

 [image: First Edition.]

 Essential SQLAlchemy

Rick Copeland

Editor
Mary E. Treseler

Copyright © 2010 Richard Copeland

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://safari.oreilly.com). For more information,
 contact our corporate/institutional sales department: (800) 998-9938 or
 corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Essential
 SQLAlchemy, the image of largescale flying fish, and
 related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations uses by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image: First Edition.]

Preface

If you’re an application programmer, you’ve probably run into a
 relational database at some point in your professional career. Whether
 you’re writing enterprise client-server applications or building the next
 killer Web 2.0 application, you need someplace to put the persistent data
 for your application. Relational databases, accessed via SQL, are some of
 the most common places to put that data.
SQL is a powerful language for querying and manipulating data in a
 database, but sometimes it’s tough to integrate it with the rest of your
 application. You may have used some language that tries to merge SQL syntax
 into your application’s programming language, such as Oracle’s Pro*C/C++
 precompiler, or you may have used string manipulation to generate queries to
 run over an ODBC interface. If you’re a Python programmer, you may have used
 a DB-API module. But there is a better way.
This book is about a very powerful and flexible Python library named
 SQLAlchemy that bridges the gap between relational databases and traditional
 object-oriented programming. While SQLAlchemy allows you to “drop down” into
 raw SQL to execute your queries, it encourages higher-level thinking through
 a “pythonic” approach to database queries and updates. It supplies the tools
 that let you map your application’s classes and objects onto database tables
 once and then to “forget about it,” or to return to your model again and
 again to fine-tune performance.
SQLAlchemy is powerful and flexible, but it can also be a little
 daunting. SQLAlchemy tutorials expose only a fraction of what’s available in
 this excellent library, and though the online documentation is extensive, it
 is often better as a reference than as a way to learn the library initially.
 This book is meant as a learning tool and a handy reference for when you’re
 in “implementation mode” and need an answer
 fast.
This book covers the 0.4 release series of conservatively versioned
 SQLAlchemy.
Audience

First of all, this book is intended for those who want to learn more
 about how to use relational databases with their Python programs, or have
 heard about SQLAlchemy and want more information on it. Having said that,
 to get the most out of this book, the reader should have
 intermediate-to-advanced Python skills and at least moderate exposure to
 SQL databases. SQLAlchemy provides support for many advanced SQL
 constructs, so the experienced DBA will also find plenty of information
 here.
The beginning Python or database programmer would probably be best
 served by reading a Python book such as Learning
 Python by Mark Lutz (O’Reilly) and/or a SQL book such as
 Learning SQL by Alan Beaulieu (O’Reilly), either
 prior to this book or as a reference to read in parallel with this
 book.

Assumptions This Book Makes

This book assumes basic knowledge about Python syntax and semantics,
 particularly versions 2.4 and later. In particular, the reader should be
 familiar with object-oriented programming in Python, as a large component
 of SQLAlchemy is devoted entirely to supporting this programming style.
 The reader should also know basic SQL syntax and relational theory, as
 this book assumes familiarity with the SQL concepts of defining schemas,
 tables, SELECTs, INSERTs, UPDATEs, and DELETEs.

Contents of This Book

	
 Chapter 1, Introduction to SQLAlchemy

	This chapter takes you on a whirlwind tour through the main
 components of SQLAlchemy. It demonstrates connecting to the
 database, building up SQL statements, and mapping simple objects to
 the database. It also describes SQLAlchemy’s philosophy of letting
 tables be tables and letting classes be classes.

	
 Chapter 2, Getting Started

	This chapter walks you through installing SQLAlchemy using
 easy_install. It shows you how to create a simple
 database using SQLite, and walks though some simple queries against
 a sample database to to illustrate the use of the Engine and the SQL
 expression language.

	
 Chapter 3, Engines and MetaData

	This chapter describes the various engines (methods of
 connecting to database servers) available for use with SQLAlchemy,
 including the connection parameters they support. It then describes
 the MetaData object, which is where
 SQLAlchemy stores information about your database’s schema, and how
 to manipulate MetaData
 objects.

	
 Chapter 4, SQLAlchemy Type Engines

	This chapter describes the way that SQLAlchemy uses its
 built-in types. It also shows you how to create custom types to be
 used in your schema. You will learn the requirements for creating
 custom types as well as the cases where it is useful to use custom
 rather than built-in types.

	
 Chapter 5, Running Queries and Updates

	This chapter tells you how to perform INSERTs, UPDATEs, and
 DELETEs. It covers result set objects, retrieving partial results,
 and using SQL functions to aggregate and sort data in the
 database server.

	
 Chapter 6, Building an Object Mapper

	This chapter describes the object-relational mapper (ORM) used
 in SQLAlchemy. It describes
 the differences between the object mapper pattern (used in
 SQLAlchemy) and the active record pattern used in other ORMs. It
 then describes how to set up a mapper, and how the mapper maps your
 tables by default. You will also learn how to override the default
 mapping and how to specify various relationships between
 tables.

	
 Chapter 7, Querying and Updating at the ORM
 Level

	This chapter shows you how to create objects, save them to a
 session, and flush them to the database. You will learn about how
 Session and Query
 objects are defined, their methods, and how to use them to insert,
 update, retrieve, and delete data from the database at the ORM
 level. You will learn how to use result set mapping to populate
 objects from a non-ORM query and when it should be used.

	
 Chapter 8, Inheritance Mapping

	This chapter describes how to use SQLAlchemy to model
 object-oriented inheritance. The various ways of modeling
 inheritance in the relational model are described, as well as the
 support SQLAlchemy provides for each.

	
 Chapter 9, Elixir: A Declarative Extension to SQLAlchemy

	This chapter describes
 the Elixir extension to SQLAlchemy, which provides a declarative,
 active record pattern for use with SQLAlchemy. You will learn how to
 use Elixir extensions such as acts_as_versioned
 to create auxiliary tables automatically, and when Elixir is
 appropriate instead of “bare” SQLAlchemy.

	
 Chapter 10, SqlSoup: An Automatic Mapper for SQLAlchemy

	This chapter introduces the SQLSoup extension, which provides
 an automatic metadata and object model based on database reflection.
 You will learn how to use SQLSoup to query the database with a
 minimum of setup, and learn the pros and cons of such an
 approach.

	
 Chapter 11, Other SQLAlchemy Extensions

	This chapter covers other, less comprehensive extensions to
 SQLAlchemy. It describes the
 extensions that are currently used in the 0.4 release series of
 SQLAlchemy, as well as briefly
 describing deprecated extensions and the functionality in SQLAlchemy
 that supplants them.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	
 Italic

	Indicates new terms, URLs, email addresses, filenames, file
 extensions, pathnames, directories, and Unix utilities.

	
 Constant width

	Indicates commands, options, switches, variables, attributes,
 keys, functions, types, classes, namespaces, methods, modules,
 properties, parameters, values, objects, events, event handlers, the
 contents of files, or the output from commands.

	
 Constant width italic

	Shows text that should be replaced with user-supplied
 values.

	ALL CAPS
	Shows SQL keywords and queries.

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Essential SQLAlchemy by Rick Copeland. Copyright
 2008 Richard D. Copeland, Jr., 978-0-596-51614-7.”
If you feel your use of code examples falls outside fair use or the
 permission given here, feel free to contact us at
 permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	
 http://www.oreilly.com/catalog/9780596516147

To comment or ask technical questions about this book, send email
 to:
	
 http://bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
 and the O’Reilly Network, see our
 web site at:
	
 http://www.oreilly.com

Acknowledgments

Many thanks go to Tatiana Apandi, Barry Hart, Grig Gheorghiu, and
 Catherine Devlin for their critical pre-publication feedback, without whom
 this book would have undoubtedly had many technical snafus.
My appreciation goes out to Noah Gift, whose recommendation led to
 this book being written in the first place. I still remember how his phone
 call started: “You know SQLAlchemy, right?...”
Thanks to my employer, Predictix, for allowing me the time and
 energy to finish the book, and to my coworkers for being unwitting guinea
 pigs for many of the ideas and techniques in this book.
Finally, my heartfelt gratitude goes to my beloved wife Nancy, whose
 support in the presence of a husband glued to the computer was truly the
 fuel that allowed this book to be written at all.

Chapter 1. Introduction to SQLAlchemy

What Is SQLAlchemy

SQLAlchemy is a Python Library created by Mike Bayer to provide a high-level, Pythonic (idiomatically Python) interface to relational databases
 such as Oracle, DB2, MySQL, PostgreSQL, and SQLite. SQLAlchemy
 attempts to be unobtrusive to your Python code, allowing you to map plain
 old Python objects (POPOs) to database tables without substantially changing your existing
 Python code. SQLAlchemy includes a database server-independent SQL
 expression language and an object-relational mapper (ORM) that lets you use SQL to
 persist your application objects automatically. This chapter will
 introduce you to SQLAlchemy, illustrating some of its more powerful
 features. Later chapters will provide more depth for the topics covered
 here.
If you have used lower-level database interfaces with Python, such
 as the DB-API, you may be used to writing code such as the
 following to save your objects to the database:
sql="INSERT INTO user(user_name, password) VALUES (%s, %s)"
cursor = conn.cursor()
cursor.execute(sql, ('rick', 'parrot'))
Although this code gets the job done, it is verbose, error-prone,
 and tedious to write. Using string manipulation to build up a query as
 done here can lead to various logical errors and vulnerabilities such as
 opening your application up to SQL injection attacks. Generating the
 string to be executed by your database server verbatim also ties your code
 to the particular DB-API driver you are currently using, making migration
 to a different database server difficult. For instance, if we wished to
 migrate the previous example to the Oracle DB-API driver, we would need to
 write:
sql="INSERT INTO user(user_name, password) VALUES (:1, :2)"
cursor = conn.cursor()
cursor.execute(sql, 'rick', 'parrot')
SQL Injection Attacks
SQL injection is a type of programming error where carefully
 crafted user input can cause your application to execute arbitrary SQL
 code. For instance, suppose that the DB-API code in the earlier listing
 had been written as follows:
sql="INSERT INTO user(user_name, password) VALUES ('%s', '%s')"
cursor = conn.cursor()
cursor.execute(sql % (user_name, password))
In most cases, this code will work. For instance, with the
 user_name and password variables
 just shown, the SQL that would be executed is INSERT INTO user(user_name, password) VALUES ('rick', 'parrot'). A user could, however, supply a maliciously crafted
 password: parrot'); DELETE FROM user;--. In this case, the SQL executed is INSERT INTO user(user_name, password) VALUES ('rick', 'parrot'); DELETE FROM user; --', which would probably delete
 all users from your database. The use of bind parameters (as in the
 first example in the text) is an effective defense against SQL
 injection, but as long as you are manipulating strings directly, there
 is always the possibility of introducting a SQL injection vulnerability
 into your code.

In the SQLAlchemy SQL expression language, you could write the
 following instead:
statement = user_table.insert(user_name='rick', password='parrot')
statement.execute()
To migrate this code to Oracle, you would write, well, exactly the
 same thing.
SQLAlchemy also allows you to write SQL queries using a Pythonic expression-builder. For instance, to retrieve all
 the users created in 2007, you would write:
statement = user_table.select(and_(
 user_table.c.created >= date(2007,1,1),
 user_table.c.created < date(2008,1,1))
result = statement.execute()
In order to use the SQL expression language, you need to provide
 SQLAlchemy with information about your database schema. For instance, if
 you are using the user table mentioned previously, your schema definition
 might be the following:
metadata=MetaData('sqlite://') # use an in-memory SQLite database
user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
Column('email_address', Unicode(255), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created', DateTime, default=datetime.now))
If you would rather use an existing database schema definition, you still need to tell SQLAlchemy which
 tables you have, but SQLAlchemy can reflect the tables using the database
 server’s introspection capabilities. In this case, the schema definition
 reduces to the following:
users_table = Table('users', metadata, autoload=True)
Although the SQLAlchemy SQL expression language is quite powerful,
 it can still be tedious to manually specify the queries and updates
 necessary to work with your tables. To help with this problem, SQLAlchemy
 provides an ORM to automatically populate your Python objects from the
 database and to update the database based on changes to your Python
 objects. Using the ORM is as simple as writing your classes, defining your
 tables, and mapping your tables to your classes. In the case of the user
 table, you could perform a simple mapping via the following code:
class User(object): pass
mapper(User, user_table)
Notice that there is nothing particularly special about the
 User class defined here. It is used to create “plain
 old Python objects,” or POPOs. All the magic of SQLAlchemy is performed by the mapper.
 Although the class definition just shown is empty, you may define your own
 methods and attributes on a mapped class. The mapper will create
 attributes corresponding to the column names in the mapped table as well
 as some private attributes used by SQLAlchemy internally. Once your table
 is mapped, you can use a Session object
 to populate your objects based on data in the user table and
 flush any changes you make to mapped objects to the database:
>>> Session = sessionmaker()
>>> session = Session()
>>>
>>> # Insert a user into the database
... u = User()
>>> u.user_name='rick'
>>> u.email_address='rick@foo.com'
>>> u.password='parrot'
>>> session.save(u)
>>>
>>> # Flush all changes to the session out to the database
... session.flush()
>>>
>>> query = session.query(User)
>>> # List all users
... list(query)
[<__main__.User object at 0x2abb96dae3d0>]
>>>
>>> # Get a particular user by primary key
... query.get(1)
<__main__.User object at 0x2abb96dae3d0>
>>>
>>> # Get a particular user by some other column
... query.get_by(user_name='rick')
<__main__.User object at 0x2abb96dae3d0>
>>>
>>> u = query.get_by(user_name='rick')
>>> u.password = 'foo'
>>> session.flush()
>>> query.get(1).password
'foo'
As you can see, SQLAlchemy makes persisting your objects simple and
 concise. You can also customize and extend the set of properties created
 by SQLAlchemy, allowing your objects to model, for instance, a
 many-to-many relationship with simple Python lists.

The Object/Relational “Impedance Mismatch”

Although a SQL database is a powerful and flexible modeling tool, it is
 not always a good match for the object-oriented programming style. SQL is
 good for some things, and object-oriented programming is good for others.
 This is sometimes referred to as the object/relational “impedance
 mismatch,” and it is a problem that SQLAlchemy tries to address in the
 ORM. To illustrate the object/relational impedance mismatch, let’s first
 look at how we might model a system in SQL, and then how we might model it
 in an object-oriented way.
SQL databases provide a powerful means for modeling data and
 allowing for arbitrary queries of that data. The model underlying SQL is
 the relational model. In the relational
 model, modeled items (entities) can have various attributes, and are related to other entities
 via relationships. These relationships can be one-to-one, one-to-many,
 many-to-many, or complex, multientity relationships. The SQL expression of
 the entity is the table, and relationships are expressed as foreign key constraints, possibly with the use of an
 auxiliary “join” table. For example, suppose we have a user permission
 system that has users who may belong to one or more groups. Groups may
 have one or more permissions. Our SQL to model such a system might be
 something like the following:
CREATE TABLE tf_user (
 id INTEGER NOT NULL,
 user_name VARCHAR(16) NOT NULL,
 email_address VARCHAR(255) NOT NULL,
 password VARCHAR(40) NOT NULL,
 first_name VARCHAR(255),
 last_name VARCHAR(255),
 created TIMESTAMP,
 PRIMARY KEY (id),
 UNIQUE (user_name),
 UNIQUE (email_address));
CREATE TABLE tf_group (
 id INTEGER NOT NULL,
 group_name VARCHAR(16) NOT NULL,
 PRIMARY KEY (id),
 UNIQUE (group_name));
CREATE TABLE tf_permission (
 id INTEGER NOT NULL,
 permission_name VARCHAR(16) NOT NULL,
 PRIMARY KEY (id),
 UNIQUE (permission_name));
-- Relate the user and group tables
CREATE TABLE user_group (
 user_id INTEGER,
 group_id INTEGER,
	 PRIMARY KEY(user_id, group_id),
 FOREIGN KEY(user_id) REFERENCES tf_user (id),
 FOREIGN KEY(group_id) REFERENCES tf_group (id));
-- Relate the group and permission tables
CREATE TABLE group_permission (
 group_id INTEGER,
 permission_id INTEGER,
	 PRIMARY KEY(group_id, permission_id),
 FOREIGN KEY(group_id) REFERENCES tf_group (id),
 FOREIGN KEY(permission_id) REFERENCES tf_permission (id));
Notice the two auxiliary tables used to provide many-to-many joins
 between users and groups, and between groups and users. Once we have this
 schema in place, a common scenario is to check whether a particular user
 has a particular permission. In SQL, we might write:
SELECT COUNT(*) FROM tf_user, tf_group, tf_permission WHERE
	 tf_user.user_name='rick' AND tf_user.id=user_group.user_id
	 AND user_group.group_id = group_permission.group_id
	 AND group_permission.permission_id = tf_permission.id
	 AND permission_name='admin';
In a single statement, we join the three entities—user, group, and
 permission—together to determine whether the user “rick” has the “admin”
 permission.
In the object-oriented world, we would probably model the system
 quite differently. We would still have users, groups, and permissions, but
 they would probably have an ownership relationship between them:
class User(object):
 groups=[]

class Group(object):
 users=[]
 permissions=[]

class Permission(object):
 groups=[]
Suppose we wanted to print out a summary of all of a given user’s
 groups and permissions, something an object-oriented style would do quite
 well. We might write something like
 the following:
print 'Summary for %s' % user.user_name
for g in user.groups:
 print ' Member of group %s' % g.group_name
 for p in g.permissions:
 print ' ... which has permission %s' % p.permission_name
On the other hand, if we wanted to determine whether a user has a
 particular permission, we would need to do something like the
 following:
def user_has_permission(user, permission_name):
 for g in user.groups:
 for p in g.permissions:
 if p.permission_name == 'admin':
 return True
 return False
In this case, we needed to write a nested loop, examining every group the user is a member of
 to see if that group had a particular permission. SQLAlchemy lets you use
 object-oriented programming where appropriate (such as checking for a
 user’s permission to do something) and relational programming where
 appropriate (such as printing a summary of groups and permissions). In
 SQLAlchemy, we could print the summary information exactly as shown, and
 we could detect membership in a group with a much simpler query. First, we
 need to create mappings between our tables and our objects, telling
 SQLAlchemy a little bit about the many-to-many joins:
mapper(User, user_table, properties=dict(
 groups=relation(Group, secondary=user_group, backref='users')))
mapper(Group, group_table, properties=dict(
 permissions=relation(Permission, secondary=group_permission,
 backref='groups')))
mapper(Permission, permission_table)
Now, our model plus the magic of the SQLAlchemy ORM allows us to
 detect whether the given user is an administrator:
q = session.query(Permission)
rick_is_admin = q.count_by(permission_name='admin',
... user_name='rick')
SQLAlchemy was able to look at our mappers, determine how to join
 the tables, and use the relational model to generate a single call to the
 database. The SQL generated by SQLAlchemy is actually quite similar to
 what we would have written ourselves:
SELECT count(tf_permission.id)
FROM tf_permission, tf_user, group_permission, tf_group, user_group
WHERE (tf_user.user_name = ?
	 AND ((tf_permission.id = group_permission.permission_id
	 AND tf_group.id = group_permission.group_id)
	 AND (tf_group.id = user_group.group_id
	 AND tf_user.id = user_group.user_id)))
	 AND (tf_permission.permission_name = ?)
SQLAlchemy’s real power comes from its ability to bridge the
 object/relational divide; it allows you to use whichever model is
 appropriate to your task at hand. Aggregation is another example of using
 SQLAlchemy’s relational model rather than the object-oriented model.
 Suppose we wanted a count of how many users had each permission type. In
 the traditional object-oriented world, we would probably loop over each
 permission, then over each group, and finally count the users in the group
 (without forgetting to remove duplicates!). This leads to something like
 this:
for p in permissions:
 users = set()
 for g in p.groups:
 for u in g.users:
 users.add(u)
print 'Permission %s has %d users' % (p.permission_name, len(users))
In SQLAlchemy, we can drop into the SQL expression language to
 create the following query:
q=select([Permission.c.permission_name,
 func.count(user_group.c.user_id)],
 and_(Permission.c.id==group_permission.c.permission_id,
 Group.c.id==group_permission.c.group_id,
 Group.c.id==user_group.c.group_id),
 group_by=[Permission.c.permission_name],
 distinct=True)
rs=q.execute()
for permission_name, num_users in q.execute():
print 'Permission %s has %d users' % (permission_name, num_users)
Although the query is a little longer in this case, we are doing all
 of the work in the database, allowing us to reduce
 the data transferred and potentially increase performance substantially due to reduced
 round-trips to the database. The important thing to note is that
 SQLAlchemy makes “simple things simple, and complex things
 possible.”

SQLAlchemy Philosophy

SQLAlchemy was created with the goal of letting
 your objects be objects, and your tables be tables. The SQLAlchemy home
 page puts it this way:
	 	SQLAlchemy Philosophy

SQL databases behave less and less like object collections the
 more size and performance start to matter; object collections behave
 less and less like tables and rows the more abstraction starts to
 matter. SQLAlchemy aims to accommodate both of these principles.
	
	 	--From http://www.sqlalchemy.org

Using the object mapper pattern (where plain Python objects are
 mapped to SQL tables via a mapper object, rather than requiring persistent
 objects to be derived from some Persistable class)
 achieves much of this separation of concerns. There has also been a
 concerted effort in SQLAlchemy development to expose the full power of
 SQL, should you wish to use it.
In SQLAlchemy, your objects are POPOs until you tell SQLAlchemy
 about them. This means that it is entirely possible to “bolt on”
 persistence to an existing object model by mapping the classes to tables.
 For instance, consider an application that uses users, groups, and
 permissions, as shown. You might prototype your application with the
 following class definitions:
class User(object):

 def __init__(self, user_name=None, password=None, groups=None):
 if groups is None: groups = []
 self.user_name = user_name
 self.password = password
 self._groups = groups

 def join_group(self, group):
 self._groups.append(group)

 def leave_group(self, group):
 self._groups.remove(group)

class Group(object):

def __init__(self, group_name=None, users=None, permissions=None):
 if users is None: users = []
 if permissions is None: permissions = []
 self.group_name = group_name
 self._users = users
 self._permissions = permissions

 def add_user(self, user):
 self._users.append(user)

 def del_user(self, user):
 self._users.remove(user)

 def add_permission(self, permission):
 self._permissions.append(permission)

 def del_permission(self, permission):
 self._permissions.remove(permission)

class Permission(object):

 def __init__(self, permission_name=None, groups=None):
 self.permission_name = permission_name
 self._groups = groups

 def join_group(self, group):
 self._groups.append(group)

 def leave_group(self, group):
 self._groups.remove(group)
Once your application moves beyond the prototype stage, you might
 expect to have to write code to manually load objects from the database or
 perhaps some other kind of persistent object store. On the other hand, if
 you are using SQLAlchemy, you would just define your tables:
user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False))

group_table = Table(
 'tf_group', metadata,
 Column('id', Integer, primary_key=True),
 Column('group_name', Unicode(16), unique=True, nullable=False))

permission_table = Table(
 'tf_permission', metadata,
 Column('id', Integer, primary_key=True),
 Column('permission_name', Unicode(16), unique=True,
 nullable=False))

user_group = Table(
 'user_group', metadata,
 Column('user_id', None, ForeignKey('tf_user.id'),
 primary_key=True),
 Column('group_id', None, ForeignKey('tf_group.id'),
 primary_key=True))

group_permission = Table(
 'group_permission', metadata,
 Column('group_id', None, ForeignKey('tf_group.id'),
 primary_key=True),
 Column('permission_id', None, ForeignKey('tf_permission.id'),
 primary_key=True))
and your mappers:
mapper(User, user_table, properties=dict(
_groups=relation(Group, secondary=user_group, backref='_users')))
mapper(Group, group_table, properties=dict(
 _permissions=relation(Permission, secondary=group_permission,
 backref=_'groups')))
mapper(Permission, permission_table)
and you’re done. No modification of your objects is required—they
 are still simply new-style (derived from the object
 class) Python classes, and they still have whatever methods you have
 defined, as well as a few attributes added by SQLAlchemy (described in the
 sidebar Instrumentation on Mapped Classes”). Your old
 methods join_group, leave_group, etc. still
 work, even without modifying the class code. This means that
 you can modify mapped “collection” properties (properties modeling 1:N or
 M:N relationships) with regular list
 operations, and SQLAlchemy will track your changes and flush them to the
 database automatically.
Instrumentation on Mapped Classes
Mapped classes are actually fairly unmolested by the default
 SQLAlchemy mapper. In particular, the mapped class is given the
 following new attributes:
	
 c

	This attribute contains a collection of the columns in the
 table being mapped. This is useful when constructing SQL queries
 based on the mapped class, such as referring to
 User.c.user_name.

	
 _state

	SQLAlchemy uses this property to track whether a mapped
 object is “clean” (freshly fetched from the databaes), “dirty”
 (modified since fetching from the database), or “new” (as-yet
 unsaved to the database). This property generally should not be
 modified by the application programmer.

	
 mapped properties

	One attribute will be added to the mapped class for each
 property specified in the mapper, as well as any “auto-mapped”
 properties, such as columns. In the previous example, the mapper
 adds user_name, password,
 id, and _groups to the
 User class.

So, if you are planning on using SQLAlchemy, you should stay away
 from naming any class attributes c or
 _state, and you should be aware that SQLAlchemy will
 instrument your class based on the properties defined by the
 mapper.

SQLAlchemy also allows you the full expressiveness of SQL, including
 compound (multicolumn) primary keys and foreign keys, indexes, access to
 stored procedures, the ability to “reflect” your tables from the database
 into your application, and even the ability to specify cascading updates
 and deletes on your foreign key relationships and value constraints on
 your data.

SQLAlchemy Architecture

SQLAlchemy consists of several components, including the
 aforementioned database-independent SQL expression language
 object-relational mapper. In order to enable these components, SQLAlchemy
 also provides an Engine class, which manages connection
 pools and SQL dialects, a MetaData class, which
 manages your table information, and a flexible type system for mapping SQL
 types to Python types.
Engine

The beginning of any SQLAlchemy application is the
 Engine. The engine manages the SQLAlchemy
 connection pool and the database-independent SQL dialect layer. In our
 previous examples, the engine was created implicitly when the MetaData was created:
metadata=MetaData('sqlite://')
engine = metadata.bind
It is also possible to create an engine manually, using
 the SQLAlchemy function create_engine():
engine=create_engine('sqlite://')
This engine can later be bound to a
 MetaData object just by setting the
 bind attribute on the
 MetaData:
metadata.bind = engine
The engine can also be used in SQL statements such as table
 creation if the MetaData is
 unbound (not connected to a particular engine):
user_table.create(bind=engine)
The engine can be used to execute queries directly on the database
 via dynamic SQL:
for row in engine.execute("select user_name from tf_user"):
 print 'user name: %s' % row['user_name']
Most of the time, you will be using the higher-level facilities of
 the SQL expression language and ORM components of SQLAlchemy, but it’s
 nice to know that you can always easily drop down all the way to raw SQL
 if you need to.
Connection pooling

Thus far, we have glossed over the use of database connections. In
 fact, all of our examples up to this point have used SQLAlchemy’s
 powerful connection pooling subsystem. In order to execute queries
 against a database, a connection is required, and the establishment of
 a new connection is typically an expensive operation, involving a
 network connection, authentication of the user, and any database
 session setup required. To amortize the costs, the typical solution is
 to maintain a pool of database connections that are used over and over
 again in the application.
The Engine object in SQLAlchemy is responsible for managing a pool of
 low-level DB-API connections. In fact, the engine and the low-level
 connection objects obey a Connectable protocol,
 allowing you to execute dynamic SQL queries either directly against a
 connection, or against the engine (in which case the engine will
 automatically allocate a connection for the query).
In another instance of making simple things simple and complex
 things possible, SQLAlchemy does The Right Thing most of the time with
 connections, and allows you to override its strategy when required.
 SQLAlchemy’s default strategy is to acquire a connection for each SQL
 statement, and when that connection is no longer used (when its result
 set is closed or garbage-collected) to return it to the pool. If you
 would like to manually manage your collections, you can also do that
 via the connect()
 method on the engine object:
engine = create_engine('sqlite://')
connection = engine.connect()
result = connection.execute("select user_name from tf_user")
for row in result:
 print 'user name: %s' % row['user_name']
result.close()
SQLAlchemy has another strategy for connection pooling that has
 some performance benefits in many cases: the “thread-local” strategy.
 In the thread-local strategy, a connection that is currently in use by
 a thread will be reused for other statements within that thread. This
 can reduce database server load, which is especially important when
 you could have several applications accessing the database
 simultaneously. If you want to use the thread-local strategy, simply
 create the Engine object and set the strategy to
 threadlocal:
engine = create_engine('sqlite://', strategy='threadlocal')

SQL dialect management

Although SQL is a standardized language, many database vendors either do
 not fully implement it or simply create extensions to the standard.
 The dialect object attempts to manage the idiosyncracies of each
 supported SQL dialect as well as manage the low-level DB-API modules
 implementing the connection.
The dialect is mostly used as a transparent layer for your
 application programming. The main exception to this rule is when you
 want to access a data type that is supported only for particular
 database servers. For instance, MySQL has
 BigInteger and Enum
 types. To use these types, you must import them directly from the
 appropriate module in the sqlalchemy.databases
 package:
from sqlalchemy.databases.mysql import MSEnum, MSBigInteger

user_table = Table('tf_user', meta,
 Column('id', MSBigInteger),
Column('honorific', MSEnum('Mr', 'Mrs', 'Ms', 'Miss', 'Dr',
... 'Prof')))

MetaData Management

The MetaData
 object in SQLAlchemy is used to collect and organize information
 about your table layout (i.e., your database
 schema). We alluded to MetaData management
 before in describing how to create tables. A
 MetaData object must be created before any tables
 are defined, and each table must be associated with a
 MetaData object. MetaData objects can be created “bound”
 or “unbound,” based on whether they are associated with an engine. The
 following is an example of the different ways you can create
 MetaData objects:
create an unbound MetaData
unbound_meta = MetaData()

create an Engine and bind the MetaData to it
db1 = create_engine('sqlite://')
unbound_meta.bind = db1

Create an engine and then a bound MetaData
db2 = MetaData('sqlite:///test1.db')
bound_meta1 = MetaData(db2)

Create a bound MetaData with an implicitly created engine
bound_meta2 = MetaData('sqlite:///test2.db')
Although tables can be defined against unbound
 MetaData, it is often more convenient to
 eventually bind the metadata to an engine, as this allows the
 MetaData and the Table
 objects defined for it to access the database directly:
Create a bound MetaData
meta = MetaData('sqlite://')

Define a couple of tables
user_table = Table(
 'tf_user', meta,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False))

group_table = Table(
 'tf_group', meta,
 Column('id', Integer, primary_key=True),
 Column('group_name', Unicode(16), unique=True, nullable=False))

Create all the tables in the (empty) database
meta.create_all()

Select all the groups from the tf_group table
result_set = group_table.select().execute()
As mentioned previously, you can also reflect
 your schema by setting the autoload parameter
 to True in your
 Table creation. Reflection, however, requires a
 database connection to function properly. (SQLAlchemy must query the
 database to determine the structure of the tables.) Binding the
 MetaData to an engine is a convenient way to
 provide this connection. Note, however, that you are never
 required to bind the MetaData object; any operation that you
 can perform with a bound MetaData or a table
 defined on it can also be performed by passing the engine or connection
 to the individual method. This might be useful if you wish to use the
 same MetaData object for multiple distinct
 database engines:
meta = MetaData()
engine1 = create_engine('sqlite:///test1.db')
engine2 = create_engine('sqlite:///test2.db')

Use the engine parameter to load tables from the first engine
user_table = Table(
 'tf_user', meta, autoload=True, autoload_with=engine1)
group_table = Table(
 'tf_group', meta, autoload=True, autoload_with=engine1)
permission_table = Table(
 'tf_permission', meta, autoload=True, autoload_with=engine1)
user_group_table = Table(
 'user_group', meta, autoload=True, autoload_with=engine1)
group_permission_table = Table(
 'group_permission', meta, autoload=True, autoload_with=engine1)

Create the tables in the second engine
meta.create_all(engine2)

Select some data
result_set = engine1.execute(user_table.select())

Types System

In many cases, SQLAlchemy can map SQL types to Python types in a
 straightforward way. To do this, SQLAlchemy provides a set of
 TypeEngine-derived classes that convert SQL data
 to Python data in the sqlalchemy.types module.
 TypeEngine subclasses are used to define the
 MetaData for tables.
Sometimes, in keeping with the SQLAlchemy philosophy of letting
 your objects be objects, you may find that the provided
 TypeEngine classes do not express all of the data
 types you wish to store in your database. In this case, you can write a
 custom TypeEngine that
 converts data being saved to the database to a database-native type, and
 converts data being loaded from the database to a Python native type.
 Suppose, for instance, that we wished to have a column that stored
 images from the Python Imaging Library (PIL). In this case, we might use
 the following TypeEngine definition:
class ImageType(sqlalchemy.types.Binary):

 def convert_bind_param(self, value, engine):
 sfp = StringIO()
 value.save(sfp, 'JPEG')
 return sfp.getvalue()

 def convert_result_value(self, value, engine):
 sfp = StringIO(value)
 image = PIL.Image.open(sfp)
 return image
Once we have defined ImageType, we can use
 that type in our table definitions, and the corresponding PIL image will
 be automatically created when we select from the database or serialized
 when we insert or update the database.

SQL Expression Language

SQLAlchemy’s SQL expression language provides an API to execute
 queries and updates against your tables, all from Python, and all in a
 database-independent way (managed by the SQLAlchemy-provided
 Dialect). For instance, the following expression:
select([user_table.c.user_name, user_table.c.password],
 where=user_table.c.user_name=='rick')
would yield the following SQL code:
SELECT tf_user.user_name, tf_user.password
FROM tf_user
WHERE tf_user.user_name = ?
Notice how the SQL generated uses a question mark for the user name value. This is known as a
 “bind parameter.” When the query is run, SQLAlchemy will send the query
 string (with bind parameters) and the actual variables (in this case,
 the string "rick") to the database engine. Using the
 SQLAlchemy SQL-generation layer has several advantages over hand-generating SQL strings:
	Security
	Application data (including user-generated data) is safely
 escaped via bind parameters, making SQL injection-style attacks
 extremely difficult.

	Performance
	The likelihood of reusing a particular query string (from
 the database server’s perspective) is increased. For instance, if
 we wanted to select another user from the table, the SQL generated
 would be identical, and a different bind parameter would be sent.
 This allows the database server in some cases to reuse its
 execution plan from the first query for the second, increasing
 performance.

	Portability
	Although SQL is a standardized language, different database
 servers implement different parts of the standard, and to
 different degrees of faithfulness. SQLAlchemy provides you a way to
 write database-independent SQL in Python without tying you to a
 particular database server. With a little bit of planning, the
 same SQLAlchemy-based application can run on SQLite, Oracle, DB2,
 PostgreSQL, or any other
 SQLAlchemy-supported database without code changes.

Most of the time, you will be using the SQL expression language by
 creating expressions involving the attributes of the
 table.c object. This is a special attribute that is added to
 Tables you have defined in the metadata, as well
 as any objects you have mapped to tables or other selectables. The “.c”
 objects represent database columns, and they can be combined via a rich set
 of operators:
Select all users with a username starting with 'r' who were
created before June 1, 2007
q = user_table.select(
 user_table.c.user_name.like('r%')
 & user_table.c.created < datetime(2007,6,1))

Alternate syntax to do the same thing
q = user_table.select(and_(
 user_table.c.user_name.like('r%'),
 user_table.c.created < datetime(2007,6,1)))
You can also use mapped classes in the same way:
q = session.query(User)
q = q.filter(User.c.user_name.like('r%')
 & User.c.created > datetime(2007,6,1))
Of course, you aren’t required to use the SQL expression language;
 you can always insert custom SQL instead:
q = user_table.select("""tf_user.user_name LIKE 'r%'""")
You can also use SQL functions in your queries by using the
 SQLAlchemy-supplied func object:
q=select([Permission.c.permission_name,
 func.count(user_group.c.user_id)],
 and_(Permission.c.id==group_permission.c.permission_id,
 Group.c.id==group_permission.c.group_id,
 Group.c.id==user_group.c.group_id),
 group_by=[Permission.c.permission_name],
 distinct=True)

Object Relational Mapper (ORM)

Although you can do a lot with the Engine,
 Metadata, TypeEngine,
 and SQL expression language, the true power of SQLAlchemy is
 found in its ORM. SQLAlchemy’s ORM provides a convenient, unobtrusive
 way to add database persistence to your Python objects without requiring
 you to design your objects around the database, or the database around the objects. To accomplish
 this, SQLAlchemy uses the data mapper pattern. In this pattern, you can
 define your tables (or other selectables, such as joins) in one module,
 your classes in another, and the mappers between them in yet another
 module.
SQLAlchemy provides a great deal of flexibility in mapping tables,
 as well as a sensible set of default mappings. Suppose that we defined
 the following tables, classes, and mappers:
user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
Column('email_address', Unicode(255), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created', DateTime, default=datetime.now))

group_table = Table(
 'tf_group', metadata,
 Column('id', Integer, primary_key=True),
 Column('group_name', Unicode(16), unique=True, nullable=False))

user_group = Table(
 'user_group', metadata,
Column('user_id', None, ForeignKey('tf_user.id'), primary_key=True),
Column('group_id', None, ForeignKey('tf_group.id'),
... primary_key=True))

class User(object): pass

class Group(object): pass

mapper(User, user_table)
mapper(Group, group_table)
Here, the mapper would create properties on the
 User class for the columns of the table:
 id, user_name,
 email_address, password,
 first_name, last_name, and
 created. On the Group class,
 the id and group_name properties
 would be defined. The mapper, however, has a great deal more
 flexibility. If we wished to store only a hash of the user’s password in
 the database, rather than the actual plaintext password, we might modify
 the User class and mapper to the
 following:
import sha
class User(object):

 def _get_password(self):
 return self._password
 def _set_password(self, value):
 self._password = sha.new(value).hexdigest()
 password=property(_get_password, _set_password)

 def password_matches(self, password):
 return sha.new(password).hexdigest() == self._password

mapper(User, user_table, properties=dict(
 _password=user_table.c.password))
By providing an application-level override for the password
 property, we can ensure that only hashed passwords are ever stored to
 the database. By telling the mapper to map
 user_table.c.password to the protected property
 _password, we prevent SQLAlchemy from providing the default
 mapping for the password column.
Perhaps the most powerful feature of the ORM is the ability to use
 regular Python data structures to model relationships between tables. In
 the preceding user/group example, we can modify the user mapper a bit
 more to provide the User class with a
 groups property, and the Group
 class with a users property:
mapper(User, user_table, properties=dict(
 _password=user_table.c.password,
 groups=relation(Group, secondary=user_group, backref='users')))
Now we can access all the groups that a user is a member of by
 simply accessing the groups property. We can also add
 a user to a group by either appending the user to the group’s
 users property, or appending the
 group to the user’s groups property:
user1's "groups" property will automatically be updated
group1.users.append(user1)

group2's "users" property will automatically be updated
user2.groups.append(group2)
The ORM uses a Session object to keep track
 of objects loaded from the database and the changes made to them.
 Sessions are used to persist objects created by
 the application, and they provide a query interface to retrieve objects
 from the database. Rather than executing the database code to
 synchronize your objects with your tables every time an object is
 modified, the Session simply tracks all changes
 until its flush() method is
 called, at which point all the changes are sent to the database in a
 single unit of work.
A Session class is created using the sessionmaker() function,
 and a Session object is created by instantiating
 the class returned from sessionmaker(). Although
 you can instantiate the Session object directly,
 the sessionmaker function is a
 convenient way to fix the parameters that will be passed to the
 Session’s constructor, rather than repeating them
 wherever a Session is instantiated.
To insert objects into the database, we simply need to save them
 to the session:
Session=sessionmaker()
session=Session()
u = User()
u.user_name='rick'
u.password='foo'
u.email_address='rick@pyatl.org'
session.save(u) # tell SQLAlchemy to track the object
session.flush() # actually perform the insert
To retrieve objects from the database, we need to first obtain a
 query object from the session and then use its methods to specify which
 objects we retrieve:
q = session.query(User)

user = q.get(1) # retrieve by primary key

retrieve one object by property
user = q.get_by(user_name='rick')

retrieve multiple objects
users = list(q.filter_by(first_name=None))

retrieve multiple objects using the SQL expression language
users = list(q.filter(User.c.first_name==None))
Note that the filter_by() method takes keyword arguments whose names match the
 mapped properties. This is often a useful shortcut because you avoid
 having to type out “User.c.” over and over, but is less flexible than
 the filter method, which can take arbitrary SQL expressions as its
 criteria for selection. One powerful feature of SQLAlchemy is its ability, in the
 filter_by()
 method, to automatically search your joined tables for a matching
 column:
Retrieve all users in a group named 'admin'
users = list(q.filter_by(group_name='admin'))
SQLAlchemy will automatically search for tables with foreign key
 relationships that contain the queried object to find columns to satisfy
 the keyword arguments. This can be very powerful, but can also sometimes
 find the wrong column, particularly if you are querying based on a
 common column name, such as name,
 for instance. In this case, you can manually specify the joins that
 SQLAlchemy will perform in the query via the join() method.
q = session.query(User)
q = q.join('groups') # use the mapped property name for joins
q = q.filter(Group.c.group_name=='admin')
users = list(q)
You can even specify a “join chain” by using a list of properties
 for the argument to join():
q = session.query(User)
groups is a property of a User, permissions is a property of a
... Group
q = q.join(['groups', 'permissions'])
q = q.filter(Permission.c.permission_name=='admin')
users = list(q)
The power of SQLAlchemy to construct complex queries becomes clear
 when we compare the previous code to the SQL generated:
SELECT tf_user.first_name AS tf_user_first_name,
 tf_user.last_name AS tf_user_last_name,
 tf_user.created AS tf_user_created,
 tf_user.user_name AS tf_user_user_name,
 tf_user.password AS tf_user_password,
 tf_user.email_address AS tf_user_email_address,
 tf_user.id AS tf_user_id
FROM tf_user
 JOIN user_group ON tf_user.id = user_group.user_id
 JOIN tf_group ON tf_group.id = user_group.group_id
JOIN group_permission ON tf_group.id = group_permission.group_id
JOIN tf_permission ON tf_permission.id =
... group_permission.permission_id
WHERE tf_permission.permission_name = ? ORDER BY tf_user.oid

Chapter 2. Getting Started

This chapter guides you through installing version 0.4 of SQLAlchemy
 (the version documented by this book) via EasyInstall. It will also give you a quick tutorial on the basic features
 of SQLAlchemy to “get your hands dirty” as soon as possible.
Installing SQLAlchemy

In order to use SQLAlchemy, you need to install the SQLAlchemy package as
 well as a Python database driver for your database. This section will
 guide you through installing both.
Installing the SQLAlchemy Package

Installing the SQLAlchemy is a straightforward process involving
 the widely used SetupTools
 package.
Installing setup tools

SQLAlchemy is distributed as an EGG file via the Python package index (PyPI), also known as the
 CheeseShop. If you have installed EGGs before using easy_install,
 you can skip to the next section. Otherwise, you will need
 to install SetupTools, a package that enhances the
 Python standard library-provided distutils package.
Note
SetupTools includes a
 tool called easy_install, which
 can be used to install various Python modules from the CheeseShop.
 easy_install is particularly
 good at resolving dependencies between Python packages and
 installing a package’s dependencies along with the package itself.
 If you intend to take advantage of the rich library of free software
 available in the CheeseShop, or if you intend to take advantage of
 the benefits of distributing your own code through SetupTools, it is a good idea to become
 familiar with all its features. You can find more documentation on
 SetupTools at
 http://peak.telecommunity.com/DevCenter/EasyInstall.

To install SetupTools,
 first download the bootstrap script ez_setup.py from
 http://peak.telecommunity.com/dist/ez_setup.py. You will
 then need to run the script to download the rest of SetupTools.
Note
In Windows, you must make certain that you have administrator
 privileges before running easy_install or ez_setup.py, as both of these scripts modify your Python
 site-packages directory.
In Windows, it’s also a good idea to make sure that Python and
 your Python scripts directories are on your path. In the default
 Python installation, these directories are c:\python25 and c:\python25\scripts.

In Unix-like systems, including Linux, BSD, and OS X, you can
 install SetupTools as follows:
$ sudo python ez_setup.py
In Windows, you will need to open a command prompt and run the
 bootstrap script as follows:
c:\>python ez_setup.py
Once you have installed SetupTools using
 ez_setup, you are ready to
 install SQLAlchemy.

Installing SQLAlchemy with easy_install

To install SQLAlchemy using easy_install on
 a Unix-like system, simply type the following:
$ sudo easy_install -UZ SQLAlchemy
On Windows, the corresponding command is as follows (as long as
 your scripts directory, generally c:\python25\scripts, is on your
 path):
c:\>easy_install -UZ SQLAlchemy
This will download and install SQLAlchemy to your Python
 site-packages directory. If you wish to install a particular version
 of SQLAlchemy, add a version specifier to the easy_install command line. In Unix, this
 would be:
$ sudo easy_install -UZ SQLAlchemy==0.4.1
In Windows, the command is similar:
c:\>easy_install -UZ SQLAlchemy==0.4.1
Note
Python EGGs are typically distributed and installed as ZIP
 files. Although this is convenient for distribution, it is often
 nice to see the actual source code. easy_install includes an option to
 specify that the EGG should be unzipped. The -UZ
 options as shown specify that SQLAlchemy should be
 Updated if already installed and should not be
 Zipped. If you are installing SQLAlchemy for the
 first time, you can leave off the -U, and if you don’t care to look at
 the source code, you can leave off the -Z.

Testing the install

To verify that your installation of SQLAlchemy has been
 successful, simply open up an interactive Python interpreter and try
 importing the module and verifying its version:
>>> import sqlalchemy
>>> sqlalchemy.__version__
'0.4.1'
This book covers the 0.4 release of SQLAlchemy, so confirm that
 the version installed on your system is at least 0.4.0.
SQLAlchemy also has an extensive unit test suite that can be
 downloaded separately (not via easy_install) from
 http://sqlalchemy.org if you wish to test the installation
 more extensively.

Installing Some Database Drivers

The next step is installing the appropriate DB-API database drivers for
 the database you wish to use. If you are using a version of Python
 greater than or equal to 2.5, you already have the SQLite driver
 installed, as it is included in the standard Python library. If you are
 using Python 2.3 or 2.4, you will need to install the SQLite driver
 separately.
Installing the SQLite driver on Python versions before
 2.5

For many of the examples in this book, we use the SQLite
 database driver, mainly because it requires no separate database
 server installation, and you can use it to generate throwaway
 in-memory databases. Even if your production database is not SQLite,
 it can be advantageous to install the driver for prototyping code and
 running the examples in this book. The SQLite database driver became
 part of the Python standard library in version 2.5, so if you are
 running more recent versions of Python, you can skip this
 section.
Installing SQLite is different depending on whether you are
 using Windows or another operating system. If you are using Windows,
 you can download the pysqlite binary module from http://pysqlite.org/ and install
 it. If you are using another operating system, you will also need to
 install the SQLite library from http://sqlite.org/.

Other supported drivers

If you wish to connect to other databases, you must install the
 appropriate DB-API driver module. The complete list of supported
 databases and drivers follows:
	PostgreSQL
	psycopg2 at
 http://www.initd.org/pub/software/psycopg/

	SQLite
	pysqlite at
 http://initd.org/pub/software/pysqlite/ or sqlite3 (included with Python
 versions 2.5 and greater)

	MySQL
	MySQLdb athttp://sourceforge.net/projects/mysql-python

	Oracle
	cx_Oracle
 athttp://www.cxtools.net/

	SQL Server
	Support for Microsoft SQL server is provided by multiple
 drivers as follows:
	pyodbc at
 http://pyodbc.sourceforge.net/ (recommended
 driver)

	adodbapi at
 http://adodbapi.sourceforge.net/

	pymssql at
 http://pymssql.sourceforge.net/

	Firebird
	kinterbasdb
 athttp://kinterbasdb.sourceforge.net/

	Informix
	informixdb
 athttp://informixdb.sourceforge.net/

SQLAlchemy Tutorial

Once you have installed SQLAlchemy and
 the SQLite driver (either pysqlite or
 sqlite3), you can start really
 exploring SQLAlchemy. This tutorial shows off some of the basic features
 of SQLAlchemy that you can use to become immediately productive. This
 tutorial is based on a stripped-down version of a user authentication
 module that might be used in a web application.
Connecting to the Database and Creating Some Tables

Before doing anything, we need to import the modules we will use.
 In this case, for simplicity’s sake, we will simply import everything
 from the sqlalchemy package.
 We will also import the datetime
 class from the datetime package for
 use in defining default values for our tables.
from sqlalchemy import *
from datetime import datetime
To connect to the database, we will create a
 MetaData object, which is used by SQLAlchemy to keep track of the tables we
 define:
metadata = MetaData('sqlite:///tutorial.sqlite')
The MetaData object we create is bound to a particular
 database Engine, in this case a SQLite engine
 connected to the database in the file tutorial.sqlite. If tutorial.sqlite does
 not already exist, it will be created automatically by SQLite.
Once we have created our MetaData, we can
 define our tables. The first table defined is the user table:
user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16),
 unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('display_name', Unicode(255), default=''),
 Column('created', DateTime, default=datetime.now))
Notice how the Table constructor is given
 the SQL name of the table ('tf_user'), a reference to the metadata
 object, and a list of columns. The columns are similarly defined with
 their SQL names, data types, and various optional constraints. In this
 case, since we defined an 'id' column as a primary
 key, SQLAlchemy will automatically create the column with an
 auto-increment default value. Also note that we can specify uniqueness
 and nullability constraints on columns, provide literal defaults, or
 provide Python callables (e.g., datetime.now) as defaults.
Next, we define our group and permission tables:
group_table = Table(
 'tf_group', metadata,
 Column('id', Integer, primary_key=True),
 Column('group_name', Unicode(16),
 unique=True, nullable=False))

permission_table = Table(
 'tf_permission', metadata,
 Column('id', Integer, primary_key=True),
 Column('permission_name', Unicode(16),
 unique=True, nullable=False))
Each table is simply defined with an auto-increment primary key
 and a unique name.
Finally, we define the join tables that provide a many-to-many
 relationship between users and groups and groups and permissions:
user_group_table = Table(
 'tf_user_group', metadata,
 Column('user_id', None, ForeignKey('tf_user.id'),
 primary_key=True),
 Column('group_id', None, ForeignKey('tf_group.id'),
 primary_key=True))

group_permission_table = Table(
 'tf_group_permission', metadata,
 Column('permission_id', None, ForeignKey('tf_permission.id'),
 primary_key=True),
 Column('group_id', None, ForeignKey('tf_group.id'),
 primary_key=True))
Note in particular the use of compound primary keys (each table is
 keyed by two columns) and the use of foreign key constraints. We also
 specified the data type of the foreign key columns as None. When a foreign key column is specified
 with this datatype, SQLAlchemy will examine the column on the related
 table (e.g., 'tf_user.id') to
 determine the data type for the foreign key column.
Once the tables have been defined, we can create them in the
 database using the following code:
metadata.create_all()
If you were not creating the database, but rather connecting to an
 existing database, you could, of course, leave out the call to metadata.create_all().
 SQLAlchemy will in any case create tables using the IF NOT EXISTS syntax, so a metadata.create_all() is
 a safe operation.

