error is to forget the underscore (_) character at the beginning of the pattern. This convention is necessary because SIP devices, as configured in sip.conf, can have alphanumeric names. (For example, in Asterisk, 333, loadingdock, and A31 are all acceptable names for a SIP device.) It also means that if you forget to use the underscore, your extension will never match and you will never see an error message informing you of your mistake.

3.3.2 Testing a Pattern Using dialplan show

An example dialplan looks like this:

[image: image]

We can call dialplan show from the CLI (invoked with asterisk -r if Asterisk is already running) to verify that our dialplan has been loaded:

[image: image]

The output includes all the dialplan rules that Asterisk knows about. Notice that there is a parkedcalls context that we haven’t seen before; this is activated by default in features.conf and needn’t concern us further. What if we are only interested in the my-phones context? We can make our request more specific with dialplan show my-phones:

[image: image]

The command dialplan show can also be used to show what Asterisk will do if we dial a specific number. Suppose we want to dial 25 from a phone in the my-phones context. We can see what will happen with the command dialplan show 25@my-phones:

[image: image]

Nothing happens because there is no match for 25 in the context. If we dial 23 instead, we get this output:

[image: image]

If we want to check 23 against all the accessible contexts, we use dialplan show 23@:

[image: image]

Let’s expand our dialplan with an additional context by editing extensions.conf like so:

[image: image]

Now we go back to the CLI and, after reloading the dialplan with the reload command, run dialplan show 23@:

[image: image]

All the matching extensions are displayed. Let’s try it with dialplan show 23@:

[image: image]

There is only one match, in context department-q. In this example, if you dial 25 from a phone in the my-phones context, you still won’t hear the “Hello World” message. Extension 25 only works for phones in the department-q context.

3.3.3 Pattern-Matching Order

Although very powerful, pattern matching in your Asterisk dialplan can be tricky. It is easy to assume that Asterisk runs through the dialplan in a completely sequential manner. This is generally the case, but it does prioritize patterns based on the quality of the match.

The reason for this is simple: More than one pattern might match a dialed number. If two extensions match a dialed number, Asterisk will always choose the better match. Before deciding which extension matches best, it processes the entire context.

Let’s look at an example with some ambiguous extensions:

[image: image]

It is not immediately clear which extension is executed when we dial 12345. To find out, we use dialplan show 12345@sales:

[image: image]

Asterisk shows all the hits, but gives extension 12345,1,NoOP{12345} first priority. The highest priority extension is always displayed at the top.

Let’s try it with 12346 using the command dialplan show 12346@sales:

[image: image]

Again, the pattern with the best match to the dialed digits is listed first.

Important

The order in which the patterned extensions appear in the dialplan makes no difference. Patterned extensions are matched strictly in order of match precision.

Digium changed the expected behavior for the _. pattern in Asterisk 1.2. Although the pattern is the most general and should be therefore assigned the lowest priority, the behavior is opposite the expected behavior. In Asterisk 1.2, the extension _. always gets the highest priority!

Note

Note that the show dialplan command will work in Asterisk 1.4 but is deprecated. From here on out, examples for Asterisk 1.2 use show dialplan, and dialplan show is used for examples in Asterisk 1.4.

Let’s try adding the extension _. to our previous dialplan example:

[image: image]

When we try testing 12346 with dialplan show 12346@sales, we get the following output:

[image: image]

In Asterisk 1.2, show dialplan 12346@sales gives a very different result:

[image: image]

This is why it is preferable to use _X. as the wildcard pattern (if we use a wildcard pattern at all!). The following dialplan example is processed identically in Asterisk 1.2 and 1.4:

[image: image]

The priorities appear as follows in both versions:

[image: image]

3.4 Include Statements

Includes are a powerful tool for simplifying and organizing larger dialplans. Using an include statement, you can include other contexts in the current context. Here is a more general example:

include => name-of-the-other-context

And here is how you might see an include statement used in a larger dialplan:

[image: image]

3.4.1 Order of Execution When Using Include Statements

Asterisk will always look for a match in the current context before referencing any included contexts. If a matching entry is found, that entry is used. If no matching entry is found, Asterisk will look for a match in the first included context, then the next, and so on. It is also possible to have nested includes; that is, includes within includes.

You can verify what entry Asterisk is using to handle a call by entering dialplan show
number@name-of-context in the Asterisk CLI.

Note

Users of Asterisk 1.2 use show dialplan rather than dialplan show.

Again, here is an example of an include statement:

[image: image]

Say we want to understand how Asterisk is handling a call to 2000 in the sales context. To do that, we enter dialplan show 2000@sales in the CLI:

[image: image]

If we then expand the sales context like so

[image: image]

We will see this CLI output:

[image: image]

Asterisk will play the hello-world sound file and not send the call to 2000, even though the include occurs first in the dialplan. This is because Asterisk will always look for a match in the current context before checking the included contexts.

3.4.2 Time-Conditional Include Statements

An include statement can be made conditional upon the time of day. This makes it easy to implement different day and night behaviors. The general syntax of a time-based include statement is shown here:

include => context|<time>|<day>|<day-of-month>|<month>

The day and month are specified using the first three letters of the full name. For example, weekdays are specified mon, tue, wed, thu, fri, sat, sun, and months are specified jan, feb, mar, apr, and so on. The time is specified in 24-hour format.

Suppose, for example, that you have a business that is open from 9:00 a.m. until 9:00 p.m. Monday to Friday and from 9:00 a.m. to 6:00 p.m. Saturday. The dialplan would look like this:

[image: image]

3.5 The ${EXTEN} Variable and the ${CALLERID(num)} Function

Though we’ll examine variables (see Chapter 5, “Dialplan Programming”) and functions (see Appendix C, “Dialplan Functions”) in more detail later, we want to introduce two simple and intuitive elements here: the system variable ${EXTEN} and the function ${CALLERID(num)}.

3.5.1 ${EXTEN}

Asterisk automatically puts the dialed number in the ${EXTEN} system variable. Instead of

exten => 2000,1,Dial(SIP/2000)

we can use

exten => 2000,1,Dial(SIP/${EXTEN})

and get the same result. This doesn’t make much difference for a single line, but if you use this in conjunction with pattern matching it saves a lot of time and makes for a much more readable dialplan.

To make all the SIP phones with extension numbers 2000 to 2999 dialable, only one line in extensions.conf is required:

exten => _2XXX,1,Dial(SIP/${EXTEN})

3.5.2 ${CALLERID(num)}

The function ${CALLERID(num)} always returns the calling party’s number. This is especially practical when used with VoiceMailMain() because it can accept the mailbox number as a parameter. This way, you can make each user’s voicemail box accessible with a single line:

exten => 99,1,VoiceMailMain(${CALLERID(num)})

You can find a more complete discussion about ${CALLERID(num)} in Appendix C, “Dialplan Functions.”

4. Case Study: A Typical Business Telephone System

Building on what we covered in Chapter 2, “Installation and ‘Hello World,’” in this chapter we put together a more comprehensive system for a fictional business. Doing so will show you how to handle the requirements you’re likely to be faced with in real installations.

Our fictional company is Widgets, Inc., a widget manufacturing business. We’ve been charged with the task of planning a phone system for the new office, which houses the following departments:

• Management (2 people)

• Reception (3 people)

• Domestic sales (6 people)

• International sales (4 people)

• Production (50 people)

• Shipping (10 people)

• IT (2 people)

• Building manager (1 person)

Every employee has his or her own phone.

What costs should Widgets, Inc. anticipate? That depends very much on management’s objectives. The following should be considered:

• Should the Asterisk server be fault tolerant? Will a cold-standby server be sufficient, or do we need a hot standby?

• What server hardware are we buying? For most systems, a generic computer will suffice. It doesn’t have to be the newest and most expensive.

• Which phones are we buying? Phones can range in price from $30 to $300 and up.

Does Asterisk actually make sense for Widgets, Inc., or is this just a make-work project for the IT department? This depends on what the traditional PBX vendors are offering and Widgets, Inc. needs. Although it’s not unusual for traditional vendors to produce surprise discounts when they discover an Asterisk system is being considered, there can be hidden costs, sometimes in the form of fixed long-term contracts that force the client to buy from that vendor for several years.

One of the advantages of Asterisk (and open source software generally) is the wide choice and availability of support and consulting services. You can do it all yourself, or you can hire a consultant to do it all for you. If you find the services of your existing consultant unsatisfactory, you can switch to another. This is usually difficult with traditional vendors because they lock you in with a contract and because the proprietary nature of the product also means there is some degree of sales territory exclusivity.

Whether Asterisk makes economic sense has to be calculated on a case-by-case basis. Experience shows that it usually does. If you consider the extensibility, freedom to upgrade (or not), and scalability of Asterisk in your calculations, the mid-and long-term capital and operating costs of an Asterisk system usually prove highly affordable.

What about a packaged Asterisk system, such as FreePBX, Trixbox, PBX-in-Flash, Elastix, or Gemeinschaft? “Prerolled” Asterisk systems have their advantages (rapid installation and configuration, simple interfaces for commonly used features, a GUI) and their disadvantages (lack of transparency, configuration restrictions, smaller installed base). A well-written dialplan for a generic Asterisk installation can serve as a template for new installations, and an experienced Asterisk specialist can have new, complex systems up and running in the same time or less than it takes to set up a prerolled Asterisk. Whatever you choose, you’re better off knowing how Asterisk works under the hood before you take the prerolled route. That’s the purpose of this book!

4.1 The Numbering Plan

The business has 78 employees. Although it’s possible to get by with two-digit extension numbers, we’ll use three; this leaves us some breathing room in the event the company expands or we need more extensions (for example, for fax machines or for group numbers). See Table 4.1.

Table 4.1 Numbering Plan for Widgets, Inc.

[image: image]

4.2 Choosing the Infrastructure

The new building is getting a modern structured cabling system, so it makes sense to equip each workstation with a SIP phone. This saves us the grief and extra expense of running telephone wiring in parallel to the network wiring. Fax machines and cordless telephones can be connected to the system using analog telephone adapter (ATA) devices.

Warning

Faxing in Asterisk is nevertheless problematic. VoIP connections, depending on how they are compressed, can have less bandwidth available than a fax connection requires. This can result in fax transmissions being only partially received, or worse, failing completely. If you are only using VoIP internally, you must ensure that the codecs you choose can adequately support fax. The better option is to use an analog telephony card to provide internal analog extensions purely for fax use, or, ideally, build fax server functionality into Asterisk.

We install the Asterisk server in a climate-controlled server room with controlled access. Only authorized personnel are to have access to the server.1

1. In the past, it was common for PBX and key system manufacturers to build secret backdoors into their systems, mainly for the purpose of providing timely support in the event of an outage. It was inevitable that clever but unscrupulous parties would figure out a way to exploit these backdoors to make free long-distance and international calls, mostly at the expense of public institutions too large to have a clear picture of how their systems were configured. In today’s world, the security of your systems, whether they are Asterisk or anything else, should always be a paramount concern.

4.2.1 Network

The network is such a significant aspect of Asterisk’s functionality that it demands a more thorough discussion.

Telephony is a synchronous medium, which means that the receiver must accept the sender’s transmission the instant it is sent. Human beings can tolerate a delay (also known as latency) of up to 300ms (milliseconds), although the delay can be perceptible when over 100ms and distracting when over 200ms. Most people find anything over 500ms unacceptable. This is the principal challenge that IP telephony must address: In IP telephony, we are attempting to carry a synchronous data stream over an asynchronous medium. TCP/IP, developed with funding from the U.S. Defense Advanced Research Projects Agency (DARPA), was designed to maximize stability and robustness, but it achieves this at the expense of the kind of real-time performance we would expect of a telephone connection.

When an e-mail suffers an occasional pause in transmission, it is materially unaffected. A voice conversation, by contrast, is highly time dependent. If someone says “hi” to us, we expect it to be followed by something relevant and intelligible immediately (such as our name), because that is the way people speak to each other in person. That we can even carry voice traffic on an IP connection is owing to the high performance of modern network hardware. The high bandwidth of modern networks coupled with the relatively small bandwidth required by a single telephone-grade voice conversation means that voice traffic can be carried in a pseudo-real-time fashion.

Nevertheless, network conditions vary, both by site and in time. A big network with many endpoints will carry a lot of traffic; networks also tend to be busier during normal business hours (say from 8 a.m. to 6 p.m.) while employees send and receive e-mail, surf the web, download programs and documents, etc. This happens to be the time they make most of their telephone calls, and things can reach a critical point very quickly. If the available bandwidth drops below the minimum needed, we will start to see packet delay or loss. When this happens, the effect on voice conversations is drastic and immediate, resulting in dropouts, clipped words, clicks, pops, and other strange noises. Anybody who has any experience with wireless telephone service knows how distracting this can be. To deal with these eventualities, commercial-grade routers and most managed switches support some kind of traffic classification through setting a TOS (Type of Service) flag in the packet header.

By setting a TOS flag in voice packets, we can prioritize traffic passing through the router or switch. This feature is useful for managing traffic inside our network and across the network boundary, but it has no impact once the packets are on the Internet service provider’s (ISP) network or on the public Internet. Only once the ISP guarantees low latency and bandwidth for real-time traffic can we have an assurance of call quality (called quality of service, or QoS). If you will be supporting a multibranch operation and plan to connect them with VoIP, you should consider this requirement carefully and discuss it with your ISP.

The Asterisk system for Widgets, Inc. has at least 78 physical stations. In the worst case, we will have 39 simultaneous conversations (which happens if all the employees call each other). Depending on the codec used, we can expect a maximum bandwidth of 6,500kbps (kilobits per second), which should be no problem for a typical 100Mbps (megabits per second) LAN on structured, twisted-pair cable.

All the same, this network will be carrying other traffic, and a couple of big file transfers can be enough to hit performance limits. How do we get the 6,500kbps value? The standard G.711 compression standard includes two companding algorithms: u-law (used in North America and Japan) and a-law (used in Europe).2

2. These two algorithms are used for carrying voice traffic in ISDN channels (such as those used in T1 and T3 connections).

These provide excellent sound quality, but need at least 64kbps bandwidth. A single connection consists of an incoming and outgoing channel, each at 32kbps; 39 connections add up as follows: 2 × 39 × 32kbps = 2,496kbps. In addition to the channel bandwidth required, there will be TCP/IP network overhead, so that each channel will use about 80kbps in total. Now our total is 3,120kbps; round up, and we have 3,500kbps. While this is only a worst-case scenario, when it comes to voice systems, it is better to be safe than sorry!3

3. The website www.asteriskguru.com/tools/bandwidth_calculator.php has an Asterisk bandwidth calculator with bandwidth values for various codecs that can help you in the planning process.

Tip

If you have doubts about whether you have sufficient bandwidth available to support all your extensions, consider starting with a lossier codec, such as Global System for Mobile (GSM). At between 13kbps and 15kbps per connection, it needs only a fifth of the bandwidth of u-law and delivers adequate sound quality for most applications. After you’ve verified the stability of your system, you can try switching groups of extensions over to u-law and wait to see whether you have network problems as a result. Just remember highly compressive codecs like GSM are more processor intensive, so you need to ensure you have adequate CPU resources available on your Asterisk server.

4.2.2 Server Hardware

The choice of server hardware for the Asterisk server is subject to many of the same considerations. The need for synchronous, real-time data transfer requires timely handling of the necessary processes in Asterisk. Most of the computing effort comes in the coding and decoding of digital sound streams; this effort is even greater if you have equipment that uses different codecs and Asterisk has to transcode between them.4 The tremendous variety and quantity of hardware available means there is no hard-and-fast rule for calculating processor requirements. As a guide, however, we can start with Table 4.2.

4. Transcoding is the process by which an audio stream in one codec is translated into another codec. For example, a connection between a device supporting only GSM and one supporting only G.711 will have to be transcoded; this is normally done by Asterisk.

Table 4.2 Server Hardware Benchmarks

[image: image]

By CPU, we mean a typical CPU from an off-the-shelf PC (e.g., Intel or AMD). We’ve calculated the number of simultaneous connections based on the reasonable assumption that not all the phones will be active at one time, but rather between one-third and one-half. Note that this is just a rough estimate, with a considerable margin of safety. If little transcoding, conferencing, or echo cancellation is required, the number of simultaneous connections supported would be higher. That said, the exact limits for any given installation can be reliably determined only through direct testing and experimentation.

Tip

The Linux program top provides a simple tool for monitoring processor loads on a running server, but only at the current point in time. Processor and process loads are dynamic and change dramatically from one moment to the next, so point measurements have limited usefulness. You can try monitoring the performance of your Asterisk servers using monitoring tools like Nagios (www.nagios.org). If you prefer to use native Linux tools, you can do simple monitoring with a cron job running a bash script with this content:

w | head -n 1 >> /var/log/serverloads

By running this cron job every minute, you will build up a set of data points over time which you can use to evaluate server performance.5

5. This cron job would indeed be a very simple analysis tool. If you are comfortable with shell scripting, you can write more comprehensive scripts, which can give you more detailed information, by using output from tools such as top and uptime, processing it, and dumping the processed output into a comma-delimited text file that you can graph in a spreadsheet program.

Widgets, Inc. has 78 employees, and an estimate of 40 simultaneous connections is reasonable, so a computer with a reasonably current CPU (e.g., Pentium 4, AMD Athlon) at a clock speed of 1.5GHz should suffice. In general, the newer the CPU and system, the better the performance. Processor clock speed is no longer an accurate measure of CPU performance, particularly as applied to the newer dual-core processors, and your server will likely be able to handle more calls with a newer processor at the same clock speed. Dual-processor machines will improve performance correspondingly.

For the voice mailboxes, we need about 0.1MB (megabytes) of disk space per minute of message time.6

6. This is for wav49 or GSM format message files. If you decide to use uncompressed WAV format files, you will use many times the space (up to ten times as much). Because disk space is cheap, however, this is not normally an issue, and more installations are using uncompressed WAV because of the higher sound quality. Remember, though, that more disk space used means more storage required for backup.

If we allot 30 minutes of message storage to each user, we can expect to use a total of about 2GB (gigabytes) of disk space. Because voice message data is valuable business data and can even be critical, the storage should be redundant and backed up regularly. A RAID 1 array (two disks or disk sets in a mirror configuration) will provide the necessary redundancy.

Warning

Note that software RAID burdens the CPU significantly. A professional installation should use hardware RAID if at all possible.

Memory requirements for Asterisk are not onerous, and 512MB RAM will suffice. With 1GB RAM, Asterisk can handle very large business units. Any additional steps taken to enhance the reliability and performance of the server, such as the installation of redundant network adapters, commercial-grade telephone interface cards, and uninterruptible power supplies, will go a long way to increasing user and decision-maker confidence in the system. If your background is in IT services, you are facing a whole new level of user expectations. Users will usually tolerate a brief e-mail outage; the phones, however, must always work. Readers with a background in circuit-switched telephony will know exactly what we are talking about. Hell hath no fury like an executive without a working desk set.

4.3 Base Configuration

We’ll configure Asterisk so that all the employees can call each other and have their own mailbox. When that’s done, the system can be extended with additional functions and modules.

4.3.1 A sip.conf for 100 Users

Configuring /etc/asterisk/sip.conf for 100 users is no different from configuring for 2 users; there are no shortcuts here. Each SIP extension must be configured individually. What follows is an abridged version of the sip.conf for Widgets, Inc. Lines beginning with the semicolon (;) are treated as comments and ignored by Asterisk. The file is composed in the same way as in our simple example in Chapter 2. In general, we’ve avoided assigning numbers to individual users that end in 0 because we want to reserve those numbers for group phone numbers. The building manager is an exception, however, because we don’t anticipate any need for a group phone number there.

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

You can make sip.conf more concise with templates. For more information, refer to Appendix F, “Configuration Templates.”

Our example sip.conf has two instances of the callerid variable. This variable sets what is displayed on the called party’s telephone:

callerid = "Building Manager" <150>

In our example, both the building manager’s phones (150 and 151) use the caller ID 150 and the caller ID name Building Manager. This ensures that returned calls always go to extension 150.

4.3.2 The Dialplan

In Chapter 2, we wrote a simple dialplan for two phones. In the case study in this chapter, we have more users. Writing a dialplan with 100 entries is not exactly difficult, but it is tedious, and maintenance could become a problem. It’s much better to use pattern matching in extensions.conf using the patterns described earlier in this book.

4.3.2.1 extensions.conf

The numbering plan7 for Widgets, Inc. translates into a readable, and maintainable extensions.conf, which looks like this:

7. With the exception of the emergency numbers. We’ll deal with those as soon as we’ve established a connection to the outside world.

[image: image]

[image: image]

[image: image]

The extensions in the [internal-calls] context mean all calls to numbers 100 to 599 are passed to the Dial() application exactly as dialed, connecting the calling party to the corresponding SIP phone. If the user dials 800, she is connected to the mailbox for that phone. Only the IT department can call 801, at which point the system prompts for a mailbox number. This is done so that the IT department, which is now responsible for supporting the telephone system, can access all the mailboxes for debugging purposes.

In actual practice, our dialplan would have to be somewhat more complex. The numbering plan has number ranges (e.g., 270 to 299) that don’t contain any telephones. Our example ignores this, but this could lead to confusion in an actual deployment. If a user dials an unassigned number, the call goes straight to a voice mailbox that may or may not exist; even if it does, the user could leave messages that are never retrieved.

To prevent this from happening, the [internal-calls] context would look like this:

[image: image]

For Widgets, Inc., we accept this risk for the sake of simplicity and use the following configuration:

[image: image]

4.3.2.2 voicemail.conf

The voicemail.conf remains as described in Chapter 9, “Voicemail,” except with a few additional entries restricting message length and defining the server e-mail address:

[image: image]

Note

The passwords used in the preceding example are for demonstration purposes only. You’ll want to use stronger passwords in an actual production installation.

4.4 What Next?

The preceding configuration for Widgets, Inc. serves as a planning example for all systems of similar size. You can use this configuration to experiment with many of the configuration examples in this book.

This system allows telephone calls only and includes a simple voicemail system. A professional installation usually demands features such as teleconferencing and queues. If this is what you need, you have two basic options: You can reinvent the wheel and build a dialplan that includes those features from scratch, or you can use a standard framework such as FreePBX (www.freepbx.com) or Gemeinschaft (www.amooma.de/gemeinschaft) and configure it according to your requirements. (At the moment, Gemeinschaft is available only in German. Volunteers willing to help internationalize it are welcome! Contact Stefan at stefan.wintermeyer@amooma.de.)

5. Dialplan Programming

In Asterisk, functions or programs can be implemented either externally, through an Asterisk Gateway Interface (AGI) script (in much the same way that a Common Gateway Interface [CGI] script can add functionality to a web page) or internally, through functions and applications in the dialplan. This chapter focuses strictly on the internal functions; AGI is treated in depth in a separate chapter.

The dialplan is defined in the extensions.conf configuration file. The dialplan itself looks much like a BASIC program. The administrator can implement features and call flow using a simple scripting language.

5.1 Programming “How-To”

Whatever your experience level with Asterisk (whether you’re an administrator, programmer, telephone specialist, or hobbyist), you need a basic level of programming skill and a grasp of the fundamentals to take full advantage of Asterisk. This how-to should give you the basic understanding you need to make useful dialplans, through the use of plenty of examples and with frequent reference to Appendix B, “Dialplan Applications.” You will probably recognize some of the material from other chapters.

5.1.1 Program Structure

Each telephone number defined in the Asterisk dialplan (/etc/asterisk/extensions.conf) is really a small program. In Asterisk, the program is called an extension. An extension looks like this:

[image: image]

Priorities may also be numbered sequentially:

[image: image]

The two extensions depicted here are functionally identical. If you use n, however, it makes adding and deleting entries in the extension much easier later on.

5.1.2 Using Set()

Use the application Set() to create and change variables:

[image: image]

Use the syntax ${VARIABLENAME} to read and print variables. You can print variable values on the CLI with NoOp() (with verbosity level 3 and up):

[image: image]

There are different kinds of variables:

• Global variables

Valid anywhere in the dialplan and created or modified with Set(<variable>=<content>,g):

[image: image]

• Channel variables

Valid only in the current channel (a channel could be a connection between two people having a phone conversation). Created or modified with Set(<variable>=<content>) (without the g):

[image: image]

• System variables

These dynamic variables are set by Asterisk and may be called in the dialplan without needing to create them. A frequently used system variable is ${EXTEN}:

exten => 1006,1,NoOp(Dialed number: ${EXTEN})

For a more in-depth look at variables, see the “Variables” section, later in this chapter.

Note

For all the commands discussed in this chapter, you can find syntax and options in Appendix B.

5.1.3 Labels and Goto()

Goto() lets you jump from one dialplan entry to another. If you are using n priorities, this can be problematic. The solution is to use labels to tag specific entries and then call the entry by label in Goto().

You can use Goto() within an extension, between extensions, or between contexts.

• You might use it within an extension:

[image: image]

• Between extensions:

[image: image]

• Between contexts:

[image: image]

5.1.4 While() Loops

Loops let you perform operations repeatedly, which is useful for reading out sequences. Use While() to run loops in the dialplan:

[image: image]

5.1.5 GotoIf() Conditional

You can jump to other parts of the dialplan, if a specific condition is met, with GotoIf():

[image: image]

5.1.6 Gosub() Subroutines

With Gosub(), the call is directed to a subroutine; it can be returned to the initiating priority with Return():

[image: image]

5.2 Variables

A variable is a placeholder for an actual value. Exactly what that value is depends on the kind of variable. In Asterisk, variables can contain numbers, letters, and strings (sequences of letters and numbers). Variables are useful because they let us create rules for call flow that apply in changing circumstances and make it easier to accommodate future changes in the telephone application or system. In Asterisk, variables have varying scope. There are local variables (called channel variables in Asterisk), which can only set values for the current, active channel, and global variables, which set values for all channels. We should already be familiar with some of the variables Asterisk sets from our exposure to them as configuration parameters in the Asterisk configuration files (such as sip.conf, for example). We also have the freedom to define our own variables and use them in configuration files.

5.2.1 Expanding Variables in an Extension

The value of a variable can be obtained using the syntax ${VARIABLENAME}. There are variables that are automatically set by Asterisk. For example, the called number is always stored in the Asterisk system variable ${EXTEN}. Using patterns and variables, it is often possible to dramatically compress a long dialplan.

Without variables, a set of extensions would have to be represented like this:

[image: image]

Using a variable, however, lets us make multiple extensions succinct:

exten => _10X,1,Dial(SIP/${EXTEN})

5.2.2 General Considerations

When working with variables, you need to keep a few things in mind. First, variables are not case sensitive. String variables should be enclosed in quotes as a matter of practice. Reserved characters need to be escaped if you’re going to use them in a variable, and integer variables have size limits. Let’s explore these considerations in detail.

5.2.2.1 Capitalization

Variable names needn’t be in all uppercase as in our examples, nor are user-defined variables case sensitive. It is a good idea to use uppercase variable names nonetheless because it makes the variables easier to identify and the dialplan code easier to read. Unfortunately, this means you cannot distinguish variable names based on case. For example, ${FOO} is considered the same as ${foo}.

Important

Asterisk system variables such as ${EXTEN} must always be uppercase.

5.2.2.2 Using Double Quotes with String Variables

String variables (meaning variables that contain text and not numbers) should be defined using double quotes, though Asterisk will still accept them without double quotes. The following two entries are functionally identical:

[image: image]

If the string contains commas or spaces, you must use double quotes:

exten => 1234,1,Set(FRUITTYPES="Apple, Pear, etc.")

This is why it is a good idea to get into the habit of using them for any string variables you define.

5.2.2.3 Reserved Characters

Sometimes a variable will contain reserved characters (characters that have special functions and are interpreted differently). For example, if you want a variable to contain the underscore character (_), you must use an “escape” character to tell the dialplan interpreter that it should ignore the reserved character. The following characters must be escaped when used in a variable:

[] $ " \

The escape character in extensions.conf is the backslash (\):

exten => 1234,1,Set(AMOUNT="\$10.00")

Similarly, if you want to use the backslash character in a variable, you must escape it:

exten => 1234,1,Set(ROOMNUMBER="48\\10")

5.2.2.4 Limits on Integer Size

If a variable contains an integer, it can have no more than 18 digits. Anything larger will cause an error, which will be recorded in the log file.

Tip

If you need to work with larger integers or floating point numbers, you can use an AGI script (see Chapter 16, “Asterisk Gateway Interface”).

5.2.3 Defining Global Variables in extensions.conf

Global variables are defined at the beginning of extensions.conf. You must place them in the special [globals] context, which follows [general]:

[image: image]

5.2.4 Defining Variables with Set()

Set() is used to define a variable inside an extension (see also the application description in Appendix B). The general syntax is Set(<variable1>=<value1> [,<variable2>=<value2>][,<option>]).

Setting option g makes the variable global. Without it, the variable is treated as a local channel variable:

[image: image]

5.2.5 Inheritance of Channel Variables

If new channels are spawned while a conversation is in progress, they will have their own channel variables.

5.2.5.1 Single-Level Inheritance

Sometimes you want to have a channel variable persist into the spawned channel. You can do this by prefixing the variable with an underscore (_) character. When the variable is inherited by the spawned channel, Asterisk automatically removes the prefix. This ensures that the variable is inherited only once.

The variable in this example will be passed to any dependent channels:

exten => 1234,1,Set(_CAKE="Marble cake")

5.2.5.2 Multilevel Inheritance

If you need unlimited inheritance of a channel variable, you can do this by prefixing the variable with two underscore characters (__). Variables prefixed in this way will always be inherited by spawned channels.

Warning

Asterisk makes no distinction between variable names that are preceded with an underscore and those that are not. In the following example, a variable with multilevel inheritance ("__CAKE") is rendered uninheritable by the subsequent entry:

[image: image]

In this example, the variable CAKE will be inherited by any and all spawned channels:

exten => 1234,1,Set(__CAKE="Sponge cake")

When calling an inherited variable, it doesn’t matter if it is called with a prefix or not. These entries will give the same output in the CLI:

[image: image]

5.2.6 System Channel Variables

The following list describes the more important system channel variables. These variables may be read but not overwritten by entries in extensions.conf, as they are predefined by Asterisk. You can find a complete list of all the predefined variables in doc/README.variables (Asterisk 1.2) and doc/channelvariables.txt (Asterisk 1.4). Deprecated variables are not included in this list. For example, the variable ${CALLERIDNUM} (previously commonly used) is not in this list; it is preferable to use the Asterisk function ${CALLERID(num)} instead.

Tip

It is a good practice to replace dialplan code that depends on deprecated variables or functions with code that uses the recommended replacements. This will reduce the chance of an installation breaking when you upgrade Asterisk.

System variables relevant to specific Asterisk functions are covered again in their respective chapters.

Some of the “variables” described here are not really variables but in fact built-in functions. In practice, they often play a similar role, so they are listed here for convenience:

• ${ANSWEREDTIME}

The total elapsed time for the active connection (in other words, the number of seconds since the conversation started)

• ${BLINDTRANSFER}

The name of the channel on the other side of a blind transfer

• ${CHANNEL}

Name of the current channel

• ${CONTEXT}

Name of the current context

• ${EPOCH}

Current UNIX time (total number of seconds elapsed since the beginning of the UNIX “epoch,” which began at midnight UTC, January 1, 1970)

• ${EXTEN}

Currently dialed extension

• ${ENV(VARIABLENAME)}

Environment variable VARIABLENAME

• ${HANGUPCAUSE}

Cause of connection hang-up

• ${INVALID_EXTEN}

Used in the i extension and contains the dialed extension

• ${PRIORITY}

Current priority in the current extension

• ${TRANSFER_CONTEXT}

Context of a transferred call

• ${UNIQUEID}

The unique ID for the current connection

• ${SYSTEMNAME}

The system name as defined by systemname in /etc/asterisk/asterisk.conf

5.2.7 Manipulating Variables

Variables are most useful when we can change their contents at execution time. This gives us the flexibility to create complex and powerful behavior in our Asterisk system.

5.2.7.1 Substrings

In general, a string consists of a sequence of individual characters. The size of a string is determined by the number of characters contained in it. For example, the string apple tree has ten characters; we must include the space. Any string can be broken into substrings. For example, apple, tree, app, and le tre are all valid substrings of apple tree. In theory, a string can be of any length; this entire book could be contained in a single string, although it would be impractical. Manipulation of strings is an important technique in programming applications. Asterisk lets you manipulate strings and substrings using the colon (:) character. Using the colon character, you can extract a specified portion of an existing string variable:

${VARIABLENAME[:start[:length]]}

5.2.7.1.1 Examples

Many telephone systems require that a prefix digit be dialed to get an outside line. (In North America, this is usually 9.) The target number, however, cannot include this prefix digit. If we dial 9-1-202-7075000, we can store the actual outside number in the ${OUTGOINGNUMBER} using the following dialplan entry.1

1. For our curious readers, this is the general information number for the Library of Congress in Washington, D.C.

exten => _0X.,1,Set(OUTGOINGNUMBER=${EXTEN:1})

If the length option is omitted, the rest of the string is taken automatically.

What if we only need the last seven digits of the dialed number? I this case, we use a negative number for the start parameter. The following entry would store 7075000 from our preceding example in the variable ${LOCALNUMBER}.

Note

Under the original rules of the NANP (North American Numbering Plan) the last seven digits of a number constituted the local portion of the number. That is, if your telephone number was in the same area code as the dialed number, you needed to dial only seven digits. To accommodate population growth and density, the NANP has been extended with overlay dialplans. In areas with overlay plans, two telephone lines on the same street, or even in the same building, may have different area codes. You are in an overlay area if you are required to dial ten digits for local calls. In this case, a local number filter as depicted above will not be appropriate. Also, many area codes covering larger areas still have portions of the number space that are treated as long distance.

exten => _0X.,1,Set(LOCALNUMBER=${EXTEN:-7})

We can also capture just the area code:

exten => _0X.,1,Set(AREACODE=${EXTEN:2:3})

Note

Obviously, readers in other parts of the world (e.g., the United Kingdom, Australia, or elsewhere) will have different national dialplans that impact how outside numbers should be processed. Some countries have area and city codes that are variable in length; in those cases, this kind of number filtering will not be practical.

Here, then, is how we might extract useful information from a dialed number:

[image: image]

5.3 Special Extensions

Because all the programming logic must occur via extensions, we need some additional system-defined extensions.

5.3.1 The h Extension

The h is the standard “hang-up” extension. The h extension, if it is configured, is called when a caller hangs up the phone. Note that as soon as this happens, the content of ${EXTEN} changes to h.

Suppose we want the global variable CONNECTIONS to reflect the number of currently active conversations at any given time. This means we need the value of CONNECTIONS to increase by one every time a connection is initiated and decrease by one every time someone hangs up. The following dialplan illustrates the basic idea:

[image: image]

5.3.2 The i Extension

To make a context gracefully handle every conceivable circumstance, we use the special extension i (which stands for invalid), which handles all dialed numbers that are not explicitly handled within the context. Again, as with the h extension, when the i extension is invoked, ${EXTEN} will no longer contain the dialed number. To get the dialed number while in the i extension, use ${INVALID_EXTEN}.

In our example business, Widgets, Inc. employees in department B can only dial extensions 100 to 199. Callers dialing any other numbers hear this message: “I’m sorry. That is not a valid extension. Please try again.”

[image: image]

5.3.3 The o and a Extensions

If operator=yes is set in voicemail.conf, the call will be directed to the o extension (o is for operator, kids!) if the caller presses zero (0).

Pressing * (asterisk) will direct the call to the a extension (abort).

5.3.4 The t and T Extensions

The t and T extensions are for handling timeouts in the context.

5.3.4.1 t Extension

If there is no input in an interactive voice response (IVR) menu within a certain time, the t extension is called.

[image: image]

5.3.4.2 T Extension

The T extension is called after the absolute timeout has been exceeded. You can set this timeout value with Set(TIMEOUT(absolute)=<seconds>).

Warning

Be careful not to have any spaces before and after the equal sign (=) character.

The timer starts whenever the timeout value is set. (In other words, it does not automatically start with the connection; it must be started explicitly with the Set() command.) Set(TIMEOUT(absolute)=0) deactivates the absolute timeout. In the following example, the timeout is set to 120 seconds. If the call lasts longer than that, the T extension is called, which plays back a message that says “Thank you for calling” and hangs up:

[image: image]

5.3.5 The s Extension

The first entry in any extension is always the name or number dialed by the caller. When a call comes in from the public switched telephone network (PSTN), however, Asterisk doesn’t know what was dialed or whom the caller is trying to reach. For any scenario in which we cannot determine the number dialed, we use the s extension. In this example, the sound of monkeys is played back to calls that come in via the PSTN:

[image: image]

Warning

If you are using an ATA device (analog telephone adapter) you don’t need the s extension. You can configure the dialed number in the configuration interface (often a web interface) for the ATA.

5.4 Macros

A macro is a kind of subroutine. It can contain complex workflows but is called through a single entry. This reduces repetition in the dialplan and makes it cleaner and smaller. A simple example might look like this:

[image: image]

This macro would be called like so:

[image: image]

The effect is not quite so impressive with a two-line macro as it would be with a much longer macro, but the advantages of such an approach should be clear.

The use of macros tends to divide the Asterisk user community into two groups. One thinks that macros make the dialplan easier to understand, the other believes that they make the dialplan confusing. We encourage you to draw your own conclusions!

When defining macros, take care to note the following points:

• When defining a macro, only one extension (the s extension) is allowed.

• The original ${EXTEN} and ${CONTEXT} variables cannot be used inside a macro. We must use ${MACRO_EXTEN} and ${MACRO_CONTEXT} instead.

• When calling a macro, additional comma- (,) or pipe-separated (|) arguments can be supplied. These arguments are called within the macro with ${ARGn} (where n is a positive integer indicating which argument in the sequence).

• A macro is defined in square brackets ([macro-macroname]) and is called with the Macro() application in an extension.

More information on macros may be found in Appendix B, “Dialplan Applications.”

Tip

The application MacroExclusive() ensures that the specific macro can only be called once at any given time. If another channel is calling the macro, no other channel can call it until it completes (see Appendix B).

5.5 Deprecated Features

For a long time, priority jumping was a standard way of moving a call about the dialplan. Specific applications (e.g., Dial()) would elevate the priority by 101 under certain circumstances. This feature is now officially deprecated. Basically, this means that although it is currently still supported, eventually it will be removed. Those who continue to use it are making their dialplans vulnerable to failure after an upgrade.

When working with Asterisk, you will encounter dialplan configuration examples on the Internet. (It is not uncommon to stumble upon grossly outdated examples that use deprecated constructs.) In professional practice, you should use the most current code constructions and versions of Asterisk. The software is always being updated, but deprecated features are not maintained.

In summary, if you want the operation of your Asterisk systems to be as predictable as possible, keep your code current!

6. Asterisk Extension Language

As of version 1.4, Asterisk offers two ways of composing the dialplan: the traditional extensions.conf format, and the newer AEL, or Asterisk Extension Language, which uses the filename extensions.ael.

AEL will be of particular interest to those Asterisk users who find large extensions.conf files difficult to read. AEL looks more like a real scripting language. They are not mutually exclusive, either. It’s possible to use both, defining contexts in one or the other file. If both files are present, extensions.conf will just overwrite identical portions of extensions.ael when the dialplan is loaded.

Asterisk comes packaged with a command-line utility for converting AEL files into the traditional extensions.conf format called aelparse.

Note

When referring to AEL, we mean AEL2. The first version was experimental.

6.1 CLI Commands for AEL

The most important Asterisk CLI command for AEL is ael reload. It reads extensions.ael into memory and is useful if you’ve made changes to extensions.ael and want to apply them without restarting Asterisk.

*CLI> ael reload

The dialplan show command displays the aggregate dialplan as loaded by Asterisk from extensions.conf and extensions.ael. The source of each dialplan rule is displayed in a line, in square brackets, preceding the rule. For rules originating from extensions.conf, the line looks like this:

[Context 'office-incoming' created by 'pbx_config']

For rules originating from extensions.ael, the line looks like this:

[Context 'queues' created by 'pbx_ael']

6.2 aelparse

Asterisk versions as of 1.4 come packaged with the command-line utility aelparse. You can use this utility to quickly convert extensions.ael files into extensions.conf format, should that ever be necessary. Programmers may think of it as a kind of test compiler for AEL, a somewhat higher-level “language” than that used in extensions.conf.

By default, aelparse reads /etc/asterisk/extensions.ael unless called with the option -d, in which case it looks for extensions.ael in the local directory. If it is invoked without option -n, it will spit out a lot of information that is mostly useful to the Asterisk developers. Use -n for more concise output, or -q for output that shows only warnings and errors.

Tip

aelparse is useful for hunting syntax errors in extensions.ael.

With option -w, aelparse dumps the output into the file extensions.conf.aeldump in the local directory:

[image: image]

6.3 Comparing extensions.conf with extensions.ael

The following examples show you how AEL compares with the standard extensions.conf. In doing so, we’re assuming that you’re already comfortable with dialplan programming.

First, you’ll see right away that the formatting of extensions is different. The structure of extensions.ael is a lot more like a programming language. For example, the following two code blocks are functionally equivalent. We’ve made the equivalent portions bold to illustrate this.

Here’s a typical context, as it would be written in extensions.conf:

[image: image]

The same result can be achieved in extensions.ael with this:

[image: image]

6.3.1 Line Termination

AEL commands must always end with the semicolon (;) character, because multiple commands may appear on a single line. For readability, however, most people put each command on a separate line.

6.3.2 Contexts, Extensions, and Priorities

The description of contexts, extensions, and priorities is what makes AEL different from its predecessor. AEL uses curly braces ({ ... }). Numbered priorities (1, n) are no longer required, and so we are spared the dubious charms of BASIC style programming in which every line must be numbered, as well as the tedious effort of writing the same extension number for every priority. In the simple examples that follow, the AEL versions often appear longer, but its advantages can really make themselves felt with large dialplans.

Here’s a simple set of extensions in extensions.conf:

[image: image]

The same extensions would look like this in extensions.ael:

[image: image]

For extensions that need only a single command, you can skip one level of curly braces and your dialplan would still work:

[image: image]

Don’t get used to this practice, though. It’s best to include them always, even when they might be superfluous:

[image: image]

Most extensions do require multiple commands and consistency is your friend when writing code. There are only a few cases where the short form is appropriate (for example, jump).

Warning

The opening curly brace { of a code block must appear on the same line, not on a line of its own!

6.3.3 Comments

In extensions.conf, comments are preceded by a semicolon:

[image: image]

Comments in AEL are denoted with two forward slashes, //, as follows:

[image: image]

Warning

Programmers: Don’t use the C comment style (/* ... */). Every comment line must begin with its own // comment marker.

6.3.4 Includes

We can include contexts within contexts. A typical use of includes in extensions.conf would look like this:

[image: image]

Doing the same in AEL works this way:

[image: image]

Warning

Be careful to write includes and not include in AEL!

6.3.5 Global Variables

In AEL, global variables are set in a special globals block.

[image: image]

6.3.6 Expressions and Variable Assignment

AEL handles expressions in control structures (such as if(), while(), the break condition in for() and the right side of variable assignments) as though they were contained in a $[...] expression.

This seems complicated at first glance, but this behavior is common in other languages. For variable assignments in Asterisk, it is atypical, however, and can easily lead to strange errors. (AEL isn’t a full programming language yet!) For this reason, we recommend against writing variable assignments this way:

[image: image]

For predictable results, it’s better to use Set(), as you might in extensions.conf:

[image: image]

For constructions which use if(), while(), and so forth, however, the new behavior is nevertheless desirable because it spares having to use the clunky $[...]. In extensions.conf, we would use ExecIf():

[image: image]

In extensions.ael, the end result is cleaner:

[image: image]

6.3.7 Labels, goto, and jump

The hardened extensions.conf programmer is forced to get used to moving around dialplan by jumping to priorities or predefined labels using applications such as Goto(), GotoIf(), Gosub(), and GosubIf():

[image: image]

In AEL, a label always appears inside an extension and on its own line. Don’t forget the colon (:) at the end of the line:

[image: image]

In the preceding example we see a different syntax for the “goto” construction. In extensions.conf, we had to use the Goto() application, but in AEL, it’s been replaced by the command goto. (If you really want to keep using Goto(), you can, but why?)

A comparison of the syntax for Goto() and goto shows us they are functionally the same:

[image: image]

The concept of jumping to a specific priority is moot in AEL because priorities aren’t used; still, you might have a need to jump to another extension, be it in the same or another context. For this purpose, AEL includes the additional command jump.

[image: image]

In the following sections, you’ll see that AEL doesn’t really need to rely on goto statements for control flow, because it has real control structures.

6.3.8 Conditionals

Conditionals are structures that let you control program execution.

AEL has both if and switch commands. This is a big advantage because it makes an AEL dialplan much more readable. The more complex your program logic, the more obvious this advantage becomes.

6.3.8.1 if

In extensions.conf, we have to label targets explicitly:

[image: image]

In extensions.ael, the if statement has fewer parentheses:

[image: image]

Someone used to programming in AEL will find jumping around a dialplan with GotoIf() cumbersome, to say nothing of the confusion caused by a statement like GotoIf($["${DIALSTATUS}" = "BUSY"]?b:n). Are all the brackets closed?

Warning

Again, the opening curly brace must stand on the same line as the if statement, not on its own line.

6.3.8.2 switch

In AEL, the switch command lets you easily build code that can handle more than one case. In extensions.conf, a construction which does the same thing as a switch command is a confusing mess:

[image: image]

In extensions.ael, by contrast, the result is clean and elegant:

[image: image]

Trying to do a nested
if or switch in extensions.conf would be incomprehensible and impossible to maintain. Now we can really start to see the advantages of AEL!

Warning

Don’t forget the break statements in the case branches! If you omit these, Asterisk will just run them sequentially, be it to the next case branch or to default.

In addition to case comparison, switch also lets you use pattern statements to do explicit pattern matching. Here’s what pattern matching looks like in our extensions.conf:

[image: image]

In extensions.ael, the pattern syntax is the same, but it is preceded by a pattern statement and treated just like a case:

[image: image]

6.3.8.3 ifTime

The standard application GotoIfTime() (see Appendix B, “Dialplan Applications”) is replaced with the ifTime command in AEL:

[image: image]

The time syntax is the same as for GotoIfTime(). You can accomplish the same thing with the IFTIME() function (see Appendix C, “Dialplan Functions”), although the result is not as readable:

[image: image]

6.3.8.4 random

The random(){...} command takes a value from 1 to 99. This value is the percentage chance that the subsequent code block will be executed:

[image: image]

You can accomplish the same objective with an if command and the RAND() function with slightly more code:

[image: image]

6.3.9 Loops

Like conditionals, loops are control structures.

AEL has classic for and while loops, which behave just as they do in other programming languages.

6.3.9.1 while

A while command in AEL is used in much the same way as the While() and EndWhile() applications.

The break and continue statements found in some other languages can also be used in AEL loops. This corresponds to the ExitWhile() and ContinueWhile() in extensions.conf:

[image: image]

In extensions.ael, the break statement jumps to the end of the loop block, continue to the start. In this example, we use break:

[image: image]

Note

In this example, we needed more lines in AEL; if we had added another command to the if condition in our while loop, ExecIf() would not be enough anymore and we would be forced to use a more complex construction with GotoIf(). Our extensions.conf would be a lot longer.

6.3.9.2 for

AEL also gives us for loops. This has no corresponding application in the extensions.conf format, though every for loop may be written as a while loop:

[image: image]

Even here, extensions.ael is more compact:

[image: image]

6.3.10 Macros

In extensions.conf, macros or macro-like functions can be achieved with Macro() or Gosub(). Our example uses Macro():

[image: image]

In AEL, we don’t have to choose. It has the macro command:

[image: image]

The AEL compiler converts macro into a Gosub() subroutine internally; fortunately, it’s not one we have to maintain.

6.3.11 Hints

We cover the implementation of hints in AEL in depth in Chapter 18, “Busy Lamp Field, Hints, Pickup.” Here’s a simple example to demonstrate the proper syntax. In extensions.conf, hints look like this:

[image: image]

In AEL, the hint can encapsulate a reference to the device:

[image: image]

Here is a similar example, this time using a pattern. In extensions.conf, that would look like this:

[image: image]

In extensions.ael, it would look like this:

[image: image]

Notice that the pattern is now outside the hint parentheses.

6.3.12 Filtering by Caller ID

In extensions.conf, the ever-popular ex-girlfriend extension looks like this:

[image: image]

The AEL syntax that accomplishes the same thing looks like this:

[image: image]

If a call comes in from the ex-girlfriend (with the caller ID 6135303122), it is routed to Busy(). Everybody else gets connected to Dave’s phone.

Patterns are allowed here too. With /_613, you can match the entire area code.

6.4 Choosing between extensions.ael and extensions.conf

Asterisk application developers are left to decide which format is the right one. The development road map once hinted that AEL would replace extensions.conf, but since then Digium has been careful about declaring in favor of one over the other. One thing is certain: You cannot understand Asterisk well unless you understand extensions.conf, not least because the bulk of the documentation available on the Web is written for extensions.conf.

If you don’t spend a lot of time doing dialplan programming, you’re probably better off sticking with extensions.conf, at least for the foreseeable future. For application developers who work with Asterisk a lot, however, AEL has too many time- and headache-saving features to justify not trying it out. Even if Digium were to end support for AEL (which is highly unlikely), there is always aelparse to enable a return to the old .conf world.

7. Protocols

This chapter covers the techniques by which we actually get voice data from one point to another. The session protocols for this purpose are really a kind of “grammar” that governs this transmission, and are in turn built upon the transport layer protocols that make up the TCP/IP protocol stack: namely TCP and UDP. You should have a fundamental understanding of these protocols when troubleshooting certain problems, which is why we are describing them in some detail here. This understanding is not strictly necessary to implement Asterisk, but is nevertheless valuable. As such, this chapter is intended as a reference for the event it is needed.

7.1 Network Protocols

TCP is a protocol that ensures that all the information transmitted by the sender arrives at the receiver complete and in the correct order. This reliability is at the cost of relatively higher transmission overhead, which, during times of congestion, is more likely to lead to interruptions or delays in transmission. By contrast, its sister protocol UDP invests almost nothing in ensuring that everything is received; instead, it merely sends out every packet as soon as it is ready to be delivered without regard to whether it arrives intact or even in the right sequence. TCP ensures a secure, complete transfer of data by calculating a checksum on each packet and comparing the checksums when the packet is received, as well as attaching a sequence number to each packet and asking for receipt confirmation from the destination host. The destination host can ask for a retransmit if a packet is corrupt or missing. This is how HTTP (World Wide Web) traffic is transmitted.

By contrast, streaming data (as used in video and audio transmission) doesn’t actually need this level of rigor because it is time sensitive. If a video packet is missed, there is no sense in retransmitting it because by the time it arrives, the video will have played on past the point of the missing data. For this reason, UDP is used for streaming data. There is no delivery guarantee, but the transport overhead is much less than in TCP. As a general guideline, you can define the two protocols this way: TCP is for “when it absolutely has to get there intact, no matter how long it takes” and UDP is for “when it has to get there fast and we don’t care if we lose a few packets.”

Both protocols are of importance in VoIP applications, because connections are established using TCP, whereas the voice data itself is transmitted using UDP. Particularly where audio data packets are concerned, quantity is indeed more important than quality.

7.1.1 Transmission Control Protocol

The Transmission Control Protocol (TCP) is a protocol governing the transmission of data between computers. The operating systems of all modern computers understand and support TCP and use it to exchange data with other computers on a network. It is a reliable, connection-oriented transport protocol, and forms part of the Internet Protocol family.

TCP was developed by Robert E. Kahn and Vinton G. Cerf, beginning initially as a research project in 1973 and culminating in the publication, in 1981, of the Internet standards document RFC1 793, which forms the basis for all the TCP standards documents which followed, and, like many of its companion protocols, remains a “living” protocol that is always being extended and updated, through new RFC documents, to meet new needs and circumstances.

1. Request For Comments. These documents begin as simple proposals addressed to peers in the Internet engineering community and subject to revision; when a draft proposal has been accepted it is annotated and becomes part of the body of standards.

TCP sets up a virtual connection between two endpoints in a network. Data may be transmitted in either direction. TCP is almost always encapsulated in IP (Internet Protocol); for this reason, you will often hear the term TCP/IP used. It allows bidirectional data transmission, no matter which endpoint originated the connection; it automatically detects and corrects data loss, and automatically adjusts the data transmission rate to accommodate network conditions. These features, along with the fact the standard is open, have made TCP the most widely used data transmission protocol, and today it is used for the World Wide Web, e-mail, peer-to-peer file sharing, and other popular network services.

7.1.1.1 TCP Connections

TCP is an end-to-end (circuit-like), full-duplex (meaning it allows the transmission of data in both directions at the same time) connection. Alternatively, connections may be assembled as two, half-duplex connections in which information may travel in both directions, albeit not at the same time; data may be returned for the purpose of connection management. Connection management itself is handled by the TCP protocol stack, software that is typically attached to, or forms part of, the core of the operating system. In the case of Linux, the TCP stack is in the kernel itself; this stack is accessed by network software such as e-mail clients, web browsers, and servers.

Each TCP connection consists of two endpoints, with each endpoint establishing a pair of identifying characteristics: namely, the unique IP address of the endpoint, and the port. This pair forms a software interface that allows bidirectional data transfer, and is sometimes called a socket. The computers participating in the connection are identified by their IP addresses, while the particular connection is identified by the port number. As a result, it is possible for a web server, for example, to have multiple connections to a remote endpoint from its port 80; it keeps track of these multiple connections because each connection uses a different port on the remote endpoint.

Ports are 16-bit numbers, and so range from 0 to 65535. The ports from 0 to 1023 are reserved and assigned by Internet Assigned Numbers Authority (IANA) for specific applications. For example, web traffic, which uses HTTP, travels over the port reserved for HTTP traffic, port 80. The use of particular ports is not binding; an administrator may operate an FTP server on a port other than 21. For publicly accessible services, however, client software will expect to find its specific service on the IANA-specified port, and special, private services are usually operated on unassigned ports above 1024.

7.1.1.2 Connection Setup and Teardown

A web server publishing a service to the outside world sets up a socket consisting of its IP address and a port, and waits for clients to initiate connections to this socket. A socket in this state is said to be listening, and indeed a display of the active sockets (typically through a command such as netstat -an) will show some in the LISTEN state. If a client wants to connect, it sets up a socket of its own with its IP address and a randomly selected, unused port number, and uses this socket to connect to the listening socket on the server. When the connection is established, the roles of client and server are indistinguishable and basically symmetrical. Either side may terminate the connection. (When done gracefully, this is sometimes called teardown.) Data may still be transferred by the opposite endpoint while the connection is being torn down.

The three-way handshake is the manner by which two TCP endpoints establish and maintain a connection so as to minimize data loss.

The client initiating a connection sends the server a TCP SYN (synchronize, identified with the SYN flag bit set to 1) packet with a sequence number x. Sequence numbers are used to set the correct order for packets, ensure that no packets are missing, and check for duplicates when the packet stream is reassembled at the server.

The type of packet (SYN) and the sequence number are set in the TCP header and the sequence number is selected randomly (how this is done depends on the TCP implementation). The server replies with a SYN/ACK (synchronize-acknowledge, identified with both SYN and ACK flags set to 1) packet having a (similarly randomly selected) sequence number y. At the same time, it increments the sequence number of the initiating SYN packet by one (x + 1) and places this number in the acknowledgment field of the packet’s TCP header.

Finally, the client completes the handshake by replying to the SYN/ACK with an ACK packet of its own, incrementing the sequence number by one (y + 1). This process is also called forward acknowledgment. For extra security, the client also wraps the received x + 1 sequence number in this ACK reply. If all goes well, the connection is established.

Graceful teardown follows a similar process. Instead of packets with SYN flag bits set, the FIN (finish) flag bit is set. This indicates to the receiver that the sender will not be transmitting any further data. This is acknowledged with an ACK packet. The recipient of the initial FIN packet then responds with an ACK packet of its own, which is likewise acknowledged. Although four packets are exchanged, this is still treated as a three-way handshake because the FIN-ACK combination from the server to the client is considered a “one-way” operation. (The FIN and ACK message can also be contained in a single packet.)

The maximum segment lifetime (MSL) is the maximum time that a TCP segment may exist in the network before it is discarded (normally 2 minutes). After the transmission of the last ACK, the client enters a wait state equal to two MSL periods; during this time, all late-arriving segments are discarded. This is to ensure that no late-arriving segments are misinterpreted as the initiation of new connections. This also ensures that the connection is indeed closed gracefully; if the ACK y + 1 goes missing, a wait timer on the server expires and the LAST_ACK segment is retransmitted.

7.1.1.3 TCP Header Structure

A TCP segment consists of two parts: the header, containing the transmission information such as port and sequence number; and the payload, which is the real information we want to send (see Figure 7.1), which usually includes application layer protocol information (such as HTTP or SSH). The values are transmitted in network (big endian) byte order.

Figure 7.1 TCP header structure.

[image: image]

7.1.1.4 Data Transmission

A TCP segment is typically no larger than 1,500 bytes. It must be small enough to fit in the protocol data unit2 of the protocol layer immediately beneath it in the stack, in this case, IP. An IP packet may be as large as 64 kilobytes, but because IP is practically always transmitted over Ethernet, most IP packets are smaller than the maximum Ethernet frame size of 1,500 bytes. Both TCP and IP specify a header of 20 bytes, respectively, so the payload is limited to 1,460 bytes. Some connections (particularly some forms of DSL service) use PPP (Point-to-Point Protocol), which requires an additional 8 bytes of header information, meaning that the TCP/IP packet can be a maximum of 1,492 bytes, leaving a maximum segment size (or MSS) of 1,452 bytes. This corresponds to about 3.2% overhead.

2. Protocol data unit is a term used to refer to the unit of transmission corresponding to a given network layer. In the session layer, the PDU is called a segment (TCP segment); in the network layer, it is a packet (IP packet); in the link layer, it is a frame (Ethernet frame).

The sender and receiver negotiate the maximum segment size before data transmission begins, using the options field in the TCP header. The application wanting to send data (for example, a web server) places a data block of 10 kilobytes in the transmit buffer. To send this 10kB data block, it is divided into multiple packets, each with its own TCP header, and transmitted as TCP segments, a process called segmentation.

Segments usually leave in sequential order, though this is not strictly necessary, because the sequence numbering allows the receiver to reassemble them in the correct order. Received segments are checked for integrity by calculating a checksum. If it is correct, the packet is acknowledged. If it is incorrect, the acknowledgment is withheld and the sender retransmits the packet.

7.1.1.5 Data Integrity and Reliability

TCP allows a bidirectional, byte-oriented, reliable data stream between two endpoints. The underlying network layer protocol (IP) is packet switched, and packets can get lost, mangled, or arrive in the wrong order. TCP was designed to deal with these inherent uncertainties, and so it verifies data integrity using a checksum provided in the packet header, establishes the correct packet order using sequence numbers, and discards duplicate packets. The sender retransmits packets that are not acknowledged within a certain time. The received packets are assembled in the correct order in the receive buffer to form a data stream which is passed to the appropriate application.

Of course, the data transfer can be interrupted, corrupted, or terminated at any time. The connection will expire after a timeout has been exceeded. The successful establishment of a connection does not guarantee that a lasting and reliable transfer will follow. Network speed and stability may be sufficient for negotiating the connection while being insufficient to sustain it. Network conditions can also change such that they cause a working connection to fail.

7.1.2 User Datagram Protocol

In contrast to TCP, the User Datagram Protocol (UDP) is a minimal, connectionless session layer protocol. Development of UDP began in 1977, after the limits of TCP for the transmission of time-sensitive data became apparent. A protocol that handled only addressing was needed, without the overhead that went with guaranteed delivery.

7.1.2.1 Operation

To ensure that data sent via UDP reaches the appropriate application, source and destination ports are specified in the UDP header. This process-to-process communication is called application multiplexing and de-multiplexing (sometimes muxing and demuxing).

7.1.2.2 Characteristics

UDP establishes a connectionless, potentially unreliable transfer service. This means that neither transmission nor order of reception is guaranteed; that is, UDP sends data on a “best effort” basis. Applications that use UDP must take these characteristics into account and implement data correction where it is appropriate and necessary. Because no connection setup is required prior to data transmission (as is the case with TCP), the endpoints can begin exchanging data more quickly. This relatively low overhead makes UDP particularly useful for applications that exchange only small amounts of data, such as Domain Name System (DNS).

In addition, the absence of handshaking means that there is less variation in latency, or jitter. If a packet is lost in a TCP transaction, precious time is needed while the recipient waits for the sender to retransmit it, and the momentary latency can increase dramatically. This is important for multimedia applications that are sensitive to delay. In Voice over IP (VoIP) applications, these kinds of delays lead to sound artifacts and dropouts.

Connectionless protocols like UDP do not stop the flow of data if packets go missing. It is up to the receiving end to make sense of the gaps in the data stream when packets are lost, and most do this by momentarily reducing the resolution or quality of the resulting audio or video.

UDP, like TCP, is constrained by the protocol data unit size of the underlying network stack layers. IP packets cannot be larger than 65,535 bytes, of which the IP and UDP headers consume at least 28 bytes, leaving a maximum of 65,507 bytes for the actual payload. Such datagrams are usually fragmented in IP. In practice, UDP packets are rarely more than a few kilobytes in size. IP will discard packets in the case of transmission error or overflow, so datagrams can go missing.

7.2 Channels

In Asterisk, a channel is the connection between two endpoints (usually human beings in conversation). The following channel types exist:

• Agent

An automatic call distribution (ACD) agent channel

• CAPI

An ISDN channel

• Console

A Linux console channel driver for sound cards that can be manipulated through OSS and ALSA

• H.323

A VoIP protocol

• IAX

A VoIP protocol

Note

In principle, there are two versions of IAX (1 and 2). Today, anyone referring to IAX is almost certainly speaking about IAX2 (in other words, IAX version 2). IAX version 1 has been deprecated and is no longer used.

• Local

A loopback into another context

• MGCP

A VoIP protocol

• mISDN

An ISDN channel

• NBS

Network Broadcast Sound

• phone

Linux Telephony channel

• SIP

A VoIP protocol

• Skinny

A VoIP protocol (also called SCCP, or Skinny Client Control Protocol)

• vISDN

An ISDN channel

• VOFR

Voice over frame relay Adtran style

• VPB

Voicetronix hardware channel driver for PSTN connections

• Zap

Digium hardware channel driver for PSTN connections; also used for hardware from competing manufacturers

Most examples in this book assume SIP connections. The reason for this is simple: At the moment, there are more SIP-capable VoIP telephones than telephones for any other VoIP protocol. The other significant VoIP protocol for Asterisk is IAX. This chapter covers these two important protocols in some further detail, but may also be used as parameter reference for configuration.

7.3 Peers, Users, and Friends

When you configure IP connections in Asterisk, you will have to specify whether the connected device is a peer, user, or friend. The distinction between the classifications is not always clear in the Asterisk documentation.

Simply put, the classifications work like this. Asterisk...

• Accepts calls from a user

• Makes calls to a peer

• Makes calls to and accepts calls from a friend

In practice, friend is used the most.

7.4 IAX Versus SIP

Every Asterisk administrator is eventually faced with the question of whether to build primarily on SIP or IAX. Although the dispute over protocol has a religious tone at times, we think that from a purely technical standpoint, IAX is, in certain important respects, at least slightly superior to SIP. In many installations, IAX will mean many fewer implementation problems than one would expect with SIP. The primary reason for this is the way that SIP handles Network Address Translation (NAT). SIP connections are problematic because they require the opening of an entire range of ports in the firewall to work. The ability of IAX to multiplex conversations over a single connection (IAX trunk) is also more efficient because it reduces overhead. SIP, by contrast, establishes a separate connection for each conversation.

If IAX is available and possible (that is, the sets support it), IAX should be used; otherwise, you should use SIP.

Mark Spencer, the inventor of Asterisk, wrote an e-mail to the Asterisk users mailing list in 2004 that attempts to address the question (Figure 7.2).

Figure 7.2 Mark Spencer’s e-mail on IAX.

[image: image]

[image: image]

In the intervening years, IAX has itself become a well-documented and open protocol. IAX 2 was accepted as informational (nonstandards track) RFC 5456 in February 2009.

8. Making Connections

Asterisk finds its real power when you connect it to other systems, telephone devices, and networks. It accomplishes this through audio codecs and a variety of transport media, such as digital trunks (T1, E1) and traditional analog lines. In this chapter, we look more closely at codecs, ISDN, and analog telephony.

8.1 Codecs

A discussion of codecs, as they are used in telephony, will put someone on one of two sides of a large mountain. On one side of the mountain, we have the situation in North America, which has very little ISDN penetration, at least at the retail level. The average North American telephone customer has only ever used analog telephones, and so the stack of digital codecs is seen from the base of a mountain yet to be scaled: At the summit is an appealing array of digital codecs that offer exceptional sound quality, but represent the unknown.

On the other side of the mountain, we have the situation in Europe, where ISDN has been ubiquitous for so long that analog seems like the dark ages and nobody thinks twice about codecs or call quality. The average European telephone customer under the age of 35 has only ever used digital telephones, and so the stack of digital codecs is seen from a mountain she has already been to: The summit was nice, we took some pictures, now let’s make phone calls.

In either case, the codecs are far from the surface of anyone’s consciousness. Nevertheless, choice of codecs has implications for Asterisk implementation. Whether you are in North America, Europe, or elsewhere in the world, you will still be faced with this choice.

As a general guideline, the most common digital codec used in telephony is the ISDN codec G.711 (a-law or u-law companding; u-law1 is used in the United States and Japan, while a-law is the standard in Europe).

1. Actually, this is μ-law (the Greek letter mu, used in physics as a prefix meaning “micro”).

The limited use of digital telephony in the United States is at least part of the reason why Voice over IP (VoIP) has caught on much more than in Europe. The sound quality offered by a clean, IP-based connection is often vastly superior to that of the aging analog infrastructure.

8.1.1 What Does a Codec Do?

Simply put, a codec takes an analog audio signal and converts it into a digital bitstream. This consists of a series of steps. First, the signal is digitized into a time-coded bitstream, and then this bitstream is compressed using a compression algorithm so that it uses less bandwidth when transmitted. This compression can be nearly lossless (e.g., G.711) or lossy (e.g., GSM). Without a codec, no audio can be transmitted. Which codec one ought to choose depends on the bandwidth available and the available processing capacity. Use of any codec is always a compromise between these two considerations.

This chapter does not cover the function of codecs in too much detail. For our purposes, an overview will suffice.

8.1.2 Performance

The biggest problem with high-compression codecs is the processing they require. Using the Asterisk console, enter the command core show translation to see a table of the actual transcoding times required for the various codecs:

[image: image]

[image: image]

Codecs not available on your system are marked with a dash (-). It is easy to see which codec demands the most processing resources: speex.

To minimize load, use the minimum possible number of codecs. If set A and set B both use the same codec in a call to each other, Asterisk need only pass through the packets. If set A and set B use different codecs, Asterisk has to transcode each packet, which involves decoding the incoming packet and then encoding it using the other codec before sending it out to the destination set, and it has to do this in each direction. You can see how this becomes onerous quickly.

8.1.3 Configuring Codecs

How codecs are configured depends on the technology. IAX sets are configured in iax.conf, and SIP sets are configured in sip.conf. If you want to set all SIP sets to use G.711, you would write the following in sip.conf:

[image: image]

If you have a specific telephone (call it 2000) that should use only GSM, you can set this as follows:

[image: image]

8.1.4 Commonly Used Codecs

The CLI command core show translation, which displays the table shown earlier, will show you which codecs are available on your system (namely, all those with numbers in their respective columns). The following list briefly examines the most commonly used codecs in Asterisk:

• GSM

An Asterisk “classic” and familiar to anyone with GSM mobile phone service. The bandwidth is 13.3kbps, and the quality is acceptable, if not exactly overwhelming.

• iLBC

iLBC is a sort of secret weapon for use in low-bandwidth situations. The sound quality is excellent, and the bandwidth is limited to between 13.3kbps and 15kbps (depending on frame size). Skype uses a variant of this codec. The problem with iLBC is that it is processor intensive; that is also why it is not implemented in very many hardphones.

• G.711

Another classic, from the suite of ISDN codecs. This codec offers superb sound quality and requires 64kbps of bandwidth. This is standard for most calls traveling in corporate intranets and is also widely used for calls over the public Internet.

• G.722

The chances are good that G.722 will eventually replace G.711; at the highest resolution, it offers a much better sound quality than G.711, but while requiring the same bandwidth (only 64kbps). Unfortunately, it not, as yet, supported by many telephones.

• G.726

Offers the same sound quality as G.711 while needing only half the bandwidth (32kbps). In contrast to G.711, only the data that has changed relative to the previous voice packet is transmitted (similar to the way MPEG video works). The result is the same information transmitted with half the bandwidth. G.726 is not too burdensome, but still requires more processing than G.711.

• G.729a

G.729a is a patented codec that needs only 8kbps and offers sound quality comparable to GSM. Licenses for Asterisk can be purchased from Digium (www.digium.com). It is not exceptional either in voice quality or performance, but offers a fair balance and is implemented in many VoIP telephones. As such, it is a good option when you need to conserve bandwidth.

• G.729.1

G.729.1 is an extension offering bitstream interoperability with existing G.729 codecs, as well as a high level of configurability (it supports 8kpbs to 32kbps streams). Of particular interest are the wide-band extensions, which can offer very close to CD-quality sound; as yet, only a few phones support them. To use the wideband extensions, all the devices in the media path must support them.

8.1.5 Bandwidth and Trunking

Anyone wanting to pass multiple simultaneous calls over a network connection (e.g., when two Asterisk systems are connected to each other) will soon have a bandwidth problem. Depending on the constellation of codec and frame size, it is easily possible for the IP overhead to exceed the payload. For example, using SIP and GSM on a 2Mbps data connection, you can support a maximum of 35 simultaneous calls, which isn’t exactly a lot. In such a case, you would be better served by an ISDN PRI, where the sound quality will be significantly better.

Trunking is great because it lets you wrap multiple voice chunks in a single connection, so that you are not incurring an overhead penalty for each call. In our example above using the same 2Mbps connection, we can support 77 simultaneous GSM calls. If we want to improve the sound quality, we can do this and still support 44 G.726 calls.

Trunking is supported only in IAX2 (see Chapter 7, “Protocols”) and should only be used with at least two simultaneous calls, because the overhead for a single call would be measurably higher than without trunking.

If you want to assess your bandwidth requirements more closely, see the bandwidth calculator at www.asteriskguru.com/tools/bandwidth_calculator.php and try out various scenarios.

8.2 Integrated Services Digital Network

ISDN is a twisted-pair, digital multiplexing standard for PSTN and data applications. Although used widely around the world, it is not well known in North America. For most data applications, ISDN has been displaced by ADSL, coaxial cable, and FTTH (fiber-to-the-home) technologies, which offer much larger bandwidth at competitive rates. It remains in use for voice and video applications. We’ll look at those here.

ISDN itself is a giant topic, and because it is an older technology, it is well covered in other texts. Do not expect much depth here. We discuss ISDN only in the context of its relevance to Asterisk.

8.2.1 ISDN Basics

An ISDN connection provides two basic channel types: B and D. (More specialized channel types exist but are not in wide use, and are not covered here.) A single B (bearer) channel can be equated, roughly, with a single analog telephone line: You can carry on one conversation on that channel. Where it differs is that a single physical line pair can carry multiple B channels, making better use of the existing wiring. The data is transported in digital and not analog format, which means you can’t connect an analog telephone to the line and expect to hear anything. The digital transport usually delivers better sound quality when everything is properly configured.

The D (data) channel carries signaling information about the B channels on the circuit.

The differences between the B and D channels are as follows:

• The B channel is, for our purposes, a voice channel. (In a non-Asterisk installation, it could carry data.) A B channel provides 64kbps of bandwidth.

• The D channel is data only, but is dedicated for signaling purposes. Depending on the interface type, the D channel can be 16kbps or 64kbps. The ISDN device—be it a telephone, PBX, or interface card—uses the D channel for call setup and teardown.

The following sections cover the two major types of ISDN connection: the basic rate interface and primary rate interface.

8.2.1.1 ISDN Basic Rate Interface

The entry-level ISDN service is called basic rate interface, or BRI, and is used in homes (in the world outside of North America) and small businesses. It provides two 64kbps B channels and one 16kbps D channel (which is why some refer to it as 2B+D) over a single line pair (two wires). You can attach ISDN phones, BRI ports on PBX devices, ISDN-BRI terminal adapters (which provide FXS ports for analog telephones), or ISDN-BRI adapter cards to a BRI.

To install and use BRI, you need to know what signaling type the carrier expects. There are two types:

• 2B1Q

This (2 binary, 1 quaternary) is the signaling type used in North America. It is a linear coding type that supports a loop length of up to 5,500 meters (about 18,000 feet).

• 4B3T

This (4 binary, 3 ternary) is the signaling type used in the rest of the world, including Europe. It is a block coding type that supports a loop length of up to 4,200 meters (about 13,700 feet).

8.2.1.2 BRI in the United States

ISDN never really caught on at the subscriber level in North America. Although there are many opinions why, the most common explanation given is that the size of the existing network made implementing ISDN to the suburbs prohibitively expensive. In North America, average loop lengths are much longer when compared to Europe, where ISDN circuits now make up more than 80% of installations.

Still, sometimes BRI makes sense, and in most jurisdictions it is a tariffed service, which means that some carrier (usually the incumbent telephone company) must provide it if it is technically feasible. Here are some reasons why you might consider BRI:

• You are faxing and your analog lines are poor quality.

Faxing does not work well over IP (see Chapter 17, “Fax Server”). Analog is an option, but if your analog lines are noisy, you should consider BRI.

• You need the sound quality and call-signaling features that only ISDN provides, but don’t need enough channels to justify PRI.

Features such as Explicit Call Transfer, DNIS (Dialed Number Identification Service), and COLP (COnnected Line identification Presentation) are ISDN services that can’t easily be replicated on analog lines. If you need these but don’t need more than six to ten channels, BRI is a real option. One thing is beyond dispute: In the circuit-switched, PSTN world, ISDN offers unparalleled sound quality.

Of course, the economics will vary depending on your location and the carrier. Be warned that most carriers that offer BRI don’t actively market it, so you may face challenges in getting anyone in the sales department to acknowledge that the service exists.

8.2.1.3 ISDN Primary Rate Interface

You can think of the PRI as the bigger, flashier brother of the BRI. In North America, PRI is provided over a T1 (23 B channels, 1 64kbps D channel) with 2 or 3 pairs (4 or 6 wires); in Europe, the E1 (30 B channels, 1 64kbps D channel). Again, you can only connect ISDN devices to a PRI circuit. Examples include the PRI interface on a PBX, a channel bank (which provides FXS ports for analog telephones), or an ISDN-PRI interface card. The PRI is intended for larger installations.

Nothing says a PRI must use all 24 channels. Some carriers provide partial PRI service (usually ten channels), sometimes at considerable cost savings.

PRI always implies ISDN. PRI service is supplied via a T1, but not all T1 circuits are PRI. Non-ISDN T1 circuits (also called in-band T1) can still be found in North America. In such circuits, call setup and teardown signaling is sent in the channel (CAS, or channel associated signaling) instead of via a separate D channel. This steals some bandwidth from each channel but makes all 24 channels available.

For voice applications, PRI is on its way to replacing non-PRI T1 connections completely. Its broad support and extremely fast signaling make it the easy choice.

8.2.2 Choosing an ISDN Card

This is a difficult question, and the answer depends on your specific circumstances and requirements. Here are some things you need to consider:

• A card that’s excellent today may be mediocre tomorrow, particularly when compared with newer product in the marketplace.

• Card performance can depend heavily on the driver software, which can change over time.

• Support quality is subjective.

• Performance requirements will depend on the intended use. Some products that would not be a good choice for the business market may be perfectly acceptable for the residential market.

Actually using an ISDN card in an Asterisk server is really quite simple, even if installation and configuration aren’t always trivial. There are a few different ways to get an ISDN card running with Asterisk. We touch on a few variations below.

Important

All the installation examples in this book use a Debian Linux system. The installation procedure will differ on other Linux systems and may not work at all on BSD systems. If you are starting out, we recommend you follow the instructions completely and begin with a fresh Debian installation.

8.2.2.1 Determining Your Quality Needs

Most private Asterisk users are not hung up on sound quality and availability. Cost is likely the primary consideration here. If you aren’t planning to fax over the card, and you only need two B channels, any generic HFC-based BRI card will do. The cards are cheap and widely available. You’ve been warned, however: Installation can be challenging with these cards, and you shouldn’t expect amazing sound quality. If you can live with these limitations, this is a real option.

For business systems, the bar rises substantially. If you are replacing an older system you must at least match it in quality, unless you like doing battle with users and clients. If you value your career in this business, you’d best steer clear of generic cards.

8.2.2.1.1 Hardware Echo

Sadly, the echo problem remains. Any professional system connected to the outside world must have the highest-quality echo cancellation available, and this is generally achieved through a hardware echo canceler integrated into the card itself. The advantage over software echo cancellation is clear: The performance of hardware echo cancelers is historically better, and they don’t need to steal CPU cycles to achieve it.

Because echo cancellation is not easy to do well, these modules are accordingly more expensive. Nevertheless, in business applications, hardware echo cancellation is not negotiable for any system you intend to connect to the PSTN. Cards providing PRI to internal servers can get away without it because echo in local trunks is rare, but if you’re buying a card anyway, spend the extra money. You never know how you might need to use the card in the future.

Tail length is a performance parameter to consider when evaluating hardware echo cancelers. It determines the length of the reference sample when calculating echo cancellation. The rule of thumb is that the longer the tail length, the better the echo cancellation. In practice, it’s difficult to hear a difference beyond 128 milliseconds.

8.2.2.1.2 Server Load and Interrupts

In the early years of Asterisk, there was no affordable echo cancellation, so Mark Spencer and others wrote software to perform the cancellation. This necessitated breaking the in- and outbound audio streams into 1ms chunks. For this reason, all the standard ISDN cards in use today set interrupts at 1ms intervals for each B channel.

This historical artifact can lead to problems in some applications. You probably won’t notice this if you use a single PRI or BRI connected to modern server hardware. If you’re using a compact, embedded system, however, even a simple BRI with two B channels can cause problems under load. If you have a large system with multiple PRIs and interface cards, similar problems can occur. Enough interrupts can bring the most powerful system to its knees.

If you are faced with either of these circumstances, you have these options:

• Find out how much a single system can handle and cluster them.

• Install an ISDN-SIP gateway. These are black-box systems with an ISDN interface on one side and a SIP interface on the other, which connects to your Asterisk server. Be careful, though: Some of these systems are just Asterisk boxes themselves! You want real, dedicated translation.

• Buy an ISDN card that solves the interrupt problem at the driver level. For example, Sangoma produced a special driver for its cards that sets an interrupt at 10ms intervals on a by-port, rather than by-B-channel, basis.

8.2.2.1.3 Internal Analog Fax Devices

If you’re connected to the PSTN via an ISDN connection but still use analog fax devices internally, you might run into another timing problem, particularly with long faxes. This is caused by different clock timings on the audio channels. The ISDN cards use the PSTN for their clock source; the analog interface cards use their own, usually internal (and often cheap and unstable) clock source. The result is a clock differential that is managed using a buffer. After two pages (on average), the buffer empties, and you lose a bit of audio, often enough to overwhelm the fax error correction. The result is usually a black line or gap in the fax image. In the best case, nothing is visible; in the worst case, the transmission ends prematurely.

Here are some things you can do to address faxing problems:

• If you can do without a fax machine, going to software faxing on the server is a cost-effective alternative (see an in-depth explanation in Chapter 17).

• An ISDN terminal adapter attached to the same ISDN card as the incoming service will also solve the problem. If you attach the device to a different ISDN card in the same machine, you need to verify that the cards will operate in sync.

• Cards from some manufacturers can be synced to each other via an internal cable that provides the clock signal from the ISDN card to the analog card.

8.2.2.2 Manufacturers and Drivers

There seem to be as many ISDN card manufacturers as people with an opinion about them. The products described here are a subjective selection, but have been chosen because they are used widely. Further exploration of the subject could fill another book.

Important

Hardware and driver information provided here was current at the time of printing. Check this book’s website (www.the-asterisk-book.com), where we will post updates.

8.2.2.2.1 Digium

As the parent company and home of Asterisk, Digium (www.digium.com) has offered digital interface cards for several years now. (The early cards were analog only.) The advantage for the Digium cards is obvious: You always have drivers updated for the most current Asterisk release. In the past, these drivers have been middling in quality and there have been problems. With the new DAHDI driver generation, Digium is promising better performance.

8.2.2.2.2 Sangoma

Sangoma (www.sangoma.com) is a popular alternative manufacturer in North America, and was, until recently, purely a hardware company. They make both analog and ISDN interface cards and have a reputation for good technical support.

Open source purists may take exception to Sangoma’s use of a binary-only ISDN stack (for BRI). Sangoma’s response is that the commercial stack is certified for ISDN and has demonstrably fewer issues than the open source mISDN stack.

8.2.2.2.3 Generic HFC-Based BRI Cards

These cards have been sold in Europe for many years now, usually at bargain-basement prices. Support is rarely if ever provided, and at $100 to $150, it can hardly be expected. They are almost always used with mISDN.

8.2.3 Media Gateways

Just as you might use an ATA in place of an analog interface card for regular phones, you could use a “media gateway” for ISDN connections. This gateway converts an ISDN connection into one or more SIP accounts and vice versa. These are usually “black box” solutions, which are configured via a web GUI or over SSH.

Purely analog media gateways are simply ATAs (analog telephone adapters).

8.2.3.1 Advantages

One major advantage is that a media gateway is often easier to configure than an interface card. You don’t have to open up the server and install the card, either. Configuring Asterisk is simpler because you only have to configure SIP. Finally, you don’t have to run telephone lines of any kind to the server; you install the gateway device in the wire room, connect it to the network patch panel, and put the server anywhere on the network that is practical.

8.2.3.2 Disadvantages

Media gateways are generally sold on price and not on the quality of installed components, so manufacturers are tempted to use lower-quality interface cards, which can be problematic (see the “Choosing an ISDN Card” section, earlier in this chapter). Asterisk works best when using the ISDN clock; the clock signal is very stable, and a stable clock signal is vital, especially for conferencing. A media gateway does not pass this signal over Ethernet; the Asterisk server must rely on the system clock, which will vary in stability. Updating a media gateway is also more difficult, if it’s possible at all.

Whether one should choose an interface card or a media gateway is a regular topic of discussion in the Asterisk community. Both sides make good arguments, and you can run a successful system with either. What is best for you depends on the circumstances. If you need stable clock (you are conferencing or you have existing ISDN cards in your system), you’ll need an ISDN card. If you have physical access problems, or you need to maximize the simplicity of the system, go with a media gateway.

8.3 Analog Telephony

In spite of the increasing adoption of digital and IP transports, the classic analog line pair still plays a huge role in communications. Most residential land lines in North America are still analog, and many businesses rely on analog lines to connect their small PBXes and key systems. Analog can have a place in installations that have fax devices, which work poorly over IP.

Two types of device can be attached to a telephone line:

Note

The name describes what the device is attaching to, which can be counterintuitive.

• FXO: Foreign Exchange Office

A Foreign Exchange Office (FXO) device is any end-user device that attaches to a line and does not provide its own line battery voltage. The standard telephone we are all familiar with qualifies as an FXO device, but fax machines and modems are also FXO devices. A phone is an FXO device because it attaches to a Foreign Exchange Office, also called a telephone exchange.

• FXS: Foreign Exchange Station

A Foreign Exchange Station (FXS) is any device that provides line battery voltage. This almost always means a dial tone and ringing voltage also. You need an FXS device if you need to provide service to analog phones, fax machines, and modems. The telephone outlet on the wall is a typical FXS “device.”

8.3.1 Connecting Analog Devices

FXS devices provide significant voltage; a telephone line in the “on-hook” state can have a voltage as high as 52 volts DC, and a ringing line can have a voltage between 90 volts and 110 volts AC! Keep the AC ringing voltage in mind when you are working on an exposed, active line pair with bare fingers. While the ringing signal is unlikely to do you any harm, the bite can make you quite uncomfortable! If you want to avoid this, wear gloves.

Warning

If you attach an FXS module on an interface card to a telephone outlet, it can permanently damage your card or even cause the interruption of service from the telephone company! Use caution when connecting your card to the line. Make absolutely sure you are connecting an FXO device to your incoming phone line pair. Some interface cards actually light up the port with a colored LED to indicate whether the port is FXS (usually green) or FXO (usually red). Failing that, mark the ports with a label or marker before you install the interface card in the server.

In the telephony world, polarity is described by the terms tip and ring, which correspond to the parts of the plug used by telephone operators in the early days of the telephone system.

• Tip

This is the positive (+), or ground (the tip of the plug).

• Ring

This is the negative (−), or battery (the ring, just behind the tip). Ring voltage against ground can vary from −48 VDC to −52 VDC.

If the polarity between the device and the line is reversed, it can cause problems in some cases. For example, if you have an older dual-tone multi-frequency (DTMF) phone (such as a Western Electric model 2500), you won’t be able to dial out; reversed polarity has been known to cause noise problems also. Even if most newer devices ignore polarity, it is good practice to keep polarity consistent throughout your wiring system. This way, you can be guaranteed that your phone system will work properly with any standard device.

8.3.2 Analog Telephone Adapter

The analog telephone adapter (ATA) allows you to connect an analog telephone device to an IP network (either SIP or IAX2, and almost always Ethernet). The advantages are the simplicity and low cost when compared with FXS modules on analog interface cards (as little as $50). Also, FXS modules can suffer from noise caused by nearby components in the Asterisk server; an ATA does not suffer from this problem. A major disadvantage of an ATA is that it won’t work any better with fax.

An ATA has one Ethernet port and at least one RJ-11/RJ-12 telephone port, sometimes two. An ATA can be configured via an attached telephone or through a web interface. ATAs may connect directly to a phone or be connected to the building wiring to support multiple extensions sharing a single line.

A SIP ATA is treated just like any other SIP telephone, and you’ll need to create an entry for it in sip.conf.

9. Voicemail

In this chapter, we review the capabilities of Asterisk’s built-in voicemail system. Note that this is different from an interactive voice response (IVR) system, which is covered in depth in Chapter 10, “Interactive Voice Response.”

Voicemail is an essential component of any professional telephone system.1

1. As a humorous homage to the popular Nortel Meridian PBX voicemail system called Meridian Mail, the Asterisk developers have named the Asterisk voicemail system Comedian Mail.

9.1 Example Implementations

The examples that follow should give you a quick overview of typical configurations. Specifics and special features are covered in section 9.3, “Dialplan Applications.”

9.1.1 An Example Home System

In the course of modernizing their home, the Robinson family has decided to install an Asterisk system, including a voicemail system with a mailbox for every family member.

Each family member needs a mailbox. The extension numbers and mailbox parameters are shown in Table 9.1.

Table 9.1 The Robinson Family Mailboxes

[image: image]

The voicemail.conf looks like this:

[image: image]

In extensions.conf, we send an unanswered call to voicemail like so:

[image: image]

[image: image]

A more elegant implementation can use a macro:

[image: image]

9.1.2 An Example Business System

A business like Widgets, Inc. will need a more comprehensive voicemail system. In this example, you’ll be able to see how much you can do with Comedian Mail.

The default settings for each voice mailbox are as follows:

• Voicemails are saved in WAV format.

• Each mailbox is limited to a maximum of 200 messages.

• The maximum length of a voice message is 5 minutes.

• Voice messages are stored on the system and also sent to the user as an e-mail attachment.

Beyond these default settings, individual departments have additional needs and wants for their mailboxes, as you can see in Table 9.2.

Table 9.2 Widgets, Inc. Mailboxes

[image: image]

The voicemail.conf for Widgets, Inc. looks like this:

Warning

Statements in all the code examples are to be entered on a single line unless otherwise indicated. Lines are wrapped in the book due to space limitations, and are designated with an arrow.

[image: image]

Calls are sent to voicemail in extensions.conf like so:

[image: image]

[image: image]

[image: image]

The extensions.conf for Widgets, Inc. is already starting to look a bit more complicated. This is because we are using different mailbox features for different users and departments. There are normal individual mailboxes for some staff and group mailboxes for sales and reception; on top of that, sales staff must be able to access messages without having to enter a password. This must be as easy and transparent as possible for individual staff members, so we set the standard voice mailbox access number to 800 for everyone.

9.3 Dialplan Applications

We can use two voicemail applications in the dialplan (extensions.conf):

• VoiceMail()

This application sends a caller to the voicemail system, where she will be asked to leave a message.

• VoiceMailMain()

This application lets recipients check their voice messages and record new voicemail prompts.

9.3.1 VoiceMail

This command prompts the caller to leave a voice message.

The VoiceMail() command is always called from the dialplan (extensions.conf), as in this example:

exten => 2000,2,VoiceMail(2000,u)

The command uses the following syntax:

VoiceMail(mailbox[@context][,u|b|s])

• mailbox

This is the mailbox number. This does not have to be the same as the extension the caller dialed; nevertheless, this is a sensible practice, particularly in larger installations.

• @context

Mailboxes may be implemented in a specific context. If no context is provided, the [default] context is used.

If the caller presses 0 while listening to the prompt, the application will jump to extension o (the small letter o) in the specified context.

If the caller presses * while listening to the prompt, the application will jump to extension a (the small letter a) in the specified context.

• [u|b|s]

• u

Causes the “unavailable” message to be played. The pathname for this message is /var/lib/asterisk/sounds/vm-isunavail.gsm.2

2. If you are using a prepackaged Asterisk, the path may be different (for example, /usr/share/asterisk/sounds).

• b

Causes the “busy” to be played. The pathname for this message is /var/lib/asterisk/sounds/vm-rec-busy.gsm.

• s

Suppresses playback of the “unavailable” or “busy” notifications, plays a beep, and begins recording.

If there is no mailbox configured in voicemail.conf for the given number but there is an n+101 priority, Asterisk jumps to this priority and continues executing there.

9.3.2 VoiceMailMain

This command gives users access to their messages and lets them record prompts.

The VoiceMailMain() command is always called from the dialplan (extensions.conf). For example:

[image: image]

• mailbox

This is the mailbox number. If no mailbox number is provided, Asterisk prompts for it.

• @context

Specifies the voicemail context (in voicemail.conf) for the mailbox.

• [s|p|g(#)]

• s

Disables the password requirement.

• p

The user is asked for a mailbox number. The number entered is attached as a suffix to the contents of [mailbox]; for example, if the user enters 123, [mailbox]123 is called. This lets you easily configure mailbox groups.

• g(#)

Adjusts the gain (in decibels) when recording voicemail prompts.

A complete description of the voice menus for VoiceMailMain() is difficult because they depend on the installed prompts. The main functions are described in Table 9.3.

Table 9.3 Menu Structure for VoiceMailMain()

[image: image]

9.4 voicemail.conf

Voicemail is configured in voicemail.conf. The file has three sections, which are described in detail in this section:

• [general]

Global configuration options go here.

• [zonemessages]

For organizations spread across time zones, time-zone-specific options go here.

• Defined contexts

If the organization has multiple divisions or departments, you can maintain them in separate voicemail contexts.

9.4.1 [general]

Global configurations for the voicemail system go here. The available options for this section are described in detail here:

• attach = [yes|no]

Sets whether voice message files are attached to e-mail notifications. Default: yes. The format defined by the first entry in the format= line is used.

• callback=[context]

Specifies the context through which callbacks from the voicemail system are made. If unset, callbacks cannot be made from voicemail. Default: unset.

• charset=[charset]

Specifies the character set used to encode the text of the e-mail. In this example, ISO Latin-1 is set:

charset=ISO-8859-1

• delete=[yes|no]

Sets whether messages are deleted once the e-mail notification with attachment has been sent. This saves hard disk space on the server if users are only to receive messages via e-mail.

• directoryintro=[filename]

Specifies the filename of a sound file (found in the default sound file directory /var/lib/asterisk/sounds) to be used rather than the default sound file for the Dial-by-Name system.

• emailsubject=[subject]

Specifies the subject line to be used in e-mail notifications. For information about variables, see emailbody. The text need not be enclosed in quotation marks:

emailsubject=New message from ${VM_CALLERID}

• pbxskip=[yes|no]

Asterisk prefixes [PBX] to the subject line of every e-mail notification. This is intended to make filtering e-mail notifications into a specific folder more straightforward, but can be suppressed with yes if undesired.

• emailbody=[email_text]

This specifies the body text of the e-mail notifications and is limited to 512 characters.

You may use variables in the subject and body of e-mail notifications:

• ${VM_NAME}

Name of mailbox owner

• ${VM_DUR}

Message length

• ${VM_MSGNUM}

Message number

• ${VM_MAILBOX}

Mailbox number

• ${VM_CALLERID}

Name and number of caller

• ${VM_CIDNUM}

Number of caller

• ${VM_CIDNAME}

Name of caller

• ${VM_DATE}

Date and time of call

• ${VM_MESSAGEFILE}

Name of the sound file that contains the voice message

All the text needs to be on one line. If you need carriage returns, use the \n combination:

[image: image]

• serveremail=[fromaddress]

This specifies the e-mail address that appears in the From field of e-mail notifications. Here is an example:

serveremail=voicemail@widgets-inc.biz

• fromstring=[fromname]

Specifies the envelope sender (From header) in e-mail notifications. This is useful for mail filtering and sorting.

• mailcmd=[mailer]

Specifies the application (including absolute path) to be used for sending e-mail notifications. Here are two more common examples; note that you can append options:

[image: image]

• externnotify=[application]

Specifies the application (including absolute path) called by Asterisk when a new message arrives. You can use it to call custom scripts:

externnotify=/usr/bin/local/send-sms.sh

• externpass=[application]

Specifies the application (including absolute path) called by Asterisk when a user changes his password. You can use it to call custom scripts:

externpass=/usr/bin/local/password-notify.sh

• forcegreetings=[yes|no]

Sets whether the user will be forced to record a new greeting when logging in to the system for the first time. The default is no.

• forcename=[yes|no]

Sets whether the user will be forced to record her name when logging in to the system for the first time. The default is no.

• format=[gsm|wav|wav49]

Defines the codecs used to save voicemail messages. If more than one codec is specified, the message is stored once in each of the formats specified. This can lead to a shortage of available disk space but means further transcoding will not be needed if a user using a different codec is retrieving the messages.

If attach=yes, the first format specified is used for the attachment to the e-mail notification.

format=gsm|wav

To save messages only in WAV format, use:

format=wav

Caution

If this setting is changed during operation, existing files in other formats must be deleted manually by the system administrator.

• searchcontexts=[yes|no]

Asterisk only looks for mailboxes in the specified context. Setting searchcontexts=yes makes Asterisk search in all contexts. The default is no.

• maxmsg=[number_of_messages]

Defines the maximum number of messages a single mailbox may hold. When this limit is reached, no further messages can be recorded, and the caller hears the message /var/lib/asterisk/sounds/vm-mailboxfull.gsm. The default is 100.3

3. The path depends on the installation; some packages install the sounds in /usr/share/asterisk/sounds.

• maxmessage=[length_in_seconds]

Sets the maximum duration of a message. There is no limit by default.

• minmessage=[length_in_seconds]

Sets the minimum duration of a message. The default is 0.

Example:

minmessage=5

• maxgreet=[length_in_seconds]

Sets the maximum duration of greeting messages. There is no limit by default.

• maxsilence=[length_in_seconds]

Sets the number of seconds of silence that the system will allow before it assumes that the caller has finished.

• silencethreshold=[threshold]

Specifies the maximum sound level that Asterisk considers silence when measuring maxsilence=. The lower the number, the more sensitive the detection. The default is 128.4

4. There is no indication in the Asterisk source code what the range or unit for this value is. The only way to set the value sensibly is through trial and error.

• maxlogins=[no_of_login_attempts]

Sets the maximum number of failed login attempts (e.g., the user enters an incorrect password) before Asterisk hangs up. The default is 3.

• skipms=[milliseconds]

Sets the number of milliseconds the “skip forward” and “rewind” keys will jump forward or back during message playback. The default is 3000.

• usedirectory=[yes|no]

Gives callers access to the Dial-by-Name system. The default is no.

• saycid=[yes|no]

Sets whether the telephone number of the caller is announced when the message is heard. The default is no.

• cidinternalcontexts=[contextA,contextB,...]

Defines (through a comma-separated list) which contexts are treated as internal when the originating telephone number is announced as per saycid=. For contexts defined as internal only the caller’s extension is announced. There is no default.

• pagerfromstring=[sendername]

Indicates the sender for pager notifications. See fromstring=.

• pagersubject=[subject]

Specifies the subject for pager notifications. See emailsubject=.

• pagerbody=[body_text]

Specifies the message body for pager notifications. See emailbody=.

There are other parameters in addition to those documented here; nevertheless, these are those most frequently used. A complete listing of the available parameters, with brief descriptions, may be found in the sample version of voicemail.conf.

9.4.2 [zonemessages]

In larger enterprises, voicemail users can be spread across time zones; the [zonemessages] section allows for time announcements that correspond to the user’s time zone.5

5. Note that time zones defined here must still be activated for individual users.

zonename=timezone | format

• zonename

This is an arbitrary identifier used to identify the time zone. Only small letters (a–z), numbers (0–9), dash (-), and underscore (_) characters are allowed.

• timezone

Time zone information is stored in /usr/share/zoneinfo for most Linux distributions. Typically, the time zone files are sorted by continent, then region or city, separated by a /.

Examples:

[image: image]

• format

Defines the format for time announcements. This is done with the variables, which are described in Table 9.4.

Table 9.4 Time Format Variables in voicemail.conf

[image: image]

Other allowed variables include ${ANY_VARIABLE} (the contents of the variable are entered) and 'sound_filename'. When specifying a sound file, be careful not to add a file extension (e.g., .wav, .gsm); the specified sound file in /var/lib/asterisk/sounds is then played. The single quotation marks are mandatory.

Here are some sample formats as they would be used in voicemail.conf:

[image: image]

9.4.3 Defined Contexts

As in the dialplan (extensions.conf), we can define contexts in voicemail.conf. This is useful when there is a need to separate voicemail access by department, branch, or city, and makes it possible to define separate Dial-by-Name directories as well.

The default context is mandatory. For most installations, this is all that is required.

9.4.4 Mailboxes

You can configure as many mailboxes as you like in a given context. The proper syntax is as follows:

mailbox => password,name[,e-mail[,pager-e-mail[,options]]]

The following example sets the voicemail attachment format as WAV and deletes the message once it has been attached to an e-mail and sent:

202 => 1234,Gina Smart,gina@widgets-inc.biz,,attachfmt=wav|delete=yes

Here are the parameters, explained:

• mailbox

Mailbox number (digits).

• password

Password for the mailbox (may be letters or numbers). Generally, numbers are more practical as they are more likely to be enterable from a standard telephone set.

• e-mail

E-mail address to which to send e-mail notifications.

• pager-e-mail

E-mail address for the pager to which pager notifications should be sent.6

6. Note that such notifications are still, in essence, e-mail notifications. If you want to send SMS notifications, you can do so with a number of external applications that may be invoked through Asterisk.

• options

Multiple options must be separated by the pipe character (|); these options can override global options set in [general]. Note that there cannot be any spaces between the parameter name, the = sign, and the value, nor between the options and the pipe character.

The most important options applied here are as follows:

• tz=[timezone]

Sets the time zone previously defined in [zonemessages].

Example:

tz=alberta

• attach=[yes|no]

If defined, sets whether voice message files are attached to e-mail notifications.

• attachfmt=[gsm|wav|wav49]

If defined, overrides the format= value set in [general] for message attachments to e-mail notifications.

• saycid=[yes|no]

Sets whether the telephone number of the caller is announced when the message is heard.

• sayduration=[yes|no]

Sets whether the length of the message will be announced. The default is yes.

• saydurationm=[length_in_minutes]

Defines the minimum duration for a message to be before the duration is announced. The default is 0.

• dialout=[context]

Specifies the context to be used for dialing out from a message. Calls cannot be made out of voice mail unless this parameter is set.

• sendvoicemail=[yes|no]

Sets whether a user may send messages to other voicemail users.

• callback=[context]

Specifies the context to be used for dialing out from a message. If defined, this makes it possible to return a call to someone who has left a message.

• review=[yes|no]

Sets whether callers leaving a message may listen to the message before sending it. The default is no.

• operator=[yes|no]

Sets whether callers can connect to the operator before, during, or after recording a message by pressing 0 (zero). In Asterisk, the operator is always the o (small letter o) extension in the current context. The default is no.

• envelope=[yes|no]

Sets whether message envelope information is announced before the message is heard. Setting this parameter to no overrides other parameters (for example, tz). The default is yes.

• delete=[yes|no]

Sets whether messages are deleted after they have been attached to an e-mail notification. The default is no.

• nextaftercmd=[yes|no]

Sets whether the system jumps to the next message after the current message has been saved or deleted. The default is no.

• forcename=[yes|no]

If set to yes, forces a system user to record her name when accessing the system for the first time. The default is no.

• forcegreetings=[yes|no]

If set to yes, forces a system user to record a personal greeting when accessing the system for the first time. The default is no.

• hidefromdir=[yes|no]

Sets whether the mailbox for this user will be hidden from the Dial-by-Name directory. The default is no.

9.5 Dial-by-Name

Although not part of the voicemail system per se, we discuss the Dial-by-Name directory here because it was developed along with Comedian Mail and gets its configuration from voicemail.conf.

The caller is asked to enter the first three letters of the person’s last name (if option f is specified, the first name is used) using the telephone keypad. The application searches for the entry in the directory and connects the caller after checking that the entry is the correct one.

Returning to our example for the Robinson family, we make the following small changes:

[image: image]

From here it is a simple matter to generate a Dial-by-Name directory. We use the Asterisk application Directory() in extensions.conf:

exten => 800,1,Directory(default,from-internal)

The general syntax for Directory() is as follows:

Directory(vm-context[,dial-context[,options]])

• vm-context

The directory is always generated from a specific context; that is, only the entries in this defined context are entered in the directory. In most cases, the default context is sufficient. In a larger enterprise, you may want to separate directories by department; in this case, you will need additional contexts.

• dial-context

The directory is used to call to a specific person; dial-context defines which context is used for the call. If undefined, vm-context is used instead.

If the caller presses 0 (zero), the call will be sent to the o (small letter o) extension in this context. If he presses * (asterisk, or star), the call will be sent to the a (small letter a) context.

• options

Option f sets searching by first name rather than last name.

9.6 Saving Passwords in voicemail.conf

The voicemail.conf file need not serve only as a directory source; it can also be used as a general storage file for passwords. You may encounter situations where users must authenticate for reasons other than retrieving voicemail (for example, call agents logging in at a call center).

As a result, it is sometimes necessary to create voicemail.conf entries for users, even if they have no need for a mailbox. Don’t worry about callers accidentally leaving messages in an unattended mailbox; only mailboxes explicitly referenced through an extension using VoiceMail() or VoiceMailMain() in extensions.conf will be accessible to callers.

For example, you might make two entries in the context [call-center-agents] in voicemail.conf:

[image: image]

You can use these entries to authenticate a user with the dialplan application VMAuthenticate() (see Appendix B, “Dialplan Applications”):

[image: image]

Don’t let this example limit your creativity, however. There are many ways to authenticate users, of which this is only one. Saving passwords in AstDB or another database (such as MySQL, for example) is usually preferable.

10. Interactive Voice Response

An interactive voice response (IVR) system lets computer systems interact with telephone callers, who provide input to the system either by pressing the keypad on their telephone set (dual-tone multi-frequency [DTMF] keying, a.k.a. Touch-Tone) or by saying something (natural language speech recognition). Most IVR systems provide selection menus for routing calls without requiring operator intervention, but modern IVR systems can also be very complex applications that handle information or control equipment.

The basic principle common to all IVR systems, however, is that the caller is read a menu and chooses options from that menu to perform actions, or, alternatively, enters information (in numeric format, through pressing the keypad). IVRs can be used to obtain stock quotations, train schedules, and weather reports; they can also be used for automated purchasing systems, such as for concert tickets. The potential applications are limited only by your imagination.

Systems vary in their complexity. The most advanced generate spoken text on-the-fly using text-to-speech (TTS) systems and accept spoken user input with speech recognition. When properly implemented they can provide a high level of user friendliness, but implementation is so complex that they are rarely used, except in larger organizations.

The simplest form of IVR is also the most common. Pre-recorded messages are played to the caller; the caller responds with DTMF keypad input, which Asterisk can recognize easily in the default install.

Public opinion on IVRs is divided. Some people find them a helpful form of automation, whereas others find them exceedingly frustrating. This is usually the result of poor menu design or speech recognition with a high failure rate. A well-functioning IVR can be pleasant for the customer, but a poorly implemented one can scare her away.1

1. The increasingly multiethnic nature of society everywhere means that speech recognition should be implemented with caution, as accents can be problematic.

Take care when planning an IVR system. Pay special attention to menu design and allow adequate time for a clean development and deployment. Aggressive testing and post-deployment monitoring of premature hangups should be part of your routine. Remember that IVR systems are not an end in themselves, nor are they a panacea. Think of your customer!

10.1 A Simple IVR

The standard Asterisk sound set includes a file called marryme.gsm, containing the announcement “Will you marry me? Press 1 for yes or 2 for no.”2

2. Allison Smith is a Canadian voice professional who is the “Voice of Asterisk.” Its growing popularity has given her a considerable cult following.

(Using this IVR for an actual marriage proposal is strongly discouraged.) To build a “marriage proposal” application, the following dialplan will suffice:

[image: image]

If the caller dials extension 30, Asterisk answers and plays the file marryme.gsm. Through use of the Background() application, the user is allowed to enter input at any time during playback. The input is interpreted as an extension and the call is passed to that extension. If the caller presses 1, he hears “Thank you for your cooperation,” after which Asterisk hangs up.

Note

Playback() (see Appendix B, “Dialplan Applications”) only plays back sound files; input is ignored. Background() (see Appendix B) plays sound files back while listening for caller input, which is interpreted as an extension as though it had been dialed as one.

10.1.1 Timeouts

If you have multiple extensions beginning with the same digits, you need to allow sufficient time for the IVR to recognize all possible combinations. Let’s examine the following example:

[image: image]

Background() waits a set time after each digit in order to distinguish between 1, 10, and 100. Once this time (TIMEOUT) has expired, input is deemed to be complete.

Tip

TIMEOUT lets you set other timeouts. For more information, enter show function TIMEOUT in the Asterisk CLI, or see Appendix C, “Dialplan Functions.”

TIMEOUT is defined in seconds and may be set in the dialplan as follows:

exten => 123,1,Set(TIMEOUT(digit)=3)

In this dialplan, Asterisk will proceed immediately if 2 is pressed, but only after the timeout has expired if 1 is pressed. Asterisk intelligently determines whether a digit entered can match multiple extensions and behaves accordingly.

10.1.2 Invalid Input (the i Extension)

An invalid entry (any entry for which no extension in the dialplan matches) can be handled by the i extension. In the following example, the IVR plays an apology to the caller and hangs up. (A real IVR should probably bring the caller back to the main menu in the event of an invalid entry.)

[image: image]

10.1.3 Pauses

The easiest way to create pauses for input is to play back empty sound files. A series of silent sound files of between 1 and 9 seconds in length may be found in /var/lib/asterisk/sounds/silence. If we need to allow 5 seconds following the prompt (a marriage proposal requires careful consideration, after all), here’s how we can accomplish that:

[image: image]

10.2 Multilevel IVR Systems

The problem with multilevel IVRs is that the caller has to enter single digits multiple times (oftentimes the same digit), but gets a different response depending on the menu level. In Asterisk, a number can only be used once in a given context. If we need multiple menus that provide different responses for the same digits, we must place the submenus in different contexts ([cafeteria] in our example). We jump between these contexts using the application Goto() (see Appendix B). Let’s assume you have some custom sound files stored in /var/lib/asterisk/sounds. Here are the files followed by brief descriptions of what they contain:

• mainmenu.gsm

“Press 1 for sales, 2 for service, or 3 for the cafeteria.”

• cafeteria.gsm

“Press 1 to hear the menu for this week or 2 to hear the menu for next week.”

• cafeteria-menu-this-week.gsm

“Monday: Noodles with pesto sauce. Tuesday: Pork chops....”

• cafeteria-menu-next-week.gsm

“Monday: Stew, featuring noodles, basil and, um, pork chops....”

If sales is at extension 100 and the service department is at 150, the dialplan for this IVR would look like this:

[image: image]

Even though it is technically possible to support an unlimited number of IVR levels, in practice it is advisable to keep the number of menu levels to a maximum of three. Many callers hang up after the third menu level.

10.3 Text-to-Speech

Text-to-speech (TTS) is simply the conversion of written text into a spoken word, using speech synthesis. In our Asterisk system, this means that an external program generates a sound file using a given text file (usually in ASCII format) as the source. The resulting sound file is played back as any other sound file would be, and the caller hears the text spoken out.

Quality of TTS engines varies widely. As a rule of thumb, the open source engines are not as sophisticated as the commercial ones.

Tip

Sometimes you can test high-quality engines through web portals. IBM offers a test portal for its TTS engine at www.ibm.com/software/pervasive/tech/demos/tts.shtml. Like IBM, Cepstral has a demo portal at www.cepstral.com/demos.

The TTS engine Festival (www.cstr.ed.ac.uk/projects/festival) is a widely used open source version, but the voices included with it often lack the quality necessary for professional implementation, particularly if you need voices in languages other than English.

Many Asterisk developers use the engine and voices sold commercially by Cepstral (www.cepstral.com). As of this writing, the pricing was reasonable. The solution described here builds on the Cepstral engine. If you want to work with the open source Festival instead, these instructions are easily modified to work with it. This applies to other TTS engines, too. The implementation model is the same.

10.3.1 Installing Cepstral TTS

Download the voice from www.cepstral.com/downloads. The file (Cepstral_ David_i386-linux_4.2.0.tar.gz in this example) is installed with the following commands:

[image: image]

The engine installs to /opt/swift/bin/swift unless otherwise specified. You can test the installation from the command line as follows:

[image: image]

You can play the resulting file with any audio player, or through Asterisk. To do this, just add a few lines to extensions.conf:

[image: image]

To generate some speech output from within Asterisk, we use the System() application in the dialplan. Here is an example:

[image: image]

Cepstral uses SSML (Speech Synthesis Markup Language) in its engine. You can add speech pauses to the output by specifying them as in this example:

[image: image]

You can learn more about the SSML standard at www.w3.org/TR/speech-synthesis.

11. The Asterisk Database

The problem with using variables in the dialplan is that it is vulnerable to a system crash or a restart of Asterisk. If either of these things happens, the variable is either erased or reset to its default value. This limitation precludes certain implementations entirely. In call forwarding or a calling card application, some values (the remaining balance, for example) need to be stored in a persistent manner so that they can be recalled after a restart. The Asterisk database (AstDB) serves this purpose.

11.1 The Asterisk Database

Those needing a database for Asterisk applications often ask how well the AstDB performs. The answer, to the extent there’s a simple one, is that it depends on what you are doing. If you are working with small amounts of data, as you might in a redial or call forwarding scenario, the AstDB performs admirably and you needn’t look further. If you are working with large, complex datasets, you should consider whether an external SQL server would be better.

In the overwhelming majority of applications, however, this discussion is purely theoretical. The Asterisk database is built on the Berkeley DB (BDB), which is already a very fast database engine. When handling key/value pairs, BDB is among the fastest of databases. The question of database choice should be raised, therefore, when speed of the database is proven to be the source of problems, or when you want to build a larger system with greater functionality than may be met by a simple key/value database.

In a default installation, Asterisk comes packaged with a database built on BDB. BDB is a simple, high-performance, embedded database library with application programming interfaces (APIs) for C, C++, Java, Perl, Python, Tcl, and many other programming languages. It stores key/value pairs and places no constraints on how data is stored in a record. It does not support SQL or any other query language and allows access only through in-process API calls. This database stores information in the form of key/value pairs, and keys are grouped into families.

Warning

Up to and including Asterisk Version 1.2, these applications were used for database access:

DBput(family/key=value)

To save a value in the database.

DBget(var=family/key)

To retrieve a value from the database. If the called key cannot be found, Asterisk jumps to priority 101 in the current extension.

These commands are no longer supported as of Asterisk 1.4. For this reason, only the new method, using the DB() function is mentioned here, which also works in 1.2.

Information in this database can be manipulated using the DB() function (see Appendix C, “Dialplan Functions.”)

11.1.1 Writing Values to the Database

The DB() function can be called from within the Set() application. To give the apple entry in the fruit family the value 20, write the extension as follows:

exten => 1234,1,Set(DB(fruit/apple)=20)

11.1.2 Reading Values from the Database

Values may be called from the database using DB() in the form ${DB(family/key)}. To print the contents of apple in the fruit family on the console, use the following command:

[image: image]

Warning

In all the code examples, everything is written on one line, without breaks, unless otherwise noted. The limited space for text requires that we wrap the lines in the book.

You can also store the value from this database field in a variable using Set():

exten => 1234,1,Set(applequantity=${DB(fruit/apple)})

11.1.3 Deleting Values from the Database

The applications DBdel() and DBdeltree() are used to delete database entries.

11.1.3.1 DBdel() and ${DB_DELETE()}

In Asterisk 1.2, individual entries are deleted using DBdel(). Delete the key apple in the family fruit as follows:

exten => 1234,1,DBdel(fruit/apple)

DBdel() is deprecated in Asterisk 1.4; use the DB_DELETE() function instead. This is called like so:

exten => 1234,1,NoOp(${DB_DELETE(fruit/apple)})

See also Appendix B, “Dialplan Applications,” and Appendix C, “Dialplan Functions.”

11.1.3.2 DBdeltree()

If you need to delete an entire key family, use DBdeltree(). The fruit family is deleted as follows:

exten => 1234,1,DBdeltree(fruit)

See Appendix B.

11.2 Database Access from the Command-Line Interface

The system administrator can access the database from the CLI.

Tip

If you have trouble remembering a command or the exact syntax, you can get help at the CLI with help database:

[image: image]

For the following examples, remember that if your family, key, or value contain any blank spaces, the entire name must be enclosed in double quotes (“ ”); for example, database put test entry "Hello world".

11.2.1 Writing Values to the Database

You write values to the database with database put
family key value:

[image: image]

11.2.2 Reading Values from the Database

Read values from the database with database get
family key:

[image: image]

11.2.3 Deleting Values from the Database

Both database del
family key and database deltree
family delete values from the database.

11.2.3.1 database del

To delete only the key apple from the fruit family, use database del:

[image: image]

11.2.3.2 database deltree

You can delete an entire key family with database deltree:

[image: image]

11.2.4 Displaying Database Contents

The commands database show and database showkey display database contents in the CLI:

[image: image]

11.3 Database Access from the System Shell

Using the command asterisk -rx 'command', you can execute any CLI command via a shell script. The following example shows how a database is populated, read, and then finally deleted through external commands:

[image: image]

Important

Remember that if the family, key, or value contains any blank spaces, you must use double quotes (“) around the string, as follows:

big-island:~# asterisk -rx 'database put test entry "Hello World"'

11.4 Database Backup

The AstDB is stored in /var/lib/asterisk/astdb by default. You can copy that directory as long as Asterisk is stopped.

You can also back up the database from the system shell during operation with the following command:

asterisk -rx "database show" > /tmp/backup-asterisk-database.txt

Of course, restoring the database from this kind of backup is more difficult.

11.5 Application Example: Call Forwarding

Anybody who wants, when she’s not in, to have calls to her local number passed on to her mobile phone needs call forwarding. This can be achieved either through the local SIP phone or centrally through Asterisk. In practice, we prefer that latter approach because it frees us from dependency on end devices, which could be disconnected, fail, or be swapped with others. It also means that the call forwarding setting is not lost in the event of a power failure or system restart.

11.5.1 Simple Call Forwarding

All the staff at Widgets, Inc. can forward calls to their locals to any number they choose. To activate this forwarding, the internal extension 44, followed by the target number, is dialed. To deactivate this forwarding, 44 is dialed again (this time without a target number following it). You can implement this with the following dialplan. (The text wraps in this code example, but remember that every extension must be entered on a single line!)

[image: image]

11.5.2 Complex Call Forwarding

In this example, all the employees of Widgets, Inc. should be able to activate call forwarding. In addition, however, there must be global forwarding for the whole branch, so that calls can be forwarded to another branch when all the head office staff are away on a team-building exercise. This global forwarding is activated via extension 55 (followed by the destination number). The global forwarding must have a higher priority than the individual forwarding. One way to accomplish this is shown here:

[image: image]

11.6 Application Example: Calling Card

According to Widgets, Inc. policy, personal calls must be made via a virtual calling card. These cards are charged by the building manager via his phone (by calling extension 88, followed by the three-digit user extension and then the desired cash amount in cents).1

1. To keep this example as simple as possible, we don’t consider the case of a card with an existing balance to which more money is added (in other words, in which an addition operation is performed). We are also ignoring the very real possibility that an employee could make personal calls from someone else’s extension.

Such calls are billed at a per-call rate of 1 cent per call. To make a personal call, the user dials 99, followed by the number being called. Of course, we don’t want anything to be deducted from the account in the event of a busy signal. Also, users may call up the account balance by dialing 98:

[image: image]

[image: image]

12. Queues

A call queue lets you place callers on hold automatically if you don’t have someone available to answer the phone right away. (Most of us call this “being on hold.”) Many customers detest queues. Sadly, there is scarcely a business around these days that does not make use of them; perhaps they are better than the alternative, which is to not take the call at all. Whatever your opinion about them, they are part of communications reality, so we will describe the configuration and operation of queues in Asterisk here.1

1. An example queue setup using AEL (Asterisk Extension Language) is described in doc/queues-with-callback-members.txt in Asterisk 1.4.

Four files are important for queues:

• queues.conf

Defines the queues.

• agents.conf

Defines agents; these are the staff who take calls.

• musiconhold.conf

Defines the hold music.

• extensions.conf

The dialplan. Calls are directed to the queue using Queue(), and agents are added using AgentLogin() or AgentCallbackLogin().

A common cause of misunderstanding is the confusion of “queue members” with callers. Queue members are always and only agents or queue devices, never callers.

Tip

For simplicity’s sake, we use the term agents primarily. You call queue members agents. For someone who comes from the call center business, that’s a bit confusing, because queue members can also be normal SIP extensions.

You are not required to use agents; instead, you can simply assign specific SIP devices to the queue. You do this by writing member => SIP/1001 to queues.conf, for example; alternatively, you can assign the interface dynamically in the dialplan with the command AddQueueMember(). See Appendix B, “Dialplan Applications.”

Agents may belong to more than one queue, and we want our agents to be able to log in at any station (also called hot-desking).

You configure agents in the agents.conf file:

[image: image]

Configured agents are added to specific queues in the queues.conf file:

[image: image]

The queue itself is invoked through an extension line in extensions.conf:

[image: image]

This is how it works: Agents log in by dialing extension 25, hear pleasant music, and await callers. Calls to extension 20 are passed into the queue and are answered on a first-in, first-out basis. The agent hears a tone, and the first caller is connected.

12.1 Extension for Testing Hold Music

We add the following extension to extensions.conf for testing to see that the music-on-hold is functioning as we expect:

[image: image]

12.2 musiconhold.conf

Let’s begin with the simplest part: setting up music-on-hold.

Keeping Your Hold Music Legal

Note that the music you use for music-on-hold may be subject to licensing fees. If you want to be sure you are using music lawfully, you can obtain use licenses from the performer’s rights organization in your country.

In the United States, contact the following:

• The American Society of Composers, Authors, and Publishers (ASCAP), www.ascap.com

• Broadcast Music, Inc. (BMI), www.bmi.com

• SESAC, www.sesac.com

In Canada, contact the following:

• The Society of Composers, Authors, and Music Publishers of Canada (SOCAN) http://www.socan.ca

In the United Kingdom, contact the following:

• PRS for Music, www.prsformusic.com

In Australia and New Zealand, contact the following:

• The Australasian Performing Right Association and Australasian Mechanical Copyright Owners Society, www.apra-amcos.com.au/

• The Australasian Performing Right Association (NZ), www.apra.co.nz

Generally, license fees for use of music in waiting areas and on telephone systems are quite reasonable, so this option is worth considering. Alternatively, you can obtain royalty-free music from a variety of Internet sources. Finally, you may use the three tracks provided with Asterisk.

Allowed configuration settings are described in the sample musiconhold.conf. Additional information on MP3 music support through mpg123 may be found in doc/README.mp3 (1.2) / doc/mp3.txt (1.4). The optimum sample rate for MP3 files is 8000Hz, mono.

Here is the simplest possible configuration, using only one music class (default):

[image: image]

Now we stop and start Asterisk, for example, using asterisk -rx "restart now", to activate the new extension and the audio streams. (A reload is not sufficient.) Now, if you call extension 222 (as defined above), you should hear music-on-hold.

Still, the following is a better configuration, for which we create another music directory moh-native in /var/lib/asterisk:

[image: image]

For this, it is necessary to convert the source MP3 files into an Asterisk compatible format, which can be accomplished using sox and lame.

sox (http://sox.sourceforge.net) is available as a Debian package, and is installed as follows:

$ apt-get install sox

For Mac OS X, if you have installed Darwinports (http://darwinports.opendarwin.org or http://darwinports.com), there is also a package:

$ port install sox

Many other distributions have sox packages; in the absence of packages, you must install it from source.

lame (http://lame.sourceforge.net) is not available as a Debian package, so we must download and install it using the familiar ./configure, make, and make install commands.

For Mac OS X, there is a Darwinports package (see sox):

$ port install lame

Or via Fink (http://fink.sourceforge.net/):

$ fink install lame

Of course, you can do this with the FinkCommander GUI also.

After you’ve installed the necessary applications, you can create the music files this way:

[image: image]

This converts our (dummy, only for demonstration) music.mp3 file into WAV, and then into RAW and GSM formats (with a sample rate of 8kHz). We can also make versions of the file in a-law and u-law formats (by using the .al and .ul file extensions with sox); Asterisk will automatically choose the sound file requiring the least processing. The important common factor is that the sample rate always be 8000Hz.

Important

If you do not specify autoload in modules.conf, you must ensure that the modules for the formats you wish to use here are loaded before res_musiconhold.

For our test, we copied the WAV files provided in moh/ to moh-native/, transcoded them to RAW and GSM formats using sox, and then deleted the WAV files (which caused us problems) from the directory:

[image: image]

For CPU-critical installations (e.g., large installations), you should take time to read contrib/utils/README.rawplayer, which may be found in the Asterisk source directory.

Additional music classes may be defined. For example, in addition to [default], you might choose to classify by genre (e.g., [rock]) and provide a different file path (perhaps a subpath) where files of that genre are located. You might also classify by intended audience, particularly if you have custom files with announcements directed at specific types of customer. As always, don’t forget to reload!

12.3 queues.conf

Queues are defined and configured in queues.conf. This file is—as you are already familiar—divided into sections.

Under [general], we always set persistentmembers=yes, so that agents are re-added to their respective queues when Asterisk is started.

Every queue goes in its own section. In our example, we are configuring a support queue in its own section [support]. The following parameters are available to us:

• musiconhold

Sets the music class of the queue. We choose the above-configured default:

musiconhold=default.

• announce

Defines an audio file that is played back to the agent before a call is answered. This is so that an agent working in more than one queue will know which queue the incoming call is coming from and be able to answer appropriately.

;announce=queue-support

If you use this option, remember to place a corresponding announcement audio file in the sounds directory (e.g., queue-support.gsm).

• strategy

Sets the call distribution strategy (that is, the method used to decide how incoming calls are distributed to agents):

• ringall

Ring all agents until one answers (default).

• roundrobin

Ring agents in order, until one answers.

• leastrecent

Ring the agent who has been idle the longest.

• fewestcalls

Ring the agent who has taken the least number of calls in this queue.

• random

Ring a random agent.

• rrmemory

Round-robin with memory. Begins the round-robin starting with the agent who is next in line after the last call.

Note

Asterisk 1.6 is expected to do away with the current roundrobin method; rrmemory will be renamed roundrobin.

Agents with a lower penalty will always be preferred in all strategies.

strategy=ringall

The appropriate setting depends on the circumstances; ringall can be extremely annoying for agents, while other values can lead to longer wait times for callers, if agents fail to answer.

• servicelevel

Sets the service level threshold (that is, sets the maximum wait time for callers). This is only really useful for statistical analysis (for example, in asking the question “How many calls were answered within the service level threshold of x seconds?”).

servicelevel=60

• context

If set, this is the context we pass the caller to if she presses a single digit while waiting in the queue. This digit is treated as an extension and the call is taken out of the queue and routed to the extension in that context.

[image: image]

• timeout

Sets the maximum time a telephone may ring before we treat it as unattended.

timeout=15

• retry

Sets the interval (in seconds) before we ring all the agents again.

retry=5

• weight

The relative importance of the queue compared to other queues. If an agent is a member of multiple queues, calls from higher-weight queues are connected first. For example, you might give an emergency queue higher weight.

weight=0

• wrapuptime

The time interval after an agent has finished a call before the system will pass another call to the agent (default: 0).

