

 [image: MySQL Stored Procedure Programming]

 MySQL Stored Procedure Programming

Guy Harrison

Steven Feuerstein

Editor
Debby Russell

Copyright © 2009 O'Reilly Media, Inc.

[image:]

O'Reilly Media

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596100896/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Advance Praise for MySQL Stored Procedure
 Programming

	 	"I didn't honestly believe a book could be written on this topic
 that wouldn't be too dry. But Guy and Steven show the depth of the
 subject and make the material available to readers. It was a wonderful
 read."
	
	 	--Brian Aker, Director of Architecture, MySQL
 AB

	 	"It was a pleasure to work with Guy and the editor at O'Reilly,
 doing the tech review of many of the chapters for this book. The authors
 have an excellent grasp of the subject matter. I found the material easy
 to read, with lots of code examples. MySQL users should find this book
 an excellent resource."
	
	 	--Arjen Lentz, Community Relations Manager, MySQL
 AB

	 	"Because MySQL usage is growing so rapidly among modern
 enterprises, developers and DBAs alike are desperately looking for
 expert help that shows them how to create high-performance stored
 procedures and other efficient MySQL code. I doubt that anyone will find
 better guides than Guy Harrison and Steven Feuerstein when it comes to
 advice on writing the absolutely best MySQL code."
	
	 	--Robin Schumacher, Director of Product Management, MySQL
 AB

	 	"This is the first book I've seen that really concentrates on
 MySQL's stored procedures. I found tips here that I'd never seen
 before."
	
	 	--Peter Gulutzan, MySQL Software Architect

	 	"MySQL 5.0 opens up a new world to MySQL users, and this book is a
 great tour guide."
	
	 	--Andy Dustman, Author of MySQL Python API

	 	"Guy and Steven have provided MySQL developers with a gem. They
 not only cover the nuts and bolts of writing stored procedures in MySQL,
 but also provide sound advice on designing database applications in the
 real world. In addition, they write with a sense of humor that makes the
 book a joy to read."
	
	 	--James Cooper, Technology Consultant, Seattle,
 WA

Preface

Over the past five years or so, we have seen an explosion in the use
 of open source software in commercial environments. Linux has almost
 completely displaced various flavors of Unix as the dominant non-Windows
 operating system; Apache is by far the most significant web server; Perl
 and PHP form the foundation for millions of commercial web sites; while
 JBoss, Hibernate, Spring, and Eclipse are making strong inroads into the
 Java? and J2EE development and application server markets. Although the
 world of relational databases continues to be dominated by the commercial
 players (Oracle, IBM, and Microsoft), the commercial use of open source
 databases is growing exponentially. MySQL is the dominant open source
 database management system: it is being used increasingly to build very
 significant applications based on the LAMP
 (Linux-Apache-MySQL-PHP/Perl/Python) and LAMJ (Linux-Apache-MySQL-JBoss)
 open source stacks, and it is, more and more, being deployed wherever a
 high-performance, reliable, relational database is required.
In the landmark book The Innovators
 Dilemma,[*] Clayton Christensen provided the first widely accepted model
 of how open source and other "disruptive" technologies displace more
 traditional "sustaining" technologies.
When a disruptive technology—Linux for example—first appears, its
 capabilities and performance are typically way below what would be
 acceptable in the mainstream or high-end market. However, the new
 technology is highly attractive to those whose requirements or budgets
 preclude the use of the established commercial alternatives. These very
 low-end markets are typically associated with low profit margins and low
 revenues, so the established vendors are more than happy to retreat from
 these markets and give the disruptive technology this first foothold. As
 both the sustaining/traditional and disruptive/innovative technologies
 improve their capabilities, the disruptive technology becomes attractive
 to a wider segment of the mainstream market, while the established
 technologies tend to "overshoot" the demands of the average—or even
 high-end—consumer.
For the established vendors, the lower ends of the market are always
 associated with lower profit margins, and the established vendors make a
 series of apparently sensible business decisions to successively abandon
 these markets to the newer disruptive technologies. By the time the
 disruptive technology is seen as a real threat, the established vendors
 are unable to compete without cannibalizing the revenues from their
 established products, and in many cases, they become resigned to losing
 their market dominance.
Open source in general, and MySQL in particular, shows all the
 characteristics of the disruptive technology model. Five years ago, the
 capabilities of MySQL were so far behind the requirements of the majority
 of business users that the use of MySQL in a business environment was
 almost unheard of. However, MySQL—being free or extremely low
 cost[*]—had a definite appeal for users who were unable to afford a
 commercial relational database. As with most open source technologies,
 MySQL has experienced rapid technological development—adding transactions,
 subqueries, and other features normally associated with expensive
 commercial offerings. By the release of MySQL 4.0, MySQL was being used in
 a mission-critical manner by an increasing number of high-profile
 companies, including Yahoo, Google, and Sabre.
Meanwhile, the commercial database companies have been adding
 features that, although significant for the very high end of the market,
 have arguably exceeded the requirements of the majority of database users:
 they are more concerned with performance, manageability, and stability
 than with advanced features such as composite object data types, embedded
 Java Virtual Machines, or complex partitioning and clustering
 capabilities.
With the 5.0 release, MySQL has arguably crossed one of the last
 remaining capability thresholds for enterprise credibility. The ability to
 create stored procedures, functions, triggers, and updateable views
 removes one of the last remaining objections to using MySQL as a
 mainstream commercial database. For instance, prior to the introduction of
 stored procedures, MySQL could not claim Java J2EE certification, because
 the certification tests include stored procedure routines. While the
 "commercial" databases still include many features not found in MySQL,
 these features are often superfluous to the needs of mainstream database
 applications.
We believe that MySQL will continue to grow in significance as the
 premier open source RDBMS and that stored programs—procedures, functions,
 and triggers—will play a major part in the ongoing MySQL success
 story.
Tip
First, a note about this book's title and terminology.
The IT industry, the media, and MySQL AB itself generally use the
 term stored procedures to refer to both stored
 procedures and stored functions. While this is technically inaccurate (a
 function is not a procedure), we felt that the title MySQL
 Stored Procedure Programming would most accurately and
 succinctly describe the purpose and content of this book. We also felt
 that the title MySQL Stored Procedure, Function, and Trigger
 Programming would just be too much of a mouthful!

To avoid any confusion, we use the general term stored
 program within this book to refer to the set of database
 routines that includes procedures, functions, and triggers, and to
 specific types of programs (e.g., stored procedures) when
 appropriate.
Objectives of This Book

The new capabilities provided by stored procedures, functions, and
 triggers (we call these, in general, stored
 programs) require new disciplines for MySQL developers, only
 some of whom will have prior experience in stored program development
 using other relational databases. Wise use of stored programs will lead
 to MySQL applications that are more robust, reliable, and efficient.
 However, inappropriate use of stored programs, or poorly constructed
 stored programs, can lead to applications that perform poorly, are hard
 to maintain, or are unreliable.
Thus, we see the need for a book that will help MySQL
 practitioners realize the full potential of MySQL stored programs. We
 hope this book will help you to use stored programs appropriately, and
 to write stored procedures, functions, and triggers that are reliable,
 correct, efficient, and easy to maintain.
Best practice stored program development relies on four
 fundamentals:
	Appropriate use
	Used appropriately, stored programs can improve the
 performance, reliability, and maintainability of your MySQL-based
 application. However, stored programs are not a universal panacea,
 and they should be used only where appropriate. In this book, we
 describe where stored programs can be used to good effect, and we
 outline some significant patterns (and anti-patterns) involving
 stored programs.

	Reliability
	As with any programming language, the MySQL stored program
 language allows you to write code that will behave predictably and
 correctly in all possible circumstances, but the language also
 allows you to write code subject to catastrophic failure or
 unpredictable behavior when unanticipated scenarios arise. We
 outline how to write stored programs that can deal appropriately
 with error conditions, that fail gracefully and predictably, and
 that are—to the greatest extent possible—bug free.

	Maintainability
	We have all had that sinking feeling of having to amend some
 piece of code—whether written by a colleague or by ourselves—and
 finding that the intention, logic, and mechanisms of the code are
 almost impossible to understand. So-called "spaghetti" code can be
 written in any language, and MySQL stored programs are no
 exception. We explain how to construct code that is easily
 maintained through best practice naming conventions, program
 structure, commenting, and other mechanisms.

	Performance
	Any nontrivial application has to perform to either
 implicitly or explicitly stated performance requirements. The
 performance of the database access code—SQL and stored program
 code—is often the most significant factor in overall application
 performance. Furthermore, poorly constructed database code often
 fails to scale predictably or at all when data or transaction
 volumes increase. In this book, we show you when to use stored
 programs to improve application performance and how to write
 stored program code that delivers the highest possible
 performance. The SQL within a stored program is often the most
 performance-critical part of the stored program, so we explain in
 depth how to write high-performance SQL as well.

[*] The Innovator's Dilemma, Clayton
 Christensen (New York, 2000), HarperBusiness Essentials.

[*] MySQL has a dual licensing model that allows for free use in
 many circumstances but does require a commercial license in some
 circumstances.

Structure of This Book

MySQL Stored Procedure Programming is divided into four major
 sections:
Part I, Stored
 Programming Fundamentals
This first part of the book introduces the MySQL stored program
 language and provides a detailed description of the language structure
 and usage.
	Chapter 1,
 Introduction to MySQL Stored Programs, asks the
 fundamental questions: Where did the language come from? What is it
 good for? What are the main features of the language?

	Chapter 2,
 MySQL Stored Programming Tutorial, is a
 tutorial that is designed to get you started with the language as
 quickly as possible; it shows you how to create basic stored
 programs of each type and provides interactive examples of major
 language functions.

	Chapter 3,
 Language Fundamentals, describes how to work
 with variables, literals, operators, and expressions.

	Chapter 4,
 Blocks, Conditional Statements, and Iterative
 Programming, explains how to implement conditional
 commands (IF and CASE) and looping structures.

	Chapter 5,
 Using SQL in Stored Programming, discusses how
 SQL can be used within the language.

	Chapter 6,
 Error Handling, provides the details of how
 errors can be handled.

Part II, Stored
 Program Construction
This part of the book describes how you can use the elements
 described in Part I to build
 functional and useful stored programs.
	Chapter 7,
 Creating and Maintaining Stored Programs,
 outlines the statements available for creating and modifying stored
 programs and provides some advice on how to manage your stored
 program source code.

	Chapter 8,
 Transaction Management, explains the
 fundamentals of transaction handling in stored programs.

	Chapter 9,
 MySQL Built-in Functions, details the built-in
 functions that can be used in stored programs.

	Chapter 10,
 Stored Functions, describes how you can create
 and use one particular type of stored program: the stored
 function.

	Chapter 11,
 Triggers, describes another special type of
 stored program—the database trigger—which is activated in response
 to DML (Data Manipulation Language) executed on a database
 table.

Part III, Using
 MySQL Stored Programs in Applications
Stored programs can be used for a variety of purposes, including
 the implementation of utility routines for use by MySQL DBAs and
 developers. However, the most important use of stored programs is within
 applications, as we describe in this part of the book. Stored programs
 allow us to move some of our application code into the database server
 itself; if we do this wisely, we may benefit from an application that
 will then be more secure, efficient, and maintainable.
	Chapter 12,
 Using MySQL Stored Programs in Applications,
 considers the merits of and best practices for using stored programs
 inside modern—typically, web-based—applications. The other chapters
 in this part of the book show you how to use stored procedures and
 functions from within the development languages most commonly used
 in conjunction with MySQL.

	Chapter 13,
 Using MySQL Stored Programs with PHP, describes
 the use of stored programs from PHP. We primarily discuss the
 mysqli and PDO
 interfaces—recently bundled by MySQL asConnector/PHP—and their
 stored program support.

	Chapter 14,
 Using MySQL Stored Programs with Java,
 describes the use of stored programs from Java and includes the use
 of stored programs using JDBC, Servlets, Enterprise JavaBeans?,
 Hibernate, and Spring.

	Chapter 15,
 Using MySQL Stored Programs with Perl,
 describes the use of stored programs from Perl.

	Chapter 16,
 Using MySQL Stored Programs with Python,
 describes the use of stored programs from Python.

	Chapter 17,
 Using MySQL Stored Programs with .NET,
 describes the use of stored programs from .NET languages such as C#
 and VB.NET.

Part IV,
 Optimizing Stored Programs
This final part of the book hopes to take you from "good" to
 "great." Getting programs to work correctly is hard enough: any program
 that works is probably a good program. A great program is one that
 performs efficiently, is robust and secure, and is easily
 maintained.
	Chapter 18,
 Stored Program Security, discusses the unique
 security concerns and opportunities raised by stored procedures and
 functions.

	Chapter 19,
 Tuning Stored Programs and Their SQL. This
 chapter, along with Chapters
 20 through 22, covers
 the performance optimization of stored programs. This chapter kicks
 off with a general discussion of performance tuning tools and
 techniques.

	Chapter 20,
 Basic SQL Tuning. The performance of your
 stored programs will be largely dependent on the performance of the
 SQL inside them, so this chapter provides guidelines for tuning
 basic SQL.

	Chapter 21,
 Advanced SQL Tuning. This chapter builds on
 Chapter 20, describing more
 advanced tuning approaches.

	Chapter 22,
 Optimizing Stored Program Code, covers the
 performance tuning of the stored program code itself.

	Chapter 23,
 Best Practices in MySQL Stored Program
 Development, wraps up the book with a look at best
 practices in stored program development. These guidelines should
 help you write stored programs that are fast, secure, maintainable,
 and bug free.

You'll find that a significant proportion of the book includes
 material that pertains not only to stored program development, but also
 to development in other languages such as PHP or Java. For instance, we
 believe that you cannot write a high-performance stored program without
 tuning the SQL that the program contains; therefore, we have devoted
 significant coverage to SQL tuning—material that would also be of
 benefit regardless of the language in which the SQL is embedded.
 Likewise, some of the discussions around transaction design and security
 could be applicable in other languages.

What This Book Does Not Cover

This book is not intended to be a complete reference to MySQL. It
 focuses on the stored program language. The following topics are
 therefore outside the scope of this book and are not covered, except in
 an occasional and peripheral fashion:
	The SQL language
	We assume that you already have a working knowledge of the
 SQL language, and that you know how to write SELECT, UPDATE, INSERT, and DELETE statements.

	Administration of MySQL databases
	While DBAs can use this book to learn how to write the code
 needed to build and maintain databases, this book does not explore
 all the nuances of the DDL (Data Definition Language) of MySQL's
 SQL.

Conventions Used in This Book

The following conventions are used in this book:
	Italic
	Used for URLs and for emphasis when introducing a new
 term.

	Constant width
	Used for MySQL and SQL keywords and for code
 examples.

	Constant width
 bold
	In some code examples, highlights the statements being
 discussed.

	Constant width italic
	In some code examples, indicates an element (e.g., a
 filename) that you supply.

	UPPERCASE
	In code examples, generally indicates MySQL keywords.

	lowercase
	In code examples, generally indicates user-defined items
 such as variables, parameters, etc.

	punctuation
	In code examples, enter exactly as shown.

	indentation
	In code examples, helps to show structure but is not
 required.

	—
	In code examples, begins a single-line comment that extends
 to the end of a line.

