Clifford let the silence hang for a second to accentuate the embarrassment now evident on the faces of Jarrit and Edwards. Turning away from Corrigan to exclude him pointedly from the remark as an object no longer worthy of consideration, he quietly concluded, “I’ve quit. I couldn’t put the reasons into better words than that.” A couple of hours later, as Clifford steered the Cougar up the climbing road along the valley side and looked back at ACRE for the last time, he became aware of something that he had not noticed for a long time: The air of the mountains tasted clean and free. Chapter B Sarah looked at the numbers displayed on the screen and pursed her lips ruefully. After a few more seconds she switched off the terminal and swiveled her chair round to face across the room. “So, what happens now, I wonder,” she said. “We’re broke.” Clifford, sprawled in an armchair by the opposite wall, scowled back at her. “Dunno,” he confessed. “I guess I could still get some kind of job—nothing spectacular, but worth something.” She cast an eye round the room, with its tasteful decor and comfortable furnishings. “I suppose all this will have to go.” “Reckon so.” His voice was matter-of-fact. She swung the chair through a full circle and came back to face him again. “Perhaps we should take that jungle trip that you talked about. Who knows—peanuts and berries and things might not be too bad after the first twenty years or so.” He managed a grin; she tried to return it, but her heart wasn’t really in it. The news had come as no surprise. Not once had she questioned what he had done; she knew that he had done what he had to. He knew that she shared his values and would accept philosophically whatever sacrifices were necessary to preserve them. There was no need for long and elaborate explanations or justifications. She swung the chair to and fro in a slow rhythmic motion and pressed her fingers into a point in front of her nose. “Just for once, let’s be logical and objective. We ought to set out some sort of plan of where we go next.” “We ought?” “Of course we ought to. The world hasn’t ended, but there are still a lot of things that are going to need straightening out. Now, what’s the first thing we need to do?” “Get drunk.” “See, no objectivity. That’s the American male’s eternal solution to everything. All it does is shovel the problems into tomorrow.” “Best place for them to be isn’t it? It never comes.” “Only if you get drunk tomorrow too, and we can’t afford that. Let’s be serious. For a start, I’ll see about switching to a full-time week at the hospital. That’ll help.” Clifford saw that she was making an honest effort to be constructive. He straightened up in the chair and his mood changed abruptly. “That’d help a lot,” he said. “You’re great.” “We should start looking for somewhere cheaper to live too,” she continued. “Perhaps a small apartment. I think there are one or two quite nice ones going over near Hammel Hill. If you could find a temporary job, we should be able to balance things and stay fairly comfortable until we’ve decided what we really want to do. What d’you think?” “Absolutely right, of course,” he agreed. “In fact, Jerry Micklaw was saying the other week that they’ve got some vacancies at the place he works. It’s long hours and hard work, but the pay’s good. . . and they get plenty of bonuses. If I got fixed up there it would give me a chance to look around for a while. Come to think of it, maybe we wouldn’t have to quit this place in such a hurry after all. I reckon if we cut down on a couple of the. . .“ The chime of the doorbell sounded. Sarah was nearest. She left the room to answer the door while Clifford contemplated the carpet. Absently he heard the door being opened while he thought more seriously about the things they had been discussing. Then Sarah’s incredulous “Good heavens!” brought him back with a start. Suddenly the hallway outside the door was filled with a laughing, reverberant voice gushing through the house and dispelling the gloom like a flood of aural sunshine. Clifford looked up and gaped in disbelief as Aub’s lean wiry figure strode through the door. Sarah stood framed in the opening behind him, her hands spread wide apart in an attitude of helplessness. “Dr. Clifford, I presume.” Aub beamed down and then burst into laughter at the expression on Clifford’s face. Clifford managed to rise halfway before finding his arm being pumped vigorously up and down. “Seemed about time,” Aub said, turning to shake Sarah’s hand as well. “Couldn’t think of any good reason for putting it off. So. . .“ He shrugged. Clifford shook his head in bemusement. “Aub . . . what in hell’s name? It’s great to see you at last but . . . what the hell are you doing here . . . Aub laughed again. “I just followed my feet, and this is where they came.” He looked around him. “Man, what a pad • . Fantastic! You know something, I really dig that mural . . . kinda soul-touching. Who’s the artistic one?” “Enjoy it while you can, Aub,” Sarah said. “We may have to move out of here before very long. Brad quit his job today.” Aub’s face radiated sheer delight. “You don’t say!” He made it sound like the best news he had heard for weeks. “I don’t believe it. You mean you finally told those ACRE bums to go get lost. Hey, Brad, that’s just great, man—really great!” Clifford regarded him sourly. “Why so funny?” “You’re not gonna believe it. We both arrived at the same conclusion—I quit Berkeley too!” Clifford gaped for a second or two. As the message sank in his features slowly broadened into a smile. “You did? You too? That’s crazy. . . Why?” “They tried to make me take that job again—the one I told you about—the secret project. But by that time I’d already figured the whole thing was a messy, lousy business and I didn’t want to get mixed up in it. So I told them I wasn’t interested. Then they tried using muscle and said they were empowered to order me to take it under special security legislation. I said I sure as hell hadn’t empowered them, and not long after that it occurred to me that the time had come for me and them to go our own separate ways.” “Brad’s cleaned out,” Sarah told him. “They’ve cut off everything—all the benefits. He won’t be able to get a decent job either.” “Yeah, me too.” Aub grinned, shrugged, and showed his empty palms. “So, who cares? Just remember the ice ball.” “Ice ball?” “Twenty billion years from now the whole world will be just one big ball of ice, so it won’t make any differ- ence. I always think about the ice ball when Murphy’s around.” “Murphy?” Sarah was getting rapidly confused. “Murphy’s law of engineering,” Aub explained, then looked at her expectantly. She shook her head. “In any field of human endeavor, anything that can go wrong. . .“ “Will go wrong,” Clifford completed for him. Suddenly they were all laughing. “Well . . .“ Clifford shook his head as if still trying to convince himself that life hadn’t taken a sudden turn into dreamland. “I suppose the cliché for the occasion is, ‘this calls for a drink.’ What’ll it be? Better make the best of it while the stuff lasts.” “Rye ‘n dry,” Aub told him. “Cheers.” “Vodka with Bitter Lemon,” Sarah added. “So what the hell made you come here?” Clifford asked as he walked across to the bar and began pouring the drinks. “I was just about to give you a call.” Aub collapsed untidily into an armchair and stretched his legs out in front of him, already seeming at ease and at home. “That’s a good question,” he conceded as if it had occurred to him for the first time. He rubbed his beard reflectively. “I guess the thought never occurred to me to do anything else. It kinda seemed the obvious thing to do.” “You make a habit of just, sort of . . . appearing in places?” Sarah asked, perching herself on the arm of the chair opposite Aub’s. “Never really thought about that either,” Aub answered. “But I suppose, yeah . . . maybe you’re right. Good way to stay clear of getting in ruts . . .“ He looked across at Clifford. “Oh—there was another reaSon I came here too . . . the best reason I find for doing anything.” “What?” “I felt like it.” They all laughed again. Aub’s very presence seemed to fill the room with a charge of optimism and confidence that, whatever might come next, they could handle it. Suddenly everything was going to work out in the end. . . somehow. “So where do you go from here?” Clifford inquired as he came over with the glasses. “Any plans?” “None.” Aub shrugged and accepted his drink. “This is where I hitch up to serendipity, I guess. What about you?” “No idea. Looks like maybe we hitch up to serendipity together.” “I’ll drink to that, Brad,” Aub said readily. “Cheers.” “Cheers.” “What about your things, Aub?” Sarah asked. “Things?” “Possessions . . . from wherever you were living in California. Where are they?” “Oh those.” Aub shrugged again. “I sold everything that wouldn’t move to the guy I was sharing the apartment with. Traveling light suits me. The rest of it’s in a couple of bags outside the door.” “That’s your world, eh, Aub?” Clifford said. Aub made a wide circular motion with his arm. “No way, man. The whole world’s still out there any time I want to use it, only this way they can’t take any of it away. I can enjoy a swim without having to buy the Pacific.” He thought for a moment, then added: “Did you know that 12 percent of all suicides are people with over a million bucks? I’m not taking any chances.” Clifford pursed his lips. “The logic doesn’t follow,” he said. “You’re taking a big risk the way you’re going.” “Huh—how come?” “Because that means that 88 percent must be people with under a million,” Clifford answered with a grin. “Try thinking about it that way.” Aub roared with laughter and slapped his thigh. “I like that. But don’t get carried away—figures can lie.” “And liars can figure,” Sarah came in, looking pointedly at her husband. “I’m just about to start dinner. I’ll make it for three . . . chicken okay, Aub?” “You’ve talked me into it. How can a man argue with that kind of persuasion?” “Oh, dear,” Sarah sighed apprehensively. “I can see I’m going to have problems with you two.” “Never mind her, Aub,” Clifford said. “Have another drink.” “Big problems,” Sarah decided, and got up to go into the kitchen. “So what could they do?” Aub rested his elbows on the table amid the dinner debris and spread his palms upward. “They’re three miles from the road, their car’s gone, all their clothes are gone . . . man, it’s a problem.” Sarah wiped a tear from her cheek and tried to stifle a giggle. Clifford spluttered over his coffee and placed the cup unsteadily back on his saucer. “So what happened?” he asked. “Well, they had to hike it back to the road . . . that or stay out there and start Adam and Eve again all over, and Robbie never really had much time for any of that kinda thing.” “What—all through the forest?” Sarah said disbelievingly. “Without any clothes on at all?” “What else could they do?” Aub demanded. “Like I said, they couldn’t stay out there forever. Anyhow, that wasn’t the really funny part. When they got to the road, they stumbled on it all of a sudden—there was this kinda wall of bushes and greenery and stuff, and when they went into it and came out the other side, there they were, right out on the road with traffic going past with heads going round inside . . . real crazy.” Aub held up a hand to stop Clifford and Sarah’s laughter from rising any higher for a second. “And right in front of them were these two ladies—you know the kind, about middle-aged, hair done up in buns, thick tweed skirts, that kinda thing—obviously teachers since they had this bunch of schoolkids all tagging along behind.. .“ “Oh, no!” Sarah shrieked. “I don’t believe it.” “Really.. .“ Aub grinned and nodded emphatically. “So here’s these two good ladies, very staid and proper, taking all these nice kids for a walk out in the country. . .“ he started to laugh himself, “and suddenly the bushes open up and out comes Robbie and this girl, both naked as the day they were born and holding hands . . .“ Aub paused, giving the picture time to register, then changed his tone abruptly. “What would you have said? You’ve got five seconds which is all Robbie had.” “Wha. . . I dunno. . .“ Clifford shrugged helplessly. “What is there to . . .“ “Times’s up,” Aub announced. “Know what Robbie said? Talk about quick thinking. . . he said, absolutely seriously and with his face dead calm: ‘Excuse me, but have you seen a flying saucer parked around here? We seem to have lost ours.’ Clifford and Sarah collapsed in hysterics. Aub joined in and added between gaspings for breath: “And Robbie swore they believed it. He said one of them— very concerned—suggested that he ought to contact the Air Force. The other one wanted to know where they came from. Robbie told them: ‘Venus, but we always come here for a holiday because it gets too cloudy there.’” “You’re making it up,” Clifford said after he had calmed down a little. “So help me, I am not. There was this other guy there who . . .“ “Before you start another one, have another drink,” Clifford interrupted. He picked up the bottle, then frowned as he realized it was empty. “That all we’ve got?” he asked Sarah. “We did have a lot more,” she told him. “I think you two are getting pretty close to cleaning us out.” “Us?” Clifford pointed at her accusingly. “You haven’t been doing too badly either.” He placed his hands firmly on the table. “That settles it. Tonight we’re going out to celebrate and show Aub the town. Woman—upstairs and make yourself presentable. We’ll clear up this mess.” “Never thought I’d see the day,” she said. “Okay, why not? We can worry about the expense tomorrow.” Chapter 9 Clifford awoke the next day feeling very sick and very fragile. It was past twelve o’clock and Sarah was already up. He lay immobile for a long time, recollecting disconnected fragments of the hilarious night that had brought him to the painful condition in which he now found himself, wondering how anyone could possibly conceive that what he had been having should be considered a good time, and collecting the will power he would need to do anything else. At last he half sat up, groaned, collapsed back onto the pillow, tried again, and made it. A little later, after shaving, showering, and dressing, he emerged still semisomnambulent from the bathroom and made his way slowly downstairs to face stoically whatever the new day, what was left of it, had in store for him. An ashen-faced Aub was sitting woodenly in an armchair when he entered the living-room. Assorted datterings and tinkling from the kitchen told him that Sarah was at least still capable of purposeful activity. Clifford sank into the armchair opposite Aub and joined his silent contemplation of the meaning of the universe. “Ma-an . . .“ Aub said after a thousand years or so had passed. Another thousand years dragged by. Sarah appeared in the doorway bearing a mug of steaming black coffee. “Oh, so the other half of the dynamic duo finally made it,” she said, looking at Clifford and pressing the mug into Aub’s motionless hand. “I was just going to call the undertakers in for an estimate. Then I thought that perhaps I could make something by selling you for medical research. I know just the people who’d be interested.” “Don’t scream.” “I’m not. I’m just talking.” “Then don’t talk. Whisper. Buzz saws don’t make noise like that.” “Like some coffee?” “Mmm, yeah. . . please.” Sarah left the room and resumed riveting a boiler in the kitchen. Aub returned at last to the confines of his physical body and brought his eyes to focus on the mug clasped in his hand. He studied it curiously for a while as if aware of its existence for the first time, then raised it to his lips and sipped the contents gratefully. “Some night,” he pronounced finally. “Some night,” Clifford agreed. Another silent communion ensued. Eventually Aub frowned. “What was it we were celebrating?” Clifford’s brow contorted with the effort of concentration. “Can’t remember . . . wait a minute . . . we quit our jobs. That was it—we’re both out of work and we’re both out of cash. That’s what we were celebrating.” Aub nodded slowly, his inner suspicions evidently having been confirmed. “That’s what I thought. You know something . . when you really get to figuring it out, there’s another side to it.” Aub delivered the ultimate secret that had 07 been revealed to him during his meditations: “It really ain’t all that funny.” Sarah came in again, handed Clifford his mug and settled herself down in the swivel chair with her own. She peered over the rim of her cup as she drank and shifted her eyes from one specimen of virile masculinity in its prime to the other. “Let’s sing songs,” she suggested. Clifford growled something obscene. “Brad doesn’t want to sing songs. Something tells me that my man isn’t his usual exuberant self today. I wonder if Avis hires out temporary replacements.” “If they do, don’t forget to give them our number,” Clifford said. “I might apply for a job.” “Pig.” “A job’s only part of the problem,” Aub said. “At least you’ve got a place. I’m not even sure where I’m going next yet.” Sarah swung the chair round to face Aub. She looked surprised. “You’re not going anywhere. You’ve got the spare room for as long as you want it. As far as we’re concerned, this is just as much your place now. I thought that was obvious.” Aub smiled with a rare show of awkwardness. “Well, if that’s okay. . .