[image: image]

• maxlen

Maximum number of callers allowed to be waiting in the queue (default: 0, meaning unlimited).

maxlen=0

• announce-frequency

Sets how often a caller will hear an announcement indicating her position in the queue or the estimated wait time. (0 turns this completely off.)

announce-frequency=90

• announce-holdtime

Sets whether the estimated wait time will be announced after the queue position. Possible values are yes, no, or once.

announce-holdtime=yes

• announce-round-seconds

Rounding level for wait-time announcements. If 0, only minutes, not seconds, are announced; other possible values are 0, 1, 5, 10, 15, 20, and 30.2

2. Older versions accepted other values, which could result in confusing announcements. See Bug 9514.

For example, when set to 30, a wait time of 2:34 will be rounded to 2:30.

announce-round-seconds=0

• periodic-announce-frequency

Sets the interval, in seconds, for periodic announcements (periodic-announce; e.g., “We thank you for your patience; all our agents are currently serving other callers. Please continue to hold.”).

periodic-announce-frequency=60

• monitor-format

When set, recording (as with the Monitor() application) is turned on and the recording format defined. (If not defined, recording is off.) You may specify gsm, wav (caution: huge files!), or wav49.

[image: image]

By default, files are named (one -in and one -out) according to ${UNIQUEID}. You can change this as needed by putting Set (MONITOR_FILENAME= filename) before Queue() in extensions.conf. We leave it unset in our example.

• monitor-join

Combines the ...-in and ...-out files of a recording into one file. Allowed values: yes or no.

monitor-join=yes

• joinempty

Sets whether callers can be placed in a queue with no agents.

• yes

Callers may be placed in queues without active agents. (The queue may have no agents logged in, or agents may be logged in but unavailable.)

• no

Callers may not be placed in queues without active agents.

• strict

Callers may not be placed in a queue without agents, but may be placed in a queue with unavailable agents.

Unavailable should not be confused with busy (that is, on a call). An agent is unavailable if he is a member of the queue but not currently registered on the system.

Warning

Statically defined queue members are always considered available. If you’re not mindful, callers could end up in an active queue that is never answered (and that’s probably bad for business).

If the caller is not accepted into a queue, Queue() ends and execution continues in the next priority in the dialplan.

joinempty=no ; we don't want our callers waiting in empty queues.

• leavewhenempty

Sets whether waiting callers are removed from the queue when all the agents have logged out. Allowed values are the same as for joinempty. After leaving the queue, execution continues in the next priority in the dialplan.

leavewhenempty=strict ; don't make 'em wait

• eventwhencalled

Sets whether events are created in the Manager interface: AgentCalled, AgentDump, AgentConnect, AgentComplete. Possible values are yes and no.

eventwhencalled=yes

• eventmemberstatus

Sets whether QueueMemberStatus events are created in the Manager interface. (Use with caution; this can generate a lot of events.) Possible values are yes and no.

eventmemberstatus=no

• reportholdtime

Sets whether the wait time for the incoming caller will be announced to the agent before the call is patched. Some people like to know how long a caller has been waiting, because that caller might be irate. Possible values are yes and no.

reportholdtime=no

• memberdelay

Sets the interval of silence (in seconds) that the caller hears before she is connected with an agent.

memberdelay=1

• timeoutrestart

Sets whether the answer-timeout of an agent is reset after a BUSY or CONGESTION signal. This can be useful for agents who are allowed to refuse calls.

timeoutrestart=yes

• autopause

Sets whether an agent who has failed to answer is automatically paused or not.

autopause=no

• ringinuse

Sets whether agents who are in a call will be rung. So far, the only channel driver that provides this information is SIP.

ringinuse=no

• member

It is possible to statically define agents in queues.conf like so:

member => technology/resource[,penalty]

An example using a Zap channel would look like this:

member => Zap/2

This may be used more than once. It should be employed with caution with joinempty and leavewhenempty, because these queue members are always treated as available, even if the telephone is unattended. The other disadvantage is that an agent is always bound to a specific workstation and cannot log in at another workstation.

In our example, we prefer to use the dynamic agents and add agents in the following format:

member => Agent/agentID

For two agents 1001 and 1002, the configuration looks like this:

[image: image]

These agents must still be defined in agents.conf (see below). The agent number is a freely selectable number that uniquely identifies each agent. The number has nothing to do with the extensions that the agent may eventually use.

12.3.1 Announcement Sound Files

The following parameters define which sound files are used for which announcement types. Usually there is no need to change this. For example, queue-youarenext=sound_filename sets the filename for the “you are first in line” message to sound_filename.

If these parameters are not provided, the default values (shown below) apply:

• queue-youarenext=queue-youarenext

“You are now first in line.”

• queue-thereare=queue-thereare

“There are...”

• queue-callswaiting=queue-callswaiting

“Calls waiting.”

• queue-holdtime=queue-holdtime

“The current estimated hold time is...”

• queue-minutes=queue-minutes

“Minutes.”

• queue-seconds=queue-seconds

“Seconds.”

• queue-thankyou=queue-thankyou

“Thank you for your patience.”

• queue-lessthan=queue-less-than

“Less than.”

• queue-reporthold=queue-reporthold

“Hold time.”

• periodic-announce=queue-periodic-announce

“All reps busy, wait for next available.”

12.4 agents.conf

Agents (who are also called queue members) are defined in agents.conf; additional configurations for the agents are also placed here. Like the other configuration files, it too is divided into sections.

We set persistentagents=yes in the [general] section, so that agent logins persist (meaning they are stored in the Asterisk database) even if Asterisk is restarted.

We set additional parameters in the [agents] section, where we also define the agents. The following parameters are available:

• autologoff

Sets the maximum time a telephone may ring before the agent is automatically logged off.

Note that agents will not be logged out if the autologoff interval is longer than the queue timeout! We set that to 15 seconds, so we set autologoff to 14.

autologoff=14

• ackcall

Sets whether agents who have logged in with AgentCallbackLogin() must press number sign (#) to accept a call. Be aware that the voice prompt in previous Asterisk versions did not indicate that the agent has to press #. Possible values are yes and no.

ackcall=no

• endcall

Sets whether agents may end calls by pressing number sign (#). Possible values are yes and no.

endcall=yes

• wrapuptime

Sets (same as wrapuptime in queues.conf; why this appears in both files is not clear) the wait time, this time in milliseconds, before an agent can be sent another call. Default: 5000.

wrapuptime=5000 ; 5 seconds to clear your throat

• musiconhold

Sets the music-on-hold class for the agents.

musiconhold=default

• updatecdr

Adds agent information to the CDR so that we can see which agent answered the call. Possible values are yes and no.

updatecdr=yes

• recordagentcalls

Record agent calls. Possible values are yes and no. Default: no.

recordagentcalls=no

• recordformat

Format for call recordings. Possible values are gsm, wav (caution, huge files!), or wav49. Default: wav.

recordformat=gsm

• createlink

Sets whether the filename of the call recording will be written to the user field of the CDR, so that the call recording can be matched to the CDR later. Possible values are yes and no.

createlink=yes

• urlprefix

If createlink=yes, the filename can be prefixed with a URL where the recording is made available on a web server.

[image: image]

• savecallsin

Defines the path where recordings are saved. Default: /var/spool/asterisk/monitor

[image: image]

• agent

Defines individual agents. Can appear more than once.

[image: image]

12.5 Extensions

Both agent and caller access to the queue are configured in the dialplan. Agents log in as queue members via particular extensions, and callers are placed into the queue with the Queue() application (see Appendix B, “Dialplan Applications”).

12.5.1 Sending Callers to the Queue

A minimal extension, which places callers in the queue, might look like this:

[image: image]

We prefer something more complete and use this extension:

[image: image]

If we call this extension now, we hear the “nobody is available” message because no agents are logged in.

Tip

If you want to pretend you have active agents for testing purposes, set joinempty=yes and leaveempty=no in queues.conf.

Now we need to create an extension through which agents can log in:

[image: image]

12.5.2 AgentLogin() and AgentCallbackLogin()

AgentLogin() establishes an active channel, and incoming calls are simply switched into this active channel. This is analogous to having the phone off the hook and calls simply coming in without the agent actually having to pick up. If the agent hangs up, she is logged out. This also means that an agent cannot be logged in and make outgoing calls at the same time. As a result, AgentLogin() is only really appropriate for purely inbound call center groups.

AgentCallbackLogin() has the advantage of letting agents log in, and then having the system call back with calls from the queue. They remain logged in after hanging up and can make outgoing calls. This application is, however, deprecated as of Version 1.4. The example in doc/queues-with-callback-members.txt uses AEL (which can easily be converted into regular dialplan format) to identify agents, AddQueueMember() to dynamically add members to the queue and Dial() to call agents back.

If AgentCallbackLogin() were to disappear without a replacement, real functionality and ease of configuration would be lost.

Tip

Try out what you’ve learned. Write a dialplan which brings callers to an IVR menu first; for example, “For sales, press 1; for returns, press 2.” And then pass callers to two separate queues, one for each department, depending on the input the caller gives.

12.6 Log File

Events that happen in queues are written in a detailed format to the queue log (usually /var/log/asterisk/queue_log) in addition to the regular call detail recording. Events are recorded in queue_log on a line-by-line basis in the following format:

timestamp|call_id|queue|channel|event|parameter1[|parameter2[|parameter3]]

• timestamp

The UNIX time of the event.

• call_id

The unique ID of the call (alphanumeric). Can be NULL or NONE (e.g., in the case of QUEUESTART events).

• queue

The name of the queue (e.g., support). Can be NULL or NONE.

• channel

The name of the bridged channel (e.g., Agent/1001). Can be NULL or NONE.

• event

The name (type) of the event (see next page). The parameters that follow depend on the event type.

Possible events are, among others (see also doc/queuelog.txt):

• ABANDON

The caller abandoned the queue by hanging up. Parameters: position, entry position, wait time.

• AGENTDUMP

The agent dumped the caller while listening to the queue announcement.

• AGENTLOGIN

An agent logged in. Parameters: channel (e.g., SIP/127.0.0.1-0181ac00).

• AGENTCALLBACKLOGIN

A callback agent logged in. Parameters: login_extension[@context].

• AGENTLOGOFF

An agent logged out. Parameters: channel, login time.

• AGENTCALLBACKLOGOFF

An agent was logged out. Parameters: login_extension[@context], login time, cause (e.g., autologoff).

• COMPLETEAGENT

Call between caller and agent was ended by agent. Parameters: wait time, call time, queue entry position.

• COMPLETECALLER

Call between caller and agent was ended by caller. Parameters: wait time, call time, queue entry position.

• CONFIGRELOAD

Configuration was reloaded (e.g., with asterisk -rx "reload").

• CONNECT

Caller was connected to an agent. Parameters: Wait time.

• ENTERQUEUE

Caller was placed in the queue. Parameters: URL (if available), caller ID.

• EXITEMPTY

Caller was exited from the queue because no members were available. Parameters: queue position, entry position, wait time.

• EXITWITHKEY

Caller left the key by pressing a key. Parameters: key, queue position.

• EXITWITHTIMEOUT

Caller was in the queue too long and the timeout expired. Parameters: queue position.

• QUEUESTART

The queue was started. The call_id, queue, and channel fields are set NULL.

• RINGNOANSWER

An available agent was called, but did not answer within the timeout. Parameters: ring time (in milliseconds).

• SYSCOMPAT

The agent accepted a call, but the channels were not compatible and the call was ended.

• TRANSFER

Caller was transferred to another extension. Parameters: extension, context.

Some commercial queue log analysis tools include QueueMetrics (http://queuemetrics.loway.it) and Easy PABX (http://www.easypabx.com). See also Appendix B.

12.6.1 Importing the Queue Log into MySQL

As yet, Asterisk cannot write the queue log directly into a SQL database. Unfortunately, all the widely used statistical tools assume and expect data to be in a SQL database. A variety of scripts seek to mitigate this problem (some may be found at www.voip-info.org/wiki/view/Asterisk+queue_log+on+MySQL) or are provided with the analysis tools. They all follow the same principle: the queue_log is replaced with a named pipe (FIFO); as soon as Asterisk attempts to write to the log, the log entry is converted and entered into the database.

Warning

This method works in 99% of cases. There remains the risk, however, that the script fails to start before Asterisk or terminates unexpectedly and stops reading from the named pipe, such that Asterisk receives a SIGPIPE when trying to write to the logs and crashes!

Because there is no alternative without native Asterisk SQL support, we provide a sample Perl script from William Lloyd despite the associated risk:3

3. wlloyd at slap.net, released through the Digium asterisk-users mailing list. See http://lists.digium.com/pipermail/asterisk-users/2005-July/109892.html.

[image: image]

[image: image]

[image: image]

QueueMetrics (the free demo version) comes packaged with a Perl script called queueLoader.pl that will also load the queue log into mySQL. (Again, heed the warning above: If you do this in real time, there is a risk that Asterisk will crash.)

13. Features

Asterisk is powerful, but some features routinely used in office environments are either not enabled by default or simply very well hidden. This chapter covers those features, which are configured in the features.conf file.

13.1 Call Transfer

If you use the Dial() application without any flags or options, you won’t be able to transfer a current call to another extension. This feature must be explicitly enabled in Dial() via the t, T, or tT options. This is described in detail in Appendix B, “Dialplan Applications.” If you want to give both the caller and called party rights to transfer the call, you must use the tT options:

exten => _2XXX,1,Dial(SIP/${EXTEN},tT)

13.1.1 Blind Transfer

The expression blind transfer describes transfers that occur without an interaction between the transferer (the original recipient of the call) and the transferee (the new intended recipient). By default, this is done by entering #1 followed by the new destination number. If you want to transfer the current call to extension 2323, you dial #12323.

You can change the feature code for blind transfers in /etc/asterisk/features.conf in the context [featuremap]:

[image: image]

13.1.2 Attended Transfer

In contrast to the blind transfer, the original recipient can discuss the call in private with the intended recipient using attended transfer; the call is only transferred once the original recipient hangs up. By default, attended transfers are initiated with the *2 key combination, followed by the new destination number.

You can change the feature code for attended transfers in /etc/asterisk/features.conf in the context [featuremap]:

[image: image]

If you are using call limits in your devices, be aware that attended transfers temporarily use two channels.

13.2 Call Parking

To park a call is to place an active call in a virtual parking lot where it can be retrieved from any other extension by dialing the parking position number. For call parking to work in Asterisk, the parkedcalls context must be included (using include) in the current context, as follows:

[image: image]

Only once this context has been included can calls be parked by dialing #700 during an active call. Asterisk will read back the parking position to the caller. (Be sure to note it!) Calling this park position number (e.g.,701) retrieves the call from any telephone in a context that includes the parkedcalls context.

Warning

Parking positions are not secured in any way. If person A parks a call at position 705 and person B dials 705 by accident, she will connect to the parked call.

Feature codes, the number of available parking positions, and the name of the parking context can all be changed in /etc/asterisk/features.conf in the [general] context:

[image: image]

14. Conferencing

Asterisk offers an excellent built-in conferencing system. Nevertheless, the same applies here as elsewhere when it comes to Asterisk: There is no perfect solution! You still need to build some functionality in a modular fashion. A good example is three-way calling. Asterisk does not include true three-way calling. To achieve it, you must take a regular conference and limit the number of participants to three.

14.1 Installation and the Timing Device

A default Asterisk installation such as the one we performed in the first chapter of this book isn’t able to handle conferencing. The problem is the lack of a timing device. To mix channel audio properly, Asterisk needs a stable and common clock source. For that clock source, there are two options:

• Telephony interface card and driver

Installing a hardware interface card (be it analog or digital ISDN) and its driver automatically provides Asterisk with a clock source.

• ztdummy module without hardware

If you neither have nor need a hardware interface card, you can use the ztdummy kernel module in combination with a 2.6 kernel.1

1. It is possible to make the ztdummy module work with a 2.4 kernel, but this assumes special USB hardware and is therefore not the best option.

To determine whether your Asterisk installation actually provides conferencing service, go into the Asterisk CLI and enter show application MeetMe. If the help text appears, conferencing is installed.

14.2 Defining Conference Rooms

In Asterisk, conferences always take place in virtual conference rooms. These must be defined in /etc/asterisk/meetme.conf, in the [rooms] context, and the syntax is simple and consistent with other Asterisk configuration files: conf => room_number[,PIN][,administrator-PIN].

To create a conference room with the number 1234 that is freely available to any caller, make an entry in meetme.conf as follows:

[image: image]

You can secure a conference room with an access number (sometimes called a personal identification number, or PIN). Suppose you want to add rooms 700 to 705, all with the same PIN 5678. The meetme.conf would look like this:

[image: image]

14.3 Access from the Dialplan

Conferences are accessed easily using the MeetMe() application. Say that any caller dialing 5555 is to be placed into the conference room 1234. The corresponding dialplan entries would look like this:

[image: image]

14.4 Announcing the Number of Conference Participants

The number of participants in the conference may be announced using the MeetMeCount() application:

[image: image]

15. External Control of Asterisk

One of Asterisk’s biggest advantages is the ability it gives the administrator to control it from the shell or through external applications.

15.1 asterisk -rx “command”

The simplest way to control Asterisk from an external shell or application is to issue the command asterisk with the option -rx followed by the CLI command. Any CLI command may be entered from the system shell in this fashion.

Say you want to see the dialplan for extension 23 in the context [my-phones]; you would do this with asterisk -rx "dialplan show 23@my-phones” entered in the shell:

[image: image]

15.2 Call Files

Call files are like a shell script for Asterisk. A user or application writes a call file into /var/spool/asterisk/outgoing, where Asterisk processes it immediately.

Tip

A mv (move) is an atomic operation (an operation which does not take effect until it is 100% complete) and as such is ideally suited for .call files (provided it is done on the same partition). With cp (copy), the file is copied line by line, which could lead to Asterisk processing an incomplete file.

15.2.1 Making a Call Automatically

Let’s demonstrate the .call file principle with an example. Assume that we have a SIP phone registered with the number 2000 in Asterisk. In addition, we have the following extension in the dialplan:

[image: image]

We create a call file called a-test.call in /tmp with the following content:

[image: image]

Now we move this file with mv /tmp/a-test.call /var/spool/asterisk/outgoing/:

root@molokai:~>mv /tmp/a-test.call /var/spool/asterisk/outgoing/

The following happens:

• Asterisk polls the /var/spool/asterisk/outgoing for new call files and processes any it finds.

• Asterisk opens a connection to device SIP/2000. If the device is in use or not answered, Asterisk tries two more times (see MaxRetries).

• If someone answers SIP/2000, Asterisk begins processing extension 10 in the context [call-file-test]. In this case, Asterisk plays hello-world to the answering party.

When executing a call file, Asterisk compares the change time with the current time. If the change time is in the future, Asterisk ignores the call file. This is an easy way to implement time-based call files.

15.2.2 Parameters

These parameters may be used in call files:

• Channel: <channel>

The channel upon which to initiate the call. Uses the same syntax as the Dial() command (see Appendix B, “Dialplan Applications”).

• Callerid: <callerid>

The caller ID to be used for the call.

• WaitTime: <number>

Number of seconds the system waits for the call to be answered. If not specified, defaults to 45 seconds.

• MaxRetries: <number>

Maximum number of dial retries (if an attempt fails because the device is busy or not reachable). If not specified, defaults to 0 (only one attempt is made).

• RetryTime: <number>

Number of seconds to wait until the next dial attempt. If not specified, defaults to 300 seconds.

• Account: <account>

The account code for the CDR.

• Context: <context>

The destination context.

• Extension: <exten>

The destination extension, in which dialplan execution begins if the device is answered.

• Priority: <priority>

The destination priority. If not specified, defaults to 1.

• Setvar: <var=value>

Lets you set one or more channel variables.

• Archive: <yes|no>

By default, call files are deleted immediately upon execution. If Archive: yes is set, they are copied into /var/spool/asterisk/outgoing_done instead. Asterisk adds a line to the call file that describes the result:

Status: <Expired|Completed|Failed>

15.2.3 Hotel Wake-Up Call Example

A hotel wants to implement a simple wake-up call system. Clients must be able to set a wake-up call by dialing *77*, whereupon they hear a prompt asking for the date and time of the wake-up call:

[image: image]

15.3 The Asterisk Manager Interface

The Asterisk Manager Interface (AMI) is a powerful tool that lets external applications communicate with and control Asterisk.

Activate the AMI by setting enabled=yes in the [general] section in manager.conf

Caution

Never do this on a publicly accessible server unless you have taken steps to protect it with packet filters such as iptables, ipfw, an external firewall, or an SSH tunnel. A malicious person could easily use it to take over your phone system.

15.3.1 Creating an AMI User

To access AMI, we need to create a user account. To do this, we add a user entry called admin at the end of manager.conf:

[image: image]

The options following read and write define the allowed command types for this user.1

1. Learn the rights levels needed for commands by entering manager show commands (or show manager commands in Asterisk 1.2) in the CLI.

Caution

This generous rights assignment is for test purposes only! The command rights level means the user can stop Asterisk. As of Asterisk 1.4, it is even possible to make dialplan changes through the AMI, which also means it is possible to run shell commands with root privileges using System().

15.3.2 Talking to the AMI

After restarting Asterisk, we can connect to the AMI on port 5038 from the system shell using telnet:2

2. Here we use telnet as an interface only, and not in the traditional, interactive fashion.

[image: image]

Now you can enter commands, usually consisting of multiple lines, by hand. For example:

[image: image]

Note

All command packets are closed with two carriage returns.

After entering the commands and closing them, you’ll receive a response:

[image: image]

Of course, we are most interested in automating this interaction with scripts.

Note

The Manager API is not exactly famous for its ability to handle multiple simultaneous connections gracefully (even though this has improved immensely in version 1.4). If you anticipate this kind of load, it is worth considering an AMI proxy, which can handle many connections and bundles them in a single connection. This is completely transparent to the script accessing the AMI. Of course, for the purposes of playing around, it isn’t strictly necessary.

Following a successful authentication, packets can be sent in both directions. The packet type is always determined by the first line. The client sends Action packets, the server answers with Response or can send Event packets. Otherwise the order of the lines in a packet is irrelevant. Lines are terminated with a carriage return (decimal ASCII 13) and line feed (decimal ASCII 10) (CR LF) combination. The entire packet is terminated with an additional CR LF combination. An AMI client normally sends a randomized but unique ActionID with every Action,3 which the server uses in its response for the purpose of managing overlapping packet streams.

3. This can be, for example, the name of the script, a timestamp, and a sequence number (e.g., testscript.php-1169405408-1).

The server sends the client Event packets, which can refer to any events; there are also events that occur as the result of a client-initiated Action. In this case, the server sends Response: Follows followed by the events (which will contain the ActionID of the initiating action) and a closing event (usually actionnameComplete).

If your client has no need for events, it can turn off these notifications by including Events: off in the authentication packet. Once set, the AMI sends only responses to actions initiated by the client.

The events that Asterisk sends are, as of this writing, effectively undocumented. You can find a list with sparse details at www.voip-info.org/wiki/view/asterisk+manager+events. A few additional explanations may be found at http://asterisk-java.sourceforge.net/apidocs/net/sf/asterisk/manager/event/package-frame.html.4

4. This is primarily Asterisk-Java documentation.

15.3.3 AMI Commands

The list of available commands can be called up in the CLI with manager show commands (or show manager commands), while information about a specific command can be obtained with manager show command
command (or show manager command
command):

[image: image]

[image: image]

These commands are almost always a direct translation of dialplan applications, except in the case of Originate, used to initiate an outgoing call, and Command, which executes a command directly on the CLI. Because our test user admin has all the rights levels (see above), he can execute all commands. The following example shows how we learn how a command is used:

[image: image]

15.3.4 Getting the Number of Voicemail Messages with Expect

Suppose we want to get the number of messages in a given voice mailbox via the Manager interface. This is easily done using an expect script. expect is an extended Tcl interpreter used for automating interfaces with interactive shell programs. (See expect’s home page at http://expect.nist.gov.)

The following expect script connects to the AMI, logs in, then returns the number of new and old messages in the specified mailbox:

[image: image]

[image: image]

We save the script as vmcount.exp and set it executable with chmod a+x vmcount.exp. We run it with the mailbox as an option and see how many messages we have:

[image: image]

15.3.5 StarAstAPI for PHP

A disclaimer: Keep your expectations modest. StarAstAPI hasn’t been actively maintained for some time.

There are now numerous, more-or-less good APIs for the AMI in a variety of programming languages (PHP, Perl, Python, Ruby, and so on), which we, because of space and time limitations, can’t explore here. You can find examples with comments at www.voip-info.org/wiki/view/Asterisk+manager+Examples. If the API for your favorite language doesn’t work, we’re confident you can figure it out.

In this short example, we test the StarAstAPI (you can obtain this from http://freshmeat.net and other code repositories) in PHP, which assumes a PHP 5 that was compiled with --enable-sockets. You can check this from the shell with php -m.

(The API is easily ported to PHP 4, although the code is cluttered and poorly formatted.) When in doubt, just remedy the parse errors.

Unfortunately, the StarAstAPI files still contain the obsolete “short open tags” (<?). If you encounter them, replace them with the correct syntax (<?php). Four demo scripts are included with the API: sLogin.php attempts a login, sCommand.php executes reload on the CLI, sDial.php tries a connection to SIP/120, and sEvents.php receives events. (If you have followed the examples from voip-info.org, you will need to adapt the user name and password.)

If we connect to Asterisk using asterisk -vvvr and simultaneously run php -q sLogin.php to open a connection to the AMI using a deliberately incorrect user and password, we will see output like this on the CLI:

[image: image]

This failed because the user did not exist, but the demo script still reports success:

[image: image]

The response packet, however, will show the failure:

[image: image]

The StarAstAPI is, as you can see, not completely clean, but is simple enough that it can be improved easily. If we call php -q sEvents.php (this time with the correct user) we see the following:

[image: image]

As a test, we execute a reload in the CLI, which is reflected in the PHP script output:

[image: image]

Give your creativity free reign! Write a small script that calls all your friends (in the middle of the night, of course).

15.3.6 Getting the Number of Mailbox Messages with PHP

Let’s retrieve the number of mailbox messages for an account using PHP and StarAstAPI. Here is the PHP script:

[image: image]

[image: image]

We save this script as vmcount.php and make it executable with chmod a+x vmcount.exp, and then invoke it with the mailbox name as an option:

[image: image]

15.4 The Asynchronous JavaScript Asterisk Manager

As of version 1.4, Asterisk comes packaged with a small web server called Asynchronous JavaScript Asterisk Manager (AJAM), which may be used to access the Asterisk Manager Interface (AMI) via HTTP. The name AJAM derives from AJAX (Asynchronous JavaScript and XML).

Setup assumes the steps from section 15.3 have been carried out, plus some additional parameters. You must set webenabled to yes in the [general] section of manager.conf. Pay attention to httptimeout, which defines the inactivity timeout after which the user is automatically logged out of the web interface. To activate the web server, set these parameters in http.conf:

[image: image]

enablestatic need only be activated if the AJAM will be serving static files from /var/lib/asterisk/static-http. Normally you would set this to no, but it is needed for the purposes of the Asterisk-AJAM demo.

Don’t forget to restart!

Warning

Our assessment is that it almost never makes sense to serve other web applications (that is, those intended strictly for administrator access) through the AJAM interface. It is also doubtful that it was intended to, because the rights assignments through read and write (see Appendix E, “AMI Commands”) just don’t offer sufficient granularity. Always assume that a user can initiate actions other than those you have made available on the web page. It is much better to let your application use a PHP script containing only the specific AMI commands it needs to do its job, and to restrict the AMI rights for the accessing user as extra insurance.

15.4.1 Getting the Number of Voicemail Messages with AJAM

Again, we are solving the problem addressed in the expect and PHP examples: We want to find out the number of messages in a specified mailbox. The AJAM offers us a few ways to do this.

15.4.1.1 HTML

The AMI waits for queries at

http://localhost:8088/asterisk/manager

Packet fields are tacked on the end of the URL. Try these addresses in your web browser:

[image: image]

The response follows in the form of an HTML page, so it’s not really suitable for access via a script.

15.4.1.2 Plain Text

If we replace manager in the URL with rawman, we get plain text output. To log in and get a message count from the mailbox, just enter the following:

[image: image]

This text output is more script friendly.

15.4.1.3 XML

If we want XML instead, we call mxml instead. The XML output is presented formatted for better readability. In practice, AJAM does not put line breaks inside the XML tags. Either way, a compliant XML parser won’t care.

[image: image]

15.4.2 AJAX and AJAM Considerations

AJAX applications (as the name Asynchronous JavaScript and XML might suggest) use XML as the standard format, even though it is often criticized for its bloated structure. There are alternatives, such as JSON, for example. JSON (JavaScript Object Notation) is (the name gives it away) well suited for JavaScript applications, because the data structure can be converted into an object natively and with little overhead using eval(). There are countless implementations for PHP, Perl, and so on, but a JSON implementation for AJAM does not yet exist. One can, however, convert the plain-text output into JSON on the client side, if that turns out to be easier or if it’s easily done using available JavaScript libraries. Here’s an example to get you thinking:

[image: image]

15.4.2.1 Ping

When accessing the AJAM with an AJAX application, the ping command is particularly useful for keeping authenticated connections alive:

[image: image]

15.4.2.2 AJAM Demo

A small sample application demonstrating AJAM access may be run at

http://localhost:8088/asterisk/static/ajamdemo.html

This uses the highly practical JavaScript library prototype (www.prototypejs.org) for AJAX access and displays to get the Status of the currently active channels. You can use the AJAM demo as a basis for your own AJAX applications.

15.4.2.3 Apache

The Asterisk web server is a minimal implementation and cannot be seen as a wholesale replacement for a “proper” web server that can run PHP scripts or use modules, such as Apache. To unify a system that uses both, you can use Apache as a proxy for AJAM by adding

ProxyPass /ajam http://localhost:8088/asterisk

in the appropriate place in httpd.conf, so that all requests for /ajam are passed on to AJAM instead of being served by Apache.

16. Asterisk Gateway Interface

The Asterisk Gateway Interface (AGI) may be compared with CGI (Common Gateway Interface) on a web server. These are external programs called from the within the dialplan (extensions.conf). AGI scripts can interact with Asterisk and execute commands. In principle, an AGI script may be written in any programming or script language that can use the UNIX system sockets. The following are simply implementation examples. For a command reference, see Appendix D, “AGI Commands.”

16.1 Data Streams

To use AGI scripts, understanding the UNIX system’s data stream model is an absolute requirement. You can find more information about this model in Appendix D.

16.1.1 STDIN

The AGI script receives some information from Asterisk via standard input (STDIN). The format looks like this:

[image: image]

This is followed by an empty line, by which Asterisk indicates to the AGI script that the transmission is complete.

Here is a list of all the headers Asterisk can transmit via AGI:

• agi_request

The filename of the called AGI program

• agi_channel

The channel

• agi_language

The language (e.g., en for English or de for German)

• agi_type

The channel type (e.g., sip for SIP or zap for ISDN)

• agi_uniqueid

The unique ID for this call

• agi_callerid

The caller ID (e.g., Charlie Farquharson <2000>)

• agi_context

The originating context

• agi_extension

The originating extension

• agi_priority

The current priority in the extension

• agi_accountcode

Account code

• agi_calleridname

Name field from the caller ID (e.g., Jerry Lewis)

• agi_callingpres

Caller ID in the ZAP channel

16.1.2 STDOUT

Once the AGI script has received information from Asterisk, it issues commands via standard out (STDOUT) back to Asterisk. To monitor this communication, enter set verbose 5 in the CLI to increase the verbosity level.

16.1.3 STDERR

Standard error (STDERR) is the stream used to bring error or debug messages to the Asterisk console (CLI).

16.2 Examples in Various Programming Languages

By default, Asterisk looks for AGI scripts in /var/lib/asterisk/agi-bin.

Ensure that Asterisk is actually allowed to run the script you want it to run. You can guarantee this with the system shell command chmod 755
script_name.

AGI scripts are called by the AGI() application, like so:

[image: image]

A few AGI programs in various programming languages are described below.

16.2.1 Perl

The standard Asterisk install comes packaged with a test AGI script called agi-test.agi1 located in the /var/lib/asterisk/agi-bin directory. Through this sample, we’ll explain how AGI scripts work.

1. The .agi extension is not strictly necessary. You could name the file agi-test.pl if so desired.

The script is called in extensions.conf as follows:

[image: image]

Here we describe the operation by line or section.

[image: image]

The first line indicates to the shell that this is a Perl script and is to be run by the Perl interpreter located at /usr/bin/perl. The directive use strict tells the interpreter to force the declaration of variables before use and to handle subs and strings in a way that prevents confusion:

$|=1;

This short line tells Perl not to buffer text. This ensures that any output is passed to Asterisk immediately:

[image: image]

Variables are defined here. The hash %AGI accepts the initial inputs from Asterisk. The remaining variables count the total number of tests, the number of failed tests, and the number of passed tests:

[image: image]

The values which have just been stored are fed to STDERR for debugging purposes, and then passed to the CLI:

[image: image]

Then comes the checkresult subroutine:

[image: image]

The checkresult subroutine reads the result of a command to Asterisk and determines whether that test was successful. The variables $fail and $pass are incremented depending on the result. After this basic function has been established, the individual tests can proceed. The beep.gsm sound file is played:

[image: image]

The text hello world is transmitted to the caller. This works only if the protocol and the device support text:

[image: image]

The image asterisk-image is transmitted to the caller. This is also protocol and device dependent:

[image: image]

The number 192837465 is played to the caller:

[image: image]

This command waits for dual-tone multi-frequency (DTMF) input from the caller for 1,000ms:

[image: image]

A 3,000ms GSM file named testagi.gsm is recorded. Recording can be interrupted by the caller by pressing 1, 2, 3, or 4:

[image: image]

The resulting sound file is played back:

[image: image]

Finally, output is sent to the CLI indicating how many tests succeeded and failed:

[image: image]

Warning

In many AGI commands you will see the following construction:

[image: image]

The indicated part of this line (between $value and);) is an absolute requirement, to ensure that the command is executed correctly. This is because we have an empty argument established by two double quotes, which must be escaped. The entire command is closed with a line feed, \n.

16.2.2 PHP

PHP has become one of the most popular programming languages for web applications. Because current versions of PHP support calling applications from the command line, it is also well suited for AGI scripts. To demonstrate this, we’ll use a small PHP program (lotto.php), which chooses 6 random numbers from 1 and 49 and plays them back to the caller. A description of the individual steps follows in the program code here:

[image: image]

[image: image]

[image: image]

The lotto.php program must be saved in /var/lib/asterisk/agi-bin and is called from extensions.conf as follows:

[image: image]

If you use PHP with AGI but don’t want to reinvent the wheel, you can use the ready-made phpAGI PHP class. You can find the required files and more information on the project home page at http://phpagi.sourceforge.net.

The following program, which is provided with phpAGI, will give you a quick overview of the function calls.2

2. To use text2wav, you need to have a text-to-speech system (e.g., Festival) installed.

[image: image]

16.2.3 Ruby and Adhearsion

Although Ruby is an older (by IT standards) programming language, it has grown tremendously in popularity in the past few years, mainly as the result of Ruby on Rails (http://rubyonrails.org). Adhearsion (http://adhearsion.com) is a kind of Ruby on Rails for Asterisk. The subject is exciting and deep enough that one could write a dedicated book on it. In the future, we will try to expand and update the coverage of Adhearsion on this book’s website.

16.2.3.1 Installation

Like any good open source project, Adhearsion has fragmented and occasionally incomplete documentation. Fortunately, the installation is relatively easy because there is a Ruby gem available. (For Ruby Newbies, gem is Ruby’s package management system.) Installing Adhearsion is just a matter of entering gem install adhearsion in the system shell.

16.2.3.2 Easy Setup

When you use Adhearsion, the Asterisk dialplan becomes short and easy to read. Each inbound context needs only the following line:

exten => _.,1,AGI(agi://127.0.0.1)

With this line, Adhearsion takes over control of all calls happening in this context. You can, of course, mix a traditional dialplan with Adhearsion if you want.

An Adhearsion application has to be generated first, just as in Ruby on Rails. This is done with the ahn program, called with ahn create application_name, as follows:

[image: image]

The application is then started with ahn start . (And, yes, this command ends with the blank space, as shown here and in the following code snippet.)

[image: image]

From this point forward, Adhearsion can control calls. You can monitor progress on the screen.

16.2.3.3 Sample Program

The Adhearsion dialplan, or rather the Ruby program, is defined in dialplan.rb. Here is a simple example:

[image: image]

internal is, in this example, the context from which Adhearsion was called.

16.2.4 Other Programming Languages

Remember, you can write AGI programs in any language. There are already libraries for many of the most popular languages, including the following:

• Java

• Perl

• PHP

• Python

• Ruby

• C

The easiest way to start is with a web search using the keywords AGI and the name of the language you want to use.

17. Fax Server

Many attempts have been made to cleanly integrate Asterisk with faxing, with inconsistent results. For a long time, app_rxfax, available at www.soft-switch.org was the accepted convention. Unfortunately it is error prone and unreliable. Faxes often arrive piecemeal, or worse, not at all.

For that reason, we describe a more robust solution using IAXmodem here (see http://iaxmodem.sourceforge.net).

The IAXmodem application emulates a fax modem, which may be operated by a fax application of the administrator’s choosing. We’ll use the popular Hylafax. For simplicity and consistency, the installation platform will be the same Debian Linux and Asterisk 1.4 we have used for the other examples (see Appendix A, “Installation Instructions for Asterisk 1.4”).

17.1 Installing IAXmodem

IAXmodem simulates a fax modem and makes it available to Asterisk via IAX2. All the steps in this chapter must be performed as the root user.

To install IAXmodem, we need some additional Debian packages, which may be installed with the command apt-get -y install g++ libtiff-tools libtiff4 libtiff4-dev.

[image: image]

We switch into the appropriate directory with cd /usr/src to install the IAXmodem source code:

[image: image]

The sources for IAXmodem can be downloaded with any typical web browser from http://iaxmodem.sourceforge.net (the version used in this example is 0.3.0). After downloading the archive, copy it to /usr/src and unpack it with tar -xvzf iaxmodem-0.3.0.tar.gz:

[image: image]

Change into the unpacked directory with cd iaxmodem-0.3.0:

[image: image]

Now compile the sources with ./configure && make:

[image: image]

Copy the resulting binary into /usr/bin with cp iaxmodem /usr/bin/:

[image: image]

17.1.1 Configuring IAXmodem

Now we can configure the modem. IAXmodem expects to find configuration files in /etc/iaxmodem. Create it with mkdir /etc/iaxmodem:

[image: image]

Create the configuration file with touch /etc/iaxmodem/ttyIAX0:

[image: image]

This file must contain the following parameters:

• device

The device node to be created in /dev. This is the device Hylafax uses to connect to IAXmodem. You can choose any name you like, but we prefer to adhere to the convention and so choose a device name appropriate for a serial interface, ttyIAX0.

• owner

This is the owner of the device (in the form user:group). It is best to use the same user and group under which Hylafax runs.

• port

The port that IAXmodem listens on. Asterisk uses 4569 to listen for IAX2 connections, so you must choose something else (e.g., 4570).

• refresh

This sets how long IAXmodem waits between registrations with Asterisk. If this number is 0, the modem does not register at all.

• server

IP address of the server running Asterisk. If this is on the same machine as IAXmodem, use the localhost address 127.0.0.1.

• peername

The name under which IAXmodem registers with Asterisk.

• secret

The password used for Asterisk registration.

• codec

The codec used by IAXmodem. Allowed codecs are alaw, ulaw, and slinear. Compressed codecs are not appropriate for faxing; fax transmissions are themselves compressed and don’t tolerate further compression; moreover, most compressed codecs are lossy and a fax transmission will not tolerate losses. This is one of the major reasons why faxing over VoIP remains problematic.

Using an appropriate editor (e.g., vi), we write the following configuration in the file /etc/iaxmodem/ttyIAX0:

[image: image]

IAXmodem is now configured and can be started. The best way to do this is with init. Add a line to start IAXmodem to /etc/inittab with echo "IA00:23: respawn:/usr/bin/iaxmodem ttyIAX0" >> /etc/inittab:

[image: image]

The device name ttyIAX0 is the same device name as specified in /etc/iaxmodem.

17.1.2 Configuring faxgetty and Logging

To receive faxes, we need a getty that listens for connections on the IAXmodem. This is accomplished through an additional entry in /etc/inittab. Add it with echo "mo00:23:respawn:/usr/sbin/faxgetty ttyIAX0" >> /etc/inittab:

mo00:23:respawn:/usr/local/sbin/faxgetty ttyIAX0

Create a log directory for IAXmodem with mkdir /var/log/iaxmodem/ and the log files with touch /var/log/iaxmodem/ttyIAX0 and touch /var/log/iaxmodem/iaxmodem:

[image: image]

To make sure everything will start as expected at boot time, reboot the system with shutdown -r now:

[image: image]

17.2 Installing Hylafax

We’ll install Hylafax from the Debian Repository to simplify installation. Do this with apt-get -y install hylafax-server. Dependencies are automatically resolved:

[image: image]

The next step is the configuration of the fax server. Do this with faxsetup:

[image: image]

Simply press Enter after the following 2 or 3 questions:

[image: image]

We confirm restart of the server processes with yes and are asked if we want to install a modem. Our IAXmodem is already set up so we can proceed and confirm again with yes.

Specify the modem and confirm with Enter:

[image: image]

Many questions follow, but only a few of them are really important. This is where you set international dialing codes, the fax number, country and area code, and the CSID (call subscriber ID), which is printed on the top line of the fax page on the receiver’s end. Confirm with yes.

[image: image]

A confirmation page follows where you can double-check your entries:

[image: image]

Answering yes brings us to modem detection:

[image: image]

[image: image]

The modem was detected and we are asked if it is a Class 1 modem, and we confirm this because it is exactly what we want. The default reset commands are also acceptable. Confirm with yes.

Answer the first question In the next dialog with no, because we don’t need to configure any further modems. The second question is confirmed with by pressing Enter, which starts the fax server:

[image: image]

Hylafax is now configured for sending faxes.

17.3 Receiving Faxes

Our fax solution still has to be integrated into Asterisk. To do this, we configure the IAXmodem as an IAX2 peer by adding a section to /etc/asterisk/iax.conf:

[image: image]

Global settings are defined in the general section. In this example we are binding the standard IAX2 port of 4569. The bindaddr defines the IP address (and thereby the interface) on which the IAX2 channel driver listens for connections; in this case, it is set to listen on all interfaces.

The IAXmodem is set to type friend, which allows both incoming and outgoing connections. The secret and port parameters match those in the IAXmodem configuration we did above, and context defines the entry context for outgoing connections.

Enter iax2 show peers in the Asterisk console to see our new IAXmodem:

[image: image]

We are, of course, not done yet. Asterisk still needs an extension so that it knows what to do with an incoming fax. Our objective is to ensure that any incoming faxes are passed on to Hylafax. In this example, we assume that all faxes come in through a SIP provider. A real configuration will have to reflect the installation and account settings of the SIP provider you use; for the sake of example, a configuration in sip.conf might look like this:

[image: image]

The corresponding context in extensions.conf would look like this:

[image: image]

Any faxes coming in will now be routed to Hylafax via IAXmodem and ultimately e-mailed to the user address defined in the faxmaster alias.

Note

By default, Hylafax saves incoming faxes in /var/spool/hylafax/recvq.

17.4 Sending Faxes

The next obvious step is configuring our system to send faxes. Here, too, we need a context (this time it is [fax-out]) in extensions.conf. If IAXmodem wants to send a fax, it will automatically land in this context. If the faxes are to go out our hypothetical SIP connection 123456, the entry in extensions.conf will look like this:

[image: image]

We can test sending of faxes with sendfax -n -d <faxnumber> <file.txt>:

debian:~# sendfax -n -d 6045557977 /etc/issue.net

We should see this in the CLI:

[image: image]

If we issue the command faxstat -s during the transmission, we will see the following:

[image: image]

Done! Now you can send and receive faxes via Asterisk using Hylafax.

The Hylafax website, www.hylafax.org, has numerous examples and how-tos that will help you integrate your Hylafax installation with your existing office infrastructure effectively.

17.5 Sending Received Faxes as E-Mail

The following steps illustrate how we can configure Hylafax to transmit incoming faxes to a predefined e-mail address.1

1. Our example assumes a properly configured MTA (e.g., Sendmail, Postfix, or a lightweight SMTP engine such as ssmtp).

The recipient will receive the fax as an e-mail attachment.

To do this, the configuration file /var/spool/hylafax/etc/FaxDispatch must contain the following parameters:

• SENDTO

The destination e-mail address for incoming faxes.

• FILETYPE

The format of the attachment. In addition to pdf, tiff (Tagged Image File Format) and ps (Postscript) are also acceptable options.

The parameters are set with an equal sign, just as in Asterisk configuration files:

[image: image]

After the file has been saved, you must restart the fax server with /etc/init.d/hylafax restart:

[image: image]

We can test e-mail transmission by sending ourselves a fax with sendfax -n -d <faxnumber> <file.txt>:

debian:~# sendfax -n -d 6045557977 /etc/issue.net

After a short time, your target e-mail address should receive an e-mail in the following format:

[image: image]

The attachment will be a PDF file. In this example, the PDF is named fax000000016.pdf.

Now you can not only send and receive faxes, but received faxes are also received as e-mail attachments.

18. Busy Lamp Field, Hints, Pickup

Philipp Kempgen
Stephen Bosch

The Busy Lamp Field, or BLF, is a common feature of many modern telephone systems. The BLF can be colored LED lamps or LCD indicators that allow a user to monitor the status of other users on the system, almost always next to a button that performs an operation on the monitored station depending on the status of the indicator. Although it is most frequently seen at reception switchboards, it can also be found on regular desktop sets.

The indicator tells the operator the status of the line. A line can have many states:

• Ringing

• Busy or “in use” (which usually includes active “Do not disturb” states)

• On hold

• Available

The states can be indicated with LED lights (which may change color or blink, depending on the state) or LCD icons (which change appearance; for example, by providing a “do not enter” sign for a line that is in use). Not all models of telephone provide all the states.

If the system is so configured, the button can be configured to “pick up” a call when a station is ringing. (For some sets, this is done by entering a feature code.)

We cover the configuration of these features for Asterisk and a selection of SIP phones here.

18.1 Controlling Indicators

The BLF is implemented through hints and subscriptions. A hint tells Asterisk to monitor the state of a SIP channel. SIP devices can subscribe to those hints, and when the state changes, Asterisk sends an event package to the subscribed devices to inform them of the state change.

18.1.1 sip.conf

To make BLF work, some additional entries must be added to the [general] section of sip.conf:

[image: image]

Individual SIP accounts need the entries subscribecontext and call-limit. The first, subscribecontext, tells Asterisk which context to check whether this user wants to subscribe to the hint of another user. Most often, this is the same as the context for all the other internal users. The second, call-limit, limits the number of simultaneous calls that this user is allowed (when this is greater than zero). This is important because it tells Asterisk how to set the state of the station in question. For example, if the call limit is set to 2, and the station has an active call, Asterisk will treat the station as available. If there are already two active calls, then Asterisk treats the station as busy. A setting of at least 2 is best; lower settings can cause problems with call transfers.

For call pick-up functions, the additional parameters, callgroup and pickupgroup are important. For example, a SIP user with pickupgroup=2 can only pick up calls from other users with callgroup=2. This can be used to manage rights; because there are only 64 possible groups, however (0 to 63), this works in small to medium environments only. For larger installations, all the users are set to the same group and rights are handled through another mechanism. (We hint at how later.)

[image: image]

18.1.2 Hints

Asterisk does not know how to correlate dialplan extensions to specific users or devices unless we tell it how. This is done in the dialplan using hints. If you want to think in terms of dialplan priorities, a hint is a special kind of priority that precedes priority 1. The hint for a device must be in the same context as that specified in sip.conf using subscribecontext, or the status information will not be relayed. This is to prevent a station from monitoring all the other stations without permission.

The following examples show how to define hints. Here is a simple example in .conf format:

[image: image]

The same is accomplished in AEL like this:

[image: image]

Let’s take a look at the typical example of a group of extensions beginning with a common digit, here in extensions.conf:

[image: image]

In extensions.ael, the same dialplan section would look like this:

[image: image]

You may want to try using patterns to reduce the maintenance overhead for your dialplan. Unfortunately, in Asterisk 1.4, this doesn’t work.

Warning

In Asterisk 1.4, hints may not use patterns, so these hints would not be allowed (extensions.conf, extensions.ael respectively):

[image: image]

As of Asterisk 1.6, you can use patterns in this way, although the early implementations were buggy. Be careful, however: When hints are processed, there is no channel yet, so no channel variables will be available for the hint definition to use (with the exception of ${EXTEN}).

You can also combine multiple users in a single hint, as in this example:

[image: image]

To accomplish the same thing in extensions.ael, a similar pattern is followed:

[image: image]

Tip

You can also place all your hints in a dedicated context and then include it if you need it in another context.

You must reload the dialplan in order to apply hints (asterisk -rx 'module reload').

18.2 Subscriptions

This section provides the technical background for subscriptions for those who are interested. It’s not really required for configuration purposes. If you just want to configure your phones, proceed to the next section.

SIP provides more than one method for subscribing to a station’s status. The customary method is described in RFC 4235, “Dialog Event Package,” which is based on RFC 3265, “SIP Event Notification.” With this method, a monitoring device sends a separate SUBSCRIBE message to the phone system for each station it wants to monitor. The system replies with a NOTIFY message whenever the status of subscribed station changes. (Asterisk does not yet support PUBLISH.)

The main difference between the subscription standards is the XML they use in the body of the notification. The standards supported by Asterisk are described in Table 18.1.

Table 18.1 Subscription Methods Supported by Asterisk

[image: image]

The xpidf+xml and cpim-pidf+xml formats are very similar.

18.3 Configuring Telephones for BLF

To actually use BLF, you have to configure BLF on the phone you want to use for monitoring. This will vary for every model of phone you use. We briefly cover two commonly used phones here, to get you started. Be warned that the firmware, and thus the configuration parameters, can change at any time. For the last word, consult the documentation for the phone you are configuring.

Note

Central provisioning is the term used for configuration of telephones through configuration files distributed through a central server, whether by TFTP, FTP, HTTP, or some other means. The setup for central provisioning is beyond the scope of this chapter. Because central provisioning is a very common way to configure phones and an absolute must for large installations, most manufacturers provide instructions for this in the administration guide (as opposed to the user’s guide) for the phone.

18.3.1 BLF on the Aastra 480i

Aastra telephones, like most IP telephones, can be configured via a web interface or through a configuration file, which the phone loads from a configuration server (nearly always the Asterisk server itself).

18.3.1.1 Configuring via a Web Browser

Find the IP address for the phone. You can do this on the phone by pressing the Options key and scrolling to Network Setup. (The default password is 22222.)

Enter the IP address into a web browser on a computer on the same network. When you do this, you’ll be prompted for a username and password. By default, the username is admin, and the password is 22222. Once you are logged in, click Softkeys and XML in the Operation section of the configuration menu on the left. Figure 18.1 shows the Softkeys Configuration page.

Figure 18.1 Aastra 480i Busy Lamp Field web configuration.

[image: image]

Choose the key you would like to configure and set the type to BLF. The Aastra phones automatically condense softkeys on the idle screen. For example, if you only configure key 5, it will appear as key 1 on your phone.

The Label field sets the display name for the BLF, and the value is the number of the extension you want to monitor. The check boxes on the right (Idle, Connected, Incoming, and Outgoing) determine in which states the key will display. (This is because the keys can be set to perform a variety of functions and you may not need them in every state.) The defaults usually suffice.

Once you have entered all the BLF settings you want, you have to save the settings before restarting the phone. The Save Settings button is in the lower-left corner of the window. (It’s not visible in the figure above because you have to scroll down to see it.) Restart the phone by going to Operation on the left and clicking Reset and then Restart.

18.3.1.2 Configuring with a Configuration File

Another way to configure BLF is by provisioning the phone through a central server.

Aastra phones can be configured globally through the aastra.cfg file, or on a per-phone basis through a configuration file with a filename containing the phone’s MAC address, as in, for example, 00085D1840D1.cfg.

An example BLF configuration for an Aastra 480i would look like this:

[image: image]

Note that this is not the entire configuration file. Although you can put these lines wherever you want in the file, it makes sense to keep them together for clarity.

You need at least three parameters in the configuration file to activate BLF; four are listed here. All the parameters are preceded by softkeyN, where N is the number of the softkey:

• type

This sets the key type. Aastra sets have highly configurable softkeys. You need to specify what type of function you want the key to perform. In this case, we want the type blf, as in this example:

softkey1 type: blf

• label

This sets the display name for the softkey. You can set it to whatever you like, but generally this is set to the name of the user whose phone you want to monitor. This is a short field which can only contain up to 9 characters. You must enclose it in quotes:

softkey1 label: "S. Smart"

• value

Sets the extension you want to monitor, usually by number:

softkey1 value: 112

• line

You can specify a line number for the softkey; softkeys configured in this way will automatically dial the monitored extension when pressed.

softkey1 line: 2

18.3.2 Polycom Soundpoint IP 501

You can only configure Busy Lamp Field on the Soundpoint IP 501 through central provisioning. On Polycom phones, BLF is called Buddy Watch.

Warning

The Polycom phones use XML configuration files. You must be extremely careful with spacing and formatting when editing these files. All tags must be closed; typographical errors, extra lines, and extra spaces have been known to cause boot problems.

The BLF is a phone-specific setting made in the directory file for the phone you want to configure. The filename for the directory file follows the convention mac_address-directory.xml. For example, 0004f2047ff5-directory.xml is a valid directory filename. A directory file with presence configured for two extensions might look like this:

[image: image]

All the fields for a given entry must be enclosed in the <item></item> tags. These are the fields you’ll need to set:

• <ct>extension</ct>

This sets the extension you want to monitor and is usually a number:

<ct>201</ct>

• <sd>number</sd>

This sets the speed dial number for the entry. The Soundpoint IP 501 has three line buttons, which can be line appearances, speed dial buttons, or BLF indicators. Line appearances always take priority. For example, if you configure three line appearances, no buttons or fields will remain on the idle screen for BLF (although you can still check the states of monitored extensions by pressing the Buddies softkey). If you have a single line appearance, it will occupy the first button. If you set <sd> to 1, the entry will occupy the next available line button.

• <bw>[0,1]</bw>

This is the Buddy Watch parameter (essentially, another Polycom name for BLF). Allowed values are 0 and 1. If this is set to 1, the extension specified in <ct></ct> will be monitored. When this is set, the Buddy icon appears next to the button if the line is available; the Do Not Enter icon appears when the line is in use for any other reason.

• <bb>[0,1]</bb>

This is the Buddy Block parameter. Allowed values are 0 and 1. If this is set to 1, it blocks the extension defined in this entry from monitoring this phone.

Configuring BLF for SIP phones is generally straightforward. The different terminology used by different phone manufacturers can be a source of confusion. Equivalent terms include presence, buddy watch, extension monitoring, and subscription. As with all the hardware-specific examples, consult with the manufacturer’s documentation if you are not sure. Things change frequently.

18.4 Testing the Hints

Now we can test to see that things are working.

Note

Output in the following examples has been truncated to save space.

Enter core show hints in the Asterisk CLI:

[image: image]

We can see that extensions we want to monitor (SIP/21 and SIP/22) have not yet contacted the Asterisk server ("Status: Unavailable"), nor have the monitoring extensions subscribed to the hints for the unavailable extensions ("Watchers 0"). We can confirm this with an additional command, sip show subscriptions:

[image: image]

Once the monitoring extension has contacted the server, we run the command again:

[image: image]

Now we can see that extension 21 is monitoring extension 22. Once the extension 22 contacts the Asterisk server, we will see this in the CLI:

Extension Changed 22 new state Idle for Notify User 21

Now we enter core show hints again:

[image: image]

In contrast to the first output of this command, we can see that the phones have a defined setting (Idle) and at least one phone is monitoring extension 22 (Watchers 1). Configuration is now complete, and Asterisk will send an event to the monitoring extensions as soon as the monitored extension changes state. How this is manifested will depend on the phone. Some phones have an icon on an LED display, others have LED indicators that blink, change color, or both. Status changes are also reported in the CLI:

[image: image]

18.5 Configuring Pickup

The Busy Lamp Field only tells us the status of a monitored extension, but it doesn’t let us do anything about it. If we want to be able to pick up a call intended for another extension, we have to do some additional configuration.

There are two basic kinds of call pickup. Pickup of calls for a single user is sometimes called directed pickup; pick up of calls for a call group is known as group pickup. Let’s start with the directed pickup, which is simpler.

18.5.1 extensions.conf for Pickup

We need to add additional entries to extensions.conf to make pickup work:

[image: image]

To accomplish the same thing in extensions.ael, we make the following entries:

[image: image]

Now we have defined an Asterisk extension that picks up a call to <extension> in the internal-users context if *8<extension> (e.g. *821) is dialed, provided that <extension> (e.g., 21) is ringing but has not yet been answered. (See also Appendix B, “Dialplan Applications.”)

Warning

The Pickup() application should not be confused with similar applications packaged with bristuff (such as PickUp(), DPickup(), PickUp2()). You might find these in the form of patches when doing Internet searches on the topic.

18.5.2 Configuring the Phones for Pickup

Some phones support BLF + directed call pickup. In this configuration, when a monitored phone is ringing, the user can pick up the call simply by pressing the adjacent associated button. We will set this up here. Because Polycom sets do not support BLF + directed call pickup with Asterisk, we provide only the Aastra instructions.

Tip

This behavior can be replicated on Polycom phones by having Asterisk do the state detection. In such a scenario, if the device is idle, dialing the extension will ring the extension. If the extension is already ringing, and a phone in the correct context dials it, that phone will pick up the extension. This way, the button adjacent to the “watched buddy” can be used to do call pickup, even though it is simply a speed dial button.

Early on, Aastra sets relied on the SIP subscription event package to determine what to dial in order to do call pickup. This meant that, in theory, it was only necessary to enable directed call pickup in the web configuration to make this feature work.

Unfortunately, Asterisk does not transmit this information by default. To do this, Asterisk must be patched using the patch provided at https://issues.asterisk.org/view.php?id=5014. This is still an option for you if recompiling and installing Asterisk is not too bothersome; then you need only to activate directed call pickup in the Aastra web configuration. Log in to the phone, find Basic Settings on the left, and click Preferences. Scroll to the bottom of the screen and find the Directed Call Pickup Settings section. Check the box next to Directed Call Pickup to enable it, as shown in Figure 18.2.

Figure 18.2 Activating directed call pickup on the Aastra 480i.

[image: image]

Click Save Settings, then restart the phone by going to Operation on the left, clicking Reset and then Restart.

Another way to do this, which does not require patching and recompiling Asterisk, is to tell the Aastra phone what the pickup prefix is. Currently, this can be done only via the Aastra configuration file, not through the web interface. For the purposes of our example, add the following lines to the configuration file (as mentioned before, in the form mac_address.cfg):

[image: image]

Force the phone to restart so that it loads the configuration. Pressing the softkey associated with the BLF indicator of a ringing extension should now pick up the call.

18.5.3 Configuring Group Pickup

Group pickup is very similar in operation to directed call pickup. One way is to make pickup extensions, such as in this example:

[image: image]

To monitor this extension, you set 20 as the value in the Softkeys and XML configuration page of the Aastra.

The PICKUPMARK functionality of the Pickup() application (Appendix B) provides a bit more flexibility:

[image: image]

Advanced users who want to avoid using up an extra extension (20 in the example above) for the pickup group can try this configuration:

[image: image]

We mentioned earlier that pickup rights could be handled through another mechanism; the comment lines above show where you would perform an authentication test, which could be done either in the dialplan or through an external AGI script.

On the monitoring extension, you set the monitored extension to **200.

18.6 Advanced BLF Indicators in Asterisk 1.6

DEVICE_STATE()

You already know how to monitor the status of SIP users. Here is a quick review for the sake of comparison. In extensions.conf, a user hint looks like this:

exten => 21,hint,SIP/21

In extensions.ael, the same hint looks like this:

hint(SIP/21) 21 => {}

As of Asterisk 1.6, you can monitor the state of MeetMe conferences using hints. Assume a MeetMe conference room of 885, which you want to tie to Asterisk extension 881. In extensions.conf, this would look like this:

[image: image]

In extensions.ael, it would look like this:

[image: image]

The hint in the preceding example ties the status of extension 881 to the status of MeetMe room 885. The numbers are deliberately different, for the sake of clarity; in practice, they are often the same. You can now configure a BLF softkey with the extension 881, and it will indicate the status of the conference (that is, active or not).

Even more interesting, though, is that Asterisk 1.6 lets you tie hints to virtual devices. In extensions.conf, this looks like this:

exten => 99,hint,Custom:my-status

In extensions.ael, the same construction looks like this:

hint(Custom:my-status) 99 => {}

The status of such a custom device can be set to anything you like using the DEVICE_STATE() function from elsewhere in the dialplan.

Warning

For a time, this function was called DEVSTATE(), which is the same as DEVICE_STATE(). This function is not to be confused with the application DevState() or other applications and functions with similar names, even if they work similarly. You might see these alternates mentioned in list archives and Internet forums.

The function uses this construction:

Set (DEVICE_STATE (Custom:my-status)=INUSE);

The status is then transmitted to any phones that have subscribed to the hint. The possible values are as follows:

• UNKNOWN

Unknown; the device cannot be contacted.

• UNAVAILABLE

The device is unavailable.

• NOT_INUSE

The device is available.

• INUSE

The device is in a call.

• BUSY

The device is in a call and will not take additional calls. (The device is busy.)

• RINGING

The device is ringing.

• RINGINUSE

The device is in use, but is also ringing. (An additional caller is calling and the device is receiving call waiting notification.)

• ONHOLD

The device has a call on hold.

• INVALID

The status is invalid. (You might use this if the device status cannot be determined because it doesn’t exist; for example, for a dynamic conference room.)

How this status is actually manifested on a monitoring extension depends on the device manufacturer. Not all devices distinguish between all the status types.

The default status is UNKNOWN, which would be the case after an Asterisk restart before the status is set.

Once a phone has subscribed to the status of Custom:my-status at extension 99 in the above example, you can test whether it works by adding these statements to the dialplan (shown here in AEL format):

[image: image]

You can now set the device status by dialing the configured extensions accordingly. (Again, how each model of phone indicates those states will vary.) Most of the extensions are self-explanatory; *94 toggles between INUSE and NOT_INUSE. After you’ve figured out the basic operation, there are no limits on what you can do with indicators of this type. For example, you could use it to indicate whether you are logged into a queue, or even if your sprinkler system is currently watering the lawn.

Of course, this hint will appear in the output of core show hints along with all the other more conventional hints:

[image: image]

The CLI command devstate list lets you find the status of all your Custom hints:

[image: image]

Finally, devstate change device state lets you set the status from the CLI:

[image: image]

A. Installation Instructions for Asterisk 1.4

These instructions install the components necessary to use all the features covered in this book (except where otherwise indicated). As a result, it is a little more comprehensive than a typical installation but offers the advantage that you won’t have to install additional components in the future.

Tip

If you don’t want to install a new operating system on the computer, you can try installing using a KNOPPIX Live System.

We assume a freshly installed Debian GNU/Linux 5.0 (Lenny). You can find an ISO image for the installation CD at www.debian.org/releases/lenny/debian-installer. We recommend the 150MB network install image. (You will most likely need the one for the i386 architecture.) You can find installation instructions for Debian GNU/Linux at www.debian.org/releases/lenny/i386.

Before continuing, please log in as root.

Tip

Some users will undoubtedly want to install an SSH server immediately, in order to work on the server from their regular workstation. The installation command to do this is aptitude install ssh. We will assume you are comfortable with SSH or will be working directly at the server console.

Begin by making sure that your package lists are current:

[image: image]

Also, make sure that any already installed packages are the most current:

[image: image]

Just in case the updates installed a new kernel, we restart the system with shutdown -r now (or reboot):

[image: image]

After boot, log in again as root.

Tip

It is a good idea to install NTP (Network Time Protocol); this keeps the system time accurate and current:

debian:~# aptitude -y install ntp ntpdate

First, we must install a working build environment (i.e., compiler, linker, autoconf, and so on and any necessary dependencies) so that we can compile and install Asterisk:

[image: image]

The Linux kernel headers are also required:

[image: image]

A.1 LibPRI

The LibPRI library contains the PRI stack, which includes some functions used for BRI connections. This is not required for all types of installations, but won’t do any harm, either. Obtain the package this way:

[image: image]

Then, unpack it with tar:

[image: image]

Finally, compile and install it:

[image: image]

A.2 DAHDI

DAHDI handles telephony adapter card (both analog and digital) communications, and until Asterisk 1.4.21 was known as Zaptel (see Appendix H, “From Zaptel to DAHDI”). Even if you have no such cards installed, you should install this package because it performs other important functions, such as providing a time source for conferences.

Get the DAHDI package like so:

[image: image]

Unpack the tar.gz archives:

[image: image]

Now, install the dependencies:

[image: image]

Finally, compile and install DAHDI and the tools:

[image: image]

[image: image]

To install init scripts and configuration files, run make config:

[image: image]

There is no harm in leaving the defaults in place. If you have no cards installed, you can safely comment out all the modules in /etc/dahdi/modules. To avoid a reboot, we simply restart DAHDI:

[image: image]

As there are no built-in cards in our example, dahdi_dummy (formerly ztdummy) is loaded so that we have a timing source.

A.3 Asterisk

Now it’s time to install Asterisk itself. You can obtain the necessary source files at the Asterisk home page, www.asterisk.org. Make sure to get a stable (not a development) version:

[image: image]

Now, unpack the sources:

[image: image]

Next, install the required dependencies:

[image: image]

[image: image]

To prepare for compilation, run the configure script with the Asterisk sources:

[image: image]

Now you can begin compiling:

Tip

Experienced users can interactively select specific modules by invoking make menuselect.

[image: image]

Finally, install the compiled sources by invoking make install:

[image: image]

All the binaries and libraries are now installed, but the configuration directory /etc/asterisk is completely empty. Because we don’t want to start completely from scratch, we want the sample configuration files. Get those by invoking make samples:

[image: image]

To set up Asterisk so that it starts and stops automatically at boot time and shutdown, we need the init scripts. We get those with make config:

[image: image]

We’re almost done. Unfortunately, the Asterisk installer sets the init sequence incorrectly for a Debian Linux system. We correct that as follows:

[image: image]

Done! Asterisk is now installed. You can determine the installed version by running asterisk -V (uppercase V):

[image: image]

B. Dialplan Applications

This appendix describes the use of dialplan applications (in other words, /etc/asterisk/extensions.conf) in detail. Applications are contained within modules, so only the applications contained in the modules you’ve actually loaded into Asterisk will be available to your dialplan. You can define which modules will be loaded through the [modules] section of the /etc/asterisk/modules.conf configuration file, either with the blanket autoload=yes statement or by explicitly loading specific modules with load => app_application_name.so. You can determine which applications are available to you by invoking the command core show applications in the Asterisk CLI. Detailed information about a specific application can be viewed by invoking core application
application_name.

Tip

The commands core application xyz and core applications work only beginning with Asterisk version 1.4. If you’re using Asterisk 1.2, you can get the same result with the commands show application xyz and show applications. The old commands will work in Asterisk 1.4, but are deprecated.

Be careful not to confuse applications with functions. Functions are called as parameters to applications.

Note

Asterisk configuration files use the poorly defined INI format made famous by Microsoft, for which there is no consistently applied grammar, let alone a published one. Asterisk’s config file parser also doesn’t follow the conventional process of lexical analysis, tokenization, and syntactical analysis. This is why the developers of the Asterisk fork OpenPBX switched to the Mac OS X “property list” (.plist) configuration file format.

This is just to say that, due to the lack of a specification, it’s not always clear where and whether spaces are allowed, or where quotation marks are expected. Usually, multiple formats are accepted. If a syntax isn’t working for your specific Asterisk version, the only way to find out for sure is to make changes and test it.

As always, we welcome feedback. Should you find any errors in the book, please let the authors know.

In many cases, parameters may be omitted; you will still have to include the commas to indicate the empty fields (which usually means Asterisk will assume a default value), as follows:

exten => s,1,Dial(IAX2/User:password@example.com/123,,tT)

In general, failure results in a return code of −1; success returns 0. A return code of −1 means that Asterisk hangs up the channel and stops processing the dialplan for that call.

Note

The parameter delimiter is a comma (,) or pipe (|) depending on the Asterisk version. This book uses the comma.

Experienced Asterisk users may wonder why some applications have been omitted. The reason is simple: Some were already deprecated in Asterisk 1.2 and don’t exist at all in 1.4. Those applications are not described here; you can find the corresponding functions that replaced them in Appendix C, “Dialplan Functions.” The file compares (“diffs”) of the internal help always compare the newer 1.4 to the older 1.2.

The examples use the hypothetical and arbitrarily chosen extension 123 and the priority 1; in practice this will not always be practical.

Prior to Asterisk 1.2, many applications jump to priority n+101 (if it exists and where n is the current priority). This old behavior (known as “priority jumping”) can be enabled with the option j (jump) with some commands or by setting priorityjumping=yes in the [general] section of extensions.conf. This behavior is deprecated, however. The accepted method is to query channel variables.

The applications are listed in alphabetic order, under their functional purpose:

Call management (answering, patching, hanging up, and so on)

answer—Answering

busy—Indicate busy

chanisavail—Test to see whether a channel is available

channelredirect—Redirect a channel to another extension

congestion—Indicate congestion

dial—Initiate a call, patch a call, or connect a channel

disa—DISA (Direct Inward System Access)

followme—“Follow me” functionality

hangup—Hang up the channel

page—Page (one-way communications) to a group of devices

park—Park the call

pickup—Pick up a call in a pickup group

retrydial—Dial() with retry

ringing—Indicate ringing

Flow control and timeouts

continuewhile—Return to the beginning of a while loop

endwhile—End a while loop

exec—Execute an application

execif—Conditionally execute an application

execiftime—Execute an application if a time condition is met

exitwhile—Exit a while loop

gosub—Jump to a subroutine

gosubif—Conditionally jump to a subroutine

goto—Jump to the given priority, extension, or context

gotoif—Conditional Goto()

gotoiftime—Time conditional Gosub()

random—Jump to a random point in the dialplan

return—Return from a Gosub() or GosubIf()

tryexec—Check to see whether an application will run

while—Begin a while loop

Macros

macro—Call a macro

macroexclusive—Call a macro; allow only one instance of that macro to run

macroexit—Exit a macro

macroif—Conditionally call a macro

Caller identification

lookupblacklist—Look up caller ID in the blacklist

lookupcidname—Look up caller ID name in the database

privacymanager—Request input of the caller’s number if caller ID cannot be obtained

setcallerpres—Set caller ID presentation flags

softhangup—Hang up the channel but return 0

zapateller—Block telemarketers

Call detail records (CDRs)

appendcdruserfield—Append a value to the CDR user field

forkcdr—Break the CDR into two entries

nocdr—Deactivate CDR for this call

resetcdr—Reset CDR

setamaflags—Set AMA flags

setcdruserfield—Set CDR user field

Voicemail

directory—Provide dial-by-name directory

mailboxexists—Check if mailbox exists

voicemail—Voicemail

voicemailmain—Administer voicemail

vmauthenticate—Authenticate the caller using records in voicemail.conf

Conferencing

meetme—Conference call

meetmeadmin—Administer conference

meetmecount—Count participants in a conference

Change variables

importvar—Import variables from a channel

read—Read digits dialed by caller into a variable

readfile—Read a file into a variable

realtime—Read data from the real-time system into a variable

realtimeupdate—Change variables in the real-time system

set—Set a channel variable

setglobalvar—Set a global variable

Music and sound output

background—Begin playing a sound and advance to the next priority immediately

backgrounddetect—Background() with speech detection

controlplayback—Playback() with shuttle controls (forward, reverse, exit)

datetime—Say date and time (“speaking clock”)

echo—Echo audio back to caller

festival—Say text with Festival text-to-speech engine

milliwatt—Generate milliwatt test tone

mp3player—Play MP3 file or stream

musiconhold—Play hold music

nbscat—Play Network Broadcast Sound stream

playback—Play sound file

playtones—Play tones

progress—Indicate call progress in-band

sayalpha—Spell out text alphanumerically

saydigits—Say digits

saynumber—Say number

sayphonetic—Spell out text using NATO alphabet

sayunixtime—Say time in UNIX format

setmusiconhold—Set music-on-hold class

stopplaytones—Stop Playtones()

Recording and monitoring

agentmonitoroutgoing—Record outgoing calls of an agent

changemonitor—Change the recording file for Monitor()

chanspy—Eavesdrop on a channel

dial—Enable in-call recording with w or W parameters

dictate—Take and play back dictation

extenspy—Eavesdrop on an extension

mixmonitor—Like Monitor(), but mixes into a single file

monitor—Records a call

pausemonitor—Pauses recording of a call

record—Records incoming audio

stopmonitor—Stop Monitor()

unpausemonitor—Unpause recording of a call

zapbarge—Eavesdrop on a ZAP channel

zapscan—Scan through ZAP channels for eavesdropping

Database

dbdel—Delete a database entry

dbdeltree—Delete a database branch

General

authenticate—Authenticate a caller

senddtmf—Send dual-tone multi-frequency (DTMF) tones

sendimage—Send an image

sendtext—Send a text

sendurl—Send a URL

transfer—Transfer a call

vmauthenticate—Authenticate a caller using account information from voicemail.conf

wait—Wait a specified time

waitexten—Wait for the caller to dial an extension

waitforring—Wait for ring

waitforsilence—Wait for silence

waitmusiconhold—Wait and play music-on-hold

Scripts

agi—Run an AGI application

deadagi—Run AGI() on a hung-up channel

dumpchan—Dump channel information to the CLI

eagi—See AGI()

externalivr—Run an external IVR

log—Log an event at the specified verbosity level

macro—Call a macro

noop—Do nothing, but write the event to the CLI or logs

read—Read caller input (digits) into a variable

system—Execute a command in the system shell

trysystem—Like System(), but always returns 0

userevent—Send an event to the Manager interface

verbose—Write a message to the CLI at the specified verbosity level

SIP

sipdtmfmode—Change DTMF mode during SIP connection

sipaddheader—Add a SIP header to an outgoing call

ZAP

flash—Perform a switchhook “flash” on a ZAP trunk

zapbarge—Eavesdrop on a ZAP channel

zapras—Starts the Zaptel ISDN RAS (Remote Access Server) on a ZAP channel

zapscan—Scan through ZAP channels for eavesdropping

Queues, call center functions

addqueuemember—Dynamically add an interface to the queue

agentcallbacklogin—Log in a call agent (with callback)

agentlogin—Log out a call agent

agentmonitoroutgoing—Record outgoing calls of an agent

parkandannounce—Park the call and announce

parkedcall—Take a parked call

pausequeuemember—Pause a call agent

queue—Queue the incoming call

queuelog—Write a message to the queue log

removequeuemember—Remove an interface from the queue

unpausequeuemember—Reactivate a paused call agent

ADSI

adsiprog—Load an ADSI script into the phone

getcpeid—Query an ADSI device for ADSI CPE ID

Miscellaneous

amd—Answering machine detection

alarmreceiver—Emulate an alarm or fire panel receiver

iax2provision—Provision an IAXy device

morsecode—Send text in Morse code

settransfercapability—Set ISDN transfer capability

sms—Send or receive SMS (Short Message System) messages

B.1 AbsoluteTimeout()

Sets the absolute maximum time allowed for a call:

AbsoluteTimeout(seconds)

Warning

AbsoluteTimeout() is removed as of Asterisk 1.4 and has been replaced with the TIMEOUT() (see Appendix C) function:

Set(TIMEOUT(absolute)=seconds)

Asterisk versions:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also digittimeout, responsetimeout, and Appendix C, “Dialplan Functions.”

B.2 AddQueueMember()

Dynamically adds an interface into the queue:

AddQueueMember(queue[,interface[,penalty[|,options]]])

Dynamically adds the specified interface to the specified queue, which is configured in queues.conf. The penalty setting, if provided, will influence the priority assigned to the interface in the queue. Agents with lower penalty values will receive calls before agents with higher penalty values.

If the specified interface is already in the queue and the n+101 priority exists (where n is the current priority), the call jumps to that priority; otherwise an error code (−1) is returned. (Depending on the version of Asterisk, you may need to provide the j option to enable priority jumping.)

If AddQueueMember() is called without the interface parameter, the current user’s active interface is used.

Some versions of Asterisk allow commas as an option separator.

This application sets the channel variable ${AQMSTATUS} to ADDED, MEMBERALREADY (member exists in the queue) or NOSUCHQUEUE (queue does not exist) depending on circumstance:

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also queue, removequeuemember, queues.conf.

B.3 ADSIProg()

Loads an ADSI script into an ADSI-capable phone:

ADSIProg([script])

Programs an ADSI (Analog Display Services Interface) phone with the provided script. If no script is provided, the default asterisk.adsi is used. The pathname for the script is relative to the default Asterisk configuration directory, which is usually /etc/asterisk. The absolute path is also accepted.

Use GetCPEID() to obtain the CPE (customer premises equipment) ID and other information about the ADSI device.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also getcpeid, adsi.conf.

B.4 AgentCallbackLogin()

Allows call agent login with callback:

AgentCallbackLogin([agentid][,options[,extension@context]])

Allows an agent identified through the agent ID to log in to the queue. A call in the queue will cause the agent’s phone to ring. (This is in contrast to AgentLogin(), in which the agent’s phone is off-hook and new calls are indicated by a tone.)

For an incoming call for the specified agent, the specified extension (at the specified context, if provided) is called.

The option s makes the login silent; the agent login is not reported:

[image: image]

Numerous examples are available at www.voip-info.org/wiki/index.php?page=Asterisk+cmd+AgentCallbackLogin.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

See also agentlogin.

B.5 AgentLogin()

Allows call agent login:

AgentLogin([agentid][,options])

Logs the current caller (optionally identified through agentid) into the queue as a call agent. Once logged in, the agent can take calls with the phone off-hook; each call is preceded by a warning tone. Calls are ended by pressing the star (*) key.

The option s makes the login silent:

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.6 AgentMonitorOutgoing()

Records all the outgoing calls of an agent.

AgentMonitorOutgoing([options])

This application attempts to determine the ID of an agent making an outgoing call by comparing the caller ID of the agent with a global variable set by the AgentCallbackLogin() application. As such, it should be used with AgentCallbackLogin(), and always in a later priority. This application uses monitoring functions in chan_agent rather than Monitor(), so call recording must be configured in agents.conf.

By default, recordings are saved in /var/spool/asterisk/monitor. You can override this behavior with the parameter savecallsin in agents.conf.

Warning

Be aware that recording of calls may be subject to freedom of information and privacy legislation in your jurisdiction. As a matter of professional practice, you should know the terms under which it is lawful to record telephone calls. In most jurisdictions, it is illegal to record a call without the knowledge of the participants.

If the caller ID and/or agent ID for the agent cannot be determined, the call jumps to priority n+101, if it exists.

Unless the options specify otherwise, the application returns 0.

The following options may be used:

• d

forces the return of −1 in the event of error if there is no n+101 priority.

• c

changes the call detail record so that the source of the call is agent/agentid rather than the caller ID.

• n

suppresses error messages if the caller/agent ID cannot be determined. This is useful if a common context for agent and nonagent calls is desired.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.7 AGI()

Runs an AGI-compliant application (similar to EAGI(), FastAGI(), DeadAGI()):

AGI(program[,arguments])

It also runs an AGI-compliant program called program on the current channel. AGI scripts or programs can be implemented in almost any conceivable language (e.g., Perl, PHP) and may be used to manipulate the channel, play sound files, interpret DTMF tones, and so on. Asterisk communicates with the AGI program over stdin and stdout. The arguments are passed directly to the AGI program at execution time.

The AGI program must be flagged as executable in the file system. The path is relative to the Asterisk AGI directory, which is at /var/lib/asterisk/agi-bin by default, or may be specified as an absolute path.

To run a program or script on another server, invoke it using a URL in the form agi://host[:port[/program]]. This way the script, program, or daemon can be running at all times and be ready to accept connections, which improves the performance of your applications. This method, known as FastAGI, is similar in function and purpose to FastCGI as used in web servers. The default port is 4573 if no port number is provided. If program is specified, it is provided as an environment variable agi_network_script to the FastAGI program. There is a sample FastAGI Perl script in the agi folder (fastagi-test). Use this as a starting point for your own FastAGI scripts.

For a list of commands an AGI script can send to Asterisk, see agi-commands, or enter agi show in the Asterisk CLI.

To run AGI programs on inactive channels (as in the case of an h extension, where the channel is on-hook), used DeadAGI() instead. Should your AGI program need access to the incoming audio stream, use EAGI() rather than AGI(). The incoming audio stream is provided on file descriptor 3.1

1. A reminder: 0: stdin, 1: stdout, 2: stderr. File descriptor 3 is freely assignable.

It returns −1 on hangup or if the program requests a hangup; returns 0 if not.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

See also deadagi, fastagi.

B.8 AlarmReceiver()

Receives alarm reports from a burglar or fire alarm panel:

AlarmReceiver()

It emulates an alarm receiver and allows Asterisk to receive and process alarm reports in proprietary alarm panel signaling formats from burglar and fire alarm panels. Only Ademco Contact ID formatted alarm reports are supported at this time.

When AlarmReceiver() is called, Asterisk performs a handshake with the connected alarm panel, waits for it to transmit events, then validates and stores them. When the panel has hung up, AlarmReceiver() runs the system command specified in the eventcmd of alarmreceiver.conf. The alarmreceiver.conf also contains DTMF timing settings and acknowledgment tone volume.

This application has not been certified for use in critical environments where it is the only means of polling alarm events. Use it at your own risk! Before implementing, be sure to test it thoroughly.

It always returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also alarmreceiver.conf.

B.9 AMD()

Answering machine detection. Attempts to detect an answering machine at the remote end of a call.

[image: image]

If a call is initiated through a .call file, you can use AMD() to sense an answering machine at the remote end. Defaults are set in amd.conf:

• initialSilence

Maximum duration of silence preceding the remote announcement. If this is exceeded, sets ${AMDSTATUS} to MACHINE.

• greeting

Maximum duration of an announcement. If this is exceeded, sets ${AMDSTATUS} to MACHINE.

• afterGreetingSilence

Maximum duration of silence following the remote announcement. If this is exceeded, sets ${AMDSTATUS} to HUMAN.

• totalAnalysisTime

Maximum duration AMD() is allowed to determine whether remote end is HUMAN or MACHINE.

• minWordsSilence

Minimum allowed duration of a sound for it to be considered a word.

• betweenWordsSilence

Minimum allowed duration of silence between words.

• maxNumberOfWords

Maximum number of words in the announcement. If this is exceeded, sets ${AMDSTATUS} to MACHINE.

• silenceThreshold

The silence threshold.

This application delivers its output in the channel variables AMDSTATUS and AMDCAUSE.

AMDSTATUS can be assigned the following values:

• MACHINE

The remote end is a machine.

• HUMAN

The remote end is a human.

• NOTSURE

Threshold cases are indicated with NOTSURE.

• HANGUP

The remote end has hung up.

AMDCAUSE can be assigned the following values:

• TOOLONG-<%d total_time>

• INITIALSILENCE-<%d silenceDuration>-<%d initialSilence>

• HUMAN-<%d silenceDuration>-<%d afterGreetingSilence>

• MAXWORDS-<%d wordsCount>-<%d maximumNumberOfWords>

• LONGGREETING-<%d voiceDuration>-<%d greeting>

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

See also call-file.

B.10 Answer()

Answers a ringing channel.

Answer([delay])

Instructs Asterisk to answer the channel if it is ringing. If the channel is not ringing, this application has no effect.

It is generally recommended that the channel be answered before other applications are called, unless there is a specific reason for not doing so. Most applications require that the channel be answered before they are run; if this is not done, the behavior may be unexpected.

The optional delay parameter specifies how long Asterisk should wait, in milliseconds, before answering the channel.

Returns 0 upon success.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also hangup.

B.11 AppendCDRUserField()

Appends a string to the user field in the CDR.

AppendCDRUserField(string)

This application has been deprecated in favor of the CDR(userfield) function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

See also Appendix C.

B.12 Authenticate()

Requires that the caller enter a password before proceeding to the next priority.

Authenticate(password[,options[,maxDigits]])

Requires that the caller enters the specified password correctly before proceeding to the next priority. Allows the caller three chances to enter the password correctly before hanging up.

If password begins with forward slash (/), Asterisk will assume it is a filename to a file containing a list of valid passwords (exactly one per line). Passwords may also be stored in the Asterisk database (AstDB); see option d below.

The following options are allowed (also in combination):

• a

(accountcode) Sets the CDR accountcode field and the channel variable ACCOUNTCODE to the entered password.

• d

(database) Interprets the entered password as a key in the Asterisk database. If a database key is used, the value in the associated record is ignored and can be arbitrary.

• r

(remove) Removes the database key after successful password entry (valid only with option d).

• j

(jump) In the event of three failed attempts, jump to priority n+101 (if it exists) instead of hanging up.

Warning

When using option d, note that Asterisk looks for a key with a name equivalent to the password: as in /passwords/1234. The value in the record itself is irrelevant. A more logical implementation is to place the password as a value in the record, as in /passwords/type => 1234.

If maxDigits is set, input is ended as soon as the user has entered enough digits; this saves having to enter pound sign (#). (Default: 0; no limits on input.)

Returns 0 if the user enters the correct password within three attempts, otherwise hangs up the channel and returns −1.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also vmauthenticate.

B.13 Background()

Plays a sound file while listening for DTMF input from the caller.

Background(soundfile1[&soundfile2...][,options[,language]])

Plays the specified sound files while waiting for the caller to dial an extension. Playback stops the moment the first digit is pressed. Filenames must be provided without file extensions; Asterisk chooses the file format with the minimum transcoding cost.

Allowed options may not be combined:

• skip

Playback is skipped if the channel is not in the up state when the application is run. If skip is specified, the application ends immediately when the channel is hung up.

• noanswer

The channel is answered only after the specified sound file has been played. The default behavior is to answer the channel automatically before playing the sound file. Note that not all channel types allow playback of a message before being answered.

The language parameter can be used to specify a language for the sound files played, in the event this should be different than the language currently specified for the channel.

Returns −1 if hung up or if the specified sound file does not exist, otherwise returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also playback, backgrounddetect, show translation.

B.14 BackgroundDetect()

Plays a sound file while listening for sound from the caller.

BackgroundDetect(soundfile[,silence[,min[,max]]])

Similar to Background(), but listens for sound also.

During playback of the sound file, the application monitors audio on the incoming audio channel. If it detects a sound longer than min milliseconds in duration but shorter than max milliseconds, followed by a period of silence of at least silence milliseconds, it stops playback and passes the call to the talk extension, if it exists.

If silence, min, and max are not specified, the defaults are used: 1,000ms, 100ms, and unlimited, respectively.

Returns −1 on hangup, otherwise returns 0 (such as when playback is interrupted due to input).

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also playback, background.

B.15 Bridge()

Connects the active channel with a specified channel.

Bridge(channel,options)

Success or failure is signaled through the BRIDGERESULT variable.

• SUCCESS

Connection successful.

• LOOP

You have attempted to connect a channel to itself.

• NONEXISTENT

The target channel does not exist.

• INCOMPATIBLE

The channel uses an incompatible technology.

• FAILURE

Other error.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also dial.

B.16 Busy()

Sets the channel as “busy.”

Busy([timeout])

Instructs the channel to indicate busy and waits until the caller hangs up or the timeout expires (timeout, in seconds).

This application indicates a busy state only on the bridged channel. Every channel type has its own way of indicating that a device is busy. To play an actual busy tone, use Playtones (busy).

Always returns −1.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also congestion, progress, playtones.

B.17 ChangeMonitor()

Changes the monitoring filename of a channel.

ChangeMonitor(filename-prefix)

Changes the filename prefix for sound files written while recording the channel with Monitor(). This application has no effect if the affected channel is not being monitored.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also monitor, stopmonitor.

B.18 ChanIsAvail()

Indicates whether the specified channel is available.

ChanIsAvail(technology1/resource1[&technology2/resource2...][,options])

Verifies that the one or more of the queried channels is available, in the order specified. Returns 0 on success or −1 on failure.

If the s (state) option is given, Asterisk will treat the channel as unavailable if it is in use, even if it is capable of taking another call. Option j sets priority jumping to n+101 if the channel is unavailable.

Note

The mere fact of a channel being available does not automatically mean that it is free for use or that the device on the channel will accept a call. That is determined using a Dial() to the channel.

ChanIsAvail() sets the following channel variables:

• ${AVAILCHAN}

The name of the accessible channel, including the session number of the call.

• ${AVAILORIGCHAN}

The canonical channel name (i.e., the channel name without session number).

• ${AVAILSTATUS}

Status code of the channel:

• AST_DEVICE_UNKNOWN (0)

Status of the channel is unknown. It is a valid channel, but we don’t know about its state.

• AST_DEVICE_NOT_INUSE (1)

The channel is not in use.

• AST_DEVICE_IN_USE (2)

The channel is in use.

• AST_DEVICE_BUSY (3)

The channel is busy.

• AST_DEVICE_INVALID (4)

The channel is unknown.

• AST_DEVICE_UNAVAILABLE (5)

The channel is not available and not registered.

• AST_DEVICE_RINGING (6)

The channel is ringing.

Note

This application does not behave as expected on MGCP channels.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.19 ChannelRedirect()

Redirects a channel to another extension and priority.

ChannelRedirect(channel,[context,]extension,priority)

Redirects the specified channel to another extension and priority.

• Channel

Name of the channel to be redirected

• Context

Context to which the channel should be redirected

• Extension

Extension to which the channel should be redirected

• priority

Priority in the new extension

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also goto, transfer.

B.20 ChanSpy()

Enables eavesdropping on a channel.

ChanSpy([channelprefix[,options]])

Allows eavesdropping on a conversation on any specified channel. (This is different from ZapBarge()/ZapScan(), which are bound to Zap channels only.) Note that this application only listens on single channels, rather than the conversation per se, even though it does capture incoming and outgoing audio on the channel.

Warning

Be aware that listening to calls may be subject to freedom of information and privacy legislation in your jurisdiction. As a matter of professional practice, you should know the terms under which it is lawful to eavesdrop on telephone calls. In most jurisdictions it is illegal to eavesdrop on a call without the knowledge of the participants.

If channelprefix is specified, only channels with a name beginning with that string are available for listening.

Options may be combined:

• b

(bridged) Restrict to bridged (i.e., connected) channels.

• g(grp)

(group) Restrict to channels whose ${SPYGROUP} channel variable contains the value grp in a colon-delimited (:) list.

• q

(quiet) Do not play beep tones (or announce the channel name) when switching channels.

• r([name])

(record) Record the spying session in a file in the /var/spool/asterisk/monitor directory. The default filename prefix is chanspy.

• v[(value)]

(volume) Set the initial volume. The range of allowed values is from −4 (quiet) to 4 (loud).

• w

(whisper) Activate whisper mode. Allows the user on the spying channel to speak to the channel user on the spied-on channel, without the remote user hearing. (This option is available as of Asterisk 1.4.)

• W

(private whisper) Private whisper mode. Like w, except that the spying channel cannot hear the spied-on channel. (It’s not immediately clear where this would be useful, but Asterisk has found myriad applications!)

While listening, the following keypad input is accepted:

• #

Increases volume stepwise (from −4 to 4).

• *

Switches to another channel.

• X..X#

A set of digits of arbitrary length, ended with #, is attached to channelprefix. For example, if the extension invokes ChanSpy(Agent) and the user on the spying channel dials 1234#, the spying channel will begin spying on the channel Agent/1234.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

[image: image]

[image: image]

See also extenspy, zapbarge, zapscan, monitor.

B.21 CheckGroup()

Limits the number of channels in a group.

CheckGroup(maximum[@category][|options])

Warning

CheckGroup() is removed as of Asterisk 1.4 and has been replaced by the GROUP_COUNT() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also setgroup; and in Appendix C, see group_count, getgroupcount, getgroupmatchcount.

B.22 ClearHash()

Clears all the key/value pairs from the specified hashname.

ClearHash(hashname)

For more information, see Appendix C.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also Appendix C.

B.23 Congestion()

Indicates congestion (insufficient resources available) on the channel.

Congestion([timeout])

Indicates congestion on the channel and waits until the caller hangs up or until the specified timeout timeout has expired.

This application indicates congestion in the system but does not indicate this to the caller. Should you wish to notify the caller, use Playtones(congestion).

Returns −1.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also busy, progress, playtones.

B.24 ContinueWhile()

Returns to the beginning of a while loop.

ContinueWhile()

The ContinueWhile() application can interrupt a while loop while in progress. Asterisk returns to the beginning of the loop and evaluates the condition.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also while, exitwhile, ael.

B.25 ControlPlayback()

Plays a sound file with fast forward and rewind controls.

ControlPlayback(soundfile[,skipms[,ffchar[,rewchar[,stopchar[,pausechar]]]]])

Plays the specified file; the caller can manipulate playback by pressing the defined keys ffchar and rewchar. The defaults are # (forward) and * (backward). Playback is stopped when stopchar is pressed (if it is defined). If the file does not exist, the application jumps to priority n+101, if it exists.

The pausechar option is similar in behavior to stopchar except that playback can be resumed by pressing pausechar a second time.

The skipms defines how far forward or backward ControlPlayback() will skip in the file when ffchar or rewchar is pressed.

Returns −1 if the caller hangs up during playback.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also playback, background.

B.26 Curl()

Loads a URL.

Curl (URL|postdata)

Warning

Curl() is removed as of Asterisk 1.4 and was replaced by the CURL() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.27 Cut()

Cuts a variables contents using the specified delimiter.

Cut(newvariable=variable,delimiter,fieldnumber)

Warning

Cut() is removed as of Asterisk 1.4 and has been replaced by the CUT() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.28 DAHDIBarge()

Monitor a DAHDI channel.

DAHDIBarge([channel])

Note

This application came out of the renaming of Zaptel to DAHDI.2

2. For a complete description, see zapbarge.

Asterisk versions:

[image: image]

(* different name)

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 (zapbarge) to 1.4 (zapbarge):

None

Diff of the internal help from Asterisk 1.4 (zapbarge) to 1.6:

[image: image]

See also zapbarge.

B.29 DAHDIRAS()

Executes a DAHDI ISDN Remote Access Server.

DAHDIRAS(arguments)

Note

This application came out of the renaming of Zaptel to DAHDI.3

3. For a complete description, see zapras.

Asterisk versions:

[image: image]

(* different name)

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 (zapras) to 1.4 (zapras):

None

Diff of the internal help from Asterisk 1.4 (zapras) to 1.6:

[image: image]

See also zapras.

B.30 DAHDIScan()

Scans DAHDI channels for monitoring purposes.

DAHDIScan([channel_group])

Note

This application came out of the renaming of Zaptel to DAHDI.4

4. For a complete description, see zapscan.

Asterisk versions:

[image: image]

(* different name)

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 (zapscan) to 1.4 (zapscan):

None

Diff of the internal help from Asterisk 1.4 (zapscan) to 1.6:

[image: image]

See also zapscan.

B.31 DAHDISendKeypadFacility()

Sends digits out-of-band on an ISDN PRI connection.

DAHDISendKeypadFacility(digits)

Note

This application came out of the renaming of Zaptel to DAHDI.5

5. For a complete description, see zapsendkeypadfacility.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 (zapsendkeypadfacility) to 1.6:

[image: image]

See also zapsendkeypadfacility.

B.32 DateTime()

Say the current time.

DateTime([unixtime[,timezone[,format]]])

Says the current time. It is not yet deprecated but is now only an alias to SayUnixTime(); see the description there for use instructions.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also sayunixtime.

B.33 DBdel()

Deletes a key from the Asterisk database (AstDB).

DBdel(family/key)

Deletes the specified key from the Asterisk database.

Returns 0.

[image: image]

Warning

DBdel() is deprecated as of Asterisk 1.4; use the DB_DELETE() function instead.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also dbdeltree, and in Appendix C, see db, db_delete.

B.34 DBdeltree()

Deletes a family or branch from the Asterisk database.

DBdeltree(family[/branch])

Deletes the specified branch from the Asterisk database.

Returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also dbdel, and in Appendix C, see db.

B.35 DBget()

Reads a value from the Asterisk database (AstDB).

DBget(variable=family/key|options)

Warning

DBget() is removed as of Asterisk 1.4 and has been replaced by the DB() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also dbput, and in Appendix C, see db.

B.36 DBput()

Stores a value in the Asterisk database (AstDB).

DBput(family/key=value)

Warning

DBput() is removed as of Asterisk 1.4 and has been replaced by the DB() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also dbget, and in Appendix C, see db.

B.37 DeadAGI()

Runs an AGI compliant program on an inactive channel.

[image: image]

Runs an AGI-compliant program on an inactive (on hook) channel. With AGI (Asterisk Gateway Interface), you can manipulate channels with programs written in practically any conceivable language. AGI programs can control a channel, play audio, interpret and store DTMF tones; AGI programs exchange data with Asterisk on stdin and stdout. The specified arguments are passed unadulterated to the AGI program.

This application was developed for use on inactive (on hook) channels, because the standard AGI interface will not work on a channel after it is hung up. It is not necessary for the channel to be “dead” at the time of execution, however!

Returns −1 if the application causes a hangup, or returns 0 on exit without hangup.

[image: image]

Warning

The channel will be treated as active as long as the AGI program is running. This can have implications for CDRs.

Note also that DeadAGI applications receive a SIGHUP signal when the channel is hung up, and it may need to be explicitly ignored in your AGI program:

[image: image]

It is also important for the AGI program to stop communicating after the hangup, or it will receive a SIGPIPE signal and end (unless the signal is explicitly ignored as in the example above).

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

See also agi, fastagi.

B.38 Dial()

Connects channels.

[image: image]

Connects two channels together.6

6. Generally, channels of any type supported by Asterisk may be connected (for example, IAX, SIP, H.323, Skinny, PRI, FXO, FXS, Local).

Dial() is perhaps the most important application in Asterisk. We recommend you read this section carefully and more than once if necessary.

Dial() accepts every valid channel type (e.g., SIP, IAX2, H.323, MGCP, Local, or Zap) but the allowable parameters are channel-specific; i.e., what parameters a channel requires or will accept depends on the nature of the channel technology. For example, a SIP channel will require an IP address and user information, whereas a ZAP channel requires a telephone number.

When a network-based channel type is specified, the parameters (such as IP address, user name, password, and remote extension) can be supplied as options to Dial() or, alternatively, be included in a host configuration section in the appropriate .conf file. If this second approach is used, all the required configuration information must be present.

Here’s an example:

exten => s,1,Dial(SIP/richard:secret@widgets.biz)

This extension would accomplish the same thing:

exten => s,1,Dial(SIP/a_SIP_friend)

... as long as a_SIP_friend is defined as a channel in sip.conf:

[image: image]

Sometimes an extension is attached to the address information, as in this example:

exten => s,1,Dial(IAX2/user:secret@widgets.biz/500)

The remote system is asked to connect the call to extension 500 in the incoming channel. This extension is not required because the channel configuration on the remote system is used, or, alternatively, the call is passed to the default s extension in the incoming context.

In the end, the remote host decides how the call will be processed; all you can do is request special call handling.

If no timeout is specified, the channel will ring indefinitely. This behavior is not necessarily undesirable and so it’s not automatically necessary to set this parameter. Just be aware that “indefinite” can end up being a very long time.

The timeout is specified in seconds. It always follows the device information:

exten => s,1,Dial(IAX2/user:secret@widgets.biz/500,20)

With Dial(), you can ring multiple channels simultaneously. The call is handled on a “first come, first served” basis; the first extension to pick up answers the call, and all the other extensions stop ringing and become available:

exten => s,1,Dial(SIP/2000&SIP/2001&SIP/2303)

A big part of the power in the Dial() application is in the options, which always follow the device and timeout information, like so:

exten => s,1,Dial(IAX2/user:secret@widgets.biz/500,60,options)

Warning

If you want to provide options, you still need to provide a comma-delimited space for the timeout value even if it is empty:

exten => s,1,Dial(IAX2/user:secret@widgets.biz/500,,options)

Here are the valid options to the Dial() application:

• d

Allows the caller to dial another single-digit extension while waiting for the current extension to answer. (For example, a caller dials 4 while the phone is ringing and the call is immediately passed to the 4 extension. The extension is in the current context unless ${EXITCONTEXT} is set.)

• t

Blind transfer initiated by the called party. Allows the called party to transfer the call by pressing the blind transfer key (normally #). Reinvites are not possible when this option is selected because Asterisk must monitor the connection to detect when the called party presses the # key.

• T

Blind transfer initiated by the calling party. Allows the calling party to transfer the call by pressing the blind transfer key (normally #). Reinvites are not possible when this option is selected because Asterisk must monitor the connection to detect when the called party presses the # key.

• w

Allows the called party to start recording the call by pressing the automon key sequence (as defined in features.conf). If the TOUCH_MONITOR variable is set, its value is passed to Monitor() as a parameter when recording starts. If it is not set, WAV,,m is passed to Monitor().

• W

Allows the calling party to start recording the call by pressing the automon key sequence (as defined in features.conf).

• f

Sets the caller ID as the number of the line making or redirecting the outgoing call. Some PSTNs don’t allow IDs from extensions other than those assigned to you. For example, if you have a PRI, you would use f to overwrite the caller ID provided by a SIP extension to that belonging to the outgoing Zap channel on the PRI.

• o

Uses the caller ID received on the incoming leg of a call as the caller ID for the outgoing leg. This is useful if a call is accepted and then transferred; in the normal case, the caller ID of the initial recipient is used for the outgoing leg, which can be confusing to the ultimate recipient. For example, say Joe calls Mary; Mary decides that Joe really needs to speak to Don and transfers the call. If option o is set, Don will see Joe’s number on his display when Mary transfers him, instead of Mary’s number.

• r

Generate a ringing tone for the calling party. Normally Asterisk will generate a ringing tone when it is appropriate. Option r forces it to do so no matter the circumstance. Sometimes called devices don’t provide useful call progress information (or none at all) and r is needed; however, this can also lead to strange behavior, such as initial ringing interrupted by a busy signal.

• m[class]

Plays music to the caller until the call is answered. Optionally you can provide the Music-on-Hold class (as defined in musiconhold.conf).

• M(x[^arg])

Runs the macro x when the call is answered, optionally passing ^ (caret) separated arguments. The macro may set the MACRO_RESULT channel variable to one of the following values:

• ABORT

Hangs up both ends of the call.

• CONGESTION

Indicates congestion on the line.

• BUSY

Indicates that the line is busy (and jumps to n+101).

• CONTINUE

Hangs the called end up and continues in the dialplan.

• GOTO:<context>^<extension>^<priority>

Jumps to the specified point in the dialplan.

• h

Allows the called party to hang up by pressing *.

• H

Allows the calling party to hang up by pressing *.

• C

Resets the Call Detail Record (CDR) for this call. Normally, the CDR clock is reset from the moment the call is answered by Asterisk; if CDRs are being used for billing purposes, sometimes it is appropriate to reset the timer when the connection between two parties is actually established.

• P[(x)]

Uses the Privacy Manager if no caller ID is present, where the optional variable x is a family in the AstDB. The Privacy Manager asks the caller to enter a ten-digit telephone number if no caller ID is provided, providing a simple way to screen for telemarketers and solicitors blocking their caller ID. See also LookupBlacklist().

• g

Proceeds in the context when the target channel has been hung up.

• G(context^extension^priority)

Drops both channels into the specified context, extension, and priority when the call is answered.

• A(x)

Plays an announcement to the called party, where x is the sound file prefix. For example, A(confirm) would play the most efficient version of confirm (such as confirm.gsm, or confirm.wav) that can be found in the /var/lib/asterisk/sounds directory.

• D([called][:calling])

Sends DTMF digits after the call is answered but before it is bridged. The called digits are transmitted to the called party, the calling digits to the calling party. One or both parameters may be set.

• L(x[:y][:z])

Limits call duration to x milliseconds. At y ms before the maximum allowed duration, and thereafter every z ms until the end of the call, a warning is given. The x must be defined, y and z are optional. The behavior can be further controlled with the following variables:

• LIMIT_PLAYAUDIO_CALLER=yes|no

Sets whether the calling party should hear announcements.

• LIMIT_PLAYAUDIO_CALLEE=yes|no

Sets whether the called party should hear announcements.

• LIMIT_TIMEOUT_FILE=filename

Specifies the sound file to be played after the maximum duration is reached and the call is ended.

• LIMIT_CONNECT_FILE=filename

Specifies the sound file to be played when the call is connected.

• LIMIT_WARNING_FILE=filename

Specifies the sound file to be played for the warning signal when y is set.

• j

Turns priority jumping on. That is, the call jumps to priority n+101 (where n is the current priority) if all the channels respond busy.

A call may be parked instead of transferred (which is the case when t or T is used). By default, calls are parked by transferring them to extension 700, but this behavior may be configured in features.conf.

• n

Privacy Manager setting. Caller introductions are not to be saved in the priv-callerintros directory.

• N

Privacy Manager setting. Calls are not screened if caller ID information is provided.

When Dial() completes, the following variables are set:

• DIALEDTIME

The total elapsed time from the time the Dial() command is executed until its completion.

• ANSWEREDTIME

The time elapsed during conversation.

• NOANSWER

The channel was not answered before the ring timeout had expired.

• BUSY

The called channel is currently busy.

• ANSWER

The called channel was answered.

• CANCEL

The call was interrupted before it could be completed.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

See also retrydial.

B.39 Dictate()

Virtual dictation machine.

Dictate([path[,filename]])

Starts a virtual dictation machine. The options define the base directory (default: /var/spool/asterisk/dictate/) and (numerical) filename. The files are recorded in RAW format.

The user can control dictation with these keys:

• 0

Help

• 1

Switches between playback and record modes

• *

Pause / continue

• #

Select file / enter new filename (e.g., 1234#)

In playback mode:

• 2

Switches the playback speed by increments (1x, 2x, 3x, 4x)

• 7

Jumps back a set time interval

• 8

Jumps forward a set time interval

In record mode:

• 8

Erase recording and start over

[image: image]

To provide every system user her own dictation machine, you might set the path to /var/spool/asterisk/dictate/${EXTEN}.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also record.

B.40 DigitTimeout()

Sets the maximum timeout between digits when the caller is dialing.

DigitTimeout(seconds)

Warning

DigitTimeout() is removed as of Asterisk 1.4 and has been replaced by the TIMEOUT() function:

Set(TIMEOUT(digit)=seconds)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also absolutetimeout, responsetimeout, and in Appendix C, see timeout.

B.41 Directory()

Provides a directory of users or user voicemail box numbers. (For more on system directories and Dial-by-Name, see Chapter 9, “Voicemail.”)

Directory(voicemail-context[,dialplan-context[,options]])

Lets callers search a directory by the user’s name. The list of names and extensions is configured in voicemail.conf. The voicemail-context parameter is required.

The dialplan-context defines the context to be used when dialing the user’s extension. If this is not provided, voicemail-context is assumed. The only option currently accepted is f, which allows dialing by first name.

If the user dials 0 (zero) and the extension o exists in the current context, the call goes to this extension. Likewise, pressing * sends the call to the extension a, if it exists. This behavior is similar to that found in Voicemail().

Returns 0 unless the caller hangs up.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

See also voicemail.conf.

B.42 DISA()

Direct Inward System Access lets outside callers enter the system and provides them with an internal dial tone.

[image: image]

Provides an internal dial tone to outside callers such that they can make calls as though calling from an internal extension. Upon hearing the dial tone, an access code must be entered followed by the # key. If it is correct, the caller hears another dial tone; this is the system dial tone and the caller can now dial and initiate calls.

Caution

This type of access represents a serious and real security risk and should be planned and considered carefully before use, if it must be used at all!

The password option is a numeric access code that must be entered for the caller to be able to make calls out. Following this particular syntax, all the users that call in will use the same access code. If you want to allow unsecured access, enter the string no-password instead of an actual password.

The context option specifies the context in which the initiated call will be placed. If it is not provided, DISA() assumes the context named disa.

The callerid option sets the mailbox number (and the optional voicemail-context) of a mailbox. If the mailbox contains new messages the caller will hear a stuttered dial tone to indicate this.

Alternatively, you may use password-file to define multiple access passwords. Each line of this file can contain either an access code or a combination of an access code and a context, separated by the pipe (|) character. If no context is specified, disa is assumed.

If the caller successfully authenticates with a valid access code, DISA() will start the call in the specified context.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

[image: image]

B.43 DumpChan()

Prints information about the calling channel on the console.

DumpChan([min_verbose_level])

Shows information about the calling channel and the contents of all the channel variables. If min_verbose_level is set, only messages at the same or higher verbosity level are printed.

Returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also noop, log, verbose.

B.44 DUNDiLookup()

Looks up a number using DUNDi.

DUNDiLookup(number[|DUNDi-context[|options]])

Warning

DUNDiLookup() is removed as of Asterisk 1.4 and has been replaced by the DUNDILOOKUP() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.45 EAGI()

Calls an AGI-compliant application.

EAGI(program[,argument1[,argument2[,...]]])

(Similar to AGI(), FastAGI(), DeadAGI())

EAGI() (Extended AGI) works just like regular AGI() (agi), but also provides access to the incoming audio stream. The incoming audio stream is provided on file descriptor 3.7

7. A reminder: 0: stdin, 1: stdout, 2:stderr. File descriptor 3 is freely assignable.

AGI scripts or programs can be implemented in almost any conceivable language (e.g., Perl, PHP) and may be used to manipulate the channel, play sound files, interpret DTMF tones, and so on. Asterisk communicates with the AGI program over stdin and stdout. The arguments are passed directly to the AGI program at execution time.

The AGI program must be flagged as executable in the filesystem. The path is relative to the Asterisk AGI directory, which is at /var/lib/asterisk/agi-bin by default, or it may be stated as an absolute path.

To run AGI programs on inactive channels (as in the case of an h extension, where the channel is on-hook), use DeadAGI() instead.

Returns −1 on hangup or if the AGI program requests a hangup; returns 0 if no hangup is requested.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

See also agi.

B.46 Echo()

Repeats incoming audio to the caller.

Echo()

Takes any incoming audio and returns it on the same channel. This application is used primarily for troubleshooting and testing of delay (latency) and sound quality on VoIP connections. The caller can end the call by pressing #.

Returns 0 if the caller ends the call with # or −1 if the caller hangs up.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also milliwatt.

B.47 EndWhile()

Ends a while loop.

EndWhile()

Returns to the previously called While() statement. For a complete description of while loops in Asterisk, see while.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also while, gotoif.

B.48 EnumLookup()

Looks up a number using ENUM.

EnumLookup(number)

Warning

EnumLookup() is removed as of Asterisk 1.4 and was replaced by the ENUMLOOKUP() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.49 Eval()

Evaluates a variable twice.

Eval(result_variable=expression)

Warning

Eval() is removed as of Asterisk 1.4 and has been replaced by the EVAL() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.50 Exec()

Executes an Asterisk application dynamically.

Exec(application(arguments))

Allows the execution of an arbitrary dialplan application, even if this application is not hardcoded into the dialplan. Returns the value returned by the application or −2 if the application cannot be found. The arguments are passed to the called application.

This application enables the calling of applications out of a database or other external source.

[image: image]

Warning

A negative return value will mean that execution of the dialplan ends. If this is not desired, use TryExec().

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also execif, tryexec, system.

B.51 ExecIf()

Executes an Asterisk application under specific conditions.

ExecIf(expression,application,arguments)

If expression evaluates to true, the defined application is executed with the provided arguments, and the return value is returned. See doc/README.variables (1.2) /doc/channelvariables.txt (1.4) for more information about standard expressions for Asterisk.

If expression evaluates to false, execution moves to the next priority in the extension.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also exec.

B.52 ExecIfTime()

Executes an application based on the current time.

ExecIf(times|daysofweek|daysofmonth|months?application[,arguments])

If the current time is in the time window defined, application is executed with arguments and the result returned. The time window is defined the same way as it is for include, GotoIfTime() (see gotoiftime) or IFTIME() (see Appendix C).

If the current time is not in the time window defined, execution continues in the next priority.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also exec, execif, gotoiftime, and in Appendix C, see iftime.

B.53 ExitWhile()

Exits a while loop, irrespective of whether its condition has been satisfied.

ExitWhile()

With ExitWhile(), you can interrupt further execution whether or not the while condition has been satisfied.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also while, endwhile.

B.54 ExtenSpy()

Eavesdrop on a channel attached to a specific extension and whisper to it if desired.

ExtenSpy(extension[@context][,options])

ExtenSpy() can listen to incoming and outgoing audio on channels used by the specified extension. The options:

• b

Only listens to channels that belong to a bridged call.

• g(grp)

Only listens to channels where the channel variable ${SPYGROUP} is set to grp. ${SPYGROUP} can contain a colon-separated list of values.

• q

Do not play a tone or say the channel name when listening starts on a channel.

• r([name])

Records the listening session to the spool directory. A filename may be specified if desired; chanspy is the default.

• v([value])

Sets the initial volume. The value may be between −4 and 4.

• w

Enables “whisper” mode. Lets the spying channel talk to the spied-on channel.

• W

Enables “private whisper mode.” The “spying” channel can whisper to the spied-on channel, but cannot listen.

The following key controls are available while listening:

• #

Stepwise volume adjustment (−4 to 4)

• *

Switch to another channel

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

[image: image]

[image: image]

See also chanspy, zapbarge, zapscan, monitor.

B.55 ExternalIVR()

Start an external IVR application.

ExternalIVR(shell-command[,arg1[,arg2[,...]]])

Forks a process and starts an external IVR8 application. This application then receives all DTMF events and responds accordingly. The application receives notification if the channel is hung up but must shutdown on its own. The protocol for this interface is described in doc/externalivr.txt.

8. Interactive voice response.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

B.56 FastAGI()

Calls an AGI-compliant application over a network connection.

FastAGI(agi://hostname[:port][/script],arguments)

(Similar to AGI(), DeadAGI(), EAGI().)

Runs an AGI-compliant program on the current channel, but calls the application from another host on the network. The intent is to help distribute the load of processor-intensive AGI scripts or programs to remote servers and reduce startup latency of those programs. (A FastAGI script can be started before it is actually needed, much like a FastCGI script on a web server.)

FastAGI() attempts to connect directly to a running FastAGI program listening for connections on the specified port on the server hostname. The default port is 4573 if it is not specified. If script is defined, it is used to populate the variable agi_network_script and passed to the FastAGI program. The arguments are also passed to the program.

A sample FastAGI script can be found at agi/fastagi-test. Use this as a starting point for writing your own FastAGI applications.

Returns −1, if the application ends and requests a hangup; returns 0 if it ends without requesting a hangup.

[image: image]

See also agi, deadagi.

B.57 Festival()

Uses the free Festival text-to-speech (TTS) engine to read text to the caller.

Festival(text[,keys])

Connects to the locally running Festival server (which must be installed separately), sends it the specified text and plays the resulting audio back to the caller. If keys are defined, pressing of the defined keys will interrupt playback and return the value of the key depressed; if any is provided as the value to keys, all keys will be recognized and the call will be passed to the appropriate extension in the dialplan.

Festival must be started before Asterisk, and the channel must be answered with Answer(), in order for this application to work.

[image: image]

As an alternative to the application Festival(), you may also use the System() command to call Festival’s command-line program text2wave and play back the resulting audio stream with Background() or Playback(), like so (for example only; pay attention to pathnames!):

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also contrib/README.festival.

B.58 Flash()

Performs a “flash hook” on a Zap (DAHDi) channel.

Flash()

Performs a flash on a Zap (DAHDi) channel.

Note

A flash (also called a switchhook-flash, flash hook, or link) is simply a short depressing of the hook switch on an analog telephone for between 80 and 500 milliseconds (depending on the carrier), used primarily as a signaling method to provide feature control for simple analog telephone sets (such as for call waiting, three-way calling, call transfer, and similar services).

Returns 0 upon success, or −1 if the channel is not a Zap channel.

exten => 123,1,Flash()

If an outgoing line supports flash-transfer (usually an extra service), you might use it on a Zap channel like so:

[image: image]

Sometimes it is necessary to adjust the flash duration; ask your carrier for the specification in your area. This can be done in zapata.conf with a parameter; e.g., flash=200 (the value is in milliseconds).

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.59 FollowMe()

Follow-Me/Find-Me functionality.

FollowMe(followMeID,options)

Read the configuration file followme.conf for a complete explanation.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.60 ForkCDR()

Generates an additional CDR in the current call.

ForkCDR()

Generates an additional CDR beginning from the moment the ForkCDR() command is called. Used for the purpose of distinguishing between total call duration and actual conversation duration for billing purposes. Option v will pass all the CDR variables to the new CDR.

exten => 123,n,ForkCDR()

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

[image: image]

[image: image]

See also nocdr, resetcdr.

B.61 GetCPEID()

Retrieve the CPE-ID (customer premises equipment ID) of an ADSI-capable telephone.

GetCPEID()

Retrieves the CPE-ID and additional information, displaying it on the Asterisk CLI. This information is often needed to properly configure zapata.conf to support ADSI features.

Returns −1 on hangup.

exten => 123,1,GetCPEID()

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also adsiprog, adsi.conf, zapata.conf.

B.62 GetGroupCount()

Returns the number of channels in a channel group.

GetGroupCount(group[@category])

Warning

GetGroupCount() is removed as of Asterisk 1.4 and has been replaced by the GROUP_COUNT() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also setgroup, checkgroup, getgroupmatchcount, and in Appendix C, see group_count.

B.63 GetGroupMatchCount()

Returns the number of channels in all the groups that match the supplied pattern.

GetGroupMatchCount(pattern[@category])

Warning

GetGroupMatchCount() is removed as of Asterisk 1.4 and has been replaced by the GROUP_MATCH_COUNT() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also setgroup, checkgroup, getgroupcount, and in Appendix C, see group_match_count.

B.64 Gosub()

Jumps to the specified priority, extension, and context and allows return.

[image: image]

Like Goto() but allows the dialplan subroutine to return with Return().

Returns 0, or −1 if the target is invalid.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also gosubif, goto, gotoif, return, macro.

B.65 GosubIf()

Jumps to the specified priority if a condition is satisfied and allows return.

GosubIf(condition?labeliftrue:labeliffalse)

Jumps to the specified priority if a condition is satisfied (similar to GotoIf()) but allows the subroutine to return with Return().

Returns 0 or −1 if the target is invalid.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also gosub, goto, gotoif, return, macro.

B.66 Goto()

Jumps to a specified priority, extension, and context.

[image: image]

Hands the currently active channel to the specified priority (and optionally, extension and context).

Optionally, a named priority may be specified to access a labeled priority. Named priorities work only in the current extension.

Always returns 0, even if the target is invalid.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also gotoif, gotoiftime, gosub, gosubif, macro.

B.67 GotoIf()

Jumps to a specified priority, extension, and context if a condition is satisfied.

GotoIf(condition?labeliftrue:labeliffalse)

Hands the currently active channel to the priority specified by labeliftrue if the condition is true, or to the priority specified in labeliffalse if the condition is false. Either labeliftrue or labeliffalse may be omitted (in which case execution continues with the next priority) but not both! You must include the colon delimiter (:).

In this case, a priority can be

• A single priority (e.g., 10)

• an extension and a priority (e.g., 123,10)

• a context, extension, and priority (e.g., incoming,123,10)

• a named priority in the same extension (e.g., ok)

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also goto, gotoiftime, gosub, gosubif, macro.

B.68 GotoIfTime()

Jumps to the specified priority if the time condition is met.

[image: image]

Jumps to the specified priority if the current time falls within the specified time window. Each element may be defined with a * (always) or a − (range).

The arguments for this application are as follows:

• times

Time interval, in 24-hour format with hours and minutes (e.g., 9:00-17:00)

• daysofweek

Weekdays (mon, tue, wed, thu, fri, sat, sun) (e.g., mon–fri)

• daysofmonth

Days of the month (1–31) (e.g., 1-15

• months

Months of the year (jan, feb, mar, apr, mai, jun, jul, aug, sep, oct, nov, dec) (e.g., apr-oct)

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also gotoif, execiftime, and in Appendix C, see iftime.

B.69 Hangup()

Hangs up the active channel.

Hangup()

Hangs up the active channel unconditionally.

Returns −1.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also answer.

B.70 HasNewVoicemail()

Checks to see whether there are new messages in the specified voice mailbox.

HasNewVoicemail(mailbox[/folder][@context][,variable,[options]])

Warning

HasVoicemail() is removed as of Asterisk 1.6 and was already superfluous in 1.2. The same thing can be achieved with the VMCOUNT() function:

Set(number=${VMCOUNT(4000|0)})

New messages reside in folder 0.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

See also hasvoicemail, and in Appendix C, see vmcount.

B.71 HasVoicemail()

Checks to see whether there are messages in the specified voice mailbox.

HasVoicemail(mailbox[/folder][@context][,variable,[options]])

Warning

HasVoicemail() is removed as of Asterisk 1.6 and was already superfluous as of 1.2. The same thing can be achieved using the VMCOUNT() function:

Set(number=${VMCOUNT(4000)})

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

See also hasnewvoicemail, and in Appendix C, see vmcount.

B.72 IAX2Provision()

Provision a calling IAXy device, optionally using the specified template.

IAX2Provision([template])

Provisions a calling IAXy device with template. If no template is used, the default is used. IAXy templates are defined in iaxprov.conf.

Returns 0 on success or −1 on failure.

exten => 123,1,IAX2Provision(default)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

B.73 ICES()

Streams the active channel to IceCast server.

ICES(config_file.xml)

Sends an audio stream of the active channel to an IceCast server.9

9. http://en.wikipedia.org/wiki/Icecast

For a sample config_file.xml, see contrib/asterisk-ices.xml.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.74 ImportVar()

Sets a variable with the contents of a channel variable from another channel.

ImportVar(newVariable=channel,variable)

Sets the variable newVariable to the value contained in variable in the specified channel. If newVariable begins with _, single inheritance is used; if it begins with __, unlimited inheritance is used.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also set.

B.75 Incomplete()

Indicates that the extension as dialed thus far is incomplete.

Incomplete(options)

Indicates to the calling channel that the dialed extension is not complete; that is, Asterisk needs more digits to make a match. If the option n is set, it will not answer the channel.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also progress, proceeding.

B.76 JabberSend()

Sends a message via Jabber.

JabberSend(jabber_id,recipient,message)

Sends an instant message message via Jabber (XMPP, Google Talk) using a Jabber identity jabber_id defined in jabber.conf to the recipient Jabber account.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also jabberstatus, and in Appendix C, see jabber_status, jabber.conf.

B.77 JabberStatus()

Returns the status of a Jabber user.

JabberStatus(jabber_id,jabber_account,variable)

Checks the status of the Jabber user jabber_account and sets variable accordingly. The Jabber identity jabber_id as configured in jabber.conf is used for the connection.

For more information, see Appendix C..

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also jabbersend, and in Appendix C, see jabber_status, jabber.conf.

B.78 KeepAlive()

Internal helper function.

KeepAlive()

Warning

This application is used internally by Asterisk. Do not run it in your dialplans!

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

B.79 Log()

Sends a specified message to the specified log level.

Log(level,message)

Delivers a specified message to a defined log level.

• level

One of the following target levels: ERROR, WARNING, NOTICE, DEBUG, VERBOSE, DTMF

• message

The message to be written to the log

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also noop, dumpchan, verbose.

B.80 LookupBlacklist()

Checks the caller ID of a call against the local number blacklist in the Asterisk database (AstDB).

LookupBlacklist([options])

Searches for the caller ID number (or name) of the active channel in the blacklist family of the AstDB. If the option j is given, the number exists in the AstDB and the priority n+101 exists, the channel is handed to that priority. If no caller ID is available, the application does nothing.

Sets the channel variable LOOKUPBLSTATUS to FOUND or NOTFOUND.

To add numbers to the blacklist from the CLI, enter database put blacklist “number” “1”; similarly database del blacklist “number” to delete the entry and database show blacklist for a listing of all the entries in the database.

[image: image]

You can accomplish the same effect as LookupBlacklist() with the following dialplan entries:

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

B.81 LookupCIDName()

Looks up a caller ID name in the AstDB.

LookupCIDName()

Looks up the caller ID number in the AstDB (family cidname), and, if it exists, sets the corresponding caller ID name. This application does nothing if no caller ID is present. LookupCIDName() can be useful if you receive number information but no names, or if you want to change the caller ID information certain incoming calls.

Returns 0.

To add entries to the list from the CLI enter database put cidname “number” “name”; similarly enter database del cidname “number” to delete entries and database show cidname to print a list of all the entries in the database.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

B.82 Macro()

Executes a previously defined macro.

Macro(macroname[,arg1[,arg2[,...]]])