	/* and */
	In code examples, delimit a multiline comment that can
 extend from one line to another.

	.
	In code examples and related discussions, qualifies a
 reference by separating an object name from a component
 name.

	[]
	In syntax descriptions, enclose optional items.

	{ }
	In syntax descriptions, enclose a set of items from which
 you must choose only one.

	|
	In syntax descriptions, separates the items enclosed in
 curly brackets, as in {TRUE | FALSE}.

	...
	In syntax descriptions, indicates repeating elements. An
 ellipsis also shows that statements or clauses irrelevant to the
 discussion were left out.

Tip
Indicates a tip, suggestion, or general note. For example, we'll
 tell you if a certain setting is version-specific.

Warning
Indicates a warning or caution. For example, we'll tell you if a
 certain setting has some kind of negative impact on the system.

Which Version?

This book describes the stored program language introduced in
 MySQL 5.0. At the time the book went to press, MySQL 5.0.18 was the most
 recently available binary Community edition, although we were working
 with versions up to 5.1.7 built directly from source code.

Resources Available at the Book's Web Site

We have provided all of the code included in this book on the
 book's O'Reilly web site. Go to:
	http://www.oreilly.com/catalog/mysqlspp

and click on the Examples link to go to the book's web
 companion.
To find the code for a specific example, look for the file
 corresponding to the example or figure in which that code appeared. For
 instance, to obtain the code for Example 3-1, you would access the
 file example0301.sql.
At this web site you will also be able to download a dump file
 containing the sample database used throughout the book, the source code
 to some utilities we used during our development of the examples,
 errata, and addenda to the book's content.
In particular, we will use this web site to keep you posted on the
 status of any restrictions or problems relating to stored programs in
 MySQL or other tools. Because the MySQL stored program language is
 relatively new, MySQL AB will be refining the behavior and capabilities
 of the language in each new release of the MySQL server. Also, support
 for stored programs in other languages (PHP, Perl, Python, Hibernate)
 was sometimes only partially completed as this book went to press; we'll
 keep you updated with the status of these languages at the web
 site.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you're reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O'Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product's documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 "MySQL Stored Procedure Programming by Guy Harrison
 with Steven Feuerstein. Copyright 2006 O'Reilly Media, Inc.,
 0-596-10089-2."
If you feel that your use of code examples falls outside fair use
 or the permission given here, feel free to contact us at
 permissions@oreilly.com.
You may notice that some examples end in $$
 rather than ;: this is because most stored program
 code is shown as it would appear in the MySQL Query Browser. When you
 create a stored procedure in most environments (including the MySQL
 query browser) you need to change the DELIMITER
 setting to avoid errors when MySQL sees a ; in the
 stored procedure and interprets that as the end of the CREATE
 PROCEDURE statement. By default the MySQL Query Browser uses
 $$ as that delimiter, which is why some examples end
 in $$ - because they were created in the query
 browser.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite
 technology book, that means the book is available online through the
 O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

How to Contact Us

We have tested and verified the information in this book and in
 the source code to the best of our ability, but given the amount of text
 and the rapid evolution of technology, you may find that features have
 changed or that we have made mistakes. If so, please notify us by
 writing to:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

You can also send messages electronically. To be put on the
 mailing list or request a catalog, send email to:
	info@oreilly.com

To ask technical questions or comment on the book, send email
 to:
	bookquestions@oreilly.com

As mentioned in the earlier section, we have a web site for this
 book where you can find code, errata (previously reported errors and
 corrections available for public view), and other book information. You
 can access this web site at:
	http://www.oreilly.com/catalog/mysqlspp

For more information about this book and others, see the O'Reilly
 web site:
	http://www.oreilly.com

Acknowledgments

We'd first like to thank Debby Russell, our editor at O'Reilly
 Media, for supporting us through this endeavor and for being the
 organizing force behind the end-to-end project. Many other people at
 O'Reilly also played a big role in the book's development, including
 Adam Witwer, the production editor, and Rob Romano, the illustrator;
 additional production services were provided by Argosy
 Publishing.
The role of the technical reviewers in the production of this book
 was absolutely critical. The scope of coverage included not just the
 MySQL stored program language but also five other development languages
 and many features of the MySQL 5.0 server itself. Furthermore, the
 stored program language was evolving as we constructed the book. Without
 the valuable inputs from our technical reviewers, we would have been
 unable to achieve any reasonable degree of accuracy and currency across
 the entire scope. Reviewers included Tim Allwine, Brian Aker, James
 Cooper, Greg Cottman, Paul DuBois, Andy Dustman, Peter Gulutzan, Mike
 Hillyer, Arjen Lentz, and Mark Matthews. Thanks guys!
To the open source community in general and to the MySQL
 development community in particular, we also give thanks. The
 availability of free (both as in beer and as in speech) software of such
 quality and innovation is a source of constant amazement and
 gratification. Many in the MySQL and associated communities contributed
 to the existence of this in so many ways.
We worked with some of the maintainers of the various open source
 interfaces to MySQL to ensure that these were able to support some of
 the new features introduced in MySQL 5.0. Thanks to Wez Furlong, Patrick
 Galbraith, and Andy Dustman in particular for their help in patching the
 PHP PDO, Perl DBI, and Python MySQLdb interfaces.
From Guy: On a personal note, I would like to—as always—thank my
 wife Jenni and children Christopher, Katherine, Michael, and William for
 putting up with me during this and other writing projects. Thanks with
 much love. Also—of course—thanks to Steven for working with me on this
 book.
From Steven: I have spent the last 10 years studying, working
 with, and writing about the Oracle PL/SQL language. That experience has
 demonstrated very clearly to me the value and importance of stored
 programs. I was very excited, therefore, when Guy invited me to work
 with him on a book about MySQL stored programs. I have no doubt that
 this new functionality will help extend the reach and usefulness of
 MySQL, and I thank Guy for the opportunity to help MySQL programmers
 make the most of this key open source relational database.

Part I. Stored Programming Fundamentals

This first part of the book introduces the MySQL stored program
 language and provides a detailed description of the language structure
 and usage. Chapter 1 asks the
 fundamental questions: Where did the language come from? What is it good
 for? What are the main features of the language? Chapter 2 is a tutorial that is designed
 to get you started with the language as quickly as possible; it shows
 you how to create basic stored programs of each type and provides
 interactive examples of major language functions. Chapters 3 through 6 describe the MySQL stored program
 language in detail: how to work with variables, how to implement
 conditional and iterative control structures, how SQL can be used within
 the language, and how errors can be handled.
Chapter 1,
 Introduction to MySQL Stored Programs
Chapter 2, MySQL
 Stored Programming Tutorial
Chapter 3,
 Language Fundamentals
Chapter 4, Blocks,
 Conditional Statements, and Iterative Programming
Chapter 5, Using
 SQL in Stored Programming
Chapter 6, Error
 Handling

Chapter 1. Introduction to MySQL Stored Programs

When MySQL first emerged into the IT world in the mid-1990s, it
 had few of the characteristics normally associated with commercial
 relational databases. Features such as transactional support,
 subqueries, views, and stored procedures were conspicuously absent.
 Subsequent releases provided most of the missing features, and now—with
 the introduction of stored procedures, functions, and triggers in MySQL
 5 (as well as updateable views and a data dictionary)—the feature gap
 between MySQL and other relational database systems is narrow
 indeed.
The introduction of stored programs (our generic term for stored procedures, functions, and
 triggers) has significance beyond simply winning a features war with
 competitive database systems. Without stored programs, MySQL cannot
 claim full compliance with a variety of standards, including ANSI/ISO
 standards that describe how a DBMS should execute stored programs.
 Furthermore, judicious use of stored programs can lead to greater
 database security and integrity and can improve overall application
 performance and maintainability. We outline these advantages in greater
 detail later in this chapter.
In short, stored programs—procedures, functions, and triggers—add
 significantly to the capabilities of MySQL, and a working knowledge of
 stored programming should be an essential skill for the MySQL
 professional.
This chapter introduces the MySQL stored program language, its
 origins, and its capabilities. It also offers a guide to additional
 resources for MySQL stored program developers and some words of overall
 development advice.
What Is a Stored Program?

A database stored program—sometimes
 called a stored module or a stored
 routine—is a computer program (a series of instructions
 associated with a name) that is stored within,
 and executes within, the database server. The source code and
 (sometimes) any compiled version of the stored program are almost
 always held within the database server's system tables as well. When
 the program is executed, it is executed within the memory address of a
 database server process or thread.
There are three major types of MySQL stored programs:
	Stored procedures
	Stored procedures are the most common type of stored
 program. A stored procedure is a generic program unit that is
 executed on request and that can accept multiple input and
 output parameters.

	Stored functions
	Stored functions are similar to stored
 procedures , but their execution results in the return of a
 single value. Most importantly, a stored function can be used
 within a standard SQL statement, allowing the programmer to
 effectively extend the capabilities of the SQL language.

	Triggers
	Triggers are stored programs that are activated in
 response to, or are triggered by, an
 activity within the database. Typically, a trigger will be
 invoked in response to a DML operation (INSERT, UPDATE, DELETE) against a database table.
 Triggers can be used for data validation or for the automation
 of denormalization.

Tip
Other databases offer additional types of stored
 programs , including packages and classes, both of which allow
 you to define or collect multiple procedures and functions within a
 single, named context. MySQL does not currently support such
 structures—in MySQL, each stored program is a standalone
 entity.

Throughout this book, we are going to use the term
 stored programs to refer to stored procedures,
 functions, and triggers , and the term stored program
 language to refer to the language used to write these
 programs. Most of the facilities in the stored program language are
 applicable across procedures, functions, and triggers; however, both
 functions and triggers have strict limitations on the language
 features that may be used with them. Thus, we dedicate a chapter to
 each of these program types in which we explain these
 limitations.
Why Use Stored Programs?

Developers have a multitude of programming languages from
 which to choose. Many of these are not database languages, which
 means that the code written in these languages does not reside in,
 nor is it managed by, a database server. Stored programs offer some
 very important advantages over more general-purpose languages,
 including:
	The use of stored programs can lead to a more secure
 database.

	Stored programs offer a mechanism to abstract data access
 routines, which can improve the maintainability of your code as
 underlying data structures evolve.

	Stored programs can reduce network traffic, because the
 program can work on the data from within the server, rather than
 having to transfer the data across the network.

	Stored programs can be used to implement common routines
 accessible from multiple applications—possibly using otherwise
 incompatible frameworks—executed either within or from outside
 the database server.

	Database-centric logic can be isolated in stored programs
 and implemented by programmers with more specialized, database
 experience.

	The use of stored programs can, under some circumstances,
 improve the portability of your application.

While this is an impressive list of advantages (many of which
 will be explored in greater detail in this book), we do
 not recommend that you immediately move all
 your application logic into stored programs. In today's rich and
 complex world of software technology, you need to understand the
 strengths and weaknesses of each possible
 element in your software configuration, and figure out how to
 maximize each element. We spend most of Chapter 12 evaluating how and where
 to apply MySQL stored programs.
The bottom line is that, used correctly, stored
 programs—procedures, functions, and triggers—can improve the
 performance, security, maintainability, and reliability of your
 applications.
Subsequent chapters will explore how to construct MySQL stored
 programs and use them to best advantage. Before plunging into the
 details, however, let's look at how the technology developed and
 take a quick tour of language capabilities.

A Brief History of MySQL

MySQL has its roots in an in-house (non-SQL) database system
 called Unireg used by the Swedish company TcX that was first
 developed in the 1980s and optimized for data warehousing. The
 author of Unireg, Michael "Monty" Widenius, added a SQL interface to
 Unireg in 1995, thus creating the first version of MySQL. David
 Axmark, from Detron HB , approached Monty proposing to release MySQL to the
 world under a "dual licensing" model that would allow widespread
 free use, but would still allow for commercial advantage. Together
 with Allan Larsson, David and Monty became the founders of the MySQL
 company.
The first widely available version of MySQL was 3.11, which
 was released in mid-1996. Adoption of MySQL grew rapidly—paralleling
 the adoption of other related open source technologies. By the year
 2005, MySQL could lay claim to over 6 million installations of the
 MySQL database.
Version 3 of MySQL, while suitable for many types of
 applications (particularly read-intensive web applications), lacked
 many of the features normally considered mandatory in a relational
 database. For instance, transactions, views, and subqueries were not
 initially supported.
However, the MySQL system was designed to support a
 particularly extensible data access architecture, in which the SQL
 layer was decoupled from the underlying data and file access layer.
 This allowed custom "storage engines" to be employed in place of—or
 in combination with—the native ISAM (Indexed Sequential Access
 Method) -based MySQL engine. The Berkeley-DB (BDB) database (from Sleepycat Software) was integrated as an optional storage engine in
 version 3.23.34 in early 2001. BDB provided MySQL with its initial
 transaction processing capability. At about the same time, the open
 source InnoDB storage engine became available and quickly became a
 natively available option for MySQL users.
The 4.0 release in early 2002 fully incorporated the InnoDB
 option, making transactions easily available for all MySQL users,
 and also added improved replication capabilities. The 4.1 release in
 early 2004 built on the 4.0 release and included—among many other
 improvements—support for subqueries and Unicode character
 sets.
With the 5.0 release of MySQL in late 2005, MySQL took an
 important step closer to functional parity with commercial RDBMS
 systems; it introduced stored procedures , functions, and triggers , the addition of a data dictionary (the SQL-standard
 INFORMATION_SCHEMA), and support
 for updateable views.
The 5.1 release, scheduled for the second half of 2006, will
 add important factilities such as an internal scheduler, table
 partitioning, row-based replication, and many other significant
 enhancements.

MySQL Stored Procedures, Functions, and Triggers

MySQL chose to implement its stored program language within
 the MySQL server as a subset of the ANSI SQL:2003 SQL/PSM
 (Persistent Stored Module) specification. What a mouthful!
 Essentially, MySQL stored programs—procedures, functions, and
 triggers—comply with the only available open standard for these
 types of programs—the ANSI standard.
Many MySQL and open source aficionados had been hoping for a
 stored program language implementation based on an open source
 language such as PHP or Python. Others anticipated a Java?-based
 implementation. However, by using the ANSI specification—the same
 specification adopted within IBM's DB2 database—MySQL has taken
 advantage of years of work done by the ANSI committee, which
 included representatives from all of the major RDBMS
 companies.
The MySQL stored program language is a block-structured
 language (like Pascal) that includes familiar commands for
 manipulating variables, implementing conditional execution,
 performing iterative processing, and handling errors. Users of
 existing stored program languages, such as Oracle's PL/SQL or SQL Server's Transact-SQL, will find features of
 the language very familiar. Programmers familiar with other
 languages, such as PHP or Java, might consider the language somewhat
 simplistic, but they will find that it is easy to learn and that it
 is well matched to the common requirements of database
 programming.