Performing Queries and Updates

Once we have defined the tables in our schema, we can insert
 some data. To create a new user, we use SQLAlchemy to construct
 an INSERT statement using the following syntax:
stmt = user_table.insert()
Once the insert statement has been created, it can be executed
 multiple times with different values:
stmt.execute(user_name='rick', password='secret',
 display_name='Rick Copeland')
stmt.execute(user_name='rick1', password='secret',
 display_name='Rick Copeland Clone')
If we wish to see the actual SQL generated, we can instruct
 SQLAlchemy to log the queries using the
 metadata.bind.echo property:
>>> metadata.bind.echo = True
>>> stmt.execute(user_name='rick2', password='secret',
... display_name='Rick Copeland Clone 2')
2007-09-06 10:19:52,317 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO tf_user (user_name, password, display_name, created)
...
... VALUES (?, ?, ?, ?)
2007-09-06 10:19:52,318 INFO sqlalchemy.engine.base.Engine.0x..50
... ['rick2', 'secret', 'Rick Copeland Clone 2', '2007-09-06
... 10:19:52.317540']
2007-09-06 10:19:52,319 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0x2b7ee8ffb610>
>>> metadata.bind.echo = False
Note again that SQLAlchemy uses bind parameters for the values to
 be inserted, and that SQLAlchemy automatically generates the
 created column value based on the result of calling
 datetime.now()
 when the insert was executed.
To select data back out of the table, we can use the table’s select() method as
 follows:
>>> stmt = user_table.select()
>>> result = stmt.execute()
>>> for row in result:
... print row
...
(1, u'rick', u'secret1', u'Rick Copeland',
... datetime.datetime(2007, 9, 7, 10, 6, 4, 415754))
(2, u'rick1', u'secret', u'Rick Copeland Clone',
... datetime.datetime(2007, 9, 7, 10, 6, 4, 476505))
(3, u'rick2', u'secret', u'Rick Copeland Clone 2',
... datetime.datetime(2007, 9, 7, 10, 6, 4, 543650))
We can also retrieve values from each row of the result using
 dict-like indexing or simple attribute lookup as
 follows:
>>> result = stmt.execute()
>>> row =result.fetchone()
>>> row['user_name']
u'rick'
>>> row.password
u'secret1'
>>> row.created
datetime.datetime(2007, 9, 7, 10, 6, 4, 415754)
>>> row.items()
[(u'id', 1), (u'user_name', u'rick'), (u'password', u'secret1'),
... (u'display_name', u'Rick Copeland'),
... (u'created', datetime.datetime(2007, 9, 7, 10, 6, 4, 415754))]
To restrict the rows that are returned from the select() method, we can
 supply a where clause. SQLAlchemy provides a powerful SQL expression
 language to assist in the construction of where clauses, as shown in the
 following example:
>>> stmt = user_table.select(user_table.c.user_name=='rick')
>>> print stmt.execute().fetchall()
[(1, u'rick', u'secret1', u'Rick Copeland',
... datetime.datetime(2007, 9, 7, 10, 6, 4, 415754))]
The SQL expression language is covered in more detail in Chapter 5.
We can also use the SQL expression language to generate updates
 and deletes by passing clauses to the update() and delete() methods on
 Table objects:
>>> # Create an update constrained by user name
... stmt = user_table.update(user_table.c.user_name=='rick')
>>> # Execute the update, setting the password column to secret123
... stmt.execute(password='secret123')
<sqlalchemy.engine.base.ResultProxy object at 0xa20c50>
>>>
>>> # Create a delete statement that deletes all users
... # except for 'rick'
... stmt = user_table.delete(user_table.c.user_name != 'rick')
>>> stmt.execute()
<sqlalchemy.engine.base.ResultProxy object at 0x2b12bf430210>
>>> # Select the users back from the database
... user_table.select().execute().fetchall()
[(1, u'rick', u'secret123', u'Rick Copeland',
... datetime.datetime(2007, 9, 7, 18, 35, 35, 529412))]
>>> # Add the users back
... stmt = user_table.insert()
>>> stmt.execute(user_name='rick1', password='secret',
... display_name='Rick Copeland Clone')
<sqlalchemy.engine.base.ResultProxy object at 0xa20c90>
>>> stmt.execute(user_name='rick2', password='secret',
... display_name='Rick Copeland Clone 2')
<sqlalchemy.engine.base.ResultProxy object at 0xa20cd0>
>>>
SQLAlchemy also provides for more generalized queries via the
 insert(),
 select(), update(), and delete() functions
 (rather than the methods on
 Table objects) to allow you to specify more
 complex SQL queries. Again, this is covered in more detail in Chapter 5.

Mapping Objects to Tables

In addition to the SQL-level features covered thus far, SQLAlchemy also provides a
 powerful object-relational mapper (ORM) that allows you to map tables
 (and other “selectable” objects, such as SELECT statements) to objects, making those objects automatically
 “SQL-persistable.” In order to use the ORM, we need to import the
 appropriate names:
from sqlalchemy.orm import *
The simplest case of mapping is to just declare empty classes for
 our application objects and declare an empty mapper:
class User(object): pass
class Group(object): pass
class Permission(object): pass

mapper(User, user_table)
mapper(Group, group_table)
mapper(Permission, permission_table)
Now that we have declared the mapping between our classes and
 tables, we can start doing queries. First off, though, we need to
 understand the unit of work (UOW) pattern. In UOW as implemented by
 SQLAlchemy, there is an object known as a Session
 that tracks changes to mapped objects and can flush() them out en masse to the database in a
 single “unit of work.” This can lead to substantial performance
 improvement when compared to executing multiple separate updates. In
 SQLAlchemy, the Session class is created using
 the sessionmaker()
 function, and the Session object is created
 by instantiating the class returned from sessionmaker(). The
 intent is that sessionmaker() should be
 called once (at the module level), with its return value used to create
 individual sessions:
Session = sessionmaker()
session = Session()
Once we have the session object, we use it to obtain access to a
 Query object for our class:
query = session.query(User)
The simplest way to use the Query object is
 as an iterator for all the objects in the database. Since we have
 already inserted a row in the user_table, we can
 retrieve that row as a User object:
>>> list(query)
[<__main__.User object at 0xb688d0>,
... <__main__.User object at 0xb68910>,
... <__main__.User object at 0xb68c10>]
>>> for user in query:
... print user.user_name
...
rick
rick1
rick2
We can also retrieve an object from the database by using its
 primary key with the get() method on the
 Query object:
>>> query.get(1)
<__main__.User object at 0xb688d0>
If we want to filter the results retrieved by the
 Query object, we can use the filter() and filter_by()
 methods:
>>> for user in query.filter_by(display_name='Rick Copeland'):
... print user.id, user.user_name, user.password
...
1 rick secret123
>>> for user in query.filter(User.c.user_name.like('rick%')):
... print user.id, user.user_name, user.password
...
1 rick secret123
2 rick1 secret
3 rick2 secret
Note the use of the .c attribute of the
 User object. It was added by the mapper as a
 convenience to access the names of mapped columns. If we wanted to, we
 could freely substitute user_table.c.user_name for
 User.c.user_name, and vice versa.
To insert objects into the database, we simply create an object in
 Python and then use the save()
 method to notify the session about the object:
>>> newuser = User()
>>> newuser.user_name = 'mike'
>>> newuser.password = 'password'
>>> session.save(newuser)
Due to the UOW pattern, the new user has not yet been saved to the
 database. If we try to count the users using the
 user_table, we still get 3:
>>> len(list(user_table.select().execute()))
3
If, however, we try to use the Query
 object, the ORM recognizes the need to perform a flush() on the
 Session, inserts the new user, and we get a count
 of 4:
>>> metadata.bind.echo = True
>>> query.count()
2007-09-09 21:33:09,482 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO tf_user (user_name, password, display_name, created)
...
... VALUES (?, ?, ?, ?)
2007-09-09 21:33:09,482 INFO sqlalchemy.engine.base.Engine.0x..50
... ['mike', 'password', '', '2007-09-09 21:33:09.481854']
2007-09-09 21:33:09,485 INFO sqlalchemy.engine.base.Engine.0x..50
... SELECT count(tf_user.id)
FROM tf_user
2007-09-09 21:33:09,486 INFO sqlalchemy.engine.base.Engine.0x..50 []
4
You can disable the auto-flushing behavior of SQLAlchemy by
 specifying autoflush=False in the call to sessionmaker().
To update objects in the database, we simply make changes to the
 object in Python and allow the SQLAlchemy Session
 to track our changes and eventually flush everything out to the
 database:
>>> newuser.password = 'password1'
>>> newuser.display_name = 'Michael'
>>>
>>> rick = query.get(1)
>>> rick.display_name = 'Richard'
>>>
>>> session.flush()
2007-09-09 21:40:21,854 INFO sqlalchemy.engine.base.Engine.0x..50
... UPDATE tf_user SET display_name=? WHERE tf_user.id = ?
2007-09-09 21:40:21,854 INFO sqlalchemy.engine.base.Engine.0x..50
... ['Richard', 1]
2007-09-09 21:40:21,856 INFO sqlalchemy.engine.base.Engine.0x..50
... UPDATE tf_user SET password=?, display_name=? WHERE tf_user.id =
... ?
2007-09-09 21:40:21,857 INFO sqlalchemy.engine.base.Engine.0x..50
['password1', 'Michael', 4]
To delete an object, simply call the session’s
 delete()
 method with the object to be deleted. To flush the
 session and commit the transaction, we call session.commit():
>>> session.delete(newuser)
>>>
>>> session.commit()
2007-09-09 21:42:56,327 INFO sqlalchemy.engine.base.Engine.0x..50
... DELETE FROM tf_user WHERE tf_user.id = ?
2007-09-09 21:42:56,328 INFO sqlalchemy.engine.base.Engine.0x..50
... [4]
2007-09-09 21:42:56,328 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
The SQLAlchemy ORM also includes support for managing
 relationships between classes, as well as flexible overrides of its
 column-mapping conventions. The ORM is covered in more detail in
 Chapters 6,
 7, and 8.

Chapter 3. Engines and MetaData

This chapter introduces SQLAlchemy’s Engine and
 MetaData classes. The Engine
 class provides database connectivity, including a connection pool with various strategies for acquiring connections from the
 pool. The MetaData class maintains information about
 your database schema, including any tables and indexes defined. In this
 chapter, you will learn how to define a new database schema using
 MetaData as well as how to connect a
 MetaData instance to an existing schema.
Engines and Connectables

The SQLAlchemy-provided Engine class is responsible for
 managing the connection to the database. It does this by incorporating a
 database connection pool and a database-specific Dialect layer
 to translate the SQL expression language (Chapter 5)
 into database-specific SQL.
To get started using an Engine, you
 use the create_engine()
 function:
Create a connection to a SQLite in-memory database
engine = create_engine('sqlite://')

Create a connection to a SQLite on-disk database "data.sqlite"
engine = create_engine('sqlite:///data.sqlite')

Create a connection to a PostGreSQL database
engine = create_engine('postgres://rick:foo@localhost:5432/pg_db')

Create a connection to a MySQL database
engine = create_engine('mysql://localhost/mysql_db')

Create a connection to an Oracle database (via TNS)
engine = create_engine('oracle://rick:foo@oracle_tns')

Create a connection to an Oracle database (without a TNS name)
engine =
... create_engine('oracle://rick:foo@localhost:1521/oracle_sid')
The first argument to create_engine() is the
 RFC-1738 style URL specifying the database. The general form of the url
 is:
 driver://username:password@host:port/database.
 Of course, the various database drivers interpret these URLs in slightly
 different ways, as illustrated here. It is also possible to pass
 additional arguments to the low-level DB-API driver created by SQLAlchemy
 via either a URL query string:
url='postgres://rick:foo@localhost/pg_db?arg1=foo&arg2=bar'
engine = create_engine(url)
or via the connect_args parameter
 to create_engine():
engine = create_engine('postgres://rick:foo@localhost/pg_db',
 connect_args=dict(arg1='foo', arg2='bar'))
If you wish complete control over the connection creation process,
 you can even pass a function (or other callable object) that returns a
 DB-API connection to create_engine() in the moreinfo="none">creator argument:
import psycopg
def connect_pg():
 return psycopg.connect(user='rick', host='localhost')
engine = create_engine('postgres://', creator=connect_pg)
The full set of keyword arguments accepted by create_engine() are
 specified in here:
	
 connect_args

	A dictionary of options to be passed to the DB-API’s
 connect⁠(⁠) method. The default is {}.

	
 convert_unicode

	Indicates whether the engine should convert all unicode values
 into raw byte strings before going into the database, and convert
 raw byte strings to unicode coming out of result sets. This can be
 useful, for instance, when dealing with a database server or schema
 that does not provide unicode support natively. The default is
 False.

	
 creator

	A callable that returns a DB-API connection. The default is
 None.

	
 echo

	A flag that tells SQLAlchemy to echo all statements and bind parameter values to
 its logger. The default is None.

	
 echo_pool

	A flag that tells SQLAlchemy to log all connection pool
 checkins and checkouts. The default is
 False.

	
 encoding

	Specifies the encoding to use in all translations between raw
 byte strings and Python unicode objects. The default is
 False.

	
 module

	Specifies which module to use when a database implementation
 can use more than one (such as PostgreSQL and Oracle). The default
 is None.

	
 pool

	Use an existing connection pool rather than creating a
 new one. The default is None.

	
 poolclass

	If the engine is creating its own connection pool, the class (a
 subclass of sqlalchemy.pool.Pool) to use when
 constructing the pool object. If no pool class is specified,
 sqlalchemy.pool.QueuePool will be used for
 all database drivers except for SQLite, which uses the
 sqlalchemy.pool.SingletonThreadPool. The
 default is None.

	
 max_overflow

	The number of connections to allow the connection pool to
 overflow to (only applicable with the
 QueuePool). The default is 10.

	
 pool_size

	The number of connections to keep alive in the connection pool
 (only applicable to the QueuePool and
 SingletonThreadPool pool classes). The
 default is 5.

	
 pool_recycle

	Close and reopen connections after this number of seconds of
 inactivity, or, if –1 (the default), disable connection recycling.
 This is useful if the database server times out connections after a
 period of inactivity, as MySQL does.

	
 pool_timeout

	The number of seconds to wait when getting a connection from the
 pool before giving up, (applicable only to
 QueuePool connection pools). The default is
 30.

	
 strategy

	Selects an alternate implementation of the engine; the only
 current strategies are 'plain' and
 'threadlocal‘. 'threadlocal'
 reuses connections for multiple statements within a thread;
 'plain' (the default) uses a new connection for
 each statement.

	
 threaded

	Used only by cx_Oracle, makes the engine threadsafe. If this is
 not required, performance might be improved by setting this
 parameter to False.

	
 use_ansi

	Used only by Oracle to correct for a quirk of Oracle versions 8
 and earlier when handling LEFT OUTER JOINs.

	
 use_oids

	Used only by PostgreSQL to enable the column name "oid" (object ID).

Configuring SQLAlchemy Logging

SQLAlchemy uses the Python standard library logging module to log various actions. The
 echo and echo_pool arguments to create_engine() and the
 echo_uow flag used on Session objects all affect
 the regular loggers.
One useful debugging strategy is to add a logfile for a particular
 class of operations that SQLAlchemy is performing. For instance, to
 capture all of the engine-related operations, we could set up the logger
 as follows:
import logging
handler = logging.FileHandler('sqlalchemy.engine.log')
handler.level = logging.DEBUG
logging.getLogger('sqlalchemy.engine').addHandler(handler)
The loggers used with SQLAlchemy are listed next. Note that
 several of these loggers deal with material covered in later chapters
 (in particular, the sqlalchemy.orm.*
 loggers):
	sqlalchemy.engine—control SQL echoing. logging.INFO logs SQL
 query output, logging.DEBUG logs result sets as
 well.

	sqlalchemy.pool—control connection pool logging.
 logging.INFO logs checkins and checkouts.

	sqlalchemy.orm—control logging of ORM functions.
 logging.INFO logs configurations and unit of work
 dumps.
	sqlalchemy.orm.attributes—logs
 instrumented attribute operations.

	sqlalchemy.orm.mapper—logs mapper configurations and operations.

	sqlalchemy.orm.unitofwork—logs unit of work operations, including dependency
 graphs.

	sqlalchemy.orm.strategies—logs relation loader operations (lazy and eager
 loads).

	sqlalchemy.orm.sync—logs synchronization of attributes from one object to
 another during a flush.

Database Connections and ResultProxys

Although the Engine is the normal method of performing database
 operations, SQLAlchemy does make
 the lower-level Connection object available
 through the connect() method
 on the engine, as shown in the
 following example:
conn = engine.connect()
result = conn.execute('select user_name, email_address from
... tf_user')
for row in result:
 print 'User name: %s Email address: %s' % (
 row['user_name'], row['email_address'])
conn.close()
The Connection object is actually an
 instance of the sqlalchemy.engine.Connection
 class, which serves as a proxy for the particular DB-API connection
 object. The result object is an instance of the
 sqlalchemy.engine.ResultProxy class, which has many features in common with a database
 cursor.
Both Engines and
 Connections are implementations of the
 Connectable interface, which has two important
 methods: connect(), which in the
 case of a Connection simply returns itself, and
 execute(),
 which executes some SQL and generates a
 ResultProxy. Most SQLAlchemy functions that
 therefore take an Engine as a parameter (usually
 named bind) can also take a
 Connection, and vice versa.
The ResultProxy object has several useful
 methods and attributes for returning information about the query:
	
 __iter__
 ()

	Allows iteration over a result proxy, generating
 RowProxy objects

	
 fetchone
 ()

	Fetches the next RowProxy object
 from the ResultProxy

	
 fetchall
 ()

	Fetches all RowProxy objects at
 once

	
 scalar
 ()

	Fetches the next row from the cursor and treat it as a
 scalar (i.e., not a RowProxy)

	
 keys

	List of the column names in the result set

	
 rowcount

	The total number of rows in the result set

	
 close
 ()

	Closes the ResultProxy, possibly
 returning the underlying Connection to the
 pool

The RowProxy object generated by the
 ResultProxy provides several useful methods that
 allow you to retrieve data, such as a tuple, dictionary, or
 object:
	
 __getattr__
 ()

	Provides access to data via object.column name

	
 __getitem__
 ()

	Provides access to data via
 object[column name]
 or object[column position]

	
 keys
 ()

	Provides a list of all the column names in the row

	
 values
 ()

	Provides a list of all the values in the row

	
 items
 ()

	Provides a list of (column name,
 value) tuples for the
 row

Connection Pooling

SQLAlchemy provides the connection pool as an easy and efficient way
 to manage connections through the database. Normally, you don’t need to
 worry about the connection pool because it is automatically managed by
 the Engine class. The connection pool can,
 however, be used on its own to manage regular DB-API connections. If you
 wish to manage such a pool, you could do the following:
from sqlalchemy import pool
import psycopg2
psycopg = pool.manage(psycopg2)

connection = psycopg.connect(database='mydb',
 username='rick', password='foo')
The pool.manage() call sets up a connection pool (the exact object is an
 instance of sqlalchemy.pool.DBProxy). The
 connect()
 method then works just as the Engine’s
 connect()
 method, returning a proxy for the DB-API connection from the managed
 connection pool. When the connection proxy is garbage collected, the
 underlying DB-API connection is returned to the connection pool.
By default, the connect() method returns
 the same connection object if it is called multiple times in a given
 thread (the same “threadlocal” strategy used by the
 Engine). To specify that the pool should generate
 a new connection each time that connect() is called,
 pass use_threadlocal=False to the
 pool.manage()
 function.
If you wish to use a particular connection pool class instead of
 the DBProxy as shown previously, SQLAlchemy
 provides the ability to directly instantiate the pool:
from sqlalchemy import pool
import psycopg2
import sqlite

def getconn_pg():
 c = psycopg2.connect(database='mydb', username='rick',
	 password='foo')
 return c

def getconn_sl():
 c = sqlite.connect(filename='devdata.sqlite')
 return c

pool_pg = pool.QueuePool(getconn_pg, use_threadlocal=True)

SQLite requires use of the SingletonThreadPool
	 pool_sl = pool.SingletonThreadPool(getconn_sl)
Some of the various pool types that are available in the
 sqlalchemy.pool module are:
	
 AssertionPool

	Allows only one connection to be checked out at a time and
 raises an AssertionError
 when this constraint is violated.

	
 NullPool

	Does no pooling; instead, actually opens and closes the
 underlying DB-API connection on each checkout/checkin of a
 connection.

	
 QueuePool

	Maintains a fixed-size connection pool. This is the default
 connection pool class used for nonsqlite connections.

	
 SingletonThreadPool

	Maintains a single connection per thread. It is used with
 sqlite because this database driver does not handle using a single
 connection in multiple threads well.

	
 StaticPool

	Maintains a single connection that is returned for all
 connection requests.

MetaData

SQLAlchemy provides the
 MetaData class, which collects objects that
 describe tables, indexes, and other schema-level objects. Before using any
 of the higher-level features of SQLAlchemy, such as the SQL query language
 and the ORM, the schema of the database must be described using metadata.
 In some cases, you can reflect the structure of
 schema items into the MetaData from the database.
 In this case, you need only specify the name of the entity, and its
 structure will be loaded from the database directly.
Getting Started with MetaData

To create a new MetaData object, you simply
 call its constructor, possibly with information about how to connect to
 the database. If the constructor is called with no arguments, it is
 considered to be unbound; if it is called with either an
 Engine or a SQL connection URI, it is considered bound. Shortcuts are
 available to bound MetaData and to objects within
 a bound MetaData to facilitate the execution of
 statements against the bound engine. Most of the time you will probably
 use a bound MetaData object. However, it is
 sometimes useful to use an unbound MetaData if
 you need to connect to multiple database servers, where each server
 contains the same database schema.
The various ways to construct MetaData
 objects are illustrated in the following examples:
create an unbound MetaData
unbound_meta = MetaData()

create an Engine and bind the MetaData to it
db1 = create_engine('sqlite://')
unbound_meta.bind = db

Create an engine and then a bound MetaData
db2 = MetaData('sqlite:///test1.db')
bound_meta1 = MetaData(db2)

Create a bound MetaData with an implicitly created engine
bound_meta2 = MetaData('sqlite:///test2.db')
Note that you are never required to bind the
 MetaData object; all operations that rely on a
 database connection can also be executed by passing the
 Engine explicitly as the keyword parameter
 bind. This is referred to as explicit
 execution. If a MetaData instance is bound,
 then the bind parameter can be omitted from method
 calls that rely on the database connection. This is referred to as
 implicit execution. The “bound-ness” of a MetaData
 object is shared by all Tables,
 Indexes, and Sequences in
 the MetaData, so a Table
 attached to a bound MetaData, for instance, would
 be able to create itself via:
table.create()
whereas a Table in an unbound
 MetaData would need to supply a bind parameter:
table.create(bind=some_engine_or_connection)

Defining Tables

The most common use of the MetaData object
 is in defining the tables in your schema. To define tables
 in the MetaData, you use the
 Table and Column
 classes as shown in the following example:
from sqlalchemy import *
from datetime import datetime

metadata=MetaData()
user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
Column('email_address', Unicode(255), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created', DateTime, default=datetime.now))
Unlike some other database mapping libraries, SQLAlchemy fully
 supports the use of composite and noninteger primary and foreign
 keys:
brand_table = Table(
 'brand', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Unicode(255), unique=True, nullable=False))

product_table = Table(
 'product', metadata,
Column('brand_id', Integer, ForeignKey('brand.id'),
... primary_key=True),
 Column('sku', Unicode(80), primary_key=True))

style_table = Table(
 'style', metadata,
 Column('brand_id', Integer, primary_key=True),
 Column('sku', Unicode(80), primary_key=True),
 Column('code', Unicode(80), primary_key=True),
 ForeignKeyConstraint(['brand_id', 'sku'],
 ['product.brand_id',
 'product.sku']))
To actually create a table, you can call the create() method on it.
 Here, we will create the style table on an in-memory SQLite database and
 view the generated SQL:
>>> style_table.create(bind=create_engine('sqlite://', echo=True))
2007-08-25 08:05:44,396 INFO sqlalchemy.engine.base.Engine.0x..50
CREATE TABLE style (
 brand_id INTEGER NOT NULL,
 sku VARCHAR(80) NOT NULL,
 code VARCHAR(80) NOT NULL,
 PRIMARY KEY (brand_id, sku, code),
FOREIGN KEY(brand_id, sku) REFERENCES product (brand_id, sku)
)

2007-08-25 08:05:44,396 INFO sqlalchemy.engine.base.Engine.0x..50
... None
2007-08-25 08:05:44,397 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
We see that the composite primary key and foreign key constraints
 are correctly generated. Although the foreign key constraints are
 ignored by SQLite, it is still useful to generate them, as SQLAlchemy
 can use this information to perform joins automatically based on the
 foreign key relationships between tables.
The Table constructor Table.__init__(self, name, metadata,*args, **kwargs), takes the following
 arguments:
	
 name

	The table name as known by the database (may be combined
 with the schema parameter).

	
 metadata

	The MetaData object to which to attach this table.

	
 *args

	The series of Column and
 Constraint objects to define for this
 table.

	
 schema

	The schema name for this table, if required by the database.
 In **kwargs, the default is None.

	
 autoload

	Indicates whether to reflect the columns from the database. In
 **kwargs, the default is False.

	
 autoload_with

	The Connectable used to autoload
 the columns. In **kwargs, the default is
 None.

	
 include_columns

	The list of column names (strings) to be reflected if
 autoload=True. If None, all
 columns are reflected. If not None, any columns
 omitted from the list will not be represented on the reflected
 Table object. In
 **kwargs, the default is
 None.

	
 mustexist

	Indicates that the table must already be defined elsewhere in
 the Python application (as part of this
 MetaData). An exception is raised if this
 is not true. In **kwargs, the default is
 False.

	
 useexisting

	Directs SQLAlchemy to use the previous
 Table definition for this table name if it
 exists elsewhere in the application. (SQLAlchemy disregards the
 rest of the constructor arguments if this is
 True.) in **kwargs, the
 default is False.

	
 owner

	Specifies the owning user of the table. This is useful for
 some databases (such as Oracle) to help with table reflection. In
 **kwargs, the default is None.

	
 quote

	Forces the table name to be escaped and quoted before
 being sent to the database (useful for table names that conflict
 with SQL keywords, for example). In **kwargs,
 the default is False.

	
 quote_schema

	Forces the schema name to be escaped and quoted before
 being sent to the database. In **kwargs, the
 default is False.

The Table constructor also supports
 database-specific keyword arguments. For instance, the MySQL driver
 supports the mysql_engine argument to specify the
 backend database driver (i.e., 'InnoDB' or 'MyISAM', for instance).
Table reflection

Tables can also be defined using
 reflection from an existing database. This requires a database
 connection, and so either a bound MetaData must
 be used, or a Connectable must be supplied via the
 autoload_with parameter:
db = create_engine('sqlite:///devdata.sqlite')
brand_table = Table('brand', metadata, autoload=True,
... autoload_with=db)
You can also override the reflected columns if necessary. This
 can be particularly useful when specifying custom column data types,
 or when the database’s introspection facilities fail to identify certain
 constraints.
brand_table = Table('brand', metadata,
 Column('name', Unicode(255)), # override the reflected type
 autoload=True)
If you want to reflect the entire database schema, you may do so
 by specifying reflect=True in the metadata constructor. Of course,
 in this case, the MetaData must be created as a
 bound MetaData. When reflecting an entire
 schema in this way, the individual tables can be accessed via the
 MetaData’s tables
 attribute:
db = create_engine('sqlite:///devdata.sqlite')
metadata = MetaData(bind=db, reflect=True)
brand_table = metadata.tables['brand']
You can also use the reflect()
 method of the MetaData to load the
 schema. MetaData.reflect(bind=None, schema=None, only=None) takes the following
 arguments:
	
 bind

	A Connectable used to access the database; required only when the
 MetaData is unbound. The default is
 None.

	schema
	Specifies an alternate schema from which to reflect tables. The
 default is None.

	only
	Directs the MetaData to load only a
 subset of the available tables. This can be specified either as
 a sequence of the names to be loaded or as a boolean callable
 that will be called for each available table with the parameters
 only(metadata,
 table name). If the callable returns
 True, the table will be
 reflected. The default is None.

The MetaData constructor itself has the
 definition MetaData.__init__(bind=None, reflect=None).

Column Definitions

The Column
 constructor Column.__init__(self, name, type_, *args, **kwargs) takes the following
 arguments:
	
 name

	The name of the column as it is known by the
 database.

	
 type_

	The TypeEngine for this column. This can also be None if the column is a ForeignKey, in which case the
 type will be the same as the referenced column.

	
 *args

	Constraint,
 ForeignKey,
 ColumnDefault, andSequence objects that apply
 to the column.

	
 key

	An alias for this column. If specified, the column will
 be identified everywhere in Python by this name rather than by its
 SQL-native name. In **kwargs, the default is
 None.

	
 primary_key

	If True, marks the column as part of the primary key.
 (Alternatively, the Table can have a
 PrimaryKeyConstraint defined.) In
 **kwargs, the default is False.

	
 nullable

	If set to False, this does not allow None as a value for the column. In
 **kwargs, the default is
 True, unless the column is a primary
 key.

	
 default

	A Python callable or a SQL expression language construct
 specifying a default value for this column. Note that this is an
 active (Python-generated) default when a
 callable is specified; the SQL has the generated value inserted as
 a literal. In **kwargs, the default is None.

	
 index

	Indicates that the column is indexed (with an autogenerated
 index name). Alternatively, use an Index
 object in the table declaration instead. In
 **kwargs, the default is False.

	
 unique

	Indicates that the column has a unique constraint.
 Alternatively, use a UniqueConstraint object in the
 table declation instead. In **kwargs, the
 default is False.

	
 onupdate

	Specifies an active default value (generated by SQLAlchemy
 rather than the database server) to be used when updating (but not
 inserting) a row in the table. In **kwargs, the
 default is None.

	
 autoincrement

	Indicates that integer-based primary keys should have
 autoincrementing behavior. This is applicable only if the column
 has no default value and is a type or subtype of
 Integer. In **kwargs,
 the default is True.

	
 quote

	This forces the column name to be escaped and quoted
 before being sent to the database (useful for column names that
 conflict with SQL keywords, for example). In
 **kwargs, the default is False.

Constraints

SQLAlchemy also supports a variety of constraints, both at the column
 level and at the table level. All constraints are derived from the
 Constraint class, and take an optional name
 parameter.
Note
If the name is not
 specified, SQLAlchemy auto-generates a suitable name if
 necessary.

Primary keys

The usual way to declare primary key columns is to specify
 primary_key=True in the
 Column constructor:
product_table = Table(
 'product', metadata,
Column('brand_id', Integer, ForeignKey('brand.id'),
... primary_key=True),
 Column('sku', Unicode(80), primary_key=True))
You can also specify primary keys using the PrimaryKeyConstraint
 object:
product_table = Table(
 'product', metadata,
 Column('brand_id', Integer, ForeignKey('brand.id')),
 Column('sku', Unicode(80)),
 PrimaryKeyConstraint('brand_id', 'sku', name='prikey'))
To see the SQL generated to create such a table, we can create
 it on the in-memory SQLite database:
>>> product_table.create(bind=create_engine('sqlite://', echo=True))
2007-08-25 14:26:56,706 INFO sqlalchemy.engine.base.Engine.0x..d0
CREATE TABLE product (
 brand_id INTEGER,
 sku VARCHAR(80),
 CONSTRAINT prikey PRIMARY KEY (brand_id, sku),
 FOREIGN KEY(brand_id) REFERENCES brand (id)
)

2007-08-25 14:26:56,706 INFO sqlalchemy.engine.base.Engine.0x..d0
... None
2007-08-25 14:26:56,707 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT

Foreign keys

Foreign keys are references from a row in one table to a row in
 another table. The usual way to specify simple (noncomplex) foreign
 keys is by passing a ForeignKey object to the
 Column constructor. The
 ForeignKey constructor ForeignKey.__init__(self, column, constraint=None, use_alter=False, name=None, onupdate=None, ondelete=None) takes the following parameters:
	
 column

	Either a Column object or a
 database-recognized string, such as tablename.columnname
 or
 schemaname.tablename.columnname,
 that specifies the referenced column.

	
 constraint

	The owning
 ForeignKeyConstraint, if any. If left
 unspecified, a new ForeignKeyConstraint will be
 created and added to the parent table. The default is None.

	
 use_alter

	Use an ALTER TABLE command to create the constraint (passed along to the
 owning ForeignKeyConstraint). Otherwise,
 the constraint will be created in the CREATE TABLE statement. The default is
 False.

	
 name

	The name of the constraint (passed along to the owning
 ForeignKeyConstraint). The default is
 None.

	
 onupdate

	Generates an ON UPDATE clause in the SQL for the constraint
 (e.g., onupdate='CASCADE' would generate “ON
 UPDATE CASCADE” to cascade changes in the referenced columns to
 the foreign key). Commonly supported values for ON UPDATE are
 RESTRICT (raise an error), CASCADE (shown previously), SET NULL
 (set the column to NULL), and SET DEFAULT (set the column to its
 passive default). The default for this parameter is None. Not supported for all database
 drivers/backends.

	
 ondelete

	Generates an ON DELETE clause in the SQL for the constraint
 (e.g., ondelete='CASCADE' would generate “ON
 DELETE CASCADE” to cascade deletions of the referenced row to
 the row with the foreign key). The default is None. Not supported for all database
 drivers/backends.

If you need to reference a compound primary key, SQLAlchemy
 provides the ForeignKeyConstraint class for
 increased flexibility. To use the
 ForeignKeyConstraint, simply pass a list of
 columns in the local table (the compound foreign key) and a list of
 columns in the referenced table (the compound primary key):
style_table = Table(
 'style', metadata,
 Column('brand_id', Integer, primary_key=True),
 Column('sku', Unicode(80), primary_key=True),
 Column('code', Unicode(80), primary_key=True),
 ForeignKeyConstraint(
 ['brand_id', 'sku'],
 ['product.brand_id', 'product.sku']))
The ForeignKeyConstraint constructor
 ForeignKeyConstraint.__init__(self, columns, refcolumns, name=None, onupdate=None,
 ondelete=None,
 use_alter=False) takes
 the same parameters as the ForeignKey
 constructor except for columns
 and refcolumns:
	
 columns

	Either a list of Column objects
 or a list of database-recognized strings (such as
 tablename.columnname
 or
 schemaname.tablename.columnname)
 that specifies the referenced column in the local table (the
 compound foreign key)

	
 refcolumns

	Either a list of Column objects
 or a list of database-recognized strings (such as
 tablename.columnname
 or
 schemaname.tablename.columnname)
 that specifies the referenced column in the remote table (the
 compound primary key)

UNIQUE constraints

UniqueConstraint is a more flexible version of specifying unique=True in the Column
 definition, as it allows multiple columns to participate in a
 uniqueness constraint:
product_table = Table(
 'product', metadata,
 Column('id', Integer, primary_key=True),
 Column('brand_id', Integer, ForeignKey('brand.id')),
 Column('sku', Unicode(80)),
 UniqueConstraint('brand_id', 'sku'))
The SQL generated is just as we would expect:
>>> product_table.create(bind=create_engine('sqlite://', echo=True))
2007-08-25 13:55:19,450 INFO sqlalchemy.engine.base.Engine.0x..50
CREATE TABLE product (
 id INTEGER NOT NULL,
 brand_id INTEGER,
 sku VARCHAR(80),
 PRIMARY KEY (id),
 FOREIGN KEY(brand_id) REFERENCES brand (id),
 UNIQUE (brand_id, sku)
)

2007-08-25 13:55:19,450 INFO sqlalchemy.engine.base.Engine.0x..50
... None
2007-08-25 13:55:19,451 INFO sqlalchemy.engine.base.Engine.0x..50
COMMIT

CHECK constraints

CheckConstraints can also be specified, either at the column level (in which
 case they should only refer to the column on which they are defined),
 or at the Table level (in which case they should refer only to any
 column in the table). CheckConstraints are
 specified with a text constraint that will be passed directly through
 to the underlying database implementation, so care should be taken if
 you want to maintain database independence in the presence of
 CheckConstraints. MySQL and SQLite, in
 particular, do not actively support such constraints.
For instance, if you wanted to validate that payments were
 always positive amounts, you might create a payment table similar to
 the following:
payment_table = Table(
 'payment', metadata,
 Column('amount', Numeric(10,2), CheckConstraint('amount > 0')))
To see the SQL generated, we can execute the table creation
 statements on SQLite (recognizing that SQLite will not enforce the
 CHECK constraint):
>>> payment_table.create(bind=create_engine('sqlite://', echo=True))
2007-08-25 14:13:13,132 INFO sqlalchemy.engine.base.Engine.0x..90
CREATE TABLE payment (
 amount NUMERIC(10, 2) CHECK (amount > 0)
)

2007-08-25 14:13:13,133 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 14:13:13,133 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT
You can also generate CHECK constraints involving multiple
 columns:
>>> discount_table = Table(
... 'discount', metadata,
... Column('original', Numeric(10,2), CheckConstraint('original
... > 0')),
... Column('discounted', Numeric(10,2),
... CheckConstraint('discounted > 0')),
... CheckConstraint('discounted < original',
... name='check_constraint_1'))
>>>
>>> discount_table.create(bind=create_engine('sqlite://',
... echo=True))
2007-08-25 14:17:57,600 INFO sqlalchemy.engine.base.Engine.0x..d0
CREATE TABLE discount (
 original NUMERIC(10, 2) CHECK (original > 0),
 discounted NUMERIC(10, 2) CHECK (discounted > 0),
 CONSTRAINT check_constraint_1 CHECK (discounted < original)
)

2007-08-25 14:17:57,601 INFO sqlalchemy.engine.base.Engine.0x..d0
... None
2007-08-25 14:17:57,602 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT

Defaults

SQLAlchemy provides several methods of generating default values for
 columns when inserting and updating rows. These default values fall into
 one of two categories: active defaults or
 passive defaults.
Active defaults

Active defaults are values that are generated by SQLAlchemy and
 then sent to the database in a
 separate statement. Active defaults include constants, Python
 callables, SQL expressions (including function calls) to be executed
 before the insert or update, or a pre-executed sequence. In all of
 these cases, SQLAlchemy manages the generation of the default value
 and the statement that actually sends the default to the
 database.
Active defaults are divided into two classes: insert defaults and the update defaults, which are
 specified separately (allowing a different default on insert and
 update, if that is desired). To specify an insert default, use the
 default parameter when creating the Column object.
 default can be a constant, a
 Python callable, an SQL expression, or an SQL sequence. For instance,
 to record the time at which a user record was created, you might use
 the following:
from datetime import datetime
user_table = Table(
 'tf_user', MetaData(),
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created_apptime', DateTime, default=datetime.now),
 Column('created_dbtime', DateTime,
 default=func.current_timestamp(),
 Column('modified', DateTime, onupdate=datetime.now)))
Here, we have created several defaults with constants, as well
 as two “created” defaults. One is the standard library function
 datetime.now⁠(⁠ ⁠), and
 the other is the SQL function CURRENT_TIMESTAMP. The
 created_apptime column, upon insertion, will
 contain the current time on the application’s machine, whereas the
 created_dbtime column will contain the database
 server’s current time. The SQL generated is illustrative:
>>> e=create_engine('sqlite://', echo=True)
>>> user_table.create(bind=e)
2007-08-25 14:52:17,595 INFO sqlalchemy.engine.base.Engine.0x..50
CREATE TABLE tf_user (
 id INTEGER NOT NULL,
 user_name VARCHAR(16) NOT NULL,
 password VARCHAR(40) NOT NULL,
 first_name VARCHAR(255),
 last_name VARCHAR(255),
 created_apptime TIMESTAMP,
 created_dbtime TIMESTAMP,
 modified TIMESTAMP,
 PRIMARY KEY (id),
 UNIQUE (user_name)
)[image: 1]

2007-08-25 14:52:17,596 INFO sqlalchemy.engine.base.Engine.0x..50
... None
2007-08-25 14:52:17,597 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
>>>
>>> e.execute(user_table.insert(), user_name='rick', password='foo')
2007-08-25 14:52:17,604 INFO sqlalchemy.engine.base.Engine.0x..50
... SELECT current_timestamp [image: 2]
2007-08-25 14:52:17,605 INFO sqlalchemy.engine.base.Engine.0x..50 []
2007-08-25 14:52:17,606 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO tf_user (user_name, password, first_name,
... last_name, created_apptime, created_dbtime) VALUES (?,
... ?, ?, ?, ?, ?)
2007-08-25 14:52:17,606 INFO sqlalchemy.engine.base.Engine.0x..50
... ['rick', 'foo', '', '', '2007-08-25 14:52:17.604140',
... u'2007-08-25 18:52:17'] [image: 3]
2007-08-25 14:52:17,607 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0x2aff31673690>
>>> e.execute(user_table.update(user_table.c.user_name=='rick'),
... password='secret')
2007-08-25 15:01:48,804 INFO sqlalchemy.engine.base.Engine.0x..50
... UPDATE tf_user SET password=?, modified=?
... [image: 4] WHERE
... tf_user.user_name = ?
2007-08-25 15:01:48,805 INFO sqlalchemy.engine.base.Engine.0x..50
... ['secret', '2007-08-25 15:01:48.774391', 'rick']
2007-08-25 15:01:48,805 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0x2adaf2551e50>
>>>
	[image: 1]
	The SQL generated for the table creation had no reference to
 the default values. This is because these values were
 active defaults, as opposed to the
 passive defaults covered in the next
 section.

	[image: 2]
	The current_timestamp is selected from
 the database for use in the insert statement.

	[image: 3]
	Two different timestamps are sent to the database, one for
 created_apptime, and one for
 created_dbtime. In this case, the application
 machine’s native Python time resolution is greater than the
 current_timestamp provided by SQLite.

	[image: 4]
	Though we did not specify an update to the
 modified column, SQLAlchemy provides an update
 value based on the onupdate
 parameter of the column definition.

Passive defaults

Passive defaults are default values provided by the database
 itself. If a column is marked with a
 PassiveDefault instance, then the column will have a database-level default
 value and SQLAlchemy will make the
 Engine aware of the passive default. The
 Engine will, in turn, mark the
 ResultProxy as having passive default values.
 The ResultProxy is actually inspected by the
 object-relational mapping system to determine whether to refetch the
 row after an insert to get the default column values.
We can enhance the previous example by providing a passive
 default for the created_dbtime
 column:
from sqlalchemy import *
from datetime import datetime

user_table = Table(
 'tf_user', MetaData(),
 Column('id', Integer, primary_key=True),
 Column('user_name', Unicode(16), unique=True, nullable=False),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default=''),
 Column('created_apptime', DateTime, default=datetime.now),
 Column('created_dbtime', DateTime, PassiveDefault('sysdate')),
 Column('modified', DateTime, onupdate=datetime.now))
Again, it is illustrative to see the creation and manipulation
 SQL:
>>> e=create_engine('sqlite://', echo=True)
>>> user_table.create(bind=e)
2007-08-25 15:50:49,912 INFO sqlalchemy.engine.base.Engine.0x..50
CREATE TABLE tf_user (
 id INTEGER NOT NULL,
 user_name VARCHAR(16) NOT NULL,
 password VARCHAR(40) NOT NULL,
 first_name VARCHAR(255),
 last_name VARCHAR(255),
 created_apptime TIMESTAMP,
 created_dbtime TIMESTAMP DEFAULT current_timestamp,
 modified TIMESTAMP,
 PRIMARY KEY (id),
 UNIQUE (user_name)
)[image: 1]

2007-08-25 15:50:49,912 INFO sqlalchemy.engine.base.Engine.0x..50
... None
2007-08-25 15:50:49,913 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
>>>
>>> rs = e.execute(user_table.insert(), user_name='rick',
... password='foo')
2007-08-25 15:50:49,930 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO tf_user (user_name, password, first_last_name,
... created_apptime) VALUES (?, ?, ?, ?, ?)
... [image: 2]
2007-08-25 15:50:49,931 INFO sqlalchemy.engine.base.Engine.0x..50
... ['rick', 'foo', '', '', '2007-08-25 15:50:49.930339']
2007-08-25 15:50:49,932 INFO sqlalchemy.engine.base.Engine.0x..50
... COMMIT
>>> if rs.lastrow_has_defaults(): [image: 3]
... prikey = rs.last_inserted_ids()
... row = e.execute(user_table.select(
... user_table.c.id == prikey[0])).fetchone()
... print 'Created at', row.created_dbtime
...
2007-08-25 15:50:50,966 INFO sqlalchemy.engine.base.Engine.0x..50
... SELECT tf_user.id, tf_user.user_name, tf_user.password,
... tf_user.first_name, tf_user.last_name, tf_user.created_apptime,
... tf_user.created_dbtime, tf_user.modified
FROM tf_user
WHERE tf_user.id = ?
2007-08-25 15:50:50,966 INFO sqlalchemy.engine.base.Engine.0x..50
... [1]
Created at 2007-08-25 19:50:49
	[image: 1]
	The SQL generated for the table creation
 does contain a reference to the default
 created_dbtime, unlike the active default
 example.

	[image: 2]
	The created_dbtime is
 not provided to the database in the insert
 statement; it will be provided by the database itself.

	[image: 3]
	The result set is flagged as having a passive default via
 the lastrow_has_defaults()
 function, and so we recognize the need to fetch the row back from
 the database.

Caution
PostgreSQL does not support passive defaults for primary keys.
 This is due to the fact that SQLAlchemy does not use the PostgreSQL
 OIDs to determine the identity of rows inserted (OIDs are actually
 disabled by default in PostgreSQL version 8.), and psycopg2’s
 cursor.lastrowid()
 function only returns OIDs. Thus, the only way to know the primary
 key of a row that is being inserted is to provide it as an active
 default.

Defining Indexes

Once your database grows to a certain size, you will probably
 need to consider adding indexes to your tables to speed up certain
 selects. The easiest way to index a column is to simply specify
 index=True when defining the
 Column:
user_table = Table(
 'tf_user', MetaData(),
 Column('id', Integer, primary_key=True),
Column('user_name', Unicode(16), unique=True, nullable=False,
... index=True),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default='', index=True))
In this case, the index will be created with an auto-generated
 name. If a column is defined with both index=True and unique=True, then the UNIQUE constraint is created on the index rather than on the column. The SQL
 generated for the previous table definition is illustrative:
>>> e = create_engine('sqlite://', echo=True)
>>> user_table.create(bind=e)
2007-08-25 16:30:36,542 INFO sqlalchemy.engine.base.Engine.0x..90
CREATE TABLE tf_user (
 id INTEGER NOT NULL,
 user_name VARCHAR(16) NOT NULL,
 password VARCHAR(40) NOT NULL,
 first_name VARCHAR(255),
 last_name VARCHAR(255),
 PRIMARY KEY (id)
)

2007-08-25 16:30:36,542 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 16:30:36,543 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT
2007-08-25 16:30:36,544 INFO sqlalchemy.engine.base.Engine.0x..90
... CREATE UNIQUE INDEX ix_tf_user_user_name ON tf_user
... (user_name)
2007-08-25 16:30:36,544 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 16:30:36,545 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT
2007-08-25 16:30:36,546 INFO sqlalchemy.engine.base.Engine.0x..90
... CREATE INDEX ix_tf_user_last_name ON tf_user (last_name)
2007-08-25 16:30:36,546 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 16:30:36,547 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT
The Index object

Although the index=True syntax is convenient in column
 definition, SQLAlchemy also provides an independent Index
 object, which can be used to:
	Define indexes on multiple columns

	Define named indexes

	Create indexes independently of the table (useful when
 adding an index to an existing table)

To create an index using the Index
 object, simply instantiate the object using the column attributes of
 the table.c object:
i = Index('idx_name', user_table.c.first_name,
... user_table.c.last_name,
 unique=True)
If the index is defined before the table is created, then the
 index will be created along with the table. Otherwise, you can create
 the index independently via its own create() function:
>>> i = Index('idx_name', user_table.c.first_name,
... user_table.c.last_name,
... unique=True)
>>> i.create(bind=e)
2007-08-25 16:30:36,566 INFO sqlalchemy.engine.base.Engine.0x..90
... CREATE UNIQUE INDEX idx_name ON tf_user (first_name, last_name)
2007-08-25 16:30:36,566 INFO sqlalchemy.engine.base.Engine.0x..90
... None
2007-08-25 16:30:36,567 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT
Index("idx_name", Column('first_name', Unicode(length=255),
... default=ColumnDefault('')),
... Column('last_name',Unicode(length=255),
... default=ColumnDefault('')), unique=True)

Creating Explicit Sequences

In our examples up to this point, to generate a unique integer
 key for inserted rows, we have simply specified that the table’s primary
 key was an integer value. In this case, SQLAlchemy does what is
 generally The Right Thing: it either generates a column with an
 auto-incrementing data type (AUTOINCREMENT, SERIAL, etc.) if one is available in the
 Dialect being used, or, if an auto-incrementing
 data type is not available (as in the case of PostgreSQL and Oracle), it
 implicitly generates a sequence and fetches values from that
 sequence.
SQLAlchemy also provides for the explicit use of a Sequence object to generate
 default values for columns (not just primary keys). To use such a
 sequence, simply add it to the parameter list of the
 Column object:
brand_table = Table(
 'brand', metadata,
Column('id', Integer, Sequence('brand_id_seq'), primary_key=True),
 Column('name', Unicode(255), unique=True, nullable=False))
The SQL generated to create this table is:
>>> e = create_engine('postgres://postgres:password@localhost/test',
... echo=True)
>>>
>>> brand_table.create(bind=e)
2007-08-25 18:25:40,624 INFO sqlalchemy.engine.base.Engine.0x..d0
... CREATE SEQUENCE brand_id_seq
2007-08-25 18:25:40,624 INFO sqlalchemy.engine.base.Engine.0x..d0
... None
2007-08-25 18:25:40,630 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT
2007-08-25 18:25:40,634 INFO sqlalchemy.engine.base.Engine.0x..d0
CREATE TABLE brand (
 id INTEGER,
 name VARCHAR(255) NOT NULL,
 UNIQUE (name)
)

2007-08-25 18:25:40,635 INFO sqlalchemy.engine.base.Engine.0x..d0
... None
2007-08-25 18:25:40,659 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT
The parameters accepted by the Sequence
 constructor Sequence.__init__(name, start=None, increment=None, optional=False, quote=False, for_update=False) are as follows:
	
 name

	The name of the sequence to be created.

	
 start

	The initial value of the sequence being created (default
 None). This may be ignored,
 depending on the Dialect.

	
 increment

	The increment value of the sequence being created (default
 None). This may be ignored,
 depending on the Dialect.

	
 optional

	If True, this specifies that the sequence should be used only
 if it is necessary (e.g., if no other method of generating
 autoincrementing columns is possible). The default is
 False.

	
 quote

	This forces the sequence name to be escaped and quoted
 before being sent to the database (useful for names that conflict
 with SQL keywords, for example). The default is False.

	
 for_update

	Uses the sequence when updating the row, not just when
 inserting. The default is False.