Executes a macro defined in the context macro-macroname by handing the channel over to the s extension in the macro and returning after the macro has finished running.

The called extension, context, and priority are passed to the macro in the variables ${MACRO_EXTEN}, ${MACRO_CONTEXT} and ${MACRO_PRIORITY}. The arguments are passed to the macro in ${ARG1}, ${ARG2}, and so on.

Macro() returns −1 if any step in the macro returns −1, otherwise it returns 0. If the variable ${MACRO_OFFSET} is set when the macro finishes, the application will continue executing at priority n+1+MACRO_OFFSET if it exists, otherwise it will continue at n+1.

If Goto() is called from within the macro, macro execution ends and the call continues in the priority specified in Goto().

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also goto, gosub.

B.83 MacroExclusive()

Executes a previously defined macro but allows only a single instance of the macro to execute at any given point in time.

MacroExclusive(macroname[,arg1[,arg2[,...]]])

Executes, same as Macro(), a macro defined in macro-macroname, by handing the channel over to the s extension in the macro and returning after the macro has finished running, but allows only a single instance to run at any given time! If the same macro is called at the same time from elsewhere in the dialplan, this second instance must wait until the first instance has completed.

The called extension, context and priority are passed to the macro in the variables ${MACRO_EXTEN}, ${MACRO_CONTEXT}, and ${MACRO_PRIORITY}. The arguments are passed to the macro in ${ARG1}, ${ARG2}, and so on.

Macro()
returns −1 if any step in the macro returns −1, otherwise it returns 0. If the variable ${MACRO_OFFSET} is set when the macro finishes, the application will continue executing at priority n+1+MACRO_OFFSET if it exists, otherwise it will continue at n+1.

If Goto() is called from within the macro, macro execution ends and the call continues in the priority specified in Goto().

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also macro, goto, gosub, doc/macroexclusive.txt.

B.84 MacroExit()

Interrupts execution of a macro.

MacroExit()

May be used within a macro to end execution of the macro as though there were no further priorities remaining.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also macro.

B.85 MacroIf()

Conditionally starts different macros.

MacroIf(expression?macronameA[,argA1][:macronameB[,argB1]])

Calls a macro depending on a condition (defined in the same way as in GotoIf()).

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also macro, gotoif, gosubif.

B.86 mailboxExists()

Checks to see whether the specified voicemail box exists.

mailboxExists(mailbox[@context][,options])

Checks to see whether the voicemail box defined in mailbox exists. A voicemail context may be specified if the mailbox being checked is not in the default context.

Sets the channel variable VMBOXEXISTSSTATUS to SUCCESS (mailbox found) or FAILED (mailbox not found).

Option j enables jumping to priority n+101 on success.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also Appendix C.

B.87 Math()

Performs simple mathematical operations.

Math(output_variable,number1<operator>number2)

Warning

Math() is removed as of Asterisk 1.4 and has been replaced by the MATH() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.88 MD5()

Computes the MD5 checksum of a string.

MD5(output_variable=string)

Warning

The application MD5() is removed as of Asterisk 1.4 and has been replaced by the MD5() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also md5check, and in Appendix C, see md5.

B.89 MD5Check()

Verifies the MD5 checksum against a supplied string.

MD5Check(MD5checksum|string|options)

Warning

MD5Check() is removed as of Asterisk 1.4 and has been replaced by the MD5() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also md5, and in Appendix C, see md5.

B.90 MeetMe()

Places the caller in a MeetMe conference.

MeetMe([conference][,options[,PIN]])

Connects the caller in the current channel to a MeetMe conference defined by conference. If this is not specified, the application asks the caller to enter a conference number.

If PIN is correctly set to the PIN (personal identification number) of the conference (set statically in meetme.conf or dynamically by the conference operator) the caller is placed directly into the conference; otherwise, the caller must enter the PIN first.

Warning

MeetMe conferences require a Zaptel interface to be installed in the Asterisk server; these provide a time source for synchronization of the participating channels. If no Zaptel interface is available, the ztdummy driver may be used.

MeetMe conferences always use the ul-aw codec internally. The more conference participants use other codecs such as GSM or a-law, the higher the processor load due to transcoding.

Valid options include the following:

• a

Sets admin mode.

• A

Marks the joining user as a special participant (see w and x).

• b

Starts the AGI script defined in ${MEETME_AGI_BACKGROUND}, conf-background by default. (Works only if all the channels in the conference are Zap channels.) The script is passed all DTMF key-presses; will not work in combination with options that also capture DTMF (such as p).

• c

Announces the number of participants to a joining user.

• d

Dynamically allocates a new conference.

• D

Dynamically allocates a new conference but asks the user to set a PIN. (If no PIN is desired, the user must press #.)

• e

Selects an empty conference.

• E

Selects an empty conference that does not require a PIN.

• i

Announces join and exit of new participants with review (works only with Zap channels).

• I

Announces join and exit of new participants without review (works only with Zap channels).

• m

Listen-only mode.

• M

Music-on-hold mode. Plays music-on-hold if there is only one participant in the conference.

• o

Sets talker optimization. Improves conference quality and reduces transcoding overhead by muting participants who are not currently speaking.

• p

Participants may leave by pressing #.

• P

Requests a PIN even if it is provided in the command.

• q

Quiet mode. Does not play entry/exit notification tones.

• r

Records a conference. File: ${MEETME_RECORDINGFILE}, format: ${MEETME_RECORDINGFORMAT}. Default filename is meetme-conf-rec-${conference}-${uniqueID}. The default format is WAV. (Works only with Zap channels.)

• s

Switches to menu (user or admin) * is pressed.

• t

Talk-only mode.

• T

Talker detection. (Information is sent to the Manager interface and displayed in the MeetMe list in the CLI.)

• v

Video mode (not yet implemented).

• w

Wait until the marked participant joins the conference. Until this point, the other participants will hear music-on-hold.

• x

Ends the conference when the last marked participant exits (see A).

• X

Participants may exit the conference by dialing a single-digit extension in the ${MEETME_EXIT_CONTEXT} context, or the current context if this variable is not defined. Option X does not work with p or s.

• 1

Does not play the “You are currently the only person in this conference” message when the first conference participant enters.

You can use e (or E) together with d (or D) to dynamically open a new conference. This means you will have to find a way of distributing the conference number to the other users, or employ some dialplan logic to accomplish the same objective.

Note

The options d or D
dynamically open conferences; conferences are defined statically in meetme.conf.

[image: image]

See also meetmeadmin, meetmecount.

B.90.1 Commands in the CLI

The following commands are for administering conferences from the CLI. (The value participant is the number of participant as displayed in the participant list):

• MeetMe

List all conferences

• MeetMe list
conference

List the participants in the specified conference

• MeetMe kick
conference participant

Kicks a participant out of the conference

• MeetMe kick
conference

Kicks all participants out of the conference

• MeetMe lock
conference

Locks a conference to new participants

• MeetMe unlock
conference

Unlocks a previous lock (see above)

• MeetMe mute
conference participant

Mute a conference participant

• MeetMe unmute
conference participant

Unmute a conference participant (see above)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

[image: image]

See also meetmecount, meetmeadmin, meetmechanneladmin, and in Appendix C, see meetme_info.

B.91 MeetMeAdmin()

Administers a MeetMe conference.

MeetMeAdmin(conference,command[,participant])

Executes a command in the specified conference. The command may be one of the following (the participant is required only for the kick command (k)):

• K

Kicks all participants out of the conference

• k

Kicks participant out of the conference

• e

Kicks the last participant who joined out of the conference

• L

Locks the conference to new participants

• l

Unlocks the conference

• M

Mutes a conference participant

• m

Unmutes a muted participant

• N

Mutes everyone except the conference administrator

• n

Unmutes everyone mute by N

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also meetme, meetmecount.

B.92 MeetMeChannelAdmin()

Channel-specific MeetMe conference administration.

MeetMeChannelAdmin(channel,command)

Executes the supplied MeetMe command for the specified channel. Works similar to MeetMeAdmin() but on a specific channel instead of a conference.

The command command can be one of the following:

• k

Kicks the participant on the channel from the conference

• M

Mutes the participant on the channel

• m

Unmutes the participant on the channel

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also meetme, meetmeadmin.

B.93 MeetMeCount()

Counts the number of participants in a MeetMe conference.

MeetMeCount(conference[,variablename])

Announces the number of participants in the conference. If the variable name is provided, the announcement is skipped and the count written to this variable.

Returns 0 on success, −1 on error.

This example counts the participants in conference 501 and stores the number in ${COUNT}.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also meetme, meetmeadmin.

B.94 Milliwatt()

Generates a 1,000Hz test tone on a channel.

Milliwatt()

Milliwatt tone lines are used by telecommunications carriers for testing and measuring line characteristics. They can be used to check for echo, excessive or inadequate volume, or some kinds of line noise. Standard milliwatt test tones are 1,004Hz at 0 dbm (u-law).

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also echo.

B.95 MinivmAccMess()

Records messages for the Mini-Voicemail system.

MinivmAccMess(user@domain,option)

Records messages for the given user account in the Mini-Voicemail system (minivm). If the account-specific directories do not exist, they are created.

Possible values for option:

• u

Record unavailable message

• b

Record busy message

• t

Temporary away message to be played prior to regular unavailable or busy messages; see minivmgreet

• n

Account name

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also minivmdelete, minivmgreet, minivmnotify, minivmrecord, and in Appendix C, see minivmaccount, minivmcounter.

B.96 MinivmDelete()

Delete message in Mini-Voicemail.

MinivmDelete(filename)

Deletes the file filename in Mini-VoiceMail (minivm).

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also minivmaccmess, minivmgreet, minivmnotify, minivmrecord, and in Appendix C, see minivmaccount, minivmcounter.

B.97 MinivmGreet()

Play back Mini-VoiceMail greeting.

MinivmGreet(user@domain[,option])

Plays the default or user-specific greeting (see minivmaccmess) for Mini-VoiceMail (minivm).

Possible option settings:

• b

Play busy message

• u

Play unavailable message

• s

Skip the playback of instructions for leaving a message

Combinations are allowed but b and u together are nonsensical. If a temporary message has been set, it is played and b or u is ignored.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also minivmaccmess, minivmdelete, minivmnotify, minivmrecord, Appendix C: minivmaccount, and in Appendix C, see minivmcounter.

B.98 MinivmNotify()

Sends e-mail notification of new Mini-Voicemail messages.

MinivmNotify(user@domain,template)

Provides e-mail notification of new Mini-VoiceMail (minivm) messages to the specified e-mail address.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also minivmaccmess, minivmdelete, minivmgreet, minivmrecord, and in Appendix C, see minivmaccount, minivmcounter.

B.99 MinivmRecord()

Record a voicemail in Mini-VoiceMail.

MinivmRecord(user@domain[,option])

Records the caller’s voicemail message in the Mini-Voicemail (minivm) system. This is more or less the equivalent to VoiceMail() (voicemail).

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also minivmaccmess, minivmdelete, minivmgreet, minivmnotify, and in Appendix C, see minivmaccount, minivmcounter.

B.100 MixMonitor()

Records the audio on the current channel but mixes it before writing it to a file.

MixMonitor(fileprefix.format[,options[,command]])

Starts recording the audio on the current channel. Instead of recording each direction in a separate file the way Monitor() would, mixes the two audio streams on-the-fly and writes the result to the specified file.

Options:

• a

Appends the audio stream to an existing file.

• b

Saves audio to the file only while the channel is bridged; i.e., once a conversation has actually begun, and only until it is hung up.

• v(x)

Adjusts the heard volume by an increment of x (range −4 to 4).

• V(x)

Adjusts the spoken volume by an increment of x (range −4 to 4).

• W(x)

Adjusts both heard and spoken volume by an increment of x (range −4 to 4).

The command (if provided) is executed after recording. The variable ${MIXMONITOR_FILENAME} is set to the filename used for the recording.

See also additional information in the description of Monitor().

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also monitor.

B.101 Monitor()

Records the current channel in two separate files.

Monitor([format[,fileprefix[,options]]])

Starts audio recording on the current channel. Incoming and outgoing audio packets are written to separate files until the channel is hung up or monitoring is stopped with StopMonitor().

The parameter format sets the file format. If this is not specified, wav is used.

The parameter fileprefix specifies the filename without extension. If this is not specified, the filename is assembled out of the channel name and a number, for example, IAX2[foo@bar]-3. Incoming audio is written to fileprefix-in.format, outgoing audio in fileprefix-out.format, both in /var/spool/asterisk/monitor.

Two options may be specified:

• m

After recording is complete, mixes the incoming and outgoing audio files into a single file and deletes the originals. Requires that soxmix from the sox package be installed on the server.10

10. http://sox.sourceforge.net/; see also an explanation in musiconhold.conf, version 12.17.7 or newer. You may check your installed version with soxmix –help.

If the variable ${MONITOR_EXEC} is defined, this application is executed instead of soxmix and the original incoming and outgoing audio files are not deleted.11

11. Depends on Asterisk version; older versions do not delete automatically. It’s best to check with a proper test.

soxmix (or ${MONITOR_EXEC} if specified) is passed three values: the names of the incoming and outgoing audio files and the name of the mixed file, which is the fileprefix without -in/-out. If ${MONITOR_EXEC_ARGS} is set, the contents are used as arguments to ${MONITOR_EXEC}.

Warning

Note that soxmix attempts to determine the file type based on the file extension. Formats such as GSM and WAV are normally not a problem, but for other formats such as a-law and u-law, it expects the file extensions .al and .ul, respectively. To resolve this, read the manual pages for sox (/soxmix) and use ${MONITOR_EXEC_ARGS} or write a small wrapper script that reads the format parameter and call it in ${MONITOR_EXEC}.

Note

If you wanted a single mixed sound file, MixMonitor() is usually the better option, as it mixes on-the-fly and thereby avoids a spike in CPU load at the end of the recording.

• b

Saves audio to the file only while the channel is bridged; i.e., once a conversation has actually begun, and only until it is hung up.

Returns 0 on success, or −1 on failure (such as a failure to open the audio files for writing, or the channel is already being monitored, and so on).

[image: image]

Warning

Before recording conversations, make sure you are complying with the relevant legislation in your jurisdiction. In most cases, both parties must be aware they are being recorded.12

12. See also www.voip-info.org/wiki/view/Monitor+Recording+Legal+Issues.

Note

Some Asterisk users who routinely need to record many conversations (50 to 500) report much better performance if call recordings are written to a RAM disk (fewer and shorter seek operations) before being copied to a hard disk when the conversation is over.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also changemonitor, stopmonitor, pausemonitor, unpausemonitor, mixmonitor, record.

B.102 Morsecode()

Transmits the provided string as Morse code.

Morsecode(string)

Plays back the provided string in Morse code.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.103 MP3Player()

Plays an MP3 file or stream.

MP3Player(filename)

Uses mpg12313 to play back an MP3 to the caller. The filename may also be a URL. The caller may interrupt playback by pressing any key.

13. http://mpg123.org/, http://sourceforge.net/projects/mpg123/; for Mac OS X, see also http://sourceforge.net/projects/mosx-mpg123/.

Asterisk is sensitive to the version of mpg123 used. At the time of this writing the most stable version was 0.59r; using other versions may produce unexpected results.

Note

The popular alternative to mpg123, mpg321, does not work reliably with Asterisk.

Returns −1 if the channel is hung up, otherwise returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.104 MSet()

Sets one or more variables simultaneously.

MSet(variable = value)

Asterisk 1.2 and 1.4 used Set() to set multiple variables. This functionality was removed from Set() in 1.6 and MSet() was added to provide it.

exten => 123,1,MSet(var1=value1,var2=value2)

Warning

MSet() isn’t really necessary. If you have to convert your dialplan anyway, we recommend you use multiple Set() statements:

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also set, Appendix C.

B.105 MusicOnHold()

Plays music on the channel.

MusicOnHold(class[,duration])

Plays music belonging to the specified class, as configured in musiconhold.conf. If class is not specified, the default class for the channel is used. To set the default class for the channel, use the function MUSICCLASS().

The duration parameter was added in Asterisk 1.6. If it is omitted, music plays until the channel is hung up. If you want to fix the duration in Asterisk 1.4, use WaitMusicOnHold().

Returns only −1 when the channel is hung up.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also waitmusiconhold, and in Appendix C, see musicclass.

B.106 NBScat()

Plays back a local NBS stream.

NBScat()

Uses nbscat8k to retrieve a local NBS (Network Broadcast Sound) stream. (Take a look at the nbs module in Digium’s Asterisk CVS for more information.) The caller can exit by pressing any key.

Returns only −1 when the channel is hung up.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.107 NoCDR()

Suppresses generation of a Call Detail Record for the call on the current channel.

NoCDR()

Suppresses generation of a CDR for the current call.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also forkcdr.

B.108 NoOp()

Does nothing.

NoOp(text)

This application does absolutely nothing (well, not exactly). You can use NoOp() to print text to the Asterisk CLI, which can be very useful.

The text need not be between quotation marks. If they are entered, they will be printed on the CLI along with the rest of the text.

Warning

Text from NoOp() appears on the CLI at verbose level 3 or higher. You can set this in the CLI with set verbose 3 or by invoking the Asterisk CLI with asterisk -vvvr.

exten => 123,1,NoOp(Caller-ID: ${CALLERID})

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also dumpchan, log, verbose.

B.109 ODBCFinish()

Clears the resultset of a multirow ODBC (Open Database Connectivity) query.

ODBCFinish(resultset_id)

Clears the resultset of an ODBC query (see Appendix C) that returned multiple rows.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also Appendix C.

B.110 Page()

Pages an extension.

Page(technology/resource[&technology2/resource2[&...]][,options])

The designated devices are dropped into a dynamically generated conference room with their microphones muted. The only device that can send audio is that of the person paging. When the page is finished the room is struck. Options:

• d

Activates full-duplex audio.

• q

Suppresses the notification tone at the beginning of the page.

• r

The page is recorded to a file.

exten => 123,1,Page(SIP/2000&SIP/2001&SIP/2002)

Tip

Most devices treat a page like any other call. If the device is not explicitly instructed to auto-answer, it will simply ring, and the intended recipient will not hear the message. SIP devices can be told to auto-answer, often by setting a SIP header. Every device is different; review the administration manuals for your SIP phone.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.111 Park()

Parks the current call.

Park(extension)

Parks the active call, typically in combination with an attended transfer so that you can know where the call has been parked. This application is registered internally, so it shouldn’t be necessary to add it into the dialplan, though you should make sure it is enabled in features.conf. You may include the context with the include => parkedcalls statement.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also parkandannounce, parkedcall.

B.112 ParkAndAnnounce()

Parks the current call and announces the parking space on the specified channel.

ParkAndAnnounce(template,timeout,channel[,return-context])

Parks the current call in the parking lot, but announces the parking space on another, specified channel. The template specifies a colon-delimited list of sound files to be played; the word PARKED in the example below is replaced with the parking space number assigned to the parked call. The timeout sets the maximum time the call may be parked before it is placed back in the return-context. The channel denotes the channel on which the announcement is to be made (in our example, Console/dsp prints the announcements to the Asterisk console). The return-context is a label in GoTo() format that determines the context to return the call to if it is not retrieved from the parking lot by a user within the defined timeout window. The default return priority is n+1 in return-context.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also park, parkedcall.

B.113 ParkedCall()

Retrieves a parked call.

ParkedCall(extension)

Connects the channel to a parked call identified by extension. This application is registered internally so it shouldn’t be necessary to add it into the dialplan, though you should make sure it is enabled in features.conf. You may include the context with the include => parkedcalls statement.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also park, parkandannounce.

B.114 PauseMonitor()

Stops monitoring of a channel.

PauseMonitor()

Stops recording of a channel until it is resumed with UnpauseMonitor().

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also monitor, unpausemonitor, stopmonitor, changemonitor.

B.115 PauseQueueMember()

Pauses a queue device so that it cannot take calls from the queue.

PauseQueueMember([queue],interface[,options])

Blocks calls for a queue member until expressly reenabled, either with UnpauseQueueMember() or through the Manager interface. If no queue is specified, the device is paused in every queue in which it is a member. If a queue is specified but the device is not a member in it, or if no queue is specified and the device does not belong to any queues and option j is set, execution proceeds at priority n+101 if it exists.

Returns 0 on success, otherwise returns −1 if the interface cannot be found or the jump priority does not exist. Sets the channel variable PQMSTATUS to PAUSED or NOTFOUND.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also unpausequeuemember.

B.116 Pickup()

Answer a call directed at another extension.

Pickup(extension[@context][&extension2@context2[&...]])

Pickup() allows a user to answer a channel that is ringing another extension.

exten => 1234,1,Pickup(2000@sales)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also pickupchan.

B.117 PickupChan()

Answer a call to a ringing channel.

PickupChan(channel[&channel[...]])

Pickup() allows a call directed to another extension to be answered. PickupChan() works similarly but it can answer any ringing channel irrespective of extension.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also pickup.

B.118 Playback()

Plays a sound file to the caller.

Playback(filename[,options])

Plays filename (in the directory /var/lib/asterisk/sounds) to the caller. The filename does not include an extension; Asterisk automatically selects the format with the lowest transcoding cost. Options may be specified.

The option skip causes the message to be skipped if the channel is not in the up state.

Answers the channel before the audio file is played, unless noanswer is specified. Note that not all channels support playback when “on hook.”

Returns −1 when the channel is hung up. If the file cannot be found, jumps to priority n+101 if it exists.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also background.

B.119 Playtones()

Plays back one or more tones.

Playtones(tones)

Plays a list of one or more tones. Playtones() runs in the background; i.e., it will continue to play tones while execution of the dialplan continues. The argument tones is either a tone name as defined in indications.conf or a list of tone frequencies and durations. For an explanation on how to define your own tones, see indications.conf.

Use StopPlaytones() to stop playing tones.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also stopplaytones, indications.conf, busy, congestion, progress, ringing.

B.120 PrivacyManager()

Requests the input of the caller’s telephone number, if caller ID cannot be obtained.

PrivacyManager([maxRetries[,minLength[,options]]])

If no caller ID is received, the channel is answered and the caller is asked to enter his own telephone number. If caller ID is present on the line, PrivacyManager() has no effect.

The caller has maxRetries (default is 3) number of attempts to provide a valid number of at least minLength (default is 10) digits in length. The default values are set in privacy.conf, which may contain the following entries:

• maxretries

The maximum number of times the caller can attempt to enter a number complying with the length limit set by minLength (usually 3).

• minlength

The minimum number of digits a number entered must have to be accepted (usually 10).

If you want to prevent PrivacyManager() from reading from the configuration file every time it is called, you can set values in the command in the dialplan.

If option j is set, it jumps to n+101 if the caller fails to provide a valid number within the number of allowed attempts.

The channel variable PRIVACYMGRSTATUS is set to SUCCESS or FAILED and indicates whether the privacy manager was able to get a valid phone number from the caller.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also zapateller.

B.121 Proceeding()

Indicates call is proceeding.

Proceeding()

Sends a message to the calling channel indicating that the call is proceeding.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also progress.

B.122 Progress()

Indicates call progress.

Progress()

Provides in-band progress indication, if available, to the caller (... so that she knows that “something is happening”).

Returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also busy, congestion, playtones, ringing, proceeding.

B.123 Queue()

Places a call in the specified queue.

Queue(queue[,options[,URL[,announcement[,timeout[,AGI]]]]])

Passes an incoming call into the specified queue (predefined in queues.conf).

The following options are available and may be combined:

• t

Allow the called party to transfer the call.

• T

Allow the calling party to transfer the call.

• d

Data-quality (modem) call (minimizes delay).

• h

Called party may end the call by pressing *.

• H

Calling party may end the call by pressing *.

• n

No retries on timeout; proceeds to the next priority.

• r

Rings instead of playing music-on-hold.

• i

Ignore call forward requests from queue members; instead do nothing.

• w

Allow the called party to record the conversation via Monitor().

• W

Allow the calling party to record the conversation via Monitor().

If a call is transferable, it may also be parked and retrieved by another user.

The argument announcement specifies a wait announcement to be played back to the caller at intervals until a queue member answers the call; the default announcement, if there is one, is defined in queues.conf.

The optional URL is sent to the caller if the calling channel supports it. This could be used on compatible SIP phones to provide queue information to the phone’s display panel.

The timeout argument causes the call to fail out of the queue after timeout number of seconds. The default is 300 seconds (or 5 minutes).

Returns −1 if the originating channel is hung up or if the call is connected to a queue member and ended by one of the parties. If the queue is full, does not exist, or has no member, returns 0; execution continues in the next priority in the dialplan.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

[image: image]

[image: image]

See also queuelog and Chapter 12, “Queues.”

B.124 QueueLog()

Writes an entry to the queue log.

QueueLog(queue,uniqueID,agent,event[,additionalinfo])

Writes an entry to the queue log (usually /var/log/asterisk/queue_log). Lets you define custom events. See Chapter 12 for a more complete explanation.

QueueLog(support,${UNIQUEID},${AGENT},LUNCH,Bon appetit)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also queue, Chapter 12.

B.125 RaiseException()

Raises an exception.

RaiseException(reason)

RaiseException() raises an exception; this causes execution to jump to extension e in the current context where the exception may be handled by using the EXCEPTION() function. If no e extension has been defined, the channel is hung up.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also Appendix C.

B.126 Random()

Jumps to a priority randomly.

Random([probability]:[[context,]extension,]priority)

Jumps to the specified priority, extension and context based on the probability provided, which must be a whole number between 1 and 100; in probability percent of cases, the call will jump to the specified priority.

[image: image]

Warning

This application is deprecated as of 1.4; use the Asterisk function RAND() instead.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

See also Appendix C.

B.127 Read()

Reads DTMF input from a caller and assigns the result to a variable.

Read(variable[,filename[,maxDigits[,option[,attempts[,timeout]]]]])

Reads a DTMF sequence ending in # from the caller and places it in the specified variable.

If filename is specified (without file extension!), this audio file is played back to the caller before input is read.

The argument maxDigits defines the maximum number of digits allowed. If provided, the application stops reading when this number of digits has been entered, without the caller having to enter # to end the call. The default setting is 0 and means there is no preset limit and # is expected; the absolute maximum number of digits allowed is 255.

The option skip causes the application to end immediately if the channel is inactive. The option noanswer enables reading even if the channel is inactive.

The caller has up to attempts attempts within timeout seconds to enter a sequence. A timeout of zero means there is no time limit.

Returns −1 if the channel is hung up, otherwise returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also senddtmf.

B.128 ReadExten()

Read DTMF extension.

ReadExten(variable[,prompt_filename[,context[,option[,timeout]]]])

Prompts the caller to input an extension, listens for DTMF and stores the entered digits in the specified variable.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also read.

B.129 ReadFile()

Reads a file.

ReadFile(variable=filename,length)

Reads the contents of filename up to length characters into the variable variable.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.130 RealTime()

Gets configuration information from the realtime configuration database.

RealTime(family,column,value[,prefix])

Retrieves configuration settings from the realtime configuration database into channel variables. All unique column names are set as channel variables. Optionally, the argument prefix is prepended to the column name to form the variable name. (In the example in the internal help, the prefix var_ to the column name test results in the variable ${var_test}.).\

Sets the channel variable REALTIMECOUNT to the number of values read.

In extconfig.conf:

[image: image]

In extensions.conf:

exten => 123,1,RealTime(sipusers,ext,5678,var_)

This executes the following SQL query in the database asterisk:

SELECT * FROM sip_users WHERE ext = 5678

Assuming the table has the columns firstname and lastname, we can print those values to the CLI this way:

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

See also realtimeupdate.

B.131 RealTimeUpdate()

Updates a value in the realtime configuration database.

RealTimeUpdate(family,column,value,columnUpdate,valueUpdate)

Updates a value in the realtime configuration database. Updates the field columnUpdate with the value valueUpdate in the record matching family, column, and value.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

See also realtime.

B.132 ReceiveFAX()

Receives a fax.

ReceiveFAX(filename[,options])

SendFax() and ReceiveFax() replace the well-known fax patch commands TxFax() and RxFax() and, like them, they use the SpanDSP library.

ReceiveFax() receives an incoming fax and stores it as a TIFF file.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also sendfax.

B.133 Record()

Records audio from a channel to a file.

As of Asterisk 1.2:

Record(basename[.format[,maxSilence[,maxDuration[,options]]]])

Records audio from the channel and saves it in the file basename.format. If the file exists, it is overwritten.

Allowed options are as follows:

• format

Specifies the file format of the recording (g723, g729, gsm, h263, ulaw, alaw, wav, ...).

• maxSilence

Defines the maximum duration of silence allowed before the recording is ended.

• maxDuration

Defines the maximum duration of the recording. If not provided or if 0, there is no limit.

• options

One or more of the following option flags may be set:

• s

Does not record if the call has not been answered.

• n

Does not answer but records even if the call has not been answered.

• a

Appends the recording to an existing file instead of overwriting it.

• t

The * DTMF key ends the call instead of the default # key.

• q

Does not play a beep tone before recording.

• x

Records all DTMF tones, including # and *. The call ends when maxDuration is reached or the caller hangs up.

If basename contains %d, it is replaced by a number incremented by 1 for each new recording.

The caller may end recording by pressing the # key; if the caller hangs up before recording is complete, the recording is discarded.

Returns −1 on hangup, otherwise returns 0.

[image: image]

Note the warnings regarding privacy under Monitor().

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also dictate, monitor, mixmonitor.

B.134 RemoveQueueMember()

Removes queue members dynamically.

RemoveQueueMember(queue[,interface[,options]])

Removes a member from the queue dynamically. If interface is not provided, the application removes the current interface (i.e., the interface that is active in the current priority) from the specified queue.

If the interface is not in the specified queue and priority n+101 exists, the application jumps to this priority; otherwise returns an error.

Returns −1 on error, otherwise returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also addqueuemember, queue, queues.conf.

B.135 ResetCDR()

Resets the Call Detail Record.

ResetCDR([options])

Resets the Call Detail Record for the active call. If option w is given, the existing CDR is stored before the reset.

Returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also forkcdr, nocdr.

B.136 ResponseTimeout()

Sets the maximum time to wait for a response on a channel.

ResponseTimeout(seconds)

Warning

ResponseTimeout() is removed as of Asterisk 1.4 and has been replaced by the TIMEOUT() function:

Set(TIMEOUT(response)=seconds)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also absolutetimeout, digittimeout, and in Appendix C, see timeout.

B.137 RetryDial()

Attempts to dial and retries if the attempt fails.

[image: image]

Attempts, like Dial(), to call a device. Plays the file announcement (without file extension!) if no device can be reached, then waits sleep seconds before trying again. The default sleep interval is 10 seconds. After retries retries, the call is handed to the next priority in the dialplan. If retries is set to 0 or −1, the application retries indefinitely.

A single-digit extension may be dialed by the caller during the sleep interval. If this extension exists in the context defined by ${EXITCONTEXT} or in the current context, the call is passed to that extension.

All arguments following retries are passed directly to Dial().

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also dial.

B.138 Return()

Returns from a subroutine.

Return()

Returns from a subroutine called by Gosub() or GosubIf() to the priority immediately following the Gosub() or GosubIf() that called the subroutine.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also gosub, gosubif.

B.139 Ringing()

Indicates ringing to the caller.

Ringing()

Indicates ringing to the caller. What form this indication takes depends on the channel driver. Note that this does not necessarily result in ringing tones; if you absolutely need those, use Playtones().

Returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also busy, congestion, progress, ringing, playtones.

B.140 SayAlpha()

Spells out a string to the caller.

SayAlpha(string)

Spells out the specified string to the caller according to the language setting for that channel. The language may be set with the Asterisk function LANGUAGE().

exten => 123,1,SayAlpha(ABC123)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also saydigits, saynumber, sayphonetic.

B.141 SayDigits()

Says a sequence of digits to the caller.

SayDigits(digits)

Says the provided sequence of digits to the caller according to the language settings for the channel. The language may be set with the Asterisk function LANGUAGE().

exten => 123,1,SayDigits(1234)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also sayalpha, saynumber, sayphonetic.

B.142 SayNumber()

Says a number.

SayNumber(number[,gender])

Says the provided number according to the language settings for the channel. The language may be set with the Asterisk function LANGUAGE().

Whole numbers from one to 99,999,999 are supported in the following languages:

• da

Danish

• de

German

• en

English

• es

Spanish

• fr

French

• it

Italian

• nl

Dutch

• no

Norwegian

• pl

Polish

• pt

Portuguese

• se

Swedish

• tw

Mandarin (Taiwanese)

The gender is optional and depends on the language.

For continental languages such as German, French, Spanish and Portuguese, use f for feminine, m for masculine, and n for neuter.

For Scandinavian languages such as Danish, Swedish and Norwegian, use c for common (en, enn) and n for neuter (et, ett).

To count in German plural, use p.

For these other languages to work, their respective sound files must be present /var/lib/asterisk/sounds/digits (in subdirectories by language; e.g., de/).

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also sayalpha, saydigits, sayphonetic.

B.143 SayPhonetic()

Spells a string using the NATO phonetic alphabet.

SayPhonetic(string)

Spells out the provided string using the NATO phonetic alphabet or its linguistic variations. The language may be set with the Asterisk function LANGUAGE(). Umlauts and other special characters are not yet supported.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also sayalpha, saydigits, saynumber.

B.144 SayUnixTime()

Announce the time in a custom format.

SayUnixTime([unixtime][,timezone[,format]])

Announces the current time according to the specified time zone and format. Allowed options are as follows:

• unixtime

The time in UNIX time format; that is, the number of seconds that have passed since the start of the epoch, which began at 0:00 UTC, January 1, 1970. Accepts negative values. The default value is the current time.

• timezone

The time zone. A list may be found in /usr/share/zoneinfo. The default is the system time zone.

• format

The time format of the announcement. A list of allowed formats may be found in voicemail.conf from the default installation. The default time format is ABdY 'digits/at' IMp.

Returns 0 or −1 if the channel is hung up.

exten => 123,1,SayUnixTime(,,IMp)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.145 SendDTMF()

Send DTMF digits on the channel.

SendDTMF(digits[,timeout_ms])

Sends the specified DTMF sequence on the channel. Permitted symbols are 0-9, *, #, and A-D. Additionally w is allowed; it indicates a pause of 500ms. The argument timeout_ms sets the pause in milliseconds between tones. If not specified, defaults to 250ms.

Returns 0, or −1 if the channel is hung up.

exten => 123,1,SendDTMF(123w456w789,200)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also read.

B.146 SendFAX()

Sends a fax.

SendFAX(filename[,options])

Sends a TIFF file as a fax.

SendFax() and ReceiveFax() replace the well-known fax patch commands TxFax() and RxFax() and, like them, they use the SpanDSP library.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also receivefax.

B.147 SendImage()

Sends an image file to the channel.

SendImage(filename[,options])

Sends an image file to the channel. If images are supported and the transmission fails, the application hangs up; otherwise it continues on the next priority. If option j is set, the application jumps to priority n+101, if it exists.

Returns 0 on successful transmission of the image or if the channel does not support images, otherwise returns −1. Sets the channel variable SENDIMAGESTATUS to OK or NOSUPPORT.

exten => 123,1,SendImage(logo.jpg)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also sendtext, sendurl.

B.148 SendText()

Sends text to the channel.

SendText(text[,option])

Sends text to the channel (e.g., to print on the display) if the transmission of text is supported by the channel and the device. The channel is handed to the next priority afterwards. If text transmission is not supported, option j makes the channel jump to priority n+101 if it exists.

The text is 7-bit ASCII for most channels.

Returns 0 if the text is transmitted without errors, otherwise −1. Sets the channel variable SENDTEXTSTATUS to SUCCESS, FAILURE, or UNSUPPORTED.

exten => 123,1,SendText(Welcome to Asterisk)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also sendimage, sendurl.

B.149 SendURL()

Sends a URL to the channel.

SendURL(URL[,options])

Sends the channel a URL for the device to call up, and then hands the channel to the next priority.

If the channel does not support URL transmission, option j makes the channel jump to priority n+101 if it exists. Option wait makes the application wait for confirmation that the URL was loaded before continuing to the next priority.

Returns 0 if the URL is transmitted without errors, otherwise −1. Sets the channel variable SENDURLSTATUS to SUCCESS, FAILURE, UNSUPPORTED, or NOLOAD (requires option wait; the client could not load the URL successfully).

exten => 123,1,SendURL(http://www.mobileweather.org/index.xml,wait)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also sendimage, sendtext.

B.150 Set()

Sets a variable to the specified value.

Set(variable=value)

Sets the variable to the specified value. If the variable name starts with _, single inheritance is set (i.e., the variable is inherited by any channels opened from this channel); if it begins with __, unlimited inheritance is set (i.e., all children of this channel, regardless of generation, inherit the variable). Up to 24 variables may be set. Variables are valid only in the channel and are canceled when the channel is hung up. Option g sets a global variable (not a function! see note below) in Asterisk 1.2; in 1.4 this is accomplished with the Asterisk function GLOBAL().

[image: image]

Note

Whether global variables are cleared upon reload depends on the setting of clearglobalvars in extensions.conf.

Set() is also used to write to functions (see Appendix C).

[image: image]

Note

The option g in Asterisk 1.2 applies only to variables; the behavior of a function depends on the function itself.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

See also importvar, doc/README.variables (1.2)/doc/channelvariables.txt (1.4), and in Appendix C, see global.

B.151 SetAccount()

Sets the account code field in the CDR for billing purposes.

SetAccount(account)

Warning

SetAccount() is removed as of Asterisk 1.4 and has been replaced by the CDR() function:

Set(CDR(accountcode)=account)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.152 SetAMAFlags()

Sets AMA-Flags in the Call Detail Record (CDR).

SetAMAFlags(flags)

Sets AMA (Automatic Message Accounting)14 flags in the CDR. Overrides any settings found in channel configuration files. Valid settings are default, omit, billing, and documentation.

14. In North America, Automatic Message Accounting has been used for billing in Direct Distance Dialing since it was introduced in the mid-twentieth century. The system was originally used to provide the toll system with information about the originating circuit so that the subscriber could be billed for a long-distance call.

Returns 0.

exten => 123,1,SetAMAFlags(billing)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

B.153 SetCallerID()

Sets the caller ID.

SetCallerID(caller_id[,options])

Warning

SetCIDName() has been replaced with the CALLERID() function:

Set(CALLERID(all)=Name <number>)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

See also Appendix C.

B.154 SetCallerPres()

Sets caller ID presentation flags.

SetCallerPres(presentation)

Sets caller ID presentation flags for Q.931 PRI (Primary Rate Interface) connections. Similar to CallerPres(), but using words instead of a bitmask.

Valid presentations are as follows:

• allowed_not_screened

Presentation allowed, not screened

• allowed_passed_screen

Presentation allowed, passed screen

• allowed_passed_screen

Presentation allowed, failed screen

• allowed

Presentation allowed, network number

• prohib_not_screened

Presentation prohibited, not screened

• prohib_passed_screen

Presentation prohibited, passed screen

• prohib_failed_screen

Presentation prohibited, failed screen

• prohib

Presentation prohibited, network number

• unavailable

Number unavailable

Returns 0.

[image: image]

You may need to set usecallingpres=yes in zapata.conf for this to work.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

B.155 SetCDRUserField()

Sets the value of the “user” in the CDR.

SetCDRUserField(string)

Sets the value of the “user” in the CDR. This field allows nonstandard information to be recorded in the CDR.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

Warning

Although it is not noted in the internal help, this application is deprecated. See the source code:

[image: image]

See also Appendix C.

B.156 SetCIDName()

Sets the caller-id NAME.

SetCIDName(name)

Warning

SetCIDName() is no longer available as of Asterisk 1.4 and has been replaced by the CALLERID() function:

Set(CALLERID(name)=Bob)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also setcidnum, and in Appendix C, see callerid.

B.157 SetCIDNum()

Sets the caller ID number.

SetCIDNum(number,options)

Warning

SetCIDNum() is no longer available as of Asterisk 1.4 and was replaced by the CALLERID() function:

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also setcidname, and in Appendix C, see callerid.

B.158 SetGlobalVar()

Sets the value of a global variable.

SetGlobalVar(variable=value)

Sets the value of a global variable. If the variable does not exist, it is created.

Warning

SetGlobalVar() is removed as of Asterisk 1.6 and should not be used in 1.4 either. A global variable is set through the application Set() (set) via the GLOBAL() function:

Set(GLOBAL(variable)=value)

Use Set() with the option g in Asterisk 1.2 and the GLOBAL() function for Asterisk 1.4 and up.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

Warning

Although it is not noted in the internal help, this application is deprecated. See the source code:

[image: image]

See also set, and in Appendix C, see global.

B.159 SetGroup()

Sets the group for the active channel.

SetGroup(group_name)

Warning

SetGroup() is removed as of Asterisk 1.4 and has been replaced by the GROUP() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also checkgroup, getgroupcount, getgroupmatchcount, and in Appendix C, see group.

B.160 SetLanguage()

Sets the language of the active channel.

SetLanguage(language)

Warning

SetLanguage() is removed as of Asterisk 1.4 and has been replaced by the CHANNEL() function:

Set(CHANNEL(language)=de)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.161 SetMusicOnHold()

Sets the default class for Music On Hold (MOH).

SetMusicOnHold(class)

Sets the default class for Music On Hold (MOH).

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

Warning

Superseded by the Asterisk function CHANNEL(musicclass) in 1.4 and above.

See also Appendix C.

B.162 SetRDNIS()

Sets the RDNIS number on the active call.

SetRDNIS(number)

Warning

SetRDNIS() is removed as of Asterisk 1.4 and has been replaced by the CALLERID() function:

Set(CALLERID(rdnis)=number)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.163 SetTransferCapability()

Sets the ISDN transfer capability.

SetTransferCapability(transferCapability)

Allowed values:

• SPEECH

0x00 - Speech (default, voice calls)

• DIGITAL

0x08 - Unrestricted digital information (data calls)

• RESTRICTED_DIGITAL

0x09 - Restricted digital information

• 3K1AUDIO

0x10 - 3.1 kHz Audio (fax calls)

• DIGITAL_W_TONES

0x11 - Unrestricted digital information with tones/announcements

• VIDEO

0x18 - Video

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

B.164 SetVar()

Sets a variable.

SetVar(variable=value)

Warning

SetVar() is removed as of Asterisk 1.4 and has been replaced by the Set() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also set.

B.165 SIPAddHeader()

Adds a SIP header to the SIP dialog.

SIPAddHeader(header: value)

Adds a SIP header as specified to SIP calls initiated using Dial(). Nonstandard SIP headers should be preceded with an X- as in X-Asterisk-Accountcode:.

Should be used with caution as different SIP devices expect different headers and respond differently to them. May produce unexpected behavior.

Returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also Appendix C.

B.166 SIPdtmfMode()

Changes the DTMF mode for SIP calls.

SIPdtmfMode(mode)

Changes the DTMF mode for outgoing SIP calls. DTMF can be signaled out-of-band using rfc2833, in-band using inband (RTP), or out-of-band using info (RFC 2976).

exten => 123,n,SIPdtmfMode(rfc2833)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also RFC 2833,15 RFC 2976.16

15. www.ietf.org/rfc/rfc2833.txt

16. www.ietf.org/rfc/rfc2976.txt

B.167 SIPGetHeader()

Retrieves a SIP header from an incoming call.

SIPGetHeader(variable=header_name|options)

Warning

SIPGetHeader() is removed as of Asterisk 1.4 and has been replaced by the SIP_HEADER() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.168 SMS()

Sends or receives SMS (Short Message System) messages.

SMS(queue[,options])

Manages the exchange of SMS messages with an SMS-capable telephone or through an SMS service center supporting ETSI17 ES 201 912 SMS protocol on analog or ISDN lines. Because the shell client smsq uses FSK18 this is unlikely to work over compressed codecs such as GSM.

17. ETSI (European Telecommunications Standards Institute)

18. Frequency Shift Keying

Options:

• a

Act as recipient

• s

Act as transmitter (SMS service center) to communicate with a telephone set

All send and receive queues are stored in /var/spool/asterisk/sms/: message coming from the service center to the device in sc-me.queue/, the message from the device to the service center in me-sc.queue/. A log is written to /var/log/asterisk/sms.

When connecting as a recipient (a), messages residing in me-sc.queue/ are sent and then deleted; received messages are written to sc-me.queue/ with a timestamp in the filename. When connecting as a transmitter (SMS service center), the reverse is true.

Message files are in the format described below. Absent parameters imply a default:

oa=Originating Address (sender's number)

This contains the complete national direct-dial number, including country code and preceded by the +. For example, +19255554101 would be a valid number.

da=Destination Address (recipient's number)

Again, a complete national direct-dial number with preceding +.

scts=Service Centre Time Stamp (timestamp)

Uses the format YYYY-MM-DD HH:MM:SS

[image: image]

If characters other than 10, 13, 32-126, 128-255 (decimal) occur in the message, ud= is replaced by ud# and the message contents are coded in hexadecimal.

[image: image]

When sending to an SMSC, only da and ud are used; oa is ignored. When sending to a device, only oa and ud are necessary; da is ignored.

An extension for receiving SMS messages might look like this (where 4165553331 is the number of our SMSC):

[image: image]

where handleincomingsms might be a wrapper or command containing; for example, smsq--process=queue--queue=me-incoming which is executed for each incoming message.

Outgoing messages are written to files, but may also be generated with the following (outdated) sequence (4165553331 is the number of the SMSC):

[image: image]

Further information and many additional examples may be found at www.voip-info.org/wiki/view/Asterisk+cmd+Sms. With the extremely wide variation in SMS implementation, it is best not to expect SMS() to work right “out of the box.”

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.169 SoftHangup()

Hangs up the specified channel.

SoftHangup(technology/resource[,options])

Hangs up the specified channel. Returns 0. Allowed options include a, which hangs up all channels on the specified device, not just a single resource.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also hangup.

B.170 Sort()

Sorts a list of keys and values.

Sort(key1:value1[,key2:value2[,...]])

Warning

Sort() is removed as of Asterisk 1.4 and has been replaced by the SORT() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.171 StackPop()

Removes a return address from the Gosub() stack.

StackPop()

Removes a return address from a stack of nested Gosub() calls.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also gosub.

B.172 StartMusicOnHold()

Starts playing music.

StartMusicOnHold([class])

Plays music from the specified class as defined in musiconhold.conf. If class is not specified, the default class for the channel is used.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also stopmusiconhold, musiconhold.

B.173 StopMixMonitor()

Stops recording of a call.

StopMixMonitor()

Stops recording initiated by MixMonitor() of a call on the active channel.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also mixmonitor.

B.174 StopMonitor()

Stops recording of a channel.

StopMonitor()

Stops recording of a channel. Has no effect if the channel is not currently monitored.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also monitor, pausemonitor.

B.175 StopMusicOnHold()

Stops playing music.

StopMusicOnHold()

Stops playing music that was started by StartMusicOnHold().

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also startmusiconhold, musiconhold.

B.176 StopPlaytones()

Interrupts playback of a tone list.

StopPlaytones()

Stops playback of a currently playing tone list.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also playtones, indications.conf.

B.177 System()

Executes a shell command.

System(command)

Uses the C system() function to execute a command on the system shell (sh or its equivalents).

This is very similar to TrySystem() except that it returns −1 if it is unable to run the system command where as TrySystem() always returns 0.

Sets the channel variable SYSTEMSTATUS to SUCCESS, FAILURE, or APPERROR. (This is undocumented; the command was executed but returned an exit code other than zero.)

[image: image]

See also
trysystem.

Note

An alternative is Backticks() application or the function BACKTICKS() from the app_backticks module.19

19. From www.pbxfreeware.org/archives/2005/06/index.html or www.pbxfreeware.org/

This returns the output of the command.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.178 Transfer()

Transfers the call to another extension.

Transfer([technology/]destination[,options])

Requests transfer of the caller to the specified extension or device. If the technology is specified (e.g., SIP, IAX2), only calls using the same technology will be transferred. In the case of SIP channels that have not yet been answered, this happens via a 302-REDIRECT message to the caller; if the call has already been answered, through a REFER message. The destination may also be a specific address, such as 8885551212@sip.provider.tld.

If option j is set, jumps to priority n+101 if the transfer fails.

Sets the channel variable TRANSFERSTATUS to SUCCESS, FAILURE, or UNSUPPORTED (meaning the channel driver does not support transfers).

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.179 TryExec()

Tries to execute a dialplan application.

TryExec(application(arguments))

Tries, like Exec(), to execute a dialplan application, but does not terminate the call if the attempt fails (either because the application does not exist or because it returned an error code). Instead, the channel variable TRYSTATUS is set to one of the following values:

• SUCCESS

The application returned 0.

• FAILED

The application returned a value other than 0.

• NOAPP

The application could not be found.

For more information, see exec.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also exec, execif, trysystem.

B.180 TrySystem()

Tries to execute a shell command.

TrySystem(command)

Like System(), it executes a command on the shell (sh or its equivalents), but always returns 0. In contrast, System() returns −1 on error.

Sets the channel variable SYSTEMSTATUS to SUCCESS, FAILURE, or APPERROR (command was run but returned an exit code other than 0).

exten => 123,1,TrySystem(echo 'Hey World' > /tmp/hey.txt)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also system.

B.181 TXTCIDName()

Looks up the caller name via a DNS TXT record.

TXTCIDName(caller_id_number|options)

If the option j is set, the call jumps to priority n+101 if the lookup fails.

Warning

TXTCIDName() is removed as of Asterisk 1.4 and has been replaced by the TXTCIDNAME() function.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.2:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.4

See also Appendix C.

B.182 UnpauseMonitor()

Resumes recording of a channel.

UnpauseMonitor()

Resumes recording of a channel after it has been paused with PauseMonitor().

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also monitor, pausemonitor.

B.183 UnpauseQueueMember()

Resumes calls to a paused member of a queue.

UnpauseQueueMember([queue,]interface[,options])

“Unpauses” a queue member previously “paused” with PauseQueueMember() (see an example there) so that the member can receive calls again.

Sets the channel variable UPQMSTATUS to UNPAUSED or NOTFOUND.

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also pausequeuemember.

B.184 UserEvent()

Sends an arbitrary event to the manager interface.

UserEvent(eventname[,body])

Sends an event of your choosing to the manager interface. The resulting event packet has the following format:

[image: image]

Additional lines in the form fieldname: value may be specified in the body. Multiple lines are separated with the pipe (|) character (in older versions of Asterisk, with , or ^).

Returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also manager.conf, Asterisk Manager interface.

B.185 Verbose()

Sends arbitrary text to the CLI at the verbose level specified.

Verbose([level,]message)

Sends the specified message to the CLI. The level is an integer; the message will only appear at verbose levels equal to or greater than this number.20

20. e.g., asterisk -vvvr for verbose level 3 - or enter set verbose 3 in the CLI

If level is not specified, 0 is assumed.

Returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also noop, log, dumpchan.

B.186 VMAuthenticate()

Authenticates the caller using the voicemail password of the specified mailbox.

VMAuthenticate([mailbox][@context][,options])

Behaves just like Authenticate() except that the passwords are taken from the configuration (and optional context) in voicemail.conf.

If a mailbox is specified, only the password for that mailbox will be accepted. If it is not provided, any voicemail password will be accepted! The channel variable ${AUTH_MAILBOX} is then populated with the name of the authenticated mailbox.

Option s suppresses the prompt.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also authenticate, voicemail.conf.

B.187 VoiceMail()

Allows the caller to leave a voice mail message in the specified mailbox.

VoiceMail(mailbox[@context][&mailbox[@context][&...]],options)

Old syntax:

VoiceMail([s|u|b]mailbox[@context][&mailbox[@context][&...]])

Allows the caller to leave a voice mail message in the specified mailbox. The mailbox must already be configured in voicemail.conf. If more than mailbox is listed, the greeting from the first mailbox is the one that is played. If the mailbox does not exist, dialplan execution ends.

The option s (silent) suppresses the prompt. The option u plays the “unavailable” message, if it exists. The option b plays (busy) message, if it exists (file busy instead of unavail).

Warning

You cannot mix syntax types. If you do, the application will fail as though the mailbox does not exist. We recommend always using the new syntax.

If option j is set, jumps to extension n+101, if it exists, on failure.

If the caller presses 0 during the prompt, the call goes to extension o (small letter o, for operator) in the current context.

If the caller presses * during the prompt, the call goes to extension a (small letter a, for assistant) in the current context.

Returns −1 in case of error (the mailbox could not be found or the caller hung up) otherwise returns 0. Sets the channel variable VMSTATUS to SUCCESS, USEREXIT (the caller canceled the message) or FAILED.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also voicemailmain, voicemail.conf.

B.188 VoiceMailMain()

Allows the caller to check voice mail messages.

VoiceMailMain([mailbox][@context][,options])

Old syntax:

VoiceMailMain([[s|p]mailbox][@context])

Allows access to the mailbox for listening to messages. If the mailbox number is not specified, the system prompts the caller for the mailbox number.

Option s skips the password prompt. Option p (prefix) prompts the caller to enter a mailbox number; the number specified in the command is then used as a prefix to the number provided by the caller and the resulting string is used as the mailbox number. This can be useful with virtual mailbox hosting. Option a (folder) sends the caller directly to the specified folder (default: INBOX).

If a context is specified, only mailboxes in the specified context are accessible.

Returns −1 if the caller hangs up, otherwise 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also voicemail, voicemail.conf.

B.189 Wait()

Waits for the specified number of seconds.

Wait(seconds)

Waits the specified number of seconds, then returns 0. Fractions are allowed (for example, 1.5).

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also waitexten.

B.190 WaitExten()

Waits for an extension to be dialed.

WaitExten([seconds][,options])

Waits the specified number of seconds for the caller to dial a new extension, then returns 0. Fractions are allowed (for example, 1.5). If no time is specified, the default extension timeout is used.

Option m plays music-on-hold to the caller while waiting for input. The music-on-hold class may be specified in parentheses (e.g., m (rock)).

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also wait.

B.191 WaitForNoise()

Waits for noise on the active channel.

WaitForNoise(duration[,iterations[,timeout]])

Waits for noise of duration milliseconds. If iterations are specified, it will wait for that number of noise events of duration milliseconds, otherwise waits for one instance. If timeout is specified, call is hung up after that number of seconds.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also waitforsilence.

B.192 WaitForRing()

Waits the specified number of seconds for a ring signal.

WaitForRing(timeout)

Waits a maximum of timeout seconds for a ring signal, which is only treated as valid until the second ring has completed.

Returns 0 on success, or −1 if the channel is hung up.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.193 WaitForSilence()

Waits for silence of a specified duration.

WaitForSilence(duration[,repeats[,timeout]])

Waits for duration milliseconds of silence. If repeats are specified, the application waits until it hears at least that many instances of silence of the specified duration. If timeout is specified, the call terminates after that many seconds.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

B.194 WaitMusicOnHold()

Play music-on-hold while waiting for the specified number of seconds.

WaitMusicOnHold(duration)

Plays music-on-hold while waiting for the specified number of seconds. If no hold music is available, it waits anyway, but without playing music.

Returns 0 on completion, or −1 if the channel is hung up.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also musiconhold.conf.

B.195 WaitUntil()

Waits until the specified time.

WaitUntil(unix_time)

Waits until the specified number of seconds from the start of the epoch (also called “UNIX time”).

Sets the channel variable WAITUNTILSTATUS to one of the following values:

• OK

Time elapsed.

• FAILURE

Invalid time specification.

• HANGUP

Time elapsed.

• PAST

Time elapsed.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

See also waituntil.

B.196 While()

Starts a while loop.

While(expression)

Starts a while loop. The application returns to this point if EndWhile() is encountered as long as expression is true; if it is false, execution continues after EndWhile().

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also endwhile, exitwhile, continuewhile, gotoif.

B.197 Zapateller()

Generates the “Special Information Tone” to block advance dialing telemarketing systems.

Zapateller(options)

Generates the “Special Information Tone” to indicate the number is not valid or reachable. Some predictive dialing systems will automatically delete a number from the calling list if they receive this tone.

The following pipe-delimited options are accepted:

• answer

Answers the line before playing the tone sequence.

• nocallerid

Plays the tone only if no caller ID information is received.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also privacymanager.

B.198 ZapBarge()

Allows eavesdropping on a Zap channel.

ZapBarge([channel])

Allows eavesdropping on a Zap channel. Other participants in the call do not hear the eavesdropper and do not receive any indication that the channel is being monitored.

If the channel is not provided, the user is prompted to enter it, following by the # key. In this case, to barge on Zap/4, press 4 and #.

Returns −1, if the caller hangs up, whether or not a channel is being monitored.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdibarge):

[image: image]

See also zapscan, chanspy.

B.199 ZapRAS()

Starts the Zaptel ISDN Remote Access Server.

ZapRAS(args)

Starts an ISDN RAS Server using pppd on the current channel. The channel must be available and a Zap channel. There is no modem emulation.

The point-to-point daemon pppd must be configured to recognize a Zap interface. The args are a pipe-delimited list of parameters.21

21. The list is long and complex and would not be appropriate in this summary. For more details, see www.voip-info.org/wiki/view/Asterisk+cmd+ZapRAS.

Returns −1.

This application is only intended for use with ISDN lines, and your kernel must be patched and configured to support ZapRAS(), as well as be configured to support PPP.

[image: image]

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdiras):

[image: image]

B.200 ZapScan()

Scans through Zap channels for eavesdropping.

ZapScan([group])

Enables a call center manager to monitor Zap channels quickly and conveniently. Press # to switch to the next channel or * to exit. You may limit the available channels by specifying group.

exten => 123,1,ZapScan()

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdiscan):

[image: image]

See also zapbarge, chanspy, and in Appendix C, see group.

B.201 ZapSendKeypadFacility()

Sends digits out-of-band on an ISDN PRI connection.

ZapSendKeypadFacility(digits)

Sends the supplied digits (0-9, *, #) out-of-band using the Q.931 “keypad facility” information element on a PRI connection.

exten => 123,1,ZapSendKeypadFacility(*456)

Asterisk versions:

[image: image]

Internal help for this application in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdisendkeypadfacility):

[image: image]

See also dahdisendkeypadfacility.

C. Dialplan Functions

In addition to dialplan applications, which have been part of Asterisk almost from the very beginning, Asterisk supports functions as of Asterisk 1.2. This is part of a long-standing effort to make Asterisk behave more like a programming environment. In contrast to applications, functions may not be called directly. Instead, they are called inside applications and return a value, or—in a departure from the classical definition of a function—they may even be written to using the application Set() (see Appendix B, “Dialplan Applications”). Function names are always written in uppercase letters. Surprisingly, functions are written in the same way as variables, inside curly braces and preceded by a $ character (${}). This is necessary because strings are not always bounded by quotation marks.

We could be forgiven for criticizing the less-than-intuitive distinction between Asterisk applications, functions, and even variables. Nor is there a consistently applied naming convention: for example, SIP_HEADER() is broken by an underscore (_) but SIPCHANINFO() is not. This is a problem with many programming languages and environments; these differences in convention add no useful information but make learning more difficult. In addition to this, the use of the delimiters—comma (,), ampersand (&), and pipe (|)—appears arbitrary. The concept of writing to a function in the same way one might write to a variable goes counter to the basic definition of a function in nearly every other programming language and continues to cause confusion, particularly among new Asterisk users with programming backgrounds.

A better way to imagine a function in Asterisk is as an associative array1 (a hash table is a form of associative array). For example:

1. http://en.wikipedia.org/wiki/Associative_array

[image: image]

would look like this in PHP:

[image: image]

Many functions allow the key in our associative array analogy to be empty. For example:

Set(GROUP()=outgoing);

Despite considerable improvements in Version 1.4, the dialplan programming remains rather inflexible when compared with “real” programming languages. If this proves bothersome, you might consider exploring Asterisk Extension Language (AEL) in more depth. It uses the same functions and applications but has a more robust structure and is often easier to interpret.

To find out which functions are currently available in your installation, enter core show functions and core show function
FUNCTIONNAME (or show functions and show function
FUNCTIONNAME for Asterisk 1.2) in the CLI.2

2. Command-line interface. This may be invoked with asterisk –r.

Note that these commands are case sensitive. Function names must be written entirely in uppercase letters.

C.1 AGENT()

AGENT(agent_number[:field])

Returns information about an agent identified by agentNumber. The following fields may be queried:

• status

(default) The status of the agent, either LOGGEDIN or LOGGEDOUT.

• password

The agent’s password.

• name

The agent’s name.

• mohclass

The music-on-hold class.

• exten

The callback extension for the agent. This is used by AgentCallbackLogin().

• channel

The name of the agent’s active channel (used by AgentLogin()).

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.2 ARRAY()

ARRAY(var1[,var2[,...]])

Sets multiple variables simultaneously. (The name is misleading; programmers should note that this does not behave the way an array normally would.) ARRAY() can only be used for writing, not reading. Remember to separate values with commas and to escape the commas with a backslash (\), or Asterisk will treat the following characters as an additional parameter for Set()!

[image: image]

Important

ARRAY() is a misleading function that you don’t actually need. Use multiple Set() statements instead:

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.3 BASE64_DECODE()

BASE64_DECODE(base64_string)

Decodes a base64-encoded string.

exten => 123,1,Set(foo=${BASE64_DECODE("SGFsbG8gV2VsdA==")})

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.4 BASE64_ENCODE()

BASE64_ENCODE(string)

Encodes a string in base64.

exten => 123,1,Set(foo=${BASE64_ENCODE("Hey World")})

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.5 BLACKLIST

BLACKLIST()

This function checks to see whether the caller ID on the channel is on the blacklist. The Asterisk database (AstDB) is used. The caller ID (NAME) or caller ID (NUMBER) must be stored in the database in the blacklist family. The key name is irrelevant.

BLACKLIST() only tests, it does not perform any operations. If the caller ID is found to match, it returns 1, otherwise it returns 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also lookupblacklist in Appendix B.

C.6 CALLERID()

CALLERID(field)

Returns or sets information about the caller. The field is one of the following:

• name

Name of the caller, as an alphanumeric string. Keeping this string short is recommended (e.g., 15 characters).

• num

Number of the caller, digits only. (Sometimes also found in field number, perhaps depending on the Asterisk version.)

• all

Name and number with the number in angle brackets (e.g., "Robert Cossack <2125558721>").

• ani

ANI,3 for outgoing calls.

3. Automatic Number Identification

• dnid

DNID4 number. Corresponds to the dialed number. (Sometimes also found in field dnis, perhaps depending on the Asterisk version.)

4. Dialed/Destination Number Identification Service

• rdnis

RDNIS5 number. The number which was forwarded to the current extension. (This is useful, for example, if the number of the active mailbox does not correspond to that of the dialed extension.)

5. Redirected Dialed Number Identification Service

The old channel variable ${CALLERIDNUM} is replaced by the function ${CALLERID(num)} as of Asterisk 1.4 (Similarly, ${RDNIS} is replaced by $(CALLERID (rdnis)) etc.). The application SetCIDName() is replaced by Set(CALLERID(name)=Name) (Similarly, SetCallerID() is replaced by Set(CALLERID(all)=Name <Number>) and so on).

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.7 CDR()

CDR(field)

Reads or sets CDR6 fields. The field is one of the following (only reading is possible unless otherwise noted):

6. Call Data Record

• clid

Caller ID

• src

The source number (caller ID number)

• dst

The call destination

• dcontext

Destination context

• channel

Channel name

• dstchannel

Destination channel, if applicable

• lastapp

The last executed application

• lastdata

The arguments to the last executed application

• start

Time the call started

• answer

Time the call was answered

• end

Time the call ended

• duration

Duration of the call in seconds

• billsec

Duration of the call since the call was answered (in other words, the billable duration) in seconds

• disposition

Status of the call: ANSWERED, NO ANSWER, BUSY, or FAILED

• amaflags

The AMA7 flags. Possible flags are DEFAULT, BILLING, DOCUMENTATION, and OMIT. (Sometimes BILLING and OMIT are replaced by BILL and IGNORE, perhaps depending on the Asterisk version.)

7. Automated Message Accounting

• accountcode

The alphanumeric ID of the billing account, maximum 20 characters. May be set as well as read.

• uniqueid

The unique ID of the channel (maximum 32 characters).

• userfield

A user field for storing arbitrary information (maximum 255 characters). May be set as well as read.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.8 CHANNEL()

CHANNEL(field)

Reads/sets specific channel parameters. The field is one of the following (only reading is possible unless otherwise noted):

• audioreadformat

The format for incoming audio on the channel.

• audionativeformat

The native audio format of the channel.

• audiowriteformat

The format for outgoing audio on the channel.

• callgroup

Extensions in Asterisk can be sorted into call groups numbered from 0 to 63 (e.g., as a client number).8

8. This limit of 64 call groups appears to be completely arbitrary and may not be sufficient for all users.

• channeltype

The channel driver, or “technology,” of the current channel (e.g., IAX or SIP).

• language

The language for voice prompts. May be set as well as read.

• musicclass

The music-on-hold class, as defined in musiconhold.conf. May be set as well as read.

• state

State of the channel (Down, Rsrvd, OffHook, Dialing, Ring, Ringing, Up, Busy, Dialing Offhook, Pre-ring, Unknown).

• tonezone

The “tone zone” defines the standard tone indications (dialing, ringing, busy, etc.) for specific regions and countries. This is set in the configuration file for the channel driver (e.g., zaptel.conf) with the parameters loadzone and defaultzone. Possible values are (as defined in indications.conf): at, au, be, br, ch, cl, cn, cz, de, dk, ee, es, fi, fr, gr, hu, it, lt, mx, ml, no, nz, pl, pt, ru, se, sg, uk, us, us-old, tw, ve, za.

• videonativeformat

The native video format of the channel.

In addition to the field described above, specific channel drivers can make others available. To learn more about these, look in the documentation for the specific channel driver. Fields that are unavailable on the current channel return an empty string.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

[image: image]

C.9 CHECKSIPDOMAIN()

CHECKSIPDOMAIN(domain)

Checks to see whether the specified SIP domain name (may also be an IP address) is local (see sip.conf). Returns the domain name, IP address, or empty string.

exten => 123,1,Set(foo=${CHECKSIPDOMAIN(123.45.67.89)})

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.10 CURL()

CURL(URL [|POST-data])

Loads a web page from the specified URL using GET. If POST-data are provided, these are sent with POST. Returns the page as a string.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.11 CUT()

CUT(variablename, delimiter, field)

(As of Asterisk 1.2.8, use a pipe (|) character rather than commas as a parameter delimiter.)

Processes a string in a variable according to a specified delimiter (default: –) and returns the requested fields. The field may also be a range of fields (e.g., 2-4) or multiple fields and ranges, separated with & (e.g., 2–4&6; ranges such as 3- (everything from field 3 on), or –3 (everything up to field 3) is possible.

If a comma is used as a delimiter, it must first be escaped with a backslash; e.g., CUT(var,\,,2).

[image: image]

Important

The parameter variablename must be the name of a variable, and not a string. If foo is the variable name and bar the contents, the following example would be incorrect: CUT(${bar},,3)

See also fieldqty.

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.12 DB()

DB(family/key)

Reads/sets a value in the Asterisk DB (AstDB). When reading, either a value is returned, or an empty string if the key does not exist. The output can be found in the variable DB_RESULT.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also db_exists, db_delete, and in Appendix B, see dbdeltree.

C.13 DB_DELETE()

DB_DELETE(family/key)

Deletes a value from the AstDB. Upon completion, the variable DB_RESULT is set to this value, if it exists.

[image: image]

Note

For versions prior to Asterisk 1.4, use the application DBdel().

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also db, db_exists, and in Appendix B, see dbdel, dbdeltree.

C.14 DB_EXISTS()

DB_EXISTS(family/key)

Tests to see whether a key exists in the AstDB. Returns 1 or 0. Sets the variable DB_RESULT to the value of the key, if it exists.

[image: image]

This is one way to replace the application LookupBlacklist(). This code example causes Asterisk to jump to the context blacklisted, extension s, priority 1, if the CID can be found in the blacklist:

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also db, db_delete, and in Appendix B, see dbdeltree.

C.15 DUNDILOOKUP()

DUNDILOOKUP(number[|DUNDi-context[|options]])

Looks up a telephone number with DUNDi. If DUNDi-context is specified, e164 is assumed. The option b (bypass) will cause Asterisk to bypass the internal DUNDi cache. Returns the found entry in the form technology/resource, if it exists, otherwise returns an empty string.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also dundi.conf.

C.16 ENUMLOOKUP()

Asterisk 1.2:

ENUMLOOKUP(number [, service [, optionsANDentrynumber [, zone-suffix]]])

Asterisk 1.4:

ENUMLOOKUP(number [, service [, options, entrynumber [, zone-suffix]]])

Looks up a number with ENUM. The service can be sip (default), iax2, h323, tel, or ALL. The option c returns the number of entries. The entrynumber (default 1) selects the entry from the list of results. The zone-suffix (default: e164.arpa) is the ENUM zone. Comprehensive descriptions and examples may be found in doc/README.enum (1.2) / doc/enum.txt (1.4).

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also enum.conf.

C.17 ENV()

ENV(variable)

Reads/sets an environment variable (a variable in the operating system environment; these can be viewed from the shell with echo $variable). Environment variables are case sensitive and are almost always written all uppercase.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.18 EVAL()

EVAL(variable)

Evaluates a variable twice. An example is useful: If the variable ${VAR} contains a string “${VAR2}”, that is what is returned when ${VAR} is called. If Eval() is used, the nested variable is also evaluated, and the contents of ${VAR2} are also returned.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.19 EXISTS()

EXISTS(variable)

Checks to see whether a variable is defined. Returns 1 or 0.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.20 FIELDQTY()

FIELDQTY(variablename, delimiter)

Returns the number of fields which exist if variablename is partitioned using delimiter.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also cut.

C.21 FILTER()

FILTER(allowed_characters, string)

Filters string so that only the allowed characters are returned.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.22 GLOBAL()

GLOBAL(variablename)

Used to declare a variable global; i.e., valid beyond the active life of the current channel. Asterisk 1.2 users use Set() (see Appendix B) with the option g.

[image: image]

Note

Whether global variables persist through a reload on the Asterisk console depends whether clearglobalvars is set in extensions.conf.

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.23 GROUP()

GROUP([category])

Reads/sets the group for the channel. (Channels may be grouped as required.)

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also group_count, group_list, group_match_count.

C.24 GROUP_COUNT()

GROUP_COUNT([group[@category]])

Returns the number of channels in the specified group. If no group is specified, the group of the current channel is assumed.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also group, group_list, group_match_count.

C.25 GROUP_LIST()

GROUP_LIST()

Returns a space-separated list of all the groups set for the current channel.

exten => 123,1,Set(foo=${GROUP_LIST()})

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also group, group_count, group_match_count.

C.26 GROUP_MATCH_COUNT()

GROUP_MATCH_COUNT(pattern [@ category])

Returns the number of channels in groups matching the specified pattern.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also group, group_count, group_list.

C.27 IAXPEER()

IAXPEER(peername[:field])

Returns information about an IAX peer. The peername can be replaced with CURRENTCHANNEL to specify the current channel. The field is one of the following:

• ip

(default) The IP address of the peer

• status

Peer status (when qualify=yes)

• mailbox

The configured mailbox

• context

The configured context

• expire

The expiry time (in UNIX time) for the connection

• dynamic

Whether the connection is dynamic (yes|no).

• callerid_name

The configured CID name

• callerid_num

The configured CID number

• codecs

The accessible codecs

• codec[x]

Preferred codec number x (beginning with 0)

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also sippeer.

C.28 IF()

IF(expression?trueVal:falseVal)

Returns a value depending on a condition. If the condition is true, the value following ? is returned, otherwise the value following : is returned.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also iftime, and in Appendix B, see execif, gotoif, gotoiftime.

C.29 IFTIME()

IFTIME(time-condition?trueVal:falseVal)

Returns a value depending on the time condition.

The time-condition follows the format time|dayofweek|date|month; each parameter may also be a range separated by -, or contain the wildcard *. Time is given in 24-hour format (e.g., 08:00-18:00), weekdays and month names are three-letter English language abbreviations (mon, tue, wed, thu, fri, sat, sun and jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec)

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also if, and in Appendix B, see execif, gotoif, gotoiftime.

C.30 ISNULL()

ISNULL(value)

Returns 1 if value is null, otherwise returns 0.

exten => 123,1,Set(foo=${ISNULL(${Var1})})

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.31 KEYPADHASH()

KEYPADHASH(string)

Transforms an alphabetic string to digits according to the standard telephone keypad letter assignments. This enables quick conversion of vanity numbers to actual numbers; e.g., 1-800-BADHAIR (1-800-2234247).

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.32 LANGUAGE()

LANGUAGE()

Reads/sets the language of the current channel. This setting determines, among other things, which audio files are played. If the language is set to de and Playback(tt-weasels) is run in the dialplan, Asterisk will play de/tt-weasels, if it exists, and similarly for SayDigits() and other applications which rely on prerecorded audio files.

[image: image]

Important

LANGUAGE() is removed as of Asterisk 1.6 and was replaced with the CHANNEL() function:

Set(CHANNEL(language)=de)

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

C.33 LEN()

LEN(string)

Returns the length of string.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.34 MATH()

MATH(number1 operator number2 [, typeofresult])

Calculates simple mathematical expressions. Allowed operators are +, -, /, *, <, >, <=, > =, ==, % (modulo). The typeofresult may be f, float (default), i, int (integer), h, hex (hexadecimal), c, char (byte output).

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.35 MD5()

MD5(string)

Calculates the MD5 hash (checksum) of a string (returns in hexadecimal format).

exten => 123,1,Set(foo=${MD5(${string})})

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.36 MUSICCLASS()

MUSICCLASS(class)

Reads/sets the music-on-hold class.

[image: image]

Important

Deprecated as of Asterisk 1.4. Use Set(CHANNEL(musicclass)= default) instead. See channel.

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

C.37 ODBC_SQL()

ODBC_SQL(SQL-query)

Executes the specified SQL query and returns the result, if any.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.38 ODBC_USER_DATABASE()

ODBC_USER_DATABASE(var1[,var2[,...]])

Runs the SQL query defined in func_odbc.conf and returns the result, if any. The values defined in func_odbc.conf, such as ${VAL1}, ${VAL2}, ..., ${ARG1}, ${ARG2}, ... are replaced by the corresponding values provided when the function is called.

[image: image]

C.39 QUEUEAGENTCOUNT()

In Asterisk 1.2. Asterisk 1.4 users see QUEUE_MEMBER_COUNT().

QUEUEAGENTCOUNT(queue)

Returns the number of agents (as opposed to number of callers) in the specified queue.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

C.40 QUEUE_MEMBER_COUNT()

In Asterisk 1.4. Asterisk 1.2 users see QUEUEAGENTCOUNT().

QUEUE_MEMBER_COUNT(queue)

Returns the number of agents (and/or members, which may be devices rather than logged-in users) in the specified queue.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.41 QUEUE_MEMBER_LIST()

QUEUE_MEMBER_LIST(queue)

Returns a comma-delimited list of the members in the specified queue.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.42 QUOTE()

QUOTE (string)

Quotes a string exactly, escaping embedded quotation marks if necessary.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.43 RAND()

RAND(min, max)

Returns a randomly generated number between min and max inclusive. The default for min is 0, for max the default is the largest integer supported by the system (usually 2147483647).

[image: image]

Note

If you are using versions prior to Asterisk 1.4, use the application Random().

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also random in Appendix B.

C.44 REGEX()

REGEX("expression" string)

Returns 1, if string matches the regular expression expression, otherwise returns 0. The regular expression may include ^ (matches the beginning) and $ (matches the end). Variables are evaluated first.

The parser in Asterisk 1.2 does not behave consistently and can be confused by expressions containing special characters such as $ or angle brackets. An ugly workaround is to define a variable (for example ${dollar}) and have it contain the special character (for example, $).

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.45 SET()

SET(variablename = expression)

Can be used inside nested expressions to set variables to the desired value. (Not to be confused with the application Set() ! This is the cause of much grief!)

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also set in Appendix B.

C.46 SHA1()

SHA1(string)

Calculates the SHA1 hash (checksum) of a string (returns hexadecimal).

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.47 SIPCHANINFO()

SIPCHANINFO (field)

Returns information about the current SIP channel. The field may be one of the following:

• peerip

The IP address of the peer

• recvip

The source IP address of the peer

• from

The URI from the From: header

• uri

The URI from the Contact: header

• useragent

The user agent

• peername

The name of the peer

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.48 SIPPEER()

SIPPEER(peername[,field])

Returns information about a SIP peer. The field may be one of the following:

• ip

The IP address of the peer (default)

• mailbox

The configured mailbox

• context

The configured context

• expire

The expiry time (in UNIX time) for the connection

• dynamic

Whether dynamic is set (yes|no).

• callerid_name

The configured CID name

• callerid_num

The configured CID number

• codecs

Available codecs

• status

The status (when qualify=yes is set)

• regexten

The registration extension

• limit

Maximum number of calls

• curcalls

Number of current calls (only if a limit is set)

• language

The default language for this peer

• useragent

The useragent of the peer

• codec[x]

Preferred codec number x (beginning with 0)

• accountcode

The billing account code in the CDR for conversations with this peer

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also iaxpeer.

C.49 SIP_HEADER()

SIP_HEADER(headername[,number])

Retrieves the specified SIP header. You are not likely to need this unless you have a thorough understanding of the SIP protocol. Because some headers can appear more than once in a SIP packet (such as Via, for example) you can specify which instance of the header you want to see with number.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

See also sipaddheader in Appendix B.

C.50 SORT()

SORT(key1:value1[,key2:value2 [,...]])

Processes a list of keys and values and returns a comma-separated list of the keys sorted based on their floating-point values.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.51 STAT()

STAT(flag, filename)

Returns status information about a file (compare the shell commands test and stat). The filename refers to an inode, so it can be a directory or a specific file. The flag can be one of the following:

• d

Tests to see whether filename is a directory.

• e

Tests if the file exists.

• f

Tests if filename is a regular file (as opposed to a special file, such as a block special file, character special file, symbolic link, named pipe, or socket).

• m

Returns the mode of filename (octal); i.e. the permissions (e.g., 0754).

• s

Returns the file size in bytes.

• A

Returns the last access time (in UNIX time).

• C

Returns the last inode change time (in UNIX time).

• M

Returns the last modified time (in UNIX time).

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.52 STRFTIME()

STRFTIME([unixtime][,[timezone][, format]])

Returns a date and time in the specified format. If unixtime is not provided, the current time is used. The default timezone is the system default time zone. Possible time zones may be found in /usr/share/zoneinfo. The format placeholders are the same as those for the C function strftime() (see man strftime), the default is %c; i.e., the locale-dependent date-time format.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.53 STRPTIME()

STRPTIME(datetime|timezone|format)

Converts a formatted date and time string into a UNIX timestamp.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also strftime.

C.54 TIMEOUT()

TIMEOUT(type)

Reads/sets a timeout on the channel. The following types are permitted:

• absolute

The absolute, maximum duration of a call. Once reached, the call is passed to the extension T, if it exists, or hung up. A value of 0 is the same as no timeout. When this function is called, the existing setting is reset and overwritten. The timeout counter starts when this function is called, not when the call begins.

• digit

The maximum time allowed between entry of digits. If exceeded, user input is deemed to have finished. If the resulting extension does not exist, the call is passed to the extension i (invalid), if it exists, or hung up. The default is 5 seconds.

• response

The maximum time to wait for input from a user. If the user does not enter an extension, the call is passed to extension t (timeout), if it exists, or the call is hung up. Default: 10 seconds.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.55 TXTCIDNAME()

TXTCIDNAME(number[,zone-suffix])

Looks up the CID name of the caller in DNS (via a TXT-Record).

exten => 123,1,Set(callername=${TXTCIDNAME(9755557346)})

The zone-suffix option was added in Asterisk 1.6. If not provided, the default is e164.arpa.

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

C.56 URIDECODE()

URIDECODE(string)

Decodes a URI encoded string. See URIENCODE().

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.57 URIENCODE()

URIENCODE(string)

URI-encodes a string, so that characters not normally allowed in a URL are replaced with escape sequences following the format %XX, where XX is the hexadecimal bytecode of the character.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

C.58 VMCOUNT()

VMCOUNT(VM-box [@ context][| folder])

Returns the number of voicemail messages in the specified mailbox. The default context is default, the default folder is INBOX.

[image: image]

Asterisk versions:

[image: image]

Internal help for this function in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

See also mailboxexists in Appendix B.

D. AGI Command Summary

The following commands, which enable an Asterisk Gateway Interface (AGI) script (see Chapter 16, “Asterisk Gateway Interface”) to interact with Asterisk, are taken from the Asterisk internal help and provided here for your convenience. Additional information is provided for commands that merit it. Most of the command names derive from their application (see Appendix B, “Dialplan Applications”) or function (see Appendix C, “Dialplan Functions”) equivalents. Remember that you must enclose empty parameters in double quotation marks (“ ”). The help detail Runs Dead: Yes|No indicates whether the command can be used on a dead (i.e., unanswered or hung-up) channel. For more information, see Appendix B.

D.1 ANSWER

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.2 ASYNCAGI BREAK

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

D.3 CHANNEL STATUS

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.4 CONTROL STREAM FILE

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.5 DATABASE DEL

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.6 DATABASE DELTREE

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.7 DATABASE GET

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.8 DATABASE PUT

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.9 EXEC

Executes a dialplan application. The arguments (called options below) are passed to the application. Multiple arguments are separated with a pipe (|) character.

Here is a simple example using Dial():

EXEC Dial Zap/g1/4035551212

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.10 GET DATA

This is comparable to the Background() application in extensions.conf. Plays the audio file with the name filename and waits for DTMF input. This may be limited with max_digits; the maximum wait time is set with timeout.

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.11 GET FULL VARIABLE

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.12 GET OPTION

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.13 GET VARIABLE

Similar to GET FULL VARIABLE, but does not understand complex or system variables.

Tip

If in doubt, use GET FULL VARIABLE.

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.14 GOSUB

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

D.15 HANGUP

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.16 NOOP

Does nothing, but appended text (NoOP [text]) will be printed out in the CLI. Always returns 0.

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.17 RECEIVE CHAR

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.18 RECEIVE TEXT

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.19 RECORD FILE

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.20 SAY ALPHA

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.21 SAY DATE

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.22 SAY DATETIME

This command follows this format:

SAY DATETIME timestamp [escape_digits] [format] [timezone]

It speaks the date specified. The timestamp is the number of seconds since January 1, 1970, at 00:00:00. The format can include the following values:

[image: image]

The timezone is in the same format as that used in /etc/asterisk/voicemail.conf.

Output can be interrupted with escape_digits. If you omit these parameters, you must use placeholders in the form of double quotes (“ ”).

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.23 SAY DIGITS

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.24 SAY NUMBER

Says a number (e.g., 123 is spoken as one hundred and twenty-three).

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.25 SAY PHONETIC

Says a given string using the NATO phonetic alphabet (e.g., a is said alpha, b as bravo).

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.26 SAY TIME

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.27 SEND IMAGE

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.28 SEND TEXT

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.29 SET AUTOHANGUP

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.30 SET CALLERID

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.31 SET CONTEXT

Sets the context to go to after the AGI script has finished.

Warning

This does not check to see whether the context exists. If you provide an invalid context, the call will be terminated after the AGI script finishes.

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.32 SET EXTENSION

Sets the extension to go to after the AGI script has finished.

Warning

This does not check to see whether the extension exists. If you provide an invalid extension, the call will be terminated after the AGI script finishes.

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.33 SET MUSIC

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.34 SET PRIORITY

Sets the priority to go to after the AGI script has finished.

Warning

This does not check to see whether the priority exists. If you provide an invalid priority, the call will be terminated after the AGI script finishes.

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.35 SET VARIABLE

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

Usage: SET VARIABLE <variablename> <value>

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.36 STREAM FILE

Important

STREAM FILE does not always work properly with languages other than English. In this case, you may use EXEC Playback
filename.

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.37 TDD MODE

Activates or deactivates the transmission and reception of Telephone Device for the Deaf (TDD) signals on the active channel. So far, only Zap channels support TDD.

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.38 VERBOSE

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

D.39 WAIT FOR DIGIT

Asterisk versions:

[image: image]

Internal help for this AGI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E. AMI Command Summary

These command summaries, taken from the Asterisk internal help, are provided here for your convenience. Commands go in the Action field when transmitted to the AMI interface.

E.1 AbsoluteTimeout

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.2 AgentCallbackLogin

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

E.3 AgentLogoff

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.4 Agents

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.5 AGI

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.6 Atxfer

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.7 Bridge

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.8 Challenge

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.9 ChangeMonitor

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.10 Command

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.11 CoreSettings

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.12 CoreShowChannels

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.13 CoreStatus

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.14 CreateConfig

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.15 DAHDIDialOffhook

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 (zapdialoffhook) to 1.4 (zapdialoffhook):

None

Diff of the internal help from Asterisk 1.4 (zapdialoffhook) to 1.6:

[image: image]

E.16 DAHDIDNDoff

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 (zapdndoff) to 1.4 (zapdndoff):

None

Diff of the internal help from Asterisk 1.4 (zapdndoff) to 1.6:

[image: image]

E.17 DAHDIDNDon

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 (zapdndon) to 1.4 (zapdndon):

None

Diff of the internal help from Asterisk 1.4 (zapdndon) to 1.6:

[image: image]

E.18 DAHDIHangup

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 (zaphangup) to 1.4 (zaphangup):

None

Diff of the internal help from Asterisk 1.4 (zaphangup) to 1.6:

[image: image]

E.19 DAHDIRestart

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 (zaprestart) to 1.6:

[image: image]

E.20 DAHDIShowChannels

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 (zapshowchannels) to 1.4 (zapshowchannels):

None

Diff of the internal help from Asterisk 1.4 (zapshowchannels) to 1.6:

[image: image]

E.21 DAHDITransfer

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.2 (zaptransfer) to 1.4 (zaptransfer):

None

Diff of the internal help from Asterisk 1.4 (zaptransfer) to 1.6:

[image: image]

E.22 DBDel

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.23 DBDelTree

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.24 DBGet

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.25 DBPut

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.26 Events

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.27 ExtensionState

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.28 GetConfig

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.29 GetConfigJSON

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.30 Getvar

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.31 Hangup

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.32 IAXnetstats

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.33 IAXpeerlist

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.34 IAXpeers

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.35 JabberSend

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.36 ListCategories

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.37 ListCommands

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.38 Login

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.39 Logoff

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.40 MailboxCount

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.41 MailboxStatus

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.42 MeetmeList

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.43 MeetmeMute

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.44 MeetmeUnmute

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.45 ModuleCheck

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.46 ModuleLoad

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.47 Monitor

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.48 Originate

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.49 Park

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.50 ParkedCalls

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.51 PauseMonitor

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.52 Ping

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.53 PlayDTMF

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.54 QueueAdd

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.55 QueueLog

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.56 QueuePause

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.57 QueuePenalty

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.58 QueueRemove

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.59 QueueRule

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.60 Queues

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.61 QueueStatus

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.62 QueueSummary

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.63 Redirect

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.64 Reload

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.65 SendText

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.66 SetCDRUserField

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.6

E.67 Setvar

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.68 ShowDialPlan

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.69 SIPnotify

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.70 SIPpeers

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.71 SIPqualifypeer

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.72 SIPshowpeer

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.73 SIPshowregistry

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.74 Status

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.75 StopMonitor

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.76 UnpauseMonitor

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.77 UpdateConfig

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.78 UserEvent

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

None

E.79 VoicemailUsersList

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.6:

[image: image]

Diff of the internal help from Asterisk 1.4 to 1.6:

Not available in Asterisk 1.4

E.80 WaitEvent

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6:

[image: image]

E.81 ZapDialOffhook

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdidialoffhook):

[image: image]

E.82 ZapDNDoff

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdidndoff):

[image: image]

E.83 ZapDNDon

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdidndon):

[image: image]

E.84 ZapHangup

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdihangup):

[image: image]

E.85 ZapRestart

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

Not available in Asterisk 1.2

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdirestart):

[image: image]

E.86 ZapShowChannels

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6 (dahdishowchannels):

[image: image]

E.87 ZapTransfer

Asterisk versions:

[image: image]

Internal help for this AMI command in Asterisk 1.4:

[image: image]

Diff of the internal help from Asterisk 1.2 to 1.4:

None

Diff of the internal help from Asterisk 1.4 to 1.6 (dahditransfer):

[image: image]

F. Configuration Templates

Configuration files such as sip.conf, iax.conf, and so on can have hundreds of entries; such files are difficult to maintain.

Take a typical sip.conf, for example:

[image: image]

There is another way. Asterisk offers the little-known support for templates! Using a template, our sip.conf would look like this instead:

[image: image]

This is particularly useful when you have groups or classes of stations with very similar characteristics; that is, in cases where it isn’t possible to put all the common parameters in the [general] section. Even in this small and simple example, we’ve managed to save a few lines and centralize future changes to the “class” my-phones.

F.1 Creating Templates

In principle, any section can serve as a template for other entries; using the tag (!) tells the parser that this section is to be used exclusively as a template. Note that no spaces are permitted between the square brackets or the parentheses. Templates may also be based on other templates.

[image: image]

F.2 Using Templates

Use templates by entering the template name (without spaces) immediately after the section title. The contents of the template are interpreted first, then the other lines in the section. Sections can inherit multiple templates, as follows:

[image: image]

Parameters in the template may be overwritten with parameters in the section, if necessary.

F.2.1 Example

[image: image]

You can find additional examples at www.voip-info.org/wiki/index.php?page=Asterisk+config+template.

G. Upgrading from 1.4 to 1.6

This appendix explains, using the contents of UPGRADE-1.6.txt along with some additional examples and commentary, what you need to consider when upgrading from Asterisk 1.4 to 1.6.

G.1 AEL

• Macros are now implemented underneath with the Gosub() application. (Heaven help you if you wrote code depending on any aspect of this!) Prior to 1.6, macros were implemented with the Macro() app, which provided a nice feature of autoreturning. The compiler will do its best to insert a Return() app call at the end of your macro if you did not include it, but really, you should make sure that all execution paths within your macros end in return; (as in the following example):

[image: image]

• The conf2ael program is introduced in this release; it is in a rather crude state, but deemed useful for making a first pass at converting extensions.conf code into Asterisk Extensions Language (AEL). The application will become more intelligent as it is developed.

G.2 Core

• The languageprefix option in asterisk.conf is now deprecated, and the default sound file layout for non-English sounds is the “new style” layout introduced in Asterisk 1.4 (and used by the automatic sound file installer in the Makefile).

• The ast_expr2 stuff has been modified to handle floating-point numbers. Numbers of the format D.D are now acceptable input for the expr parser, where D is a string of base-10 digits. All math is now done in “long double,” if it is available on your compiler/architecture. This was halfway between a bug fix (because the MATH func returns fp by default) and an enhancement. Also, for those counting on, or needing, integer operations, a series of functions were also added to the expr language, to allow several styles of rounding/truncation, along with a set of common floating-point operations, like sin, cos, tan, log, pow, and so on. The ability to call external functions such as CDR() and so forth was also added, without having to use the ${...} notation.

• The delimiter passed to applications has been changed to the comma (,), because that is what people are used to using within extensions.conf. If you are using real-time extensions, you will need to translate your existing dialplan to use this separator. To use a literal comma, you need merely to escape it with a backslash (\). Another possible side effect is that you may need to remove the obscene level of backslashing that was necessary for the dialplan to work correctly in 1.4 and earlier versions. This should make writing dialplans less painful in the future, albeit with the pain of a one-time conversion. If you would like to avoid this conversion immediately, set pbx_realtime=1.4 in the [compat] section of asterisk.conf. After transitioning, set pbx_realtime=1.6 in the same section.

• For the same reason as above, you may set res_agi=1.4 in the [compat] section of asterisk.conf to continue to use the | delimiter in the EXEC arguments of Asterisk Gateway Interface (AGI) applications. After converting to use the , delimiter, change this option to res_agi=1.6.

• As a side-effect of the application delimiter change, many places that used to need quotes in order to get the proper meaning are no longer required. You now only need to quote strings in configuration files if you literally want quotation marks within a string.

• The logger.conf option rotatetimestamp has been deprecated in favor of rotatestrategy. This new option supports a rotate strategy that more closely mimics the system logger in terms of file rotation.

• The concise versions of various CLI commands are now deprecated. We recommend using the manager interface (AMI) for application integration with Asterisk instead of using asterisk -rx "command".

G.3 Voicemail

• The voicemail configuration values maxmessage and minmessage have been changed to maxsecs and minsecs to clarify their purpose and to make them more distinguishable from maxmsgs, which sets folder size. The old variables will continue to work in this version, albeit with a deprecation warning.

• If you use any interface for modifying voicemail aside from the built-in dialplan applications, the option pollmailboxes must be set in the general section of voicemail.conf for message waiting indication (MWI) to work properly; the polling frequency is set with pollfreq. This is because voicemail notification is now event based rather than polling based. The channel drivers are no longer responsible for constantly manually checking mailboxes for changes so that they can send MWI information to users. Examples of situations that would require this option are web interfaces to voicemail or an e-mail client in the case of using Internet Message Access Protocol (IMAP) storage.

G.4 Dialplan Applications and Functions

• ChanIsAvail() now has a t option, which allows the specified device to be queried for state without consulting the channel drivers. This performs mostly a ChanExists sort of function.

• ChannelRedirect() will not terminate the channel that fails to do a channelredirect as it has done previously. Instead, CHANNELREDIRECT_STATUS will reflect if the attempt was successful.

• SetCallerPres() has been replaced with the CALLERPRES() dialplan function and is now deprecated.

• DISA()’s fifth argument is now an options argument. If you have previously used NOANSWER in this argument, you’ll need to convert that to the new option n.

• Macro() is now deprecated. If you need subroutines, you should use the Gosub()/Return() applications. To replace MacroExclusive(), we have introduced dialplan functions LOCK(), TRYLOCK(), and UNLOCK(). You may use these functions in any location where you desire to ensure that only one channel is executing that path at any one time. The Macro() applications are deprecated for performance reasons. However, because Macro() has been around for a long time and so many dialplans depend heavily on it, for the sake of backward compatibility it will not be removed. It is also worth noting that using both Macro() and GoSub() at the same time is heavily discouraged.

• Read() now sets a READSTATUS variable on exit. It does not automatically return -1 (and hang up) anymore on error. If you want to hang up on error, you need to do so explicitly in your dialplan.

• Privacy() no longer uses privacy.conf, so any options must be specified directly in the application arguments.

• MusicOnHold() application now has duration parameter which allows specifying timeout in seconds.

• WaitMusicOnHold() application is now deprecated in favor of extended MusicOnHold.

• SetMusicOnHold() is now deprecated. You should use Set(CHANNEL (musicclass)=...) instead.

• The arguments in ExecIf() changed a bit, to be more like other applications. The old syntax is

ExecIf(expression,application,arguments)

The new syntax is

[image: image]

• The behavior of the Set() application now depends on a compatibility option, set in asterisk.conf. To use the old 1.4 behavior, which allowed Set() to take multiple key/value pairs, set app_set=1.4 in [compat] in asterisk.conf. To use the new behavior, which permits variables to be set with embedded commas, set app_set=1.6 in [compat] in asterisk.conf. Note that you can have both behaviors at the same time, if you switch to using MSet() if you want the old behavior.

• The function QUEUE_MEMBER_COUNT() has been deprecated in favor of the QUEUE_MEMBER() function. For more information, issue a show function QUEUE_MEMBER from the CLI.

G.5 CDR

• The cdr_sqlite module has been marked as deprecated in favor of cdr_sqlite3_custom. It will potentially be removed from the tree after Asterisk 1.6 is released.

• The cdr_odbc module now uses res_odbc to manage its connections. The username and password parameters in cdr_odbc.conf, therefore, are no longer used. The dsn parameter now points to an entry in res_odbc.conf.

• The uniqueid field in the core Asterisk structure has been changed from a maximum 31-character field to a 149-character field, to account for all possible values the systemname prefix could be. In the past, if the systemname was too long, the uniqueid would have been truncated.

• The cdr_tds module now supports all versions of FreeTDS that contain the db-lib front end. It will also now log the userfield variable if the target database table contains a column for it.

G.6 Audio Formats

• format_wav: The GAIN preprocessor definition and source code that used it is removed. This change was made in response to user complaints of choppiness or the clipping of loud signal peaks. To increase the volume of voicemail messages, use the volgain option in voicemail.conf.

• Previously, the Asterisk source code distribution included the iLBC encoder/decoder source code, from Global IP Solutions (http://www.gipscorp.com). This code is not licensed for distribution, and therefore has been removed from the Asterisk source code distribution. If you want to use codec_ilbc to support iLBC channels in Asterisk, you can run the contrib/scripts/get_ilbc_source.sh script to download the source and put it in the proper place in the Asterisk build tree. Once that is done, you can follow your normal steps of building Asterisk. You will need to run menuselect and enable the iLBC codec in the Codec Translators category, then make and make install.

G.7 Channel Drivers

• SIP: A small upgrade to support the Record button on the SNOM360, which sends a sip INFO message with a Record: on or Record: off header. If Asterisk is set up (through the automon parameter in features.conf) to accept One Touch Monitor requests (by default, via *1), the user-configured dialpad sequence is generated, and recording can be started and stopped via this button. The filenames and formats are all controlled via the normal mechanisms. If the user has not configured the automon feature, the normal 415 Unsupported media type is returned, and nothing is done.

• The call-limit option in sip.conf is marked as deprecated. It still works in this version of Asterisk, but will be removed in the following version. Please use the GROUP(), GROUP_COUNT(), and GROUP_MATCH_COUNT() functions in the dialplan to enforce call limits. The limitonpeer configuration option is now renamed to counteronpeer.

• The username option is now renamed to defaultuser to match defaultip. These are used only before registration to call a peer with the URI sip:defaultuser@defaultip. The username setting still works, but is deprecated and will not work in the next version of Asterisk.

• chan_local.c: The comma delimiter inside the channel name has been changed to a semicolon, to make the Local channel driver compatible with the comma-delimiter change in applications.

• H323: The tos setting has changed name to tos_audio and cos to cos_audio to be compatible with settings in sip.conf. The tos and cos configuration is deprecated and will stop working in the next release of Asterisk.

• Console: A new console channel driver, chan_console, has been added to Asterisk. This new module can not be loaded at the same time as chan_alsa or chan_oss. The default modules.conf loads only one of them (chan_oss by default). So, unless you have modified your modules.conf to not use the autoload option, you will need to modify modules.conf to add another noload line to ensure that only one of these three modules gets loaded.

• DAHDI: The chan_zap module that supported public switched telephone network (PSTN) interfaces using Zaptel has been renamed to chan_dahdi, and only supports the DAHDI telephony driver package for PSTN interfaces. See the Zaptel-to-DAHDI.txt file for more details on this transition.

• The msdstrip option has been deprecated because it provides no value over the method of stripping digits in the dialplan using variable substring syntax.

G.8 Configuration

• dundi.conf: The tos parameter changed to use new values. Old values like lowdelay, lowcost, and other are not acceptable now. Look into doc/tex/qos.tex for more information about this parameter.

• queues.conf: The queue-lessthan sound file option is no longer available, and the queue-round-seconds option no longer takes 1 as a valid parameter.

G.9 Asterisk Manager Interface

• Manager has been upgraded to version 1.1 with a lot of changes. Check doc/manager_1_1.txt for information.

• The IAXpeers command output has been changed to more closely resemble the output of the SIPpeers command.

• The cdr_manager module now reports at the cdr level, not at call as it was before. You may need to change your manager.conf to add the level to existing AMI users, if they want to see the CDR events generated.

• The Originate command now requires write permission. For Originate with the Application parameter, you need the additional system privilege if you want to do anything that calls out to a subshell.

H. From Zaptel to DAHDI

Digium has used the name Zaptel for its pubic switched telephone network (PSTN) drivers for some time. In 2006, the trademark owner notified Digium that the name was, in fact, trademarked. In response, Digium has renamed the driver package to DAHDI as of 2008. Kevin Fleming, Digium’s director of software development, explained this in the following blog posted in May 2008.

[image: image]

[image: image]

H.1 DAHDI

H.1.1 Dial()

Anybody using DAHDI, be it in Asterisk 1.6 or Asterisk 1.4.22 and above, should note that any references to Dial(Zap/...) in the dialplan must be changed to Dial(DAHDI/...).

This behavior can be configured for the sake of backward compatibility of dialplans. To use the old terms, set the following in the [options] section of /etc/asterisk/asterisk.conf:

dahdichanname = no

H.1.2 Kernel Modules (.ko)

All the former Zaptel kernel modules are also getting new names, as shown in Table H.1.

Table H.1 Kernel Module Renaming

[image: image]

The names for the kernel modules for individual interface cards have not changed.

H.1.3 Files

The configuration files and directories have changed accordingly, as shown in Table H.2.

Table H.2 Configuration File Renaming

[image: image]

Warning

Setting dahdichanname = no as described previously will make Asterisk read the configuration from zapata.conf rather than chan_dahdi.conf.

H.1.4 Shell Programs

The new shell programs and scripts have these corresponding names, as shown in Table H.3.

Table H.3 Shell Programs

[image: image]

H.1.5 Asterisk Modules

Similarly, the corresponding Asterisk modules, which provide the Zap...() applications, have new names, as shown in Table H.4.

Table H.4 Asterisk Modules

[image: image]

For dialplan backward compatibility, the commands Zap...() and the new DAHDI...() are interchangeable. You can find more information about the applications in Appendix B, “Dialplan Applications.”

H.2 Interview with Kevin P. Fleming

In January 2009, Stefan Wintermeyer interviewed Kevin P. Fleming, Digium’s director of software development, on the transition from Zaptel to DAHDI and the evolution of ISDN support in Asterisk:

Q:
Does DAHDI still need mISDN for the B410P card or does it come with support for Euro-ISDN BRI by itself now?

A: You are confusing two different things; DAHDI is the same layer as Zaptel was. It provides hardware drivers and a limited amount of signaling abstraction (along with some other features), but is not at all involved in protocol-level work. chan_dahdi is the channel driver (which used to be called chan_zap), which contains protocol level support, including analog signaling, CAS, PRI, and SS7 (in Asterisk 1.6).

Zaptel and mISDN were not at all related, and the same is true of DAHDI and mISDN. The only reference to mISDN in Zaptel was a Makefile target called b410p, which allowed people to download, build, and install the mISDN and mISDNuser packages in an automated fashion, but this was just a convenience for users, it was not related to Zaptel. In DAHDI, this is no longer present, and mISDN users must follow normal processes to obtain and install mISDN.

Now, when it gets to the channel driver layer, things get a little more complicated. Asterisk 1.4 had chan_zap, which talks to Zaptel, and chan_misdn, which talks to mISDN. They don’t support any hardware in common, so for Asterisk 1.4 users, support of EuroISDN BRI is still handled by chan_misdn. This is still true even in recent Asterisk 1.4 releases where chan_zap has been renamed to chan_dahdi, and now talks to DAHDI instead of Zaptel. Even though DAHDI now contains a driver for Digium’s B410P BRI card, the Asterisk 1.4 chan_dahdi channel driver does not support EuroISDN BRI.

In Asterisk 1.6 the picture is a little different: The chan_misdn channel driver is still present, and users who prefer mISDN or have hardware only supported by mISDN are still welcome to use it. The Asterisk 1.6 chan_dahdi channel driver works only with DAHDI, and it contains protocol-level support for EuroISDN BRI. This means that Asterisk 1.6 users can use chan_dahdi for their EuroISDN BRI connections, over any BRI card with a DAHDI driver (see below for more details).

Q:
Would you call it stable and ready for production?

A: There are two answers to that question: The EuroISDN BRI protocol support in chan_dahdi (which actually comes from libpri) is both stable and ready for production. It has been through extensive telecom certification testing and will be supported for BRI interoperability just as it has always been for PRI interoperability.

The DAHDI driver for the Digium B410P is very new, and is working quite well for a large number of users. However, some open issues are being worked on (visible in our open source issue tracker on bugs.digium.com), primarily related to ISDN L1 layer behavior with various telco operators in Europe. It is certainly stable and fully supported by Digium’s development team, but there are probably environments where it is not yet ready for production until these issues are resolved.

Q:
Will Euro-ISDN BRI support be available in 1.4 and Zaptel, too, or only in 1.6 and DAHDI?

A: The B410P driver will never be part of Zaptel (as there will be no more Zaptel releases anyway), and the EuroISDN BRI support in chan_dahdi will not be added to Asterisk 1.4, as we don’t add new features to that release branch. However, the chan_dahdi changes required to provide EuroISDN BRI support are relatively minor, so I expect that one or more community members will publish “backport” patches so that users can use the DAHDI B410P driver and the libpri EuroISDN BRI support in Asterisk 1.4.

Q:
Will DAHDI and Zaptel support generic Cologne HFC-S BRI cards or is it B410P specific?

A: The DAHDI driver for the B410P card was written specifically for that card, but because the card is based on an HFC-4S, of course the driver could be modified to support cards from other manufacturers. We would be happy to accept patches through our normal patch submission process (on bugs.digium.com) that add support for generic or manufacturer-specific versions of the HFC-S cards, if community members wish to provide them.

Q:
Why do I need the libpri PRI stack for a BRI card (as it has been announced on asterisk-users)?

A: Because ISDN PRI (both ANSI and Euro) and EuroISDN BRI are very nearly the same protocol; in essence, libpri has the wrong name, and it should instead be something like libisdn, signifying that it is really an ISDN protocol stack (Q.921 and Q.931, among others), not specific to a particular interface type.

Q:
Does the BRI support in DAHDI include both PtP (point to point) / PtmP (point to multipoint) and TE/NT mode? If the limitation is not in DAHDI, does libpri support all of these modes?

A: The B410P driver in DAHDI supports TE and NT mode on the HFC4-S chip, but at that level there is no difference (the hardware layer) between PtP and PtMP. libpri currently supports being a TE over either PtP or PtMP links, or being an NT over PtP links. It does not currently support acting as an NT over PtMP links, but of course patches are welcome.

Q:
Will Asterisk continue to support
chan_misdn?

A: Yes, we will continue to support it (as will the community members who help support it now), but our primary ISDN-related development efforts will continue to be on libpri/chan_dahdi.

I. IAX vs. SIP

One question you need to answer, especially when it comes to the question of connecting two Asterisk servers through a trunk, is whether to use IAX or SIP. Opinion is divided over which is the better option, but IAX was written to overcome some of the limitations of SIP. For your convenience, we include an e-mail to the Asterisk users list from Mark Spencer, in which he describes the advantages of IAX:

[image: image]

[image: image]

In defense of SIP, Mark later wrote:

[image: image]

J. GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0 PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11 RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

Index

A

[a-b] dialplan pattern, 31

a-law codecs, 46, 416

Aastra 480i telephone, 232–234, 238–240

aastra.cfg file, 233

[a,b,c] dialplan pattern, 31

Absolute timeout, TIMEOUT() dialplan function, 640–641

AbsoluteTimeout command, AMI, 673–674

AbsoluteTimeout() dialplan application, 263–264

Account, call files, 185

Account information, SIP phone, 14

ACK packets, TCP connections, 92

ackcall, agents.conf, 166

Action packets, AMI, 188

AddQueueMember() dialplan application, 170, 264–266

Adhearsion, using AGI with, 209–210

Administration

conferencing, 418–423

creating AMI user rights, 187

MeetMeAdmin() application, 423–425

MeetMeChannelAdmin() application, 425–426

using contexts for rights, 18–20

ADSI, dialplan applications

ADSIProg(), 266–267

GetCPEID(), 266–267, 381–382

ADSL, replacing ISDN in North America, 105

AEL (Asterisk Extension Language), 73–89

aelparse utility, 74

CLI commands for, 73–74

defined, 73

defining hints in, 229

extensions.conf vs. extensions.ael. See
extensions.conf vs. extensions.ael

upgrading from 1.4 to 1.6, 725

ael parse command, AEL, 74

ael reload command, AEL, 73

aelparse utility, 74

agent, agents.conf, 168

Agent channel, 95

AGENT() dialplan function, 576–577

AgentCallbackLogin command, AMI, 674

AgentCallbackLogin() dialplan application

configuring call recording, 270–272

defined, 169–170

overview of, 267–268

AgentLogin() dialplan application

AgentCallbackLogin() vs., 267

defined, 169

overview of, 268–269

AgentLogoff command, AMI, 674–675

AgentMonitorOutgoing() dialplan application, 270–272

Agents

call queues and, 155–156

configuring in queues.conf, 165

defining in agents.conf, 156, 166–168

Agents command, AMI, 675

agents.conf

call queues, 166–168

configuring call recording in, 270–272

defined, 155

Aggregation with independent works, GNU Free Documentation License, 752

AGI (Asterisk Gateway Interface)

data streams, 201–203

DeadAGI() application, 322–325

EAGI() application, 353–356

FastAGI() application, 372

with other programming languages, 211

overview of, 201

with Perl, 203–206

with PHP, 206–209

with Ruby and Adhearsion, 209–210

working with large integers or floating point numbers, 62

AGI (Asterisk Gateway Interface), command summary, 647–671

ANSWER, 647–648

ASYNCAGI BREAK, 648

CHANNEL STATUS, 648–649

CONTROL STREAM FILE, 649

DATABASE DEL, 650

DATABASE DELTREE, 650

DATABASE GET, 651

DATABASE PUT, 651–652

EXEC, 652

GET DATA, 653

GET FULL VARIABLE, 653–654

GET OPTION, 654

GET VARIABLE, 654–655

GOSUB, 655

HANGUP, 656

NOOP, 656–657

RECEIVE CHAR, 657

RECEIVE TEXT, 657–658

RECORD FILE, 658

SAY ALPHA, 659

SAY DATE, 659–660

SAY DIGITS, 661–662

SAY NUMBER, 662

SAY PHONETIC, 662–663

SAY TIME, 663–664

SAYDATETIME, 660

SEND IMAGE, 664

SEND TEXT, 664–665

SET AUTOHANGUP, 665

SET CALLERID, 665–666

SET CONTEXT, 666

SET EXTENSION, 667

SET MUSIC, 667–668

SET PRIORITY, 668

SET VARIABLE, 669

STREAM FILE, 669–670

TDD MODE, 670

VERBOSE, 670–671

WAIT FOR DIGIT, 671

AGI command, AMI, 675–676

agi-commands, 273

AGI() dialplan application, 272–275

agi show command, 273

agi-test.agi, 203

ahn program, Adhearsion, 209–210

AJAM (Asynchronous JavaScript Asterisk Manager), 195–199

accessing AMI via HTTP, 195

accessing AMI with AJAX, 197–199

getting number of mailbox messages, 196–197

AJAX (Asynchronous JavaScript and XML), 197–198

AlarmReceiver() dialplan application, 276–277

alarmreceiver.conf, 276

AMA flags, SetAMAFlags() dialplan application, 513–514

AMD() dialplan application, 277–281

AMDCAUSE channel variable, 278–281

amd.conf, 277–278

AMDSTATUS channel variable, 278–281

AMI (Asterisk Manager Interface)

activating, 186

commands for, 189–190

creating user, 187

getting number of mailbox messages with PHP, 193–195

getting number of voicemail messages with expect, 190–192

overview of, 186

StarAstAPI for PHP, 192–193

talking to, 187–188

upgrading CLI from 1.4 to 1.6, 727

upgrading from 1.4 to 1.6, 731

AMI (Asterisk Manager Interface), command summary

AbsoluteTimeout, 673–674

AgentCallbackLogin, 674

AgentLogoff, 674–675

Agents, 675

AGI, 675–676

Atxfer, 676

Bridge, 676–677

Challenge, 677

ChangeMonitor, 677–678

Command, 678

CoreSettings, 678–679

CoreShowChannels, 679

CoreStatus, 679

CreateConfig, 680

DAHDIDialOffhook, 680

DAHDIDNDoff, 681

DAHDIDNDon, 681–682

DAHDIHangup, 682

DAHDIRestart, 682–683

DAHDIShowChannels, 683

DAHDITransfer, 684

DBDel, 684

DBDelTree, 685

DBGet, 685

DBPut, 686

Events, 686

ExtensionState, 687

GetConfig, 687–688

GetConfigJSON, 688

GetVar, 689

Hangup, 689

IAXnetstats, 690

IAXpeerlist, 690–691

IAXpeers, 691

JabberSend, 691

ListCategories, 692

ListCommands, 692–693

Login, 693

Logoff, 693

MailboxCount, 694

MailboxStatus, 695

MeetmeList, 695–696

MeetmeMute, 696

MeetmeUnmute, 696–697

ModuleCheck, 697

ModuleLoad, 697–698

Monitor, 698

Originate, 698–699

Park, 699–700

ParkedCalls, 700

PauseMonitor, 700–701

Ping, 701

PlayDTMF, 702

QueueAdd, 702

QueueLog, 703

QueueParse, 703

QueuePenalty, 703–704

QueueRemove, 704

QueueRule, 704

Queues, 704–705

QueueStatus, 705

QueueSummary, 705–706

Redirect, 706

Reload, 706–707

SendText, 707

SetCDRUserField, 707

SetVar, 708

ShowDialPlan, 708

SIPnotify, 709

SIPpeers, 709–710

SIPqualifypeer, 710

SIPshowpeer, 710–711

SIPshowregistry, 711

Status, 712

StopMonitor, 712–713

UnpauseMonitor, 713

UpdateConfig, 713–714

UserEvent, 714–715

VoiceMailUsersList, 715

WaitEvent, 715–716

ZapDialOffhook, 716

ZapDNDoff, 717

ZapDNDon, 717–718

ZapHangup, 718

ZapRestart, 718–719

ZapShowChannels, 719

ZapTransfer, 720

AMI proxy, 188

analog telephone adapters. See
ATA (analog telephone adapters)

Analog telephony

ATA, 114

connecting devices, 113–114

digital codecs vs., 101

huge role in North America of, 112

types of devices used by, 112–113

using ATA, 3

using FXS port, 4

VoIP superior to, 102

announce-frequency, queues.conf, 162

announce-holdtime, queues.conf, 162

announce, queues.conf, 160

announce-round-seconds, queues.conf, 162

announcement argument, Queue(), 468–469

Announcement sound files, queues.conf, 165–166

ANSWER command, AGI, 647–648

Answer () dialplan application

defined, 12, 27

overview of, 281–282

ANSWER variable, Dial(), 330

ANSWEREDTIME variable, Dial(), 330

Answering machine detection, 277–281

Apache, as proxy for AJAM, 198–199

AppendCDRUserField() dialplan application, 282–283

aptitude install ssh command, 247–248

ARA (Asterisk RealTime Architecture), 27

Archive, call files, 185

Arguments, calling macros using, 70

ARRAY() function, 578–579

AstDB (Asterisk database), 145–153

accessing from CLI, 147–149

accessing from system shell, 149

application example, call forwarding, 150–152

application example, calling card, 152–153

backup, 150

defined, 145

deleting family or branch, 319–320

deleting key, 318–319

deleting values, 147, 595–596

displaying contents, 149

LookupBlacklist() application, 402–404

LookupCIDName() application, 404–405

overview of, 145–146

reading values, 146–147, 320–321

resetting values, 594–595

storing values, 321–322

testing key, 596–597

writing values, 146

AST_DEVICE_BUSY variable, ChanlsAvail(), 295

AST_DEVICE_IN_USE variable, ChanlsAvail(), 295

AST_DEVICE_INVALID variable, ChanlsAvail(), 296

AST_DEVICE_NOT_INUSE variable, ChanlsAvail(), 295

AST_DEVICE_RINGING variable, ChanlsAvail(), 296

AST_DEVICE_UNAVAILABLE variable, ChanlsAvail(), 296

AST_DEVICE_UNKNOWN variable, ChanlsAvail(), 295

Asterisk

1.4 installation. See
Installation, Asterisk 1.4

debugging, 12–13

economics of implementing, 42

prerolled systems, 42

starting, 11

stopping, 13

upgrading to 1.6. See
Upgrading from 1.4 to 1.6

asterisk -c command, 11–13

Asterisk database. See
AstDB (Asterisk database)

Asterisk Extension Language. See
AEL (Asterisk Extension Language)

Asterisk Gateway Interface. See
AGI (Asterisk Gateway Interface)

Asterisk, getting the most out of this book

additional resources, 6–7

reader contributions and feedback, 5–6

understanding, 1–2

updates and versions, 5

who should read it, 3–4

asterisk-image command, 205

Asterisk key (*) dialplan pattern, 31

Asterisk Manager Interface. See
AMI (Asterisk Manager Interface)

asterisk -r command, 32

asterisk -rc 'command', 149

Asterisk RealTime Architecture (ARA), 27

asterisk -rx command, 183

asterisk -V command, 255

asterisk -vvvr command, 447

asterisk -vvvvc command, 14–15, 17–18

asterisk.conf, upgrading from 1.4 to 1.6, 726

ASYNCAGI BREAK command, AGI, 648

Asynchronous JavaScript Asterisk Manager. See
AJAM (Asynchronous JavaScript Asterisk Manager)

ATA (analog telephone adapters)

analog media gateways as, 111

connecting fax machines and cordless phones using, 44

no need for s extension when using, 70

overview of, 114

attach, voicemail.conf, 125

attended transfers, 176

Atxfer command, AMI, 676

Audio formats, upgrading from 1.4 to 1.6, 729

Australia, legalities for hold music, 157

Authenticate() dialplan application

overview of, 283–286

VMAuthenticate()vs., 551–552

Authors of Document, GNU Free Documentation License, 749, 751

autologoff, agents.conf, 166

autopause, queues.conf, 164

${AVAILCHAN} variable, ChanlsAvail(), 295

${AVAILORIGCHAN} variable, ChanlsAvail(), 295

${AVAILSTATUS} variable, ChanlsAvail(), 295

B

B (bearer) channel, ISDN, 106

Back-Cover Text, GNU Free Documentation License

aggregation with independent works, 752

copying and distributing Modified Version, 751

defined, 747

enclosing when copying in quantity, 748

Background() dialplan application

overview of, 287–290

simple IVR, 138–139

BackgroundDetect() dialplan application, 290–291

Backslashes, upgrading from 1.4 to 1.6, 726

Backticks() dialplan application, 540

BACKTICKS() function, 540

Backup, database, 150

Bandwidth

Asterisk calculator for, 46

business telephone system case study, 45–46

of commonly used codecs, 104–105

ensuring sufficient, 46

modern networks carrying voice traffic, 45

packet delay/loss for real-time traffic, 45

trunking and, 105

BASE64_DECODE() function, 579–580

BASE64_ENCODE() function, 580

basic rate interface. See
BRI (basic rate interface), ISDN

BDB (Berkeley DB), 145–146

bearer (B) channel, ISDN, 106

beep.gsm file, 205

Beginners, how to use this book, 3–4

Berkeley DB (BDB), 145–146

Bidirectional data transmission, TCP, 90–91

Blacklists

BLACKLIST() function, 580–581

LookupBlacklist() application, 402–404

BLF (Busy Lamp Field)

advanced indicators in 1.6, 242–247

configuring pickup, 237–242

configuring telephones, Aastra 480i, 232–234

configuring telephones, overview, 231–232

configuring telephones, Soundpoint IP 501, 234–236

controlling indicators, 228

hints, 229–230, 236–237

overview of, 227

subscriptions, 229–230

blind transfers, 175–176

break statement, AEL, 82, 85

BRI (basic rate interface), ISDN

choosing ISDN card, 108–111

overview of, 106–107

support in DAHDI, 739

in United States, 107–108

Bridge command, AMI, 676–677

Bridge() dialplan application, 292

BRIDGERESULT variable, Bridge(), 292

Buddy Watch, 234–236

Business telephone system case study, 41–55. See also
Widgets, Inc.

base configuration, 48–52

choosing infrastructure, 44

choosing network, 44–46

choosing server hardware, 46–48

numbering plan, 43

overview of, 41–42

voicemail system example, 117–121

writing dialplan, 52–55

Busy() dialplan application, 293

Busy Lamp Field. See
BLF (Busy Lamp Field)

BUSY variable, Dial(), 330

C

C system() function, 540–541

Call center applications. See
Queues (call center functions), dialplan applications

Call files, 184–186

Call forwarding example, 150–152

call-limit, Busy Lamp Field, 228

call-limit, sip.conf, 730

Call limits, upgrading from 1.4 to 1.6, 730

Call management, dialplan applications

Answer(), 281–282

Busy(), 293

ChanIsAvail(), 295–297

ChannelRedirect(), 297–298

Congestion(), 307–308

DIAL(). See
Dial() dialplan application

DISA(), 346–351

FollowMe(), 376–377

Hangup(), 392

overview of, 259

Page(), 448–450

Park(), 450–452

Pickup(), 238, 458–460

RetryDial(), 492–494

Ringing(), 495

Call transfers, 175–176

callback, voicemail.conf, 125

Caller ID

filtering by, 88

SET CALLERID command, AGI, 665–666

Caller ID, dialplan applications

LookupBlacklist(), 402–403

LookupCIDName(), 404–405

overview of, 260

PrivacyManager(), 464–467

SetCallerPres(), 515–516

SetCIDName(), 517–518

SetCIDNum(), 517–518

SoftHangup(), 532–533

Zapateller(), 567–568

callerid: <callerid>,.call files, 185

CALLERID() function

with num field, 40, 582

overview of, 581–583

replacing SetCIDNum(), 517–518

replacing SetRDNIS(), 523

callerid variable

defined, 52

DISA() application option, 347–351

callgroup, Busy Lamp Field, 228

call_id, queue_log, 170

Canada, legalizing hold music in, 157

CANCEL variable, Dial(), 330

CAPI channel, 95

Cards, choosing ISDN, 108–111

Case branches, break statements in, 82

Case studies

business telephone system. See
Business telephone system case study

variables, 61–62

CC-BY-SA (Creative Commons Attribution-Share Alike) 3.0 license, 754–755

CDR (Call Detail Record)

resetting for this call, 329

SetCDRUserField command, AMI, 707

upgrading from 1.4 to 1.6, 729

CDR (Call Detail Record), dialplan applications, 410–411

AppendCDRUserField(), 282–283

ForkCDR(), 377–381

NoCDR(), 446

ResetCDR(), 490–491

SetAMAFlags(), 513–514

SetCDRUserField(), 516–517

CDR () function, 282–283, 584–587

cdr_manager module, 731

cdr_odbc module, 729

cdr_sqlite module, 729

cdr_tds module, 729

Central provisioning, 232

Cepstral TTS, installing, 142–143

CGI (Common Gateway Interface), AGI vs., 201

Challenge command, AMI, 677

chan_console channel driver, 730

chan_dahdi channel driver, 730, 737

Change variables, dialplan applications

ImportVar(), 396–397

overview of, 260

Read(), 476–479

ReadFile(), 481

RealTime(), 482–483

RealTimeUpdate(), 483–484

Set(), 509–512

SetGlobalVar(), 518–519

ChangeMonitor command, AMI, 677–678

ChangeMonitor() dialplan application, 293–294

ChanIsAvail() dialplan application, 295–297, 727

chan_local.c, 730

chan_misdn channel driver, 737, 739

Channel: <channel>,.call files, 185

Channel drivers

DAHDI, mISDN and, 737

upgrading from 1.4 to 1.6, 730

CHANNEL() function

defined, 65

overview of, 588–591

replacing SetLanguage(), 521–522

channel, queue_log, 170

CHANNEL STATUS command, AGI, 648–649

Channel variables

inheritance of, 63–65

overview of, 58, 61

channelprefix, ChanSpy(), 299

ChannelRedirect() dialplan application, 297–298, 727

Channels

defined, 95

ISDN, 106–107

PRI, 107–108

recording current channel in two separate files, 436–440

types of, 95–97

ChanSpy() dialplan application, 299–305

chan_zap channel driver, 730, 737

charset, voicemail.conf, 125

CheckGroup() dialplan application, 305–306

checkresult subroutine, 204–205

CHECKSIPDOMAIN() function, 591–592

chmod 755
script_name, 203

chmod a+x vmcount.exp, 192

cidinternalcontexts, voicemail.conf, 128

Classes, defining for hold music, 159

ClearHash() dialplan application, 306–307

CLI (command-line interface)

for AEL, 73–74

AMI commands, 189

calling “Hello World” from, 10–13

conferencing commands in, 418–423

database access from, 147–149

refreshing dialplan during operation from, 27

setting text from NoOp() in, 447

upgrading from 1.4 to 1.6, 727

using Verbose() dialplan application, 550–551

Clock source, and conferencing, 179–180

Coaxial cable, replacing ISDN, 105

codec /etc/iaxmodem/ttyiaxo, 216

Codecs

bandwidth and trunking, 105

commonly used, 104–105

configuring, 103

overview of, 101–102

performance and, 102–103

what they do, 102

Collections of documents, GNU Free Documentation License, 752

Colon(:), AEL labels, 79–80

Comedian Mail, 117–121

Comma(,) delimiter

calling macros, 70

as parameter used in this book, 258

upgrading from 1.4 to 1.6, 726

Command, AMI command, 678

command-line interface. See
CLI (command-line interface)