“ “Sure,” Clifford confirmed. “Feel at home for as long as you want. It hadn’t occurred to me to think anything else.” “Man, that’s just great.” Aub relaxed visibly, but he still seemed vaguely unhappy about something. “But hey, you know. . . I couldn’t take you up on that without paying in my share, especially now that you’ve got problems too... .“ Clifford held up a hand. “It’s okay, Aub. What c~o you’re really saying is you need a job—theu there’d be no problem. Right?” “Well . . . guess so.” “Maybe we can fix that. There’s this place just outside of town that happens to have some vacancies right now. It’s long hours and. . “Brad,” Sarah broke in. “You’re not serious about that place, are you? I mean . . .“ She looked from Clifford to Aub, then back again. “You’re good scientists, both of you. You couldn’t just forget about everything. That wouldn’t be right, and besides, you’d never stick it out for more than a week.” “It’d only be for a while,” Clifford insisted. “Just till we’ve had a chance to look around. Maybe we’ll move away from here if something better shows up somewhere else. Maybe we’ll even quit the country.” Sarah shook her head. Though she had previously encouraged Brad to take a temporary job to tide them over, she now realized that was the means to no end. “I think you’d do better starting the way you mean to go on,” she declared. “Even if doing so takes a little while longer. Surely with your knowledge and academic record you can find something suitable without too much trouble.” Clifford sighed and scratched the back of his neck, as if deliberating how to phrase a delicate point without giving offense. “Look, dearest heart,” he said. “You’re a great gal and all that, but sometimes you have this tendency to forget things, you know. Aub and I are both what you might call persona non grata. As far as scientific appointments go from now on, we have had it; we’ve been blacklisted . . . out . . . kaput • finished. Remember?” “Of government-controlled positions, yes,” she persisted. “But the government doesn’t own the whole of science, or the whole of the country, for that matter 00 • . . yet. Try somewhere outside their sphere of influence.” “Like . . . ?“ “Well—what’s wrong with 1SF? I’m not an expert on these things, but they are involved in lots of the kind of work you’re interested in, aren’t they? How about them?” “1SF!” Aub laughed out loud. “Excuse me—I don’t mean to be rude. But do you have any idea how many scientists—top scientists—are waiting for a chance to get in with that outfit? It was the first place everybody scrambled for when things started tightening up. There’s a waiting list years long and they’re very selective. Guys with strings of letters a mile long are queuing up to get in, right, Brad?” “It’s like a free-handout day at Fort Knox,” Clifford said. “But you’re already well in with 1SF,” Sarah pointed out. “Couldn’t you try talking to that Professor Zimmermann? He was obviously more than impressed by the work that you did. Surely it’s worth a try. Even if you get nowhere, you’d be no worse off than if you hadn’t tried it.” “Zimmermann!” Aub looked at Clifford. Each seemed to ask the other with his eyes why they hadn’t thought of it before. Then Clifford sank back and began rubbing his chin. “I’m not so sure,” he finally said. “Zimmermann has to be involved in all the business that’s been going on at ACRE and everywhere else. His buddies down here will have fixed it. I don’t think we’d have a snowball in hell’s chance. What d’you reckon?” Aub rested his elbows on his knees and chewed his lower lip while he appeared to turn the question over intently in his mind. “I think you might be wrong •1 AA there,” he answered. “You’ve got to hand it io Sarah —she’s a genius. Thinking about it now, I’m not convinced that Zimmermann was all that involved. All he did was respond positively to the information that you sent him. As he saw it, the paper had come from ACRE, and so that was where he sent his response. He contacted the senior management there because it seemed the natural thing to do. He would have assumed that you would automatically be involved in whatever happened after that.” Aub looked up. “You know what, it wouldn’t surprise me if Zimmermann doesn’t know a thing about what’s been going on down here. I vote we give Sarah’s suggestion a try. Like she says, if he tells us to get lost, we’re no worse off.” Clifford was already persuaded. “Okay,” he agreed. “So how do we get in touch?” Aub shrugged and inclined his head in the direction of the Infonet terminal. “We call him.” “But it’s not that simple. From a domestic terminal you can only get extraterrestrial access through privileged codes. I don’t know the sequences.” “I think I do,” Aub informed him. “I went through a phase of being a network freak once, you know . figuring out how to crack the system just for kicks. I got some data out of one of the lunar nodes a couple of times. I reckon I could do it again to get us a corn channel. I don’t mind—the call will only trace back to your number if it gets intercepted.” “Thanks a lot.” Clifford looked at Sarah, speechless. “Don’t mention it,” Aub returned cheerfully. “Who’s going to do the talking? I guess you should. At least he knows your name; I wouldn’t imagine he’s even heard of me. So, what d’you say?” “All right. But at this point I can’t even think I Al straight, let alone talk sense. How about rustling up some breakfast? Then we’ll give it a try.” “See,” Sarah said, pointedly. “You do need me.” “I know I do. Who else would fix breakfast?” “You’ll be sorry when I’ve found my millionaire and gone,” she said, rising from her chair and moving toward the door. “Aw, you wouldn’t know what to do with one. They’re all fat, bald, and fifty. Fix the food.” An hour later the three of them huddled around the Infonet terminal. Clifford and Sarah watched in fascinated silence while Aub played the keys swiftly and surely with practiced fingers, pausing from time to time to study the codes that appeared intermittently on the screen. Three attempts had aborted so far, but Aub seemed to be just warming up. “Aha! We’re into the ET trunk beam,” Aub finally announced. “From here on it oughta be smooth sailing. They must have altered the timeout settings. That’s what screwed it last time.” “How much do these calls cost?” Sarah asked. Aub chuckled and continued working. “To you, not a cent. The call’s routed via the message-switch complex at Berkeley. I got into there on a straight domestic call and rigged it to copy into the outgoing queue buffer. It’s easier to get through to ET from there because I know the access procedures. It’ll be logged as originating locally, so Berkeley pays the charge. You just collect the domestic tab to California.” Clifford started to say something but the screen suddenly cleared and caused him to stop. A short header message appeared up near the top of the display. “I think we’re through,” Aub informed them. “Over to you, Brad.” He moved the terminal rounil on its jointed supporting arm so that the screen faced Clifford. After a few seconds it came to life to reveal a man’s face. “This is 1SF at Joliot-Curie, Luna. Hello.” “I’d like to speak to Professor Zimmermann, please.” “Can I say who is calling?” “Clifford. Dr. Bradley Clifford.” “Of what organization, Dr. Clifford?” “It’s a private call.” “Private.” The man’s eyebrows raised slightly. Either he was suitably impressed or he was suspicious. “One moment please.” The screen blanked out for what seemed an eternity. Then the man reappeared. His face gave away nothing. “I’m sorry, Dr. Clifford, but Professor Zimmermann is unavailable at the moment. Can I pass on a message or get him to call back?” Clifford’s heart sank. It was a brush-off—polite, but a brush-off. He exhaled in one, long, hopeless breath all the tension that had built up inside him during the last few minutes. “Okay, ask him to call,” he said dejectedly. “You’ll have the callback code logged.” With that he cut off the screen. Clifford got up, swore, and pounded the back of an armchair with his fist. “The bastards!” he grated, his breath coming heavily. “They’ve got everything taped up. I knew it . . . I knew it all along.” The other two remained staring at the lifeless screen. “Well, we did say we’d be no worse off,” Sarah reminded him after a while. She tried to sound soothing but could not hide the disappointment in her voice. “At least it was worth a try.” “One hell of a letdown all the same.” Even Aub sounded bitter. .4 ~ “He might call . . .“ Sarah said, but the words trailed away. “And pigs might swim the Pacific.” Clifford paced over to the far side of the room. “The bastards!” Sarah and Aub remained silent. There was nothing more to say. They finished off another pot of coffee and began discussing without very much enthusiasm plans for the future. Clifford thought of teaching somewhere in South America; Aub had always wanted to spend some time in the Antarctic. Sarah again changed her mind about the local vacancies and thought that taking them wouldn’t be too bad as a short-term measure after all. By late afternoon they had all cheered up somewhat and were swapping stories of days gone by. Then the Infonet chime sounded. Clifford still retained a secret shred of hope deep inside, which he would not admit to the others and which he only partly admitted to himself. His inner psychological defenses were shielded from the possibility of further disappointment by refusing to allow him to acknowledge that he really expected anything to happen at all. He had resolved inwardly, therefore, that in the event of any incoming calls, he would react without any display of emotion or excitement. In that way, anything he felt as a consequence would at least be private. Even so, before he realized it, he found that he was the first to reach the screen, his hand shooting out instinctively toward the Accept key. Sarah and Aub were close behind. A dignified countenance, topped by a crown of elegant silver hair, looked out at him. “Dr. Clifford?” “Yes.” “Ah, good. It is a pleasure to see you at last. I am Heinrich Zimmermann. I do apologize for not being available earlier; we were right in the middle ~of some extremely critical observations. May I congratulate you on your astonishing contribution to science. I was fascinated to read your paper, and delighted that you should think to bring it to my attention. “Now, Dr. Clifford, what can I do for you?” inc Chapter 10 The meeting in the Main Conference Room at ACRE had been in session for over two hours. About two dozen people were present, seated around the long rectangular table that stood in the center. Representatives from the Technical Coordination Bureau and some officials from various other federal departments were arrayed along one side of the table, facing a row of scientific personnel, many of them from ACRE itself, lined up on the other. Sitting at one end, Jarrit, flanked by Edwards and Corrigan, was presiding over the meeting. The atmosphere was tense and humorless. Dr. Dennis Senchino, a nuclear physicist from Brookhaven, was remonstrating from a place roughly in the center of the scientific side. “I’m sorry, but I can’t accept that,” he said. “What you’re asking is, if I might put it bluntly, naive. We are talking about a whole new range of physical phenomena that nobody even understands yet. It’s completely new uncharted territory that we’ve only just come to realize exists at all. It’s true that in time concrete applications of some kind may come out of it, but there’s simply no way that anybody can tell how long that might take. The only thing we can do is pursue further research on an open-ended basis and wait and see what happens. You can’t just produce new discoveries to order against some kind of time- table, as if . . . as if you were planning to put up a building or something.” Johnathan Camerdene of the Bureau was not satisfied. “Can’t, can’t, can’t . . . All we hear is can’t. When will somebody try applying some positive thinking for a change and admit that maybe he can do something? I don’t see how a scientist is any different from any other professional person. If I ask my lawyer if he can have my case prepared for a date in court that’s been fixed for next month, he tells me he can. My doctor shows up on time when I’m sick; my bank manager makes payments on the days I tell him to; my kid’s teachers get their timetable organized before the start of a semester. Everybody else in the world accepts time as a real part of life that you have to take along with the rest of it. They all meet their deadlines. What’s so different about your people?” “It’s not the people; it’s the subject.” Ollie Wilde of ACRE fought hard to conceal his rising exasperation. “You can’t tell a Rembrandt to go paint a masterpiece today. You can’t tell a gambler to come back a winner. Those things can only happen in their own time, not yours.” He looked for support to his right and left. Heads nodded their mute assent. “But how much time is their time?” Camerdene demanded. “That’s what we’re trying to get through to you.” Senchino joined in again. “Nobody knows. Nobody can even say at this stage whether there are any defense or military applications potential in it at all . never mind what they might be, never mind when they might happen.” “All we’ve got are the beginnings of a fundamental theory,” Wilde added. “I must agree that all this sounds extremely negative,” Mark Simpson, another of the Bureau men 1fl7 chimed in. “But this is characteristic of the way the scientific mind has worked throughout history.” He swept his gaze coldly along the line of faces confronting him from the other side of the table. “Didn’t scientists state, even right at the end of the nineteenth century, that heavier-than-air flight was impossible? Even after World War II, wasn’t it the scientists who were saying that man would never reach the Moon and that artificial satellites would never happen before the year 2000?” “Some of them might have said so,” a voice growled. “But who do you think made things like that happen?” Simpson ignored the remark and went on. “I think that what we’re hearing here today is just another example of the same thing.” His words were met by stony glares from across the table. One of the ACRE scientists lit a cigarette and threw the pack irritably back down in front of him. Another Bureau man spoke up. “Let me try to put it more constructively. I agree with what Mark’s just said. Although scientists are proficient in their own specialized fields, they do have certain characteristic weaknesses. One of the biggest is their inability to organize their thinking and their activities into any kind of methodical and objective program.” “For Christ’s sake . . . !“ One of the scientists was unable to contain his outrage. “What do you mean— incapable of being objective? Science is being objective! You don’t know what you’re talking about. . .