A Quick Tour

 Let's look at a few quick examples that demonstrate some
 key elements of both the structure and the functionality of MySQL's
 stored program language. For a full tutorial, see Chapter 2.
Integration with SQL

One of the most important aspects of MySQL's stored program
 language is its tight integration with SQL. You don't need to rely on intermediate
 software "glue," such as ODBC (Open DataBase Connectivity) or JDBC
 (Java DataBase Connectivity), to construct and execute SQL
 statements in your stored program language programs. Instead, you
 simply write the UPDATE, INSERT, DELETE, and SELECT statements directly into your code,
 as shown in Example
 1-1.
Example 1-1. Embedding SQL in a stored program
1 CREATE PROCEDURE example1()
2 BEGIN
3 DECLARE
 l_book_count INTEGER;
4
5 SELECT COUNT(*)
6 INTO l_book_count
7 FROM books
8 WHERE author LIKE '%HARRISON,GUY%';
9
10 SELECT CONCAT('Guy has written (or co-written) ',
11 l_book_count ,
12 ' books.');
13
14 -- Oh, and I changed my name, so...
15 UPDATE books
16 SET author = REPLACE (author, 'GUY', 'GUILLERMO')
17 WHERE author LIKE '%HARRISON,GUY%';
18
19 END

Let's take a more detailed look at this code in the following
 table:
	Line(s)
	Explanation

	1
	This section, the header of the
 program, defines the name (example1) and type (PROCEDURE) of our stored
 program.

	2
	This BEGIN keyword indicates the
 beginning of the program body, which
 contains the declarations and executable code that
 constitutes the procedure. If the program body contains more
 than one statement (as in this program), the multiple
 statements are enclosed in a BEGIN-END block.

	3
	Here we declare an integer
 variable to hold the results of a database query that we
 will subsequently execute.

	5-8
	We run a query to determine the
 total number of books that Guy has authored or coauthored.
 Pay special attention to line 6: the INTO clause that appears within
 the SELECT serves as the
 "bridge" from the database to the local stored program
 language variables.

	10-12
	We use a simple SELECT statement (e.g., one
 without a FROM clause) to
 display the number of books. When we issue a SELECT without an INTO clause, the results are
 returned directly to the calling program. This is a non-ANSI
 extension that allows stored programs to easily return result sets (a common
 scenario when working with SQL Server and other
 RDBMSs).

	14
	This single-line comment explains
 the purpose of the UPDATE.

	15-17
	Guy has decided to change the
 spelling of his first name to "Guillermo"— he's probably
 being stalked by fans of his Oracle book—so we issue an
 UPDATE against the
 books table. We take
 advantage of the built-in REPLACE function to locate all
 instances of "GUY" and replace them with
 "GUILLERMO".

Control and Conditional Logic

Of course, real-world applications are full of complex
 conditions and special cases, so you are unlikely to be able to
 simply execute a series of SQL statements. The stored program
 language offers a full range of control and conditional statements
 so that we can control which lines of our programs actually run
 under a given set of circumstances. These include:
	IF and CASE statements
	Both of these statements implement conditional
 logic with different structures. They allow you to
 express logic such as "If the page count of a book is greater
 than 1000, then . . . ".

	A full complement of looping and iterative
 controls
	These include the simple loop, the WHILE loop, and the REPEAT
 UNTIL loop.

Example 1-2, a
 procedure that pays out the balance of an account to cover
 outstanding bills, demonstrates some of the control statements of
 MySQL.
Example 1-2. Stored procedure with control and conditional logic
1 CREATE PROCEDURE pay_out_balance
2 (account_id_in INT)
3
4 BEGIN
5
6 DECLARE l_balance_remaining NUMERIC(10,2);
7
8 payout_loop:LOOP
9 SET l_balance_remaining = account_balance(account_id_in);
10
11 IF l_balance_remaining < 1000 THEN
12 LEAVE payout_loop;
13
14 ELSE
15 CALL apply_balance(account_id_in, l_balance_remaining);
16 END IF;
17
18 END LOOP;
19
20 END

Let's take a more detailed look at this code in the following
 table:
	Line(s)
	Explanation

	1-3
	This is the header of our
 procedure; line 2 contains the parameter list of the
 procedure, which in this case consists of a single incoming
 value (the identification number of the
 account).

	6
	Declare a variable to hold the
 remaining balance for an account.

	8-18
	This simple loop (named so because
 it is started simply with the keyword LOOP, as opposed to WHILE or REPEAT) iterates until the account
 balance falls below 1000. In MySQL, we can name the loop
 (line 8, payout_loop),
 which then allows us to use the LEAVE statement (see line 12) to
 terminate that particular loop. After leaving a loop, the
 MySQL engine will then proceed to the next executable
 statement following the END
 LOOP; statement (line 18).

	9
	Call the account_balance function (which
 must have been previously defined) to retrieve the balance
 for this account. MySQL allows you to call a
 stored program from within another stored program,
 thus facilitating reuse of code. Since this program is a
 function, it returns a value and can therefore be called
 from within a MySQL SET
 assignment.

	11-16
	This IF statement causes the loop to
 terminate if the account balance falls below $1,000.
 Otherwise (the ELSE
 clause), it applies the balance to the next charge. You can
 construct much more complex Boolean expressions with
 ELSEIF clauses, as
 well.

	15
	Call the apply_balance procedure. This is
 an example of code reuse; rather than repeating the logic of
 apply_balance in this
 procedure, we call a common routine.

Stored Functions

A stored function is a stored program
 that returns a single value and that can be used whenever a built-in
 function can be used—for example, in a SQL statement. Example 1-3 returns the age of
 a person in years when provided with a date of birth.
Example 1-3. A stored function to calculate age from date of
 birth
1 CREATE FUNCTION f_age (in_dob datetime) returns int
2 NO SQL
3 BEGIN
4 DECLARE l_age INT;
5 IF DATE_FORMAT(NOW(),'00-%m-%d') >= DATE_FORMAT(in_dob,'00-%m-%d') THEN
6 -- This person has had a birthday this year
7 SET l_age=DATE_FORMAT(NOW(),'%Y')-DATE_FORMAT(in_dob,'%Y');
8 ELSE
9 -- Yet to have a birthday this year
10 SET l_age=DATE_FORMAT(NOW(),'%Y')-DATE_FORMAT(in_dob,'%Y')-1;
11 END IF;
12 RETURN(l_age);

END;

Let's step through this code in the following table:
	Lines(s)
	Explanation

	1
	Define the function: its name,
 input parameters (a single date), and return value (an
 integer).

	2
	This function contains no SQL
 statements. There's some controversy about the use of this
 clause —see Chapters 3
 and 10 for more
 discussion.

	4
	Declare a local variable to hold
 the results of our age calculation.

	5-11
	This IF-ELSE-END IF block checks to see
 if the birth date in question has occurred yet this
 year.

	7
	If the birth date has, in fact,
 passed in the current year, we can calculate the age by
 simply subtracting the year of birth from the current
 year.

	10
	Otherwise (i.e., the birth date is
 yet to occur this year), we need to subtract an additional
 year from our age calculation.

	12
	Return the age as calculated to
 the calling program.

We can use our stored function wherever a built-in function
 would be permitted—within another stored program, in a SET statement, or, as shown in Example 1-4, within a SQL
 statement.
Example 1-4. Using a stored function within a SQL statement
 (continued)
mysql> SELECT firstname,surname, date_of_birth, f_age(date_of_birth) AS age
 -> FROM employees LIMIT 5;
+-----------+---------+---------------------+------+
| firstname | surname | date_of_birth | age |
+-----------+---------+---------------------+------+
LUCAS	FERRIS	1984-04-17 07:04:27	21
STAFFORD	KIPP	1953-04-22 06:04:50	52
GUTHREY	HOLMES	1974-09-12 08:09:22	31
TALIA	KNOX	1966-08-14 11:08:14	39
JOHN	MORALES	1956-06-22 07:06:14	49
+-----------+---------+---------------------+------+

When Things Go Wrong

Even if our programs have been thoroughly tested and have no
 bugs, user input can cause errors to occur in our code. The MySQL
 stored program language offers a powerful mechanism for handling
 errors. In Example 1-5,
 we create a procedure that creates new product codes or—if the
 product code already exists—updates it with a new name. The
 procedure detects an attempt to insert a duplicate value by using an
 exception handler. If the attempt to insert
 fails, the error is trapped and an UPDATE is issued in place of the INSERT. Without the exception handler, the
 stored program execution is stopped, and the exception is passed
 back unhandled to the calling program.
Example 1-5. Error handling in a stored program
1 CREATE PROCEDURE sp_product_code
2 (in_product_code VARCHAR(2),
3 in_product_name VARCHAR(30))
4
5 BEGIN
6
7 DECLARE l_dupkey_indicator INT DEFAULT 0;
8 DECLARE duplicate_key CONDITION FOR 1062;
9 DECLARE CONTINUE HANDLER FOR duplicate_key SET l_dupkey_indicator =1;
10
11 INSERT INTO product_codes (product_code, product_name)
12 VALUES (in_product_code, in_product_name);
13
14 IF l_dupkey_indicator THEN
15 UPDATE product_codes
16 SET product_name=in_product_name
17 WHERE product_code=in_product_code;
18 END IF;
19
20 END

Let's take a more detailed look at the error-handling aspects
 of this code:
	Line(s)
	Explanation

	1-4
	This is the header of the stored
 procedure, accepting two IN parameters: product code and
 product name.

	7
	Declare a variable that we will
 use to detect the occurrence of a duplicate key violation.
 The variable is initialized with a value of 0 (false);
 subsequent code will ensure that it gets set to a value of 1
 (true) only if a duplicate key violation takes
 place.

	8
	Define a named condition, duplicate_key, that is associated
 with MySQL error 1062. While this step is not strictly
 necessary, we recommend that you define such conditions to
 improve the readability of your code (you can now reference
 the error by name instead of by number).

	9
	Define an error handler that will
 trap the duplicate key error and then set the value of the
 variable l_dupkey_indicator to 1 (true) if
 a duplicate key violation is encountered anywhere in the
 subsequent code.

	11-12
	Insert a new product with the
 user-provided code and name.

	14
	Check the value of the l_dupkey_indicator variable. If it
 is still 0, then the INSERT was successful and we are
 done. If the value has been changed to 1 (true), we know
 that there has been a duplicate key violation. We then run
 the UPDATE statement in
 lines 15-17 to change the name of the product with the
 specified code.

Error handling is a critical aspect of writing robust,
 maintainable MySQL stored programs. Chapter 6 takes you on an extensive
 tour of the various error-handling mechanisms in MySQL stored
 programs.

Triggers

A trigger is a stored program that is
 automatically invoked in response to an event within the database.
 In the MySQL 5 implementation, triggers are invoked only in response to DML activity on a
 specific table. The trigger can automatically calculate derived or
 denormalized values. Example
 1-6 shows a trigger that maintains such a derived value;
 whenever an employee salary is changed, the value of the contrib_401K column is automatically set
 to an appropriate value.
Example 1-6. Trigger to maintain a derived column value
1 CREATE TRIGGER employees_trg_bu
2 BEFORE UPDATE ON employees
3 FOR EACH ROW
4 BEGIN
5 IF NEW.salary <50000 THEN
6 SET NEW.contrib_401K=500;
7 ELSE
8 SET NEW.contrib_401K=500+(NEW.salary-50000)*.01;
9 END IF;
10 END

The following table explains this fairly simple and short
 trigger:
	Line(s)
	Explanation

	1
	A trigger has a unique name.
 Typically, you will want to name the trigger so as to reveal
 its nature. For example, the "bu" in the trigger's name
 indicates that this is a BEFORE
 UPDATE trigger.

	2
	Define the conditions that will
 cause the trigger to fire. In this case, the trigger code
 will execute prior to an UPDATE statement on the employees table.

	3
	 FOR EACH
 ROW indicates that the trigger code will be
 executed once for each row being affected by the DML
 statement. This clause is mandatory in the current MySQL 5
 trigger implementation.

	4-10
	This BEGIN-END block defines the code
 that will run when the trigger is fired.

	5-9
	Automatically populate the
 contrib_401K column in
 the employees table. If
 the new value for the salary column is less than 50000,
 the contrib._401K column
 will be set to 500. Otherwise, the value will be calculated
 as shown in line 8.

There is, of course, much more that can be said about the
 MySQL stored program language—which is why you have hundreds more
 pages of material to study in this book! These initial examples
 should, however, give you a good feel for the kind of code you will
 write with the stored program language, some of its most important
 syntactical elements, and the ease with which you can write—and
 read—the stored program language code.

Resources for Developers Using Stored Programs

The introduction of stored programs in MySQL 5 is a significant milestone in the evolution
 of the MySQL language. For any new technology to be absorbed and
 leveraged fully, users of that technology need lots of support and
 guidance in how best to utilize it. Our objective is to offer in this
 book complete and comprehensive coverage of the MySQL stored program
 language.
We are certain, however, that you will need help in other ways,
 so in the following sections we describe additional
 resources that either complement this book (by providing
 information about other MySQL technologies) or provide community-based
 support or late-breaking news. In these sections we provide quick
 summaries of many of these resources. By taking full advantage of
 these resources, many of which are available either free or at a
 relatively low cost, you will greatly improve the quality of your
 MySQL development experience—and your resulting code.
Books

Over the years, the MySQL series from O'Reilly has grown to
 include quite a long list of books. Here we list some of the books
 currently available that we feel could be pertinent to the MySQL
 stored program developer, as well as relevant books from other
 publishers. Please check out the MySQL area of the O'Reilly OnLAMP
 web site (http://www.onlamp.com/onlamp/general/mysql.csp) for
 more complete information.
	MySQL Stored Procedure Programming,
 by Guy Harrison with Steven Feuerstein
	This is the book you are holding now (or maybe even
 viewing online). This book was designed to be a complete and
 comprehensive guide to the MySQL stored program language.
 However, this book does not attempt complete coverage of the
 MySQL server, the SQL language, or other programming languages
 that you might use with MySQL. Therefore, you might want to
 complement this book with one or more other topics from the
 O'Reilly catalog or even—heaven forbid—from another
 publisher!

	MySQL in a Nutshell, by Russell
 Dyer
	This compact quick-reference manual covers the MySQL SQL
 language, utility programs, and APIs for Perl, PHP, and C.
 This book is the ideal companion for any MySQL user
 (O'Reilly).

	Web Database Applications with PHP and
 MySQL, by Hugh Williams and David Lane
	This is a comprehensive guide to creating web-based
 applications using PHP and MySQL. It covers PEAR (PHP
 Extension and Application Repository) and provides a variety
 of complete case studies (O'Reilly).

	MySQL, by Paul DuBois
	This classic reference—now in its third edition—is a
 comprehensive reference to MySQL development and
 administration. The third edition includes prerelease coverage
 of MySQL 5.0, including some information about stored
 procedures, functions, and triggers (SAMS).

	High Performance MySQL, by Jeremy
 Zawodny and Derek Balling
	This book covers the construction of high-performance
 MySQL server environments, along with how you can tune
 applications to take advantage of these environments. The book
 focuses on optimization, benchmarking, backups, replication,
 indexing, and load balancing (O'Reilly).

	MySQL Cookbook, by Paul DuBois
	This cookbook provides quick and easily applied recipes
 for common MySQL problems ranging from program setup to table
 manipulation and transaction management to data import/export
 and web interaction (O'Reilly).

	Pro MySQL, by Michael Krukenberg and
 Jay Pipes
	This book covers many advanced MySQL topics, including
 index structure, internal architecture, replication,
 clustering, and new features in MySQL 5.0. Some coverage of
 stored procedures, functions, and triggers is included,
 although much of the discussion is based on early MySQL 5 beta
 versions (APress).