Commands

AGI. See
AGI (Asterisk Gateway Interface), command summary

AMI. See
AMI (Asterisk Manager Interface), command summary

CLI. See
CLI (command-line interface)

Comments, 16, 76–77

Common Gateway Interface (CGI), AGI vs., 201

Conditionals, 81–84

conf2ael program, 725

Conferencing

accessing with dialplan, 180

announcing number of participants, 181

CLI commands for, 418–423

defining conference rooms, 180

determining if installation provides, 180

installation and timing device, 179

monitoring status using hints, 242

Conferencing, dialplan applications

MeetMe(), 415–417

MeetMeAdmin(), 423–425

MeetMeChannelAdmin(), 425–426

MeetMeCount(), 426–427

Configuration files

Asterisk, 258

business telephone system case study, 48–52

configuring BLF on Aastra 480i, 233–234

difficulty of maintaining, 721–722

renaming Zaptel as DAHDI, 735

upgrading from 1.4 to 1.6, 731

Configuration templates, 721–723

Congestion() dialplan application, 307–308

Connections

AMI, 188–189

TCP, 91–92

using analog telephony, 112–114

using codecs, 101–105

using ISDN, 105–112

Console channel

defined, 96

upgrading from 1.4 to 1.6, 730

console dial, 11–13, 15

Console text editor, 11

Context, call files, 185

context, DISA(), 347–351

context, queues.conf, 161

${CONTEXT} variable, 70

@context, VoiceMail() command, 122

@context, VoiceMailMain() command, 122

Contexts

defined, 18

defining in voicemail.conf, 131

dialplans using, 25–26

in extensions.conf vs. extensions.ael, 75–76

multilevel IVR systems placing submenus in, 140

rights administration using, 18–20

taking calls from PSTN using, 23

using GoTo() between, 59–60

continue statement, AEL, 85

ContinueWhile() dialplan application, 308–309

CONTROL STREAM FILE command, AGI, 649

ControlPlayback() dialplan application, 309–311

Copying Document, GNU Free Documentation License

Modified Version of Document, 749–751

in quantity, 748–749

verbatim, 748

Copyleft, GNU Free Documentation License

CC-BY-SA 3.0 license, 754

defined, 745

Copyright notices, GNU Free Documentation License

aggregation with independent works, 752

copying and distributing Modified Version, 749–750

translations, 752–753

verbatim copying using, 748

core application command, 257

core set debug, 13

core set verbose 5, 12–13

core show applications, 257

core show function FUNCTIONNAME, 576

core show functions, 575

core show hints, 236–237, 245

core show translation, 102–105

Core, upgrading from 1.4 to 1.6, 726–727

CoreSettings command, AMI, 678–679

CoreShowChannels command, AMI, 679

CoreStatus command, AMI, 679

Costs

implementing Asterisk system, 42

ISDN cards, 108–111

Cover Texts, GNU Free Documentation License

aggregation with independent works, 752

copying and distributing Modified Version, 750–751

defined, 746

enclosing when copying in quantity, 748

cp operation, .call files, 184

CPE-ID (customer premises equipment ID), retrieving, 381–382

CPU, choosing, 46–48

CreateConfig command, AMI, 680

createlink, agents.conf, 167

Creative Commons Attribution-Share Alike (CC-BY-SA) 3.0 license, 754–755

Cron jobs, 47

Curl() dialplan application, 311

CURL() function, 311, 592–593

Curly braces ({ }), AEL extensions, 76

customer premises equipment ID (CPE-ID), retrieving, 381–382

Cut() dialplan application, 312

CUT() function, 312, 593–594

D

D (data) channel, ISDN, 106

DAHDI (Digium Asterisk Hardware Device Interface)

asterisk modules, 736

Dial(), 734

files, 735

interview with Kevin P. Fleming, 738

kernel modules (.ko), 735

overview of, 111

shell programs, 736

stability and readiness of, 738

upgrading from 1.4 to 1.6, 730

Zaptel project renamed to, 733–734

DAHDIBarge() dialplan application, 312–313

DAHDIDialOffhook command, AMI, 680

DAHDIDNDoff command, AMI, 681

DAHDIDNDon command, AMI, 681–682

DAHDIHangup command, AMI, 682

DAHDIRAS() dialplan application, 314–315

DAHDIRestart command, AMI, 682–683

DAHDIScan() dialplan application, 315–316

DAHDISendKeypadFacility() dialplan application, 316–317

DAHDIShowChannels command, AMI, 683

DAHDITransfer command, AMI, 684

DARPA (Defense Advanced Research Projects Agency), 44–45

Darwinports package, 158–159

data (D) channel, ISDN, 106

Data integrity, TCP, 94

data streams

defined, 201

STDERR (standard error), 203

STDIN (standard input), 201–202

STDOUT (standard out), 202

Data transmission

TCP, 90–91, 93–94

UDP, 95

Database. See also
AstDB (Asterisk database)

DBdel() dialplan application, 318–319

DBdeltree() dialplan application, 319–320

DATABASE DEL command, AGI, 650

database del command, CLI, 148

DATABASE DELTREE command, AGI, 650–651

database deltree command, CLI, 148–149

DATABASE GET command, AGI, 651

database get command, CLI, 148

DATABASE PUT command, AGI, 651–652

database put command, CLI, 148

database show command, CLI, 148–149

database showkey command, CLI, 148–149

Dates

SAY DATE command, AGI, 660

SAYDATETIME command, AGI, 660–661

STRFTIME() function, 637–638

STRPTIME() function, 638–639

DateTime() dialplan application, 317–318

DB() function

overview of, 594–595

reading values from database, 146–147

replacing DBput(), 321–322

writing values to database, 146

DBDel command, AMI, 684

DBdel() dialplan application, 147, 318–319

DB_DELETE() function, 147, 595–596

DBDelTree command, AMI, 685

DBdeltree() dialplan application, 147, 319–320

DB_EXISTS() function, 596–597

DBGet command, AMI, 685

DBget() dialplan application, 145–146, 320–321

DBPut command, AMI, 686

DBput() dialplan application, 145–146, 321–322

De-multiplexing (demuxing), UDP, 95

DeadAGI() dialplan application, 322–323

Debian Linux

Asterisk 1.4 installation and, 247–249

IAXModem installation using, 213

installation examples in this book using, 108

Defense Advanced Research Projects Agency (DARPA), 44–45

Delay (latency)

IP telephony and, 44–45

testing with EAGI(), 356–357

delete, voicemail.conf, 125

Deleting values from database, 147–148

Deprecated code

locating applications in this book with, 258

programming dialplan without using, 70

replacing in dialplan, 64

device, /etc/iaxmodem/ttyIAXO, 215

DEVICE_STATE() function, 243–244

DevState() application, 243

devstate change device state command, CLI, 245

DEVSTATE() function, 243

devstate list command, CLI, 245

Dial-by-Name directory, 133–134

Dial() dialplan application, 323–341

connecting to telephone, 15

defined, 325

enabling call transfer, 175

internal help from Asterisk 1.2 to 1.4, 335–336

internal help from Asterisk 1.4 to 1.6, 337–341

internal help in Asterisk 1.4, 331–335

options, 327–330

RetryDial(), 492–494

understanding, 326

variables set in, 330–331

DIALEDTIME variable, Dial(), 330

Dialplan

accessing conferencing from, 180

applying hints by reloading, 230

building minimal phone system, 16–17

business telephone system case study, 52–55

call queues, 155–156, 168–170

calling AGI from within, 201

removing backslashes in 1.6, 726

upgrading from 1.4 to 1.6, 727–728

using PSTN for outbound calls, 22

voicemail applications called from, 121–124

Dialplan applications, use of, 257–417

AbsoluteTimeout(), 263–264

AddQueueMember(), 264–266

ADSI. See
ADSI, dialplan applications

ADSIProg(), 266–267

AgentCallbackLogin(), 267–268

AgentLogin(), 268–269

AgentMonitorOutgoing(), 270–272

AGI(), 272–275

AlarmReceiver(), 276–277

AMD(), 277–281

Answer(), 281–282

AppendCDRUserField(), 282–283

Authenticate(), 283–284

Background(), 283–286

BackgroundDetect(), 290–291

Bridge(), 292

Busy(), 293

call management. See
Call management, dialplan applications

caller ID. See
Caller ID, dialplan applications

CDR. See
CDR (Call Detail Record), dialplan applications

change variables. See
Change variables, dialplan applications

ChangeMonitor(), 293–294

ChanIsAvail(), 295–297

ChannelRedirect(), 297–298

ChanSpy(), 299–305

CheckGroup(), 305–306

ClearHash(), 306–307

conferencing. See
Conferencing, dialplan applications

conferencing commands in CLI, 418–423

Congestion(), 307–308

ContinueWhile(), 308–309

ControlPlayback(), 309–311

Curl(), 311

Cut(), 312

DAHDIBarge(), 312–313

DAHDIRAS(), 314–315

DAHDIScan(), 315–316

DAHDISendKeypadFacility(), 316–317

database, 262

DateTime(), 317–318

DBdel(), 318–319

DBget(), 320–321

DBput(), 321–322

DeadAGI(), 322–323

Dial(). See
Dial() dialplan application

Dictate(), 341–342

DigitTimeout(), 343

Directory(), 344–346

DISA(), 346–351

DumpChan(), 351–352

DUNDiLookup(), 352–353

EAGI(), 353–354

Echo(), 356–357

EndWhile(), 357–358

EnumLookup(), 358–359

Eval(), 359–360

Exec(), 360–362

ExecIf(), 362–363

ExecIfTime(), 363–364

ExitWhile(), 364–365

ExtenSpy(), 365–369

ExternalIVR(), 369–371

FastAGI(), 372

Festival(), 372–374

Flash(), 374–375

flow control and timeouts. See
Flow control and timeouts, dialplan applications

FollowMe(), 376–377

ForkCDR(), 377–381

general, 262

GetCPEID(), 381–382

GetGroupCount(), 381–382

GetGroupMatchCount(), 383

Gosub(), 384

GosubIf(), 385–386

Goto(), 386–388

GotoIf(), 388–389

GotoIfTime(), 390–391

Hangup(), 392

HasNewVoiceMail(), 393–394

HasVoiceMail(), 394–395

IAX2Provision(), 395

ICES(), 396

ImportVar(), 396–397

Incomplete(), 398

JabberSend(), 398–399

JabberStatus(), 399–400

KeepAlive(), 401

Log(), 401–402

LookupBlacklist(), 402–403

LookupCIDName(), 404–405

Macro(), 405–408

MacroExclusive(), 408–409

MacroExit(), 409–410

MacroIf(), 410–411

macros, 259

mailboxExists(), 411–412

Math(), 413

MD5(), 413–414

MD5Check(), 414–415

MeetMe(), 415–417

MeetMeAdmin(), 423–425

MeetMeChannelAdmin(), 425–426

MeetMeCount(), 426–427

Milliwatt(), 428–429

MinivmAccMess(), 429–430

MinivmDelete(), 430–431

MinivmGreet(), 431–432

MinivmNotify(), 432–433

MinivmRecord(), 433–434

miscellaneous, 263

MixMonitor(), 434–436

Monitor(), 436–440

Morsecode(), 440–441

MP3Player(), 441–442

MSet(), 442–443

music and sound output, 261

MusiconHold(), 443–445

NBScat(), 445–446

NoCDR(), 446

NoOp(), 446–447

ODBCFinish(), 448

overview of, 257–258

Page(), 448–450

Park(), 450–452

ParkAndAnnounce(), 452–454

ParkedCall(), 454–455

PauseMonitor(), 456

PauseQueueMember(), 456–458

Pickup(), 458–460

PickupChan(), 460–461

Playback(), 461–463

Playtones(), 463–464

PrivacyManager(), 464–467

Proceeding(), 467

Progress(), 467–468

Queue(), 468–473

QueueLog(), 473

queues. See
Queues (call center functions), dialplan applications

RaiseException(), 474–475

Random(), 475–476

Read(), 476–479

ReadExten(), 480

ReadFile(), 481

RealTime(), 482–483

RealTimeUpdate(), 483–484

ReceiveFax(), 484–486

Record(), 486–488

recording and monitoring. See
Recording and monitoring, dialplan applications

RemoveQueueMember(), 489–490

ResetCDR(), 490–491

ResponseTimeout(), 491–492

RetryDial(), 492–494

Return(), 494–495

Ringing(), 495

SayAlpha(), 496

SayDigits(), 496–497

SayNumber(), 497–499

SayPhonetic(), 499–500

SayUnixTime(), 500–501

scripts. See
Scripts, dialplan applications

SendDTMF(), 502–503

SendFAX(), 503–504

SendImage(), 504–505

SendText(), 505–506

SendURL(), 507–509

Set(), 509–512

SetAccount(), 512–513

SetAMAFlags(), 513–514

SetCallerID(), 514–515

SetCallerPres(), 515–516

SetCDRUserField(), 516–517

SetCIDName(), 517–518

SetCIDNum(), 517–518

SetGlobalVar(), 518–519

SetGroup(), 521

SetLanguage(), 521–522

SetMusicOnHold(), 522–523

SetRDNIS(), 523–524

SetTransferCapability(), 524–525

SetVar(), 526

SIP, 262

SIPAddHeader(), 526–527

SIPdtmfMode(), 527–528

SIPGetHeader(), 528–529

SMS(), 529–530

SoftHangup(), 532–533

Sort(), 534

StackPop(), 534–535

StartMusicOnHold(), 535–536

StopMixMonitor(), 536–537

StopMonitor(), 537–538

StopMusicOnHold(), 538–539

StopPlaytones(), 539–540

System(), 540–541

Transfer(), 541–543

TryExecute(), 543–544

TrySystem(), 544–545

TXTCIDName(), 545–546

UnpauseMonitor(), 546–547

UnpauseQueueMember(), 547–548

UserEvent(), 548–550

Verbose(), 550–551

VMAuthenticate(), 550–551

voicemail, 260

VoiceMail(), 553–555

VoiceMailMain(), 555–557

Wait(), 557–558

WaitExten(), 558–559

WaitForNoise(), 559–560

WaitForRing(), 560–561

WaitForSilence(), 561–563

WaitMusicOnHold(), 563–564

WaitUntil(), 564–565

While(), 566–567

ZAP, 263

Zapateller(), 567–568

ZapBarge(), 568–569

ZapRAS(), 570–571

ZapScan(), 571–572

ZapSendKeypadFacility(), 572–573

Dialplan functions, 575–646

AGENT() function, 576–577

ARRAY() function, 578–579

BASE64_DECODE(), 579–580

BASE64_ENCODE(), 580

BLACKLIST(), 580–581

CALLERID(), 581–583

CDR (), 584–587

CHANNEL(), 588–591

CHECKSIPDOMAIN(), 591–592

CURL (), 592–593

CUT (), 593–594

DB(), 594–595

DB_DELETE(), 595–596

DB_EXISTS(), 596–597

DUNDILOOKUP(), 597–598

ENUMLOOKUP(), 598–600

ENV(), 600–601

EVAL(), 601–602

EXISTS(), 602–603

FIELDQTY(), 603–604

FILTER(), 604–605

finding available installed, 576

GLOBAL(), 605–606

GROUP(), 606–607

GROUP_COUNT(), 607–608

GROUP_LIST(), 608

GROUP_MATCH(), 608–609

IAXPEER(), 609–611

IF(), 611–612

IFTIME(), 612–613

ISNULL(), 613–614

KEYPADHASH(), 614–615

LANGUAGE(), 615–616

LEN(), 616–617

MATH(), 617–618

MD5(), 618

MUSICCLASS(), 619

ODBC_SQL(), 620

ODBC_USER_DATABASE(), 620–621

overview of, 575–576

QUEUEAGENTCOUNT(), 621–622

QUEUEMEMBERCOUNT(), 622–623

QUEUEMEMBERLIST(), 623–624

QUOTE(), 624

RAND(), 624–625

REGEX(), 626–627

SET(), 627–628

SHA1(), 628

SIPCHANINFO(), 629–630

SIP_HEADER(), 633–634

SIPPEER(), 630–633

SORT(), 634–635

STAT(), 635–636

STRFTIME(), 637–638

STRPTIME() function, 638–639

TIMEOUT(), 640–642

TXTCIDNAME(), 642–643

upgrading from 1.4 to 1.6, 727–728

URIDECODE(), 643–644

URIENCODE(), 644–645

VMCOUNT(), 645–646

Dialplan, fundamentals, 25–40

${EXTEN} variable ${CALLERID(num)} function, 39–40

contexts, 25–26

extensions, 26–27

fundamental applications, 27–29

include statements, 37–39

pattern matching. See
Pattern matching

Dialplan, programming, 57–71

deprecated features, 71

how-to do, 57–60

macros, 70–71

overview of, 57

replacing code depending on deprecated variables or functions, 64

special extensions, 67–70

variables. See
Variables

dialplan reload, 15

dialplan show command, 34–37, 74

Dictate() dialplan application, 341–342

Digit timeouts, 640–641

Digital interface cards, choosing, 3

Digital telephone, choosing, 4

Digits

SAY DIGITS command, AGI, 660–661

SayDigits() application, 496–497

sending out-of-band on ISDN PRI connection, 572–573

transforming alphabetic strings using KEYPADHASH(), 614–615

DigitTimeout() dialplan application, 343

Digium Asterisk Hardware Device Interface. See
DAHDI (Digium Asterisk Hardware Device Interface)

Digium, ISDN cards, 111

Directed pickup, 237–240

Directories, moving from Zaptel to DAHDI, 735

Directory() dialplan application, 344–346

directoryintro, voicemail.conf, 125

DISA() dialplan application, 346–351, 727

Disk space, choosing server hardware, 47–48

DNS (Domain Name Service), using UDP, 95

DocBook format, 5–6

Domain Name Service (DNS), using UDP, 95

Double quotes (“ ”), strings, 62, 149

Drivers, ISDN, 110–111

DTMF (dual-tone multi-frequency) keying

calling AGI from Perl, 205

inputting IVR, 137

PlayDTMF command, 702

Read() dialplan application and, 476–479

SendDTMF() dialplan application, 502–503

DumpChan() dialplan application, 351–352

dundi.conf, 731

DUNDiLookup() dialplan application, 352–353

DUNDILOOKUP() function, 597–598

E

E-mail attachments

sending faxes received as, 224–225

sending new mini-voicemails as, 432–433

sending new voicemails as, 18

EAGI() dialplan application, 353–356

EAGI (Extended AGI), 353–356

Easy PABX, 172

Eavesdropping

ChanSpy() enabling, 299–305

ExtenSpy() enabling, 365–369

ZapBarge() enabling Zap channel, 568–569

ZapScan() scanning Zap channels, 571–572

Echo cancellation, 109

Echo() dialplan application, 356–357

Elements, pattern matching, 31

[emailbody], voicemail.conf, 126

emailsubject, voicemail.conf, 125

Emergency numbers, adding international, 43

endcall, agents.conf, 167

Endpoints, TCP connections, 91–93

EndWhile() dialplan application, 357–358

Entitled Acknowledgements section, GNU Free Documentation License

combining documents, 751

copying and distributing Modified Version, 750

translations, 753

Entitled Dedications section, GNU Free Documentation License

copying and distributing Modified Version, 750

translations, 753

Entitled Endorsements section, GNU Free Documentation License

copying and distributing Modified Version, 750–751

deleting when combining documents, 751

Entitled History section, GNU Free Documentation License

combining documents, 751

copying and distributing Modified Version, 750

translations, 753

Entitled XYZ section of Document, GNU Free Documentation License, 747

EnumLookup() dialplan application, 358–359

ENUMLOOKUP() function, 358, 598–600

ENV() function, 600–601

Errors

hunting in extensions.ael, 74

reporting, 5

/etc/asterisk directory, 10–11

/etc/asterisk/features.conf, 175–177

/etc/asterisk/meetme.conf, 180

/etc/asterisk/sip.conf. See
sip.conf

/etc/asterisk/voicemail.conf. See
voicemail.conf

/etc/iaxmodem/ttyIAXO, 215–216

/etc/inittab, 216–217

EuroISDN BRI protocol, and DAHDI, 737–739

Eval() dialplan application, 359–360

EVAL() function, 359, 601–602

Event packets, AMI, 188

event, queue_log, 170–172

eventmemberstatus, queues.conf, 164

Events

connecting to AMI, 188

recording log file queue, 170–172

UserEvent(), 548–550

Events command, AMI, 686

eventwhencalled, queues.conf, 164

EXEC command, AGI, 652

Exec() dialplan application

overview of, 360–362

TryExecute(), 543–544

ExecIf() dialplan application, 362–363

TryExecute(), 543–544

upgrading from 1.4 to 1.6, 728

ExecIfTime() dialplan application, 363–364

EXISTS() function, 602–603

ExitWhile() dialplan application, 364–365

expect script, AMI, 190–192

Experts, how to use this book, 4

Expressions, extensions.conf vs. extensions.ael, 78–79

${EXTEN} variable

defined, 22

dialplans, 40

not using in macros, 70

programming dialplan, 67–70

as system variable, 59

Extended AGI (EAGI), 353–356

Extensions

building minimal phone system with two, 16

calling “Hello World” from CLI, 12

calling SIP phone from Asterisk console, 15

defining macros with, 70

defining with n priority, 28–29

dialplan, 26–27

expanding variables in, 61

extensions.conf vs. extensions.ael. See
extensions.conf vs. extensions.ael

order of patterned, 35

programming dialplan using, 67–70

receiving faxes, 222–223

testing hold music, 156–157

using GoTo(), 59

extensions reload command, 27

extensions.ael. See also
extensions.conf vs. extensions.ael

converting into extensions.conf, 74

defining hints in, 229–230

monitoring status of conferences using hints, 242–243

monitoring status of SIP users, 242

tying hints to virtual devices in 1.6, 243

extensions.conf

building minimal phone system with two SIP phones, 16

calling AGI from Perl, 203

calling AGI from within, 201

calling SIP phone from Asterisk console, 15

configuring Asterisk, 11

configuring voicemail, 17

contexts in, 20

converting into AEL with conf2ael, 725

defining global variables in, 62

defining hints in, 229–230

dialplan, 121–124

escape character in, 62

example business voicemail system, 119–121

example home voicemail system, 116

monitoring status of conferences using hints, 242–243

monitoring status of SIP users, 242

pattern matching. See
Pattern matching

for pickup, 238

programming dialplan, 58

queues, 155–157, 168–170

receiving faxes, 222–223

sending faxes, 223–224

taking calls from PSTN, 23

tying hints to virtual devices in 1.6, 243

use of dialplan applications. See
Dialplan applications, use of

writing dialplan, 52–54

extensions.conf vs. extensions.ael, 74–88

choosing between, 88

comments, 76

conditionals, 81–84

contexts, 75–76

expressions, 78–79

extensions, 75–76

filtering by caller ID, 88

global variables, 78

Goto, 79–81

hints, 87

includes, 77

jump, 79–81

labels, 79–81

line termination, 75

loops, 84–86

macros, 86

overview of, 74–75

priorities, 75–76

variable assignment, 78–79

ExtensionState command, AMI, 687

ExtenSpy() dialplan application, 365–369

External control of Asterisk, 183–199

AMI. See
AMI (Asterisk Manager Interface)

asterisk -rx command, 183

Asynchronous JavaScript Asterisk Manager, 195–199

call files, 184–186

ExternalIVR() dialplan application, 369–371

externnotify, voicemail.conf, 127

externpass, voicemail.conf, 127

F

FAQs, for this book, 3–5

FastAGI, 272

FastAGI() dialplan application, 372

faxgetty, IAXModem, 217

Faxing

difficulties integrating Asterisk with, 44, 213

ISDN problems, 110

ReceiveFax() dialplan application, 484–486

SendFAX() dialplan application, 503–504

using BRI, 107

using IAXModem. See
IAXModem

faxsetup, Hylafax, 218–219

faxstat -s command, 224

features.conf

call parking, 177

call transfer, 175–176

enabling Park(), 450

enabling ParkedCall(), 454

Festival() dialplan application, 372–374

ffchar key, ControlPlayback(), 309–310

fiber-to-the-home (FTTH), 105

FIELDQTY() function, 603–604

Fields, dialplan function

AGENT(), 576–577

CALLERID(), 581–582

CDR (), 584–587

CHANNEL(), 588

IAXPEER(), 609–611

SIPCHANINFO(), 629

SIPPEER(), 630–631

FILTER() function, 604–605

Filtering, by caller ID, 88

FIN packet, TCP, 92

Fink, 158

FinkCommander GUI, 159

Flags, STAT() function, 635–636

Flash() dialplan application, 374–375

Fleming, interview with Kevin P., 737–739

Floating-point numbers, 634–635, 726

Flow control and timeouts, dialplan applications, 179

ContinueWhile(), 308–309

EndWhile(), 357–358

Exec(), 360–362

ExecIf(), 362–363

ExecIfTime(), 363–364

ExitWhile(), 364–365

Gosub(), 384

GosubIf(), 385–386

Goto(), 386–388

GotoIf(), 388–389

GotoIfTime(), 390–391

overview of, 259

Random(), 475–476

Return(), 494–495

TryExec(), 543–544

While(), 566–567

FollowMe() dialplan application, 376–377

followme.conf file, 376

for loops, 85–86

forcegreetings, voicemail.conf, 127

forcename, voicemail.conf, 127

Foreign Exchange Office (FXO) device, 112–113

Foreign Exchange Station (FXS) device, 113–114

Format

for this book, 5

voicemail.conf variables, 130

format option, Record(), 486–487

format option, SayUnixTime(), 500–501

Formats, for Transparent copies of Document, 747

format_wav, 729

Forward slashes (//), comments, 76–77

4B3T signaling type, BRI, 107

Free Software Foundation, 754

fromstring=[fromname], voicemail.conf, 126

Front-Cover Text, GNU Free Documentation License

aggregation with independent works, 752

copying and distributing Modified Version, 751

defined, 747

enclosing when copying in quantity, 748

FTTH (fiber-to-the-home), 105

Functions

${CALLERID(num)} function, 40

dialplan. See
Dialplan functions

system channel variables as, 65

Future revisions, GNU Free Documentation License, 754

FXO (Foreign Exchange Office) device, 112–113

FXS (Foreign Exchange Station) device, 113–114

G

G.711 codec

bandwidth requirements, 46

defined, 104

as most common telephony codec, 102

G.722 codec, 104

G.726 codec, 104

G.729.1 codec, 105

G.729a codec, 104

gem install adhearsion, 209

[general] context, 25

General dialplan applications, 262

[general] section, voicemail.conf, 124–129

GET DATA command, AGI, 653

GET FULL VARIABLE command, AGI, 653–654

GET OPTION command, AGI, 654

GET VARIABLE command, AGI, 654–655

GetConfig command, AMI, 687–688

GetConfigJSON command, AMI, 688

GetCPEID() dialplan application, 266–267, 381–382

GetGroupCount() dialplan application, 382–383

GetGroupMatchCount() dialplan application, 383

getty, IAXModem, 217

GetVar command, AMI, 689

Global call forwarding, 151–152

GLOBAL() function, 518–519, 605–606

Global System for Mobile. See
GSM (Global System for Mobile)

Global variables

defining in extensions.conf, 62

extensions.conf vs. extensions.ael, 78

overview of, 58

setting, 518–519

GNU Free Documentation License

aggregation with independent works, 752

applicability and definitions, 746–748

collections of documents, 752

combining documents, 751

copying in quantity, 748–749

future revisions of, 754

modifications, 749–751

purpose of, 745–746

relicensing, 754–755

termination, 753

for this book, 5

translation, 752–753

verbatim copying, 748

GNU General Public License, 745

GOSUB command, AGI, 655

Gosub() dialplan application

achieving macros with, 86

overview of, 384

removing return address from, 534–535

replacing Macro() with, 728

subroutines, 60, 494–495

upgrading macros to 1.6 in AEL, 725

GosubIf() dialplan application, 385–386, 494–495

Goto() dialplan application

calling from within macro, 405–406

in extensions.conf vs. extensions.ael, 79–81

multilevel IVR systems using, 140–141

overview of, 386–388

using, 59–60

GOTO:<context> ^<extension> ^<priority>, Dial(), 328

GotoIf() dialplan application, 60, 388–389

GotoIfTime() dialplan application, 83–84, 390–391

GROUP() function, 521, 606–607

Group pickup

configuring, 240–242

defined, 237

GROUP_COUNT() function

overview of, 607–608

replacing CheckGroup(), 305

replacing GetGroupCount(), 382

GROUP_LIST() function, 608

GROUP_MATCH_COUNT() function, 383, 608–609

GSM (Global System for Mobile)

codec, 104

ensuring sufficient bandwidth using, 46

MeetMe conferences using, 416

H

h option, programming dialplan, 67–68

H.323 channel

defined, 96

upgrading from 1.4 to 1.6, 730

HANGUP command, AGI, 656, 665

Hangup command, AMI, 689–690

Hangup() dialplan application, 12, 27, 392

Hardware

choosing server, 46–48

echo cancellation, 109

interface card as clock source for conferencing, 179

HasNewVoiceMail() dialplan application, 393–394

HasVoiceMail() dialplan application, 394–395

Header structure, TCP, 93

“Hello World”

calling from CLI, 10–13

calling with SIP phone, 13–16

priorities, 29

using two SIP phones, 16–18

help database command, CLI, 148

HFC-BRI cards, 111

HFC-S BRI cards, DAHDI, 738

Hints

defining, 229–230

extensions.conf vs. extensions.ael, 87

implementing BLF, 228

monitoring status of conferences, 242–243

testing, 236–237

tying to virtual devices in 1.6, 243–245

Hold music, call queues, 156–159

Home voicemail system, 115–117

HTML, 196

Hylafax

configuring fax server, 218–219

confirmation page, 220–221

installing, 217–218

installing IAXModem, 219–220

receiving faxes, 222–223

sending faxes, 223–224

sending received faxes as e-mail, 224–225

starting fax server, 221

I

i option

handling invalid input in IVR, 139–140

programming dialplan, 68

IANA (Internet Assigned Numbers Authority), port numbers, 91

IAX

configuring codecs, 103

defined, 96–97

SIP vs., 97–99, 741–743

trunking in IAX2, 105

IAX2Provision() dialplan application, 395

IAXModem

configuring, 215–216

configuring faxgetty and logging, 217

installing, 213–215

installing Hylafax, 217–221

overview of, 213

receiving faxes, 222–223

sending faxes, 223–224

sending received faxes as e-mail, 224–225

IAXnetstats command, AMI, 690

IAXPEER() function, 609–611

IAXpeerlist command, AMI, 690–691

IAXpeers command, AMI, 691, 731

IceCast server, ICES() application, 396

ICES() dialplan application, 396

if command, 81, 83–84

IF() function, 611–612

ifTime command, AEL, 83–84

IFTIME() function, 612–613

iLBC codec, 104, 729

Images

SEND IMAGE command, AGI, 664

SendImage() application, 504–505

ImportVar() dialplan application, 396–397

include statements

extensions.conf vs. extensions.ael, 77

overview of, 37–39

Incomplete() dialplan application, 398

indications.conf, 463

Indicators

1.6 advanced, 236–237

Busy Lamp Field. See
BLF (Busy Lamp Field)

Inheritance, channel variables, 63–65

Installation, 9–23

Installation, Asterisk 1.4, 247–256

install Asterisk, 252–256

install DAHDI, 250–252

install LIBPRI library, 249

overview of, 9–10, 247–249

Integers, size limit in variables, 62

interactive voice response. See
IVR (interactive voice response)

internal-calls context, 54

internal-phones context, 26

Internet Assigned Numbers Authority (IANA), port numbers, 91

Internet Protocol (IP), TCP, 90

Internet service provider (ISP), 45

Interrupts, choosing ISDN card, 109

Invalid input (i extension), IVR, 139–140

Invariant Sections of Document, GNU Free Documentation License

combining documents, 751

copying and distributing Modified Version, 750

defined, 746

replacing with translations, 752–753

IP addresses

finding for phones, 232

TCP connections, 91

IP (Internet Protocol), TCP, 90

IP telephony, latency of, 44–45

IRC channel, website resources, 7

ISDN, 105–112. See also
PRI (Primary Rate Interface), ISDN

BRI. See
BRI (basic rate interface), ISDN

channels, 106

choosing card, 108–111

choosing phone, 4

codecs, 101–105

defined, 105

media gateways for connections, 111–112

PRI. See
PRI (primary rate interface), ISDN

SetTransferCapability(), 524–525

starting Zaptel RAS, 570–571

ISDN clock, 112

ISDN-SIP gateway, 110

ISNULL() function, 613–614

ISO image, Asterisk 1.4 installation, 247

ISP (Internet service provider), 45

IVR (interactive voice response)

ExternalIVR() dialplan application, 369–371

multilevel systems, 140–141

overview of, 137–138

pauses, 140

simplest form of, 138–140

text-to-speech (TTS), 142–143

timeouts, 68–69

J

j (jump) option, 258, 283–286

JabberSend command, AMI, 691–692

JabberSend() dialplan application, 398–399

JabberStatus() dialplan application, 399–400

JavaScript Object Notation (JSON), 197–198

join-empty, queues.conf, 163

Journeymen, how to use this book, 4

JSON (JavaScript Object Notation), 197–198

jump command, 79–81, 140

K

KeepAlive() dialplan application, 401

Kernel module (.ko), 735

KEYPADHASH() function, 614–615

KNOPPIX Live System, 247–256

L

label, aastra.cfg, 234

Labels

extensions.conf vs. extensions.ael, 79–80

using GoTo(), 59–60

LANGUAGE() function

overview of, 615–617

SayAlpha(), 496

SayNumber(), 497–499

SayPhonetic(), 499–500

SetLanguage(), 521–522

languageprefix option, asterisk.conf, 726

LAST_ACK, TCP teardown, 92

Latency (delay)

IP telephony and, 44–45

testing with EAGI(), 356–357

LCD indicators. See
BLF (Busy Lamp Field)

leavewhenempty, queues.conf, 163

Legal issues

eavesdropping, 299

recording conversations, 438

LEN() function, 616–617

LIBPRI library, 249

License notice, GNU Free Documentation License, 750

Licensee, GNU Free Documentation License, 746

Licensing. See
GNU Free Documentation License

line, aastra.cfg, 234

Line termination, 75

ListCategories command, AMI, 692

ListCommands command, AMI, 692–693

LISTEN state, sockets, 91–92

Local channel, 96

LOCK() function, 728

Log() dialplan application, 401–402

Log directory, IAXModem, 217

Log files, queues, 170–174

logger.conf, 726

Login command, AMI, 693

Logoff command, AMI, 693

LookupBlacklist() dialplan application, 402–404

LookupCIDName() dialplan application, 404–405

Loops, 84–86

M

macro command, AEL, 86

Macro() dialplan application

as deprecated, 728

extensions.conf vs. extensions.ael, 86

overview of, 405–408

MacroExclusive() dialplan application

defined, 71

as deprecated, 728

overview of, 408–409

MacroExit() dialplan application, 409–410

MacroIf() dialplan application, 410–411

MACRO_RESULT channel variable, Dial(), 328

Macros

defining in dialplan, 70–71

example home voicemail system using, 117

extensions.conf vs. extensions.ael, 86

upgrading to 1.6 in AEL, 725

Macros, dialplan applications

Macro(), 405–408

MacroExclusive(), 408–409

MacroExit(), 409–410

MacroIf(), 410–411

overview of, 259

Mail Transfer Agent (MTA), configuring voicemail, 18

mailbox, VoiceMail() command, 122

mailbox, VoiceMailMain() command, 123

MailboxCount command, AMI, 694

Mailboxes

configuring in voicemail.conf, 131–132

getting number of messages with AJAM, 196–197

getting number of messages with PHP, 193–195

mailboxExists() dialplan application, 411–412

MailboxStatus command, AMI, 695

mailcmd, voicemail.conf, 127

Mailing lists, Digium, 7

make config command, 251–252, 255–256

make install command, 254–255

make menu select command, 254

make samples command, 255

manager show command, 189–190

manager show commands, 189

manager.conf, AMI, 186–189

Manufacturers, ISDN card, 110–111

marryme.gsm file, 138

Massive Multiauthor Collaboration Site (MMC Site), relicensing, 754–755

Math() dialplan application, 413

MATH() function

overview of, 617–618

replacing Math() dialplan application, 413

upgrading from 1.4 to 1.6, 726

maxDigits, Authenticate(), 283–286

maxDuration, Record(), 486

maxgreet, voicemail.conf, 128

maximum segment lifetime (MSL), TCP, 92

maxlen, queues.conf, 162

maxlogins, voicemail.conf, 128

maxmessage, voicemail.conf, 128, 727

maxmsg, voicemail.conf, 128

maxretries, PrivacyManager(), 464–467

MaxRetries, call files, 185

maxsecs value, voicemail, 727

maxSilence, Record(), 486

maxsilence,voicemail.conf, 128

MD5() dialplan application, 413–414

MD5() function, 413–414, 618

MD5Check() dialplan application, 414–415

MeetMe commands, CLI, 418–423

MeetMe() dialplan application

conferencing using, 180

monitoring status using hints, 242

overview of, 415–417

MeetMeAdmin() dialplan application, 423–425

MeetMeChannelAdmin() dialplan application, 425–426

meetme.conf, 180

MeetMeCount() dialplan application, 180, 426–427

MeetmeList command, AMI, 695–696

MeetmeMute command, AMI, 696

MeetmeUnmute command, AMI, 696–697

member, queues.conf, 164–165

memberdelay, queues.conf, 164

Memory, Asterisk requirements, 48

MGCP channel, 96

Milliwatt() dialplan application, 428–429

Mini-Voicemail system

deleting message, 430–431

e-mail notification of new messages, 432–433

play back greeting, 431–432

record voicemail, 433–434

recording messages, 429–430

MinivmAccMess() dialplan application, 429–430

MinivmDelete() dialplan application, 430–431

MinivmGreet() dialplan application, 431–432

MinivmNotify() dialplan application, 432–433

MinivmRecord() dialplan application, 433–434

minlength, PrivacyManager(), 464–467

minmessage, voicemail.conf, 128, 727

minsecs value, voicemail, 727

mISDN

defined, 96

HFC-based BRI cards used with, 111

moving from Zaptel to DAHDI and, 737

MixMonitor() dialplan application

overview of, 434–436

StopMixMonitor(), 536–537

${MIXMONITOR_FILENAME}, 435

mkdir/etc/iaxmodem, 215

MMC Site (Massive Multiauthor Collaboration Site), relicensing, 754–755

Modified Version of Document, GNU Free Documentation License

copying and distributing, 749–751

defined, 746

translations, 752–753

ModuleCheck command, AMI, 697

ModuleLoad command, AMI, 697–698

Modules

defining for dialplan applications, 257

renaming Zaptel as DAHDI, 736

[modules] section, modules.conf, 257

modules.conf, 730

Monitor command, AMI, 698

Monitor() dialplan application

ChangeMonitor(), 293–294

overview of, 436–440

monitor-format, queues.conf, 162–163

monitor-join, queues.conf, 163

${MONITOR_EXEC} variable, 437–440

Monitoring

dialplan applications for. See
Recording and monitoring, dialplan applications

processor loads on server, 47

Morsecode() dialplan application, 440–441

MP3 music, 158–159

MP3Player() dialplan application, 441–442

mpg123, 441

mpg321, 441

msdstrip, channel drivers, 730

MSet() dialplan application, 442–443

MSL (maximum segment lifetime), TCP, 92

MTA (Mail Transfer Agent), configuring voicemail, 18

Multilevel inheritance, channel variables, 64–65

Multilevel IVR systems, 140–141

Multiplexing (muxing), UDP, 95

Music and sound output, dialplan applications

Background(), 283–286

BackgroundDetect(), 290–291

ControlPlayback(), 309–311

DateTime(), 317–318

Echo(), 356–357

Festival(), 372–374

Milliwatt(), 428–429

MP3Player(), 441–442

MusiconHold(), 443–445

NBScat(), 445–446

overview of, 261

Playback(), 461–463

Playtones(), 463–464

Progress(), 467–468

SayAlpha(), 496

SayDigits(), 496–497

SayNumber(), 497–499

SayPhonetic(), 499–500

SayUnixTime(), 500–501

SetMusicOnHold(), 522–523

StopPlaytones(), 539–540

Music-on-Hold

SetMusicOnHold(), 522–523

StartMusicOnHold(), 535–536

StopMusicOnHold(), 538–539

WaitMusicOnHold(), 563–564

MUSICCLASS() function, 443, 619

musiconhold, agents.conf, 167

MusicOnHold() dialplan application, 443–445, 728

musiconhold, queues.conf, 160

musiconhold.conf

defined, 155

defining Music-on-Hold class in, 328

keeping hold music legal, 157

setting up, 157–159

mv operation, call files, 184

MWI (message waiting indication), upgrading voicemail to 1.6, 727

mxml, voicemail with AJAM, 197

myphones context, dialplan show, 33

MySQL, importing queue log into, 172–174

N

[N] dialplan pattern, 31

n priority, 29

Naming conventions

contexts, 26

dialplan functions, 575

variables, 61–62

Nano text editor, 11

NANP (North American Numbering Plan)

emergency number for, 43

using overlay dialplans, 66–67

NAT (Network Address Translation), IAX vs. SIP, 97

NATO phonetic alphabet, 499–500, 662–663

NBS (Network Broadcast Sound) channel, 96

NBScat() dialplan application, 445–446

Network Address Translation (NAT), IAX vs. SIP, 97

Network Broadcast Sound (NBS) channel, 96

Network, choosing, 44–46

Network protocols, 89–90, 94–95

Network Time Protocol (NTP), Asterisk 1.4 installation, 248

New Zealand, legalizing hold music in, 157

9-1-1 emergency number, NANP, 43

9-9-9 emergency number, UK, 43

noanswer option, Background(), 287

NOANSWER variable, Dial(), 330

NOOP command, AGI, 656–657

NoOp() dialplan application

defined, 28

overview of, 446–447

printing variable values with, 58

North American Numbering Plan (NANP)

emergency number for, 43

using overlay dialplans, 66–67

NOTIFY message, 231

NTP (Network Time Protocol), Asterisk 1.4 installation, 248

Numbering plan

business telephone system case study, 43, 52–54

overlay dialplans, 66–67

Numbers

looking up with EnumLookup(), 358–359

returning randomly generated with RAND(), 624–625

SAY NUMBER command, AGI, 662

saying with SayNumber(), 497–499

upgrading from 1.4 to 1.6, 726

O

o option, programming dialplan, 68

ODBCFinish() dialplan application, 448

ODBC_SQL() function, 620

ODBC_USER_DATABASE() function, 620–621

1-1-2 emergency number, Europe, 43

Opaque copies of Document, GNU Free Documentation License, 749

Options

Authenticate(), 283–286

Background(), 287–290

ChanSpy(), 299–300

Dial(), 327–330

ExtenSpy(), 365–366

MeetMe(), 415–417

MixMonitor(), 434–435

Monitor(), 436–437

Queue(), 468–469

Record(), 486–488

SayUnixTime(), 500–501

SMS(), 529

Zapateller(), 567–568

Order, pattern matching, 34–37

Originate command, AMI, 698–699, 731

overlay dialplans, 66–67

owner, /etc/iaxmodem/ttyIAXO, 215

P

Packets

connecting to AMI, 189

TCP connections, 91–94

UDP characteristics, 95

Page() dialplan application, 448–450

pagerbody, voicemail.conf, 128

pagerfromstring, voicemail.conf, 128

pagersubject, voicemail.conf, 128

Parameter delimiter, used in this book, 258

Park command, AMI, 699–700

Park() dialplan application, 450–452

ParkAndAnnounce() dialplan application, 452–454

ParkedCall() dialplan application, 454–455

ParkedCalls command, AMI, 700

parkedcalls context, 32–33, 176–177

Passwords

with Authenticate(), 283–286

calling PSTN, 21

DISA() application option, 347–351

saving in voicemail.conf, 135

using strong, 54

Pattern matching, 29–37

elements, 31

extensions.conf vs. extensions.ael, 83

order, 34–37

overview of, 29–30

testing using dialplan show, 32–34

Patterns, regular expressions as, 30

pausechar key, ControlPlayback(), 309–310

PauseMonitor command, AMI, 700–701, 713

PauseMonitor() dialplan application, 456, 546–547

PauseQueueMember() dialplan application, 456–458, 547–548

pauses, IVR, 140

Payload, TCP header, 93

pbxskip, voicemail.conf, 125

PDU (protocol data unit), 93

peername /etc/iaxmodem/ttyIAXO, 216

Peers, IP connections, 97

Performance

Asterisk database, 145–146

monitoring processor loads on server, 47–48

preventing latency, 44–46

periodic-announce-frequency, queues.conf, 162

Perl, using AGI with, 203–206

Phone channel, 96

Phones, choosing, 3–4

PHP, StarAstAPI for, 192–195

PHP, using AGI with, 206–209

Pickup

configuring group, 240–242

configuring phones, 238–240

extensions.conf for, 238

overview of, 237

Pickup() dialplan application, 238, 458–460

PickupChan() dialplan application, 460–461

pickupgroup, implementing BLF, 228

PICKUPMARK, Pickup(), 241–242

ping command, accessing AJAM with AJAX, 198

Ping command, AMI, 701

Pipe (|) delimiter

calling macros, 70

upgrades from 1.4 to 1.6, 726

Plain text, AJAM, 196

Playback

ControlPlayback() application, 309–311

simple IVR, 138

Playback() dialplan application

defined, 28

extension priority, 12

overview of, 461–463

PlayDTMF command, AMI, 702

Playtones() dialplan application, 293, 463–464

.plist configuration file format, 258

Point-to-Point Protocol (PPP), 93–94

Polarity, and analog telephony, 113–114

pollfreq, upgrading to 1.6, 727

pollmailboxes, upgrading to 1.6, 727

Polycom phones, 234–236

port, /etc/iaxmodem/ttyIAXO, 216

Port numbers

AMI connections, 187

installing Asterisk on same machine as SIP phone, 13–14

TCP connections, 91

Pound key (#) dialplan pattern, 31

PPP (Point-to-Point Protocol), 93–94

Predial digits, VoIP providers, 22

Prerolled Asterisk systems, 42

Preserve the Title of Entitled XYZ section, GNU Free Documentation License

copying and distributing Modified Version, 750

defined, 747

PRI (primary rate interface), ISDN

choosing ISDN card, 108–111

DAHDISendKeypadFacility() and, 316–317

overview of, 107–108

support in DAHDI, 738–739

ZapSendKeypadFacility() and, 572–573

PRI stack, Asterisk 1.4 installation, 249

Primary Rate Interface. See
PRI (primary rate interface), ISDN

Printing variables, 58

Priorities

defined, 27

extensions.conf vs. extensions.ael, 75–76

introduction to, 12

overview of, 28–29

pattern matching order based on, 34–37

Priority, call files, 185

Priority jumping

as deprecated, 70

enabling, 258

Privacy issues, eavesdropping and, 299

Privacy Manager, Dial() options, 329–330

Privacy(), upgrading to 1.6, 728

privacy.conf, 464–467

PrivacyManager() dialplan application, 464–467

Proceeding() dialplan application, 467

program structure, 58

Progress() dialplan application, 467–468

protocol data unit (PDU), 93

Protocols

friends, 97

IAX vs. SIP, 97–99

peers, 97

users, 97

Protocols, network, 90–96

overview of, 89–90

TCP, 90–94

UDP, 94–96

Providers, SIP, 21–22

PSTN number (also DID or DN), 23

PSTN (Public Switched Telephone Network)

calling, 21–22

ISDN standard for. See
ISDN

taking calls from, 23

using s extension, 69–70

from Zaptel to DAHDI. See
DAHDI (Digium Asterisk Hardware Device Interface)

Public Switched Telephone Network. See
PSTN (Public Switched Telephone Network)

Publisher of Document, GNU Free Documentation License

copying and distributing Modified Version, 749, 751

defined, 747

Q

QoS (quality of service), 45

QueueAdd command, AMI, 702

QUEUEAGENTCOUNT() function, 621–622

queue_log, 170–174

QueueLog command, AMI, 703

QUEUEMEMBER() function, 728

QUEUEMEMBERCOUNT() function, 622–623, 728

QUEUEMEMBERLIST() function, 623–624

QueueMetrics, 172, 174

QueueParse command, AMI, 703

QueuePenalty command, AMI, 703–704

QueueRemove command, AMI, 704

QueueRule command, AMI, 704

Queues, 155–174

agents.conf, 166–168

announcement sound files, 165–166

extension for testing hold music, 156–157

extensions.conf, 168–170

log file, 170–174

members vs. callers, 156

musiconhold.conf, 157–159

overview of, 155–156

queues.conf, 160–165

Queues (call center functions), dialplan applications

AddQueueMember(), 264–266

AgentCallbackLogin(), 267–268

AgentLogin(), 268–269

AgentMonitorOutgoing(), 270–272

overview of, 263

ParkAndAnnounce(), 452–454

ParkedCall(), 454–455

PauseQueueMember(), 456–458

Queue(), 468–473

QueueLog(), 473

RemoveQueueMember(), 489–490

UnpauseQueueMember(), 547–548

Queues command, AMI, 704–705

queues.conf, 155–156, 160–165

QueueStatus command, AMI, 705

QueueSummary command, AMI, 705–706

QUOTE() function, 624

Quotes, upgrading to 1.6, 726

R

RAID, software vs. hardware, 48

RAM

Asterisk requirements, 48

recording many conversations to, 438

RAND() function, 84, 624–625

random() command, 84

Random() dialplan application, 475–476

RDNIS number, setting, 523–524

Read(), upgrading to 1.6, 728

Reader contributions/feedback, for this book, 5

ReadExten() dialplan application, 480

ReadFile() dialplan application, 481

Reading values from database, 146–148

RealTime() dialplan application, 482–483

RealTimeUpdate() dialplan application, 483–484

RECEIVE CHAR command, AGI, 657

RECEIVE TEXT command, AGI, 657–658

ReceiveFax() dialplan application, 484–486

Record() dialplan application, 486–488

RECORD FILE command, AGI, 658

recordagentcalls, agents.conf, 167

recordformat, agents.conf, 167

Recording and monitoring, dialplan applications

AgentMonitorOutgoing(), 270–272

ChangeMonitor(), 293–294

ChanSpy(), 299–305

Dial(). See
Dial() dialplan application

Dictate(), 341–342

ExtenSpy(), 365–369

MixMonitor(), 434–436

Monitor(), 436–440

overview of, 261

PauseMonitor(), 456

Record(), 486–488

StopMixMonitor(), 536–537

StopMonitor(), 537–538

UnpauseMonitor(), 546–547

ZapBarge(), 568–569

ZapScan(), 571–572

Redirect command, AMI, 706

refresh /etc/iaxmodem/ttyIAXO, 216

REGEX() function, 626–627

Relicensing, GNU Free Documentation License, 754–755

Reload command, AMI, 706–707

reload now command, 27

RemoveQueueMember() dialplan application, 489–490

reportholdtime, queues.conf, 164

Reporting errors, 5

res_agi=1.4, 726

Reserved characters, and variables, 62

ResetCDR() dialplan application, 490–491

Resources, additional

Adhearsion, 209

AgentCallbackLogin(), 268

AJAM demo, 198

AMI events, 188

APIs for AMI in variety of languages, 192

Asterisk bandwidth calculator, 46

Asterisk RealTime Architecture, 27

Cepstral TTS installation, 142–143

configuration template examples, 722

IAXModem source code, 214

legalizing hold music, 157

most current version of this book, 5

MP3 file conversion into compatible format, 158–159

MP3 music support, 158

Nagios server monitoring tool, 47

overview of, 6–7

queue log analysis tools, 172

revisions of GNU Free Documentation License, 754

Ruby on Rails, 209

Speech Synthesis Markup Language (SSML), 143

StarAstAPI for PHP, 192

testing TTS engines, 142

Response packets, AMI, 188

Response timeouts, 640–642

ResponseTimeout() dialplan application, 491–492

retry, queues.conf, 161

RetryDial() dialplan application, 492–494

RetryTime, call files, 185

Return() app call, for macros, 725

Return code of 0, 258

Return code of –1, 258

Return() dialplan application, 494–495, 728

Revisions, GNU Free Documentation License future, 754

rewchar key, ControlPlayback(), 309–310

Rights administration

with contexts, 18–20

creating AMI user, 187

Ring, analog telephony polarity, 113–114

Ringing() dialplan application, 495

ringinuse, queues.conf, 164

rotatestrategy, logger.conf, 726

rotatetimestamp, logger.conf, 726

roundrobin method, queues.conf, 160–161

rrmemory method, queues.conf, 160–161

Ruby, using AGI with, 209–210

RxFax() command, 485

S

s option, programming dialplans, 69–70

Sangoma, ISDN cards, 111

savecallsin, agents.conf, 168

SAY ALPHA command, AGI, 659

SAY DATE command, AGI, 659–660

SAY DIGITS command, AGI, 661–662

SAY NUMBER command, AGI, 662

SAY PHONETIC command, AGI, 662–663

SAY TIME command, AGI, 663–664

SayAlpha() dialplan application, 496

saycid, voicemail.conf, 128

SAYDATETIME command, AGI, 660–661

SayDigits() dialplan application, 496–497

SayNumber() dialplan application, 497–499

SayPhonetic() dialplan application, 499–500

SayUnixTime() dialplan application, 317, 500–501

Scripts, dialplan applications

AGI(), 272–275

DeadAGI(), 322–323

DumpChan(), 351–352

EAGI(), 353–354

ExternalIVR(), 369–371

Log(), 401–402

Macro(), 405–408

NoOp(), 446–447

overview of, 262

Read(), 476–479

System(), 540–541

TrySystem(), 544–545

UserEvent(), 548–550

Verbose(), 550–551

searchcontexts, voicemail.conf, 128

Secondary Section of Document, GNU Free Documentation License, 746

secret /etc/iaxmodem/ttyiaxo, 216

Security

DISA() application risk, 347

server room, 44

Semicolon(;)

AEL commands, 75

indicating comments, 16, 76

SEND IMAGE command, AGI, 664

SEND TEXT command, AGI, 664–665

SendDTMF() dialplan application, 502–503

SendFAX() dialplan application, 503–504

SendImage() dialplan application, 504–505

SendText command, AMI, 707

SendText() dialplan application, 505–506

SendURL() dialplan application, 507–509

Server

choosing hardware, 46–48

installing Asterisk on, 9–10

server /etc/iaxmodem/ttyIAXO, 216

serveremail, voicemail.conf, 126

servicelevel, queues.conf, 161

SET AUTOHANGUP command, AGI, 665

SET CALLERID command, AGI, 665–666

Set() command

creating and changing variables, 58–59

defining variables, 63

expression handling in AEL, 76

setting timeout value, 69

SET CONTEXT command, AGI, 666

Set() dialplan application

overview of, 512–513

SET() function vs., 512–513

upgrading from 1.4 to 1.6, 728

SET EXTENSION command, AGI, 667

SET() function, 627–628

SET MUSIC command, AGI, 667–668

SET PRIORITY command, AGI, 668

Set() statements, 442

SET VARIABLE command, AGI, 669

set verbose 3, 447

set verbose 5, 202

SetAccount() dialplan application, 512–513

SetAMAFlags() dialplan application, 513–514

SetCallerID() dialplan application, 514–515, 582

SetCallerPres() dialplan application, 515–516

SetCallerPres() dialplan application, 727

SetCDRUserField command, AMI, 707

SetCDRUserField() dialplan application, 516–517

SetCIDName() dialplan application, 517–518, 582

SetGlobalVar() dialplan application, 518–519

SetGroup() dialplan application, 521

SetLanguage() dialplan application, 521–522

SetMusicOnHold() dialplan application, 522–523, 728

SetRDNIS() dialplan application, 523–524

SetTransferCapability() dialplan application, 524–525

SetVar command, AMI, 708

SetVar() dialplan application, 526

SHA1() function, 628

Shell

executing commands with System(), 540–541

renaming Zaptel as DAHDI, 736

Short Message System (SMS) messages, managing exchange of, 529–532

show 23@ context, dialplan show, 33–34

show application MeetMe command, 180

show application xyz command, 257

show applications command, 257

show dialplan command, 36

show function FUNCTIONNAME, 576

show function QUEUEMEMBER, 728

show functions, 576

show manager command, 189–190

show manager commands, 189

ShowDialPlan command, AMI, 708

shutdown -r now, 248

SIGHUP signal, DeadAGI, 322–325

SIGPIPE message, 172

SIGPIPE signal, DeadAGI, 323

silencethreshold, voicemail.conf, 128

Single-level inheritance, channel variables, 63–64

SIP

choosing IAX vs., 97–99, 741–743

defined, 96–97

upgrading driver from 1.4 to 1.6, 730

SIP/2000, 184

SIP, dialplan applications

defined, 262

SIPAddHeader(), 526–527

SIPdtmfMode(), 527–528

SIPGetHeader(), 528–529

SIP phones

building minimal phone system, 16–18

business telephone case study, 44–48

calling “Hello World,” 13–16

calling PSTN, 21–22

choosing, 3

choosing provider, 3

installing Asterisk on same machine as, 13–14

rates charged by providers, 22

rights administration with contexts, 18–20

taking calls from PSTN, 23

sip show subscriptions, 236–237

SIPAddHeader() dialplan application, 526–527

SIPCHANINFO() function, 629–630

sip.conf

business telephone system case study, 49

calling “Hello World” with SIP phone, 14

calling PSTN, 21

configuring codecs, 103

configuring two SIP phones, 16

implementing BLF, 228

rights administration with contexts, 18–20

upgrading channel drivers to 1.6, 730

using templates, 721–723

SIPdtmfMode() dialplan application, 527–528

SIPGetHeader() dialplan application, 528–529

SIP_HEADER() function, 528, 633–634

SIPnotify command, AMI, 709

SIPpeers command, AMI, 709–710

SIPqualifypeer command, AMI, 710

SIPshowpeer command, AMI, 710–711

SIPshowregistry command, AMI, 711

skip option

Background(), 287

Playback(), 461–463

skipms, ControlPlayback(), 309–310

skipms, voicemail.conf, 128

Skype, using ILBC codec, 104

SMS() dialplan application, 529–532

SMS (Short Message System) messages, managing exchange of, 529–532

Sockets, TCP connections, 91–93

SoftHangup() dialplan application, 532–533

Software RAID, burdening CPU, 48

Sort() dialplan application, 534

SORT() function, 634–635

Sound files, layout for non-English sounds in 1.6, 726

Sound output. See
Music and sound output, dialplan applications

Soundpoint IP 501, BLF on, 234–236

Source code

installing Asterisk from, 10

installing IAXModem, 214

sox, 158–159

sox package, 437

soxmix, 437

Speech Synthesis Markup Language (SSML), 143

Spencer, Mark, 98–99

[s|p|g#], VoiceMail() command, 122

Square brackets [], macros, 70

SSH server, Asterisk 1.4 installation, 247–248

SSML (Speech Synthesis Markup Language), 143

StackPop() dialplan application, 534–535

standard error (STDERR), 203–204

standard input (STDIN), 201–202, 204

standard out (STDOUT), 202

StarAstAPI for PHP, 192–195

Starting Asterisk, 11

StartMusicOnHold() dialplan application, 535–536

STAT() function, 635–636

States, Busy Lamp Field indicators, 227

Status command, AMI, 712

STDERR (standard error), 203–204

STDIN (standard input), 201–202, 204

STDOUT (standard out), 202

stop now command, 13

stopchar key, ControlPlayback(), 309–310

StopMixMonitor() dialplan application, 536–537

StopMonitor command, AMI, 712–713

StopMonitor() dialplan application, 436, 438–439, 537–538

StopMusicOnHold() dialplan application, 538–539

StopPlaytones() dialplan application, 539–540

strategy, queues.conf, 160–161

STREAM FILE command, AGI, 669–670

Streaming data, using UDP, 90

STRFTIME() function, 637–638

String variables, 62, 66

Strings

quoting with QUOTE(), 624

returning length of using LEN(), 616–617

spelling with SayAlpha(), 496

spelling with SayPhonetic(), 499–500

STRPTIME() function, 638–639

SUBSCRIBE message, 231

subscribecontext, BLF, 228

Subscriptions, 231

Substrings, manipulating variables, 66

[support] section, queues.conf, 160–165

switch command, 82–83

SYN packet, TCP connection, 92

Synchronous data streams, and IP telephony, 44–45

System channel variables, 65

System() command, 373

System() dialplan application, 540–541, 544–545

System shell, database access from, 149

System variables, 59

T

t option, programming dialplan, 68–69

T option, programming dialplan, 69

Tail length, evaluation hardware echo cancellers, 109

TCP/IP (Transmission Control Protocol/Internet Protocol), 44–45, 90

TCP SYN, 92

TCP (Transmission Control Protocol)

connections, 91–92

data integrity and reliability, 94

data transmission, 93–94

header structure, 93

UDP vs., 89–90

understanding, 90–91

TDD MODE command, AGI, 670

Teardown, TCP connection, 92

Telephony technologies, 1–2

telnet, connecting to AMI, 187

Templates, configuration, 721–723

Ten-digit local dialing, 22

Termination of rights under GNU Free Documentation License, 753

testagi.gsm file, 205

Testing

calling AGI from Perl, 205–206

hints, 236–237

hold music for call queues, 156–157

pattern matching, 32–34

TTS engines, 142

Text

sending using SendText(), 505–506

using NoOp(), 447

text-to-speech. See
TTS (text-to-speech)

Three-way handshakes, TCP, 92

Time

DateTime() application, 317–318

format variables in voicemail.conf, 130

SAY TIME command, AGI, 663–664

SAYDATETIME command, AGI, 660–661

SayUnixTime() application, 500–501

STRFTIME() function, 637–638

STRPTIME() function, 638–639

time-conditional include statements, 39

timeout, Dial() application, 326

TIMEOUT() function

overview of, 640–642

replacing DigitTimeout(), 343

replacing ResponseTimeout(), 491–492

setting timeouts with, 139

timeout, queues.conf, 161

timeoutrestart, queues.conf, 164

Timeouts

dialplan applications for. See
Flow control and timeouts, dialplan applications

extensions for handling, 68–69

interactive voice response, 139

timestamp, queue_log, 170

timezone, SayUnixTime(), 500–501

timezone, voicemail.conf, 130

Timing device, conferences, 179–180

Tip, analog telephony polarity, 113–114

Title Page of Document, GNU Free Documentation License

copying and distributing Modified Version, 749

defined, 747

Tones

blocking advance dialing telemarketing, 567–568

Playtones() dialplan application, 463–464

StopPlaytones(), 539–540

tos setting, H323, 730

TOS (Type of Service) flag, packet header, 45

Touch-Tone, inputting IVR, 137

Transcoding, 46

Transfer() dialplan application, 541–543

Translation, GNU Free Documentation License, 752–753

Transmission Control Protocol. See
TCP (Transmission Control Protocol)

Transmission Control Protocol/Internet Protocol (TCP/IP), 44–45, 90

Transparent copies of Document, GNU Free Documentation License, 747, 749, 750

Troubleshooting, using EAGI() application, 356–357

Trunking, bandwidth and, 105

TryExecute() dialplan application, 543–544

TRYLOCK() function, 728

TrySystem() dialplan application

overview of, 544–545

System() vs., 540

TryExecute(), 543–544

tT, Dial() application, 175

TTS (text-to-speech)

defined, 137

Festival() dialplan application, 372–374

installing Cepstral, 142

overview of, 142–143

25@my-phones context, dialplan show, 33

2BIQ signaling type, BRI, 106

TxFax() command, 485

TXTCIDName() dialplan application, 545–546

TXTCIDNAME() function, 545, 642–643

type, aastra.cfg, 234

Type of Service (TOS) flag, packet header, 45

U

U-law, 46

[u|b|s], VoiceMail() command, 122

UDP (User Datagram Protocol), 89–90, 94–95

Underscore(_) character

dialplan patterns beginning with, 31–32

inheritance of channel variables, 63–64

uniqueid field, CDR, 729

United Kingdom, legalizing hold music in, 157

United States, legalizing hold music in, 157

unixtime, SayUnixTime(), 500–501

UNLOCK() function, 728

UnpauseMonitor command, AMI, 713

UnpauseMonitor() dialplan application, 456, 546–547

UnpauseQueueMember() dialplan application, 456, 547–548

updatecdr, agents.conf, 167

UpdateConfig command, AMI, 713–714

Updates, of this book, 5

Upgrading from 1.4 to 1.6, 725–731

AEL, 725

AMI, 731

audio formats, 729

CDR, 729

channel drivers, 730

configuration, 731

core, 726–727

dialplan applications and functions, 727–728

voicemail, 727

URIDECODE() function, 643–644

URIENCODE() function, 644–645

urlprefix, agents.conf, 167

URLs, sending, 507–509

use strict directive, 203

usedirectory, voicemail.conf, 129

User Datagram Protocol (UDP), 89–90, 94–95

UserEvent command, AMI, 714–715

UserEvent() dialplan application, 548–550

username

calling PSTN, 21

upgrading channel drivers to 1.6, 730

Users

combining in single hint, 230

configuring IP connections, 97

monitoring status of SIP, 242

V

value, aastra.cfg, 234

/var/lib/asterisk/agi-bin, 203, 208

$[VARIABLENAME], 58, 61

Variables, 60–67. See also
Change variables, dialplan applications

calling AGI from Perl, 204–205

capitalizing, 61–62

checking for defined, 602–603

creating and changing, 58–59

defining, 63

defining global, 63

Dial(), 330–331

in e-mail notifications, 126

expanding in extension, 61

extensions.conf vs. extensions.ael, 78–79

inheritance of channel, 63–65

limits on integer size, 62

manipulating, 66–67

overview of, 60–61

reserved characters, 62

setting multiple simultaneously, 578–579

setting with Set(), 509–512

setting with SetVar(), 526

SetVar command, AMI, 708

time format, in voicemail.conf, 130–131

types of, 58–69

using double quote with string, 62

using ${eXTEN}, 40

VERBOSE command, AGI, 670–671

Verbose() dialplan application, 550–551

Verbosity

debugging by increasing, 12–13

starting Asterisk and SIP phone, 14–15

Versions

GNU Free Documentation License, 754

installing Asterisk on server, 9–10

of this book, 5

vISDN channel, 96

VMAuthenticate() dialplan application, 135, 551–552

VMCOUNT() function, 645–646

VMCOUNT() function

replacing HasNewVoiceMail(), 393

replacing HasVoiceMail(), 394

vmcount.exp, 192

VOFR channel, 96

Voicemail, 115–135. See also
Mini-Voicemail system; voicemail.conf

[zonemessages], 129–133

configuring, 17–18

configuring calls from PSTN, 23

Dial-by-Name directory, 133–134

disk space requirements, 48

example business system, 117–121

example home system, 115–117

getting number of messages with AMI, 190–192

upgrading from 1.4 to 1.6, 727

VMCOUNT() function, 645–646

VoiceMail() command, 121–123

VoiceMail() dialplan application, 28, 553–555

Voicemail, dialplan applications

Directory(), 344–346

HasNewVoiceMail(), 393–394

HasVoiceMail(), 394–395

MailboxExists(), 411–412

overview of, 260

VMAuthenticate(), 551–552

VoiceMail(), 121–123, 553–555

VoiceMailMain(), 123–124, 555–556

voicemail.conf

[zonemessages], 129–133

business telephone dialplan case study, 54–55

configuring Asterisk voicemail, 17–18

configuring voicemail in, 124–129

Directory() application, 344–346

example business voicemail system, 118–119

example home voicemail system, 116

saving passwords in, 135

VoiceMailMain() dialplan application

defined, 28, 121

overview of, 123–124

understanding, 555–557

using ${CALLERID(num)} with, 40

VoiceMailUsersList command, AMI, 715

VoIP (Voice over IP)

calling PSTN through provider, 22

choosing provider, 3

as superior to analog telephony, 102

website resource for, 7

Voltage, FXS, 113

VPB channel, 96

W

Wait() dialplan application, 28, 557–558

WAIT FOR DIGIT command, AGI, 671

WaitEvent command, AMI, 715–716

WaitExten() dialplan application, 558–559

WaitForNoise() dialplan application, 559–560

WaitForRing() dialplan application, 560–561

WaitForSilence() dialplan application, 561–563

WaitMusicOnHold() dialplan application, 563–564, 728

WaitTime, call files, 185

WaitUntil() dialplan application, 564–565

Wake-up call example, 186

Warranty Disclaimers, GNU Free Documentation License

combining documents, 751

defined, 748

preserving in Modified Version, 750

translations, 753

Web browser, BLF on Aastra 480i, 232–233

weight, queues.conf, 161

while command, AEL, 85

While() dialplan application, 566–567

While() loop

ending with EndWhile() application, 357–358

exiting with ExitWhile() application, 364–365

extensions.conf vs. extensions.ael, 85

programming dialplan using, 60

starting with While() application, 566–567

Wide-band extensions, G.729.1 codec, 105

Widgets, Inc.

business telephone case study. See
Business telephone system case study

call forwarding example, 150–152

calling card example, 152–153

example business voicemail system, 117–121

Wiki, why there is not one for this book, 6

Wildcard character (!), 32, 722

wrapuptime, agents.conf, 167

wrapuptime, queues.conf, 162

Writing values to database, 146, 148

X

[X] dialplan pattern, 31

XML, 197, 234–236

Z

[Z] dialplan pattern, 31

ZAP channel driver, 96

ZAP dialplan applications

Flash(), 374–375

overview of, 263

ZapBarge(), 568–569

ZapRAS(), 570–571

ZapScan(), 571–572

ZapSendKeypadFacility(), 572–573

Zapata.conf, 374–375

Zapateller() dialplan application, 567–568

ZapBarge() dialplan application, 568–569

ZapDialOffhook command, AMI, 716

ZapDNDoff command, AMI, 717

ZapDNDon command, AMI, 717–718

ZapHangup command, AMI, 718

ZapRAS() dialplan application, 570–571

ZapRestart command, AMI, 718–719

ZapScan() dialplan application, 571–572

ZapSendKeypadFacility() dialplan application, 317, 572–573

ZapShowChannels command, AMI, 719

Zaptel

defined, 733–739

MeetMe conferences requiring, 416

renamed as DAHDI. See
DAHDI (Digium Asterisk Hardware Device Interface)

upgrading from 1.4 to 1.6, 730

ZapTransfer command, AMI, 673–720

[zonemessages], voicemail.conf, 124, 129–133

zonename, voicemail.conf, 129

ztdummy driver, MeetMe conferencing, 416

ztdummy module without hardware, 179

images/00979.jpg

images/00978.jpg
in Asterisk 1.4
~++ in Asterisk 1.6
0 ~4,7 +4,7 80

Add a SIP header to the outbound call

[Description]
- SIPhddieader (Header: Content)
- sTPadaeader (seader: Content

Adds a header to a STP call placed with DIAL.
Remember to user the X-header if you are adding non-standard STP
tieaders, 1ike "¥-Astarig¥-accountendas". Ues this with Gars,

images/00501.jpg
AR DO0ME SR LONTIORn THIeE

[Synopsis)
Place a call and comnect to the current channel

Dial (rechnology/ resource £Techd/resource2. .11 | cineou] [|options]
{Juse)) -

This application will place calls to one or fore specified channels. As
as one of the raquested channals ansuers, the originating channel will
answered, if it has not already been answered. These two chamnels will
then

be active in a bridged call. All other channels that were requested
will then

be hung up.

Unless there is a tineout specified, the Dial application will waic
indefinitely until one of the called channels answers, the user hangs
up, or
if all of the called channels are busy or unavailable. Dialplan
executing will
continue Lf no requested channels can be called, or if the timeout
expires.

This application sets the following channel variables upon
completion
DIALEDTIME -

the time from dialing a channel until when

ic
is disconnected
ANSWEREDTIME - This is the amount of time for actual call.
DIALSTATUS - This is the status of the call:
CHANUNAVATL, | CONGESTION | NOANSWER | BUSY |
ANSWER | CANCEL
DONTCALL | TORTURE | INVALIDARGS
For the Privacy and Screening Modes, the DIALSTATUS variable will be
set to
DONTCALL if the called party chooses to send the calling party to the
S

images/00985.jpg
srr=Status Report Request (0/1)
rp=Return Path (0]1)
VDGl TRy PePtad (RnULeR)

images/00500.jpg

images/00984.jpg
pid=Prorocol ddemtifier (ucidal peter valiug)
des=pata coding scheme (decimal octet value)
nr-message reference (decimal octet value)

images/00503.jpg
£

‘hine:.

anything

g
the

alone
- Force the callerid of the *calling* channel to be set as the
extension associated with the channel using a dialplan

For example, some PSTNs do not allow CallerID to be set to

other than the number assigned to the caller.
- Proceed with dialplan execution at the current extension if

Gestination channel hangs up

Glcontextnexten'pri) - If the call is answered, transfer the

calling party to

the specified priority and the called party to the specified

prioritysl
Optionally, an extension, or extension and context may be
specified.
Otherwise, the currenc extension is used. You cannot use any
additional
action post answer options in conjunction with this option.
h - Allow the called party to hang up by sending the '*' DTMF
digit.
H - Allow the calling party to hang up by hitting the '=' DTMF
digit
i - asterisk will ignore any foruarding requests it may receive
on this
dial attempt,
3 - dump to priority n+101 if all of the requested channels wers
busy.
k- Allow the called party to enable parking of the call by
sending
the DINF sequence defined for call parking in features.conf.
X - Allow the calling party to enable parking of the call by
sending
the DIMF sequence defined for call parking in features.cont.
L(x(:y]l:z]) - Limit the call to ‘x' ms. Play a warning when 'y’ ms

images/00987.jpg
[outgoing]
exten = 4165553331, 1,Goto (sms-me-out, § [CALLERTDNUM) , 1)

[sms-me-out]
exten => _X.,1,Set (CDR (accountcode) =Sis)

exten => _X.,n,Set (smsFrom=$(CALLERIDNUN))

exten => _X.,n,SHS(§(smsFrom),s,§(EXTEN),$(smsText]) ; Generate SMS
exten => _X.,n,Sus(§(smsFrom),s) i send sus
SRR . O S P

images/00502.jpg
script. The DIALSTATUS variable will be set to TORTURE if the called
party
wants to send the caller to the 'torture' script.

This application will report normal termination if the originating
channel
hangs up, or if the call is bridged and either of the parties in the
bridge
ends the call

The optional URL will be sent to the called party if the channel
supports it.

If the OUTBOUND_GROUE variable is set, all peer channels created by
this
application will be put into that group (as in Set(GROUR(}=...).

If the OUTBOUND_GROUE_ONCE variable is set, all peer channels created
by this

application will be put into that group (as in Set(GROUP(). omlike
OUTBOUND_GROUE,
however, the variable will be unset after use.
options.

Alx) - Play an announcement to the called party, using 'x' as the
file.

© - Reset the CDR for this call

d - Allow the calling user to dial a 1 digit extension while

waiting for
a call to be answered. Exit to that extension if it exists

in the

current context, or the context defined in the EXITCONTEXT
variable,

iE it exists

Di(called] [scalling]) - Send the specified DTWF strings *after® the

called

party has answered, but before the call gets bridged. The
‘callear

DIMP string is sent to the called party, and the ‘calling’
b

string is sent to the calling party. Both parameters can be
used

images/00986.jpg
{incoming]

oxten => X.,1,G0tolf ($[*$(CALLBRIDNUN)* = "4165553331"] 7sms-me-
in, ${(EXTEN) 1)

; or like so:

;exten =» _X./_0193010.,1,Goto (sms-me-in, § (EXTEN) , 1}

(sms-me-in]
oxten => _X.,1,Mait(1)

xten => X.,n,SS (me-incoming,a)

exten => _X.,n,System(handleincomingsns]
R s A)

images/00981.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
@8 4.4 +4,4 8@

Change the demfmode for a SIP call

Ipescription]
- SteDenfNode inband|info|££c2833): Changes the dimfmode for a STP
call
+ sreDemfiode (inband | info|rfc2833
e

Changes the denfmode for a SIp

images/00980.jpg
Tafo about Wpplication 'RIFDCMIMODN

{synopsis]
Change the dtmfmode for a STP call

{pescription]

ATEptmbksae inband |1nfe|rEadBis) . Mianges the Atntmode thr & Ars cali

images/00499.jpg
; dial a number on Zap channel 2, let it ring a maximum of 10 seconds:
exten => 123,1,Dial (Zap/2/1234567,10, tTm)

: otheruise proceed in the dialplan:

exten => 123,n, Playback (sorry)

exten => 123,n, Hangup ()

: dial extension 500 over TAX on host widgets.biz:
exten => 123,1,Dial (IAX/username:pasawordéwidgets. biz/500}

images/00983.jpg
Into shout application 'SIFGetEeader:

[synopsis)
Get a 12 header from an incoming call
[Description]

S1pGetheader (var=headername | |options]) :

Sets a channel variable to the content of a STP header
options:
3 - dump to priority n+101 if the requested header isn't found.
This application sets the following channel variable upen complation:
STPGETSTATUS - This variable will contain the status of the
atcempt

FOUND | NOTFOUND
This application has been deprecated in favor of the SIP_HEADER
POGEEEAE

images/00498.jpg
EAc/AtE SRR,

passwora=secret

images/00982.jpg
-] 1.2 |

images/01070.jpg
O S et
r++ in Asterisk 1.6
o6 -4,7 +4,7 g8

Waits for an extension to be entered

[pescription]
- waitexten([seconds] [|options]) This application waits for the
user to encer
+ WaitExten([seconds] [,options]]: This application waits for the
sser to enter

a new extension for a specified number of seconds

Note that the seconds can be passed with fractions of a second.

For exanole,

11,80 AL sk the: sbblicakion te it Forii.s aecchds:

images/01069.jpg
e
4+ in Asterisk 1.4
9 11,3 +11,4 @8
opians!

AI(x]] - Provide music on hold to the caller while vaiting

for an extension
optionally, speeify the class for music on hold

within parenthesic.
Y ‘Haw rlmo: Plevbackispoiicarion); Baskarousdiensiioattond;:

images/01072.jpg

images/01071.jpg
pj SPHEEIR AL - o ORSERS a ES R e
xten => 1231, Ansver ()

xten => 123,n,WaitPorNiolse (500, 3)

e T e St e e

images/00977.jpg
IREC SHoNt Spplicetion 'SIVAJAENSIAT

(synopsis]
Add a STP header to the outbound call

[pescription]
STeAaHeader (Header: Content)

Adds a header to a SIP call placed with DIAL

Remember to user the X-header if you are adding non-standard SIP

headers, like "X-Asterisk-Accountcode:®. Use this with care

Adding the wrong headers may jeopardize the SIF dialog.

AT Sk

images/01068.jpg
Into about application ‘WaltExten’

[synopsis]
aits for an extension to be entersd

[Deseription]

WaitBxten([seconds] [[options]): This application waits for the
sser to enter
a new extension for a specified nusber of seconds.

Note that the seconds can be passed with fractions of a second.
ror_exanple,

1.5 will ask the spplication to wait for 1.5 seconds

opeions.

ml(x)] - Provide music on hold to the caller whil

sn extensicn.

waiting tor

optionally, specify the class for music on hold
within parentheses
B Fny ST SR AT (3 oy T

images/01077.jpg
i S
++ in Asterisk 1.6
08 -1,7 +4,7 86

Wait for Ring Application

[pescription]

- aitForRing (tineout)

+ WaitrorRing (tineout)
Returns D after waiting at least timeout seconds. and
only after the next ring has completed. Heturns 0 on
e G A e el

images/01074.jpg
FEMALE > BOTOIIECLGD AT LR e T

exten => 123, 1, Answer ()
exten => 1237, HaitForking (5]
riah S5 o SRS T3S

images/01073.jpg
= Intfo about applicaticn ‘WaltrorNolse'

[synopsis]
maits for a specified amount of noise

[Description]
fai tForNoi se (noi serequired|, iterations] [, tinsout]}

dait for Noise: The same as Wait for Silence but waite for noise
Sk e AR A Pt e FAal

images/01076.jpg
ESIHEN UL ~applICRELLR: el ot RAng

synopsis]
ait for Ring Application

[Description]
WaitForRing (tineout)

Retums 0 affer waiting at least Timeout seconds. and

omly after the next ring has completed. Returns 0 on

necenn-or. ~1-on Bancu

images/01075.jpg

images/00968.jpg

images/00974.jpg
= FRLDARoUL SPRACRTINn, ANVt
(synopsis]
set channel varisble(s)

[Description]
Setvar (nanel=valuel|nane2=value?|.. [|options]): This application

has been

Hairdcateld 1f IRvor of uilis the BEE iseilssitan.

images/00973.jpg

images/00976.jpg
-] 1.2 |-

| 1.4 |

| 1.6 |-

images/00975.jpg
Rxtan == 143, 1, SIPAGERAdAr [X- AR LEr1ak-Acbount:
exten => 123.n,Dial(SIP/123)

ficoa{accountonda)h)

images/00970.jpg
-] 1.2 |-

images/00969.jpg
Jndo shont application: 'SEEKMLS.

[synopsis)
Set RDNIS Number

[Description]
SStRDNIS (crum) : Set RDNIS Number on a call to a new

value.
SStRDNIS has been deprecated in favor of the function
CALLERTD (rdnis)

images/00972.jpg
in Asterisk 1.2
++e in Asterisk 1.4

ea -13,4 +13,6 a8
RESTRICTED_DIGITAL : 0x09

3K1AUDIO 0x10
DIGITAL W_TONES : Oxll

with tones/announcements

- vimo : ox1s

+ vieo : ox1s

Restricted digital information
3.1kz Audio (fax calls)
Unrestricted digital information

video
video

+ This application is deprecated in favor of

Set (CHANNEL (trans fercapability)

R

images/00971.jpg
-= Info about application 'SetTransferCapability' =-

(synopsis]
Set ISDN Transfer Capability

[pescription]
SetTransferCapability (transfercapability) : Set the ISDN Transfer

Capability of a call to a new value.

Valid Transfer Capabilities are:

seEECH : 0%00 - Speech (default, voice calls)
DIGITAL : 0x08 - Unrestricted digital information (data
calls)
RESTRICTED_DIGITAL : 0x09 - Restricted digital information
3K1AUDIO 0%10 - 3.1kHz Audio (fax calls)
DIGITAL W_TONES : 0xl1 - Unrestricted digital information with
tones/announcements
vIDEO + Ox18 - Video

This application is deprecated in favor of
Set (CHANNEL {trans fercapability)=...)

images/01081.jpg
I ABLCELIE 1.3
+++ in Asterisk 1.4
ee -4,8 +4,27 @@

Waits for a specifisd amount of silence

tpescription]
- WaitorSilence(x(|y]) Wait for Silence: Waits for wp to
- milliseconds of silence, 'y’ times or 1 if omitted

- Set the channel variable WATTSTATUS with to one of these
values:STLENCE - Lf silence of x ms vas detected?TMEOUT - if silence of
x ms was not detected. Examples
+ Waitrorsilence (silencersquired(| iterations) | tincout])

+ Wait for Silence: Waits for up to 'silencersquired

+ milliseconds of silence, ‘iterations’ times or once Lf omitted.

+ An optional timeout specifisd the number of seconds to return

+ after, even if we do mot receive the specified amount of silenca.

Use ‘timeout’ with caution, as it may defeat the purpose of this
application, which 1s to wait indefinitely until silence is detected
on the line. This is parcicularly useful for reverse-9l1-type
call broadsast applications where you need To wait for an answering
machine to complete its spiel before playing a nessage.

The tineout paramster is specified only to avoid an infinite loop in

cases where silence is never achieved. Typically you will want to

include two or more calls to WaitForsilenca when dealing with an
answering

+ machine; first waiting for the spiel to finish, then waiting for

the beep, ste.

- Examples:

- wWaitForsilence(500|2) will wait for 1/2 secand of silence, tuice

- WaitForsilence(1000) will walt for 1 sesond of silence, once

- WaitForSilence(300|3]10) will wait for 300ms silence, 3 times,
and returns after 10 sec, even if silence is not detected

+ Sats the channel variable WATTSTATUS with to one of these values:
+ SILENCE - if exited with silence decected
e s o R et el A g e ot

images/01080.jpg
== Info about. spplitation 'Halt¥ordilence! -w=

{Synopsis]
Waits for a specified amount of silence

Ipescription]
waitForsilence (silencerequired(|iterations] | tineout])

vait for Silence: Waits for up to 'silencerequired

nilliseconds of silence, 'iterations’ times or once if omitted

An optional timeout specified the number of seconds to return

atter, even if we do not receive the specified amount of silence.

Use “timeout' with caution, as it may defeat the purpose of this
application, which is to wait indefinitely uitil silence is detected
on the line. This is particularly useful for reverse-91l-type

call broadcast applications where you need to wait for an answering
nachine to complete its spiel before playing @ message.

e tineout parameter is specified only to aveid an infinite loop in
cases whers silence is never achieved. Typically you will want to
include two or more calls to WaitForSilence when dealing with an
snevering

nachine; £irst waiting for the spiel to fis
beep, ete.

feh, then waiting for the

axamples:
- Waitrorsilence (50012} will wait for 1/2 second of silence, twice
- Waitrorsilence (1000) will wait for 1 second of silence, once
- WaitForsilence (300/3|10) will wait for 300ms silence, 3 times,
and retumns after 10 sec, even if silence is not detected

Sets the channel variable WAITSTATUS with to ane of these values:
SILENCE - if exited with silence detected
P R R N s B A i Uy

images/01083.jpg
g o SIS, e IO

Cxten 3,1, Answer ()

xten => 123,n, Waitiusiconkiold (300}
exten => 123.n.Hanqup ()

images/01082.jpg
Al PELCLAIG & &
c++ in Asterisk 1.6
e 4,7 +4,7 @&

Waits for a specified amount of silence

(Description]
- waitrorsilence(silencerequired||iterations] [|timeour]}
+ waitForsilence(silencerequired|,iterations] [, timeout]:
Wait for Silence: Waits for up to ‘silencersquired’
milliseconds of silence, ‘iterations’ times or once if omitted.
BAn optional timeout specified the number of seconds to return
6 -20,9 +20,9 6¢
machine; first waiting for the spiel to finish, then waiting for
the beep, etc.

Bxamples:
- WaitForsilence(500(2) will wait for 1/2 second of silence, twics
- - waitrorsilence(500,2] will wait for 1/2 second of silence, twics
- WaitForsilence(1000) will walt for 1 second of silence, once
- WaitForSilence(300[3]10) will wait for 300ms silence, 3 times,
. - WaitForsilence(300,3,10) will wait for 300ms silence, 3 times,
and returns after 10 se¢, even if silence is not detected

Bk e Bharedi wnrl i S AN AR B o T A e e am

images/00967.jpg
in Asterisk 1.4
t++ in Asterisk 1.6
@8 -4,6 +4,12 4@

Set default Music On Hold class

[Description)
- SetMusiconHold(class): Sets the default class for music on hold
for a given channel. When

+ Setmusicommold(class):
+ 111 DEPRECATED. USe Set (CHANNEL(musicclass)=...) instead (1!
+ Sets the default class for music on hold for a given channel. When

misic on hold is activated, this class will be used to select which
music is played.

+ 111 DEPRECATED. USe Set (CHANNEL(musicclass: SataEd 111

images/00966.jpg
SHINED SIONE SEDGEORLION. 'SR OuRIIe

[synopsis]
Set default Music On Hold class
[Description]
SetiusiconHold(class) :
2 given chamnel. When
misic on hold is activated,
R e

Sets the default class for music on hold for

this class will be used to select which

images/01079.jpg
| 1.4 |

images/01078.jpg
K o it it
oxten => 123,1, Ansver ()

xten => 123,n, WaitForsilence(500,2)
R R T S Sl R T P

images/01085.jpg
SHIORCUL AR ACeLIon W DSLooREDIE

(synopsis]
wait, playing Mmusic On Hold

[Description]
aitMusicontold (delay) : Plays hold music specified number of

seconds. Returns 0 when

done, or -1 on hangup. If no hold music is available, the delay will
R L A Gl R

images/01084.jpg
§ B 5%

images/01087.jpg
CHERILS0L 0 L p RSN b,
oxten => 5,n,WaitUntil (§(STRPTINE(2008-12-06 14:30:00| Burope/
erlin|¥y-Sm-3d $H:aM:3S)))

exten: ar @ 0. Aayitiderine)

images/01086.jpg
A RELRELYE ek
+++ in Asterisk 1.6
ee -4.6 +4,12 @@

Wait, playing Music On Hold

[pescription]
- waithusiconsold(delay!
seconds. Returns 0 when
+ WaitMusiconHold(delay):

Plays hold music specified number of

11} DEPRECATED. Use MusicOniold instead i1t

Plays hold music specified number of seconds. Returns 0 when
done, or -1 on hangup. If no hold music is available, the delay
w1l

still occur with no sound.

A IR EraN SN bt o IR

images/00963.jpg

images/00962.jpg
= Infocaboul Mppliemtlon. 'SebGoonp! =

{Synopsis]
Set the channel's group

[Description]
Usage: SetGroup (groupname[8category])

Sets the channel group to the specified value
Set {CROUPsproupl: RKlwiye. retuzns 03

EBquivalent

ko

images/00965.jpg

images/00964.jpg
== Infa.about application 'Satlangusge:

[synopsis]
Set the channel's preferred language

[Description]

SetLanguage (language) : This will set the channel language to the
given value.

This information is used for the syatax in generation of numbers,
and to choose
a sound file in the given language, when it is available.

For example, if language is set to 'fr' and the file 'demo-congrats’
requested to be played, if the file 'fr/demo-congrats’ exists, then
it will play that file. If not, it will play the normal
 demo-congrats .

For some language codes, Setlanguage also changes the syntax of some
Asterisk functions, like SayNumber
o T ——

images/00959.jpg
in Asterisk 1.2
+++ in Asterisk 1.4
80 -6,3 +6,6 80
[Description]
SetGlobalvar (variable=value) : This application sets a given
global variable to
the specified value

s Tilscepilesrion fesemmeontetoln Kevoeol Serloooess: brass

images/00958.jpg
Tate shaut appldlication 'SetGletmlvas

[synopsis]
Set a global variable to a given value

[Pescription]
SetGlobalvar (variable=value): This application sets a given

global variable to

the specified value.

e aEel i 5 deuracakal: ik Baver. oF Hak CAORRE Prae)

images/00961.jpg
-] 1.2 |

images/00960.jpg
ast_log (LOG_WARNING, °SetGlobalvar is deprecated.
Blaake uee: DRt ISTOSAL (8e) She] THEFRAA. \B* Aake, EEFTRIGS

images/01048.jpg
L ABLeTia-d 4

+++ in Asterisk 1.6

e

4,5 44,5 60
send arbitrary text to verbose output

(pescription]
Verbose ([<level>|] smessages)
verbose ([<levals, | <nessages)

el Adb Be . Arracns walis. R R ARbeiitE BB,

images/01050.jpg

images/01049.jpg
i WS CER. S e L SNSRI O DA 20 S TR el L e i SUL AL LR e
cxten => 123,1,VMAuthenticate ($(EXTEN)@sales)
123.n,SayDigits (& (AUTH MATILBOX])

images/00956.jpg
Info ebour applicaticn. 'SecCIDNM®

{Synopsis]
Set CallerID Number

[Description]
SetCTDNum(cnum(|a]) : Set Caller*ID Number on a call to a new

value, while preserving the original Caller*ID mame. This is

useful for providing additional information to the called

party. Sets ANI as well if a flag is used.

SetCIDNun has been deprecated in favor of the function

CAL TR i benmbece)

images/00955.jpg
-] 1.2 |

images/00957.jpg

images/01056.jpg
RGP .
+++ in Asterisk 1.4
éa 22,6 +22,7 @@

b - Play the 'busy' gresting to the calling party.
gi#) - Use the specified amount of gain when recording the
voicenail
nessage. The units are whole-number decibels (dB).
+ Only works on supported technologies, which is Zap only
& - Skip the playback of instructions for leaving a message
to the

calling parcy.
W = DR Ehl AN Table! AESHLANY

images/01055.jpg
=R ANGUL Aehl AN VRIteaL LY

(Synopsis]
Leave a Voicemail message

(pescription]
Voiceail (mai lbox [9context] [smailbox[@context]] (. ..] [|options)): This
application allows the calling party to leave a message for the
specitied
List of mailboxes. When multiple mailboxes are specified, the greeting
will
be taken from the first mailbox specified. Dialplan execution will stop
if the
specified mailbox doss not exist.
The Voicemail application will exit if any of the following DTMF
aigits are
received:
0 - Jump to the ‘o' extension in the current dialplan context.
+ - Jump to the *a’ extension in the current dialplan context
This application will set the following channel variable upon
completion:
VHSTATUS - This indicates the status of the execution of the
Voicemail

application. The possible values are:
Succmss | USEREXIT | FATLED

options:
b - Play the 'busy' gresting to the calling party.
gi4) - Use the specified amount of gain when recording the
voicenail
message. The units are whole-number decibels (dB).
Only works on supported technologies, which is Zap only.
s - skip the playback of instructions for leaving a message to
the
calling party.
u - Play the 'unavailable' greeting.
3 - Jump to priority n+101 if the mailbox is not found or some
other

images/01057.jpg
ARLELIEE 155
+++ in Asterisk 1.6
€@ -4,7 +4,7 ea

Leave a Voicemail message

(pescription]
- Voicemail(mailbox(@context] [snailbox(6contexclil. .. 1t options):
mhis
+ " VoiceMail(nailbox(0context] [smailbox (Gcontext]1(. .. ,options]):
this

application allows the calling party to leave a message for the
specified

list of mailboxes. When multiple mailboxes are specified, the
reeting will

be taken from the First mailbox specified. Dialplan execution will
stop if the
ge 20,11 +20,13 8@

options:
b - Play the 'busy' greeting to the calling party.

- d(fc]) - Accept digits for a new extension in context c, if

played during

+ the greeting. Context defaults to the current context.

G(#) - Use the specified amount of gain when recording the
voicemail
message. The units are whole-number decibels (B)
Only works on supported technologies, which is Zap only.

. only works on supported technologies, which is DAHDI
only.

s - skip the playback of instructions for leaving a message
to the

calling party.
u - Play the 'unavailable' greeting.

s 3 - qup to priority n+l01 if the mailbox is not found or

some other

- U - Mark message as Urgent

. P - Mark message as PRIORITY.

images/01052.jpg
I ARLardek 1.8
+++ in Asterisk 1.6
@8 4.7 +4,7 €@

Authenticate with Voicemail passwords

[pescription]
- VmAuthenticate([mailbox] (context][|options]): This application
behaves the
+ VmAuthenticate([mailbox] [econtext][,options]]: This application
behaves the

same way as the Authenticate application, but the passwords are
taken from

voicenall.cont.

If the mailbox is specified, only that mailbox's password will be

o

images/01051.jpg
SEERLEROOUL AR AL INNRUTACICIONTY: ==

(synopsis]
Authenticate with Voicemail passwords

[pescription]
WeAuthenticate (nailbox] [écontext][|options]): This application
benaves the
same way as the Authenticate application, but the passwords are taken
fron
voicemail.cont.
If the matlbox is specified, only that mailbox's password will be
considered
valid. If the mailbox is mot specified, the channel variable
AUTH_MAILEOR will
be set with the authenticated mailbox.

options:
TR TR s

images/01054.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/01053.jpg
$ R TN SELEE Lo MRS Lk, IRy ShE MOEVALIShIE IeRsaT
s 3 1 Mol celatl (123 6

images/00952.jpg

images/00951.jpg
BRL_1og {LOCMANNING, 'wotCDEUserFlald ia duprecabed.
Plokad -t PR [MacE BLe1d) “omtokd \a*y &

images/00954.jpg
SO ICALL AL .,
Set (CALLERID (ani!

=4035331213}
005551212

images/00953.jpg
ko about. applicarion: SetCIDNbwns

[Synopsis]
Set CallerID Name

[pescription)
SetCIDNane (cname(|a]) : Set Caller*ID Name on a call to a new

value, while preserving the original Caller*ID mumber. This is

useful for providing additional information to the called

party.

SetCIDName has been deprecated in favor of the function

CALEERID (oema)

images/00948.jpg

images/00950.jpg
in Asterisk 1.2
+++ in Asterisk 1.4
@8 -14,3 +14,5 ee
CDR records can be used for billing or storing other
arbitrary data
(1.E. telephone survey responses)
Also see AppendCDRUserrield() .

+ This application is deprecated in favor of Set(CDR(userfield)

images/00949.jpg
SESHIRAOUL BIRLICAELON. " PRELDICEET TR

[synopsis]

Set the CDR user field
[Pescription]
[Synopsis)
SetCDRUserField(value)

[Pescription]
SetCDRUserField(value) : Set the CDR ‘user field' to value
The Call Data Record (CDR] user field is an extra field you
can use for data not stored anywhere else in the record.
CDR records can be used for billing or storing other arbitrary
data
(I.E. telephone survey responses)
Also see AppendCDRUserField ().

Miis avolication is deprecated in favor of BeCiCORIGSSEELSTA]

images/01059.jpg

images/01058.jpg
k@0 LU ERe SOLBSRAL N ERE MR IANE fe3 A0 e A DAL O A

sk an: wr. 193 1 Vot cudad TiatndiA3bAst el b

images/01061.jpg
R
r++ in Asterisk 1.4
58 16,3 +16,5 8

(4] - Use the specified amount of gain when recording a
voicenail

message. The units are whole-munber decibels (dB).
s - skip checking the passcode for the mailbox

. a(¥) - skip folder prompt and go directly to folder specified.

N g e e B

images/01060.jpg
= Info about application “VolceMallMain' ==

[synopsis]
Check Voicenail messages

[Description]
VoiceMailiain((nailbox] (@context] [|options]|: This application allows

che

calling party to check voicena:

opt 10n:

corresponding context, may be specified. If a mailbox is not provided,

the

calling party will be prowpted to enter one. If a context is not

specitied,

he ‘default’ context will be used.

messages. A specific mailbox, and

options:
b - Consider the mailbox parameter as a prefix o th
that.

mailbox

is entered by the caller

a(#] - Use the specified amount of gain when recording & voicenail
message. The units are whole-number decibels (dB).

- Skip checking the passcode for the mailbox

- Skip folder prompt and go directly to folder specified
Batactte . FNAR.

images/00945.jpg
exten ‘=>"123,1,SetCallerPres(allowed not_screened)
exten => 123,n,Dial(Zap/4/18775558190)

images/00944.jpg
== Info about application °SetCallerID®

[synopsis]
Set CallerTd

[Description]
SetcallerID(clid(|al): Set Caller*ID on a call to a new
velie: Sets ANL 8§ WLl L€ s fisy ie ebd.

images/00947.jpg
== Info about application

[synopsis]
Set CallerTp Presentation

[Description]

‘Setcallereres

SetCallerPres (presentation): Set Caller*ID

vValid presentations are:

allowed not_screened
allowed passed_screen
allowed failed_screen
allowed
prohib_not_scraened
prohib_passed_screen
prohib_failed_screen
prohib

SiraratiakYe.

Presentation
: Presentation
: Presentation

Presentation
: Presentation

Presentation
: Presentation
: Presentation

presentation on a call,

Allowed, Not Screened
Allowed, Passed Screen
Allowed, Failed Screen
Allowed, Network Number
Prohibited, Not Screened
Prohibited, Passed Screen
Prohibited, Failed Screen
Prohibited, Network Number

bt Oamuailakie.

images/00946.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/01067.jpg
! R S &

images/01066.jpg
RIS 15 gE GUEBg: SUE Yl \BRE IO
xten = 2,1, Answer ()
> 5.0, Playback (enter-ext-of-person)
i A

xten

images/01063.jpg
S
xten
Lot

i
> s,n,Walt(1.5)
e R o TR o T ey

images/01062.jpg
e
r++ in Asterisk 1.6
9 4.7 +4,7 80

Check voicemail messages

[pescription]

- VoiceMsilain([mailbox] [context] {|opticns)): This application
allows the

+ VoiceMailMain((mailbox] [8context [, options]): This application allows
the

calling party to check voicenail messages. A specific mailbox, and
optional

corresponding context, may be specified. If a mailbox is not
provided, the

calling party will be prompted to enter one. If & context is mot
specified,

images/01065.jpg
AR DGR D A TR0 - WL

[synopsis]
¥aits for some time

[pescription]
Wit (ssconds) ; This spplication waits for a specified number of
seconds
Then, dialplan execution will continue at the next pricrity.
Note that the seconds can be passed with fractions of a second. For
example,
L6 wiTl Bak EhE adalitEtich to wafe far 1.8 Getonds.

images/01064.jpg

images/01027.jpg
IRARCALINe 1.9,

+++ in Asterisk 1.6

e

4,11 +4,11 @@
Executes dialplan application, alvays returning

[Description]
Usage: TryExec (appname (arguments))
Allows an arbitrary application to be invoked even when not
TryBxec (appnane (argunents)) :
Allows an arbitrary application to be invoked even when not
Tharacoded into the dialplan. To invoke external applications
see the application System. Always returns to the dialplan
The channel variable TRYSTATUS will be set to:
The channel variable TRYSTATUS will be Set to ona of:
SUCcESs it the application returned zero
FAILED if the applicacion returned non-zero
NOAPP if the application was not found or was not specified

images/01026.jpg
== Infoaboul application “TryRxeq*

[synopsis]
Executes dialplan application, always returning

[Description]
Usage: TryExec(appname (arguments))
Allows an arbitrary application to be invoked even when not
hardcoded into the dialplan. To invoke external applications
see the application System. Always returns to the dialplan,
The channel variable TRYSTATUS will be set to
SuccEss if the application returned zero
FAILED if the application returned non-zero
HOARP 1f the application was not found or was not specifisd

images/00941.jpg
in Asterisk 1.2
+++ in Asterisk 1.4
a8 4,5 +4,5 @8

Sat e AR P3G

images/00940.jpg
Intc ‘shout application 'SetAMAFlags*

[synopsis]
Set the AMA Flags

[pescription]
SetamArlags ([flag]

AMA Flags for
billing purposes.

This application will set the chamnel's

images/00943.jpg

images/00942.jpg
IPescription]
- SecawFlags([flag]
Flags for billing
- purposes.
+ SetauaFlags((flag]
AA Flags for
% Billing purposss;

This channel will set the channel's AMA

This application will set the channel's

images/00939.jpg

images/00938.jpg
Idn About. Spplinarion SeEKcDOMHLY

[Synopsis]
Set the CDR Account Code

[Description]
SetAccount ([account]}: This application will set the channel
account code for
billing purposes.
SetAccount has been deprecated in favor of the
Sat (OB IRCE N EaAe) sAEcoRnt)

images/00937.jpg

images/01028.jpg

images/00934.jpg
A YL R-vd.

+++ in Asterisk 1.4
éa -14.3 +14,5 e

options:
g - Set variable globally instead of on the channel
(applies only to variables, mot functions)

The use of Set to set multiple variables at once and the g flag

have both

been deprecated. Pleass use multiple Set calls and the GLOBAL()

tialplan

Bomerbon Inaresd:

images/00933.jpg
ISR LRI IPIE e

{synopsis)
set channel variable(s) or function value(s)

(bescription]

Set (name1=valuet [nane2=valuez .. [[options])
This function can be used to set the value of channel variables
or dialplan
functions. Tt will acospt up to 24 name/value pairs. When setting
variables,
if the variable nane is prefixed with _, the variable will be
inherited into
channels created from the current channel. If the variable name
is prefixed
with _, the variable will be inherited into chamnels created from
the current
charnel and all children channels.

options:

5 - Set variable globally instead of on the channel
{applies only to variables, not functions)

The use of Set to set multiple variables at once and the g flag
have both

been depracated. Please use miltipla Set calls and the GLOBAL()
dialplan

e

images/00936.jpg
- function instead.
- functions. When setting variables, if the variable name is prefixed
with _,

+ the variable will be inherited into channels created from the
current

+ channel. If the variable name is prefixed with __, the variable
will be
+ inherited into channels created from the current channel and all
children

- channels.
+ Compatibility note: If (and only if), in
/etc/asterisk/asterisk.conf, you have a (compat]

- category, and you have app_set = 1.6 under that, then the behavior
of this

+ app changes, and does mot strip surrounding guotes from the right
hand side

+ as it Gid previously in 1.4. The app_set
‘make samples’

+ is executed, or if users insert this by hand into the asterisk.conf
file.

+ /uThe advantages of n
the

+ separator characters (comna and vertical bar) wers sufficient to
nake these

+ changes in 1.6. Confusion about how many backslashes would be needed
to properly

+ protect separators and quotes in various database access strings has
been greatly

s addosd B Uhess ik

1.6 is only inserted if

stripping out quoting, and not caring about

images/00935.jpg
I ABEELIGE Lo
+++ in Asterisk 1.6

e -1,21 +1,23 @@

-= Info about applicacion 'Set!

[Synopsis]
- Set channel variable(s) or function value(s)
. Set channel variable or function value

[peseription]
Set (name1=valuel |name2=value2 | .. [|options])
- Set(name=value)
This function can be used to set the value of chamnel variables
or dialplan

- functions. Tt will accept up to 24 name/value pairs. When setting
variables,

- if the variable name is prefixed with _, the variable will be
iherited into

- channels created from the current chanmel. If the variable name
is prefixea

- with __, the variable will be inhierited into channels created
from the current

- channel and all children channels.

- options:

. g - Set varisble globally instead of on the channel

- (applies only to variables, not functions)

- The use of Set to set multiple variables at once and the g flag
nave both
- been deprecated. Flease use multiple Set calls and the GLOBAL()
dialplan

images/01034.jpg
Info sbaut spplication ‘UnpapgeMonitor*

[Synopsis]
unpause monitoring of a channel

[Description]
UnpauseMonitor
Unpauses monitoring of a channel on which monitoring had

Sl Fean SEOEAN Wth. Brgutaal tar:

images/01033.jpg

images/01036.jpg

images/01035.jpg
1% AeLArign 1.8
e+ in Asterisk 1.6
@8 4,6 +4,6 68

Unpause monitoring of a channel

[Description]
- Unpausemonitor
- unpausemoniter():
Unpauses monitoring of a channel on which monitoring had
et S RO R R g e

images/01030.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
8 -10,3 +10,3 @6

FAILURE Could not execute the specified command
success Specified command successfully executed
APPERROR Specified command successfully executed, but

returned error code
- 01d venaviour:

If the command itself executes but is in error, and if
- there exists a priority n + 101, where 'n’ is the priority of the
current
- instance, then the channel will be setup to contimue at that
= pHitelty levals Sthemdes; Systen will terpinate.,

images/01029.jpg
FETEIREChALOUL I pIRGATIAvEE TR aeTenT

{synopsis]
Try executing a system command

{pescription]
Trysysten|comnand) :

on any situation

Result of execution is returned in

Executes a comnand by using system().

& SYSTENSTATUS channel variable:

FAILURE Could not execute the specified command
success Specified command successfully executed
APPERROR Specified command successfully executed, but returned

error code

014 behaviour:
Tf the command itself exacutes but is in error, and if

there exists a priority n + 101, where 'n' is the priority of the
current

instance, then the channel will ba setup to continue at that
Criority evel. OENbrvine, Svetan will Cecninats.

images/01032.jpg
== Info-stout applicetion “TEICTONNG

[Synopsis]
Lookup caller name from TXT record

(pescription]
TXICTDName (<Caller TDNunber> |options]): Looks up a Caller Name

via DNS and sets

the variable 'TXTCIDNAME'. TXTCIDName will either be blank

or return the value found in the TXT record in DNS.

The aption string may contain the following character:

“5* -~ jump to n+101 priority if the lookup falls

This application sets the following channel variable upon completio
TXTCIDNAMESTATUS The status of the lookup as a text string, one of

SUCCESS | FAILED

images/01031.jpg

images/01037.jpg
SEe phoet Heplichbian UNpRUs LU Ol et

[synopsis]
Unpauses a queue member

[pescription]
Unpausegueuelienber | [quevenans] | inter facel [options])+
Unpauses (resunes calls to) a gueue member.
This is the counterpart to PauseQueueNember and operates exactly the
same way, except it unpauses instead of pausing the given interface
The option string may contain zero or more of the following character
§ == jump to +101 priority when appropriate.

This application sets the following channel variable upon completion
ueguTATUS The status of the attempt to unpause a queue
nenber as a text string, one of
ONPAUSED | NOTFOUND
Exanple: UnpanseQueneMesber (| STB/3006)

images/00930.jpg
SEL S VRELRISETREE B Tkt
xten => 123,1,Set (TBST=123)
exten => 123,n, SayDigits (${TEST}]

; Set a global variable TEST2 to *456":

123,n, Set (TEST2=456, 91
129 6 Bet {CLOBAL [PRST2 Y =d5E}

; hsterisk 1.2
repiak 1.4

images/00929.jpg
A RELOL BT 8

+++ in Asterisk 1.6

08 4,7 +4,7 0@
Send a URL

(pescription]
SendURL (URL [option]) : Requests client go to URL (IAX2) or
sends the
+ SendURL(URLI,option]): Requests client go to URL (IAXZ) or
sends the
URL to the client (other channels).
Result is returned in the SENDURLSTATUS channel variable:

success URL successfully sent to client
00 12,12 +12,8 90
NOLOAD Client failed to load URL (wait enabled]

UNSUPFORTED Channel does nof support URL transport

1 the option ‘wait' is specified, execution will wait for an

- If the option ‘w' is specified, execution will wait for an
acknowledgement that the URL has been loaded befors contimuing

- If jumping is specified as an opsion (the
does not
- support Asterisk *html® transport, and there exists a step with
priority

n v 101, then execution will concinue at that step.

flag), the client

Senaurn continues normally if the URL was sent correctly or if
the channel
does ot SUNEOIE WINL bransport: Otherwias: the chanasl

T,

images/00932.jpg
| 1.6 |

images/00931.jpg
SXCAR =315, 1SN {TALLESCIIINARE T W OLR) |] SOL CALLNEID ISRAN).
exten => 123,n, Set (CALLERTD (name) =} i clear CALLERTD (name)
exten => 123,n, Set (DB (my/test) =ok) ; write a value to the
AstoB

exten => 123,n,Sat (va
A

(DB (ay/test)) ; read a value from the

images/00928.jpg
AR RRTOE LBX L vl
+++ in Asterisk 1.4
g8 -5,17 49,15 @@

Result is returned in the SENDURLSTATUS channel variable:

success URL successfully sent to cli
FATLURE Failed to send URL

- NOLOAD Clien failed to load URL (wait enabled)

+ NOLOAD Client failed to load URL (ait enabled)

UNSUPPORTED Channel does not support URL transport

If the option 'wait’ is specified, execution will wait for an
acknowledgenent that the URL has been loaded before continuing
and will return -1 if the peer is unable to load the URL

- 01d behaviour (deprecaced):
- If the client does not support Asterisk -html® transport,
- and there exists a step with priority n + 101, then execu
- continue at cthat step.

- Otherwise, execution will continue at the mext priority level
- SendURL only returns 0 if the URL was sent correctly or if

- the channel does not support NTML transport, and -1 otherwise.
+ If jumping is specified as an option (the '3’ flag), the client
foes not

+ support Asterisk *html® transport, and there e
priority

+ n+ 101, then execution will continue at that step.

+ SendURL continues normally if the URL was sent correctly or if
the channel

S T]

n will

ts & step with

GaneHAEE, SIbERELSA TR AEHRAT ¥E Hineus

images/00927.jpg
FESREPAUONE RRpE R AL LE: MSRnoenT

(synopsis]
Send a URL

[Description]
SendURL(URL(|option]): Requests client go to URL (IAXZ) or sends the

URL to the client (other chamnels).

Result is returned in the SENDURLSTATUS channel variable:

success URL successfully sent to client
FAILURE Failed to send URL
NoroaD Client failed to load URL (wait enabled)

UNSUPPORTED Chann

doss not support URL transport

It the option 'wait' is specified, execution will wait for an
acknowledgement that the URL has been loaded before continuing

It jumping is specified as an option (the
does not

support Asterisk "html* transport, and there exists a step with
priority

n + 101, then execution will continue at that step.

flag), the client

SendURL continues normally if the URL was sent correctly or if the
channel
Soss nok - suppord it transport: Atherwise; ihis éhannsi-is

S

images/00926.jpg

images/01039.jpg
o Tl e Sl
channel: channelname
Unigueid: call-identifier
[body]

images/01038.jpg
== in Asterisk 1.3

+++ in Asterisk 1.6

ee -4,14 +4,13 @&
Unpauses a queue member

{pescription]
- UnpauseQueualteber ([queuenane] | incerface(|options]) :
+ UnpauseQuencttenber ([queuenane] , interfacel, options|,zeason] 1) :

Unpauses (resumes calls to] a queue member.
This is the counterpart to PauseQueueMember and operates exactly the
same way, except it unpauses instead of pausing the given interface
The option string may contain zero or more of the following
characters
= 'j* - jump to +101 priority when appropriate.
+ The reason string is entirely optional and is used to add extra
infornation
+ to the appropriate queue_log entries and manager events

This application sets the following channel variable upon

UBQUSTATUS The status of the attempt to unpause a queue
menber as a text string, one of
UNPAUSED | NOTEOUND
Exanple: UnpaussQueueMenber (|STP/3000)
+ Example: UnpauseQueueMember(,SIP/3000)

images/00923.jpg

images/00922.jpg
T ABLARLER Tt
~++ in Asterisk 1.6
6@ -5,11 +5,8 06

[pescripeion]
SendTnage (filenane) : Sends an image on a channel.

- If the channel supports image tramsport but the image send
- fails, the channel will be hung up. Otherwise, the dialplan
- continues execution.
- The option string may contain the following character:
jump to priority n+101 if the channel does
support. inage transport
- This application sets the following channel variable upon
completion:
. SENDIMAGESTATUS The status is the result of
the attempt as a text string, one of
: OK | NOSUPPORT

Result of transmission will be stored in SENDIMAGESTATUS

- channel variabl
. success Transmission succeeded
. FATLURE Transmission failed

N UNSUPPORTED Image transmission mot supported by channel

images/00925.jpg
IDAPCALIBE L %
r++ in Asterisk 1.6
e 1,7 +4,7 €8

Send a Text Message

(pescription]
- Sendrext(text[|options]): Sends text to current channel (callae]
+ SendText(text): Sends text to current channel (callee).
Result of transmission will be stored in the SENDTEXTSTATUS
channel variabl:
success Transnission succeeded
06 -12,6 +12,3 @0
UNSUPPORTED Text transmission not supported by channel

At this moment, text is supposed to be 7 bit ASCIT in most channels.
- The option string many contain the following character:

- *j* -- jump to n+101 priority if the channel doesn't support

- P N

images/00924.jpg
e FELD GRoUL SPRIECRLIUN, TNTeRE

{synopsis]
send a Text Message

{pescription]
Senarext (text[|options]): Sends text to current channel (callee)
Result of ctransmission will be stored in the SENDTEXTSTATUS
channel variable:
success Transmission succeeded
FATLURE Transnission failed
UNSUPPORTED Text transmission not supported by channel

AC this moment, text is supposed to be 7 bit ASCTI in most channels.
The option string many contain the following character:
§ - jump to n+101 priority if the channel doesn't support

it Lt

images/01045.jpg
exten =

S Y REEVORCN L SOTRGIG *18 CoL LAY RO IEROILESs
123,n, Playback (extension]
123.n, SayDigits (${EXTEN}}

images/01044.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
60 -4,7 +4,7 08

Send an arbitrary event to the manager interface

[Description]
- UserBvent(eventname(|body]]: Sends an arbitrary event to the
manager
+ UserBvent (eventname[,body]): Sends an arbitrary event to the
manager.

interface, with an optional body representing additional
argunents. The

body may be specified as a | delimeted list of headers. Bach
additional

argunent will be placed on a new line in the event. The format of
the

images/01047.jpg
SREC BN MPYIIORLACS. TSLONe T

[synopsis]
Send arbitrary text to verbose output

[pescription]
verbose ([<lavel> |]<nessage>}
Tacel miar Ka ah tnfdder veibe. IE fEe

Soanitiad dathiits sal

images/01046.jpg

images/01041.jpg
-] 1.2 |-

| 1.6 |-

images/01040.jpg
Extan =111, 1, UssrBvant (Teat, Notes
exten => 123,.n.Dial (${XY})

am oplllng S1X¥}-now.)

images/01043.jpg
I REtelial Lok
+++ in Asterisk 1.4
66 -4,12 +4,12 66

Send an arbitrary event to the manager interface

[Description]

UserBvent (eventname[|body]): Sends an arbitrary event to the
- manager interface, with an optional body representing additional
- argunents. The format of the event will be:

Event: UserBvent<specified event name»

- Channel: <channel name>
= Uniqueid: <call uniqueid>
+ UserEvent (eventname| |body)): Sends an arbitrary event to the
nanager
+ interface, with an optional body representing additional
arqunents. The
+ body may be specified as a | delimeted list of headers. Each
additional
+ argunent will be placed on a new line in the event. The format of
the
+ event will be

. Event: UserEvent
. Userbvent: <specified event name>
[zody]

- If the body is not specified, only Bvent, Channel, and Unigueid
fields

- will be present. Returns 0.

+ If no body is specified, only Event and UserEvent headers will be

images/01042.jpg
JIufoabour appiication ‘Usarsvent’

[synopsis]
Send an arbitrary event to the manager interface

[pescription]
UserBvent (eventnane[[body]) : Sends an arbitrary event to the manager

interface, with an optional body representing additional
arguments. The
body may be specified as a | delimeted list of headers. Fach additional
argunent will be placed on a new line in the event. The format of the
event will be:

Eyent: UserEvent

UserBvent: <specified event names

[body)
If no body is specified, only Event and Usersvent headers will be
present.

images/01005.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
98 -4,7 +4,6 08

stop recording a call through MixMonitor

[Pescription]
- Stopmixmonitor ()

+ Stopmixyonitor(
Stops the audio recording that was started with a call to
Mixuonitor ()
on the current chanmel.

images/01004.jpg
Info about application ‘StopMixMonitor'

[Synopsis]
Stop recording a call through Mixifonitor

[Description]
Stoptixonitor ()

Stops the audio recording that was started with a call to MixMonitor ()
on the current channel

images/01007.jpg
| 1.4 |

images/01006.jpg
RREOD “u> 22, 1 AnEWeE (}
exten => 123,n,Monitor (wav,monitor_test,mb)
exten => 123,n,SayDigits (12345678901234567830)
i S 108, PSR T EasT)

images/00919.jpg
[synopsis]
Send a FAX

[pescri)

cion]

HESe ahout. Gpplical

EEUGRALE

Sendrax (filenane(|options])

Send a given TIFF file

The option string may contain zero or more of the following characters:

to cthe channel as a FAX.

‘a’ - makes the application behave as an answering machine

The default

behaviour is to behave as & calling machine

This application uses following variables:

LOCALSTATIONID to

identify its

£ to the remote end

LOCALHEADERINFO to generate a header line on each page.
this application sets the following channel variables upon completion:

FAXSTATUS -

FAXERROR -
FAXHODE -

REMOTESTATIONTD -
FAXPAGES -
FAXBITRATE =
FRXRESOLUTION -

status of operation:
Success | eATLED
Eeror when FATLED
Mode used:
audio | T38
CSID of the remote side
nunber of pages sent.
transmition rate.
resolution

Returns -1 in case of user hang up or any channel error

MBS GO e

images/00918.jpg

images/00921.jpg
HISDE NS OUR RSSO RSl age

{Synopsis)
Send an image file

[bescription]
Sendinage (filenans): Sends an image on a channel.

If the channel supports image transport but the image send

fails, the channel will be hung up, Otherwise, the dialplan

continues execution.

The option string may contain the following character:
j - jump to priority n+101 if the channel doesn't support
inage transport
This application sets the following channel variable upon completion:
SENDIMAGESTATUS The status is the result of the attempt
as a text string, one of
OK | NOSUPPORT

images/00920.jpg

images/00916.jpg
20 EEURI B L
rr+ in Asterisk 1.6
00 -4,7 +4,10 6@

Sends arbitrary DIF digits

(Description]
- SendomF (digits(|timeour_ns]}: Sends DIMF digits on a channel.
- Accepted digits: 0-9, *fabcd, w (.5 pause)
+ SendDTMF (digits[, [tineout_ms][,duration ms]]
on & channel.
+ Accepted digits: 0-9, *#abed, (default .25s pause between digits)
The application will either pass the assigned digits or terminate
if it
encounters an error.
+ Optional arams:
+ timeout ms: pause between digits.
¢ duracton s dusatisn GF casl MieiE.

Sends pmue digits

images/01488.jpg

images/00915.jpg
FECH WIS UL OLIN. TORORIEE

(Synopsis]
Sends arbitrary DTMF digits

pescription]
SendomF (digits||timeout_ms]): Sends DTNF digits on a channel
Accepted digits: 0-9, *#abed, w (.58 pause)

The application will either pass the assigned digits or terminate if
i

T

images/01490.jpg

images/00917.jpg
aten L4 PR ECRLE T TIGRpEDIRINE, -Sompatli)
exten => 123,n, Set (LOCALHEADERTNFO=My Company - There when you need us!
cxten => 123,n, SendFAX(/tnp/offer.tif)

oxten => 123,n,Verbose (1, #4% FAXSTATUS: §{FAXSTATUS])

sxten =» 123,n,Verbose (1, #47 FAXERROR: ${FAXERROR} |

xten => 123,n, Verbose (1, ¥ FAXMODE: §{ FAXMODE})

exten => 123,n, Verbose (1, ### FRXPAGES: §{FAXPAGES}]

oxten => 123,n,Verbose (1, ## FAXBITRATE: §{FAXBITRATE))

sxten => 123,n,Verbose (1, ##f FAXRESOLUTION: ${FAXRESOLUTION))

xten => 123,n,Verbose (1, ##§ REMOTESTATIONID: §{REMOTESTATIONID))

AR =5 10T RAREE ()

images/01489.jpg
Agtion: DADglIrge:
Synopsis: Delete DB Tree
Privilege: system,all

images/00912.jpg
D" AOOUL SRPILCALCE SRYUNET I8

[synopsis]
says a specified time in a custom format

[Description]
SayUnixTine ((unixcine] [| (timezone] [| format]])
unixtime: time, in seconds since Jan 1, 1970. May be negative.
defaults to now.
timezone: timezone, see /usr/share/zoneinfo for a list
defaults to machine default.
a format the time is to be said in. See voicemail.cont.
SeBanite to TARET | BLALEH AL IR

format:

images/00911.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/00914.jpg

images/00913.jpg
- AELerian. Ll
~++ in Asterisk 1.6
e -4,10 +4,10 @@

Says a specified time in a custom format

[pescription]

- SayUnixTine((unixtine] [(timezone] [| formac1))

- unixtime: time, in seconds since Jan 1, 1970. May be negative.

+ Sayunixrime([unixtine] [, [tinezone] [, formatll)

+ unixtime - time, in seconds since Jan 1, 1970. May be negative
defaults to now.

- timezone: timezone, see fusr/share/zoneinfo for a list

s timezone - timezone, see /usr/share/zoneinfo for a list.
defaults to machine default.

- format: a format the time is to be said in. See voicemail.cont.

. format - a format the time is to be said in. See

volcemail.cont
dofauits to "ABAY ‘disitsfet’ Tik

images/01012.jpg
AnAnterisk 1,4
r++ in Asterisk 1.6
90 -4,4 +4,4 80

Stop Playing Music On Hold

[Description]
- StopiusicOnkold: Stops playing music on hold.
P e S T]

images/01496.jpg
Action: Eyentd

Synopsis: Control Event Flow

Privilege: <none>

pescription: Enable/Disable sending of events to this manager
client.

Variables:

‘on’ if all events should be sent,
‘GfE if no events should be sent,

‘system,call, log’ to select which flags events should
bR R o

images/01011.jpg
Info about application ‘StopMusicOnHold'

[synopsis]
Stop Playing Music On Hold

[Description]
Ty

images/01495.jpg

images/01014.jpg

images/01013.jpg
Len “Sp 123, L, RLEVEONERILUST)

exten => 123,n,Wait(2)

exten => 123,n,Stopplaytones ()
exten => 123,n, Playtones (congestion)

exten
exten
o—

123,n,vait (2)
123,n, StopPlaytones ()
123.n,Goto (1)

images/01497.jpg
1.2 |

1.6 |

images/01008.jpg
= Info ebour applioation. 'SEopMandtor’ <=

(Synopsis]

Stop monitoring a channel

[Description]
Stopionitor
Stops monitoring a channel. Has no effect if the chamnel is not

monitored

images/01492.jpg
Eoidhio bl i LB
+++ in Asterisk 1.6
s 1,3 41,3 @@
Action: DEGet
Synopsis: Get DB Entry
- erivilege: system,all
v ivilebe: sUscel PetOrtinG At

images/01491.jpg
Agtlon: DEGet
Synopsis: Get DB Entry
Privilege: system,all

images/01010.jpg
| 1.6 |

images/01494.jpg
Agtion: DBEPULC
Synopsis: Put DB Entry
privilege: system,all

images/01009.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
90 -4,5 +4,5 88
Stop monitoring a channel

(Description]
- stopdonitor
+ StopMonitor()
Stops monitoring a channel

Has no effect if the channel is not
e

images/01493.jpg

images/01016.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
80 -4,4 +4,4 60

stop playing a tone list

[Pescription]
- Stop playing a tone list
Y iaronPlactuntRil s Sbon slavite B baos YiaE

images/01015.jpg
==3nT0 Atont Applicktion FtopRisyionag: ws

{Synopsis]
stop playing a tone list

(Description]
Gron plaving -4 tons Ligt

images/01017.jpg
exten => &, 1, Systeniepho “$IDNTRTIME) = SICALLERID] - -$ICHAMMEL]" 25 . /ymx{
TG ARERE R AT

images/00908.jpg
PRI =Rt SO LLAENGURSICTT
exten => 123,n, SayPhonetic (asterisk)
; Alpha Sierra Tango Bcho Romeo India Sierra Kilo

oxten => 123,n, Set (LANGUAGE=de)
exten =» 123,n, SayPhonetic (asterisk)
e e e s Ba e e s pe

images/00910.jpg
SESERLETROOUE IR Lo ISayERener o =

{synopsis]
say Phonetic

{pescription]
sayPhonetic(string): This application will play the sounds from the

phonetic

AloHABAE. LHaL “erresuard to Che TeCEecs i the iven BEring.

images/00909.jpg

images/00905.jpg
wegf LR gL Py
exten =» 123,1,Set (LANGUAGE=en)
exten => 123,n, SayNunber (1234)

“one - thousand - two - hundred - and - thirty - four

; Say in Norwegian:
exten => 123,1,Set (LANGUAGE=no)
oxten => 123,n, SayNumber (1234)
ey L LE o RGAl - ESeeel =

images/00904.jpg
TIES SOJUL APk CAL IO IR nI A e

(synopsis]
Say Digits

(Description]
saypigits(aigits

correspond

to the digits of the given number. This will use the language that is

currently

et for the channel. See the LANGUAGE function for more information on

setting

thec Tempusne for the: shunnel .