“ “Please,” the Bureau man said, holding up a hand. “Let me finish. I am talking about methodical ways of planning toward specific objectives, not about methodical ways of assembling data.” “You think that’s -all there is to science,” the previous speaker asked derisively. “Assembling data . . tables of numbers?” “Whether there’s more to it or not, traditional scientific practice has not evolved ways of planning methodically towards specified goals,” Simpson insisted. “What I am trying to draw attention to is the fact that other professions have been forced by necessity to develop such skills, and the techniques involved are well known.” He cast a pleading look along the table as if his message were so obvious that it needed no spelling out. “Over the past few weeks we have drawn up a list of what appear to me to be perfectly reasonable objectives. To achieve those objectives would seem to require two things: your technical knowledge plus the organizational and planning skills needed to wrap the whole thing up into a practical implementation framework. All I’m saying is, let’s pull together and do it.” One of the scientists shook his head. “It won’t work that way. You can do that once a branch of science has developed to the level of engineering technology—that is, when you understand it properly and can formulate all the rules for applying it. But we’re not anywhere near that point yet; we’re still in an early phase of basic research. You’ve got to distinguish between the two. The things you’ve been saying just don’t apply to the stage we’re at.” “Maybe because nobody has ever tried it before,” Camerdene suggested. “Hell, no,” Senchino came in. “You’re missing the whole point. The question is. . .“ “Before we go off into any more technicalities, let’s Just remind ourselves of the real importance underlying this issue.” Corrigan spoke from the end of the table. “This information is strictly within these four walls. Latest intelligence reports confirm that both the Chinese and the African-Arab Alliance have developed fully operational satellite-based laser capability for ~1 (~ deployment against our Orbital Bombardment System. With full anti-ORBS capability, they are more or less on a par with us in terms of the strategic balance.” “There’s no need to tell you then how grave a situation we’re facing,” Jarrit came in. “I’m sure you can also see the possible significance of the matter we’re talking about.” “Industrial disruption in South Korea is rife,” Corngan continued. “Intensive subversion of the population is being organized systematically and the government is becoming unpopular as a result of very effective left-wing propaganda.” He paused and looked about him to give his words time to sink in. Then he resumed. “We’ve all seen the pattern before. All the signs are that the stage is being set for a so-called war of liberation in the classical style, and world opinion is being preconditioned to make it difficult for the West to react effectively. We think they’re going to take us on in a trial of strength in that area and we think it will happen within the next six months.” A few murmurs greeted these revelations. Camerdene waited until they had subsided and nodded his head gravely. “That’s the general picture,” he said. “At the technological level we’re more or less even and at the grassroots level we’re being outmaneuvered. That means that the superiority in numbers gives the advantage to the other side.” Camerdene then began his summation. “To restore and preserve the balance, we must pull ahead significantly in the technological area. You have told us that we appear to have made a breakthrough in a totally new aspect of science. Whenever that has happened in the past, it has always resulted in new, often revolutionary, military capabilities. If that’s true in this case, we need those results fast.” Corrigan nodded his endorsement of Camerdene’s remarks and, indicating Simpson, said, “As Mark just pointed out, in the past the professional and managerial skills that we have at our disposal today were unknown. The processes for developing raw scientific ideas for useful applications depended on the whims and fads of unguided amateurs.” A few mutters of protest broke out, but he took no notice. “Today we have the skills and techniques necessary to guide those processes efficiently.” “It seems to me that the scientific fraternity is sadly behind the times in its thinking.” Simpson elaborated on Corrigan’s statement. “If they would only adjust their outlook to accommodate a more realistic appreciation of the facts, they would see that the measures we are proposing are perfectly feasible and attainable. In view of the extremely serious situation that has just been described, I find it amazing that things as elementary as this should have to be spelled out in this way.” Murmurings of approval came from the Washington side. When they had died away Senchino sat forward and turned imploringly toward Jarrit. “We’ve already said you can’t command people to have new ideas. The discoveries in the past that led to technological revolutions were almost all made by a few very exceptional individuals. That’s the whole point these people are missing. You can’t take just anybody and make him exceptional by telling him to be exceptional.” A row of blank stares came back across the table. He looked down at the wad of papers in front of him and pushed them out to arm’s length. “I’ve read what Bradley Clifford produced and, yes, I follow what he’s done. But I couldn’t do it, no way. I’m essentially an applications man; I can take the rules that somebody else figures out and apply them to a specific range of problems. I accept that I’m not a creative thinker; that requires a completely different kind of mind. I can follow Clifford’s work as far as it goes, but there’s no way I could work out what comes next. There’s just no way that anybody here or anywhere else can cothmand me to be creative.” “Clifford needs to be part of this project,” another of the scientists declared. “Lots of us here could serve on the team, but somebody like him has to head it.” “Why isn’t he here anyhow?” the man next to the speaker asked. “He quit,” Senchino answered. “I know, but why?” “That’s a separate matter that doesn’t concern this meeting,” Corrigan broke in. “Let’s just say for now that despite his intellectual talents, he would not have fit in because of the project’s sensitive nature. He exhibited distinctly undesirable ideological and temperamental traits; in a nutshell, he was unstable, rebellious, and had all the makings of a high-security risk. As a matter of fact, he deliberately and openly defied security directives.” The looks from the scientific side of the table were sceptical. Nevertheless, Corrigan pursued his point. “The topic we are discussing could result in a decisive trump card for the West. To involve somebody of Clifford’s disposition would have been unthinkable. He might well have ended up making a present of the whole package to the other side.” Camerdene read the expressions that greeted Corrigan’s explanation. “Clifford had his strengths, but only in his own narrow field,” he said. “He was just a man, not a superman. Nobody is indispensable. I can’t see any reason why we shouldn’t be able to set up a nucleus of specialists who can carry on just as well as he could. You’ve only got to look at the amount of talent in this room right now, never mind the whole country . . .“ He waited a second for some reaction to the compliment but it had no visible effect. “After all, ~ scientist is a scientist; you’re all familiar with the same facts and possess comparable skills. You’re all trained to understand a specialized jargon, it’s true, but no more so than an accountant who knows how to read a balance sheet . . “Clifford was an innovator,” one of the scientists insisted wearily. “People can’t be trained to innovate. You’ve either got it or you haven’t.” “I refuse to accept that there was anything so special about Clifford that you can’t get along without him,” Corrigan retorted sharply. “If a surgeon becomes sick before an operation, the hospital can always find somebody else to perform it. If Clifford hadn’t stumbled on a new piece of theory when he did, somebody else would have done so sooner or later . . . and still might. If that somebody else turns out to be in Peking or somewhere, then we’re in real trouble.” He screwed up his face as if experiencing a nasty taste. “And yet all we’ve heard all day has been lame excuses.” Senchino took a deep breath and clenched his fists until the knuckles showed white. “You can’t treat the human mind like some kind of machine that you pour raw material into at one end and get finished products out the other. The only way you can. . And so it went on.. . and on.. . and on. Meanwhile, in the Clifford household, Aub and Sarah Were watching intently as Clifford finished describing the sequence of recent events to Zimmermann. Throughout, Zjmmermann had listened attentively and without interrupting, though his face became increasingly more troubled as the details unfolded. ii~ “Well, Dr. Clifford. . . I really don’t know what to say,” he replied. “The whole situation is deplorable . disgraceful.” Clifford hesitated, wondering if the question was too presumptuous, but asked anyway. “Can . . . can I take it then that you didn’t know this was happening?” Zimmermann’s eyebrows shot upward in momentary surprise. “Me? Good heavens, no! I knew nothing of these things. We are rather isolated here and have more than enough work to keep us busy. I had assumed that after my reply to ACRE a program of investigation would have followed as a natural consequence. That, I’m afraid, Dr. Clifford, is why you never received any reply from me; it must have seemed most discourteous, and I do apologize, but, you understand, it did not occur to me that my reply to ACRE would fail to be passed through to you. Disgraceful!” “So you really haven’t had anything more to do with the project since you sent that reply?” Aub asked, edging into the viewing angle. “Certainly not with the politics,” Zimmermann said. “But as far as the scientific aspects go, you didn’t really expect me to forget all about it, surely—not something like that.” He grinned in a vaguely mischievous way that enhanced the warm feeling they already had toward him. “My goodness me, no. I have had several of my astronomers doing observational work in connection with the paper ever since I realized its significance. In fact, we have a team working on it at this very moment.” “You have!” Clifford was excited. “Anything to report yet?” “Mmm . . . not yet . . .“ Zimmermann gave the impression that he knew more than he was prepared to talk about for the time being, but his manner was cautious rather than furtive. “Certainly we cannot yet offer any evidence as conclusive as the experiments of Dr. Philipsz that you described, but . . •“ his eyes twinkled mischievously again, “we are working on it.” “So you haven’t gotten involved in a dialogue with any other institutions about it?” Clifford inquired. “No, we have not, I’m afraid,” Zimmermann replied. “I did urge that other organizations should be encouraged to test out those parts of the theory that we are not equipped to investigate, but after that I left the matter in the hands of the powers that be. I had assumed that, should any of those organizations wish to discuss anything with us here, they would contact us accordingly. It was my intention to compare notes when we had a full set of confirmed results to report, but we have not quite reached that position yet.” A brief pause followed while Clifford wrestled in his mind with the problem of how to broach the object of his call in a tactful manner. Before he had formed any words, Zimmermann’s expression changed to a shrewd, penetrating stare, but his eyes still sparkled. When he spoke his voice was soft and had a curious lilt. “But your immediate problem, of course, is that of deciding where you go from there, is it not?” This piece of mind reading caught Clifford unprepared. “What . . . well . . . yes that’s right,” was all he could manage. Zimmermann finished the rest for him. “And you called me in the hope that I might be able to help.” So the problem was solved; there it was, said—over. Clifford nodded mutely. He could sense Aub and Sarah tensing on either side of him. Zimmermann gazed out of the screen for a long 1l~ time without speaking, but they could tell from his face that his mind was racing through a whole list of undisclosed possibilities. “I do not make promises unless I am certain of my ability to honor them,” he said finally. “Therefore I will not promise anything. I want you to stay near your terminal for the next twenty-four hours. During that time—and this I do promise—either I or somebody else will call you. That is all I am prepared to say for now. And the sooner we finish this call, the sooner I will be able to do something about the things I have in mind. Do you have any further pressing questions?” The three looked at one another. There were no questions. “I guess not, Professor,” Clifford answered. “Very well then, good day. And remember—make sure at least one of you stays home.” “We will. . . . Good-bye, and thanks again . thanks again very much.” “Thank me when you have something to thank me for,” Zimmermann said, and with that the screen went dead. “You did it, Aub!” Clifford exclaimed. “How about that—you damn well did it.” “Not me, man,” Aub said and pointed a finger at Sarah. “I just pressed the buttons. It was her idea, I seem to recall. She did it.” “Thank you, Aub; you’re a gentleman,” she pouted. “See, Brad, you just don’t appreciate me.” “Where’d you learn to do it?” Aub asked. “Oh,” she said. “When you’re married to Brad you soon learn to do all the thinking around the house.” Late afternoon the next day, while Clifford and Aub were engaged in a chess game and Sarah was~reading, the Infonet chime sounded. In the scuffle to get to the terminal the two men knocked the board over between them and by the time they had sorted themselves out Sarah had already accepted the call. The screen showed a dark-haired man, probably in his mid forties and evidently of Mediterranean extraction, speaking from what appeared to be a room in a private house; there was a window behind him through which they could see part of an expanse of water with pine trees bordering its far shore. “Mrs. Clifford?” he inquired. His voice was light and cheerful. “Yes.” “Ah.. . is your husband there, please?” “He’s untangling himself from a coffee table right at this instant. . . .“ The man on the screen looked puzzled for a second, then grinned. “Oh, he’s okay now,” Sarah said. “Here . . .“ She moved away and allowed Clifford to take her place. Aub moved forward to stand beside her expectantly. “Hello, sorry about the fuss. I’m Bradley Clifford.” “That’s okay,” the caller said, grinning again. “No need to demolish the furniture on my account.” His tone became more businesslike. “My name is Al Morelli—Professor Al Morelli. I’m a very old friend of somebody who, I understand, you’ve only just gotten to know—Heinrich Zimmermann.” “Yes . . . ?“ “I thought there were two of you.” Morelli frowned slightly. “Isn’t there a Dr. Philipsz there too . . . spells it funny?” “I’m right here.” Aub moved round to join Clifford. “Great. Hi.” Morelli thought for a second. “Hemrich has been telling me something about the work that .4 .4 7 you guys have been doing on k-physics. Sounds pretty staggering, to say .the least. I was especially interested in the part about gravity impulses—you’ve actually checked that out?” “Not exactly,” Clifford answered. “But Aub ran some experiments while he was at Berkeley that verified the predictions of sustained rotations. The gravity-impulse conclusion ties in closely with that part, so the signs are encouraging. That’s about all we can say for now.” Morelli looked back and nodded slowly as if satisfied about something. “Well, there’s no need for us to go into all the details right now,” he said. “Heinrich gave me a pretty good run-down, and if he’s convinced, that’s good enough for me.” He paused for a second, then went on. “You’ve probably guessed why I’m calling. I understand you two guys are looking for jobs and are having a pretty tough time getting fixed up. That right?” “Yep. That’s about it,” Clifford told him. “Okay, I know about the reasons,” Morelli said. “And I don’t blame either of you for acting the way you did. I think maybe I’d have done the same thing. Anyhow . . . I run a research project for 1SF. It’s located in Sudbury, Massachusetts, at the Institute for Research into Gravitational Physics. You may have heard of it.” “Heard of it . . . I sure have.” Clifford sounded impressed. “Gravitational physics . . .