	MySQL Design and Tuning, by Robert D.
 Schneider
	This is a good source of information on advanced
 development and administration topics, with a focus on
 performance (MySQL Press).

	SQL in a Nutshell, by Kevin Kline, et
 al.
	MySQL stored procedures, functions, and triggers rely on
 the SQL language to interact with database tables. This is a
 reference to the SQL language as implemented in Oracle, SQL
 Server, DB2, and MySQL (O'Reilly).

	Learning SQL, by Alan Beaulieu
	This book provides an excellent entry point for those
 unfamiliar with SQL. It covers queries, grouping, sets,
 filtering, subqueries, joins, indexes, and constraints, along
 with exercises (O'Reilly).

Internet Resources

There are also some excellent web sites available to MySQL
 programmers, including some areas devoted to stored programming. You
 should also make sure to look at the web site for this book
 (described in the Preface)
 for updates, errata, and other MySQL information.
	MySQL
	MySQL AB offers the most comprehensive collection of
 white papers, documentation, and forums on MySQL in general
 and MySQL stored programming in particular. Start at http://www.mysql.com. We outline some specific
 areas later.

	MySQL Developer Zone
	http://dev.mysql.com/ is the main
 entry point for MySQL programmers. From here you can easily
 access software downloads, online forums, white papers,
 documentation, and the bug-tracking system.

	MySQL online documentation
	The MySQL reference manual—including sections on stored
 procedures, functions, and triggers—is available online at
 http://dev.mysql.com/doc/. You can also
 download the manual in various formats from here, or you can
 order various selections in printed book format at http://dev.mysql.com/books/mysqlpress/index.html.

	MySQL forums
	MySQL forums are great places to discuss MySQL features
 with others in the MySQL community. The MySQL developers are
 also frequent participants in these forums. The general forum
 index can be found at http://forums.mysql.com/. The stored procedure
 forum includes discussions of both procedures and functions,
 and there is a separate forum for triggers.

	MySQL blogs
	There are many people blogging about MySQL nowadays, and
 MySQL has consolidated many of the most significant feeds on
 the Planet MySQL web site at http://www.planetmysql.org/.

	MySQL stored routines library
	Giuseppe Maxia initiated this routine library, which
 collects general-purpose MySQL 5 stored procedures and
 functions. The library is still young, but already there are
 some extremely useful routines available. For example, you
 will find routines that emulate arrays, automate repetitive
 tasks, and perform crosstab manipulations. Check it out at
 http://savannah.nongnu.org/projects/mysql-sr-lib/.

	O'Reilly's OnLAMP MySQL
 section
	O'Reilly hosts the OnLAMP site, which is dedicated to
 the LAMP stack (Linux, Apache, MySQL, PHP/Perl/Python) of
 which MySQL is such an important part. OnLAMP includes
 numerous MySQL articles, which you can find at http://www.onlamp.com/onlamp/general/mysql.csp.

Some Words of Advice for Developers

By definition, everyone is new to the world of MySQL stored
 program development, because stored programs are themselves new to
 MySQL. However, Guy and Steven have both had plenty of experience in
 stored program development within other relational databases. Steven,
 in particular, has been a key figure in the world of Oracle PL/SQL
 (Oracle's stored program language) development for more than a decade.
 We hope that you will find it helpful if we share some advice with you
 on how you can work more effectively with this powerful MySQL
 programming language.
Don't Be in Such a Hurry!

We are almost always working under tight deadlines, or playing
 catch-up from one setback or another. We have no time to waste, and
 lots of code to write. So let's get right to it—right?
Wrong. If we dive too quickly into the depths of code
 construction, slavishly converting requirements to hundreds,
 thousands, or even tens of thousands of lines of code, we will end
 up with a total mess that is almost impossible to debug and
 maintain. Don't respond to looming deadlines with panic; you are
 more likely to meet those deadlines if you do some careful
 planning.
We strongly encourage you to resist these time pressures and
 make sure to do the following before you start a new application, or
 even a specific program in an application:
	Construct test cases and test
 scripts before you write your code
	You should determine how you want to verify a successful
 implementation before you write a single line of a program. By
 doing this, you are more likely to get the interface of your
 program correct and be able to thoroughly identify what it is
 your program needs to do.

	Establish clear rules for how
 developers will write the SQL statements in the
 application
	In general, we recommend that individual developers not
 write a whole lot of SQL. Instead, those single-row queries
 and inserts and updates should be "hidden" behind prebuilt and
 thoroughly tested procedures and functions (this is called
 data encapsulation). These programs can
 be optimized, tested, and maintained much more effectively
 than SQL statements (many of them quite similar) scattered
 throughout your code.

	Establish clear rules for how
 developers will handle exceptions in the
 application
	If you don't set standards, then everyone will handle
 errors their own way or not at all, creating software chaos.
 The best approach to take is to centralize your error-handling
 logic in a small set of procedures, which hide all the details
 of how an error log is kept, determine how exceptions are
 raised and propagated up through nested blocks, and more. Make
 sure that all developers use these programs and do not write
 their own complicated, time-consuming, and error-prone
 error-handling code.

	Use "stepwise refinement"
 (a.k.a. top-down design) to limit the complexity of the
 requirements you must deal with at any given
 time
	We are usually tasked with implementing very complex
 requirements. If you try to "do it all" in one big stored
 program, it will rapidly devolve into spaghetti code that even
 you will not be able to understand later. Break your big
 challenges into a sequence of smaller challenges, and then
 tackle those more manageable problems with reasonably sized
 programs. If you use this approach, you will find that the
 executable sections of your modules are shorter and easier to
 understand, which makes your code easier to maintain and
 enhance over time.

These are just a few of the important things to keep in mind
 before you start writing all that code. Just remember: in the world
 of software development, haste not only makes waste, it virtually
 guarantees a generous offering of bugs and lost weekends.

Don't Be Afraid to Ask for Help

Chances are, if you are a software professional, you are a
 smart and well-educated individual. You studied hard, you honed your
 skills, and now you make a darn good living writing code. You can
 solve almost any problem you are handed, and that makes you
 proud.
Unfortunately, your success can also make you egotistical,
 arrogant, and reluctant to seek out help when you are stumped (we
 think we are supposed to know all the answers).
 This dynamic is one of the most dangerous and destructive aspects of
 software development.
Software is written by human beings; it is important,
 therefore, to recognize that human psychology plays a key role in
 software development. The following is an example.
Joe, the senior developer in a team of six, has a problem with
 his program. He studies it for hours, with increasing frustration,
 but cannot figure out the source of the bug. He wouldn't think of
 asking any of his peers to help because they all have less
 experience than he does. Finally, though, he is at wits' end and
 gives up. Sighing, he picks up his phone and touches an extension:
 "Sandra, could you come over here and take a look at my program?
 I've got a problem I can't figure out." Sandra stops by and, with
 the quickest glance at Joe's program, points out what should have
 been obvious to him long ago. Hurray! The program is fixed, and Joe
 expresses gratitude, but in fact he is secretly embarrassed.
Thoughts like "Why didn't I see that?" and "If I'd only spent
 another five minutes doing my own debugging I would have found it"
 run though Joe's mind. This is understandable but misguided. The
 bottom line is that we are often unable to identify our own problems
 because we are too close to our own code. Sometimes, all we need is
 a fresh perspective, the relatively objective view of someone with
 nothing at stake. It has nothing to do with seniority, expertise, or
 competence.
Besides, Sandra isn't going to think poorly of Joe. Instead,
 by asking her for help, Joe has made her feel better about herself,
 and so both members of the development team benefit.
We strongly suggest that you establish the following
 guidelines in your organization:
	Reward admissions of ignorance
	Hiding what you don't know about an application or its
 code is very dangerous. Develop a culture in which it is OK to
 say "I don't know" and encourages the asking of lots of
 questions.

	Ask for help
	If you cannot figure out the source of a bug in 30
 minutes, immediately ask for help. You might even set up a
 "buddy system," so that everyone is assigned a person who is
 expected to be asked for assistance. Don't let yourself (or
 others in your group) go for hours banging your head against
 the wall in a fruitless search for answers.

	Set up a formal peer code review
 process
	Don't let any code go to QA (Quality Assurance) or
 production without being read and critiqued (in a positive,
 constructive manner) by other developers in your group.

Take a Creative, Even Radical Approach

We all tend to fall into ruts, in almost every aspect of our
 lives. Humans are creatures of habit: you learn to write code in one
 way; you assume certain limitations about a product; you turn aside
 possible solutions without serious examination because you just
 know it can't be done. Developers become
 downright prejudiced about their own programs, and often not in
 positive ways. They are often overheard saying things like:
	"It can't run any faster than that; it's a pig."

	"I can't make it work the way the user wants; that'll have
 to wait for the next version."

	"If I were using X or Y or Z product, it would be a
 breeze. But with this stuff, everything is a struggle."

But the reality is that your program can almost always run a
 little faster. And the screen can, in fact, function just the way
 the user wants it to. And although each product has its limitations,
 strengths, and weaknesses, you should never have to wait for the
 next version. Isn't it so much more satisfying to be able to tell
 your therapist that you tackled the problem head-on, accepted no
 excuses, and crafted a solution?
How do you do this? Break out of the confines of your hardened
 views and take a fresh look at the world (or maybe just the walls of
 your cubicle). Reassess the programming habits you've developed. Be
 creative—step away from the traditional methods, from the often
 limited and mechanical approaches constantly reinforced in our
 places of business.
Try something new: experiment with what may seem to be a
 radical departure from the norm. You will be surprised at how much
 you will learn and grow as a programmer and problem solver. Over the
 years, we have surprised ourselves over and over with what is really
 achievable when we stopped saying "You can't do that!" and instead
 simply nodded quietly and wondered to ourselves: "Now, if we do it
 this way, what will happen ...?"

Conclusion

In this chapter, we took you on a whirlwind tour of the MySQL
 relational database and the new MySQL stored program language. We also
 provided you with some useful resources and added some general words
 of advice that we hope you find useful.
In the next chapter, we'll provide a more comprehensive tutorial
 that will really get you started with MySQL stored procedures,
 functions, and triggers.

Chapter 2. MySQL Stored Programming Tutorial

MySQL stored programming is a complex topic. We offer this chapter
 to introduce you to the main and common tasks you will need to perform,
 including:
	How to create a stored program

	How to pass information in and out of the stored
 program

	How to interact with the database

	How to create procedures, functions, and triggers in the MySQL
 stored program language

We don't go into detail in this chapter. Our purpose is to get you
 started and to give you some appreciation of how stored programs work.
 Later chapters will explore in detail all of the topics touched on in
 this chapter.
What You Will Need

 To follow along with the examples in this
 tutorial , you will need:
	A MySQL 5 server

	A text editor such as vi, emacs, or Notepad

	The MySQL Query Browser

You can get the MySQL server and MySQL Query Browser from http://dev.mysql.com.

Our First Stored Procedure

We'll start by creating a very simple stored procedure. To do
 this, you need an editing environment in which to write the stored
 procedure and a tool that can submit the stored procedure code to the
 MySQL server.
You can use just about any editor to write your code. Options
 for compiling that code into MySQL include:
	The MySQL command-line client

	The MySQL Query Browser

	A third-party tool such as Toad for MySQL

In this chapter, we won't make any assumptions about what tools
 you have installed, so we'll start with the good old MySQL
 command-line client.
Let's connect to the MySQL server on the local host at port 3306
 using the root account. We'll use the preinstalled "test" database in
 Example 2-1.
Example 2-1. Connecting to the MySQL command-line client
[gharriso@guyh-rh4-vm2 ~]$mysql -uroot -psecret -hlocalhost
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.16-nightly-20051017-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Creating the Procedure

You can create a stored program with the CREATE PROCEDURE , CREATE FUNCTION
 , or CREATE
 TRIGGER statement. It is possible to enter these statements
 directly at the MySQL command line, but this is not practical for
 stored programs of more than trivial length, so the best thing for
 us to do is to create a text file containing our stored program
 text. Then we can submit this file to the database using the
 command-line client or another tool.
We will use the MySQL Query Browser as a text editor in this
 example. If you don't have this tool, you can download it from
 http://dev.mysql.com/downloads/. Alternately,
 you could use an OS text editor such as vi, emacs, or Notepad. We
 like the MySQL Query Browser because of its built-in help system,
 syntax highlighting, ability to run SQL statements, and lots of
 other features.
Follow these steps:
	Run the MySQL Query browser. On Windows, from the Start
 menu select Programs → MySQL → MySQL Query Browser. On Linux,
 type mysql-query-browser from
 the command line.

	Select File → New Script tab from the menu to create a
 blank script window.

	Enter your stored program command text.

Figure 2-1 shows
 our first stored procedure.
We then use the File → Save As menu option to save our file so
 that we can execute it from the mysql client.
[image: A first stored procedure]

Figure 2-1. A first stored procedure

This first stored procedure is very simple, but let's examine
 it line by line to make sure you understand it completely:
	Line
	Explanation

	1
	Issue the DELIMITER command to set '$$' as the end of a statement.
 Normally, MySQL regards ";" as the end of a statement, but
 since stored procedures contain semicolons in the procedure
 body, we need to use a different delimiter.

	3
	Issue a DROP PROCEDURE IF EXISTS statement
 to remove the stored procedure if it already exists. If we
 don't do this, we will get an error if we then try to
 re-execute this file with modifications and the stored
 procedure exists.

	4
	The CREATE PROCEDURE statement
 indicates the start of a stored procedure definition. Note
 that the stored procedure name "HelloWorld" is followed by an
 empty set of parentheses "(
)". If our stored procedure had any parameters,
 they would be defined within these parentheses. This stored
 procedure has no parameters, but we need to include the
 parentheses anyway, or we will get a syntax
 error.

	5
	The BEGIN statement indicates the
 start of the stored procedure program. All stored programs
 with more than a single statement must have at least one
 BEGIN and END block that defines the start
 and end of the stored program.

	6
	This is the single executable
 statement in the procedure: a SELECT statement that returns
 "Hello World" to the
 calling program. As you will see later, SELECT statements in stored
 programs can return data to the console or calling program
 just like SELECT
 statements entered at the MySQL command line.

	7
	The END statement terminates the
 stored procedure definition. Note that we ended the stored
 procedure definition with $$ so that MySQL knows that we
 have completed the CREATE
 PROCEDURE statement.

With our definition stored in a file, we can now use the mysql
 client to create and then execute the HelloWorld stored procedure,
 as shown in Example
 2-2.
Example 2-2. Creating our first stored procedure
$ mysql -uroot -psecret -Dprod
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 16 to server version: 5.0.18-nightly-20051208-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SOURCEHelloWorld.sql
Query OK, 0 rows affected, 1 warning (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> CALLHelloWorld() $$
+-------------+
| Hello World |
+-------------+
| Hello World |
+-------------+
1 row in set (0.01 sec)

Query OK, 0 rows affected (0.01 sec)

mysql>

Here is an explanation of the MySQL commands used to get all
 this to work:
	Command
	Explanation

	
 SOURCE HelloWorld.sql

	Reads commands from the nominated
 file. In this case, we specify the file we just saved from
 the MySQL Query Browser. No errors are returned, so the
 stored procedure appears to have been created
 successfully.