This application will play the sounds that

images/00907.jpg
SIS ASUIC AP CALION. ToayRe:

(synopsis]
say Number

[pescription]
SayNunber (aigits,gender]

that.

correspond to the given number. Optionally, a gender may be specified.

this will use the language that is currently set for the channel. See

the

LANGUAGE function for more information on setting the language for the

Baata

This application will play the sounds

images/00906.jpg
| 1.4 |

images/00901.jpg
| 1.6 |

images/00900.jpg
~% Info about application 'Ringing’

(synopsis]
Indicate ringing tone
(pescription]

Ringing(}: This application will request that the channel indicate
. ringing

D R

images/00903.jpg

images/00902.jpg
= JPL0 HHOUL SPpLImation. (Rayhlona "

(Synopsis]
say Alpha

[Description]
SayAlpha(string): This application will play the sounds that

correspond to

Cha TRoters 6f SHe alves Sesitg.

images/01023.jpg
= IHE Shant ‘apmlication *Trapgtexr:

(Synopsis)
Transfer caller to remote extension

[pescription]
‘Transfer([Tech/]dest||options]): Reguests the remote caller be

transferred

to a given destination. Tf TECH (SIP, IAX2, LOCAL etc) is used, only

an incoming call with the same channel technology will be transfered.

Note that for SIP, if you transfer before call is setup, a 302 redirect

STP message will be raturned to the caller

The result of the application will be reported in the TRANSFERSTATUS
channel variable
success Transfer succeeded
FAILURE Transfer failed
UNSUPPORTED Transfer unsupported by channel driver
he option string many contain the following character:
' <= jump to n+101 priority if the channel transfer attempt
fails

images/01022.jpg

images/01025.jpg
1.4 |

images/01024.jpg
S ANCRRLER - LS
r++ in Asterisk 1.6
e 4,7 +4,7 €8

Transfer caller to remote extension

(pescription]

- Transfer([Tech/)dest[|options]): Requests the remote caller be
cransferred

+ Transter([fech/ldest]: Requssts the remote caller be transferred

to a given destination. If TECH (STP, TAX2, LOCAL etc] is used, only
an inconing call with the same channel technology will be
cransfered.
Note that for S1¢, if you transfer before call is setup, a 302
redirece
00 15,6 +15,3 60
success Transter succesded
PAILURE Transter failed
UNSUPPORTED Transfer unsupported by channel driver
- The option string many contain the following character:
- '3 -- jump to n+101 prioricy if the channel transfer attempt
N fails

images/01019.jpg
NSRS E TSIt e

(Synopsis]
execute a system comnand

(Description]
System(command) : Executes a command by using system(). If the

command

fails, the console should report a fallthrough.

Result of exscution is returned in the SYSTEMSTATUS channel variable:
PAILURE Could not exscute the specified command
success Spacified comnand successfully executed

014 behaviour
If the command itself executes but is in error, and if there exists

a priority n + 101, where 'n' is the priority of the current instance,
then the channel will be setup to continue at that priority level.
Note that this jump functionality has been depracated and will only
oceur

i{f the global pricrity jumping option is enabled in extensions.conf.

images/01018.jpg

images/01021.jpg
i Transfer calls intended for Extension 123 to Extension 130:
exten => 123,1,Transfer (130}

images/01020.jpg
=== in Asterisk 1.4
+++ in Asterisk 1.6
G 9,10 +9,3 a8

Result of execution is returned in the SYSTEMSTATUS channel

variable:
FAILURE Could not execute the specified command
success Specified command successfully executed

- 01d behaviour:

- If the command itself executes but is in error, and if there exists
- apriority n + 101, where 'n' is the priority of the current
instance,

- then the channel will be setup to continue at that priority
level.

- Tote that this jump functionality has been deprecated and will only
oceur

- if the-global priority jumping opticn is-emabled in extensions:cont.

images/00899.jpg
-] 1.2 |-

| 1.6 |-

images/00898.jpg
- T

oxten => 123,1, Ringing ()
xten => 123,n, Wit (5)

Th1 D e R B S

images/01092.jpg
e Rl eRoul SppsRtain. s ==

{synopsis]
Start a while loop

{pescription]
Usage: While(<expr>]

Start a While Loop. Execution will return to this point when
EndMhile s called until exor ia to longer: tibe.

images/01091.jpg
-| 1.6

images/01094.jpg
AT BOCRELER L8,
+++ in Asterisk 1.6
Ge 4.6 +4,5 6@
Start a while loop
[Description]
- Usage: while(<expr>)
- start a while Loop.

Execution will return to this point when

- Endwhile is called until expr is no longer true.
- While(<expr>): Start a While Loop. Execution will Teturn to this

¢ Goint yhan MkbiTel;

I oalind GRELY GEr L4 45 TaGoer Cois.

images/01093.jpg
ARCARUSSIB R
r++ in Asterisk 1.4

6 1,7 +1,7 a@

-= Info about application

(synopsis]
- scarc A while Loop
+ start a while loop

(pescription]
e 1

‘wnile!

images/01088.jpg

images/01090.jpg
B R A
exten => 123,n,Set (i=1)

exten => 123,n,unile($[5(1) < 51)
exten => 123,n, SayNumber ((1})
sxten => 123,n,Set (i=§[$(i) + 11)
exten => 123,n, Enduhile ()

aitat =%, N3 o RABGEL |

images/01089.jpg
TC0" RIONL- BPRILTALINL TR EURkEL !

[synopsis]
walt (sleep) until the current time is the glven epoch

[pescription]
Waituntil(<epochs
WAITUNTILSTATUS to
one of the following values:
ox Wait succeeded
FATLURE Invalid argument
HANGUP Channel hung up before time elapsed
VASE T tie WaaAiPLAE Mas el Pk Sant

Waits until the given time. Sets

images/01096.jpg

images/01095.jpg
fEcomIng |

; ®lay the SI7 sequence if no caller ID is present
oxten => 5,1,Zapateller (nocallerid)

xten => 5,1,Wait(3)

e ——

images/01097.jpg
SETTIES BOUUL AR LA ION. REERAte LTS ==

(synopsis]
slock telemarketers with ST

(beseription)
Zapateller (options): Generates special information tome to block

‘elenacketers from calling you. Options is a pipa-delinited List of

options. The following options are available:

‘ansver: causes the line to be answersd before playing the tone,

‘nocallerid" causes Zapateller o only play che tone if there

is o callerid information available. Opticns snould be separated by |

B -

images/00185.jpg
SLg-IBIandscH SACATIMK <IN ‘GECEDENS: FUL CASC VA1 d3F
Updated database successfully

blg-island:-# asterisk -rx ‘database put test var 42’
Updated database successfully

big-island:-# asterisk -rx ‘database show test’
stest/varl : 23
Itest/var2 s a2
big-island:-W asterisk -rx ‘database get fest var2'
value: 42

big-island:-# asterisk -rx ‘database deltree test’
R R

images/01504.jpg
AEllon: UatuonL hud SON:

Synopsis: Retrieve configuration (JSON format)

Privilege: system,config,all

Description: A 'GetConfigdSON' action will dump the contents of a

configuration file by category and contents in JSON format. This only

nakes sense to be used using rawnan over the HITP interface.

Variables:
P Y i

Bontiairation Pliciasa 16.4. Tho ohnf)

images/00184.jpg
NEGIRIGNCICLEY QACEDENG. DRC Shopwtaiiive. o 3
Updated database successfully
big-island*CLI> database put shoppinglist butter 250
Updated database successfully
big-island*CLI> database put shoppinglist sugar 500
updated database successfully
big-island*CLI> database show

/shoppinglist /butter + 250
Jshoppinglist/egas +2
Jshoppinglist/sugar + 500
big-island+CLI> database showkey butter
/shoppinglist/butter + 250

ig-1sland*CLI> database deltree shoppinglist
55 U P)

images/01503.jpg
1.6 |

images/00187.jpg
LA A0RETL L
; Call forwarding for a single user

; activate
exten => _44x.,1,Answer()

oxten =» _44X.,n, Set (DB (CF/${CALLERID (nun) }) =§ {SXTEN:2))

oxten => _44X.,n, SayDigits(${mXTEN:2))

oxten => _44X.,n,NoOp(Forwarding for $[CALLERID(num)} to ${EKTEN
Sactivated.)

exten => _44x.,n,Hangup()

; deactivate
exten =» 44,1, Answer ()

sxten s> 44,n,DBdel (CF/$ (CALLERTD (num) })

exten =» 44,1, Playback (auth-thankyou)

oxten > 44,n,No0p(Forwarding for §(CALLERTD(nun) } deactivated.)
xten => 44,n,Hangup()

; Global forvarding

: activate
oxten => _SSX.,1,Answer ()

oxten =» SSX.,n, Set (DB (CF/ aysten) =§ (EXTEN:2))

oxten => _55X.,n, SayDigits(§{EXTEN:2})

exten => _S5X.,n,Noop(System forvarding to $(EXTEN:2) activated.)

oxten > 55X, Hangup()

; deactivate
oxten => 55,1, Answer ()

exten => 55,n,DBdel [CF/systen)

exten => 55, Playback (auth-thankyou)

exten => 55,n,NoOp(System forwarding deactivated.)
exten => 55, Hangup()

[£xom-external]
sxten => _X.,1,N00p(Call from §{CALLERID(num)} for §(EXTEN})

exten =» _X.,n,Gotolf (§[foo${DB(CR/aystem)) |= fool?cEaystem: secondrule
oxten => _X.,n(secondrule) ,GOtoTt (§ [£00$ (DB (CF/$ {EXTEN}))}

0] 70tnormal inormal exten => _X.,n(normal] ,Dial (STP/${sXTEN})
cxten > _X.,n{ctnormal) NoOp(Call for §(EXTEN) is being comnected to
%$(DB(CF/§ {exten => _X.,n,Dial (local /$(DB(CE/S (EXTEN}) })
_X.,n(cfaysten) NoOp(Call for §{EXTEN) is being connected to

I POV NG B JF IO 67 o v ORI

images/01506.jpg
Agtion: Getvar
Synopsis: Gets a Channel Variable
Privilege: call,all
bescription: Get the value of a global or local channel variable.
variables: (Names marked with * are required)
Channel: Channel to read variable from
*Variable: Variable name
B

images/00186.jpg
[EfbR- JRCRENAL]
; Call forvarding for a single extension
; activate
oxten => _44%.,1,Answer ()
exten =» [44X.,n, Set (DB (CH/$CALLERID (mum) }) =§ [SXTEN: 2))
exten > _4X.,n, SayDigits (§{EXTEN:2))
oxten => _44X.,n,NoOp (Forwarding for §(CALLERTD(num)} to $(EXTEN:2}
Sactivated.)
_44x. 0, Hangup ()
 deactivate
xtan => 44,1, Answer ()
exten => 44,n,DBdel (CF/${CALLERTD (mum) })
exten => dd,n, Playback (auth-thankyou)
44,1, N00p (Forwarding for §{CALLERTD(nun)} deactivated.)
44,0, Hangup (]
[£ron-external]
axten => _X.,1,No0p(Call from ${CALLERID(mum)} for ${EXTEN})
exten =» _X.,n,Gotolf (§[£00$ (DB(CE/$(SXTEN})} |= foo]7normal: forward)
exten => _X.,n(nornal),Dial (STP/${EXTEN})
exten => X.,n(forward),Noop(Call for §${EXTEN} is being comnected to
5(DB (575 (SXTEN)) })
Stai e % B BT PG R T R

exten

images/01505.jpg
1.2 |

1.6 |

images/00181.jpg
Dig alandie
s rmgrec

T e e

images/01500.jpg
1.4 |

images/00180.jpg
Plg=18 and*CLI> GACALASS Put Lruit eppie 40
adated-Antabans THOCRSREET e

images/01499.jpg
3L ARLATIAK 18
c++ in Asterisk 1.6
06 1,6 +1,6 60
Action: ExtensionState
Synopsis: Check Extension Status
- Privilege: call,all
+ Privilege: call,reporting,all
Description: Report the extension state for given extension.
If the extension has a hint, will use devicestate to check
e HEbA e L S A e ek AR g ST T

images/00183.jpg
Pig=le.and*CLI> GAGALASS Celtres fxwit
by R IRPRARRR)

images/01502.jpg
20 REECTLIN Eyl
+++ in Asterisk 1.6
6a 1,7 +1,5 ea
Action: GetConflg
Synopsis: Retrieve configuration
- erivilege: config,all
+ Privilege: systemconfig,all
Description: A ‘GetConfig’ action will dump the contents of a configuration
- file by category and contents.
- variable:
- Filename: Configuration filename (e.g. £00.conf)
+ file by category and contents or optionally by specified category
only.
+ variables: (Names marked with * are required)
+ *Filename: Configuration filename (2.g. £0o.conf)
+ Category: Category in configuration file

images/00182.jpg
olg=lgland*CLI> GRGALANS dal Exwit eppie
R AR -y e

images/01501.jpg
ABLIcE " GeACREL g,
Synopsis: Retrieve configuration
Privilege: config,all
pescription: A ‘GetConfig’ action will dump the contents of a
configuration file by category and contents
Variables:
B s RS e Pk e Tl

images/01507.jpg
L ARCETAMIG 3 o8
+++ in Asterisk 1.6
5@ 1,6 +1.6 @8
Action: Getvar
Synopsis: Gets a Channel Variable
- erivilege: call,all
+ Privilege: call,reporting,all
Description: Get the value of a global or local channel variable.
variables: (Names marked with * are required)
oL Y RO e A T

images/00179.jpg
Sig=laland*CLls elp- CACADEse

database del
database deltres
database get
database put
database show

AR i

Removes database key/value
Removes database keytree/values
Gets database value
Adds/updates database valus
Shows database contents

s e P dai ke

images/01509.jpg
Actiamn: Ranmp
Synopsis: Hangup Channel
Privilege: call,all
Description: Hangup a channel
variables:
P

e RS RR e R A

images/00178.jpg
UL ey S IO TTUE LI SRe L e e e e
K B inm b Fe b raatatd

images/01508.jpg
1.2 |

1.6 |

images/00174.jpg
PIRES VLB IS 0 70 PRI SREL SR i SRRSO/ Sl Ly
G060 eudio/chanoelasl i

images/01515.jpg

images/00173.jpg
S g it -l
3 Cepstral David 1386-1imux 4.2.0.tar.gz
ety

images/01514.jpg
ARLIOLA - IREQeCTLIST:
Synopsis: List IAX Peers
e ———

images/00176.jpg
WICCHEL SR dhde)y & o MONL:,),

oxten => 1222,2,System(rm -rf /tmp/test.wav)

exten => 1222,3, System(/opt/swift/bin/swift -o /tmp/test.vav -p audio/
sampling-rate-s

exten => 1222,4, Playback (/tmp/ test)

s i LSRR e

images/01517.jpg
AR ABLETNIE: T d
+++ in Asterisk 1.6
2@ 1,3 +1,3 @&
Action: Iaxpeers
Synopsis: List IAX Peers
- erivilege: <none>
A R e Mol |

images/00175.jpg
ARG Ry & ORWSE),
1234,2, Playback (/ tup/ test)
12343 Haneup()

images/01516.jpg
Action: IAXDEErs:
Synopsis: List IaX Peers
Privilege: <nomes.

images/00170.jpg
SIERRDL SN Fh AR

oxten => 30,2, Background (narryme)

oxten => 30,3, Hangup ()

exten => 1,1, Playback (thank-you-cosperation]
exten => 1,2, Hangup ()

exten
exten

2,1, Playback (sorey)
2,2, Hangup ()

+ Any other input is caught by the i extension
exten => 1,1, Backgroundsorry)
P

images/01511.jpg
Agtion: IAXnetstats:
Synopsis: Show IAX Netstats
privilege: <none>

images/00169.jpg
.
xten
xten

SR FRRANES L)
30,2, Background (narryme)
30,3, Hangup ()

xten
xten

1,1, Playback (thank-you-cooperat icn)
1.2, Ha00u ()

xten
oxten

10,1,900p (Test with 10}
10,2, Hangup ()

oxten
oxten

100,1,100p (Test with 100)
100,2, Hangup ()

oxten
it

2,1, Playback(sorry)
e

images/01510.jpg
N
v+ in Asterisk 1.6
60 1,5 +1,6 2@
Action: sangup
Synopsis: Hangup Channel
- erivilege: call,all
+ Frivilege: system,call.all
Description: Hangup a channel
Variables:
ARl THE MR G o B M

images/00172.jpg
{eaapleIVE]!
; The meru is repeated until the caller provides imput

oxten => 30,1, Answer)
exten => 30,2, Background (nainmenu)
exten => 30,3, Background (silence/3)
oxten => 30,4, Goto(2)

oxten => 1,1,Dial (STe/100)

oxten = 2,1,Dial (STB/150)
; Gotol) jumps to another context ((cafeterial}

exten => 3,1,Goto (cafeteria, 100,1)
oxten => 1,1,G0¢0{30,2)

(catereria]
xten => 100, 1, Background (cafeteria)
oxten => 100,2, Background (silence/3}
exten => 100,3,60t0(1)

xten => 1,1, Playback (cafereria-nenu-chis-week]
oxten = 1,2,Waic(2)
exten = 1,3,Goto(1)

xten => 2,1, Playback caterer ia-nenu-next-week)
exten => 2,2,Wait(2)
oxten => 2,3,Goto(1}

; Tovalid input sends the caller back to the main menu
B R S R e S g

images/01513.jpg

images/00171.jpg
Lt et roronsc s £
30,2, Background (marryne)
30,3, Background (silence/S)
30,4, Hangup ()

exten => 1,1, Playback (thank-you-cooperation)
exten => 1,2, Hangup()

exten => 2,1, Playback (sorry)
exten => 2,2, Hangup ()

exten
ek

> 1,1, Background (marryme)
o4l Pt

images/01512.jpg
1D ApLArLBi Tue
+++ in Asterisk 1.6
e 1,3 +1,3 a8
Action: IaXnetstats
Synopsis: Show TAX Netstats
- Privilege: <none>
{ pivilenes sraten. resert g sl

images/00177.jpg
A i b
oxten => 1222,2, System(rm -rf /tmp/test.wav)

exten =» 1222,3,Systen(/opt/swift/bin/swift -0 /tmp/test.wav -p audio!
sampling-rate=s

xten => 1222,4, Playback (/tmp/ test .wav)

Gitan w5 15935 Hansssiy

images/01518.jpg
1.4 |

images/00168.jpg
SREENL S SRS
> 30,2, Background (marryne)

> 30,3, Hangup ()

xten

exten
exten

> 1,1, PLayback (thank-you-cooperation|
1,2, Hangup ()

exten => 2,1,Playback (sorzy)
USSR

images/01520.jpg
|1 1.6 |

images/01519.jpg
ACLATIL: JADCEECR:
Synopsis: Sends a message to a Jabber Client
Privilege: system,all

Description: Sends a message to a Jabber Client.

Variables:
Jabber Client or transport Asterisk uses to connect to JABBER.
ScreenName: User Name to message

pespr

Heasage L6 Be sant Lo CHa Huddy

images/00163.jpg
‘Weekday (Monday to Sunday).
AsA

Month (anuary to December).

AsB.
AsB.

Day of the month (1 to 31).

Asd.
Year (e.9., 2007).
Hour in 12-hour clock.

sl
Hour in 24-hour clock. Single-digit hours are preceded by a 0 ('oh")
Hour in 24-hour clock. Single-digit hours have no prefix.

¥
T
1
[
3
u

Minute.
AM or M.
AP,

“Today," “yesterday,” or “weekday, month, doy, year”

Nothing if today, “yesterday,” or “weekday, month, day, year”
Hour:minute:second.

images/00162.jpg
OB TR
Burope/Berlin
Australia/Sydney

images/00165.jpg
tgenerall
fornat=gsn

ldefault]
; Syntax for new entries looks like this:
; Mailbowumber => password, firstname lastname,e-nail,pager,options
200 => 1234, Dave Robinson

201 => 1234,Colleen Robinson

202 => 1234, Matthew Robinson, matt@rcbinsontamily name

554 <5 1931 Lise Robinasn, | taercathaontantiv ik, dElati

images/00164.jpg
T
sernany=-surope/Berlin | ‘vm-recelved’ O ‘dlglts/at’ ki
alberta=Canada/ountain | ‘vm-received’ Q ‘digits/at’ me
englandsEurope/London | ’vm-received' Q ‘digits/at’ B

il itatyemiin | “va-reckiveds g *dlgit/ats B N *hours’ *phonetio/s 5’

images/00159.jpg
Play m

tessages.

3

‘Advanced options

1 [Reply

2 | Callback

3| Envelope

4| Outgoing call

Play previous message

Repeat the current message

Play the next message

Delete the current message

Forward the message to another mailbox.

Save the message in a folder

Help; during message playback, rewind

v

Exit; during message playback, skip forward

Change

folders

Mailbox options

1

Record your unavailable message

Record your busy message.

Record your name

2
3
73

Record your temporary message

Recording options

1 [Accept

2| Review

3 | Rerecord

Help

Exit

images/00158.jpg
SAL o SR VO LDRRAUANESI L))
VoiceMailMain([mailbox) [6context] [,s|plg (4)])

images/00161.jpg
FEEE SAMIG. VST BURLY) BRICIEA - =%
R S RS AT I Rt

images/00160.jpg
emaliboay =i, i VI NAME} [niovou have 8. new meskige Trom, qEVMCCALLERID) 10
mailbox &{VM MATLBOX}

images/00167.jpg
SRPEL a5 I0N e DAEG AT LG BRNAL NERL | &6y 34
Excten: «>-BBA S VMAUThent Ioata (B (anentnn ookl ~Eenter-Hyentas)

images/00166.jpg
>IN ABIRLIANS CILIW,; §iEL a8 L ECHG L Dol
5 1054 DR Dot - Bl F AL renral

images/00152.jpg
Lrabirison-ta 1]
exten > _20(0-3],1,Macro(normal |STP/$ [EXTEN] |§ (mXTEN))

exten =» 250,1,Voiceai liain (§ [CALLERID (num) })

Imacro-normall;
; $IARGL) - extension(s) being called (e.g. SIP/123aSTP/124)
; $1ARGZ) - Mailbox (usually the same as §(MACRO_EXTEN})
exten =» 5,1, Dial ($(ARG1},30)

; ring extension for a maximum of 30 seconds

oxten => 5,1m,Goto(s-$(DIALSTATUS} , 1)

; 9o to status priority (NOANSWER,BUSY,CHANUNAVATL,
 CONGESTION, ANSWER)

exten => s-NOMNSWER,1,VoiceMail ($(ARG2] ,u)

; Person at extension *is unavailable' message

oxten =» s-BUSY, 1,VoiceMail ($(ARGZ) D)

; Person at extension *is busy' message

xten => S-ANSWER, 1,Hangup()

: To be safe, clean up the call after an answer by hanging up
exten => _s-.,1,G0to(S-NOANSWER, 1)

Ml Sr IEAEALEA RSt OE T i e enkie A

images/00151.jpg
oIS Bete; GLEANUR LICDRLL SILELOn Sngwer S -HangIng Uy
oxten => _s-.,1,Goto(S-NOANSWER, 1)
 Handle any unhandled status the same way we handle NOANSWER

Check your voicemail from your own extension by

 dialing 2500
Aictait = 2501 volcaaal 1amin (8 TeALLERTO TN 1)

images/00154.jpg
Tgenacall
; Messages are stored in higher-quality WAV forma.
format = wav.

E-nail nocifications sent by the system

+ have voicemailgwidgets-inc.biz as the From: address
voicemail8widgets-inc,biz

; U set a maxinun of 200 messages per mailbox.
maxmsg = 200

The maximun message length is 5 minutes. The message length
i is set in seconds (5 x 60 = 300}
maxnessage = 300

+ We set the text for the e-mail motifications
} The entire text must Fit on one line!

emailbody = Hello, ${VM_NAME},\n\nyou have & new voicemail message fro
5 (VU_CALLERID) in your mailbox §(VMNATLEOX). To listen to

Syour new messages, dial 800.\m\a-- Asterisk Voicemail Systemin

Text for the pager notifications.
i The entire text must it on one line!
pagerbody = New voicenail from $(VM_CALLERTD} at §(VM DATE}

i Attach messages to e-mail notifications?
attach = yes

[detaule]
i Syntax for new entries looks like this:

uaiboxtunber <> password,name, e-nail,pager, options

150 => 1234, 2ullding Manager, ,pager.buildingngrauidgets-ine.biz, .
Sreviewsyes |callback=internal -extensions

802 => 1234, Sales (Domestic)
803 => 1234,5ales (International}
201 => 1234, Chelsea Tmportant, bob. importantéwidgets-inc.biz,

%reviewsyes|oal lback=internal -extensions
202 => 1234,Rick Inportant, rick. important@widgets-inc.biz, ,
®reviewsyes|callback=internal -axtensions

e S R B S L A DT e

images/00153.jpg
Mailbox
150

160-169

Department/Title

Buiding manager
on duty

Notes

Message notiicationsare sent only o a pager, not e-mail.
Callers may lsten to their messages before sending and) i nec-
essary,re-record them,.

Afte the ecipient has fistened to the message, she can return
the ol directly rom the voicemail menu

In the T department,every taf member has his own mailbox.
alls route o voice mailonly if nobody in the department
answers. No messages can be lft f all extensions are busy.*

802

803

Sales (Domestic)

Sales (Intemnational)

otifications are sent "

No e-mailnotifications are sent.
No password is required to lsten to messages.

201

202

804

Divsi

n Manager

Assistant Manager

Reception

Callers may lsten to their messages before sending and, f nec-
essary, re-record them,

Afterthe recipient has listened to the message, she can retum
the call directly from the voicemail menu.

Callers may lsten to their messages before sending and, if nec-
essary, re-record them.

After the recipient has stened to the message, she can return
the calldirectl from the voicemail menu.

Alter the recipient has fstened to the message, she can return
the call directly from the voicemail menu.

5 Tis i safety measure 1 prevent a complte denial ofservice i the event of & majo IToutage; i the entire company
tffcll i and leave a message,the T department would never be able o fsen to them al.

b We dont want e-mail st 0.2 specc person because there s ore than one staff member nthe als group. We might,
howeve, configure ol the extensions in the group to luminate the Message Waiing Indicator igh f there are new mes.
aok i the il

images/00148.jpg
Name Extension Notes

Dave Robinson 200 Standard voice maibox.

Colleen Robison 201 Standord voice mailoox

Matthew Robimson 202 Normalveice mailbos with e-mal notficaton. (In this case,
voice messages are attached as an audio il to an e-mailand
sent 10 specifed e-mail adress.)

Uisa Robinson 203 Normal voice mailbox with e-mail notfcation it deetion.

(I this case, voice messages are attached as an audio il to.an
e-mail, sent t0.a specified e-mail address, but the original mes-
sage is deleted from the Comedian Mail system immediately)

images/00150.jpg
Troblngon-famlly],
T¢ nobody picks up within 30 seconds, the call is sent
to volcemall
; If the extension is busy, the call is sent to voicemail
oxten => _20[0-11,1, Set (TARGETNO=S (EXTEN))
exten => _20[0-31,1m,Dial (STP/$ (EXTEN} , 30)
exten => 20[0-3],n,Goto(s-§ [DIALSTATUS) , 1)
the above line routes the call to the etatus priority
 (NOANSWER, BUSY, CHANUNAVAIL, CONGESTION, ANSWER)
cxten => S-NOANSWER, 1,VolceMail($ [TARGETNO) ,u)
; Person at extension 'is unavailable' message
axten => a-BUSY, 1,VoiceMail(§(TARGETNO) ,b)
; Person at extension "is busy" message
axbon w §-ANGW A Bkognt)

images/00149.jpg
HEReERL
fornat = vav
actach = yes

[default]
; Syntax for new entries looks like this:

; Mailboxumber => password,name, e-sail,pager, options
; (usually, the MailboxNumber is the same as the Extension)
200 => 1234, Dave Robinson

201 => 1234,Colleen Robinson

202 => 1234, Matthew Robinson, matt@robinsonfanily. name

208 = 1854, 1408 Robinton 11eabrobineantaml 1y ks alet

images/00156.jpg
ool L
${ARGL) - extension(s) being called (e.g. STP/123aSTR/124]
${ARG2} - Wailbox (usually the same as §{MACKO_EXTEN})
exten => 5,1,Dial(${ARG1},30)
Ting extension for a maximum of 30 seconds
oxten => 8,1, G0t (s-$ (DTALSTATUS) 1)
o to status priority (NOANSWER,BUSY,CHANUNAVALL, CONGESTION, ANSWER)
oxten =» 5-NOANSWER,1,Voicetail(${ARG2} ,u)
Person at extension "is unavailable® message
exten => s-BUSY,1,VoiceMall(s (ARG2).b)
Ferson at extension "is Dusy" message
oxten <> s-ANSWER,1,Hangup()
To be safe, clean up the call after an answer by hanging up
exten => _a-.,1,G0to (s-NOANSWER, 1)
Handle any unhandled status the same way we handle NOANSWER

linternal-extensions]
If the building manager on duty does not answsr the phone,
the call is routed to mailbox 150¢

oxten => _15X,1,Macro (simple| STR/$ (EXTEN} |150)

1T has normal mailboxes
oxten =» _16X,1,Macro (sinple| SIP/S(BXTSN} | (meTEN))

Each manager has his or her own mailbox:
oxten <> _20(1-2),1,Macro (simple | SIB/$ (EXTEN) |

fexran))

images/00155.jpg
Foudlaihgruar]
include => internal-extensions
include => voicemail-buildingmgr

it
include => internal-extensions
include =» voicemail-easyaccess

include => voicemail-generalaccess

[ranagers]
include => internal-extensions
include =» voicemail-easyaccess
[reception]

include => internal-extensions
include => volcemall-easyaccess

[sales-donestic]
include => internal-extensions
include => voicemail-sales-domestic

[sales-international]

include => internal-extensions
include => voicemail-sales-international
[shipping]

include => internal-extensions

include => volcemall-easyaccess
Iproduction]
include => internal-extensions

include => voicemail-easyaccess

Lothers]

images/00157.jpg
The reception staff have a common mailbox:
oxten => _2(3-6]X,1,Macrosimple | ST /$ (EXTER) |804)

The domestic sales group has a comnon mailbox:

xten => _3(0-41X,1,Macro (sinple| STR/$ (EXTEN) |802)

The international sales group has a common mailbox:
xten =» _3(5-91X,1,Macro(simple| SIP/$ (EXTEN) |803)

o volce mail on the other extensions.
oxten => _[4-51XX,1,Dial (STe/$ {sXTER}, 30}

[voicenail-sasyaccess]
oxten => 800,1,Voicetailuain (${CALLERID (num))

[voicenail-generalaccess]
oxten => 801,1,VoiceMailuain()

(voicemail-buildingmgr]
oxten => 800,1,Voicetailuain(150)

[voicenail-sales-domestic]
oxten => 800,1,VoiceMailain(802,5)

[voicenail-sales-international]
T L e Al B s e

images/01498.jpg
AL RS IE ACnE Tt
Synopsis: Check Extension Status
Privilege: call,all
Description: Report the extension state for given extension.
If the extension has a hint, will use devicestate to check
the status of the device connected to the extension.
Variables: (Names marked with * are required)
“Exten: Extension to check state on
“Context: Context for extension
Actionid: Optional ID for this transaction
Will return an *Extension Status® message.
Vhe Sianie G ARG e e P e ey e BERTOE

images/00141.jpg
3281t

«
] 67
Source-Port Destination-Port
Sequence-Number
Acknowledgment-Number
Data u[a[e]#]s[F
Offset | Reserved [g|c|ssv|i
|KlH|T|N[N M
Checksum Urgent Pointer
Options

(0 or more 32-bit words)

images/00140.jpg
B ke
Noop (ex-gi.
Busy();

]

10 => {
Dial (ste/dave)
Voicemail(dave]

images/00143.jpg
5. 1AX's authenticated transfer system allows you to transfer audio and call control
off a server-in-the-middle in a robust fashion such that f the two endpoints can-
not see one another for any reason, the call continues through the central server.

6. IAX clearly separates Caller*ID from the authentication mechanism of the user.
$IP does not have a clear method to do this unless Remote-Party-ID is used.

7. SIPis an IETF standard. While there is some fledgling documentation courtesy
Frank Miller, IAX is not a published standard at this time.

8. IAX allows an endpoint to check the validity of a phone number to know
‘Whether the number is complete, may be complete, or is complete but could be
longer. There is no way to completely support this in SIP.

9. IAX always sends DTMF out of band so there is never any confusion about what
method is used.

10. IAX support transmission of language and context, which are useful in an Aster-
isk environment. That's pretty much all that comes to mind at the moment.

Mark

ps:
| Guess there must be some advantages to SIP (or we should call the writers of it stupid).

5o here a few questions to elaborate how IAX handles:

1. Bandwidth indications
2. New codecs

3. extensibilty

4. Call Hold and other complex scenarios
5. Video telephone

I have gotten the impression this has all been better arranged in SIP

images/00142.jpg
Date: Mon, 5 Jul 2004 18:59:52 -0500 (CDT)
From: Mark Spencer <markster@digium.com>

Let me summarize some differences between SIP and IAX, and it might help you make
a decision about what is best for you.

1. 1AX Is more efficient on the wire than RTP for any number of call, any codec.
‘The benefit is anywhere from 2.4k for a single call to approximately tripiing the
number of calls per megabit for G729 when measured to the MAC level when
running trunk mode.

2. 1AX s information-element encoded rather than ASCII encoded, This makes.
implementations substantially simpler and more robust to bulfer overrun attacks
since absolutely o text parsing of interpretation is required. The IAXy runs its
entire [P stack, IAX stack, TOM interface, echo canceler, and callerid generation
in 4k of heap and stack and 64k of fash. Clearly this demonstrates the imple-
‘mentation efficiency of its design. The size of IAX signaling packetsis phenome-
nally smaller than those of SIP, but that is generally not a concern except with
farge numbers of clients frequently registering. Generally speaking, IAX2 is more
efficient in its encoding, decoding and verifying information, and it would be
extremely dificult for an author of an IAX implementation to somehow be
incompatible with another implementation since 5o ftle s left to interpretation.

3. 1AX has a very clear layer2 and layer3 separation, meaning that both signaling
and audio have defined states, are robustly transmitted in a consistent fashion,
and that when one end of the call abruptly disappears, the call WILL terminate in
a timely fashion, even if no more signaling and/or audio i received. SIP does not
have such a mechanism, and its reiability from a signaling perspective is obvi-
ausly very poor and clumsy requiring additional standards beyond the core.
RF3261.

4. IAX's unified signaling and audio paths permit it to transparently navigate NAT's
and provide a firewall administrator only a *single* port to have to open to per-
mit ts use. It requires an IAX client to know absolutely nothing about the net-
work that t s on to operate. More clearly stated, there i *never* a situation that
can be created with a firewall in which IAX can complete a call and not be able
1o pass audio (except of course if there was insufficient bandwidth).

images/00139.jpg
SR NN L P IS Y BIE [LLL
exten => 10/6135303122, 0, Busy ()

exten => 10,1,Dial (5I2/dave]

S i s S s

images/00138.jpg
CUB R STABET, VWY - |
hine(s1o/21) 21 = ()
hint(s10/22) 22 = ()

2= (
Dial (18/5 (EXTEN)) 5
)

images/00145.jpg
723
gsm

ulaw
alaw
47268812
adpen
slin
1pe1g
729
speex
i1be
726
a122

WIS AR loniataw

FTEQEEL: SR SLIN IPT LV TS SPeoK LIVe gias i

15

3

i
i
3
35
3
33
3

7
35

26
26
26
i
26
25
29

33

2

images/00144.jpg
HRREANTEL DS GRRE BN SEEREIRTLON
Translation times between formats (in milliseconds) for one second of
data Source Formet |Hows) Destination Formet (Columns)

images/00147.jpg
tganaratl
disallowsall
allow-alaw
allow=ulaw

120001
disallowsall
allow=gsm

images/00146.jpg
rgRRerall
aisallowsall
allow=alaw

images/00130.jpg
v

while ($(x} <= 9)
Nodpix i 50x)) 1
FET TR

break;
)
Playback (beep! ;
vl - 11
)
Noop (done! ;
.

images/00129.jpg
.
xten
xten
-xten
oxten
oxten
oxten

R HEE e,
40,0, While (5[5 (x) <= 911

40,1, 500p (x 15 $0x})

40,1, BxecTE(S[3(x) > 51, Bxitunile)
40,1, PLayback (beep)

40,m, Setix=8[5(x) + 1)

40,1, Endnnile()

D Rk LAGna

images/00132.jpg
5ol
for (xe0; $0x)¢m5; x=§(x)+1)
NoOp(x 15 $0x11
Elayback (beep)
)
Hoop (dome) ;
:

images/00131.jpg
BEUAN =35 20, 1 B L)
exten => 40,0 While($$(x) <= 51)
exten => 40,n,M00p(x is $0x}]
xten => 40,n,Playback (besp]
exton => 40,030t (x=§ 180k + 11)
ext 40,1, Endwnile ()

ican. <. &b 1 Nobo i dosias

images/00128.jpg
RS
e (S(RAND(0,100)) < 42) (
No0p(a2 ® Chance) ;
3 olse ¢
NoOp(58 % Chance) ;
)
v

images/00137.jpg
USEEREA TR
xten => 21 hint,S18/21
xten -> 22 hint,S19/22

T ——

images/00134.jpg
oo g i P
for (c=s(count); ${c)>0; o
saythunber
+
y

ter-1)

(bt

ontext default (
123 =
acountaom(3)

&countdown(5) s

images/00133.jpg
o)

exten => 5,1, 5ot (c=3 (ARG1))
exten => 5,n,While(S] S(c) > 01)
exten => =,n, Saytiumber [${c}]
exten => =,n,Sec(c=5[S(c) - 1 1)
xten => 2,0, Endihile()

detau1t]

exten Maczo (countdown, 3

G e te e

images/00136.jpg
TANRS . A AGAE L ARERE-
hint(s12/anna) 21 = |

Dial(se/annal;
)

hine(s12/1isa) 22 > |

Dial(sip/lisal;
)

images/00135.jpg
Lon
xten
xten

oxten
-

S
> 21,hint, ST /anna
=> 21,1,Dial(sTP/anna)

> 22, hint, sT0/1188
$ B a3 (SR T ga)

images/00119.jpg
BRRALL R L BLAL DS B
xten => 90,1, GOtoTE (§[*$ (DIALSTATUS) " = *BUSY"17b:n)
exten => 90,10(b} Answer ()

oxten => 90,11, Playback hello-world)

oxten => 90,12, Voicenail (anna, b}

xten => 90,13, Goto (=n)

xten
xten
ey

90,2041}, Dial (STP/1ica)
90,21, Playback (beeperr
90,22, Goto (end]

00 A5 {and) Ho0n | Sco)

images/00118.jpg
R “SHICO UL PDNEAYL s LANLEREL0N, L)
axtenmiona:ael: litlaben bisiis bimatnay dump extensionBcontext]

images/00121.jpg
WIRERED "N Iy og HOHIL JONSY 4 WRINR).
sxten => 70,5, Goto(70-§ (DIALSTATUS) , 10)
xten => 70,n{end) No0p(done]

exten => 70-BUSY, 10, No0p (busy)
exten => 70-BUSY,11,Goto end)

cxten => 70-NOANSWER, 10,)o0p (no answer)
xten => 10-NORNSWER, 11, Goto end]

exten => _70-.,10,No0p [something else)
TR RO e i g

images/00120.jpg
W
Dial(sTp/anna)
if ("5(DIALSTATUS)" = "BUSY") (
Answer ()
ayback (hello-world)
Voicenail (anna, bl ;
)
else (
Dialisie/lisal;
Playhack (besperr) :
3
Noop(donel ;
v

images/00127.jpg
0 => v
random (47) {
No0p(a2 # Chance)
) eles (
58 % chance)

images/00126.jpg
oy
£ (S(IFTTHE(08:00-18:00 mon-£xd [+|*21:0))) ¢
Dial (5T /20
3 else ¢
Playback (announcenent-closed) ;
Voicenail(20,s):
)
¥

images/00123.jpg
=1 O e NUETRUEEH LT F UM I
70,0, Goto(70-§ (ExTEN) , 10)

oxten => 70-703,10,500p (703
oxten => 70-703,11,Goto (end)

oxten => 70-704,10,300p (704)
exten => 70-704,11,Goto end)

xten
xten

_70-7015-81,10,500p (70 (5-81).
Z10-7015-81 11, Goto (ena)

oxten
oxten

10,00p (something else)
11, ot0end)

S 55 R RGO

images/00122.jpg
X
bial (STe/anna);
switch (§(DIALSTATUS)
case *musy"

Nodp(no ansver)
break;
aosauie:
NoOp (samething elsel
)

Hoop
i

images/00125.jpg
e

=2 1
4€Tine (08:00-18:00|mon-£xi|*|*)
Dial(sTe/20) s

3 olse ¢
Playback (announcenent -closed) ;
Voicenail(20,s):

)

”

images/00124.jpg
e N LE

Noop (dialed: $ (EKTEN)) ;

switch (§(zxmEm)) ¢
case 703:

Ho0p (7031 1
break;
case 704
Noop (204)

break;
pattern 7015
100D (70(5-81) ;
break;
Fresns
Noop (samathing else]

3

Noop(donel ;

images/00108.jpg
Lentenl
oxten

2001,1,pial (sT2/anna)
2002,1, Dial (STR/Brock)

(warehouse]
sxcen => 300

1.pial(s1e/1isa)

(day]
include => sales
T R

images/00592.jpg
SEEEn =51y

¥y 1y RUEETA ¢
AP o

S P U o R

images/00591.jpg
Connect to the samp. e FASCAGL program "Iagtagli-test®,
; which must nevertheless be running on the local machine:
exten => 123,1,Answer ()

exten => 123,m,FastAGT (agi://localhost/fastagi-test)

; Comnnect to the FastaGI script "test’ on the host "testbox’
; at port 9000 and pass parameter "123°

sxten => 124,1,Answer ()

e R T T Ty

000/ test, 123}

images/00110.jpg
SRELU LGNS, ConT: —_englong,asl

{siobals] glovals (
CAKE-narblecake CakB-marhlecake,
RINGTINE=60 RINGTINE=60;

images/00594.jpg

images/00109.jpg
JONLOAL NBIGE V.
2001 = ¢
Dial(ste/anna) ;
)

2002 = ¢
Dial(s18/brock)
)

context warehouse {
3001 = (
Dial(s1e/lisa);
3
)

context day {
includes {
sales;
warehouse;

images/00593.jpg
GRSl Ly RIEREEL 3

xten =» 123,n,Systen(echo ‘Hello World' | textwave
% -5 sound.wav ~otype wav
exten => 123,n, Background (sound)

images/00588.jpg
SEECRNSRELE s
r++ in Asterisk 1.4
6 4,11 +4,11 @8

Interfaces with an external IVR application

[pescription]
- BxternaliVR(command(|arg(|arg. .
supplied command,
+ ExternallVR(command(|arg(|arg...]]}: Porks a process to run the
supplied command,

and starts a generator on the channel. The generator's play list is

controlled by the external application, which can add and clear
entries

via sinple commands issued over its stdout. The external application

will receive all DINF events received on the chamnel, and
notitication

if the channel is hung up. The application will not be forcibly
cerminated

when the channel is hung up.
- See doc/README.externalive for a protocol specification
¢ ‘Bais GopTexbernalive, Xk F5T B BOOLOEO] EoeciEication

11: Forks an process to run the

images/00590.jpg
¥ SEEUGL O, ASECREINUE. ThN SETETINL SO ENALEON WL TR aEL
omeE events
+ received on the channel, and notification if the
The
- application will not be forcibly terminated when the channel is hung
up.

See doc/externalivr.txt for a protocol specification.
+ The 'n’ option tells ExternallVR() mot to answer the channel.
+ The i option tells ExternalIVR(] not to send a hangup and exit
when the

annel is hung up.

- channel receives a hangup, instead it sends an 'I' informative
nessage
- meaning that the external application MUST hang up the call with

an # command
- The 'd’ option tells BxternalVR(] to run on a chamnel that has been
nung up

+ and will not look for hangups. The external application must exit
O s e s

images/00589.jpg
SiaRhaTask ok
~++ in Asterisk 1.6
6 -4,11 +4,18 @6

Interfaces with an external IVR application

[Description]
- ExternallVR(command(|arg(|arg...]1): Forks a process to run the
supplied comnand,
- and starts a generator on the channel, The generator's play list is
- controlled by the external application, which can add and clear
entries
- via simple commands issued over its stdout. The external application
- will receive all DTHF events received on the channel, and
notification
- if the channel is hung up. The application will not be forcibly
terminated

when the channel is hung up.
+ ExternallVR(command|ivr://ivrhosti([,arg(,arg. .11} [,options]}:
Bither forks a process
+ to run given command or makes a socket to connect to given host and
starts
- generator on the channel. The generator's play list is controlled
by the
+ external application, which can add and clear ent
o

ries via sinple

images/00116.jpg
context examp.le {

7/ g5 to a label in the same extension
”

105 ¢
begtn
wait(
Saymunber (11
No0p (endlessioop) ;
goto begin;

y

/7 g0 to a label in a different extens

/7 in the same context

i

20 = (
‘saynuber (2
goto 10|begin;

)

77 80 to a label

’”

30 = (
Saynnber (30) 1
goto catxtz| 40| forty;

50 => Jump 40,
50 <> Jump 10example;
v

images/00115.jpg
Hedaigpad

g0 to a label in the same extension
oxten => 10,1(begtn) No0p ()
oxten => 10,m, Wit (1]
10,1, SayNumber (1}
> 10,1, N00p (endless]
10,1, Goto (begin)

xten

oxten
oxten

9o to a label in a @ifferent extension
in the same context

oxten => 20,1, Saydumber (20)

xten <> 20,1, Goto (10, begin)

@0 to a label in a aifferent
; context

oxten => 30,1, Sayhumber (30)

xten <> 30,1, Goto (cntxt2, 40, forty)

exe2]

axten => 10,1(forty) o0p ()
oxten => 40,0, SayNumber (10)

xten
TR

> 50,1,Goto(40,1)
65 1 Oote (SR e T LS

images/00117.jpg
o S N 2 A I Y S
extensions.ael goto [[context|lextension|)label

images/00112.jpg
123 = (
Set(result=§[10 / 2 1);
NoOp(result is Siresult});
y

images/00596.jpg
A1 REEELLaR Ll
~++ in Asterisk 1.6
e -4,5 +4,6 68

say text to the user

[peseription]

Festival(text[|intkeys]): Comnect to
get back the waveform,play it to the user,
keys to immediately terminate and return
+ Festival(text(,intkeys]]: Comnect to
get back the waveform,

+ play it to the user, allowing any given
imnediately terminate and return
the whlak. bF ‘A t8 &llow Ay BEmbEs

Festival, send the argument,
allowing any given interrupt

Festival, send the argument,
intercupt keys to

Yack luseful ‘in dAAlo1as)

images/00111.jpg
SOERLL JEsE ¢
123 = (
result=10/2;
NoOp(result is Siresult}))
'
V

images/00595.jpg
e JHL0" MO BDRLLTALIND: ‘BaslrE ©

[synopsis]
Say text to the user

[pescription]
Festival(text[|intkeys]): Comnect to Festival, send the argument,
get back the waveform,play it to the user, allowing any given interrupt

keys to imediately terminate and return
PR valig, oF ‘ative B3 &l low iy niber etk (uEsSL 1 dtalblan

images/00114.jpg

images/00113.jpg
SRR A A o i
antan = Kk o, et RIS ATaL" w SABEN] Sandisite £53]

images/00597.jpg
bl i i
exten => s,1,Playback (transfer)
oxten => s,n,Flash()
exten => s,n,Wait (1)
exten => s.n,SendDINF (§(ARGL}}
exten => §,n,Wait(1)
exten => s,n,Hangup ()

{outside-extensions]
Transfer incoming calls on extension 6001 to the outside number
; (514)5554138;

Nt A ETOE MR L LR BN E R e LSS SO IR

images/00581.jpg
optional base for the filensme may be specified.

The
default is ‘chanspy’.
v([valuel) - Adjust the initial volume in the range from -d to
oA
negative value refers to a quieter setting
w - Enable ‘whisper' mode, so the spying channel can
talk to
the spied-on channel.
u - Enable ‘private whisper’ mode, so the spying
channel can
talk to the spied-on channel but cannot listen to
that

Samsran

images/00580.jpg
= ZRE0 BRONE R EROLION. [RkannaY

(Synopsis]
Listen to a channel, and optionally whisper into it

(Description]
Extenspy (exten(@context] [|options]): This application is used to
listen to the
sudio from an Asterisk channel. This includes the audio coming in and
out of the channel being spied on. Only channels created by outgoing
calls for the
pecified extension will be selected for spying. If the optional
context is not
supplied, the current channel's context will be used
While spying, the following actions may be performed:
- Dialing # cycles the volume level.
- Dlaling * will stop spying and look for another chamnel to spy

on.
options:
b - only spy on channels involved in a bridged call.
gtarp) - Match only channels where their §{SPYGROUP)

varisble is set to
contain 'grp’ in an optional : delimited list
a - Don't play a beep when beginning to spy on a
channel, or speak the
selected channel name.
(basename}] - Record the session to the monitor spool directory.

images/01107.jpg
1.2 |

(* different name)

images/00099.jpg
PETATLER T (LU ANCEELARE MATDRERS = N
L0G: lev:d file:ael? parse line:543 func: maln 13 contexts, 25 extensions,
62 pricrities

images/00583.jpg
] default is 'chanspy'.

- vilvaluel) - Adjust the initial volume in the range from -4
to 4. A

5 negative value refers to a quister setting.

- w - Enable ‘whisper® mode, so the spying chamnel can
talk to

- the spied-on channel.
. W - Enable ‘private whisper' mode, so the spying

channel can

- talk to the spied-on channel but cannot listen

to that
. channel.
. 5 B
bridged call.

. B =
channel barge in on both

algrp) =
nore of the groups

groups from the

be spied upon.

contain either a

of groups, such

. n{(mailbox] [econtext]) -
on if that person has recorded

only spy on channels involved in a
Instead of whispering on a single

channels involved in the call
Override the typical numeric DTMF

use DTMF to switch between spy modes.
spy mode

whisper mode

= barge mode

only spy on channels in which one or

listed in 'grp' matches one or more
SPYGROUP variabla set on the channel to
Note that both 'grp' and SPYGROUP can

single group or a colon-delimited list

as 'sales:support:accounting’ .
Say the name of the person being spied

his/her name. If a context i

specified, then that voicemail context will

images/00098.jpg
(aalen]
exten => _2XXX,1,Macro (incoming)

{building-mgr]
Schan: s AR Anemiincoxing)

images/00582.jpg
AN FELETIBR . Laeh
+++ in Asterisk 1.5
Ge 4,7 +4,7 ee

Listen to a channel, and optionally whisper into it

[pescription]
- Extenspy(exten(@context] [foptions]): This application is used to
listen to the
- Extenspy(exten(@context] [,options]): This application is used to
listen to the
audio from an Asterisk channel. This includes the audio coming in
and
out of the channel being spied on. Only channels created by outgoing
calls for the
specified extension will be selected for spying. If the optional
context is not
ge 12,19 +12,43 €8
While spying, the following actions may be performed:
- Dialing # cycles the volume level.
- Dialing * will stop spying and look for another channel to spy
* Note: The X option supersesds the two features above in that if a
valid

. single digit extension exists in the correct context it
Chanspy will
. exit to it

Options:
= b - only spy on channels involved in a bridged call.
- glgre) - match only channels where their §{SFYGROUE}

variable is set to
- contain 'grp' in an optional : delimited list.
- a - bon't play a beep when beginning to spy on a
channel, or speak the
- selected channel name.
- r{ (basename}] - Record the session to the monitor spool
airectory. An

;] optional base for the filenane may be specified
The

images/01104.jpg
2] 1.4

(* diffirent name)

images/01103.jpg
i hak b
cxten => 123,n, ZapkAS (debug | 64000 |noauth| netmask |255.255.255.0]
S BT Al DS,

images/01587.jpg
R OLUNS: SREVar.
Synopsis: Set Channel Variable
Privilege: call,all
pescription: Set a global or local channel variable.
Variables: {Names marked with * are required)
Channel: Channel to set variable for
*Variable: Variable name
S R A

images/00579.jpg

images/01106.jpg
e A
+++ in Asterisk 1.6

6 -1,11 +1,11 €8

Info about application 'ZapRAs'
Tafo about application ‘DAHDIRAS®

(Synopsis)
- Executes Zaptel ISDN RAS application
+ Bxecutes DAHDI ISDN RAS application

tpescription]
- zapRAS(azgs: Executes a FAS server using pped on the given
channel.
- The channel must be a clear channel (i.e. PRI source) and a Zaptel
. DANDIRAS(args): Executes a RAS server using pppd on the given
channel
© The channel must be a clear channel (i.e. PRI source) and a DAHDI
channel to be able to use this function (No modem emulation is
includea)
Your pppd must be patched to be zaptel avare. Arguments should be
- separated by | characters.
Your pppd must be patched to be DAHDT auare. Arguments should be
Bkt ed B . ohabd .

images/00578.jpg
A1 REEELLaR Ll
+++ in Asterisk 1.6
e -4,5 +4,4 6@

End a While loop

[Description]
- Usage: Exitwhile(]
- Bxits a While loop, whether or not the conditional has been
satisfied.
- ExitWhile(): Exits a while() loop, whether or not the conditional
T R

images/01105.jpg
SN0 BOOUT AP ACRTION SEAgRRS™

{synopsis]
Executes zaptel ISDN EAS application

{pescription]
ZapRas (args) : Executes a RAS server using pppd on the given channel.

The channel must be a clear chanmel (i.e. PRI source) and a Zaptel

channel to be able to use this function (No modem emulation is

included] .

Your pppd must be patched to be zaptel aware. Arguments should be

separated by | ‘chargotess:

images/00105.jpg
ONEHNE . IEEmEELY
23 - ¢
Playback (hello-world)
)
v

images/00104.jpg
B i o fa A
23 => Playback (hello-world) ;
y

images/00107.jpg
. e tament
10 o> ¢

Dial(sTe/anna); // Dial
N

images/00106.jpg
]
exten => 10.1.Dial(SIP/anna) : Dial

images/00101.jpg
o D i et
20 => (
Answer ()
Playback (beep)
Hangup ()
}

images/00585.jpg
EerCing.
Chansel can ta1k b0
__

coying chamel can
listen co thac

channel.
. x

valsa singte aigic
channsl variable. The
on wiil be stored

Enable ‘whisper' mode, $o the spying

the spied-on channel.
Enable ‘private whisper' mode, so the

talk to the spied-on channel but cannot

channel
only listen to audio coming from this

Allow the user o exit Chanspy to a
nuneric extension in the current
specified by the SPY_EXTT CONTEXT
nane of the last channel that was spied

Y the G- ORI ariaEiE,

images/00100.jpg
S
exten => 20,1,Answer
exten => 20,n, Playback (beep)
exten => 20,n,Hangup!

images/00584.jpg
+ be searched when retrieving the name,
otherwise the “default’ context

. will be searched. If no mailbox is
specified, then the channel name will

. be used when searching for the name
{i.e. if §T9/1000 is the channel being

. spied on and no mailbox. is specified,
then *1000* will be used when searching

. for the name) .

. a - Don't play a besp when beginaing to spy
on a channel, or speak the

. selected channel name.

- = [{basenane)] - Record the session to the momitor spaol

airectory. A
. optional base for the Filename may be
specified. The

. Qefault is ‘chanspy’.

. s - Skip the playback of the channel type
i.e. sIe, IaX, etc) when

speaking the selected channel name.
. vi(valuel} - Adjust the initial volume in the range
From -4 to 4. A

A S tIE S e . e

images/00103.jpg
VOREREL: JSUOELSL-VONEY ¥

21 = ¢
Dial(SIP/annal;
Voicemail(annal

)

22 = ¢
Dial{sie/lisa);
Voicemail(lisa);

)

eI
Dial(sTe/${EXTEN]};

)

images/00587.jpg
B o el SR bl

{synopsis]
Tnterfaces with an external IVR application

(bescription]
ExternalTvi(comnand |argt|arg...11): Forks a process to run the

supplied cormand,

and starts a gensrator on the channel. The generator's play list is

controlled by the external application, which can add and clear entries

via sinple commands issued over its stdout. The external application

will receive all DTMP events received on the channel, and notification

if the channel is hung up. The application will not be forcibly

terninated

when the channel is hung up

o dael bt pattbepiht Eig o oiblasat Mt szt Tans

images/00102.jpg
PaEeEal-asongl:

exten => 21,1,0ial (STF/anna)
exten => 21,n,Voiceail (anna)

22,1,pial (sTP/Lisa)
oicemail(lisa!

exten
exten => 22,3,

axten => 3%.1.Diszl (BIB/S(EXT

images/00586.jpg

images/01589.jpg
ACLSON s BRONGLR LE A

synopsis: List dialplan

Privilege: config,reporting,all

Description: Show dialplan contexts and extensions.

Be aware that showing the full dialplan may take a lot of capacity
variables.

ActionID: <id> Action I for this AMI transaction (optionall
Extension: <extension> Extension (Optional)
CREah CRbarERe NentaEe [BEIAnALY

images/01588.jpg

images/01111.jpg
—=Into about -application: “ZapSendEeypacFacility’ ==

(synopsis]
Send digits out of band over a PRI

[Description]
ZapSendkeypadFacility(): This application will send the given

string of digits in a Keypad Facility
L R M

images/01595.jpg

images/01110.jpg
I | Kidli |

(¥ diffcrent name)

images/01594.jpg
235 BRLETLA 1ol
c++ in Asterisk 1.6
6 1,6 +1,8 ae
Action: siepeers
Synopsis: List STP peers (text format)
- Privilege: system,all
+ Privilege: system,reporting,all
Description: Lists SIF peers in text format with details on current

status.
+ Beerlist will follow as separate events, followed by a final event
called
+ Peerlistcomplete
Variables

R R G T R AR Rt s e R Smmrosuo

e

images/01113.jpg
Sl L arEMaGE: e 1
NoGp{Languade: & {CHANNEL {1anauage) §) ;

images/01597.jpg

images/01112.jpg
b Abterisik-d.4
+++ in Asterisk 1.6

8 1,8 +1,8 60

- = Info about application 'ZapSendkeypadracility’
Tnfo about application ‘DAHDISendKeypadFacility'

[Synopsis)
Send digits out of band over a ERT

[Descripion]
- zapSendkeypadFacility(): This application will send the given
string of digits in a Keypad Facility
+ DANDISendKeypadFacility(): This application will send the given
string of digits in a Keypad Facility

o (s S et s

images/01596.jpg
ASTLOR BIEGINCL EDERE-
Synopsis: Show STP peer (text format)
Privilege: system,reporting,all
Description: Show one SIP peer with details on current status.
variables:
Peer: <name> The peer name you want to check.
ActionTD: <id>. Optional action ID for this AMT Eransaction:

images/01591.jpg
Agtion: SIFNOLLLY:

Synopsis: Send a SIP notify

Privilege: system,all

pescription: Sends a SIF Notify event

ALL parameters for this event must be specified in the body of this
request via multiple Variable: name=value sequences.

variables:
“Channel: <peername> Paer to receive the notify. Reguired.
*Variable: <name»=<value> At least one variable pair must be specified.
ActionID: <id> Action ID for this transaction.

R A G

images/01590.jpg

images/01109.jpg
2 ABLETIRE 1,4
r++ in Asterisk 1.5

e 1,9 +1,9 0@

- -= Info about application 'ZapScan' =-
+ -= Info about application 'DAHDISan' =

(synopsis]
Scan Zap channels to monitor calls
¢ Scan DAHDI channels to monitor calls

[pescription]
- zapScan(lgroup]) allows a call center manager to monitor Zap
channels in
+ DaEDTScan({[group]) allows a call center manager to monitor DAHDT
channels in

a convenient way. Use '#' to select the next channel and use '*'
exit

Limit scanning to a channel GROUP by setting the option group
ECRRERE

to

images/01593.jpg
Botans SAEVOwy

Synopsis: List SIP peers (text format)

Privilege: system,all

Description: Lists STP peers in text format with details on current
status.

variables:

R

images/01108.jpg
TRRD ADONE Spp LI OREEQn Y AaDEO

[synopsis]
Scan Zap channels to monitor calls
(Description]

zapscan ([group]) allows a call center manager to monitor zap
channels in
2 convenient way. Use '#! to select the next channel and use '*'
o exit
It e U A R e e, SR e Sl A AviREae

images/01592.jpg

images/00570.jpg
I, Rster B 1 d
r++ in Asterisk 1.4
68 1,7 +1,7 2@

-= Info about application 'ExecTf’ =-

[Synopsis]

- Conditional exec

+ Executes aialplan application, conditionally
[pescription]

Umage: Exm

RN T Ly —

images/00569.jpg
ERER ShCuL APDIANRLIGN SEeEE

(synopsis]
Executes dialplan application, conditionally

Description]

Usage: ExeclF (<expr>|<app>|<data>)

If <expr> is true, execute and recurn the result of <app> (<datas.
If <expr> is true, but <app> is not found, then the application
L L e R e S

images/00572.jpg

images/00571.jpg
L AFLELLIR s
+++ in Asterisk 1.6
ae -4,7 +4,7 a@
Executes dialplan application, conditionally

[Description]

- Usage: ExecIF (<exprs|<apps|<datas)

- If <expr> is true, execute and return the result of <app>(<data>).
If <expr> is true, but <app> is not found, then the application

- Execir (<expr>?<appiftrues(<args>) [:<appiffalse>(<args>)])

+ If <oxpr> is true, execute and return the result of

<eppiftrues (<args>) .

- If <expr> is true, but <appiftrues is mot found, then the

application
A T bR -t e e R

images/01115.jpg
1 Ess: e Ypkiable. 0050t Rale: 0L Sbnt a3
Rt taaranRaRolly Bemdins it o

images/01114.jpg
FEMEHDAL LT SanganTs T
ocho: "Lahauage: ", -Schannel [language] s

images/00568.jpg

images/01117.jpg
= Intg euoal DAotion TEEENE

[syntax]
AGENT (<agentiax [siten])

[synopsis]
Gets information about an Agent

[Description]
The valld items to retrieve are:

- status (aefault) The status of the agent
LOGGEDIN | LOGGEDOUT
- password The password of the agent
- name The name of the agent
- mohclass Musiconiold class
- exten The callback extension for the Agent
(AgentcallbackLogin)
- channel The name of the active channel for the Agent

Pz s Y

images/01116.jpg
11.4]~-

images/00577.jpg
{synopsis]
End a While loop

[Description]
Usage: ExitWhile()
seire u whitle 1646

RSO AL DTt Ion. CERELERALS

AR At The GendlEEanEl hke- Been setinEtad

images/00574.jpg
A QLY Syl
+++ in Asterisk 1.4
68 6,6 +5,4 04
[Description]
ExacTETine (<tines> | <weskdays>|<ndays> |<nonths>2appnane| |appargs])
This application will execute the specified dialplan application,
with optional
- arguments, if the current time matches the given time specification.
Further
- information on the time speicification can be found in examples
{1lustrating
- how to do tine-based context includes in the dialplan,
5 ARSI e RO & bttt e et bine e ses b Ebeat i e

images/00573.jpg
THLO"O0NL BDULLCALIND: TERACT e

[synopsis]
Conditional application execution based on the current time

[pescription]
ExecTITine (<t ines> | <weekdays> |<ndays> | <months>?appnane| |appargs]) :

This application will execute the specified dialplan application, with

optional

NSoaanra) B RS Pl kit S R P

images/00576.jpg

images/00575.jpg
A BRCAriak 1.4
+++ in Asterisk 1.6
60 -4,6 +4,6 90
conditional application execution based on the current time

tpescription]
- ExecfTime(<tines|<weskdays> | <ndays> |<nonths>
>appnane| |appargs]
¢ ExecIErime(<tiness,<weckdays>, <ndays>, <nonths>
sappnane (appargs) 1) s

This application will exscute the specified dialplan application,
with optional

At 1T Ee e Gl D S

e sveciEicaticn)

images/01122.jpg
ALOHRECTANE. X5l
t++ in Asterisk 1.6
88 1,7 +1,7 88

= Info about function 'ARRAY’ a-

[syntax]

- ARRAY(varl[|var2[...1[|varnl])

+ ARRAY(varil,varz[...][,varnl])
(synopsis]

Allows setting multiple variables at once
s6 -10,6 +10,4 88

The comma-separated list passed as a value to which the function is
set will be interpreted as a set of values to which the coma-separated
list of variable names in the argument should be set
- Hence, Set(ARRAY(varl|varz)=1\,2) will set varl to 1 and var? to 2
- Note: remember to either backslash your comvas in extensions.conf or
quote the entire argument, since Set can take multiple arguments itself.
D e BT AR ARt T Y 1] St Al th A mak e Baw

images/01121.jpg
=" Iprg enoul. Tiotaon TRREATS

[syncax]
ARRAY (var1 [|var2[. .1 [|varN]])

tsynopsis]
Allows setting multiple variables at once

[pescription]
The comma-separated list passed as a value to which the function is set
will be interpreted as a set of values to which the comma-separated list
of variable names in the argument should be set

Hence, Set(ARRAY (varl|var2)=1\,2) will set varl to 1 and var2 to 2

Note: remember to either backslash your commas in extensions.conf or
hba Sk eRElvR ArUESAt. sinee Set can. tike wiltinia sreRants LeediE.

images/01124.jpg
Into about function *BASE6S_DECODE®

[syntax]
RASE64_DECODE (<base6d_string>)

Isynopsis]
becode a basesd string

Ipescription]
datorie the SEElE ek BEatus

images/01123.jpg

images/01118.jpg
B BER-TEES TEL HReHER, T st
exten => 123,1, Set (RRRAY (varl, var2) =1\, 2)
ARRAY (varll,var2[,...11)

images/01120.jpg

images/01119.jpg
b -
Bet (wardewwerdd) ;

images/00559.jpg
S OGME RD S PO IOE. LS

(synopsis)]
Lookup number in ENUM

(Descript ion]
EnumLookup (extent [option]}: Looks up an extension via ENUM and secs

the variable 'ENUM'. For VOIP URIs this variable will

look 1ike ‘TECHNOLOGY/URT' with the appropriate technology.

Currently, the enunservices SIP, H323, IAX, IAK2 and TEL are

recognized.

Returns stacus in the ENUMSTATUS channel variable:

ERROR. Failed to do a lookup
<tech> Tachnology of the successful lookup: STP, H323, TAX,
TAX2 or TEL
BADURT Got URI Asterisk does not understand.
The option string may contain zero or the following character:
4" -- jump to +101 priority if the lookup isn't successful

and SuMe b +51 Dricrity G & TBL eAtey

images/00558.jpg

images/00561.jpg
SRR SO0US N ANELIoD TR

{synopsis]
Bvaluates a string

[Description]
Usage: Bval(newvar=somestring]

Normally Asterisk evaluates variables inlina. But what if you want
to
store variable offsets in a database, to be evaluated later? Eval is
the answer, by allowing a string to be evaluated twice in the dialplan,
the first tine as part of the normal dialplan, and the second using
W

images/00560.jpg

images/01566.jpg

images/01565.jpg
ROCEEIAT SSIUNPSLE
Synopsis: Makes a queue member temporarily unavailable
Privilege: agent,all

images/01567.jpg
BECE o ESUSML
Synopsis: St the penalty for a queue member
priviiage: agenciail-

images/00567.jpg
CXGEI-=aoha L p EEOUT T Aw | i GALLARTRAGNIRS) = 1000 ¢ SRTTLG LERy 2431

Giba:

123.n, SayDigits (678)

images/00566.jpg
A RHEEr ek Lt
<++ in Asterisk 1.6
8 -4,8 +4,8 40

Executes dialplan application

[pescription]
Usage: Exec(apprame (argunents) |

- Allows an arbitrary application to be invoked even when not

+ Exec(appnane (argunents)) :

+ Allows an arbitrary application to be invoked even when not
hardcoded into the dialplan. If the underlying application
terminates the dialplan, or if the application cannot be found,
Tl WY CBRatnArs SRe:AtalaYsd .

images/00563.jpg

images/00562.jpg
SN S 280 o NP RO YRR DA RSS2 ST
sban =5 1330 Eear (STaphl)

images/00565.jpg
I ARLATLEE T8

<+ in Asterisk 1.4
6@ -1,11 +1,13 06

= Info abour applicacion 'Exec' =-
[Synopsis]

Executes internal application
Executes dialplan application

[Description]
Usage: Exec(appnane (argunents) |

Allows an arbitrary application to be invoked even when not
hardcoded into the dialplan. To invoke external applications
see the application System. Returns whatever value the
app returns or a non-zero value if the app camnot be founs
hardcoded into the dialplan. If the underlying application
terminates the dialplan, or if the application cannot be found,
Exec will terminate the dialplan.

To invoke external applications, see the application System.

TE vkt Wil T4ie EE CALER it bitdr IRACaad . s TEPHEas.

images/00564.jpg
Al meda s cumii e ol

[synopsis]
Executes dialplan application

[Description]
Usage: Exec(appnane (argunents))

Allows an arbitrary application to be invoked even when not
hardcoded into the dialplan. If the underlying application
terminates cthe dialplan, or if the application cannot be found,
Exec will terninate the dialplan.

To invoke external applications, see the application System.

Ifvow would 1ike to cateh dny-ereor instead; ses Trybkec:

images/01573.jpg
A aihod
Synopsis: Queues
ey L —

images/01572.jpg

images/01575.jpg
ACCEANS ENSYGILRLAS
Synopsis: Queue Status
e Roas” SDOnE:

images/01574.jpg
1.2 |

1.6 |

images/01569.jpg
RGLLONS: IS ORETIONS-
Synopsis: Remove interface from queue.
privilege: agent.all

images/01568.jpg

images/01571.jpg
GELTON ATty
Synopsis: Queue Rules
M S

images/01570.jpg

images/00548.jpg
+ -hangup wntil the AGI application gignals a desire to stop [either by
exiting
+ or, in the case of a net script, by closing the connection)

A locally executed AGI script will receive SIGHUP on hangup from
the channel
- except when using DeadAGI
AGISIGHUP channel
- variable to *no* before executing the AGT application

This can be disabled by setting the

+ except when using DeadAGI. A fast AGI server will correspondingly
+ HANGUP in 0OB data. Both of these signals may be disabled by setting
the
+ BGISIGMUP channel variable to 'no before executing the AGT
application.

Using ‘EAGI' provides enhanced AGT, with incoming audio available
out of band
- o file descriptor 3
+ on file descriptor 3

- Use the CLI command 'agi show' to list available agi comnands

+ Use the CLT command 'agi show' to list available agi commands.
This application sets the following channel variable upon
completion:
AGISTATUS The status of the attempt to the run the AGI

script
- text string, one of SUCCESS | FATLURE | HANGUZ
. text string, ome of

RCEEE | SR | reOREY | R

images/00550.jpg

images/00549.jpg
saben
ten

etk o i
123 .n. Playback [vm-goodbye)

images/01577.jpg
i i e
Synopsis: Queue Surmary
PR Lt RIS

images/01576.jpg

images/00556.jpg
- ARLET IR .48
+++ in Asterisk 1.4

e 1,7 +1,7 0@

-= Info about application 'Endwhile’

[synopsis]
- End A While Loop
+ End a while loop

[Description]
Oeste: wEEFATEL}

images/00555.jpg
SECENTEROOUL IR tation SEOvhile

(synopsis]
End a while loop

[Description]
Usage: Endwhile()
atusn to: the Beaviois Aatlad i

images/00557.jpg
- ARLETIEE: 34

r++ in Asterisk 1.6

68 4,5 +4,4 00
End a while loop

[Description]

- Usage: Endwhile()

- Return to the previous called While

¥ EnAWRLTelY i Hetarh G bha oretious called waklel)

images/00552.jpg
AR AR C IR S,
c++ in Asterisk 1.4

@ 1,9 41,9 @&

-= Info about application 'Bcho’ =-

[synopsis]
- Echo audio read back to the user
+ Beho audio, video, or DTMF back to the calling party

[pescripeion]
- Echol): Echo audic read from channel back to the channel.

- User can exit the application by either pressing the 'f' key,
- or hanging up.

. Echol): This application will acho any audio, videa, or DTHE
frames read from
+ the calling cha
received, the

. application will exit

el back to itself. If the DIMF digit '#' is

images/00551.jpg
JHED ShouL popliontion. JHae*

(Synopsis]
echo audio, video, or DIMF back to the calling party
[pescription]

Beho(): This application will echo any audio, video, or DTWF frames
read from

the calling channel back to itself.
the

stolisation wiil exik.

£ the DINF digit '#' is received,

images/00554.jpg

images/00553.jpg
SHPEL), SNSRI LI NI AL

xten => 123,n,Set (i=1)

exten => 123,n,While(S[${i} < 51)
exten => 123,n, SayNunber ({1))
exten =» 123,n,Set (i=8[$(i) + 11)
exten => 123,n,Endwhile()

S T T R R

images/01578.jpg

images/01100.jpg
1.2 |--

1.4 |

(* different name)

images/01584.jpg

images/01099.jpg
SRS Ly L7 FAP AR OG0 Dol
st = 133 1t Hangun 1)

images/01583.jpg
RPL ST ARt
Synopsis: Send text message to channel
Privilege: call,all
bescription: Sends A Text Message while in a call.
variables: (Names marked with = are required)
*Channel: Channel to send message to
‘message: Message to send
ARt laBIh: Seetunkl Xetian T4 o Reasits BatAHiRG:

images/01102.jpg
L ABCETLAR 3«8
+++ in Asterisk 1.6

6 -1,10 +1,10 66

- -= Info about application ‘ZapBarge’
+ = Info about application 'DAHDIBarge' =-

[synopsis]
- Barge in (monitor) Zap channel
+ Barge in (monitor) DAHDI channel

[Description]

- zapBarge([channel]): Barges in on a specified zap

- DREDIBargel[channel]): Barges in on a specified DAHD:
channel or prompts if one is not specified. Returns
-1 when caller user hangs up and is independent of the
state of ihe dhannel baihe monitared.

images/01586.jpg

images/01101.jpg
w0 SOOUL- SEpLLCALL Y, T RapRETHe

(synopsis]
Barge in (monitor) Zap channel

[pescription]

zaparge ([channel]) : Barges in on a specified zap
channel or prompts if one is not specified. Returns
-1 when caller user hangs up and is independent of the
GEava oF the chswnel Deins monitated.

images/01585.jpg
Agtion: “aetChRusarileld
Synopsis: Set the CDR Userrield
PrivCinons exllonll

images/01580.jpg

images/01579.jpg
RELLUIN: REGATRUS
Synopsis: Redirect (transfer] a call
Privilege: call,all
pescription: Redirect (transter) a cal
Variables: {Names marked with * are required)
“Channel: Channel to redirsct
Extrachannel: Second call leg to transfer (optionall
“Exten: Extension to transfer to
“Context: Context to transfer to
“Priority: Priority to transfer to
NI R et NOLLal A8 For SaNSaoE DCRNAaE:

images/01098.jpg
JnARRarlat 12

+++ in Asterisk 1.6

¢ -7,7 +7,12 @0

2apateller (options): Generates special information tone to block

telemarketers from calling you. Options is a pipe-delimited list of
options. The following options are available:

- ‘answer' causes the line to be answered before playing the tone,

- ‘'mocallerid’ causes zapateller to only play the tone if there

- is no callerid information available. Options should be separated

oy |

characters
. “answer® - causes the line to be answered before playing the
tone,
. ‘nocallerid’ - causes Zapateller to only play the toms if there
. callerid information availal options should
be.
. separated by , characters
+ This application will set cthe following channel variable upon
completion
. ZAPATELLERSTATUS - This will contain the last action
accomplished by the
s zapateller application. Possible values
include:

. NOTHING | ANSWERED | ZABPED.

images/01582.jpg

images/01581.jpg
RoLions: Reload

Synopsis: Send a reload event

Privilege: system conflg,all

Description: Send a reload event.

Variables: {Names marked with * are optional)
“ActionID: ActionID of this transaction
R R Tl s el e R G Ry

images/01547.jpg
Agtlom; Qriginate
Synopsis: Originate Call
Privilege: call,all
pescription: Generates an outgoing call to a Extension/Context/Priority or
Application/Data
Variables: (Names marked with * are required)
“Channel: Channel name to call
Exten: Extension to use (requires ’Context’ and 'Priority’)
Context: Context to use (requires ‘Exten’ and 'Priority’)
eriority: Priority to use (requires ‘Bxten’ and ‘Context')
Application: Application to use
Data: Data to use (requires ‘Application’)
Tineout: How long to wait for call to be answered (in ms)
CallerID: Caller ID to be set on the outgoing channel
Variable: Channel variable to set, multiple Variable: headers
are allowed
Account: Account code
st A £ S e e b

images/00539.jpg

images/00538.jpg
SREED;
xten
en

SRy LI IIOWEE A}
123,n, DunpChan ()
123 1. Backaround (enter-ext-of-person)

images/01544.jpg

images/01543.jpg
Agtion: ModuleLoad
Synopsis: Module management
Privilege: system,all

pescription: Loads, unloads or reloads an Asterisk module in a running
systen

variables:
ActionID: <id> Action 1D for this transaction. Will be returned.
Module: <name> Asterisk module name (including .so extension)

or subsystem idencifier:
cdr, enum, nsmgr, extcontis, manager,
zep, neep
Loadype: load | unload | reload
The operation to be done on module
£ modal e specifled for-a- reload: Toadtvne . sl modules are: relonded

images/01546.jpg

images/01545.jpg
SHOTHI EEEDT
synopsis: Monitor a channel
Privilege: call,all
Pescription: The ‘Monitor’ action may be used to record the audio on a
Specified channel. The following parameters may be used to control
this:
channel - Required. Used to specify the channel to record.
File - optional. Is the name of the file created in the
monitor spool directory. Defaults to the same name
as the chamnel (with slashes replaced with dashes).

Formac - optional. Is the audio racording format. Defaults
o "avt.
Hix - optional. Boolean paramster as to whather to mix

the input and output chamnels together after the
Geshring s FAtRREA.

images/00545.jpg
FLISNCI TN SRR

{synopsis)
Executes an EAGI compliant application

{Description]

(2| Dead]AGT (connand | args) : Executes an Asterisk Gateway Interface
conpliant
program on a channel. AGT allows Asterisk to launch external programs
written in any language to control a telephony channel, play audio,
read DDNF Qigits, etc. by communicating with the AGI protocol on stdin
ana stdout.

This channel will stop dialplan execution on hangup inside of cthis
application, except when using DeadGI. Otherwise, dialplan execurion
will continue normally.

A locally executed AGT script will receive SIGHUP on hangup from the
channel
except when using DeadAGI. This can be disabled by setting the
ACISTGHUP channel
variable to 'no* before executing the AGT application.

Using 'EAGL' provides enhanced AGI, with incoming audio available out
of and
on file descriptor 3

Use the CLI comnand 'agi show' to list available agi comands

This application sets the following channel variable upon completion

AGISTATUS The status of the attempt to the run the AGT soript
text string, one of SUCCESS | PATLURE | HAKGUP.

images/00544.jpg

images/00547.jpg
S RSLAEAEE S el
+++ in Asterisk 1.6
a8 -4,21 +4,22 @@

Executes an EAGT compliant application

(bescription]
- 1B|Dead]a0T (command|args) : Executes an Asterisk Gateway Interface
compliant.

- program on a channel. AGT allows Asterisk to launch external
prograns

- written in any language to control a telephony chamnel, play audio,

- read DTMF digits, etc. by communicating with the AGT protocol on

stdin

- and stdout.

- This channel will stop dialplan execution on hangup inside of this
application, except when using DeadAGI. Otherwise, dialplan

~ will continue normally.

+ [E|Dead]acT (command, args) : Executes an Asterisk Gateway Tnterface

compliant

- progran on a channel. AGI allows Asterisk to launch external

prograns written

- in any language to control a telephony channel, play audio, read

DINF digits,
- etc. by communicating with the AGI protocol on stdin and stdout.
+ As of 1.6.0, this channel will not stop dialplan execution on

hangup inside
- of this application. Dialplan execution will continue normally, even
i

images/00546.jpg
e B v
+++ in Asterisk 1.4
¢a 5,9 +9,16 4@
written in any language to control a telephony channel, play audio,
zead DTMF digits, etc. by communicating with the AGT protocol on
scdin
and stdout.
- Returns -1 on hangup (except for DeadaST) or if application
requested
- hangup, or 0 on non-hangup exit.
- Using ‘EAGI' provides enhanced AGI, with incoming audio available
out of band
¢ This channel will stop dialplan execution on hangup inside of this
+ application, except when using DeadAGI. Otherwise, dialplan
exacution
+ will continue normally.
+ A locally executed AGI script will receive SIGHUP on hangup from
the channel
+ except when using DeadAGT. This can be disabled by setting the
AGISTGHUP channel
- variable to *no* before executing the AGI application.
. Using 'BAGI' provides enhanced AGI, with incoming audic available
out of vand
on file descriptor 3

- Use the CLT comnand ‘show agi' to list available agi commands
+ Use the CLT command ‘agi show' to list available agi commands

+ This application sets the following channel variable upon
completion:

. AGISTATOS The status of the attempt to the run the AGT
scripe

o TeXt SEring. one of SUCCESS | FAILURE | HANGUS

images/00541.jpg

images/00540.jpg
TR0 SOONG SDRLLCALIUN: 1O -

[synopsis]
Dump Tnfo About The Calling Channel

[pescription]
DumpChan ([<nin_verbose_level>])

pisplays information on channel and listing of all channel

variables. If min_verbose_level is specified, output is only

displayed when the verbose level is currently set to that number

aF GreAter.

images/00543.jpg
bt a4
123,1,A61 (agi-script.agi)
N I

images/00542.jpg
FLESNCI TN LRI

tsynopsis]
Look up a number with DUNDL

(bescription]
DUND Lookup (number [| context [|options11]

Looks up a given number in the global context specified or in
the reserved 'e164' context if not specified. Returns -1 if the
channel
is hungup uring the lookup or 0 otherwise. On completion, the
variable
${DUNDTECH) and §(DUNDDEST) will contain the technology and destination
of the appropriate technology and destination to access the mumber. If
no
answer was found, and the priority n + 101 exists, execution will
continue

at that location. Note that this will only occur if the global priority
junping option is enabled in extensions.conf. If the 'b* option is
specified,

b dnrarial DUNDE sl Wil b dunagaod:

images/00537.jpg
+ lines, or comments starting with "#% or ";*

- If login is successful, the applicatio

Looks up the dialed number

- the specified (or default) context, and executes it if found.
- If the user enters an invalid extension and extension *i* (invalid)
- exists in the context, it will be used. Also, if you set the 5th
argunent

- “to 'NOANSWER', the DISA application will not answer initially

+ <contexts specifies the dialplan context in which the user-entered
extension

- will be matched. Tf no context is specified, the DISA application
setaults

+ the context to "disa". Presumably a normal system will have a

+ context set up for DISA use with some or a 1ot of restrictions.

- <cid> specifies a new (different) callerid to be used for this call.
+ <mailbox[@context]> will cause a stutter-dialtone (indication
“dialrecall’)

- to be used, if the specified mailbox contains any mew messages

+ The following options are availabla
- n - the DISA application will not answer initially.

- p - the extension entered will b considered complete when a ©
.

images/01551.jpg

images/01550.jpg
RCLATH: - Faks
Synopsis: ark a channel
Privilege: call,all
bescription: Park a channel.
variables: (Names marked with * are requirad)
~Channel: Channel name to park
“Channel2: Channel to announce park info to (and return
to if timeout)
s o G ISR T o s e o

images/01553.jpg

images/01552.jpg
Aolbons: Farkaata . L
Synopsis: List parked calls
PUivikenet smotas

images/01549.jpg

images/01548.jpg
A ARG EINNC Lo g
+++ in Asterisk 1.6
2@ 1,6 +1,6 @&
Action: Originate
Synopsis: Originate call
- erivilege: call,all
+ Privilege: originate,all
Description: Generates an outgoing call to a Extension/Context/Priority
or Application/Data
Sariablet: [NAnSS SRrkEd With * ave Pecilredy

images/00528.jpg
specified, the

ot
. Llten>)]
the

of

. Blins)]
last name

optional number

for
. pi<n>)

typed. This is
holding the

directory instead of using the last name. If
optional number argument will be used for the number

characters the user should enter.
Allow the caller to enter the last name of a user in

irectory. This is the default. If specified, the
optional number argument will bs used for the number

characters the user should enter.
Allow the caller to enter either the First or the

of a user in the directory. If specified, the
argument will be used for the number of characters the

should enter.
Instead of reading each name sequentially and asking

confirmation, create a menu of up to & names
Pause for n milliseconds after the digits are

helpful for people with cellphones, who are not

receiver to their ear while entering DTUF.

. Only one of the £, 1, or b options may be specified. If more
than one is

. specified, then Directory will act as if ‘b’ was specified. The
nunber

5 SECHATHOEArN T CHE INas £0 tope: SEEaults ta:3%

images/01555.jpg
1.2 |

1.6 |

images/01554.jpg
Aelion: FalseloRitor
synopsis: Pause monitoring of a channel
Privilege: call,all
bescription: The ‘PauseMonitor’ action may be used to temporarily
stop the recording of a channel, The following parameters may
be used to control this:
prameracy — Reaiired. Used to soscify the dlisnnel to rected.

images/01557.jpg
ARGt Rl v

+++ in Asterisk 1.4

2@ 1,5 +1,6 @&

Action: Ping

Synopsis: Keepalive command

erivilege: <none>

Description: A 'Ping’ action will elicit a ‘Pong’ response.
Used to keep the manager connection open.

+ Description: A 'Ping’ action will elicit a ‘Pong’ response.

Used to keep the manager comnection open.
it e g

images/01556.jpg
ACLAGH: Pt

Synopsis: Keepalive command

Privilege: <none>

pescription: A 'Ping’ action will ellicit a ’Pong’ response. Used
to keep the manager connection open.

Eopa Sl

images/00534.jpg
TR Do e
v+ in Asterisk 1.4
e -4,7 +4,7 @&
DISA (Direct Tnward System Access)
[Description]
- DISA(<nuneric passcodes[|<context>]) or disa(<filenames]
+ DISA(<numeric passcodes[|<context>]) or DISA(<filename>|
The DIsh, Dirsct Inward System Access, application allows someone
from
outside the telephone switch (PEX) to obtain an “internal® system
@ialtone and to place calls from it as if they wera placing a call
From
6 24,7 +24,7 4@

The arguments to this application (in extensions.conf) allow either
specification of a single global passcode (that everyone uses), or
- individual passcodes contained in a file. Tt also allow
specitication
+ individual passcodes contained in a file. It also allows
specification
of the context on which the user will be dialing. If no context is
specified, the DISA application defaults the context to "disa®
Presunably a normal systen will have a special context set up
se 48,4 +18,5 ae
If login is successful, the application looks up the dialed number

the specified (or default) context, and executes it if found.

If the user enters an invalid extension and extension *i* (invalid)
exists in the context, it will be used.

. exists in the context, it will be used. Also, if you set the 5th

axgunent

+ to ‘NOANSNER

the DIEA avelication will Aot answer fhitiaiiv.

images/00533.jpg
The arguments to this application (in extensions.conf) allow either
specification of a single global passcode (that everyone uses), or
individual passcodes contained in a file. It also allows specification
of the context on which the user will be dialing. If no context is
specified, the DISA application defaults the context to -disa®
Presunably a normal system will have a special context set up

for DISA use with some or a lot of restrictions.

The file that contalns the passcodes (if used) allows specification
of either just a passcode (defaulting to the *disa* context, or
passcode |context on each line of the file. The file may contain blank
lines, or comments starting with *#* or *;*. In addition, the

above arguments may have |new-callerid-string appended to them, to
specify a mew (different) callerid to be used for this call, for
example: numeric-passcode|context|my Fhone <(234) 123-4567> or
full-pathname-of-passcode-file| "My Phone® <(234) 123-4567>. Last
but not least, |mailbox[@context) may be appended, which will cause
a stutter-dialtone (indication "dialrecall’] to be used, if the
specified mailbox contains any new messages, for example:

mumer ic-passcode| context | [1234 (w/a changing callerid). Note that
in the case of specifying the numeric-passcode, the context must be
specified if the callerid is specified also.

1f login is successful, the application looks up the dialed number in
the specified (or default) context, and executes it if found.

It the user enters an invalid extension and extension i (invalid)
exists in the context, it will be used. Also, if you set the Sth
argunent

to *NOANSWER', the DISA application will not answer initially.

images/00536.jpg
- 8= awars that using this compromises the security of your PEX.
+ Be awars that using this may compromise the security of your PEE.

he argunents to this application (in extensions.conf) allow either
specification of a single global passcode (that everyone uses), or

- inaividual passcodes contained in a file. Tt also allows

speci fication

- of the context on which the user will be dialing. If no context is

- specified, the DISA application defaults the context to -disa”

- Presumably a normal system will have a special context set up

- for DISA use with some or a lot of restrictions.

+ individual passcodes contained in a fils.

- The file that contains the passcodes (if used) allows specification
- of cither just a passcode (defaulting to the *disa® context, or

- passcode|cantext on each line of the file. The file may contain
blank

- lines, or coments starting with *#* or ";*. In addition, the
- above argumencs may have |new-callerid-string appended to them, to
- specify a new (different) callerid to be used for this call, for

- example: numeric-passcode|context "My Phone" <(234) 123-4567> oz

- full-pathname-of-passcode-file| "My Phone" <(234) 123-4567>. Last
- buC not least, |mailbox[Econtext] may be appended, which will cause
- a stutter-dialtone (indication *dialrecall’) to be used, if the

- specified mailbox concains any new messages, for exampl
- numeric-passcode|context|[1234 (w/a changing callerid]. Note that
- in the case of specifying the mmeric-passcode, the context must be
- specified if the callerid is specified also.

+ The file that contains the passcodes (if used) allows a complete

+ specification of all of the same arguments available on the command
+ line, with the sole exception of the options. The file may contaln
blank

images/00535.jpg
£ Lt
+++ in Asterisk 1.6
66 -4,49 +4,42 66

DISA (pirect Imward System hccess)

[Description]
- DISA(<numeric passcode>||<context>]) or DISA(<Eilename>)

. DISA(<numeric passcodes [, <context>[,<cid>[,mailboxl,options]ill) or
+ DIsa(<tilename»(,,, options])

The DIsA, Direct Inward System Access, application allows someons

outside the telephone switch (PBX) to obtain an “internal® system

Gialtone and to place calls from it as if they were placing a call
From

within the switch

DISA plays a dialtone. The user enters their numeric passcode,
followed by

the pound sign (¥). If the passcode
given
- systen dialtone on which a call may be placed. Obviously, this type
- of access has SERTOUS security implications, and GREAT care must be
- taken NOT to compromise your security

s corrsct, the user is then

- There is a possibility of accessing DISA without password. Simply
exchange your password with "no-password”.

+ system dialtone within <context> on which a call may be placed. If

the user

+ enters an invalid extension and extension *i® exists in the

specified

+ context, it will be used.

- Exanple: exten =» s,1,DISA(no-password|local}
+ If you need to present a DISA dialtons without entering a password,
simply

+ set <passcodes Lo *no-password®.

images/00530.jpg
1 Allow outeice eallers ta dial Bo0 mmbers, provided they: know the
: password (1234). Set the caller ID so that the call appears to be
; coming from inside the company:

[incoming]

exten => 123,1,DISA(1234,disa, Widgets Inc <212-555-3412>)

laisal

exten => _DBODXXXXXXXX,1,Dial(zap/4/$ (EXTEN})

images/00529.jpg
VISN pasmwoadt, context I, callerigl malipaxi{fvolcamsil-context]l11)
BILEAlpasaword-£ilel, calleridl, matiboxl Bvolcemail-contexti]])

images/00532.jpg
SN RIS SRl NN e

[synopsis]
DISA (Direct Tnward System Access)

[pescription]
DISA(<nuneric passcodes[|<context>]) or DISA(<filename>)

The DISA, Direct Inward System Access, application allows someons from
outside the telephone switch (FBX) to obrain an “internal system
aialtone and to place calls from it as if they were placing a call from
within the switch.

DISA plays a dialtone. The user enters their numeric passcode, followed by
the pound sign (#). If the passcode is correct, the user is then given
system dialtone on which a call may be placed. Obviously, this type

of access has SERIOUS security implications, and GREAT care must be

taken NOT to compromise your security.

here s a possibility of accessing DISA without password. Simply
exchange your password with "no-password’.

Example: exten => s,1,DTSA(no-password|Local}

Be aware that using this compromises the security of your BBX

images/00531.jpg

images/00527.jpg
- AERELIaE Lol

+++ in Asterisk 1.6

e -4,7 +4,7 a@
Provide a

ctory of voicemail extensions

[pescription]
- Directary(vn-context(|dial-context[|options]]): This application
will present
- Directory(vm-context(,dial-context (,options]]) : This application
will present

the calling channel with a directory of extensions from which they
can search

by nane. The list of names and corresponding extensions is retrieved
£ron the

voicemail configuration file, voicemail.cont.
@8 -21,7 +21,26 e

‘ot or 'a’ extension.

options:
- o - In addition to the name, also read the extension number to
the
- caller before presenting dialing options.
5 £ - Allow the caller to enter the Eirst name of a user in the
sirectory
: instead of using the last name.

‘ e In addition to the name, also read the extension
number to the

. caller before presenting dialing options.

. £0(<n>)] Allow the caller to enter the first name of a user

in tha:

images/00526.jpg
T AGTREINK 1 ik
e+ in Asterisk 1.4
@8 -21,5 +21,7 4@

options:
g & - In addition to the name, also read the extension number o
the
. caller vefore presenting dialing options.

£ - Allow the caller to enter the First name of a user in the
sirectory
ingtead of using the lagt name:

images/01562.jpg
| 1.6 |-

images/01561.jpg
BELIR A LOMIEASY
Synopsis: Add interface to queue,
Privilege: agent,all

images/01564.jpg

images/01563.jpg
ROGRGIA - SEPeugts.
Synopsis: Adds custom entry in queue_log
Privilege: agent,all

images/01558.jpg

images/01560.jpg

images/01559.jpg
Agtiom: BlayDTMe
Synopsis: Play DIMF signal on a specific channel.
Privilege: call,all
Description: Flays a dmf digit on the specified channel.
variables: {all are required)

Channel: Channel name to send digit to

Dlgit: The dinf digte to play

images/01526.jpg
1.2 |

1.6 |

images/01525.jpg
Agtlon: Login
Synopsis: Login Manager
By 70 P O S

images/01527.jpg
ACLION: BUUOTL
Synopsis: Logoff Manager
Privilege: <none>

pescription: Logoff this manager session
B itaean s, et

images/01522.jpg

images/01521.jpg
Actiom: LigtCategories

Synopsis: List categories in configuration file

Privilege: config,all

pescription: A ‘ListCategories’ action will qump the categories in

a given file

Variables:
P1lename

Sanfisiratian Elidsune e . . FobL oAy

images/01524.jpg
|1 1.6 |

images/01523.jpg
Agtion: LigtCommands:

Synopsis: List available manager commands
Privilege: <none>

Description: Returns the action name and synopsis for every
action that is available to the user
G R

images/00523.jpg
eten “w- ¥, 3, DIPECLALY I AUERIL L, I00OMIRG).
exten => #,1, Directory(default.incoming, £)

images/00522.jpg
Info about application 'DigitTimeout’ ==

(synopsis]
Set maximm timeout between digits

[pescription]
DigitTimeout (seconds): Set the maximum amount of time permitted

between

digits when the user is typing in an extension. When this timeout

expires,

after the user has started to type in an extension, the extension will

be

considered complete, and will be interpreted. Note that if an extension

typed in is valid, it will not have to timeout to be tested, so

typically

at the expiry of this timeout, the extension will be considered invalid

(and thus control would be passed to the 'i' extension, or if it

doesn't

exist the call would be terminated). The default timeout is § seconds.
DigitTimeout has been deprecated in favor of

Set (TIMEOUT (digit) =timeout}

images/00525.jpg
SRR P ERa I SREDeery e

{synopsis)
Provide directory of voicemail extensions

{Description]
birectory (va-context |dial-context (|options]]): This application will
present
the calling channel with a directory of extensions from which they can
search
by name. The 1ist of names and corresponding extensions is retrieved
tron the
voicemail configuration file, voicemail.conf.
This application will inmediately exit if one of the following DDMF
aigits are
received and the extension to jump to exists:
0 - Jump to the ‘o' extension, if it exists.
* - Jump to the 'a’ extension, if it exists.

Paraneters:
vn-context - This is the context within voicemail.conf to use for
the
Directory.

dial-context - This is the dialplan context to use when looking for
extension that the user has selected, or when
umping to the

‘o' or 'a’ extension.

options:
& - In addition to the name, also read the extension nurber to the
caller before presenting dialing options.
£ - Allow the caller to enter the first name of a user in the
girectory
Thbaad of intee the Tauk Hkme.

images/00524.jpg
-11.4]|

-11.6|

images/00519.jpg
in Asterisk 1.2
r++ in Asterisk 1.4
ae 4,5 +4,5 se

Virtual Dictation Machine

[Description]
- bictate([<base_dir>])
¢ Dictate([<base_dir>[|<Eilename>]]]
rart dictation machine vsing eptional Base dir for files

images/00518.jpg
-= Info about application 'Dictate’

[Synopsis]
Virtual Dictation Machine

[Description]
Dictate([<base_dir>[|<filename>]])
Srary At ban il e ing: oot Lonel o dix Soxeritas:

images/00521.jpg
11.2|

images/00520.jpg
in Asterisk 1.4
r++ in Asterisk 1.6
ae 4,5 +4,5 8e

Virtual Dictation Machine

{Description]

- Dictate([<base_dir>[|<filename>]])

¢ Dictate([<base_dir>[,<filename>]])

Start dictation machine using optional base dir for files

images/00516.jpg
¥ Take digtarion:
exten => 123,1,Dictate()

images/00515.jpg
+ the DTMF sequence defined in the automon setting in the
featuremap section
s of features. cont.

. x - Allow the called party to enable recording of the call by
sending

. the DIMF sequence defined in the automixmon setting in
the featuremap section

. of features.cont.

. X - Allow the calling party to enable recording of the call
by sending

. the DTUF sequence defined in the automixmon setting in

the featuremap section
7 O N

images/00517.jpg

images/01529.jpg
RELLOIN M I GO,
Synopsis: Check Mailbox Message Count
Privilege: call,all
Description: Chacks a voicemail account for new messages.
Variables: {Names marked with * are required)
Mailbox: Full mailbox ID <mailbox>@<vm-context>
ActionID: Optional ActionID for message macching
Returns number of new and old messages.
Message: Mailbox Message Count
Mailbox: <mailboxid>
Newttassages: <count>
DiReNOLteR EONIRE

images/01528.jpg

images/01531.jpg
1.2 |

1.6 |

images/01530.jpg
2 ARLErIEE 1,4
r++ in Asterisk 1.5
0 1,12 +1,13 40
Action: MailboxCount
Synopsis: Check Mailbox Message Count
- Privilege: call,all
+ Privilege: call,reporting,all
Description: Checks a voicemail account for new messages.
Variables: (Names marked with * are reguired)
“mailbox: Full mailbox ID <nailbox>@cym-contexts
ActionTD: Optional ActionID for message matching.
- Returns number of new and old messages.
+ Returns number of urgent, new and 0l messages.
Message: Mailbox Message Count
Mailbox: <mailboxid>
. Urgentuessages: <count>
Newtessages: <count>
pitmaparg ey

images/00988.jpg
-] 1.2 |-

| 1.4 |

| 1.6 |-

images/01537.jpg
ASLOOn: ADCSLIabE:
Synopsis: Mute a Mestne user
R)

images/01536.jpg

images/00990.jpg
A ST R

+++ in Asterisk 1.6
@8 -4,16 +4,26 €8

Communicates with SHS service centres and SUS capable analogue

phones

[Description]
s (nane| [a] [s]): SMS handles exchange of SMS data with a call

to/from SMS capabale

s (nane, [a] (s] (€] [p(d)] [x] (o] , addr, body)
SuS handles exchange of SMS data with a call to/from SUS capable
phone or SMS PSTN service center. Can send and/or Teceive SMS messages
vorks to ETSI BS 201 312 compatible with BT SMS PSTN service in UK
Typical usage is to use to handle called from the SMS service centre

cur,

Vorks to ETST BS 201 912; conpatible with BT SHS PSTN service in UK
and Telecom Italia in Italy.
Typical usage is to use to handle calls from the SMS service centre

cLr,

oF to set up a call using 'outgoing' or manager interface to connect
service centre to SHS()

name is the name of the queve used in /var/spool/asterisk/sms
Arqunents:

a: answer, i.e. send initial FSK packst

st act as service centre talking to a phons.

+ a - answer, i.e. send initial FSK packet.
+ s - act as service centre talking to a phone.
+ t - use protocol 2 (default used is protocol 1)
+ DN} - set the initial delay to N ms (default is 300)
v addr and body are a deprecated format to send messages out.
¢ ¥ - set the Status Report Request (SRR) bit.
¢ © - the body should ba coded as octets not 7-bit symbols.
Messages are processed as per text file message queues.
smsq (a separate software) is a command to generate message
Queues and send messages
+ NOTE: the protocol has tight delay bounds, Please use short frames
+ and aisable/keep short the jitter buffer on the ATA to make sure
that

respones (ACK etc.) are received in time.

images/00989.jpg
Info about application 'SMS' =

(Synopsis]
Communicates with SMS service centres and SMS capable analogue phones

[pescription]

StS(name| (al (s]): SHS handles exchange of SUS data with a call
to/from Sus capabale
phone or SHS PSTN service center. Can send and/or receive SHS messages.
Works to ETSI ES 201 912 compatible with BT SS PSTN service in UK
Typical usage is to use to handle called from the SMS service centre
crr,
or to set up a call using 'outgoing' or manager interface to comnect
service centre to SUS()
name is the name of the queue used in /var/spool/asterisk/sms
Arguments :

a: answer, i.e. send initial FSK packet.

&: act as service centre talking to a phone
Messages are processed as per text file message queues.
smsq (a separate software] is a command to generate message
Susndn anil pend RESENGEE. .

images/01533.jpg
Al ARLEINIC L F
+++ in Asterisk 1.6
2@ 1,6 +1,6 @&
Action: Mailboxstatus
Synopsis: Check Mailbox
- erivilege: call,all
+ Privilege: call,reporting,all
Description: Checks a voicemail account for status.
Variables: (Names marked with * are required)
bt T s TR - o R R e

images/01532.jpg
ARLROTA gL LD EAT I
Synopsis: Check Mailbox
Privilege: call,all
pescription: Checks a voicemail account for status.
variables: (Names marked with * are required)
“Mailbox: Full mailbox ID <mailbox>@<vm-context>
ActionID: Optional ActionID for message matching.
seturns number of messages.
Message: Mailbox Status
Mailbox: <mailboxid>
MBI b eRBILES

images/01535.jpg
ACLATH: BecLICIany.
Synopsis: List participants in a conference
Privilege: reporting,all
bescription: Lists all users in a particular MestMe conference.
MeetmeList will follow as separate events, followsd by a final event called
MeetneListComplate.
Variable
“ActionId: <id>
R e s

images/01534.jpg
1 1.6 |

images/00512.jpg
encountered

Y v Busy Behave as if a busy signal was
encountered. This will also

- have the application jump to priority
n+101 Lf the

- *j* option is set.

. * musY Behave as if a busy signal was
encountered.

* conTINUE mHangup the called party and allow the
calling party
to continue dialplan execution at the next

priority.
+ GOTO: <context>”<extens<prioritys - Transfer the call
to the
¢ -108,8 1115,8 00
o - specify that the CallerID that was present on the

calling channel
be set as the CallerID on the *calleds channel. This was
the
Behavior of Asterisk 1.0 and earlier.
- O([x]) - "operator Services* mode (zaptel channel to Zaptel
channel
" only, if specified on non-zaptel interface, it will be

ignored) .
. O([x]) - "operator Services® mode (DAHDI chamnel to DAHDI
channel
. only, if specified on non-DAHDI interface, it will be
ignored) .

When the destination answers [presunably an operator

wrEeten); hecoriglnaco e Teet b Sottrsl ot ehke

images/00996.jpg
Into about application: ‘Sory!

[synopsis]
Sorts a list of keywords and values

[Pescription]
Sort (newvar=keyl:valll key2:val2([
will

sort the list provided in ascending order. The result will be stored in
the

specified variable name.
This application has been deprecated in favor of the SORT function.

1, keyN:valN]]): This application

images/00511.jpg
dial attempt.

- 3 - Jump to priority n+101 if all of the requested channels
were busy.

k- Allow the called party to enable parking of the call by
sending

- the DTMP sequence Gefined for call parking in
features.conf

. the DTMP sequence dafined for call parking in the
featuremap section of features.cont

K - Allow the calling party to enable parking of the call by
sending

: the DTHF sequence defined for call parking in
features . cont.

. the DTMF sequence defined for call parking in the
featuremap section of features.conf.

Lix[:yl[:2]) - Linit the call to 'x* ms. Play a warning when 'y’
ns are

left. Repeat the warning every 'z’ ms. The following
special
variables can be used with this option

¢o -84,14 193,12 06

specified.
M(x(*arg]) - Execute the Macro for the *called* chamnel before
connecting
to the calling channel. Arguments can be specified to the
acro
- using "' as a delimeter. The Macro can set the variable
. using ‘** as a delimiter. The Macro can set the variable
MACRO_RESULT to specify the following actions after the
wacro is

Einished executing
* amORT Hangup Both legs of the call
* CONGESTION Bohave as if line congestion was

images/00995.jpg

images/00514.jpg
encountered.

. * BusY Behave as if a busy signal was
encountered.

. * CONTINUE Hangup the called party and allow the
calling party

. to continue dialplan execution at the next
priority.

. * GOTO:<context>*<exten>*<priority> - Transfer the call
to the

: specified priority. Optionally, an
extension, or

. extension and priority can be specified.
. You cannot use any additional action past answer options
in conjunceion
. with this option. Also, pbx services are not run on the
peer (called] channel,
. 50 you will not be able to set timeouts via the TIMEOUT()
function in this routine.

W - Allow the called party to enable recording of the call by

sending
- the DTF sequence defined for one-touch recording in
features.conf
. the DTMF sequence defined in the automon setting in the
featuremap section
s of features, conf.

W - Allow the calling party to enable recording of the call
by sending
- the DIMF sequence defined for one-touch recording in
features.conf.

images/00513.jpg
They may hang up, but the switch will not release their

e -128,10 +135,35 €@

S(x) - Hang up the call after 'x' seconds *after* the called
party has

answered the call.

t - Allow the called party to transfer the calling party by
sending the
! DINF sequence defined in features.cont.

. DIMF sequence defined in the blindxfer setting in cthe
featuremap section
. of features. cont.

T - Allow the calling party to transfer the called parcy by

sending the
= DIMF sequence defined in features.conf.
. ¥ sequence defined in the blindxfer setting
featuremap section

. of features.cont.
N Uix[*arg]) - Execute via Gosub the routine 'x' for the *called*
channel before connecting

. to the calling channel. Arguments can be specified to the
Gosub

. using '** as a delimiter. The Gosub routine can set the
variable

. GOSUB_RESULT to specify the following actions after the
Gosub retur:

. * asoRT Hangup both legs of the call
% # CONGESTTON Behave as Lf line/congestion was

images/00997.jpg
| 1.6 |

images/00508.jpg
+ 80 you will not be sble to set timeouts via the TIMEQUT()
function in this macro.
n - This option is a modifier for the screen/privacy mode. It
specifies
that no introductions are to be saved in the
priv-callerintros
airectory.
@8 -101,6 +108,16 60
© - Specify that the Caller:
*calling® channel
e set as the CallerID on the *called* chamnel. This was

that was present on the

the
behavior of Asterisk 1.0 and earlier.

N Of(x]) - "Operator Services® mode (Zaptel chamnal to Zaptel
channel
. only, if specified on non-zaptel interface, it will be

ored) .
N When the destination answers (presumably an operator
services
" station), the originator no longer has control of their
line.
N They may hang up, but the switch will not release their
line
N uncil the destination party hangs up (the operator).
specified
. without an arg, or with 1 as an arg, the originator
hanging up
. i11 cause the phone to ring back immediately. With a 2
specified,
. when the "operator” flashes the trunk, it will ring
their phone
N back.

P - This option enables screening mode. This is basically

privacy mode
withour memory.
B((x]) - Enable privacy mode. Uss 'x' as the family/key in the
AR

images/00992.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/00991.jpg
¢ Baggrup all. chadnels Using - fap/d.
exten => 123,1,SoftHangup (Zap/4,a)
exten => 123,n,Wait(2)

exten => 123,n,Dial(Zap/4/6045551538)

images/00510.jpg
extension associated with the channel using a dialplan
‘hine'.

For example, some PSTNs do not allow CalleriD to be set
to anything

other than the number assigned to the caller.

. F(context"exten'pri] - When the caller hangs up, transfer the
called party
. to the specified context and extension and continue
exacution.

9 - Proceed with dialplan execution at the current extension
it the

destination channel hangs up.
Glcontext"exten‘pri} - If the call is answered, transfer the
calling party to
60 -59,15 465,18 4¢
optionally, an extension, or extension and context may be

specified
Otherwise, the current extension is used. You cannot use
any additional
action post answer options in conjunction with this

option
- h - Allow the called party to hang up by sending the '+* DINF
aigic.

: H - Allow the calling party to hang up by hitting the '+
o digit

. h - Allow the called party to hang up by sending the '*' DIMF
aigic, or

. whatever sequence was defined in the featuremap section
for

. disconnect ' in features.conf

H - Allow the calling party to hang up by hitting the '**
ait, or
. whatever sequenice was defined in the featuremap section

. *disconnect® in features,cont
i - Asterisk will ignore any forwarding requests it may
cavulve Do atbe

images/00994.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
90 -4,8 +4,8 60

Soft Hangup Application

[Description]

- Softnangup (Technology/resource |options)

+ SoftHangup(Technology/resource[,options]):
Hangs up the requested channel. If there are no channels to hangup,
the application will report it

- - ‘options’ may contain the following letter:

5 ‘a’ : hang up all channels on a specified device instead of a
single resource

+ options:

. ‘a’ - hang up all channels on a specified device instead of a

single rescuzce

images/00509.jpg
S
e++ din Asterisk
a8 4,7 +4,7 48

Flace a call and connect to the current channel

s
1.6

[Description]
- Dial (Technology/resource(&Techz/resource2. . .1 |tineout] [|options]
tuse) :
+ Dial(Technology/resource(£Tech2/resource?. ..] [, tineout] [options]
LURL) :
This application will place calls to one or mors specified channels.
As soon
as one of the requested channels answers, the originating channel
will be
answered, if it has not already been answerad. These two channels
will then
48 -39,6 +39,8 €8
cptions
Alx) - Play an announcement to the called party, vusing 'x' as
the file.
C - Reset the CDR for this call
. © - If DIAL cancels this call, always set the flag to tell
the channel
. driver that the call is answered elsewhere
d - Allow the calling user to dial a 1 digit extension while
waiting for

a call to be answered. Exit to that extension if it
exists in the

current context, or the context defined in the
EXTTCONTEXT variable,
06 -48,10 450,14 @

DIUF string is sent to the called party, and the
“calling' prue

string is sent to the calling party. Both parameters can

be used

- e - execute the ‘h* extension for peer after the call ends

This

. operation will mot be performed if the peer was parked
£ - Force the callerid of the *calling” channel to be set as

6hig

images/00993.jpg
Info about application 'SoftHangup'

(Synopsis]
Soft Hangup Application

[pescription]
Softangup (Technology/ resource options)
Hangs up the requested chanmel. If there are no channels to hangup,
the application will report it
- ‘options’ may contain the following letter:
‘a’ : hang up all channels on a specified device instead of a
N S—4

images/00505.jpg
party
to continue dialplan execution at the next

priority.
* GOT0s<context><exten><priority> - Transfer the call to
the
specified priority. Optionally, an extension,

extension and priority can be specified.

You cannot use any additional action post answer options in
conjunceion

with this option. Also, pbx services are not run on the peer
(called) channel,

20 you will not be abla to set timeouts via the TIMEOUT()
function in this macro

n - This option is a medifier for the screen/privacy mode. It
specifies
that no introductions are to be saved in the
-callerintros
airectory.
N - This option is a modifier for the screen/privacy mode. It
specifies
that if callerId is present, do not screen the call.
© - Specify that the CallerID that was present on the *calling*
channel

be set as the CallerID on the *called* channel. This was the
behavior of Asterisk 1.0 and earlier.
Of[x]) - "Operator Services" mode (zaptel channel to Zaptel channel
only, if specified on non-Zaptel interface, it will be

ignored) .
when the destination answers (presumably an operator
services
station], the originator no longer has control of their
line.

They may hang up, but the switch will not release their

line

images/00504.jpg
o]
left. Repeat the warning every 'z' ms. The following special
variables can be used with this option:

* LINIT_PLAYAUDIO_CALLER yes|no (default yes)

Play sounds to the caller
* LIMIT_PLAYAUDIO_CALLEE yes|no

Play sounds to the callee.

* LIMTT 71MEcUT_FILE File to play when time is up.
File to play when call begins.
* LIMIT WARNING_PILE File to play as warning if 'y’ is
defined.
The default is to say the time
remaining.
nilclass]) - Provide hold music to the calling party uncil a
raquested
channel answers, A specific MusiconHold class can be
specified
m(x[*arg]} - Execute the Macro for the *called* channel befors
connecting
©o the calling channel. Arguments can be specified to the
Macro
using ‘** as a delimeter. The Macro can set the variable
MACRO_RESULT to specify the following actions after the
Macro is
Einished executing.
+ amoRT Hangup Both legs of the call
* CONGESTION Behave as if line congestion was encountered.
* Busy Behave as if a busy signal was encountered.

This will also
have the application jump to priority n+l01
it the
*§' option is set
* CONTINUE Hangup the called party and allow the calling

images/00507.jpg
I S
+++ in Asterisk 1.4
@@ -61,7 +61,13 @@
action post answer options in conjunction with this

option

h - Allow the called party to hang up by sending the '+' DTMF
aigic.

H - Allow the calling party to hang up by hitting the '+
DTNF digit.
. i - Asterisk will ignore any forwarding requests it may

receive on this
. dial attempt

3 - dunp to priority ne101 if all of the requested channels
were busy.

. K - Allow the called party to enable parking of the call by
sending

. the DIMF sequence defined for call parking in
features.cont.

. K - Allow the calling party to enable parking of the call by
sending

. the DIMF sequence defined for call parking in
features.cont.

Lixliyl(:2]) - Linit the call to 'x*

left. Repeat the warning every 'z’ ms. The following
special
variables can be used with this option:
ee 92,7 +98,5 a@
specified priority. optionally, an
extension, or
extension and priority can be specified.
You cannot use any additional action post amswer options
in conjunction
= with this option.
+ with this option. Also, pbx services are not run on the
KicE TERILGAS Ehamnad.

images/00506.jpg
until the destination party hangs up (the operator)
specified

without an arg, or with 1 as an arg, the originat

hanging up
will cause the phone to ring back imnediately. With a 2

specified,
when the "operacor” flashes the trunk, it will ring their
phone
Back.
© - This option enables screening mode. This is basically

Privacy mode
without memory.

B((x]) - Enable privacy mode. Use 'x' as the family/key in the
satabase if
it is provided. The current extension is used if a database
family/key is not specified.
r - Indicate ringing to the calling party. Pass no audio to the
calling
party until the called channel has answered.
Stx) - Hang up the call after 'x' seconds *after the called parcy
answered the call
£ - Allow the called party to transfer the calling party by
sending the
DTMF sequence defined in features.conf.
- Allow the calling party to transfer the called party by
sending the
DIME sequence defined in features,conf.
w - Allow the called party to enable recording of the call by
sending

the DIMF sequence defined for one-touch recording in
features.cont.
W - Allow the calling party to enable recording of the call by
sending
the DIMF sequence defined for one-touch recording in
PR S

images/01540.jpg

images/01539.jpg
Rolbons: MEcTBUDmsLE-
Synopsis: Unmute a Meatme user
pilvitene: ceilisll

images/01542.jpg

images/01541.jpg
RYLSGTA UG e
Synopsis: Check if module is loaded

Privilege: system,all

pescription: Checks if Asterisk module is loaded

variables:
ActionTp: <id> Action ID for this transaction. Will be returned.
Module: <name> Asterisk module name (not including extension)

Will return Success/Fail
B R Teine RS Thi Rkt st as ol AR T ThET et

images/01538.jpg

images/00858.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/00864.jpg
FULOSUOUL GUMELCALION, " BamTime”

(synopsis]
Realtine Data Lookup

Description)
Use the RealTime config handler system to read data into channel
variables.

RealTine (<family> | <colmatehs | <values [|<prefi])

ALL unique colunn names will be set as channel variables with optional
orefix

to the name. For example, a prefix of ‘var_' would make the column
become the variable §{var_name). REALTIMECOUNT will be set with the
number

i e A

images/00863.jpg

images/00866.jpg
A 1B oMY RARIRING(] SRS, We TR UDCBES ELE T6COra 11Ke 404,
exten => 123,1,RealTineUpdate (sipusers, ext, 5678, Firstnane, Richard)
resulting SOL command:

UPDATE sip_users SET firstname = 'Richard’ WHERE ext = '5678'

images/00865.jpg
IR ABLATLIEE Los
4+ in Asterisk 1.4
@ 7.5 +7,7 68

Use the RealTime config handler system to read data into channel
variables.

RealTine (<family> | <colmatch> |<values [|<prefix>])

- ALl unique column names will be set as channel variables with
optional prefix to the name.

- e.g. prefix of 'var_' would make the column 'name’ become the

variable $ivar_name}

+ ALL unique column names will be set as channel variables with
optional prefix

+ to the name. For example, a prefix of ‘var_' would make the column
*name’

+ becoms the variable §(var_name). REALTIMECOUNT will be set with the
number

s of vhiias sas

images/00860.jpg
EBELErIoK 1. ¥
+++ in Asterisk 1.6

@8 -1,10 +1,10 @@

= 10f0 about application 'ReadFile’ =-

[synopsis]
- ReadFile(varname=file, length)
+ Read the contents of a text file into a channel variable

[Description]

Readrile(varnane=rile, length)
- varnane - Result stored here.
- FPile - The name of the file to read.
- Length - Maximun number of characters to capture.
- varname - Result stored here

£ile - The name of the file to read.

+ length - Maximum number of characters to capture.

images/00859.jpg
= INE0 SRONE Spplication Readplle*

(synopsis]
ReadFile(varname=file, langth)

[Description]
ReadFile (varname=file, length)

varnane - Result storad hera.

File - The name of the file to read.

LBt - Maxtaum: muiber GF characters €6 paptite.

images/00862.jpg
exten == 143, 0. N00p1The Tir8t name Of [ho uasy At ext. 5678 18
${var_firstnane})
exten => 123,n,N00p(The last name of the user at ext. 5678 is:
P T D, W

images/00861.jpg
i Family => DBMS,database,table
SIERRAIR oS NS ARERrARE . S

images/01191.jpg
e THEg-RNT fuibreen SEILTER! e

[syncax]
PILTER (<allowed-chars> |<strings)

[synopsis]
Filter the string to include only the allowed characters

[pescription]
S

images/01190.jpg

images/01193.jpg
FIOREIRN GROhIC Nerisbls Vimyyaria el
s o 1585 et A CLORAT ks N o) haat!

images/01192.jpg
) BRI e
4+ in Asterisk 1.6
38 -1,10 +1,15 @8

"= Ino avout £

iction 'FILTER! a-

[syntax]
- PILTER (<alloved-chars > |<string >}
+ FILTER (<alloved-chars > <string »|

[Synopsis]
Filter the string to include only the allowed characters

[pescription]
- Not available

+ Pernits all characters listed in <allowed-chars>, filtering all

others out.

+ In aadition to literally listing the characters, you may also use

ranges of

+ characters (delinited by a '-*), as well as hexadecimal characters
started

¢ with a \x (i.e. \x20) and octal characters started with \0 (i.e. \040)

+ Also, \t, \n, and \r are recognized. If you want a literal '-' character,
. oAmeli ey 4k with & X4

images/00857.jpg
AnL8 about applisarion TReadieien®

[Synopsis]
Read an extension into a variable

[Description]
BeadExten (<variables(, (<filenane> (, (<context>][, (<option>]
[, <timeouc>1111)

Reads a #-te:

varisble.
filename file to play before reading digits or tone with option 1
context context in which to match extensions

nated string of digits from the user into the given

option options are:
s - Return imediately if the channel is not answered,
i - Play filename as an indication tone from your
indications.conf
n - Read digits even if the channel is not answered.
timeout An integer number of seconds to wait for a digit response.
1t

greater than 0, that value will override the default
tineout.

ReadExten will set READEXTENSTATUS on exit with one of the following
statuses:
ox A valid extension exists in §(variable)
TINEOUT Mo extension was entered in the specified time
INVALID An invalid extension, §(TNVALID_BXTEN), was entered
sx1e Line was not up and the option 's' was specified
WA Taealis HEGONARLE Were bakket

images/00856.jpg

images/01189.jpg
Rt el S R S T i ot oy
AR S Sy S L el ey g Y 14

images/01188.jpg
S0 ARLEEIBE ot

r++ in Asterisk 1.6

s 1,7 +1,7 88

Info about function 'FIELDOTY"

[syntax]
- PIELDOTY (<varname > |<delim »)
¢ PIELDOTY(<varname >, <delin »)

[synopsis]
sount ihe FLEldE WLk di arsltrary dallnttes

images/01195.jpg
=< 2080 Boout- TunctaoR "GLOERL"

[syntax]
GLOBAL (<varname »)

[synopsis]
Gets or sets the global variable specified

[psscription]
Aoaabielesieond)

images/01194.jpg

images/01197.jpg

images/01196.jpg
XL 2 183 L SCTIRRUEL y Routgoing)
exten => 123,1m,G0toTf ($[$(GROUE_COUNT()} > 1017200)

basidiconse]
£00 many outgoing
calls?

aial

£00 many outgoing
L eiTe et

oxten => 123,n,Dial (7785553233)
oxten =» 123,200, SetVar (DIALSTATU:

HANUNAVAIL)

images/00853.jpg
THEC" AOONE: SpRlicariun. Rens”

[synopsis]
Read a variable

[pescription]
Read (variable(|£ilenane] [|maxdigits] [option] [|attempts] (| tineout])

Reads a #-terminated string of digits a certain number of times from
the
user in to the given variable

filenane - file to play before reading digits or tone with option
maxdigits -- maximum acceptable number of digits. Stops reading
afcer
maxdigits have been entered (without requiring the

press the '#* keyl.
Defaults to 0 - no Limit - vait for the user press
the '#* key.
Any value below 0 means the same, Max accepted value
is 255.
option

options are 's* , 'i*, 'n'
s to return immediately if the line is not up,
i to play filename as an indication tone from
your indications.cont
'n' to read digits even if the line is mot up
atcenpts -~ if greater than 1, that many attempts will be made
in the
event no data is entered.
timeout -~ An integer mumber of seconds to wait for a digit
response. If greater
than 0, that value will gverride the default timeout

R R T

images/00852.jpg
| 1.4 |

images/00855.jpg
el) o e o O

+++ dn Asterisk 1.6

66 -4,11 +4,11 46
Read a variable

[pescription)
- Read(variable(|filenane] [|naxdigits] [|option] [actenpts] [|imeout])
+ Read(variable(,filename(sfilenane...]] [, naxdigits] [option] [,atte
mpts) [, timeout])

Reads a #-terminated string of digits a certain number of times from
the
user in to the given variable,

- filename -- file to play before reading digits or tone with
option i
+ fllemame - file(s) to play before reading digits or tone with
option i

maxdigits -- maxinun acceptable number of digits. Stops reading
atter

maxdigits have been entered (without requiring the
Brass the '#' key).
6e -20,7 +20,9 e
‘n* to read digits even if the line is not up.
attempts -~ if greater than 1, that many attempts will be made
in the
event no data is entered.
- timeout -- An integer number of seconds to wait for a digit
response. 1 greater
- than 0, that value will override the default
timeout.