MetaData Operations

SQLAlchemy uses the MetaData object
 internally for several purposes, particularly inside the object
 relational mapper (ORM), which is covered in Chapter 6.
 MetaData can also be used in connection with
 Engine and other
 Connectable instances to create or drop tables,
 indexes, and sequences from the database.
Binding MetaData

As mentioned previously, MetaData can
 be bound to a database
 Engine. This is done in one of three ways:

	Specify the Engine URI in the
 MetaData constructor

	Specify an actual Engine or other
 Connectable object in the
 MetaData constructor

	Assign the bind attribute of an
 “unbound” MetaData to an
 Engine or other Connectable

 The various ways of binding
 MetaData are illustrated in the following
 examples:
Create a bound MetaData with an implicitly created engine
bound_meta2 = MetaData('sqlite:///test2.db')

Create an engine and then a bound MetaData
db2 = MetaData('sqlite:///test1.db')
bound_meta1 = MetaData(db2)

Create an unbound MetaData
unbound_meta = MetaData()

Create an Engine and bind the MetaData to it
db1 = create_engine('sqlite://')
unbound_meta.bind = db1
Binding the MetaData object to an engine
 allows the MetaData and the objects attached to
 it (Tables, Indexes,
 Sequences, etc.) to perform database operations
 without explicitly specifying an Engine:
from sqlalchemy import *

metadata = MetaData('sqlite://')

user_table = Table(
 'tf_user', metadata,
 Column('id', Integer, primary_key=True),
Column('user_name', Unicode(16), unique=True, nullable=False,
... index=True),
 Column('password', Unicode(40), nullable=False),
 Column('first_name', Unicode(255), default=''),
 Column('last_name', Unicode(255), default='', index=True))

user_table.create() # we can omit the bind parameter

Create/drop MetaData and schema objects

Bound and unbound MetaData objects can
 create and drop schema objects either by using the create() and drop() methods on the objects, or by using the
 MetaData methods create_all() and
 drop_all().
 The schema objects’ (Table,
 Index, and Sequence)
 create() and
 drop() and
 methods take the following keyword parameters:
	
 bind

	The Engine on which to execute the schema item creation (default
 is None).

	
 checkfirst

	Add an IF NOT EXISTS or IF EXISTS
 clause, whichever is appropriate to the SQL generated (not
 supported for Indexes). The default is
 False.

The MetaData object itself supports the
 following arguments to its create_all() and
 drop_all methods:
	
 bind

	The Engine on which to execute the
 operation. The default is None.

	
 tables

	The Table objects to create/drop. If
 not specified, create/drop all schema items known to the
 MetaData. The default is None.

	
 checkfirst

	Add an IF NOT EXISTS or
 IF EXISTS clause (whichever is appropriate to the SQL generated).
 The default is False.

Adapt Tables from one MetaData to another

A table that has been created against one
 MetaData can be adapted to another MetaData via the
 Table.tometadata (self, metadata, schema=None) method. This can be useful when
 working with the same schema in more than one
 Engine because it allows you to have bound
 MetaData and Tables for
 both engines. You can also use the MetaData. table_iterator()
 method to reflect an entire schema into another engine, for
 example:
meta1 = MetaData('postgres://postgres:password@localhost/test',
... reflect=True)
meta2 = MetaData('sqlite://')
for table in meta1.table_iterator():
 table.tometadata(meta2)
meta2.create_all()

Chapter 4. SQLAlchemy Type Engines

This chapter introduces the SQLAlchemy type system. It covers the built-in
 types provided by SQLAlchemy: database-independent types and
 database-specific types. It then tells you how to create your own custom
 types for use in mapping application data onto your database schema.
Type System Overview

When defining the MetaData used by your application, it is necessary to supply the SQL data
 type used by each column of each table (unless the tables are defined with
 autoload=True, in which case SQLAlchemy provides
 the data types for you). These SQL data types are actually instances of
 SQLAlchemy-provided classes known as TypeEngines.
 TypeEngine objects convert Python values to native
 database values and vice versa. For instance, String(40) is an instance of a
 TypeEngine that represents a VARCHAR(40).
 TypeEngines also supply SQL text for use when
 creating tables using metadata.create_all() or
 table.create().
SQLAlchemy provides three different ways of constructing types for
 use in your application. First, it provides a set of generic
 TypeEngines, which are fairly portable across
 different database engines. Second, it provides database server-specific
 TypeEngines, which can be used to exploit
 particular types supported by certain databases. Third, SQLAlchemy allows
 you to define application-specific custom
 TypeEngines if you wish to further customize object
 conversion to/from the database.

Built-in Types

SQLAlchemy provides a fairly complete set of built-in TypeEngines for
 support of basic SQL column types. The SQLAlchemy-provided
 TypeEngines are broken into the generic types
 (those portable across multiple database engines) and the dialect-specific
 types, which work only on particular databases.
Note
If you want to keep your application portable across database
 servers, it is a good idea to stick to the generic types and (possibly)
 application-specific custom types, as any code that relies on database
 dialect-specific TypeEngines will need to be
 modified if the database changes. In the SQLAlchemy tradition of not
 getting in your way, however, full support is provided for
 dialect-specific TypeEngines if you wish to
 exploit database server-specific types.

Generic Types

The generic TypeEngines provided by
 SQLAlchemy are found in the sqlalchemy.types package. These TypeEngines cover a fairly
 complete set of portable column types. The
 TypeEngines supported, their corresponding Python
 type, and their SQL representation, are listed in Table 4-1. Note that there are several
 TypeEngines defined in all caps (such as CLOB). These are derived from other
 TypeEngines and may or may not be further
 specialized to allow finer-grained specification of the underlying
 database type.
Table 4-1. Built-in generic TypeEngines
	Class name	Python type	
 SQL type (for SQLite
 driver)
 	Arguments
	
 String
 	
 string
 	TEXT or VARCHAR	length (default is unbounded)
	
 Integer
 	
 int
 	INTEGER	
 none

	
 SmallInteger
 	
 int
 	SMALLINT	
 none

	
 Numeric
 	float,
 Decimal	NUMERIC	
 precision=10
 ,
 length=2

	
 Float(Numeric)
 	
 float
 	NUMERIC	
 precision=10

	
 DateTime
 	
 datetime.datetime
 	TIMESTAMP	
 none

	
 Date
 	
 datetime.date
 	DATE	
 none

	
 Time
 	
 datetime.time
 	TIME	
 none

	
 Binary
 	
 byte string
 	BLOB	length (default is unbounded)
	
 Boolean
 	
 bool
 	BOOLEAN	
 none

	
 Unicode
 	
 unicode
 	TEXT or VARCHAR	length (default is unbounded)
	
 PickleType
 	any object that can be pickled	BLOB	
 none

	
 FLOAT(Numeric)
 	
 float, Decimal
 	NUMERIC	
 precision=10
 ,length=2

	
 TEXT(String)
 	
 string
 	TEXT	length (default is unbounded)
	
 DECIMAL(Numeric)
 	
 float, Decimal
 	NUMERIC	
 precision=10,length=2

	
 INT, INTEGER(Integer)
 	
 int
 	INTEGER	
 none

	
 TIMESTAMP(DateTime)
 	
 datetime.datetime
 	TIMESTAMP	
 none

	
 DATETIME(DateTime)
 	
 datetime.datetime
 	TIMESTAMP	
 none

	
 CLOB(String)
 	
 string
 	TEXT	length (default is unbounded)
	
 VARCHAR(String)
 	
 string
 	VARCHAR or TEXT	length (default is unbounded)
	
 CHAR(String)
 	
 string
 	CHAR or TEXT	length (default is unbounded)
	
 NCHAR(Unicode)
 	
 string
 	VARCHAR, NCHAR, or TEXT	length (default is unbounded)
	
 BLOB(Binary)
 	
 byte string
 	BLOB	length (default is unbounded)
	
 BOOLEAN(Boolean)
 	
 bool
 	BOOLEAN	
 none

When using TypeEngines to specify columns
 in Tables, you can use an instance of the
 TypeEngine class or the class itself. If you use
 the class, the default parameters will be used when constructing the SQL
 type. For instance, the following Python code:
test_table3 = Table(
 'test3', metadata,
 Column('c0', Numeric),
 Column('c1', Numeric(4,6)),
 Column('c3', String),
 Column('c4', String(10)))
yields the following SQL creation (in SQLite):
CREATE TABLE test3 (
 c0 NUMERIC(10, 2),
 c1 NUMERIC(4, 6),
 c3 TEXT,
 c4 VARCHAR(10)
)

Dialect-Specific Types

To generate appropriate dialect-specific SQL CREATE TABLE statements
 from these generic types, SQLAlchemy compiles those generic
 TypeEngines into dialect-specific
 TypeEngines. In some cases, in addition to
 implementing the generic types, a dialect may provide dialect-specific
 types (such as IP address, etc.).
Some of the dialect-specific types don’t actually provide any
 special support for converting between database values and Python
 values; these are generally used for completeness, particularly when
 reflecting tables. In this case, no conversion is done between the value
 supplied by the DB-API implementation and the application. This behavior
 is indicated in the following tables by listing “none” as the Python
 type for that TypeEngine. Tables 4-2 through 4-5 list some of
 the types provided by particular database engines that are not
 automatically used by SQLAlchemy.
Table 4-2. MS SQL server types
	Class name	Python type	SQL type	Arguments
	
 MSMoney
 	
 none
 	
 MONEY
 	
 none

	
 MSSmallMoney
 	
 none
 	
 SMALLMONEY
 	
 none

	
 AdoMSNVarchar
 	
 unicode
 	
 NVARCHAR
 	
 length

	
 MSBigInteger
 	
 int
 	
 BIGINT
 	
 none

	
 MSTinyInteger
 	
 int
 	
 TINYINT
 	
 none

	
 MSVariant
 	
 none
 	
 SQL_VARIANT
 	
 none

	
 MSUniqueIdentifier
 	
 none
 	
 UNIQUEIDENTIFIER
 	
 none

Table 4-3. MySQL types
	Class name	Python type	SQL type	Arguments
	
 MSEnum
 	
 string
 	
 ENUM
 	
 values

	
 MSTinyInteger
 	
 int
 	
 TINYINT
 	
 length

	
 MSBigInteger
 	
 int
 	
 BIGINT
 	
 length

	
 MSDouble
 	
 float
 	
 DOUBLE
 	
 length=10,precision=2

	
 MSTinyText
 	
 string
 	
 TINYTEXT
 	
 none

	
 MSMediumText
 	
 string
 	
 MEDIUMTEXT
 	
 none

	
 MSLongText
 	
 string
 	
 LONGTEXT
 	
 none

	
 MSNVarChar
 	
 unicode
 	
 NATIONAL VARCHAR
 	
 length

	
 MSTinyBlob
 	
 byte string
 	
 TINYBLOB
 	
 none

	
 MSMediumBlob
 	
 byte string
 	
 MEDIUMBLOB
 	
 none

	
 MSLongBlob
 	
 byte string
 	
 LONGBLOB
 	
 none

	
 MSBinary
 	
 byte string
 	
 BINARY
 	
 length

	
 MSVarBinary
 	
 byte string
 	
 VARBINARY
 	
 length

	
 MSSet
 	
 set
 	
 SET
 	
 set values

	
 MSYear
 	
 int
 	
 YEAR
 	
 length

	
 MSBit
 	
 long
 	
 BIT
 	
 length

Table 4-4. Oracle types
	Class name	Python type	SQL type	Arguments
	
 OracleRaw
 	
 byte string
 	
 RAW
 	
 length

Table 4-5. PostgreSQL types
	Class name	Python type	SQL type	Arguments
	
 PGArray
 	
 any TypeEngine
 	type engine[]	
 TypeEngine

	
 PGBigInteger
 	
 int, long
 	
 BIGINT
 	
 none

	
 PGInet
 	
 none
 	
 INET
 	
 none

	
 PGInterval
 	
 none
 	
 INTERVAL
 	
 none

Application-Specific Custom Types

Although SQLAlchemy provides a rich set of generic and database-specific types,
 it is sometimes helpful to be able to create application-specific custom
 types. For instance, you may wish to emulate enumerations in a database
 engine that does not support enumerations by restricting the values that
 can be stored in a column.
In SQLAlchemy, there are two ways to create an application-specific
 custom type. If you wish to implement a type that is similar to an
 existing TypeEngine, you would implement a TypeDecorator. If your
 implementation is more involved, you can directly subclass
 TypeEngine.
Implementing a TypeDecorator

To implement a TypeDecorator, you must
 provide the base TypeEngine you are
 “implementing” as well as two functions, convert_bind_param() and
 convert_result_value().
 convert_bind_param(self, value, engine) is used to convert Python values to
 SQL values suitable for the DB-API driver, and convert_result_value(self, value, engine) is used to convert SQL values from
 the DB-API driver back into Python values. The implemented
 TypeEngine is specified in the
 impl attribute on the
 TypeDecorator.
For instance, if you wish to implement a type for validating that
 a particular Integer column contains only the
 values 0, 1, 2, and 3 (e.g., to implement an enumerated type in a
 database that does not support enumerated types), you would implement
 the following TypeDecorator:
from sqlalchemy import types

class MyCustomEnum(types.TypeDecorator):

 impl=types.Integer

 def __init__(self, enum_values, *l, **kw):
 types.TypeDecorator.__init__(self, *l, **kw)
 self._enum_values = enum_values

 def convert_bind_param(self, value, engine):
 result = self.impl.convert_bind_param(value, engine)
 if result not in self._enum_values:
 raise TypeError, (
"Value %s must be one of %s" % (result, self._enum_values))
 return result

 def convert_result_value(self, value, engine):
 'Do nothing here'
 return self.impl.convert_result_value(value, engine)
It is not necessary to specify in a
 TypeDecorator the SQL type used to implement the
 column, as this will be obtained from the impl
 attribute. The TypeDecorator is used only when an
 existing TypeEngine provides the correct SQL type
 for the type you are implementing.
Performance-Conscious TypeDecorators
SQLAlchemy has a second, undocumented (at the time of this
 book’s writing) interface for providing bind parameter and result
 value conversion. If you provide a bind_processor() or
 result_processor()
 method in your TypeDecorator, then these will
 be used instead of the convert_bind_param()
 and convert_result_value()
 methods. The new “processor” interface methods take a database dialect
 as a parameter and return a conversion function (a “processor”) that
 takes a single value parameter
 and returns the (possibly
 converted) value. If no processing is necessary, you can simply return
 None rather than a new processor:
>>> from sqlalchemy import types
>>> import sqlalchemy.databases.sqlite as sqlite
>>>
>>> class MyCustomEnum(types.TypeDecorator):
... impl = types.Integer
... def __init__(self, enum_values, *l, **kw):
... types.TypeDecorator.__init__(self, *l, **kw)
... self._enum_values = enum_values
... def bind_processor(self, dialect):
... impl_processor = self.impl.bind_processor(dialect)
... if impl_processor:
... def processor(value):
... result = impl_processor(value)
... assert value in self._enum_values, \
... "Value %s must be one of %s" % (result,
... self._enum_values)
... return result
... else:
... def processor(value):
... assert value in self._enum_values, \
... "Value %s must be one of %s" % (value,
... self._enum_values)
... return value
... return processor
...
>>> mce=MyCustomEnum([1,2,3])
>>> processor = mce.bind_processor(sqlite.dialect())
>>> print processor(1)
1
>>> print processor(5)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 17, in processor
AssertionError: Value 5 must be one of [1, 2, 3]

Creating a New TypeEngine

If creating a TypeDecorator is insufficient
 for your new type (such as when supporting a new SQL type), you can
 directly subclass the TypeEngine class. In this
 case, in addition to providing the convert_bind_param() and
 convert_result_value()
 methods, you must also provide the get_col_spec method for SQLAlchemy to use in
 its create_table()
 implementation.
To create a new TypeEngine to implement the
 SQL type “NEWTYPE”, for instance, you might use the
 following class declaration:
class NewType(types.TypeEngine):

 def __init__(self, *args):
 self._args = args

 def get_col_spec(self):
 return 'NEWTYPE(%s)' % ','.join(self._args)

 def convert_bind_param(self, value, engine):
 return value

 def convert_result_value(self, value, engine):
 return value

Chapter 5. Running Queries and Updates

SQLAlchemy provides a rich Pythonic interface for constructing SQL
 updates and queries, known as the SQL Expression Language. This language is based around the concept of an SQL statement, which represents some
 database-independent SQL syntax that may have one or more bind variables,
 and that can be executed on an SQL Engine or other
 Connectable. This chapter introduces the various
 kinds of data manipulation supported by SQLAlchemy (SQL INSERT, UPDATE, and
 DELETE) and performed on the query interface (SQL SELECT).
Inserts, Updates, and Deletes

Insert, Update, and
 Delete constructs are created in SQLAlchemy via the
 Table methods insert, update, and delete, or via the insert, update, and delete functions. The functionality of these
 data manipulation language (DML) constructs is equivalent, regardless of whether they are
 constructed via methods or functions; the distinction is a question of
 style more than substance.
Although each DML construct has its own particulars regarding
 construction, they all end up generating a
 Statement. We can inspect the SQL text
 corresponding to the statement by printing it out:
>>> metadata=MetaData()
>>>
>>> simple_table = Table(
... 'simple', metadata,
... Column('id', Integer, primary_key=True),
... Column('col1', Unicode(20)))
>>>
>>> stmt = simple_table.insert()
>>> print stmt
INSERT INTO simple (id, col1) VALUES (:id, :col1)
Note in the previous example that SQLAlchemy has created bind
 parameters for each of the columns in the table we created in the insert
 statement. We can examine the bind parameters in a statement by compiling
 the statement and looking at its params attribute:
>>> compiled_stmt = stmt.compile()
>>> print compiled_stmt.params
ClauseParameters:{'id': None, 'col1': None}
To execute the statement, we can directly execute it on an
 Engine, or we can bind the
 MetaData used to construct the statement and use
 the MetaData’s engine:
>>> engine = create_engine('sqlite://')
>>> simple_table.create(bind=engine)
>>> engine.execute(stmt, col1="Foo")
<sqlalchemy.engine.base.ResultProxy object at 0x2b3210b00f10>
>>> metadata.bind = engine
>>> stmt.execute(col1="Bar")
<sqlalchemy.engine.base.ResultProxy object at 0x2b3210b020d0>
Note that the bind parameter values are supplied to the execute() method as
 keyword parameters. These parameters can either be supplied either
 directly to the execute() method or in the
 statement construction phase:
>>> stmt = simple_table.insert(values=dict(col1="Initial value"))
>>> print stmt
INSERT INTO simple (col1) VALUES (?)
>>> compiled_stmt = stmt.compile()
>>> print compiled_stmt.params
ClauseParameters:{'col1': 'Initial value'}
If parameters are supplied in the statement construction and the
 execute() call,
 the parameters supplied with the execute() call override
 those supplied when creating the statement.
Insert Statements

The Insert construct is perhaps the simplest. In order to create an
 Insert statement, you can use the
 Table.insert() method
 or the insert() function. (The
 method is actually just a wrapper for the function.) The insert takes two arguments: the table into
 which a row is being inserted, and an optional dictionary of values to
 be inserted. Each key in the dictionary represents a column and may be
 either the metadata Column
 object or its string identifier. The values provided can be one of the
 following:
	A literal Python value to be inserted.

	An SQL expression to be inserted, such as func.current_timestamp⁠(⁠ ⁠), which
 will create the SQL
 INSERT INTO simple2 (col1, col2) VALUES (?, current_timestamp).

	A Select statement (covered later in
 this chapter). In this case, the value to be inserted is provided
 by a subquery.

If we wish to insert multiple rows into the table, we can create
 an insert statement and execute it multiple times with different bind
 parameters:
>>> stmt = simple_table.insert()
>>> stmt.execute(col1="First value")
<sqlalchemy.engine.base.ResultProxy object at 0xd0a490>
>>> stmt.execute(col1="Second value")
<sqlalchemy.engine.base.ResultProxy object at 0xd0a050>
>>> stmt.execute(col1="Third value")
<sqlalchemy.engine.base.ResultProxy object at 0xd0a3d0>
It is also possible to use the DB-API’s executemany()
 to insert multiple rows in one database call. To do this,
 simply provide an list (or other iterable) of binding dictionaries to
 the execute()
 method on the statement or engine:
>>> stmt.execute([dict(col1="Fourth Value"),
... dict(col1="Fifth Value"),
... dict(col1="Sixth Value")])
<sqlalchemy.engine.base.ResultProxy object at 0xd0a310>

Update Statements

Update statements are similar to inserts, except that they can
 specify a “where” clause that indicates which rows to update. Like
 insert statements, update statements can be created by either the update() function or the
 update()
 method on the table being updated. The only parameters to the update() function are
 the table being updated (omitted if using the update() method), the
 where clause, and the values to be set.
The where clause of the update() query can be a
 SQL clause object (covered later in this chapter) or a text string
 specifying the update condition. In order to update every row of a
 table, you can simply leave off the where clause. To update this simple
 table, we can execute the following statement:
>>> stmt = simple_table.update(
... whereclause=text("col1='First value'"),
... values=dict(col1='1st Value'))[image: 1]
>>> stmt.execute()
<sqlalchemy.engine.base.ResultProxy object at 0xc77910>
>>> stmt = simple_table.update(text("col1='Second value'"))
>>> stmt.execute(col1='2nd Value') [image: 2]
...
<sqlalchemy.engine.base.ResultProxy object at 0xc77950>
>>> stmt = simple_table.update(text("col1='Third value'"))
>>> print stmt
UPDATE simple SET id=?, col1=? WHERE col1='Third value'
... [image: 3]
>>> engine.echo = True
>>> stmt.execute(col1='3rd value')
2007-09-25 08:57:11,253 INFO sqlalchemy.engine.base.Engine.0x..d0
... UPDATE simple SET col1=? WHERE col1='Third value'
2007-09-25 08:57:11,254 INFO sqlalchemy.engine.base.Engine.0x..d0
... ['3rd value']
2007-09-25 08:57:11,255 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0xc77990>
	[image: 1]
	Here, we create an UPDATE statement, complete with both values
 to update and a where clause.

	[image: 2]
	Here, the where clause is bound when the statement is created,
 but the actual values to be updated are passed to the execute()
 method.

	[image: 3]
	Note that prior to execution, the SQL has a bind parameter for
 the id column, but when the statement is
 executed, id is omitted because no value was
 provided for it.

Correlated update statements can also be
 generated using the SQL expression language. A correlated update is an
 update whose values are provided by a select statement. Suppose that we
 have a product catalog with the schema in the following listing, and the
 data in Tables 5-1 through 5-3:
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Unicode(255)))
product_price_table = Table(
 'product_price', metadata,
 Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('store_id', None, ForeignKey('store.id'), primary_key=True),
 Column('price', Numeric, default=0))
Table 5-1. Contents of product table
	sku	msrp
	
 "123"
 	
 12.34

	
 "456"
 	
 22.12

	
 "789"
 	
 41.44

Table 5-2. Contents of store table
	id	name
	
 1
 	
 "Main Store"

	
 2
 	
 "Secondary Store"

Table 5-3. Contents of product_price table (initial)
	sku	store_id	price
	
 "123"
 	
 1
 	
 0

	
 "456"
 	
 1
 	
 0

	
 "789"
 	
 1
 	
 0

	
 "123"
 	
 2
 	
 0

	
 "456"
 	
 2
 	
 0

	
 "789"
 	
 2
 	
 0

If we wish to globally set the price for all products in all
 stores to their MSRP price, we could execute the following
 update:
>>> msrp = select(
... [product_table.c.msrp],
... product_table.c.sku==product_price_table.c.sku,
... limit=1)
>>> stmt = product_price_table.update(
... values=dict(price=msrp))
>>> stmt.execute()
2007-09-26 10:05:17,184 INFO sqlalchemy.engine.base.Engine.0x..d0
... UPDATE product_price SET price=(SELECT product.msrp
FROM product
WHERE product.sku = product_price.sku
 LIMIT 1 OFFSET 0)
2007-09-26 10:05:17,184 INFO sqlalchemy.engine.base.Engine.0x..d0
... []
2007-09-26 10:05:17,185 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0xd0e510>
This would cause the updated
 product_price_table to contain the values in Table 5-4.
Table 5-4. Contents of product_price_table (after update)
	sku	store_id	price
	
 "123"
 	
 1
 	
 12.34

	
 "456"
 	
 1
 	
 22.12

	
 "789"
 	
 1
 	
 41.44

	
 "123"
 	
 2
 	
 12.34

	
 "456"
 	
 2
 	
 22.12

	
 "789"
 	
 2
 	
 41.44

Delete Statements

The
 Delete construct is used to delete data from the database. To create a
 Delete construct, you can use either the
 delete()
 function or the delete() method on the
 table from which you are deleting data. Unlike insert() and update(), delete() takes no values
 parameter, only an optional where clause (omitting the where clause will
 delete all rows from the table). To delete all rows from the
 product_price table for sku 123,
 in the previous section, for instance, we would execute the code as
 shown here:
>>> stmt = product_price_table.delete(
... text("sku='123'"))
>>> stmt.execute()
2007-09-27 19:22:51,612 INFO sqlalchemy.engine.base.Engine.0x..d0
... DELETE FROM product_price WHERE sku='123'
2007-09-27 19:22:51,612 INFO sqlalchemy.engine.base.Engine.0x..d0
... []
2007-09-27 19:22:51,613 INFO sqlalchemy.engine.base.Engine.0x..d0
... COMMIT
<sqlalchemy.engine.base.ResultProxy object at 0xd92510>

Queries

The real power of the SQL expression language is in its query
 interface. This includes the actual queries (SQL “SELECT”
 statements) as well as the syntax for specifying “WHERE” clauses
 (which may be used in UPDATEs and DELETEs, as well).
The goal of the SQL expression language, like the goal of SQLAlchemy
 in general, is to provide functionality that doesn’t “get in your way”
 when you need to be more specific about the SQL you need. In that vein,
 you can always use the Text construct (used previously
 in the UPDATE and DELETE examples) to specify the exact SQL text you would
 like to use. For most operations, however, the SQL expression language
 makes for a succinct, secure, and less error-prone way of expressing your
 queries.
Basic Query Construction

SQLAlchemy makes simple SQL queries easy to express, while also
 enabling the construction of quite complex queries in a straightforward
 manner. This section describes the basic building blocks of query
 construction in SQLAlchemy.
The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method

Like the DML statements INSERT, UPDATE, and DELETE, SELECT
 statements can be generated using either a function or a
 Table method. Unlike the DML statements,
 however, there is a minor difference in functionality between the
 select()
 function and the Table.select() method. The
 select()
 function requires you to specify which columns you want in your
 result set. So, to select one column from the
 product_table shown previously, you could use the
 select()
 function:
>>> stmt = select([product_table.c.sku])
>>> for row in stmt.execute():
... print row
...
(u'123',)
(u'456',)
(u'789',)
To select all columns from the
 product_table, you would use the
 Table.select() method:
>>> stmt = product_table.select()
>>> for row in stmt.execute():
... print row
...
(u'123', Decimal("12.34"))
(u'456', Decimal("22.12"))
(u'789', Decimal("41.44"))
To achieve the same result using the select() function,
 simply provide the table in lieu of columns:
>>> stmt = select([product_table])
>>> for row in stmt.execute():
... print row
...
(u'123', Decimal("12.34"))
(u'456', Decimal("22.12"))
(u'789', Decimal("41.44"))
The actual parameters used by select() are listed
 next. They are discussed in more detail later in the chapter.
	columns=None
	A list of ClauseElement
 structures to be returned from the query.

	bind=None
	An engine on a connectable object on which to execute the
 statement. If this is omitted, an engine binding will be
 inferred from referenced columns and/or tables, if
 possible.

	whereclause=None
	A ClauseElement expression used to for
 the WHERE clause.

	from_obj=[]
	A list of Tables or other
 selectable objects that will be used to form the FROM clause. If
 this is not specified, the FROM clause is inferred from the
 tables referenced in other clauses.

	order_by=None
	A list of ClauseElements used to
 construct the ORDER BY clause.

	group_by=None
	A list of ClauseElements used to
 construct the GROUP BY clause.

	having=None
	A ClauseElement used to construct the HAVING
 clause.

	distinct=False
	Adds a DISTINCT qualifier to the column list in the
 SELECT statement.

	for_update=False
	Adds a FOR UPDATE qualifier to the SELECT statement. Some
 databases support other values for this parameter, such as
 MySQL, which supports "read" (translating to
 LOCK IN SHARE MODE), or Oracle, which supports
 "nowait" (translating to FOR UPDATE
 NOWAIT).

	limit=None
	The numerical limit for the number of rows returned. Typically
 this uses the LIMIT clause, but SQLAlchemy provides some support
 for LIMIT even when the underlying database does not support it
 directly.

	offset=None
	The numerical offset for the starting row that is returned.
 Typically this uses the OFFSET clause, but SQLAlchemy provides
 some support for OFFSET even when the underlying database does
 not support it directly.

	correlate=True
	Indicates that this SELECT statement is to be “correlated”
 with its enclosing SELECT
 statement if it is used as a subquery. In particular, any
 selectables present in both this statement’s
 from_obj list and the enclosing statement’s
 from_obj list will be omitted from this
 statement’s FROM clause.

	use_labels=False
	Generates unique labels for each column in the columns list, to ensure there are no
 name collisions.

	prefixes=None
	A list of ClauseElements to be
 included directly after the SELECT keyword in the generated SQL.
 This is used for dialect-specific SQL extensions, to insert text
 between the SELECT keyword and the column list.

Result set objects

Thus far, we have glossed over
 the return value of the execute() method on
 SQL statements, showing only that it is possible to iterate over this
 value and receive tuple-like objects. In fact, SQLAlchemy provides an
 object, defined in the ResultProxy
 class, to allow cursor-like access to the results of a query.
 Some of the useful methods and attributes available on the
 ResultProxy object are summarized here:
	
 fetchone
 ()

	Fetch one result from the cursor.

	fetchmany (size=None)
	Fetch several results from the cursor (if size is omitted, fetch all
 results).

	
 fetchall
 ()

	Fetch all results from the cursor.

	
 __iter__
 ()

	Return an iterator through the result set.

	
 close
 ()

	Close the ResultProxy, as well as
 the underlying cursor. This method is called automatically when all result rows
 are exhausted.

	
 scalar
 ()

	Fetch the first column of the first row, and close the
 result set (useful for queries such as “SELECT
 DATETIME('NOW')”).

	rowcount (valid only for DML
 statements)
	Return the number of rows updated, deleted, or inserted
 by the statement.

The “rows” returned from a ResultProxy
 object, either via the fetch*() methods or
 iteration, is actually a RowProxy object. As we
 have seen previously, it supports a tuple-like interface. We can also
 retrieve columns from the RowProxy object
 through its dict-like interface or its
 object-like interface:
>>> result = select([product_table]).execute()
>>> row = result.fetchone()
>>> print row
(u'123', 12.34)
>>> print row[0]
123
>>> print row['sku']
123
>>> print row[product_table.c.sku]
123
>>> print row.sku
123
>>> print row.items()
[('sku', u'123'), ('msrp', 12.34)]
>>> print row.keys()
['sku', 'msrp']
>>> print row.values()
[u'123', 12.34]
>>> print row.has_key('msrp')
True
>>> print row.has_key('price')
False

Operators and functions in WHERE clauses

To actually construct a SELECT statement with a WHERE clause, we can use either the Text construct (as shown
 previously) or the SQL expression language. The easiest way to use the
 SQL expression language to generate a WHERE clause is to use SQLAlchemy-provided operator overloading
 on the Column class:
>>> x = product_table.c.sku=="123"
>>> print type(x)
<class 'sqlalchemy.sql._BinaryExpression'>
>>> print x
product.sku = ?
>>> stmt=product_table.select(product_table.c.sku=="123")
>>> print stmt
SELECT product.sku, product.msrp
FROM product
WHERE product.sku = ? [image: 1]
...
>>> print stmt.execute().fetchall()
2007-09-30 16:34:44,800 INFO sqlalchemy.engine.base.Engine.0x..10
... SELECT product.sku, product.msrp
FROM product
WHERE product.sku = ?
2007-09-30 16:34:44,800 INFO sqlalchemy.engine.base.Engine.0x..10
... ['123'][image: 2]
[(u'123', 12.34)]
	[image: 1]
	Note that the “123” literal has been replaced by a “?”
 placeholder. This is an example of SQLAlchemy using a
 bind parameter. By using bind parameters, SQLAlchemy ensures that the
 entire SQL string passed to the database driver was constructed by
 SQLAlchemy, and that it is safe from SQL-injection attacks. (Of
 course, this can be subverted via the Text
 construct, which passes whatever the programmer specifies to the
 database driver.)

	[image: 2]
	Here, SQLAlchemy provides the value of the bind parameter to
 the database driver directly.

All SQLAlchemy-provided operators generate a
 ClauseElement-derived object as a result of the operation.
 ClauseElements provide the overloaded operators
 (and other SQL-constructing features) of the SQL expression language.
 This allows complex SQL expressions to be built up from complex Python
 expressions. SQLAlchemy provides overloading for most of the standard
 Python operators. This includes all the standard comparison operators
 (==, !=, <, >, <=, >=). Note in particular the conversion of “== None” to “IS
 NULL”.
>>> print product_price_table.c.price == 12.34
product_price.price = ?
>>> print product_price_table.c.price != 12.34
product_price.price != ?
>>> print product_price_table.c.price < 12.34
product_price.price < ?
>>> print product_price_table.c.price > 12.34
product_price.price > ?
>>> print product_price_table.c.price <= 12.34
product_price.price <= ?
>>> print product_price_table.c.price >= 12.34
product_price.price >= ?
>>> print product_price_table.c.price == None
product_price.price IS NULL
Support is also provided for the arithmetic operators (+, -, *, /, and %), with special
 support for database-independent string concatenation:
>>> print product_price_table.c.price + 14.44
product_price.price + ?
>>> expr = product_table.c.sku + "-sku"
>>> print expr
product.sku || ?
>>> from sqlalchemy.databases.mysql import MySQLDialect
>>> print expr.compile(dialect=MySQLDialect())
product.sku + %s
Arbitrary SQL operators (such as MySQL’s NULL-safe equality
 operator, <=>) are also
 supported via the op() method on
 ClauseElements:
>>> print product_table.c.sku.op('my_new_operator')(
... product_table.c.msrp)
product.sku my_new_operator product.msrp
SQLAlchemy also provides for use of the SQL boolean
 operators AND, OR, and NOT, as well as the LIKE operator for
 comparing strings. The bitwise logical operators &, |, and ~ are used to implement AND, OR, and NOT,
 while the like() method on
 ClauseElements is used to
 implement LIKE. Special care must be taken when using the AND, OR, and
 NOT overloads because of Python operator precendence rules. For
 instance, & binds more closely than <, so when you write A <
 B & C < D, what you are actually writing is A < (B&C)
 < D, which is probably not what you intended. You can also use the
 SQLAlchemy-provided functions and_,
 or_, and not_ to represent AND,
 OR, and NOT if you prefer:
>>> print (product_table.c.msrp > 10.00) & (product_table.c.msrp <
... 20.00)
product.msrp > ? AND product.msrp < ?
>>> print and_(product_table.c.msrp > 10.00,
... product_table.c.msrp < 20.00)
product.msrp > ? AND product.msrp < ?
>>> print product_table.c.sku.like('12%')
product.sku LIKE ?
>>> print ~((product_table.c.msrp > 10.00) &
... (product_table.c.msrp < 20.00))
NOT (product.msrp > ? AND product.msrp < ?)
>>> print not_(and_(product_table.c.msrp > 10.00,
... product_table.c.msrp < 20.00))
NOT (product.msrp > ? AND product.msrp < ?)
SQLAlchemy also provides for the use of arbitrary SQL functions
 via the func variable, which generates functions
 using attribute access. You can also use the special function
 func._ to add parentheses around a subexpression if
 necessary:
>>> print func.now()
now()
>>> print func.current_timestamp
current_timestamp
>>> print func.abs(product_table.c.msrp)
abs(product.msrp)
>>> print func._(text('a=b'))
(a=b)
SQLAlchemy provides several other useful methods on
 ClauseElements, summarized here:
	between(cleft,
 cright)
	Produces a BETWEEN clause like
 column BETWEEN
 cleft AND
 cright.

	
 distinct
 ()

	Adds a DISTINCT modifier like
 DISTINCT
 column.

	startswith(other)
	Produces the clause column
 LIKE
 'other%'.

	
 endswith
 (other)

	Produces the clause column
 LIKE
 '%other‘.

	
 in_
 (*other)

	Produces an IN clause like
 column IN
 (other[0],
 other[1], ...). other can also be a subquery.

	
 like
 (other)

	Produces a LIKE clause like
 column LIKE
 other.

	
 op
 (operator)

	Produces an arbitrary operator like
 column
 operator.

	
 label
 (name)

	Produces an AS construct for the column (a column alias)
 like column AS
 name.

Using custom bind parameters

Up to this point, SQLAlchemy has been automatically
 creating bind parameters whenever we used a literal expression in the
 SQL query language. It is also possible to generate a custom bind
 parameter. This might be useful, for instance, if you wanted to
 generate a statement without knowing a priori
 what values would be used to bind the statement. You can also use this
 to speed up your queries when you have many statements that are
 identical except for the bind parameter values. (The Python overhead
 for executing each query is lower in such cases, and some database
 servers will cache the execution plan, making the server-side
 processing faster as well.) Using the schema introduced earlier in
 this chapter, we might generate a statement that selects the price for
 a given product using the following code:
>>> stmt = select([product_table.c.msrp],
... whereclause=product_table.c.sku==bindparam('sku'))
>>> print stmt
SELECT product.msrp
FROM product
WHERE product.sku = ?
>>> print stmt.compile().get_params()
ClauseParameters:{'sku': None}
>>> print stmt.execute(sku='123').fetchall()
[(12.34,)]
>>> print stmt.execute(sku='456').fetchall()
[(22.120000000000001,)]
>>> print stmt.execute(sku='789').scalar()
41.44
The actual bindparam()
 parameters are summarized here:
	
 key

	Either a string representing the bind parameter name or a
 Column object (which will be used to
 generate a bind parameter name). This name is used in the
 execute() call
 to provide a value for the bind parameter.

	value=None
	The default value for this bind parameter (If no value is
 supplied in the execute()
 call, this value will be used instead.) If no value is supplied
 here or in the execute() call,
 an exception is raised.

	type=None
	A TypeEngine object representing
 the type of the bind parameter. The
 TypeEngine is used to format the value
 provided to the bind parameter using the
 TypeEngine’s convert_bind_param()
 method.

	shortname=None
	An alias for the bind parameter (this name can be used in
 the execute() call
 instead of the key
 parameter). This can be useful if the key name is cumbersome, as when
 using a Column object.

	unique=False
	Generate a unique name for the bind parameter based on the
 key. This can be useful
 for ensuring there are no unintended name collisions. This is
 typically used along with the value parameter.

Using literal text in queries

We have already briefly seen the use of the text() in constructing
 customized SQL strings. In fact, even when we want to use custom SQL
 strings, we rarely need to use the text() function;
 SQLAlchemy can infer the need for it automatically in most cases. For
 instance, if we wanted to select the price for SKU “123”, we could
 simply write:
>>> stmt = select(['product.msrp'],
... from_obj=['product'],
... whereclause="product.sku=='123'")
>>> print stmt
SELECT product.msrp
FROM product
WHERE product.sku=='123'
>>> print metadata.bind.execute(stmt).fetchall()
[(12.34,)]
>>> stmt2 = select([text('product.msrp')],
... from_obj=[text('product')],
... whereclause=text("product.sku=='123'"))
>>> print str(stmt2) == str(stmt)
True
We can use bind parameters with text() by using
 the “named colon” format (:name)
 for the bind parameters. We can also bind the clause constructed to a
 particular engine using the bind parameter to the text()
 function.
>>> stmt = text("SELECT product.msrp FROM product WHERE
... product.sku==:sku",
... bind=metadata.bind)
>>> print stmt
SELECT product.msrp FROM product WHERE product.sku==?
>>> print stmt.compile().get_params()
ClauseParameters:{'sku': None}
>>> print stmt.execute(sku='456').fetchall()
[(22.120000000000001,)]
The actual parameters of the text() function are
 summarized here:
	
 text

	The string with the SQL text to be constructed. Bind
 parameters can be used with the
 :parameter syntax.

	bind=None
	The engine to which to bind the constructed
 ClauseElement. Useful when constructing a
 statement entirely out of text()
 objects.

	bindparams=None
	A list of bindparam( ⁠) objects
 to be used to define the types and/or values of
 the bind parameters used.

	typemap=None
	A dictionary mapping column names used in a SELECT statement
 to TypeEngines.
 Used to convert result set values to Python objects.

Ordering and grouping results, returning distinct
 values

SQLAlchemy supports the use of the ORDER BY, GROUP BY, HAVING, and UNIQUE clauses of SQL
 queries via the order_by,
 group_by, having, and unique parameters of the select() function and
 method.
The Difference Between WHERE and HAVING
Both the WHERE clause in SQL and the HAVING clause restrict
 results to those results matching a given SQL expression. The
 difference is that HAVING is always accompanied by grouping
 (typically via the GROUP BY clause), and the HAVING clause filters
 the results after they are grouped, whereas the
 WHERE clause filters the rows before they are
 grouped. WHERE clauses therefore can’t reference the results of
 aggregation functions such as SUM or COUNT, but the HAVING clause
 can.

If we wanted to see the products in our database listed by
 price, for instance, we could use the following query:
>>> stmt = product_table.select(order_by=[product_table.c.msrp])
>>> print stmt
SELECT product.sku, product.msrp
FROM product ORDER BY product.msrp
>>> print stmt.execute().fetchall()
[(u'123', 12.34), (u'456', 22.120000000000001), (u'789',
... 41.439999999999998)]
>>> stmt =
... product_table.select(order_by=[desc(product_table.c.msrp)])
>>> print stmt
SELECT product.sku, product.msrp
FROM product ORDER BY product.msrp DESC
>>> print stmt.execute().fetchall()
[(u'789', 41.439999999999998), (u'456', 22.120000000000001),
... (u'123', 12.34)]
We could use the grouping provided by group_by (possibly filtered by having) to retrieve how many stores carry
 each product:
>>> stmt = select([product_price_table.c.sku,
... func.count(product_price_table.c.store_id)],
... group_by=[product_price_table.c.sku])
>>> print stmt
SELECT product_price.sku, count(product_price.store_id)
FROM product_price GROUP BY product_price.sku
>>> print stmt.execute().fetchall()
[(u'456', 2), (u'789', 2)]
>>>
>>> stmt = select([product_price_table.c.sku,
... func.count(product_price_table.c.store_id)],
... group_by=[product_price_table.c.sku],
... having=func.count(product_price_table.c.store_id)
... > 2)
>>> print stmt
SELECT product_price.sku, count(product_price.store_id)
FROM product_price GROUP BY product_price.sku
HAVING count(product_price.store_id) > ?
>>> print stmt.execute().fetchall()
[]
We have already seen how we can use the distinct()
 method on ClauseElements to specify
 that a column should be distinct in a result set. SQLAlchemy also
 provides support for selecting only distinct rows in a result set via
 the distinct parameter to
 select().
>>> stmt = select([product_price_table.c.sku,
... product_price_table.c.price])
>>> print stmt
SELECT product_price.sku, product_price.price
FROM product_price
>>> print stmt.execute().fetchall()
[(u'456', 22.120000000000001), (u'789', 41.439999999999998),
... (u'456', 22.120000000000001), (u'789', 41.439999999999998)]
>>> stmt = select([product_price_table.c.sku,
... product_price_table.c.price],
... distinct=True)
>>> print stmt
SELECT DISTINCT product_price.sku, product_price.price
FROM product_price
>>> print stmt.execute().fetchall()
[(u'456', 22.120000000000001), (u'789', 41.439999999999998)]

Limiting results returned

One common operation when working with large data sets is the
 use of the OFFSET and LIMIT clauses to return only a subset of
 data from a cursor. SQLAlchemy supports OFFSET and LIMIT (even in
 databases without direct support) through the use of offset and limit with the select() function and
 method:
>>> stmt = product_table.select()
>>> print stmt.execute().fetchall()
[(u'123', 12.34), (u'456', 22.120000000000001), (u'789',
... 41.439999999999998)]
>>> stmt = product_table.select(offset=1, limit=1)
>>> print stmt
SELECT product.sku, product.msrp
FROM product
 LIMIT 1 OFFSET 1
>>> print stmt.execute().fetchall()
[(u'456', 22.120000000000001)]
Limiting and offsetting is done after
 ordering and grouping, so you can use this construct to provide a
 “paged” view of sorted data. This can be very useful, for instance,
 when displaying sortable data on a web form.

Using the “generative” query interface

Up until this point, we have been using the select() function and
 method as a query constructor, generating a complete SQL statement as
 a result of the select() call.
 SQLAlchemy also supports a “generative” interface for the select() function and
 method that allows us to build up the query, one piece at a time. For
 instance, suppose we have a product table with the following
 defintion:
product_table = Table(
 'product', metadata,
 Column('id', Integer, primary_key=True),
 Column('sku', String(20), unique=True),
 Column('manufacturer', Unicode(255)),
 Column('department', Unicode(255)),
 Column('category', Unicode(255)),
 Column('class', Unicode(255)),
 Column('subclass', Unicode(255)))
Now, suppose we have a user interface that displays all the
 “product” records in the system, optionally filtered by various
 criteria (manufacturer, department, etc.). We might write the
 following function to return the filtered user list:
def get_prods(manufacturer=None,
 department=None,
 category=None,
 class_=None,
 subclass=None,
 offset=None,
 limit=None):
 where_parts = []
 if manufacturer is not None:
 where_parts.append(product_table.c.manufacturer
 == manufacturer)
 if department is not None:
 where_parts.append(product_table.c.department
 == department)
 if category is not None:
 where_parts.append(product_table.c.category
 == category)
 if class_ is not None:
 where_parts.append(product_table.c.class_
 == class_)
 if subclass is not None:
 where_parts.append(product_table.c.subclass
 == subclass)
 whereclause=and_(*where_parts)
 query = product_table.select(whereclause,
 offset=offset, limit=limit)
 return query
We can use arbitrary filters, and the appropriate SQL WHERE
 clause will automatically be constructed for us automatically:
>>> q = get_prods()
>>> print q
SELECT product.id, product.sku, product.manufacturer,
... product.department, product.category, product.class,
... product.subclass
FROM product
>>> q = get_prods(manufacturer="Neon")
>>> print q
SELECT product.id, product.sku, product.manufacturer,
... product.department, product.category, product.class,
... product.subclass
FROM product
WHERE product.manufacturer = ?
>>> q = get_prods(manufacturer="Neon", department="Auto")
>>> print q
SELECT product.id, product.sku, product.manufacturer,
... product.department, product.category, product.class,
... product.subclass
FROM product
WHERE product.manufacturer = ? AND product.department = ?
The generative interface allows us to rewrite the previous
 function as the following:
def get_prods(manufacturer=None,
 department=None,
 category=None,
 class_=None,
 subclass=None,
 offset=None,
 limit=None):
 query = product_table.select()
 if manufacturer is not None:
 query = query.where(product_table.c.manufacturer
 == manufacturer)
 if department is not None:
 query = query.where(product_table.c.department
 == department)
 if category is not None:
 query = query.where(product_table.c.category
 == category)
 if class_ is not None:
 query = query.where(product_table.c.class_
 == class_)
 if subclass is not None:
 query = query.where(product_table.c.subclass
 == subclass)
 query = query.offset(offset)
 query = query.limit(limit)
 return query
Although the two functions have the same functionality, the
 second one (using the generative interface) is more flexible. Suppose
 we wanted to refactor the original function into multiple parts, with
 each part potentially adding a different filtering criterion. In that
 case, we would need to pass a where_parts list
 through all the intermediate functions. In the generative approach,
 all the information about the query is “wrapped up” in the query
 itself, allowing us to build up a query piecemeal in several different
 functions, without passing anything around but the query
 itself.
The generative interface actually consists of a set of methods
 on the statement constructed by the select() function or
 method. Those methods are summarized next. Note that none of
 these functions actually modify the query object in place; rather,
 they return a new query object with the new condition applied:
	where(whereclause)
	Add a constraint to the WHERE clause. All constraints added this
 way will be AND-ed together to create the whole WHERE
 clause.

	order_by(*clauses)
	Generate an ORDER BY clause (or append the given clauses to
 an existing ORDER BY clause).

	group_by(*clauses)
	Generate a GROUP BY clause (or append the given clauses to
 an existing GROUP BY clause).

	having(having)
	Generate a HAVING clause (or add to an existing HAVING
 clause). Like where(), the final statement’s
 HAVING clause will be all of the clauses added via this
 function, AND-ed together.

	select_from(fromclause)
	Generate a FROM clause or append to the existing one.

	limit(limit)
	Equivalent to the limit parameter in the select()
 function or method.

	offset(offset)
	Equivalent to the offset
 parameter in the select()
 function or method.

	column(column)
	Add a column to the list of columns being
 selected.

	
 distinct
 ()

	Equivalent to passing distinct=True to the select()
 function or method.

	count(whereclause=None, **params)
	Generate a statement that will count the rows that would
 be returned from the query, optionally with a whereclause and additional
 params to be passed to
 the generated SELECT COUNT(...) statement.

	
 apply_labels
 ()

	Equivalent to use_labels=True in the select()
 function/method.

	prefix_with(clause)
	Append a prefix to the generated SQL. (A prefix is
 inserted immediately after the SELECT keyword, as in the
 prefixes parameter to
 select().)

	replace_selectable(old, alias)
	Replace every occurrence of old with the alias alias. (Aliasing is covered in more
 detail in later in this chapter, Using aliases”). This can be useful when
 it is necessary to modify a query to use an alias when that
 query was originally written to use a reference to the actual
 table, for instance.

	union(other, **kwargs)
	Return an UNION with this selectable and another (covered
 in more detail later under Joins and Set Operations”).

	union_all(other, **kwargs)
	Return an UNION ALL with this selectable and another
 (covered in more detail later under Joins and Set Operations”).

	intersect(other, **kwargs)
	Return an INTERSECT with this selectable and another
 (covered in more detail later under Joins and Set Operations”).

	intersect_all(other, **kwargs)
	Return an INTERSECT ALL with this selectable and another
 (covered in more detail under Joins and Set Operations”).

	except_(other, **kwargs)
	Return an EXCEPT with this selectable and another (covered in more
 detail under Joins and Set Operations”).

	except_all(other, **kwargs)
	Return an EXCEPT ALL with this selectable and another
 (covered in more detail under Joins and Set Operations”).

	join(right, *args, **kwargs)
	Return a INNER JOIN between this selectable and another
 (covered in more detail under Joins and Set Operations”).

	outerjoin(right, *args, **kwargs)
	Return a LEFT OUTER JOIN between this selectable and
 another (covered in more detail under Joins and Set Operations”).

	
 as_scalar
 ()

	Allows the query to be embedded in a column list of an
 enclosing query.

	label(name)
	Label the result of this query with name for use in the column list of
 an enclosing query. Also implies as_scalar().

	correlate(fromclause)
	Specify a table on which to correlate, or use None to
 disable SQLAlchemy’s auto-correlation on embedded
 subqueries.

	select(whereclauses, **params)
	Generate an enclosing SELECT statment that selects all
 columns of this select.