“ Aub sounded intrigued. “So that’s why you were particularly interested in the gravity pulses, right?” “Right,” Morelli confirmed. “But in more than just a casual way. From what Heinrich said, it sounds as if the work we’re doing here could have a direct bearing on it.” “What kind of direct bearing?” Clifford asked. “You mean you’re working on something that ties in with the gravity aspects of my theories? That’s fantastic.” Morelli held up a hand to caution him. “Well, it’s a bit early to say yet. Let’s just say for now that I’m pretty certain you’d find our work at Sudbury interesting. Now, obviously, I didn’t call just to talk about academic stuff. It so happens that I’m looking around for people who are suitably qualified and experienced in our particular field, and from what Heinrich said, I think you two might just fill the bill. I’d be interested in talking to you about it. Also, if you’re in the kind of jam he says you’re in, then . . He left the sentence unfinished but his expression said the rest. “Well, how about it. Interested?” “You mean there’s a chance we might get into 1SF?” Cliff ord sounded incredulous. “That’s about it.” Aub was gaping unashamedly. “Yes,” he said after a few seconds. “We’re interested.” It was a masterpiece of understatement. “Fine.” Morelli looked pleased. “How about two days from now? Could you get here by then? Don’t worry about the cost or anything—ISF will fly you here and back, naturally.” Clifford and Aub looked at each other, nodded, and turned toward Sarah. She nodded back vigorously. “Seems fine,” Clifford said. “No problem there.” “Fine,” Morelli declared again. “I’ll get my secretary to log in a couple of reservations and call you back with the details. See you both Thursday then, huh? Have a good trip.” That night Clifford, Aub, and Sarah had another wild celebration out on the town. They drank to the future of 1SF, to the health of German astronomers, to the ghost of Carl Maesanger, and to network freaks wherever they might be. But most of all, Clifford and Aub toasted the pure, unsuspected genius of a certain young English lady. Chapter 11 Clifford and Aub caught the early-morning suborbital shuttle from Albuquerque to Logan Airport, Boston, where they landed just under thirty minutes after takeoff. Sarah was needed at the hospital that day and was unable to accompany them. They received a smiling welcome from Morelli’s secretary, who flew them the rest of the way to Sudbury in an 1SF airmobile. The Institute for Research into Gravitational Physics comprised an aesthetically pleasing collection of functional buildings, all clad in a mix of pastel plastics to add a splash of vivid but tastefully balanced color to the browns and drab greens of the surrounding pine woods. A large lake bordering one edge of the Institute’s grounds appeared like a pool of liquid sky among the trees as they descended toward the landing pad. But better still than all these things, there were no wire fences and no armed guards. Morelli was a stockily built, energetic, and purposeful man, endowed, as had been evident from his image on the Infonet screen, with a swarthy complexion and deep-brown eyes that had evidently been handed down to him along with his name. By midmorning Aub and Clifford were seated in his spacious and comfortable office overlooking the lake, while Morefli told them something about the kind of work that he and his researchers had been engaged in for the past few years. He had described to them how, through the 1990s, he had worked in many areas of particle physics, his main specialty being the phenomenon of particle-antiparticle annihilation. Near the end of that decade he had discovered to his astonishment that he could set up an experimental situation in which particles could be induced to self-annihilate —to vanish without the involvement of any antiparticle at all. Even after Morelli had spent some time explaining how this was achieved, Aub still found it amazing. Aub leaned back in the deep armchair and gazed at Morelli with unconcealed awe. “I still can’t get over it,” he declared, shaking his head. “You mean you can actually produce conditions in a lab that cause particles to vanish—not just to annihilate mutually with an antiparticle—to do so on their own? I’ve never heard of anything like that.” Morelli looked back across his desk with evident amusement. “Sure we can,” he said, as if making light of it. “We do it every day. After lunch I’ll take you to have a look at how we do it.” “But it’s fantastic,” Aub insisted. “Nobody at Berkeley ever talked about that kind of thing. I never read about it. . . . How come the results have never even been published? Surely that kind of thing should have been published all over.” “I was working in a government-controlled research program at the time,” Morelli explained. “The whole project was subject to strict security. The details are no doubt filed away somewhere where nobody can get at them. . . you know the way it is.” “And yet you can work on the same kind of thing here at 1SF . . . where you’re not under federal con- iso!.” Clifford spoke from a chair beneath the window. “Seems kind of. . . strange.” Morelli pursed his lips and raised his eyebrows, apparently weighing his reply before speaking. “Well we don’t exactly go out of our way to broadcast what we’re doing here. That was the first thing that I learned when I made the move—if you want to be left alone these days, don’t attract attention.” “But people can just walk in and out of this place,” Clifford said in mild surprise. “I’m amazed word never leaked out. I mean . . . what about the people who work here; they never talk to anybody outside?” Morelli smiled the curious smile of somebody who knows more than discretion permits him to say. “You know, in World War lithe English sometimes sent absolutely top-secret information through the ordinary mail, especially when they knew that the enemy was making great efforts to get their hands on it. It’s a funny thing, but when something’s sitting there right under somebody’s nose and there’s no attempt made to hide it, he often walks right on by . particularly if he’s been conditioned to be neurotic about security. I suppose you could say that we operate along that kind of principle . . . in an informal kind of way. As for the people here . . .“ Morelli shrugged as if to indicate that the point did not require elaboration. “Oh, they’re pretty smart. If they weren’t, they wouldn’t be here.” After a pause he added in a quiet voice: “You’d be surprised at some of the work that goes on around the world inside 1SF.” Clifford got the message that further questions on that subject would not be in order. It was time to get back to the main topic of conversation. “You were starting to tell us about your experiments here,” he said. .4 nfl “Right.” Morelli sat forward and cleared a space in front of him for his arms. “We’ve been running experiments on induced annihilation on a large scale for about a year now. The building you came past after you landed—you may have noticed the big storage tanks by the wall outside it—houses the equipment.” “The whole building?” Aub asked. “Yes, it’s pretty big machinery; as I said, we’re working on large-scale annihilation here, not just small lab tests. Anyhow, the setup is essentially as I described a few minutes ago—we project a beam of particle matter into a reaction chamber where the annihilation takes place . . . induced by the principles I’ve described. Our main work at present is to measure everything associated with the process and to try to understand the physics of it better. I won’t go into too many details right now—you’ll see it all for yourselves before you go.” Then he grinned. “You can see how hung-up we are about security.” “What kinds of things are coming out of all this?” Clifford asked. “This is where I think you’ll start to get interested, Brad,” Morelli replied. “And Aub, of course. You see, since we’ve been running large-scale tests, we’ve discovered a remarkable thing—we can generate a gravity field artificially!” He paused and looked from one to the other to invite comment. “You mean that when you annihilate large numbers of particles, you detect a gravity field?” Clifford spoke slowly and thoughtfully; the implication was immediately clear. Aub stared incredulously at Morelli for a moment and then swung sharply round to face Clifford. “Hey, Brad!” he exclaimed. “That’s fantastic. It’s just what you’d expect from your theory. It’s a part of it that we didn’t even think there was any way to test.” He gestured toward the professor. “And he’s, already tested it!” Morelli quickly confirmed what Aub was saying. “The particle beam is induced to annihilate inside a fairly small volume in the reaction chamber. When we wind the beam up to a relatively high intensity, we detect a well-defined gravity field around the annihilation volume. It’s exactly as if there was a large, concentrated mass present there . . . which, of course, there isn’t. In other words, the process simulates the gravitational effect of mass.” Clifford and Aub were stunned when they recognized the connection between Morelli’s work and their own. Clifford had already concluded from purely theoretical considerations that what appeared to be an annihilation of a particle was really a rotation in k-space—a rotation that shifted the particle fully into the unobservable hi-order domain of k-space. This event would generate a k-wave pulse that, projected into normal b-order space, would be detected as gravitation; lots of annihilations together would add up to an apparently continuous field. Aub had already produced conclusive evidence of such k-rotations and his example had shown the sustained rotation—in effect, the continual annihilation and re-creation—of just a single, isolated particle, which constituted far too tiny and insignificant an event for there to have been any hope of detecting its supposed gravity pulse. Nevertheless, it had furnished positive support for the theory. And now Morelli, pursuing a completely different and independent track, had discovered a way to force annihilations in enormous numbers. Sure enough—just as would be expected from the theory—he had found that an apparently smooth gravitational field was produced in the process. Surely this could be no mere coincidence; Zimmermann must have known exactly what he was doing. “It’s the theoretical aspects that have been holding us up,” Morelli told them. “When I first stumbled on the way to make the thing work, I was trying to do something else entirely; it was mainly an accident. Since then, here at 1SF we’ve refined the process, but we’re still not too sure of what’s behind it. We know how to make it work, but we don’t know why it does.” He threw his hands out and shrugged unashamedly. “I guess you could say it’s been largely trial and error, a few inspired guesses, and more than a fair share of luck. Anyhow, it seems to work okay.” He glanced from Clifford to Aub and stated what was by that time clear. “So when Heinrich told me about what you two have been doing, naturally I was interested . . . to put it mildly. He could see the connection too, which is why he got in touch with me. The rest you know.” “That’s what surprises me,” Clifford said. “Zimmermann spotted the connection straight away, and yet nobody from the government—the Bureau, for example—has even followed it up, not even recently.” Morelli pulled a face and inclined his head to one side. “I know what you’re gonna say,” he nodded. Clifford said it anyway. “They’re getting all worked up about the paper I wrote, especially where I talk about annihilations. Also, they must have details on record of the work you did before you came to 1SF— work on inducing annihilations. Yet they never put the two together . . . ? Seems crazy. They’ve got thousands of asses warming chairs all over the country. What do they do all day?” “It figures,” Aub interjected. “They don’t have records that talk about the gravitational simulation though, remember,” , Morelli pointed out. “That only turned up in the work we’ve been doing here. So they’d have nothing to suggest that the connection between matter annihilation and gravity pulses that your paper predicted might actually have been demonstrated experimentally.” “Yes, but even so . . .“ Clifford waved his hand in the air to indicate despair. “I agree,” Morelli nodded. “You’d have thought somebody would have been on the ball. But . . . I guess I don’t have to tell you anything about the way those balls of fire zip around the place.” The irony in his voice raised brief smiles. “Anyhow, to change the subject back again, I seem to have been doing most of the talking so far. I’m supposed to be interviewing you about possible positions here, so why don’t I shut up and let you tell me some more about yourselves and the work you’ve been doing together. It already looks to me as if you’re just the guys to fill in where we seem to be falling short, but let’s go through the thing properly. After that I’ll take you along the corridor to meet Peter Hughes, who wants to talk to you both individually. He’s Director of the Sudbury Institute, and nobody gets hired without talking to Peter. After that I’ve fixed lunch for the three of us.” For about the next half-hour Clifford and Aub explained in detail the nature of their own work and its relevance to Morelli’s experiments. As they spoke, Morelli became excited. From his comments, there seemed little doubt what the outcome of the interview would be. By the end of the discussion Morelli was speculating on a whole new branch of science that might grow from the pioneering at the Sudbury Institute. “In a way, I suppose you could say it’s analogous to what happened before,” he said, settling back in his chair once the serious talk was over. “How do you mean?” Clifford asked. “Well, take those guys in Europe around the beginning of the nineteenth century—Faraday and the rest —when they first worked out the connection between magnetism and electricity . . .“ Morelli glanced from Clifford to Aub and explained: “Before then the only kind of magnetism that anybody knew about was the kind that occurred naturally—in certain types of rock, such as lodestone. Well, don’t you think we’re doing exactly the same kind of thing all over again, but with gravity?” “You mean they couldn’t manufacture magnetism before then,” Aub replied. “They couldn’t turn it on and off or control it in any way. It was just . . . there.” “Exactly.” Morelli nodded vigorously. “It was just there—inseparably tied up with a chunk of matter. If you wanted magnetism, you went out and you dug it up. There was no other way.” He paused and shifted his eyes toward Clifford. “But . . . when people started playing around with electrical currents and coils of wire and that kind of thing, they found they could make their own magnetic fields artificially, and they could then control them—make them bigger, smaller, turn them on and off at will. . . .