- Heag should disconnect if the function fails or errors out.

+ timeout -- The number of saconds to wait for a digit response.
1f greater
‘ than 0, that value will override the default

tineout. Can be floating point.
+ This application sets the following channel variable upon
completion:

. READSTATUS - This is the status of the read operation.
4 Posstble values are:
. OF | ERROR | HANGUP | INTERRUPTED | SKIPPED |

P

images/00854.jpg
=== in Asterisk 1.
+++ in Asterisk 1.4
&8 -8,15 +8,19 ae

Reads a #-terminated string of digits a certain mumber of times
from the
user in to the given variable.

- filename £ile to play betore reading digits
¢ Filemame .- file to play before reading digits or tone with
option i
maxdigits -- maximum acceptable number of digits. Stops reading

after

maxdigits have been entered (without requiring the
user to

press the ¥ key)

Defaults to 0 - no limit - wait for the user press
the "% key.

any value below 0 means the same. Max accepted value
is 255,
- option -- may be ‘skip' to return immediately if the line is
not up,
- or 'noanswer® to read digits even if the line is not
vp.
+ option - options are 's' , 'i', 'm'
. 's* to return immediately if the line is not up,
N ‘it to play filename as an indication tone from
your indications.conf
" ‘n' to read digits even if the line is not up.

attempts - if greater than 1, that many attempts will be made

in the

event no data is entered.
- timeout -- if greater than 0, that value will override the
default timeout.
+ timeout -~ An integer number of seconds to wait for a digit
response. 1f greater
. than 0, that value will everride the default
timeout.

B Ginn 4 Hiipmonnact E8 e inction S8l or arrars ouk:

images/00849.jpg
~w IBED Sbout Spplioation 'Emadom’

(synopsis]
conditionally branches, based upon a probability

{bescription]

Randon ([probability] : [[context |lextension| Ipriority)
probability := INTEGER in the range 1 to 100

DEPRECATED: Use GotoTf(S[S(RAND(1,100)) > <numbers]?<labels)

images/00848.jpg

images/00851.jpg
¢ Read a 4 dlgir ombar, allowing up 1o 3 SCLenpia, (ang:=ay-rhis
number Back to the caller:

exten => 123,1,Read (NUMBER, ,4,3]

exten => 123,n, SayNunber (${NUMBER))

exten => 123.n.Goto (1}

images/00850.jpg
in Asterisk 1.2
+++ in Asterisk 1.4
6 -6,3 +6,4 90
[Description]
Random([probability] : { [context |]extension|Ipriority)
probability := INTEGER in the range 1 to 100
+ DEPRECATED: Use GOtoIf($[&(RAND(1,100)} > <numbers)?<labels}

images/00846.jpg
Into mbouk application Nuisekxceptlont ==

[Synopsis]
Randle an exceptional condition

[pescription]

Raisemxception (<reason>): This application will jump to the "e*
extension
in the current context, setting the dialplan function EXCEPTION().
If the "er

Sxtansion ‘douk HOL EElEt, the @all will Dangig:

images/00845.jpg

images/00847.jpg
¢ Game of ‘chanca with 20% Chance pf winning:
exten => 12,1, Random (20:won, 1]
exten => 123,n,Goto(lost,1)

exten => won, 1, Playback (hooray)
exten => won,n,Goto(123,1)

exten => lost,1,Playback (sorry]
extan => lost,n.Gotal12d, 1)

images/00842.jpg
TALOADONE SR LLCALIIN TURHuaiOy/

[synopsis)
Writes to the queue_log
(Description]

Queuetiog (queuenane [uniqueid|agent |event [|additionalinfol)
Allows you to write your own events into the queue log
Example: QueueLog{101|$(UNIQUETD) |$ (AGENT) |WENTONEREAK |600)

images/00841.jpg

images/00844.jpg
]

s

iE (“${inpuc)® = *0) {
RaiseBxception (NOINPUT!

3
"

!

2 = (
Verbose (1, ##4 An exception occurred);

if ("${EXCEPTION(reason)}® = "NOINPUT*) {
Playback (nothing-was-entered,

)

else if ("S(EXCEPTION(reason))® = *RESPONSETINEOUT®)
Playback (you-waited-too-long) ;

i

else ¢
Playback (an-error-occurred) ;

)

Hangup (15

images/00843.jpg
in Asterisk 1.4

+++ in Asterisk 1.6
88 4,6 +4,6 6

Writes to the queua_:

[Description]
Queuelog (queuenane [uniqueid |agent |event [|additionalinfo]) :
QueueLog (queuenane, uniqueid, agent, event[,additionalinfal)
Allows you to write your own events into the queue log
Bxaple: Queuelog (101]$(UNTQUEID) |§ (AGENT) |WENTONBREAX | 600)
Example: OQueueLog{101,${UNIQUEID},${AGENT}, WENTONEREAK, 600)

images/00838.jpg
and
96 to the next step.

i -~ ignore call forward requests from queue members and do
nothing
when they are requested

‘rt - ring instead of playing MOH
= "t - allow the called user transfer the calling user
- *T' - to allow the calling user to transfer the call.
. ‘r' -- ring instead of playing MOH. Periodic Announcements are
still made, if applicable.
. ‘&' - allow the called user transfer the calling user by
pressing "#' or
. whatever blindxfer sequence defined in the featuremap
section in
. features. cont
. Tt -= to allow the calling user to transfer the call by
pressing '#' or
. whatever blindxfer sequence defined in the featuremap
section in
. features.cont

‘w' -~ allow the called user to write the conversation to
4isk via Monitor
+ by pressing the automon sequence defined in the
featuremap section in
. features. cont

W' -~ allow the calling user to write the conversation

to disk via Monitor
In addition to transferring the call, a call may be parked

and then picked

- up by another user.

images/00840.jpg
to be
- overridden by the rule specified
The timeout will cause the queue to fail out after a specified
number of
seconds, checked between each queues.conf ‘Etimeout' and 'recry'

eycle.
This application sets the following channel variable upon
completion:
QUEUESTATUS The status of the call as a text string, one of
- TIMEOUT | FULL | JOINENPTY | LEAVEEMPTY | JOTNUNAVATL |
LEAVEUNAVATL,

. TIMEOUT | FULL | JOINMPTY | LEAVERMPTY | JOTNUNAVATL |
LEAVEUNAVAIL | CONTINUR

images/00839.jpg
¥ by pressing the automon gequence defined in the
featuremap section in

. features. cont

. -- Allow the called party to enable parking of the call

by sending

. the DIMP sequence defined for call parking in
features.cont.

. ‘K* -- Allow the calling party to enable parking of the call
by sending

. the DIMF sequence defined for call parking in
features. cont

. "x' -~ allow the called user to write the conversation to disk
via Mixonitor

. by pressing the automisnon sequence defined in the
teaturemap section in

. features. conf

. 'X* - allow the calling user to write the conversation to

aisk via Mistonitor

: by pressing the automixnon sequence defined in the
featuremap section in
- features .conf
The optional URL will be sent to the called party if the channel
supports
i,
The optional AGT parameter will setup an AG
on the
calling party's chamnel once they are connected to a queue member
+ The optional macro parameter will run a macro on the
+ calling party's channel once they are connected to a queue member.
+ The optional gosub paramster will run a gosub on the
+ calling party's channel once they are connected to a queue member.
+ The optional rule parameter will cause the queue's defaultrule

script to be executed

images/01169.jpg
o o

r++ in Asterisk 1.6

s 9,7 49,7 88
[pescription]

This will do a DUNDi lookup of the given phone mumber.

1f no context
- this function
- lookup. If no
+ this function
result

is given, the default will be el6d. The result of
will the Technology/Resource found in the DUND
results were found, the result will be blank.

will return the Technology/Resource found in the first

+ in the DUNDI lookup. If no results were found, the result will be

Blank.

If the ‘b’ option is specified, the internal DUNDL cache will

be bypassed..

images/01168.jpg
= INE GRUNt Tutetion 'DERRILOUREE!

[syntax]
DUNDILOOKUP (nusber [| context [|options]1)

1synopsis]
Do a DUNDL lookup of a phone number.

[Deseription]
This will do a DUNDi lookup Of the given phone number.

If no context is given, the default will be e16d. The result of
this function will the Technology/Resource found in the DUNDL
lookup. If no results were found, the result will be blank.

If the 'b' option is specified, the internal DUNDL cache will
b DR

images/01171.jpg

images/01170.jpg
I A R
oxten => 123,1, Set (£00=$ (ENUMLOOKUP (+$ (CALLERTD (num) }, ip, 1, freenun.org) }

; in Asterisk 1.4:
exten => 123, 1, Set {£00=$ [ENUMLOOKUE +§ {CALLERID (num)), s1p
AR A

images/00835.jpg
via Monitor
"W~ allow the calling user to write the conversation to disk
via Nonitor
In addition to transferring the call, a call may be parked and then
picked
sp by another user.
The optional URL will be sent to the called party if the channel
supports
i
The optional AGT parameter will setup an AGT script to be executed
on the
calling party's channel once they are connected to a queue member
The timeout will cause the queue to fail out after a specified number
ot
seconds, checked betwesn each quees.conf ‘timsout’ and ‘retry' cycle.
This application sets the following channel variable upon completion
QUEUESTATUS The stacus of the call as a text string, one of
TIMEOUT | FULL | JOTNEMPTY | LEAVEEMETY | JOINONAVATL |
S

images/00834.jpg
TInta abonr applicatign Quenas’

[synopsis]
Queue a call for a call queue

[pescription]

Queue (queuenane | |options| |URL] [|announceoverride] [|timeout] [|AGT]):
Queues an incoming call in a particular call gueue as defined in
queues .cont .

This application will return to the dialplan if the queue does not

any of the join options cause the caller to not enter the quaue

The option string may contain zero or more of the following characters:
'd" - data-guality (modem) call (minimum delay.
allow calles to hang up by hitting *.

allow caller to hang up by hitting *

n' == no retries on the timeout; will exit this application and

90 to the next step.

ignore call forward requests from queue members and do

when they are reguested.
ring instead of playing MoH

allow the called user transfer the calling user

to allow the calling user to transfer the call.

BTG Ll a1 TA G Eo Wbt the SolNaraREion LH/ Rk

images/00837.jpg
A RRATASE 1. b
+++ in Asterisk 1.6
a8 -4,31 +4,56 @&

Queue a call for a call quene

(bescription]
- Queue(quevenane | |options | |URL] [|announceoverride] [|cineout] [|AGT))
- Queue(quenenane[,options! ,URL] [announceoverridel [, tineout] [, AST
{,gosubl [, rule])

Queuss an incoming call in a parcicular call queus as defined in
queues. cont .

This application will return to the dialplan Lf the queve dues not
exist, or

any of the join options cause the caller to not enter the queue.

The option string may contain zero or more of the following
characters:
. ‘e - continve in the dialplan if the callee hangs up.

‘d' -- data-guality (moden] call (minimun delay) .

- *h' -- allow callee to hang up by hitting *.

- ‘H' -~ allow caller to hang up by hitting *.

. “h' - allow callee to hang up by hitting '*', or whatver
sisconnect sequence

- that is defined in the featuremap section in

features. conf.

. 'H' -- allow caller to hang up by hitting '*'. or whatever
disconnect sequence
+ at is defined in the featuremap section in

features. con.

Nio retries on the timeout; will exit this application

images/00836.jpg
i ARGl Wi
+++ in Asterisk 1.4
ee -4,7 +4,7 0@

Queus a call for a call queus

[Description]
- Queua(queuename(|options (|URL] [|announcaeoverride] (| timeout]]):
+ Queue(queuenane([options([URL] [|announceoverride] (| timeout] [|AGT])

Oueues an incoming call in a particular call queue as defined in
queues. conf .

This application will return to the dialplan if the queue doss not

any of the join options cause the caller to not enter the queue.
66 -13,7 +13,9 @0

*ht -- allow callee to hang up by hitting *.
*H' -- allow caller to hang up by hitting *.
‘n' - no retries on the timeout; will exit this application
and
= 90 to the next step.
: o to the next step.
. *iv - ignore call forward requests from quaue members and do
nothing
. when they are requested.
*xt - ring instead of playing MOH
*£' - allow the called user transfer the calling user
"It - to allow the calling user to transter the call
@e -23,6 +25,8 @&

up by another user
The optional URL will be sent to the called party if the channel
supports
ic.
+ The optional AGT parameter will setup an AG
on the
+ calling party's channel once they are comnacted to a queue member
The timeout will cause the quene to fail out after a specified
number of
seconds, checked between each queues.conf ‘timeout' and ‘retry’
cycle.
This application sets the following channel variable upon
Sl Tet 1

script to be executed

images/01177.jpg
Anso about funebion TENVE

[syntax]
ENV (<envnane>)

[synopsis]
Gets or sets the environment variable specified

[bescription]
S ST g

images/01176.jpg

images/01173.jpg
SRASLACLAK Lol
+++ in Asterisk 1.4

Be 1,7 +1,7 ee

- Info about function 'ENUMLOOKUP'

[syntax]
- ENUMLOOKUP (number [Method- type[, options |recordt [, zone-sut£ix]1])
+ ENUMLOOKUP (nunber [|Method-type (| options [|recorat [|zone-suf£1x1111)

(synopsis]
ENUMLOOKUP allows for gemeral or specific querying of NAPTR records

or counts of NAPTR types for

B2 11,4 +11,4 ee
Combination of 'c' and Method-type of 'ALL' will return a count of

al) NAPTRS for the ¢
Defaults are: Method-type=sip, no options, record=l, zome-suffix=elsd.arpa

- For more information, ses READNS.enun
i Ve Sors TAPGraAIGA: Bhe As i bt

images/01172.jpg
= SN ROt Tunetion T ENDELOERUR

[syntax]
ENUMLOOKUP (nunber [| Method- type | options (| record# [|zone-sutix] 111}

[synopsis]
ENUMLOOKUP allows for general or specific querying of NAPTR records

or counts of NAPTR types for &

[pescription]
Option 'c' returns an integer count of the nusber of NAPTRS of a certain
"R tye.

Combination of 'c' and Method-type of 'ALL' will return a count of all
NAPTRS for the rec
Defaults are: Method-typs

ip, no options, recordsl, zone-suffixel64.arpa

D

images/01175.jpg
§-ERa SN
oxten => 123,1, Set (£00=$ (ENV (HOME))

; set Hous
Al = 12971 BEt T HE]

rmyASt)

images/01174.jpg
s sl o
+++ in Asterisk 1.6

88 1,14 +1,18 68

- Info about function 'ENUMLOOKUP'

[syntax]
- ENOMLOOKUP (nunber [|Method-type [|options [|recoral [|zone-suf£ix1111)
+ ENUMLOOKUP (number [Method- typel , opt ions [, recordt [, zone-sut£ix]111)

[synopsis]
- ENUMLOOKUP allows for general or specific querying of NAPTR records or
counts of NAPTR types fo

+ General or specific querying of NAPTR records for ENOM or ENOM-like DNS
poincers

[pascription]
Option 'c' returns an integer count of the number of NAPTR of a

certain

R type.
Conbination of

NAPTRS for the r

+ Option 'u' returns the full URI and does not strip off the URI-scheme.

+ Option ’s* triggers IS specific rewriting

+ Option 'i' looks for branches into an Infrastructure ENUM tree

+ Option '’ for a direct DNS lookup without any flipping of digits
Defaults are: Method-typs

suttixsel6d arpa

and Method-type of 'ALL! will return a count of all

ip, no options, records1, zone-

- For more information, see doc/enum.txt
¥ RN heraatians Shk SeT TR kol

images/00831.jpg
~= Info shout application 'Progress’

(synopsis]
Indicate progress

(pescription]
Progress(): This application will request that in-band progress

information
be provided to thé calling channel.

images/00830.jpg

images/00833.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/00832.jpg
; pass the caller to the support queue:
exten => 123,1,Answer ()
aexben: m> 123, n; (stre (EUHDOLE: t)

images/00829.jpg
¢ Indicats prograns:
Mo <5 199 %, Protrin ()

images/00828.jpg
Iuto mbouk application 'Rrotepding®

(synopsis]
Indicate proceeding

[pescription]
Proceeding(): This application will request that a proceeding
message be provided to the calling channel.

images/01180.jpg
LhEe aovet- Suceion BTG

[syncax]
EVAL (<variable >)

[synopsis]
Bualuate stored variables.

[peseription]

Using EVAL basically causes a string to be evaluated twice,

When a variable or expression is in the dialplan, it will be
evaluated at runtime. However, Lf the result of the evaluation

is in fact a variable or expression, using SVAL will have it
avaluated a second time. For example, if the variable ${MYVAR}
contains "$(OTHERVAR)", then the result of puCting §(EVAL(S(MYVAR))]
in the dialplan will be the contents of the variable, OTHERVAR,
Normally, by just putting $(MYVAR} in the dialplan, you would be
1ebt with "&[OTHERVARI® .

images/00827.jpg

images/01179.jpg

images/01182.jpg

images/01181.jpg
I v
exten => 123,n,Set (Varze)
exten => 123,n, Set (£00=5 (EXISTS (${var1})}) ; fo0 is 1

tas ma i3 5 Setifiont ICISTR S IVASRII}S 4 Fo6 ig B

images/00824.jpg
| 1.4 |

images/00823.jpg
axten
exten
exten

AR

T s MR)
123,n, Privacymanager ()

123,1m,GotoTE ($ *§{PRIVACYMGRSTATUS) *
=> 123,n,Dial (zap/1}

=> pu-failed, 1, Playback (sorry)
> p-failed,n, Playback (vm-goodbye)

“FAILED®] ?pm-failed, 1)

images/00826.jpg
I BBCLARE
+++ in Asterisk 1.6
ee -4,20 +4,14 o

Require phone number to be entered, if no CallerID sent

[pescription]
- Privacymanager [maxretries||ninlengch(|options]]]): If no
caller+Ip
+ Privacytanager ([maxretries] [,minlength] [,context]): If no
caller'In

is sent, PrivacyNanager answers the channel and asks the caller to

- enter their phone number. The caller is given 3 actempts to do so.
+ enter their phone number. The caller is given ‘maxretries’ attempts
to do so.

The application does nothing if Caller*ID was received on ¢
channel
- contiguration file privacy.conf contains two variables:

naxretries default 3 -maximum number of attempts the caller is

allowed

€6 input a callerid.
minlength default 10 -minimum allowable digits in
callerid number.
- If you don't want to use the config file and have an i/o operatis
with
- every call, you can also specify maxretries and minlength as
application
- parameters. Doing so supercedes any values set in privacy.conf.
- The option string may contain the following character:
- '3 -- jump to n+101 priority after <maxretries> failed attempts
to collect
= the minlength number of digits.
+ context context to check the given Caller*ID against
patterns.
The application sets the following channel variable upon completion:
PRIVACYNGASTATUS The status of the privacy manager's attempt to
colrect

@ input

a phone nunber from the user. A text string chat
A

images/01178.jpg
¥ LLOVAR SURLELNG CLE SURIE TR VARSI TIOIN AR SUOLRLOY LheSlring FHeLo

norlar:
exten =» 123,1, st (£00=8 (EVAL (§ (VAR}) })

g s B e e,

images/00825.jpg
RS DOONE R T EaT IO, AR gen

(synopsis]
Require phone number to be entersd, if no CallerTd sent

(Description]

erivacyianager (Inaxrecries(|minlength(options))]}: 1f no CallertId
s sent, Privacylanager answers the channel and asks the caller to
enter their phone nunber. The caller is given) attempts to do so.
The application does nothing if Caller*ID was received on the channel.

Configuration file privacy.cont contains two varisbless

maxvetries default 3 -maximum number of attempts the caller is
alloved

to input a callerid.

minlength default 10 -minimm allowsble digits in the input
callerid number
If you don't want to use the config file and have an i/0 operation with
every call, you can also specify maxretries and minlength as
application
paraneters. Doing o supercades any values set in privacy.cont
™he option string may contain the following character:

*j' -- jump to n+101 priority after <maxretries> failed attempts to
collect

the minlength number of digits

The application sets the following channel variable upon completion:
BRIVACYMGRSTATUS The status of the privacy manager's attempt to

& phone number From the user. A text string that is

SO |

images/01187.jpg
HTATAT IR el
+++ in Asterisk 1.4
88 1,7 +1,7 68

= Tnfo about function 'FIELDQTY'

(syntax]

- FIELDOTY (<varname >,<delim >)

+ FIELDQIY (<varname > |<delim >)

ISynopsis)

coite the SLAlAR; whti:-an: et rrary:Sal dnd e

images/01184.jpg
.
anctian:

Sl RS L UL, e S O e R ERICRIS,,
123 5. Bet (Count=2 {FIELDOTY (Var. #) 1) 3 Count is 6

images/01183.jpg
InTyenout funchion “HRIelet

1syncax]
XISTS (<data»)

[synopsis]

Existence Test: Returns 1 if exists, 0 otherwise
IDescription]

Dyt petbidonl

images/01186.jpg
Info about functlon FIELDQTY'

[syntax]
FIELDOTY (<varname > |<delim >)

[synopsis]
Count the fields, with an arbitrary delimiter

[pescription]
Bat (s eadiasiais

images/01185.jpg
-] 1.4 |-

images/01147.jpg

images/00820.jpg
-] 1.2 |-

| 1.6 |-

images/00819.jpg
‘Two'geconds "buay”, then two geconds Toongestior

tones:

exten => 123,1, Playtones (busy]

exten => 123,n,uait (2]

exten => 123,n,StopPlaytones ()
exten => 123,n, Playtones (congestion)

exten => 123,n,Wait (2]
exten => 123,n,StopPlaytones (]
Bserca' = AXT B, BAEATTY

images/00822.jpg
in Asterisk 1.4

+++ in Asterisk 1.6

et -4,7 +4,7 g6
Play a tone list

[Description]
- Playrones(arg): Plays a tone list. Execution will continue with
the nexc step immediately,
+ Playtoneslarg): Plays a tone list. Execution will continue with
the next step immediately,

while the tones concinue to play.

Arg is either the tone name defined in the indications.cont
configuration file, or a directly

AnaaiRts TigE OF PrOMSHOtaE ang GuRREL:

images/00821.jpg
ITo-BNor appliostabn: PiayTones

[Synopsis]
Play a tone list

[pescription]
PlayTones (arg) : Plays a tone list. Execution will continue with the
next step immediately,

while the tones continue to play.

Arg is either the tone name defined in the indications.conf
configuration file, or a directly

specified list of frequencies and durations.

See the sample indications.conf for a description of the specification
of a tonelist.

Uné the Btopblavitnes apol ication &6 ntow the thrde laving.

images/00818.jpg
S ARbArLER 152

+++ in Asterisk 1.6

ee -4,16 +4,14 o
Play a file

[pescription]
- Playback (filename[&filenane...][|option)): Plays back given
filenames (do not put
- extension). Oprions may also be in
The 'skip*

option causes the playback of the message to be skipped if the channel
+ Playback (filenane(sfilenane2...] [,option]): Plays back given
filenanes (do not put
+ extension). Options may also be included following a comma.
+ The 'skip' option causes the playback of the message to be skipped
if the channel

is not in the 'up' state (i.e. it hasn't been answared yet), It
“skip' is

specified, the applica
channel not be

Off hook. Otherwise, unless ‘moanswer’ is specified, the channel
will

be answered before the sound is played. Not all channels support
playing
- messages while still on hook. Tf '3' is specified, the application
- will jump to priority n+101 if present when a file specified to be
played
~ does not exist.
+ messages while still on hook

This application sets the following channel variable upon
completion;

PLAYBACKSTATUS The status of the playback attempt as a text
string, one of

ded following a pipe symbol.

fon will return immediately should the

SUCCESS | FAILED

images/00817.jpg
SR-ANCOrIgy di.&
+++ in Asterisk 1.4
68 -17,3 +17,5 @@

Thic application sets the following channel variable upon
completion

PLAYBACKSTATUS The status of the playback attempt as a text
string, one of

success | FaTLED

+ See Alsos Background (application) -- for playing soundfiles that
are interruptible

. waitexten (application) -- wait for digits from caller,

SEE RIS S R B8, BRTE

images/00816.jpg
T AOONE SERlcariun. EImpate

[synopsis]
Play a file

[pescription]
Playback (£ilenane (sfilensne?

filenames (do not put

extension} . Options may also be included following a pipe symbol.

The skip’

option causes the playback of the message to be skipped if the channel

is not in the 'up' state (i.e. it hasn't been answered yst). If

"skip® is

specified, the application will return immediately should the channel

not be

off hook. Otherwise, unless 'noanswer' is specified, the channel will

ve answered before the sound is played. Not all channels support

playing

messages while still on hook. If 'j' is specified, the application

will jump to priority n+101 if present when a file specified to be

played

does not exist.

This application sets the following channel variable upon completion:
BLAYBACKSTATUS The status of the playback attempt as a text string,

one of

[lopsion)): Plays back given

success | FATLED
See Also: Background (applicatic
interruptibla

Waitxten {application)
optionally play music on hold

1) -~ for playing soundfiles that are

wait for digits from caller,

images/01149.jpg
ROETZ V0 LG Lo/ SRS 0 GO DA I ¢ 21
cxten s> 123,1,Set (£00m$ [CURL (http://example ,con/
Sage.php?id<isaction=view) 1)

images/01148.jpg
= INE GRONt TUNCRIOn EHECERLIEDURRINS

1syntax]
CHECKSTPDOMATN <domain| TP>)

1Synopsis]
checks 1f domain is a local domain

[Description]
This function checks 1f the domain in the argument is configured

as a local STP domain that this Asterisk server is configured to handle,
Returns the domain name if it is locally handled, otherwise an empty
T B R BT ey R O T T

images/00813.jpg
A6 AboUL WROLICARIoN ! RACRupChn®

{synopsis]
Pickup a ringing channel

{pescription]
PickupChan (channel [échannel...]): This application can pickup
aiv Finglos HacRal

images/00812.jpg

images/00815.jpg
| 1.4 |

images/00814.jpg
BXLen =x-XEd. 1 Ahdwat. (1
R Ny i S

images/01155.jpg
THED. Brout TRuebion TRUls ==

Isyntax]
CUT (<varname >, <char-delim >, <range-spec >)

1Synopsis]
Slices and dices strings, based upon a named delimiter.

Ibescription]
varname - variable you want cut

char-delim - defaults to
range-spec - number of the field you want (1-based offset)
may also be specified as a range (with -)
or aroun of rances and fields (with &)

images/01154.jpg

images/01157.jpg

images/01156.jpg
jooer
S

T S T AT T P PR <
P

123,1, Set (0B (open/source) =5 {ves})
=> 123,n, Set (var=5 (DB (open/source) } |
123 0. GGLtOTE (AT 4108 [ohen/ sourds))

i Satssirses B To b iaR)

images/01151.jpg
Antooabout funebion tCURLY

[syntax]
CORL (ur1[| post-datal)

1synopsis]
Retrieves the contents of a URL
Description]

url - URL to retrieve

ost-data - Optional data to send as a POST (GET is default action]

images/01150.jpg
-] 1.4 |-

images/01153.jpg
LT
S

1281, BEL TVRERL=2-32%01)
127 .0, Bet (varsL {CUT (var . - 1-385) 1)

images/01152.jpg
2R ARUeFiBR 1.8
v+ in Asterisk 1.6

s 1,7 +1,7 88

Info about fumction 'CURL! =-

(syntax]
- CORL{url(|post-datal)
+ CURL(url[,post-datal)

{synopsis]
B et

images/00809.jpg
TNt shont spplication “FiCkup!

(synopsis]
Directed call Pickup

[Description]
Eickup (extension[Bcontext] [sextension28context. .

can pickup any ringing channel

that is calling the specified extension. If no context is specified,

the current

context will be used. If you use the special string *PICKUBMARK® for

the context parameter, for example

10BPICKUSMARK, this application tries to £ind a channel which has

Sefined a channel variable wich the same content

as *extension".

)i This application

images/00808.jpg
-] 1.2 |-

| 1.6 |-

images/00811.jpg
i ERLATAEE Tt

r++ in Asterisk 1.6

66 4,8 +4,11 00
birected call Pickup

(peseription]
- Pickup(extension(écontext] [sextension2écontext
application can pickup any ringing channel

- that is calling the specified extension. If no context is specified,
the current

- context will be used, If you use the spacial string *PICKUBMARK® for
the context parameter, for example

- 108PICKUPMARK, this application tries to find a chanmel which
defined a channel variable with the same content

- as rextension®

+ Pickup((extension|@context] (sextension26[context]...]]]: This
application can

+ pickup any ringing channel that is calling the specified
extension. 1€ no

+ context is specified, the current context will be used. If you use
the special

+ string "PICKUPMARK® for the context parameter, for example
108PTCKUPARK

+ this application tries to find a channel which has defined a
${PICKUSMARK)

+ channel variabla with the same value as "extension® (in this
example, "10%).

+ When no parameter is specified, the application will pickup a
channel matching

s the pickup grous of Lhe active channel.

1): This

images/00810.jpg
in Asterisk 1.2

+++ in Asterisk 1.4

e 4,6 +4,8 a8
Directed call Pickup

[pescription]
- pickup(extension[@context]): This application can pickup any
ringing channel
- pickup(extension[@context] [sextension2écontext
application can pickup any ringing channel

that is calling the specified extension. If no context is specifi
the current
- context will be used.
- context will be used. Tf you use the special string "PICKUPMARK® for
the context parameter, for example
- 10BPICKUEMARK, this application tries to find a channel which has
Gefined a channel variable with the same content
s ok gl

1): mhis

ed,

images/00806.jpg
Infa ‘shoy i et

@pplication 'Fausegus

[synopsis]
Pauses a queue m

nber

(pescription)
PauseQuenevenber ([quenenane] | interface [options]):
Pauses (blocks calls for) a queue member
The given interface will be paused in the given queue. This prevents
any calls from being sent from the queue to the interface uncil it is
unpaused with UnpauseQueueNenber or the manager incerface. If no
quevenane is given, the interface is paused in every queue it is a
member of, If the interface is not in the named queue, or if no queus
is given and the interface is not in any queue, it will jump to
priority n+101, if it exists and the appropriate options are set
The application will fail if the interface is not found and no
extension
to jump to exists.
The option string may contain zero or more of the following characters
“3' ~= jump to +101 priority when appropriate.
This application sets the following channel variable upon completion
PQNSTATUS The status of the attempt to pause a queua member
as a

text string, one of
RUSED | NOTFODND
Example: PauseQueueMember (|SIP/3000)

images/01158.jpg
IRk anont Taactiun Toa"

1syntax]
OB (< £ani Ly>/<key>)

1synopsis]
Read from or urite to the Asterlsk database

[Description]
This funotion will read from or write a value to the Asterisk database.

on a read, this function returns the corresponding value from the database,
or Dlank if it does not exist. Reading a database valua will also set the
variable DB_RESULT. If you wish to find out if an entry exists, use the
R e Pt Aoy

images/00805.jpg
| 1.4 |

images/01160.jpg
1.4 |

images/00807.jpg
ANARCRTANE 1.8
n Asterisk 1.6

88 -4,21 +4,17 6@
Pauses a queue member

(Description]
- PauseQueueenber ((queuename] | interface [[options])
+ PauseQueueNenber ([queuenamel, interface[,options [, reasoni1) s
Pauses (blocks calls for) a queue member.
The given interface will be paused in the given queue. This
prevents
any calls from being sent from the queue ko the interface until it
unpaused with UnpauseQueushenber or the manager interface. 1f no
Queuename is given, the interface is paused in every gueue it is a
- member of. IE the interface is not in the named queue, or if no
queue
- is given and the interface is not in any gueue, it will jump to
- oriority n+10l, Lf it exists and the appropriate options are set.
The application will fail if the interface is not found and no
extension
- to jump to exists.
- The option string may contain zero or more of the following
haracters

3 -- jump to +101 priority when appropriate.
+ member of. The application will fail if the interface is not found.
+ The reason string is entirely optional and is used to add extra
information
+ to the appropriate quene_log entries and manager events.
This application sets the following channel variable upon

completion:

POMSTATUS The status of the attempt to pause a gueus
menber as a

text string, one of
PAUSED | NOTFOUND

- Example: PauseQueueMember (|SIE/3000)

+ Example: PauseQueueMember(,SIP/3000)

images/01159.jpg
T R I
S

e PR o i e AR G ARSEBE T b

images/00802.jpg
I8f0 about ¥pplication 'FPauseMonltor™

{synopsis]
Pause monitoring of a channel

(Description]

Pausetionitor
Pauses monitoring of a channel until it is re-enabled by a call

b CpaDEeiOHL A

images/00801.jpg

images/00804.jpg
1T werial L1003 MEnb/1002° 18 DEUGeR o0 S1l QUGS WIREe She
is a member
exten => *112XKX,1, PausagQueueNenber (, Agent /$ { EXTEN

3

; Dialing *121002 unpauses Agent/1002 again:
exten => *122XXX,1,UnpauseQueueMember (, Agent/$ (EXTEN:3))

images/00803.jpg
in Asterisk 1.4
+++ in Asterisk 1.6

60 -4,5 +4,5 99

Pause monitoring of a channel

[Description]
- PauseMonitor
+ PauseMonitor():

Pauses monitoring of a channel until it is re-enabled by a call
SRS

images/01166.jpg
I T e s g
ety s 1 K Bt Frone DD TLOARITS Co L AR S R 25 13)

images/01165.jpg
= IHED-ShoNt fqutiion HECERISLET

1syntax]
DR_EXISTS (<family » /<key »)

1synopsis]
Check to see whether a key exists in the Asterisk database

Ipescription]
This function will check to see whether a key exists in the Asterisk
Gatabase. If it exists, the function will return "1*. If mot,

it will return "0%. Checking for existence of a database key will
et bt T S el TR SR v S R e AR SRR atiat

images/01167.jpg
-] 1.4 |-

images/01162.jpg
§-APe L O TOUUIE M) o d 2o S B4R
127.1. Set { foo=t (DB EXISTS (cidnums /4045559814) }

images/01161.jpg
= SRY Gt Tunceaun (Bhe DELETE"

[syntax]
DE_DELETE(<family > /<key >)

[synopsis]
Return a value from the database and delete it

[pescription]

This function will retrieve a value from the Asterisk database
and then remove that key from the database, DB RESULT

w111 be Gat €5 the kevis valia I¥ it exists,

images/01164.jpg

images/01163.jpg
NGRS 1831, WOUOLEI ST RS0 iDLauRLL e L
§{CALLERTD (num)))) ?blacklisted, s,1)

exten => 123,n,Dial (TAXZ/user :passwordeexanple . con/500
[blacklisted]
oxten =» 5,1,No0p($CALLERID (num) } i3 in the blacklist

tvan = & ACHRREL)

images/01126.jpg
INE0 GRONE TULGRION CRREEGR_TUDES

1syntax]
SASEG4_ENCODE(<string>)

ISynopsis)
mncode a string in basesd

[peseription]
O B e [

images/01125.jpg

images/01127.jpg
1SUBER . B0 WON NINLEIG Cho CONEE AV B DAL N D
; TE yes, play monkeys!

exten => 123,1,G0tolf (§(BLACKLIST() }7black, 1)
axten => 123,n,Dial (STP/200)

exten => 123, Hangup()

exten => black, 1, Playback (tt-monkeys)

et . B RN sl ¢

images/00798.jpg
| 1.4 |

images/00800.jpg
“++ in Asterisk 1.6
66 -1,7 +4,8 Ge
Ansuer a parked call

[Description]
- ParkedCall(exten):Used to connect to a parked call.
This application is always
+ ParkedCall(exten): Used to connect to a parked call.
This application is aluays
registered internally and does not need to be explicitly added
into the dialplan, although you should include the 'parkedcalls’
- context.
+ context. If no extension is provided, then the first available
TSR O 7 5 W -

images/00799.jpg
Jufo about 'applipation *PRckedcell®

[synopsis]
Answer a parked call

[Description]

ParkedCall (exten) :Used to connect to a parked call.

This application is aluays

registersd internally and does not need to be explicitly added
into the dialplan, although you should include the 'parkedcalls’
Ry

images/01133.jpg
meetIn RgLerigk K
r+ in Asterisk 1.4
s -1,7 +1,7 99

- Info about function ‘CALLERID' =-

(syntax]
- CALLERTD(datatype)
+ CALLERID(datatype(, <optional-cID>])

(synopsis]
Gats or sets Caller*ID data on the channel.
90 5,3 +9,4 a8

[Description]
Gets or sats Caller*ID data on the channel. The allowable datatypes
2o ISALT, NGRS, AU, MANSY FOADY WRHHRY

v mass DRARRAT BRLIEEE Akt A GabiaER) RATT . AR R

images/01132.jpg
IREG SRVt TUNeRion TUALLERLD

Isyntax]
CALLERID (datatypel, <optional-cID>])

Isynopsis]
Gets or sets CallerID data on the channel.

Ipescription]
Gets or sets Caller*ID data on the channel. The allowable datatypes
ot naL1, g, Y, VANEY. KONEDR, HDEER

iias: Ahanral CATIAPIA b daFaile 6 oRtineal AEl1&PId; 1F EveslPie.

images/01135.jpg
O T Sl v AR S
exten => 123,1, Set (£00=$(CDR (duration) })

; Set the user fleld to *my information
1931 . Bt ICOR fuserEield) sy information]

RS

images/01134.jpg
I i Pl
r+ in Asterisk 1.6
se -3,5 18,6 g8

[bescription]
Gats or sats Caller*ID data on the channel. The allowable datatypes
- are "all® RDNIS:

v are valls
+ and "ton®
Tees Ahatesi ARILEE R B et e by Aesta T

CRONIS, *pres,

images/01129.jpg
IHReTARRUE fureion CALACHLIZD! e

Isyntax]
BLACKLIST()

[synopsis]
check 1f the callerid is on the blacklist

Ipeseription]
Uses astdb to check if the Caller*ID is in family ‘blacklist'. Returns
AR

images/01128.jpg

images/01131.jpg
e I B B e B T J Rl B -

images/01130.jpg
00 TL e NETIE VL 0P M VHe SRt S IR
exten => 123,1, Set (£00=$ [CALLERTD(al1) })

; Set the caller name to *Robert Cossack":
Gxten => 123 1. Bet(CALLERID (name)="Robsrt COBSACkY]

images/01137.jpg
Anbe about bunebion TebEs

[syntax]
CoR (<names | options])

(synopsis]
Gets o sets a CIR varisble

[Description]
opt Lons
"1' uses the most recent COR on a channel with multiple records
"' searches the entire stack of CORs on the channel
' recrioves the raw, unprocessed value
For example, 'start’, ‘answer’, and 'end’ will be retricved as epoch
values, when the ‘u’ option is passed, but formatted as YYYY-MI-TD H::SS
otherwise. Similarly, disposition and amaflags will return their raw
integral values.

images/01136.jpg

images/01138.jpg
Here am A list ek Al the dyailahls adr faeid: dades

clia lastdata assposition
sre start. anaf1ags
ast ansver aceounteode
acontext ena niqueid
stchamnel duration userfield
1astaps billsec crannel

A1l of the above varisbles are read-only, except for accountcods,
userfield, and anaflags. You may, however, supply
& name not on the above list, and create your oun
variable, whose value can be changed with this function,
&nd this variable will be stored on the odr.
raw values for disposition:
1= mo answER
2 = musy,
3 = FazLen
4 = musweRED
saw valuss for amaflage
1 - aurr
2 = priunG
o

images/01144.jpg
BURALPCR EEONIGEE VRO IONR AL OHS LR rEOTE

R/ rtpqos Get COS information about the RTP stream
This option takes two additional arguments
Arqurent 1:
audto Get data about the audic stream
video Gat data about the video stream
Argument. 2
local_ssrc Local SSRC (stream TD)
local_lostpackets Local lost packets
local_jitter Local calculated jitter
local_count Number of raceived packats
remote_ssrc Remote SSRC (stream 1D)
remote_lostpackets Remote lost packets
remote_jitter Remote reported jitter
zemote_count Number of transmitted packets
rce Round trip time
a1l ALl statistics (in a form suited to logging,

but not for parsing)

Additional items may be available from the channel driver providing
the chamnel; see its documentation for details

any item requested that is not available on the current chamnel will
RS o T

images/01143.jpg
o nRo aboul funelbion TCHANNELD =

[syntax]
CHANEL (1 ten)

[synopsis]
Gets/ssts various pisces of information about the channel.

[pescription]
Gets/set various pieces of information about the channel
Standard items (provided by all chamnsl technologiss) are:

R/O audioreadformat format currently being read

R/0 audionativeformat format used natlvely for audlo

R/O audiowriteformat format currently being written

R/ callgroup call groups for call pickup

R/ chamneltype technology used for channel

R/W language language for sounds played

R musicclass class (from musiconhold.conf] for hold music

R/ rxaain set rxgain level on channel drivers that
support it

RO state state for channel

R/ tonezone zone for indications played

R txgain set txgain level on chamnel drivers that
support it

R/O videonativeformat format used natively for video

images/01146.jpg
LooRT COUHE BRSOk SRCELYW: SAOENEN,
remote_ssrc Remote SSRC (stream 10}
remote_lostpackets Remote lost packets

remote_jitter Remote

reported jitter

' remote_maxjitter Remote calculated jitter (maximm)
. remote_minjitter Remote calculated jitter (minimum)
' remote_norndeviitter Remote calculated jitter (normal deviation)
. remote_stdevjitter Remote calculated jitter (standard deviation)
remote_count Number of transmitted packets
e Round trip time
¢ maxert Found trip time (maximum)
¢ minrer Round trip time (minimm)
¢ normdevrit Round trip time (normal deviation)
¢ stdevrit Round trip time (standard deviation]
all Al statistics (in a form suited to logging, but
not for parsing)
¢ RO rtpdest Get remote RTP destination information
. This option takes one additional argument
v Argument 1:
¢+ audio Get audio destination
¢+ video Get video destination
+ chan_iaxz provides the following additional options:
¢ R osptoken Get or set the 0SB token information for a
call
¢ RO peerip Get the peer’s ip address
rowo peernane Get the peer's username

Additional items may be available from the channel driver providing
pesasimacspendiyy Sushriaesrpsspsuria

images/01145.jpg
L ARLeripk 2.t
+++ in Asterisk 1.6
26 -16,6 16,7 88

R/O chameltype technology used for channel
R language language for sounds played
R/ musicclass class (from musiconhold.conf) for hold music
¢ R parkinglot parkinglot for parking
R rxgain set rxgain level on channel drivers that
support it
R0 state state for channel
R/M tonezone zone for indications plaved

88 -23,22 +24,52 08
R/0 videonativeformat format used matively for video

chan_sip provides the following additional options:

¢ ®/O peerip Get the IP address of the peer
+ RO recvip Get the source Ip address of the paer
© mO from Get the DRI from the From: header
v RO urd Get the URI from the Contact: header
+ RO useragent et the useragent
+ RO peername Get the name of the pesr
+ RO tiSpassthrough 1 if TI8 is offered or enabled in this
channel, otherwise
=0 rtpaos Get QoS information about the RTP stream
This option takes two additional arguments: Argument 1:
Argument. 1:
audio Get data about the audio stream
video Get data about the video stream
P texe Get data about the text stream
Argunent 2
1ocal_ssre Local SSRC (stream ID)
local_lostpackets Local lost packets
local jitter Local calculated jitter
. local_maxiitter Local calculated jitter (maximun)
. local_minjitter Local calculated Jitter (minimum)
. local norndeviitter Local caleulated jitter (normal deviation)

Iooet atAcriitter = Local valcilated Jicter: letendard devietiss)

images/01140.jpg
I BRLECISI ik
+++ in Asterisk 1.6

2 -1,7 +1,7 2@

“= Info about function ‘COR’ =

tsyntax]
COR <name> [|options])
+ COR(<nane> [options])

(synopsis]
Gets or sets a COR variable
88 -10,6 +10,8 83
options
/17 uses the most racent CDR on a channel with multiple records
“r’ ssarches the entire stack of CDRs on the channel
+ '3’ skips any CDR's that are marked 'LOCKED' due to forkCOR() calls.
. (on setting/writing COR vars only)
“u’ retrieves the raw, unprocessed value
For example, ‘start’, ‘answer’, and ‘end’ will be retrieved as epoch
values, when the ‘u’ option is passed, Dub formatted as YYYY-MAI-DD MIIIAY:SS
88 27,11 +29,13 @
a name not on the above list, and create your oun
varisble, whose value can be changed with this function,
and this variable will be stored on the cdr.
+ For setting CR values, the '1’ flag does not apply to
ield, or amaflags

+ setting the accountcode, use:
raw values for disposition:
1 = W ANSWER
- Bosy

raw values for smaflags:
1 - aor
T

images/01139.jpg
ERIASPRE R v
+++ in asterisk 1.4
98 -7,4 47,92 88

Gats or sets a CDR variable

[peseription)
- option "r* searches the entire stack of CDRS on the chanmsl

options:

*1° uses the most recent CIR on & channel with multiple records

'+ searches the entire stack of CORs on the chamnel

‘u’ retrieves the raw, unprocessed valua

For example, ‘start’, ‘answer!, and ‘end’ will be retrieved as epoch
values, when the 'u option is passed, but formatted as YYYY-MM-DD HE:MI:SS
otherwise. Sinilarly, disposition and anaflags will return thelr raw
integral values

Here is a list of all the available cdr fleld namss:

cLia lastaata aisposition
sre start anaflags
ast answer accountcode
acontext. end uniqueid
stchamnel uration usertield
1astapp billaec chanmel

11 of the above variables are read-only, except for accountcods,
vserfield, and anaflags. You may, however, supply
@ name not on the above list, and create your o
variable, whose value can be changed with this function,
and this variable will be stored on the odr.
raw values for disposition:
1 = NO ANSWER
2 = pusy
3 = FamED
4 = AuswERED
raw values for amatlags:
- omrr
BILLING
P ———

1
2

images/01142.jpg

images/01141.jpg
- Query the charngl Lype:
oxten => 123,1, Set (£00=$ (CHANNEL (channel type))

; Change language to English
Gal = 1231 Bet CRANNEL (1 ansuAGE)<ais

images/01625.jpg
b AsLeriak-d. 4

+++ in Asterisk 1.6

e

1,3 41,3 60
Action: zapDNDotf

Synopsis: Toggle zap channel Do Not Disturb status OFF
Action: DAHDIDNDOEE

Synopsis: Toggle DAHDI channel Do Not Disturb status OFF
Brivilages <Hones.

images/01624.jpg
AGTE13 - BRPREIEL:
Synopsis: Toggle Zap channel Do Not Disturb status OFF
e T .. S

images/01627.jpg
AgLiom: FHpRATAAL
synopsis: Toggle zap channel Do Not Disturb status ON
PO ot e

images/01626.jpg
| 1.3 |-

* different name)

images/01621.jpg
BELT - DAVERUE SHOO
Synopsis: Dial over zap chamnel while offhook
S

images/01620.jpg
=13}

13!

(* different name)

images/01623.jpg
1 1.2 |-

* different name)

images/01622.jpg
2 BRLErLIEE 1%

r++ in Asterisk 1.5

13

1,3 +1,3 6@
Action: zappialof fhook

Synopsis: Dial over Zap channel while offhook
Action: DAHDIDialoffhack

Synopsis: Dial over DARDI channel while offhook
Bibvilaaes <HoDES

cover.jpeg
%X |
PRACTICAL

ASTERISK 14616

From Beginner,to Expert

STEFAN WINTERMEYER
STEPHEN BOSCH

images/01628.jpg
B A o

v+ in Asterisk 1.6

60 1,3 +1,3 a@

- action: zapDiDon

Synopsis: Toggle Zap channel Do Not Disturb status ON
+ Action: DAHDIDNDon

+ Synopsis: Toggle DAHDI channel Do Not Disturb status ON
el I eaas Atakas

images/01630.jpg
RGLLoI: SopHangu,
Synopsis: Hangup Zap Channel
P iwideon: wnonew

images/01629.jpg
T 2k 1

o different name)

images/01636.jpg
AGESTA T ARG R
Synopsis: Show status zapata channels
prdvibbony smotEs:

images/01635.jpg
1 1.2 |-

* different name)

images/01637.jpg
A ARG ETRIIC Lo S

c++ in Asterisk 1.6

e

1,3 41,3 a8
Action: ZapshowChannels

Synopsis: Show status zapata channels
Action: DAHDIShouChannels

Synopsis: Show status DAHDT channels
Privilsoes: nces

images/01632.jpg
o differesit name)

images/01631.jpg
ce

e
in Asterisk 1.6

1.3 41,3 ee

Action: ZapHangup

Synopsis: Hangup Zap Channel
Action: DAHDIHangup

Synopsis: Hangup DAHDI Channel
Pelelisaa: Loskas

images/01634.jpg
AR AL ETRIIC: &Y

+++ in Asterisk 1.6

2@ 1,3 +1,3 @&

- Action: ZapRestart

- Synopsis: Fully Restart zaptel channels (terminates calls)

. Action: DAHDIRestart

+ Synopsis: Fully Restart DAHDI channels (terminates calls]
Peivilates tosbes

images/01633.jpg
ARLIGTA - TapResbare:
Synopsis: Fully Restart zaptel channels (terminates calls)
I S

images/01639.jpg
BCLANRS: Sl TERDNCRL
Synopsis: Transfer Zap Channel
e S

images/01638.jpg
b T

o+ different name)

images/01641.jpg
username=201
secret=1111

qualify=yes
host=dynanic
canreinvitesno

canreinvit

images/01640.jpg
20 BSUREBR L

rr+ in Asterisk 1.6

o0

1,3 41,3 06
Action: zaprransfer

Synopsis: Transfer zap Channsl
Action: DAHDITransfer

Synopsis: Transfer DAHDI Channel
Biivilage s <Hohes.

images/01603.jpg

images/01602.jpg
Agtions

iy e b

Synopsis: Show SIP registrations [text format)

Privilege: system,reporting,all

pescription: Lists all registration requests and status

Registrations will follow as separate events, followed by a final
event. called

RegistrationsComplete.

variable
ActionTp: <id> Action TD for this tramsaction.

AT R Gt

images/01605.jpg
O o
v+ in Asterisk 1.6
e 1,3 +1,10 ge
Action: Status
Synopsis: Lists channel status
- erivilege: call,all
Privilege: systemcall,reporting,all
Description: Lists channel status along with requested channel vars.
Variables: (Names marked with * are required)
*Channel: Name of the channel to query for status
variables: Coma ‘,’ separated list of variables to include
ActionID: Optional ID for this transaction
Will recurn the status information of each channel along with the
value for the specified channel variables.

images/01604.jpg
RCLLON,: Statvd
Synopsis: Lists channel status
privilege: call,all

images/01599.jpg
RGO Rl v
+++ in Asterisk 1.4
06 2,7 +2,6 @@
Synopsis: Show ST® peer {text format)
Privilege: system,all
Description: Show one SIP peer with details on current status.
- The XuL format is under development, feedback welcome! /oej
variables:
Peer: <name> The peer name you want to check.
ACELGHTDS clds OrEibnal dctian IO for this AMT tranEsctior.

images/01598.jpg
Ao S IFSNOWSAr:

Synopsis: Show SIP peer (text format)

Privilege: system,all

pescription: Show one SIP peer with details on current status.
variables!

Peer: <name> The peer name you want to o
ActionID: <id>.

eck.
Optional action ID for this AMT Fransaction.

images/01601.jpg

images/01600.jpg
ETRGROr AR el
v+ in Asterisk 1.6
06 1,6 +1,6 @@
Action: SIshowpeer
Synopsis: Show STP peer {text format)
- Privilege: system,all
Privilege: system,reporting,all

Description: Show one STP peer with details on current status
Variables:

B e

images/01607.jpg
AL IONS SUURMONLELE-

Synopsis: Stop monitoring a channel

Privilege: call,all

Description: The ‘StopMonitor’ action may be used to end a previously
started ‘Monitor’ action. The only parameter is ’Channel’,
prpcadise s A sy sy

images/01606.jpg

images/01608.jpg

images/01614.jpg
RCLLOI URCENVENL
Synopsis: Send an arbitrary event
Privilege: user,all
Description: Send an event to manager sessions.
Variables: (Names marked with * are required)
“Userevent: EventStringTasend
Headerl: Contentl
A RO

images/01613.jpg

images/01616.jpg
AGEAIAC PO peNa L ST SLl gy,
Synopsis: List Al Voicemail User Information
privilege: call,reporting,all

images/01615.jpg

images/01610.jpg

images/01609.jpg
RSN TR B PGS
Synopsis: Unpause monitoring of a channel
Privilege: call,all
pescription: The ‘UnpauseMonitor! action may be used to re-enable
recording of a channel after calling PauseMonitor. The
following parameters may be used to control this:
ChABREL. - AReniPRd. Teed Lo shatify tHe ChEAtal to PaGoRE..

images/01612.jpg
A BEtERERR L, T
r++ in Asterisk 1.6
6 ~7,8 47,9 00
srcpilenane:
DetFilenane:
Reload:

- Action-xooom:

Configuration filename to read(e.g. £oo.conf)
Configuration filename to writele.g. £0o.conf)
Whether or not a reload should take place (or name
of specific module)

Action to Take

(Neucat, Renanecat, Delcat, Update, Delete, Append)

¢ Action-XXKKKK:

Action to Take

(Newcat, RenaneCat, belcat, Enprycat, Update, Delete, Append, Insert)

At X000
Var- X000
Value-XXXKKK:
At X0

+ Line-xooouc:

category to operate on
Variable to work on

Value to work on

Extra match required to match line

Line in category to operate on (used with delete

PO TSN PR

images/01611.jpg
BEYEGHE UPS S Ocanitl

synopsis: Update basic configuration

Privilege: config,all

pescription: A 'UpdateConfig! action will modify, create, or delete
configuration elements in Asterisk configuration files.

Variables (X's represent 6 digit number beginning with 000000):

Srceilename: Configuracion filename to read(e.g. foo.conf)
DstPilename: Configuration filename to write(e.g. £0o.conf)
Reload: Whether or not a reload should take place (or name of

specific module)
Action-XUOOXK: Action to Take

(Newcat, Renanecat , Delcat , Update, Delete, Append)
Cat-XXKXX Category to operate on
Var-XXXXXt: Variable to work on
Value-XOUCKK: Value to work on
FAECH AT, Babhs natel Pavelded toraEtek 1

images/01617.jpg

images/00002.jpg
vv Addison-Wesley

images/00001.jpg
LAl

*
PRACTICAL

ASTERISK 14816

From Beginner_ to_Expert

STEFAN WINTERMEYER
STEPHEN BOSCH

images/00004.jpg
debian:/etc/asterisk# mkdir -p /var/tmp/asterisk-etc-backup
debian:/etc/asteriské mv extensions.* /var/tmp/asterisk-etc-backup/
dabdan il etel b ariahs

images/01619.jpg
AR=iUeuE B8
v+ in Asterisk 1.6
6 5,4 +5,4 2@
a manager event is queued. Once WaitBvent has been called on an HITE
nanager session, events will be generated and queued.
Variables:
- rineout: maximun time to wait for events
+ Timeout: Maximum time (in seconds) to wait for events, -1 means
PRy

images/00003.jpg
deblan:/usr/srcd od /etc/asterisk
aebian:/etc/asterisk# 1s

adsi.conf cdr_tds.conf
adtranvofr.conf codecs.cont
agents.conf dnsmgr . cont
alarmreceiver.conf dundi.conf
alsa.cont enum. cont
asterisk.adsi extconfig.cont
asterisk.cont extensions.ael
cdr.cont extensions.conf
cdr_custom.conf features.conf
cdr_manager.conf festival.conf
cdr_odbe. cont sax.conf
cdr_pgsql.cont iaxprov.cont

AchERniisralanbariakt

indications.cont
logger.conf
manager . cont
meetme. cont
agep.cont

nisdn. conf
modem. conf
modules. conf
musiconhold. conf
osp.cont
oss.cont

phone. conf

privacy.cont
queues. conf
res_odbe. conf.
£pt. cont
rtp.cont
sip.conf
sip_notify.conf
skinny.conf
telcordia-1.adsi
voicemail.cont
vpb. cont
zapata.conf

images/01618.jpg
AgLiomn: JatLEvent.
synopsis: Wait for an event to occur
Privilege: <none>
Description: A 'WaitEvent! action will elicit a 'Success’ response.
Whenever a manager event is queued. Once WaitBvent has been called on
an HTTE manager session, events will be generated and gueued.
variables:
oS

B Ly g, wnn

images/00006.jpg
debian:/etc/asterisk# asterisk -c

Asterisk 1.4.21, Copyright (C) 1999 - 2008 Digium,
Created by Mark Spencer <marksteredigium.com>
Bl

[Booting.

[Reading Master Configuration]

Foaed

Asterisk Ready.

*CLTS

Ine.

and others.

images/00005.jpg
(default]
exten

exten =
Akl

1001, 1, Answer ()
1001, 2, Playback (hello-wor1d)
1001, 3, Hangup ()

images/00007.jpg
*CLI> comsole dial 1001
*CLI> << Console call has been answered >>
<< Hangup on console >>

LT

images/00493.jpg
I o e Lo e

{synopsis]
Exeoutes AGI on a hung-up channal

[pescription]

(| Dead] AGT (conmand|args| Executes an Asterisk Gateway Interface
complianc
progran on a channel. AGI allows Asterisk to launch external programs

on in any language to control a telephony chamnel, play audio,
read DTMF digits, etc. by communicating with the AGT protocol on stdin
and srdout.

This channel will stop dialplan execution on hangup inside of this
application, except when using DesdAGT. Otherwise, dialplan execution
will continve normally

A locally executed AGT script will receive STGHDP on hangup from the
channel
except when using DeadAGI. This can be disabled by secting the
AGISIGHUP channel
variable to "no" hefore executing the AGI application.

Using ‘EAGI' provides enhanced AGI, with incoming audio available out
of band
on £ile descriptor 3

Use the CLT command 'agi show! to list available agi commands

This application sets the following channel varisble upon completion

AcrsTaTus The status of the attempt fo the run the AGL scrips
Eext gbring, one of SUCCESS | PATEURE | HBANGUR

images/00492.jpg

images/00495.jpg
A
(o in nsterisk
86 4,21 +4,22 B

Bxecutes 26T on a hung-up channel

[pescription]
- [B|Dead]AGT (command|args) : Executes an Asterisk Gateway Interface
compliant.
- progran on a chamnel, AGI allows Asterisk to launch external
prograns

written in any language o control a telephony chamnel, play audic,
- read DIMF digits, etc. by communicating with the AGT protocol on
stdin
- ana stdout
- This channel will stop Gialplan execution on hangup inside of this
- application, except when using DeadhGI. Otherwise, dialplan
axecution
- will continue nomally
+ (B[Dead|AST (comnand, args) : Executes an Asterisk Gateway Interface

+ progran on a chamnel, AT allows Asterisk to launch external
prograns written

+ in any language to control a telephony channel,
orwe digics,

+ stc. by communicating with the AGI protocol on stdin and stdout
¢ As of 1.6.0, this channel wi

hangup inside

y audio, read

ot stop dtalplan execution on

images/00494.jpg
ey G
~++ in Asterisk 1.4
8 9,9 9,16 88
written in any language fo Control a telephony chamnel, play audic,
read DINF digits, etc. by communicating with the AGI protocol on
cdin

and stdout.
- Returns -1 on hangup (except for DeadaST) or if application
requested

- hangup, or 0 on non-hangup exit.
Deing 'EAGI' provides enhanced AGI, with incoming audic available
out of band
+ This chamnel will stop dialplan execution on hangup inside of this
+ application, except when using DeadASI. Otherwise, dialplan
execution
¢ will continue nornally.
+ A locally exccuted AG script will Teceive SIGHUP on hangup from
che channet
+ except when using DeadhGT. This can be disabled by setting the
AGISIGAUP channel
+ variable to "no" before executing the AGI application
+ Using 'BAGI' provides enhanced AGI, with incoming audic availsble
out of band
on file descriptor 3

- Use the CLT conmand ‘show agi' te list available agi commands
+ Use the CLI comand ‘agi show' to list available agi commands

© This application sete the following channel variable upon
completion:

. aGISTATUS The status of the attempt to the run the AST
seript

3 text string, one of SUCCESS | FAILURE | HANGUP

images/00489.jpg
DeRARGT (Rrogram, argumesty)
O 10

images/00488.jpg
TEE0 BOORT RETERL0N T

(Synopsis]

Store a value in the database

{pescription]
Deput (fanily/ke)

in the

specifisd location in the Asterisk database.
This spslication has béen depredated in Eavor of the BB Functiocs

alue): This application will store the given value

images/00491.jpg
Perl
PHP

Ruby

$SIG(HUP) IGNORE";

pentl_signal (SIGHUP, SIG_IGN);

(PHP must be compiled with process control enabled using
~-enable-pentl; this is not always the casel)
trap('SIGHUP', 'IGNORE')

images/00490.jpg
J, Snidat. un & SR ODANIDRL]
exten => h,1,DeadAGI (agi-test)

images/00497.jpg
e ST e o S 2 A W
Dial (technologyl /resourcel (stech?/resource? [&. . .11, tineout, options, URL]
B401. (A b A e r AR A £ et St LANaTE, AR sl

images/00496.jpg
+ of this application. Dialplan execution will continue normally, even
upon
+ hangup until the AGT application signals a desire to stop (either by
exiting
+ or, in the case of a net script, by closing the connection)

3 locally excouted AGT script will receive SIGHUP on hangup from
the channel
- except when using DeadAGI. This can be disabled by setting the
AGISIGHUP channel

variable to “no* before executing the AGT application.

- except when using DeadAGI. A fast AGI server will correspondingly
receive a
+ HANGUP in 003 data. Both of these signals nay be disabled by setting
the
+ AGTSTGUUP channel varisble to "no" before executing the AGT
application.

Using EAGI’ provides enhanced AGI, with incoming audic available
it of band
- on file descriptor 3
+ on file Gescriptor 3.

- Use the CLT command ‘agi show' to list available agi comnands
+ Use the CLT conmand 'agi show’ to list available agi commands.
This application sets the following channel varisble upon

completion:
Acrsmanus The status of the attempt fo the Tun the AGL

sexipe

. text string, one of SUCCESS | FATLURE | HANGD®

. text string, one of

SUCCESS | FATLURE | NOTFOUND | HANGUP

images/00482.jpg
& Naue entrles Lo AREmes

exten
exten
a——

> 123,1, Set (D8 (colors/one) =red)
> 123,n, Set (DB (colors/ two) <blue)
delete the key family named test
oo Fem IEARL L laatbre)

images/00481.jpg
IR ABLATLIEE Los
4+ in Asterisk 1.4
66 6,3 +6,4 Ge
[pescription]
DBdel (family/key) : This application will delete a key Erom the
Asterisk
dacabase.

This application has been DEPRECATED in favor of the DB_DELETE
T

images/00484.jpg
Info st spplication ‘PAdeltred"

{synopsis]
belete a family or keytree from the database

(pescription]
DBdeltres Family(/keytreel): This application will delete a family or

keytree

e e T eTr]

images/00483.jpg

images/00478.jpg
Bxten =514, L ssC{IB{coul/nane)=Riohard) 3 ==ve koy ln AstDB
exten => 123,n,Set (name=3 (DB (test/name))) ; retrieve key
e N i TR e R

images/00480.jpg
Into abour:.applicstion ‘oadel’

[synopsis]
Delete a key from the database

[Descripeion]
DBdel (family/key}: This application will delete a key from the

asterisk

datavase.
This application has been DEPRECATED in favor of the DB_DELETE

TR

images/00479.jpg

images/00486.jpg
Iafp about ¥pplication ‘DBget!

(synopsis]
Retrieve a value from the database

[Description]
DBget (varname=fanily/key([options]}: This application will retrieve

a value

from the Asterisk database and store it in the given variable.
Options:

3 - aump to priority n+101 if the requested family/key isn't
found.
This application sets the following channel variable upon
completion:
DBGETSTATUS - This variable will contain the status of the attempt
FowD | NoTFOUND
This application has been deprecated in favor of the DB functiom.

images/00485.jpg
1.2

images/00487.jpg
11.2]

images/00471.jpg
SH-ANCAEISN 1.8
+++ in Asterisk 1.6

68 -1,9 +1,9 g

Info about application ‘Zapscan' =-
Info about application 'DAHDIScan' =

{Synopsis]
- Scan zap channels to monitor calls
+ Scan DAHDT chamnels to monitor calls

[pescription]
- zapscan(lgroup]) allows a call center manager to monitor Zap
channels in
+ DaHDIScan(lgroup]) allows a call center manager to monitor DAHDI
channels in

a convenient way. Use
exit

Linit scanning to a channel GROUE by setting the aption group
ASmenr.

to select the next channel and use '*' to

images/00470.jpg
Inte sbout applicevion "DARDISCNR ! =

[synopsis]
Scan DAHDI channels to monitor calls

{pescription]
DAHDIScan([groupl) allows a call center manager to monitor DAHDI

channels in

a convenient way. Use '#' to select the next channel and use "' to

exit

AL e BEARRTHE C0 AR SO B AGLCEY ChE BECLoH SRaE AT L.

images/00473.jpg
== Info sbout applicetion "DARDISSNAKEVRRaERCILity!

[synopsis]
Send digits out of band over a PRI

[Description]
DAHDISendKeypadFacility (): This application will send the given
string of digits in a Keypad Facility
18 cuar tha Suirent chamasl

images/00472.jpg
(* different name)

images/00469.jpg
| 1.6 |

images/00468.jpg
S EpEeR R L8
r++ in Asterisk 1.6

e -1,11 +1,11 a8

- -= Into about application ‘ZapRas’
+ == Info about epplication 'DAHDIRAS'

(synopsis]
Executes zaptel TSDN RAS application
+ Bxecutes DAHDI 1SDN RAS application

[Description]

- zapRas(args): Executes a RAS server using pppd on the given

channel

- The channel must be a clear channel (i.e. PRI source) and a Zaptel

- DANDIRAS(args): Executes a RAS server using pppd on the given

channel.

+ The channel must be a clear channel (i.e. PRI Source) and a DAHDT
channel to be able to use this function (No modem emulation is

included) .

- Your pppd must be patched to be zaptel avare. Arguments should be
separated by | characters.

- Your pppd must be patched to be DANDI aware. Arguments should be

+ .maparated b .-oharecters::

images/00475.jpg
-11.2]|

-11.6]|

images/00474.jpg
in Asterisk 1.4

~++ in Asterisk 1.6

6 -1,8 +1,8 80

- -= Info about application ‘ZapSendxeypadrFacility’
Info about application ‘DAHDISendKeypadFacility' =-

[Synopsis]
Send digits out of band over a PRI

[Descripion]
- zapSendXeypadFacility(): This application will send the given
string of igits in a Keypad Facility
- DAHDISendKeypadFacility(): This application will send the given
string of digits in a Keypad Facility

S S S

images/00477.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
@0 -4,10 +4,10 &0

says a specified time in a custom format

[Pescriptic

- Datetine{(unixtime] [| [tinezone] [| format]]}

- unixcime: time, in seconds since Jan 1, 1970. May be negative.

+ DateTime({unixtine] [, [timezone] [, farmat]]}

+ unixtime - time, in seconds since Jan 1, 1970. May be negative.

defaults to now.

- timezone: timezone, see /usr/share/zoneinfo for a list.

+ timezone - timezane, see /usr/share/zoneinfo for a list
Gefaults to machine default

a format the time is to be said in. See voicemail.conf.

- a format the time is to be said see

1

- fomma
+ forma
voicemail.cont.

defaults to *ABAY ‘digits/at® IMp*

images/00476.jpg
Inzo Bbeut spplicetion ‘DateTime*

(synopsis]
says a specified time in a custon format
{Description]

DateTine {[unixtine] || [timezone) [| formac]])

time, in seconds since dan 1, 1970. May be negative.
Gefaults to now.
timezone, see fusr/share/zoneinfo for a list.
defaults to machine default.
format: a format the time is to be said in. See voicemail.cont.
defaults to *ABAY 'digits/at® IMp*

images/00460.jpg
= lmp Aot epgicatiod surl’

[Synopsis]
Load an external URL

[pescription]
Curl(URL(|postdatal }: This application will request the specified
URL.
It is mainly used for signalling external applications of an event.
paranetars:
URL. s is the external URL to Tequest.
postdata - This information will be treated as BOST data.
This application will set the following variable:
CURL - This variable will contain the resulting page
This application has been deprecated in Eavor of the CURL fumction.

images/00459.jpg
-1 1.2 |

images/00462.jpg
= J00P Aouk Wplichiiya ek

[synopsis]
Splits a variable's contents using the specified delimiter

(pescription]
Cut [newvar=varnane, delimeter, fisldspec) : This application will split

the

contents of a variable based on the given delimiter and store the

result in

s new variable.

Parameters:
newvar - new variable created from result string
varname - variable you want cut

deliniter - defaults to '-'
Fieldspec - number of the field you want (1-based offset)
may also be specified as a range (with -)
or group of ranges and fields lwith &)
vhia sinticaidon fian Daet deprschted in famit of Lhe PP BiaEs

images/00461.jpg

images/01225.jpg
I Senlrys

exten => 123,1, et (£00=$ [LANGUAGE() }

; Set spanish:
exten => 123.1,Set (LANGUAGE(

.

images/01224.jpg
THED. Bhout TRHobion 'BEFERIEERR.

1syntax]
KEYPADHASH (<string »)

1Synopsis]
Hash the letters in the string into the equivalent keypad numbers

[Description]
Ainmales S iRErADEARE LaE)) Sataras

images/00458.jpg
STE IR, S Lo %,
r++ in hsterisk 1.6
0 -4,7 44,7 06

elay a file with fast forvard and rewind

toescription]

ControlPlayback (£ilel | skipns(| ££1 [xewl |stop

{|pausel |restart |options]11111)) :
+ ControlPlayback (filel,skipns(, EE[, rewl stopl, pause
{, restart options] 1111111

This application will play back the given filename. By default, che

o key
can be used to rewind, and the '#' key can be used to fast-foruard.
Parancters.
¢o ~16,7 +16,11 00
pause - Fause playback when this DTWF digit is received.
restart - Restart playback when this DTWF Qigit is received
option:

- 5 - Jump to priority n+l01 if the requested file is not found.
- This application sets the following chamnel variable upon
conpletion
+ of#) - Scart ac # ms from the beginning of the file.
+ This application sets the following channel variables upon
completion:
CPLAYBACKSTATUS - This variable contains the status of the

attempt as a texc

string, one of: SUCCESS | USERSTOPSED | ERROR
+ CPLAYEACKOPFSET - This contains the offset in ms into the file
where
. playback was at when it stopped. -1 is end of
rile.
- CPLAYBACKSTOPKEY - If the playback is stopped by the user this
variable contains
. e R A R

images/01227.jpg
IREG GRUNE TULGRIOn LhNeURGE

Isyntax]
LANGUAGE ()

Isynopsis]
Gets or sets the channel's language.

[Description]
bracRTAL, Ui DAL LaRCIRGET diE.

images/01226.jpg

images/00467.jpg
Info about application 'DAHDIRAS'

[Synopsis]
Executes DAEDI ISDN RAS application

[pescription]
DAHDTRAS (args) : Executes a RAS server using pppd on the given

channel.

The channel must be a clear channel (i.e. PRI source] and a DAHDI

channel to be able to use this function (No modem emulation is

included)

Your pppd must be patched to be DAHDI aware. Arguments should be

separated by . CHAFacters.

images/00464.jpg
ol about. aphlioatlon *DAHDIRardge"

[synopsis]
Barge in (monitor) DAMDI channel

[pescription]

DAHDIBarge (channel]): Barges in on a specified DANDI
channel or prompts if one is not specified. Returns
-1 when caller user hangs up and is independent of the
Btate of the chishndl Dol monitored.

images/00463.jpg
| 1.6 |

images/00466.jpg
1.2*|

| 1.4*

images/00465.jpg
in Asterisk 1.4
e+ in Asterisk 1.6

@8 -1,10 +1,10 @@

Info about application ‘zapsarge’
Info about application ‘DAHDIBarge' =-

[synopsis]
- marge in (monitor) Zap channel
+ Barge in {monitor) DAHDI channel

[pescription]

- zapeargel([channel]): Barges in on a specified zap

+ DAHDIBarge([channel]): Barges in on a specified DAHDI
channel or prompts if one is not specified. Returns
-1 when caller user hangs up and is independent of the
sxarRcet eihannet Bodke Merbrorel:

images/01232.jpg
FRRLLERE TN, aF B LA,
rtmry e 199 1 Ont Lt e LB brs ey)

images/01231.jpg
ST Goout- Tynetion (LEN

[syntax]
LEN(<string >)

[synopsis]
Returns the length of the argument given

[pescription]
e

images/01234.jpg
s THEG G Euhraon THATES W=

[syntax]
NATH(<nunberl > <op > <number 2 > [,<type_of result 1)

[synopsis]
Perforns Mathematical Functions

[pescription]
Perforn caleulation on number 1 to number 2. Valid ops are:
Sl RS, 3, > manme
and behave as their C equivalents.
<type_of_result > - wanted type of result:
E, float - float(default)
i, int - integer,
B, hex - hex,
c. char - char
Examole: Set(ies(MATHI123088816 int)}) - sets var imii

images/01233.jpg

images/01228.jpg
TR ASTAL B L2
+++ in Asterisk 1.4
8 -7,11 +7,4 88

Gats or @ats the channel's language.

[pescription]
- Gets or sets the chamnel language. This information is used for the

- syntax in generation of numbers, and to choose a natural language file
- when available. For example, if language is set to 'fr' and the file

- 'Gemo-congrats’ is requested to be played, if the file

- ‘fr/demo-congrats' exists, then it will play that file, and if not

- will play the normal 'demo-congrats'. For some language codes,

- changing the language also changes the syntax of some Asterisk

- functions, like SayNurber

s S RS 0 e D NI SRR

images/01230.jpg
| 1.6 |

images/01229.jpg
OISR SOREE IR, THE SRR
123,1, Set (f00=5 (LEN($ (test})
. sabnsan S

images/00449.jpg

images/00448.jpg
;7 for Caller 1D is 888-555-8701, always signal congestion
exten => 123,1,G0tolf ($[$(CALLERID (num)) = 8885556701)710)
123,10, Playtones (congestion)

exten => 123,n,Congestion (5}

exten => 123,n, Hangup ()

exten => 123,10,Dial(zap/1)

images/00451.jpg
ARRGT O R
v+ in Asterisk 1.4

08 4.7 +4,7 0@

Indicate the Congestion condition

[pescription]
- congestion([timeout]): This application will indicate the
congenstion
+ congestion([timeout]): This application will indicate the
congestion

condition to the calling channel. If the optional timeout is
specified, the

calling channel will be hung up after the specified number of
seconds.

Octharwise, this application will wait until the calling channel
LY

images/00450.jpg
== 3uto Shout appiicatden 'Congpaticn’ -

[Synopsis]
Indicate the Congestion condition

[pescription]
Congestion{[timeout]): This application will indicate the congestion

condition to the calling channel. If the optional timeout is specified,

the
calling channel will be hung up after the specified number of seconds.

Otherwise, this application will wait until the calling channel hangs
i,

images/01236.jpg

images/01235.jpg
48 HALCELEE &yl
rr+ in Asterisk 1.6
28 1,14 +1,14 88

"= Tnfo about function MATH' =-

[syntax]
- MnTH(<numberl > <op > <number 2 > [,<type_of result >1)
¢ MATH{<number] > <op > <number2 > [,<type_of_result »1)

[synopsis]
Performs Mathematical Functions

[bsscription]
- perforn calculation on number 1 to number 2. Valid ops ares
- o888, 2, =,
+ Perform calculation on nusberl to nusber2. Valid ops are:
. o= ,* BBE, <<, > >, %, AND,OR,XOR,<, >, > =,<

and behave as their C equivalents

<type_of_result > - wantad type of result:

T Floet = Flhat (datanit)

images/01237.jpg
e TNt avine funbtaon TMbe W

[syncax]
DS (<data>)

[synopsis]
Computes an ps digest

[pescription]
Ot

images/00457.jpg
o TR0 ROUL- BRI ASHRANL "Coakre LRy aER

(synopsis]
Play a file with fast forward and rewind

(vescription]
ControlPlayback (£ilel |skipns(|£€(| rewl stop(|pavse

{|restart |options]111111)

this application will play back the given filename. By default, che '+

ey

can be used to rewind, and the '# key can be used to fast-forward

paraneter:

skipns - This is number of milliseconds to skip when rewinding or
fast-foruarding

£ - Fast-forward when this DIMF digit is received.

rew - Rewind when this DINF digit is received.

stop - Stop playback when this DTMF digit is received.

pause - Pause playback when this DTUF digit is received.

restart - Restart playback when this DIMF digit is received
option:

3 - Jump to priority n+101 if the vequested Eile is not Found
This application sets the following chamnel variable upon completion:

CPLAYBACKSTATUS - This variable contains the status of the attempt
s a text

string, one of: SUCCESS | USERSTOPPED | ERROR

images/00456.jpg

images/00453.jpg
Info shaut application ‘Continuawhile'

[Synopsis]
Restart a While loop

[pescription]
usage: Continuewhile()
Boturiie. to. Phe top of the while lhep and pecevalvates ohe dsondisisnal

images/00452.jpg

images/00455.jpg
3 paay: “syophony™ Lo the caller with playbadlk eodtrols
Sxben < 123 . 1. Control PLiyhdce (eyaphony 5E00, £.7 . 5,07

images/00454.jpg
EBELErIoK 1. ¥

e+ in Asterisk 1.6

a8 4,5 +4,4 @8
Restart a wWhile loop

[Description]
- Usage: Contimuethile()
- Returns to the top of the while loop and re-evaluates the conditional
+ ContinueWhilel): Returns to the top of the while loop and re-
EMA e A R AT

images/01243.jpg

images/01242.jpg
iRy
exten => 123,1, Sot (Name=$ (ODBC_SOL (SELECT name FROM 1ist WHERE

123

nunber-

; sets
cxten => 123,1,Set (ODBC_SOL(UPDATE 1ist SET names'Robert' WHERE

number='123 1)

images/01245.jpg
func_odbe.conts

(UsER_DATABASE]
dsneny_database
read=SELECT nane FROM list WHERS numbers'$(ARG)
wri{te=UPDATS it SET name=$(ARC1}) WHERS number

stvaiy

extensions.cont:

+ Query (read):
exten =» 123,1,Set (Nane=$ (ODBC_USER_DATABASE(S {EXTEN}) })

vpdate (write) :
exten => 133.1,Bet (ODBC USER DATABASE (S {CALLERID (name)}.

000

images/01244.jpg
= Info about function "ODBC_SQL

1syncax]
oDBC_SQL (<argl > [...[,<argn >11)

synopsis]
Runs the referenced query with the specified arguments

Ipescription]
Runs the following query, as defined in func_odbe.conf, performing
substitution of the arguments into the query as specified by $(ARGL).
SUARGZ), ... $ARGN). This function may only be read, mot set.

sl
& PRBOL S

images/01239.jpg

images/01238.jpg
iosuerys

exten Set (£00=$ (MUSTCCLASS () })

123,1

 Set to “HeavyMetal®
exten => 123.1,Set (MUSICCLASS(

images/01241.jpg
e AR
c+ in Asterisk 1.4
s -7,4 47,4 88

Read or Set the MusiconHold class

[pescription]
- This function will read or set the music on hold class for a channel.
+ Dacracated. Hee CHANNEL musicciass! instesd.

images/01240.jpg
= THEo gouut. Tunglaon IBERICChARs”

[syntax]
MUSICCLASS ()

tsynopsis]
Read or Set the MusicOnHold class

[bescription]
DADraArad . TTie CAR e TaRE) ataat.

images/00438.jpg
SOV .
s+t in Asterisk 1.4

@ -1,27 +1,33 6@

= Info about application /ChanSpy’ =-

(synopsis)
- Listen to the audic of an active channel
+ Listen to a channel, and optionally whisper into it

[Description]
Chanspy [(chanprefix] [|options]) : This application is used to
listen to the
- audio from an active Asterisk channel.
coming in ana
+ audio from an Asterisk chanmel. This includes the audio coming in
and
out of the channel being spied on. If the ‘chanprefix’ parameter is
specified,
only channels beginning with this string will be spied upon.
- while Spying, the following actions may be performed:
+ Wnile spying, the following actions may be performed:
- Dialing # cycles the volume level.
- Dialing * will stop spying and look for another channel to spy

This includes the audio

- Dialing a series of digits followed by # builds a channel name

to append

to ‘chanprefix’. For example, executing Chanspy(Agent) and
then dialing

the digits '12344 while spying will begin spying on the
channel,
. the digits ‘12384 while spying will begin spying on the
channel

‘Agent/1234°.

images/01207.jpg
e N e B R e
csten w> 133.1:Set{facns LAXDRER |oear:

images/01206.jpg
TUI0 GRout Duichion [GROUS GIICE SOUNTY ==

Isyntax]
GROUP_MATCH_COUNT (groupmatch (8category])

Isynopsis]
Counts the number of channels in the groups matching the specified pattern

[pescription]
calculates the group count for all groups that match the specified
pattern

G aas SEADRAYE Yenilae SEsrelalan MatEhing [Hes FeaRELT) I

images/00440.jpg
A MBEACASY. 1<%
+++ in Asterisk 1.6
88 -4,7 +4,7 @@

Listen to a channel, and optionally whisper into it

tDescription)
- ChanSpy([chanprefix] [|options]): This application is used to
listen to the
+ ChanSpy([chanprefix] [, options]): This application is used to
listen to the

audio from an Asterisk channel. This includes the audio coming in
and

out of the channel being spied on. If the ‘champrefix' parameter is
specified,

only channels beginning with this string will be spied upon.
08 -14,20 +14,54 6@

- Dialing a series of digits followed by # builds a channel name
to append
to 'chanprefix'. For example, executing ChanSpy(Agent) and

then dialing
the digits '1234#' while spying will begin spying on the

channel
- *Agent/1234" .

v 'Agent/1234'. Note that this feature will be overriden if the
a' option

. is used

+ Note: The X option supersedes the three features above in that if
a valid
N single digit extension exists in the correct context ChanSpy
will
. exit to it. This also disables choosing a channel based on
*chanprefix"
. and a digit sequence.

options:
) b - only spy on channels involved in a bridged call.
- glgrp) - Match only channels where their $(SPYGROUP)
variable is set to
- contain 'grp' in an optional : delimited list.
- a - Don't play a beep when beginning to spy on a
channel, or speak the

images/00439.jpg
options:
b - only spy on channels involved in a bridged call.

- glgrp) - Match only channels where their ${SPYGROUP} variable is

set to

Z o
q - Dont play a beep when beginning to spy on a channel.

. b - only spy on channels involved in a bridged call.

+ glgre) - match only channels where their §(SPYGROUP)

variable is set to

. contain ‘grp’ in an optional : delimited list.

. q - Don't play a beep when beginning to spy on a

channel, or speak the
+ selected channel name.
((basename}] - Record the session to the monitor spool
airectory. An
optional base for the filenane may be specified

The
aefault is *chanspy”

- vilvalue]) - Adjust the initial volume in the range from -4 to

N

< negative value refers to a quieter setting.

. vilvaluel) - Adjust the initial volume in the range from -4

to 4. A

: negative value refers to a quieter setting.

. w - Enable ‘whisper’ mode, so the spying channel can

talk to

A the spied-on channel

. W - Enable ‘private whisper’ mode, so the spying

channel can

. talk to the spied-on channsl but cannot listen

to that

4 hianne

images/01203.jpg
IMEGRONE TULehion [SROUS MIETY W=

1syneax]
GROUP_LTST()

1synopsis]
Gets a list of the groups set on a channel.

[Description]
ke Tiet DE ThE Srciba sut o & ARRRREY

images/01202.jpg

images/01205.jpg

images/01204.jpg
R e o o e e S ol i) o} R R
123.1, Set (foo=4 {GROUP_ MATCH. COUNT (aroup[1-4]) 1)

images/00446.jpg

images/00445.jpg
B o R S T e M

[synopsis]
Check the chamnnel count of a group against a limit

(pescription]
Usage: Checkiroup (nax(@category] [[options])
Checks that the current nusber of total channels in the

curzent channel's group does not exceed 'max’. If the number
does not exceed 'max’, we continue to the next step.
The option scring may contain zero of the following character:

"3 - jump to n+101 prioeity Lf the nunber does in fact exceed
e,

and priority n+101 exists. Execuation then continues at

that

step, otherwise -1 is returned.
This application sets the following channel variable upon successful
completion:
CHECKGROUPSTATUS The status of the check that the current

channel's

group doss not exceed ‘max’. It's value is
one of

OK | OVERMAX

images/00447.jpg
IOSLEPOULEDpLIsELIn T leaTHagn”

(synopsis]
Clear the keys from a specified hashname

(Description]
learHash (<hashname>)
Clesss a1l ks out Gf the Shenitisd Nashname

images/00442.jpg
+ single group or a colon-delimited list
of groups, such

. as ‘sales:support:accounting’ .
. n([mailbox] [6context]) - Say the name of the person being spied
on if that person has recorded

. his/her name. If a context is
specified, then that voicemail context will

. be searched when retrieving the name,
otherwise the "default" context

. will be searched. If no mailbox is
specified, then the channel name will

. be used when searching for the name
(i.e. if SIP/1000 is the channel being

. spied on and no mailbox is specified,
then "1000" will be used when searching

. for the name) .

. a - Don't play a beep when beginning to spy
on a channel, or speak the

. selected channel name.

. = (basenane)] - Record the session to the monitor spool
directory. An

. optional base for the filename may be
specified. The

. default is ‘chanspy’.

. s - Skip the playback of the channel type
(i.e. SIP, IAX, etc) when

. speaking the selected channel name.

. v([value]) - Adjust the initial volume in the range
from -4 to 4. A

. negative value refers to a quieter
setting.

. w - Enable 'whisper' mode, so the spying
channel can talk to

. the spied-on channel.

. W - Enable 'private whisper' mode, so the

spying channel can

images/00441.jpg
- ([(basenare) |
directory. An

The
- v([value])
to 4. A
talk to
s W

channel can

to that

. b
bridged call.
. B

selected channel name.
Record the session to the monitor spool

optional base for the filename may be specified.

default is ‘chanspy’.
Adjust the initial volume in the range from -4

negative value refers to a quieter setting.
Enable ‘whisper' mode, so the spying channel can

the spied-on channel.
Enable 'private whisper' mode, so the spying

talk to the spied-on channel but cannot listen

channel .
- only spy on channels involved in a

- Instead of whispering on a single

channel barge in on both

. a

channels involved in the call.
- Override the typical numeric DTMF

functionality and instead

)
nore of the srouws
sroups trom the
p—
AT

use DTMF to switch between spy modes.
spy mode

whisper mode

barge mode

- only spy on channels in which one or

listed in 'grp' matches one or more
SPYGROUP variable set on the channel to

Note that both 'grp’ and SPYGROUP can

images/00444.jpg
-1 1.2 |

images/00443.jpg
listen to that

channel.
N x

CeLid einite e
Context. ox the context
Channel. variabie. The
on will be stored

L et
chamnelcan

in the text:

talk to the spied-on channel but cannot

channel .
only listen to audio coming from this

Allow the user to exit ChanSpy to a
numeric extension in the current
specified by the SPY_EXIT_CONTEXT
name of the last channel that was spied

in the SPY_CHANNEL variable.
Enable 'enforced’ mode, so the spying

only monitor extensions whose name is

Ry T T e

images/01210.jpg
A R L S

r++ in Asterisk 1.4

e

1,7 41,7 00
‘- Info about funcrion 'IAXPEER'

(syntax]

IAXPEER (<peernane | CURRENTCHANNEL [L tenl)

TAXPEER (<peername |CURRENTCHANNELA [| i tem]

{synopsis]
Bats IAE oder lafaretian:

images/01209.jpg
[syntax]
TAXPEER (<peernane | CURRENTCHANNEL > (|iten])

1synopsis]
Gets TAX peer information

IDescription]
If peername specified, valid items are

ip (default)
catus
mailbox
context
expire
aynamic
callerid nane
calleria_num
codecs
codsc(x]

TUTU LAt UL EEREEER

The 1P address.
The peer's status (if qualifyeyes)

The configured mailbox.

The contigured context.

The epoch time of the next expire.

Is it dynamic? (yes/no) .

The configured Caller 1D name.

The configured Caller 1D number

The configured codecs

Freferred codec index nurber 'x' (beginning with
zero) .

AL Aaci Filad. FELUFEE TP MadREEl BE Bt BEARBEL

images/01212.jpg
L RIVRT PRIady THENER By STRMIMERE EOTUTY,
e e AN A bt RSO LI LS T (s = LAY

images/01211.jpg
I ol os
r+ in Asterisk 1.6
s -1,7 +1,7 88

- Info about function ‘IAXPEER'

(syntax]
- IAXPEER|<peername | CURRENTCHANNEL> [| iten]|
+ TAXPEER(<peername | CURRENTCHANNEL> [, i tem]

(synopsis]
Gats TAN SeaE INESTRELLGHE

images/01208.jpg

images/01217.jpg

images/00429.jpg
It about application "ChanTsRwel

(synopsis]
Check channel availability

[Description] Chanishvail(Technology/resource [xTechnology2/
resource2...] [|options]):
This application will check to see if any of the specified channels are
available. The following variables will be set by this application
S (AVATLCHAN) - the name of the available channel, if one exists
$(AVAILORIGCHAN) - the canonical channel name that was used to create
the channel
S(AVAILSTATUS) - the status code for the available channel
opcions:
s - Consider the channel unavailable if the channel is in use at
a1y
4 - Support jumping to priority n+10l if no channel is available

images/00428.jpg

images/01214.jpg
S0P auout- Tynetion TIFY

[syntax]
I¢ (<expr > ?(<true >] [:<false 1)

[synopsis]
Conditional: Returns the data following '?' if true else the data
following s 1

[Description]
T T LR

images/01213.jpg

images/01216.jpg
RS, SR D=l BOCR - Bels) NOERNERG. S8 LOCRRE TG OF BN

exten => 1231, Set (£00=$ [TFTTHE (08:00-18:00 [mon|1-15 | dec?

; Valid every Saturday and Sunday:
exten => 123,1,Set (£00=§{IFTIME(*|sat-sun|*|*?5:0)})

images/01215.jpg
0 ARteripk 1.4
r++ in Asterisk 1.6
s -4,7 14,7 88

1F(<expr > ?l<true »][:<false >])

tsynopsis]
conditional: Returns the data following
following *

+ Conditional: Returns the data following

following

[bescription]
B ()

if true else the data

170 if true, else the data

images/00435.jpg

images/00434.jpg
J, FRVRNCEOD an H Agank
exten => 123,1,Chanspy (Agent)
exten => 123,n, Hangup ()

: Example using g:
; for calls to 0, set SPYGROUP 10005:
exten => _0.,1,8et (SPYGROUP=10005)

; Listen to channels in SPYGROUP 10005:
exten => 123,1,Chanspy (,g(10005) }
axten: s> A48 n Mangurl)

images/00437.jpg
Only spy on channels involved in a bridged call.
Match only channels where their §{SFYGROUP}

contain ‘grp’ in an optional : delimited list
a - Don‘t play a beep when beginning to spy on a
channel, or speak the
selected channel name.
[{basenane}] - Record the session to the monitor spool directory.
an

optional base for the filename may be specified

The
default is ‘chanspy’.
vilvaluel] - Adjust the initial volume in the range from -4 to
t.a
negative value refers to a quieter sstting.
w - Enable ‘whisper’ mode, so the spying channel can
talk to

the spied-on channel.
W - Bnable ‘private whisper’ mode, so the spying
channel can
talk to the spied-on channel but cannot listen to
that
SRy

images/00436.jpg
LD SO SRl AL aon SCRREY

tsynopsis]
Listen to a channel, and optionally whisper fnto it
{pescription]

Chanspy ([chanprefix] [|options]): This application is used to listen
to the

audio from an Asterisk channel. This includes the audio coming in and
out of the channel being spied on. If the ‘chanprefix’ parameter is
specified,

only channels beginning with this string will be spied upon.

while spying, the following actions may be performed:
- pialing # cycles the volume level.
- Dialing * will stop spying and look for another channel to spy
- Dialing a series of digits followed by f builds a channel name to
append
to ‘chanprefix’. For example, executing ChanSpy(Agent) and then
dtaling
the digits ‘1234#" while spying will begin spying on the channel
“Agent/1234!
Options:

images/00431.jpg

images/00430.jpg
SarARperiae I.¥
+++ in Asterisk 1.6
a8 -4,12 +4,15 @@

Check channal availability

(Description]
- Chantsavail(Technology/resource [¢Technology2/resource2.
[loptions])

ChanTshvail (Technology/resource [sTechnology?/resouxce?.
L.options])

This application will check to see if any of the specified channels
are
- available. The following varisbles will be set by this application:
- SAVATLCHAN} - the name of the available chamnel, if one
exists

$(AVATLORIGCHAN) - the canonical channel name that was used to
create the channel
- S(AVATLSTATUS) - the status code for the available channel
- available

options:
: s - Consider the channel unavailable if the chamnel is in use at

3 - Support jumping to priority n+101 if no channel is available
. a - Check for all available channels, not only the first one.
. s - Consider the channel unavailable if the chamnel is in use at

. © - Sinply checks if specified channels exist in the channel
list

- (implies option s).

+ This application sets the following channel variable upon
completion:

. AVALLCHAN - the name of the available channal, if one exists
- AVATLORTGCHAN - the canonical channel name that was used to create
the channel

AR ST emewee ot RERBEECOAE T A e LA CEEREEY

images/00433.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
Ge -4.5 +4,8 @@

Redirects given channel to a dialplan target

(pescription]
- ChannelRedirect (channel | [[context | extension| Ipriority
+ ChannelRedirect (channel., [[context, |excension, Iprioricy]

Sends the specified channel to the specificd extension priority
+ This application sats the following channel variables upon
complet ion
+ CHAWELREDIRECT_STATUS - Are st to the result of the redirection
N ey PR or BHESEE.

images/00432.jpg
Into abour.appliostion 'Channelfsdiregc?

(Synopsis]
Redirects given channel to a dialplan targe

(Description]
ChannelRedirect (channel | [[context |]extension | Ipriority) :
Banda: tha apecietan: channel: to the secliied cxteraton el

images/00427.jpg
& Check'ihe Svaillability of Bapil ang Tapy:
exten => 123,1,Chantshvail (2ap/182ap/2,)
+ As an exception, using priority jumping, because we want to announce
something to the caller if no channel is available

; at least one chamnel is available - dial this channel
extan => 123,2,N00p(S (AVAILORIGCHAN) s available)
exten => 123,3,Dial ($(AVATLORIGCHAN) /123456)

i if the call goes to priority 102, neither Zap/1 nor Zap/2 is
available
exten => 133,102, Playbackiall-chaniela-busy)

images/01221.jpg
ST Aot Tunetion TN

[syntax]
ISNULL (<data >)

[synopsis]
NULL Test: Returns 1 Lf NULL or O otherwise
[pescription]

2 Sl

images/01220.jpg

images/01223.jpg

images/01222.jpg
1 2asc_ |3 DR
4 5ok |6 om0
7 oS s Tov | o wxvz
- []

G G

SO (I AT TR TR

vataEnd BE3ERT

images/01219.jpg
AR HALCZ LRk &yl
r++ in Asterisk 1.6
88 4,7 +4,7 88

IETDGE (<timespec > ?(<true »] [:<false >])

[synopsis]

- Temporal conditional: Returns the data following '7' if true else the
data following ':'

+ Temporal Conditional: Returns the data following '?' if true, else the
data following 'i'

[pescription]
et it

images/01218.jpg
== Infg sbout function 'IFTIME' ==

[syntax]

IPTINE (<tinespec > 7[<true >][:<false >1)

(synopsis]

Teporal Conditional: Returns the data followlng '7' Lf true else the
aata following ':'

[pescription]
Bt asadraiias

images/00418.jpg

images/00424.jpg

images/00423.jpg
Monltor chante. with @ Chilenand prefix or “asudipelip:
exten => 123,1,Monitor (audioclip)

; Change filenane prefix to ‘audioclipd’

dbett, <183 n, plinnesemlont Coritine1 $52)

images/00426.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
@8 4.6 +4,6 @

Change monitoring filename of a channel

[Description]
- ChangeMonitor (filenane_base)
- Changes monitoring filename of a channel. Has no effect if the
channel is not monitored
+ Changemonitor (Filename_base) :
+ Changes monitoring filename of a channel. Has no effect if the
channel is not monitored.

The argument is the new filename base to use for monitoring this
i

images/00425.jpg
~="Inte sboul wpplicarion "ChanghNondtor

tsynopsis]
Change monitoring filename of a channel

(Description]
Changemonicor (filenane_base)

Changes monitoring filename of a channel, Has no effect if the channel
is not monitored

The argument is the new filename base to use for monitoring this
Sy

images/00420.jpg
Bxton =514, L. Flayback v -#orry)
exten => 123,n, Playtones (busy]
St s 178 U O]

images/00419.jpg
Xnfo abaut dpplication SRridget

[synopsis]
Bridge two channels

{Description]
Usage: Bridge (channel(,options])
Allows the ability to bridge two channels via the dialplan.
The current chamnel is bridged to the specified ‘channel’.
options:
P - Play a courtesy tone to ‘channel’.
This application sets the following channel variable upon completion:
BRIDGERESULT The result of the bridge attempt as a text string, one
of
SUCCESS | FAILURE | LOOP | NONEXISTENT | INCOMPATIBLE

images/00422.jpg
Juie about applipation fBoey’

(synopsis]
Indicate the Busy condition

[pescription]
Busy ([timeout]): This application will indicate the busy condition to

the calling channel. If the optional timeout is specified, the calling
channel

will be hung up after the specified number of seconds.
SopLication WILT walt witil €hs salling chusmal Hangs up.

Otherwise, this

images/00421.jpg
| 1.6 |

images/00417.jpg
in Asterisk 1.4
+++ in Asterisk 1.5
66 -4,12 +4,12 66

Background a file with talk detect

[pescription]
- BackgroundDetect (filename([sil{[min| [max]]]}: Plays back a give
- filename, waiting for interruption from a given digit (the digit musc
- start the beginning of a valid extension, or it will be ignored).
During the playback of cthe file, audio is momitored in the receive
- direction, and if a period of non-silence which is greater than
- yet less than ‘max’ ms is followed by silence for at least 'sil’ ms
then
- the audio playback is aborted and processing jumps to the ‘talk’
- if available. If unspecified, sil, min, and max default to 1000
100, and
- infinity respectively.
- BackgroundDetect (<filenames |, <sil> [, <min> [, <masx>
[<analysistine>]111)
- Plays back <filenames, waiting for interruption from a given digit
(the digic
+ must start the beginning of a valid extension, or it will be
ignored). During
- the playback of the file, audio is monitored in the receive
girection, and if
+ aperiod of non-silence which is greater than <min> ms yet less than
- is followed by silence for at least <sils ms, which occurs during
the Eirst
<analysistimes ms, then the aud
jumps o
+ the <talks extension, if available. If unspecified, <sil>, <min>,
cnaxs, and
+ <analysistime» default to 1000, 100, infinity, and infinity
SRy

layback is aborted and processing

images/00416.jpg
SIS AU SIELECAL R TIRCEETNDauetent: =

(synopsis]
Background a fils with talk detect

{pescription]
BackgroundDetect (£ilenanel [sil(|min| (max]11): Blays back a
filename, waiting for interruption from a given digit (the digit must
start the beginning of a valid extension, or it will be ignored].
buring the playback of the file, audio is monitored in the receive
Girection, and if a period of non-silence which is greater than ‘min’

yet less than ‘max’ ms is followed by silence for at least ’sil’ ms
then

the audic playback is aborted and processing jumps to the rtalk’
extension

if available. If unspecified, sil, min, and max default to 1000, 100,
and

infinite resseativaiv.

images/00889.jpg
Loty RO TR AL Saa EHRNEE SHLAE SINGD, -EepRis LRSS Deatnie
exten => 123,1,RetryDial (Erying-to-connect-

you, 5,3, TAX2 /VOTR/ 18005554148, 30)
; 1€ the caller presses 4 while waiting, try the call on Zap/
> 0,1, RetryDial (trying-to-connect-you,5,3,Zap/4/18005554148, 30)

Gitan

images/00888.jpg
S e S < - - AR ot o5 s Skt it £
resouzrcez. .11, timeoutl, optiongl, URE]11)

images/00891.jpg
TR ROOI L AR LATETLE TRECEN DR

[synopsis]
Place a call, retrying on failure allowing optional exit extension.
[pescription]

Retxypial (announce|sieep| retries|aialargs) « This application will
attempt to

ice 3 call using the nomal

reached,

the ‘announce’ file will be played. Then, it will wait 'sleep’ nurber

of

seconds hefore retrying the call. After ‘retries' mumber of attempte,

the

calling channel will continue at the mext pricrity in the dialplan

It the

retries' setting is set to 0, this application will retry endlessly.
While waiting to retry a call, a 1 digit extension may be dialed

It that

extencion exists in either the o

the current

cne, The call will juip to that extension imnediately.
The 'Qislargs' are specified in the same format that arguments are

provided

b i DL avciirabiin,

1 application. If no channel can be

xt defined in ${EXTTCONTEXT} or

images/00890.jpg

images/00413.jpg
ARt ETIaE L
~++ in Asterisk 1.6
0 -4,7 +4,7 80

Play an audio ile while waiting for digits of an extension to go
to.

[Description]
- sackground(filenanel[&filename2...][|options[|langoverride]
[context]) :
+ Background (filenanel (sfilenane?
[concext]]):
This application will play the given List of files (do mot put
extension)
while waiting for an extension to be dialed by the calling channel.
T0
continue waiting for igits after this application has finished
playing
as -21,5 +21,6 4@
- Don’t answer the channel before playing the files.
m - Only break if a Gigit hit matches a one digit
extension in the destination context.

10, options(, langoverride]

+ This application sets the following channel variable upon
completior
+ BACKGROUNDSTATUS The status of the background attempt as a text
string, one of
. success | FAILED

See Also: elaypack (application) -- Play sound file(s] to the
channel,

F T e e B

images/00897.jpg
AL IR s
tes in Asterisk 1.6
80 -4,5 +a,6 a8
Retum from gosub routine
[pescription]
- Return()
- umps to the last label on the stack, removing it
+ Returni(return-value]]
+ Jumps to the last label on the stack, removing it. The return
valve, if
O

images/00412.jpg
+ while waiting for an extension to be dialed by the calling channel.
To
- continue waiting for digits after this application has finished
playing
- files, the WaitBxten application should be used. The ’langoverride’
option
+ explicitly specifies which language to attempt to use for the
requested sound
- files. If a ‘context’ is specified, this is the dialplan context
that this

application will use when exiting to a dialed extension. If one of
the reguested sound files does not exist, call processing will be

terminated.

options:
s - causes the playback of the message to be skipped
. s - Causes the playback of the message to be skipped
if the channel is not in the up: state (i.e. it
- hasn’t been answered yet.) If this happens, the
. bhasn’t been answered yst]. 1f this happens, the
application will rerurn immediately.
- o - don’t answer the chamnel before playlng the files
m - only break if a digit hit natches a one digit

= extension in the destination context
. n - Don't answer the channel before playing the files.

. - Only break if a digit hit matches a one digit
. extension in the destination context.

+ See Also: Playback (application) -- Play sound filels) to the
channel,

N that: cannot be: interrupted

images/00896.jpg
Into about application “Return®

Isynopsis]
Retum from gosub routine

[Description]
Retum ()
e T N AR TS R

SN B

images/00415.jpg

images/00414.jpg
sten => 133, L. Mackgramdiatest. (aymobomny)
exten => 123,n, Playback (vn-sorry)
exten => talk,1,Playback(yes-please)

images/00409.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/00893.jpg
AR R W =
o in Asterisk 1.6
8 3,7 +4,7 88
Place & call, retrying on failure allowing optional exit extension

[pescription]
- metryDial (anncunce|sleep|retries|dialargs): This applic
scrempt to
. Retrypial(announce,sleep, retries, dialaras): This application will
aceenpt to

place a call using the normal Dial application. If no channel can be
reached,

the “anncunce’ £ile will be played. Then, it will wait ‘sleep’
nuber of

seconds before retrying the call, After ‘retries' number of
AEhars. S

tion will

images/00408.jpg
xten =x"123, L, Anawes ()
AT L5 3R iy TR T TS LRAER - QI R 61

images/00892.jpg
S0 e el
r++ in Asterisk 1.4
@ -7,7 1,7 80
Retrybial {announce|sleep| retries|dialargs) : This application
Will attempt to
place a call using the normal Dial application. If no channel can
be reached,
the ‘announce’ file will be played. Then, it will wait ‘sleep
nuber of
- seconds before retying the call. After 'retires’ number of attempts,
the
+ seconds before retrying the call. After 'retries' mumber of
actempts, the
calling channel will continue at the next priority in the dialplan
If the
‘retries setting is set to 0, this application will recry
endlesaly.
While waiting to retry a call, a 1 digit extension may be dialed
T ey

images/00411.jpg
I ARLETLER 1. o
+++ in Asterisk 1.4

ee -1,23 +1,25 o

Info about application ‘BackGround’ =-

{Synopsis]
- Play a file while awaiting extension
+ Play an audio file while waiting for digits of an extension to go

[pescription]
Background (£ilenanel [&filenane2. ..][|options! | langoverride]
[context] :

- This application will play the given 1ist of files while waiting for
an
- extension to be dialed by the calling channel. To continue waiting
for digits
- after this application has finished playing files, the WaitExten
application
~ should be used. The ‘langoverride’ option explicity specifies which
language

to attempt to use for the requested sound Files. Tf a ‘context’ is
specified,

- this is the dlalplan context that this application will use when
exiting to a

- dialed extension. If one of the requested sound files does not
exist, call processing will be

+ This application will play the given list of files (do not put
extension)

images/00895.jpg

images/00410.jpg
SR BT W B E, DRI

[synopsis]
Play an audio file while waiting for digits of an extension to go to

[pescr.
Background (£ilenamel (&filenamed. .] [|options! | langoverride] (| contaxt])
This application will play the given list of files (do not put extension]
while waiting for an extension to be dialed by the calling channel. To
continue waiting for digits after this application has finished playing
files, the Waitmxten application should be used. Tha 'langoverride’
option
explicicly specifies which language to attempt to use for the requested
sound
files. If a rcontext’ is specified, this is the dialplan context that
this
application will use when exiting to a dialed extension, If one of the
requested sound files does not exist, call processing will be
terminated,
options:
s - Causes the playback of the message to be skipped
if the channel is ot in the 'up’ state {i.e. it
hasn't been answered yet]. If this happens, the
application will return imuediately.
n - Don‘t answer the channel before playing the files.
m - only break if a igit hit matches a one digit
extension in the destination context
Flayback (application] -- Play sound file(s) to the channel,
Piak Saneat b Thbaysintad

see Also

images/00894.jpg
SEEAn Sob fe sl MY NRTRY R MOHRApEl
exten => 123,n, Gosub (my-subroutine, s, 1
exten => 123,n, Playback (ct-nonkeys|

exten => 123, Hanaup ()

Iy -subroutine]
exten => 5,1, Playback (tt-ueasels)
SShan, S RAEaEATE

images/00406.jpg
A EAT RS
+++ in Asterisk
a8 -4,9 +4,9 68

Authenticate a user

[Description]
- Authenticate(password||options]): This application asks the caller
to enter a
- given password in order to continue dialplan execution. If the
password begins
- with the '/ character, it is interpreted as a file which contains a
List of
+ Authenticate(password| options| |naxdigits)]}: This application
asks the caller
- to enter a given password in order to continue dialplan execution.
It the password
+ begins with the */' character, it is interpreted as a File which
contains a list of

valia passwords, listed 1 password per line in the File.

Wnen using a database key, the value associated with the Key can

be anything

Users have three attempts to authenticate before the channal is hung
up. TE the
0 -21,3 +21,7 4@

the file. when one of the passwords is matched, the channel

will have
its account code set to the corresponding account code in
the file,
© - Remove the database key upon successful entry (valid with
“ only)
. maxaigits - maximm acceptable nusber of digits.
Stops reading after
. maxdigits have been entered (without requiring the user to
. press the ‘4" kay).
- Defaults to 0 - no Limit - wait for the user press the '#’

bew

images/00405.jpg
n ‘Authenticate’

Infp ‘abaut applicatis

(synopsis]
authenticate a user

(peseription]
Auchenticate (password[|options | |n
the caller
to enter a given password in order to continue dialplan execution. Tf
the password
begins with the '/ character, it is interpreted as a file which
contains a list of
valid passwords, listed 1 password per line in the file
When using a database key, the value associated with the key can be
anything.
Users have three attempts to authenticate before the channel is hung
up. IE the
passsword is invalid, the 'j’ option is specified, and priority n+101
exists,
dialplan execution will continnue at this location

xdigits]]): This application asks

options:
a - Set the channels’ account code to the passward that is entered
@ - Interpret the given path as database key, not a literal file
3 - Support jumping to n+101 if authentication fails
m - Interpret the given path as a file which contains a list of
account

codes and password hashes delimited with /:1, listed one per
line in
the file. When one of the passwords is matched, the channel
will have
its account code set to the corrssponding account code in the
file.
- Remove the database key upon successful entry (valid with /d’
only)
maxdigits - maximum acceptable number of digits, Stops
after

ading

nmaxaigits have been entered (without reguiring the user to
press the 47 key)
Defaults to 0 - no Limit - wait for the user press the '#'
b

images/00407.jpg
in Asterisk 1.4

+++ in Rsterisk 1.6

ea 1,18 +4,15 68
Authenticate a user

[pescription]
- Authenticate (password[|options| [maxdigits]]): This ap
asks the caller
+ Authenticate(password(,options(,maxdigits]1): This application
asks the caller

to enter a given password in order to continue dialplan execution.
1f the password

begins with the //¢ character, it is interpreted as a file which
contains a list of

valid passwords, listed 1 password per line in the file.

When using a database key, the value associated with the key can

be anything
- Users have three attempts to authenticate before the channel is hung
up. If the
- passsword is invalid,
n+idl exists,
- dialplan execution will continmue at this location.
+ Users have three attempts to authenticate before the channel is hung
up

ication

ne 3+ option is specified, and priority

options:
a - Set the channels’ account code to the password that is
entered
a - Toterpret

file

Support jumping to n+101 if authentication fails
- Interpret the given path as a file which contains a list of

S

account.

codes and password hashes delimited with *i/, listed one
per line in
the file. When one of the passwords is matched, the channal

1D W

images/01199.jpg
ST ONAGOLRG EOr: TRWORESOL Ghataels)
exten => 123.1.Bat{EocstiGROUD COUNT (outaoing))

images/01198.jpg
S THECATRUE DAoL SUROUEL e

1syntax]
ROUP ([category])

Isynopsis]
Gats or sets the channel group.

[Description]
e Bat N SRR SR

images/01201.jpg
= 1NEy Ut fHnpEien UNGUIRIGEEY =

[syntax]
GROUP_COUNT { [groupname] [8category])

[synopsis]
counts the nusber of channels in the specified group

[pescription]
calculates the group count for the specified group, or uses the
RN el tel SR G U e PR e R

images/01200.jpg

images/00878.jpg
VNN SR) SRR S e
exten => 123,1, RemoveQueueHenber {support, STP/3000)

images/01647.jpg
Bxecli (<expression>7application_if_true(args):application_if
CEalsulArom)]

images/01646.jpg
sacto sysmacra () {
1/ o something
return;

images/00880.jpg
-7 Info about application 'RemoveQueueMember®

Isynopsis]
Dynamically removes queue members

{Deseripeion]
Renoveguensienber (queuenams | | interface | |options])
bynanically removes interface to an existing queue
If the interface is NOT in the queue and there exists an n+101 priority
then it will then jump to this priority. Otherwise it will return an
The option string may contain zero or more of the Following characters
5' - jump to +101 priority when appropriate
This application sets the following channel variable upon completi
RausTaTus The status of the attempt to remove a queue member

text string, one of
REMOVED | NOTINQUEVE | NOSUCHQUEUE

Exanple: RemoveQueteNember {techsupport|SIP/3000)

images/00879.jpg
|1 1.6 |

images/01643.jpg
ay=-axanple-tomplatel (1)
context=default

images/01642.jpg
Imy-phenms] {1}

quality=yes
host=dynanic
canreinvit

secret=1111

12021 (my-phones)
02
secret=2222

12031 (ny-phones)
usernane=203
Sar At LTS,

This entcy 18 the tanplate

station 201

station 202

station 203

images/01645.jpg
[aracionel{l}

Teaplela “mrarione?

; Template *snomt, inherits -stations®

[linksys] (!, stations) ; Template *linksys*, inherits “stations*
qualify=no

[snon1] (snom) ; Station snomi®, inherits *snom"
username=101
secret=123

{snom2] (snom) ; Station "snomz®, inherits *snom
username=102
secret=123

[Linksys1) (Linksys) ; Station “linksysl®, inherits *linksys"
username=103
SR

images/01644.jpg
[201] y-phoned, gales) ¢ tohecits my-phonos’ and “sales’
username=201
PRI

images/00402.jpg
EBGLRrLK 1d
e+ in Asterisk 1.4
68 -14,3 +14,5 @@
CDR records can be used for billing or storing other
arbitrary data
(I.E. telephone survey responses)
Also see SetCDRUserField(].

+ “THiE aopiicaticn is deprecated 1A Pavor f GeCiCOR(GesrElaid

images/00886.jpg

images/00401.jpg
== Info about application ‘AppendCDRUserField’

{Synopsis]
Append to the CDR user field

[Description]
[Synopsis]
AppendCoRUserField (value)

{pescription]
AppendCDRUSerField (value) : Append value to the CDR user field

The Call Data Record (CDR) user field is an extra field you

can use for data not stored anywhere else in the record.

DR records can be used for billing or storing other arbitrary
data

(1.E. telephone survey responses)

Also see SetcoRUserrield(].

This application is deprecated in favor of Set(CDR{userfield!

images/00885.jpg
THARLET S ek
++ in Asterisk 1.6
e 10,3 +10.4 @@

Store the current COR record befors resstring it
Store any stacked records
Save CR varisbles.
Eieble oim Galy [eoate CEfasts of RoStE)

images/00404.jpg
| 1.6 |

images/00403.jpg
§ RUQUEAT DRNEWODE S
exten => 123,1,Answer()
exten => 123,2, Authenticate(1234,3,4)

priority jumping because we want to tell the caller
that she has entered

5 an exceptional use of

the wrong password
exten => 123,3, Playback (pin-accepted)
WELAD. o5 924, U0, F AYRASE [P E- A ROt el

images/00887.jpg
Into about applicatlon ‘ResponseTimeout®

[synopsis]
Set maximum timeout awalting response

[pescription]
ResponseTimeout (seconds) : This will Set the maximm amount of time

permitted to walt for an extension to dialed (see the Waitmxten

application) , before the timeout occurs. If this timeout is reached,

dialplan execution will continue at the 't' extension, if it exists.
ResponseTineout has been deprecated in favor of

bt T TREGT T G ROS AR | <t et t

images/00398.jpg
| 1.6 |

images/00882.jpg
fVEENE CNA Rt DAL I BT AR reaat el
exten => 123,1, Answer ()

exten => 123,n, Playback (tt-nonkeys)
exten => 123,n, ResetCDR (w]

5 Mg S a2 S S

images/00881.jpg
A P TMLIL S S
+++ in Asterisk 1.6
8 -a,10 +2,11 68

Dynamicaily removes queus members

[Deseription]
- RemoveQueuelenber (quevenane | interface(|options]]}
+ RemoveQueueMenber (queuename [, interfacel ,options] 1}

Dynamically remaves interface to an exlsting queue
- If the interface is NOT in the queue and there exists an nel0l
priority
= then it will then jump to !
~ The cption string may contain sero or more of the following
characters
- 30 == jump to 101 priority when appropriate.
+ If the interface is NOT in the queue it will return an error.
This application sets the following channel variable upon
completion:
RQUSTATUS The status of the attempt to remove a queue
nenber as &

priority. Otherwise it will returs

fext scring, ons of
SEMOVED | NOTTNQUEUE | NOSUCHQUEUE

Example: RemoveQueustember (techsupport | STB/3000)

+ Hyonpla: Hemoveguensiesbar|techmmnort, STpiA08H)

images/00400.jpg

images/00884.jpg
ARLo - ADOUL APPRLCHTLION TRESELLTR

[synopsis]
Resets the Call Data Record
(Description]

ResetCDR ({options]): This application causes the Call Data Record
to be reset.
options,
W -- Store the current CDR record before resetting it
a -- Store any stacked records.
Beniesionglenysdictoly

images/00399.jpg
== sty about apmiication TAnguey

[synopsis]
Answer a channel if ringing
[pescription]
Answer ([delay]): If the call has not been answered, this application
will

answer it. Otherwise, it has no effect on the call. If a delay is
specified,

asterisk will walt this number of milliseconds before raturning to
the dlalplan aEter srswasing the dall,

images/00883.jpg
| 1.4 |

- 1.6 |~

images/01650.jpg
Zaptel DAHDI
zaptel dahdi

2o-eth dahdi_dynamic_eth
2dHoc dahdi_dynamic_loc
2dummy ahdi_dummy
2tdynamic ‘dahdi_dynamic
attranscode dahdi_transcode

images/01649.jpg
Asterisk 1.4 will continue to have support for Zaptel, although it
wi11 be enhanced to also transparently support DAHDI instead, and
the documentation (and default configuration files) will encourage
new users to use DAHDI instead of Zaprel.

Asterisk 1.2 will be unaffected by these changes.

It 1s unfortunate that all of us have to bear the inconvenience of
this change, but we will try to ensure that it is as easy for
users to switch from zaptel to DAHDT as we can make it.

For continuing updates on this process, including additional
upgrade notes and other information, please monitor the page at:

wnd.asterisk.org/zaptel -to-dandl

The switch has made writing a current and consistent book on
Asterisk even more difficult than it already vas, and we can’t
av01d using both terms interchangeably, at least for this edition.
The most current material may be found at Rttp://wn.the-asterisk-
pock..cam.

bigiun also provides additional information on the change at
e AEt P IRk T AL]~ EECARTAL

images/01652.jpg
Zaptel DAHDI

ztetg dahai_ctg
=tmonttor dabai_ponicor
ztscan dahai_scan
ztspeed danai_speed
atrest dabdi_test
zeool dobi_tool
zapeont dahai_gencont

images/01651.jpg
Zaptel DAHDI
/eteizaptal.cont fate/aanat/systen.cont

Jetc/asterisk/zapata.conf Jetc/asterisk/chan_dahdi.conf

images/01648.jpg
SEEITEE IO fani ey Seukm SR B
~kpflening, way 19, 2008

Approximately two years ago, the cwner of the trademark Zaprel (for
telephony purposes) contacted Digium and notified us that the mame
vas in fact trademarked. HiS company cwnis the ZapTel trademark and
sells telephons calling cards, and would prefer that Internet
searches for "zaptel cards® nat recurn products unralated to thelr
trademark.

In an effort to rectify this situation, since that time we have had
many discussions internally at Digium about what we should do,
including ensuring that any new nane we chose would ba something
that was availabla to ba trademarked (as Asterisk is), so that we
wouldn't have a racurrence of this situation. The owner of the
trademark has been very accomnodating as we worked through this
process, but it is now time for us to take action.

seginning immediately, we are going to work on renaming Zaptel to
DADI, which stands for Digium Asterisk Hardwara Device Interface.
When DAHDT 2.0.0 (the first version) is released, it will contain
nearly all the functionality of zaptel 1.4, except for Limux

kernel 2.4 support, devEs support, and arivers for some very
cutdatad (and no longer available) Digiun hardware (torisa and
wcusb) . zaptel 1.2 will continue to be released in new versions as
bugs are found and Fixed, but when DAHDI 2.0.0 is released there
w11 ba no more releases of Zaptel 1.4.

Asterisk 1.6.0 will use DAHDI exclusively (it will not have
support for zaptel), although this will be dome in a highly
packward compatible way so that disruption to existing dialplans
and configurations will be minimized.

images/00869.jpg
=== in Asterisk 1.2
+++ in Asterisk 1.4
@@ 7.4 +7,6 ea
Use the RealTime config handler system to update a value
RealTimeUpdate (<fanily> | <colmatch> | <value> |<newcol> |<newval>}

- The column <newcol> in ‘family' matching column <colmatch>=<value>
will be updated to <newval>

+ The column <newcol> in *family' matching column <colmatch
will be

+ updated to <newval>. REALTTMECOUNT will be set with the number of
zows

T T——m——

value>

images/00868.jpg
~= Info sbqut application ‘RealTimeUpdate’s ==

[Synopsis)
Realtine Data Rewrite

(Description]
Use the RealTime config handler system to update a value
RealTimeUpdate (<family>|<colmatch>|<value> |<newcol> | <newval>)

The column <newcol> in 'family’ matching column <colmatch>=<values

will be
updated to <newval>, REALTIMECOUNT will be set with the number of
Godaredor A ST AreOD SHE:

images/01654.jpg
T AT D= -
Author Mark spencer markster@digium.com

citetitle [Asterisk-Users] Re: lax or sip

31b110id http://1ists.diglun.con/pipermall /asterisk-usars/
2004-7uly/ 046272 .henl

[...] lat me summarize some aifferences betwaen STP and TAX,
and 1t might help you make a dscision about what is bast for you.

1) Iax is more efficlent on the wire than RTP for *any* number of
calls, *any® codec. The benefit is anywhera from 2.4k for a single
call to appraximately tripling the number of calls per megabit for
5.729 when measured to the MAC leval when running trunk mode

2) TAX is information-element ercoded rathar than ASCIT encoded.
Mis makes implementations substancially sinpler and more robust
to buffer overrun attacks since absolutely no text parsing or
interpratation s required. The TAXy runs its entire IP stack, IAX
stack, TOM interface, echo canceller, and callerid generation in 4k
of heap and stack and 64k of Flash. Clearly this demonstrates the
{mplementation efficlency of 1its design. The size of IAX signaling

packats is phenomenally smaller than those of SIP, but that is
generally not a concern except with large mumbers of clients
frequently registering. Generally speaking, IAX2 is more sfficient
in its encoding, decoding and verifying information, and it would be
extremely difficult for an author of an IAX implementation to
somehow be incompatible with another implementation since so lirtle
s left to interpratarion.

1) InX has a very clear Layer 2 and layer 3 separation, meaning that
both signaling and audio have defined states, are robustly
transmittad in a consistent fashion, and that when ona end of the
call abruptly disappears, the call WILL temninate in a timely
fashion, even 1f no mora signaling anda/or audio is recaived. SI2
does not have such a mechanism, and its reliability from a signaling
perspactive is obviously very poor and clumsy requiring additional
standards beyond the cora RFIZ61 [here he means RFC 3261, hrep://
tools.ietf.org/html/rfc3z6l].

images/01653.jpg
Zaptel

chan_zap.s0

chan_damai.so

app_zapbarge.so

app_zapras.so

app_dahdlbarga.so
app_dandiras.so

app_zapscan. so

app_dahdiscan.so

images/01656.jpg
T/guaEs-THEra-IUsL, Hi “Sde” Horattages g SIF {Driue el i oRll-raes
writers of it stupid).

So here a few questions to elaborate how IAX handles:
1) Bandwidth indications

2) New codscs

1) Extensibility

) Call hold and other complex scenarios

5) video telephony

T ———

images/01655.jpg
4) IaX's unified signaling and audio paths permit it ta
transparently navigate NATs and provide a firevall administrator
only 2 *single* port to have to cpen to permit its use. It reguires
an TAX client to know absolutely nothing about the network that it
is on to operate. More clearly stated, thers is *mever* a situation
that can be created with a firewall in which IAX can complete a call
and not be able o pass audio (except of course if there was
insutficient bandwldth).