Joins and Set Operations

In addition to the interface for
 selecting, filtering, sorting, and grouping on SELECT statements from
 single tables, SQLAlchemy provides full support for operations that
 combine multiple tables or other selectables (JOINs), as well as set
 operations on selectables (UNION,
 INTERSECT, and EXCEPT).
Joining selectables

To join two selectables (in tables or other select statements)
 together, SQLAlchemy provides the join() (implementing INNER JOIN) and outerjoin()
 (implementing OUTER JOIN) functions, as well as join() and outerjoin() methods on
 all selectables. The only difference between the *join() methods and
 the *join()
 functions is that the methods implicitly use self
 as the lefthand side of the join.
If you are familiar with the JOIN constructs in SQL, then you
 are used to specifyingthe ON clause of the JOIN. For instance, to select all
 stores where the price of a product is different than its MSRP, you
 might write the following SQL:
SELECT store.name
FROM store
 JOIN product_price ON store.id=product_price.store_id
 JOIN product ON product_price.sku=product.sku
WHERE product.msrp != product_price.price;
Notice how we had to specify the join criteria for each of the
 joins in the statement. Wouldn’t it be nice if the database could
 infer the ON clauses based on the foreign key constraints? Well,
 SQLAlchemy does this automatically:
>>> from_obj = store_table.join(product_price_table)
... .join(product_table)
>>> query = store_table.select()
>>> query = query.select_from(from_obj)
>>> query = query.where(product_table.c.msrp
... != product_price_table.c.price)
>>> print query
SELECT store.id, store.name
FROM store JOIN product_price ON store.id = product_price.store_id
... JOIN product ON product.sku = product_price.sku
WHERE product.msrp != product_price.price
In some cases, we are not using the JOINed table to filter
 results, but we would like to see the results from a JOINed table
 alongside results from the table we are using. In this case, we can
 either use the select() function or
 use the column() method of the
 query object:
>>> print query.column('product.sku')
SELECT store.id, store.name, product.sku
FROM store JOIN product_price ON store.id = product_price.store_id
... JOIN product ON product.sku = product_price.sku
WHERE product.msrp != product_price.price
>>> query2 = select([store_table, product_table.c.sku],
... from_obj=[from_obj],
... whereclause=(product_table.c.msrp
... !=product_price_table.c.price))
>>> print query2
SELECT store.id, store.name, product.sku
FROM store JOIN product_price ON store.id = product_price.store_id
... JOIN product ON product.sku = product_price.sku
WHERE product.msrp != product_price.price
But what if we want to return results that may not have matching
 rows in the JOINed table? For this, we use the outerjoin function/method:
>>> from_obj = store_table.outerjoin(product_price_table)
>>> from_obj = from_obj.outerjoin(product_table)
>>> query = store_table.select()
>>> query = query.select_from(from_obj)
>>> query = query.column('product.msrp')
>>> print query
SELECT store.id, store.name, product.msrp
FROM store LEFT OUTER JOIN product_price
... ON store.id = product_price.store_id
LEFT OUTER JOIN product
... ON product.sku = product_price.sku
In this case, if there is not a matching entry in the
 product_price table or the product table, then the query will insert
 None for the
 msrp column.
Although SQLAlchemy can automatically infer the correct join
 condition most of the time, support is also provided for custom ON
 clauses via the onclause
 argument to join() and outerjoin(), a
 ClauseElement specifying the join
 condition.

Set operations (UNION, INTERSECT, EXCEPT)

The SQL language and SQLAlchemy also support set operations on
 selectables. For instance, you may wish to retrieve the union of
 results from two queries (those rows satisfying either or both
 queries), the intersection (those rows satisfying both queries), or
 the difference (those rows satisfying the first query but not the
 second). For these functions, SQL provides the UNION, INTERSECT, and
 EXCEPT clauses, as well as the related UNION ALL, INTERSECT ALL, and
 EXCEPT ALL clauses (although the INTERSECT and EXCEPT clauses are not
 supported on all databases).
To support these constructs, SQLAlchemy provides the union(), union_all(), intersect(), intersect_all(),
 except_(),
 and except_all() functions
 and selectable methods. Like the *join() methods, the
 set-oriented methods are simply the corresponding functions with the
 first parameter bound to itself. Suppose we wanted to select all the
 products with prices greater than $10 but less than $20. One way we
 could do this is with the following simple query:
>>> query = product_table.select(and_(product_table.c.msrp > 10.00 ,
... product_table.c.msrp < 20.00))
>>> print query
SELECT product.sku, product.msrp
FROM product
WHERE product.msrp > ? AND product.msrp < ?
>>> for r in query.execute():
... print r
...
(u'123', Decimal("12.34"))
We could rewrite this query as an INTERSECT using the intersect()
 function:
>>> query0 = product_table.select(product_table.c.msrp > 10.00)
>>> query1 = product_table.select(product_table.c.msrp < 20.00)
>>> query = intersect(query0, query1)
>>> print query
SELECT product.sku, product.msrp
FROM product
WHERE product.msrp > ? INTERSECT SELECT product.sku, product.msrp
FROM product
WHERE product.msrp < ?
>>> for r in query.execute():
... print r
(u'123', Decimal("12.34"))

Using aliases

When using joins, it is often necessary to refer to a table more than
 once. In SQL, this is accomplished by using
 aliases in the query. For instance, suppose we
 have the following (partial) schema that tracks the reporting
 structure within an organization:
employee_table = Table(
 'employee', metadata,
 Column('id', Integer, primary_key=True),
 Column('manager', None, ForeignKey('employee.id')),
 Column('name', String(255)))
Now, suppose we want to select all the employees managed by an
 employee named Fred. In SQL, we might write the following:
SELECT employee.name
FROM employee, employee AS manager
WHERE employee.manager_id = manager.id
 AND manager.name = 'Fred'
SQLAlchemy also allows the use of aliasing selectables in this
 type of situation via the alias() function
 or method:
>>> manager = employee_table.alias('mgr')
>>> stmt = select([employee_table.c.name],
... and_(employee_table.c.manager_id==manager.c.id,
... manager.c.name=='Fred'))
>>> print stmt
SELECT employee.name
FROM employee, employee AS mgr
WHERE employee.manager_id = mgr.id AND mgr.name = ?
SQLAlchemy can also choose the alias name automatically, which
 is useful for guaranteeing that there are no name collisions:
>>> manager = employee_table.alias()
>>> stmt = select([employee_table.c.name],
... and_(employee_table.c.manager_id==manager.c.id,
... manager.c.name=='Fred'))
>>> print stmt
SELECT employee.name
FROM employee, employee AS employee_1
WHERE employee.manager_id = employee_1.id AND employee_1.name = ?

Subqueries

SQLAlchemy provides rich support for subqueries (using a query
 inside another query). We have already seen one type of subquery in the
 use of the join and in set operation support. SQLAlchemy also allows
 subqueries to appear in the column list of a select statement, in the
 right hand side of the SQL IN operator (using the SQLAlchemy-provided
 in_() method
 on ClauseElements), and as an
 argument to the from_obj
 parameter on the select()
 function.
Embedding subqueries in the column list

In order to embed a subquery in a column list, we need to use
 the as_scalar() method on
 the inner query to indicate that the query will return a single value.
 For instance, if we want to retrieve the number of stores that offer
 each product, we could use the following query:
>>> subquery = select(
... [func.count(product_price_table.c.sku)],
... product_price_table.c.sku==product_table.c.sku)
>>> print subquery
SELECT count(product_price.sku)
FROM product_price, product
WHERE product_price.sku = product.sku
>>> stmt = select([product_table.c.sku,
... product_table.c.msrp,
... subquery.as_scalar()])
>>> print stmt
SELECT product.sku, product.msrp, (SELECT count(product_price.sku)
FROM product_price
WHERE product_price.sku = product.sku)
FROM product
>>> for row in stmt.execute():
... print row
...
(u'123', Decimal("12.34"), 0)
(u'456', Decimal("22.12"), 2)
(u'789', Decimal("41.44"), 2)

Correlated versus uncorrelated subqueries

You may have noticed in the previous example that when
 SQLAlchemy inserted the subquery into the main query, it left out the
 product table in the subquery’s FROM list. This is
 because SQLAlchemy attempts to correlate
 subqueries with outer queries whenever they reference the same table.
 To disable this behavior, you can use the correlate() method on the subquery to
 manually specify a FROM clause to remove from the subquery, or, by
 passing None, to disable
 correlation in the subquery:
>>> stmt = select([product_table.c.sku,
... product_table.c.msrp,
... subquery.correlate(None).as_scalar()])
>>> print stmt
SELECT product.sku, product.msrp, (SELECT count(product_price.sku)
FROM product_price, product
WHERE product_price.sku = product.sku)
FROM product
>>> for row in stmt.execute():
... print row
...
(u'123', Decimal("12.34"), 4)
(u'456', Decimal("22.12"), 4)
(u'789', Decimal("41.44"), 4)
Because the inner query is uncorrelated, rather than totaling
 the number of stores that carry the given product, the query
 repeatedly calculates the number of rows in the
 product_price table with any
 valid SKU.

Embedding subqueries in an IN clause

It is often useful in SQL to embed subqueries in an IN clause
 of another query. SQLAlchemy provides support for this as
 well, allowing you to specify a selectable as an argument for the
 ClauseElement’s in_() method. For
 instance, if we wanted to retrieve all the employees whose names
 start with “Ted” and who do not have a manager, we could write the
 query as follows:
>>> subquery = select([employee_table.c.id],
... employee_table.c.manager_id==None)
>>> stmt = employee_table.select(
... and_(employee_table.c.id.in_(subquery),
... employee_table.c.name.like('Ted%')))
>>> print stmt
SELECT employee.id, employee.manager_id, employee.name
FROM employee
WHERE employee.id IN (SELECT employee.id
FROM employee
WHERE employee.manager_id IS NULL) AND employee.name LIKE ?

Embedding subqueries in the FROM clause

It is sometimes useful to generate a SQL query in multiple
 stages by using a subquery in the FROM clause of another query (and
 continuing this nesting if necessary). SQLAlchemy provides support for such
 subqueries by allowing you to specify any list of selectables (not
 just Table objects) to the from_obj parameter of the select(). If we follow
 this pattern, then the previous query could be rewritten as
 follows:
>>> subquery =
... employee_table.select(employee_table.c.manager_id==None)
>>> stmt = select([subquery.c.id, subquery.c.manager_id,
... subquery.c.name],
... whereclause=subquery.c.name.like('Ted%'),
... from_obj=[subquery])
>>> print stmt
SELECT id, manager_id, name
FROM (SELECT employee.id AS id, employee.manager_id AS manager_id,
... employee.name AS name
FROM employee
WHERE employee.manager_id IS NULL)
WHERE name LIKE ?

Chapter 6. Building an Object Mapper

Atop the SQL expression language, SQLAlchemy provides an
 object-relational mapper (ORM). The purpose of an ORM is to provide a
 convenient way to store your application data objects in a relational
 database. Generally, an ORM will provide a way to define the method of
 storing your object in the database. This chapter focuses on the SQLAlchemy
 methods that do this.
Introduction to ORMs

ORMs provide methods of updating the database by using your
 application objects. For instance, to update a column in a mapped table in
 SQLAlchemy, you merely have to update the object, and SQLAlchemy will take
 care of making sure that the change is reflected in the database. ORMs
 also allow you to construct application objects based on database queries.
 Chapter 7 will focus on how to use SQLAlchemy’s ORM to update and query
 objects in the database.
Design Concepts in the ORM

There are two major patterns used in the ORM you should become
 familiar with in order to understand how to best use the ORM. These are
 the data mapper pattern and the
 unit of work pattern.
The data mapper pattern

In the data mapper pattern (shown in Figure 6-1), database tables, views, and other
 “selectable” objects are mapped onto “plain old Python objects” (POPOs) by “mapper” objects.
 This is different from the “active record”
 pattern (shown in Figure 6-2), where
 the objects themselves are responsible for mapping themselves to
 database views. The data mapper pattern can, of course, be used to
 emulate the active record pattern by merging the mapper with the
 application objects.
[image: Data mapper pattern]

Figure 6-1. Data mapper pattern

[image: Active record pattern]

Figure 6-2. Active record pattern

One benefit of using the data mapper pattern as implemented in
 SQLAlchemy is that it allows the database design to be decoupled from
 the object hierarchy. In SQLAlchemy, this decoupling can be
 nearly complete: you can define your classes in one module and your
 tables in another with no references from one to the other. The
 mapping can then be performed by a third module, which imports the
 other two modules and instantiates the Mapper
 objects, which do the work of mapping the selectables to your
 objects.

The unit of work pattern

The major second pattern used in the SQLAlchemy ORM is the unit
 of work pattern. In this pattern, when you make a change to an object,
 the database is not updated immediately. Instead, SQLAlchemy tracks
 changes to your objects in a session object, and
 then flushes all your changes at once in a single “unit of work.” This
 has the advantage of generally improving performance by reducing the
 number of round-trips to the database.
The alternative to the unit of work pattern, of course, is to
 update the database as soon as a mapped object property changes. This
 can lead to a very “chatty” application, but it does have the
 advantage of keeping your objects in sync with the database, which can
 be handy if you wish to execute queries before flushing the objects
 you’ve modified back out to the database.
To alleviate this concern, SQLAlchemy actually provides an
 “autoflush” feature on the session object that will take
 care of flushing the session before any queries are performed on it.
 As long as you use an autoflushing session and
 execute all queries through the session, you
 generally do not need to worry about inconsistencies between your
 objects in memory and the database on disk.
Warning
Of course, if you use the SQL expression layer of SQLAlchemy,
 you can get your in-memory objects out-of-sync
 with the database, so some care needs to be taken when mixing
 ORM-level semantics with SQL-level semantics in the same
 transaction.

Declaring Object Mappers

In order to use the SQLAlchemy ORM, we need three things: a database
 schema defined on a MetaData object, an object model
 (no special preparation of the object model is required for use by
 SQLAlchemy), and a mapper configuration. In this section, we will use the
 following schema, designed to maintain information about a retail product
 catalog:
level_table = Table([image: 1]
 'level', metadata,
 Column('id', Integer, primary_key=True),
 Column('parent_id', None, ForeignKey('level.id')),
 Column('name', String(20)))
category_table = Table([image: 2]
 'category', metadata,
 Column('id', Integer, primary_key=True),
 Column('level_id', None, ForeignKey('level.id')),
 Column('parent_id', None, ForeignKey('category.id')),
 Column('name', String(20)))
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
product_summary_table = Table([image: 3]
 'product_summary', metadata,
 Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('name', Unicode(255)),
 Column('description', Unicode))
product_category_table = Table([image: 4]
 'product_category', metadata,
 Column('product_id', None, ForeignKey('product.sku'), primary_key=True),
 Column('category_id', None, ForeignKey('category.id'), primary_key=True))
region_table = Table(
 'region', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Unicode(255)))
store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),
 Column('region_id', None, ForeignKey('region.id')),
 Column('name', Unicode(255)))
product_price_table = Table([image: 5]
 'product_price', metadata,
 Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('store_id', None, ForeignKey('store.id'), primary_key=True),
 Column('price', Numeric, default=0))
	[image: 1]
	This is a “level” used in categorizing a product in a hierarchy.
 In our example, we will use the levels “Gender”, “Department”,
 “Class”, and “Subclass”.

	[image: 2]
	These are the individual categories within a level. In our
 example, for instance, within the “Gender” level, we have “Men”,
 “Women”, “Children”, and “Unisex.”

	[image: 3]
	This table contains auxiliary information about products that
 may or may not be present for each product.

	[image: 4]
	This table links the product table with the category table. A
 product should generally have one category per level.

	[image: 5]
	This table lists the retail price for each product at each store
 location.

The application object model in the following listing is extremely
 basic. In a real application, the
 classes would probably have additional methods defined for performing
 domain-specific operations:
class Level(object):

 def __init__(self, name, parent=None):
 self.name = name
 self.parent = parent

 def __repr__(self):
 return '<Level %s>' % self.name

class Category(object):

 def __init__(self, name, level, parent=None):
 self.name = name
 self.level = level
 self.parent = parent

 def __repr__(self):
 return '<Category %s.%s>' % (self.level.name, self.name)

class Product(object):

 def __init__(self, sku, msrp, summary=None):
 self.sku = sku
 self.msrp = msrp
 self.summary = summary
 self.categories = []
 self.prices = []

 def __repr__(self):
 return '<Product %s>' % self.sku

class ProductSummary(object):

 def __init__(self, name, description):
 self.name = name
 self.description = description

 def __repr__(self):
 return '<ProductSummary %s>' % self.name

class Region(object):

 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return '<Region %s>' % self.name

class Store(object):

 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return '<Store %s>' % self.name

class Price(object):

 def __init__(self, product, store, price):
 self.product = product
 self.store = store
 self.price = price

 def __repr__(self):
 return '<Price %s at %s for $%.2f>' % (
 self.product.sku, self.store.name, self.price)
Basic Object Mapping

Now that we have the basic schema and object model in place, we
 can start exploring how to map objects. The
 region_table is one of the simplest tables, so we
 will start there. The following example demonstrates mapping the
 region_table to the Region
 class, and also illustrates the alterations that SQLAlchemy performs on
 the Region class during mapping:
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__',
... '__module__','__new__', '__reduce__', '__reduce_ex__',
... '__repr__', '__setattr__', '__str__', '__weakref__']
>>> mapper(Region, region_table)
<sqlalchemy.orm.mapper.Mapper object at 0x2af4d7004310>
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__', '__module__',
... '__new__', '__reduce__', '__reduce_ex__', '__repr__',
... '__setattr__', '__str__', '__weakref__',
... '_sa_attribute_manager', 'c', 'id', 'name']
>>> print Region.id
<sqlalchemy.orm.mapper._CompileOnAttr object at 0x2af4d70046d0>
>>> print Region.name
<sqlalchemy.orm.mapper._CompileOnAttr object at 0x2af4d7004790>
>>> print Region.c.id
region.id
>>> print Region.c.name
region.name
Note
It is possible to make SQLAlchemy “forget” all the mappings that
 have been declared by invoking the clear_mappers()
 function. This feature can be useful when prototyping various
 mappers within the interactive shell, as it will let you remap classes
 to try out different strategies.

As shown previously, the mapper()
 function has added a few attributes to our class. The attributes
 we’re interested in are c, id, and
 name. This c attribute is a proxy
 for the store_table’s c attribute,
 and allows access to all the columns of the
 store_table.
The id and name attributes
 are actually class properties that track access to these attributes to synchronize them with the
 database later. These are mapped because the default behavior of the
 SQLAlchemy mapper is to provide a property for each column in the
 selectable mapped, and the store_table has two
 columns, id and name.
Note that we can still use the object just as if it had not been
 mapped (unless, of course, we were relying on existing properties
 id and name, or an existing
 attribute c):
>>> r0 = Region(name="Northeast")
>>> r1 = Region(name="Southwest")
>>> print r0
<Region Northeast>
>>> print r1
<Region Southwest>
The difference now is that these objects can be loaded or saved to
 the database using a session object (covered in more
 detail in the next chapter):
>>> Session = sessionmaker()
>>> session = Session()
>>>
>>> session.save(r0)
>>> session.save(r1)
>>> metadata.bind.echo = True
>>> print r0.id
None
>>> print r1.id
None
>>> session.flush()
2007-10-13 12:47:07,621 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-10-13 12:47:07,623 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO region (name) VALUES (?)
2007-10-13 12:47:07,623 INFO sqlalchemy.engine.base.Engine.0x..90
... ['Northeast']
2007-10-13 12:47:07,625 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO region (name) VALUES (?)
2007-10-13 12:47:07,625 INFO sqlalchemy.engine.base.Engine.0x..90
... ['Southwest']
>>> print r0.id
1
>>> print r1.id
2
Note how SQLAlchemy automatically inserted the store names we
 specified into the database, and then populated the mapped
 id attribute based on the synthetic key value
 generated by the database. We can also update mapped properties once an
 object has been saved to the database:
>>> r0.name = 'Northwest'
>>> session.flush()
2007-10-13 12:47:53,879 INFO sqlalchemy.engine.base.Engine.0x..90
... UPDATE region SET name=? WHERE region.id = ?
2007-10-13 12:47:53,879 INFO sqlalchemy.engine.base.Engine.0x..90
... ['Northwest', 1]

Customizing Property Mapping

The basic way mapping that SQLAlchemy performs is useful, but
 what if we have a property or function that conflicts with the way
 SQLAlchemy wants to map columns? Or what if we just want to customize
 the columns mapped by SQLAlchemy? Fortunately, SQLAlchemy provides a
 rich set of ways to customize the way properties are mapped onto your
 classes.
Using include_properties and exclude_properties

The simplest case is where we want to restrict the properties
 mapped. In this case, we can use the include_properties to only map those columns specified:
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__', '__module__',
... '__new__', '__reduce__', '__reduce_ex__', '__repr__',
... '__setattr__', '__str__', '__weakref__']
>>> mapper(Region, region_table, include_properties=['id'])
<sqlalchemy.orm.mapper.Mapper object at 0x2ba1a7ca3310>
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__', '__module__',
... '__new__', '__reduce__', '__reduce_ex__', '__repr__',
... '__setattr__', '__str__', '__weakref__',
... '_sa_attribute_manager', 'c', 'id']
We can also use exclude_properties to specify columns to
 be excluded:
>>> mapper(Region, region_table, exclude_properties=['id'])
<sqlalchemy.orm.mapper.Mapper object at 0x2ba1a7ca34d0>

Customizing the name of the mapped column

If we want to map all the columns to properties with a
 particular prefix, we can use the column_prefix keyword argument:
>>> mapper(Region, region_table, column_prefix='_')
<sqlalchemy.orm.mapper.Mapper object at 0x2aecf62d5310>
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__', '__module__',
... '__new__', '__reduce__', '__reduce_ex__', '__repr__',
... '__setattr__', '__str__', '__weakref__', '_id', '_name',
... '_sa_attribute_manager', 'c']
We can also customize the mapped property names on a
 column-by-column basis using the properties parameter:
>>> mapper(Region, region_table, properties=dict(
... region_name=region_table.c.name,
... region_id=region_table.c.id))
<sqlalchemy.orm.mapper.Mapper object at 0x2b37165b8310>
>>> print dir(Region)
['__class__', '__delattr__', '__dict__', '__doc__',
... '__getattribute__', '__hash__', '__init__', '__module__',
... '__new__', '__reduce__', '__reduce_ex__', '__repr__',
... '__setattr__', '__str__', '__weakref__',
... '_sa_attribute_manager', 'c', 'region_id', 'region_name']

Using synonyms

SQLAlchemy provides certain functions and methods (covered in
 the next chapter) that expect mapped property names as keyword
 arguments. This can be cumbersome to use if we have mapped the column
 names to other property names (perhaps to allow for user-defined
 getters and setters). To alleviate the burden of using the actual
 property names, SQLAlchemy provides the synonym()
 function to allow a name to be used “as if” it were a real
 property. Suppose, for instance, that we wish to verify that all store
 names end in “Store”. We might use the following approach:
>>> class Region(object):
... def __init__(self, name):
... self.name = name
... def __repr__(self):
... return '<Region %s>' % self.name
... def _get_name(self):
... return self._name
... def _set_name(self, value):
... assert value.endswith('Region'), \
... 'Region names must end in "Region"'
... self._name = value
... name=property(_get_name, _set_name)
...
>>> mapper(Region, region_table, column_prefix='_', properties=dict(
... name=synonym('_name')))[image: 1]
<sqlalchemy.orm.mapper.Mapper object at 0x2b2f953ff4d0>
>>>
>>> s0 = Region('Southeast')[image: 2]
Traceback (most recent call last):
...
AssertionError: Region names must end in "Region"
>>> s0 = Region('Southeast Region')
>>> session.save(s0)
>>> session.flush()
>>> session.clear()
>>>
>>> q = session.query(Region)
>>> print q.filter_by(name='Southeast Region').first()
[image: 3]

<Region Southeast Region>
>>> print s0.name
Southeast Region
	[image: 1]
	This defines the synonym “name” to be usable in all
 SQLAlchemy functions where “_name” is usable.

	[image: 2]
	Here, we tried to create an object with an invalid name and
 were rejected.

	[image: 3]
	Using the synonym, we can still select stores by name
 without abusing the private attribute.

If you wish to create a property that is a true proxy for the
 original mapped property (so you don’t have to write the getter and
 setter), you can use
 synonym(name, proxy=True) to define it.

Mapping subqueries

In some cases, we may wish to create a property that is a
 combination of a few columns or the result of a subquery. For
 instance, suppose we wanted to map the product_table, providing a property
 that will yield the average price of the product across all stores. To
 do this, we use the column_property()
 function:
>>> average_price = select(
... [func.avg(product_price_table.c.price)],
... product_price_table.c.sku==product_table.c.sku)\
... .as_scalar() \
... .label('average_price')
>>> print average_price
(SELECT avg(product_price.price)
FROM product_price, product
WHERE product_price.sku = product.sku) AS average_price
>>> mapper(Product, product_table, properties=dict(
... average_price=column_property(average_price)))
<sqlalchemy.orm.mapper.Mapper object at 0x2b6b9d5336d0>
>>> metadata.bind.echo = True
>>> p = session.query(Product).get('123')
2007-10-06 18:47:27,289 INFO sqlalchemy.engine.base.Engine.0x..90.
... SELECT (SELECT avg(product_price.price)
FROM product_price
WHERE product_price.sku = product.sku) AS average_price,
... product.sku AS product_sku, product.msrp AS product_msrp
FROM product
WHERE product.sku = ? ORDER BY product.oid
 LIMIT 1 OFFSET 0
2007-10-06 18:47:27,290 INFO sqlalchemy.engine.base.Engine.0x..90.
... ['123']
>>> print p.sku, p.msrp, p.average_price
123 12.34 12.34

Mapping composite values

The SQLAlchemy ORM also provides for creating properties from a
 group of columns. To use this feature, we must create a custom class
 to store the composite value. That class must have a constructor that
 accepts column values as positional arguments (to create the object
 from the database result) and a method __composite_values__()
 that returns a list or tuple representing the state of the
 object in the order of the columns that map to it. The custom class
 should also support equality comparisons via the __eq__() and __ne__()
 methods.
For instance, suppose we have a mapping database that stores
 route segments in the following table:
segment_table = Table(
 'segment', metadata,
 Column('id', Integer, primary_key=True),
 Column('lat0', Float),
 Column('long0', Float),
 Column('lat1', Float),
 Column('long1', Float))
In this case, our application expects
 RouteSegments to have a beginning and an ending
 MapPoint object, defined as follows:
class RouteSegment(object):
 def __init__(self, begin, end):
 self.begin = begin
 self.end = end
 def __repr__(self):
 return '<Route %s to %s>' % (self.begin, self.end)

class MapPoint(object):
 def __init__(self, lat, long):
 self.coords = lat, long
 def __composite_values__(self):
 return self.coords
 def __eq__(self, other):
 return self.coords == other.coords
 def __ne__(self, other):
 return self.coords != other.coords
 def __repr__(self):
 return '(%s lat, %s long)' % self.coords
We can then map the class and use it with the composite()
 function:
>>> mapper(RouteSegment, segment_table, properties=dict(
... begin=composite(MapPoint,
... segment_table.c.lat0,
... segment_table.c.long0),
... end=composite(MapPoint,
... segment_table.c.lat1, segment_table.c.long1)))
<sqlalchemy.orm.mapper.Mapper object at 0x2b13e58a5450>
>>>
>>> work=MapPoint(33.775562,-84.29478)
>>> library=MapPoint(34.004313,-84.452062)
>>> park=MapPoint(33.776868,-84.389785)
>>> routes = [
... RouteSegment(work, library),
... RouteSegment(work, park),
... RouteSegment(library, work),
... RouteSegment(library, park),
... RouteSegment(park, library),
... RouteSegment(park, work)]
>>> for rs in routes:
... session.save(rs)
...
>>> session.flush()
>>>
>>> q = session.query(RouteSegment)
>>> print RouteSegment.begin==work
segment.lat0 = ? AND segment.long0 = ?
>>> q = q.filter(RouteSegment.begin==work)
>>> for rs in q:
... print rs
...
<Route (33.775562 lat, -84.29478 long) to (34.004313 lat, -84.452062
... long)>
<Route (33.775562 lat, -84.29478 long) to (33.776868 lat, -84.389785
... long)>
By default, SQLAlchemy generates an equality comparator that
 generates SQL to compare all mapped columns for use in methods such as
 filter(),
 shown previously. If you want to provide custom comparison operators,
 you can do so by implementing a subclass of
 PropComparator:
class MapPointComparator(PropComparator):
 def __lt__(self, other):
 return and_(*[a<b for a, b in
 zip(self.prop.columns,
 other.__composite_values__())])

mapper(RouteSegment, segment_table, properties=dict(
 begin=composite(MapPoint,
 segment_table.c.lat0, segment_table.c.long0,
 comparator=MapPointComparator),
 end=composite(MapPoint,
 segment_table.c.lat1, segment_table.c.long1,
 comparator=MapPointComparator)))

Eager versus deferred loading

In some cases, it may not be efficient to retrieve all
 properties of an object at object creation time. For instance, if the
 table being mapped has a BLOB column that is needed only infrequently
 in the mapped object, it may be more efficient to retrieve that column
 only when the property is accessed. In SQLAlchemy, this is referred to
 as “deferred column loading,” and is accomplished by mapping a
 property to the deferred() function.
In our product catalog schema, for instance, suppose we have an
 image stored for each product in a BLOB column:
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('image', BLOB))
In this case, we can map the image column as
 a deferred column:
mapper(Product, product_table, properties=dict(
 image=deferred(product_table.c.image)))
Now, if we select a product, we can observe that SQLAlchemy
 delays loading the deferred column until its mapped property is
 actually accessed:
>>> metadata.bind.echo=True
>>> q = session.query(Product)
>>> prod=q.get_by(sku='123')
2007-10-08 11:27:45,582 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product
WHERE product.sku = ? ORDER BY product.oid
 LIMIT 1 OFFSET 0
2007-10-08 11:27:45,583 INFO sqlalchemy.engine.base.Engine.0x..d0
... ['123']
>>> print prod.image
2007-10-08 11:27:45,589 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.image AS product_image
FROM product
WHERE product.sku = ?
2007-10-08 11:27:45,589 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'123']
abcdef
We can also mark multiple deferred columns to be members of a
 “group” of deferred columns, so that they are all loaded when any
 column in the group is accessed:
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('image1', Binary),
 Column('image2', Binary),
 Column('image3', Binary))

mapper(Product, product_table, properties=dict(
 image1=deferred(product_table.c.image, group='images'),
 image2=deferred(product_table.c.image, group='images'),
 image3=deferred(product_table.c.image, group='images')))
If the default deferred behavior is not desired, columns can be
 individually deferred or undeferred at query creation time by using
 the defer() and undefer() functions
 along with the options() method of
 the Query object (described more completely in
 the next chapter).

Mapping Arbitrary Selectables

It is worth noting that, although we have been mapping tables in our examples, it
 is possible to map any “selectable” object in SQLAlchemy. This includes
 tables, and the result of the select(), *join(), union*(), intersect*(), and
 except*()
 functions or methods. For instance, we may wish to map the result of
 joining the product table with the product summary table to a single
 object:
q = product_table.join(
 product_summary_table,
product_table.c.sku==product_summary_table.c.sku).alias('full_product')

class FullProduct(object): pass

mapper(FullProduct, q)

Other mapper⁠(⁠ ⁠) Parameters

The mapper() function takes a number of keyword arguments, listed next.
	entity_name=None
	A string to associate with a nonprimary mapper (see the
 non_primary parameter
 description for more detail) that allows it to be distinguished
 from the primary mapper in session methods such
 as save() and
 query().

	always_refresh=False
	Whenever a query returns an object corresponding to an
 in-memory object, overwrite the in-memory object’s fields with the
 fields from the query if this flag is True. This will overwrite any changes to
 the in-memory object, and so using the populate_existing()
 method on Query objects is preferred over
 this parameter.

	allow_column_override=False
	Allow a relation()
 property to be defined with the same name as a mapped column (the
 column will not be mapped in this case). Otherwise, the name
 conflict will generate an exception.

	allow_null_pks=False
	When using a composite primary key in the mapped selectable,
 this flag allows some (but not all) of the primary key columns to
 be NULL. Otherwise, any NULL value in any primary key column will
 cause the row to be skipped when constructing objects.

	batch=True
	Allow the save operations of multiple object to be
 batched together for efficiency (for instance, saving all the
 sku columns of multiple
 Products). If False, each object will be completely
 created in the database before moving on to the next
 object.

	column_prefix=None
	A string that will be used to prefix all
 automatically mapped column property names. This is ignored on all
 explicitly named properties.

	concrete=False
	If True, indicates the use of concrete table inheritance
 (covered in detail in Chapter 8).

	extension=None
	Either a MapperExtension or a list
 of MapperExtensions to be applied on all
 operations on this mapper (covered in detail later in this chapter
 in the section Extending Mappers”).

	inherits=None
	Another mapper that will serve as the “parent” when using
 mapper inheritance (covered in detail in Chapter 8).

	inherit_condition=None
	The method of joining tables in joined table inheritance
 (covered in detail in Chapter 8).

	inherit_foreign_keys=None
	The “foreign” side of the inherit_condition parameter.

	order_by=None
	The default ordering for entities when selecting from
 this mapper.

	non_primary=False
	When True, specifies that this is a nonprimary mapper. For any
 mapped class, only one primary mapper can be registered. When you
 create an instance of the class and save it to the database, the
 primary mapper alone determines how that
 object will be saved. Nonprimary mappers are useful for loading
 objects through a different way than the primary mapper (e.g.,
 from a different table, with a different set of columns, etc). Any
 number of non_primary
 mappers may be defined for a class.

	polymorphic_on=None
	Column that identifies which class/mapper should be used when
 using inheritance for a particular row (covered in detail in Chapter 8).

	polymorphic_identity=None
	Value stored in the polymorphic_on parameter to identify
 this mapper in an inheritance relationship (covered in detail in
 Chapter 8).

	polymorphic_fetch='union'
	The method used to fetch subclasses using joined-table
 inheritance, either ‘union’, ‘select’, or ‘deferred’ (covered in
 detail in Chapter 8).

	properties=None
	Dictionary of properties to be mapped onto the class (in
 addition to automatically mapped properties).

	include_properties=None
	List of properties to map onto the class (columns in the mapped table
 but not referenced in this list will not be
 mapped automatically).

	exclude_properties=None
	List of properties not to map onto the class (columns in
 the mapped table will be mapped automatically
 unless they are in this list).

	primary_key=None
	List of columns that define the primary key for the
 selectable being mapped. (By default, this is the primary key of
 the table being mapped, but this behavior can be overridden with
 this parameter.)

	select_table=None
	The selectable used to select instances of the mapped
 class. Generally used with polymorphic loading (covered in detail
 in Chapter 8).

	version_id_col=None
	An integer column on the mapped selectable that is used
 to keep a version ID of the data in that row. Each save will
 increment this version number. If the version number is changed
 between the time when the object is selected and when it is
 flushed, then a ConcurrentModificationError
 is thrown.

Declaring Relationships Between Mappers

Although the features that SQLAlchemy provides for mapping tables
 and other selectables to classes are powerful in their own right,
 SQLAlchemy also allows you to model relationships between tables as simple
 Python lists and properties using the relation() function in the properties parameter of the mapper() function.
Basic Relationships

The three main relationships modeled by SQLAlchemy are 1:N, M:N, and 1:1 (which is actually a special case of 1:N). In a 1:N
 relationship, one table (the “N” side) generally has a foreign key to
 another table (the “1” side). In M:N, two tables (the “primary” tables)
 are related via a scondary, “join” table that has foreign keys into both
 primary tables. A 1:1 relationship is simply a 1:N relationship where
 there is only one “N”-side row with a foreign key to any particular
 “1”-side row.
1:N relations

To model each type of relationship, SQLAlchemy uses the
 relation()
 function in the properties dict
 of the mapper. In many cases, SQLAlchemy is able to infer the proper
 join condition for 1:N relations. For instance, since the stores in
 our data model are members of regions (a 1:N relationship
 region:store), we can model this on our Region
 class as follows:
>>> mapper(Store, store_table)
<sqlalchemy.orm.mapper.Mapper object at 0x2b794eb2f610>
>>> mapper(Region, region_table, properties=dict(
... stores=relation(Store)))
[image: 1]

<sqlalchemy.orm.mapper.Mapper object at 0x2b794eb3af90>
>>> rgn = session.query(Region).get(1)
2007-10-13 12:59:47,876 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT region.id AS region_id, region.name AS region_name
FROM region
WHERE region.id = ? ORDER BY region.oid
 LIMIT 1 OFFSET 0
2007-10-13 12:59:47,877 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
>>> s0 = Store(name='3rd and Juniper')
>>> rgn.stores.append(s0)[image: 2]
2007-10-13 13:00:06,339 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT store.id AS store_id, store.region_id AS store_region_id,
... store.name AS store_name
FROM store
WHERE ? = store.region_id ORDER BY store.oid
2007-10-13 13:00:06,339 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
>>> session.flush()[image: 3]
2007-10-13 13:00:14,344 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO store (region_id, name) VALUES (?, ?)
2007-10-13 13:00:14,345 INFO sqlalchemy.engine.base.Engine.0x..90
... [1, '3rd and Juniper']
	[image: 1]
	SQLAlchemy is able to infer the 1:N relation type by the
 foreign key relationship between region_table
 and store_table.

	[image: 2]
	Adding a store to the region is as simple as appending on to
 the property. Generally, when working at the ORM level, it is not
 necessary to worry about foreign keys. The SELECT statement is
 necessary for SQLAlchemy to retrieve the inital contents of the
 “stores” property.

	[image: 3]
	SQLAlchemy automatically infers that a new store must be
 inserted with the region_id properly
 set.

In some cases, SQLAlchemy is unable to infer the proper join
 condition (for instance, when there are multiple foreign key relations
 between the two tables). In this case, we can simply use the
 primaryjoin parameter to the
 relation()
 function:
mapper(Region, region_table, properties=dict(
 stores=relation(Store,
 primaryjoin=(store_table.c.region_id
 ==region_table.c.id))))

M:N relations

It is often useful to model many-to-many (M:N) type relations between objects. In
 the database, this is accomplished by the use of an association or
 join table. In the following schema, the relation between the
 product_table and the
 category_table is a many-to-many:
category_table = Table(
 'category', metadata,
 Column('id', Integer, primary_key=True),
 Column('level_id', None, ForeignKey('level.id')),
 Column('parent_id', None, ForeignKey('category.id')),
 Column('name', String(20)))
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
product_category_table = Table(
 'product_category', metadata,
Column('product_id', None, ForeignKey('product.sku'),
... primary_key=True),
Column('category_id', None, ForeignKey('category.id'),
... primary_key=True))
In SQLAlchemy, we can model this relationship with the relation() function
 and the secondary
 parameter:
>>> mapper(Category, category_table, properties=dict(
... products=relation(Product,
... secondary=product_category_table)))
<sqlalchemy.orm.mapper.Mapper object at 0xee6810>
>>> mapper(Product, product_table, properties=dict(
... categories=relation(Category,
... secondary=product_category_table)))
<sqlalchemy.orm.mapper.Mapper object at 0xee6d10>
>>>
>>> session.query(Product).get('123').categories
2007-10-15 20:06:17,375 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM category, product_category
WHERE ? = product_category.product_id AND category.id =
... product_category.category_id ORDER BY product_category.oid
2007-10-15 20:06:17,375 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'123']
[]
As in the case of the 1:N join, we can also explicitly specify
 the join criteria by using the primaryjoin (the join condition between
 the table being mapped and the join table) and the secondaryjoin (the join condition between
 the join table and the table being related to) parameters:
mapper(Category, category_table, properties=dict(
 products=relation(Product, secondary=product_category_table,
primaryjoin=(product_category_table.c.category_id
 == category_table.c.id),
secondaryjoin=(product_category_table.c.product_id
 == product_table.c.sku))))
mapper(Product, product_table, properties=dict(
 categories=relation(Category, secondary=product_category_table,
primaryjoin=(product_category_table.c.product_id
 == product_table.c.sku),
secondaryjoin=(product_category_table.c.category_id
 == category_table.c.id))))

1:1 relations

SQLAlchemy also supports 1:1 mappings
 as a type of 1:N mappings. This is modeled in our schema
 with the product_table and the
 product_summary_table:
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
product_summary_table = Table(
 'product_summary', metadata,
Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('name', Unicode(255)),
 Column('description', Unicode))
Note in particular the foreign key relationship between
 product_table and product_summary_table. This
 relationship allows, in SQL, many product_summary_table rows to exist for one
 product_table row. If left to its own devices,
 then, SQLAlchemy will assume that this is a 1:N join:
>>> mapper(ProductSummary, product_summary_table)
<sqlalchemy.orm.mapper.Mapper object at 0xeee150>
>>> mapper(Product, product_table, properties=dict(
... summary=relation(ProductSummary)))
<sqlalchemy.orm.mapper.Mapper object at 0xef0410>
>>>
>>> prod = session.query(Product).get('123')
>>> print prod.summary
[]
To avoid this, we simply specify uselist=False to the relation()
 function:
>>> mapper(ProductSummary, product_summary_table)
<sqlalchemy.orm.mapper.Mapper object at 0xef5c90>
>>> mapper(Product, product_table, properties=dict(
... summary=relation(ProductSummary, uselist=False)))
<sqlalchemy.orm.mapper.Mapper object at 0xef88d0>
>>>
>>> prod = session.query(Product).get('123')
>>> print prod.summary
None

Using BackRefs

In most cases, when mapping a relation between two tables, we want to
 create a property on both classes. We can certainly
 do this in SQLAlchemy by using two relation() calls, one for each mapper,
 but this is verbose and potentially leads to the two properties becoming
 out-of-sync with each other. To eliminate these problems, SQLAlchemy provides the backref parameter to the relation()
 function:
>>> mapper(ProductSummary, product_summary_table)
<sqlalchemy.orm.mapper.Mapper object at 0xfbba10>
>>> mapper(Product, product_table, properties=dict(
... summary=relation(ProductSummary, uselist=False,
... backref='product')))
<sqlalchemy.orm.mapper.Mapper object at 0xee7dd0>
>>>
>>> prod = session.query(Product).get('123')
>>> prod.summary = ProductSummary(name="Fruit", description="Some
... Fruit")
>>> print prod.summary
<ProductSummary Fruit>
>>> print prod.summary.product
<Product 123>
>>> print prod.summary.product is prod
True
Note in particular that SQLAlchemy automatically updated the
 backref property. This is particularly useful in
 many-to-many (M:N) relations. For instance, to model an M:N relation, we could use the
 relation()
 function twice, but the two properties would not remain synchronized
 with each other. Note the incorrect behavior in the
 following example:
>>> mapper(Level, level_table, properties=dict(
... categories=relation(Category, backref='level')))
<sqlalchemy.orm.mapper.Mapper object at 0x1044d90>
>>> mapper(Category, category_table, properties=dict(
... products=relation(Product,
... secondary=product_category_table)))
<sqlalchemy.orm.mapper.Mapper object at 0x104a8d0>
>>> mapper(Product, product_table, properties=dict(
... categories=relation(Category,
... secondary=product_category_table)))
<sqlalchemy.orm.mapper.Mapper object at 0x104aed0>
>>> lvl = Level(name='Department')
>>> cat = Category(name='Produce', level=lvl)
>>> session.save(lvl)
>>> prod = session.query(Product).get('123')
>>> print prod.categories
[]
>>> print cat.products
[]
>>> prod.categories.append(cat)
>>> print prod.categories
[<Category Department.Produce>]
>>> print cat.products
[]
If we declare a backref on
 the products property, however, the two lists
 are kept in sync:
>>> mapper(Level, level_table, properties=dict(
... categories=relation(Category, backref='level')))
<sqlalchemy.orm.mapper.Mapper object at 0x107cf90>
>>> mapper(Category, category_table, properties=dict(
... products=relation(Product, secondary=product_category_table,
... backref='categories')))
<sqlalchemy.orm.mapper.Mapper object at 0x107c350>
>>> mapper(Product, product_table)
<sqlalchemy.orm.mapper.Mapper object at 0x104f110>
>>> lvl = Level(name='Department')
>>> cat = Category(name='Produce', level=lvl)
>>> session.save(lvl)
>>> prod = session.query(Product).get('123')
>>> print prod.categories
[]
>>> print cat.products
[]
>>> prod.categories.append(cat)
>>> print prod.categories
[<Category Department.Produce>]
>>> print cat.products
[<Product 123>]
Rather than specifying just the backref’s name, we can also use
 the SQLAlchemy-provided backref() function.
 This function allows us to pass along arguments to the
 relation that is created by the backref. For instance, if we wanted to
 declare the product property on
 the ProductSummary class rather than declaring
 the summary property on the
 Product class, we could use backref⁠(⁠ ⁠) with uselist=False as follows:
mapper(ProductSummary, product_summary_table, properties=dict(
 product=relation(Product,
 backref=backref('summary', uselist=False))))
mapper(Product, product_table)

Using a Self-Referential Mapper

It is sometimes useful to have a relation() map from one object to another object of the same class. This
 is referred to as self-referential mapping. For
 instance, in our schema, each row of the level_table
 has a parent_id column referring to another
 level_table row:
level_table = Table(
 'level', metadata,
 Column('id', Integer, primary_key=True),
 Column('parent_id', None, ForeignKey('level.id')),
 Column('name', String(20)))
To specify the parent-child relationship between different levels,
 we can use the relation()
 function with a little extra work. When there is a relation
 specified with a self-referential foreign key constraint, SQLAlchemy
 assumes that the relation will be a 1:N relation. If we want to get only
 the “children” property working, then the mapper setup is as simple as
 the following:
mapper(Level, level_table, properties=dict(
 children=relation(Level)))
However, we would also like to get the backref to the parent working as well. For this, we need to
 specify the “remote side” of the backref. In the case of the “parent”
 attribute, the “local side” is the parent_id column, and the
 “remote side” is the id column. To specify the remote
 side of a relation (or backref), we use the remote_side parameter:
>>> mapper(Level, level_table, properties=dict(
... children=relation(Level,
... backref=backref('parent',
...
... remote_side=[level_table.c.id]))))
<sqlalchemy.orm.mapper.Mapper object at 0x1050990>
>>>
>>> l0 = Level('Gender')
>>> l1 = Level('Department', parent=l0)
>>> session.save(l0)
>>> session.flush()
2007-10-19 10:23:53,861 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-19 10:23:53,862 INFO sqlalchemy.engine.base.Engine.0x..50
... [None, 'Gender']
2007-10-19 10:23:53,875 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-19 10:23:53,876 INFO sqlalchemy.engine.base.Engine.0x..50
... [1, 'Department']
We could, of course, specify the relation “in reverse” as
 well:
mapper(Level, level_table, properties=dict(
 parent=relation(Level, remote_side=[level_table.c.parent_id],
 backref='children')))
Note that a list is used for the remote_side parameter to allow for compound
 foreign keys in the relation.