“ He threw his arms out wide. “And out of their work we got the whole science of electrical engineering—and later on electronics.” “And you think this could go the same way?” Clifford followed what Morelli was saying but this was the first time that his mind had been fully opened to the long-range possibilities. Morelli’s enthusiasm for his work was irrepressible, his optimism, unbounded— which almost certainly explained how the project at Sudbury had advanced as far as it had without any firm theoretical understanding on the part of the re searchers. It provided a stimulating contrast to the environment that Clifford had so recently left. He became aware suddenly of his keen desire to become part of 1SF and of Morelli’s team. It wasn’t just the work that attracted him; he knew that here was something to which he could belong. “Yes, I think it easily could,” Morelli told them. “Like I said, the analogy is pretty close. Gravity has always just been there—inseparably tied up with a chunk of mass, hasn’t it? We’ve only known it in its naturally occurring form; if you want gravity, go find a big mass. There’s no other way . . . or there hasn’t been up until now.” “But now you can make your own artificially,” Aub completed. “That’s right. We can make our own and we can control it . . . and we don’t need big bulky lumps of mass to do it either. We can do it in a lab and in a way that’s relatively easy to handle,” Morelli said. “To me that adds up to all the beginnings of a whole range of solid, down-to-earth engineering applications. How does that grab you guys? Interested?” “Interested!” Aub turned to Clifford and back while he sought suitable words. “Just show me where I start.” “I can’t add anything to that,” Clifford said. Morelli grinned and held up a restraining hand. “I wish it was that easy too, but let’s wait and see how your interview goes. Peter’s the guy you have to convince now, not me.” He glanced at the clock on the wall opposite the desk. “In fact, we’ll have to make a move in a minute or two. But before we go, I’ll just tell you a bit about our latest experiments here—just to whet your appetites some more.” The sudden change in his tone hinted that he had saved .4 fl4~ the best until last. The other two became instantly attentive. “We’d already guessed, of course, that the process of particle annihilation inside the reaction chamber somehow induces a curvature in Einsteinian spacetime around the volume in which the process takes place. In other words, it mimics the effect normally produced by a large mass, which is not news to you any more. From what I know now about Brad’s theoretical work, I can see now how it does it—qualitatively at least, that is.” “What you’re really doing is amplifying by a factor of a few billion what happens naturally anyway,” Aub supplied. “That’s a good way of putting it,” Morelli agreed. “If I’ve understood what you’ve been telling me, the gravity field around an ordinary mass results from the tiny fraction of particles inside it that are annihilating spontaneously at any instant. Okay?” “That’s right,” Clifford confirmed. “Only a very small proportion of the mass contributes anything to the field . . . is gravitationally active if you like. Most of it is purely passive; it takes up space and has bulk but contributes nothing to the field. As we said earlier, that’s the part that really departs from classical ideas —gravity turns out to be a dynamic effect, not static.” Morelli nodded and then turned his head toward Aub, who was obviously about to add something. He took up the point. “In fact, your experiments are a good demonstration of just that. What you’ve effectively done is scrap the passive mass entirely. The particles that annihilate inside your reaction chamber can be thought of as a mass that’s 100 percent gravitationally active. Every one of them is involved in the process, unlike in ordinary mass.” “You’re just doing what Nature does anyway, only on a much more concentrated scale,” Clifford cornmented. “You’re concentrating inside a few cubic centimeters the same number of annihilations every second that would normally take place in . . . oh, I don’t know. . .“ he shrugged and turned up his hands, “a whole mountain or something.” “And we get a smooth, detectable resultant field,” Morelli concluded. “Yeah, that’s what I meant when I said I can see better why it works now. It also explains more specifically why we can increase the strength of the field by increasing the beam density or by focusing into a smaller volume—they both give you more annihilations per cubic centimeter per second, which brings me back to what I was about to tell you.” Clifford and Aub waited expectantly. Morelli went on. “Recently we’ve been pushing the limits to find out how far we could take it . . . how far we could bend Einsteinian geodesics. The result has been pretty sensational—something we sure didn’t bargain for. You see, fellas, what we’ve managed to do is generate a field so strong that nothing can get out of the annihilation volume at all—not even light! We have to push the volume right down to microscopic dimensions to do it, but it sure works okay. The spacetime curvature at that level is so great that everything gets bent right back in to the middle. What do you say to that?” For a few seconds that seemed a lot longer, the two young scientists stared at him in mute astonishment as their minds struggled to take in his meaning. Here was something that had been widely talked about for decades, it was true, but all the same, to be told quite matter-of-factly that it had actually become a reality and was just part of a day’s work at Sudbury... “A black hole!” Clifford’s jaw sagged. “You mean you’ve produced an artificial black hole here. . . ?“ “Jeez,” Aub exhaled slowly. “Man, have I been wasting my time. . . Morelli smiled, unable to conceal his amusement. “Thought you’d be impressed,” he said. “We may not be theoretical hotshots here, but we haven’t exactly been standing still all the same.” He looked from one to the other and nodded his head. “Yes, we can produce black holes artificially if we go to high enough power; they’re tiny, but they’re genuine. But these are black holes with a difference. We don’t need enormous amounts of mass to make them, and we can switch them on and off when we feel like it. Now, did you ever hear of a black hole like that before?” Two silent stares greeted his words. He waited a moment for possible questions and then, seeing that none would be immediately forthcoming, turned toward the display terminal situated on one side of his desk. “I’ll leave you to think about that for a minute,” he said. “It’s time we were making tracks. I’ll just call Peter and make sure he’s free.” Two hours later, after what had seemed to them to be satisfactory and promising talks with Peter Hughes, Clifford and Aub were having lunch with Morelli in the Institute’s Social and Domestic Block. By this time Morelli was painting vivid pictures of his visions of the future of gravitic engineering, and his two guests found themselves being infused and excited by the torrent of ideas that poured, seemingly inexhaustibly, from their host’s fertile and imaginative mind. “Artificially induced weightlessness?” Clifford repeated incredulously. “You really think it could work?” “Aw, at this stage I can’t really say,” Mo~e1li conceded candidly. “But just suppose for a moment that it did. It’d revolutionize the whole business of transportation. Just imagine—if you could move big loads effortlessly anywhere . . . all over the world. Why bother building bridges and things when you can simply float things across rivers on a g-beam? Who needs roads and rails? They’re only ways of cutting down friction, and this way there’d be no friction—only inertia.” “You’d be able to move a ten-ton block of stone around with a push of your hand,” Aub joined in. “Man, that’s incredible.” “As long as you weren’t in too much of a hurry to get it anywhere,” Morelli said. “Not much acceleration, but yeah—sure—you could do it.” “What about static fields?” Clifford asked as another possibility dawned on him. “You know—for supporting structures and such. Think that might work too?” Morelli shrugged as he began refilling the three coffee cups from the pot that had been left on the table. “Who knows? Why not? Anything’s possible until somebody proves it isn’t . . . not so? Structures . . . Sure—maybe one day we’ll even figure out how to hold up structures.” “Hey, that could change the whole of architecture,” Aub whispered. In a louder voice he went on. “There’d be no limits of loading to worry about . weight-induced stresses and that kind of stuff. You could put up buildings any size or shape you wanted —all kinds of things—right up into the sky. You could make skyscrapers look like mud huts. It’s crazy.” “Buildings . . . ? Skyscrapers . . . ?“ Morelli threw out an arm to indicate there were no limits to what he could see. “Why mess around with buildings? Why not .4 fifi whole cities? String ‘em together up into the sky like something you never dreamed of. Why not?” Why not. . . ? Clifford found the unbridled enthusiasm of the extraordinary man that he had just met infectious. His mind soared with Morelli’s unbelievable cities as new, undreamed-of possibilities tumbled before his mind’s eye. “And what about earth-moving?” he said. “You could move mountains maybe—literally. Resculpt the whole planet. . “Move mountains? Resculpt planets?” Morelli’s voice rose to a resonant crescendo as he threw the vision out to infinity. “Think big, Brad! Move planets! Rescuipt the Solar System! Do you know there’s an asteroid out there that’s reckoned to contain enough iron to meet the world’s needs at today’s rate for the next twenty thousand years? Cost a bomb to ship it back in worthless pieces though; so why not ship the whole thing back and break it up in our own back yard? Overpopulation problems? Break up another planet and park the bits in orbit round the Sun here, where it’s nice and warm; that’ll keep us going for a while. How do you break a planet up? Answer: gravitic engineering! You set up an unbalanced field around it that makes it spin faster until it pulls itself apart. Easy! Want me to go on?” Clifford and Aub just sat and stared at him wideeyed. Yes, it could all happen. As long as there were people with the vision and the will to make it happen, a new age of human achievement could come true. And perhaps the first hesitant steps toward such a future were already being taken right there at Sudbury at that very moment. Things that had been just dreams for centuries might come true because of what they were doing. Why not? After lunch, Morelli conducted them to a lar,ge building, situated on the far side of the Institute, to let them have a look at the GRASER—Gravity Amplification by Stimulated Extinctions Reactor. They entered an area of conventional office suites and from there proceeded through a labyrinth of corridors and instrumentation labs to the heart of the project itself. They found themselves standing on a metal-railed catwalk, looking down across a large, windowless, concrete-walled area, most of which was crammed with a chaotic tangle of machinery, electronic equipment racking, cables, and pipework. At the center, a spherical metal construction reared up out of the mess caged in steel lattices and festooned with electrical harnesses. A bright silvery tube, about three feet in diameter, connected the sphere to an enormous and complicated rig of some kind, which in turn appeared to be only part of something larger that was built through the far wall. About half a dozen technicians and scientists were engaged in various tasks about the floor. Morelli was pointing toward the tube and talking in a louder than usual voice to make himself heard above the background of subdued whining and humming. “The beam is formed and accelerated in a generating setup located next door,” he said. “We use hydrogen as our starting material; the feed-stock is held by the side of the building in big tanks that you may have noticed as we came in. That tube conveys the beam into the annihilation chamber. Actually, the core of the tube—where the beam itself is—is only six inches in diameter. The rest of the thickness that you see is mainly made up of focusing and control coils. The chamber is shielded inside that sphere; we get a fair amount of heat and radiation as a side effect of the process.” I ‘)~ “Have you got a black hole in there now?” Aub asked. Morelli shook his head. “Not at the moment,” he said. “They’re only doing some calibration tests this afternoon. Pity you won’t be around next Tuesday; we should have one then.” Clifford was leaning on the guardrail and looking thoughtful. After a while he turned toward Morelli. “The radiation you mentioned just then, Al—does it come simply from losses inside the chamber, or is it produced by the annihilation process itself?” “There are some losses, sure,” Morelli answered. “It’s pretty straightforward to calculate what they are. But on top of that, yes, there is a residual amount left over that must come from the annihilation process.” “So you not only create a gravity effect; you generate other kinds of radiation as well,” Clifford checked. Morelli nodded and replied: “That’s correct. From what you said this morning, it’s what you’d expect from your own k-theory. Why—what’s on your mind?” Clifford appeared not to hear the question but went on. “What about when you go all the way to a black hole.. . what happens then?” Morelli raised his eyebrows and nodded approvingly. “It’s funny you should mention that,” he said. “That’s exactly one of the things that’s been bothering us. When we set up a black hole in there, we detect a definite radiation flux emanating from the hole itself. According to classical relativity, that shouldn’t happen; nothing should be able to escape from a black hole—energy, radiation, light—nothing. But . . .“ Morelli shrugged and spread his arms, “there it is. No question.” “Hawking Effect?” Aub suggested, referring to the idea of quantum-mechanical tunneling, first proposed by the English theoretical physicist Steven Hawking of Cambridge, back in the 1970s. The theory ~ostulated a method by which black holes might be seen effectively to emit radiation. It required the spontaneous production of a particle-antiparticle pair somewhere in the vicinity of the black hole. Occasionally one particle of the pair might fall into the hole while the other escaped in the opposite direction to be detected by a distant observer. The net effect that he would observe would be a flux of particle radiation apparently produced by the hole itself. “We thought of that too,” Morelli replied. “You could be right, but I don’t think we’ve got enough data yet to be certain one way or the other. That’s one of the things we mean to look into.” He looked at Clifford. “What does your theory say about it?” “I haven’t really gotten round to considering the k-physics of black holes,” Clifford said, turning his back on the rail to face the other two. “But now that you mention it, it’s an interesting point. According to k-theory, a particle appears to be created when two hi-domain functions interact to produce a k.” Morelli held up a hand to interrupt. “Just a second. Hi-domain . . . that’s the higher order of existence outside normal spacetime. Check?” “Check,” Clifford agreed. “A k-function exists in both hi- and b-domains together. Now, the large number of annihilations taking place inside the reactor back there will produce a flux of hi-domain particles —a kind of radiation, if you like, not detectable in normal space. Since this radiation is not subject to the limitations of ordinary spacetime, it will be capable of escaping from the black hole.” Clifford nodded to himself. “Yes. Outside the hole there will be a flux of hi-particles. These can interact with each other to produce k-particles, which are detectable. What you 1 ~7 would see are particles apparently appearing spontaneously . . . looking like conventional radiation coming out of the hole. As I said, I haven’t gotten round to working out the details, but qualitatively the theory sounds okay.” “So there are two possible explanations for it,” Morelli summarized. “Hawking Effect and k-theory.” “That’s about it.” Clifford seemed pleased. “The first involves conventional quantum probabilities; the second doesn’t but talks about hi-radiation instead.. . as an intermediary agency.” “Uhhuh.” Morelli seemed very interested. “It would be something if we could figure out some kind of experimental test to see which one fits,” he said. “Any ideas?” “Difficult,” Clifford admitted. “In either case you’d expect to see the same thing. I guess the only approach would be to calculate precisely the intensity of the observed field that each theory predicts. Several people have already done that for Hawking Effect; when I’ve had a chance to think about it, I could probably give you some numbers for the other. Then we’d just have to do some accurate measuring to see which one fits best.” “Aren’t you forgetting something?” Aub asked him. “What?” “The hi-radiation. That’s the big difference between the two theories. Yours says that there ought to be an intense source of hi-radiation inside that thing; the other one doesn’t. So why not simply test for that?” Clifford looked at him quizzically. “How can we test for it? It doesn’t exist in ordinary spacetime. It doesn’t interact with our universe in any way, except when it produces k-functions, but they appear as conventional forms of energy. So we can only infer the existence of the hi-radiation indirectly . . . which is what we’ve .4 1)0 been saying all along. We don’t have any kind of instrument that can respond to it directly.” “That’s my whole point,” Aub insisted. “I think I could make one that does.” “Make one?” “Yeah, I’ve been thinking about it for a coupla days now. Remember that picture I showed you when I called that first time? It was a track of a particle rotating continually through hi-space and normal space . vanishing and reappearing all the time.” “Okay. So?” “Well, the mode of rotation should be influenced by hi-radiation. That means that it does interact in an observable fashion with our universe. I figure I could design an instrument based on that principle. Essentially it would be a special kind of ion chamber in which you could measure the effect of incident hiradiation on the tracks of particles with full k-spin. To