	
 CALL HelloWorld() $$

	Executes the stored procedure.
 Calling our stored procedure successfully results in
 "Hello World" being
 output as a result set. Note that we terminated the CALL command with '$$', since that is still what the
 DELIMITER is set
 to.

Creating the Procedure Using the MySQL Query Browser

In this tutorial—and indeed throughout this book—we will
 mostly create and demonstrate stored programs the old-fashioned way:
 using the MySQL command-line client to create the stored program. By
 doing this, you'll always be able to duplicate the examples.
 However, you do have the option of using a GUI tool to create stored
 programs: there are a number of good third-party GUI tools for MySQL
 available, and you always have the option of installing and using
 the MySQL Query Browser, available from http://dev.mysql.com/downloads/.
In this section we offer a brief overview of creating a stored
 procedure using the MySQL Query Browser. Using the Query Browser is
 certainly a more user-friendly way of creating stored programs,
 although it might not be available on all platforms, and you may
 prefer to use the MySQL command line or the various third-party
 alternatives.
On Windows, you launch the Query Browser (if installed) from
 the Start menu option Programs → MySQL → MySQL Query Browser. On
 Linux, you type mysql-query-browser.
When the Query Browser launches, it prompts you for connection
 details for your MySQL server. Once you have provided these, a blank
 GUI window appears. From this window, select Script and then Create
 Stored Procedure. You will be prompted for the name of the stored
 program to create, after which an empty template for the stored
 program will be displayed. An example of such a template is shown in
 Figure 2-2.
[image: Creating a stored procedure in the MySQL Query Browser]

Figure 2-2. Creating a stored procedure in the MySQL Query
 Browser

You can then enter the text of the stored procedure at the
 appropriate point (between the BEGIN and END statements—the cursor is handily
 positioned there automatically). Once you have finished entering our
 text, simply click the Execute button to create the stored
 procedure. If an error occurs, the Query Browser highlights the line
 and displays the error in the lower half of the Query Browser
 window. Otherwise, you'll see the name of the new stored procedure
 appear in the Schemata tab to the left of the stored procedure, as
 shown in Figure
 2-3.
To execute the stored procedure, double-click on the name of
 the procedure within the Schemata tab. An appropriate CALL statement will be pasted into the
 execution window above the stored procedure. Clicking on the Execute
 button to the right of the CALL
 statement executes the stored procedure and displays a results
 window, as shown in Figure
 2-4.
[image: Stored procedure is created by clicking the Execute button]

Figure 2-3. Stored procedure is created by clicking the Execute
 button

We hope this brief example gives you a feel for the general
 process of creating and executing a stored procedure in the MySQL
 Query Browser. The Query Browser offers a convenient environment for
 the development of stored programs, but it is really up to you
 whether to use the Query Browser, a third-party tool, or simply your
 favorite editor and the MySQL command-line client.

Variables

 Local variables can be declared within stored procedures using the
 DECLARE statement. Variable names follow the same naming rules
 as MySQL table column names and can be of any MySQL data type. You can
 give variables an initial value with the DEFAULT clause and assign them new values
 using the SET command, as shown in
 Figure 2-5.

Parameters

 Most of the stored programs you write will include one
 or more parameters. Parameters make stored programs much more flexible
 and therefore more useful. Next, let's create a stored procedure that
 accepts parameters.
[image: Executing the stored procedure in the Query Browser]

Figure 2-4. Executing the stored procedure in the Query Browser

The stored procedure shown in Figure 2-6 accepts an integer
 parameter, input_number, and
 calculates the square root of that number. The resulting number is
 returned as a result set.
Place parameters within parentheses that are located immediately
 after the name of the stored procedure. Each parameter has a name, a
 data type, and, optionally, a mode. Valid modes are IN (read-only), INOUT (read-write), and OUT (write-only). No parameter mode appears
 in Figure 2-6, because
 IN is the default and this is an
 IN parameter.
We'll take a closer look at parameter modes following this
 example.
In addition to the parameter, this stored procedure introduces
 two other features of MySQL stored programs:
	DECLARE
	A statement used to create local variables for use in the
 stored program. In this case, we create a floating-point number
 called l_sqrt.

[image: Examples of variables in stored procedures]

Figure 2-5. Examples of variables in stored procedures

	SET
	A statement used to assign a value to a variable. In this
 case, we assign the square root of our input parameter (using
 the built-in SQRT function)
 to the floating-point number we created with the DECLARE command.

We can run this script, and test the resulting stored procedure
 in the MySQL client, as shown in Example 2-3.
Example 2-3. Creating and executing a stored procedure with a
 parameter
mysql> SOURCEmy_sqrt.sql
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> CALLmy_sqrt(12)$$
+-----------------+
| l_sqrt |
 +-----------------+
| 3.4641016151378 |
+-----------------+
1 row in set (0.12 sec)

Query OK, 0 rows affected (0.12 sec)

[image: A stored procedure with parameters]

Figure 2-6. A stored procedure with parameters

Parameter Modes

Parameters in MySQL can be defined as IN, OUT, or INOUT:
	IN
	This mode is the default. It indicates that the
 parameter can be passed into the stored program but that any
 modifications are not returned to the calling program.

	OUT
	This mode means that the stored program can assign a
 value to the parameter, and that value will be passed back to
 the calling program.

	INOUT
	This mode means that the stored program can read the
 parameter and that the calling program can see any
 modifications that the stored program may make to that
 parameter.

You can use all of these parameter modes in stored procedures,
 but only the IN mode in stored
 functions (see the later See "Stored Functions"
 section).
Let's change our square root program so that it puts the
 result of its calculations into an OUT variable, as shown in Figure 2-7.
[image: Example of using OUT parameter in a stored procedure]

Figure 2-7. Example of using OUT parameter in a stored
 procedure

In the MySQL client, we now have to provide a variable to hold
 the value of the OUT parameter.
 After the stored procedure has finished executing, we can look at
 that variable to retrieve the output, as shown in Example 2-4.
Example 2-4. Creating and executing a stored procedure with an OUT
 parameter
mysql> SOURCEmy_sqrt2.sql
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.02 sec)

 mysql> CALLmy_sqrt(12,@out_value) $$
Query OK, 0 rows affected (0.03 sec)

mysql> SELECT@out_value $$
+-----------------+
| @out_value |
+-----------------+
| 3.4641016151378 |
+-----------------+
1 row in set (0.00 sec)

Conditional Execution

 You can control the flow of execution in your stored
 program by using IF or CASE statements. Both have roughly the same
 functionality; we will demonstrate the use of IF in this tutorial, as it's probably the
 most familiar of the two constructs.
Figure 2-8 shows a
 stored program that works out the discounted rate for a purchase based
 on the size of the purchase, and Example 2-5 shows its execution.
 Purchases over $500 get a 20% discount, while purchases over $100 get
 a 10% discount.
[image: Conditional execution with the IF statement]

Figure 2-8. Conditional execution with the IF statement

Example 2-5. Creating and executing a stored procedure that contains an IF
 statement
mysql> SOURCEdiscounted_price.sql
Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> CALLdiscounted_price(300,@new_price) $$
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT@new_price$$
+------------+
| @new_price |
+------------+
| 270.0 |
+------------+
1 row in set (0.00 sec)

The IF statement allows you
 to test the truth of an expression such as normal_price > 500 and take appropriate
 action based on the result of the expression. As with other
 programming languages, the ELSEIF
 clause is used for all conditional branches after the initial IF. The ELSE clause is executed if the Boolean
 expressions in the IF and ELSEIF clauses all evaluate to false.
CASE has very similar
 functionality, and may be preferable when you are comparing a single
 expression against a set of possible distinct values. The two
 conditional statements are explored and contrasted in Chapter 4.

Loops

Loops allow stored programs to execute statements
 repetitively. The MySQL stored program language offers three types of
 loops :
	Simple loops using the LOOP and END
 LOOP clauses

	Loops that continue while a condition
 is true, using the WHILE and
 END WHILE clauses

	Loops that continue until a condition
 is true, using the REPEAT and
 UNTIL clauses

With all three loop types, you terminate execution of the loop
 with the LEAVE statement.
All three types of loops are described in detail in Chapter 4; we'll only demonstrate the
 LOOP-LEAVE-END LOOP (simple loop)
 sequence in this tutorial.
Figure 2-9 shows a
 very simple loop.
[image: A simple loop inside a stored procedure]

Figure 2-9. A simple loop inside a stored procedure

Here is an explanation of the activity in this stored
 procedure:
	Line(s)
	Explanation

	7
	Declare a simple numeric variable
 called counter with an
 initial value of 0.

	9-14
	The simple loop. All statements
 between LOOP and END LOOP are repeated until a
 LEAVE clause is
 executed.

	9
	The LOOP statement is prefixed by the
 my_simple_loop: label. The
 LEAVE statement requires
 that the loop be labeled so it knows which loop to
 exit.

	10
	Increment the counter variable by
 one.

	11-13
	Test for the value of counter. If the value of counter is 10, we execute the
 LEAVE statement to
 terminate the loop. Otherwise, we continue with the next
 iteration of the loop.

	15
	We proudly announce that we can
 count to 10!

Dealing with Errors

 When an error occurs in a stored program, the default
 behavior of MySQL is to terminate execution of the program and pass
 the error out to the calling program. If you need a different kind of
 response to an error, you create an error handler
 that defines the way in which the stored program should respond to one
 or more error conditions.
The following are two relatively common scenarios that call for
 the definition of error handlers:
	If you think that an embedded SQL statement might return no
 rows, or you need to fetch all the rows from a SELECT statement using a cursor, a
 NOT FOUND error handler will
 prevent the stored program from terminating prematurely.

	If you think that a SQL statement might return an error (a
 constraint violation, for instance), you may need to create a
 handler to prevent program termination. The handler will, instead,
 allow you to process the error and continue program
 execution.

Chapter 6 describes in
 detail how to use error handlers. An example of using a NOT FOUND error handler with a cursor is
 shown in the next section.

Interacting with the Database

 Most stored programs involve some kind of interaction
 with database tables. There are four main types of
 interactions:
	Store the results of a SQL statement that returns a single
 row into local variables.

	Create a "cursor" that allows the stored program to iterate
 through the rows returned by a SQL statement.

	Execute a SQL statement, returning the result set(s) to the
 calling program.

	Embed a SQL statement that does not return a result set,
 such as INSERT, UPDATE, DELETE, etc.

The following sections look briefly at each type of
 interaction.
Tip
To run the examples in this section of the chapter, you should
 install the book's sample database, available at this book's web
 site (see the Preface for
 details).

SELECTing INTO Local Variables

Use the SELECT INTO syntax
 when you are querying information from a single row of data (whether
 retrieved from a single row, an aggregate of many rows, or a join of
 multiple tables). In this case, you include an INTO clause "inside" the SELECT statement that tells MySQL where to
 put the data retrieved by the query.
Figure 2-10 shows
 a stored procedure that obtains and then displays the total sales
 for the specified customer ID. Figure 2-6 executes the
 procedure.
[image: A stored procedure with an embedded SELECT INTO statement]

Figure 2-10. A stored procedure with an embedded SELECT INTO
 statement

Example 2-6. Executing a stored procedure that includes a SELECT INTO
 statement
mysql> CALL customer_sales(2) $$
+--+
| CONCAT('Total sales for ',in_customer_id,' is ',total_sales) |
+--+
| Total sales for 2 is 7632237 |
+--+
1 row in set (18.29 sec)

Query OK, 0 rows affected (18.29 sec)

Using Cursors

SELECT INTO is fine for
 single-row queries, but many applications require the querying of
 multiple rows of data. You will use a cursor in
 MySQL to accomplish this. A cursor lets you fetch one or more rows
 from a SQL result set into stored program variables, usually with
 the intention of performing some row-by-row processing on the result
 set.
The stored procedure in Figure 2-11 uses a cursor to
 fetch all rows from the employees
 table.
Here is an explanation of the significant lines in this
 procedure:
[image: Using a cursor in a stored procedure]

Figure 2-11. Using a cursor in a stored procedure

	Line(s)
	Explanation

	8-12
	Declare local variables. The first
 three are created in order to receive the results of our
 SELECT statement. The
 fourth (done) lets us
 know when all the rows have been retrieved from the result
 set.

	14-16
	Define our cursor. This is based
 on a simple SELECT that
 will retrieve results from the employees table.

	18
	Declare a "handler" that defines
 the actions we will take when no more rows can be retrieved
 from a SELECT statement.
 Handlers can be used to catch all kinds of errors, but a
 simple handler like this is always needed to alert us that
 no more rows can be retrieved from a result
 set.

	20
	Open the cursor.

	21-26
	The simple loop that fetches all
 the rows from the cursor.

	22
	Use the FETCH clause to get a single row
 from the cursor into our local variables.

	23-25
	Check the value of the done variable. If it is set to 1,
 then we have fetched beyond the last row within the cursor,
 so we execute the LEAVE
 statement to terminate the loop.

Returning Result Sets from Stored Procedures

An unbounded SELECT statement—one not associated with
 an INTO clause or a
 cursor—returns its result set to the calling program. We have used
 this form of interaction between a stored procedure and the database
 quite a few times already in this book, using simple SELECTs to return some kind of status or
 result from a stored procedure. So far, we've used only single-row
 result sets, but we could equally include a complex SQL statement
 that returns multiple rows within the stored procedure.
If we execute such a stored procedure from the MySQL command
 line, the results are returned to us in the same way as if we
 executed a SELECT or SHOW statement. Figure 2-12 shows a stored
 procedure that contains such an unbounded SELECT statement.
[image: An unbounded SELECT statement in a stored procedure]

Figure 2-12. An unbounded SELECT statement in a stored procedure

If we execute the stored procedure and supply an appropriate
 value for the input parameter, the results of the SELECT within the stored procedure are
 returned. In Figure
 2-13 we see the results of the SELECT statement being returned from the
 stored procedure call from within the MySQL Query Browser.
[image: Results returned from a stored procedure that has an unbounded SELECT]

Figure 2-13. Results returned from a stored procedure that has an
 unbounded SELECT

Note that a stored program call can return more than one
 result set. This creates special challenges for the calling program,
 which we discuss—for each specific programming language—in Chapters 13 through 17.

Embedding Non-SELECTs

"Simple" SQL statements that do not return results can also be
 embedded in your stored programs. These statements include DML
 statements such as UPDATE,
 INSERT, and DELETE and may also include certain DDL
 statements such as CREATE TABLE.
 Some statements—specifically those that create or manipulate stored
 programs—are not allowed; these are outlined in Chapter 5.
Figure 2-14 shows
 a stored procedure that includes an update operation. The UPDATE statement is enclosed in some
 validation logic that prevents the update from proceeding if the
 input values are invalid.
[image: Stored procedure with an embedded UPDATE]

Figure 2-14. Stored procedure with an embedded UPDATE

Calling Stored Programs from Stored Programs

 Calling one stored program from another is perfectly
 simple. You do this with the CALL
 statement, just as you would from the MySQL
 command-line client.
Figure 2-15 shows a
 simple stored procedure that chooses between two stored procedures
 based on an input parameter. The output of the stored procedure
 (l_bonus_amount is populated from
 an OUT parameter) is passed to a
 third procedure.
Here is an explanation of the significant lines:
	Line(s)
	Explanation

	11
	Determine if the employee is a
 manager. If he is a manager, we call the calc_manager_bonus stored procedure;
 if he is not a manager, we call the calc_minion_bonus stored
 procedure.