Cascading Changes to Related Objects

It is often the case, particularly in 1:N relations, that you want
 to cascade the changes on one object to another “child” object. For
 instance, in the previous schema, if we delete a row from the
 product_table, we would also want to delete it from
 the product_summary_table. In
 many cases, this can be handled natively by the database using ON DELETE CASCADE
 in SQL or the ondelete
 parameter in the Table⁠( ⁠) definition. In some
 cases, however, the underlying database may not support cascading
 deletes natively. For circumstances such as these, SQLAlchemy provides
 the cascade parameter to relation⁠(⁠ ⁠)s
 and backref⁠(⁠ ⁠)s.
The cascade parameter is specified as a string composed of a
 comma-separated list of keywords that specify which session operations
 should cascade onto the related objects. In the following list, the
 “parent” object is the one that has the relation as a property. The
 “child” object is the object that it is related to. For instance, in the
 following relation, the Region object is the “parent”, and the related
 Store objects are the “children”.
mapper(Region, region_table, properties=dict(
 stores=relation(Store)))
All of the cascade values in the following list refer to various
 functions that are performed by the Session
 object (covered in more detail in Chapter 7). The
 default value for the cascade
 parameter on a relation is "save-update,merge".
	
 all

	Specifies that all options should be enabled except delete-orphan:.

	
 delete

	When the parent object is marked for deletion via
 session.delete⁠(⁠), mark the child(ren) as
 well.

	
 save-update

	When the parent object is attached to the session, attach the
 child(ren) as well. (Attachment to a session generally happens by
 calling the save(), update(), or
 save_or_update()
 methods on the Session object.)

	
 refresh-expire

	When the parent object is refreshed (reloaded from the database) or
 expired (marked as expired, to be refreshed if any properties are
 subsequently read), refresh or expire the child(ren) as
 well.

	
 merge

	When the parent object is merged, then merge the
 child(ren) as well. Merging is the process of taking an object and
 copying its state onto a persistent instance of that object that
 is managed by the session.

	
 expunge

	When the parent object is expunged from the session
 (removing all references to the object from the session, the
 opposite of save_or_update()),
 expunge the child(ren) as well.

	
 delete-orphan

	When the child object is removed from the relation (by
 reassigning a 1:1 or N:1 relation or by removing it from the list
 in a 1:N or M:N relation), mark the child object for deletion.
 (This operation is referred to as “orphaning” the child object by
 removing its relation to its parent.)

Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters

The relation(argument, secondary=None, **kwargs) and backref(name, **kwargs) functions also take a number of
 other parameters, specified in the following list of arguments.
 relation() and
 backref() take
 the same keyword arguments.
	backref
 (relation⁠(⁠ ⁠)only)
	Either the name of the property to be used for the reverse
 relationship, or an invocation of the backref() function
 to customize the backreference further.

	
 cascade

	String of comma-separated cascade values (for more detail,
 see the list of cascade values in the preceding section).

	
 collection_class

	The class or function used to build a list-holding object
 (used to store 1:N and M:N relations). See the section Using custom collections in relations” for more detail.

	
 foreign_keys

	List of columns that are used as the “foreign keys” in the
 relation, if no actual foreign keys are present. Always used in
 conjunction with explicit primaryjoin and/or secondaryjoin parameters.

	join_depth=None
	When non-None, this limits the depth an eager-loading join will
 traverse with a self-referential mapper. The join_depth specifies the maximum
 number of times the same mapper can be
 present along a join branch before eager loading is stopped. The
 default value of None stops the
 traversal of an eager join when it encounters the first duplicate
 mapper.

	lazy=True
	Specifies how related items should be loaded. The options
 are:
	True (default)
	Load items when the property is first accessed.

	
 False

	Load the items eagerly when the parent is fetched,
 using a JOIN or LEFT OUTER JOIN.

	
 None

	SQLAlchemy will never automatically load the related
 items. This is used for write-only properties or properties
 that are populated in some other way.

	
 'dynamic'

	Returns a Query object when
 reading the property and supports writes only through the
 append() and
 remove()
 methods. This option allows partial results to be fetched
 lazily. This option is mainly used in backrefs. To use
 dynamic loading on a forward relation, use the dynamic_loader()
 function in place of relation().

	
 order_by

	List of ClauseElements specifying
 the ordering that should be applied when loading a 1:N or M:N
 relation.

	passive_deletes=False
	When True, indicates
 that the database will automatically cascade deletes (either by
 deleting the child row or by setting its foreign key to NULL,
 whichever is appropriate). This prevents the default SQLAlchemy
 behavior of loading related objects from the database to either
 set them to deleted or to set their foreign key column to
 NULL.

	post_update=False
	If True, this property will be handled by a separate
 statement whenever inserting, updating, or deleting the parent
 row. If False, SQLAlchemy will
 attempt to update the row along with all its relations in a single
 statement, something that is impossible to do when there is a
 cyclical set of foreign key relationships.
Attempting to insert, update, or delete such a cyclical set
 will raise a “cyclical dependency” exception when flush()ing the
 session. Setting post_update to True on one of the relations in the
 cycle will “break” it and allow flushing to proceed.

	
 primaryjoin

	The ClauseElement that specifies how to join
 the parent row to the child row (in a 1:N, N:1, or 1:1 relation)
 or the association table row (in an M:N relation). If not
 specified, SQLAlchemy will infer a relationship based on the
 foreign key relationships between the tables involved in the
 relation.

	
 remote_side

	In a self-referential relationship, the column or
 columns that form the “remote side” (i.e., the “child side”) of
 the relationship.

	
 secondary

	In an M:N relationship, this argument specifies the join
 table used to create the relation. Note that, if you are using
 SQLAlchemy’s ability to do M:N relationships, the join table
 should only be used to join the two tables
 together, not to store auxiliary properties. If you need to use
 the intermediate join table to store additional properties of the
 relation, you should use two 1:N relations instead.

	
 secondaryjoin

	The ClauseElement that specifies how
 to join the association table row to the child row in an M:N
 relation. If not specified, SQLAlchemy will infer a relationship
 based on the foreign key relationships between the tables involved
 in the relation.

	uselist=True
	If False, forces SQLAlchemy to use a scalar to represent a 1:N
 relationship (thus modeling a 1:1 relationship).

	viewonly=False
	If True, tells SQLAlchemy that the relation is suitable only
 for read operations. This allows greater flexibility in the join
 conditions (normally, these must be fairly straightforward in
 order for SQLAlchemy to determine how to persist the relation).
 Updates to a relation marked as viewonly will not have any effect on
 the flush process.

Using custom collections in relations

When you specify a relation⁠(⁠ ⁠) that
 implements a one-to-many or many-to-many join, SQLAlchemy uses a
 collection to implement the property on the mapped object. By default,
 this collection is a list. In order to implement appropriate
 cascade and backref behavior,
 however, SQLAlchemy must instrument the class,
 tracking additions and removals of objects to and from the collection.
 This happens via the CollectionAdapter class, which is
 used by SQLAlchemy to link the class that implements the collection
 with the attribute on the mapped object.
To complicate matters further, SQLAlchemy provides the collection_class parameter, which allows
 you to customize the implementation of list-like relationships. If you
 specify a collection_class
 value of the built-in types of list,
 dict, set, or any
 subclass of these types, SQLAlchemy will automatically apply the
 appropriate instrumentation to track changes. For instance, if we wish
 to use a set to track the changes to the stores
 attribute in a Region, we could simply write
 the following:
mapper(Region, region_table, properties=dict(
 stores=relation(Store, collection_class=set)))
In some cases, SQLAlchemy can even instrument custom collection
 classes that are not derived from Python’s
 built-in collection types by inspecting the class definition and
 determining whether it is list-like,
 set-like, or dict-like.
 This inference is not perfect, however, so SQLAlchemy provides two
 methods to override it. The first is the __emulates__ class attribute.
 If you supply a built-in type as the value for this attribute,
 SQLAlchemy will assume that your custom collection class is “like” the
 type you name. So, to implement a collection that is
 set-like but includes a
 list-like append() method, we
 could do the following:
class SetAndListLike(object):
 __emulates__ = set
 def __init__(self):
 self._c = set()
 def append(self, o):
 self._c.add(o)
 def remove(self, o):
 self._c.remove(o)
 def __iter__(self):
 return iter(self._c)
The second method for overriding the collection_class inference mechanism is by
 using the SQLAlchemy-provided collection decorators, which are
 available as attributes of the collections
 class in the sqlalchemy.orm.collections module. In the
 previous example, for instance, SQLAlchemy will correctly infer the
 usage of remove() and __iter__(), but
 because append() is not
 normally used in set-like objects, it will not
 be instrumented. To force SQLAlchemy to instrument this method, we can
 use collection.appender:
from sqlalchemy.orm.collections import collection

class SetAndListLike(object):
 __emulates__ = set
 def __init__(self):
 self._c = set()
 @collection.appender
 def append(self, o):
 self._c.add(o)
 def remove(self, o):
 self._c.remove(o)
 def __iter__(self):
 return iter(self._c)
The following decorators are available for manually
 instrumenting your custom collection class:
	appender(cls, fn)
	This decorator marks the decorated function as a “collection
 appender.” The decorated function should take one positional
 argument: the value to add to the collection.

	remover(cls, fn)
	This decorator marks the decorated function as a
 “collection remover.” The decorated function should take one
 positional argument: the value to remove from the
 collection.

	iterator(cls, fn)
	This decorator marks the decorated function as a
 “collection iterator.” The decorated function should take no
 arguments and return an iterator over all collection
 members.

	internally_instrumented(cls, fn)
	This decorator prevents other decorators from being
 applied to the decorated function. This is useful to prevent
 “recognized” method names such as append() from
 being automatically decorated.

	on_link(cls, fn)
	This decorator marks the decorated function as a
 “linked to attribute” event handler. This event handler is
 called when the collection class is linked to the
 CollectionAdapter that, in turn, is
 linked to the relation attribute. The decorated function should
 take one positional argument: the
 CollectionAdapter being linked (or
 None if the adapter is being
 unlinked). This might be useful if you wish to perform some
 setup on the mapped class or relation when your custom
 collection is initially linked.

	adds(cls, arg)
	This decorator factory is used to create decorators that function as
 “collection appenders.” The one argument to the factory is an
 indicator of which parameter to the
 decorated function should be added to the collection. This
 argument may be specified as either an integer (representing the
 position number of a positional argument) or a string
 (indicating the name of the parameter).

	replaces(cls, arg)
	This decorator factory is used to create decorators
 that function as “collection replacers.” The one argument to the
 factory is an indicator of which parameter
 to the decorated function should be added to the collection.
 This argument may be specified as either an integer
 (representing the position number of a positional argument) or a
 string (indicating the name of the parameter). The return value
 from the decorated function, if any, is used as the value to be
 removed from the function.

	removes(cls, arg)
	This decorator factory is used to create decorators
 that function as “collection removers.” The one argument to the
 factory is an indicator of which parameter
 to the decorated function should be removed from the collection.
 This argument may be specified as either an integer
 (representing the position number of a positional argument) or a
 string (indicating the name of the parameter).

	removes_return(cls)
	This decorator factory is used to create decorators
 that function as “collection removers.” The value that is
 returned from the decorated function is the value that
 SQLAlchemy will consider to be removed from the collection. This
 is useful for implementing a list-like
 pop()
 method, for instance.

One common use case is using a dict to
 represent a relation. This presents a problem over using
 sets and lists, however,
 as dicts require key values. The sqlalchemy.orm.collections
 module provides the following helpers for just this purpose:
	column_mapped_collection(mapping_spec)
	Return a collection class that will be keyed by the
 mapping_spec, which may
 be either a column from the related table, or a list of columns
 from the related table.

	attribute_mapped_collection(attr_name)
	Return a collection class that will be keyed by the
 attr_name, which is the
 name of an attribute on the related class.

	mapped_collection(keyfunc)
	Return a collection class that will be keyed by the
 value returned from the supplied keyfunc function. keyfunc takes as its single
 parameter the related object and returns a key value.

To use a dictionary that is keyed by the store name in our
 Region class, for instance, we could either use
 the column:
mapper(Region, region_table, properties=dict(
 stores=relation(Store,
collection_class=column_mapped_collection(store_table.c.name)))
or the attribute:
mapper(Region, region_table, properties=dict(
 stores=relation(Store,
collection_class=attribute_mapped_collection('name')))
If you wish to determine the key value to be used in some other
 way, you can also use the SQLAlchemy-supplied
 MappedCollection class as base class for your
 custom dict-like classes.
 MappedCollection takes a keyfunc parameter in its constructor just
 like the mapped_collection()
 function.

Extending Mappers

Although the mapper function—combined
 with the various property creation functions—is extremely powerful, it is
 sometimes useful to extend the functionality of a mapper. To that end,
 SQLAlchemy provides the MapperExtension class, which can be extended to provide mapper behavior
 modification via a series of hooks. Multiple
 MapperExtensions can be registered on a mapper,
 allowing a chain of responsibility for modifying the mapper behavior.
 MapperExtensions are registered either in the
 mapper()
 function call via the extension parameter,
 or by using an extension() argument to
 the option() method in queries
 (covered in Chapter 7).
Each hook should return either orm.EXT_CONTINUE
 or orm.EXT_STOP. (Any other value will be interpreted
 by SQLAlchemy as orm.EXT_STOP.) If
 orm.EXT_CONTINUE is returned, processing continues,
 either to the next MapperExtension or by the mapper
 itself. If orm.EXT_STOP is returned, then the mapper
 will not call any other extensions in the chain.
Some of the useful hooks in MapperExtension
 are described in the following list:
	before_delete(self, mapper, connection, instance)
	Called with an object instance before that instance is
 deleted.

	before_insert(self, mapper, connection, instance)
	Called with an object instance before that instance is
 inserted.

	before_update(self, mapper, connection, instance)
	Called with an object instance before that instance is
 updated.

	after_delete(self, mapper, connection, instance)
	Called with an object instance after that instance is
 deleted.

	after_insert(self, mapper, connection, instance)
	Called with an object instance after that instance is
 inserted.

	after_update(self, mapper, connection, instance)
	Called with an object instance after that instance is
 updated.

	append_result(self, mapper, selectcontext, row, instance, result, **flags)
	Called just before an object instance is appended to a
 result list. Returning anything other than
 EXT_CONTINUE will prevent the instance from being
 appended to the result.

	create_instance(self, mapper, selectcontext, row, class_)
	Called when a new object is about to be created from a row.
 If None is returned, normal
 object creation will take place. Any other value is presumed to be
 the object instance created by the
 MapperExtension.

	get(self, query, *args, **kwargs)
	Overrides the get() method of the
 Query object if anything other than EXT_CONTINUE is returned.

	get_session(self)
	Called to retrieve a Session instance
 with which to register a new object.

	load(self, query, *args, **kwargs)
	Used to override the load() method of the
 Query object, if anything other than
 EXT_CONTINUE is returned.

	populate_instance(self, mapper, selectcontext, row, instance, **flags)
	Called when a new object is about to have its attributes
 populated. If EXT_CONTINUE
 is returned, normal attribute population will take place. Any other
 value will prevent attribute population by SQLAlchemy.

	translate_row(self, mapper, context, row)
	Called before rows are converted to instances, allowing the
 row to be transformed. The new row (or the original, unmodified row)
 must be returned from this method.

	instrument_class(self, mapper, class_)
	Called at class instrumentation time.

	init_instance(self, mapper, class_, oldinit, instance, args, kwargs)
	Called when initializing an instance (as part of the constructor
 call).

	init_failed(self, mapper, class_, oldinit, instance, args, kwargs)
	Called when instance initialization fails (when the
 constructor raises an unhandled exception).

ORM Partitioning Strategies

Sometimes you want to use the ORM to map objects that may exist in
 multiple databases. SQLAlchemy provides support for “vertical”
 partitioning (placing different kinds of objects or different tables in
 different databases) as well as “horizontal” partitioning, also called
 “sharding” (partitioning the rows of a single table across multiple
 databases).
Vertical Partitioning

In vertical partitioning, different mapped classes are retrieved from
 different database servers. In the following example, we create
 product_table in one in-memory sqlite database and
 product_summary_table in another:
engine1 = create_engine('sqlite://')
engine2 = create_engine('sqlite://')

metadata = MetaData()

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
product_summary_table = Table(
 'product_summary', metadata,
Column('sku', None, ForeignKey('product.sku'), primary_key=True),
 Column('name', Unicode(255)),
 Column('description', Unicode))

product_table.create(bind=engine1)
product_summary_table.create(bind=engine2)

stmt = product_table.insert()
engine1.execute(
 stmt,
 [dict(sku="123", msrp=12.34),
 dict(sku="456", msrp=22.12),
 dict(sku="789", msrp=41.44)])
stmt = product_summary_table.insert()
engine2.execute(
 stmt,
 [dict(sku="123", name="Shoes", description="Some Shoes"),
 dict(sku="456", name="Pants", description="Some Pants"),
 dict(sku="789", name="Shirts", description="Some Shirts")])
Now, we can create and map the Product and
 ProductSummary classes:
class Product(object):
 def __init__(self, sku, msrp, summary=None):
 self.sku = sku
 self.msrp = msrp
 self.summary = summary
 def __repr__(self):
 return '<Product %s>' % self.sku

class ProductSummary(object):
 def __init__(self, name, description):
 self.name = name
 self.description = description
 def __repr__(self):
 return '<ProductSummary %s>' % self.name

clear_mappers()
mapper(ProductSummary, product_summary_table, properties=dict(
 product=relation(Product,
 backref=backref('summary', uselist=False))))
mapper(Product, product_table)
Finally, we configure the session to load the
 Product class from engine1 and
 ProductSummary from
 engine2:
>>> Session = sessionmaker(binds={Product:engine1,
... ProductSummary:engine2})
>>> session = Session()
>>> engine1.echo = engine2.echo = True
>>> session.query(Product).all()
2007-11-17 14:32:20,890 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-11-17 14:32:20,895 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
2007-11-17 14:32:20,895 INFO sqlalchemy.engine.base.Engine.0x..90 []
[<Product 123>, <Product 456>, <Product 789>]
>>> session.query(ProductSummary).all()
2007-11-17 14:32:20,900 INFO sqlalchemy.engine.base.Engine.0x..10
... BEGIN
2007-11-17 14:32:20,901 INFO sqlalchemy.engine.base.Engine.0x..10
... SELECT product_summary.sku AS product_summary_sku,
... product_summary.name AS product_summary_name,
... product_summary.description AS product_summary_description
FROM product_summary ORDER BY product_summary.oid
2007-11-17 14:32:20,902 INFO sqlalchemy.engine.base.Engine.0x..10 []
[<ProductSummary Shoes>, <ProductSummary Pants>, <ProductSummary
... Shirts>]
Note that the appropriate engine is invoked depending on which
 class is being queried, completely transparently to the user.

Horizontal Partitioning

In horizontal partitioning, or “sharding,” the database schema (or part of it) is
 replicated across multiple databases (“shards”). This essentially means
 that some rows of a mapped table will be loaded from one database and
 some from another. To use sharding, you must provide functions that
 identify which database to access in various situations. These arguments
 are passed to the sessionmaker⁠(⁠ ⁠) function,
 along with a class_ parameter
 specifying that we will be creating a
 ShardedSession:
Session = sessionmaker(class_=ShardedSession)
The first function that must be provided is the shard_chooser(mapper, instance, clause=None) function.
 This function is responsible for returning a “shard ID” that should
 contain the row for the given mapper and instance. The ID may be based
 off of the instance’s properties, or it may simply be the result of a
 round-robin selection scheme. If it is not based on
 attributes of the instance, the shard_chooser() should
 modify the instance in some way to mark it as participating in the
 returned shard.
The next function that must be provided is the id_chooser(query, ident) function. This function, when
 presented with a query and a tuple of identity values (the primary key
 of the mapped class), should return a list of shard IDs where the
 objects sought by the query might reside. In a round-robin
 implementation, all of the shard IDs might be returned. In other
 implementations, the shard ID might be inferred from the ident parameter.
The final function that must be provided when using sharding is
 the query_chooser(query) function, which should return a list
 of shard IDs where results for a given query might be found. Note that
 both id_chooser() and
 query_chooser() may
 simply return a list of all the shard IDs, in which case each shard will
 be searched for the results of the query.
In the following example, we will create a sharded implementation
 of the product database where products are stored according to the first
 digit of their SKU. If the first digit is even, the products are stored
 in engine1; otherwise they are stored in
 engine2. All other types of objects will be stored in
 engine2:
engine1 = create_engine('sqlite://')
engine2 = create_engine('sqlite://')

metadata = MetaData()

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
metadata.create_all(bind=engine1)
metadata.create_all(bind=engine2)

class Product(object):
 def __init__(self, sku, msrp):
 self.sku = sku
 self.msrp = msrp
 def __repr__(self):
 return '<Product %s>' % self.sku

clear_mappers()
product_mapper = mapper(Product, product_table)

def shard_chooser(mapper, instance, clause=None):
 if mapper is not product_mapper:
 return 'odd'
 if (instance.sku
 and instance.sku[0].isdigit()
 and int(instance.sku[0]) % 2 == 0):
 return 'even'
 else:
 return 'odd'

def id_chooser(query, ident):
 if query.mapper is not product_mapper:
 return ['odd']
 if (ident \
 and ident[0].isdigit()
 and int(ident[0]) % 2 == 0):
 return ['even']
 return ['odd']

def query_chooser(query):
 return ['even', 'odd']

Session = sessionmaker(class_=ShardedSession)
session = Session(
 shard_chooser=shard_chooser,
 id_chooser=id_chooser,
 query_chooser=query_chooser,
 shards=dict(even=engine1,
 odd=engine2))
Now we can create some products, save them to the database,
 observe their partitioning using the SQL layer, and observe that the
 session’s Query object is able to correctly merge
 results from both databases:
>>> products = [Product('%d%d%d' % (i,i,i), 0.0)
... for i in range(10)]
>>> for p in products:
... session.save(p)
...
>>> session.flush()
>>>
>>> for row in engine1.execute(product_table.select()):
... print row
...
(u'000', Decimal("0"))
(u'222', Decimal("0"))
(u'444', Decimal("0"))
(u'666', Decimal("0"))
(u'888', Decimal("0"))
>>> for row in engine2.execute(product_table.select()):
... print row
...
(u'111', Decimal("0"))
(u'333', Decimal("0"))
(u'555', Decimal("0"))
(u'777', Decimal("0"))
(u'999', Decimal("0"))
>>> for row in engine1.execute(product_table.select()):
... print row
...
>>> for row in engine2.execute(product_table.select()):
... print row
...
>>> session.query(Product).all()
[<Product 000>, <Product 222>, <Product 444>, <Product 666>,
... <Product 888>, <Product 111>, <Product 333>, <Product 555>,
... <Product 777>, <Product 999>]

Chapter 7. Querying and Updating at the ORM
 Level

This chapter introduces the SQLAlchemy Session
 object. You will learn how to use the Session to
 perform queries and updates of mapped classes, as well as how to customize
 the Session class and create a “contextual” session
 that simplifies session management.
The SQLAlchemy ORM Session Object

SQLAlchemy manages all querying and updating of objects in the ORM with
 Session objects. The Session
 is responsible for implementing the unit of work pattern of
 synchronization between in-memory objects and database tables. Sessions
 also provide a rich interface for querying the database based on object
 attributes rather than the underlying SQL database structure.
Creating a Session

The first step in creating a session is to obtain a
 Session object from SQLAlchemy. One way to do
 this is to directly instantiate the
 sqlalchemy.orm.session.Session class. However,
 this constructor for the SQLAlchemy-provided
 Session has a number of keyword arguments, making
 instantiating Sessions in this manner verbose and
 tedious. In order to alleviate this burden, SQLAlchemy provides the
 sessionmaker() function, which returns a subclass of
 orm.session.Session with default arguments set
 for its constructor.
Once you have this customized Session
 class, you can instantiate it as many times as necessary in your
 application without needing to retype the keyword arguments (which in
 many applications will not change between Session
 instantiations). If you wish to override the defaults supplied to
 sessionmaker, you can do so at
 Session instantiation time. You can also modify
 the default arguments bound to a particular
 Session subclass by calling the class method
 Session.configure():
Create a Session class with the default
options
Session = sessionmaker(bind=engine)

Create an unbound Session class
Session = sessionmaker()

Bind the Session class once the engine
is available
Session.configure(bind=engine)
The sessionmaker() and the associated
 Session subclass’s configure class method and constructor take
 the following keyword arguments:
	bind=None
	The database Engine or
 Connection to which to bind the
 session.

	binds=None
	Optional dictionary that provides more detailed binding
 information. The keys to this dictionary can be mapped classes,
 mapper() instances, or
 Tables. The values in the dictionary
 indicate which Engine or
 Connectable to use for a given mapped
 class, overriding the values set in the bind parameter.

	autoflush=True
	When True, the
 Session will automatically be
 flush()ed before executing any queries
 against the session. This ensures that the results returned from
 the query match the operations that have been done in-memory in
 the unit-of-work.

	transactional=False
	When True, the
 Session will automatically use
 transactions. To commit a set of changes, simply use the
 Session’s commit()
 method. To revert changes, use the rollback()
 method. Using transactional=True, it is never necessary to
 explicitly begin() a transaction on a
 Session. It is, however, necessary to
 explicitly call commit() at the end of your
 transaction.

	twophase=False
	This tells SQLAlchemy to use two-phase commits on all
 transactions (on databases that support two-phase commits,
 currently MySQL and PostgreSQL, soon to include Oracle), which is
 useful when dealing with multiple database instances. In this
 case, after flush()ing changes to all
 databases but before issuing a COMMIT, SQLAlchemy issues a PREPARE
 to each database, allowing the entire transaction to be rolled
 back if an error is raised during any of the PREPARE
 executions.

	echo_uow=False
	When True, instructs the Session to log all
 unit-of-work operations. This is the
 equivalent of setting a log level of
 logging.DEBUG for the 'sqlalchemy.orm.unitofwork'
 logger.

	extension=None
	Optional SessionExtension that
 receives various session events, similar to the MapperExtension.
 (SessionExtensions are covered in more
 detail later in this chapter in Extending Sessions.”)

	weak_identity_map=True
	The default value uses weak references in the identity map
 maintained by the session, allowing objects that are a) no longer
 referenced outside the session and b) have no pending changes to
 be automatically garbage-collected. If this is set to False, then a regular Python
 dict is used, and objects will remain in
 the Session’s identity map until they are
 explicitly removed using the Session
 methods expunge(),
 clear(), or
 purge().

Saving Objects to the Session

Once you have a Session instance, you can begin persisting in-memory objects. This is
 accomplished quite simply by calling the save()
 method on the Session object. Suppose we have the following schema and mapping:
from sqlalchemy import *
from sqlalchemy.orm import *

engine = create_engine('sqlite://')
metadata = MetaData(engine)

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))

class Product(object):
 def __init__(self, sku, msrp, summary=None):
 self.sku = sku
 self.msrp = msrp
 self.summary = summary
 self.categories = []
 self.prices = []
 def __repr__(self):
 return '<Product %s>' % self.sku

mapper(Product, product_table)
To save two products to the database, we can do the following.
 Note that the echo_uow property
 on the session as well as the echo property on the
 Engine are True in order to display exactly what
 SQLAlchemy is doing in response to our flush() call:
>>> Session = sessionmaker(bind=engine, echo_uow=True)
>>> engine.echo = True
>>> session = Session()
>>>
>>> p1 = Product('123', 11.22)
>>> p2 = Product('456', 33.44)
>>> session.save(p1)
>>> session.save(p2)
>>> session.flush()
2007-10-28 16:55:05,117 INFO
... sqlalchemy.orm.unitofwork.UOWTransaction.0x..90 Task dump:

 UOWTask(0xb4e7d0, Product/product/None) (save/update phase)
 |- Save Product@0xb4e750
- Save Product@0xb4e690

2007-10-28 16:55:05,118 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-10-28 16:55:05,119 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product (sku, msrp) VALUES (?, ?)
2007-10-28 16:55:05,119 INFO sqlalchemy.engine.base.Engine.0x..90
... ['123', '11.22']
2007-10-28 16:55:05,120 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product (sku, msrp) VALUES (?, ?)
2007-10-28 16:55:05,120 INFO sqlalchemy.engine.base.Engine.0x..90
... ['456', '33.44']
2007-10-28 16:55:05,121 INFO
... sqlalchemy.orm.unitofwork.UOWTransaction.0x..90 Execute Complete
Object States with a Session
Objects can have various states as they relate to
 Sessions. These states are defined as
 follows:
	
 Transient

	The object exists in memory only. It is not attached to a
 session, and it has no representation in the database. A
 Transient object has no relationship to the
 ORM other than the fact that its class has an associated
 mapper().

	
 Pending

	A Pending object has been marked for insertion into the database
 at the next flush() operation.
 Transient objects become
 Pending when they are
 save()d to the
 Session.

	
 Persistent

	The object is present in both the session and the
 database. Persistent objects are created
 either by flush()ing
 Pending objects or by querying the database
 for existing
 instances.

	
 Detached

	The object has a corresponding record in the
 database, but is not attached to any session.
 Detached objects cannot issue any SQL
 automatically to load related objects or attributes, unlike
 Persistent objects. An object becomes
 detached if it is explicitly expunge()d
 from the session.

We can actually save large graphs of objects to the database by
 using the default cascade value 'save-update' on our
 relation() objects. For instance, consider the
 additional schema and mapping:
level_table = Table(
 'level', metadata,
 Column('id', Integer, primary_key=True),
 Column('parent_id', None, ForeignKey('level.id')),
 Column('name', String(20)))

category_table = Table(
 'category', metadata,
 Column('id', Integer, primary_key=True),
 Column('level_id', None, ForeignKey('level.id')),
 Column('parent_id', None, ForeignKey('category.id')),
 Column('name', String(20)))

product_category_table = Table(
 'product_category', metadata,
Column('product_id', None, ForeignKey('product.sku'),
... primary_key=True),
Column('category_id', None, ForeignKey('category.id'),
... primary_key=True))

class Product(object):
 def __init__(self, sku, msrp, summary=None):
 self.sku = sku
 self.msrp = msrp
 self.summary = summary
 self.categories = []
 self.prices = []
 def __repr__(self):
 return '<Product %s>' % self.sku

class Level(object):
 def __init__(self, name, parent=None):
 self.name = name
 self.parent = parent
 def __repr__(self):
 return '<Level %s>' % self.name

class Category(object):
 def __init__(self, name, level, parent=None):
 self.name = name
 self.level = level
 self.parent = parent
 def __repr__(self):
 return '<Category %s.%s>' % (self.level.name, self.name)

Clear the mappers so we can re-map the Product class
with an additional property
clear_mappers()

mapper(Product, product_table, properties=dict(
 categories=relation(Category, secondary=product_category_table,
 backref='products')))

mapper(Level, level_table, properties=dict(
 children=relation(Level, backref='parent'),
 categories=relation(Category, backref='level')))

mapper(Category, category_table, properties=dict(
 children=relation(Category, backref='parent')))
Now we can create a product hierarchy and assign some categories
 just as if there were no database, and the
 Session will infer the appropriate operations to
 persist the entire data model:
>>> department = Level('Department')
>>> tops = Category('Tops', level=department)
>>> bottoms = Category('Bottoms', level=department)
>>>
>>> class_ = Level('Class', parent=department)
>>> shirts = Category('Shirts', level=class_, parent=tops)
>>> pants = Category('Pants', level=class_, parent=bottoms)
>>>
>>> subclass = Level('SubClass', parent=class_)
>>> tshirts = Category('T-Shirts', level=subclass, parent=shirts)
>>> dress_shirts = Category('Dress Shirts', level=subclass,
... parent=shirts)
>>> slacks = Category('Slacks', level=subclass, parent=pants)
>>> denim = Category('Denim', level=subclass, parent=pants)
>>>
>>> # Create two more products
... p3 = Product('111', 55.95)
>>> p4 = Product('222', 15.95)
>>> p3.categories=[denim, pants, bottoms]
>>> p4.categories=[tshirts, shirts, tops]
Now that we have created all the objects and specified the
 relations between them, we can save one object to
 the Session, and all related objects will be
 saved as well (this is due to the default 'save-update' value of the cascade parameter in all the
 relations() created). In this example, the
 department object is connected to all the other
 objects through various relation()s, so it is
 sufficient to save it alone. Once this is done, we can flush the changes
 out to the database. For the purposes of brevity, we will use a fresh
 session with echo_uow set to
 False:
>>> session = Session(echo_uow=False)
>>> session.save(department)
>>> session.flush()
2007-10-28 18:41:10,042 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-10-28 18:41:10,043 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product (sku, msrp) VALUES (?, ?)
2007-10-28 18:41:10,043 INFO sqlalchemy.engine.base.Engine.0x..90
... ['111', '55.95']
2007-10-28 18:41:10,045 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product (sku, msrp) VALUES (?, ?)
2007-10-28 18:41:10,045 INFO sqlalchemy.engine.base.Engine.0x..90
... ['222', '15.95']
2007-10-28 18:41:10,047 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-28 18:41:10,047 INFO sqlalchemy.engine.base.Engine.0x..90
... [None, 'Department']
2007-10-28 18:41:10,049 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-28 18:41:10,049 INFO sqlalchemy.engine.base.Engine.0x..90
... [1, 'Class']
2007-10-28 18:41:10,053 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO level (parent_id, name) VALUES (?, ?)
2007-10-28 18:41:10,053 INFO sqlalchemy.engine.base.Engine.0x..90
... [2, 'SubClass']
2007-10-28 18:41:10,057 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,057 INFO sqlalchemy.engine.base.Engine.0x..90
... [1, None, 'Bottoms']
2007-10-28 18:41:10,059 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,059 INFO sqlalchemy.engine.base.Engine.0x..90
... [1, None, 'Tops']
2007-10-28 18:41:10,060 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,060 INFO sqlalchemy.engine.base.Engine.0x..90
... [2, 1, 'Pants']
2007-10-28 18:41:10,062 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,063 INFO sqlalchemy.engine.base.Engine.0x..90
... [2, 2, 'Shirts']
2007-10-28 18:41:10,065 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,065 INFO sqlalchemy.engine.base.Engine.0x..90
... [3, 4, 'T-Shirts']
2007-10-28 18:41:10,066 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,066 INFO sqlalchemy.engine.base.Engine.0x..90
... [3, 4, 'Dress Shirts']
2007-10-28 18:41:10,068 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,068 INFO sqlalchemy.engine.base.Engine.0x..90
... [3, 3, 'Slacks']
2007-10-28 18:41:10,069 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO category (level_id, parent_id, name) VALUES (?, ?,
... ?)
2007-10-28 18:41:10,070 INFO sqlalchemy.engine.base.Engine.0x..90
... [3, 3, 'Denim']
2007-10-28 18:41:10,071 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product_category (product_id, category_id) VALUES
... (?, ?)
2007-10-28 18:41:10,072 INFO sqlalchemy.engine.base.Engine.0x..90
... [['222', 2], ['111', 1], ['111', 8], ['222', 4], ['111', 3],
... ['222', 5]]

Updating Objects in the Session

If we wish to update
 Persistent or Pending objects,
 we can simply modify them in-memory and rely on the
 Session to figure out the changes required in the
 database. This even works for related objects. For instance, if we
 decide to recategorize the product with sku “111”, we would simply
 update the list of categories:
>>> p3.categories = [slacks, pants, bottoms]
2007-10-28 18:48:31,534 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product, product_category
WHERE ? = product_category.category_id AND product.sku =
... product_category.product_id ORDER BY product_category.oid
2007-10-28 18:48:31,534 INFO sqlalchemy.engine.base.Engine.0x..90
... [7]
>>> session.flush()
2007-10-28 18:48:31,554 INFO sqlalchemy.engine.base.Engine.0x..90
... DELETE FROM product_category WHERE product_category.product_id =
... ? AND product_category.category_id = ?
2007-10-28 18:48:31,555 INFO sqlalchemy.engine.base.Engine.0x..90
... ['111', 8]
2007-10-28 18:48:31,558 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO product_category (product_id, category_id) VALUES
... (?, ?)
2007-10-28 18:48:31,558 INFO sqlalchemy.engine.base.Engine.0x..90
... ['111', 7]
Note in particular that SQLAlchemy has inferred the minimum change
 necessary to update the relationship. Also note that SQLAlchemy allowed
 us to assign a normal Python list for a
 relation()-type property. This is in contrast to some other ORMs, which require you
 to use specialized add/remove functions to change object relationships.
 One caveat with SQLAlchemy is that you are still required to only use
 the remove() and append() list when using dynamic
 relation loaders (declared with dynamic_loader() or lazy='dynamic'). This is due to the fact that
 SQLAlchemy never implicitly loads the entire list of related objects
 into memory and so cannot deduce how to update the database if you use
 other methods of modifying the property.
Embedding SQL expressions in a flush

One feature that can be particularly useful in performing atomic
 updates to an object is the ability to assign an SQL expression (from
 the SQL expression language) to a mapped property on an object. For
 instance, consider a banking application where there is a need to
 deduct a certain amount from the balance. In many cases, it is unsafe
 and inefficient to SELECT the balance and then UPDATE it to the
 previous balance minus some amount. It would be better to simply
 deduct the amount atomically in one UPDATE statement. So, if we have
 the following (partial) schema and mapping:
account_table = Table(
 'account', metadata,
 Column('id', Integer, primary_key=True),
 Column('balance', Numeric))

class Account(object): pass

mapper(Account, account_table)
we could deduct a certain amount from an account balance
 atomically by doing something like the following:
>>> # Create the table for testing purposes
>>> account_table.create()
2007-10-28 19:21:29,498 INFO sqlalchemy.engine.base.Engine.0x..90
CREATE TABLE account (
 id INTEGER NOT NULL,
 balance NUMERIC(10, 2),
 PRIMARY KEY (id)
)

2007-10-28 19:21:29,498 INFO sqlalchemy.engine.base.Engine.0x..90 {}
2007-10-28 19:21:29,498 INFO sqlalchemy.engine.base.Engine.0x..90
... COMMIT
>>> # Create an account for testing purposes
>>> a = Account()
>>> a.balance = 100.00
>>> session.save(a)
>>> session.flush()
2007-10-28 19:21:29,581 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO account (balance) VALUES (?)
2007-10-28 19:21:29,582 INFO sqlalchemy.engine.base.Engine.0x..90
... ['100.0']
>>>
>>> a.balance = Account.c.balance - 50.0
>>> session.flush()
2007-10-28 19:21:29,700 INFO sqlalchemy.engine.base.Engine.0x..90
... UPDATE account SET balance=(account.balance - ?) WHERE
... account.id = ?
2007-10-28 19:21:29,700 INFO sqlalchemy.engine.base.Engine.0x..90
... ['50.0', 1]

Deleting Objects from the Session

To delete an object from the session, simply use the
 Session’s delete() method:
>>> session.delete(p3)
>>> session.flush()
2007-10-28 18:58:51,150 INFO sqlalchemy.engine.base.Engine.0x..90
... DELETE FROM product_category WHERE product_category.product_id =
... ? AND product_category.category_id = ?
2007-10-28 18:58:51,150 INFO sqlalchemy.engine.base.Engine.0x..90
... [['111', 1], ['111', 3], ['111', 7]]
2007-10-28 18:58:51,152 INFO sqlalchemy.engine.base.Engine.0x..90
... DELETE FROM product WHERE product.sku = ?
2007-10-28 18:58:51,153 INFO sqlalchemy.engine.base.Engine.0x..90
... ['111']
Notice that SQLAlchemy automatically removed the corresponding
 entries in the product_category_table. This is because
 we declared that to be the secondary parameter of a many-to-many
 relation(). This is a special feature of M:N
 relations. In 1:N relations, unless you tell SQLAlchemy how to cascade a
 delete on the parent object, it will not assume that the delete should
 be cascaded. To cascade delete()s onto the child
 objects, simply specify cascade='delete' (or 'all') in the relation()
 function call.

Flushing, Committing, and Rolling Back Session Changes

We have already seen the basic usage of the flush()
 Session method. flush() can
 also take an optional parameter objects, which specifies a list of objects
 to be flushed. If this is omitted, all modified objects are
 flushed.
SQLAlchemy also provides support for managing transactions on a
 Session basis via the begin(),
 commit(), and rollback()
 methods, and via the transactional=True parameter to the
 Session constructor. begin()
 begins a transaction, commit() commits it, and
 rollback() rolls back to the state of the database
 at the last begin().
Specifying transactional=True lets SQLAlchemy know that all operations
 on this Session are intended
 to be in the context of a transaction, and so there is no need to issue
 an explicit begin(). SQLAlchemy also supports the
 use of SAVEPOINTs on supported databases (currently MySQL and
 PostgreSQL, soon to include Oracle) via the
 begin_nested() method. In this case, the
 commit() and rollback()
 methods apply only to the last “nested” transaction, so you can roll
 back “part” of a transaction.

Other Session Methods

Sessions have several utilities other than save() and
 delete() for dealing with objects that they manage.
 These methods, as well as save(),
 delete(), and a few query-related methods (covered
 in detail later in this chapter, in Querying at the ORM Level”), are
 documented here:
	save(self, obj, entity=None)
	Save the given object to the session. This operation
 cascades to related objects according to the 'save-update' cascade rule.
If an entity name
 is specified, then use the named nonprimary
 mapper() to persist the object.

	delete(self,
 obj)
	Mark the given object for deletion at the next
 flush().

	expire(self,
 obj)
	Mark the given object as no longer up-to-date. This
 causes any mapped attributes to be refetched from the database
 the next time they are accessed. This operation cascades to
 related objects according to the 'refresh-expire' cascade rule.

	refresh(self,
 obj)
	Reload the object from the database with a fresh query.
 This operation cascades to related objects according to the
 'refresh-expire' cascade
 rule.

	merge(self, obj, entity=None)
	Copy the state of the given object onto a persistent
 object with the same database identity. This will either load an
 existing Persistent instance from the
 database, modify one in memory, or save a copy of the given
 obj. In none of these
 cases does the object passed in become associated with the
 Session. This operation cascades to
 related objects according to the 'merge' cascade rule.
If an entity name
 is specified, then use the named nonprimary
 mapper() to load or save the
 Persistent object.

	expunge(self,
 obj)
	Remove all references to obj from the
 Session. This operation cascades to
 related objects according to the 'expunge' cascade rule.

	update(self, obj, entity=None)
	Bring a given Detached obj into this session. This
 operation cascades to related objects according to the 'save-or-update' cascade rule.
If an entity name
 is specified, then use the named nonprimary
 mapper() to load or save the
 Detached object.

	get(self, class_, ident,
 **kwargs)
	Return a Persistent
 instance of the object with the given class_ and identifier. (An object identifier is
 either the primary key value if there is only one primary key in
 the underlying table, or a tuple of primary keys in the case of
 a composite primary key.) If an entity_name is specified as part of
 kwargs, then use the
 named nonprimary mapper to map the class. The other kwargs are passed unchanged to the
 underlying query() used to retrieve the
 object.

	load(self, class_, ident,
 **kwargs)
	This is the same as the get() method with one
 exception: if the object was already in the
 Session, the session will overwrite any
 pending changes with fresh values from the database.

	query(self, mapper_or_class, *addtl_entities,
 **kwargs)
	Return a new Query object
 corresponding to this Session and the
 given mapper_or_class.

	close(self)
	Clear the session and end any transactions in progress.
 This restores the Session object to a
 “pristine” state, exactly the same as when it was initially
 instantiated.

	execute(self, clause, params=None, mapper=None,
 **kwargs)
	This method is a thin wrapper around the underlying
 engine or connection’s execute() method.
 (The clause, params, and kwargs parameters are passed through
 unmodified, for instance.) It is useful for executing SQL-level
 queries and updates within the same transactional environment as
 your ORM queries and updates. If the mapper parameter is specified, that
 mapper is used to determine the engine on which to execute the
 query.

	identity_map
	The identity mapping between
 (class,identity) tuples and objects in
 the session. Note that Persistent objects
 have an _instance_key
 attribute attached to them, which is their
 Session identity.

	new
	A collection of all Pending objects
 added to the Session since the last
 flush().

	dirty
	A collection of all Persistent
 objects that have changes detected.

	deleted
	A collection of all Persistent
 objects that have been marked for deletion via the
 Session delete()
 method.

Extending Sessions

Similar to the MapperExtension covered in Chapter 6,
 SessionExtensions can be used to hook into
 session operations. Unlike MapperExtensions,
 SessionExtensions cannot modify the process that
 they “hook into” easily, making SessionExtensions
 more useful for recording Session operations than
 influencing them directly. SessionExtensions are
 installed via the extension
 parameter to the Session constructor.
The various methods that a subclass of
 SessionExtension can implement are described
 here:
	before_commit(self, session)
	Called just before a commit is executed.

	after_commit(self, session)
	Called just after a commit is executed.

	after_rollback(self, session)
	Called just after a rollback has occurred.

	before_flush(self, session, flush_context, objects)
	Called just before the flush process starts. The
 objects parameter is the
 optional list of objects passed to the
 Session’s flush()
 method.

	after_flush(self, session, flush_context)
	Called just after the flush process completes, but before
 any commit(). The session’s properties at this
 point still show their pre-flush state.

	after_flush_postexec(self, session, flush_context)
	Called just after the flush process completes, as well as
 after any automatic commit() occurs. (If no
 explicit transaction is specified, all
 flush()es generate their own transactions.)
 The session’s properties at
 this point show their final, post-flush state.

Querying at the ORM Level

Saving and updating objects via SQLAlchemy’s ORM interface isn’t
 very useful without the ability to retrieve objects from the database.
 This is where the Session’s
 query() method comes in handy. To retrieve an iterator over all the
 objects of a particular type in the database, simply specify either the
 class you wish to query or its mapper:
>>> query = session.query(Product)
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
>>> for obj in query:
... print obj
...
2007-11-16 16:19:42,669 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
2007-11-16 16:19:42,669 INFO sqlalchemy.engine.base.Engine.0x..90 []
<Product 123>
<Product 456>
<Product 222>
Notice here that the query is generative, as
 were the SQL-layer queries mentioned in Chapter 5.
 This means that SQLAlchemy will not actually execute the query on the
 database until the results are iterated over. You can also retrieve all
 the results as a list by calling the all()
 method on the query object:
>>> query.all()
2007-11-16 16:21:35,349 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
2007-11-16 16:21:35,349 INFO sqlalchemy.engine.base.Engine.0x..90 []
[<Product 123>, <Product 456>, <Product 222>]
Because retrieving the entire collection of mapped objects isn’t
 very useful, SQLAlchemy provides various methods to modify the query
 object. Note that all of these methods actually generate and return a new
 query object rather than modifying the existing query object. The most
 useful of these methods are filter() and
 filter_by(). These methods work, as their names
 imply, by restricting the set of objects returned from the query. For
 instance, to retrieve all the products with an MSRP between $10 and $20,
 we could use filter() as follows:
>>> session.bind.echo = False
>>> query = query.filter(Product.msrp > 10.00)
>>> query = query.filter(Product.msrp < 20.00)
>>> for product in query:
... print product.sku, product.msrp
...
123 11.22
222 15.95
Note that we can use mapped properties just like column objects in
 SQL expressions. SQLAlchemy also provides access to the
 c attribute (and all the attached columns) from the
 mapper’s underlying selectable. In addition to this, SQLAlchemy provides a
 number of methods on mapped properties to facilitate the construction of
 complex queries. Some of these methods are summarized in the following
 lists.
The following are methods on mapped columns:
	
 asc(
 self
)

	Return a clause representing the mapped column in ascending
 order.

	between(self, cleft, cright)
	Generate a BETWEEN clause with the specified left and right
 values (column BETWEEN
 cleft AND
 cright).

	concat(self,
 other)
	Generate a clause that concatenates the value of the column
 with the value given.

	
 desc(
 self
)

	Generate a clause representing the mapped column in ascending
 order.

	
 distinct(
 self
)

	Generate a clause that limits the result set to rows with
 distinct values for this column.

	endswith(self,
 other)
	Generate a clause (using LIKE) that implements the Python
 endswith() string method.

	in_(self,
 other)
	Generate an IN clause with other as the righthand side. other may be either a sequence of
 literal values or a selectable.

	like(self,
 other)
	Generate a LIKE clause with other as the righthand side.

	startswith(self, other)
	Generate a clause (using LIKE) that implements the Python
 startswith() string method.

The following are methods on mapped relations:
	any(self, criterion=None, **kwargs)
	Generate a clause that will be true if any of the related
 objects satisfy the given criterion. A
 filter_by()-style criterion (a conjunction of
 equality constraints) is generated if kwargs is nonempty.

	contains(self,
 other)
	Generate a clause that will be true if the specified object is
 in the list of related objects.

	has(self, criterion=None, **kwargs)
	For scalar-style relations, generate a clause that will
 be true if the related object satisfies the given criterion. A
 filter_by()-style criterion (a conjunction of
 equality constraints) is generated if kwargs is nonempty.

The filter() method, in fact, takes any valid
 SQL expression, allowing you to build up complex queries fairly simply.
 Also note that the two filters were applied as a conjunction: both
 criteria had to be satisfied to produce an object.
The filter_by() method allows more convenient
 filtering when the filter criteria are all equality constraints. For
 instance, to retrieve the products with an MSRP of $11.22, we could use
 the following query:
>>> query = session.query(Product)
>>> query = query.filter_by(msrp=11.22)
>>> print query.all()
[<Product 123>]
Note that we now specify the filter criteria as keyword arguments to
 filter_by(). The query then searches for mapped
 properties with the given name and applies appropriate filtering to the
 returned query.
The SQLAlchemy Query object also supports
 applying offsetting and limiting to a query via the
 offset() and limit() methods, as
 well as the slicing operator:
>>> query = session.query(Product)
>>> print query.offset(2)
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
 LIMIT -1 OFFSET 2
>>> print query.limit(3)
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
 LIMIT 3 OFFSET 0
>>> print query[1:2]
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
 LIMIT 1 OFFSET 1
In many cases, we want to retrieve only one object from the
 database. The Query object provides three different
 ways to do this:
	
 get(
 ident
)

	Retrieve an object by its identity (the primary key of the
 mapped selectable). If there is no object identified by that key,
 return None.
 get() is also available as a method on the
 Session object.

	
 first()

	Retrieve the first result from the query. If there are no
 results, return None. This is
 equivalent to
 query.all()[0].

	
 one()

	Retrieve the first result from the query, raising an exception
 unless the query returns exactly one result.
 This is implemented by executing the query with a limit of 2. If
 either 0 or 2 rows are returned, an exception is raised. Otherwise,
 the single object is returned.