test out the idea, I knew that we’d need a concentrated source of hi-particles.” He gestured downward in the direction of the reactor sphere. “Now it looks as if we’ve got one.” Clifford stared at him in astonishment. “A hiradiation detector . . . ? You’re joking.” “I am like hell.” “Any idea how long it’d take?” Morelli joined in, becoming intrigued. “Depends how soon you tell me I can start,” Aub replied, grinning unashamedly. He didn’t believe in beating around the bush. It was early evening by the time they left. Morelli walked with them to the pad where the airmobile was waiting to take them back to Logan. As they were about to turn to climb aboard the vehicle, he shook hands with both of them. .1 nfl “Well, I’ve never had too much time for being secretive and all that. We’ll be sending you formal letters and that kind of stuff, but I don’t see any doubt about it. I’m looking forward to working with you guys. It’s gonna be a great team.” They arrived back at Clifford’s house at nine o’clock. Sarah couldn’t really feign surprise at the news. She was already dressed to go out. Chapter 12 The day after they returned from Massachusetts, Aub had already begun making preliminary notes for the design of the detector. He worked through the following night, hogging the upstairs terminal and amassing a mountain of notes and diagrams, and seemed only to have whetted his appetite for morç by the morning. That same morning the formal job offers came through from Sudbury and were promptly accepted. By late afternoon Aub had, via the Infonet, found himself an apartment in Concord, within easy reach of the Institute, and by evening he was packed and ready to go. “That’s one of the problems about having houses to sell and being married,” he grinned as ~e bade Clifford and Sarah au revoir from the doorway. “Like I always said, it suits me to travel light. See you both back East when you’ve sorted out all the chores, huh?” Sarah turned from the door after he had gone and shook her head wonderingly. “What a character,” she mused to Clifford. “I’ve never seen anybody so eager to start a new job. He won’t sleep for weeks.” “You haven’t met Al yet,” Clifford told her. “Once the two of them really get going together, anything could happen. If those two had been the Wright Brothers, World War I would have been fought with supersonic jets.” Just over a month later, Clifford and Sarah moved into an attractive house on the outskirts of Marlboro, within easy distance of both Sudbury and Concord. Sarah had already gotten a job at the Marlboro General Hospital, and for once everything seemed to be going smoothly. By the time Clifford arrived at the Institute to commence his first day’s work there, Aub had already persuaded Morelli to assign a team of technicians and junior scientists to assist full-time on the project. Clifford met the group later that morning at one of the informal meetings that Aub had instigated as a means to review regularly the progress of design work on the detector—which was proceeding in leaps and bounds. “Brad, this is the crew,” Aub said as Clifford nodded in response to the “hi’s” from around the table. “Alice, Sandra, Penny, Mike, Joe, Phil, and Art.” They acknowledged their names in turn as Aub pointed them out. “Crew, this is Brad—the guy you’ve been hearing about for the last month or so. And now that the team is at last complete, to business.” Aub opened a folder that was lying in front of him, extracted a sheet titled Action Points, passed a copy to Clifford without comment, and glanced briefly at his own. Clifford had only been in the room for a minute, and yet already they were at work. He was impressed; if this was typical of how Aub’s enthusiasm was rubbing off, it was small wonder that the project was racing at breakneck speed. Somehow Aub had never before struck Clifford as an effective manager of people; Clifford wondered how many more unsuspected talents lay beneath that outlandish exterior. “It says here Mode-Hold Synthesisers,” Aul, stated. He looked up. “Mike, how’s it going?” “I’ve got a prototype circuit breadboarded in the lab downstairs,” a red-haired young man dressed in a Pendleton shirt and green jeans replied from the far end. “It’s going to need tighter tuning at the h.f. end, and there’s still some stray leakage capacitance somewhere that needs tracking down, but I think it’ll be okay. Gimme. . . say.. . another week on it.” “Review again next Monday,” Aub mumbled, marking the margin of the paper. “Okay?” “Sure.” “Mode Interpretation Routine, Alice?” Aub read the next item and shot an inquiring look at one of the girls. “Bit of a problem there,” she replied. “I need to know more about the mathematical derivation of the phase functions.” “Well, we now have just the guy with us,” Aub said, looking over to Clifford. “Brad, how about sitting down with us after we break up and going over it?” “Sure thing,” Clifford answered. “Special analogue IC chips from Intercontinental Semiconductors,” Aub went on. “Did you get any joy on those, Joe?” “No dice,” Joe answered. “They’re on a six-month waiting list. Nothing they can do about it.” “Shit!” Aub began drumming his fingers on the table irritably. “But. . . despair not,” Joe added. “I tracked a dozen down in a surplus shop in Boston, and Penny’s going over to pick them up tomorrow. Cheap too.” “Fantastic.” Aub brightened up again. “Next . . Penny . . . two hundred feet of low-loss cable . . .“ The meeting was rapid-fire all the way through and lasted less than forty minutes. By the end of it Clifford felt completely at home. As Al had said just before Clifford and Aub departed on the first day they had come to Sudbury, it .was a great team. “I knew you were here so I brought you a coffee.” The voice from behind him made Clifford look round from the screen with a start. Standing just inside the door of the office, Joe was holding a steaming cup in each hand. The time was twenty minutes before midnight; three months had gone by since Clifford’s arrival at Sudbury. “You must be a mind reader, Joe,” Clifford said. “Thanks, put it down there.” He indicated a spot on the table next to his chair, amid the disorderly piles of folders and papers. “What’s the matter; can’t you sleep these days either?” “I got a bit carried away with testing out that stabilizer subsystem,” Joe said, putting down one of the cups. “Today was the first time we’ve had a chance to try it out on-line. I couldn’t wait to see the results.” “How’d they come out?” Clifford asked. “They’re looking good. I think we’ve got the compensation derivatives right now. Aub and Penny are downstairs now tuning it in.” “Doesn’t anybody ever go home in this place?” Clifford asked with a sigh. “You know, Joe, if we were paid overtime, we could all have retired by now.” “Yeah, well . . . I guess we’d all find we’ve forgotten how to spend time any other way if we did,” Joe said. “Besides, this is more fun.” “You like it still, eh? That’s good.” “Beats baseball,” Joe declared. “How about you . . things working out?” He slid into an empty chair beside Clifford’s and gestured toward the strings of equations frozen on the screen at which Clifford had been working. “What are you into here now, for instance?” Clifford returned his gaze to the screen and relaxed back in his chair. “If this detector that Aub’s making works, we will have for the first time ever an instrument that responds directly to hi-radiation. We’ll actually be able to observe effects taking place in the universe we know, that are the results of causes taking place in a domain that can’t be perceived directly. That’Il be a pretty significant thing.” “Okay, I’m with you,” Joe said, nodding. “So what’s all that on the screen?” “Its part of a theoretical analysis to predict exactly the pattern of hi-radiation we ought to get for different annihilation rates, volumes, beam power settings . . that kind of thing.” “Oh, I get it,” Joe said after a moment’s reflection. “Once you’ve got some firm numbers to work with, you’ll be able to test the predictions by means of the detector. If Aub’s readings confirm that you get what the calculations say you ought to get, then the theory’s on pretty solid ground.” “Exactly,” Clifford confirmed. “It’s the only motto to go by, Joe—always check it out. It’s the only way I know that you can be sure you know what you’re talking about. That’s what science is all about.” “I thought you were mixed up in something to do with secondary radiation too,” Joe said, sipping his coffee slowly. “This Hawking Effect business . . . isn’t that so?” “That’s so,” Clifford agreed. “But that’s another part of it. We already know that the annihilation process produces a fair amount of conventional classical radiation as a secondary effect. What we don’t know for sure yet is how it happens. Classical quantum mechanics~~in the shape of the Hawking Effect hypothesis—gives one explanation; secondary reactions among hi-particles offer another. What I’m trying to do is work out exactly the pattern we ought to see if the hi-particle explanation is correct. Al has already run some experiments on black-hole situations to see how well Hawking Effect predictions stand up. They don’t come out too well at all.” “Oh?” Joe sounded interested. “No,” Clifford said. “There was a lot more radiation detected from the hole than quantum mechanics said there should have been.” “You reckon the other explanation will do better then?” “I don’t know yet . . . not until I’ve finished working out the model. Then there’s nothing to stop us testing it out. We won’t need Aub’s detector for that since we’re talking about conventional radiation that we can detect and measure without it.” “What about the other thing—the pattern of pure primary hi-radiation?” “That’s a different matter,” Clifford told him. “That detector of Aub’s is the only way of measuring it. So let’s hope he can make it work.” Three months later, Peter Hughes and Al Morelli were standing beneath the reactor sphere of the GRASER amid the collection of electronics racks, cubicles, and tangles of wire that had gradually come together in the area of floor which had been cleared for it. It looked more like a collection of technological junk that had been thrown haphazardly together and had somehow, miraculously stuck than anything designed for a purpose, embodying all manner of components and assemblies as a consequence of Aub turning to whatever sources of materials were available or improvising alternatives—another of his talents, Clifford discovered. In front of them, quite unperturbed, Aub was keying some final settings into a console while Clifford and the rest of the team stood watching intently. “The beams’s on and running,” Morelli said to Hughes. “So annihilations are in progress in the reactor now.” “What power are you running?” Hughes inquired. “Black hole,” Morelli said. “You’re testing for pure hi-radiation then?” Hughes looked intrigued but at the same time cast a dubious eye over the chaotic and improbable mixture of equipment around him. “First live test,” Morelli confirmed. “That’s why we brought you down.” Morelli noticed that Aub had half-turned from the console and was looking very glum. “What’s up?” Morelli called. “Problems?” Aub gestured at the screen above the keyboard he had been operating. “It’s screwed up somewhere,” he informed them. “We’ve either got a hardware fault or there’s a bug in the initialization routine. It’s hanging up and I can’t get into the Command Interpreter.” He exhaled a long sigh and turned to look at the disappointed faces on the other side of him. “Sorry, people, but the show’s off for today. Can you come back next week?” A week later it was. “Something’s screwed up somewhere . . . I hope. The system checks out okay, but it’s reading zero. That either means we’ve got some obscure fault that the diagnostics aren’t picking up or it means hi-waves don’t exist. For the sake of Brad’s theory, I hope it’s the first.” Hughes and Morelli walked toward the exit. “How the hell can they trouble-shoot in all that mess, Al?” Hughes remarked in a low voice. “It looks like a cross 147 between a bombed computer factory and a combined harvester.” “Yeah, but they’ve done it all in six months and on a shoestring,” Morelli replied. “There have to be teething problems. I’ll let my money ride on that bunch for a lot longer yet.” At half past three the morning of the following day, Aub withdrew his head from the signal-processing subsystem cubicle and held out his hand triumphantly to present a tiny silver object to Clifford, Phil, Art, and Sandra, whose eyes were red-rimmed from hours of studying the circuit diagrams and wiring lists that littered the area around the detector. “It was a break in the a.c. signal path to the third differential,” he announced. “The diagnostic only checked out the d.c. Just imagine—all that trouble over one lousy open-circuit capacitor. It’s enough to make you want to throw up.” And so, later on that same day, Peter Hughes and Al Morelli returned once more to the GRASER building to witness a repeat performance. This time, after Aub had keyed in the final command sequence and while the rest of the team waited and watched with bated breath and crossed fingers, a column of numbers appeared on the display screen of the master console. Aub gave out a whoop of jubilation and turned in his seat to face toward where Hughes and Morelli were standing. “That’s it!” he shouted, gesticulating wildly at the screen. “It’s responding! We’re getting a response! Those readings are pure, 100 percent hi-radiation.” Peter Hughes stepped forward to peer at the display, his face wreathed in a smile of pure delight. “They’ve done it, Al!” he exclaimed, turning toward I 4R Morelli. “Well I’ll be doggone . . . they’ve ,actually gone and hit jackpot!” Morelli moved forward and gazed at the screen in disbelief. “You’re absolutely certain that that’s what you’re measuring,” he said to Aub. “That really is hi-radiation doing that? It’s not just some indirect measure of secondary reactions or something like that?” “It sure as hell is not,” Aub stated in a tone that left no room for doubt. “What we’re measuring here is coming straight from the middle of that black hole in there.” Just to make sure the message was loud and clear he added a few more words. “And to get from in there to out here, it isn’t traveling through any of the dimensions of ordinary spacetime. It’s coming through the hi-order domain of k-space.” Peter Hughes was studying the screen closely, his brow knitted into a frown of concentration. Eventually he caught Aub’s sleeve lightly and pointed to the display in front of them. “If that data relates to hi-waves that are propagating through a domain of k-space unknown to conventional physics, then surely none of the units of conventional physics can be used to measure it,” he said. “Absolutely right,” Aub agreed. “That’s what I thought,” Hughes informed him. “So in that case, what units do those numbers represent?” Aub beamed a wide grin up at him. “A new unit that we’ve defined specifically for the purpose,” he said. “The first unit ever defined for measuring pure hi-phenomena.” “What do you call it?” Hughes asked. “Have you thought of a name yet?” “Of course we have, man.” Aub’s smile broadened. “Milliaubs—what else?” I 4~ The first major hurdle had been cleared. Hi-radiation had not only been demonstrated positively to exist, but an instrumental technique for detecting and measuring it had been found. The project team was naturally in high spirits after these developments, but as further experiments were conducted to exploit the new knowledge, Clifford became even more troubled by the difficulties he was running into on the theoretical side. The detector had provided a complete vindication of his predictions concerning the existence and nature of hi-radiation, it was true, but measurements of the secondary radiation—conventional electromagnetic radiation—showed repeatedly that there was a flaw in his mathematical model somewhere. The amount of radiation measured always turned out to be far greater than his theory predicted. He found himself describing the problem to Sarah one evening, while they were out having a few drinks in the bar of one of the local hotels. “You really wanna know?” he said, leaning forward across the table of the booth in which they were sitting. Sarah whisked his glass out of harm’s way a spit-second before his elbow reached the spot. “It’s all kinda technical.. . I’m not sure I know how to put it.” “I really want to know,” she told him. “I know there’s something not quite right, and I’d just like some idea of what it is. Try me anyway—I’m interested.” Clifford folded his arms on the table in front of him, buried his chin in his chest for a moment, then looked up at her and began. “We’ve talked before about k-space, hi-space . . . that kind of thing. Just tell me first what you understand about it.” “Any prizes?” she asked hopefully. “Not today. Just testing.” “Okay,” she said, then thought for a second. “As 4 rn I understand it, there’s more to the world around us than we can see. Didn’t you say once that you can think of the normal world as some kind of ‘shadow’ existence—a ‘projection,’ I think you said, of something bigger—like shadows on a wall being projections on a flat world of solid things in a real world? Wasn’t it something like that?” “You’ve got the general idea,” he said, nodding. “We can perceive—in other words, we know about— the things that happen in space and time, which turn out to be different aspects of the same thing anyway—” “Four of them aren’t there?” she interrupted. “Dimensions, right?” “Right. At least, physics has always dealt in terms of four. But in fact there are more . . . to be precise, six of them.” “That’s the bit I thought was strange,” Sarah came in again. “Four I can visualize okay, but six . . . ? No way. Where are the other two?” “That’s the whole point. There is no way anybody can perceive the higher ones . . . either by their senses or by instruments. We’ve got no way of knowing about them . . . no more than a shadow man on the wall can know about up or down out of his flat world. He not only can’t move out of it, he can’t even see out of it, so the words just don’t mean anything.” Sarah held up her hand to prevent him from going any further and sipped her drink while she reflected on what he was saying. At last she put the glass down. “I don’t know if I’m missing something, but if all that’s as you’ve said, how do you know about them the higher dimensions? I thought you just said nobody could.” “Mmmm . . .