	12 and 14
	With both stored procedures, pass in
 the employee_id and provide
 a variable—l_bonus_amount—to receive the output
 of the stored procedure.

	16
	Call the grant_bonus stored procedure that
 passes as arguments the employee_id and the bonus amount, as
 calculated by the stored procedure we called in line 12 or
 14.

[image: Example of calling one stored procedure from another]

Figure 2-15. Example of calling one stored procedure from another

Putting It All Together

In Example 2-7 we
 show a stored procedure that uses all the features of the stored
 program language we have covered so far in this tutorial.
Example 2-7. A more complex stored procedure
1 CREATE PROCEDURE putting_it_all_together(in_department_id INT)
2 MODIFIES SQL DATA
3 BEGIN
4 DECLARE l_employee_id INT;
5 DECLARE l_salary NUMERIC(8,2);
6 DECLARE l_department_id INT;
7 DECLARE l_new_salary NUMERIC(8,2);
8 DECLARE done INT DEFAULT 0;
9
10 DECLARE cur1 CURSOR FOR
11 SELECT employee_id, salary, department_id
12 FROM employees
13 WHERE department_id=in_department_id;
14
15
16 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done=1;
17
18 CREATE TEMPORARY TABLE IF NOT EXISTS emp_raises
19 (employee_id INT, department_id INT, new_salary NUMERIC(8,2));
20
21 OPEN cur1;
22 emp_loop: LOOP
23
24 FETCH cur1 INTO l_employee_id, l_salary, l_department_id;
25
26 IF done=1 THEN /* No more rows*/
27 LEAVE emp_loop;
28 END IF;
29
30 CALL new_salary(l_employee_id,l_new_salary); /*get new salary*/
31
32 IF (l_new_salary<>l_salary) THEN /*Salary changed*/
33
34 UPDATE employees
35 SET salary=l_new_salary
36 WHERE employee_id=l_employee_id;
37 /* Keep track of changed salaries*/
38 INSERT INTO emp_raises (employee_id,department_id,new_salary)
39 VALUES (l_employee_id,l_department_id,l_new_salary);
40 END IF;
41
42 END LOOP emp_loop;
43 CLOSE cur1;
44 /* Print out the changed salaries*/
45 SELECT employee_id,department_id,new_salary from emp_raises
46 ORDER BY employee_id;
47 END;

This is the most complex procedure we have written so far, so
 let's go through it line by line:
	Line(s)
	Explanation

	1
	Create the procedure. It takes a
 single parameter—in_department_id. Since we did not
 specify the OUT or INOUT mode, the parameter is for
 input only (that is, the calling program cannot read any
 changes to the parameter made within the
 procedure).

	4-8
	Declare local variables for use
 within the procedure. The final parameter, done, is given an initial value of
 0.

	10-13
	Create a cursor to retrieve rows
 from the employees table.
 Only employees from the department passed in as a parameter to
 the procedure will be retrieved.

	16
	Create an error handler to deal with
 "not found" conditions, so that the program will not terminate
 with an error after the last row is fetched from the cursor.
 The handler specifies the CONTINUE clause, so the program
 execution will continue after the "not found" error is raised.
 The hander also specifies that the variable done will be set to 1 when this
 occurs.

	18
	Create a temporary table to hold a
 list of rows affected by this procedure. This table, as well
 as any other temporary tables created in this session, will be
 dropped automatically when the session
 terminates.

	21
	Open our cursor to prepare it to
 return rows.

	22
	Create the loop that will execute
 once for each row returned by the stored procedure. The loop
 terminates on line 42.

	24
	Fetch a new row from the cursor into
 the local variables that were declared earlier in the
 procedure.

	26-28
	Declare an IF condition that will execute the
 LEAVE statement if the
 variable done is set to 1
 (accomplished through the "not found" handler, which means
 that all rows were fetched).

	30
	Call the new_salary procedure to calculate
 the employee's new salary. It takes as its arguments the
 employee_id and an OUT variable to accept the new
 salary (l_new_salary).

	32
	Compare the new salary calculated by
 the procedure called on line 30 with the existing salary
 returned by the cursor defined on line 10. If they are
 different, execute the block of code between lines 32 and
 40.

	34-36
	Update the employee salary to the
 new salary as returned by the new_salary procedure.

	38 and 39
	Insert a row into our temporary
 table (defined on line 21) to record the salary
 adjustment.

	43
	After all of the rows have been
 processed, close the cursor.

	45
	Issue an unbounded SELECT (e.g., one without a WHERE clause) against the temporary
 table, retrieving the list of employees whose salaries have
 been updated. Because the SELECT statement is not associated
 with a cursor or an INTO
 clause, the rows retrieved will be returned as a result set to
 the calling program.

	47
	Terminate the stored
 procedure.

When this stored procedure is executed from the MySQL command
 line with the parameter of department_id set to 18, a list of updated
 salaries is printed as shown in Example 2-8.
Example 2-8. Output from the "putting it all together" example
mysql> CALL putting_it_all_together(18) //
+-------------+---------------+------------+
| employee_id | department_id | new_salary |
+-------------+---------------+------------+
| 396 | 18 | 75560.00 |
| 990 | 18 | 118347.00 |
+-------------+---------------+------------+
2 rows in set (0.23 sec)

Query OK, 0 rows affected (0.23 sec)

Stored Functions

 Stored functions are similar to stored procedures: they
 are named program units that contain one or more MySQL statements.
 They differ from procedures in the following ways:
	The parameter list of a function may contain only IN parameters. OUT and INOUT parameters are not allowed.
 Specifying the IN keyword is
 neither required nor allowed.

	The function itself must return a single value, whose type
 is defined in the header of the function.

	Functions can be called from within SQL statements.

	A function may not return a result set.

Generally, you should consider using a stored function rather
 than a stored procedure when you have a program whose sole purpose is
 to compute and return a single value or when you want to create a
 user-defined function for use within SQL statements.
Figure 2-16 shows a
 function that implements the same functionality found in the discount_price stored procedure we created
 earlier in this chapter.
[image: A stored function]

Figure 2-16. A stored function

The following table explains a few things that set apart this
 function from its stored procedure equivalent:
	Line
	Explanation

	7
	Specify a RETURNS clause as part of the
 function definition. This specifies the type of data that the
 function will return.

	8
	MySQL applies stricter rules to
 stored functions than it does to procedures. A function must
 either be declared not to modify SQL (using the NO SQL or READS SQL DATA clauses) or be
 declared to be DETERMINISTIC (if it is to be allowed in servers that have
 binary logging enabled). This restriction is designed to
 prevent inconsistencies between replicated databases caused by
 functions that return an unpredictable value (see Chapter 10 for more details).
 Our example routine is "deterministic" —we can guarantee that
 it will return the same result if it is provided with the same
 input parameter.

	21
	Use the RETURN statement to pass back the
 discount price calculated by the IF statement.

Example 2-9 shows
 calling this function from within a SQL statement.
Example 2-9. Calling a stored function from a SELECT statement
mysql> SELECT f_discount_price(300) $$
+-----------------------+
| f_discount_price(300) |
+-----------------------+
| 270.0 |
+-----------------------+

We can also call this function from within another stored
 program (procedure, function, or trigger), or any place that we could
 use a built-in MySQL function.

Triggers

 A trigger is a special type of stored program that fires
 when a table is modified by an INSERT, UPDATE, or DELETE (DML) statement. Triggers implement
 functionality that must take place whenever a certain change occurs to
 the table. Because triggers are attached directly to the table, application code
 cannot bypass database triggers.
Typical uses of triggers include the implementation of critical
 business logic, the denormalization of data for performance reasons,
 and the auditing of changes made to a table. Triggers can be defined
 to fire before or after a specific DML statement executes.
In Figure 2-17, we
 create a trigger that fires before any INSERT statement completes against the
 sales table. It automatically
 applies free shipping and discounts to orders of a specified
 value.
[image: A database trigger]

Figure 2-17. A database trigger

Here is an explanation of the trigger definition:
	Line(s)
	Explanation

	5
	Specify the trigger
 name.

	6
	Specify that the trigger fires
 before an insert on the sales table.

	7
	Include the (currently) mandatory
 FOR EACH ROW clause,
 indicating that the statements within the trigger will be
 executed once for every row inserted into the sales table.

	8
	Use BEGIN to start the block containing
 statements to be executed by the trigger.

	9-13
	If the sale_value is greater than $500, set
 the value of the free_shipping column to 'Y'. Otherwise, set it to 'N'.

	15-19
	If the sale_value is greater than $1000,
 calculate a 15% discount and insert that value into the
 discount column. Otherwise,
 set the discount to 0.

The effect of the trigger is to automatically set the value of
 the free_shipping and discount columns. Consider the INSERT statement shown in Example 2-10.
Example 2-10. An INSERT into the sales table
INSERT INTO sales
 (customer_id, product_id, sale_date, quantity, sale_value,
 department_id, sales_rep_id)
VALUES(20,10,now(),20,10034,4,12)

The sale is valued at $10,034 and, as such, is eligible for a
 15% discount and free shipping. Example 2-11 demonstrates that
 the trigger correctly set these values.
Example 2-11. A trigger automatically populates the free_shipping and
 discount columns
mysql> SELECT sale_value,free_shipping,discount
 -> FROM sales
 -> WHERE sales_id=2500003;
+------------+---------------+----------+
| sale_value | free_shipping | discount |
+------------+---------------+----------+
| 10034 | Y | 1505 |
+------------+---------------+----------+
1 row in set (0.22 sec)

Using a trigger to maintain the free_shipping and discount columns ensures that the columns
 are correctly maintained regardless of the SQL statements that might
 be executed from PHP , C#, or Java, or even from the MySQL command-line
 client.

Calling a Stored Procedure from PHP

 We've shown you how to call stored programs from the
 MySQL command-line client, from the MySQL Query Browser, and from
 another stored program. In the real world, however, you are more
 likely to call a stored program from another programming environment,
 such as PHP, Java, Perl, Python, or .NET. We discuss the details of
 using stored programs within each of these environments in Chapters
 Chapter 12 through Chapter 17.
For now, let's look at how you can call a stored procedure
 (shown in Figure 2-18)
 from PHP, which is probably the development environment most commonly
 used in conjunction with MySQL.
When interacting with MySQL from PHP, we can choose between the
 database-independent PEAR::DB extension, the mysqli (MySQL "improved") extension, and the
 more recent PHP Data Objects (PDO) extension. In this example we will use the mysqli extension. Chapter 13 describes the details of
 these extensions.
Figure 2-19 shows
 PHP code that connects to the MySQL server and calls the stored
 procedure. We won't step through the code here, but we hope that it
 will give you a sense of how stored programs can be used in web and
 other applications.
[image: Stored procedure to be called from PHP]

Figure 2-18. Stored procedure to be called from PHP

The PHP program prompts the user to specify a department ID; it
 then calls the stored procedure employee_list to retrieve a list of
 employees that belong to that department. Figure 2-20 shows the output
 displayed by the PHP/stored procedure example.

Conclusion

In this chapter we presented a brief "getting started" tutorial
 that introduced you to the basics of MySQL stored programs. We showed
 you how to:
	Create a simple "Hello World" stored procedure.

	Define local variables and procedure parameters.

	Perform conditional execution with the IF statement.

	Perform iterative processing with simple loops.

	Include SQL statements inside stored procedures, including
 how to perform row-at-a-time processing with cursors.

	Call a stored program from another stored program.

	Create a stored function (and differentiate stored functions
 from stored procedures).

	Create a trigger on a table to automate
 denormalization.

	Call a stored procedure from PHP.

[image: Sample PHP program calling a stored procedure]

Figure 2-19. Sample PHP program calling a stored procedure

You may now be tempted to put down this book and start writing
 MySQL stored programs. If so, we congratulate you on your enthusiasm.
 May we suggest, however, that you first spend some time reading more
 detailed explanations of each of these areas of functionality in the
 following chapters? That way, you are likely to make fewer mistakes
 and write higher-quality code.
[image: Output from our PHP example]

Figure 2-20. Output from our PHP example

Chapter 3. Language Fundamentals

This chapter introduces the MySQL stored program language, a
 simple, readable but complete programming language based on the ANSI
 SQL:2003 SQL/PSM (Persistent Stored Module) specification.
The MySQL stored program language is a block-structured language
 (like Pascal) that includes familiar statements for manipulating
 variables , implementing conditional execution, performing
 iterative processing, and handling errors. Users of other stored program
 languages such as Oracle PL/SQL or Microsoft SQL Server
 Transact-SQL will find features of the language very familiar. In fact,
 users of the IBM DB2 SQL Procedural language will find MySQL's stored
 program language almost identical—both are based on the SQL/PSM
 specification. Users of other programming languages that are typically
 used with MySQL—such as PHP, Java, or Perl—might find the stored program
 language a little verbose, but should have no difficulty at all learning
 the language.
In this chapter we will look at the fundamental building blocks of
 the stored program language—variables, literals, parameters, comments,
 operators, expressions, and data types. We will also discuss MySQL 5
 "strict" mode and its implications. In the next chapter we will build on
 this base by describing the block structure, conditional statements
 (IF and CASE), and looping capabilities of the
 language.
Variables, Literals, Parameters, and Comments

 Let's start with a review of how we define and use
 various data items—variables, literals, and parameters—in our stored
 programs and how we can add comments to document our code.
Variables

The first thing we'll look at is how the MySQL stored program
 language deals with variables and literals, because without some
 understanding of these items, we can't create any meaningful
 examples for any other topics.
A variable is a named data item whose
 value can change during program execution. A
 literal (described in the next section) is an
 unnamed data item that can be assigned to a variable. Typically,
 literals are hardcoded into your stored program code and are
 usually assigned to variables , passed as parameters, or used as arguments to
 SELECT statements.
The DECLARE statement allows us to create a variable. As we will
 see a bit later on, it appears within a block of code before any
 cursor or handler declarations and before any procedural statements.
 The syntax of the DECLARE
 statement is:
 DECLARE variable_name [,variable_name...] datatype [DEFAULT value];
Multiple variables may be declared in a single DECLARE statement, and the variable(s) can
 be assigned a default (or initial) value. If you don't use the
 DEFAULT clause, then the variable
 starts off with the NULL value.
Using DEFAULT is a good
 practice because, unless you initialize a variable, any subsequent
 operations on that variable—other than a simple assignment—may also
 return NULL. We'll give an example of this type of error later in
 the chapter.
The datatype may be any of the
 valid MySQL data types that you can use in a CREATE TABLE statement. We provide
 detailed descriptions of each data type later in this chapter; Table 3-1 summarizes those
 most commonly used.
Table 3-1. Commonly used MySQL data types
	Data type
	Explanation
	Examples of corresponding
 values

	INT, INTEGER
	A 32-bit integer (whole number).
 Values can be from approximately -2.1 billion to +2.1
 billion. If unsigned, the value can reach about 4.2 billion,
 but negative numbers are not allowed.
	123,345