5) TAX’s authenticated transfer system allows you to transfer audio
and call contral off a server-in-the-middle in a robust Fashion such
that Lf the two endpoints cannot sas one anafher for any reason, the
call continues through the central server.

6) TAX clearly separates Caller*ID from the authentication mechanism
of the usar. SIP doas not hava a clear method ta do this unless
Remote-party-ID is used.

7) SIP is an IETF standard. while there is some fledgling
docunentat ion courtesy Frank miller, TAX is not a published standard
at this time.!

8) IaX allows an endpoint to chack the valldity of a phone number to
know whether the mumber 1s complate, may be complete, or is complate
but could be longer. Thare Is o way to completely support this in
stp.2

9) IaX alvays sends DTMF out of band so thera is never any confusion
about what merhod 1s used.

10) TAX support transmission of language and context, which are
useful in an Asterisk enviroment. That's pretty much all that comes
to mind at the moment.

ark

1. TAX2 was submitted as RFC 5456 (ywvww rfc-editor.orglauthore/rfc5456.txt), although
as an informational RFC it remains unofficial.

2 Thia i 16 longar atrictly tros..

images/00875.jpg
IRESRNING SERtrbeign. SRt

(synopsis]
Record to a file

Record(filenane. format | silencel |naxduracion] | [options])

Records from the chamnel into a given filename. If the file exists
it will
be cveryritten,
- “format' is the format of the file type to be recorded (wav, gsm,
ete)
~ “silence’ is the mumber of seconds of silence to allow before
returning.
- “maxduration’ is the maximum recording duration in seconds. If
nissing
°r 0 there is no maximun.
- ‘cptions' may contain any of the following letters:
‘a‘ ¢ append to existing recording rather than replacing
n' ¢ do not answer, but record anywsy if line not yet answered
' + quiet (a0 not play a besp tone]
' ¢ skip recording if the line is ot yet ansuered
© ¢ use alternate '+’ terminator key {DTNF) instead of default

%' : ignore all terminator keys (DMF) and keep recording until
S

If filename con
unber
incremented by one each time the file is recorded. A chamnel variable
naned RECORDED_FILE will alsa b set, which contains the final
£ilennane.

Use ‘cors show £ile

systen

ns '848M4", these characters will be replaced with a

mate! to see the available

mats on your

User can press '#' to terminate the recording and continue o the next
prioricy.

If the user should hangup during a recording, all data will be lost and
che

Y DT S T L DG N R

images/00874.jpg

images/00877.jpg
ARSI 2%

ro+ in Asterisk 1.6

68 4,7 44,7 88
Record to a file

[pescription]
- mecora(Filenane. fornat|silence [naxduration] [|options])
+ Recora(Filename.fornat,silencel,maxduration] [,options])

Records from the channel into a given filemame. If the Fils
Gt gt e

images/00876.jpg
AL .
r+s in Roterisk 1.4
00 -17,13 417,10 68

o' :'do not ansuer, but record anyway if line not yet answered
Q' ¢ quiet (do not play a beep tone)
‘5 : skip recording if the line is not yet answered

< 't i use alternate '+ temminator key instead of default
. 't i use alternate +' teminator key (DTME) instead of
detauls '

. "x' : ignore all terminator keys (DTHF) and keep Tecording

sntil hangup

If filonane contains 'SAM!, these characters will be Teplaced with
s mumber

increnented by one each time the File is recorded. A channel
variable

Daned RECORDED_FILE w
Filemnane.

also be set, which contatns the final

- Use 'show file formats' to see the available formats on your system
+ Use 'core show file fomats' fo ses the available formats on your
systen

Dser can press '+ to terninate the recording and contimue ta the
i B AR 5

images/00871.jpg

images/00870.jpg
sxtan =124, 1, verbosa(l, #4% Inooming fax: §(COR (urigueld) 3y
exten => 123,n, Sat [LOCALSTATIONTD=MY Company)

exten => 123,n,ReceiveFAX (/tmp/ fax-$ (CDR (uniqueid}) .tif)
exten => 123,n,Verbose (1, ##7 FRXSTATUS: §(PAXSTATUS))
exten => 123,n,Verbose (1, ##% FAXERROR: §{FAXERROR}]
exten => 123,n,Verbose (1, ##7 FAXHODE: §{FAXMODE))
exten => 123,n,Verbose (1, 47 FAXPAGES: §{FAXPAGES) |
exten => 123,n,Verbose (1, ##7 FAXBITRATE: §{FAXBITRATE)]

exten => 123,n,Verbose(1,### FAXRESOLUTION: §{FAXRESOLUTION))
exten =» 123,n,Verbose (1, #4# REMOTESTATIONID: §{REMOTESTATIONID)!
sitan = 193, & Randart)

images/00873.jpg
R S S T
oxten => 123, 1, Playback (please-say-your-nans|
oxten => 123,n,Recora(/ tap/name .gsn, 3, 10)
WEEah 25 T35, 5. PIavhaak {/ea Frinks)

images/00872.jpg
REC ‘about @pplication *Recelverax®

[Synopsis)
Receive a FAX

(pescription]
Receiverax (filenane |options]
Seceives a fax from the channel into the given filename overwriting
the file if it already exists, File created will have TIFF format.
The option string may contain zero or more of the following characters:
"' - makes the application behave as a calling machine
The default behaviour is to behave as an amswering machine

This application uses following variables:
LOCALSTATIONID to identify itself to the remote end.
LOCALHEADERTNFO to generate a header line on each page

This application sets the following channel variables upon completion:
FAXSTATUS - status of operation:
SUCCESS | FATLED
FAXERROR - Error when FAILED
FAXNODE - Mode use
audio | 138
REMOTESTATIONID - CSID of the remote side
FAXPAGES - nuaber of pages sent.
FAXBITRATE - transmition rate.
FAXRESOLUTION - resolution.

Returns -1 in case of user hang up or any channel error.
S oy S

images/00867.jpg

images/00743.jpg
T RDMY, SODLEPRL Y

[Synopsis]
Play Mini-Voicemail prompts
(Description]
minivnGreet (usernameédomain(, options] | :
application is part of the Mini-Voicemail system, configured
in minivm.conf.
inivnGrest () plays default prompts or user specific prompts for
an account.
Busy and unavailable messages can be choosen, but will be overridden
if a temporary
nessage exists for the account.

Result is given in channel variable MINTVM_GREET STATUS

The possible values are: SUCCESS | USEREXIT | FAILED
options:
b - Play the 'busy' grescing to the calling party.
s - Skip the playback of instructions for leaving a message
to the

calling party
5 e Blae ohe FaNeTEllable e Eitg.:

images/00742.jpg

images/00745.jpg
SN ENER ST Sy aCeLaon TERAYOL IRy

(synopsis]
NoLify voicemail owner about new messages

{pescription]
minivanorsfy (usernaneadomain(, templatel] :

This application is part of the Mini-Voicemail system, contigured

in minivm.cont.

winiVMnotify forwards messages about new voicemail to e-mail and pager.

If there's no user account for that address, a temporary account will

be used with default options (set in minivm,conf)

The recorded file name and path will be read from MVM_FILENAWE and the

Guration of the message will be accessed from MVM_DURATION (set by

winivnRecord ()]

It the channel variable MVM_COUNTER is set, this will be used in the

nessage file name and available in the template for the message.

If not template is given, the default email template will be used to

send email and

default pager template to send paging message (if the user account is

configured with

2 paging address.

Result is given in channel variable MINIVM NOTIFY_STATUS
The possible values are: SUCCESS | FAILED

images/00744.jpg

images/00739.jpg
= IREo abaut ‘apmrkication SOnivANGCHaEe®

[Synopsis)
Record account specific messages

[pescription]
MinivmAccmess (username@donain, option) :

This application is part of the Mini-Voicemail system, configured

in minivn.cont.

Use this application to record account specific audio/video messages

for

busy, unavailable and temporary messages

Account specific directories will be created if they do not e

The option selects message to be recorded:
unavailable

Busy

Tenporary (overrides busy and unavailable)
Account. name

s

Result is given in channel variable MINIVH ACCHESS_STATUS
The possible values are: SUCCESS | FPAILED
o S e S R o R

images/00738.jpg

images/00741.jpg
EEY SPOUL SEDLLCRLION TN VIDeLOE

[synopsis]
Delete Mini-Voicemail voicemail messages
[Description]
Minivmbelete (filename) :
This application is part of the Mini-Voicemail system, configured in

minivm,cont
It deletes voicemail file st in MVM_FILENAME or given filename

Result is given in channel variable MINIVM_DELETE_STATUS
The possible values are SUCCESS | FATLED
e e T s s

images/00740.jpg

images/00736.jpg
in-Asterisk 1.2
+++ in Asterisk 1.4

@8 -1,7 +1,10 Ge

-= Info about application 'Milliwace’

(synopsis]
- Generate a Constant 1000Hz tone at 0dbm (mu-law)
+ Generate a Constant 1004Hz tone at Odbm (mu-law)

[Description]
- Milliwatt(): Generate a Constant 1000Hz tone at 0dbm (mu-law)
+ wmilliwact([oprions)): Generate a Constant 1004Hz tone at 0dbm.

+ Previous versions of this application generated the tone at 1000Hz. If
for

+ sone reason you would prefer that behavior, supply the ‘o' option

to get the

+ ota Detaiae:

images/00735.jpg
= 3nth abouf application 'Mliliwatlt®

(synopsis]
Generate a Constant 1004Hz tone at 0dbm (mu-law)

[Description]
Milliwact ([options]): Generate a Constant 1004z tone at 0dbm.
Previous versions of this application generated the tone at 1000Hz.

If for

some reason you would prafer that behavior, supply the
get the

i e

option to

images/00737.jpg
axten
exten

exten

exten =

exten

exten
exten
exten

exten
—

0 LADEART LY
#90,n, MinivaAccHess (§(CALLERTD (num) }@localdorain, n)
#90,n, Hangup ()

91,1, Answer ()
*91,n, MiniviAccess (§ (CALLERTD (pum)) 6localdomain, u)
*91,n, Hangup ()

92,1, Answer ()
#92,n, MiniviAcciess (§ (CALLERTD (mum)) §1ocaldomain, b)
*92,n, Hangup ()

#93,1, Answer ()
93, MiniviAccless (§ (CALLERID (pum)) 6localdomain, t)
«93.n, Hangup{}

images/00732.jpg
in Asterisk 1.4
+++ in Asterisk 1.5
6e -1,9 +4,8 6o

Meetie participant count

[pescription]
- MestMeCount (confnol var])s Plays back the number of users in the
specified
+ Meetmecount (confnol,var]): Flays back the number of users in the
specified

Meettie conference. If var is specified, playback will be skipped and
the value

will be returned in the variable. Upon app completion, MeetdeCount
will hangup

the channel, unless priority n+l exists, in which case priority
progress will

continua
L R GAGPEE TNERAPACE NG B IRALGET RO S RN WO T ORI

images/00731.jpg
=== inm Asterisk 1.2
+++ in Asterisk 1.4
66 6,6 +6,7 ee

[Description]

Meetecount (confno{ |var]) : Plays back the number of users in the

specifiea

Meetie conference. If var is specified, playback will be skipped and
the value
- will be returned in the variable. Upon app completion, MestMeCount
will hangup the

channel, unless priority n+l exists, in which case priority progress
will concinue.
+ will be returned in the variable. Upon app completion, MestMecount
will hangup
+ the channel, unless priority nel exists, in which case priority
progress will
- continue.

AR TR i B R A s e s s

images/00734.jpg
| 1.6 |

images/00733.jpg
génerate s 1000 8y WILLAMLt LAst, fones
akton => 123, LA 11iwatt)

images/00728.jpg
i Count the participants in conference 501 and store in $(COUNT}:
SibEr =+ 3331 MaACMECOUNE (501 COuNT)

images/00730.jpg
“=Tinte about APplicarion. ‘MeetMecoMnrt*

(synopsis]
Meetle participant count

(escription]
Meet¥eCount (confnof |var]) : Blays back the number of users in the
specified
Meetlte conference. 1f var is specified, playback will be skipped and
the valu
will be returned in the variable. Upon app completion, MeetleCount will
hangup
the channel, unless priority ntl exists, in which case priority
progress will
continue.
N e e e i e . e

images/00729.jpg
| 1.6 |

images/00725.jpg
AL BELDL a1

r++ in Asterisk 1.4

@8 -10,7 +10,17

e

o

Tl
- N

ks
v B
. B
. ret
. s
: g

e
Kick all users out of conferance

nlock conference

Lock conference

Unmute conference

mute conference

Unmute entire conference (except admin)
Mute entire conference (sxcept admin)
Unnute one user

Mute one user

Unmute all users in the confersnce

Mute all non-admin users in the conference
Reset one user's volume settings

Reset all users volume settings

Lower entire conference speaking volume
Raise entire conference speaking volume
Lower one user's talk volume

Raise one users talk volume

Lower one user's listen volume

Raise one user's listen volume

Lower entire conference listening volune
Balse entire Gonferenss 1istensns voliee:

images/00724.jpg
JHEC Shelbt ‘Sppiication HearMeadin’

(synopsis]
Meetde conference Administration

{pescription]
HeetMeAdnin (confno, comand[, user]) : Run admin command for conference
‘o' -- Ejact last user that joined
“k* -~ Kick one user out of conference
"K' - Kick all users out of conference
‘1 - unlock conference
‘L' -~ Lock conference
unnute one user
Mute one user
Unnute all users in the conference
Mute al1 non-admin users in the conference
Reset one user's volume settings
Reset all users volume sertings
Lower entire conference speaking volume
Raise entire conference speaking volums
Lower one user's talk volume
Raise one user's talk volune
Lower one user's listen volume

“U' - Raise one user's listen volume
‘vt - Lower entire conference listening volume
e Retunoenting oocHuranes: SlarantRl: s ene

images/00727.jpg
== Jufoebout spplicetion “NeetMechannelAonin’

(Synopsis]
MeetMe conference Administration (channel specific)

[Description]
MeetieChanne Ladnin (channel, conmand) : Run admin command for a specific

channel in any coference.

“k* - Kick the specified user out of the conference he is in
‘m' -~ Unnute the specified user
P R R R

images/00726.jpg

images/00721.jpg
'P' - always prompt for the pin even if it is specifie
'q' -~ quiet mode (don't play enter/leave sounds)
‘r* -~ Record conference (records as §(MEETNE_RECORDINGFILE)

88 -51,3 +58,10 @@

Qigit extension §{HEETME_EXIT_CONTEXT} or the current
context.

if that variable is not defined.

‘10 - do not play message when first person enters

- 'S(x)' -- Kick the user 'x' seconds *after* he entered into
the conference
. “LixCiylliz]) -
warning when 'y’ ms are
: left. Repsat the warning evary 'z ms. The following

it the conference to 'x' ms. Play a

special

. wvariables can be used with this option:

. + CONP_LINIT_TIMEOUT_FILE File to play when time
s up.

. * CONF_LINIT_WARNING_FILE File to play as
warning if 'y’ is defined.

The default is to say
B iR eka taia:

images/00720.jpg
'I' -- announce user join/leave without review
“1+ -~ set listen only moda (Listen only, no talking)
‘m' -~ get initially muted
- ‘M’ -~ enable music on hold when the conference has a single
caller
. Ml (<class>}1*
. -~ enable music on hold when the conference has a single
caller.
. Gptionally, specify a musiconhold class to use. If one
is not
. provided, it will use the channel's currently set misic
class,
+ or -defaults.
‘o' -- set talker optimization - treats talkers who aren't

speaking as
being muced, meaning (a) No encode is done on
transnission and
(b) Recsived audio that is not registersd as talking is
niced
- causing no bulldup in background noise. Note that this
option
- will be removed in 1.6 and enabled by default
-~ allow user to exit the conferance by prassing
cousing no bulldup in background noise
“pli<keys>1)
-~ allow user to exit the conference by pressing '#' (default)
or any of the defined keys. I keys contain '+ this

will override
. option 's'. The key used is set to channel variable
MEETME_EXIT_KEY.

images/00009.jpg
*CLI> core set verbose 5
Verbosity was 0 and is now 5
*OLI>

images/00723.jpg
| 1.6 |

images/00008.jpg
exten => 1001,1,Angwer()
exten => 1001,2, Playback (hello-world)
exten => 1001, 3,Hangup()

images/00722.jpg
&ty parEloipant 3,10 cancenente J4%
exten = 123,1,MeetMeAdnin(333,M,3)

; Kick participant 3 out of conference 333:
> 123, 1,MeetMeAdmin (333, k,3)

s

images/00011.jpg
[general]
port=5060
bindaddr=0.

12000
type=friend
secret=1234
host=dynamic

images/00010.jpg
*CLI> console dial 1001
console is full duplex
“CLI> -- Executing [10016default:
stack
<< Console call has been answered »>
Executing [10016default:2] Playback(-Console/dsp”, “hello-world®) in
new stack
<Console/dsp> Playing ‘hello-world’ (language ‘en’)
*CLI> -- Executing [10016default:3] Hangup(*Console/dsp®, **) in new
stack
== Spawn extension (default, 1001, 3) exited non-zero on 'Console/dsp’
<< Hangup on console >

1 Answer (*Console/dsp*, **) in new

——

images/00013.jpg
*CLI> -- Registered SIP '2000" at 47.6.3.4 port 5060
expires 120 -- Unregistered SIP ‘2000

images/00719.jpg
=== IRRRLEELSN 1.4
+++ in Asterisk 1.6
66 -8,8 +8,5 08

conference. If the conference number is omicted, the user will be
prompted

to enter one. User can exit the conference by hangup, or if the 'p*
option

is specified, by pressing '#'
- Please note: The Zaptel kernel modules and at least one harduare
driver (or ztdummy)
= must be present for conferencing to operate properly
In addition, the chan_zap
+ Please note: The DANDI kernel modules and at least one hardware
Griver (or dahdi_dummy)
. mist be present for conferencing to operate properly.
In addition, the chan dahdl

channel driver must be loaded for the 'i' and 'r'

options to operate at all.

The oprion string may contain zero or more of the following
characters:
6 -17,8 +17,9 20
‘A" - set marked mode

“b* -~ run AGT script specified in ${MEETME AGI_BACKGROUND)
Default: conf-background.agi (Note: This does not work with

= non-zap channels in the same conference)
. non-DAHDT channels in the same conference)

‘ot -~ announce user(s) count on joining a conference
. ‘Ct -~ continue in dialplan when kicked out of conference

*d" -~ dynamically add conference

“D' -~ dynamically add conference, prompting for a EIN

select an empty conference
@@ -28,13 +29,19 @@

images/00012.jpg
debian:/etc/asterisk# asterisk -vvvvve
Asterisk 1.4.21, Copyright (C) 1999 - 2008 Digium, Inc. and others.
[

images/00718.jpg
‘st -- Present menu (user or admin) when '*' is received
{*send" to menu)

‘£r - set talk only mode. (Talk only, no listening)

‘Tt - set talker detection (sent to manager interface and

nestne list)
ae -41,3 +50,4 @@

‘X' —- allow user to exit the confersnce by entering a valid
single

digit extension §(MERTME_EXIT_CONTEXT) or the current
context
if that variable is not defined.

s AR T ReEsETE WhGK: SERRE: BLEG St

images/01290.jpg
SREIWIER DELRAEIIEAL WRE, et gl
Sctens -ace 153 1 Bet: L EoonS (BTAT I Fato i oatab))3

images/00717.jpg
same conference)

. Default: cont-background.agi (Note: This does not work
with
. non-zap channels in the same conference]

*cr - announce user(s) count on joining a conference

a -- aynamically add conference

D -~ dynamically add conference, prompting for a PIN

‘e’ - select an empty conference

"E' -- select an empty pinless conference

“it - announce user join/leave
- ‘m' - set monitor only mode (Listen only, mo talking)
. “F' - Pass DIMF through the conference.
. *iv == announce user join/leave with review
. ‘I' -~ announce user join/leave without review
. ‘1" - set listen only mode (Listen only, no talking)

‘m' - set initially mited

‘M' -~ enable music on hold when the conference has a single
caller
. ‘o' - set talker optimization - treats talkers who aren't
speaking as
- being muted, meaning (a) No encode is done on
transmission and
. (b) Received audio that is not registered as talking is
onitted
. causing no buildup in background noise. Note that this
option

. will be removed in 1.6 and enabled by default.
‘p' - allow user to exit the conference by pressing '#'
'P' -- always prompt for the pin even if it is specified
‘a' -- quiet mode (don't play enter/leave sounds]
*x' -- Record conference (records as §{MEETWE_RECORDINGFILE}
using format §(MEETNE RECORDINGFORMAT}). Dafault

filenane is
5 meetne-cont-rec-$ (CONNO}-$ (UNIQUETD} and the default
format is wav.

. mestme-cont-rec-§ (CONENO) -§ {UNIQUEID) and the default
forast dw

images/01289.jpg
TSP SUORL TUNChIe TRRRT =

[syntax]

SORT (keyl:valll a1)

[synopsis]
Sorts a List of key/vals into a list of keys, based upon the vals

[Description]
takes a comma-separated list of keys and values, cach separated by a
colon, and returns a comma-separated list of the keys, sorted by their
S A X iR e N B A S R S R AR

images/01292.jpg
(syncax]
STAT (<flag >,<filename >)

(Synopsis]
Does a check on the specitied file

(Description]
flag may be one of the following:
Checks if the file is a diractory
Checks if the file exists

Checks if the file is a regular file

i

Zomusmo

Returns
Returns
Returns
Returns
HapweRs

=-TRL0 BOURBTIORCUION 1OIAL: =

the
the
the
the
ke

File mode (in octal)
size (in bytes) of the file

epoch at which the file was last accessed
epoch at which the inode was last changed
bceh ap witoh the £ile was isee modifisa

images/01291.jpg

images/00714.jpg
SO EHLE SRCHE: SPRLACaLIon NeeuNe

tsynopsis]
MeotMe conference bridge

{pescription]
HMeetme ([contno] [, [options] [,pin]]): Enters the user into a specified

MeetMe
conference. If the conference number is omitted, the user will be
prompred
to enter one. User can exit the conference by hangup, or if the 'p’
option
is specitied, by pressing '#'.
Please note: The zaptel kernel modules and at least one hardware driver
(or ztdurmy)

must be present for conferencing to operate properly. In
addition, the chan_zap

channel driver must be loaded for the
to operate at all.

and 'x* options

The option string may contain zero or more of the following character

‘ar - set adnin mode

‘A' -- set marked mode

*b' - run ASI script specified in §{MBETME_AGI_BACKGROUND)
Default: conf-backgrownd.agi (Note: This does not work

with

non-gap channels in the same conference)

‘et -~ announce user(s) count on joining a conference

*ar -- aynamically add conterence

D -~ dynamically add conference, prompting for & PIN

‘er - select an empty confersnce

‘E' -- select an empty pinless conference

‘E' - Pass DIMF through the confersnce

*it -~ announce user join/leave with review

*I' - announce user join/leave without review

‘1t -- set listen only mode (Listen only, no talking)

‘m' -~ set initially muced

'M' -~ enable music on hold when the conference has a single

images/00713.jpg
| 1.6 |

images/00716.jpg
AARLAy AR L
+++ in Asterisk 1.4
¢ -4,10 +4,10 G0

HeetMe conference bridge

[pescription]
- MeetMe!(contno] [, [options] [,pin]]): Enters the user into a
specified Meetma conference.
- If the conference nmumber is omitted, the user will be prompted to
enter
- User can exit the conference by hangup, or if the 'p’ option is
specified, by pressing '#'
+ MeetMe{[contno] [, [options] [,pin]]} Enters the user into a
specified Meetma
+ conference. If the conference number is omitted, the user will be
prompted
+ to enter one. User can exit the conference by hangup, or if the 'p'
option
+ is specified, by pressing ‘¥
Please note: The Zaptel kernel modules and at least one hardware

driver (or ztdummy)

must be present for conferencing to operate properly.
In addition, the chan_zap

channel driver must be loaded for the
options to operate at all.

it and 'zt

ce -16,22 +16,31 86
‘ar - set admin mode
‘A" - set marked mode

*b' - run AGI script specified in §(MEETME AGT_BACKGROUND}
o Default: cont-background.agi
- (lote: This doss not work with non-Zap channels in the

images/01288.jpg

images/00715.jpg
caller
‘o' -- set talker optimization - treats talkers who aren't

speaking as
being muted, meaning (a) No encode

done on cransmission

and
(b} Received audio that is not registersd as talking is
omitted
causing no buildup in background noise. Note that this
option
will be removed in 1.6 and enabled by default.
- allow user to exit the conference by pressing '#'

*B' -- always prompt for the pin even if it is specified

‘q' -- quiet mode (don't play enter/leave sounds)

'r' - Record confersnce (records as §{MBETME_RECORDINGPILE}
using format §(MEETNE RECORDINGFORMAT}). Default filename
mestme-conf-rec-§ (CONFNO) - (UNIQURID) and the default

fornat is

st - Present menu (user or admin) when '' is received ('send:

o menu)

*E' - set talk only mode. (Talk only, no listening)

‘Tt - set talker detection (sent to manager interface and meatme

list)

‘wl(ssecs>)]"

- wait uncil the marked user enters the conference
"x' - close the conference when last marked user exits
*X' -~ allow user to exit the conference by entering a valid
single digit extension §(MEETME_EXIT_CONTEXT) or the current
context

if that variable is not defined
Gy HAE Dlay fsAsdTe vhsh PLERE DETRAN SREREE

images/01297.jpg
D i
r++ in Asterisk 1.6

6@ 1,10 +1,16 @8

= Info about function 'STRFTIME'

(syntax]
- STRFTIME ({<epoch>] [| (timezone] [| format]])
+ STRPTIME({<epoch>] [, [timezone] [, format]])

(synopsis]
Returns the current date/time in a specified format.

[Description]
- Not available
STRETINE sporcs all of the same formats as the underlying C function
strftine(3) - see the man page for details. It also supports the
following format:
+ ®%¥3(nlq - fractions of a second, with leading zeroes. For example,
88483 will give milliseconds and §8881q will give tenths of a second
The default is to output milliseconds (n=3). The common case is to use
it in combination with $%$3S, as in "$33%5.33%83g"

images/01294.jpg
-] 1.4 |-

images/01293.jpg
FOMBTEIIR, AR RORR A S O B O
xten =» 123,1,Set (tine=S (STRFTIME (§ (EPOCH) , America/Los_Angeles,
b y-Sm-9d SH: 9M:$S") 1)

images/01296.jpg
Ly AELRT AR o2,
+++ in Asterisk 1.4

6 1,7 +1,7 @@

‘- Info abour function ‘STRETINE'

[syntax]
- STRPTIME((<epoch>] [, [tinezone] [, formac]])
+ sTRPTIME((<epoch>] [| [timezone] [|format]])

[synopsis]
Bkl Che BirvEht AACE2ER:

& SEEITIed TOTNAL.

images/01295.jpg
TED BRSO [STRETING

[syntax]
TRETTIE ([<epoch>] [| [timezone] (| Eormat]])

[synopsis]
Returns the current date/time in a specified format

[pescription]
SR DR

images/00710.jpg

images/00709.jpg
80 about Bpplication 'WMnS”

{synopsis]
calculate MDS checksum

{bescription]
DS (<vars=<strings): Calculates a MDS checksum on <strings.
aturns hash valie in & chserel veristle.

images/00712.jpg
MEPQD 20" 14 o L B0WOEN)
; Place the caller in conference 333 (with PIN 1234):
exten => 123,n,MeetMe{333,DpM,1234)

images/00711.jpg
= TR0 MOINLE AP PCRLIoR: BUHCIBCN."

(Synopsis]
Check DS checksum

(pescription]
MDSCheck (<ndShash> |<string> [[options]
<string>
and compares it with the hash. Returns 0 if <ndshash> is correct for
<string>
The option string may contain zero or more of the following characters:
'3' - jump to priority n+101 if the hash and string do not

Calculates a MD5 checksun on

natcn
This application sets the following channel variable upon completion:
CHECKMDSSTATUS The status of the MDS check, one of the
following
e | moRARGa

images/00708.jpg

images/00707.jpg
Sute Dot Gplicatdon Bt

[synopsis)
Performs Mathematical Functions

[Description]
Math (returnvar , <numberl><op><number 2>

perform floating point calculation on number 1 to number 2 and
store the result in returnvar. valid ops are:
oot R <>,
and behave as their C equivalents.
B N A T D Tm—

images/00706.jpg
-] 1.2 |

images/00703.jpg

images/00702.jpg
133, L Anaweri)
123,n,mai lboxBxists (1230default)
123,1n,G0to (box~§ (VMBOXEXISTSSTATUS) |
123,10 (box-SUCCESS) , Voicenail (123, u]
123, 20 (box-FAILED) , Playback (sorry)

images/00705.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
Ge 4,7 +4,7 @

Check to see if Voicemail mailbox exists

(pescription]
- mailhoxmxists (nailbox[@context] [options]): Check to see if the
specified
+ mailboxixists (nailbox(8contexc] [, opcions]) : Check to ses if the
specitied

mailbox exists. If no voicemail context is specified, the 'default
context
will be used.
This application will set the following channel variable upon
completion
66 -12,5 +12,4 @0
mailboxexists application. Possible values
include
success | FATLED
- Options:
- 3 - Jump to priority n+101 if the mailbox is found
i Opeleng: ihone)

images/00704.jpg
TG 50T ApRLtoatinn: M liboxExiece

[synopsis]
Check to see if Voicemail mailbox exists
{Description]

1ailboxexists (mailbox(@context][|options]): Check to see if the
specified
mailbox exists. Tf no voicemail context is specified, the 'default
context
will be used.

This application will set the following channel variable upon
completior

VMBOXEXISTSSTATUS - This will contain the status of the execution

of the

MailboxExists application. Possible values
include
success | eatiED

options:
F L e C6PEIGEIEY HATOL EE EhE Baltbox T8 fould.

images/00029.jpg
tawneral]

[internal-phones]
Rules, commands, etc.

twidgets]
il oomeniis who;

images/00699.jpg

images/00028.jpg

images/00698.jpg
== Info-stiout spplicetion *Mscromeie®

[Synopsis]
Exit From Macro

[Description]
MacroBxit():

Causes the currently running macro to exit as if it had

ended normally by running out of priorities to exscute.

1f used outside a macro, will likely cause unexpected

RSy

images/00031.jpg
2340 Lo ROEWRLL)
1234,2,Wait (2)

1234,3, Playback (hello-world)
1234,4,wait (2)

1234, 5, Hangup ()

images/00701.jpg
7T BRLErig 1. ¥
e+ in Asterisk 1.6
a8 -4,7 +4,7 @8

Conditional Macro Implementation

tpescription]

- Macrolf (<expr>?macronane_al |argl] [macroname bl |arglll)

- Macrolf (<expr>7macronane_al,argl] [:macronane_bl,argl]])
Executes macro defined in <macroname_a» if <exprs is true
{otherwise <macroname_b» if provided)

- Argunents and return values as in application macra()

v AEGUNEntE SAA SeTvbn VElUGE a6 1n STnlloAELAA NacEe)

images/00030.jpg
lwidgets]

exten => 8888, 1, Answer (]

exten =» 8888, 2, Playback (hello-world)
aktan s SHES .7 RABIRIC)

images/00700.jpg
== ImrpAhout. dpplivatiod ‘msorarf

[Synopsis]
Conditional Macro Implementation

[Description]
Macrolf (<expr>?nacroname_a| |argl] (:macronane bf |argl]])

Executes macro defined in <macroname a> if <expr> is true

(otheruise <nacroname b> if provided)

ad return walues as in application macrof)

Arguments.

images/00033.jpg
oo
exten

TRdS 4 1 ANENES)
1234,2,Wait (2)
exten => 1234,3, Play (hello-world)
exten => 1234,n,Wait (2)
exten => 1234 n, Hangup()

images/00032.jpg
b
exten

TGS 41 AOENSE L]
12340, Wait (2)
exten => 1234,n, Play (hello-world)
exten => 1234,n,Wait (2)
. S LAl el)

images/00035.jpg
exten
exten
exten

exten
exten
exten

exten
exten
exten

exten
exten
exten

exten
exten
T

105, 1, Answer ()
105, 2, Playback (hello-world)
105,3, Hangup ()

106,1, Answer ()
106,2, Playback (hello-world)
106, 3, Hangup ()

107,1, Answer ()
107,2, Playback (hello-world)
107, 3, Hangup ()

108,1, Answer ()
108,2, Playback (hello-world)
108, 3, Hangup ()

109, 1, Answer ()
109, 2, Playback (hello-world)
109, 3, Hangup ()

images/00034.jpg
Taenezniy.

twidgets]
exten
exten
exten

100,1,Answer ()
100,2, Playback (hello-uorld)
100, 3, Hangup ()

exten
exten
exten

101,1, Answer ()
101,2, Playback (hello-world)
101, 3, Hangup ()

exten => 102,1, Answer ()
exten => 102,2, Playback (hello-world)
exten => 1023, Hangup ()

exten
exten
exten

103,1, Answer ()
103,2, Playback (hello-world)
103, 3, Hangup ()

exten => 104,1,Answer ()
exten => 104,32, Playback (hello-world)
exten => 1043, Hanopl}

images/00026.jpg
Fokhex]

[my-phones]
exten => 2000,1,Dial(SIP/2000,20)
exten => 2000,2,VoiceMail(2000,u)

exten => 2001,1,Dial(SIP/2001,20)
exten => 2001,2,Voiceail(2001,u)

exten => 2999,1,VoicelailMain (§(CALLERID (num)), s)
exten =» _X.,1,Dial(SIP/$(EXTEN)@ext-sip-account)

[fron-voip-provider]
exten => 17984512232,1,Dial (SIP/2000)

images/01268.jpg
P B SiaL, PLRNY RLCl . QD8RI L0 O
sxten => 123,1,Set (a=$ (SET (b=§ (SET (c=5{SET(d=8)1})))}

; Tn the interest of readability and comprehension, it is
- adaal dar BAbLer: bo wiite-one of two dore: Iines

images/00025.jpg
Fokhex]

[my-phones]

exten => 2000,1,Dial(SIP/2000,20)
exten => 2000,2,VoiceMail(2000,u)
exten => 2001,1,Dial(SIP/2001,20)
exten => 2001,2,VoiceMail(2001,u)

exten => 2999,1,VoicelailMain($ (CALLERID (num)), s)

exten => _X.,1,Dial (SIP/$(EXTEN)@ext-sip-account)

images/01270.jpg
“EIERT SACRE TUnCeaon SREEN

[syntax]
SET (varnane > =(<value >1)

[synopsis]
SET assigns a value to a channel variable

[pescription]
i ey e

images/00027.jpg
Fokhex]
[my-phones]

exten => 2000,1,Dial(SIP/2000,20)
exten => 2000,2,VoiceMail(2000,u)

exten => 2001,1,Dial(SIP/2001,20)
exten => 2001,2,Voiceail(2001,u)

exten => 2999,1,VoicelailMain (§(CALLERID (num)), s)
exten =» _0[1-9].,1,Dial (SIP/$ (EXTEN)@ext-sip-account)
[fron-voip-provider]

exten => 17984512232,1,Dial(SIP/2000,20)
exten => 17984512232,2,VoiceMail (2000,u)

images/01269.jpg
-] 1.4 |-

images/01276.jpg
[syntax]

STECHANTNFO (item)

[synopsis]

= TG SOUE Tenctlon RIECHARTRIG

Gets the specified SIP parameter from the current channel

[Description]
valid items are:
- peerip

- recvip

- from

- useragent

- peernane

- t38passthrough

The
he
The
The
The
he

1 i€ 138 is offered or enabled in this

IF address of the peer.
source TP address of the peer.
URT from the From: header.
URI from the Contact: header.
useragent .

name of the peer

s Tp iy

channel,

images/01275.jpg

images/01277.jpg
S ETR R

r++ in Asterisk 1.4
6 14,3 +14,4 68

uri
useragent
peernane
t38passthrough

The URI from the Contact: header.
The useragent.

The name of the peer.

1 if 138 is offered or enabled in this channel,
BUPTA Ol S

images/01272.jpg
1.6 |

images/01271.jpg
K SSACHERCE OO BN MOOM 5. TSR0 WOE Ty
dxten =5 1331 et (shalhash=3{SHAT (He116: Wordd))]

images/01274.jpg
SR A e M e el D it
oxten => 123,1,Set {foo=4 (STPCHANINFO (peername])

images/01273.jpg
XNRLD ROURPTIONCUADE TEAL

(syncax]
sHAL (<data >)

Synopsis]
computes a SHAL digest

(pescription]
Generate a SHAL digest via the SHAl algorythm.

Example: Set (shalhash=$(SHAL (junky]})

Sets the asterisk variable shalhash to the string
{60£a567559303eb62£99a0Cd4T £9£5637A16£9a0"

which is known as his hash.

images/00018.jpg
hqenexaly
format = wav

[default]
4711,J0e Bloggs, jbloggs@example. com
0815, Daisy Duke,daisy.dukedbazzard.com

images/00020.jpg
(general)
port=5060
bindaddr=0.0.0.0

(101
type=friend
secret=1234
host=dynanic
context=internal ; <-- context

(11
type=friend
secret=1234
host=dynanic
EEREARESARERIBAT 4 iov BEMERE

images/00019.jpg
[default]

exten

exten =

exten

exten
exten

exten
exten

—

1001, 1, Answer ()
1001, 2, Playback (hello-world)
1001, 3, Hangup ()

2000,1,Dial(STP/2000,20)
2000, 2, VoiceMail(2000,u)

2001,1,Dial (SIP/2001,20)
2001, 2, VoiceMail(2001,u)

2999, 1, VoiceMailMain ($ (CALLERID (num)), s)

images/00022.jpg
Igenexall
port=5060
bindaddr=0.0.0.0
context=abc ; <

context

(101
type=friend
secret=1234
host=dynanic

(11]
type=friend

secret=1234
host=dynamic

(12]
type=friend
secret=1234
host=dynamic

1201
typestriend
secret=1234
host=dynanic
context=visitor ; <
averrides the @efault context in the [genaral] section.

this device-specific context

images/00021.jpg
(general)
port=5060
bindaddr=0.0.0.0
context=internal

1101
type=friend
secret=1234

host=dynanic

(11
type=friend
secret=1234

host=dynamic

context

images/00024.jpg
Igenerall
port = 5060

bindaddr = 0.0.0.0
context = other

register => 17984512232:UDZIDeny-voip-provider.con/17984512232

user password provider user

12000)
type=friend
context=my-phones
secret=1234
host=dynamic

12001)
type=friend
context=ny-phones
secret=1234
host=dynanic

[ext-sip-account]
type=friend
context=from-voip-provider
username=17984512232
fromuser=17984512232
secret=UHDZID
host=ny-voip-provider.com
fromdomain=my-voip-provider. com
qualify=yes

insecure=port, invite

nat=yes

images/00023.jpg
[default]
exten => 1001,1,Answer ()
exten => 1001,2, Playback (hello-world)
exten => 1001,3,Hangup()

[building-mgr]
exten => 2000,1,Dial(SIP/2000,20)
exten => 2000,2,Voicelail (2000,u)

exten => 2001,1,Dial(SIP/2001)
exten => 2001,2,VoiceMail (2001,u)

tapple-pie]
exten => 2999, 1,VoiceMailMain($(CALLERID (num)),s)

images/00015.jpg
laatanlt)
Extension 1001 is used for testing
; of all phones.

exten
exten

1001,1,Answer () ; answering.
1001, 2, Playback (hello-world)
1001, 3, Hangup(} ; hanging up,

exten

Extension 2000 calls SIP telephone
2000.

2000,1,Dial (SIP/2000)

images/01279.jpg

images/00014.jpg
(default]
exten
exten =
exten

1001, 1, Answer ()
1001, 2, Playback (hello-wor1d)
1001, 3, Hangup ()

exten = 2000,1,Dial(SIP/2000)

images/01278.jpg
B I (o gt
cxten => 123,1,Set (sip_ip=$ (STPPEER (200
; the preferred codec of the peer:

123,10, Set {#p, ip=£ [STPPEER 12001, codecl0})]]

1y

images/00017.jpg
(default]

1001, 1, Answer ()

1001, 2, Playback {hello-world)
1001, 3, Hangup ()

2000,1,Dial (SIP/2000)
2001,1,Dial (SIP/2001)

images/01281.jpg
B o
r++ in Asterisk 1.4

e 1,7 +1,7 ea

-= Info about function 'STPPEER:

(syntax]
- SIPPEER (<peernane>[:iten])
+ SIPPEER(<peername>||iten])

(Synopsis]
Bl e N e

images/00016.jpg
Igenexall

120001
type=friend
secret=1234
host=dynanic

12001)

images/01280.jpg
[syntax]

S MRDSOSRE LRG| SIEREER Y

STPPEER (<pesrname> (|iten])

[synopsis]

Gets STP paer information

[pescription]

valid items are:

- ip (default)
- mailbox

- context

- expire

- aynanic

- callerid_name
- callerid_mum
- codecs

- status

- regexten

- limic

- curcalls

- language
- accountcoda
- useragent

- codec(x]

The TP address.

The configured
The configured
The epoch time
Ts it dynamic?
The configured
The configured
The configured

mailbox,
context.

of the next expire.
(yes/no)

Caller ID name.
Caller ID number.
codacs

Status (if qualify=yes)
Registration extension
Call limit (call-limit)

Current amount.
only available

of calls
if call-linit is set

Default language for peer
Account code for this peer
Current user agent id for peer

Preferred codec index number

s —

(beginning

images/01287.jpg
il gLk

exten
123,1, Set {foo=5 (SORT (four:4 | half: 5| hundred: 100 |pi:3.14 | e:2.71628 |mimusone: ~1)))

foo is now *minusone,half,e,pi, four, hundred®

images/01286.jpg
20 EBCEr BRL

rr+ in Asterisk 1.4

o0

“1,10 +1,12 @0
-= Info about function 'STP_MEADER' =-

(syncax]

S18_HEADER (<name>)

S1E_HEADER(<nane> [, <number>])

(synopsis]
Gets the specified S1e header

[pescription]
Not available

Since there are several headers (such as Via) which can cccur multiple
times, STP_HEADER takes an optional second argument to specify which
R o S A O Sl DD RS e N N et T

images/01283.jpg
ISy Lhe Tor HaNOEL 2
exten => 123,1,Set (v
oxten => 1232 Set {DN-

{5TE_HEADER (T0) :51)
fCUT (DN.@, 1)1}

images/01282.jpg
13

o0

-1,7 41,7 ee

AL CASLEE LB 168
r++ in Asterisk 1.6

~= Info about function 'STPPEER' =-

(syntax]

STPPEER (<peernane> (| ften] |
STPPEER (<peernane(, iten])

[synopsis]

Gats SIP peer information

9,19 +9,24 68
{pescription]

Valid items are:

-ip (default)
- port

- mailbox

- context

- expire

- dynamic

- callerid name
- callerid_nun
- callgroup

- pickupgroup
- codecs,

- status

- regexten

- linit

- busylevel

- curcalls

- language
- accountcode
- useragent

- chanvar (name]

- codec(x]

The TP address.
The port number

The configured mailbox.

The configured context.

The epoch time of the next expire.

Is it dynamic? (yes/mo}

The configured Caller ID name.

The configured Caller TD number

The configured Callgroup.

The configured Pickupgroup

The configured codecs.

status (if qualify=yes)

Registration extension

call limit (call-limit)

Configured call level for signaling busy
Current amount of calls

Only available if call-limit is set

Default language for peer

Account code for this peer

Current user agent id for peer

A channel variable configured with setvar for
this peer.

Prefarred codec index number
with zero).

(beginning

images/01285.jpg
o about. Tungtlon [SIP_HERGRK"

[syntax]
SIP_HEADER (<name> [, <number>1}

[synopsis]
Gets the specified SIP header

{bescription]
since there are several headers (such as Via) which can occur multiple
tines, STP_WEADER takes an optional second argument to specify which
R e e e ™ e g s i T e s S

images/01284.jpg

images/01247.jpg

images/01246.jpg
§-EUNDEE . OF Mgenta.
exten => 123.1.Set(foo:

ERpEIDIN BRI
{ OUEUEAGENTCOUNT (subportaueue) })

images/00049.jpg
Laplaa]
= _12%.,1,No0p{12x)

exten
exten
exten

exten

> 12345, 1, No0p (12345)
> 1234.,1,N00p(1234.)

o iRinaed

images/00048.jpg
*CLI> diglplan show 123440
[Context ‘sales’ created by 'phi_config’]
1234, = 1. NoOp(1234.) () [pbx_config]
azx. 1. NoOp(12K} () [pbx_config]

2 extensions (2 priorities) in 1 context.
—

images/00051.jpg
SCLI> Show Alalplan 1134 GNealn
[Context 'sales’ created by 'pbx_config’]

s 1. NoOp(Bingo) () [pbx_conig]
12380 = 1. NoOp(1234.}() (pbx_config]
Tizx. 1. Noop{12x) () [pbx_config]

3 extensions (3 priorities) in 1 context.
sy

images/00050.jpg
*CLI> diylplan show 133458enlas
[Context 'sales’ created by 'pbx_config’]

‘12340 1. Noop(1234.)() [pbx_contig]
T1ax. 1. NoOp(12%) () [pbx_config]
’ 1. Noop(Bingo) () [pbx_contig]

3 extensions (3 priorities) in 1 context
OrT>

images/00053.jpg
“CLL> dislglen ENow 12MA6Eualen
[Context 'sales’ created by 'pbx_config’ |

‘1234, 1. NoOp(1234.1() [pbx_config)
Tazmer = 1. NoOp(12X} () [pbx_config)
X 1. NoOp{Bingo} (1 [pbx_contig]

3 extensions

(3 priorities)
LT

in 1 context

images/00052.jpg
lsales]

exten
exten
exten

axten

=> _12X.,1,N00p{12X}
> 12345, 1, No0p (12345)
> 1234.,1,N00p(1234.)

e 3 MO g

images/00055.jpg
iawaerall

[sales]
include => internal
include => external

linternal]
exten => 2000,1,Dial {STP/2000)

[external]
exten => 17005551212, 1,Dial (SIP/5551212)

images/00054.jpg
Igqenexal]

(sales]
include
include => external

internal

linternal]
exten => 2000,1,Dial (STP/2000)

[external]
exten => 17005551212,1,Dial (SIP/5551212)

images/00057.jpg
taenerall

[sales]
include
include

internal
external

exten => 2000,1, Answer ()
exten => 2000,2, Playback (hello-world)
exten => 2000, 3, Hangup()

[internal]
exten => 2000,1,Dial (STP/2000)

[external]
exten => 17005551212, 1,Dial (SIP/5551212)

images/00056.jpg
SCIL> dimiplan, Ko 200NNl
[Included context 'internal’ created by ‘pbx_config’]
20000 => 1. pial(s1p/2000) {pbx_config]

1 extension (1 priority) in 1 context.
SCExs

images/00047.jpg
*CLI> dialplan show 123450sales
[Context 'sales’ created by 'pbx_config’ |

‘12345 1. NoOp(12345)) [pbx_config)
‘1238, 1. NoOp(1234.1() [pbx_contig])
azx 1. NoOp(12K}() [pbx_contig]

3 extensions (3 priorities) in 1 context.
R

images/01248.jpg
I AHoND TWIDGIO RN TN

Isyntax]
QUEUEAGENTCOUNT (<queuename »)

Isynopsis]
Count number of agents answering a queue

Ipescription]
Returns the nusber of members currently associated with the specified
quee .

This function is deprecated. You should use QUEUE_MEMBER_COUNT()
Pt

images/01254.jpg
AeBgentelh TSUPPOEtQUeten
xten => 123,1, Set (£o0=$ (QUEVE_MEMBER_LIST(supportqueue)})
Returns, for example, 5 8,33

images/01253.jpg
ARGt el
v+ in Asterisk 1.6
06 5,3 +8,5 a8

[Description]
Returns the number of members currently associated with the specified

sueus.

+ This function has been deprecated in favor of the QUEUE_MEMBER

N

images/01256.jpg
SHED HDOUL SHIGLAoN NS NIRRT

[syntax]
QUEUE_MEMBER_LIST (<queuename >]

[synopsis]
Returns a list of interfaces on a queue

[pescription]

Returns a comma-separated list of members associated with the specified
iy

images/01255.jpg
1 1.6 |

images/01250.jpg
& NUber= 0k MEWORrs: 30, SuHper uquene”.
Srran x5-137.1 Bat L os<S {OUBIE NENSRER DOUNT | SMODS Tt iEa]})

images/01249.jpg
A=A eraA R,

v+ in Asterisk 1.

00 7,4 +7,5 @@
Count number of agents answering a gueue

i
4

[Description]
- Not available

+ Returns the number of members currently associated with the
specified queue.

¢ This function is deprecated. You should use QUEUE MEMBER COUNT()
G,

images/01252.jpg
JHLO SOOUUTSIICLA0D N SUR. RO

(syntax]
QUEUF,_MEMBER_COUNT (<queuenane >]

(synopsis]
Count number of members answering a queue

[pescription]
Returns the number of members currently associated with the specified

Siiaaa.

images/01251.jpg
1.6 |

images/01257.jpg
§ ILOGVEE] 18 SRTHE "AEvar gk =Thies
exten => 123,1,Set (£00=5 (QUOTE (§ (var}) }!
5 rapurns >»ike. \ "Asrerigk\ PRI

images/00038.jpg
SCLE> dimiplun Moo
[Context 'default’ created by 'pbx_config’]

[Context 'my-phones’ created by 'pbx_config’]

230 1. Answer() [pbx_config]
2. Playback (hello-world) [pbx_contig)
3. Hangup() [sbx_config)

[Context 'parkedcalls’ created by 'res_features’]
700" 1. park() [res_features)

2 extensions (4 priorities) in 3 contexts.
el

images/00040.jpg
*CLI> ddaiplen. show 28er-phonas.
There is no existence of 256my-phones extension
RS

images/00039.jpg
*CELy MIRIplen dhow dyr-phces
[Context ‘my-phones’ created by 'pbx_config’]

230 1. Answer() [pbx_contig]
2. Playback (hello-world) [pbx_config]
3. Hangup() [pbx_contig]

1 extension (3 priorities) in 1 context.
wpeti

images/00042.jpg
[Context 'my-phones’ created by 'pbx_config’
23 1. answer()

1

[obsc_con€ig]
2. Playback(hello-world) (pbx_config]
3. Hangup() [pbx_config]

1 extension (3 priorities) in 1 context
I

images/00041.jpg
*CLI> dialplan show 23@my-phones
[Context 'my-phones’ created by 'pbx_config’ |

230 1. answer() [pbx_config]
2. Playback (hello-world) [pbx_contig]
3. Hangup() [pbx_contig]

1 extension (3 priorities) in 1 context.
SorEs

images/00044.jpg
*CLI> diyiplsn show 23@

[Context 'department-q' created by 'phx_config!

2w =

1. Answer()
2. Playback (hello-world)
3. Hangup ()

{ Context 'my-phones’ created by /pbx_config’

an

2 extensions
R

1. answer()
2. Playback (hello-world)
3. Hangup()

(6 priorities) in 2 contexts.

i

1

[sbx_contig]
[pbx_contig]
[pbx_conEig]

[pbx_config]
[pbx_contig]
[pbx_config]

images/00043.jpg
tawaerall

[my-phones]
exten => 23,1,Answer ()
exten => 23,2, Playback (hello-world)
exten => 23,3, Hangup ()

[department-q]
exten => _2X,1,Answer ()
exten => 2,2, Playback (hello-world)
exten => _2X,3,Hangup()

images/00046.jpg
eneed 4
exten => _12X.,1,NoOp(12K)

exten => 12345,1,No0p (12345}
exten => _1234.,1,NoOp{1234.)

images/00045.jpg
*CLI> diyipian show 258
[Context 'department-q' created by ‘phx_config’ |

2w 1. answer() (pbx_contig)
2. Playback (hello-world) (pbx_config]
3. Hangup () (pbx_config]

1 extension (3 priorities) in 1 context.
PR

images/00037.jpg
[general]

[my-phones]
exten => 23,1, Ansver ()
exten => 23,2, Playback (hello-world)
b e S8 e (Y

images/00036.jpg
lgeneral]

[widgets]
exten => _10X,1,Answer ()
exten => _10X,2, Playback(hello-world)
exten => _10X.3,Hangup()

images/01259.jpg
IR0 RO THIORSON FRiEE?

{syncax]
QUOTE {<string>)

(synopsis]
Quotes a given string, escaping embedded quotes as necessary

[pescription]
Sy

images/01258.jpg

images/01265.jpg

images/01264.jpg
b TR O WEG 10, G SUXANE B DALCUAN. TS TERNLAL QN sup.on
*labc] [0-91":

exten =» 123,1,Set (Foo=$ (REGEX (" [abc] [0-3]* b3))) ; returns 1

; Test to see if S(str} ends in 0, for Asterisk 1.4:
exten => 123,1,5et (£00=5 (REGEX ("0§* ${str))})

in Asterisk 1.2, using the workaround described above
1231, Set (Foo=$ (REGEX (" 0% {dollar) * ${str}}})

s

images/01267.jpg
X EALCT IR Ld

rr+ in Asterisk 1.4

o0

4.7 +4,10 88
REGEX (*<regular expression >* <data >)

(synopsis)

Regular Expression: Returns 1 if data matches regular exprassion.
Regular Expression

[Description]
ot available

Returns 1 if data matches regular exprassion, or 0 otherwise
Please note that the space following the double quotes separating

the regex from the data is optional and if present, is skipped. If a
space is desired at the beginning of the data, then put two spaces
Fhards the Astond will nok be-skippad.

images/01266.jpg
850 shoubTaunctaeg | RBEGEC

(syntax]
REGEX {*<regular expression >' <data >)

synopsis]
Regular Expression

[pescription]
Returns 1 Lf data matches regular expression, or 0 otherwise

Please note that the space following the double quotes separating the
regex from the data is optional and if present, is skipped. If a space
is desired at the beginning of the data, then put two spaces there;
the second will not be skipped.

images/01261.jpg

images/01260.jpg
TGRSR TR TR SUC TR T L S LS R
exten => 123,1,Set (coincidence=$ (RAND(1,10))]

Gane of chanc
oxten => 123,1,G0toIf ($${RAND(0,100) 1< 25) 7uon:last)

sxten => won,1,Playback (won)
exten => won,n,Goto(123,1)
exten => lost,1,Playback (lost]

dxan s 1B 4, BEEAIIZE A

images/01263.jpg
L ASLRTIAR 4 4
+++ in Asterisk 1.6

68 1,7 +1,7 60

- Info abour function ‘RAND'

[syatax]
- RAND([min) [max]}
+ RAND([min] {,max]}

(synopsis]

Choose a random number in a range
se 9,5 49,5 @8

[Description]

Choose a random number between min and max. Min defaults to 0, if not

specified, while max defaults to RAND MAX (2147483647 on many systens).
- Example: Set (junky=$(RAND(L[8)});
+ Example: Set(junky=S(RAND(L,8))};

gets junky to a random number between 1 and 8, inclusive.

images/01262.jpg
TP GNCUL TUNChIon SERRDT

[syntax]
RAND([min] { |max])

[synopsis]
Choose a random mumber in a range

[pescription]
Choose a random number between min and max. Min defaults to 0, if not
specified, while max defaults to RAND_MAX (2147483647 on many systens).
Example: Set (junky=$(RANDI(1|3)});
Bata duniey b0 a:random nuiber between 1 -and @y inciusive:

images/00069.jpg
linternational-sales]
include => internal-calls
include »> voicemail-sasy

Ishipping]
include => internal-calls
include => voicemail-casy

Iproduction]
include => internal-calls
include => voicenail-sasy

linternal-calls]
exten > _[1-5]XX,1,Dial (STB/$(EXTEN) , 60)
exten => _[1-5]XK, 2, VoiceMail (§ (EXTEN} ,u)

[voicenail-sasy]
 Users don’t have to enter their extension mumber
; when retrieving voicemail.

cxten => 800, 1,VoicemailMain(§(CALLERTD (num) })

Ivoicenail-normal]
; Prompts for a mailbox number.
tan = 8011 Yodsamniiaing]

images/00068.jpg
ingluce ' interng.~cells

include => volcenall-sasy
lit]

include => internal-calls
include => voicemail-easy

The TT department should be able to
; access all voicemail boxes for

; debugging purposes

include => voicemail-normal

Imanagement]
include => internal-calls
include => volcenall-easy

Ireception]
include «> internal-calls
include => voicenail-easy

[domestic-sales]
include => internal-calls
include => voicemail-easy

images/00071.jpg
fAnbErtimCa IR Y
_[1-51xx,1,Dial (S18/§ (EXTEN} 60)
Tr1S51XK. 2. VoiceMail (& {EXTEN} . u)

images/00070.jpg
PANEELIRUCL 1.
oxten => _1[5-61X,1,Dial (STP/$[SXTEN) , 60
oxten => 1[5-61X,2,VoiceMail (§ (EXTEN} , u

sxten =>
exten

2(0-61X,1,Dial (STP/$ (SXTEN) , 60}
[0-61X,2, VoiceNail ($ (=xTEN}, u)

excen

_(35812¢, 1, Dial (STB/$ (EXTEN} , 60)
Z(3581%, 2, VoiceMail (§ (EXTEN) ,u)

exten => _4[0-41%,1,Dial (STP/${EXTEN} , 60
IS et denri b pamnosiiigg

images/00073.jpg
exten => 1001, I, Anawer(}
exten => 1001,n, Playback (hello-world]
exten => 1001,n, Hargup()

images/00072.jpg
Hapneall
forna = gsm

serveremail = voicemailewidgets.com
maxnessage = 600

[local]
150 => 999999, B0b Boilerman, buildingewidgets . con
200 =» 999999, Charles Crucial,charles.crucialewidgets.con
201 => 999999, John Swart, john. swartewidgets. con

v Hoomis- theremaining aaticky: oy homity

images/00075.jpg
1002, Y. 56t (Favorileanimal = “Tigerh)

St = U0 1t Bar (FAVEEL Ceminisar-= 231

images/00074.jpg
MEEAE = EU0L, T NN L
exten => 1001,2, Playback (hello-world)
exten => 1001,3,Hangup(}

images/00077.jpg
exten
e

2004, 1, baf IRERURRBLEAUYWHESR = .23.9)
1004, n, NoOp { $ { READABLEANYWHERE})

images/00076.jpg
exten:
it

SEENDL L RO e FETOLS.T OO IR L
1003, n, NoOp{${Favori tenumber} }

images/00058.jpg
SCLT> dimiplan Koo 20088aules
[Context 'sales’ created by 'pbx_config’]

2000 => 1. answer () (pbx_config]
2. Playback (hello-world) (pbx_contig]
3. Hangup() [pbx_contig]

[Included context ‘internal’ created by ‘pbx_config’]

20000 => 1. pial(sTP/2000) (pbx_contig)

2 extensions (4 priorities) in 2 conmtexts. =-
g

images/00060.jpg
Number Range
911

150-159
160-169
200229

230269

300-349

350-399
400449
500-599

800-899

Description
Emergency number

Building manager
3
Management

Reception

Domestic sales

International sales.
Shipping
Production

Internal services

Explanation
Emergency numbers should be abso-
utely intuitiv. In the case of fire o seri-
ous injury, no employee should have to
think twice about what number to dial.
The buiding manager s responsible for
all building operations.

The IT department is responsible for
computer and network operations.

The executive ofices have 2xx
extensions.

Because reception willbe feding cals
mosty to management,they have
numbers in the range 230 to 269.
Numbers from 270 to 299 are kept
Sales gets the entire 3xx number block,
to ensure adequate reserve i case of
expansion. The first 50 numbers are
alocated to domestic sales

The second 50 numbersare allocated to
international sales.

The st half o the 4xx number block is
allocated to shipping.

Production s the largest department
and gets the entire 5xx block.

Special serices and nonstandard
extensions (e.g, voicemail o
teleconferencing).

2.9-1-1 s the universal emergency number for the North American Numbering Plan (NANP). I you are configuring sys
s for an ntemnaional businss, you may want to consider adding 9-9:9 and 1-1-2, s well, because these are standard
i rnsscs ciites o6 ok it IRt siod GOkl B T taks

images/00059.jpg
3

include => cpen|09:00-21:00 |mon-£xi ||+
include => open|09:00-18:00|sat ||+
include => closed

fopen]
exten => 2000,1,Dial (SIP/2000)

[closea)
exten => 2000,1,VoiceMail(2000,u)

images/00062.jpg
LYBISER L
port = 5060
bindaddr = 0.0.0.0
context = other

Building Manager

1150] ; normal office phone
contextebuilding nor

secret=1234

callerid="Building Nanager" <150»
type=triend

host=dynamic

[151] ; cordless phone
context=building-mar

secret=1234

callerid="Building Manager" <150>
typenfriend

host=aynanic

Internal IT department

[161] ; Tech 1
context=it
secrets1234
type=triend
host=aynamic

[162] ; Tech 2
contexteit
secret=1234
type-triend
S ST

images/00061.jpg
= Simultaneous Connections Endpoints
1.06Hz 15 o
1.5GHz “ 100
2.0GHz 80 200

images/00064.jpg
Domestic sales

[301] ; Account Agent 1
context=domestic-sales
secrets1234
type=triend
host=aynamic

1302] ; Account Agent 2
contextedomestic-sales
secret=1234
typestriend
host=aynanic

[303] ; Account Agent 3
context=domestic-sales

secrets1234
riend
host=aynamic

1304] ; Account Agent 4
contextsdonestic-sales
secret=1234

1305] ; Account Agent 5
context=domestic-sales
secrets1234
type=triend
host=dynamic

images/00063.jpg
[165] ; Cordless phone
context=it
secrets1234

typentriend
host=aynanic

Executive offlces

1201) ; wanager 1
contextemanagement
secret=1234
type=triend
host=aynamic

1202] ; wanager 2
contextsmanagement
secret=123
type=triend
host=aynanic

+ Reception

1231] ; Assistant 1
context=reception
secret=1234
typemtriend
hosc=aynanic

1232] ; Rssistant 2
context=reception
secret=1234
type=triend
hostdynanic

1233] ; Assistant 3
context=reception
secret=1234
type-Eriend
batsdmamdio:

images/00066.jpg
i Shipping

1401] ; Shipping Agent 1
context-shipping
secret=1234

 The remaining 9 entries for shipping
 are omitted here for the sake of brevity

; Production

1501] ; Assembly line 1
context=production
sacrat=1234
type=friend
nost=dynamic

 The remaining 49 entries for production
ety B i R e R S R e

images/00065.jpg
[306] ; Account Agent &
contextedomestic-sales
secret=1234
type=triend
host=aynanic

Tnternational Sales

[351] ; Account Agent 1
context=international-sales
secret=1234

type=triend
host=dynamic
[352] ; Account Agent 2

context=international-sales
secret=1234

type=triend

hos t=dynanic

[353] ; Account Agent 3
context=international-sales
secret=1234
type=triend
host=dynamic

1354] ; Account Agent 4
context=international-sales
secret=1234
type=triend
hos tadynamic

images/00067.jpg
-grher]

A]

images/00089.jpg
Rcten “=> 1234, 1,96t [_CAKE="MErUle, cake™)
exten => 1234,n,Set (CAKE="Marble cake"

images/00088.jpg
¥ &ar

; set
exten

; set
exten

& global variables
=> 10,1, Set (RINGTTHE=9D, 5}

a local channel variable:
=> 10,2, Set (FAVORITEFRUT:

‘Applet)

two channel variables at once:
=> 10,3, et (VARI=10, VARZ=23]

; Print variables to the CLT

exten
excten
axter

10,4, NoOp (RINGTIME = §(RINGTINE))
10,5, No0p [FAVORTTEFRUTT = §(FAVORTTEFRUTT})
10, 6,N00p (VARL = S(VARL})
10,7.NoOp (VAR = $(VAR2})

images/00091.jpg
xran <o _JX., 1,585 (ARBRCODE=5TRXTEN 2 (31
exten => 9X..n,Set (LOCALNUMBER=$ { EXTEN:5})

images/00090.jpg
extan => 1234, 1, NoOp(3{__CAKE])
exten => 123d.n,NoOp{${CAKE})

images/00093.jpg
{department-b]
exten => _1XX,1,Dial ($(EXTEN))

1,1,N00p (An invalid nunber ${TNVALTD_EXTEN) was dialed.)
exten => i,2,Answer (]

exten => 1,3, layback (invalid]

aarbR. . s RERGHOGT

exten

images/00092.jpg
[global]
CONNECTIONS=0

(£rom-internal]

xten => _X.,1,Set (CONNECTIONS=5[${CONNECTIONS} + 11|g!
oxten => _X.,2,Dial (STP/${EKTEN]]

-

h, 1, Set (CONNECTION

[$(CONNECTIONS) - 1]|g)

images/00095.jpg
Bxbon =29, 1, Augwdr ()
exten => 20,2, Set (TTMEOUT (absolute) =120}
exten => 20,3, Playback (hello-world)
exten => 20,4, Wait (1)

exten => 20,5,G0t0(3)

exten => T,1,Wait(1)

exten => T,2,Playback (thank-you-for-calling)
exten => T,3,Wait(1)
SR s W AR

images/00094.jpg
a1

exten
exten

excen
xten

—

=> 10,1, Answer ()

=> 10,1, Background (narryme] i "marry me? ress 1 for
yes, 2 for no."

1,1, Blayback (thank-you-cooperation) ; 1

1,0, Hangup ()

“Thank you.

*Hang up and try
again. "

=> 2,1, Playback (hangup-try-again) 5

=> 2,n,Hangup ()

gt o) v oas Sewaten Bsosie

images/00097.jpg
INRczH=ancandng]
exten => s,1,Dial (STP/$(MACRO_EXTEN}, 10}
exten => s.n,VoiceMail (§(MACRO EXTEN})

images/00096.jpg
exten
exten

By 3, Aciomar [}
5.2,Wait(1)
exten => 5,3, Play (ct-monkeys]
exten => s,4,Wait (1)
exten => s,5,Hangup()

images/00078.jpg
HETRTL
Siten

L0051 SNL (REAIINAUREREIALY = -4l
> 1005, n,NoOp {$ { READABLEHEREONLY})

images/00080.jpg
exten

1008, 1;Angwer |).
1008,n,Got0 (1009, Ping)

exten
excen
exten

1009, 1 (ping) , Playback (hello-world)
1009,n, Wit (2)
1009,n,60t0(1010, 2ong)

exten => 1010,1(Fong) , Playback (tt-weasels)
exten => 1010,n,Wait (2)
exten => 1010,n,Goto (1009, Ping)

images/00079.jpg
axtan
-

el e e i 0
1007, n(Start) Wait (1)

1007, 0, Playback (hello-world]
1007.n,Goto (Start)

images/00082.jpg
octen w4013, L, Anewar |)
exten = 1013,n,Set (i=1)

exten => 1013,n,While($(§{i) < 10])
exten => 1013, n, SayNumber (§{i})
exten => 1013,n,Wait (1)

exten = 1013,n,Set(i=§[§{i) + 11}
exten => 1013,n,EndWhile()
Sktan ov 1019 5 AERRIRLT

images/00081.jpg
(hal

exten => 1011,1,Answer ()

> 1011,n, Playback (hello-world)
exten => 1011,n,Goto(sales, 1012,1}
(sales]

exten => 1012, 1, Playback (hello-world]
exten => 1012,n,Hangup()

images/00084.jpg
exten
exten

1913, 1, SoEub (cig-pat}
1015,n, Dial (STR/§ (EXTEN))

exten => 1015,n(cid-set] ,Set (CALLERTD(all)=Widgets Inc <8005551212>)
Exten =5 1015 .5 Returnl)

images/00083.jpg
exton =>-1014. 1, Anewer(}
exten => 1014,n,Set (Favoritestation = 0815)
exten => 1014,n,No0p(Check to see if §(Favoritestation) is calling.)

exten => 1014,n,GotoTf (§[$(CALLERID (num) = §[Favoritestation}] ?yes,no)

exten
exten

1014,n(yes) , Playback (hello-world)
1014, n, Hangup)

exten => 1014,n(no} , Playback (tt-monkeys)
exten => 1014,n, Hangup!}

images/00086.jpg
OALHn 3o 1430, 1 SaL (FRUIT=ADPAE)
exten => 1234,2,Set (FRUIT="Apple*)

images/00085.jpg
Bxbon, =100, 10144 (BIDL1N0)
exten => 101,1,Dial (STF/101)
exten => 102,1,Dial (STP/102)
exten => 103,1,Dial (SIP/103)
exten => 104,1,Dial (SIB/104)
exten => 105,1,Dial (STF/105)
exten => 106,1,Dial (STP/106)

exten => 107,1,Dial (SIP/107)
exten => 108,1,Dial (STF/108)
exten => 109,1,Dial (SIP/109)

images/00087.jpg
L3, st iotd

[globals]
RINGTIM]

0

[fron-internal]
exten => _XXX,1,Dial (SI8/${EXTEN}, § (RINGTTME}
exten => _XXX.n,VoiceMail (§{EXTEN})

images/00394.jpg
- ‘minimumWordLength’is the minimum duration of Voice to considered as
- betweenWordssilence’ is the minimum duration of silence after a word
to

consider the audio that follows as a new word.

- ‘maximumNunberOffiords‘is the maximum number of words in the greeting
If exceeded then MACHINE.
- silenceThreshold’ is the silence threshold
This application sets the following channel variable upon completion:
AMDSTATUS - This is the status of the answering machine detection.
Fossible values are:
MACHTNE | HUMAN | NOTSURE | HANGUP
AWDCAUSE - Tndicates the cause that led to the conclusion.
Possible values are
TOOLONG-<#8%%4. total_time>
INITIALSTLENCE-<83383 silenceDuration>-<$8%8d
initialsilences
HUMAN-<33%33 silenceDuracions-<3%%8d afterGreetingSilences
MAXWORDS-<8¥88d wordsCount>-<#¥8d maximumNumberofWords>
LONGGREETING-<$$$8d voiceDuration>-<$$88d areetings>

images/00393.jpg
-EIER

I S DO

{synopsis]
Attempts to detect answering machines

(pescription)
2D {{initialeilence] [|gresting] [|aftartreet ingsilence] [|totalanalysisTine]
{|mininumordLength] [| batweentiordssiLence] [|raxinuniunberofiords |
{[silenceThreshold])
This application attempts to detect answering machines at the
beginning
of cutbound calls. Simply call this application after the call
has been answered (outbound only, of course]
When loaded, AMD reads and.conf and uses the parameters specified as
Gefault values. Those default values get overwritten when calling AMD
with paraneters
- ‘initialSilence’ is the maximun silence duration before the gresting
%
exceadsd then MACHINE
- ‘greeting’ is the maximun length Of a greeting. If exceeded then
MACHINE.
- ‘afterGrestingsilence’ is the silence after dstect
T£ exceeded then HUMAN.
- ‘totalanalysistine’ is the maximum time allowed for the algorithn to
secide
B e

g a greeting

images/00396.jpg
@@ -26,7 +26,8 @@
- ‘maxinumiunberofiiords’is the maximum number of words in the
gresting
TE exceeded then MACHINE.
- silenceThreshold’ is the silence threshold.
- his application secs the following channel variable upon
completior
+ - 'maximumdordlength’ is the maximun duration of a word to accept.
If axceeded then MACKINE
+ This application set
completion:
ANDSTATUS - This is the status of the answering machine
detection.

the following channel variables upon

Possible values are:
MACHINE | HUMAN | NOTSURE | HANGUE
ee -37,3 +38,4 @&
HOMAN-<8433d silenceDuration>-
<$833d afterGreetingSilences
MAXWORDS- <#83%d wordsCount>-
<8833 maximunNunberofords>
LONGGREETING-<§338d voiceDuration>-<3384d
~ SR e i RN 1 SV S,

images/00395.jpg
TR B R ok
+++ in Asterisk 1.6
¢8 -4.9 +4,9 00

Actempts to detect answering machines

{bescription]
- aMD{(initialSilence]||grecting](|al
{| toralanalysisrine]

- [[minimumwordLength] [[betweeniordssilence]

{ | max imumumberofords]

- {|silenceThresholdl}

+ AMD([initialSilence], greeting], (afterGreetingSilence],
[totalanalysisTine]

rGreetingsilence]

. . [mininunWordLength) , (betweenWords$ilence] ,
[maximumNunber0fuords]
. . [silenceThreshold] , [|maximumiordLength] |

This application attempts to detect answering machines at the
beginning
of outbound calls. simply call this application after the call
has been answered (outbound only., of course).

images/00390.jpg
nitialSilencel,greetingl, afterGreetingSilencel, totalAnalysisTimel
minhordiength[, betweeniordssilence |, naxtunberofWords , silencethreshold]] 1]
1111)

images/00389.jpg
in Asterisk 1.2
~++ in Asterisk 1.4

0 -1,7 +1,7 80

-= Info about application ‘AlarmRecsiver’ =-

[synopsis]

- Provide support for receving alarm reports from a burglar or fire
alarn panel

- Provide support for receiving alarm reports from a burglar or fire
alarn panel

[pescription]
AlarmRecelvar(): Only 1 signalling format is supported at this

PRI B

images/00392.jpg

images/00391.jpg
7 This extension is called through a .call file:

exten =
exten
exten
exten
Eibe, .

10,1,a00()
10,1, Goto [Status-$ (AMDSTATUS))

10,7 (Status-KUMAN) , Playback (nessage)
10, Hangup ()

10,1 (Status-MACHINE) , Hangup ()

10,1 (Status-NOTSURE) , Hangup ()

10, n (Status-HANGUP} , Hangup (|

images/00397.jpg
MECAR “wck- 005 1 (NRMRE L)
exten => 123,n,Wait (1)
exten => 123,n, Playback (hello)

by Tk A Ranmerid

images/00388.jpg
A BROGE ARG BN
{synopsis]
Provide support for receiving alam reports from a burglar or fire alarm panel

{pescription]
AlarmReceiver () : Only 1 signalling format is supported at this time:

Adenco

Contact ID. This application should be called whenever there is an

2larm

panel calling in to dump its events. The application will handshake

with the

alarm panel, and receive events, validate them, handshake them,

store them

until the panel hangs up. Once the panel hangs up, the application will

run the

system connand specified by the eventemd setting in alarmreceiver.cont

and pipe

the events to the standard input of the application. The c

file also

contains settings for DTMF timing, and for the loudness of the

acknowledgement

e

nfiguration

images/00383.jpg
in Asterisk 1.2
+++ in Asterisk 1.4
80 -9,9 +9,16 @@
written in any language to control a telephony channel, play audio,
read DTMF digits, etc. by communicating with the AGT protocol on
stdin
and stdout.
- Returns -1 on hangup (except for DeadGT) or if application
requested
hangup, or 0 on non-hangup exit.
- Using ‘EAGI' provides enhanced AGL, with incoming audio available
out of band
+ This channel will stop dialplan execution on hangup inside of this
+ application, except when using DeadASI. Otherwise, dialplan
execution
+ will continue normally.
+ A locally executsd AGI script will receive SIGHUP on hangup from
the channel
+ except when using DeadAGI. This can be disabled by setting the
AGTSTGHUP channel
+ variable to "no* before executing the AGI application.
+ Using 'EAGI’ provides emhanced AGI, with inconing audio availa
out of band
on file descriptor 3

- Use the CLI command 'show agi’ to list available agi commands
+ Use the CLT command ‘agi show' to list available agi comnands

+ This application sets the following channel variable upon
completion:

+ AGISTATUS The status of the attempt to the run the AGT
seript

¥ text string, one of SUCCESS | FATLURE | HANGUP

images/00382.jpg
THEEC" AOONE: SpRliLcaniun. SO

[Synopsis]
Executes an AGT compliant application

[bescription]

[B[Dead]AGT (conmand|args) : Executes an Asterisk Gateway Interface
compliant
crogram on a channel. AGI allows Asterisk to launch external prograns
weitten in any language to control a telephony channel, play audio,
read DTWF digits, etc. by communicating with the AGT protocol on stdin
and scdout.

This channel will stop dialplan execution on hangup inside of this
application, except when using DeadAGI. Otherwise, dialplan execution
will continue normally.

A locally executed AGI script will receive SIGHUE on hangup from the
channel
except when using DeadAGT. This can be disabled by secting the
AGISIGHUP channel
variable to -no- before executing the AGT application.

Using 'EAGI’ provides emhanced AGI, with incoming audio available ou
of band
on file descriptor 3

Use the CLI command ‘agi show' to list available agi comnands

This application sets the following channel variable upon completion

AGTSTATUS The status of the attempt to the run the AGT seript
text string, one of SUCCESS | FATLURE | HANGUP

images/00385.jpg
- except when using DeadAGI. This can be disabled by setting the
AGISIGHUP channel
- variable to "no* before executing the AGI application.
+ except when using DeadAGI. A fast AGI server will correspondingly
receive a
+ HANGUP in 00B data. Both of these signals may be disabled by setting
the
+ AGISIGHUP channel variable to "no* before executing the AGI
application.

Using 'EAGI’ provides enhanced AGI, with incoming audio available
out of band
- on file descriptor 3
+ on file descriptor 3.

- Use the CLI command ‘agi show’ to list available agi commands
+ Use the CLT command ‘agi show’ to list available agi commands.
This application sets the following channel variable upon

completion:

AGISTATUS The status of the attempt to the run the AGL
script
- text string, one of SUCCESS | FAILURE | HANGUP
. text string, one of
SUCCESS | FAILURE | NOTFOUND | HANGUP

images/00384.jpg
4N HELBEINE 1%
+++ in Asterisk 1.6
a@ -4,21 +4,22 @@

Executes an AGI compliant application

(Description)
- (5| Dead] AGI (command|args) : Executes an Asterisk Gateway Interface
compliant
- program on a channel. AGT allows Asterisk to launch external
programs
- written in any language to control a telephony channel, play audio,
- read DIMF digits, etc. by communicating with the AGT protocol on
stdin
- and stdout.
- This channel will stop dialplan execution on hangup inside of this
- application, except when using DeadAGI. Otherwise, dialplan
execution
- will continue normally.
+ [E|Dead]AGT (comnand, args) : Executes an Asterisk Gateway Interface
compliant
+ program on a channel. AGT allows Asterisk to launch external
prograns written
+ in any language to control a telephony channel, play audio, read
DTHF digits,
+ etc. by communicating with the AGI protocol on stdin and stdout.
+ As of 1.6.0, this channel will not stop dialplan execution on
hangup inside
+ of this application. Dialplan execution will continue normally, even
upon
+ hangup until the AGI application signals a desire to stop (either by
exiting
+ or, in the case of a net script, by closing the connection).

A locally executed AGI script will receive SIGHUP on hangup from

the channel

images/00379.jpg
I AREAT IS L .b
~++ in Asterisk 1.6
9 -9,15 +9,13 6

comparison of the callerid of the current interface and the global
variable

placed by the AgentcallbackLogin application. That's why it should

anly

the AgentCallbackLogin app. Uses the monitoring functions in
chan_agent
- instead of Monitor application. That have to be configured in the
agents.conf file.

+ instead of Monitor app.
agents.conf file.

cation. That has to be configured in the

Return value:

- Normally the app returns 0 unless the options are passed. Also if
the callerid or

- the agentid are not specifisd it'1l look for nvi0l priority

+ Normally the app returns 0 unless the options are passed.

oprions:
- 'a’ - make the app retwrn -1 if there is an error condition
and there is
- no extension n+101
. ‘g’ - make the app return -1 if there is an error condition
‘o’ - change the CDR so that cthe source of the call is
‘agent/agent_id"
'n’ - don't generate the warnings when there is no callerid

or the
TRy ww—

images/00378.jpg
Info about application 'AgentMonitorburgoing™ =-

[synopsis]
Record agent’s cutgoing call

[Description]
Agenttionitoroutgoing ([optians))

Tries to figure out the id of the agent who is placing outgoing

call based on comparison of the callerid of the current interface

and the global variable placed by the AgentCallbackLogin application.

That's why it should be used only with the AgentCallbackiogin app.

Uses the monitoring functions in chan agent instead of Momitor

application. That have to be configured in the

agents.conf file.

Return value:
Normally the app returns 0 unless the options are passed. Also if the
callerid or the agencid are not specified it’1l look for n+101 priority.

options:

- make the app return -1 if there is an error condition and
there is
o extension n+101
’ct - change the CDR so that the source of the call is
*Agent /agent_id"
"nr = don’t generate the warnings when there is no callerid or
the
agentid is not known.
Tc's handy if you want to have one context for agent and
b e

images/00381.jpg
| 1.6 |

images/00380.jpg
€allian AL goript:
exten => 123,1,AG1 (my-agi-script.agi, hello,world)
exten => 123,n,Verbose (1, AGTSTATUS: § (AGTSTATUS})

; call another AGI script:
exten => 124,1,AG1 (ny-other-agi-soript.agi

ello, --y=world)
> 124,n, verbose (1,AGTSTATUS: § (AGISTATUS})

; call a FastAGI script on another server
exten => 125,1,AG1 (agi://192.168.1.130/test,
A

—x=hella, —-y=world)
25,1, Verbose (1, AGISTATUS: $(AGISTATUS})

images/00387.jpg

images/00386.jpg
i Frocess alam evente:
N L S sy N

images/00372.jpg
A I AR
exten => 123,1,AgentLogin (33, s}

images/00371.jpg
Info-about -application ‘AgentCallbackLogin’

synopsis]
call agent callback login

[Description]
AgentCallbackiogin([Agentiol [| [options] [| (exten)acontexc]]) :

Asks the agent to login to the system with callback.

The agent s callback extension is called (optionally with the specified

context]

The cpticn string may contain zero or mare of the fallowing characters:
‘e' - silent login - do not announce the login ok ssgment agent

Sooond AnPabt

images/00374.jpg
== Info shout application "AgentLogin’

(synopsis]
call agent login

[Description]
AgentLogin([Agentiio] [|options])

asks the agent to login to the system. Always returns -1. While

the agent can receive calls and will hear a ‘beep’

logged in,
The agent can dump the call by pressing

when a new call comes in.

the star key.

The option string may contain zero or more of the following characters:
‘s’ —- silent login - do not announce the login ok segment after

agerit Togged infofE:

images/00373.jpg
| 1.4 |

images/00368.jpg
e TR GROUL ApRL TOATLN ADRLITON) =

Isynopsis]
Load Asterisk ADSI Scripts into phone

Ipescription]
ADSTProg(script): This application programs an ADSI Phone with the

given

script. If nothing is specified, the default script (asterisk.adsi) is

e

images/00370.jpg

images/00369.jpg
§ ROE-EHEgENG §3 FERIEAY Sl SRR RSP SR . SISO
exten => 123,1, AgentCallbackLogin (33,5, § (CALLERID (num) })

; Assunming that the agent number is the same as the agent extension,

we can do:
exten => 123,1,AgentCallbackLogin (§{CALLERID (num) }, s, $ (CALLERID (rum) })

images/00376.jpg
i record gutgning calls of thig agent gnd-adjuat the CDR.accordingly
B R P R R R

images/00375.jpg
in Asterisk 1.4

+++ in Asterisk 1.6

ae -4,10 +4,10 @@
call agent login

[pescription]
- Agentlogin({AgentNo] [options]):
+ AgentlLogin{[AgentNo] [,options])
Asks the agent to login to the system. Always returns -1. While
logged in, the agent can receive calls and will hear a ‘beap
when a new call comes in. The agent can dump the call by pressing
the star key.
The option string may contain zero or more of the following characters:
= ‘s’ -- silent login - do not amnounce the login ok segment
afcer agent logged in/off
. *s’ -- silent login - do not amnounce the
after agent logged in/off

ogin ok segment

images/00377.jpg

images/00361.jpg
£RCR- LRGN L. SuPROT aucueT
exten => 123, 1, AddOueneMenber (supportqueue, STP/3000)

; add the active interface with a penalty of 2:
R R O R S e)

images/00360.jpg
“lefeR 4 ! ! ! 1

Internal help for this application in Asterisk 1.2:
Tnfo about application ‘AbsoluteTineout’

[synopsis]
Sat absolute maximun time of call

[pescription]

AbsoluteTimeout (seconds) s This application will set the absolute
maximun amount of time permitted for a call. A setting of 0 disables
the timeout.

AbsoluteTimeout has been deprecated in favor of

PR RRto, i IR AR e

images/00363.jpg
= Into about application "AddQueusMember™

[Synopsis)
Dynamically adds queue members

Ipeseription]

‘AddQueueMenber (queuename [| inter face | |penalty| |options [[menbername] 11]
e
Dynamically adds interface to an existing queue
I¢ the interface is already in the queue and there exists an nv101
priority then it will then jump to this priority. Otherwise it will
return an error.
Mhe cption string may contaln zero or more of the following characters:

*3' -- jump to +101 priority when appropriate.
This application sets the following channel variable upon completion:
BQUSTATUS The status of the attempt to add a queue member as a
text string, one of
ADDED | MEMBERALREADY | NOSUCHQUEUE

Bxample: AddQueueMember (techsupport|SIP/3000)

images/00362.jpg

images/00359.jpg
CeRDLEn =Y.
asterisk 1.4.24
Aotian. 8

sterigh =¥

images/00358.jpg
AEbLa; FUAE RECT AR DEni R~ 15 i 20 O
dobiani-4 update-rc.d -f asterisk remove
Removing any system startup links for /etc/init.d/asterisk
Jete/re2 a/ssoasterisk
Jetc/rca.a/tasterisk
Jete/red.asssoasterisk
fate/red.a/Kotasterisk
Jeterres.arssoasterisk
Jete/red.arotasterisk
Jetc/rcs.afssoasterisk
7ete/res arkstasterisk
debian:-i update-rc.d asterisk defaults 50 15
ipdate-rc.d: warning: /etc/init.d/asterisk missing 1SB information update-
rc.d: see <http://wlkl.debian.org/LSBInitseriptes
Adding system startup for /etc/init.d/asterisk
fete/rco.d/Ki5asterisk -> ../init.d/asterisk
Jetesrel.d/KlSasterisk —> ../init.d/asterisk
fete/rc6.a/Kisasterisk -> ../init.dfasterisk
fete/rc2.a/ss0asterisk —> ../init.d/asterisk
/ete/red.arssoasterisk —> ../init.d/asterisk
Jete/res.d/ssoasterisk —> ../init.d/asterisk
Jeterres.asssoasterisk -> ../init.d/asterisk
Mt s

images/00365.jpg
AW ESLERLE L
r++ in Asterisk 1.6
86 4,14 +4,11 6@

Dynamically adds queue members

[pescripeion]
- addQueueNenber (quevenanal | inter face| |penal ty | options| |menbernane]11])
+ AddQueueltenber (queuenans, inter face [, penalty [, options [, menbernane
I stateinterface] 11)]):
Dynamically adds interface to an existing queue.
TE the interface is already in the queve and there exists an nvl01 priority
- then it will then jump to this priority. Otherwise it will return an error
- The option string may contain zero or more of the following characters:
. *3% - junp to +101 priority when appropriate.
+ If the interface is already in the queue it will Teturn an error.
This application sets the following channel variable upon completion:
BQUSTATUS The status of the attempt to add a gueue member as

text string, one of
ADDED | MEMBERALREADY | NOSUCHQUEUS.

Exarple: AddQueueMenber (techsupport |STP/3000)

¢ Example: AddQueueMember(techsupport,SIP/3000)

images/00364.jpg
AR BRLOZLEK &y d"
r++ in Asterisk 1.4
9 -4,7 +4,7 88

Dynamically adds queue members

[Description]
- AddOueucMenber (queuenane! | interface |penalty[|options]1l) ¢
+ AddQueueMember (queuename! | interface [penaltyl [options
[nembernane] 111+
Dynamically adds interface to an existing queue
If the interface is already in the queue and there exists an n+l0l
priority then it will then jump to this priority. Otherwise it will
b s e

images/00367.jpg
| 1.4 |

images/00366.jpg
P EEO0LON LI ARG L. PROETWITE: TS THICOaENAE-N SN T ser ot
exten => 123,1,ADSIProg(telcordia-1.adsi)

images/00350.jpg
SELLAR: FNBRSRERT CRE KL AL gR-d
asterisk-1.4.24/
AR e e e e s

images/00349.jpg
GESANTL -0 FORETREGS:

Sebian:/usr/srch wget http://downloads.digium.con/pub/asterisk/asterisk-
I.4-current.tar.gz

L0d

2009-03-23 10:45:32 (172 KB/s) - »asterisk-1.4-current.tar.gz« saved

111658197 /11,

81971

images/00352.jpg
debian; /ust/srch aptitude -y install libiksemel-dev
o]
The following N packages will be installed:

Libiksenel-dev libiksemell(a)
0 packages upgraded, 2 newly installed, 0 to reove and 0 not upgraded.
Need to get 91.9kB of archives. After unpacking 299k will be used.
Ly

Gebian; fust/srch aptitude -y install unixodbe-dev
L]
The following NEW packages will be installed:

autotools-dev(a) defomaia} fileia} fontconfig(a)

fontcontig-configla) libaudio2(a) libdrm2(a)

Libexpati{a} libfontcontigl{a} libfreetypes{a}

1ibgl1-mesa-glx(a] libglul-mesala) libice6(al

Libjpeg62(al liblensi(a) 1ibltdl3(al 1ibledl3-devial

Libnagici{a} libengl(a) libodbeinstale2(a)

1ibqt3-mtia} libsmé(a} libtool{a) libxcursorl{a}

Libxdanagel{a} 1ibxfixesd(a} 1ibxft2(a] 1ibxi6{a}

Libxineramal (a} 1ibxu6{a} libxrandr2{a}

Libxrenderl(a) libxt6la] 1ibxxts6vm (a)

odbeinstidebiani (a) ttf-dejavufa) tti-dejavu-cors{a}

toE-dejavu-extrala} uct(aunixodbe(a} unixodbc-dev
0 packages upgraded, 41 newly installed, 0 to remove and 0 not upgraded.
Need to get 12.8M8 of archives. After unpacking 32.2M8 will be used.
.

images/00351.jpg
URUSSGUIECTE ANTITUNE N R S T L e

Loz

The following N
1ibneursess-dev

0 packages upgraded, 1 newly installed, 0 to remove and 0 mot uparaded.

Need Lo get 1546kE of archives. After unpacking 6599KE will be used.

=y

packages will be installed:

Gebian; /usr/srch aptitude -y install libcurlé-openssl-dev
]
The following New packages will be installed:
certiticates(a) comerr-devia) libcurli(a)

Libeurli-openssl-dev 1ibglib2.0-0(a)

1ibalibz.0-datafa} libidnll{a} libidnli-devia}

LibkaanSs{a} 1ibkrbs-devia} 1ibldap2-devia}

Libpcred(a) 1ibsshz-1{a) 1ibssha-1-devial

Libssl-dev(a) opensslia) pkg-config(a)
0 packages upsraded, 17 newly installed, 0 to remove and 0 not upgraded.
Need to get BL71kB of archives. After unpacking 23.2M8 will be used
Eyosd

Gebian: /ust/srch aptitude -y install libspesx-dev libspeexdsp-dev
Loy
The following NEW packages will be installed:

Tibspeex-dev 1ibspeexl a)

Libspeexdsp-dev 1ibspeexdspl{a}
0 packages upgraded, 2 newly installed, 0 to remove and 0 mot uparaded.
Need to get 320kB of archives. After unpacking 7L7kB will be used.
Tosd

images/00348.jpg
UERIARIFSE (ORISRt f QoL - Sepues
Unloading DAHDI hardware modules: done
Loading DADI hardware modules:

No hardware timing source found in /proc/ashdi,
Running dahdi_cfg: done
prdlls

1oading dahdi_dunny

images/00357.jpg
SELL A A NESS BICARLeri ik =174 20, HaRE DRniy:

update-re.d: warning: fete/init.d/asterisk missing LS8 information

update-rc.d: see <http://wiki.debian.org/LSBInitscripts>

Adding system startup for /etc/init.d/asterisk
Jete/roz.d/k9lasterisk > ../init.d/asterisk
reto/rel.a/k9lasterisk > .. /init.d/asterisk
Jete/red.d/Kolasterisk > ../init.d/asterisk
Jetc/ros. d/k9lasterisk —> ../init.d/asterisk
Jete/re2 d/S50asterisk ~> .. /init.d/asterisk
Jeto/re3.a/sS0asterisk > ../init.d/asterisk
Jete/red.d/S50asterisk > .. /init.d/asterisk
Jeta/res.d/ss0asterisk > .. /init.d/asterisk

B S R AT S R R

images/00354.jpg
UCRRSVBISATI SUtATIThe Iy iR Ry
Lassd
[cC] astman.c —> astman.o
[cc] mds.c > mds.o
[LD] astran.o nd5.0 -> astman
[cc] stereorize.c -> stereorize.o
£330
caving directory ' fust/src/asterisk-1.4.24/main’
Asterisk Build Complete -
+ Asterisk has successfully been built, and +

+ can be installed by runing: +
i make install .

B is et g b L

images/00353.jpg
I A S 5t i
Gebian: fusr/src/asterisk-1.4.240 . /configure

checking build system type... 1686-pe-linux-gnu
checking host system type... 1686-pe-linux-gnu
checking for gcc. .. goe

Loed

configure: Package configured for:

configure: OS type : limux-gnu

configure: HOSt CPU : 1686
e T]

images/00356.jpg
SELLAI WAL I CAATERLITE -1 4 20 MRRE AR LINE
[l
N, W R I O

images/00355.jpg
ik il £ s ki i ot o1 . 4 ot

Asterisk Installation Complete ------

+ YOU MUST READ THE SECURITY DOCUMENT
+ Asterisk has successtully been installed.
+ Tf you would like to install the sample
+ configuration files (overwriting any

+ existing config files), run:

+ make samples .

+ You can go ahead and install the asterisk
+ progran docunentation now or later run:
. make progdocs
+ **Note** This requires that you have
+ doxygen installed on your local system
P ———

images/00339.jpg
SELLAI -G8 LRNE LN
debian:/usr/srch woet http://downloads.digium.com/pub/1ibpri/1ibpri-1.4-
current. tar.gz

Fos]

2009-03-23 10:24:55 (108 KB/s) - »1ibpri-1.4-current.tar.gz« saved [94075/
SanTeT

images/00338.jpg
UrbiEni e ANbAUINe Y AST.L CANELI TR sy S
The following NEW packages will be installed:
cpp-4.1(a} gcc-4.1(a) gcc-d.1-baseial
Linux headers-2.6.26-1-686
1inux-headers-2.6.26-1-co
Linux-kbuild-2.6.26(a)
0 packages upgraded, 19 newly installed, 0 to remove and 0 not upgraded.
Need to get 7326kB of archives. After unpacking 41.3M8 will be used.
T

onfa}

images/00341.jpg
SRR UERTRYON o Jibhpad sXe keI F
debian: fusr/sre/1ibpri-1.4.9% make
£ised
debian: fusr/sre/1ibpri-
T

.4.9% make install

images/00340.jpg
aablian:/usr/ e
Libpri-1.4.9/
Libpri-1.4.9/build_tools/

L]

S A TS ARG e I A St e o

tax st Libped

"CRERenG. Lar, g

images/01346.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
68 -1.3 +1,4 8@
Usage: EXEC <application> <options>
Executes <application> with given <options>
Returns whatever the application returns, or -2 on failure to find
application
§ e rees e

images/01345.jpg
Usage: EXEC <application> <options>
Executes <application> with given <optionss.

Returns whatever the application returns, or -2 on failure to find

application

images/01347.jpg
1 idal

images/00347.jpg
VEOLER A UST /NIC/ AN L=t o0l Es, LD 2N My aontiy
install -D dahdi.init /etc/init.d/dahai
juse/bin/install -c -D -m 644 init.cont.sample /etc/dahdi/init cont
jusz/bin/install - -D -m 644 modules.sample /etc/dahdi/modules
fust /bin/install ~c -D -m 644 modprobe.cont.sample (etc/modprobe.d/dab
fusz/bin/install -c -D -m 644 blacklist.sanple /etc/modprobe.d/dandi.blackli
fust/sbin/update-re.d dandi defaults 15 30
Adding system startup for /ete/init.d/dahai
Jate/rc0.a/k30dakal > ../init.d/dahdl
fete/zel.a/K308ads ~> . /inic a/dahdi
Jetc/zch.4/K30daMd1 > .. /init.d/dahdi
fete/rcz.d/s15anal —> .. /init.d/dahai
Jate/red.d/s15dabdl > | /init.d/dahdl
Jete/ros.a/S15dabdi —> .. /inic.d/dandl
fote/xcs a/s15dabai -> | /init.d/dahdi
DADI tas been configured

If you have any DRHDI hardware it is now recommended you
231t /etc/dahdi fmodules in order to load support for only
he DAHDI hazduare installed in this system. By default
Support for all DANDI hardware is loaded at DRMDT start

I think that the DANDI hardware you have on your system is:
b s i e PR iAo S

images/00346.jpg
UERdany/ MBT/ HILS OaliiL =1
..

nake[1]: Leaving directory '/usr/src/dahdi-tools-2.1.0.2"
debian: fust /src /dahdi-tools-2.1.0.24 make install

L.

ERERRRRRERERRRRRRRERRRRRRRERRRRRRRRRRRRRRRRRR AR

v

UMW DAHDI tools installed successfully.

Tf you have not done so before, install init scripts with:
e

##F make config

ohi

R RERRRRRRRRRRRRERRRRRRRRRRRRRRRRRRR AR

Aebid an s funrinreidahdlctool e s 1. 008

LSy ke

images/00343.jpg
HEREAn:/UErSACH TR VRS GANAL-1L0nN-GRECRIT, CRE . §N
dandi-linux-2.1.0.4/

dahdi-1inux-2.1.0.4/include/

frcsd

icbian:/usr/srch tar svaf dahdi-tools-current.tar.gs
dandi-tools-2.1.0.2/

dahdi-tools-2.1.0.2/hdlctest.c

£l

dobian: fusr/srch rm dahdi-linuk-current.tar.gz
Sahtans it farol £ kAL -SREla-outvaie. L b

images/00342.jpg
EUELATL C VI Ny
debian: /usr/Srch wget http://downloads.digium.com/publtelephony/
dandi-1inux/dahdi-linuk-current. tar.gz

fovsd
2009-03-23 10
11251822/12518221

37 (165 KB/s) - »dahdi-linux-current. tar.gz« saved

debian: fusc/src

wget hetp: //downloads. digium. com/pub/telephony/
dandi-tools/dahdi-tools-current. tar.gz

ro..]

2009-03-23 10:37:49 (147 KB/s) - »dahdi-to
1413555/213595]

1s-current. tar.gz« saved

e dln sl

images/00345.jpg
ushlomy s Ust aIcy VA damaliinmgedele Ot/
Gebian: fust /src/dshai-1inux-2.1.0.44 make
Loval
nake[1]: Leaving directory '/usr/src/linux-headers-2.6.26-1-685"
debian: fusr/sre/dshdl-1inux-2.1.0.4) make install
(]
DEPMOD 2.6.26-1-686
make[l]: Leaving directory */usr/src/linux-headers-2.6.26-1-656
Toas]
AT
o
DADI Installed successfully.
It you have not done so before, install the package
##¥ dahdi-tools.
o
ERRRREREERRRRERRERERRRRRERRRRRRRRRRRRRRR R R R

Gebian: /ust /src/dahdi-1inux-2.1.0.4% o8 ..
Gebian: /usr/srch cd dahi-tools-2.1.0.2/

debian: fust/src/dahdi-tools-2.1.0.24 ./contigure
i

checking for newtBell in -lnewt... yes

checking newt.h usability... yes

checking newt.h preser ves

checking for newt.h... yes

checking for usb_init in -lusb... yes

checking usb.h usability... yes

checking usb.h presence. .. yes

checking for usb.h... ves

feoi]

images/00344.jpg
WALLATLI FURL/EEOR SRECORN TE.ISACHLL JIDNNDIORY- JAmEwn oy
[
The following NEW packages will be installed:

libnewt-dev 1ibpngl2-0{a} 1ibpnalz-devial

1ibslang2-dev(a) libusb-dev zliblg-devia)
0 packages upgraded, 6 newly installed, 0 to remove and 0 not upgraded.
Need to get 1176k of archives. After unpacking J1L7kE will be used.
sl
Setting up libnewt-dev (0.52.2-11.3)
setting up libusb-dev (2:0.1.12-13)
T

images/01353.jpg

images/01352.jpg
255 IWAREATLEK 1.4
+++ in Asterisk 1.6

@8 -3,3 +3,4 6@

if <variablenane> is set and returns the variable in parenthesis

Understands complex variable names and builtin variables

VARIABLE.
Example return code: 200 result=1 (testvariable)

4 eice Thad -Vos.

unlike GET

images/01355.jpg
Asterisk 1.4
+++ in Asterisk 1.6
Ge -1,2 +1,3 6@
Usage: GET OPTION <filename> <escape_digits> [timeout]

Behaves similar to STREAM FILE but used with a timeout option.
s e DAsA 3 Mo

images/01354.jpg
Usage: GET OPTION <filename> <escape_digits> [timeout]
Balaidd SANIIAE L6 ETRNRN PILA Dut GHeS With & CiRSGIL OOEIGH

images/01349.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
ge -1,3 +1,4 a8
Usage: GET DATA <file to be streamed» [timeout] (max digits)
Strean the given file, and recieve DTMF data. Returns the
digits received from the channel at the other end.
s Slliom i g

images/01348.jpg
UBage: GET DATA <flle to De stremmed> [timecut] [msx digita]
Stream the given file, and recieve DIMP data. Returns the digits
bl Brol e R et e e ity

images/01351.jpg
Usage: GET FULL VARIABLE <variablename> [<channel name>]

Returns 0 if <variablename> is not set or channel doss not exist.
Returns 1
if <varisblename> 1is set and returns the variable in parenthesis.
Understands complex variable names and builtin variables, unlike GET
VARIABLE.
Sateln: vl cokay- 0 TaauT

e

images/01350.jpg

images/00328.jpg
ELe S SR, Dl Maat N AR5
exten => 881,1,MeetMe (885)

images/00330.jpg
biny Cuptomimy-grarue) 3% = 11

91 = (

Set {DEVICE_STATE (Custon:my-status
)
192 = (

Set {DEVICE_STATE (Custom:my-status
)
*93 = (

Set (DEVICE_STATE (Custom:my-status
)
94 = (

L€ ("$(DEVICE_STATE (Custom:my-status)) mse*) (

Set {DEVICE_STATE (Custom: my-status) =NOT_INUSE) ;

UsE) ;

)
else (

Set (DEVICE_STATE Custom:my-status) sINUSE) ;
)

images/00329.jpg
ot (Meatiuiks) As1
Meetlte (885 ;

)y

images/01357.jpg
Wakge: GRT VARIAHLE CYNEisDlenams
Returns 0 if <variablename> is not set. Returns 1 if <variablename>

is set and returns the variable in parentheses.

cxaurlosrorurn col: 3l rosiipet-itiastverdibie)

images/01356.jpg
1 1.4 |~

images/00336.jpg
sebigni-d shutdown -r now
Broadcast message from rootedebian (pts/0) (Mon Mar 23 17:42:04 2009)

M Bt N G lae A T rebOR N

images/00335.jpg
CLE R i A R < I
Reading package lists... Done

Building dependency tree

Tysa]

No packages will be installed, upgraded, or removed.

0 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded,
Need to get OB of archives. After unpacking 0B will be used.

et~

images/00337.jpg
GRRLANF-R SRESTNGS TN SIRRALL PN

foid

The following NEW packages will be installed:
binutils{a) build-essential bzip2(a} cppla) cpp-4.3(a}
apkg-devia) gr+{a) grr-4.3(a} gecla) gec-4.3(a)
Libcé-devia} libampic2(a} libgomplia} libmpfrildbl{a}
Libstdcrr6-1.3-dev(a) libtinedate-perl(al
Linux-libe-devia) make{a) patchial

st

0 packages upgraded, 19 newly installed, 0 to remove and 0 not upgraded
Need to get 19.4MB of archives. After unpacking 60.4E will be used.
Eiiid

setting up libstdes+6-4.3-dev (4.3.2-1.1)

Setting up g++-4.3 (4.3.2-1.1)

Setting up gr+ (4:4.3.2-2)

Setting up build-essential (11.4)

7

images/00332.jpg
Custom Device States

Name: 'Custom:my-status’ State: 'INUSE®

images/00331.jpg
"RRESEOTS: ShOW RANLE
-= Registered Asterisk Dial Plan Hints

99atest : Custom:my-status State:InUse Watchers
21einternal-users : STP/21 State:Unavailable Watchers
228internal-users : SIP/22 State:Unavailable Watchers

_ 1 hints registered.

images/00334.jpg
WELSRRLTT WEEILEIS. SIONTS.
et http://fip.debian.org lenny Release.opo
L]

1820kB downloaded in 13s (133kB/s)

Reading package 1ists... Done

U

images/00333.jpg
LIS CEVEELLS. SRS CHAt oRiky=atatug ST
Changing my-status to RINGING
*CLI> devstate list

--- Custom Device States

--- Name: ‘Custom:my-status’ State: 'RINGING'

images/01358.jpg
in Asterisk 1.4
+++ in asterisk 1.6
ee -2,3 +2,4 6@
Returns 0 if <variablename> is not set. Returns 1 if
<variablenane>
is set and returns the variable in parentheses
exanple return code: 200 result=l (testvariable]
i (R Doad o Ws

images/01364.jpg

images/01363.jpg
S5 ABCAEINN L. 8
+++ in Asterisk 1.6
Ge -1.3 +1,4 @
Usage: HANGUP (<channelname»]
Hangs up the specified channel.
If no channel name is given, hangs up the current channel
§ THGAE TatA 3.

images/01366.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
@8 -1,2 +1,3 a8
vsage: Noop
Does nothing
o e Thand = Fan:

images/01365.jpg
Dangey NI,
Sian: sotning

images/01360.jpg
Paage: GOSUR <contexts: <extenglon> <pEiority>-{<opticnal-ghrguments]
Cause the channel to execute the specified dialplan subroutine,

returning to the dialplan with execution of a Return()

suns Dedd 1 Bo

images/01359.jpg

images/01362.jpg
Yaaga: BANSUR [SEhRaNQLOgmes>],
Hangs up the specified channel.
Tf po-olincna) heme:daralven; hatge o thicuroant chanmad

images/01361.jpg
| 1.6 |

images/01327.jpg
USaiey CHIMMEL SLATUS: Dclapaeiuamen]
Returns the status of the specified channel.

If no channel name is given the returns the status of the

current chamnel. Return values

0 Channel is down and available

Channel is down, but reserved

Channel is off hook

Digits (o equivalent) have been dialed

Line is ringing

Remote end is ringing

Line is up

oAb i By

images/00319.jpg
*CLE="core ghow hints
Registered Asterisk Dial Plan Hints
s1e/21 state:1dle atchers

+ sTR/22 state:Tale watchers

- 2 hints registered

images/00318.jpg
"RAERSRLE NUR-SUNOGESIL. Y-

Peer er call ID Extension last state Type
192.168.0.2 21 81509445542 22 Unavailable dialog-infossml
i aotive 815 subseriptliom:

images/01324.jpg
1.6 |

images/01323.jpg
in Asterisk 1.4
r++ in Asterisk 1.5
a2 -1,3 +1,4 88
Usage: ANSWER
Answers channel if not already in ansver state
channel failure, or 0 if successful.
+ Runs Dead : No

Retuzns -1 on

images/01326.jpg

images/01325.jpg
DERGe: ASYNCROL BREAR
Break the Async AGI loop.
e R

images/00325.jpg
gontaxt internal-ugers i

/7 sales
hint (SIP/21651P/22581P/23) 20

Dial(STP/215STP/2255TP/23,40) ;
)

/1 Pickup calls to sales
_*820 => (
Verbose (1, $ (CALLERID (num)} wants to pick up call to sales);
Pickup(21@internal-userss22@internal -userss23@internal-users);
3

images/00324.jpg
directed call pitkup: 1
BLACa T PRLY pACRIE Pl .8

images/00327.jpg
GUECPILLRCELUME URERE 6.

/7 sales staff
2= (
Set(__PICKUPMARK=200);
7/ To define which users belong to which pickup group,
/7 you can use an external AGI script
Dial (STP/$ (EXTEN) &Local/**$ (PICKUPMARK) , 40) ;
)
hint(sTP/21) 21 => ()
hint(s1P/22) 22 => ()
hint(sTP/23) 23 = ()

// Pickup groups
= (

Verbose (1, Pickup group §{EXM
)
hint (STP/216STP/22881P/23) **200

} is ringing);

o

// Directed call pickup
e = ¢
Set (nst=$ (8XTEN:2)) ;
Verbose (1, (CALLERID (num)) wants to pick up call to $(nst));
// You could put an authorization test here
Pickup (5 (nst)@internal-users) ;
)

11 Group call pickup
_rgeex. = ¢
Set (pmark=$ (EXTEN:4)) ;
Werbose (1, § {CALLERID (num)) wants to pick up call to §(pmark});
/1 You could put an authorization test here
Pickup(§({pmark)@PICKUPMARK) ;
)

images/00326.jpg
context intermal-users {

7/ sales staff
_ax = (
Set (__PICKUPMARK=:
Dial (STB/$ (EXTEN),
)
hint (STP/21) 21
hint(s1p/22) 22
hint(STP/23) 23 = ()

// Sales department
hint (STP/2165TP/2268T9/23) 20
Set(__PICKUPMARK=sales);
Dial (STP/21&5TP/2255TP/23,40) ;

)

/7 Pickup of calls to sales
_*820 => (
Verbose (1, ${CALLERID(num)) wants to pick up a call to sales);
Pickup(sales@PICKUPNARK) ;
)

images/00321.jpg
internal-users}

Pickup
exten => _*8X.,1,Set (nst=§ (EXTEN:2))

exten => _*8X.,n,Verbose(1,§(CALLERID(num)} wants to pick up call from
% $(nst))

sibon &% _BRE. 6 MokiotitasbTelntatani usees]

images/00320.jpg
Exbensian Chapged 22 new stabe'Ringing for Notify User 31
Extension Changed 22 new state InUse for Notify User 21
R enaton GRUAEES 0 Heir SbELE TATS Tof NeeLEY Uaes 3T

images/00323.jpg
=

images/00322.jpg
QELRRE IREVERLL UGS L

”

1/ ickup
_rax. = (
Set (nst=$ (EXTEN:2)) s
Verbose(1,§ (CALLERID(num)) wants to pick up call from ${nst});
7/ An authentication step could be put here
Pickup (§(nst)@internal-users) ;

images/00317.jpg
*CLI> sip show subscriptions
Peer User call ID Extension Last state Type
0 active SIP subscriptions

images/01331.jpg
in Asterisk 1.4
t++ in Asterisk 1.6
88 7.3 +7,4 @8

extension mist not be included in the filename

Note: ffchar and rewchar default to * and # respectively.
===

images/01330.jpg
Usage: CONTROL STREAM FILE <filename> <escape digits> [skipms] [ffchar]
[rewchr] [pausechr]

Send the given file, allowing playback to be controled by the
given digits, if any, Use double quotes for the digits if you wish none
to be permitted. Returns 0 if playback completes without a digit
being pressed, or the ASCIT mumerical value of the digit if one was
pressed, or -1 on error or if the channel was disconnected. Remember,
the file extension must not be included in the filename

Note: ffchar and rewchar default to * and # respectively.

images/01333.jpg
Usage: DAIARAGE DEL <famllys ckey

Deletes an entry in the Asterisk database for a
given family and key.
Returns 1 if successful, 0 otherwise.

images/01332.jpg
| 1.6 |

images/01329.jpg
Tx ¥

| 1.6

images/01328.jpg
in Asterisk 1.4
t++ in Asterisk 1.6
88 -10,3 +10,4 68
5 Remote end is ringing
6 Line is up
7 Line is busy
=i

images/00790.jpg
in Asterisk 1.2
+++ in Asterisk 1.4
e 8,4 +8,9 68
transfer to know the parking space). This application is always
registered internally and does not need to be explicitly added
into the aialplan, although you should include the 'parkedcalls’
- context.
+ context (or the context specified in features.conf).

+ If you set the PARKINGEXTEN variable to an extension in your
+ parking context, park() will park the call on that extension, unless
- it already exists. In that case, execution will continue at next

¥ P,

images/00789.jpg
= IREEBhUE ADDLICATION. Therk! e

[Synopsis|
Park yourselt

[Description]
Park() :Used to park yourself (typically in combination with a supervised
transfer to know the parking space) . This application is aluays
registered internally and does not need to be explicitly added

into the dialplan, although you should include the 'parkedcalls’

context (or the context specified in features.conf)

If you set the PARKTNGEXTEN variable to an extension in your
parking context, park() will park the call on that extension, unless
it already exists. In that case, execution will continue at mext
Gt

images/00308.jpg
BONL S SOterual- SR k.

hint(sIP/21) 21 => ()}
hint(STR/22) 22 = ()
X =
Dial (STB/$ (EXTEN) , 40) ;
VoiceMail($(EXTEN} u);
)

images/00792.jpg
LNCAUIE =0 RATKEOMLLE.
exten = 123,1,Answer ()

exten = 123,n, ParkandAnnounce (vn-youhave:.
extension: PARKED, 120, Congole/asp)

exten => 123,n, Playback (vn-nobodyavail)
exten => 123,n, Playback (vn-goodbye)

sntan v A39.5 Hanoun iy

:pbx-transfer:at:vi-

images/00791.jpg
SR DL BRI 258
<4+ in Asterisk 1.6
e 1,13 +4,22 @@
park yourself

[pescription]
- Park():Used to park yourself (typically in combination with a supervised
+ parkl[cimeout, [return_context, [return_exten, [return_priority, [opt
fons])11]) :Used to park yourself (typically in combination with a
supervised

transter to know the parking space) . This application is always

registered internally and does not need to be explicitly added

into the dialplan, although you should include the 'parkedcalls’

context (or the context specified in features.conf)

If you set the PARKINGEXTEN variable to an extension in your
- parking context, park(] will park the call on that extension, unless
+ parking context, Park() will park the call on that extension, unless

it already exists. In that case, execution will continue at next

priority.
+ rhis application can accept arguments as well.

+ timeout - A custom parking timeout for this parked call

¢ Teturn_context - The context to return the call to after it times

out .
+ return_exten - The extension to return the call to after it
out .

+ return_priority - The priority to return the call to after it times
out

tmes

+ options - A list of options for this parked call. Valid options
are:

. 'r' - Send ringing instead of MOM to the parked call.

. ‘R' - Randomize the selection of a parking space.

g Vol ~ Bliahoe aennabcsnae of Fhb Bl foate fuRten.

images/01335.jpg

images/01334.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
ee -2,3 +2,4 e
Deletes an entry in the Asterisk database for a
given fanily and key.
Returns 1 if successful, 0 otherwise.
Y ipude bead : VYoa

images/00788.jpg
| 1.6 |

images/01337.jpg
I A o
v++ in Asterisk 1.6
ae -2,3 +2,4 @@
Deletes a family or specific keytree within a family
in the Asterisk database
Returns 1 if successful, 0 otherwise.
3 s el

images/01336.jpg
Usage: DATABASE DELTREE <family> [keytree]
Deletes a family or specific keytree within a family

in the Asterisk database

Raturhe: 3 AF succeaniat; B sthsrvise:

images/00314.jpg
Boftkey’l type: hif
softkeyl label: "Station 2'
softkeyl value: 119
softkeyl 1ine: 2

images/00313.jpg
ssssssasas

l
a
@ @
8w
a
@
» H———— i =
——
v e
gt —_—
ey =

o

images/00797.jpg
I Tetrigve the call parked at. 081
exten => 123,1,Answer ()
Srton: £ 1230 Fee kAL

(701)

images/00316.jpg
*CLI> coxe show hints
Registered Asterisk Dial Plan Hints
stR/21 State:Unavailable Watchers
s1e/22 State:Unavailable Watchers

- W RO —-

images/00315.jpg
<txel ‘warelon="1.0" endoding="UTE-5" standelone:
<i-- §Revision: 1.2 § SDate: 2004/12/21 18:28:05 §
<directory>
<item_list>
<items

<In>smart</ln>

<En>Sally</n>
<ct>201</ct>
<sd>1</sd>
<res3</res
<ac/>
<ad>0</ad>
<ar>0</ar>
<BreLe /b
<Bb>0</Bb>

</tem>

<item>
<ln>Dutf</ln>
<En>Done/ fn>
<ct>202</ct>
<sd>2</sd>
<rt>3</res
<ac/>
<ad>0</ad>
<ar>0</ar>
<bwle/bus
<bb>0</bb>

</iten>

</item_list>
BT P oy

images/00310.jpg
[internal-users]

exten => 20,hint,SIP/21&SIP/22

exten => 20,1,Dial (SIP/21&SIP/22,40)

images/00794.jpg
=300 phont application Rexicogaunounce’ =

[Synopsis)
Park and Announce

[Pescription]

earkandAnnounce (announce: template| tineout [dial | (return_context]):
Park a call into the parkinglot and announce the call to another
channel.

announce templat
The word PARKED

Colon-separated 1ist of files to announce.

will be replaced by a say_digits of the extension

in which
the call is parked.
tineout: Tine in seconds before the call returns into the
return
context.
aial: The app_dial style resource to call to make the
announcenent. Console/dsp calls the consols
return_context: The goto-style label to jump the call back into
after

timeout. Default <priorityri>

The variable §$(PARKEDAT) will contain the parking extension into
Which the

call was placed. Use with the Local channel to allow the dialplan
to make
g,

S —

images/00309.jpg
axten = &%, hint, S10/8 (EXTEM)
Rint [SIRIBLEXTENY) 3% =t

images/00793.jpg
-] 1.2 |-

| 1.6 |-

images/00312.jpg
Specification
SIP Dialog Event Package (RFC 4235)
(up:/ftools.etf.org/htmlyfc4235)
Presence Information Data Format (PIDF)
(RFC 3863)

(htp:/ftools et org/htmlyefc3863)

Pre-version of RFC 3863 (see PIDF above), XPIDF, CPIM
with Microsoft extensions

(htp:/fmsdnmicrosoft com/en-usibrary/
c246193(PROT.10) aspx)

Pre-version of RFC 3863 (see PIDF above), XPIDF, CPIM

MIME Type

application/dialog-infonml

application/pidteml

application/piat il

application/cpin-pidf nanl

images/00796.jpg
in Asterisk 1.4

44+ in Asterisk 1.6

o8 -4,7 +4,7 28
Eark and Announce

[Description]
- ParkindAnnounce (announce: template | tineout|dial | [recurn_context]):
+ Parkanaannounce (announce: template, timeout,diall, raturn_contextl]

Park a call into the parkinglot and announce the call to another
channel

announce template: Colon-separated list of files to announce. The
Soed SRRRIS

images/00311.jpg
context internal-users {

hint (STP/21a818/22) 20 => ()

20

¢
Dial (STP/2165T8/22,40) ;

images/00795.jpg
Fh-AaterIgiootyd
+++ in Asterisk 1.4
s -5.9 +5,18 @@

tpescription]
rarkandAnnounce (announce: template| tineout |dial | (return_context]}:

- Park a call into the parkinglot and amnounce the call over the
console

announce template: colon separated list of Files to announce, the
word BARKED
- will be replaced by a say_digits of the ext the
call is parked in
- timeout: time in seconds before the call returns into the return
context.
- dial: The app_dial style resource to call to make the announcement.
console/dsp calls the console.
- return context: the goto style label to jump the call back into
after timeout. default=priotl
+ Park a call into the parkinglot and announce the call to another
channel.
+ announce template: Colon-separated list of files to announce.
The word EARKED

. will be replaced by a say_digits of the extension
in which

. the call is parked

+ tineout: ime in seconds before the call returns into the
coturn

. context.

+ dial The app_dial style resource to call to make the
+ announcement. Console/dsp calls the console.

+ return context: Tha goto-style label to jump the call back into
after

5 cimeout. Default <priority+is.

+ The variable §(PARKEDAT) will contain the parking extension into
which the

+ call was placed. Use with the Local channel to allow the dialplan

to make
TR

R T

images/00307.jpg
(internal-users]
exten => 21,hint,S1P/21
exten = 22,hint,S1P/22

exten => _2X,1,Dial (SIP/$ (EXTEN},40)
exten => _2X,n,VoiceMail (${EXTEN),u)

images/00306.jpg
Dontegt Antaimal “usare

hint(s1p/21) 21 => (
Dial (SIP/$ (BXTEN), 40) ;
VoiceMail (§(EXTEN) u)

)

hint(sTe/22) 22 = (
Dial (SIP/$(EXTEN}, 40) ;
VoiceMail (§ (EXTEN)) ;

)

images/01342.jpg
Usage: DATABASE PUT <famllys ‘<key- <wvalues
Adds or updates an entry in the Asterisk database for a

given family, key, and value.

Soturos i tF sucdsoeiils 0 cthmndime:

images/01341.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/01344.jpg

images/01343.jpg
- ARCOrigh 1.8
+++ in Asterisk 1.6
68 -2,3 +2,4 80
Adds or updates an entry in the Asterisk database for a
given family, key, and value.
Returns 1 if successful, 0 otherwise
j e Reid = Yen

images/01338.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/01340.jpg
T BOLerisk 1.8

e+ in Asterisk 1.6
a8 4,3 +4,4 08

Returns 0 if <key> is mot set. Returns 1 if <key>
is set and returns the variable in parentheses
Exanple return code: 200 result=l (testvariable)
Rne Toid o Yar

images/01339.jpg
VEGH: DITABASE GRT SEOMITYY < Kay->
Retrieves an entry in the Asterisk database for &

given family and key.

Returns 0 if <key> is not set. Returns 1 if <key>

is set and returns the variable in parentheses

Example return code: 200 result=1 (testvariable)

images/00779.jpg
~=inig abput appiipation 'Hoop! =

[synopsis)
Do Nothing

[Descripeion]
NoOp(}: This applicatiion does nothing. However, it is useful

for debugging

purposes. Any text that is provided as arguments to this application

can be

viewed ac the Asterisk CLI. This method can be used to see the

evaluations of

variables ob BUDOELOHS wiEtHout Bavids Aty SEEROE.

images/01306.jpg
-] 1.4 |-

images/00778.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/01305.jpg
i BRLEL AN Ja

+++ in Asterisk 1.5

e 4,14 +4,14 68
TIMROUT (timeoustype)

[synopsis1
- Gets or sets timeouts on the channel
Gets or sets timeouts on the channel. Timeout values are in seconds.

(Description]
Gets or sets various channel timeouts. The timeouts that can be
manipulated are:

absolute: The absolute maximum amount of time pernitted for a call. A
- setting of 0 disables the timeout.
. setting of 0 disables the timeout.

digit: The maximum amount of time permitted betwsen digits when the
user is typing in an extension. When this timeout expires,
e -25,8 +25,8 86
terminated), The default t.

neout is 5 seconds

response: The maximum amount of time permitted after falling through a
. series of priorities for a channel in which the user may

E begin typing an extension. If the user does not type an

- extension in this amount of time, control will pass £o the
. ‘t' extension if it exists, and if not the call would be

- terminated. The default timeout is 10 seconds.

. series of priorities for a channel in which the user may

. begin typing an extension. If the user does not type an

. extension in this amount of time, control will pass to the
. ‘t+ extension if it exists, and if not the call would be

i s el e BL gl G RiE oo e

images/00781.jpg

images/00780.jpg
AR PRLETASE ok
~++ in Asterisk 1.6

@ -1,10 +1,11 @&

= Info abour application 'NoOp' =-

[synopsis]
- Do Nothing
+ Do Nothing (No Operation)

[Descripeion]
- NoOp(): This applicatiion does nothing. However, it is useful
for dsbugging
+ NoOp(): This application does nothing. However, it is useful
for debugging

purposes. Any text that is provided as arguments to this
application can be

viewed at the Asterisk CLI. This method can be used to see the
avaluations of
- variables or functions without having any effect.
+ variables or functions without having any effect. Alternatively,
see the
+ Verbosal) application for finer grain control of output at custom
ke

images/01307.jpg
TRLD RURRTUNCULOR TERTCARNAE

(syncax]
XTCTDNAME (<number>)

(synopsis]
TXTCIDNAME looks up a caller name via DNS

(Description]

This function looks up the given phone mumber in DNS to retrieve
he caller 1d name. The result will either be blank or be the valus
R RO S i i e

images/01302.jpg
GO L BRARLULE: Giamaul
exten => 123,1,Set (£oo=$ (TIMEOUT (absolute]))

Linit call duration to a maximum of 60 seconds:
sxten => 123,1,Set (TIMEOUT (absolute) =60}

exten =» 123,n,Dial (STP/$ (EXTEN) |
exten => 7,1, 2layback (sorry-dude]
exten => T,n, Playback (buh-bye)

Stan ae BB SarEEL)

images/01301.jpg
A ABECTRYIC Lo ¥
+++ in Asterisk 1.5

@ 1,7 +1,7 ee

-= Info about function 'STRETINE'

[syntax]
- STRPTIME (<atetime>|<timezone> |<format>)
+ STRPTIME (<datetime>, <timezone>,<format>)

[synopsis]
Returns the epoch of the arbitrary date/time string structured
s described in the format
@ -12,4 +12,4 8@
date strings

Example:
- S(STRPTIME(2006-03-01 07:30:35 |Anerica/chicago|$58%y-388en-3538a

5 eeseH: ALEM:53RES) | roturns
© $(STRPTIME(2006-03-01 07:30:35, America/Chicago, $5837-$8%%m-3388d
SR SR SRS T ralirie

images/01304.jpg
(syncax]

(synopsis]

THEQCRHOLL TURGCIDE *EIMEGREY

TMEOUT (timeouttype)

Gets or sets timeouts on the channel.