ORM Querying with Joins

The true power of the SQLAlchemy ORM query system is really only
 realized when using it to join across the relations defined in the
 mapper() configuration. Joins can be performed across mapped properties by using
 the join() method on the
 Query object. Once a new class has been joined to
 the query, all its properties are available for use in the
 filter() and filter_by()
 methods:
>>> query = session.query(Product)
>>> query = query.join('categories')
>>> query = query.filter_by(name='T-Shirts')
>>> print query.all()
[<Product 222>]
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product JOIN product_category ON product.sku =
... product_category.product_id JOIN category ON category.id =
... product_category.category_id
WHERE category.name = ? ORDER BY product.oid
SQLAlchemy also allows you to join across multiple property
 “hops.” For instance, if we wish to see all the products with some
 categorization under the “Class” level, we could do the
 following:
>>> query = session.query(Product)
>>> query = query.join(['categories', 'level'])
>>> query = query.filter_by(name='Class')
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product JOIN product_category ON product.sku =
... product_category.product_id JOIN category ON category.id =
... product_category.category_id JOIN level ON level.id =
... category.level_id
WHERE level.name = ? ORDER BY product.oid
>>> print query.all()
[<Product 222>]
Note that filter_by() used the
 Level’s name property, rather
 than the Category’s name
 property, when performing the filter. SQLAlchemy keeps track of a
 “joinpoint,” the last class
 referenced in an ORM join, and applies any
 filter_by() criteria to that joinpoint until the joinpoint changes. To
 manually reset the joinpoint to the “root” class, simply call the
 reset_joinpoint() method.
Any new join() calls will also reset the
 joinpoint to the root of the query. To disable this behavior (and
 continue joining from the current joinpoint), simply specify from_joinpoint=True in the call to
 join().
As you may have noticed, the join() method
 constructs inner joins. SQLAlchemy also provides an
 outerjoin() method for constructing left outer
 joins. So, if we wanted to get a list of all products that have no
 “Class” categorization or have a “Class” of “Pants,” we could execute
 the following query:
>>> query = session.query(Product)
>>> query = query.outerjoin('categories')
>>> query = query.filter(or_(Category.c.name=='Pants',
... Category.c.name==None))
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product LEFT OUTER JOIN product_category ON product.sku =
... product_category.product_id LEFT OUTER JOIN category ON
... category.id = product_category.category_id
WHERE category.name = ? OR category.name IS NULL ORDER BY
... product.oid
>>> print query.all()
[<Product 123>, <Product 456>]
When constructing complex queries using joins, it is often useful
 to join to the same table twice. In this case, we can specify that the
 join() method use an alias for the table being
 joined:
>>> query = session.query(Product)
>>> query = query.join('categories')
>>> query = query.filter_by(name='T-Shirts')
>>> query = query.join('categories', aliased=True)
>>> query = query.filter_by(name='Shirts')
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product JOIN product_category ON product.sku =
... product_category.product_id JOIN category ON category.id =
... product_category.category_id JOIN product_category AS
... product_category_1 ON product.sku =
... product_category_1.product_id JOIN category AS category_2 ON
... category_2.id = product_category_1.category_id
WHERE category.name = ? AND category_2.name = ? ORDER BY product.oid
>>> print query.all()
[<Product 222>]
One of the more powerful features of the SQLAlchemy ORM is that it
 allows properties to be defined as either “lazily” loaded or “eagerly”
 loaded (via the lazy parameter to
 the relation() function). It is often useful, however, to customize the load
 strategy of various properties on a query-by-query basis. To facilitate
 this, SQLAlchemy provides the options()
 method on the Query object and various
 functions, including eagerload(name),
 lazyload(name), and
 eagerload_all(name) to customize the loading strategy of relations on a
 query-by-query basis. eagerload() and
 lazyload() each change the default loading strategy
 for the named property. eagerload_all() makes an
 entire “property chain” eager-loaded.
For instance, suppose we are generating a table of all the
 products in the system, along with their categorization and the level
 name. If we use the default lazy loading approach, we will execute one
 query per object to read its categories and one query per category to
 read its levels:
>>> session.bind.echo=True
>>> query = session.query(Product)
>>> session.clear()
>>> for prod in query:
... print prod.sku, prod.categories
...
2007-11-16 17:30:08,356 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product ORDER BY product.oid
2007-11-16 17:30:08,357 INFO sqlalchemy.engine.base.Engine.0x..90 []
1232007-11-16 17:30:08,360 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM category, product_category
WHERE ? = product_category.product_id AND category.id =
... product_category.category_id ORDER BY product_category.oid
2007-11-16 17:30:08,361 INFO sqlalchemy.engine.base.Engine.0x..90
... [u'123']
[]
4562007-11-16 17:30:08,364 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM category, product_category
WHERE ? = product_category.product_id AND category.id =
... product_category.category_id ORDER BY product_category.oid
2007-11-16 17:30:08,365 INFO sqlalchemy.engine.base.Engine.0x..90
... [u'456']
[]
2222007-11-16 17:30:08,367 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM category, product_category
WHERE ? = product_category.product_id AND category.id =
... product_category.category_id ORDER BY product_category.oid
2007-11-16 17:30:08,368 INFO sqlalchemy.engine.base.Engine.0x..90
... [u'222']
2007-11-16 17:30:08,371 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT level.id AS level_id, level.parent_id AS level_parent_id,
... level.name AS level_name
FROM level
WHERE level.id = ? ORDER BY level.oid
2007-11-16 17:30:08,371 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
2007-11-16 17:30:08,373 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT level.id AS level_id, level.parent_id AS level_parent_id,
... level.name AS level_name
FROM level
WHERE level.id = ? ORDER BY level.oid
2007-11-16 17:30:08,374 INFO sqlalchemy.engine.base.Engine.0x..90
... [2]
2007-11-16 17:30:08,380 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT level.id AS level_id, level.parent_id AS level_parent_id,
... level.name AS level_name
FROM level
WHERE level.id = ? ORDER BY level.oid
2007-11-16 17:30:08,381 INFO sqlalchemy.engine.base.Engine.0x..90
... [3]
[<Category Department.Tops>, <Category Class.Shirts>, <Category
... SubClass.T-Shirts>]
If we eagerly load the categories property,
 however, we execute only a single query:
>>> session.clear()
>>> query = session.query(Product)
>>> query = query.options(eagerload_all('categories.level'))
>>> for prod in query:
... print prod.sku, prod.categories
...
2007-11-16 17:30:09,392 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT category_1.id AS category_1_id, category_1.level_id AS
... category_1_level_id, category_1.parent_id AS
... category_1_parent_id, category_1.name AS category_1_name,
... level_2.id AS level_2_id, level_2.parent_id AS
... level_2_parent_id, level_2.name AS level_2_name, product.sku AS
... product_sku, product.msrp AS product_msrp
FROM product LEFT OUTER JOIN product_category AS product_category_3
... ON product.sku = product_category_3.product_id LEFT OUTER JOIN
... category AS category_1 ON category_1.id =
... product_category_3.category_id LEFT OUTER JOIN level AS level_2
... ON level_2.id = category_1.level_id ORDER BY product.oid,
... product_category_3.oid, level_2.oid
2007-11-16 17:30:09,393 INFO sqlalchemy.engine.base.Engine.0x..90 []
123 []
456 []
222 [<Category Department.Tops>, <Category Class.Shirts>, <Category
... SubClass.T-Shirts>]
The options() method can also be used with a variety of other options. Notice
 how the eager/lazy loading can also be specified on the mapper itself.
 From SQLAlchemy’s point of view, the options()
 method is changing the view of the mapper that the query is based on.
 Thus other options can be specified that “morph” the mapper as well.
 These options are summarized here:
	
 extension(
 ext

)

	Add the MapperExtension ext into the beginning of the list of extensions that will
 be called in the context of the query.

	
 eagerload(
 name
)

	Set the load strategy on the named
 relation() property to be eager (equivalent
 to specifying lazy=False in the
 mapper() call). For mapped column properties,
 use undefer() instead.

	
 eagerload_all(
 name
)

	name is a
 string containing a list of dot-separated names that
 represent a chain of relation() properties to
 be eager loaded. For mapped column properties, use
 undefer() instead.

	
 lazyload(
 name
)

	Set the load strategy on the named
 relation() property to be lazy (equivalent to
 specifying lazy=True in the
 mapper() call). For mapped column properties,
 use defer() instead.

	
 noload(
 name
)

	Set the load strategy on the named property to be
 nonloading (equivalent to specifying lazy=None in the
 mapper() calls).

	
 contains_alias(
 alias
)

	Indicates to the query that the main table in the underlying
 select statement has been aliased to the given alias (which is a string or
 Alias object).

	contains_eager(key, alias=None, decorator=None)
	Indicates that an attribute (the key parameter) will be eagerly loaded.
 This is used in conjunction with feeding SQL result sets directly
 into the instances() method on queries
 (covered next in Customizing the Select Statement in ORM Queries”). The
 alias parameter is the
 alias (either a string or an Alias object)
 representing aliased columns in the query. The decorator parameter, mutually
 exclusive of alias, is a
 function used to preprocess rows before passing them to the
 eager-loading handler. This can be used to do arbitrary processing
 on the row before it passes to the eager loader.

	
 defer(
 name
)

	Convert the named column property into a deferred column
 (lazily loaded). For relation()s, use
 lazyload() instead.

	
 undefer(
 name
)

	Convert the named column property into a deferred column
 (eagerly loaded). For relation()s, use
 eagerload() or
 eagerload_all() instead.

	
 undefer_group(
 name
)

	Convert the named deferred group of column properties into
 an undeferred group.

Note that the addition of the eagerload_all()
 option (and all other options) is completely transparent; the only
 difference in the code that uses the results of such a query is in its
 performance.

Customizing the Select Statement in ORM Queries

Although SQLAlchemy is quite flexible in the types of queries it can generate
 at the ORM level, it is sometimes necessary to either modify the
 generated query or to even replace it entirely while still generating
 SQLAlchemy ORM objects. One of the simplest query modifications is
 replacing the underlying selectable using the
 select_from() method. For instance, if we wish to manually perform some joins
 and then select from the joined table, we can do so as follows:
>>> joined_product = product_table.join(product_category_table)
>>> joined_product = joined_product.join(category_table)
>>> query = session.query(Product).select_from(joined_product)
>>> query = query.filter(category_table.c.name=='T-Shirts')
>>> print query
SELECT product.sku AS product_sku, product.msrp AS product_msrp
FROM product JOIN product_category ON product.sku =
... product_category.product_id JOIN category ON category.id =
... product_category.category_id
WHERE category.name = ? ORDER BY product.oid
>>> print query.all()
[<Product 222>]
If we wish to completely replace the SQL underlying the query
 object, we can do so with the from_statement()
 method. When using from_statement(), it’s important to make
 certain that all the necessary columns are returned by the underlying
 query. If a mapped column is omitted, then the mapped property will be
 set to None:
>>> session.clear()
>>> stmt = select([product_table.c.sku])
>>> query = session.query(Product).from_statement(stmt)
>>> for prod in query:
... print prod, prod.msrp
...
<Product 123> None
<Product 456> None
<Product 222> None
Using from_statement() also interferes with
 SQLAlchemy’s eager-loading mechanism because SQLAlchemy has no way of
 tacking on its LEFT OUTER JOINs to retrieve the eagerly loaded objects.
 To support this condition, SQLAlchemy provides the contains_eager() mapper option,
 which allows you to make SQLAlchemy aware of the LEFT OUTER JOINs
 that have already been added to the underlying SQL:
>>> session.clear()
>>> joined_product = product_table.outerjoin(product_category_table)
>>> joined_product = joined_product.outerjoin(category_table)
>>> stmt = select([product_table, category_table],
... from_obj=[joined_product])
>>> query = session.query(Product).from_statement(stmt)
>>> query = query.options(contains_eager('categories'))
>>> session.bind.echo = True
>>> for prod in query:
... print prod, [c.name for c in prod.categories]
...
2007-11-17 09:52:13,730 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... category.id AS category_id, category.level_id AS
... category_level_id, category.parent_id AS category_parent_id,
... category.name AS category_name
FROM product LEFT OUTER JOIN product_category ON product.sku =
... product_category.product_id LEFT OUTER JOIN category ON
... category.id = product_category.category_id LEFT OUTER JOIN level
... ON level.id = category.level_id
2007-11-17 09:52:13,731 INFO sqlalchemy.engine.base.Engine.0x..90 []
<Product 123> []
<Product 456> []
<Product 222> [u'Tops', u'Shirts', u'T-Shirts']
It is also possible to eagerly load where the LEFT OUTER JOIN is
 with an alias. In this case, simply supply the alias (either as a string
 or as an Alias object) to the
 contains_eager() alias parameter:
>>> session.clear()
>>> alias = category_table.alias('cat1')
>>> joined_product = product_table.outerjoin(product_category_table)
>>> joined_product = joined_product.outerjoin(alias)
>>> stmt = select([product_table, alias],
... from_obj=[joined_product])
>>> query = session.query(Product).from_statement(stmt)
>>> query = query.options(contains_eager('categories',
... alias='cat1'))
>>> session.bind.echo = True
>>> for prod in query:
... print prod, [c.name for c in prod.categories]
...
2008-01-27 19:51:55,567 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... cat1.id AS cat1_id, cat1.level_id AS cat1_level_id,
... cat1.parent_id AS cat1_parent_id, cat1.name AS cat1_name
FROM product LEFT OUTER JOIN product_category ON product.sku =
... product_category.product_id LEFT OUTER JOIN category AS cat1 ON
... cat1.id = product_category.category_id
2008-01-27 19:51:55,567 INFO sqlalchemy.engine.base.Engine.0x..90 []
<Product 123> []
<Product 456> []
<Product 222> [u'Tops', u'Shirts', u'T-Shirts']
SQLAlchemy also supports creating objects from SQL where the main
 table is aliased to another name. In this case, you must use the
 contains_alias() mapper option. Again, you can pass
 either a string name of the alias or the Alias
 object itself:
>>> alias = product_table.alias()
>>> stmt = alias.select()
>>> query = session.query(Product).from_statement(stmt)
>>> query = query.options(contains_alias(alias))
>>> print query.all()
[<Product 123>, <Product 456>, <Product 222>]
We can also use the from_statement() method
 with string-based queries. In this case, it is a good idea to use bind
 parameters for performance and to avoid SQL injection attacks. Bind
 parameters for SQLAlchemy are always specified using the
 :name notation, and they are bound to
 particular values using the params() method of the
 Query object:
>>> query = session.query(Product)
>>> query = query.from_statement('SELECT * FROM product WHERE
... sku=:sku')
>>> query = query.params(sku='123')
>>> print query.all()
[<Product 123>]
Up until now, we have been using the Query
 object to generate a sequence of mapped objects. In some cases, we may
 want a query to retrieve several objects per “row,” where the objects
 retrieved may either be fully mapped ORM objects or simple SQL columns.
 SQLAlchemy supports this via the add_entity() and
 add_column() Query
 methods:
>>> query = session.query(Product)
>>> query = query.add_entity(Category)
>>> query =
... query.filter(Product.sku==product_category_table.c.product_id)
>>> query =
... query.filter(Category.id==product_category_table.c.category_id)
>>> for row in query:
... print row
...
(<Product 222>, <Category Department.Tops>)
(<Product 222>, <Category Class.Shirts>)
(<Product 222>, <Category SubClass.T-Shirts>)
>>> query = query.add_column(category_table.c.level_id)
>>> for row in query:
... print row
...
(<Product 222>, <Category Department.Tops>, 1)
(<Product 222>, <Category Class.Shirts>, 2)
(<Product 222>, <Category SubClass.T-Shirts>, 3)
If you know a priori what objects you wish to
 construct, you can create the query initially with this knowledge,
 rather than using the add_entity() method:
>>> query = session.query(Product, Category)
>>> query =
... query.filter(Product.sku==product_category_table.c.product_id)
>>> query =
... query.filter(Category.id==product_category_table.c.category_id)
>>> for row in query:
... print row
...
(<Product 222>, <Category Department.Tops>)
(<Product 222>, <Category Class.Shirts>)
(<Product 222>, <Category SubClass.T-Shirts>)

Other Query Methods

The Query object has a number of other
 methods that allow great flexibility. Some useful
 Query methods are summarized here:
	add_column(self, column, id=None)
	Add the named column to the query, making the query return a
 tuple including the named column. id, if supplied, specifies that the
 column will be correlated with the id parameter given to a matching
 join() or outerjoin()
 method.

	add_entity(self, entity, alias=None, id=None)
	Add a class or mapper to the query, making the query
 return a tuple including the given entity. If alias is supplied, the entity will be
 aliased using the given alias. If id is supplied, the entity will be
 selected from the join() or
 outerjoin() in the query with a matching
 id parameter.

	
 all(
 self
)

	Retrieve a list of results from the query (simply returns
 list(self)).

	autoflush(self, setting)
	Sets the autoflushing behavior of the query (True or False). If the query is autoflushing,
 the session will be flushed before the query is executed,
 guaranteeing that in-memory objects are consistent with query
 results. The default autoflush behavior of the query is inherited
 from the session.

	apply_avg(self, col)
	Apply the SQL AVG() function
 to the given column and return the resulting
 query.

	apply_max(self, col)
	Apply the SQL MAX() function to the given column and return the resulting
 query.

	apply_min(self, col)
	Apply the SQL MIN() function to the
 given column and return the resulting query.

	apply_sum(self, col)
	Apply the SQL SUM() function to the given column and return the resulting
 query.

	avg(self, col)
	Execute the SQL AVG()
 function against the given column and return the
 result.

	
 count(
 self
)

	Execute the SQL COUNT()
 function against this query and return the result.
 (count() takes other parameters, but they are
 deprecated in SQLAlchemy 0.4.)

	
 distinct(
 self
)

	Apply a SQL DISTINCT modifier to the query and return the
 resulting query.

	filter(self, criterion)
	Apply the given SQL filtering criterion to the query and
 return the resulting query. All filters are conjoined (combined
 using the SQL AND operator).

	filter_by(self, **kwargs)
	Apply equality filtering criteria to the query and return
 the result. The criteria are constructed based on the name, value
 pairs supplied to the kwargs parameter.

	
 first(
 self
)

	Execute the query and return the first result, or None if the query has no results.

	from_statement(self, statement)
	Replace the underlying statement used by the query with the
 given statement, which may be either a string of SQL or a query
 constructed using the SQL expression language.

	get(self, ident, reload=False, lockmode=None)
	Retrieve an object based on the given identity from the
 session. If the object is not currently loaded in the session, it
 will be loaded. If reload
 is True, the object will be
 refreshed, regardless of whether it is in the session. If
 lockmode is specified, the
 object will be loaded with the given lockmode. The locking mode is based
 around the idea of SELECT...FOR UPDATE and related constructs. The
 lockmode value is inserted
 after the FOR keyword.

	group_by(self, criterion)
	Apply a SQL GROUP BY clause to the query and return the
 resulting query. This is generally useful in ORM queries only when
 you are grouping by the main class and aggregating over some
 related class. For instance, if a Product
 had many Recommendations, you might group
 by the product’s sku and add a having()
 clause to return products with three or more
 recommendations.

	having(self, criterion)
	Apply a SQL HAVING clause to the query and return the
 resulting query.

	instances(self, cursor)
	Return a list of mapped instances corresponding to rows in
 the given cursor (generally
 a ResultProxy).
 instances() takes other parameters, but they
 are deprecated in SQLAlchemy 0.4.

	join(self, prop, id=None, aliased=False, from_joinpoint=False)
	Create a join of this query based on a mapped property
 prop and return the
 resulting query. prop can
 be either a string property name or a list of string property
 names specifying a join path. If id is specified, it should be a string
 for use in matching add_column() or
 add_entity⁠(⁠ ⁠) id
 parameters. If aliased is
 True, the joined entity will be
 aliased in the underlying query. If
 from_joinpoint is True, the join will be from the
 last-joined entity. Otherwise, it will be from the “root” entity
 of the query. This method is typically used to add a filter based
 on some related class.

	limit(self, limit)
	Apply a LIMIT modifier to the query and return the
 resulting query. Note that SQLAlchemy generates appropriate SQL to
 make the LIMIT apply to the objects
 generated, not the rows. This is done to return the specified
 number of objects even in the presence of
 JOINs.

	load(self, ident, raiseerr=True, lockmode=None)
	Return an instance of the object based on the given
 ident, refreshing the
 object from the database. This is similar to
 get() with reload=True, but will raise an error if the
 object is not found in the database.

	max(self, col)
	Execute the SQL MAX() function against
 the given column and return the result.

	min(self, col)
	Execute the SQL MIN() function against
 the given column and return the result.

	offset(self, offset)
	Apply an OFFSET modifier to the query and return the
 resulting query. Note that SQLAlchemy generates appropriate SQL to
 make the OFFSET apply to the objects generated, not the rows,
 in order to skip the specified number of
 objects even in the presence of JOINs.

	
 one(
 self
)

	Return the first result of the query, raising an exception
 if the query does not return exactly one result.

	options(self, *args)
	Return a new query with the mapper options (such as
 eagerload(), etc.) listed in args applied.

	order_by(self, criterion)
	Apply a SQL ORDER BY modifier to the query and return the
 resulting query.

	outerjoin(self, prop, id=None, aliased=False, from_joinpoint=False)
	Create a LEFT OUTER JOIN of this query based on a mapped
 property prop and return
 the resulting query. prop
 can be either a string property name or a list of string property
 names specifying a join path. If id is
 specified, it should be a string for use in matching
 add_column() or
 add_entity⁠(⁠ ⁠) id
 parameters. If aliased is
 True, the joined entity will be
 aliased in the underlying query. If from_joinpoint is True, the join will be from the
 last-joined entity. Otherwise, it will be from the “root” entity
 of the query. This method is typically used to add a filter based
 on some related class.

	params(self, *args, **kwargs)
	Add values for bind parameters that exist in the
 underlying query. The binding dictionary may be passed as keyword
 arguments or as a dict in the first
 positional argument.

	
 populate_existing(
 self
)

	Return a query that will refresh all objects loaded.
 Normally, when a query executes, it will not modify any objects
 already in memory. This option changes that behavior.

	query_from_parent(cls, instance, property, **kwargs)
 (classmethod)
	Create a new Query object that
 returns objects with a relationship to a given object instance through the named property. The kwargs are passed along unmodified to
 the Query constructor. This is mainly used
 internally to SQLAlchemy, to construct queries for lazily loaded
 properties.

	
 reset_joinpoint(
 self
)

	Reset the joinpoint of the query to the “root” mapper.
 This affects subsequent calls to filter_by()
 and possibly to join() and
 outerjoin().

	sum(self, col)
	Execute the SQL SUM() function against
 the given column and return the result.

	with_lockmode(self, mode)
	Return a new Query object using the
 specified locking mode.

	with_parent(self, instance, property=None)
	Add a join criterion based on a relationship to a
 mapped instance via the
 named property. If
 property is not supplied,
 SQLAlchemy attempts to infer an appropriate property.

	__getitem__(self, item)
 (indexing)
	If item is a slice object, apply appropriate OFFSET and
 LIMIT modifers to the query to emulate the Python slicing
 operation. If item is an
 integer, apply an appropriate OFFSET with a LIMIT of 1, execute
 the query, and return the result.

	__iter__(self)(iteration)
	Returns an iterator that will build mapped objects from the
 query.

Contextual or Thread-Local Sessions

Although the SQLAlchemy ORM is extremely flexible and powerful, it
 can be somewhat repetitive in some cases. One of these cases is
 constructing the Session object. Fortunately,
 SQLAlchemy provides the ability to manage sessions for you in such a way
 that a Session object can be shared among various
 parts of your application without explicitly passing it around as a
 parameter. This is useful in web frameworks in particular, where you
 generally want all the code servicing a given web request to use the same
 Session object. SQLAlchemy achieves implicit
 Session object sharing via “contextual”
 sessions.
The idea of a contextual session is that there is one session that
 is available in a given “context,” where the default context is the
 thread. When you need a session, rather than constructing one yourself,
 you simply ask SQLAlchemy for the session that is appropriate to the
 current context. You can generate a contextual
 Session object by using the
 scoped_session() function:
>>> Session = scoped_session(sessionmaker(
... bind=engine, autoflush=True, transactional=True))
>>>
>>> session = Session()
>>> session2 = Session()
>>> session is session2
As mentioned earlier, the default context is the current thread. To
 override this and supply a different context, simply pass a scopefunc parameter to the
 scoped_session() function. scopefunc should be a callable that returns a
 key that uniquely identifies the context. By default, the
 scopefunc is the get_ident()
 function from the thread module.
The contextual Session class also supplies
 class methods for all the Session instance methods.
 These class methods simply proxy to the contextual
 Session object. This means that we can use
 scoped_session() to declare the contextual
 Session class globally and use it anywhere we would
 normally need a Session object, without explicitly
 constructing the Session object. So, if we want to
 save a new Product to the contextual
 Session object, we can simply
 save it to the (globally declared) contextual
 Session class:
>>> prod = Product(sku='333', msrp=44.55)
>>> Session.save(prod)
>>> Session.flush()
To use contextual sessions effectively, they must be periodically
 “cleared out” of the objects they manage, or else they will grow beyond
 all reasonable bounds. In the context of a web framework, for instance,
 the contextual session should be cleared between requests. This can be
 accomplished by using either the close() method,
 which frees all resources maintained by the contextual session, or the
 remove() method, which actually removes the session
 from the current context altogether. close() should
 be used when the current context is “permanent,” as in web servers that
 use a never-shrinking pool of threads to handle requests.
 remove() should be used if the context may “go away,”
 as the session object will be “leaked” if the context is not reused. This
 is the appropriate choice in web frameworks, which may stop threads that
 previously handled requests.
Using Contextual Sessions with Mappers and Classes

The contextual session allows us to dispense with explicit
 references to sessions in many cases by instrumenting our mapped classes
 with a query() and modifying
 the mapped class’s constructor to automatically
 save() it to the session when it is created. This
 very nice feature is accomplished by using the contextual
 Session’s mapper() method
 rather than the mapper() function when defining our
 object mappers. So, where previously our mappers were declared as
 follows:
mapper(Product, product_table, properties=dict(
 categories=relation(Category, secondary=product_category_table,
 backref='products')))

mapper(Level, level_table, properties=dict(
 children=relation(Level, backref='parent'),
 categories=relation(Category, backref='level')))

mapper(Category, category_table, properties=dict(
 children=relation(Category, backref='parent')))
we can now declare them like this (assuming that
 Session has already been declared globally as a
 contextual Session):
Session.mapper(Product, product_table, properties=dict(
 categories=relation(Category, secondary=product_category_table,
 backref='products')))

Session.mapper(Level, level_table, properties=dict(
 children=relation(Level, backref='parent'),
 categories=relation(Category, backref='level')))

Session.mapper(Category, category_table, properties=dict(
 children=relation(Category, backref='parent')))
Once we have mapped the classes as shown, we can use the mapped
 classes themselves to perform session-like functions:
>>> Product.query().all()
[<Product 123>, <Product 456>, <Product 222>, <Product 333>]
>>> prod = Product('444', msrp=55.66)
>>> Product.query().all()
[<Product 123>, <Product 456>, <Product 222>, <Product 333>,
... <Product 444>]
Using the contextual session mapper() method
 also gives us one other benefit: a reasonably usable default
 constructor. This constructor allows us to provide values for any of the
 properties defined in the mapped class via keyword arguments. So, if we
 omitted the Product constructor and used
 Session.mapper() to map it, we could
 initialize products as
 follows:
>>> p = Product(sku='555', msrp=22.11)

Chapter 8. Inheritance Mapping

In this chapter, you will learn the different methods of mapping
 object-oriented inheritance to relational database tables. You will learn
 how to use different methods of inheritance mapping with SQLAlchemy, as well
 as how to use inheritance in the presence of mapped relations between
 classes.
Overview of Inheritance Mapping

No object-relational mapper would be complete without some method of
 mapping object-oriented inheritance hierarchies to SQL tables, and so
 SQLAlchemy provides rich support for modeling inheritance. Inheritance is
 typically modeled in SQL in one of three ways: single table inheritance,
 concrete table inheritance, or joined table inheritance.
For the purposes of illustrating SQLAlchemy’s support for the
 various types of inheritance modeling, we will use a simple inheritance
 hierarchy that models products, including clothing products and
 accessories. This hierarchy is illustrated in Figure 8-1 and is implemented by
 the following Python code:
class Product(object):
 def __init__(self, sku, msrp):
 self.sku = sku
 self.msrp = msrp
 def __repr__(self):
 return '<%s %s>' % (
 self.__class__.__name__, self.sku)

class Clothing(Product):
 def __init__(self, sku, msrp, clothing_info):
 Product.__init__(self, sku, msrp)
 self.clothing_info = clothing_info

class Accessory(Product):
 def __init__(self, sku, msrp, accessory_info):
 Product.__init__(self, sku, msrp)
 self.accessory_info = accessory_info
[image: Sample inheritance hierarchy]

Figure 8-1. Sample inheritance hierarchy

Single Table Inheritance Mapping

In single table inheritance, a single table is used to represent all
 the different types in the class hierarchy, as shown in Figure 8-2.
[image: Single table inheritance mapping (unmapped columns masked)]

Figure 8-2. Single table inheritance mapping (unmapped columns
 masked)

In our preceding example, this table might be defined as
 follows:
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('clothing_info', String),
 Column('accessory_info', String),
 Column('product_type', String(1), nullable=False))
Notice that we have constructed a table that contains columns for
 all of the attributes across the entire hierarchy we wish to model. This
 means that we incur some overhead for all of the classes in the hierarchy
 in each row. Although this doesn’t cause too many problems with the simple
 hierarchy we are using in this example, the space overhead can become
 significant with larger and more attribute-rich hierarchies.
Also note that we have introduced a new column, the 'product_type' column. This column holds the
 “polymorphic identity” of each row, so named because it allows SQLAlchemy to return
 the appropriate class from a query on the parent object. The polymorphic
 identity is used by SQLAlchemy to determine what type of object is
 contained in the row. SQLAlchemy supports using any data type desired to
 hold this information; here we use a single character.
 'P' will represent a Product
 (the parent class), 'C' will represent
 a Clothing product, and 'A' will represent an
 Accessory product.
To map this table onto our inheritance hierarchy, we will use some
 new keyword arguments to the mapper() function,
 namely polymorphic_on, inherits, and polymorphic_identity:
mapper(
 Product, product_table,
 polymorphic_on=product_table.c.product_type,
 polymorphic_identity='P')

mapper(Clothing, inherits=Product,
 polymorphic_identity='C')

mapper(Accessory, inherits=Product,
 polymorphic_identity='A')
The polymorphic_on parameter
 identifies which column contains the polymorphic identity of each row. The
 polymorphic_identity parameter
 identifies the value that should be present in that column to tell
 SQLAlchemy to use this particular mapper, and the inherits parameter tells SQLAlchemy to
 retrieve all other parameters and properties from the named mapper.
Once we have defined the mappers, we can insert some data and
 perform some queries:
>>> # Create some products
... products = [
... # Some parent class products
... Product('123', 11.22),
... Product('456', 33.44),
... # Some clothing
... Clothing('789', 123.45, "Nice Pants"),
... Clothing('111', 125.45, "Nicer Pants"),
... # Some accessories
... Accessory('222', 24.99, "Wallet"),
... Accessory('333', 14.99, "Belt")]
>>>
>>> Session = sessionmaker()
>>> session = Session()
>>> for p in products: session.save(p)
...
>>> session.flush()
>>> session.clear()
>>>
>>> metadata.bind.echo = True
>>>
>>> print session.query(Product).all()
2007-11-19 14:35:55,244 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.clothing_info AS product_clothing_info,
... product.accessory_info AS product_accessory_info,
... product.product_type AS product_product_type
FROM product ORDER BY product.oid
2007-11-19 14:35:55,245 INFO sqlalchemy.engine.base.Engine.0x..90 []
[<Product 123>, <Product 456>, <Clothing 789>, <Clothing 111>,
... <Accessory 222>, <Accessory 333>]
>>> print session.query(Clothing).all()
2007-11-19 14:35:55,259 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.clothing_info AS product_clothing_info,
... product.accessory_info AS product_accessory_info,
... product.product_type AS product_product_type
FROM product
WHERE product.product_type IN (?) ORDER BY product.oid
2007-11-19 14:35:55,259 INFO sqlalchemy.engine.base.Engine.0x..90
... ['C']
[<Clothing 789>, <Clothing 111>]
>>> print session.query(Accessory).all()
2007-11-19 14:35:55,274 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.clothing_info AS product_clothing_info,
... product.accessory_info AS product_accessory_info,
... product.product_type AS product_product_type
FROM product
WHERE product.product_type IN (?) ORDER BY product.oid
2007-11-19 14:35:55,274 INFO sqlalchemy.engine.base.Engine.0x..90
... ['A']
[<Accessory 222>, <Accessory 333>]
Note in particular that SQLAlchemy generated appropriate queries
 (through filtering based on product_type) based on
 whether we were selecting from a parent class or a child class.
Also note how SQLAlchemy was able to create appropriate objects
 based on the polymorphic identity
 column (which SQLAlchemy generated itself when flushing the instances). If
 we inspect the table at the SQL level, we will see the 'type_' column populated just as we
 expect:
>>> metadata.bind.echo = False
>>> for row in product_table.select().execute():
... print row
...
(u'123', Decimal("11.22"), None, None, u'P')
(u'456', Decimal("33.44"), None, None, u'P')
(u'789', Decimal("123.45"), u'Nice Pants', None, u'C')
(u'111', Decimal("125.45"), u'Nicer Pants', None, u'C')
(u'222', Decimal("24.99"), None, u'Wallet', u'A')
(u'333', Decimal("14.99"), None, u'Belt', u'A')
Aside from the space overhead, there is one problem in using single
 table inheritance mapping: the mapper will try to map
 all the columns of the single table unless you
 manually specify columns to map at each level of the inheritance hierarchy
 via the include_columns or
 exclude_columns arguments to the
 mapper. For instance, if we try to get the
 clothing_info for a nonclothing product, SQLAlchemy
 will not complain:
>>> print session.query(Accessory)[0].clothing_info
None
This problem is alleviated in the concrete table and joined table
 inheritance mappings, which each use a different table for each class in
 the hierarchy.

Concrete Table Inheritance Mapping

In concrete table inheritance mapping, we use a separate table for each class
 in the inheritance hierarchy, with each table containing all the columns
 necessary to represent the object in its entirety, as shown in Figure 8-3.
[image: Concrete table inheritance mapping]

Figure 8-3. Concrete table inheritance mapping

So, for the product hierarchy in our example, we would define the
 following tables in this way:
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))

clothing_table = Table(
 'clothing', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('clothing_info', String))

accessory_table = Table(
 'accessory', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('accessory_info', String))
Note that in concrete table inheritance, each table contains exactly
 the amount of data that is required to implement its class; there is no
 wasted space, unlike single table inheritance. Also note that there is no
 longer a need for the “polymorphic identity” column, as SQLAlchemy knows
 that Clothing objects are created from the clothing_table,
 Accessory objects from the
 accessory_table, etc.
The mapper configuration is likewise straightforward:
mapper(Product, product_table)
mapper(Clothing, clothing_table)
mapper(Accessory, accessory_table)
In fact, as far as SQLAlchemy is concerned, we aren’t modeling
 inheritance at all! We’ve just persisted three classes which happen to
 have an inheritance relationship that is completely ignored by SQLAlchemy.
 Unfortunately, in doing so, we have lost the ability to query
 polymorphically. For instance, we may wish to retrieve the Product with
 sku '222'. Without some extra work,
 we’d have to query each of the classes in the inheritance hierarchy.
 Luckily, SQLAlchemy provides support for polymorphic loading if we do a
 little extra work in the mapper configuration.
The first thing we need to do is get a selectable that yields
 something like what the single table
 select yielded. SQLAlchemy provides a utility function polymorphic_union() which provides
 just such a selectable. To use it, we simply supply a
 dict object whose keys are the old polymorphic
 identities and whose values are the tables in the inheritance
 hierarchy:
>>> punion = polymorphic_union(
... dict(P=product_table,
... C=clothing_table,
... A=accessory_table),
... 'type_')
>>>
>>> print punion
SELECT accessory.sku, CAST(NULL AS TEXT) AS clothing_info,
... accessory.msrp, accessory.accessory_info, 'A' AS type_
FROM accessory UNION ALL SELECT product.sku, CAST(NULL AS TEXT) AS
... clothing_info, product.msrp, CAST(NULL AS TEXT) AS
... accessory_info, 'P' AS type_
FROM product UNION ALL SELECT clothing.sku, clothing.clothing_info,
... clothing.msrp, CAST(NULL AS TEXT) AS accessory_info, 'C' AS
... type_
FROM clothing
>>>
Now, we have a nicely labeled selectable that can be selected from,
 just as in the single table inheritance. To complete the mapping, we need
 to let the mappers know about the union and the inheritance
 relationship:
mapper(
 Product, product_table, select_table=punion,
 polymorphic_on=punion.c.type_,
 polymorphic_identity='P')
mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C',
 concrete=True)
mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A',
 concrete=True)
Here, we have specified a different table for selects (the
 polymorphic_union⁠(⁠ ⁠) result) and let SQLAlchemy
 know to use concrete table inheritance in the child classes. Otherwise,
 the mapper configuration is identical to the single table inheritance.
 Now, assuming we have created the objects in the database as we did
 previously, we can perform polymorphic loads as follows:
>>> session.query(Product).get('222')
2007-11-19 15:13:55,727 INFO sqlalchemy.engine.base.Engine.0x..50
... SELECT p_union.accessory_info AS p_union_accessory_info,
... p_union.type_ AS p_union_type_, p_union.sku AS p_union_sku,
... p_union.clothing_info AS p_union_clothing_info, p_union.msrp AS
... p_union_msrp
FROM (SELECT accessory.sku AS sku, CAST(NULL AS TEXT) AS
... clothing_info, accessory.msrp AS msrp, accessory.accessory_info
... AS accessory_info, 'A' AS type_
FROM accessory UNION ALL SELECT product.sku AS sku, CAST(NULL AS
... TEXT) AS clothing_info, product.msrp AS msrp, CAST(NULL AS TEXT)
... AS accessory_info, 'P' AS type_
FROM product UNION ALL SELECT clothing.sku AS sku,
... clothing.clothing_info AS clothing_info, clothing.msrp AS msrp,
... CAST(NULL AS TEXT) AS accessory_info, 'C' AS type_
FROM clothing) AS p_union
WHERE p_union.sku = ? ORDER BY p_union.oid
2007-11-19 15:13:55,737 INFO sqlalchemy.engine.base.Engine.0x..50
... ['222']
<Accessory 222>

Joined Table Inheritance Mapping

Joined table inheritance is perhaps the closest to directly
 mapping the inheritance hierarchy to
 the database. In joined table inheritance mapping, as in concrete table
 inheritance mapping, a distinct table is used to map each class. Unlike
 concrete inheritance mapping, however, each table contains only the
 columns the attributes added, allowing the row in the “parent” table to
 take care of inherited attributes, as shown in Figure 8-4.
[image: Joined table inheritance mapping]

Figure 8-4. Joined table inheritance mapping

The total set of attributes required to represent an instance are
 then retrieved by joining along the inheritance hierarchy. In our product
 database, this would have the following declaration:
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('product_type', String(1), nullable=False))

clothing_table = Table(
 'clothing', metadata,
 Column('sku', None, ForeignKey('product.sku'),
 primary_key=True),
 Column('clothing_info', String))

accessory_table = Table(
 'accessory', metadata,
 Column('sku', None, ForeignKey('product.sku'),
 primary_key=True),
 Column('accessory_info', String))
Notice that we have reintroduced the 'product_type' polymorphic identity column from
 single table inheritance mapping. In joined table inheritance, this column
 is only required on the “root” table of the inheritance hierarchy, again
 to let SQLAlchemy know what type of object to create in a polymorphic
 load.
The mappers we build are almost identical to the ones we used in the
 single table inheritance mapping, except that each mapper references a
 distinct table, whereas all the mappers shared a table in the single-table
 inheritance case:
mapper(
 Product, product_table,
 polymorphic_on=product_table.c.product_type,
 polymorphic_identity='P')

mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C')

mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A')
We can now perform polymorphic selects just as before:
>>> metadata.bind.echo = True
>>> session.query(Product).all()
2007-11-19 19:51:11,985 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.product_type AS product_product_type
FROM product ORDER BY product.oid
2007-11-19 19:51:11,985 INFO sqlalchemy.engine.base.Engine.0x..d0 []
2007-11-19 19:51:11,989 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT accessory.sku AS accessory_sku, accessory.accessory_info
... AS accessory_accessory_info
FROM accessory
WHERE ? = accessory.sku
2007-11-19 19:51:11,990 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'222']
2007-11-19 19:51:11,991 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT accessory.sku AS accessory_sku, accessory.accessory_info
... AS accessory_accessory_info
FROM accessory
WHERE ? = accessory.sku
2007-11-19 19:51:11,991 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'333']
2007-11-19 19:51:11,993 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT clothing.sku AS clothing_sku, clothing.clothing_info AS
... clothing_clothing_info
FROM clothing
WHERE ? = clothing.sku
2007-11-19 19:51:11,993 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'789']
2007-11-19 19:51:11,994 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT clothing.sku AS clothing_sku, clothing.clothing_info AS
... clothing_clothing_info
FROM clothing
WHERE ? = clothing.sku
2007-11-19 19:51:11,995 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'111']
[<Product 123>, <Product 456>, <Clothing 789>, <Clothing 111>,
... <Accessory 222>, <Accessory 333>]
As you can see, the various types of products are selected from
 their tables appropriately. Note, however, that the single
 query() call yielded not one, but five SELECT
 statements. This is due to the fact that SQLAlchemy must perform an
 auxiliary query for each row that represents a child object. The next
 section shows how we can improve performance in this situation.
Optimizing Performance with Joined Table Inheritance
 Mapping

As shown previously, the default query strategy for joined table
 inheritance mapping requires one query to the database to retrieve the
 “parent” row, and one additional query to retrieve each “child” row.
 Although this is bandwidth-efficient for small fetches (since only the columns that are
 actually required are returned from the database), the latency of
 additional queries can incur significant performance overheads,
 especially when retrieving large result sets.
There are two main strategies for addressing these performance
 concerns: deferring the child table loads and using a join with the
 select_table parameter to the
 mapper⁠(⁠ ⁠) function.
Using deferred loading

If the child attributes will not be accessed, or will not be
 accessed frequently, then the child table’s select statements can be
 deferred until a mapped attribute is accessed. In the previous
 example, for instance, if we were displaying a table with only the
 sku and msrp columns, we could
 eliminate the extra selects by using the polymorphic_fetch parameter to the
 mapper⁠(⁠ ⁠) function:
mapper(
 Product, product_table,
 polymorphic_on=product_table.c.product_type,
 polymorphic_identity='P',
 polymorphic_fetch='deferred')

mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C')

mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A')
Now, when we iterate over all the
 Products, we see that the auxiliary queries
 have been eliminated:
>>> session.clear()
>>> session.query(Product).all()
2007-11-19 21:25:44,320 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.sku AS product_sku, product.msrp AS product_msrp,
... product.product_type AS product_product_type
FROM product ORDER BY product.oid
2007-11-19 21:25:44,321 INFO sqlalchemy.engine.base.Engine.0x..d0 []
[<Product 123>, <Product 456>, <Clothing 789>, <Clothing 111>,
... <Accessory 222>, <Accessory 333>]
If we access one of the child attributes, then the secondary
 select executes to retrieve that value:
>>> prod=session.get(Product, '789')
>>> print prod.clothing_info
2007-11-19 21:27:11,856 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT clothing.sku AS clothing_sku, clothing.clothing_info AS
... clothing_clothing_info
FROM clothing
WHERE ? = clothing.sku
2007-11-19 21:27:11,856 INFO sqlalchemy.engine.base.Engine.0x..d0
... [u'789']
Nice Pants

Using select_table

Although using deferred polymorphic fetching alleviates some of
 the performance problems with joined table inheritance, it still does
 not help in the case where you need attributes from the child table.
 In this case, you can simply use the select_table parameter with the
 mapper(), similar to the way we used it with
 concrete table inheritance and the
 polymorphic_union() function. In this case,
 however, because of the foreign key relationships between parent and
 child tables, we can simply use an
 outerjoin():
pjoin = product_table
pjoin = pjoin.outerjoin(clothing_table)
pjoin = pjoin.outerjoin(accessory_table)

mapper(
 Product, product_table,
 polymorphic_on=product_table.c.product_type,
 polymorphic_identity='P',
 select_table=pjoin)

mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C')

mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A')
Now, when we iterate over all Products,
 we have access to all attributes of all child classes in a single
 query:
>>> session.clear()
>>> for prod in session.query(Product):
... if hasattr(prod, 'clothing_info'):
... print '%s : %s' % (prod, prod.clothing_info)
... elif hasattr(prod, 'accessory_info'):
... print '%s : %s' % (prod, prod.accessory_info)
... else:
... print prod
...
2007-11-19 21:35:11,193 INFO sqlalchemy.engine.base.Engine.0x..d0
... SELECT product.sku AS product_sku, clothing.sku AS clothing_sku,
... accessory.sku AS accessory_sku, product.msrp AS product_msrp,
... product.product_type AS product_product_type,
... clothing.clothing_info AS clothing_clothing_info,
... accessory.accessory_info AS accessory_accessory_info
FROM product LEFT OUTER JOIN clothing ON product.sku = clothing.sku
... LEFT OUTER JOIN accessory ON product.sku = accessory.sku ORDER
... BY product.oid
2007-11-19 21:35:11,194 INFO sqlalchemy.engine.base.Engine.0x..d0 []
<Product 123>
<Product 456>
<Clothing 789> : Nice Pants
<Clothing 111> : Nicer Pants
<Accessory 222> : Wallet
<Accessory 333> : Belt

Relations and Inheritance

In the cases of single table and joined table inheritance
 mapping, relations “just work” in SQLAlchemy. In particular, it is
 possible for a mapped class to declare a relation to a class that is part
 of an inheritance hierarchy (a “polymorphic class”), and have that relation comprise instances of various child
 classes. This setup is shown in the following listing, where inventory
 information is added to our schema:
store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String))

inventory_table = Table(
 'inventory', metadata,
 Column('store_id', None, ForeignKey('store.id')),
 Column('product_id', None, ForeignKey('product.sku')),
 Column('quantity', Integer, default=0)

class Store(object): pass

class Inventory(object): pass

mapper(Store, store_table, properties=dict(
 inventory=relation(Inventory, backref='store')))

mapper(Inventory, inventory_table, properties=dict(
 product=relation(Product, backref='inventory')))
It is also possible to declare relations on a polymorphic class at
 any level of the inheritance hierarchy, and those relations will be
 inherited by the child classes. In the previous example, for instance, the
 Clothing and Accessory
 classes inherit the backref to their
 Inventory records.
In concrete table inheritance, mapping relations to a “parent class”
 is more difficult because there is no unique table to join to. For
 instance, it is possible to implement one-to-many and one-to-one joins
 where the polymorphic class has a foreign key into another table. As an
 example, if we introduced a “vendor” table identifying the manufacturer of
 all products, we could relate it to the Product
 hierarchy as follows:
vendor_table = Table(
 'vendor', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String))

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('vendor_id', None, ForeignKey('vendor.id'))

clothing_table = Table(
 'clothing', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('vendor_id', None, ForeignKey('vendor.id'),
 Column('clothing_info', String))

accessory_table = Table(
 'accessory', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric),
 Column('vendor_id', None, ForeignKey('vendor.id'),
 Column('accessory_info', String))

punion = polymorphic_union(
 dict(P=product_table,
 C=clothing_table,
 A=accessory_table),
 'type_')

mapper(
 Product, product_table, select_table=punion,
 polymorphic_on=punion.c.type_,
 polymorphic_identity='P')

mapper(Clothing, clothing_table, inherits=Product,
 polymorphic_identity='C',
 concrete=True)

mapper(Accessory, accessory_table, inherits=Product,
 polymorphic_identity='A',
 concrete=True)

class Vendor(object): pass

mapper(Vendor, vendor_table, properties=dict(
 products=relation(Product)))
The main limitation with relations and concrete table inheritance
 mapping is that relations from the polymorphic
 classes (rather than to them, as shown previously)
 are not inherited and must therefore be configured individually for each
 mapper. This includes all many-to-many relations, as the secondary join
 condition (and probably the secondary table as well) is different
 depending on which child class is being related to.
Nonpolymorphic Inheritance
All of the inheritance relationships shown so far were implemented using SQLAlchemy’s polymorphic loading. If
 polymorphic loading is not desired, either because of its overhead or
 because you always know what types of classes you will be fetching, it
 is possible to use nonpolymorphic loading by omitting all of the
 polymorphic_* parameters from the
 mappers.
Nonpolymorphic loading will always return the type of object being
 selected in the case of a query (never the child class, as polymorphic
 loading does). Relations to nonpolymorphic classes also apply only to
 the actual class being mapped, not to its descendants. Polymorphic
 loading is much more flexible than nonpolymorphic loading, and therefore
 should probably be selected unless the performance overhead is
 prohibitive.