 -2,000,000,000

	BIGINT
	A 64-bit integer (whole number).
 Values can be from approximately -9 million trillion to +9
 million trillion or from 0 to 18 million trillion if
 unsigned.
	9,000,000,000,000,000,000

 -9,000,000,000,000,000,000

	FLOAT
	A 32-bit floating-point number.
 Values can range from about -1.7e38 to 1.7e38 for signed
 numbers or 0 to 3.4e38 if unsigned.
	0.00000000000002

 17897.890790
 -345.8908770

 1.7e21

	DOUBLE
	A 64-bit floating-point number.
 The value range is close to infinite (
 1.7e308).
	1.765e203

 -1.765e100

	DECIMAL(precision,scale)

 NUMERIC(precision,scale)
	A fixed-point number. Storage
 depends on the precision, as do the possible numbers that
 can be stored. NUMERICs
 are typically used where the number of decimals is
 important, such as for currency.
	78979.00

 -87.50
 9.95

	DATE
	A calendar date, with no
 specification of time.
	'1999-12-31'

	DATETIME
	A date and time, with resolution
 to a particular second.
	'1999-12-31
 23:59:59'

	CHAR(length)
	A fixed-length character string.
 The value will be right-padded up to the length specified. A
 maximum of 255 bytes can be specified for the
 length.
	'hello world '

	VARCHAR(length)
	A variable-length string up to 64K
 in length.
	'Hello world'

	BLOB, TEXT
	Up to 64K of data, binary in the
 case of BLOB, or text in
 the case of TEXT.
	Almost anything
 imaginable

	LONGBLOB, LONGTEXT
	Longer versions of the BLOB and TEXT types, capable of storing up
 to 4GB of data.
	Almost anything imaginable, but a
 lot more than you would have imagined for BLOB or TEXT

Some examples of variable declarations for each of the data
 types are shown in Example
 3-1.
Example 3-1. Examples of variable declarations
DECLARE l_int1 int default -2000000;
DECLARE l_int2 INT unsigned default 4000000;
DECLARE l_bigint1 BIGINT DEFAULT 4000000000000000;
DECLARE l_float FLOAT DEFAULT 1.8e8;
DECLARE l_double DOUBLE DEFAULT 2e45;
DECLARE l_numeric NUMERIC(8,2) DEFAULT 9.95;

DECLARE l_date DATE DEFAULT '1999-12-31';
DECLARE l_datetime DATETIME DEFAULT '1999-12-31 23:59:59';

DECLARE l_char CHAR(255) DEFAULT 'This will be padded to 255 chars';
DECLARE l_varchar VARCHAR(255) DEFAULT 'This will not be padded';

DECLARE l_text TEXT DEFAULT 'This is a really long string. In stored programs
 we can use text columns fairly freely, but in tables there are some
 limitations regarding indexing and use in various expressions.';

Literals

A literal is a data value hardcoded into
 your program. You commonly use literals in variable assignment statements or comparisons
 (IF, for instance), as arguments
 to procedures or functions, or within SQL statements.
There are three fundamental types of literals :
	Numeric literals
	A numeric literal represents a number and can be defined
 as a raw number (300, 30.45, etc.), as a hexadecimal value, or
 in scientific notation. Scientific notation is a way of
 representing very large or very high-precision values. The
 letter 'e' in what otherwise appears to be a number indicates
 that the numeric value on the left of the 'e' is multiplied by
 10 to the power of the number to the right of the 'e'. So
 2.4e4 is equivalent to 2.3 × 104 or
 23,000. You cannot use commas in numeric literals.
Hexadecimal values are represented in the traditional
 format, by prefixing them with '0x'. So 0xA represents the
 hexadecimal number 'A', which is 10 in decimal.

	Date literals
	A date literal is a string in the format 'YYYY-MM-DD' or—for the DATETIME data type—in the format
 'YYYY-MM-DD HH24:MI:SS'. So '1999-12-31 23:59:59' represents
 the last second of the last century (unless you believe that
 because there was no year 0, the century actually ended on
 2000-12-31).

	String literals
	A string literal is simply any string value surrounded
 by quotes. If single quotes themselves need to be included
 within the literal itself delimited by single quotes, they can
 be represented by two single quotes or prefixed with a
 backslash (\'). You can
 also enclose strings in double quotes, and you can use escape
 sequences for special characters (\t for a tab, \n for a new line, \\ for a backslash, etc.).
If the server is running in ANSI_QUOTES mode (SET sql_mode='ANSI_QUOTES') then
 only single quotes can be used for literals. Sequences
 enclosed in double quotes will be interpreted as identifiers
 (variables or column names, for instance) that contain
 special characters, in accordance with the ANSI
 standard.

Rules for Variable Names

MySQL is amazingly flexible when it comes to naming variables. Unlike most other programming languages,
 MySQL allows variable names to be extremely long (more than 255
 characters); they can contain special characters and can commence
 with numeric characters. However, we recommend that you not take
 advantage of MySQL's flexibility in this case—use sensible naming
 conventions and avoid overly long variable names (see Chapter 23 for these and other best
 practices).

Assigning Values to Variables

You manipulate variable values with the SET statement, which has the following
 syntax:
 SET variable_name = expression [,variable_name = expression ...]
As you can see, it is possible to perform multiple assignments
 with a single SET
 statement.
Most languages do not require a SET statement for variable assignment, and
 consequently, one of the easiest mistakes to make when getting
 started is to try to assign a value to a variable without specifying
 SET, as in Example 3-2.
Example 3-2. Attempting to manipulate a variable without the SET
 statement
mysql> Create procedure no_set_stmt()
BEGIN
 DECLARE i INTEGER;
 i=1;
END;
$$

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds
to your MySQL server version for the right syntax to use near
'procedure no_set_stmt()
BEGIN
 DECLARE i INT;
 i=1;
END' at line 1

As is often the case with stored program compilation errors,
 the error message does not directly identify the absence of the
 SET statement, so when checking
 your program for strange compilation errors, double check that all
 variable assignments include SET.

Parameters

Parameters are variables that can be passed into—or out of—the
 stored program from the calling program. Parameters are defined in
 the CREATE statement for the
 function or procedure as follows:
 Create procedure|function(
 [[IN
|OUT
|INOUT
] parameter_name data_type...])
The parameter names follow the same naming rules that apply to
 variables. The data_type can be any of
 the types available to local variables. Parameters can be associated
 with an IN,OUT, or INOUT attribute:
	IN
	Unless otherwise specified, parameters assume the IN attribute. This means that their
 value must be specified by the calling program, and any
 modifications made to the parameter in the stored program
 cannot be accessed from the calling program.

	OUT
	An OUT parameter can
 be modified by the stored program, and the modified value can
 be retrieved from the calling program. The calling program
 must supply a variable to receive the output of the OUT parameter, but the stored
 program itself has no access to whatever might be initially
 stored in that variable. When the stored program commences,
 the value of any OUT
 variables appear as NULL, regardless of what value they may
 have been assigned in the calling program.

	INOUT
	An INOUT parameter
 acts both as an IN and as
 an OUT parameter. That is,
 the calling program may supply a value, the stored program
 itself may modify the value of the parameter, and the calling
 program may access this changed value when the stored program
 completes.

The IN, OUT, and INOUT keywords apply only to stored
 procedures and not to stored functions. In stored functions all
 parameters behave as IN
 parameters (although you cannot specify the IN keyword).
The next three examples illustrate these principles.
First, although MySQL lets us change the value of an IN parameter in a stored program, the
 change cannot be seen by the calling program. The stored program in
 Example 3-3 prints and
 then modifies the value of the parameter. While modification of the
 input parameter is allowed within the stored program, the original
 variable (@p_in) is
 unchanged.
Example 3-3. Example of an IN parameter
mysql> CREATE PROCEDURE sp_demo_in_parameter(IN p_in INT)
BEGIN
 /* We can see the value of the IN parameter */
 SELECT p_in;
 /* We can modify it*/
 SET p_in=2;
 /* show that the modification took effect */
 select p_in;
END;

/* This output shows that the changes made within the stored program cannot be accessed
from
 the calling program (in this case, the mysql client):*/

mysql> set @p_in=1

Query OK, 0 rows affected (0.00 sec)

mysql> call sp_demo_in_parameter(@p_in)

+------+--+
| p_in | We can see the value of the IN parameter |
+------+--+
| 1 | We can see the value of the IN parameter |
+------+--+
1 row in set (0.00 sec)

+------+-------------------------------------+
| p_in | IN parameter value has been changed |
 +------+-------------------------------------+
| 2 | IN parameter value has been changed |
+------+-------------------------------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> select @p_in,'We can''t see the changed value from the calling program'

+-------+---+
| @p_in | We can't see the changed value from the calling program |
+-------+---+
| 1 | We can't see the changed value from the calling program |
+-------+---+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Next, in Example
 3-4 we examine the behavior of an OUT parameter. Although the calling
 program has initialized the OUT
 parameter with a value, the stored program does not see that value.
 The calling program, however, sees the changed values when the
 procedure completes execution.
Example 3-4. Example of an OUT parameter
mysql> CREATE PROCEDURE sp_demo_out_parameter(OUT p_out INT)

BEGIN
 /* We can't see the value of the OUT parameter */
 SELECT p_out,'We can''t see the value of the OUT parameter';
 /* We can modify it*/
 SET p_out=2;
 SELECT p_out,'OUT parameter value has been changed';

END;

mysql> SET @p_out=1

Query OK, 0 rows affected (0.00 sec)

mysql> CALL sp_demo_out_parameter(@p_out)

+-------+---+
| p_out | We can't see the value of the OUT parameter in the stored program |
+-------+---+
| NULL | We can't see the value of the OUT parameter in the stored program |
+-------+---+
 1 row in set (0.00 sec)

+-------+--------------------------------------+
| p_out | OUT parameter value has been changed |
+-------+--------------------------------------+
| 2 | OUT parameter value has been changed |
+-------+--------------------------------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p_out,"Calling program can see the value of the changed OUT parameter"

+--+
| Calling program can see the value of the changed OUT parameter |
+--+
| 2 |
+--+
1 row in set (0.00 sec)

Finally, Example
 3-5 shows that the value of an INOUT parameter can be seen by the stored
 program, modified, and returned in its modified form to the calling
 program.
Example 3-5. Example of an INOUT parameter
mysql> CREATE PROCEDURE sp_demo_inout_parameter(INOUT p_inout INT)

BEGIN

 SELECT p_inout,'We can see the value of the INOUT parameter in the stored program';

 SET p_inout=2;
 SELECT p_inout,'INOUT parameter value has been changed';

END;
//
 Query OK, 0 rows affected (0.00 sec)

set @p_inout=1
//

Query OK, 0 rows affected (0.00 sec)

call sp_demo_inout_parameter(@p_inout) //

+---------+---+
| p_inout | We can see the value of the INOUT parameter in the stored program |
+---------+---+
| 1 | We can see the value of the INOUT parameter in the stored program |
+---------+---+
1 row in set (0.00 sec)

+---------+--+
| p_inout | INOUT parameter value has been changed |
+---------+--+
| 2 | INOUT parameter value has been changed |
+---------+--+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

select @p_inout ,"Calling program can see the value of the changed INOUT parameter"
//

+----------+--+
| @p_inout | Calling program can see the value of the changed INOUT parameter |
+----------+--+
| 2 | Calling program can see the value of the changed INOUT parameter |
+----------+--+
1 row in set (0.00 sec)

User Variables

User variables are special MySQL
 variables that can be defined and manipulated inside or outside
 stored programs. They have been available in MySQL since version 3
 and are a feature of the MySQL base product, not the stored program
 language. However, we can make good use of user variables in two ways:
	Since user variables have a scope that is outside of
 individual stored programs, they can be used to represent
 variables that should be accessible from any stored program
 within a session. This approach is similar in principle to the
 use of global variables in other programming languages.

	User variables can provide an alternative method of
 passing information to stored programs. Stored programs can
 access the values of user variables, which can avoid the need to
 pass in the values as parameters. (See the earlier "Parameters" section for
 more information on parameters.)

User variables can be created and manipulated from the MySQL
 command-line client—or from any other program that can issue MySQL
 statements—using the SET
 statement. Example 3-6
 shows some examples of using SET
 from the MySQL client.
Example 3-6. Manipulating user variables in the MySQL client
mysql> SELECT 'Hello World' into @x;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT @x;
+-------------+
| @x |
+-------------+
| Hello World |
+-------------+
1 row in set (0.03 sec)

mysql> SET @y='Goodbye Cruel World';
Query OK, 0 rows affected (0.00 sec)

mysql> select @y;
+---------------------+
 | @y |
+---------------------+
| Goodbye Cruel World |
+---------------------+
1 row in set (0.00 sec)

mysql> SET @z=1+2+3;
Query OK, 0 rows affected (0.00 sec)

mysql> select @z;
+------+
| @z |
+------+
| 6 |
+------+
1 row in set (0.00 sec)

You can access any user variable defined in the current
 session (e.g., connection) from within a stored program. For
 instance, Example 3-7
 shows how to pass information to a stored procedure without using a
 procedure parameter.
Example 3-7. Using user variables to pass information from the calling
 program to the stored procedure
mysql> CREATE PROCEDURE GreetWorld()
 -> SELECT CONCAT(@greeting,' World');
Query OK, 0 rows affected (0.00 sec)

mysql> SET @greeting='Hello';
Query OK, 0 rows affected (0.00 sec)

mysql> CALL GreetWorld();
+----------------------------+
| CONCAT(@greeting,' World') |
+----------------------------+
| Hello World |
+----------------------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

We can also create a user variable within a stored program. It
 will then be available from all other stored programs, acting like a
 global variable would in a language such as PHP. For instance, in
 Example 3-8, procedure
 p1() creates the user variable,
 which is visible within procedure p2(
).
Example 3-8. Using a user variable as a "global variable" across stored
 programs
mysql> CREATE PROCEDURE p1()
 -> SET @last_procedure='p1';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE PROCEDURE p2()
 -> SELECT CONCAT('Last procedure was ',@last_procedure);
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p1();
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p2();
+---+
| CONCAT('Last procedure was ',@last_procedure) |
+---+
| Last procedure was p1 |
+---+
1 row in set (0.00 sec)

A user variable is a variant data type—it can store a string,
 date, or numeric value. Data type conversions are performed
 automatically. User variables remain in existence for the duration
 of a MySQL session and can be accessed by any program or statement
 running within that session. They cannot, however, be accessed by
 other sessions.
In some programming languages (such as PHP), variables whose
 scope extends beyond a single function are identified by the
 global keyword. In other
 languages the syntax for defining these variables may differ, but
 they are often still referred to as "global" variables. In MySQL,
 the global clause of the SET statement allows you to set the
 server-wide value of system variables, not to create the equivalent
 of a PHP global variable. For this reason, referring to user
 variables as "global" in scope can lead to confusion and probably
 should be avoided. Note that you cannot use the global clause of the SET statement to create your own
 variables.
Using user variables to implement variables that are available
 across multiple stored programs can be useful on occasion. However,
 you should definitely use this technique sparingly. As in all
 programming languages, overuse of global variables that scope beyond
 a single program can lead to code that is hard to understand and
 maintain. Routines that share such variables become tightly coupled
 and hence hard to maintain, test, or even understand in
 isolation.
Tip
Use "user" variables sparingly in your stored programs.
 Excessive use of variables that scope beyond a single program
 leads to code that is nonmodular and hard to maintain.