[pescription]
Gets or sets various channel timeouts. The Cimeouts that can be
nanipulated are:

absolute

digit:

response:

The absolute maxinum amount of time permitted for a call.
A setting of 0 disables the timeout.

The maxinum amount of time permitted between digits when
the user is typing in an extension. When this timeout expires.
after the user has started to type in an extension, the
extension will be considered complete, and will be
interpreted. Note that if an extension typed in is valid,

it will not have to timeout to be tested, so typically at

the expiry of this timeout, the extension will be considered
invalid (and thus control would be passed to the 'i'
extension, or if it doesn't exist the call would be
terninated). The default timeout is 5 seconds.

The maximun amount of time permitted after falling through a
series of priorities for a channel in which the user may
begin typing an extension. If the user does not typs an
extension in this amount of time, concrol will pass to the
‘trextension if it exists, and if not the call would be

NI o i e Pl S S B e S S R g

images/01303.jpg

images/00303.jpg
[general]
allosubscribe = yves
notifyringing = yes
notifyhold = ves

thad B Ao yek

images/00787.jpg
& park the call in parking space. 701
include => parkedcalls

exten => 123,1,Answer ()

et w10 DR TR

images/00302.jpg
i bt i hoa i ok TR o 4 R Uil it £ Sl i 0 bl

+ Inxmodem
1
Quality: Nosmal
Size: North American Letter
Received: 2007:06:02 02:49:45
Time To Receive: 1:58

Signal Rate: 9600 bit/s
Data Format: 2-D IMR
Error Correct: Yes
+ 2007
TAxnoden 1
EEyIAX0

000000033 (£tp://debian: 4559/10g/000000033)

Jun 02 02:51:46.99: | 3320): RECV FAX: bin/faxrcvd
"recvq/ £ax000000016. L1E" "LEYIAKD
Jun 02 02:51:47.00: [33201: RECV PAX: end
Jun 02 02:51:47.00: | 3320]: SESSTON END
Jun 02 02:51:47.01: [3320]: RECV PAX (000000033):
recva/fax000000016. tif From IAXmod

images/00786.jpg
in Asterisk 1.4

+++ in Asterisk 1.6

ce

%

21,7 44,7 a8
Pages phones

[Description]
Paga (Technology/ResourcesTechnology2 /Resource? [[options])
Paga (Technology/ResourcesTechnalogy2/Resource? [options] |

Places outbound calls to the given technology / resource and dumps
them into a conference bridge as muted participants. The original
caller is dumped into the conference as a speaker and the room is
12,3 +12,4 @@

G - full duplex audio

quiet, 4o not play beep to caller
- record the page into a file (see 'r' for app_meetme)
-~ only:dial channel if devicestate says it is mot in-use

images/00305.jpg
{3ntarnal -usats}

exten
exten
exten

21,nine, s1P/21
21,1,Dial (STP/$ (BXTEN) , 40)
21,0, VoiceMail($ (ExTam))

exten => 22 hint,STP/22
exten = 23,1,Dial (STP/$ (EXTEN), 40)
exten => 22.m.VoiceMail (S (EXTEN},u)

images/00304.jpg
RaL]
type = friend

context = internal-users
secret = 9847825134
host = dynamic
mailbox = 2000
subscribecontext
call-limit = 10
callgroup = 2
plokupgroup = 2

internal-users

images/00299.jpg
WebagnssT- Laxgialk <.
HylaPAX scheduler on w077.example.com: Running
Modem CTyTAXO (123456): Sending job 7

JID Pri s Owner Number sages Dials 7S Stacus
7 127 R root 06912345678 0:1 0:12
I B

images/00783.jpg
-] 1.2 |-

| 1.6 |-

images/00298.jpg
PSS SUTHIR CONTIE S SO0 X

requested format = alaw,

requested prefs = (1.

actual format = alaw,

host prefs = (alaw]

priority = mine

- Executing Answer ("IAX2/iaxnoden-3<, **] in new stack

- Executing Dial(“TAX2/iaxmodem-3*, *STP/123456/6045557977%)

in new stack

Called 123456/6045557977

STP/123456-0818£630 is making progress passing it to

TAX2/ taxmoden-3

- STP/123456-0B18£630 answered TAX2/iaxmoden-3

parse_srv: SRV mapped to host my-voip-provider.com, port 5060

Spawn extension (fax-out, 6045557977, 2] exited non-zero on *IAX2/

iaxnoden-31

Executing Hangup(*TAX2/iaxmoden-3*, **) in new stack

Spawn extension (fax-out, h, 1) exited non-zero on /IAX2/iaxmoden-3-
O A T S

images/00782.jpg
Into about WppLicakion ‘oPachinisht

{synopsis]
Clear the resultset of a successful multirow query

{Description]
ODECFinish (<result-id>)
Clears any renaining cows.of the specified resultsst

images/00301.jpg
MEDAAIL: =8 FELGFINLL. G/ Dyiakax reRtart
Starting HylarAX: faxq hfaxd
DN

images/00785.jpg
SR-ANCOrIgy di.&
+++ in Asterisk 1.4
68 -11,3 +11,4 @@
Gestroyed when the original caller leaves. valid oprions ar
@ - full quplex audio
q - quiet, do not play beep to caller
g ¥ - socard Phe taancinte & Pile. (Mbn. 5 Aok At Heatis)

images/00300.jpg
SENDTO=Cak-lncomingeconpany . com
FILETYPE=pdf

images/00784.jpg
== 1nfo about applicetion 'Phge’ =-

[synopsis]
Fages phones

[pescription]
Page (Technology /Resourcestechnology? /Resource? [|options])

Places outbound calls to the given technology / resource and dunps
them into a conference bridge as muted participants. The original
caller is dumped into the conference as a speaker and the room is
destroyed when the original caller leaves. Valid options ar

4 - fu1l duplex audio
q - quiet, do not play beep to caller
Bon Eoeil e kg S i EiTe e Kol R WY

images/01309.jpg
. SOCUCHS NN - ML U TR RS L DV ERWOL A
xten => 123,1,Set (£00=§ [URIDECODE ("Hel10820Wor1d")))
Aeturms *Ealie sorids

images/01308.jpg
AR CtLE R G
v+ in Asterisk 1.6
@@ -1,7 +1,7 a8
= Info abour function ‘TXICIDNAME' =-
[syntax]
- TXTCIDNAME (<number>)
- TXTCIDNAME (<number>[, zone-SufEix])

(synopsis]
TXICIDNAME looks up & caller name via DNS
ee -5,4 +9,4 a8
[Description]
This function looks up the given phone number in DNS to retrieve
the caller id name. The result will either be blank or be the value
- found in the TXT record in DNS
¢ Feund 1n the TXT Yocbed Lo DNS. The deEuclt Sohes#iEEl T G168 area.

images/01311.jpg
IEL apouliiunglion URINEGEHRT

[syntax]
URTDECODE (<data>)

Isynopsis]
Decodes a URI-encoded string according to RRC 2396.

[pescription]
R T

images/01310.jpg

images/00768.jpg

images/01317.jpg
¢ RURTY TOY Lhe nlmbal Gf WARRAgEs M melibox: 2
oxten => 123,1, Answer ()

oxten =» 123,n,Set (count=$ (VMCOUNT (456)))
xten => 123,n, Playback (vn-youhave) 5 "You have:
exten => 123,n,GotoIf (1{count} = 0]2none:new)

exten =» 123,10 (none) , Playback (vm-no} i no!
xten => 123,n,Goto (continue)

xten => 123,20 (new) , SayNunber ($COUNT) 5 count
xten => 123,7,Goto (continue)

oxten => 123,30 (continue) Playback (va-TNEOX) ; "news
xten =» 123,n, Playback (vm-messages) ; “messages*
xten => 123,n, Playback (vn-goodbye) ; “Goodbye!

axten:=> 123 .n. Hangup ()

images/01316.jpg
Y EBLCTAEE. 48

r++ in Asterisk 1.4

60 -4,7 +4,7 00
URIENCODE (<data>)

[synopsis]
- Bncodes a string to URI-safe encoding.
+ Encodes a string to URI-safe encoding according to RFC 2396.

[Description]
g g

images/00770.jpg
A Bt epiak i
r++ in Asterisk 1.6
66 ~4,8 +4,10 66

Play Music On Hold indefinitely

[pescription]
- MusiconHold(class): Plays hold music specified by class.
If omitted, the default
- music source for the channel will be used. Set the default
class with the SetMusiconHold() application
- Returns -1 on hangup.
- Never returns otherwise.
Musicontold(class [, duration]) :
Plays hold music specified by class. If omitted, the default
nusic source for the channel will be used. Change the default
class with Set (CHANNEL(musicclass)=...).
T¢ Guration is given, hold music will be played specified nunbe
of seconds. If duration is ommited, misic plays indefinitely.
R R T B ey

images/00769.jpg
~= Info.shaut applickilon “MuSiconHoMd ! ==

(Synopsis)
Play Music on Hold indefinitely

(pescription]
MusiconHold(class): Plays hold music specified by class.
If omitted, the default

music source for the channel will be used. Set the default
class with the SetMusiconHold() application

Returns -1 on hangup.

Savad, ratubns orherktee:

images/01313.jpg
S s e ol s A
exten => 123,1,Set (£00=5 (URTENCODE (“Hello World-)})
Returns "Hello$20World®

images/01312.jpg
3% RACET AR 3 74,
+++ in Asterisk 1.4

6@ 4,7 +4,7 @&

"URTDECODE (<data>

[Synopsis]

Dacodes an URI-ancoded string.

Decodes a URI-encoded string according to REC 2396

[pescription]
Sl T

images/01315.jpg
= Inlfo-BHONL THOOLIOn “HRIBNCODE®

{syncax]
URIENCODE (<data>)

(synopsis]
Bncodes a string to URI-safe encoding according to REC 2396.

[pescription]
g

images/01314.jpg

images/00776.jpg

images/00775.jpg
no CDR for calls to INWATS directory assistance
exten => 18005551212, 1, Answer ()

exten => 18005551212, n, NoCDR (]

exten => 18005551212, n,Dial (Zap/4/18005551212)

images/00777.jpg
—=Inio about.Applicatlon “NOCOR'

(Synopsis]
Tell Asterisk to not maintain a CDR for the current call

[Description]
NoCDR(]: This application will tell hsterisk not to maintain a

cR for the
i Eene SAAT1.

images/00772.jpg

images/00771.jpg
Bxton =>144, 1. Ankwex (]
S w5 193 . 5 NGSARE L)

images/00774.jpg
A RECEDESK Lt
+++ in Asterisk 1.6
e -4,6 +4,5 68

Play an NBS local stream

[pescription]
- wWeScat: Executes nbscat to listen to the lacal NES stream.
User can exit by pressing any key

NBScat(): Executes nbscat to listen to the local NBS strean.
R Ok GELE T PG AT R it

images/00773.jpg
= nin Abouk application 'NRSCak)

[Synopsis]
Play an NBS local stream

[pescription]
NBScat: Executes nbscat to listen to the local NBS stream.

User can exit by pressing any key

images/01320.jpg
AVt ke

v+ in Asterisk 1.6

sa

1,7 41,7 @@
-= Info about function 'VMCOUNT' =-

(syntax]
vacouNT (vmbox [@context] [|older])
VMCOUNT (viibox [@context] [, older])

(Synopsis]
B

images/01319.jpg
INED BRotl SLACGIOn MVRIEULNTEY

[syntax]
VMCOUNT (vmbox [context] [| folder])

[synopsis]
Counts the voicemail in a specified mailbox

[pescription]
context - defaults to *defaults

o A i R

images/01322.jpg
Usacia: ANSWER
Answers channel if not already in answer state. Returns -1 on
rginigE EeAbe ok O AF DOoeeBEEEL.

images/01321.jpg

images/01318.jpg
-] 1.4 |-

images/00759.jpg
IR ABEATLIEE 208

+++ in Asterisk 1.6

@6 -1,7 +4,7 6o
Elays morse code

[Descripeion]
- Usage: Morsecode (<string>)
+ orsecode(<string>) :

Plays the Morse code equivalent of the passed string. If the
variable

MORSEDITLEN is set, it will use that value for the length (in ms) of
the ait

(defaults to 80). Addicionally, if MORSETONE is set, it will use
P ARy

images/00758.jpg
Info shaut application ‘Morgecods*

(Synopsis)
Plays morse code

[Description]
Usage: Morsecode (<string>)

Plays the Morse code equivalent of the passed string. If the variable
MORSEDITLEN is set, it will use that value for the length (in ms) of
the dit

(defaults to 80). Additionally, if MORSETONE is set, it will use that
tone

(in Hz). The tone default is 800.

images/00765.jpg

images/00764.jpg
Sot {varl=valusl} ;

images/00767.jpg
i send telemarketers to this extension and hope they are very patient:
exten = 123,1,Answer ()

exten => 123,n, Playback (tt-allbusy)

et w129 i Mt nOREC TR (AaEau TE}

images/00766.jpg
@pplication

Infa ‘shout

(synopsis)
Set channel variable(s) or function value(s)

{Description]
MSet (namel=valuel,nane2=value2, ...}

This function can be used to set the value of chanmel variables or

dialplan

functions. When setting varisbles, if the variable name is prefixed

with _,

the variable will be inherited into channels created from the current

channel. If the variable name is prefixed with _, the variable will be
inherited into channels created from the current channel and all
chilaren

channels.

MSet behaves in a similar fashion to the way Set worked in 1.2/1.4 and
is thus

prone to doing things that you may not expect. For example, it strips
surrounding

double-quotes from the right-hand side (valuel. If you need to put a
separator

character (comma or vert-bar), you will need to escape them by
insercing a backslash

Nokormscdion awold tkwuse 15 poeniiie

images/00761.jpg

images/00760.jpg
3 pady:a loogl-uEd filey
exten => 123,1,Answer ()
exten => 123,n,MPIPlayer (test.mpd}

play an ue3 stream:
exten => 123,1,Answer ()
crtan = 123, 3. HPIPLAVEE (HECD: 1 /ReEveE, €18/ EeRt . 53}

images/00763.jpg
--- in Asterisk 1.4
+++ in Asterisk 1.6
@0 4,6 +4,6 00

Flay an Me3 file or stream

[Descripti:
- me3player(location) Executes mpgl23 to play the given location,
+ me3Player(location): Executes mpgi23 to play the given locarion,

which typically would be a filename or a URL. User can exit by
pressing

e ayon: the At atoedy ke Ranglog o

images/00762.jpg
Info. shaut application ‘MPIFlayer’

[Synopsis]
Play an MP3 file or stream

[Description]
Hp3Player (location) Executes mpgl23 to play the given location,

which typically would be a filename or a URL. User can exit by pressing
any key on the dialpad; or by hanging up:

images/00757.jpg

images/00748.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/00754.jpg
in Asterisk 1.3

+++ in Asterisk 1.4
@ -14,8 +14,8 @@

m - when the recording ends mix the two leg files into one and
delete the two leg files. I the variable MONITOR_EXEC is
set, the
application referenced in it will be executed instead of
- sommix and the raw leg files will NOT be deleted
automatically.
: Soxmix or MONTTOR EXEC is handed 3 arguments, the two leg
Files
. sox and the raw leg files will NOT be deleted
automatically.
. S0% Or MONITOR_EXEC is handed 3 arguments, the two leg
Files

file names

and a target mixed £ile name which is the same as the leg

only without the infout designator
TE MONITOR_EXEC_ARGS is sst, the contents will be passed

images/00753.jpg
R ASET NS RO T

[synopsis]
Monitor a channel

{pescription]
Nonitor ([File_fornat[:urlbase] |[fname_
Used to start monitoring a channel. The channel's input and output
voice packets are logged to files until the channel hangs up or
monitoring is stopped by the Stoptonitor application.

file_format optional, if not set, defaults to "wav®
fname_base if set, changes the filename used to the one
specified.
options:
m - when the recording ends mix the two leg files into one and

delete the two leg files. If the variable MONITOR_EXEC is
set, the

application referenced in it will be executed instead of

sox and the raw leg files will NOT be deleted automatically.

SOX Or MONITOR_EXEC is handed 3 arguments, the two leg files

and a target mixed file nane which is the sane as the leg
file names

only without the in/out designator.

If MONITOR_EXEC_ARGS is set, the contents will be passed on

additional arguements to MONTTOR EXEC
Both MONITOR_EXEC and the Mix flag can be set from the
adninistrator interface
b - Don't begin recording unless a call is bridged to another
channel

Returns -1 if monitor files can't be opened or if the chamnel is
already

menicored. otheardse:

images/00756.jpg
X E = 183 % AUMRE 1)
exten => 123,n,Morsecode(*The dog barks at midnight.”
axcben: w439 1t Beagipl)

images/00755.jpg
SARNGTET AR LM

+++ in Asterisk 1.6

ae -4,7 +4,7 a8
Honitor a channel

(pescription]
- monitor ([Tile_format(:urlbase] | [fnane base] |[options]]):
+ onitor([£ile_format(;urlbase], [fname_basel, [options]]) :
Used to start monitoring a channel. The chamnel's input and output.
voice packets are logged to files until the channel hangs up or
monitoring is stopped by the Stophonitor application
06 -15,11 +19,13 96
and a target mixed £ile name which is the same as the leg

file names
only without the infout designator
Tf MONITOR_EXEC_ARGS is sst, the contents will be passed

- additional arguements to MONITOR_EXEC
. additional argunents to MONTTOR_EXEC
Both MONITOR EXEC and cthe Mix flag can be set from the
adninistrator incerface
b - Don't begin recording unless & call is bridged to another
channel
. i - Skip recording of input stream (disables m option)
< © - Skip recording of output stream (disables m option)

Returns -1 if monitor files can't be opened or if the chamnel is
already
BEriCield., SihEREE b

images/00750.jpg
SH-ANCAEISN 1.8
+++ in Asterisk 1.6
68 -4.8 +4,7 @

Record a call and mix the audio during the recording

[Description]
- mixuonitor (<files.<axt>[|<options>[| <comnand>11)

+ Mixionitor (<file>.<ext>[,<options>[, <command>1]) :
Records the audio on the current channel to the specified file,
If the filename is an absolute path, uses that path, otherwise
COOARERS. $h B4 T B0 $hE eottiantol menlPAEIND GAREEtaRYy. FEah

images/00749.jpg
Sy ADGC appiication 'MxMenttor*

(synopsis]
Record a call and mix the audio during the recording

[pescription]
Mixonitor (<£ile>. <ext>[| <options> [|<command>11)

Records the audio on the current channel to the specified file.
If the filenane is an absolute path, uses that path, otherwise
creates the file in the configured monitoring directory from
asterisk.conf.

valid opions:
a - append to the file instead of overwriting it.
5 - only save audio to the file while the channel is bridged.
Note: Does not include conferences or sounds played to each
bridged
sarty.
v(<x>) - Adjust the heard volume by a factor of <x> (range -4 to 4)
V(<o) - Adjust the spoken volume by a factor of <x> (range -d to 4]
W(<x>) - Adjust the both heard and spoken volumes by a factor of <x>
range -4 to 4)

<command> will be executed when the recording is over
Any strings matching ~(X) will be unescaped to §(X).

All variables will be evaluated at the time MixMonitor is called.
The variable MIXHONTTOR_FTLENAME will contain the filenane used to
)

images/00752.jpg
| 1.6 |

images/00751.jpg
§ Tecard the condarsation and aux-phe dudle atberwariss

exten => 123,1, Answer ()
exten => 123,n,Monitor (gsm, ,mb)
exten => 123,n, SayDigits (123456789

exten

123,n, Hangup ()

; as above, only with our own wrapper script that calls soxmi:
exten => 123,1,Answer ()

exten => 123,n, Set (HONITOR EXE(
exten => 123,n,Monitor (gsm, ,mb)
exten => 123,n, SayDigits (123456789
mxten-=>123 . fi, Rangun (1

‘path/to/ny-soxmix-wrapper.sh)

images/00747.jpg
A SN S S AC AU

(Synopsis]
Receive Mini-Voicemail and forward via e-mail

[pescription]
MinivmRecord (username@donain(, options] | :

This application is part of the Mini-Voicemail system, configured in

minivm. conf

Minivi records audic file in configured format and forwards message to

e-mail and pager.

If there's no user account for

be used with default options.

The recorded file name and path will be stored in MINTVM_FILENANE and

the

duracion of the message will be stored in MINIVM_DURATION

© address, a temporary account will

Note: IE the caller hangs up after the recording, the only way to send
the message and clean up is to execute in the "h" extension.

he application will exit if any of the following DTMF digits are
received and the requested extension exist in the current context.
0 - Jump to the ‘o’ extension in the current dialplan context.
* - Jump to the 'a’ extension in the current dialplan context.

Result is given in channel variable NINIVM_RECORD_STATUS
The possible values are: SUCCESS | USEREXTT | FATLED

options:
g{#) - Use the specified amount of gain when recording the
SiGaani . e wRiEE abe whsls-ninbie desiteid Eny

images/00746.jpg

images/01298.jpg
5By LR PRGSOl SIS S uD RIENIR . e VAL SR

%$(cine!
oxten => 123,1,Set (tine=$ {STRPTIME (§ (EPOCH) , Anerica/Los_Angeles,
% Y-4m-3d SH:AM:8S7)))

; Convert $(time} into Unix time:

exten => 123,n,Set (t inestanp=§ (STRETTME ($ (¢ ine} |Anerica/Los_Angeles
% | $Y-%m-%d SH:8M:$8))

images/01300.jpg
InTa atout functlion “STRFTIME® =-

(syncax]
STRPTIME (<datetime> |<tinezone>|<format >)

[synopsis)
Returns the epoch of the arbitrary date/time string structured as
Gescribed in the format.

[bescription]
This is useful for converting a date into an EEOCH time, possibly to
pass to an application like SayUnixTime or to calculate the difference
between two date strings.

Example:
$ (STRPTIME (2006-03-01 07:30:35 |America/Chicago | $836Y-3888m-3885d
U g S h8H : $3%SM: $8%%8) Jreturns 114

images/01299.jpg
1.6 |

images/00622.jpg
FEED WUL AL ICREION s

(synopsis]
sump to label, saving return address

(Description]
Gosub([[context |Jexten| Ipriority]
i b5 ChAe label areclifiad. savits EHE Tetirn sddEsss

images/00621.jpg

images/00624.jpg
GBS COLEE gy SR E R URLLSIEEER ol L SIS RL R a2 29 g rabinay
xten = telcid,n,Recurn ()
oxten => faxcid,1,Set (CALLERID(all)=Widgets <212-555-34122)

xten => faxcid,n,Recurn()

_0.,1,Gosublf (§[${CHAWNEL:4:2) = 43]7faxcid, 1:telcid, 1]
B, nmial (S [TRONK) 74 LRXTRN:1], . T)

excen =

images/00623.jpg
20, KStEr B L0
r++ in Asterisk 1.6
60 4,5 +4,5 00

gump to label, saving return address

[Description]
- Gosub(([context |1exten| lpriority)

- Junps to the label specified, saving the return address.
+ Gosub([[context, lexten, Ipriority(fargll, ...] [,argN]}])
b Ul ta Ehe Tabel MoREIEIRA. Uavin the L GaACasN

images/00618.jpg
A o s ol Gl b i

[synopsis]
Get the channel count of all groups that match a pattern

[pescription]
Usage: GetGroupmatchcount (groupmatchl@categoryl)

Calculates the group count for all groups that match the spacified
pattern. Uses standard regular expression matching (see regex(7)).
Stores result in GROUPCOUNT. Always returns 0.

Note: This application has been depracated, please use the function
G R COTRE:.

images/00620.jpg
SRR =P A VL IR GNEL=UL0)
exten => 123,n,Dial (STP/§{ERTEN}]

123,10 (set-cid) , Set (CALLERID (all) =Hidgets Inc <312-555-3412>)
123 .1, Return ()

exten
i

images/00619.jpg
WSO (L 1 CORCRRL. [WXEaNLOn, IRETOEIEY]
SRS AR BREORL e

images/00615.jpg

images/00614.jpg
R o

v+ in Asterisk 1.6

6 4,5 +4,5 2@
Get ApsI ceE ID

(pescription]
- GerceeiD: Obtains and displays ADST CPE Ip and other information
in order

to properly setup zapata.conf for on-hook operations.
+ GetCPRID(): Obtains and displays ADSI CPE ID and other information
in order
i ey pRede e AR HABAL . AhE el ShiReiE Ahdnaribae.

images/00617.jpg

images/00616.jpg
ERER SOOUT AP ATREIGN TRUAIUNECOMRLT

(Synopsis]
Get the channel count of a group

(Description]
Usage: GetGroupCount [groupname] [dcategory])

calculates the group count for the specified group, or uses
the current chamnel's group if mot specifed (and non-empty) .
res result in GROUPCOUNT.
Note: This application has been deprecated, please use the function
Bt e

images/00611.jpg
+ d - Copy the disposition forward from the old cdr, after the .
init..

- Clear the dstchannel on the new CDR after reset

- end the original CDR. Do this after all the necc. data.

Clear the dstchannel on the new COR after reset..

- end the original COR. Do this after all the necc. data.
is copied from the original CDR to the new forked CDR.

R - do NOT Teset the new cdr..

soea

siname=val) - Set the CDR var 'mame’ in the original CDR, with

value.
‘val:

. T - Mark the original CDR with a DONT_TOUCH flag. setvar,
answer, and end
. cdr funcs will obey this flag; mormally they don’t honor
the LOCKED
. flag set on the original CDR record.

. Beware-- using this flag may cause CDR's not to have their
end tines

. updated! Tt is suggested that if you specify this flag,
vou might

. wish to use the ‘e flag as well!
v - When the new CDR is forked, it gets a copy of the vars
attached
to the current CDR. The vars attached to the original CDR
are removed
Gnlees tHES cEtlon AN epEed PLEE:

images/00610.jpg
+ Next, if the 'T* option is specified, the original cdr record will
have

+ its ‘DONT_TOUCH' flag set, which will force the cdr_answer, cdr_end,
and

+ cdr_setvar functions to leave that cdr record alome.

+ And, last but ot least, the original cdr record has its LOCKED flag
+ set. Almost all internal COR functions (except for the funcs that
set.

the end, and answer times, and set a variable) will honor this flag
and leave a LOCKED car record alone

This means that the newly created forked cdr record will affected
by events transpiring within Asterisk, with the previously noted
exceptions.

- a - update the answer time on the NEW CDR just after it's been
inited.

. a - update the answer time on the NEW CDR just after it's been
inited.

The new CDR may have been answered already, the reset that
forkedr
- Goes will erase the answer time. This will bring it back,
but..
. does will erase the answer time. This will bring it back,
but.

the answer time will be a copy Of the fork/start time. It
will

only do this if the initial cdr was indeed already
answered.

D - Copy the disposition forward from the old cdr, after the .

. A - Lock the original CDR against the answer time being updated.
. This will allow the disposition on the original CDR to

remain the: same.

images/00613.jpg
TR0 SOONG BDRILCALIID: TRaRLEEID

[synopsis]
Get ADST CPE TD

[pescription]
GetcPEID: Obtains and displays ADST CPE D and other information in

order
Eh TRbEElr Bakie PRCALE . Conl e ah-Nadk sk e

images/00612.jpg

images/00609.jpg
+ This means that:
+ 1. All flags are unset on the cdr record

the start, end, and answer times are all set to zero.

the billsec and duracion fields are set to zero.

the start time is set to the current time.

5. the disposicion is set to NULL.

: Next, unless you specified the 'v' option, all variables will be

+ removed from the original car record. Thus, the 'v' option allows

+ any CDR variables to be replicated to all new forked cdr records

- Without the 'v' option, the variables on the original are
effectively

+ moved to the new forked cdr record

+ Next, if the 's* option is set, the provided variable and value

- are set on the original cdr record.

- Next, if the 'a’ option is given, and the original odr record has an
- answer time set, then the new forked cdr record will have its answer
+ time set to its start time. If the old answer time were carried
forward,

- the answer time would be earlier than tha start time, giving strange
+ Guration and billsec times.

- Next, if the 'd' option was specified, the disposition is copied
from

- the original cdr record to the new forked cdr

+ Next, if the ‘D' option was specified, the destination channel field
- in the new forked CDR is erased.

+ Next, if the ‘e’ option was specified, the 'end' time for the
original

+ odr record is set to the current time, Future hang-up or snding
svencs

+ will not override this time stamp.

+ Next, If the ‘A’ option is specified, the original cdr record will
hava

+ it ANS_LOCKED flag set, which prevent future answer events

+ from updating the original cdr record's disposition. Normally, an

+ 'ANSWERED' event would mark all cdr records in the chain as

© ANSWERED" .

images/00608.jpg
FASLer Ak 1ad
+++ in Asterisk 1.6
ee -5,21 45,82 @e

[Description]

ForkCDR ([options]): Causes the call Data Record to fork an

additional

cdr record starting from the time of the fork call
+ cdr record starting from the time of the fork call. This new cdr
record will
+ be linked to end of the list of cdr records attached to the channel
The original COR is
- has a LOCKED flag set, which forces most cdr operations to skip it,
except
+ for the functions that set the answer and end times, which ignore
the LOCKED
- flag. This allows all the cdr records in the channel to be 'ended’
together
+ when the channel is closed.
- The COR() func (when setting COR values) normally ignores the LOCKED
flag also,
- but has options to vary its behavior. The *T' option (described
below), can
- override this behavior, but beware the risks.

Detailed Behavior Description:

Firsc, this app finds the last odr record in the list, and makes
a copy of it. This new copy will ba the newly forked cdr racord.
+ Next, this new record is linked to the end of the cdr record list
+ Next, The new cdr record is RESET (unless you use an option to
prevent this}

images/00607.jpg
L

+++ in Asterisk 1.4
ge -6.4 +6,20 e

[Deseription]
ForkCDR ([options]): C:
additional

dr record starting from the time of the fork call
- If the option ‘v’ is passed all cdr variables will be passed along

also.

+ options:
- update the answer time on the NEW CDR just after it's been

inited.
forkedr
but..
will,

answered. .

D

a

r

attached

are removed

s(name=val) - Set the CDR var ‘mame’ in the original CDR, w

The new CDR may have been answered already, the reset that
does will erase the answer time. This will bring it back,

the answer time will be a copy of the fork/start time. It

only do this if the initial cdr was indeed already

Copy the dispos:
intc

Clear the dstchannel on the new CDR after reset.

end the original COR. Do this after all the necc. data.
is copied from the original CDR to the new forked CDR..
G5 NOT reset the new cdr.

on foruard from the old cdr, after the .

“val’

- When the new CDR is forked, it gets a copy of the vars

to the current CDR. The vars attached to the original CDR

Gnlens this ortich is Buecitied:

images/00604.jpg
20, KStEr B L0

r++ in Asterisk 1.6

60 -4,7 +4,7 00
Pind-Me/Follow-He application

[pescription]
- Followre(followneid|options)
+ Followse(followmeidl,options]):
This application perforns Find-Me/Follow-Me functionality for the
caller
as defined in the profile matching the <followneid> parameter in
followne.conf. If the specified <followneid> profile doesn't exist

images/00603.jpg
Btk L

(synopsis]
7ind-Me/Follow e application

(pescription]
Fol Lowtte ol Lowmeid|options) :

this application perforns Pind-Ne/Follow-te functionality for the

caller

s defined in the profile matching the <followmeid> paramster in

folloune.conf. If the specified <folloumeid> profils doesn't exist in

followne.conf, execution will be returned to the dialplan and call

axecution will continue at the next priority.

options
s - Playback the incoming status message prior to starting the
Follow-me stepl(s)
a - Record the caller's name so it can be announced to the
callee on each step

n - Playback the unreachable status message if we've run out of
steps to reach the

or the callee has elected not to be reachable.
OO i B2/

images/00606.jpg
Rt R s 2 R

(Synopsi
Porks the C:

Data Record

[Description]

ForkCDR((options)): Causes the Call Data Record to fork an
additional
car record starting from the time of the fork call

options:
a - update the answer time on the NEW CDR just after it's been
initiated.
The new CDR may have been answered already, the reset that
forkedr.
does will erase the answer time. This will bring it back, but.
the answer time will be a copy of the fork/start time. Tt
will,
only do this if the initial cdr was indeed already answered..
D - Copy the disposition forward from the old cdr, after the
anit.
@ - Clear the dstchannel on the new CDR after reset..
@ - end the original COR. Do this after all the necc. data.
i5 copied from the original CDR to the new forked CDR.
R - do NOT reset the new cdr.
S(nane=val) - Set the CDR var ‘name’ in the original CDR, with

val'.
v - uhen the new CDR is forked, it gets a copy of the vars
attached
to the current CDR. The vars attached to the original CDR are
renoved
GilEas thieGectod S anReitiay,

images/00605.jpg

images/00600.jpg
RGO

v+ in Asterisk 1.4

e 4,5 +4,7 @&
Flashes a zap Trunk

[Description]
- Flash(): Sends a flash on a zap trunk. This is only a hack for
- people who want to perform transfers and such via AGT and is
generally
- quite useless oths application will only work on Zap trunks
+ Parforns a flash on a zap trunk. This can ba used
+ to access features provided on an incoming analogue circuit
+ such as conference and call waiting. Use with SendDTMF() to
. perform external transfers

images/00599.jpg
RSO AL DTt IR, CEARERY

{synopsis]
Flashes a Zap Trunk

[bescription]
Perforns a flash on a zap trunk. This can be used

to access features provided on an incoming analogue circuit
such as conference and call waiting. Use with SendDTF () to
erEaval exbernal transEery

images/00602.jpg

images/00601.jpg
Eoidhio bl i LB
<4+ in Asterisk 1.6

sa 1,10 +1,10 ge

-= Info about application ‘Flast

[Synopsis)
- Flashes a zap Trunk
+ Flashes a DAHDT Trunk

[Description]

- Perforns a flash on a zap trunk. This can be used

+ Perforns a flash on a DAHDI trunk. This can be used
to access features provided on an incoming analogue circuit
such as conference and call waiting. Use with Sendbmur(} to
perform external transfers

images/00598.jpg

images/01389.jpg

images/01388.jpg
in Asterisk 1.4

+++ in Asterisk 1.6

g6 -3,3 +3,4 68
are received on the channel. Returns 0 if playback completes
without a digit being pressed, or the ASCIT numerical value of
Qigit if one was pressed or -1 on error/hangup.

s s Sid . TR

images/01391.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
@ -1,5 +1,6 99

sage:
usage:

e §

SAY NUMBER <number> <escape digits>
SAY NUMBER <number> <escape digits> [gendar]
Say a given number, returning early if any of the given
DINF digits are received on the chanmel. Returns 0 if
playback completes without a digit being pressed, or the
ASCIT numerical value of the digit if one was pressed or
-1 on error/hangup.

e

images/01390.jpg
Gange:

SAY NMBER <numbers> <gscape digitss
say a given number, returning early if any of the given

DINF digits are received on the channel. Returns 0 if playback
completes without a digit being pressed, or the ASCIT numerical
value of the digit if one was preased or -1 on -error/hangup.

images/01397.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
e -4,3 +4,4 6@
on January 1, 1970, Coordinated Universal Time (UIC). Returns 0
if playback completes without a digit being pressed, or the ASCIT
numerical value of the digit if one was pressed or -1 on error/hangup.
. s Dend 3 M

images/01396.jpg
Usage:

SAY TIME <time»> <escape digite>
say a given time, returning early if any of the given DTMF
Aigits are received on the channel. <times is number of seconds
elapsed since 00:00:00 on January 1, 1970, Coordinated Universal
Time (UTC). Returns 0 if playback completes without a digit being
pressed, or the ASCII numerical value of the digic if one was
SRRt OF <1 0l ArEACIBRAGIE .

images/01393.jpg
Usage:

AT FHONREIC Sgrringr <escepe GlalEss
Say a given character string with phonetics, returning early
if any of the given DINF digits are received on the channel.
Returns 0 if playback completes without a digit pressed, the
ASCTT numerical value of the Gigit if one was pressed, or -1
o0 srcee RanguD:

images/01392.jpg

images/01395.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/01394.jpg
A AGTArIeK 1.8

+++ in Asterisk 1.6

@8 -3,3 +3,4 @8
given DTMF digits are received on the channel. Returns 0 if
playback completes without a digit pressed, the ASCIT numerical
value of the digit if one was pressed, or -1 on error/hangup.

i Pine Do o o

images/01367.jpg
1:31:6 |

images/01369.jpg
in Asterisk 1.4
~++ in Asterisk 1.6
9 ~4,3 +4,4 00

o not support the reception of text. Returns the decimal value of the
character if one is received, or 0 if the channel does nOE SUDPOIT Lext
reception. Returns -1 only on error/hangup
¢ Ghuna Dasd i

images/01368.jpg
Usage: RECEIVE CHAR <timeout>

Recelves a character of text on a channel. Specify timeout Lo be
the maximun time to wait for input in milliseconds, or 0 for infinite.
Most channels do mot support the reception of text. Returns the decimal
value of the character if one is received, or 0 if the channel does not
support text reception. Returns -1 only on error/hangup.

images/01375.jpg
in Asterisk 1.4

+++ in Asterisk 1.6

60 -8,3 +8,4 00
of seconds of silence allowed before the function returns despite the
lack of demf digits or reaching timeout. Silence value must be
preceeded by "s=* and is also optional

s Tune Tead = b

images/01374.jpg
Usage: RECORD FILE <filename> <format> <escape digits> <timeout> \
[offset samples] (BEEP] [s=silence]
Record to a file until a given dtmf digit in the sequence is
received. Returns -1 on hangup or error. The format will specify what
kind of file will be recorded. The timeout is the maximm record time in
milliseconds, or -1 for no timeout. 'Offset samples’ is optional, and, if
provided, will seek to the offset without exceeding the end of the file
flence* is the number of seconds of silence allowed before the function
returns despite the lack of dtmf aigits or reaching timeour. Silence
iTok eike BY DEBCIRNSE T o aHE AR Bl orlaus

images/01377.jpg
Usage: SAY ALPHA <number> <escape diglitss

Say a given character string, returning early if any of the given
DIMF digits are received on the channel. Returns 0 if playback completes
without a digit being pressed, or the ASCII numerical value of the digit
¥ cooan:piessed or st nn:-erroriianguD:

images/01376.jpg
1:31.6 |

images/01371.jpg
Usage: RECEIVE TEXT <timeout>

Receives a string of text on a channel. Specify timeout to be the
maxinun time to wait for input in milliseconds, or 0 for infinite. Most
channels do not support the reception of text. Returns -1 for failure or

L TN .- A S Su—-J—

images/01370.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/01373.jpg

images/01372.jpg
=== ICAREArIeK 1.4
+++ in Asterisk 1.6
@8 -2,3 +2,4 a6

Receives a string of text on a channel. Specify timeout to be
the maximun time to wait for input in milliseconds, or 0 for infinite.
Most channels do not support the reception of text. Returns -1 for
failure or 1 for success, and the string in parentheses.
Y Nahe Hhad i3

images/01378.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
9 -3,3 +3,4 09
are received on the chamnel. Returns 0 if playback complstes without
a digic being pressed, or the ASCII mumerical value of the digit if one
was pressed or -1 on error/hangup.
¢ Hons Dead < b

images/01380.jpg
Usage: SAY DATE <date> <escape digits>

Say a given date, returning early if any of the given DTME
digits are received on the channel. <date> is number of seconds elapsed
since 00:00:00 on January 1, 1970, Coordinated Universal Time (UTCi.
Returns 0 if playback completes without a Qigit being pressed, or the
ASCIT numerical value of the digit if one was pressed or -1 on
error/hangup.

images/01379.jpg
131.6 |

images/01386.jpg
| 1.4 |

images/01385.jpg
e
c++ in Asterisk 1.6
9 7,3 +7,4 80
fuse/share/zoneinto. Defaults to machine default, Returns 0 if
Playback completes without a @igit being pressed, or the ASCII
numerical value of the digit if one was pressed or -1 on
error /hangup.
R o

images/01387.jpg
s o

S TR o CLL i
Say a given digit string, returning sarly if any of the given
DTUF digits are received on the chanel. Returns 0 if playback
completes without a digit being pressed, or the ASCII munerical
RIS S8 i A I Aok i GYREERE G DR R AN,

images/01382.jpg
filename
SIVAR]
aora
Bborh
dore

Y

Tori

Asound file

Avariable

Day of the week (e.g. Monday or Tuesday)
Name of the month (e.g., January)

Ordinal number of the day of the month (e
Year

Hour (12-hour format)

Hour (24-hour format); 07 is called out as zero-seven

Hour (24-hour format); 07 is called out as seven

Minutes

am.or p.m.

Today, yesterday, or the contents of ABQY.

(Says nothing for today), yesterday, the day of the week, or the
contents of 8aY

‘Time, including minutes, in 24-hour format

first, second, third)

images/01381.jpg
IR ARCOEIER 1.8

+++ in Asterisk 1.6

68 4.3 +4,4 80
on January 1, 1970, Coordinated Universal Time (UTC). Returns 0 if
playback conpletes without a digit being pressed, or the ASCTT
nunerical value of the digit if one was pressed or -1 on
error/hangup

i i paRd &N

images/01384.jpg
DEsEN SAETATSEINE YCIRI-CAl - coga i (FOraul) (Timenony.
Say a given tine, returning early if any of the given DTUF
digice are received on the channel. <tine> is mumber of seconds
elapsed since 00:00:00 on January 1, 1970, Coordinated Universal
Tine (UTC). [format] is the format the time should be said in.
See voicemail.conf (defaults to "ABAY ‘digits/at’ IMp’). Acceptable
values for [timezone] can be found in /ust/share/zoneinfo. Defaults
to machine default. Returns 0 if playback complates without a digit
being pressed, or the ASCIT numerical value of the Qigit if one was
e P S

images/01383.jpg

images/00196.jpg
$ lame --decode music.mp3 music.wav
S sox -V music.uav -r B00D ¢ 1 -w music.raw
§ So% -W-RuSiciwey ~£-B000 <o 1 “w imsic oe

images/00195.jpg
idefault)
mode=files ; Read music files in an Asterisk native formac
directory=/var/1ib/asterisk/moh-nat ive

Enncomanng i A mio: 01 em Hhranion modae:

images/00197.jpg
% cd /werydibiasthrlak/moh-Bative)
$ for i in *.uav; do \

sox §1 -r 8000 -c 1 §(basename §i .wav).raw; \
sox §i - 8000 -c 1 §(basename $i .wav).gsm; \
$ rm *.wav

images/00192.jpg
waten = 20, 1.QueuR NppeEtquete) . S iawe
exten => 25,1, AgentLogin{} login after eall

images/00191.jpg
18ppREL- el
menber => Agent/1001 ; Add agent 1001 to the support-queue
member => Agent/1002 ; ... 1002 ...

images/00194.jpg
Idezan k]
mode=quietmp3
e e K N

images/00193.jpg
SXLEn == 8du, L Aaar)
exten => 222,n, Set (MUSICCLASS () =default)
; set misic-on-hold class to "default”
sxten => 222,n,WaltMusicOnHold(20)

play music-on-hold for 20 seconds

2220, Hangup ()

images/00188.jpg
B ckffork vkt o o Bl
 Charging the virtual calling card

cxten > _BSXKK.,1,Answer ()

oxten => _S8XKX., 2, Set (DB (CallingCard/$ (SXTEN:2:3}
xten =» _8SXKK., 3, SayNunber (§[EXTEN:5})

oxten => 88XKX.,4,NoOp(CallingCard for ${EXTEN:2:3} has a new balance of
o (EXTANS) cents.)

sxten > _BSKKK.,5,Hangup()

(mxren:s))

[£ron-internal]
 personal calls
oxten => _99.,1,GotoTf($[$(DB(CallingCard/$(CALLERTD (num) } > 0]72:200)
exten =» _99.,2, Set (DB (CallingCard/$ [CALLERID (num) }) =$ [08 (CallingCard/
% (CALLERID (num) }) - 11)

exten =» _99.,3,Dial (local/$ {EXTEN:2})

exten > _99.,104, Set (DB (CallingCard/$ [CALLERTD (num))) =§ [DB (CallingCard/
%$(CALLERID (num) }) + 11)

" 99..200,NoOo(Calling card

ount & [CALLERID (mum) s ewpty:)

images/00190.jpg
Lagents]
i agent_nunber, password, nane
agent => 1001,1234,Ron Popeil
agent => 1002,1234,Don Dinglehopper

images/00189.jpg
SRR B0 s s SR AT
oxten => [99.,202, SayNumber (0)
exten => _99.,203, Hangup()

The current account balance may be retrieved by dialing 98

exten
exten
e

98,1, Answer ()
98,2, SayNunber ($ (DB (CallingCard/$ (CALLERTD (num) 11 1)
G54 Eansoni3

images/00295.jpg
(123456)
type=friend
nsecure=very;
nat=yes
usernana=123456
Fromuser=12345
£romdonain=my-voip-provider.con
secrec-secrat
nost=my-voip-provider.com

images/00294.jpg
FOLLE AR Shoy DRATS.

Name/Username Host mask rort status
Iaxmoden 127.0.0.1
(D) 255.255.255.255 4570 unnonitored

1 1ax2 pears [0 online, D offline, 1 unmonitored]
ey

images/00297.jpg
LLax-atitl
S—

X..1,Dial (SIP/123456/%{ EXTEN}]

images/00296.jpg
axssnl

i wr——

images/00291.jpg
when using most modems’ Class 2 or Class 2.0 implementations. Generally
any problens encountered in Class 1/1.0 can be resolved by modifications
to BylaFAX, but usually any problens encountered in Class 2/2.0/2.1 will
require the modem manufacturer to resolve it

If you're unsure and your modem supports it, use Class 1.

This modem looks to have support for Class 1 and 1.0,
How should it be configured [117

fnm, this looks like a Class 1 modem.
Product code (ATT0) is "spandsp’.

other information (ATT3) is ww.soft-switch.org®.
DTE-DCE £low control scheme [default)?

Modem manufacturer is "spandsp*.

odem model is *IaXmodem:.

Using prototype configuration file iaxmode

The madem canfiguration parameters are

Modenmesetcads *ATHL\RAT+VCT]

kil e Caats

images/00290.jpg
Now we ‘are-going to probe the Lty port Lo figure out the-type
of modem that is attached. This takes a few seconds, so be patient.

Note that if you do not have the modem cabled o

port, or the

nodem is turned off, this may hang (just go and cable up the modem
or turn it on, or whatever).

Probing for best speed to talk to modem: 38400 OK.

About fax classes:

he difference between fax classes has to do with how HylaFAX interacts

with the modem and the fax protocol features that are used when sending
or receiving faxes. One class isn’t inherently better than another;
however, one probably will suit a user's needs better than others.

Class
Class
Class
Class
Class

1
2
2
1
Z

HylaPAX

relies on HylaFAX to perform the bulk of the fax protocol.
relies on the modem to perform the bulk of the fax protocol
.0 is similar to Class 2 but may include more features.

0 is similar to Class 1 but may add v.34-fax capability

1 is similar to Class 2.0 but adds V.3d-fax capability.

generally will have more features when using Class 1/1.0 than

images/00293.jpg
syenareLl
bindport = 4569
bindaddr = 0.0.0.0

{iaxmoden]
riend

images/00292.jpg
vooRG g NEW OOULEIRESGARY. TLAE. JEREF SROULISIFIRLNES GRG JOONE LI « LR A AN 4
creating fifo /var/spool/hylafax/FIFO.CtyTAX0 for faxgetty... done.
Pone setting up the modem configuration.

G

P you want to run faxaddmodem to configure another modem [yesl? no

1

Should T run fax modem for each configured modem [yes)?
/usr/sbin/fax moden tEyIAXO

Done verifying system setup.
fvar/spool /hylafax

P

images/00289.jpg
THYDADFONTaNLL SRV O EIRURETE0N. DRRSARLANE Brul

Countrycode: 1
areacode: 03

FAXNumber : 1 988 555 4091
LongDistancePrefix: 0

Internationalerefix: 00

pialstringrules: etc/dialrules
sessionTracing: 11

RingsBeforeAnswer : 1

speakervolune: ot

Gettyaras: b ¥l ax st
LocalTdentifier: “NothingSetup®

ragLineFont ete/lutks1s. pet

ragLineForma “From 331 |%c|Page 332 of ¥aT-

MaxRecvrages: 25

. G

images/01399.jpg
Usage: SEND IMAGE <image>
Sends the given image on a channel. Most channels do not
support the transmission of inages. Returns 0 if image is sent,
or if the channel does not support image transmission. Returns
-1 only on error/hangup. Image names should not include
extensions.

images/00288.jpg
W SHAULEY TR SI0THN0 SHap- ORI

country code [11? 1
area code (17 403

Phone number of fax moden [+1.999.555.1212)7 +1 888 555 4091

Local identification string (for TSI/CIG) [*NothingSetup")?

Long distance dialing prefix [1]7 1

Incernational dialing prefix [011)7 011

Dial string rules file (relative to /var/spaol/hylafax) lete/dialrules]?
rracing during normal server operation [11?

Tracing during send and receive sessions [11]7

Protection mode for received facsimils (060017

Protection mode for session logs (060017

Protection mode for EyIAXO (060017

Rings to wait befors answaring [1]7

odem speaker volume (off]7

Connand 1ine arguments to getty program [-h %1 dx_8s")?

Fathnane of TST access control list file (relative to /var/spool/hylafax)

Fons

Pathname of Caller-10 access control list file (relative to
/var/spool/hylatax) [**17

rag line font file (relative to /var/spool/hylafax) [ete/lutRsis.pofl?
Tag line format string [*From $31|3c|Page 8P of $57°]7

Tine before purging a stale UUCE lack file (secs] (3017
Hold UUCE lockfile during inbound data calls [Yes]?

HO1d TUCE lockfile during inbound voice calls [Yes]?

Percent good lines to accept during copy guality checking [3517

ax consecutive bad lines to accept during copy quality checking [517
ax nunber of pages to accept in a received facsimile (2517

syslog facility name for ServerTracing messages [daemon]?

Set UID to 0 to manipulate CLOCAL [=*]7

Use-available pricrity:job scheduling mechanism, ("1

images/01398.jpg

images/00284.jpg
deblan:~# apt-gat install -y hylalax-sarver

Reading Package Lists... Tone

2uilding Dependency Tree... Done

The following extra packages will be installe
enscript gs-common gs-esp hylafax-client libcupsimage? libcupsys? mailx
netamatl ps

suggested packages:
Qv postscript-viewer 1pr gs-pafencrypt gs-cik-resource mgerty-viewfax

nylafax-doc o

Recommended package:
psfontngr netpbn transfig

The following NEW packages will be installad:
enscript gs-common gs-esp hylafax-client hylafax-server 1ibcupsimage?
Libcupsys2 ma

1

t

opdate /var/spool /hylafax/status/any.info.

HylaFax configuration parameters are:

[1] Init script starts faxg vyes
[2] Init script starts hfaxd vyes
[3] start old protocol: no
[4] start paging protocol: no

ATe these ok [yes]?
Modem support functions written to /var/spool/hylafax/etc/setup.modem.
configuration parameters written to /var/spool/hylafax/etc/setup.cache.

Restarting HylaFAX server processes.

Should T restart the HylaPAX server procasses [yes]?

You do not appear to have any modens configured for use. Modems are
configured for use with HylaFAX with the faxaddnodem(s) command.

Do you want to run faxaddmodem to configurs a modem [yes|?

Done verifying system setup.

opdating /atc/hylatax/setup.cache from /var/spool/hylafax/etc/setup.cache.
Updating /etc/hylatax/setup.moden from /var/spool /hylafax/etc/
setup.modem.apt-get -y install hylafax-server

/var/spool /hylatax

Starting HylaFax: faxq haxd faxgetty.

I

images/00283.jpg
URRIATL P BT SLLS AEIDNCIT0 v il SR LIoeh R noe:

Broadcast message from root@debian (pts/1) (Sat May 5 00:
The system is going down for reboot NOW!
Sabdan- fusp iare At dan-5 4. 0b

+49 2007)

images/00286.jpg
Toi: DAV 8 ByLarix RChAdRISC DXOCAES Iuoning. faxgwlll .De
restarted shortly, as soon as some other work has been completed.
Can I terminate this faxg process (4048) (yes)?

Should T restart the HylaFax server processes [yes]?
/etc/init.d/hylatax start

Not starting HylaFAX daemons since they are already running.

Lol

Modens are configured for use with HylaPAX with the faxaddnodem(s)
comnand.
D T B i B St el L A i

images/00285.jpg
PRLLER LTS AT OTNIRIAR SR (3 80 (TRXNELIY.

1
update /var/spool/hylatax/status/any. info.
HylaPAX configuration parameters are
[1] Tnit seript starts faxq:

[2] Tnit scripe starcs hfaxd

(3] Starc old protocols

[4] starc paging protocol:

. WL 3

ves
yes

images/00280.jpg
Revita. SN LA ER

cunar uucp:uuce
node 660

port. 4570
refresh 50
server 127.0.0.1
peernane. iaxmoden
secret password

AR s

images/00279.jpg
DORRAEL S ML S RO/ IO U5 3 D EOWAK, [8L0 /aonen/ Ry TaRD
AR R R R R

images/00282.jpg
DRPAAN Y S UL S WO/ TENONME U5 3 BF - WEALE, /YREY LG SAXMAON
debian: fust/sre/iaxmoden-0.3.0¢ touch /var/log/iaxmoden/tEyTAX0
bdebian: /usr/sro/ iaxmoden-0.3.04 touch /var/log/iaxmoden/iaxnoden
Jebian: /usr/sro/iaxmoden-0.3. 0%

images/00281.jpg
GERIEHS A VAT RIU I MOURTI-V S D ety SERUD eI 1O RL et

% /use /bin/iaxnoden ttyIAX0* >> fetc/inittab
JeKLan: fuss) ase/idamoden-0. 3. 0%

images/00287.jpg
PRCAN-PRLZL LORLIOUSR ¥ cupnBaeed S0 [REele Trpuaen:
Ok, time to setup a configuration file for the modem. The manual
page config(5) may be useful during this process. Also be aware
that at any time you can safely interrupt this procedure.

Heaidiiia Brhaluler Conla ELLs Nablanael/boistasisvalcantia

images/00278.jpg
PROAEILY VSE BLE/ . AT~ L 3 LU MRS ST Oy L SAmO
debian: fusc/sre/iaxnodem=0.3.08

images/00273.jpg
debian:~# cd /usr/src
debian: [iss? v

images/00272.jpg
deblan;~# apt-get —i install g+ LILEILL-tepls 11LLifrd libCifrd-dev
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
g++ 1ibjpegé3 libjpege2-dev 1ibtiffxx0 zliblg-dev

Lisi)

Setting up zliblg-dev (1.2.2-4.sarge.2]
Setting up libtiffd-dev (3.7.2-7)

o

images/00275.jpg
SELLAIL J MNE Y LOW - O SRRNMOaI. U800
i s = e s S U

images/00274.jpg
GEDLAR: USE ATy Lol ~Rval LAmnaEm-y 3 0. LAT, 2
i axmodem-0.3.0/

i axmodem-0.3.0/iaxmoden. ¢
iaxmodem-0.3.0/iaxmoden. init .debian
iaxmodem-0.3.0/Makefile. in
iasxmodem-0.3 .0/CHANGES
iasmodem-0.3.0/1ib/
iaxmodem-0.3.0/1ib/spandsp/

3

iaxmoden-0.3.0/1ib/spandsp/Makefile. am

L)

iasxmodem-0.3.0/10D0
iaxmodem-0.3.0/FAQ
iaxmodem-0.3.0/build
iaxmodem-0.3.0/iaxmoden, init . fedora
Bakdan fusi farce:

images/00269.jpg
stefan@pbx:~5 ahn create widgets_app

create

create components/simon_game

create components/disabled/stomp_gateway create components/

ami_remote

create components/restful_rpc/spec create config

create .ahnrc

create components/simen_game/simon_game.rb create
components/ami_remote/ami_remote . rb

create components/disabled/stomp_gateway/stomp_gateway.rb create
components/disabled/stomp_gateway/config.yml

create components/disabled/stomp_gateway/README. markdown create
components/restful_rpe/restful _rpe.rb

create components/restful_rpc/config.yml

create components/restful_rpc/README.markdown create
components/restful_rpe/example-client.rb

create components/restful_rpc/spec/restful_rpc_spec.th

create config/startup.rb

create dialplan.rh

create events.tb

create README

create Rakefile
stefanpbx:~5 cd widgets_app
Bk aFab s Telioat e, SnE

images/00268.jpg
i

e

* Bpackage phpAGI_examples
+ @version 2.0

*

function my_ip(sSagi, $peer)

<

$ip = ‘unknown’;

$asm = $agi->new_AsteriskManager();

if ($asm->connect ()}

¢
$peer = $asm->command (*sip show peer $peer’);
$asm->disconnect ()

if (1strpos(gpeer(‘data‘l, "i'))
echo gpeer[‘data’];
else
[
sdata = array();
foreach (explode ("\n", Speer['data’]) as §line)
t
$a = strpos(‘z’.$line, *:')-
if(sa >= 0) §dataltrim(substr(§line, 0,

erim(substr(§line, Sa

)
1

if (isset(gdata(Adar->1p"]))
[
$ip
$ip
)

explode(’ ', trim($datal'Addr->Ie‘]});
$iplol;

)

$agi->textlwav("Your IP address is §ip');

sa))]

images/00271.jpg
interdal |
case extension
when 22
play "hello-world"
hangup
else
dial "STP/#(extension)
ena

images/00270.jpg
etaran@ploc - /widgule_appe sim Stexe
THEG ihi Kdbanredan TniElal taadl

images/00277.jpg
i s Aol et s, A s cerice sallboceoon b on 4
R KR F e Lk - I T

images/00276.jpg
REAIET I MEL T ML S AANCAAN- L A EORLIGREET e NAKE
checking for a BSD-compatible install... /ust/bin/instal
checking whether bulld environment is sane... yes
checking for gawk... no

checking for mawk... mawk

checking whether make sets §(MAKE)... yes

checking for gee... gec

L]

C ~DMODEMVER=\"0.3.0\" -DDSPVER=\"spandsp-0.0.3-5apshot-20070223+\" —
DTAKVER=\"1ibiax2-0.2.3-CVS-20060222+\" -Wall -g -DSTATICLIBS -
DUSE_UNIX98_PTY -std=c99 -I1ib/libiax2/src -Ilib/spandsp/sre -c imxmoden.c
cc ~DMODEMVER=\"0.3.0* -DDSPVER=\’spandsp-0.0.3-snapshot-20070223+\" ~
DTAXVER=\"1libiax2-0.2.3-CVS-20060222+\" -Wall -g -DSTATICLIBS -
DUSE_UNIX98_PTY -std=c99 -11ib/libiax2/src -Ilib/spandsp/sre iaxmodem.o
Lib/spandsp/src/ . 1ibs/1ibspandsp.a 1ib/1ibiax2/sre/ . 1ibs/libiax.a -0
faxmoden -1m -1util -1tiff

foeil

AR TR e e < b TR

images/00262.jpg
print STDERR *. Complete
print STDERR "§tests tests completed, $pass passed, $fail failed\n';
print STDERR *

images/00261.jpg
print STDEER "6a. Tenting’recorac playback..
print "STREAM FILE testagi \"\"\n':

my §result = <STDIN>;

scheckresult (Sresult);

images/00264.jpg
*ETUBELDRRIPHD 1,
<?php

Safety setting. The script won't run for
longer than 8 seconds.
R R P
set_time_limit(8);

Deactivate the output buffer.
Alternatively, we could execute

£flush(STDOUT) ;

after every output.

HEEH R
ob_implicit_lush() ;

Deactivate PHP error reporting
R R
error_reporting(0) ;

We need STDIN and STDOUT file handles
to commnicate with Asterisk
R R
if (1defined(’STDIN'))

dofine ("STDIN' , fopen('php://stdin’ , 'r'));
if (1defined(’STDOUT"))

define (*STDOUT*, fopen('php://stdout’, w’'));
if (1defined(’STDERR'))

define (*STDERR’, fopen('php://stderr’, "w'));

images/00263.jpg
fwrite (STDOUT, "BEFEHL $value \"\"\n");

; S

images/00258.jpg
print STDERR "4. Testing
print

my $result = <STDIN
e T e

AY NUMBER 192837465

* Baynumber:
\An

images/00260.jpg
print STDERR "6. Testing ‘record”
print "RECORD FILE cestagi gem 1234 3000\n*;
my $result = <STDIN>;
scheckresult (Sresult);

images/00259.jpg
print STDERR "5. Testing ‘waitdtmf®
print "WAIT FOR DIGIT 1000\n’;

my $result = <STDIN>;

EaNskraR T AR LY

images/00266.jpg
Before the number is announced,
we wait one second.
A R
furite(STDOUT, "EXEC Wait 1 \"\"\n");
££1ush(STDOUT) ;

The numbers are read, one after the other.
There is a one second pause between mumbers
AR R

foreach ($Lottonunber as $valua) [
furite (STDOUT, "SAY NUMBER $value \'\"\n");
££1ush (STDOUT) ;
furite (STDOUT, "BXEC Wait 1 \"\"\n");
££1ush (STDOUT) ;

.

images/00265.jpg
The variables from Asterisk are read and saved
in the $agi array.
R

sagi = array();

uhile (1feof (STDIN))

t
$tmp = trim(fgats (STDIN, 4036)) ;
if (($emp == **) || ($tmp "))
break;
$varl = split(':*,$tmp);
$name = str_replace(‘agi_’, ", $varl(0]);

$agil$name] = trim($varl(1]);

An array with 6 random but not repeating
numbers from 1 to 49 is generated.
R R

SLotteonumbers = array();
G0 {
$ZMumber = rand(1,49) ;
if (array_search ($liumber, $Lottonumbers)
$Lottonumbers[] = $Number;
3
} while (count($Lottonumbers) < 6);

FALSE)

images/00267.jpg
SECERRY: HoLAIN L ADGNGE {1
exten => 1234,2,AGI (lotto.php)
exten => 1234,3,Hangup()

images/00251.jpg
% GEtap some wErieble
By RRGTE TG BEGELE 5oy Wy SERYL S5 W SAReT S0

images/00250.jpg
#!/usr/bin/perl
AT R

images/00253.jpg
print STDERR "AGI Environment Dump:\n®;
foreach my §i (sort keys ¥AGI) (

print STDERR * -- §i = SAGI(§i}\n';
3

images/00252.jpg
while (<STDIN>) {
chomp;
last unless length(s_);
if (/ragi_ (W \i\s+(.A)$/)
SAGI($1} = §2;
)

images/00249.jpg
exten => 1234,1,Answer ()
exten => 1234,2,AG1 (agi-test.agi)
Sk = 129085 Ranavait)

images/00248.jpg
Bxten =x-1adi,lianswerd)
exten => 1234,2,AGT (ny-agi.php)
dtan <o JANL; A Mangui)

images/00255.jpg
print STDERR "l. Testing ‘sendfile’
print "STREAM FILE beep \"\"\n";

my $result = <STDIN>;

Echeckresult (Sreault) i

images/00254.jpg
b ‘cusckrasal:
my ($res) = 8_;
my $retval;
Stests+s;
chomp $res;
if (§res =~ /°200/) (
Sres =~ /result=(-7\de)/:
if (1lengthisi)) (
print STDERR "FAIL (§res)\n';
$Eailess
) else (
print STDERR "PASS (§1)\n
$passee;

)

) else {
print STDERR "FAIL (unexpected result ’Sres’)\n’
Sfailee;

)

images/00257.jpg
print STDERR "3. Testing '‘sendimage
print "SEND IMAGE asterisk-image\n";
my $result = <STDIN
R PR T

images/00256.jpg
print STDERR "2. Testing ‘sendtext’.
print "SEND TEXT \'hello world\"\n:
my §result = <STDIN:;
e T R

images/00240.jpg
¥ sZyRCoUREHAg: LAJRCeNnLt
Mailbox: 123123123

New messages: 0
014 messages: 0

T L W vy ——

images/00239.jpg
fdata = new AstPacketData;
Sdata->AddKVPair(‘Action’ , ‘MailboxCount’
Sdata->AddKVPair(‘Mailbox’ , Smailbox)
Sdata->AddKVPair(‘Actionid’, '2');
Spacket = new AstPacket;
Spacket->SetAstracketType(‘Action’);
Spacket->SetAstPacketData($data) s
Sami->Sendracket (Spacket 1;

 Read the response packet bearing ActionTd 2:
.

Srpacket = Sami->GetResponse('2');

//acho $rp->Tostring(];

$xData = $rPacket->GetAstPacketbata();

ér = $rData->GetAll();

acho *New messages:

o {int) trim($r [Newsessages: ‘1) ,

echo "01d messages: *, (int)trim(sr[‘Oldwessages: ‘1),

scho *\n*;

¢ Log out -- mot strictly necessary, but cleaner
.

Sami->Logof£() ;

¢ Unfortunately, StarAStAPT isn't totally discrest
) It does this:

secho "Logoft called from somewhere
$socket_close(Sthis->nsocket) ;

ccho *\n";

images/00242.jpg
HELD S/ T OREC G0 F DR OR/ IB LETIOR iraD Rt TR LI NARLOg T
%susernane-adninksecrat=secret

http://localhost: 8088 /asterisk/nanager?actionsMai 1boxCountsmallbox=123

images/00241.jpg
REEHOE AL
enabled=yes
enablestaticeyes
bindaddr=127.0.0.1
bindport=8088
ol R AL A

images/00238.jpg
#17anz/bin/phy ~q
< php
§ option -q tums off the header cutput when executing CGT-PHP
if (sarge 1= 2) |

echo "Brror: You mist specify a mailboxi\n';

exit(1);

¢ The first argument after the program name is the mailbox:
smailbox = Sargv(il;
ccho *Mailbox: Smailbox\nin®s

¢ Tnclude StarAStAPT:
require_once *./STArASLAPT/STarASTART .phD”

¢ connect and log in
¢
Sami = new AstClientConnection();
if (sami->Login(‘admin’, ’secrets’, '127.0.0.1
$rp = Sami->GetResponse('1’);
J/echo srp->Tostring();
) else |
exit(l);

5038 1) ¢

’

¥ Send the following packet:
¢ Action: MailboxCount

¢ Mailbox: Smailbox

¢ Actionid: 2

"

images/00247.jpg
agi_request: programname.php
agi_channel: zap/1-2
agi_language: en
agi_callerid: Joe Bloggs
agi_context: external
agi_extension: 1234
agi-prisrity: 4

images/00244.jpg
NEADIV SOGRAIIN S HB0 00/ SR CaG- AV NI TGt
%susernane-adninksecrat=gecrats

<ajax-response>
<response typs
<generic
response='Success
messages"Ruthentication accepted’ />
</response>
</ajax-response>

object! ia-tunknown’>

alhost :8088 /as terisk /meml 7actionsiai lboxCountimai lbox=123

nttp:/

<ajax-responses
<response typ:
<generic
response='success’
messages Mailbox Message Count’
mailbox=r123
nevmessages="0
olanessages="0" />
</responae>
/ajax-responzes

object’ ia=’unknown’>

nttp://localhost:8088/asterisk/manl 7act io

<ajax-response>
<response types'object’ ids’unknown’>
<generic
response="Goodbye:
message='Thanks for all the fish.’ />
</response>
nazd Sty

images/00243.jpg
Dutgss {0t ioBL: RRAR /aptal: SR TAMIBD TRC T el =Tagin
%susernanesadninisecretasecrets

Response: Success
Nessage: Authentication accepted

http://localhost 5085 /asterisk/rawman?action=Nai lboxCountamai lbo

Response: Success
Nessage: Mallbox Message Count
Nailbox: 123

NewNessages: 0

olavessages: 0

http://localhost ;8085 /asterisk/rawman?action=Log

Response: Goodbye
adsaoe: Thenks tor ali the Eiak.

images/00246.jpg
BELRY/ FIORNTIONT 1 0080/ AN TR AR/ TEME T A LInariny
Gk S

images/00245.jpg
£7 E AR DUlie TI8 TOL0IVSE- TRapenoR, S
// simulate it here:

var responseText = 'Response: Success\n’
+“Message: Mailbox Message Count\n’
+Mailbox: 123\n’

v Newessages: O\n’

rrOlaMessages: O\n’;

/1 Escape single quotation marks:
responseText = responseText.replace(/\'/g, "\\'*);

// Wrap tields in quotes:

responseText = responseText.replace(/~([a-2\d]*):\s*{.*) /gni,
% vrs1riisar,n)

/1 convert to chject

eval('var packet = {'+ responsel

xt +10)s

// Now you can access the fields as you would with any object:
Rl bl Sun i Mo s. ol o e

images/00229.jpg
S N RAO) Pl S AL LMY VO
Action: Command
Synopsis: Execute Asterisk CLT Command
Privilege: command,a
pescription: Run a CLT command.
Varisbles: (Names marked with + are required)
“Command: Asterlsk CLI command to run
ActionID: Optional Action id for message matching.

images/00228.jpg
Logos
NailboxCount
Nailboxstatus
Nonitor
originate
Park.
Parkedcalls
PauseMointor
Ping

Blayomis

Queushdd
Queuepause

QueueRemove
Queues
Queuestatus
Redirect
setcoRUserrield
setvar

strpeers
Stpshowpser
status

stopion tor
UnpauseMonitor

paatecont iy
UserBvent
e

call,all
call,all
call,all
call,all
call,all
call,all
call,all

agent, all
agent, a1l

agent, a1l
call,all
call.all
callall
system,all
system,all
call,all
call.all
call,all

contig,all
user,all

Logoff Manager

Check Mailbox Message Count

Check Mailbox

Monitor a channel

originate Call

Park a channel

List parked calls

Pause monitoring of a channel

Keepalive command

Play DONE signal on a
specific channel.

244 interface to queue.

Makes a queue member
temporarily unavailable

Remove interface rom queve.

Queues

Queue Status

Redirect (transter) a

Set the COR Userrield

Set Channel Variable

List SIP peers (text format)

Show SIP peer (text format]

Lists channel status

Stop monitoring a channel

Unpause monitoring of a
channal

update basic configuration

Send an arbitrary event

R R AN R T

images/00231.jpg
Login successful?:
0
expect
-re "Response:\\s+srror® {
send_user "Login failed.\n"
exit 1

“re "Response:\\s*Success" (
send_user "Logged in.\n"
4 Guery the number of messages in the mailbox:
send "Action: MailboxCount\mMailbox: $mailbox\n\n®

)

expect {
-re "Response:\\s+Error” {
send_user "Query of mailbox failed.\n®
exit 1
)
-re "Response:\\s+success® (}
)
oxpect {
-re "Newdessages:\\s* (\[\\d]*]" {
send_user "New messages: Sexpect_out(1,string)\n*
)
)
oxpect {
~re "OldMessages:\\s* (\[\\al*] " {
send_user 0ld messages: Sexpect_out(1,string)\n®
)
)

 Tog out -- not strictly necessary, but cleane
et SRy

images/00230.jpg
R TOSCI NN
¢
¥ Usage: ./ymcount,exp 12340default

¥ The user account from manager.conf:
set username "admin
set secret "secret
set host *127.0.0.1%
set port "5038"

it {[llength aravl 1= 1} (
send_user "Error: You must specify a mailbox!\n
exit 1

)

First argument is the mailbox
st mailbox [lindex Sargv 0]
send_user "Mailbox: $mailboxin

Mute output to stdout:
log_user 0

¢ Open comnection to AMT:
spawn telnet Shost $port

¢ Just in case telnet aborts bacause it cannot connect
oxpect_before eof {

send_user "Failed to comnect.\n®

exit 1
)

 Wait for the text "Manager’; once received, send a login packet:
.
expect "Manager® {
send_user Connected.\n’
send "Action: Login\nUsername: Susername\nSecret: Ssecret\n\n’
4 Please note that telnat automatically converts line feeds
¥ {\n) to CR TF (\r\n) - so you must not write \r\n here

images/00237.jpg
R - A
Privilege: system,all
Message: Reload Requested

Event: ChannelReload
Privilege: system,all

Channel: SIP

ReloadReason: RELOAD (Channel module reload)
Registry_Count: 0

Peer_Count: 0

Dees Courits: O

images/00236.jpg
GSSELELEEIILY,

- Parsing '/etc/asterisk/manager.cont’: Found
- Manager 'admin’ logged on from 127.0.0.1
don-eiBleveeLTs

images/00233.jpg
OB LRI "
Parsing ' /etc/asterisk/manager.cont’: Found
[3an 26 20:08:09] NOTICE[10352]: manager.c:961 authenticate: 127.0.0.1
tried to authenticate with nonexistent user ‘mark'
Connect attempt from /127.0.0.1° unable to authenticate
L Rrp LD S

images/00232.jpg
¥ VRGOS0 - L3I BTN T
Mailbox: 123edefault
connected.

Logged in.

New messages: 0

B AeRNSEEE s D

images/00235.jpg
A Al
ActionID: 1
Nienach: Rothibisebine Reited

images/00234.jpg
¥ P -q BLogan.php
Leatty Sucaassal

images/00218.jpg
Iintazeal]
exten => 5555, 1, Answer ()

exten => 5555,n,Wait (1)
exten => 5555,n, Playback (conf-thereare)
exten => 5555,n,MeetMeCount (1234)

exten => 5555,n, Playback (conf-peopleincont]
exten => 5555,n,Meetle (1234)
SR M

images/00220.jpg
e Mo

exten => 10,1, Answer ()
exten => 10,n,Wait (1)
exten => 10,n, Playback (hello-world
exten => 10,n,¥Wait (1)

aiten us 100 Heniiaty

images/00219.jpg
it A A i L e T b 7 s 4
I Context 'my-phones’ created by ‘pbx_config’ 1

23 - 1. Wait(1) [pbx_contig]
2. Answer() [pbx_contig)
3. Playback (hello-world] [pbx_confia]
4. wait(1) [pbx_contig]
5. Hangup() [pbx_config]

1 extension (5 priorities) in 1 context
D

images/01467.jpg
20 Retar By 1,

r++ in Asterisk 1.6

o2

1,3 41,3 @@
Action: zappialoffhook

Synopsis: Dial over Zap channel while offhook
Action: DAHDID:aloffhook

Synopsis: Dial over DANDI channel while offhook
Fhlviledei <nones.

images/01466.jpg
Aelon:: DASUIUARLOT EROGE.
Synopsis: Dial over DANDI channel while offhook
et Yaue: Anoties

images/00226.jpg
SUMPURRGS BuCeRHS
ActionID: 1

st othentlaatiig Ascenian

images/00225.jpg
AGSIOHY LoRAE:
ActionID: 1

Username: admin
G gt

images/00227.jpg
T L L ek
Action

AbsoluteTimeout
AgentCallbackLo

AgentLogots

Agents
Changemoni tor

Commana
pBaet

pBPuT.

Events
Extensionstate
Getcontig
Getvar

Hangup,
Inxnetstats
IAXpeers
Listcomnands

FOOM - SEE AL COmELUAS:
Privilege

call,all
agent, a1l

agnet a1l

agent, all
call,all

command, a1l
system, a1l
system,all
call,all
contig,all
call,all
calljall

synopsis

Set Absolute Timeout

Sets an agent as logged in by
callback

Sets an agent as no longer
logged in

Lists agents and their status

Change monitoring filenane of

a channel

Execute Asterisk CLT Command

Get DB Encry

Put DB Encry

Control Event Flow

Check Extension Status

Retrieve configuration

Gets a Channel variable

Hangup Channel

Show IAX Netstats

List IAX Peers

List available manager

ST

images/00222.jpg
PEESHLeE IR

cxten => _*TT4GKO00000K, 1, Angwer ()

cxten =» _*774X000000000GC, 0, Set (year=6 (EXTEN:4:4))

cxten => _+774X000000000GE, 1, Set (month=$ (EXTEN:8:2))

xten > 77000000000, n, Set (day-§ (EXTEN:10:2))

cxten => _*TT4X0000000000K m, Set {ours=§ (EXTEN:12:2))

oxten => 7740000000000, m, Set (minutes=§ (EXTEN:14:2))

oxten => _+77+X00000000KKK, 1, NoOD (Wake-up call scheduled for
$ICALLERID (num) } at $(hours}:${minutes} on $(day) .§{month) .§{year) .
cxten s> _*TTHI000CO000CKK, 0, System (echo -e "Channel:
STP/${CALLERTD (num) }\\nContext: wake-up\\nextension: 23* >
1/ (UNIQUEID) .call)

cxten => _+17+X0000000000C, m, Systen (touch —t

${year)$ month §[day)§ [ours}§ [minutes) /tmp/${UNIQUEID] .call)
cxten => _+77+X000000000CK, 0, System (nv. /tnp/$ (UNTQUETD) .call
pvar/spool asterisk/outgoing/)

cxten > _*TTHXIO000000CCK, n, Playback (rgsted-wakeup- £or)

cxten => _+T7+X000000000CK, n, SayNunber (§ (hours))
exten = _+TT4XXOO000N, n, SayNumber (§ (minutes))
xten => _+77+X00000000000K, 1, Hangup ()

{wake-up]

exten => 23,1, Ansver ()

exten => 23, Wait(1)
oxten => 23,n, Playback this-is-yr-wakeup-call)
oxten =» 23,m,Wait(1)
e d b b

images/00221.jpg
i A moad
Nexketries: 2
RetryTime: 60
WaitTime: 30
Context: call-file-test
gL

images/00224.jpg
¥ LRINEE. Sl sl Seay
Trying 127.0.0.1.
Connected to localhost
Bscape character is ‘"1’
Aithitak Ball MaRsCaEFL B

images/00223.jpg
]
secret = secrets

Geny = 0.0.0.0/0.0.0.0

permit = 127.0.0.1/255.255.255.255

read = all,system,call, log, verbose, command, agent, user, contig
L AL R v CaT] 100 arboNe Ciamand. RORR T GaRT, Son e

images/01468.jpg
1.2%]-

=] 1.4%|-

* different name)

images/01474.jpg
1.2%]-

=] 1.4%|-

* different name)

images/01473.jpg
A A o

v+ in Asterisk 1.6

60 1,3 +1,3 a@

- action: zapDiDon

Synopsis: Toggle Zap channel Do Not Disturb status ON

+ Action: DAHDIDNDon

+ Synopsis: Toggle DAHDI channel Do Not Disturb status ON
el T eaas. PaREs

images/01476.jpg
11

A
in Asterisk 1.6

1.3 41,3 ee

Action: ZapHangup

Synopsis: Hangup Zap Channel
Action: DAHDIHangup

Synopsis: Hangup DAHDI Channel
e e RSN Ve

images/01475.jpg
Action: DAHDIHangup
Synopsis: Hangup DAHDI Channel
Pivideost wnbiem

images/01470.jpg
Ty ARLBTIA G4

+++ in Asterisk 1.6

e

1,3 41,3 6
Action: ZapDNDoff

Synopsis: Toggle zap channel Do Not Disturh status OFF
Action: DAHDIDNDOEE

Synopsis: Toggle DAHDI channel Do Not Disturb status OFF
Brivilages <hones.

images/01469.jpg
AeLLams URBDIDNGGL L
Synopsis: Toggle DAHDT channel Do Not Disturb status OFF
e Ve ... I

images/01472.jpg
AeLions: URBDIDNGGIL
Synopsis: Toggle DAHDT chamnel Do Not Disturb status ON
P it AHEkr:

images/01471.jpg
* different name)

images/00691.jpg
in Asterisk 1.2
+++ in Asterisk 1.4
6e 23,5 +23,5 ee
contained within it via sub-engine), and a fixed per-thread
memory stack allowance, macros are limited to 7 levels
of nesting (macro calling macro calling macro, etc.); It
- may be possible that stack-incensive applications in deeply

nested
- macros could cause asterisk to crash earlier than this
Limtt,

. may be possible that stack-incensive applications in desply

nested macros
§ L e R R B R AR LSS s s e

images/00690.jpg
AEIN SHanre

Jabo-anout apg:

{synopsis]
Macro Tnplementation

(pescription]
Macro(macronane|argl|arg2...): Executes a macro using the context
‘macro-<macronames', jumping to the ‘s’ extension of that context and

executing each step, then returning when the steps end.

The calling extension, context, and priority are stored in

$ (MACRO_BXTEN).

${MACRO_CONTEXT} and §{MACRO_PRIORITY} respectively. Arguments become
${ARG1}, ${ARG2), etc in the macro context.

If you Goto out of the Macro context, the Macro will terminate and
control

will be recurned at the location of the Goto.

It ${MACRO_OFFSET) is set at termination, Macro will attempt to
continue

2t priority MACRO_OFFSET + N + 1 if such a step exists, and N + 1
otherwise.

Extensions: While a macro is being executed, it becomes the current
context.

This means that if a hangup occurs, for instance, that the

nacro

will be searched for an 'h' extension, NOT the context from

the macro was called. So, make sure to define all
appropriate
extensions in your macrol (you can use 'cateh' in ARL)
WARNING: Because of the way Macro is implemented (it executes the
priorities
contained within it via sub-engine], and a fixed per-thread
memory stack allowance, macros are limited to 7 levels
of nesting (macro calling macro calling macro, etc.); It
nay be possible that stack-intensive applications in deeply
nested macros
conld cause asterisk to crash earlier than this limit.

images/00209.jpg
info2 text,
infod text

timestamp inc(11] NOT NULL default
id cinytext wor NULL

#) TPE=MyTSAM;

use DBI;

use 10::File;
my Sopt_debug
if you want postgres change this to 'Pg"
my $db_type

my Sab_host

ny Sdb_user_: ‘usernane’ ;
ny Sdb_password = ‘password’;
my Sdb_database = ‘asteriskstat’;

my SAbh = DBI->connect (*DBT:$db_type:dbnane=§db_database;host=

$ab_host;*, $ab_user_name, $db_password]:
open(FIFO, '< /var/log/asterisk/queue log"} or die “Can't open
queue_log : §

while (1) (
Smessage = <FIFO>;
next unless defined émessage; # interrupted or nothing logged

images/00693.jpg
i define a macro that counts down from the provided value:
{macro-countdoun]
exten => 5,1, Set (CoUNT

(are1))

exten => s,n,While($[$(COUNT) > 0])
exten => s,n, SayNumber ($ (COUNT})

exten => s,n,Set (COUNT=S[S{COUNT] - 1 1)
exten => s,n,BndWhile ()

taefauls]
exten => 123,1,MacroExclusive (countdown, 3}
: call the macro *countdown® with ARG1=3
exten => 124,1,MacroExclusive (countdown,5)
s ARIT Ehe MAREO esunbAdun™ with ARG:

images/00208.jpg
®sribin/perl e
7

wiloyd at slap.net
The asterisk version independant way to get queue stats into Mysal,
Postgres

or whatever is supported by Perl DBI

It’s all about named pipes

to setup this software

stop asterisk

1 /var/log/asterisk/queue_log

mkfifo /var/log/asterisk/queue_log

make sure permissions are setup

chnod 777 /var/log/asterisk/queus_log

run this program as root or under another user as you see fit.
"

*

'

'

'

'

'

.

snould start BEFORE asterisk. Add to /etc/rc.d/re.local or whatever
restart asterisk

requires a DB table like the following..

CREATE TABLE cst_gueue (

qnane varchar (30) default NULL,

agent varchar (30} defau.
action text,
pororgronyg

images/00692.jpg
AR ASEEELIE Lk
+++ in Asterisk 1.6

Ge 4,7 +4,7 ee

Macro Inplementation

[pescription]
- Macro(macronane|argl|argd...): Executes a macro using the context
+ Macro(macronans,argl,arg2...): Executes a macro using the context

‘macro-<macronames’, jumping to the 's' extension of that context
and
exacuting each step, then returning when the steps end
The calling extension, context, and priority are stored in
s (wacro_mxrEn)
ee -18,10 +18,12 €@
This means that if a han

occurs, for instance, that

the macro
will be searched for an

extension, NOT the context
from which
the macro was called. So, make sure to define all

appropriate
- extensions in your macro! (you can uss ‘catch’ in ARL)
. extensions in your macro! (Note: AEL does not use
nacros]

WARNTNG: Because of the way mMacro is implemented (it executes the
priorities
contained within it via sub-engine), and a fixed per-thread
memory stack allowance, macros are limited to 7 levels
of nesting (macro calling macro calling macro, etc.); It
may be possible that stack-intensive applications in deeply
nested macros
= could cause asterisk to crash earlier than this limit.
. could cause asterisk to crash earlier than this limit. It
is advised that
. if you need to deeply nest macro calls, that you use the
Gosub application
. (now allows argunents 1ike a Macro) with explict Return(]
N D o T

images/01477.jpg
I I 2

* different name)

images/00689.jpg
| 1.6 |

images/00688.jpg
¢ HACAne H MacTe: At DoRntetdonn from. She prayviaad valuse
(macro-countdown]

xten = 3,1,8et (COUNT=$ (ARG1} |

exten => s,n,While(§[${COUNT) > 01}

exten => s,n,SayNunber (${COUNT}]

exten => s,n,Set (COUNT=S[§(COUNT) - 1 1)

exten => s,n,Endihile()

(defaulc]
123,1,Macro(countdown, 3} ; call the macro -countdown® with

124,1,Macro (countdown,5) 5 call the macro *countdown® with

images/00215.jpg
{rocms}
T gy

images/00214.jpg
tgenerall

parkext => 7001 ; parking extension
parkpos => 701-7201 + parking positions
SONEREL S DaPkeltElls & Sonbext Eor serked: Cally

images/00217.jpg
{intarn]

exten
exten
exten
aTen

> 5555, 1, Answer ()
> 5555, n, Wait (1)
=> 5555, n, Neetlie (1234)
5 BE85 1, Henue)

images/00216.jpg
1234
700, 5678
701,5678
702,567
703,5673
704,567
705, 5678

images/00211.jpg
LR LI by |
Y ipAs e s L 5 BEINE EEA

images/00695.jpg
TIN5 SRoNE Spplicetion ‘MEcroRxCciusive’

(synopsis]
Exclusive Macro Implementation

(vescription]
Macrogxclusive (nacronane|arg |arg?.

Executes macro defined in the context 'macro-nacroname’

Only one call at a time may run the macro.

{we'1l wait if another call is busy executing in the Macro!

APGUTIEHts BhA Ferien vBluss a5 1n aifilicatian Macro ()

images/00210.jpg
‘shonp: SmesEageEs

¥ ramove chars that will cause DB problems
smessage =- s/\"\"//g;

6data = split(/\|/, $message);

these messages are almost useless for my purposes
next if (sdatal4] eq "QUEUESTART®);

next if (sdata(d] eq "CONFIGRELOAD");

if (1defined($datal5]1) (

sdatals) = ‘';
3
if (1defined(sdatals]l) (
sdatals) = ;
3
i€ (1defined (sdata(7]}) (
sdatal) = 71
3
my $sql = "INSERT INTO csr_queue (timestamp, id, gname, agent,

action, infol, info2, info3) VALUES ('Sdata[0]’, 'Sdatal1]’, ’Sdata
(217, ‘$datald)’, ‘sdacaldl’, ‘sdaca(sl’, ‘$dacal6l’, ‘$dacal7]’);
print "$sql \n\n" if (Sopt_debug):
$abh->do ($sal) 1
if you want an actual logfile you might want to uncomment this
¢ if (open(LoS, *>> /var/log/asterisk/queue_log real®)) {
¢ print 106 -$messagein”
. close (LoG) ;
£) eles (
¢
.
.

warn "Couldn’t log to /var/log/asterisk gueue_log: $!\n*;

]
sabh->aisconnect () ;

et O

images/00694.jpg

images/00213.jpg
Ibuilding=mgr]
cxten => _2XXX,1,Dial (STP/$ (EXTEN))
include => parkedcalls

images/00697.jpg

images/00212.jpg
L ChRtaremip]
e s W 3 AR N R

images/00696.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
ee -4,7 +4,7 a8
Exclusive Macro Implementation

[pescription]

MacroExclusive (macroname|argl |arg2. ..)¢
+ MacroExclusive (macroname,argl,arg?...):

Executes macro defined in the context ‘macro-macroname’
Only one call at a time may run the macro
{we'll wait if another ¢all is busy executifig in the Macro)

images/01479.jpg
Eoidhio bl i LB

+++ in Asterisk 1.6

s 1,3 +1,3 @&

- Action: ZapRestart

- Synopsis: Fully Restart zaptel channels (terminates calls)

. Action: DAHDIRestart

+ Synopsis: Pully Restart DAHDI channels (terminates calls]
Privilate:: Anstes

images/01478.jpg
D % v
Synopsis: Fully Restart DAHDI chamnels [terminates calls)
e

images/00207.jpg
exten

%723, LeAtNOL (] 1
exten => 25,n,Agentlogin() ; log the agent in
Se e s 35 R (] Poia i

images/01001.jpg
O NEORE NRLOALIE. RER S oo M

[synopsis]
Play Music on Hold
[Description]

StartMusicOnFold(class): Starts playing music on hold,
music class for channel

Starts playing mucic specified by class.
b1 Sotiees Eie- 08 Shamael i1l Be SR

uses default

If omitted, the default
Alvavs tetutna 0.

images/01485.jpg
- ABLErIEE 14

r++ in Asterisk 1.5

13

41,3 +1,3 ee
Action: zapTransfer

Synopsis: Transfer Zap Channel
Action: DAHDITransfer

Synopsis: Transfer DAHDI Channel
Privilades <Hohes.

images/01000.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/01484.jpg
Acl-bons: DREDIIEAURLIAE:
Synopsis: Transfer DAHDI Channel
peivitenet scmomes

images/01003.jpg
1.6 |

images/01487.jpg
Aetlons: DEnan
Synopsis: Delete DB Entry
privitegh: ayateNcall.

images/01002.jpg
=== in Asterisk 1.4
4+ in Asterisk 1.6
88 -4,6 +4,7 88

Play Music On Hold

[Description]

- StartMusiconHold(class): Starts playing music on hold, uses default

music class for channel

+ Startmusiconiold(class):

+ Starts playing music on hold, uses default misic class for chamnel.
Starts playing music specified by class. If omitted, the default
music source for the channel will be used. Always returns 0.

images/01486.jpg

images/01481.jpg
Agtion: DRFDISLoWCHANNG g
Synopsis: Show status DARDI channels
By 1 SO

images/01480.jpg
At hame)

images/00999.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
e8 -4,5 +4,5 68

Remove one address from gosub stack

[Description]

- Stackeop()

- Removes last label on the stack, discarding it.
+ stackpop():

+ Removes last label on the stack, discarding it

images/01483.jpg
1.2%]-

=] 1.4%|-

* different name)

images/00998.jpg
-= Info about application ‘StackPop"

(Synopsis]

Remove one address from gosub stack

(Description]
Stackpop ()
Nusoves dast labal ce the-stack: discarding it

images/01482.jpg
Eeidhioh bhs L T g

c++ in Asterisk 1.6
i@ 1,3 41,3 @&

Action: zapshowChannels
Synopsis: Show status zapata channels
Action: DAHDIShowChannels

Synopsis: Show status DAHDT channels
Privilates: sastes

images/00680.jpg
SXton =133, L Macro (BiAcKLidl, §{CALLERID (e} |
exten => 123,n,Dial (IAX2/user: secret@widgets.biz/500)

[nacro-blacklist]
» Call: Macro (blacklist, § (CALLERID (nun))}

exten => s,1,G0tolf (§(DB_EXISTS (blacklist/$(ARG1)} }?black]
exten => 5,10 (black),NoOp(${ARG1} is in the blacklist)
exten => 5,n,Busy(5)

Ente o5 5., BEngUB)

images/00679.jpg
Blogk-calle from mumbarg in the bledklist,
; otherwise dial the number in the variable §(PETER):
exten => 123,1,Answer ()

exten => 123,n, LookupBlacklist ()

exten => 123,n,GOOTE ($[${LOOKUPBLSTATUS}
exten => 123,n,Dial (§{PETER),30)

FOUND] ?black, 1)

exten => black, 1, 2layback (tt-allbusy)
AL 5 PEAA I EaRaTe L)

images/00198.jpg
CONtEXt=/UDPOrtUBLA-CONLQXE. 3 We Could @et it like this
: but we will leave it commented out:
OBt e ~COn BRI

images/00682.jpg
dare abyi-apliogiaon [SoaRuEn IRt iaL) -

[Synopsis]
Look up Caller*ID name/mumber from blacklist database

(pescription]
LookupBlacklist (options) : Looks up the Caller*ID number on the active

channel in the Asterisk database (family 'blacklist').
The option string may contain the following character:

'3 -~ jump to m+101 priority if the number/name is found in
the blacklist
This application sets the following channel variable upon completion:

LOGKUBELSTATUS The status of the Blacklist lookup as a
text string, one of

FOUND | NOTEOUND
1234,1, LookupBlacklist ()

Example: exten

This application is deprecated and may be removed from a future
releasa.
Please use the dialplan function BLACKLIST() instead.

images/00681.jpg
| 1.4 |

images/01445.jpg

images/01444.jpg
o e
Synopsis: Lists agents and their status
Privilege: agent,all

pescription: Will list info about all possible agents,
R ey

images/00678.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
60 -4,5 +4,5 09

Send arbitrary text to a selected log level

[Description]
- Log(<level> | <message>)
+ Log(<level>,<messages)

level must be one of ERROR, WARNING, NOTICE, DEBUG,

VERBOSE,

i

images/01447.jpg

images/01446.jpg
Agtion: AGL
Synopsis: Add an AGT command to execute by Async AGT
Privilege: call,all
Description: Add an AGI command to the execute gueue of the channel
in Async AGT
Variables:
“Channel: Channel that is currently in Async AGI
*Comnand: Application to execute
CommandID: comand id. This will be sent back in CommandID header
of ANGTCADT eitee Svent nobification

images/00204.jpg
+ Pormat: agent =»>-agent_idl,passwozd,nane
agent => 1001,0000,J0hn Safran
RGRE <6 1002 0000, Nove: MoManiie:

images/00203.jpg
i Say we wanted to save recordings in /var/calls/:
SR i e P FARY TR

images/00687.jpg
in Asterisk 1.2

+++ in Asterisk 1.4

a8 -10,3 +10,6 @
channel. This is useful if you do not subscribe to Caller*In
name delivery, or if you want to change the names on some incoming
calls.

- LookupCIDwame is deprecated. Please use

$ (DB (cidname/$ {CALLERID (num))))

+ IAstehd.

images/00206.jpg
e
axten
axten => 20,0, Set (MUSICCLASS () =default)
; set music class default
cxten = 20,n,Queue (support. t)
place call in "support: queue
: @ reninder: the option t allows the agent to
transter calls to another extension
 if call can’t be placed in queus,
Queua() sets QUEVESTATUS =
; TIMEOUT | FULL | JOINEWPTY | JOTNUNAVATL |
 LEAVEBMETY | LEAVEONAVAIL
: and exits
cxten => 20,1,Goto (q-$ (QUEUESTATUS),
; Junp depending on QUEUESTATUS
: 10 agents in the queus
: (you could also route calls to VoiceNaill) here)
cxten => G-IOINEMPTY, 1,Wait (1)
oxten => G-JOINEMPTY,n, Playback (va-nobodyavail,noansuer)
cxten =» G-JOINEWPTY, n, Playback (vm-goodbye, noanswer |
cxten => G-JOINEMETY,n, Hangup ()
; no agents in the quete (or only unavailable agents:
cxten = G-JOTNUNAVATL, 1,Got0 (q-JOTNBMETY, 1)
; bandle same as JOINEMETY
; all agents have logged out:
exten => G-LEAVERMPTY, 1,Goto (q-JOTNEMPTY, 1)
; handle same as JOINEPTY
: all agents (including unavailable agents) have logged out:
cxten => G-LERVEUNAVAIL, 1,Goto (q-JOINEMPTY, 1)
; bandle same as JOINEMPTY
: o agent is answering
cxcen => G-TINEOUT,1,Goto(q-JOTNEMETY, 1)
; handle same as JOINEMPTY
The number of callers in the queue has hit the maximum:
: (you could also route calls to VoiceMaill) here)
exten = G-FULL,1,Busy (5)
erAG i G HET 4 T an it

ey T PLTheal
20,n, Answer ()

images/00205.jpg
s R AL Ry T

exten => 20,7, Set (MUSICCLASS () =default)
: set music class *default®

exten => 20,1, Queue support, t]

+ place call in "support® queue

exten => 20,n, Hangup ()

¥ Raiu

images/00200.jpg
i &L Jon wel Fecorcliugd uneodmeny SN, 1iogs
Iy R,

images/00684.jpg
Sxtan =123, L.answer [}
SETGR 55 093 1, SR BO TINNG 1)

images/00199.jpg
¢ wa allow: Onr agent & gquick gausg for LRroar-clearing:
; and a drink of water, then it’s BACK 10 WORK! *whip crack”
o

images/00683.jpg
T BRLOEIME 3%
r++ in Asterisk 1.4
a6 -12,3 +12,6 8@
LOOKUPELSTATOS The status of the Blacklist lookup
2s a text string, one of
FOUND | NOTFOUND
axten => 1234,1, LookupBlacklist ()

Exampl

+ This application is deprecated and may be removed from a future
release.
+ Please use the dialplan Function BLACKLIST(] instaad.

images/00202.jpg
8- SXNMA AR JOok 11ke thig
rasthox/eallss

images/00686.jpg
~= Inio about applicatlon ‘LODkupCIDNams ' =

[synopsis]
Look up CallerTp Name from local database

[escription]

LookupcToNane: Looks up the Caller*ID number on the active
channel in the Asterisk database (family ‘cidname’) and sets the
caller*ID name. Does nothing if mo Caller*ID was received on the
channel. This is useful if you do mot subscribe to Caller*ID
name delivery, or 1f you want to change the names on some incoming
calls.

LookupCTOName is deprecated. Please use §{DB{cidname/${CALLERTD(mum)})}
R

images/00201.jpg
Agent/1001
Agent /1002

tibior-

images/00685.jpg

images/01452.jpg
NILEI SHSLEUNY
Synopsis: Generate Challenge for MDS Auth
e 7 S

images/01451.jpg

images/01454.jpg
BELEoN PRSEWIath=
Synopsis: Change monitoring filename of a channel
Privilege: call,all
Description: The ‘ChangeMonitor’ action may be used to change the file
started by a previous ‘Menitor’ action. The following paramsters may
be used to control this:
Channel - Reguired. Used to specify the chamnel to racord.
File - Required. Ts the new name of the file created in the
R P

images/01453.jpg

images/01448.jpg
Agtion: Atxier
Synopsis: Attended transfer
Privilege: call,all
pescription: Attended transfer.
Variables: {Names marked with * are required)
“Channel: Transferer’s channel
“Exten: Extension to transfer to
“Context: Context to transfer to
“Priority: Priority to transfer to
Rt YD ONE Rl Ko ten 1A FOP ekt e

images/01450.jpg
Agtion: Bridge
Synopsis: Bridge two channels already in the PBX
Privilege: call,all
pescription: Bridge together two channels already in the FEX
variables: (Headers marked with * are required)

“Channell: Channel to Bridge to Channel2

“Channel2: Channel to Bridge to Channell

Totiss (Faalie) Pias Goirtedy bate SHINEAGEY

images/01449.jpg

images/00669.jpg
Eoidhio bl i LB
<4+ in Asterisk 1.6
i@ 6,5 +6,5 @&

[Description]

Jabbersend (Jabber, Screentane, essage)

Jabber - Client or transport Asterisk uses to comnect to Jabber

- screenName - User Name Lo message.
- Message - Message to be sent to the buddy
+ ScreemName - X4PP/Jabber JID (Name] of recipient
i MeaERaE - NANGAsE Lo ba HeBE bo the Rugd (TTERLY.

images/00668.jpg
RSO AUUL ApD- i CatIon. TR UGRngenT

{synopsis]
Jabbersend (jabber, screennane, nessage]

[pescription]
Jabbersend (Jabber, Screantiane, Message]
Jabber - Client or transport Asterisk uses to comnect to Jabber
ScreenName - User Name to message
Heapnns. - Belskse to ba Sant Lo, thi Bigdv

images/00671.jpg

images/00670.jpg
sxten =>-143,1,Jabberstatus (astexisk, jologgeéexanple . com, Jabberatatus;]
exten => 123,n,Verbose(1, #4# The Jabber status of Joe Bloggs is
& ({abberstatus})

images/01456.jpg
Agtion: ‘Commang

Synopsis: Execute Asterisk CLI Command
Privilege: command,all

pescription: Run a CLI command
Variable

{Names marked with * are required)
“Command: Asterisk CLI command to run
RLEAGIEeE P oAt Xoeten A Fol Rkavisa SR

images/01455.jpg

images/01457.jpg

images/00677.jpg
Infoabout Wpplication 'Lag’

(synopsis]
send arbitrary text to a selected log level

{bescription]
Log (<1eval> | <message>)
level must be one of ERROR, WARNING, NOTICE, DEBUG, VERBOSE, DTME

images/00676.jpg

images/00673.jpg
A Asterigk L.
+++ in Asterisk 1.6
0 -3,5 +8,7 88
Jabber - Client or transport Asterisk uses to connect to Jabber
ScreenlName - User Name to retrieve status from.
Variable - Variable to store presence in will be 1-6
- In order, Online, Chatty, Away, XAway, DND, Offline
- I€ not in roster variable will = 7

. In order, l=online, 2=Chatty, 3=Away, 4=XAway,
6=0f£line
. If not in roster variable will be set to 7

+ Note: This application is deprecated. Please use the JABBER_STATUS()

s o

images/00672.jpg
Info’about applicstion ‘JabberStatus!

{synopsis]
JabberStatus (Jabber, ScreenNane, Variable)

[Description]
JabberStatus (Jabber, ScreenNane, Variable)
Jabber - Client or transport Asterisk uses to comnect to Jabber
Screeniame - User Name to retrieve status from.
Variable - Variable to store presence in will be 1-6
In order, Online, Chatty, Away, XAway, DND, Offline
e S R e M 2 R

images/00675.jpg
S=3nto Aoat application !'EaepAlive’

[synopsis)
returns AST_PBX_KEEPALIVE value

[pescription]
KeepAlive(): This application is chiefly meant for internal use with

Gosubs .
Blabas 00 ot PR IE alone Praicthe Misiniani

images/00674.jpg

images/01463.jpg
1 1.6 |

images/01462.jpg
ECRLALIY

Synopsis: Show PEX core status variables

Privilege: system,reporting,all

Description: Query for Core PEX status

Variables: (Names marked with * are optional)
e R e i e A e B

images/01465.jpg
1 2.3%)=

gt

'+ different name)

images/01464.jpg
Agtion: CraateContlg
Synopsis: Creates an empty file in the configuration directory
Privilege: config,all
pescription: A ‘Createconfig’ action will create an empty file in the
configuration directory. This action is intended to be used before an
UpdateConfig action.
Variables

B L e Ty

images/01459.jpg

images/01458.jpg
AL SorERaLL I

Synopsis: Show PEX core settings (version ete)

Privilege: system,reporting,all

Description: Query for Core PBX settings.

Variables: {Names marked with * are optional)
PO s

R T e

images/01461.jpg

images/01460.jpg
AREIETA- LOTESIUEIEIne g
Synopsis: List currently active channels
Privilege: system,reporting,all
pescription: List currently defined channels and some information
about then
variables:
R R SRR A B R R .

images/00658.jpg
20, KStEr B L0
r++ in Asterisk 1.6
60 6,4 +6,6 00

[Description]

IcES (config.xml) Streams to an icecast server using ices

(available separately). A configuration file must be supplied
- for ices (ses examples/asterisk-ices.conf] .
for ices (see contrib/asterisk-ices.xml)

P T

images/01427.jpg

images/01426.jpg
I ABCREIRS 1.8

+++ in Asterisk 1.6

68 6,3 +6,4 80
being pressed, or the ASCII numerical value of the digit if one was
pressed, or -1 on error or if the channel was disconnected
Remember, the file extension must not be included in the filename.

PR o s R,

images/00660.jpg

images/00659.jpg
¢, SNpOEL, CALLAT=IDILron chanhsl. ZEp:
oxten => 123,1, Answer ()
axten =5 133 i Invertvar {clt

an/1, CALLERID)

images/01423.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
ee -1 +1,2 e
Usage: SET VARTABLE <variablename> <value>
. puns Dend 1 YeL:

images/01422.jpg
Jodalk F

images/01425.jpg
Uaage:

STREAM FILE <filename> <escape digits> [sample offset]
Send the given file, allowing playback to be interrupted by the
given digits, if any. Use double quotes for the digits if you wish
none to be permitted. If sample offset is provided then the audio
will seek to sample offsec before play starts. Returns 0 if

playback completes
numerical value of
if the channel was
Aot La Thetidss 5

without a digit being pressed, or the ASCIT
the digit if one was pressed, or -1 on error or
disconnected. Remember, the file extension must
the #1lenams

images/01424.jpg

images/00666.jpg
BOLAD, = 3331, SORDATERNG {BRRAE X, IDIOUNSEATID LS OOM) TOONAON OR L]
sxten => 123,n,Dial (STP/3bloggs)
st e e 193 v Banouo ()

images/00665.jpg
SR UL WPLAORCAE [EHCURREORS

(synopsis]
returns AST_PEX_INCOMPLETE value

{pescription]

Incomplete ([n]): Signals the PBX routines that the previous matched
extension
is incomplete and that further input should be allowed before matching
be considered to be complete. Can be used within a pattern match when
certain criteria warrants a longer match,

If the ‘n' option is specified, then Incomplete will mot attempt to
the channel first. Note that most chamnel types need to be in Answer
state
N Galae s MR

images/00667.jpg

images/00662.jpg
A1 REEELLaR Ll
~++ in Asterisk 1.6
e -4,7 +4,7 6@

Import a variable from a channel into a new variable

(pescription]
- ImportVar (newvar=channelname |variable
variable
- Importvar (newvar=channelname,variable
variable
from the specified channel (as opposed to the current one) and
stores it as
a variable in the current channel (the channel that is calling this
application) . Variables created by this application have the same
NEn e Y

This application imports a

This application imports a

images/00661.jpg
2000 AROUE ADNGTIATADE: | SRNOELINE

[synopsis]
Tnport a variable from a channel into a new variable

[Description]
Inportvar (newvar=channelnane |variable) :

variable

from the specified channel (as opposed to the current one) and stores

it as

a variable in the current channel (the channel that is calling this

application) . Variables created by this application have the same

inheritance

roperties as those created with the Set application. See the

Socumentation for

B e ™ o g .

This application imports a

images/00664.jpg

images/00663.jpg
el § S B L

o

1234.1 Verbose (1. #4# Hello world!):

images/01430.jpg
| 1.6 |

images/01429.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
68 -1,3 +1,4 8@
Usage: TDD MODE <onoff>
Enable/pisable TOD transmission/reception on a channel
Returns 1 if successful, or 0 if channel is not TDD-capable.
3 Rong Bhed s

images/01432.jpg
in Asterisk 1.4
+++ in Asterisk 1.6

e -2,3 +2,4 6@

Sends <message» to the console via verbose message system.

<level> is the the verbose level (1-4)
Aluays returns 1.
s Siem i < an

images/01431.jpg
Vsage: VERHOSE messager <level»

Sends <message» to the console v
<level> is the the verbose level (1-4)
e e

verbose message systen.

images/01428.jpg
Usage: TDD MODE <on|off>
Enable/Disable TDD transmission/reception on a channel.
Returns 1 if siccessful, or O if channel is not TDD-capable.

images/01437.jpg
bescription: Mangup a channel after a certain time
variables: (Names marked with * are required)
#Channel: Channel name to hangup
“Timeout: Maximun duration of the call (sec
O T L R e e e D e N

images/00649.jpg
O ALORE, BPRLLTALSOT. |\ SRAENVOL R

[synopsis]
conditionally branches to priority + 101 with the right options set

[pescription]
iasNewVoi cenail (vmbox [/ folder] [Gcontext] [| varname(|options]])
Assumes folder 'INEOX' Lif folder is not specified. Opcionally sets
<varnane> to the number of messages
in that folder.

The option string may contain zero of the following character:

j - jump to priority n+101, if there is new voicemail in
folder "folder’ or TNEOX

This application sets the following channel variable upon completion:

HASVMSTATUS The result of the new voicemail check
recurned as a text string as follows

<# of messages in the folder, 0 for NONE>

S R Tt e Bl et debrEskaE TH T A rhE RO P

images/00648.jpg

images/01434.jpg
Usage: WAIT FOR DIGIT <timeout>
Waits up to ‘timeout’ milliseconds for channel to receive a DTHF
aigic.

Returns -1 on channel failure, 0 if no digit is received in the timeout,

or the mumerical value of the ascii of the digit if one is received. Use

-1 for the timeout value if you desire the call to block indefinitely.

images/01433.jpg

images/01436.jpg

images/01435.jpg
in Asterisk 1.4

+++ in asterisk 1.6

e -3,3 +3,4 a8
Returns -1 on channel failure, 0 if no digit is received in the
timeout, or the numerical value of the ascii of the digit if one
is received. Use -1 for the timeout value if you desire the call
to Block indefinitely

s s Bead 1 e

images/00655.jpg
TSI SOOUL SEPStALIED - IhRAbkOvAN oD, =
[synopsis]
provision a calling IAky with a given template

[pescription]
TAX2Provision([tenplate])s Provisions the calling TA¥y (assuning

the calling entity is in fact an IAXy) with the given template or

Tatmnle 1F Sok % hor sbecitien: Heturna. 21 6n reror 0 A SucdeEs,

images/00654.jpg

images/00657.jpg
= SUID Bhoul Aol rention. (Thdt

(Synopsis]
incode and stream using 'ices’

[Description]

ICES(config.xml) Streams to an icecast server using ices
(available separately). A configuration file must be supplied
o LG e ekl bo TE bt etk s e . oot

images/00656.jpg

images/00651.jpg

images/00650.jpg
AR AR C IR S,
c++ in Asterisk 1.4
i@ 12,3 +12,5 ae
This application sets the following channel variable upon completion:
HASVHSTATUS The result of the new voicemail
check returned as a text string as follows

<# of messages in the folder, 0 for NONE>

This application has been deprecated in favor of the VMCOUNT()
Ty

images/00653.jpg
A BREArLaK 1.2
+++ in Asterisk 1.4
68 -11.3 +11,5 @@
This application sets the following channel variable upon

completion:

‘HASVMSTATUS The result of the voicenail check
returned as a text string as follows
<# of messages in the folder, 0 for NONE

+ This application has been deprecated in favor of the VMCOUNT()

R

images/00652.jpg
IOL0 FUOUL APREARTIOn BRI oamRa

(Synopsis]
conditionally branches to priority + 101 with the right oprions set

(pescription]
Hasvoicenail (vibox [/ folder] [context] [|varname[|options]]}
Optionally sets <varname> o the number of messages in that
folder. assumes folder of INEOX if not specified.
The option string may contain zero or the following character:
*j' -- jump to priority n+101, if there is voicemail in the
folder indicated.
This application sets the following channel variable upon completion:
HASVMSTATUS The result of the voicemail check
returned as a text string as follows
<# of messages in the folder, 0 for NONE»

iHis AoPlibabion has Besn devcecated It faver oF Che VMOGUNT () Eindeion

images/00647.jpg
2 ANLET R .68
r++ in Asterisk 1.4
60 ~4,4 +4,6 00

Hang up the calling channel

[pescription]
- Hangup(): This application will hang up the calling channel.

+ Hangup((causecode]): This application will hang up the calling
channel.

+ It a causecode is given the channel's hangup cause will be set to
the given

T

images/01441.jpg

images/01440.jpg
RGLLOM: TOPnCCH LN agLn
Synopsis: Sets an agent as logged in by callback
Privilege: agent,all
pescription: Sets an agent as logged in with callback.
Variables: {Names marked with * are required)
“Agent: Agent ID of the agent to login
“Exten: Extension to use for callback
Context: Context to use for callback
Ackcall: Set to ‘true’ to require an acknowledgement by 'f
when agent is called back
WrapupTime: the minimun amount of time after disconnecting
A e O B S SR e L SN

images/01443.jpg

images/01442.jpg
ROLRGEIA N T
Synopsis: Ssts an agent as no longer logged in
Privilege: agent,all
pescription: Sets an agent as no longer logged in.
variables: (Names marked with * are required)
*Agent: Agent ID of the agent to log off
L g A T

images/01439.jpg
| 1.4 |

images/01438.jpg
ATEAReeSIR R
v+ in Asterisk 1.6
6 1,5 1,6 2@
Action: AbsoluteTimeout
Synopsis: Set Absolute Timeout
- Privilege: call,all
+ erivilege: systen,call,all
Description: Hangup a channel after a certain time
Variables: (Names marked with * are required)
RGBS

images/01405.jpg
WREge: BT AUTCRARGUR: "<y it
Cause the channel to automatically hangup at <time» seconds
in the future. Of course it can be hungup before then as well
Setting to 0 will cause the autchangup feature to be disabled on
this channel.

images/01404.jpg

images/00638.jpg
SORGHLIVAIA VE NS QRYEOCWNNL, MY BDINORES, NORLRS
I A PN I P TS

images/01407.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/01406.jpg
in Asterisk 1.4

~++ in Asterisk 1.6

9 -2,3 +2,4 00
Cause the channel to automatically hangup at <time> seconds
in the future. Of course it can be hungup before then as well
Setting to 0 will cause the autchangup feacure to be disabled
on this channel.

P

images/01401.jpg

images/01400.jpg
in Asterisk 1.4

+++ in Asterisk 1.6

60 -3,3 +3,4 99
transnission of images. Returns 0 if image is sent, or if the
channel does not support image transmission. Returns -1 only on
error/hangup. Trage names should not include extensions

s Hann baad = i

images/01403.jpg
I ABLarigk 1.8

e+ in Asterisk 1.6

a8 4,3 +4,4 68
support text transmission. Returns -1 only on error/hangup. Text
consisting of greater than one word should be placed in quotes since
the command only accepts a single argument.

i B Dol o,

images/01402.jpg
Usaget

SEND TEXT °<text to send>®

Sends the given text on a channel. Most channels do nat Support
the transmission of text. Returns 0 if text is sent, or if the
channel does not support text transmission. Returns -1 only on
error/hangup. Text consisting of greater than one word should be
Slacsd in mestes since Fhesctamend oty socepte. @ single argument:

images/00644.jpg
exten:
exten
.

e FECREE S
123,n, layback {vm-goodbye)
R AN

images/00643.jpg
SiaRhaTask ok
~++ in Asterisk 1.6
0 -4,9 +4,14 06

conditional Goto based on the current time

[peseription]
- GotoIfTime(<times>|<weekdays>|<ndays>|<months>
?([context |lexten| Jpriority
- GotoIfTime(<times»,<weekdays>,<mdays>, <months>
?[labeliftrue]: [labeliffalse]):

This application will set the context, extension, ard priority in
the channel structure
- if the current time matches the given time specification. Otherwise,
othing is done.
- based on the evaluation of the given time specification. After this
application completes,
+ the pbx engine will continue dialplan execution at the specified
location in the dialplan.
- If the current time is within the given time
channel will continue at
+ *labeliftrue’. Otherwise the channel will continue at
‘labeliffalse’. If the label chosen
+ by the condition is omitted, no jump is performed, and execution
passes to the next
- instruction. If the target jump location is bogus, the same actions
would be taken as for

cification, the

+ Goto
Further infornation on the time specification can be found in
examples

$1lustrating how o do tine-based context includes in the dialplan.
- If the target jump location is bogus, the same actions would be
i e ARG R

images/00646.jpg
SR SHOUL WPLRIATAIE

(synopsis]
Hang up the calling channel

[pescription]
Hangup ([causecodal) : This application will hang up the calling

channel.

If a causecode is given the channel's hangup cause will be set to the

given

s

images/00645.jpg

images/00640.jpg

images/00639.jpg
& DEIDG TRNLIaNE: NOUTE,: JWmy. G0"IRCORNG-ODEn, CanTaxt.
; We are open Monday to Friday from 9:00 to 18:00 (9 a.m. o 6 p.m.):
oxten => §,1,GotoTfTine (09:00-17:59,mon-Eri, =, *?inconing-open, s, 11
Also Saturdays from 9 to 12:

exten => s,n,GoroTfTime (09:00-11:59,8at, *, *?incoming-open, s, 1)
After hours go to incoming-closed:

sxien =5 8, n. 05t (inFoming-cloned. a, 1)

images/00642.jpg
L ARLELLIR v
~++ in Asterisk 1.4
se 9,4 +9,4 a8

Lf the current time matches the given time specification, Otherwise,
nothing is done.

Further information on the time specification can be found in
examples

i1luscrating how to do time-based context includes in the dialplan.
- If the target jump location is bogus, Asterisk will respond as
outlined in Goto.
+ If the target jump location is bogus, the same actions would be
MR A SR

images/00641.jpg
IOLD RUOUL PREIER 0N, ORI TN

(Synopsis]
conditional Goto based on the current time

(Description]
GotoIfTine (<times» |<weekdays= | ndays> | <months>

>[[context | Jexten| Ipriority!

this application will set the context, extension, and priority in the

channel structure

if the current time matches the given time specification. Otherwise,

nothing is done.

rurther information on the time specification can be found in examples

illustrating how to do time-based context includes in the dialplan.

If the target jump location is bagus, the same actions would be taken

P RN,

images/00637.jpg
A8 RHCELLSR Loe
~++ in Asterisk 1.4
@ -19,5 +19,5 @e

*h' extension. If either or neither the 'h' or 'i' extensions have
been defined, the

channel is hung up, and the execution of instructions on the channel
s terminated

Remenber that this command can set the current context, and if the
context specified
- does not exist, then it will not be able to £ind any ‘At or it
extensions there,
- ‘and the channel and call will both be terminated!
- oes not exist, then it will mot be able to find any 'h or
extensions there, and
e the channel and call will both be terminated!

images/00636.jpg
SR IARD SDOGE @IACER T SoRaLE”

{synopsis]
conditional goto

{pescription]
GotoTt (condition?[labeliftruel : [labeliffalse]): This application will

set the current
context, extension, and priority in the chamnel structure based on the
evaluation of

the given condition. After this application completes, the

pbx engine will continue dialplan execution at the specified location
in the aialplan.

The channel will continue at

‘labsliftrue’ if the condition is trus, or ‘labeliffalse’ if the
condition is

false. The labels are specified with the same syntax as used within the
Goto

application. If the label chosen by the condition is omitted, no jump
perforned, and the execution passes to the next instruction.

If the target location is bogus, and does not exist, the execusion
engine will try

to find and execute the code in the ‘i (invalid)

extension in the current context. If that does not exist, it will try
to execute the

‘b extensior
Getined, the
channel is hung up, and the execution of instructions on the channel is
terminated.

Remember that this comnand can Set the current context, and if the
context specified

Goes mot exist, then it will not be able to find any
extensions cthere, and
ol GAAREET Gl Gt A

If either or neither the 'h' or ‘i’ extensions have been

S GEcLEEs

images/01408.jpg
Ueage: SET CALLERID <nymhers
Changes the callerid of the current channel.

images/01410.jpg
| 1.6 |

images/01409.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
68 -1.2 +1,3 8@
Usage: SET CALLERID <nunber>
Changes the callerid of the current channel
. hanm Dend sy

images/01416.jpg
1:31.6 |

images/01415.jpg
in Asterisk 1.4
~++ in Asterisk 1.6
9 -1,2 +1,3 80
Usage: SET EXTENSION <new extension>
Changes the extension for continuation upon exiting the
application.
i i me haad

images/01417.jpg
Usage: SET MUSIC ON <on|off> <class>
Enables/Disables the music on hold generator. Tf <class» is
not specified, then the default music on hold class will be used.
I FRELFRE D,

images/01412.jpg
in Asterisk 1.4
+++ in Asterisk 1.6
ee -1,2 +1,3 6@

Usage: SET CONTEXT <desired context>
Sets the context for continuation upon exiting the application.

s e DRed 3 M.

images/01411.jpg
Usage: SET CONTEXT <desired context>
B R

images/01414.jpg
Usage: SET EXTENSION <new extension>
Changes the extension for continuation upon exiting
the application:

images/01413.jpg
-1 1.2 |-

| 1.4 |

| 1.6 |-

images/00633.jpg
SHANSITAES S
+++ in Asterisk 1.6
G -4,7 +4,7 ae

Jump to a particular priority, extension, or context

{pescription]
- Goro(|[context | lextension|Ipriority) : This application will sec
he current
+ Govo(l[context, lextension, Ipriority) : This application will set
the current

context, extension, and priority in the channel structure. After it
completes, the

sbx engine will continue dislplan execution at the specified
location.

IE no specific extension, or extension and context, are specified,
TR

images/00632.jpg
B OO T RARLION. Yo

(synopsis]
Jump to a particular priority, extension, or context

(Description]
Goto ([[context |lextension| Ipriority): This application will set the
current
context, extension, and priority in the channel structure. After it
completes, the
obx engine will continue dialplan execution at the specified location.
£ no specific extension, or extension and context, ave specified, then
this
application will just set the specified priority of the current
extension.
At least a priority is required as an argument, or the goto will
recurn a -1,
and the channel and call will be terninated.
If the location that is put into the chanmel information is bogus,
and asterisk cannot
find chat location in the dialplan,
then the execution angine will try to £ind and exscute the code in the
it (invalid)
extension in the current context. If that does not exist, it will try
to exacute the
“ht extension. If either or neither the 'h' or ‘L' extensions have beer
defined, the
channel is hung up, and the sxecution of instructions on the chanmel is
terninated.
What this means is that, for example, you specify a context that doss
ot exist, then
it will not be possible to find the 'h' or "i' extensions, and the call

g s gy

images/00635.jpg

images/00634.jpg
S5t
exten
R

SEZ.4xPUSLIL YL VATESL] = 3 JECkioe
123,10 (0k) , Playback tt-monkeys)
123,20 (no) Playback (tt-weasels)

images/00629.jpg
SOESY L {CARCORL, JRATEREIOn, JpEiori ey,
Soto{ maned prioetiy)

images/00628.jpg
A S QLY L

+++ in Asterisk 1.

68 4,7 +4,7 0
Conditionally jump to label, saving return address

b
5

[Description]
- Gosublf (condition?labeliferue(:labeliffalse]}
- If the condition is true, then jump to labeliftrue. If false,
jumps to
+ Gosublf (condition?labeliftruel (argll, ...1)]
abeliffalsel (argil,...11111:
+ If the condition is true, then jump to labeliftrue. If false, jumps
to

labeliffalse, if specified. In either case, a jump saves the returs
poinc.

o iR Aiatetian. +6 Fa ratisasd ua vtk e etk

images/00631.jpg

images/00630.jpg
S5t
exten
exten
axten
exten

Qa3 Ly ARSWEE T

123,2, Set (COUNT=1}

123,73, Saynuniber ($ (COUNT} |
123,4, Set (COUNT=$[§{COUNT) + 1 1)
123,5,60t0(3)

; as above but with a named prioricy
exten => 124,1,Answer ()

exten
exten
xten
RS

124,32, Set (COUNT=1)
124, {announcenent) , SayNumber (§{COUNT})
124,4, Set (COUNT=$[§{COUNT) + 1 1)

SR B Bk PNt}

images/00626.jpg
SONPBIONL WPPIIURUAGS. ROBUNEL T

[synopsis]
conditionally jump to label, saving return address

[pescription]
GosubTE (condition?labeliftrue:labeliffalse])

If the condition is true, then jump to labeliftrue. If false, jumps
to
labeliffalse, if specified. In either case, a jump saves the return
point.
o the-ainlslan; to-be reruined to with & Retura:

images/00625.jpg

images/00627.jpg
By AELeTLAR D .3,
v+t in Asterisk 1.4

6 1,7 +1,7 @@

“= Info abour application 'GosubTf’ =

[synopsis)
- Jump to label, saving return address
+ conditionally jump to label, saving return address

[Descripeion]
T S g A e

‘abeliffalse])

images/01419.jpg

images/01418.jpg
I ABCOEIge 1.4
+++ in Asterisk 1.6
68 -2,3 +2,4 80
Enables/Disables the misic on hold generator. IE <class> is
not specified, then the default music on hold class will be used.
Always returns 0.
P R

images/01421.jpg
IR ABCAEIEY 1.8

+++ in Asterisk 1.6

68 -1,3 +1,4 8@

Usage: SET PRIORITY <priority>

Changes the priority for continuation upon exiting
the application.
The prioricy must be a valid priority or label.

4 SEEREaEA b o

images/01420.jpg
SET PRIORITY <priority>
Changes the priority for continuation upon exiting the application.
e sl oEity. mist b o velid prierity or lsbal,