Chapter 9. Elixir: A Declarative Extension to SQLAlchemy

This chapter describes Elixir, a module developed to automate some of the more common tasks
 in SQLAlchemy by providing a declarative layer atop “base” or “raw”
 SQLAlchemy. This chapter also describes the various extensions to Elixir
 that provide features such as encryption and versioning.
Introduction to Elixir

The Elixir module was developed as a declarative layer on top of
 SQLAlchemy, implementing the “active record” pattern described in Chapter 6. Elixir goes out of its way to make all of the power
 of SQLAlchemy available, while providing sensible default behavior with
 significantly less code than “raw” SQLAlchemy. This chapter describes
 versions 0.4 and 0.5 of Elixir, corresponding to the 0.4 version of
 SQLAlchemy. Differences between versions 0.4 and 0.5 are discussed in the
 upcoming sidebar, Differences Between Elixir 0.4 and 0.5.”
So, what exactly does Elixir do? Well, consider
 a simple product database. In SQLAlchemy, we might set up the products,
 stores, and prices with the following code:
product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Unicode(255)))
product_price_table = Table(
 'product_price', metadata,
Column('sku', None, ForeignKey('product.sku'), primary_key=True),
Column('store_id', None, ForeignKey('store.id'), primary_key=True),
 Column('price', Numeric, default=0))

class Product(object):
 def __init__(self, sku, msrp):
 self.sku = sku
 self.msrp = msrp
 self.prices = []
 def __repr__(self):
 return '<Product %s>' % self.sku

class Store(object):
 def __init__(self, name):
 self.name = name
 def __repr__(self):
 return '<Store %s>' % self.name

class Price(object):
 def __init__(self, product, store, price):
 self.product = product
 self.store = store
 self.price = price
 def __repr__(self):
 return '<Price %s at %s for $%.2f>' % (
 self.product.sku, self.store.name, self.price)

mapper(Product, product_table, properties=dict(
 prices=relation(Price, backref='product')))
mapper(Store, store_table, properties=dict(
 prices=relation(Price, backref='store')))
mapper(Price, product_price_table)
In Elixir, the corresponding setup is much simpler:
class Product(Entity):
 sku=Field(String(20), primary_key=True)
 msrp=Field(Numeric)
 prices=OneToMany('Price')

 def __repr__(self):
 return '<Product %s>' % self.sku

class Store(Entity):
 name=Field(Unicode(255))
 prices=OneToMany('Price')

 def __repr__(self):
 return '<Store %s>' % self.name

class Price(Entity):
 price=Field(Numeric, default=0)
 product=ManyToOne('Product')
 store=ManyToOne('Store')

 def __repr__(self):
 return '<Price %s at %s for $%.2f>' % (
 self.product.sku, self.store.name, self.price)
Differences Between Elixir 0.4 and 0.5
The main difference between Elixir versions 0.4 and 0.5 is in the
 way your entities get transformed into SQLAlchemy tables and mappers. In
 version 0.4, Elixir introduced the idea of “autosetup,” where entities
 were “set up” when they were first accessed. Under 0.4, you could delay
 the setup of an entity by specifying autosetup=False in the using_options() DSL statement. In
 this case, you would need to manually set up the entity at some point
 before using it by calling either setup_all(),
 which will set up all entities defined, or
 setup_entities(entities), which will
 set up all the entities in the entities list.
In version 0.5, entities do not use autosetup
 by default, so you are responsible for manually applying either
 setup_all() or setup_entities() once all your
 entities have been defined. If you would still like to use autosetup,
 you can either specify autosetup=True for each entity in its
 using_options() statement or specify that all entities should use autosetup
 via:
elixir.options_defaults['autosetup'] = True
In version 0.5, autosetup is not only not the default, but also
 “is not recommended” according to the official Elixir documentation. So,
 using setup_all() is probably the most
 “future-proof” way of defining your model.

There are several interesting things to notice in the Elixir
 listing. First, note that the declaration of the tables has been moved
 inside the class definitions, and that the classes
 are derived from Elixir’s Entity class. This is in
 keeping with Elixir’s “active record” model, where the mapped classes are
 responsible for “remembering” the necessary data for persisting
 themselves. Second, notice that we didn’t declare any primary keys for the
 store or the price tables. If no primary key is declared, then Elixir will
 autogenerate an integer primary key with a sequence providing default
 values. Third, notice that the relationships were declared according to
 their behavior in the ORM (OneToMany, ManyToOne), and that no foreign key
 information was included in the model. Elixir will, based on the types of
 relationships declared, automatically generate foreign key columns as well
 as any auxiliary tables required for ManyToMany
 joins.
Note
Because of the various types of assumptions Elixir makes about
 table layout, it is suited mainly for “blue sky” development, where
 there is no need to maintain an existing legacy database, and where the
 primary schema definition exists in Python, not in SQL. It is possible
 to use Elixir where Elixir does not provide the primary schema
 definition, but it’s easy to shoot yourself in the foot if you’re not
 aware of the assumptions Elixir makes about the schema, particularly
 when dealing with autogenerated tables and columns.

Installing Elixir

Elixir, like SQLAlchemy, is best installed using SetupTools and easy_install. Assuming you have already
 installed SetupTools and SQLAlchemy as described in Chapter 2, you can install Elixir on Unix-like
 systems—including Linux, BSD, and OS X—as follows:
$ sudo easy_install -UZ Elixir
On Windows, the command is similar:
c:\>easy_install -UZ Elixir
To verify that Elixir is installed properly, open up an interactive
 Python interpreter, import the module, and verify its version:
>>> import elixir
>>> elixir.__version__
'0.4.0'
And that’s all there is to it. Elixir is installed!

Using Elixir

Elixir has two syntaxes for defining your classes: an
 attribute-based syntax (shown previously) and a “domain specific language”
 (DSL) syntax. Both have similar power; which one you use is mostly a
 matter of personal style. The DSL-based syntax may be phased out in the
 future, as it is no longer the “default” syntax, but it is not currently
 deprecated, so it is covered in this chapter. If we were to define the
 product database using the DSL syntax, for instance, we would write the
 following (with the methods for each class omitted for clarity):
from elixir import *

metadata.bind = 'sqlite://'

class Product(Entity):
 has_field('sku', String(20), primary_key=True)
 has_field('msrp', Numeric)
 has_many('prices', of_kind='Price')

class Store(Entity):
 has_field('name', Unicode(255))
 has_many('prices', of_kind='Price')

class Price(Entity):
 has_field('price', Numeric, default=0)
 belongs_to('product', of_kind='Product')
 belongs_to('store', of_kind='Store')
There is a rough correspondence between the functionality of the
 attribute-based syntax for defining entities and the DSL syntax. The
 attribute-based classes are listed in Table 9-1 along with their corresponding
 DSL function. Note that the mapping from attribute-based syntax to DSL
 syntax is not perfect; consult the rest of this chapter for the specific
 differences.
Table 9-1. Correspondence between attribute-based syntax and DSL
 syntax
	Attribute class	DSL function
	
 Field
 	
 has_field

	ColumnProperty,
 GenericProperty	
 has_property

	
 ManyToOne
 	
 belongs_to

	
 OneToMany
 	
 has_many

	
 OneToOne
 	
 has_one

	
 ManyToMany
 	
 has_and_belongs_to_many

Note
Unlike SQLAlchemy, Elixir currently requires that your entities be
 defined in a module (or in several modules) and imported; they cannot be
 defined at the interactive Python prompt. This is due partly to the fact
 that Elixir uses the module name in determining how to “autoname” the
 tables it creates.

In all of the following examples, we will show the attribute-based
 syntax first, followed by the DSL syntax.
Fields and Properties

In Elixir, most columns are defined via the
 Field⁠(⁠ ⁠) class (attribute syntax) and/or the
 has_field() statement (DSL syntax). The Field
 constructor has only one required argument, its type. There are also
 some optional arguments parsed by Elixir. Any remaining arguments are
 passed along to the SQLAlchemy Column
 constructor. The Elixir-parsed optional keyword arguments are described
 here:
	
 required

	Specifies whether the field can be set to None (corresponds to the inverse of the
 nullable option in the
 Column constructor). Defaults to False unless this is a primary key
 column, in which case it defaults to
 True.

	
 colname

	The name of the column to be used for this field. By
 default it will be the same as the name used for the
 attribute.

	
 deferred

	If True, use deferred loading on the underlying
 Column object. If set to a string value,
 add the underlying Column to the named
 deferred loading column group.

	
 synonym

	Specifies a synonym value for the field. This is equivalent
 to using the synonym() function in
 SQLAlchemy.

Like the Field constructor, the
 has_field() statement passes along unrecognized
 keyword arguments to the Column constructor.
 has_field() takes two required arguments: the name
 of the field being defined and its type. Elixir also supports the
 following optional arguments:
	
 through

	The name of a relation to go through to get the field. This
 uses the associationproxy
 SQLAlchemy extension, which is described in Chapter 11. This allows proxying fields from a
 related class onto the class being mapped. The relation must be
 with only one object, of course, via
 ManyToOne /
 belongs_to() or
 OneToOne /
 has_one().

	
 attribute

	The name of the attribute on the related object used in
 conjunction with the through parameter. If this is omitted,
 the name of the current field will be used.

With the through and
 attribute arguments to
 has_field(), we can proxy a related class’s
 attribute as follows:
class Price(Entity):
 has_field('price', Numeric, default=0)
 belongs_to('product', of_kind='Product')
 belongs_to('store', of_kind='Store')
 has_field('store_name', through='store', attribute='name')
 has_field('sku', through='product')
Using this definition of the Price entity
 and the definitions of Product and
 Store used previously (all saved in a module named
 model.py), let’s import the model,
 create the database, and see what Elixir does in the background:
>>> from elixir import *
>>> from model import *
>>>
>>> create_all() [image: 1]
>>>
>>> stores = [Store('Main Store'),
... Store('Secondary Store')]
>>> products = [
... Product('123', 11.22),
... Product('456', 33.44),
... Product('789', 123.45)]
>>> prices = [Price(product=product, store=store, price=10.00)
... for product in products
... for store in stores]
>>>
>>> session.flush() [image: 2]
	[image: 1]
	This will create all the tables used to implement the entities
 defined up to this point.

	[image: 2]
	Elixir provides a thread-local contextual session where all
 the entities are defined.

Now, to access the store_name attribute on a
 price, we can do the following:
>>> metadata.bind.echo = True
>>> price = Price.get(1)
2007-11-20 17:44:46,141 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT model_price.id AS model_price_id, model_price.price AS
... model_price_price, model_price.product_sku AS
... model_price_product_sku, model_price.store_id AS
... model_price_store_id
FROM model_price
WHERE model_price.id = ? ORDER BY model_price.oid
2007-11-20 17:44:46,141 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
>>> price.store_name
2007-11-20 17:44:49,229 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT model_store.id AS model_store_id, model_store.name AS
... model_store_name
FROM model_store
WHERE model_store.id = ? ORDER BY model_store.oid
2007-11-20 17:44:49,230 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
u'Main Store'
Two things are important to note here. The first is that our
 has_field() statement did indeed create a “proxy”
 statement to the Store entity’s name field. The second is Elixir’s naming
 convention. By default, tables created to implement entities have names
 generated by combining the module name with the entity name.
Elixir deferred properties

In some cases, you may need to have access to the underlying
 table to define an Entity’s properties,
 particularly when creating properties that correspond to calculated
 SQL values that were handled by SQLAlchemy’s column_property() function. This
 presents a problem in Elixir, as the underlying
 Table objects have not been created when the
 Fields are being defined. Elixir solves this
 problem by allowing fields to be created in a “deferred” manner.
 Elixir supports this in the attribute-based syntax via the
 GenericProperty and
 ColumnProperty classes, and in the DSL syntax
 via the has_property() statement.
Each of these methods of defining deferred properties takes a
 callable, which will be passed the underlying
 Table object’s c attribute
 and should return a property to be added to the
 Entity’s mapper. In the case of
 ColumnProperty, rather than returning a property
 object, you simply return a ClauseElement, which
 will be wrapped in a SQLAlchemy
 column_property():
class Product(Entity):
 has_field('sku', String(20), primary_key=True)
 has_field('msrp', Numeric)

 # Using has_property DSL
 has_property(
 'sale_price1',
 lambda c: column_property(c.msrp * 0.9))

 # Using GenericProperty attribute
 sale_price2 = GenericProperty(
 lambda c: column_property(c.msrp * 0.8))

 # Using ColumnProperty attribute
 sale_price2 = ColumnProperty(
 lambda c: c.msrp * 0.8)

Relations

Relations with Elixir are extremely similar to relations using “bare” SQLAlchemy,
 except that in Elixir, relations are defined by their cardinality (one
 to many, one to one, etc.) rather than inferred by foreign key
 relationships. In fact, Elixir will automatically
 create the foreign key columns necessary to
 implement the relations as defined.
Related Entity Names
In all of the relations supported by Elixir, you must “name” the
 Entity to which you are relating the mapped
 Entity. If the related
 Entity is in the same module as the
 Entity being mapped, simply use the name of the
 Entity. Otherwise, you need to give a module
 path to the other entity. If you defined
 Entity1 in package/model1.py and
 Entity2 in package/model2.py, and
 Entity2 needs a
 ManyToOne relationship to
 Entity1, you would define
 Entity2 as follows:
class Entity2(Entity):
 entity1=ManyToOne('package.model1.Entity')

Attribute-based syntax

In the attribute-based syntax, relationships are declared via the
 ManyToOne, OneToMany,
 OneToOne, and ManyToMany
 classes. Each of these class constructors takes one required argument,
 a string specifying the name of the class being related to. Each also
 supports some arguments unique to Elixir and pass any unrecognized
 arguments along to the underlying SQLAlchemy
 relation() function. Note that the OneToMany and
 OneToOne relationships require a corresponding
 ManyToOne relationship in order to set up the
 foreign key column used to relate the classes.
Warning
Elixir automatically generates a few arguments of its own to
 pass to the relation() function, so they should
 not be provided to the relation-creating classes unless you are
 trying to override the value provided by Elixir. These arguments are
 uselist, remote_side, secondary, primaryjoin, and secondaryjoin.

The ManyToOne optional parameters are
 listed here:
	
 inverse

	Specifies the inverse property on the related class
 corresponding to this property. Generally this is not required
 unless there are multiple relationships between this class and
 the related class. Note that this does not
 set up the inverse relationship; the inverse relationship must
 be defined in the related class.

	
 colname

	The name of the foreign key column to be created. The
 default is
 entity_key,
 where entity is the related
 Entity and key
 is the name of the related entity’s primary key.

	
 required

	If True, specifies that the generated foreign key column
 has a nonnull constraint.
 Defaults to False.

	
 primary_key

	If True, specifies that
 the generated foreign key column participates in the primary key
 of this Entity. Defaults to False.

	
 column_kwargs

	A dict containing additional keyword arguments to be passed to the
 foreign key’s Column constructor.

	
 use_alter

	If True, add the ForeignKeyConstraint
 after the table has been created using an ALTER TABLE
 constraint. This is useful, for instance, when creating entities
 with circular foreign key dependencies.

	
 ondelete

	Value for the
 ForeignKeyConstraint’s ondelete parameter.

	
 onupdate

	Value for the
 ForeignKeyConstraint’s onupdate parameter.

	
 constraint_kwargs

	A dict containing additional keyword arguments to be
 passed to the ForeignKeyConstraint’s
 constructor.

The following list contains the OneToMany constructor’s
 optional parameters:
	
 inverse

	Specifies the inverse property on the related class
 corresponding to this property. Generally, this is not required
 unless there are multiple relationships between this class and
 the related class. Note that this does not
 set up the inverse relationship; the inverse relationship must
 be defined in the related class.

	
 order_by

	Either a string or a list of strings specifying the
 field names used to sort the contents of the generated list of
 related items. If a field is prefixed by a minus ('-'), the list will be sorted in
 descending order on that field.

The following is the OneToOne constructor’s
 optional parameter:
	
 inverse

	Specifies the inverse property on the related class
 corresponding to this property. Generally this is not required
 unless there are multiple relationships between this class and
 the related class. Note that this does not
 set up the inverse relationship; the inverse relationship must
 be defined in the related class.

The ManyToMany constructor takes
 the following optional parameters:
	
 inverse

	Specifies the inverse property on the related class
 corresponding to this property. Generally this is not required
 unless there are multiple relationships between this class and
 the related class. Note that this does not
 set up the inverse relationship; the inverse relationship must
 be defined in the related class.

	
 tablename

	Specifies a custom name for the intermediate “join table”
 used in the relationship. By default, the join table is named
 based on the entity names being joined.

	
 remote_side

	A list of columns or column names specifying which columns in the join
 table are used to key the remote side of a self-referential
 relationship.

	
 local_side

	A list of columns or column names specifying which columns
 in the join table are used to key the local side of a
 self-referential relationship.

	
 order_by

	Either a string or a list of strings specifying field
 names used to sort the contents of the generated list of related
 items. If a field is prefixed by a minus ('-'), the list will be sorted in
 descending order on that field.

Note that no feature in Elixir corresponds to the SQLAlchemy
 backref parameter on
 relation()s. This means that if you want the back
 reference, you must explicitly declare it in the class to which it is
 related.

DSL syntax

In the DSL syntax, relationships are declared via the belongs_to( ),
 has_many(), has_one(), and
 has_and_belongs_to_many() statements. Each of these functions takes two required arguments.
 The first is the name of the relation being defined. (This will be the
 name of the attribute in the mapped class.) The second argument, which
 must be declared using the of_kind keyword argument, is the name of
 the Entity being related to.
Like the has_field() statement, all the DSL relation statements take the
 optional parameters through and
 via in order to proxy
 attributes of the related class(es) to the mapped class. See the
 earlier section Fields and Properties” for more information
 on these parameters.
All of the keyword arguments supported in the attribute-based
 syntax are also supported in the DSL syntax. Refer to Table 9-1 earlier in this chapter for
 the correspondence between attribute-based classes and DSL
 statements.

Inheritance

Inheritance in Elixir is handled via either the single table inheritance mapping
 or the joined table inheritance mapping supported by SQLAlchemy (and
 described in detail in Chapter 8). Elixir also
 supports specifying whether polymorphic or nonpolymorphic loading should
 be used with the mapped classes. Both the inheritance method (joined
 table or single table) and whether the loader should be polymorphic are
 specified via the DSL statement using_options().
 There is currently no corresponding attribute-based syntax for
 specifying options on entities. So, to create the
 Product, Clothing, and
 Accessory hierarchy described in Chapter 8 in Elixir as a joined table (“multiple”) and
 polymorphic hierarchy, we would write the following (with methods
 omitted for clarity):
class Product(Entity):
 using_options(inheritance='multi', polymorphic=True)
 sku=Field(String(20), primary_key=True)
 msrp=Field(Numeric)

class Clothing(Product):
 using_options(inheritance='multi', polymorphic=True)
 clothing_info=Field(String)

class Accessory(Product):
 using_options(inheritance='multi', polymorphic=True)
 accessory_info=Field(String)
The with_options() statement takes a number of other options, described here:
	
 inheritance

	Specifies the type of inheritance used: either 'single' for single table inheritance
 mapping or 'multi' for joined
 (“multiple”) table inheritance mapping. Concrete table inheritance
 mapping is not supported in Elixir. Defaults to 'single'.

	
 polymorphic

	Specifies whether the polymorphic loader should be used in
 an inheritance hierarchy. Defaults to False.

	
 metadata

	Specifies a custom MetaData to be
 used for this Entity. Defaults to the
 global elixir.metadata. You can also specify a
 custom MetaData on a per-module basis by
 defining the module-global variable
 __metadata__.

	
 autoload

	Automatically loads field definitions from an existing
 database table. The default is False.

	
 tablename

	Use the specified table name. This can be either a string or
 a callable that takes one parameter (the entity being defined) and
 returns a string. The default name is autogenerated by Elixir.

	
 shortnames

	If True, rather than
 naming the underlying Table based on the
 full module path to the entity, use the lowercased
 Entity name without any module path
 information. Defaults to False.

	
 auto_primarykey

	If this is a string, it will be used as the name of the
 primary key column automatically generated by Elixir (which will
 be an Integer column with a corresponding
 sequence). If this is
 True, allows Elixir to
 autocreate a primary key (with an autogenerated name) if none is
 defined in the Entity. If False, this disallows autocreation of
 the primary key column.

	
 version_id_col

	If this is a string, it will be used as the name of a
 version ID column (see Chapter 6 for the
 corresponding mapper() option version_id in SQLAlchemy). If this is
 True, it uses an autogenerated
 name for a version_id_col.
 The default is False.

	
 order_by

	The default ordering on this Entity,
 given as a string or list of strings representing the field names
 to sort by. If a field is prefixed by a minus ('-'), the list will be sorted in
 descending order on that field.

	
 session

	Use the specified contextual session for this
 Entity. The default is to use the globally-defined
 elixir.session, a contextual thread-local
 Session. You can also specify a custom
 Session on a per-module basis by defining
 the module-global variable __session__.

	
 autosetup

	If set to True, the
 underlying Table and
 mapper() will be set up for the
 Entity when they are first required (via
 access to the Entity’s
 c, table,
 mapper, or query attributes)
 or when the MetaData’s
 create_all() method is called. If set to
 False, you must explicitly set
 up the Entity either via the
 setup_all() or the setup_entities(entities)Elixir functions. This defaults to True in version 0.4 of Elixir, and to
 False in version 0.5.

	
 allowcoloverride

	If True, allows a
 relation to be defined with the same name as a mapped column (the
 column will not be mapped in this case). If False, the name conflict will generate
 an exception. Corresponds to the SQLAlchemy
 mapper() option allow_column_override. Defaults
 to False.

Querying Using Elixir

One of the nice things about Elixir is that the Entity
 base class contains a rich set of methods that can be used instead of
 the normal SQLAlchemy Session and
 Query methods. In fact, each
 Entity contains a class-level attribute named
 query that returns a query on the mapped class. It is
 also unnecessary to explicitly save() entities to
 the Session, as they are automatically
 save()d when they are created.
To retrieve a mapped object from its identity (primary key),
 simply use the get() method. (In “base”
 SQLAlchemy, this would be accomplished by
 Session.get(class_, id).)
>>> Product.get('123')
<Product 123>
Elixir also adds the get_by() method
 for retrieving a single instance based on nonprimary key
 columns. (The corresponding query in SQLAlchemy is a
 filter_by() followed by one().)
>>> Product.get_by(msrp=33.44)
<Product 456>
Of course, you can always access the underlying
 Session query via the
 query attribute:
>>> Product.query.all()
[<Product 123>, <Product 456>, <Product 789>]
The complete set of (nondeprecated) methods on the
 Entity class is described in the following list. Each
 of these methods is a proxy for the corresponding
 Session methods, covered in Chapter 7, and any arguments provided to these methods are
 passed along unmodified to the underlying Session
 methods:
	flush(self, *args, **kwargs)
	Flush the changes to this instance to the database.

	delete(self, *args, **kwargs)
	Mark this instance for deletion from the
 database.

	expire(self, *args, **kwargs)
	Expire this instance from the
 Session.

	refresh(self, *args, **kwargs)
	Reload this instance from the database, overwriting any
 in-memory changes.

	expunge(self, *args, **kwargs)
	Expunge this instance from the
 Session.

	merge(self, *args, **kwargs)
	Merge the instance with the instance in the
 Session.

	save(self, *args, **kwargs)
	Save this instance to the
 Session.

	update(self, *args, **kwargs)
	Bring this (detached) instance into the
 Session.

	save_or_update(self, *args, **kwargs)
	Save or update this instance, based on whether it is in
 the session already.

	get_by(self, *args, **kwargs)(classmethod)
	Retrieve an instance from the database based on the given
 keyword arguments. Equivalent to
 instance.query.filter_by(
 *args, **kwargs).one().

	get(self, *args, **kwargs)(classmethod)
	Retrieve an object from the database or the
 Session’s identity map based on its primary
 key.

Elixir Extensions

In addition to its base functionality, Elixir provides a number of
 extensions that allow for more advanced uses.
Associable Extension

In many database schemas, there may be one table that relates to
 many others via a many-to-many or a many-to-one join. The elixir.ext.associable extension provides a
 convenient way to specify this pattern and to generate the appropriate
 association tables. This is
 accomplished by the associable() function,
 which returns a DSL statement that can be used in the
 definition of the related entities.
For instance, suppose we have a schema that represents brands and
 retailers, each of which may have multiple addresses stored in the
 database. This can be accomplished as follows:
class Address(Entity):
 has_field('street', Unicode(255))
 has_field('city', Unicode(255))
 has_field('postal_code', Unicode(10))

Create the DSL statement.
is_addressable = associable(Address, 'addresses')

class Brand(Entity):
 has_field('name', Unicode(255)),
 has_field('description', Unicode)
 is_addressable()

class Retailer(Entity):
 has_field('name', Unicode(255)),
 has_field('description', Unicode)
 is_addressable()
To implement this pattern, the associable extension actually
 implements something like joined table inheritance mapping, where the
 entity being associated joins to an intermediate association table,
 which is in turn joined to a “virtual base class” for each associable
 class. The tables created for the previous schema show this more clearly
 in Figure 9-1.
[image: Associable table relationships]

Figure 9-1. Associable table relationships

The associable() function takes one required
 argument, the Entity to be associated, as well as
 some optional arguments:
	plural_name=None
	The default name to be used for the property generated by the
 returned DSL statement. By default, this is the lowercased name of
 the associable Entity. (This can be
 overridden when using the generated statement.)

	lazy=True
	Indicates whether the property generated by the returned DSL
 statement should be lazy-loaded by default. (This can be
 overridden when using the generated statement.)

The generated DSL statement also takes some optional
 arguments:
	name=None
	The name to be used for the property generated. This will
 use the value of the plural_name parameter from
 associable() if not specified here.

	uselist=True
	Whether to use a list in the generated property
 (representing a ManyToMany relation) or a
 scalar attribute (representing a ManyToOne
 relation).

	lazy=True
	Whether the property generated should be lazy-loaded by
 default.

The generated DSL statement, in addition to adding the named
 property, also adds the helper methods
 select_by_property and
 select_property, which are
 simply proxies for filtering the Entity by values
 in the associated Entity. For instance, we can
 return a list of all Brands in Albuquerque with
 the following query:
>>> Brand.select_by_addresses(city='Albuquerque')

Encrypted Extension

The elixir.ext.encrypted
 extension provides encrypted field support for Elixir using the
 Blowfish algorithm from the PyCrypto library, which must be installed
 separately. (PyCrypto is available
 from the Python Package Index via “easy_install pycrypto”.) The
 encrypted extension provides the DSL statement
 acts_as_encrypted⁠(⁠ ⁠), which takes the following
 parameters:
	for_fields=[]
	List of field names for which encryption will be enabled

	with_secret='abcdef'
	A secret key used to perform encryption on the listed fields

The encrypted extension is particularly useful when data must be
 stored on an untrusted database or
 as part of a defense-in-depth approach to security. For instance, you
 might encrypt passwords that are stored in the database. Keep in mind,
 however, that the source code of your application must be kept in a
 trusted location because it specifies the encryption key used to store
 the encrypted columns.

Versioned Extension

The elixir.ext.versioned
 extension provides a history and versioning for the fields in an
 entity. These services are provided by the
 acts_as_versioned() DSL statement. Marking an entity as versioned will apply the following
 operations:
	A timestamp column and a version column will be added to the
 versioned entity table.

	A history table will be created with the same columns as the
 primary entity table, including the added timestamp and version
 columns.

	A versions attribute will be added to the
 versioned entity that represents a OneToMany join to the history
 table.

	The instance methods revert(),
 revert_to(),
 compare_with(), and
 get_as_of() will be added to the versioned
 entity.

Whenever changes are made to a versioned entity, the version
 column is incremented and the previous values for all the columns are
 saved to the history table. Note that at the current time, relationships
 are not handled automatically by the versioning process (relationship
 changes are not tracked in the history table) and must be handled
 manually. The size of the history table can be managed by specifying
 fields not to include via the ignore option to
 acts_as_versioned().
Using the acts_as_versioned() statement
 enables us to keep a reasonable audit trail of changes to an entity. If
 we set up our model as follows:
class Product(Entity):
 has_field('sku', String(20), primary_key=True)
 has_field('msrp', Numeric)
 acts_as_versioned()

 def __repr__(self):
 return '<Product %s, mrsp %s>' % (self.sku, self.msrp)

 @after_revert
 def price_rollback(self):
 print "Rolling back prices to %s" % self.msrp
we can then use the audit trail as follows:
>>> prod = Product(sku='123', msrp=11.22)
>>> session.flush()
>>> print prod
<Product 123, mrsp 11.22>
>>> print prod.version
1
>>> print len(prod.versions)
1
>>> prod.msrp *= 1.2
>>> session.flush()
>>> print prod
<Product 123, mrsp 13.464>
>>> print prod.version
2
>>> prod.msrp *= 1.3
>>> session.flush()
>>> print prod
<Product 123, mrsp 17.5032>
>>> print prod.version
3
>>> print prod.compare_with(prod.versions[0])
{'timestamp': (datetime.datetime(2007, 11, 21, 15, 50, 43, 951977),
... datetime.datetime(2007, 11, 21, 15, 50, 43, 893200)), 'msrp':
... (17.5032, Decimal("11.22"))}
>>> for ver in prod.versions:
... print ver.version, ver.timestamp, ver.msrp
...
1 2007-11-21 15:50:43.893200 11.22
2 2007-11-21 15:50:43.939225 13.464
3 2007-11-21 15:50:43.951977 17.5032
>>> prod.revert()
Rolling back prices to 17.5032
>>> prod = Product.get('123')
>>> print prod
<Product 123, mrsp 17.5032>
The behaviors of the new methods added by
 acts_as_versioned() are listed here:
	
 revert(
 self
)

	Revert the entity to the last version saved in the history
 table. After reverting, the instance in memory will be expired and
 must be refreshed to retrieve the reverted fields.

	revert_to(self, to_version)
	Revert the entity to a particular version number saved in the history table. After
 reverting, the instance in memory will be expired and must be
 refreshed to retrieve the reverted fields.

	compare_with(self, version)
	Compare the current field values of the entity with the values
 in a particular version instance. The return value from this
 method is a dict keyed by the field name
 with values of pairs
 (named_version_value,
 current_value). Note that instances in
 the entity’s versions attribute also have a
 compare_with() method, allowing historical
 versions to be compared with other versions.

	get_as_of(self, dt)
	Retrieves the most recent version of the entity that was saved before
 the datetimedt. If the current
 version is the most recent before dt, then it is returned.

The versioned extension also provides a decorator, @after_revert, which can be used to decorate methods in the versioned entity
 that should be called after the entity is reverted.

Chapter 10. SqlSoup: An Automatic Mapper for SQLAlchemy

This chapter describes SqlSoup, an extension to SQLAlchemy that
 provides automatic mapping of introspected tables. You will learn how to use
 SqlSoup to map to an existing database and how to perform queries and
 updates. Finally, the chapter will describe the pros and cons of using
 SQLSoup, Elixir, or “bare” SQLAlchemy in your application.
Introduction to SqlSoup

If Elixir is ideally suited for blue sky, legacy-free development, SqlSoup is
 ideally suited for connecting to legacy databases. In fact, SqlSoup
 provides no method of defining a database schema
 through tables, classes, and mappers; it uses extensive autoloading to
 build the SQLAlchemy constructs (Tables,
 classes, and mapper⁠(⁠)s)
 automatically from an existing database.
To illustrate the uses of SQLAlchemy in this chapter, we will use
 the following SQLAlchemy-created
 schema. Note that, unlike in previous chapters, we will be saving the test
 database in an on-disk SQLite database rather than using an in-memory
 database, to illustrate the fact that SqlSoup relies entirely on auto
 loading:
from sqlalchemy import *

engine = create_engine('sqlite:///chapter10.db')

metadata = MetaData(engine)

product_table = Table(
 'product', metadata,
 Column('sku', String(20), primary_key=True),
 Column('msrp', Numeric))
store_table = Table(
 'store', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', Unicode(255)))
product_price_table = Table(
 'product_price', metadata,
Column('sku', None, ForeignKey('product.sku'), primary_key=True),
Column('store_id', None, ForeignKey('store.id'), primary_key=True),
 Column('price', Numeric, default=0))

metadata.create_all()

stmt = product_table.insert()
stmt.execute([dict(sku="123", msrp=12.34),
 dict(sku="456", msrp=22.12),
 dict(sku="789", msrp=41.44)])
stmt = store_table.insert()
stmt.execute([dict(name="Main Store"),
 dict(name="Secondary Store")])
stmt = product_price_table.insert()
stmt.execute([dict(store_id=1, sku="123"),
 dict(store_id=1, sku="456"),
 dict(store_id=1, sku="789"),
 dict(store_id=2, sku="123"),
 dict(store_id=2, sku="456"),
 dict(store_id=2, sku="789")])
In order to use SqlSoup, we must first create an instance of the
 SqlSoup class. This instance must be created either
 with an existing MetaData instance as its first
 argument, or with the same arguments as SQLAlchemy’s
 MetaData class. In our case, we will pass in a
 database URI to use in autoloading the tables:
>>> from sqlalchemy.ext.sqlsoup import SqlSoup
>>> db = SqlSoup('sqlite:///chapter10.db')
If we wish to restrict the set of tables loaded to a particular
 schema (in databases that support this), we can specify it by setting the
 as db.schema attribute. Because we’re using SQLite,
 there is no need to specify a schema.
To access the tables we’ve defined in the database, simply use
 attribute access from the SqlSoup instance we’ve
 created:
>>> print db.product.all()
[MappedProduct(sku='123',msrp=Decimal("12.34")),
... MappedProduct(sku='456',msrp=Decimal("22.12")),
... MappedProduct(sku='789',msrp=Decimal("41.44"))]

>>> print db.product.get('123')
MappedProduct(sku='123',msrp=Decimal("12.34"))
Note that there was no mapper or table setup required to retrieve
 the objects (other than when we first created the database!). The
 following sections describe in more detail how you can use SqlSoup.

Using SqlSoup for ORM-Style Queries and Updates

You may have noticed in the previous section that when we queried
 the db.product table, rather than being served with
 RowProxy objects as in regular SQLAlchemy, we were
 served with MappedProduct instances. This is
 because technically we’re not selecting from the product table; we’re
 selecting from the automatically created and mapped
 MappedProduct class, created from the product
 table.
The MappedProduct class provides a basic mapping of the columns of the table to the
 properties of the class. It also provides a query
 property, similar to the Elixir query property, which
 provides access to a session query for the
 MappedProduct. It also provides insert(), delete(), and update() methods for modifying the underlying data. To create a new product,
 for instance, we can do the following:
>>> newprod = db.product.insert(sku='111', msrp=22.44)
>>> db.flush()
>>> db.clear()
>>> db.product.all()
[MappedProduct(sku='123',msrp=Decimal("12.34")),
... MappedProduct(sku='456',msrp=Decimal("22.12")),
... MappedProduct(sku='789',msrp=Decimal("41.44")),
... MappedProduct(sku='111',msrp=Decimal("22.44"))]
You may have noticed in the previous example that we accessed the
 session-like methods flush() and clear() on the
 SqlSoup instance. SqlSoup strives to provide a rich
 set of functionality with a limited set of interfaces, namely the
 SqlSoup instance and automatically mapped classes.
 As such, the SqlSoup instance provides several
 session-like functions as well as providing access to the automatically
 mapped classes:
	bind(attribute)
	The underlying Engine or
 Connectable for this
 SqlSoup instance.

	schema(attribute)
	Use the specified schema name for auto loading and
 automatically mapping tables.

	clear(self)
	Call the underlying contextual session’s clear()
 method.

	delete(self, *args, **kwargs)
	Call the underlying contextual session’s delete() method with
 the specified arguments.

	flush(self)
	Call the underlying contextual session’s flush()
 method.

	join(self, *args, *kwargs)
	Call SQLAlchemy’s join()
 function with the specified arguments and return an
 automatically mapped object corresponding to rows of the generated
 join.

	map(self, selectable, *kwargs)
	Automatically map an arbitrary selectable, returning the generated
 mapped class.

	with_labels(self, item)
	Add labels to the columns of item (generally a join) based on the
 name of their table of origin. This is useful when mapping joins
 between two tables with the same column names.

You may have also noticed that the
 MappedProduct class provides some query-like
 methods. In fact, the MappedProduct class (and
 other automatically mapped classes) uses some __getattr__() magic to
 forward all unrecognized attribute and method access
 to its query attribute. Automatically mapped classes
 also provide some data manipulation functions for use in updating the
 underlying table:
	c (attribute)
	The c attribute of the underlying
 table.

	query (attribute)
	An ORM-based query object on the automatically mapped
 class.

	_table (attribute)
	The underlying selectable to this automatically mapped object.
 Useful when dropping to the SQL layer in SqlSoup queries.

	column_name
 (attribute)
	The SQLAlchemy property object of the automatically mapped
 column.

	delete(cls, *args, **kwargs) (classmethod)
	Execute a delete() on the
 underlying table with the given arguments.

	insert(cls, **kwargs) (classmethod)
	Execute an insert() on the
 underlying table with the given arguments, and return a newly
 constructed instance of the automatically mapped class.

	update(cls, whereclause=None, values=None, **kwargs) (classmethod)
	Execute an update() on the
 underlying table with the given arguments.

SqlSoup and Relations
The short story on SqlSoup and SQLAlchemy relation()s is that they
 are not supported. Although SqlSoup can make reasonable assumptions
 about how to automatically map columns to classes, inferring the correct
 relations, relation names, and relation options is currently beyond its
 capabilities. SqlSoup does, however, fully support manually creating
 joins between tables and mapping the resulting selectable object. This
 feature is covered next in Joins with SqlSoup.”

Joins with SqlSoup

The SqlSoup object provides a join() method,
 described briefly in the list under the section Using SqlSoup for ORM-Style Queries and Updates,” earlier in this chapter. This method is actually
 just a thin wrapper on the SQLAlchemy join() function that
 creates an automatically mapped class for the resulting selectable. To
 join between the product and
 product_price tables, for example, we could use the
 following code, taking care to use the isouter=True to ensure we get a LEFT OUTER
 JOIN:
>>> join1 = db.join(db.product, db.product_price, isouter=True)
>>> join1.all()
[MappedJoin(sku='123',msrp=Decimal("12.34"),store_id=1,
... price=Decimal("0")),
... MappedJoin(sku='123',msrp=Decimal("12.34"),store_id=2,
... price=Decimal("0")),
... MappedJoin(sku='456',msrp=Decimal("22.12"),store_id=1,
... price=Decimal("0")),
... MappedJoin(sku='456',msrp=Decimal("22.12"),store_id=2,
... price=Decimal("0")),
... MappedJoin(sku='789',msrp=Decimal("41.44"),store_id=1,
... price=Decimal("0")),
... MappedJoin(sku='789',msrp=Decimal("41.44"),store_id=2,
... price=Decimal("0")),
... MappedJoin(sku='111',msrp=Decimal("22.44"),store_id=None,price=None)]
In order to chain the join object to other tables, just use the
 join() method
 again:
>>> join2 = db.join(join1, db.store, isouter=True)
>>> join2.all()
[MappedJoin(sku='123',msrp=Decimal("12.34"),store_id=1,
... price=Decimal("0"),id=1,name='Main Store'),
... MappedJoin(sku='123',msrp=Decimal("12.34"),store_id=2,
... price=Decimal("0"),id=2,name='Secondary Store'),
... MappedJoin(sku='456',msrp=Decimal("22.12"),store_id=1,
... price=Decimal("0"),id=1,name='Main Store'),
... MappedJoin(sku='456',msrp=Decimal("22.12"),store_id=2,
... price=Decimal("0"),id=2,name='Secondary Store'),
... MappedJoin(sku='789',msrp=Decimal("41.44"),store_id=1,
... price=Decimal("0"),id=1,name='Main Store'),
... MappedJoin(sku='789',msrp=Decimal("41.44"),store_id=2,
... price=Decimal("0"),id=2,name='Secondary Store'),
... MappedJoin(sku='111',msrp=Decimal("22.44"),store_id=None,price=None,
... id=None,name=None)]
In some cases, it’s nice to label the columns according to their
 table of origin. To accomplish
 this, use the with_labels()
 SqlSoup method:
>>> join3 = db.with_labels(join1)
>>> join3.first()
MappedJoin(product_sku='123',product_msrp=Decimal("12.34"),
... product_price_sku='123',product_price_store_id=1,
... product_price_price=Decimal("0"))
>>> db.with_labels(join2).first()
MappedJoin(product_sku='123',product_msrp=Decimal("12.34"),
... product_price_sku='123',product_price_store_id=1,
... product_price_price=Decimal("0"),store_id=1,store_name='Main
... Store')
It is also possible to label a mapped table and then use the
 labeled table in joins:
>>> labelled_product = db.with_labels(db.product)
>>> join4 = db.join(labelled_product, db.product_price,
... isouter=True)
>>> join4.first()
MappedJoin(product_sku='123',product_msrp=Decimal("12.34"),sku='123',
... store_id=1,price=Decimal("0"))
Note that the columns from db.product are
 labeled, whereas the columns from db.product_price are not.

Mapping Arbitrary Selectables

Simple tables and joins are supported in SqlSoup, but what about
 mapping more complex selectables? The automatically mapping machinery of
 SqlSoup is actually exposed via the SqlSoup
 map() method.
 For instance, if we wished to add a column for the average price of a
 product over all the stores in which it is sold, we might write the
 following SQL-layer SQLAlchemy
 query:
>>> db.clear()
>>>
>>> from sqlalchemy import *
>>>
>>> join5 = db.join(db.product, db.product_price)
>>>
>>> s = select([db.product._table,
... func.avg(join5.c.price).label('avg_price')],
... from_obj=[join5._table],
... group_by=[join5.c.sku])
>>> s = s.alias('products_with_avg_price')
>>> products_with_avg_price = db.map(s, primary_key=[join5.c.sku])
>>> products_with_avg_price.all()
[MappedJoin(sku='123',msrp=Decimal("12.34"),avg_price=0.0),
... MappedJoin(sku='456',msrp=Decimal("22.12"),avg_price=0.0),
... MappedJoin(sku='789',msrp=Decimal("41.44"),avg_price=0.0)]
>>>
>>> db.product_price.first().price = 50.00
>>> db.flush()
>>> db.clear()
>>> products_with_avg_price.all()
[MappedJoin(sku='123',msrp=Decimal("12.34"),avg_price=25.0),
... MappedJoin(sku='456',msrp=Decimal("22.12"),avg_price=0.0),
... MappedJoin(sku='789',msrp=Decimal("41.44"),avg_price=0.0)]
A common usage pattern is to add such mapped selectables to the
 SqlSoup instance for access in other parts of the
 application:
>>> db.products_with_avg_price = products_with_avg_price
There’s no magic here; this is just Python’s ability to declare
 new, ad-hoc attributes on existing objects. Do note that if you happen
 to add an attribute with the same name as a table in your database,
 SqlSoup will not be able to access that table until you remove the new
 attribute.

Directly Accessing the Session

Although SqlSoup provides access to most session-oriented
 functionality through the SqlSoup object, it is
 possible to access the underlying SQLAlchemy contextual session through
 the global SqlSoup object objectstore:
>>> from sqlalchemy.ext.sqlsoup import objectstore
>>> session = objectstore.current
>>> print session
<sqlalchemy.orm.session.Session object at 0x2ae69954f210>

Using SqlSoup for SQL-Level Inserts, Updates, and Deletes

As mentioned in the list of automatically mapped class attributes
 and methods, mapped classes contain insert(), update(), and delete() methods. These
 are just thin wrappers around the corresponding methods on the underlying
 table. If we wanted to set the price for all products in all stores to
 their MSRP, for instance, we could do the following:
>>> msrp=select([db.product.c.msrp],
... db.product.sku==db.product_price.sku)
>>> db.product_price.update(
... values=dict(price=msrp))
>>> db.product_price.all()
[MappedProduct_price(sku='123',store_id=1,price=Decimal("12.34")),
... MappedProduct_price(sku='456',store_id=1,price=Decimal("22.12")),
... MappedProduct_price(sku='789',store_id=1,price=Decimal("41.44")),
... MappedProduct_price(sku='123',store_id=2,price=Decimal("12.34")),
... MappedProduct_price(sku='456',store_id=2,price=Decimal("22.12")),
... MappedProduct_price(sku='789',store_id=2,price=Decimal("41.44"))]
We can similarly use the insert() and delete() method to perform
 SQL-level inserts and deletes.

When to Use SqlSoup Versus Elixir Versus “Bare” SQLAlchemy

As we’ve discussed before, SqlSoup is useful when it’s necessary to
 use an existing database, whereas Elixir is most useful when
 Elixir is the primary definition of the schema. This
 section compares SqlSoup and Elixir with “Bare” SQLAlchemy and gives the
 advantages and disadvantages of each.
SqlSoup Pros and Cons

Generally speaking, SqlSoup has the following pros and cons in
 comparison to “base” SQLAlchemy:
	Succinct usage
	SqlSoup requires very little code to get started: just a
 database URI, and you’re ready to go. Raw SQLAlchemy is much more
 verbose, requiring setup for tables, mappers, and mapped classes.
 Even if you’re using autoloading with SQLAlchemy, it still
 requires you to set up your mappers and mapped classes if you wish
 to use the ORM.

	
 Ad-hoc queries and mappers

	Due to the ease of setting up SqlSoup, it is much more
 convenient to create queries and mappings from joins and other
 selectable objects.

	
 Rich relation support

	Because SqlSoup’s method of inference does not support
 SQLAlchemy relation()s,
 it is not well-suited to schemas where it is more convenient to
 use mapped properties to implement relations between
 tables.

	Adding behavior to mapped objects
	Because SqlSoup creates its own automatically mapped
 classes, it is inconvenient to have domain logic from your
 application attached as methods. In this regard, SqlSoup mapped
 objects are little more than “smart rows” allowing convenient
 access to the database, with little ability to model domain
 objects.

	Flexibility
	The convenience of SqlSoup generally comes at the cost of
 flexibility. Various SQLAlchemy ORM-level features, such as
 synonyms and relations, are either unsupported or not well
 supported.

Elixir Pros and Cons

Generally speaking, Elixir has the following pros and cons in
 comparison to “base” SQLAlchemy:
	Succinct usage
	Although not as terse as SqlSoup, Elixir generally requires
 less code than raw SQLAlchemy to implement similar functionality.
 This is particularly true when using the associable and versioned extensions, for
 instance.

	Rapid model development
	Because Elixir generally sees itself as the keeper of the
 schema, it can be more aggressive in what types of schema it
 supports. When using the associable extension, for instance, it
 is possible to create auxiliary tables with a single DSL line of
 code. This allows complex schema to be developed rapidly when your
 application is first being written.

	Clear separation of concerns
	Due to the data mapper pattern used in SQLAlchemy (rather
 than the active record pattern used in Elixir), it is clear where
 the database schema resides (in theTable⁠(⁠) classes), where the
 application logic resides (in the mapped classes), and where the
 mapping occurs (in the mapper()
 configuration). Elixir puts all this information into the
 Entity classes, making it a bit more
 difficult to separate these concerns.

	Ability to use or migrate existing schemas
	Elixir’s aggressiveness in defining new tables and columns
 implicitly based on DSL statements in the
 Entity classes can make it challenging to
 use with an existing database. In such a situation, it’s important
 to be aware of what schema changes are implied by each change to
 the Entity classes and/or to have access to
 a schema migration tool that can assist in migrating existing
 databases.

	Flexibility
	Raw SQLAlchemy’s win over Elixir is much more limited than
 its win over SqlSoup, mainly because Elixir provides convenient
 ways to “drop into” the underlying SQLAlchemy tables, mappers, and
 classes. SQLAlchemy still wins on flexibility over Elixir,
 however, as it is, in fact, necessary to drop into regular
 SQLAlchemy to model some things when using Elixir.