“ He studied the tabletop pensively, “that’s where the problem gets technical. If I just say I 51 that the mathematics of a lot of physical processes— down at the subatomic level—makes sense when the extra dimensions are assumed and don’t make sense when they aren’t, would that be good enough? You’d buy that?” “Suppose I’ll have to,” she accepted. “But you said ‘assumed.’ That’s not good enough, surely. Aren’t you supposed to be able to prove things like that?” “Absolutely right! And that’s what we’ve been trying to do, and that’s where we’re hitting problems.” She rested her chin on her knuckles and said again: “Well—I’m interested. Tell me.” “Okay,” he agreed. He was beginning to enjoy the conversation. “Let’s play a game. . .“ “What, in public?” “I’m serious. There’s a flat universe.” He indicated the top of the table. “Forget we’re solid 3-D people and imagine we’re shadow people that live in that universe—as we said a minute ago. Now . . .“ he pointed at one of the coasters lying between them. “That’s an object that exists in our flat universe . it’s got no thickness at all, okay?” “Okay,” she agreed. He picked up the coaster and turned it at a right angle so that its edge rested on the table. “Now I’ve rotated it so that, although it still exists, it now lies completely in the dimension that we—the shadow people—don’t know about. How much of it do we see?” “It’s got no thickness at all, you said?” she checked. “That’s right.” Sarah shrugged and opened her fingers. “We don’t see any of it,” she said. “It’s vanished.” “Precisely. The tabletop is b-order space . . . normal space. The up-down dimension is hi-space, and all of them together is k-space. Get it?” .4 ~fl A light of sudden comprehension glowed in Sarah’s eyes. “Just a second, before you say any more,” she said excitedly. “Let’s see if I can fill some of it in for myself. If you didn’t just rotate that, but spun it over and over all the time, the shadow people would see it disappearing and reappearing all the time, wouldn’t they? That’s the thing that Aub and you were getting worked up about when Aub was at Berkeley . . . those things you called k-space rotations. He showed us a picture of a particle doing just that.” “Absolutely right,” Clifford confirmed. “It was doing just that. And that was the first concrete proof that it all really was real.” Sarah had nothing to add at that point and seemed eager for more, so Clifford went on. “Now suppose we have two objects, both of which exist purely in hi-space . . .“ he picked up a second coaster and held it parallel to the first so that they were both standing edge-on to the table. “We don’t see anything in the shadow universe . . . normal space, right?” “Right,” Sarah agreed. “Now, if they collide and one or both of them flip over . . .“ He went through the action and left her to complete the sentence. “We’d see one or two of them appear from nowhere,” she observed at once. “Hey, this is fun. More, please.” “Yes, exactly. In fact that machine that Al Morelli built does both those things. It makes lots of particles flip from normal space into hi-space. . . vanish. . .“ “Which makes gravity.” “Right. And it also generates a big output of pure hi-space particles that aren’t detectable—or weren’t until Aub made his detector . . .“ He paused as he realized that Sarah was signaling again. “Uh?” I ~ “How does that thing work?” she asked. “I thought you said that nothing in the hi-space place could be detected by senses or instruments. . . . Doesn’t Aub’s thing do just that?” “You’re right,” Clifford conceded. “But before that there was no known way of doing it. What Aub found was that he could set up a system of spinning particles—appearing and disappearing in the way you said a minute ago—and that the way in which they spin. the spin mode . . . changes when pure hi-particles interact with it. That’s what we call hi-radiation. By monitoring the changes in spin modes, Aub can measure certain things about the hi-radiation that’s causing the changes.” “Okay,” Sarah said slowly. “I don’t get all of that, but I see the general idea. Where were we?” “Morelli’s GRASER makes lots of hi-radiation.” “Yes, that was it,” she said. “So this machine of Al’s is throwing out these hi-particle things that nobody can know about except by using Aub’s detector thing. Joe told me that you’d calculated what the detector should have detected, and sure enough it did. So what’s the problem?” “Up to that point, no problem,” Clifford agreed. “I worked out a math model of black-hole conditions and you’re quite right—as far as the predicted hiradiation went, sure, it checked out fine with what we measured when Aub finally got the detector working.” “So?” “But pure hi-radiation wasn’t the only thing that the model predicted. Remember the collisions . . . ?“ Clifford repeated the action of colliding and flipping over the coasters. “The hi-particles can interact among themselves to produce particles that we can detect by ordinary methods . . . in other words, ordinary, conventional radiation. So we ought to see conventional 4~A radiation—apparently coming from nowhere~around Morelli’s black holes.” “And you don’t,” she guessed. “We do, but the pattern and the amount are wrong. The frequency spectrum is wrong, and there’s more of it than the model says there should be.” Sarah looked slightly disappointed. “Is that all?” she said, raising her eyebrows. “I mean, that doesn’t sound like the end of the world. You’ve proved the main point. Are the exact numbers that important?” “Yes, they are,” Clifford told her. “For one thing, the only way you can be sure you’ve got the theory right is if the numbers come out the way the theory says they should. If they don’t, that means there’s something there you don’t understand that you should understand. And the second thing is that there is another possible explanation for the radiation around the black holes that doesn’t require k-theory at all; it’s called ‘Hawking Effect’ and involves just conventional physics. You have to get the numbers right to be able to choose which explanation fits. Otherwise you’ll never know. Right now we’ve tested both predictions and neither fits. K-theory comes closer to the number that we actually measure, but it still predicts less radiation than is there. That’s the problem.” “But you’re closer, you said,” Sarah pointed out. “Isn’t that good enough for you to choose?” Clifford shook his head. “‘Fraid not,” he said. “The error’s too big. Until we know why, both theories could be equally wrong and the fact that one comes nearer could be just a coincidence . . . certainly not grounds for saying it’s right.” He sighed. “As I said, you have to get the numbers right.” Chapter 13 Aub, however, was as usual completely unperturbed by such academic details. Leaving Clifford to ponder them, he abandoned himself ecstatically to the task of fully mastering and further refining his latest toy. Gradually he found ways of improving the sensitivity of the instrument so that it would register reliably the levels of annihilation-generated hi-radiation even when the GRASER was running at comparatively moderate power, and the mass concentrations simulated inside the reactor sphere were nowhere near black-hole intensities. Aub was busy in his office when he received a call from Alice, who was downstairs on the reactor floor debugging a program that had recently been added to the system. “There’s something unusual happening here, Aub,” she said, looking puzzled. “I don’t understand it. Can you come down and have a look?” Fifteen minutes later, Aub joined her beside the reactor sphere, at the master console of the detector and cast an eye quickly over the familiar clutter of equipment around them. “What’s the problem?” he asked cheerfully. She pointed at a column of numbers glowing on the main monitor screen. Almost at once Aub’s face knotted into a puzzled frown as he realized that it was. unusually quiet; there was none of the humming and whining that signaled when the GRASER was running. But before he could speak, Alice offered an explanation. “I had to switch on the detector to run the program. It seems to be measuring hi-radiation, but the GRASER is shut down this morning. What do you make of it?” Aub sighed and sank into the operator’s chair. Late the night before he had installed an additional rack of hardware to improve the sensitivity of the instrument still further and had gone home without testing it out, having wasted half the night tracing an intermittent fault. “I guess I musta screwed up somewhere last night,” he said in a resigned voice. “It looks like we’re in for another day of trouble-shooting. Better hook into the main computer and start cabling down the diagnostics.” But by mid-afternoon, at which time they had been joined by a curious Sandra, Joe, and Art, Aub was still disturbed. “This is crazy. The system checks out okay, the GRASER’s not running, so we’re not gencrating any hi-waves, but we’re still measuring them. Let’s start up the GRASER and run a few standard calibration routines. There has to be something screwy somewhere.” Later that evening the whole team, including Clifford, was gathered round the console while Aub repeated the tests that he had performed time and time again. Still the results came out the same. They were detecting hi-waves where there were no hi-waves to be detected. Clifford took the logical view that if the waves were there and they were definitely not coming from the GRASER, then they had to be coming from somewhere else. No sooner had he said it when the don’t you just calm down, think about it, and then tell me from the beginning exactly what the hell you’re talking about?” Aub and Morelli turned toward each other with questioning expressions. “You tell him,” Morelli suggested. “No, you tell him,” Aub answered. They both began speaking at once and Hughes stopped them again. Eventually Aub began the explanation. “A hi-wave can be generated at some particular point in normal space . . . such as inside the reaction chamber of the GRASER. It can also be observed— or at least its effects can—at some other particular point in normal space. . .“ “Such as in your detector,” Hughes completed. “Fine. Go on.” “That’s right,” Aub nodded. “But what happens in between is not something you can visualize. It doesn’t mean anything to say that a hi-wave goes from point A to point B at any particular speed.” “You mean it just happens.. .“ Hughes looked mystified. “How can something get from A to B without going from A to B?” “That’s the whole point that comes out of Brad’s analysis,” Morelli supplied. “To talk about going from A to B in the everyday sense implies the notions of direction, distance, and time. Brad’s equations do contain variables that play similar roles, but they relate to k-space. . . . They don’t have any direct interpretation in ordinary spacetime.” Aub waited a few seconds and then elaborated. “Direction, distance, and time come out simply as projections into the b-order domain of normal space, of quantities that exist in k-space but which can’t be experienced as total impressions. The only way, for example, that a two-dimensional being could perceive a 3-D object—a sphere, say—would be to cut it up into slices and attempt to integrate all the pictures into one total concept, but he couldn’t really do it accurately since he wouldn’t have the right mental equipment to construct 3-D models.” “What he’d have to do would be to inspect each separate slice in sequence,” Morelli came in. “That implies he could only perceive the object as a series of impressions. In other words, he would have to manufacture the illusion of time, in order to make up for his inadequate sensory equipment.” In spite of himself, Hughes began to look interested. “So what are you saying then?” he asked. “We’re like that, but with regard to k-space? Time and all the rest of it are subjective illusions?” “In terms of the real k-universe, yes,” Morelli said simply. “The conceptual model of the universe that we perceive is a product of the limited awareness that we’ve so far evolved.” “But the important point is that ideas of time, direction, and distance are products of our universe, not realities of the true universe,” Aub said. “If you like, k-waves aren’t restricted by things that are really constructions of evolving but imperfect minds. Hence, those quantities are irrelevant when you talk about k-space propagation. A light wave is a projection of a k-wave into normal space, and its finite velocity results from the restrictions of the b-domain that it’s projected into. A pure hi-wave doesn’t project into b-domain space at all, and therefore its observed propagation isn’t restricted.” “What Aub is saying, Pete, is that when a hi-wave is generated, say, in the GRASER, and picked up, say, in the detector, the time delay between the two events is zero . . . to an observer in normal space who ~i0I records it as two events. The propagation is instantaneous!” Hughes looked at them incredulously. The reason for their excitement when they had first burst into his office was now becoming clear. “And you say you’re now receiving hi-waves from all over the universe,” he said slowly. “Are you getting at what I think you’re getting at?” “K-astronomy!” Aub confirmed. “Or hi-astronomy, whatever you want to call it—yes, that’s exactly what we’re getting at. With telescopes you can get information from stars and galaxies and stuff, but most of it’s millions of years out of date. But with hi-waves you can get information on what’s going on out there now without any time delays! And distance is no object either, since the same thing applies!” Hughes frowned disbelievingly. “But that’s faster-than-light,” he told them. “It implies all kinds of causality paradoxes. Relatively says so. You’re being absurd.” “No Pete,” Morelli answered. “We’re not talking about something moving through normal space at some high velocity. We’re not talking about anything moving through normal space at all. Think of it in an instantaneous . . . transformation, if you will . . . from one point in space to another. Forget anything like ‘velocity’ being involved at all.” Aub thought about that for a moment then turned to Morelli. “Relativistic causality paradoxes all stem from the fact that two observers moving faster-thanlight couldn’t even agree on the order in which two events happen, let alone on the time-interval between them.” “Well doesn’t that apply here?” Hughes asked. “No,” Morelli replied. “You