Chapter 11. Other SQLAlchemy Extensions

SQLAlchemy provides an extremely powerful method of defining schemas,
 performing queries, and manipulating data, both at the ORM level and at the
 SQL level. SQLAlchemy also provides
 several extensions to this core behavior. We have already seen one of these
 extensions, SqlSoup, discussed in Chapter 10. One of the
 nice things about the SQLAlchemy extensions package is that it provides a
 “proving ground” for functionality that may eventually make it into the core
 SQLAlchemy packages. When this occurs (the functionality of an extension is
 absorbed into the core feature set of SQLAlchemy), the extension is
 deprecated and eventually removed.
This chapter discusses the two remaining nondeprecated extensions
 available in SQLAlchemy 0.4, sqlalchemy.ext.associationproxy and sqlalchemy.ext.orderinglist. We will also
 describe the deprecated extensions, focusing on how to achieve the same
 functionality using “core” SQLAlchemy.
Association Proxy

The association proxy extension allows our mapped classes to have attributes that
 are proxied from related objects. One place where this is useful is when
 we have two tables related via an association table that contains extra
 information in addition to linking the two tables. For instance, suppose
 we have a database containing the following schema:
user_table = Table(
 'user', metadata,
 Column('id', Integer, primary_key=True),
 Column('user_name', String(255), unique=True),
 Column('password', String(255)))

brand_table = Table(
 'brand', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(255)))

sales_rep_table = Table(
 'sales_rep', metadata,
Column('brand_id', None, ForeignKey('brand.id'), primary_key=True),
Column('user_id', None, ForeignKey('user.id'), primary_key=True),
 Column('commission_pct', Integer, default=0))
In this case, we might want to create User,
 Brand, and SalesRep classes
 to represent our domain objects. The basic mapper setup would then be the
 following:
class User(object): pass
class Brand(object): pass
class SalesRep(object): pass

mapper(User, user_table, properties=dict(
 sales_rep=relation(SalesRep, backref='user', uselist=False)))
mapper(Brand, brand_table, properties=dict(
 sales_reps=relation(SalesRep, backref='brand')))
mapper(SalesRep, sales_rep_table)
In such a case, we have completely mapped the data in our schema to
 the object model. But what if we want to have a property on the
 Brand object that lists all of the
 Users who are SalesReps for
 that Brand? One way we could do this in “base”
 SQLAlchemy is by using a property in the Brand
 class:
class Brand(object):
 @property
 def users(self):
 return [sr.user for sr in self.sales_reps]
This is not very convenient, however. It doesn’t allow us to append
 to or remove from the list of users, for instance. The association proxy
 provides a convenient solution to this problem. Using the association_proxy()
 function, we can add the users property much more
 simply:
from sqlalchemy.ext.associationproxy import association_proxy

class Brand(object):
 users=association_proxy('sales_reps', 'user')
If we want to keep our domain object definition code ignorant of
 SQLAlchemy, we can even move the association_proxy() call
 outside our class into the mapper configuration:
mapper(Brand, brand_table, properties=dict(
 sales_reps=relation(SalesRep, backref='brand')))
Brand.users=association_proxy('sales_reps', 'user')
We can even append onto the users attribute to
 add new SalesReps. To enable this functionality,
 however, we need to create some sensible constructors for our mapped
 objects:
class User(object):
 def __init__(self, user_name=None, password=None):
 self.user_name=user_name
 self.password=password

class Brand(object):
 def __init__(self, name=None):
 self.name = name

class SalesRep(object):
 def __init__(self, user=None, brand=None, commission_pct=0):
 self.user = user
 self.brand = brand
 self.commission_pct=commission_pct
Now, we can populate the database and add a user as a sales rep to a
 brand:
>>> Session = sessionmaker(bind=engine)
>>> engine.echo = True
>>> session = Session()
>>>
>>> b = Brand('Cool Clothing')
>>> session.save(b)
>>>
>>> u = User('rick', 'foo')
>>> session.save(u)
>>>
>>> metadata.bind.echo = True
>>> session.flush()
2007-11-23 12:48:28,304 INFO sqlalchemy.engine.base.Engine.0x..90
... BEGIN
2007-11-23 12:48:28,305 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO user (user_name, password) VALUES (?, ?)
2007-11-23 12:48:28,306 INFO sqlalchemy.engine.base.Engine.0x..90
... ['rick', 'foo']
2007-11-23 12:48:28,308 INFO sqlalchemy.engine.base.Engine.0x..90
... INSERT INTO brand (name) VALUES (?)
2007-11-23 12:48:28,308 INFO sqlalchemy.engine.base.Engine.0x..90
... ['Cool Clothing']
>>> b.users
2007-11-23 12:48:31,317 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT sales_rep.brand_id AS sales_rep_brand_id,
... sales_rep.user_id AS sales_rep_user_id, sales_rep.commission_pct
... AS sales_rep_commission_pct
FROM sales_rep
WHERE ? = sales_rep.brand_id ORDER BY sales_rep.oid
2007-11-23 12:48:31,318 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
[]
>>> b.users.append(u)
2007-11-23 12:48:33,668 INFO sqlalchemy.engine.base.Engine.0x..90
... SELECT sales_rep.brand_id AS sales_rep_brand_id,
... sales_rep.user_id AS sales_rep_user_id, sales_rep.commission_pct
... AS sales_rep_commission_pct
FROM sales_rep
WHERE ? = sales_rep.user_id ORDER BY sales_rep.oid
2007-11-23 12:48:33,669 INFO sqlalchemy.engine.base.Engine.0x..90
... [1]
>>> b.users
[<__main__.User object at 0xbdc710>]
>>> b.sales_reps
[<__main__.SalesRep object at 0xbe4610>]
>>> b.sales_reps[0].commission_pct
0
>>> session.flush()
2008-01-27 21:12:35,991 INFO sqlalchemy.engine.base.Engine.0x..50
... INSERT INTO sales_rep (brand_id, user_id, commission_pct) VALUES
... (?, ?, ?)
2008-01-27 21:12:35,994 INFO sqlalchemy.engine.base.Engine.0x..50
... [1, 1, 0]
This works because the association proxy extension will
 automatically create the intermediary SalesRep
 object by calling its constructor with a single positional argument, the
 User. To override this creation behavior, you can
 supply a creation function in the creator parameter. For instance, if we wanted
 to give sales reps added in this manner a commission percentage of 10%, we
 could define the proxy as follows:
Brand.users=association_proxy(
 'sales_reps', 'user',
 creator=lambda u:SalesRep(user=u, commission_pct=10))
Although accessing the underlying user attribute
 of the sales_reps property is useful, what if we prefer
 dictionary-style access? associationproxy supports this as well. For
 instance, suppose we want a property on Brand that
 is a dictionary keyed by User containing the
 commission_pct values. We can implement this as
 follows. (Note that dictionary-style association proxy creation functions
 take two positional parameters: the key and value being set.)
from sqlalchemy.orm.collections import attribute_mapped_collection

reps_by_user_class=attribute_mapped_collection('user')

mapper(Brand, brand_table, properties=dict(
 sales_reps_by_user=relation(
 SalesRep, backref='brand',
 collection_class=reps_by_user_class)))
Brand.commissions=association_proxy(
 'sales_reps_by_user', 'commission_pct',
creator=lambda key,value: SalesRep(user=key, commission_pct=value))
Now, we can conveniently access the commission values by
 user:
>>> session.clear()
>>> session.bind.echo = False
>>>
>>> b = session.get(Brand, 1)
>>> u = session.get(User, 1)
>>> b.commissions[u] = 20
>>> session.flush()
>>> session.clear()
>>>
>>> b = session.get(Brand, 1)
>>> u = session.get(User, 1)
>>> print u.user_name
rick
>>> print b.commissions[u]
20
Note that the proxy and the original relation are automatically kept
 synchronized by SQLAlchemy:
>>> print b.sales_reps_by_user[u]
<__main__.SalesRep object at 0xbf2750>
>>> print b.sales_reps_by_user[u].commission_pct
20

Ordering List

A common pattern in many applications is the use of ordered
 collections. For instance, consider a simple to-do list application with
 multiple lists, each containing an (ordered) set of items. We might start
 with the following schema:
todo_list_table = Table(
 'todo_list', metadata,
 Column('name', Unicode(255), primary_key=True))

todo_item_table = Table(
 'todo_item', metadata,
 Column('id', Integer, primary_key=True),
 Column('list_name', None, ForeignKey('todo_list.name')),
 Column('list_position', Integer),
 Column('value', Unicode))
SQLAlchemy provides nice support for mapping the list items to a
 property and sorting them via the order_by parameter:
class TodoList(object):
 def __init__(self, name):
 self.name = name
 def __repr__(self):
 return '<TodoList %s>' % self.name

class TodoItem(object):
 def __init__(self, value, position=None):
 self.value = value
 self.list_position = position
 def __repr__(self):
 return '<%s: %s>' % (self.list_position, self.value)

mapper(TodoList, todo_list, properties=dict(
 items=relation(TodoItem,
 backref='list',
 order_by=[todo_item_table.c.list_position])))
mapper(TodoItem, todo_item)
We can now create a list with some items:
>>> lst = TodoList('list1')
>>> session.save(lst)
>>> lst.items = [TodoItem('Buy groceries', 0),
... TodoItem('Do laundry', 1)]
>>> session.flush()
>>> session.clear()
>>>
>>> lst = session.get(TodoList, 'list1')
>>> print lst.items
[<0: Buy groceries>, <1: Do laundry>]
This approach is certainly workable, but it requires you to manually
 keep track of the positions of all the list items. For instance, suppose
 we wanted to mow the lawn between
 buying groceries and doing laundry. To do this using base SQLAlchemy, we
 would need to do something like the following:
>>> lst.items.insert(1, TodoItem('Mow lawn'))
>>> for pos, it in enumerate(lst.items):
... it.list_position = pos
Rather than “fixing up” the list after each insert or remove
 operation, we can instead use orderinglist to keep track of the
 list_position attribute automatically:
>>> from sqlalchemy.ext.orderinglist import ordering_list
>>>
>>> mapper(TodoList, todo_list_table, properties=dict(
... items=relation(TodoItem,
... backref='list',
... order_by=[todo_item_table.c.list_position],
... collection_class
... =ordering_list('list_position'))))
<sqlalchemy.orm.mapper.Mapper object at 0xbcb850>
>>> mapper(TodoItem, todo_item_table)
<sqlalchemy.orm.mapper.Mapper object at 0xbcb710>
>>>
>>> session.clear()
>>> lst = session.get(TodoList, 'list1')
>>> print lst.items
[<0: Buy groceries>, <1: Mow lawn>, <2: Do laundry>]
>>> del lst.items[1]
>>> print lst.items
[<0: Buy groceries>, <1: Do laundry>]
>>> session.flush()
We can also customize the ordering_list() call
 either by providing a count_from
 argument (to use nonzero-based lists) or by providing an ordering_func argument that maps a position in
 a list to a value to store in the ordering attribute.
In some cases, you may also want to rearrange the entire list
 (rather than applying individual insertions and deletions). For such
 situations, ordering_list() provides the _reorder() method, which
 will generate new position values for every element in the list.

Deprecated Extensions

As mentioned previously, SQLAlchemy extensions function as a sort of
 “proving ground” for new functionality that may someday “graduate” into
 SQLAlchemy proper. There are several such extensions that have graduated
 in the transition from the SQLAlchemy 0.3.x release series to the 0.4.x
 release series. These extensions are briefly described here:
	sqlalchemy.ext.selectresults
	The sqlalchemy.ext.selectresults
 extension provided generative query support for ORM queries.
 Since version 0.3.6, this support has been built in to the native
 Query class. sqlalchemy.ext.selectresults also
 provides a MapperExtension that adds
 generative query behavior on a per-mapper basis.

	sqlalchemy.ext.sessioncontext
	The sqlalchemy.ext.sessioncontext extension provided contextual session support. This
 has been deprecated in favor of the scoped_session()
 support in core SQLAlchemy.

	sqlalchemy.ext.assignmapper
	The sqlalchemy.ext.assignmapper extension provided the ability to automatically save
 mapped objects and additional instrumentation on mapped classes
 above what the mapper() function
 normally does. This has been deprecated in favor of the Session.mapper()
 function available with contextual sessions created by scoped_session() in
 core SQLAlchemy.

	sqlalchemy.ext.activemapper
	The sqlalchemy.ext.activemapper extension
 provided a declarative layer implementing the active
 record pattern on SQLAlchemy. This has been deprecated in favor of
 the external package Elixir (Chapter 9), a more
 comprehensive declarative layer.

Index

Symbols
	!= comparison operator, Operators and functions in WHERE clauses
	& bitwise logical operator, Operators and functions in WHERE clauses
	1:1 relationships, Basic Relationships, 1:1 relations
	1:N relationships, Basic Relationships
	< comparison operator, Operators and functions in WHERE clauses
	<= comparison operator, Operators and functions in WHERE clauses
	== comparison operator, Operators and functions in WHERE clauses
	> comparison operator, Operators and functions in WHERE clauses
	>= comparison operator, Operators and functions in WHERE clauses
	? (question mark) as a name value, SQL Expression Language
	| bitwise logical operator, Operators and functions in WHERE clauses
	~ bitwise logical operator, Operators and functions in WHERE clauses

A
	active defaults, Defaults
	“active record” patterns, The data mapper pattern
	acts_as_versioned() statement, Versioned Extension
	adds() decorator, Using custom collections in relations
	add_column() method, Customizing the Select Statement in ORM Queries, Other Query Methods
	add_entity() method, Customizing the Select Statement in ORM Queries, Other Query Methods
	after_commit() (SessionExtension class), Extending Sessions
	after_delete() hook (MapperExtension), Extending Mappers
	after_flush() (SessionExtension class), Extending Sessions
	after_flush_postexec() (SessionExtension
 class), Extending Sessions
	after_insert() hook (MapperExtension), Extending Mappers
	@after_revert
 decorator, Versioned Extension
	after_update() hook (MapperExtension), Extending Mappers
	alias() method, Using aliases
	aliases, Using aliases
	all parameter, Cascading Changes to Related Objects
	all() method, Querying at the ORM Level, Other Query Methods
	allow_column_override parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	allow_null_pks parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	ALTER TABLE command, Foreign keys
	always_refresh parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	AND boolean operator, Operators and functions in WHERE clauses
	any() method, Querying at the ORM Level
	append() function, Updating Objects in the Session
	appender() decorator, Using custom collections in relations
	append_result() hook (MapperExtension), Extending Mappers
	application-specific custom types, Application-Specific Custom Types
	apply_avg() method, Other Query Methods
	apply_labels() method, Using the “generative” query interface
	apply_max() method, Other Query Methods
	apply_min() method, Other Query Methods
	apply_sum() method, Other Query Methods
	arbitrary selectables, mapping, Mapping Arbitrary Selectables
	architecture (SQLAlchemy), SQLAlchemy Architecture, Object Relational Mapper (ORM)
	*args argument
		Column constructor, Column Definitions
	Table constructor, Defining Tables

	arithmetic operators, Operators and functions in WHERE clauses
	asc() method, Querying at the ORM Level
	AssertionPool pool type (sqlalchemy.pool), Connection Pooling
	associable() function, Associable Extension
	association proxys, Association Proxy
	as_scalar() method, Using the “generative” query interface
	attribute Elixir keyword argument, Fields and Properties
	attribute-based syntax (Elixir), Attribute-based syntax
	attribute_mapped_collection() method, Using custom collections in relations
	autoflush argument (sessionmaker() method), Creating a Session
	autoflush feature, flushing sessions, The unit of work pattern
	autoflush() method, Other Query Methods
	autoincrement argument (Column constructor), Column Definitions
	autoload parameter, MetaData Management
		Table object, Defining Tables

	autoload_with argument (Table), Defining Tables
	AVG() function, Other Query Methods
	avg() method, Other Query Methods

B
	backref() function, Using BackRefs, Cascading Changes to Related Objects
		parameters, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters

	backrefs, Using BackRefs
	batch parameter (mapper() function), Other mapper⁠(⁠ ⁠) Parameters
	before_commit() (SessionExtension class), Extending Sessions
	before_delete() hook (MapperExtension), Extending Mappers
	before_flush() (SessionExtension class), Extending Sessions
	before_insert() hook (MapperExtension), Extending Mappers
	before_update() hook (MapperExtension), Extending Mappers
	begin() method, Flushing, Committing, and Rolling Back Session Changes
	belongs_to() statement, DSL syntax
	between() method, Querying at the ORM Level
		ClauseElement, Operators and functions in WHERE clauses

	bind argument
		MetaData.reflect() method, Table reflection
	sessionmaker() method, Creating a Session

	bind parameters, Getting Started with MetaData, Operators and functions in WHERE clauses
		custom, using, Using custom bind parameters
	MetaData methods and, Create/drop MetaData and schema objects
	select(), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method

	bind() method, Using SqlSoup for ORM-Style Queries and Updates
	bind=None parameter (text() function), Using literal text in queries
	bindparam() method, Using custom bind parameters, Using literal text in queries
	binds argument (sessionmaker() method), Creating a Session
	boolean operators, Operators and functions in WHERE clauses
	bound MetaData, Binding MetaData
	bounded constructors, Getting Started with MetaData
	built-in type TypeEngine objects, Built-in Types
	Byer, Mike, What Is SQLAlchemy

C
	c attribute (mapped class), SQLAlchemy Philosophy
	.c objects, SQL Expression Language
	cascade parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	CheckConstraint, CHECK constraints
	checkfirst parameter (MetaData), Create/drop MetaData and schema objects
	CheeseShop, Installing setup tools
	ClauseElement objects, Operators and functions in WHERE clauses
	clear() method, Using SqlSoup for ORM-Style Queries and Updates
	clear_mappers() function, Basic Object Mapping
	close() method, Result set objects, Other Session Methods
		ResultProxy object, Database Connections and ResultProxys

	collection_class parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters, Using custom collections in relations
	colname Elixir keyword argument, Fields and Properties
	colname parameter (ManyToOne), Attribute-based syntax
	Column class, Defining Tables
		definitions, Column Definitions

	column parameter (ForeignKey constructor), Foreign keys
	column() method, Using the “generative” query interface
	columns parameter (ForeignKeyConstraint
 class), Foreign keys
	columns=None parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	column_kwargs parameter (ManyToOne), Attribute-based syntax
	column_mapped_collections() method, Using custom collections in relations
	column_prefix keyword, Customizing the name of the mapped column
	column_prefix parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	column_property() function, Mapping subqueries, Elixir deferred properties
	commit() method, Flushing, Committing, and Rolling Back Session Changes
	compare_with() method, Versioned Extension
	comparison operators, Operators and functions in WHERE clauses
	__composite_values__()
 method, Mapping composite values
	concat() method, Querying at the ORM Level
	concrete parameter (mapper() function), Other mapper⁠(⁠ ⁠) Parameters
	concrete table inheritance, Overview of Inheritance Mapping
		mapping, Concrete Table Inheritance Mapping, Joined Table Inheritance Mapping

	configure() method (Session), Creating a Session
	connect() method, Connection pooling, Database Connections and ResultProxys, Connection Pooling
	Connection object, Database Connections and ResultProxys
	connection pools, Connection pooling, Engines and MetaData, Connection Pooling, MetaData
		Engine class and, Engines and Connectables

	connect_args parameter (create_engine() function), Engines and Connectables
	Constraint class, Constraints, Defaults
	constraint parameter (ForeignKey
 constructor), Foreign keys
	constraint_kwargs parameter (ManyToOne), Attribute-based syntax
	contains() method, Querying at the ORM Level
	contains_alias() method, ORM Querying with Joins
	contains_eager() method, ORM Querying with Joins, Customizing the Select Statement in ORM Queries
	contextual sessions, Contextual or Thread-Local Sessions
	convert_bind_param() method, Implementing a TypeDecorator
	convert_result_value(), Implementing a TypeDecorator
	convert_unicode parameter (create_engine()
 function), Engines and Connectables
	correlate() method, Using the “generative” query interface, Correlated versus uncorrelated subqueries
	correlate=True parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	COUNT() function, Other Query Methods
	count() method, Using the “generative” query interface, Other Query Methods
	CREATE TABLE statement, Foreign keys
	create() method, Defining Tables, Type System Overview
		MetaData/schema objects and, Create/drop MetaData and schema objects

	create_all() method, Create/drop MetaData and schema objects, Type System Overview
	create_engine() function, Engine, Engines and Connectables
		configuring logging and, Configuring SQLAlchemy Logging

	create_instance() hook (MapperExtension), Extending Mappers
	creator parameter (create_engine() function), Engines and Connectables

D
	data manipulation language (DML), Inserts, Updates, and Deletes
	data mapper pattern, Design Concepts in the ORM
	database drivers, installing, Installing Some Database Drivers
	datetime.now method, Active defaults
	DB-API interface, What Is SQLAlchemy
	DB2 database, What Is SQLAlchemy
	decorators, Using custom collections in relations
	default argument (Column constructor), Column Definitions
		insert defaults and, Active defaults

	defaults, Defaults, Defining Indexes
	defer() function, Eager versus deferred loading
	defer() method, ORM Querying with Joins
	deferred Elixir keyword argument, Fields and Properties
	deferred() function, Eager versus deferred loading
	delete parameter, Cascading Changes to Related Objects
	DELETE statements, Delete Statements
	delete() function, Performing Queries and Updates
		SqlSoup, using, Using SqlSoup for ORM-Style Queries and Updates

	delete() method, Delete Statements, Other Session Methods, Querying Using Elixir, Using SqlSoup for ORM-Style Queries and Updates
		sessions, deleting objects from, Deleting Objects from the Session

	delete-orphan, Cascading Changes to Related Objects
	desc() method, Querying at the ORM Level
	Detached state (Session), Saving Objects to the Session
	dialect management (SQL), SQL dialect management
	dialect-specific types, Dialect-Specific Types
	distinct() method, Ordering and grouping results, returning distinct
 values, Using the “generative” query interface, Querying at the ORM Level, Other Query Methods
		ClauseElement object, Operators and functions in WHERE clauses

	distinct=False parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	DML (data manipulation language), Inserts, Updates, and Deletes
	domain specific language (DSL) syntax, Using Elixir, DSL syntax
	drivers, installing, Installing Some Database Drivers
	drop_all() method, Create/drop MetaData and schema objects
	DSL (domain specific language) syntax, Using Elixir, DSL syntax
	dynamic_loader() method, Updating Objects in the Session

E
	eagerload() method, ORM Querying with Joins
	eagerload_all() method, ORM Querying with Joins
	Easyinstall, Getting Started
	easy_install tools, Installing setup tools
	echo argument
		configuring logging and, Configuring SQLAlchemy Logging

	echo argument (create_engine() function), Engines and Connectables
	echo_pool argument
		configuring logging and, Configuring SQLAlchemy Logging
	create_engine() function), Engines and Connectables

	echo_uow argument (sessionmaker() method), Creating a Session
	echo_uow flag (create_engine() function), Configuring SQLAlchemy Logging
	EGG files, Installing setup tools
	Elixir, Elixir: A Declarative Extension to SQLAlchemy, Versioned Extension
		extensions, Elixir Extensions, Versioned Extension
	inheritance, Inheritance
	installing/using, Installing Elixir
	querying using, Querying Using Elixir
	relations, Relations

	elixir.ext.encrypted extension, Encrypted Extension
	elixir.ext.versioned extension, Versioned Extension
	__emulates__ class
 attribute, Using custom collections in relations
	encoding parameter (create_engine()
 function), Engines and Connectables
	endswitch() method, Querying at the ORM Level
	endswith() method (ClauseElement), Operators and functions in WHERE clauses
	Engine class, Engine, MetaData Management, Object Relational Mapper (ORM), Engines and MetaData, Adapt Tables from one MetaData to another
		connection pools, Connection pooling
	managing connections, Engines and Connectables, MetaData

	Engine pools
		connection pools, Connection Pooling

	entities, The Object/Relational “Impedance Mismatch”
	entity_name parameter (mapper() function), Other mapper⁠(⁠ ⁠) Parameters
	__eq__() method, Mapping composite values
	EXCEPT clause, Set operations (UNION, INTERSECT, EXCEPT)
	except_() function, Set operations (UNION, INTERSECT, EXCEPT)
	except_() method, Using the “generative” query interface
	except_all() function, Set operations (UNION, INTERSECT, EXCEPT)
	except_all() method, Using the “generative” query interface
	exclude_properties, Using include_properties and exclude_properties
	exclude_properties parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	execute() method, Database Connections and ResultProxys, Inserts, Updates, and Deletes, Other Session Methods
	executemany() method, Insert Statements
	expire() method, Other Session Methods, Querying Using Elixir
	explicit execution, Getting Started with MetaData
	explicit sequences, creating, Creating Explicit Sequences
	expression language (SQL), SQL Expression Language, Object Relational Mapper (ORM)
	expression-builders (Pythonic), What Is SQLAlchemy
	expunge parameter, Cascading Changes to Related Objects
	expunge() method, Other Session Methods, Querying Using Elixir
	extending session, Extending Sessions
	extension argument (sessionmaker() method), Creating a Session
	extension parameter (mapper() function), Other mapper⁠(⁠ ⁠) Parameters, Extending Mappers
	extension() method, ORM Querying with Joins
	ex_setup.py file, Installing setup tools

F
	fetchall() method, Result set objects
		ResultProxy), Database Connections and ResultProxys

	fetchmany() method, Result set objects
	fetchone() method, Result set objects
		ResultProxy, Database Connections and ResultProxys

	Field() class, Fields and Properties
	filter() method, Mapping Objects to Tables, Querying at the ORM Level, Other Query Methods
		querying with joins, ORM Querying with Joins

	filter_by() method, Object Relational Mapper (ORM), Mapping Objects to Tables, Querying at the ORM Level, Other Query Methods, Querying Using Elixir
		querying with joins, ORM Querying with Joins

	Firebird database, Other supported drivers
	first() (Query object), Querying at the ORM Level
	first() method, Other Query Methods
	flush() function, Mapping Objects to Tables
		saving objects to sessions and, Saving Objects to the Session

	flush() method, Flushing, Committing, and Rolling Back Session Changes, Querying Using Elixir, Using SqlSoup for ORM-Style Queries and Updates
	for+update=False parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	foreign keys, The Object/Relational “Impedance Mismatch”
	ForeignKey constructor, Foreign keys
	ForeignKeyConstraint class, Foreign keys
	foreign_keys parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	for_fields parameter, Encrypted Extension
	for_update parameter (Sequence constructor), Creating Explicit Sequences
	from_obj=[] parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method, Subqueries
	from_statement() method, Customizing the Select Statement in ORM Queries, Other Query Methods

G
	“generative”
 interface, Using the “generative” query interface
	get() (Query object), Querying at the ORM Level
	get() hook (MapperExtension), Extending Mappers
	get() method, Mapping Objects to Tables, Other Session Methods, Other Query Methods, Querying Using Elixir
		Elixir, querying using and, Querying Using Elixir

	__getattr__() method, Using SqlSoup for ORM-Style Queries and Updates
	__get
 attr__() method (ResultProxy), Database Connections and ResultProxys
	__getitem__()
 method, Other Query Methods
	get_as_of() method, Versioned Extension
	get_by() method, Querying Using Elixir
	get_indent() function, Contextual or Thread-Local Sessions
	get_session() hook (MapperExtension), Extending Mappers
	GROUP BY clause, Ordering and grouping results, returning distinct
 values
	group_by() method, Using the “generative” query interface, Other Query Methods
	group_by=Name parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method

H
	hand-generated SQL versus SQLAlchemy generation
 layers, SQL Expression Language
	has() method, Querying at the ORM Level
	has_and_belongs_to_many() statement, DSL syntax
	has_field() method, Fields and Properties
	has_field() statement, DSL syntax
	has_many() method, DSL syntax
	has_one() statement, DSL syntax
	HAVING clause, Ordering and grouping results, returning distinct
 values, Other Query Methods
	having() method, Using the “generative” query interface, Other Query Methods
	having=None parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	horizontal partitioning, Horizontal Partitioning

I
	identity_map attribute, Other Session Methods
	idiomatically Python (Pythonic), What Is SQLAlchemy
	IF EXISTS clause, Create/drop MetaData and schema objects
	IF NOT EXISTS clause, Create/drop MetaData and schema objects
	“impedance
 mismatch” (object/relational), The Object/Relational “Impedance Mismatch”
	implicit execution, Getting Started with MetaData
	IN clause, Embedding subqueries in an IN clause
	include_columns argument (Table), Defining Tables
	include_properties parameter, Using include_properties and exclude_properties
		mapper() function, Other mapper⁠(⁠ ⁠) Parameters

	increment parameter (Sequence constructor), Creating Explicit Sequences
	index argument (Column constructor), Column Definitions
	Index object, The Index object
	indexes, Defining Indexes
	Informix database, Other supported drivers
	ingerits parameter (mapper() function), Other mapper⁠(⁠ ⁠) Parameters
	inheritance mapping, Inheritance Mapping, Relations and Inheritance
		concrete table, Concrete Table Inheritance Mapping, Joined Table Inheritance Mapping
	joined table, Joined Table Inheritance Mapping, Relations and Inheritance

	inherit_foreign_keys parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	inhert_condition parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	init_failed() hook (MapperExtension), Extending Mappers
	init_instance() hook (MapperExtension), Extending Mappers
	injection attacks (SQL), What Is SQLAlchemy
	insert defaults, Active defaults
	INSERT statements, Performing Queries and Updates, Insert Statements
	insert() function, Insert Statements
		SqlSoup, using, Using SqlSoup for ORM-Style Queries and Updates

	installation (SQLAlchemy), Installing SQLAlchemy, SQLAlchemy Tutorial
	instances() method, Other Query Methods
	instrument_class() hook (MapperExtension), Extending Mappers
	internally_instrumented() decorator, Using custom collections in relations
	INTERSECT clause, Set operations (UNION, INTERSECT, EXCEPT)
	intersect() function, Set operations (UNION, INTERSECT, EXCEPT)
	intersect() method, Using the “generative” query interface
	intersect_all() method, Using the “generative” query interface
	inverse parameter, Attribute-based syntax
		OneToMany), Attribute-based syntax

	in_() method, Querying at the ORM Level
		ClauseElement, Operators and functions in WHERE clauses, Subqueries

	items() method (ResultProxy), Database Connections and ResultProxys
	iterator() decorator, Using custom collections in relations
	__iter__()
 method, Result set objects, Other Query Methods
		ResultProxy), Database Connections and ResultProxys

J
	join() function, Object Relational Mapper (ORM)
	join() method, Using the “generative” query interface, Joining selectables, Other Query Methods, Using SqlSoup for ORM-Style Queries and Updates
		SqlSoup and, Joins with SqlSoup

	joined table inheritance, Overview of Inheritance Mapping
	joined table inheritance mapping, Joined Table Inheritance Mapping, Relations and Inheritance
	join_depth parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters

K
	key argument (Column constructor), Column Definitions
	key method (ResultProxy), Database Connections and ResultProxys
	keys() method (ResultProxy), Database Connections and ResultProxys

L
	label() method, Using the “generative” query interface
		ClauseElement), Operators and functions in WHERE clauses

	lazy parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters, Associable Extension
	lazyload() method, ORM Querying with Joins
	LEFT OUTER JOIN, Customizing the Select Statement in ORM Queries
	library logging, Configuring SQLAlchemy Logging
	like() method, Querying at the ORM Level
		ClauseElement, Operators and functions in WHERE clauses

	LIMIT clause, Limiting results returned
	LIMIT modifier, Other Query Methods
	limit() method, Using the “generative” query interface, Other Query Methods
	limit=None parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	literal text in queries, Using literal text in queries
	load() hook (MapperExtension), Extending Mappers
	load() method, Other Session Methods, Other Query Methods
	local_side parameter (ManyToMany), Attribute-based syntax

M
	M:N relationships, Basic Relationships, 1:1 relations
		backrefs and, Using BackRefs

	many-to-many (M:N) relationships, M:N relations
		backrefs, Using BackRefs

	ManyToMany object, Attribute-based syntax
	ManyToOne object, Attribute-based syntax
	map() method, Using SqlSoup for ORM-Style Queries and Updates
	mapped classes, SQLAlchemy Philosophy
	MappedProduct class, Using SqlSoup for ORM-Style Queries and Updates
	mapped_collection() method, Using custom collections in relations
	mapper patterns, The data mapper pattern
	mapper() function, Basic Object Mapping, ORM Querying with Joins
		extending mappers and, Extending Mappers
	inheritance hierarchy and, Single Table Inheritance Mapping
	parameters, Other mapper⁠(⁠ ⁠) Parameters

	MapperExtension class, Extending Mappers, Extending Sessions
	MAX() function, Other Query Methods
	max() method, Other Query Methods
	max_overflow parameter (create_engine()
 function), Engines and Connectables
	merge parameter, Cascading Changes to Related Objects
	merge() method, Other Session Methods, Querying Using Elixir
	metadata argument
		Table constructor, Defining Tables

	MetaData class, Engine, MetaData Management, Engines and MetaData, MetaData, Adapt Tables from one MetaData to another
		connecting to databases/tables, Connecting to the Database and Creating Some Tables
	object mappers, declaring, Declaring Object Mappers
	ORM and, Object Relational Mapper (ORM)
	tables, defining, Defining Tables, Column Definitions
	TypeEngine objects and, Type System Overview

	metadata.bind.echo property, Performing Queries and Updates
	MIN() function, Other Query Methods
	min() method, Other Query Methods
	module parameter (create_engine() function), Engines and Connectables
	mustexist argument (Table), Defining Tables
	MySQL, What Is SQLAlchemy
		drivers, installing, Other supported drivers

N
	name argument
		Column constructor, Column Definitions
	Table constructor, Defining Tables

	name parameter
		ForeignKey constructor, Foreign keys
	Sequence constructor, Creating Explicit Sequences

	name parameter (Constraint class), Constraints
	“named colon”
 format, Using literal text in queries
	nested loops, The Object/Relational “Impedance Mismatch”
	__ne__() method, Mapping composite values
	noload() method, ORM Querying with Joins
	nonpolymorphic inheritance, Relations and Inheritance
	non_primary parameter (mapper() function), Other mapper⁠(⁠ ⁠) Parameters
	NOT boolean operator, Operators and functions in WHERE clauses
	nullable argument (Column constructor), Column Definitions
	NullPool pool type (sqlalchemy.pool), Connection Pooling

O
	object-relational mapper (see ORM)
	object/relational “impedance mismatch”, The Object/Relational “Impedance Mismatch”, SQLAlchemy Philosophy
	objects
		tables, mapping to, Mapping Objects to Tables

	OFFSET clause, Limiting results returned
	offset() method, Using the “generative” query interface, Other Query Methods
	offset=None parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	“oid” (object ID), Engines and Connectables
	ON clause, Joining selectables
	ON DELETE CASCADE statement, Cascading Changes to Related Objects
	ON UPDATE clause, Foreign keys
	ondelete parameter, Cascading Changes to Related Objects
		ForeignKey constructor, Foreign keys

	ondelete parameter (ManyToOne), Attribute-based syntax
	one() method, Other Query Methods
		Query object, Querying at the ORM Level

	OneToMany object, Attribute-based syntax
	OneToOne object, Attribute-based syntax
	only argument (MetaData.reflect()
 method), Table reflection
	onupdate argument
		Column constructor, Column Definitions

	onupdate parameter
		ForeignKey constructor, Foreign keys

	onupdate parameter (ManyToOne), Attribute-based syntax
	on_link() decorator, Using custom collections in relations
	op() method (ClauseElement), Operators and functions in WHERE clauses
	option() method, Extending Mappers
	optional parameter (Sequence constructor), Creating Explicit Sequences
	options() method, ORM Querying with Joins, Other Query Methods
	OR boolean operator, Operators and functions in WHERE clauses
	Oracle, What Is SQLAlchemy
		drivers, installing, Other supported drivers

	ORDER BY clause, Ordering and grouping results, returning distinct
 values
	ordered collections, Ordering List
	ordering_list() method, Ordering List
	order_by parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
		ManyToMany), Attribute-based syntax
	mapper() function, Other mapper⁠(⁠ ⁠) Parameters
	OneToMany), Attribute-based syntax

	order_by() method, Using the “generative” query interface, Other Query Methods
	order_by=None parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	ORM (object-relation mapper)
		extending mappers, Extending Mappers, ORM Partitioning Strategies

	ORM (object-relational mapper), What Is SQLAlchemy, Object Relational Mapper (ORM), Object Relational Mapper (ORM)
		(see also mapper)
	declaring, Declaring Object Mappers, Declaring Relationships Between Mappers
	design concepts in, Design Concepts in the ORM
	MetaData object and, MetaData Operations
	partitioning strategies, ORM Partitioning Strategies
	property mapping, customizing, Customizing Property Mapping
	querying, Querying at the ORM Level, Contextual or Thread-Local Sessions
	querying and updating, Querying and Updating at the ORM
 Level, Using Contextual Sessions with Mappers and Classes
	relationships, declaring, Declaring Relationships Between Mappers, Extending Mappers
	self-referential mappers, using, Using a Self-Referential Mapper

	ORM object-relational mapper, Building an Object Mapper, Horizontal Partitioning
	outerjoin() method, Using the “generative” query interface, Joining selectables, Other Query Methods
	owner argument (Table), Defining Tables

P
	params() method, Other Query Methods
	passive defaults, Passive defaults
	PassiveDefault instances, Passive defaults
	passive_deletes parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	Pending objects, Updating Objects in the Session
	Pending state (Session), Saving Objects to the Session
	Persistent object, Updating Objects in the Session
	Persistent state (Session), Saving Objects to the Session
	PIL (Python Imaging Library), Types System
	“plain old Python
 objects” (see POPOs)
	plural_name argument (associable()
 function), Associable Extension
	polymorphic
		class, Relations and Inheritance
	identity of rows, Single Table Inheritance Mapping

	polymorphic_fetch parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	polymorphic_identity argument, Single Table Inheritance Mapping
		mapper() function, Other mapper⁠(⁠ ⁠) Parameters

	polymorphic_on argument, Single Table Inheritance Mapping
	polymorphic_on parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	polymorphic_union() function, Concrete Table Inheritance Mapping
	pool parameter (create_engine() function), Engines and Connectables
	pool.manage() function, Connection Pooling
	pool.manage() method, Connection Pooling
	poolclass parameter (create_engine()
 function), Engines and Connectables
	pools (connections), Connection pooling
		(see also connection pools)

	pool_recycle parameter (create_engine()
 function), Engines and Connectables
	pool_size parameter (create_engine()
 function), Engines and Connectables
	pool_timeout parameter (create_engine()
 function), Engines and Connectables
	POPOs (plain old Python objects), What Is SQLAlchemy
	populate_existing() method, Other Query Methods
	populate_instance() hook (MapperExtension), Extending Mappers
	PostgreSQL, What Is SQLAlchemy
		drivers, installing, Other supported drivers
	passive defaults, support for, Passive defaults

	post_update parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	prefixes=None parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	prefix_with() method, Using the “generative” query interface
	PrimaryDeyConstraint object, Primary keys
	primaryjoin parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	primary_key argument (Column constructor), Column Definitions
	primary_key parameter (mapper() function), Other mapper⁠(⁠ ⁠) Parameters
	properties parameter (mapper() function), Other mapper⁠(⁠ ⁠) Parameters
	property mapping, Customizing Property Mapping
	PyPI (Python package index), Installing setup tools
	pysqlite binary module, Installing the SQLite driver on Python versions before
 2.5
	pysqlite driver, SQLAlchemy Tutorial
	Python Imaging Library (PIL), Types System
	Pythonic (idiomatically Python), What Is SQLAlchemy

Q
	queries, Performing Queries and Updates, Running Queries and Updates
		constructing, Basic Query Construction, Joins and Set Operations

	query() method, Other Session Methods, Querying at the ORM Level
	query_from_parent() method, Other Query Methods
	question mark (?), as a name value, SQL Expression Language
	QueuePool pool type (sqlalchemy.pool), Connection Pooling
	quote argument
		Column constructor, Column Definitions
	Table constructor, Defining Tables

	quote parameter
		Sequence constructor, Creating Explicit Sequences

	quote_schema argument (Table), Defining Tables

R
	refcolumns parameter (ForeignKeyConstraint
 class), Foreign keys
	reflect() method (MetaData), Table reflection
	reflection, defining tables, Table reflection
	refresh() method, Other Session Methods, Querying Using Elixir
	refresh-expire parameter, Cascading Changes to Related Objects
	relation() function, Declaring Relationships Between Mappers, Cascading Changes to Related Objects, Updating Objects in the Session, ORM Querying with Joins
		custom collections, using, Using custom collections in relations
	Elixir attribute-based syntax and, Attribute-based syntax
	parameters, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	self-referential mappers and, Using a Self-Referential Mapper

	relational model, The Object/Relational “Impedance Mismatch”, Relations and Inheritance
	relationships, The Object/Relational “Impedance Mismatch”
	relationships (SQLAlchemy), Basic Relationships
	remote_side parameter (ManyToMany), Attribute-based syntax
	remote_site parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	remove() function, Updating Objects in the Session
	remover() decorator, Using custom collections in relations
	removes() decorator, Using custom collections in relations
	removes_return() decorator, Using custom collections in relations
	_reorder() method, Ordering List
	replaces() decorator, Using custom collections in relations
	replace_selectable() method, Using the “generative” query interface
	required Elixir keyword argument, Fields and Properties
	required parameter (ManyToOne), Attribute-based syntax
	reset_joinpoint() method, Other Query Methods
	ResultProxy class, Result set objects
	ResultProxy object, Database Connections and ResultProxys
	revert() method, Versioned Extension
	revert_to() method, Versioned Extension
	rollback() method, Flushing, Committing, and Rolling Back Session Changes
	rowcount () method, Result set objects
	rowcount() method
		ResultProxy, Database Connections and ResultProxys

S
	save() method, Saving Objects to the Session, Other Session Methods, Querying Using Elixir
		Elixir, quering using and, Querying Using Elixir

	save-update parameter, Cascading Changes to Related Objects
	save_or_update() method, Querying Using Elixir
	scalar() method, Result set objects
	scalar() method (ResultProxy), Database Connections and ResultProxys
	schema argument (MetaData.reflect()
 method), Table reflection
	schema argument (Table), Defining Tables
	schema definitions (database), What Is SQLAlchemy, MetaData Management
	schema() method, Using SqlSoup for ORM-Style Queries and Updates
	scoped_session() function, Contextual or Thread-Local Sessions
	secondary parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	secondaryjoin parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	SELECT statements, Mapping Objects to Tables, Queries
		customizing in queries, Customizing the Select Statement in ORM Queries
	WHERE clauses and, Operators and functions in WHERE clauses

	select() function, The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method, Result set objects
		“generative”
 interface, Using the “generative” query interface

	select() method, Performing Queries and Updates, The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method, Result set objects, Using the “generative” query interface
	select_from() method, Using the “generative” query interface, Customizing the Select Statement in ORM Queries
	select_table parameter (mapper() function), Other mapper⁠(⁠ ⁠) Parameters
	self-referential mappers, Using a Self-Referential Mapper
	Sequence object, Creating Explicit Sequences
	Session object, What Is SQLAlchemy, Object Relational Mapper (ORM), The SQLAlchemy ORM Session Object, Querying at the ORM Level
		creating, Creating a Session
	saving objects to, Saving Objects to the Session

	session.commit() method, Mapping Objects to Tables
	Session.configure() method, Creating a Session
	sessionmaker() function, Mapping Objects to Tables, Creating a Session
	set operations, Set operations (UNION, INTERSECT, EXCEPT)
	SetupTools package, Installing setup tools
	setup_all() method, Introduction to Elixir
	setup_entities() method, Introduction to Elixir
	“sharding”
 (horizontal partitioning), Horizontal Partitioning
	single table inheritance, Overview of Inheritance Mapping
	SingletonThreadPool pool type
 (sqlalchemy.pool), Connection Pooling
	single_query() method, Joined Table Inheritance Mapping
	SQL dialect management, SQL dialect management
	SQL expression language, SQL Expression Language
	SQL Expression Language, Running Queries and Updates
	SQL injection attacks, What Is SQLAlchemy
	sqlalchemy package, Connecting to the Database and Creating Some Tables
	sqlalchemy.engine, Configuring SQLAlchemy Logging
	sqlalchemy.engine.Connection class, Database Connections and ResultProxys
	sqlalchemy.engine.ResultProxy, Database Connections and ResultProxys
	sqlalchemy.ext.activemapper extension, Deprecated Extensions
	sqlalchemy.ext.assignmapper extension, Deprecated Extensions
	sqlalchemy.ext.selectresults extension, Deprecated Extensions
	sqlalchemy.ext.sessioncontext extension, Deprecated Extensions
	sqlalchemy.orm, Configuring SQLAlchemy Logging
	sqlalchemy.orm.attributes, Configuring SQLAlchemy Logging
	sqlalchemy.orm.collections module, Using custom collections in relations
	sqlalchemy.orm.mapper, Configuring SQLAlchemy Logging
	sqlalchemy.orm.strategies, Configuring SQLAlchemy Logging
	sqlalchemy.orm.sync, Configuring SQLAlchemy Logging
	sqlalchemy.orm.unitofwork, Configuring SQLAlchemy Logging
	sqlalchemy.pool, Configuring SQLAlchemy Logging
	sqlalchemy.types package, Generic Types
	SQLite, What Is SQLAlchemy
		drivers, installing, Other supported drivers

	sqlite3 driver, SQLAlchemy Tutorial
	SqlSoup, Introduction to SqlSoup
	start parameter (Sequence constructor), Creating Explicit Sequences
	startswith() method, Querying at the ORM Level
		ClauseElement, Operators and functions in WHERE clauses

	_state attribute
 (mapped class), SQLAlchemy Philosophy
	statements (SQL), Running Queries and Updates
	StaticPool pool type (sqlalchemy.pool), Connection Pooling
	strategy parameter (create_engine()
 function), Engines and Connectables
	subqueries, Subqueries
	SUM() function, Other Query Methods
	sum() method, Other Query Methods
	synonym Elixir keyword argument, Fields and Properties
	synonym() function, Using synonyms

T
	Table object, MetaData Management
	table.c object, SQL Expression Language
	Table.insert() method, Insert Statements
	Table.select() method, The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	tablename parameter (ManyToMany), Attribute-based syntax
	Tables object, Defining Tables, Column Definitions
	table_iterator() method, Adapt Tables from one MetaData to another
	Text construct, Queries
		WHERE clause and, Operators and functions in WHERE clauses

	text parameter
		text() function, Using literal text in queries

	text() function, Using literal text in queries
	thread-local sessions, Contextual or Thread-Local Sessions
	threaded parameter (create_engine()
 function), Engines and Connectables
	through Elixir keyword argument, Fields and Properties
	transactional argument (sessionmaker()
 method), Creating a Session
	Transient state (Session), Saving Objects to the Session
	translate_row() hook (MapperExtension), Extending Mappers
	tutorial.sqlite file, Connecting to the Database and Creating Some Tables
	twophase argument (sessionmaker() method), Creating a Session
	TypeDecorator object, Application-Specific Custom Types
	TypeEngine object, Types System, Object Relational Mapper (ORM)
	TypeEngine objects, SQLAlchemy Type Engines, Creating a New TypeEngine
	typemap=None parameter (text() function), Using literal text in queries
	type_ argument (Column constructor), Column Definitions

U
	unbound metadata, Engine
	unbounded constructors, Getting Started with MetaData
	undefer() function, Eager versus deferred loading
	undefer() method, ORM Querying with Joins
	undefer_group() method, ORM Querying with Joins
	UNION clause, Set operations (UNION, INTERSECT, EXCEPT)
	union() function, Set operations (UNION, INTERSECT, EXCEPT)
	union() method, Using the “generative” query interface
	union_all() function, Set operations (UNION, INTERSECT, EXCEPT)
	union_all() method, Using the “generative” query interface
	unique argument (Column constructor), Column Definitions
	UNIQUE clause, Ordering and grouping results, returning distinct
 values
	UNIQUE constraints, UNIQUE constraints, Defining Indexes
	unit of work pattern, Design Concepts in the ORM
	update defaults, Active defaults
	UPDATE statements, Update Statements, Delete Statements
	update() function, Performing Queries and Updates
		SqlSoup, using, Using SqlSoup for ORM-Style Queries and Updates

	update() method, Update Statements, Other Session Methods, Querying Using Elixir
	updates, Performing Queries and Updates
	useexisting argument (Table), Defining Tables
	uselist parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters
	use_alter parameter (ForeignKey
 constructor), Foreign keys
	use_alter parameter (ManyToOne), Attribute-based syntax
	use_ansi parameter (create_engine()
 function), Engines and Connectables
	use_labels=False parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	use_oids parameter (create_engine()
 function), Engines and Connectables
	using_options() method, Introduction to Elixir

V
	values() method (ResultProxy), Database Connections and ResultProxys
	version_id_col parameter (mapper()
 function), Other mapper⁠(⁠ ⁠) Parameters
	vertical partitioning, Vertical Partitioning
	viewonly parameter, Other relation⁠(⁠ ⁠) and backref⁠(⁠ ⁠) Parameters

W
	weak_identity_map argument (sessionmaker()
 method), Creating a Session
	WHERE clause, Queries
		operators and functions, Operators and functions in WHERE clauses, Using custom bind parameters

	where() method, Using the “generative” query interface
	whereclause=None parameter (select()), The select⁠(⁠ ⁠) function versus the select⁠(⁠ ⁠)
 method
	with_labels() method, Using SqlSoup for ORM-Style Queries and Updates
	with_lockmode() method, Other Query Methods
	with_options() statement, Inheritance
	with_parent() method, Other Query Methods
	with_secret parameter, Encrypted Extension

Colophon
The animal on the cover of Essential
 SQLAlchemy is a largescale flying fish
 (Cypselurus oligolepis). Flying
 fish is the more common name for members of the
 Exocoetidae family, which comprises roughly 40 species
 that inhabit the warm tropical and subtropical waters of the Atlantic,
 Pacific, and Indian oceans. Flying fish range from 7 to 12 inches in length
 and are characterized by their unusually large, winglike pectoral fins. Some
 species also have enlarged pelvic fins and are thus known as four-winged
 flying fish.
As their name suggests, flying fish have the unique ability to leap
 from the water and glide through the air for distances of up to a quarter of
 a mile. Their torpedo-like bodies help them gather the speed necessary to
 propel themselves from the ocean (about 37 miles per hour), and their
 distinctive pectoral fins and forked tailfins keep them airborne. Biologists
 believe this remarkable trait may have evolved as a way for flying fish to
 escape their many predators, which include tuna, mackerel, swordfish,
 marlin, and other larger fish. However, flying fish sometimes have a more
 difficult time evading their human predators. Attracted by a luring light
 that fishermen attach to their canoes at night, the fish leap in and are
 unable to vault themselves back out.
Dried flying fish are a dietary staple for the Tao people of Orchid
 Island, located off the coast of Taiwan, and flying fish roe is common in
 Japanese cuisine. They are also a coveted delicacy in Barbados, known as
 “Land of the flying fish” before shipping pollution and overfishing depleted
 their numbers. The flying fish retains a prominent cultural status there,
 however; it’s the main ingredient in the national dish (cou cou and flying
 fish) and it is featured on coins, artwork, and even in the Barbados Tourism
 Authority’s logo.
The cover image is from Dover’s
 Animals. The cover font is Adobe ITC Garamond. The text
 font is Linotype Birka, the heading font is Adobe Myriad Condensed, and the
 code font is LucasFont’s TheSansMonoCondensed.

OEBPS/tagoreillycom20080528oreillyimages215002.png
Application
object/ Database relation

active (Table, view, or
record select statement)

OEBPS/tagoreillycom20080528oreillyimages215000.png
Application Database relation

object (Table, view, or
select statement)

OEBPS/callouts/7.png

OEBPS/callouts/8.png

OEBPS/tagoreillycom20080528oreillyimages215004.png
Product

+sku: string
+msrp: decimal

Accessory Clothing

+accessory data: string +clothing data: string

OEBPS/tagoreillycom20080528oreillyimages215008.png
product_table

clothing_table

sku msrp dothing_data

accessory_table

sku msrp accessory_data

OEBPS/callouts/5.png

OEBPS/callouts/6.png

OEBPS/callouts/3.png

OEBPS/callouts/4.png

OEBPS/callouts/1.png

OEBPS/callouts/2.png

OEBPS/tagoreillycom20100217oreillyimages531700.jpg
ses

se

Mapping Python to Databa:

Essential

land

Rick Cope

O'REILLY*

OEBPS/callouts/10.png

OEBPS/callouts/11.png

OEBPS/callouts/12.png

OEBPS/callouts/13.png

OEBPS/callouts/14.png

OEBPS/callouts/15.png

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/tagoreillycom20080528oreillyimages215012.png
brand_to_addressable

address

addressable_to_address

retailer_to_addressable

addressable

retailer

¢

OEBPS/callouts/9.png

OEBPS/tagoreillycom20080528oreillyimages215006.png
product_table

sku msrp clothing_data accessory_data

Product

Clothing

e I

Accessory

B

OEBPS/tagoreillycom20080528oreillyimages215010.png
product_table

clothing_table

sku dothing_data

accessory_table

sku accessory_data