see Pete, for paradoxical events to be observable, there’d have to be some period of time for them to be observed in. In’the process we’re talking about, the transformation happens in zero time, and there’s no opportunity for paradoxical events to happen.” He shrugged. “If there’s no way you can detect a paradox, then there isn’t any paradox.” “And since we’re not introducing the notion of velocity, there’s no problem with acceleration either,” Aub added. “All the problems about an infinite mass needing infinite energy to accelerate it—they go away too.” Hughes blinked at him in astonishment. For a while his mind struggled to come to terms with the things he had been told, but when he spoke his tone betrayed that he was as good as sold on the idea. “So what happens next?” he asked. “Where do we go from here?” “Well, you can’t just make a telescope or something you can point at places in the sky,” Aub answered. “From the things we’ve been saying, a hi-wave doesn’t do anything simple like come at you from any particular direction. That background noise that we’ve been picking up contains information from everywhere and every direction all at once . . . all scrambled up together.” “So what do you do to get round that?” Hughes queried. “Aub’s not sure yet,” Morelli said. “But he’s been talking to Brad about it, and Brad thinks there might be ways of computer-processing the information to somehow isolate the part of the signal that comes from a given object of interest-_say, a star. Then it might be possible to construct some kind of image out of it we don’t know yet. Brad’s still working on it.” Morelli paused and rubbed his chin for a moment. “They proposed a schedule of modifications to the detector to make it better suited for responding to external hi-waves rather than GRASER hi-waves, but when Aub and I discussed it, we figured we’d do a lot better if we started out from scratch with something new, designed especially for the job.” “A Mark II detector,” Aub came in. “One built for just this kind of work. It would give us a chance to cash in on all the lessons we’ve learned with the one we’ve got and to add some features that we haven’t got.” “So we came to see you to talk about it,” Morelli added needlessly. “You want to build another machine,” Hughes finished for them. Morelli and Aub glanced at each other. “Yes,” they said both together. Hughes sat back in his chair and nodded slowly as if his worst suspicions had just been confirmed. “I knew it was more money,” he told them. He thought for a few seconds. “Tell you what I’ll do. You get your heads together and produce a preliminary cost breakdown of what you think you’ll need. After that, if you convince me, I’ll talk to 1SF headquarters in Geneva about it. Fair enough?” Morelli opened the folder that he had been resting on his knees, extracted a wad of typewritten sheets of columns and figures, turned them around, and slid them on to Hughes’s desk. “Funny you should mention that, Pete,” he said, keeping an absolutely straight face. Hughes stared disbelievingly down at the papers and then back up at the two earnest faces confronting him from the other side of his desk. “Okay,” he sighed, resigned. “Let’s go through it now.” A week later, Hughes and Morelli flew to Qeneva. The week after that, three directors from 1SF headquarters came to Sudbury to obtain firsthand background information on what had been going on and what the possibilities for the future were. A few days after the matter had been discussed in Geneva, Peter Hughes called Morelli and gave him the good news. “I’ve just had Maurice on the line from Geneva. You’d better tell the team right away—we’re going ahead with Mark II.” The first thing to do was place orders for a long list of equipment needed for the construction of Mark II. Hughes and Morelli had decided that, however gifted with talents for the unorthodox Aub might be, the new instrument would be designed and built according to accepted practices. In that way it would be easy to expand, modify, and trouble-shoot; parts would be readily replaceable; and regular maintenance by suppliers would be feasible, enabling Aub and the other scientists at Sudbury to concentrate on the jobs they were there to do. It would take longer to get off the ground that way, but thereafter progress would be faster. Besides that, they had Mark I to occupy them in the meantime; without doubt it still had enormous potential for improvement that they were only beginfling to appreciate. But at about that time the first signs started to appear that on other fronts things were not running normally. ‘‘ . ,, Yes, Professor Morelli? The face of the official from the State Department local office in Boston stared impassively out of the screen. “I want to know about this inquiry you’ve sent us,” Morelli replied from his Sudbury office. “And the questionnaire that you’ve attached to the back of it. What’s it all about?’.’ “Purely a routine formality, Professor,” the official ~ replied smoothly. “A matter of keeping records up-todate, you understand.” Morelli waved the paper in front of him. “But what is the purpose of all these questions?” he demanded. “Personnel working here and a list of the projects they’re working on . . . declaration of capital equipment and the use that’s being made of it . . . major research projects funded during the last two years . . . What in hell’s going on? I’ve never seen anything like this before.” “Perhaps we have been a little more lax in the past ~ than we should have been,” the face replied. “I assure you that such information is pertinent to our duties and that we are empowered to request it.” “Empowered by whom?” Morelli asked angrily. The man’s manner was beginning to irritate him. “That I can’t disclose, I’m sorry. I can only give you my assurance.” “Damn your assurance! It’s either hogwash or you don’t know what you’re talking about. Let me talk to It your boss.” “Really . . . I can hardly accept the necessity of . . .“ “Put me through to your boss,” Morelli stormed. “I’m afraid that Mr. Carson is unavailable at the moment. However, I. . .“ “Then tell him to call me,” Morelli said and flipped off the screen. Morelli glowered at the blank display screen for a long time while he tried in his mind to fit some kind of pattern to it. That had been the third such probing inquiry in two weeks. All kinds of obscure officials in obscure places were, it seemed, suddenly taking a lot of interest in Sudbury and what was going on there. He didn’t like it. “Okay, Alice, this guy in a gray suit and wearing a collar and tie started talking to you in the club,” Morelli said. They were with a group relaxing and enjoying the sun during the lunch break by the shore of the lake outside the Institute. “What happened?” “Well, at first I thought it was a pickup,” she told him. “You know, some guy out on the town . . . He looked a bit out of place there, but you get all kinds, I guess.” “Uhhuh.. .goon.” “But it turned out he really wasn’t interested in me at all,” she said. “Only in the place I worked at. He wanted to know if I worked for a Professor Morelli, who used to specialize in gravitational physics and who had discovered how to force particle annihilations some years back. It was a funny kind of conversation for a place like that. . . . He seemed to be trying to make it sound casual, but it came across all artificial, you know?” “So what did you tell him?” Morelli asked. “Well, I said, yes I did, but then he started asking if you were still working on the same thing and how much further you’d gone with it. That was when I got suspicious—really suspicious—and got out. Later on, Larry—he’s a bartender there—said the guy had been asking around all night trying to get 1SF people pointed out. I thought you should know.” “You did the right thing,” Morelli told her. “Don’t worry about it; just forget the whole thing. But if anything similar happens again, you let me know right away. Okay?” Later that afternoon, Morelli went to find Peter Hughes. “Me being pestered is bad enough, but now they’re starting on the juniors. What in hell is going on?” “Sorry, Mr. Hughes, I’m afraid I can’t help you.” The man from the Technical Coordination Bureau in Washington looked dutifully concerned, but somehow the sincerity didn’t come through. “I really don’t know anything about anything like that.” Hughes stared back at the screen dubiously. “I’m not saying your department is actually doing it,” he said. “I’m simply asking what you know about it. The Bureau seems to have at least a finger in most of these kinds of pies.” “As I said, Mr. Hughes, I know nothing about anything like that,” the Bureau man replied. “I will make inquiries though, I assure you. I’m sure you appreciate that there are many departments that require all types of inputs for statistical purposes and so forth . . . nothing sinister. If any of their people have been a little, shall we say, overzealous, I apologize, and if I can find out who it is and bring some restraining influence to bear, I certainly will. Thank you for calling. If you’ll excuse me, I think I have another call holding.” Meanwhile, down in the basement room that housed the central node of the Institute’s computer complex, the computer operations manager was frowning over the weekly activity analysis that had just been dropped on his desk. The numbers on the sheet told him that the surveillance programs running in the preprocessor that interfaced the system to the outside world via the Infonet lines had trapped and aborted no fewer than fifty-seven illegal attempts to gain access to the Sudbury database from anonymous places elsewhere. It had been the same the week before, too, and nearly as bad the week before that. Somebody was appar ently trying very hard to find out what info,rmation and records were stored in that database. But all this interference proved nothing more than a distraction—an irritation that didn’t really affect the work on Mark II. Then things took a more serious turn. The first intimation that the project was in trouble came when Mike and Phil drew up a detailed list of required equipment and components and began contacting suppliers for technical information, prices, and delivery estimates. “I’m sorry,” the secretary to the sales manager of Micromatic Devices, Inc., advised. “But Mr. Williams isn’t in right now. Can I take a message?” “You’ve taken about a hundred messages already,” Mike told her irritably. “I’ve been trying to talk to him for two days. When will he be back?” “I really can’t say,” she replied. “He really is busy these days.” “Damn it, so am I,” Mike protested. “What’s the matter with everybody these days—don’t they want to do any business? Look, you find him, please, and tell him to give me a call, urgent . . . day or night, I don’t care. Got that?” “Well, I’ll see what I can do.” The secretary didn’t sound very optimistic. “Leave it with me, okay?” “Okay,” Mike sighed as he cut the call. “I want to try something,” Clifford growled from where he had been watching at the back of the room. “Key the same number again, will you.” As he spoke he moved forward and pivoted the Infonet terminal around so that the view from it would show a different background. Mike rekeyed and, as Clifford slipped into the chair, another female face appeared. “Micromatic, hello,” she announced. “Ron Williams, please,” Clifford answered. “Putting you through to Sales,” she said. A second .4 nfl later the same secretary that had spoken to Mike was staring out at Clifford. He repeated the name. “Who’s calling Mr. Williams?” she inquired. “Walter Massey of ACRE, New Mexico.” “One moment.” The screen blurred for a moment, then stabilized to reveal the smiling features of a man probably in his late thirties. “Walt . . .“ he began, then his face fell abruptly. “Oh. . . Bradley Clifford. . . It’s been a long time . . . I thought you’d left ACRE a long time ago.” “I did,” Clifford said curtly. “I’m at 1SF, Sudbury. What the hell are you playing at?” “I’m not sure I know.. .“ “Sure you’re damn well sure. We’ve been calling for two days and getting the bum’s rush. All the time you’re sitting on your ass there. What are you playing at?” Williams looked confused and tried to smile weakly. “We’ve been having a bit of a communications problem here,” he said. “Sorry if it’s been a pain. What did you want?” “Model 1137-C pulse resonators,” Clifford said. “How much and how long to deliver?” “Oh, gee . . . well . . . ah . . . that might be a problem. I don’t think that model is available anymore. They’re on engineering hold at Manufacturing pending design mods. Could be a while before they’re released.” “How long is a while?” Clifford demanded. “And what do you have in the way of alternatives?” Williams was looking distinctly uncomfortable. “I really can’t say how long,” he pleaded. “It all depends on our engineering people. We’ve withdrawn all the other models from the list.” Without waiting for further comments he went on hastily. “It looks as if we can’t .4 7fl really help you this time. Some time in the future though, maybe.” After he had cleared down the call, Clifford scowled at Mike. “Something very strange is going on. I’ve never known that outfit play hard to get before; usually they’re very helpful. If it’s not because they don’t want to do business, then somebody somewhere is getting at them and warning them off for some reason. I’m beginning to get a good idea who.” “They were advertising them less than a month ago, and now they’re saying it’ll take twelve months at least.” Clifford slapped the paper down on Morelli’s desk and turned angrily away to face the window. “It’s the same thing everywhere we go, Al. Everything is unavailable or reserved for government priority or out of stock. The only way we’ll get those modulators is from that company in France that Aub mentioned. Have you had any luck with that approach yet?” “Forget it,” Morelli said gloomily. “Why? What’s happened now?” “We need an importation license and we can’t get one. It’s been refused.” “Why, for Christ’s sake? Aub says all the ones they used at Berkeley came from France, no problem.” “No reason offered,” Morelli said. “It’s just been refused outright. Anyhow, the matter’s academic now since the French outfit won’t play ball.” “What d’you mean—won’t play?” Clifford asked. “I thought they said they’d be happy to oblige.” “A week ago they said they would be,” Morelli agreed. “But when I talked to them yesterday, it’d all changed. Jacques muttered something about having to reserve a stock for spares and said they couldn’t let 171 any go. He said they’d been misled by an incorrect stock count.” “Bulishit!” Clifford raged. “They’ve been got at too. Isn’t anywhere in the world safe from those bastards and their grubby fingers? All we wanted to do was be left alone!” “But it looks as if somebody doesn’t want to leave you alone,” Sarah commented when Clifford brought her up-to-date that evening. “You always said we’d be famous one day.” “The whole thing’s childish and stupid,” Clifford declared moodily. “Presumably the idea is to show to the world that you can’t beat the system. If you look like you’re doing a good job of getting along without them, they make it their business to screw it up for you. That way the world gets the message. It’s typical of the way their tiny minds work. Jesus, no wonder the world’s in such a mess!” “I suppose it’s a gentle reminder to 1SF to stay in line too,” Sarah added. “If the system pronounces you undesirable, then that’s the way you’re supposed to stay. In other words, taking in the outcasts isn’t the way to keep friends.” “Yeah, that too, I guess,” Clifford agreed. “Al’s pretty fed up with the whole lousy business too. I’ve never seen him low before. It’s ridiculous.” “Do you think they might reconsider your employment contracts then?” Sarah asked hesitantly. “I mean it must be affecting the work of the whole place.” “If they’ve thought about that they haven’t mentioned it,” Clifford said. “But I can’t say I’d blame ‘em.” He thought deeply for a long time and then said suddenly in a brighter voice: “Oh, I forgot to tell you, there is a piece of good news as well.” 172 “I don’t believe it. What?” “Professor Zimmermann is due to take a couple of weeks vacation down on Earth sometime in the near future. Al said so today. Apparently Zimmermann wants to come to Sudbury for a day or two to see for himself what we’re doing at the Institute. You always said you wanted to meet him. It looks like maybe now you’ll get the chance.” I ~7’)