Comments

Two styles of comments are supported in MySQL stored programs:
	Two dashes — followed
 by a space create a comment that continues until the end of the
 current line. We'll call these single-line
 comments.

	C-style comments commence with /* and terminate with */. We'll call these
 multiline comments.

Single-line comments are useful for documenting variable
 declarations and simple single-line statements. Multiline comments
 are more useful for creating larger comment chunks, such as a
 standard comment header that accompanies each stored program
 definition.
The chunk of code in Example 3-9 illustrates both
 types of comments.
Example 3-9. Example of stored program comments
create procedure comment_demo
 (in p_input_parameter INT -- Dummy parameter to illustrate styles
)
/*
| Program: comment_demo
| Purpose: demonstrate comment styles
| Author: Guy Harrison
| Change History:
| 2005-09-21 - Initial
|
*/

Operators

 MySQL operators include the familiar operators common to most
 programming languages, although C-style operators (++,—,+=,
 etc.) are not supported.
Operators are typically used within the SET statement to change the value of a
 variable, within comparison statements such as IF or CASE, and in loop control expressions. Example 3-10 shows a few simple
 examples of using operators within stored programs.
Example 3-10. Examples of operators in a stored program
create procedure operators()
begin
 DECLARE a int default 2;
 declare b int default 3;
 declare c FLOAT;

 set c=a+b; select 'a+b=',c;
 SET c=a/b; select 'a/b=',c;
 SET c=a*b; Select 'a*b=',c;

 IF (a<b) THEN
 select 'a is less than b';
 END IF;
 IF NOT (a=b) THEN
 SELECT 'a is not equal to b';
 END IF;
end;

The various types of operators (mathematical , comparison , logical, and bitwise) are described in the following
 subsections.
Mathematical Operators

MySQL supports the basic mathematical operators you learned about in elementary school (pay attention
 class!): addition (+),
 subtraction (-), multiplication
 (*), and division (/).
In addition, MySQL supports two additional operators related
 to division: the DIV operator
 returns only the integer portion of division, while the modulus
 operator (%) returns only the
 remainder from a division. Table 3-2 lists, describes,
 and provides an example of the MySQL mathematical operators.
Table 3-2. MySQL mathematical operators
	Operator
	Description
	Example

	+
	Addition
	SET var1=2+2; → 4

	-
	Subtraction
	SET var2=3-2; → 1

	*
	Multiplication
	SET var3=3*2; → 6

	/
	Division
	SET var4=10/3; →
 3.3333

	DIV
	Integer division
	SET var5=10 DIV 3; →
 3

	%
	Modulus
	SET var6=10%3 ; → 1

Comparison Operators

Comparison operators compare values and return TRUE, FALSE, or
 UNKNOWN (usually if one of the values being compared is NULL or
 UNKNOWN). They are typically used within expressions in IF, CASE, and loop control statements.
Table 3-3
 summarizes the MySQL comparison operators .
Table 3-3. Comparison operators
	Operator
	Description
	Example
	Example result

	>
	Is greater than
	1>2
	False

	<
	Is less than
	2<1
	False

	<=
	Is less than or equal
 to
	2<=2
	True

	>=
	Is greater than or equal
 to
	3>=2
	True

	BETWEEN
	Value is between two
 values
	5 BETWEEN 1 AND 10
	True

	NOT BETWEEN
	Value is not between two
 values
	5 NOT BETWEEN 1 AND
 10
	False

	IN
	Value is in a list
	5 IN (1,2,3,4)
	False

	NOT IN
	Value is not in a
 list
	5 NOT IN (1,2,3,4)
	True

	=
	Is equal to
	2=3
	False

	<>, !=
	Is not equal to
	2<>3
	False

	<=>
	Null safe equal (returns TRUE if
 both arguments are Null)
	NULL<=>NULL
	True

	LIKE
	Matches a simple
 pattern
	"Guy Harrison" LIKE
 "Guy%"
	True

	REGEXP
	Matches an extended regular
 expression
	"Guy Harrison" REGEXP
 "[Gg]reg"
	False

	IS NULL
	Value is NULL
	0 IS NULL
	False

	IS NOT NULL
	Value is not NULL
	0 IS NOT NULL
	True

Logical Operators

Logical operators operate on the three-valued logic values
 TRUE, FALSE, and NULL and return a like value. These operators are
 typically used with comparison operators to create more complex
 expressions.
For many of the logical operations, if any of the values being compared is
 NULL, then the result is also NULL. It is extremely important to
 remember this simple fact when creating logical expressions since,
 otherwise, subtle bugs can arise in your code.
The AND operator compares
 two Boolean expressions and returns TRUE only if both of the
 expressions are true. Table
 3-4 shows the possible values generated by the AND function.
Table 3-4. Truth table for AND operator
	AND
	TRUE
	FALSE
	NULL

	TRUE
	TRUE
	FALSE
	NULL

	FALSE
	FALSE
	FALSE
	NULL

	NULL
	NULL
	NULL
	NULL

The OR operator compares
 two Boolean expressions and returns TRUE if either of the
 expressions provided is TRUE (Table 3-5).
Table 3-5. Truth table for the OR operator
	OR
	TRUE
	FALSE
	NULL

	TRUE
	TRUE
	TRUE
	TRUE

	FALSE
	TRUE
	FALSE
	NULL

	NULL
	TRUE
	NULL
	NULL

The XOR operator returns
 TRUE if either—but not both—of the values is TRUE. Table 3-6 shows the possible
 values for an XOR
 expression.
Table 3-6. Truth table for the XOR operator
	XOR
	TRUE
	FALSE
	NULL

	TRUE
	FALSE
	TRUE
	NULL

	FALSE
	TRUE
	FALSE
	NULL

	NULL
	NULL
	NULL
	NULL

Example 3-11 shows
 the use of the AND operator to
 combine multiple comparisons.
Example 3-11. Example of logical operators in practice
CREATE FUNCTION f_title(in_gender CHAR(1),
 in_age INT, in_marital_status VARCHAR(7))
 RETURNS VARCHAR(6)
BEGIN
 DECLARE title VARCHAR(6);
 IF in_gender='F' AND in_age<16 THEN
 SET title='Miss';
 ELSEIF in_gender='F' AND in_age>=16 AND in_marital_status='Married' THEN
 SET title='Mrs';
 ELSEIF in_gender='F' AND in_age>=16 AND in_marital_status='Single' THEN
 SET title='Ms';
 ELSEIF in_gender='M' AND in_age<16 THEN
 SET title='Master';
 ELSEIF in_gender='M' AND in_age>=16 THEN
 SET title='Mr';
 END IF;
 RETURN(title);
END;

Bitwise Operators

Bitwise operators perform operations on the underlying binary
 representation of a variable. Table 3-7 lists the
 bitwise operators .
Table 3-7. Bitwise operators
	Operator
	Use

	|
	OR

	&
	AND

	<<
	Shift bits to left

	>>
	Shift bits to right

	~
	 NOT or invert bits

Bitwise operators are similar to logical operators, except
 that they perform their operations on each bit within a
 variable.
For instance, consider the integers 5 (binary 101) and 4
 (binary 010). The OR operator
 sets each bit if either of the bits is set in the inputs; so 5|2=7,
 because 101|010=111, which is 7 in decimal.
The bitwise AND operator
 sets a bit only if both the bits are true in the input. So
 5&6=4, because 101&110=100, which equals 4.

Expressions

 An expression is a combination of
 literals, variables, and operators that resolves to some value.
 Conditional execution and flow-control statements usually depend on
 the value of an expression to determine loop continuation or code
 branching.
Example 3-12 shows a
 variety of expressions .
Example 3-12. Examples of expressions
Myvariable_name
Myvariable_name+1
ABS(Myvariable_name)
3.14159
IF(Myvariable='M','Male','Female')
(2+4)/12

Built-in Functions

 You can use most of the functions that MySQL makes
 available for use in SQL statements within stored programs. These are
 fully documented in the MySQL reference manual, and we provide details
 and examples for most of these functions in Chapter 9. We'll also talk about how
 you can create your own "stored" functions in the MySQL stored program
 language in Chapter 10.
The functions that may be used in SQL but not in stored programs
 are those involved in group (multiple-row) operators. These include
 functions such as SUM, COUNT, MIN, MAX,
 and AVG. MySQL accepts these
 functions within expressions, but they will return NULL as shown in
 Example 3-13.
Example 3-13. Aggregate functions in stored procedures return NULL
mysql> create procedure functions()
begin
 DECLARE a int default 2;
 declare b int default 3;
 declare c FLOAT;

 SET c=SUM(a); select c;

end;

Query OK, 0 rows affected (0.00 sec)

mysql> call functions();

+------+
| c |
+------+
| NULL |
+------+
1 row in set (0.00 sec)

MySQL functions fall into the following categories:
	String functions
	These functions perform operations on string variables.
 For example, you can concatenate strings, find characters within
 strings, obtain a substring, and perform other common
 operations.

	Mathematical functions
	These functions perform operations on numbers. For
 example, you can perform exponentiation (raise to a power),
 trigonometric functions (sine, cosine, etc.), random number
 functions, logarithms, and so on.

	Date and time functions
	These functions perform operations on dates and times. For
 example, you can get the current date, add or subtract time
 intervals from dates, find the difference between two dates, and
 extract certain portions of a date (e.g., get the time of day
 from a date-time).

	Miscellaneous functions
	These functions include everything not easily categorized
 in the above three groupings. They include cast functions, flow
 control functions (e.g., CASE), informational functions (e.g.,
 server version), and encryption functions.

Table 3-8
 summarizes some of the most frequently used functions; see Chapter 9 for a more complete coverage
 of function syntax and examples.
Table 3-8. Commonly used MySQL functions
	Function
	Description

	ABS(number)
	Returns the absolute value of the
 number supplied. For instance, ABS(-2.3)=2.3.

	CEILING(number)
	Returns the next highest integer.
 For instance, CEILING(2.3)=3.

	CONCAT(string1[,string2,string3,...])
	Returns a string comprised of all
 the supplied strings joined (concatenated)
 together.

	CURDATE
	Returns the current date (without
 the time portion).

	DATE_ADD(date,INTERVAL
 amount_type)
	Adds the specified interval to the
 specified date and returns a new date. Valid types include
 SECOND, MINUTE, HOUR, DAY, MONTH, and YEAR.

	DATE_SUB(date,INTERVAL
 interval_type)
	Subtracts the specified interval
 from the specified date and returns a new date. Valid types
 include SECOND, MINUTE, HOUR, DAY, MONTH, and YEAR.

	FORMAT(number,decimals)
	Returns a number with a specified
 number of decimal places and with 1000 separators (usually
 ",").

	GREATEST(num1,num2[,num3,
 ...])
	Returns the greatest number from all
 the numbers supplied as arguments.

	IF(test,
 value1,value2)
	Tests a logical condition. If TRUE,
 returns value1; otherwise, returns
 value2.

	IFNULL(value,value2)
	Returns the value of the first
 argument, unless that argument is NULL; in that case, it
 returns the value of the second argument.

	INSERT(string,position,length,new)
	Inserts a string into the middle of
 another string.

	INSTR(string,substring)
	Finds the location of a substring
 within a string.

	ISNULL(expression)
	Returns 1 if the argument is NULL, 0
 otherwise.

	LEAST(num1,num2[,num3,
 ...])
	Returns the smallest number from the
 list of arguments.

	LEFT(string,length)
	Returns the leftmost portion of a
 string.

	LENGTH(string)
	Returns the length of a string in
 bytes. CHAR_LENGTH can be
 used if you want to return the number of characters (which
 could be different if you are using a multibyte character
 set).

	LOCATE(substring,string[,number])
	Returns the location of the
 substring within the string, optionally starting the search at
 the position given by the third argument.

	LOWER(string)
	Translates the given string into
 lowercase.

	LPAD(string,length,padding)
	Left-pads the string to the given
 length, using the third argument as the pad
 character.

	LTRIM(string)
	Removes all leading whitespace from
 a string.

	MOD(num1,num2)
	Returns the modulo (remainder)
 returned by the division of the first number by the second
 number.

	NOW
	Returns the current date and
 time.

	POWER(num1,num2)
	Raises
 num1 to the power
 num2.

	RAND([seed])
	Returns a random number. The
 seed may be used to initialize the
 random number generator.

	REPEAT(string,number)
	Returns a string consisting of
 number repetitions of the given
 string.

	REPLACE(string,old,new)
	Replaces all occurrences of
 old with
 new in the given
 string.

	ROUND(number[,decimal])
	Rounds a numeric value to the
 specified number of decimal places.

	RPAD(string,length,padding)
	Right-pads
 string to the specified
 length using the specified
 padding character.

	RTRIM(string)
	Removes all trailing blanks from
 string.

	SIGN(number)
	Returns -1 if the number is less
 than 0, 1 if the number is greater than 0, or 0 if the number
 is equal to 0.

	SQRT(number)
	Returns the square root of the given
 number.

	STRCMP(string1,string2)
	Returns 0 if the two strings are
 identical, -1 if the first string would sort earlier than the
 second string, or 1 otherwise.

	SUBSTRING(string,position,length)
	Extracts
 length characters from
 string starting at the specified
 position.

	UPPER(string)
	Returns the specified string
 converted to uppercase.

	VERSION
	Returns a string containing version
 information for the current MySQL server.

Functions can be used in any statement that accepts an
 expression—for example, in SET
 statements, conditional statements (IF, CASE), and loop control clauses. Example 3-14 shows some examples
 that use functions in SET and IF clauses.
Example 3-14. Examples of functions in SET and IF clauses
CREATE PROCEDURE function_example()
BEGIN

 DECLARE TwentyYearsAgoToday DATE;
 DECLARE mystring VARCHAR(250);

 SET TwentyYearsAgoToday=date_sub(curdate(), interval 20 year);

 SET mystring=concat('It was ',TwentyYearsAgoToday,
 ' Sgt Pepper taught the band to play...');

 SELECT mystring;

 IF (CAST(SUBSTR(version(),1,3) AS DECIMAL(2,1)) <5.0) THEN
 SELECT 'MySQL versions earlier than 5.0 cannot run stored programs - you
 must be hallucinating';
 ELSE
 SELECT 'Thank goodness you are running 5.0 or higher!';
 END IF;

END$$

CALL function_example()$$

+---+
| mystring |
+---+
| It was 1985-11-22 Sgt Pepper taught the band to play... |
+---+
1 row in set (0.03 sec)

+---+
| Thank goodness you are running 5.0 or higher! |
+---+
| Thank goodness you are running 5.0 or higher! |
+---+
1 row in set (0.03 sec)

Data Types

 Variables in MySQL stored programs can be assigned any
 of the data types available to columns in MySQL tables. We previewed most
 of the data types earlier, in Table 3-1.
All variables in MySQL stored programs are
 scalars , which is to say variables that store only a single
 item. There are no equivalents to arrays, records, or structures such
 as you can find in some other programming languages.
String Data Types

MySQL supports two basic string data types : CHAR and
 VARCHAR. CHAR stores fixed-length strings, while
 VARCHAR stores variable-length
 strings. If a CHAR variable is
 assigned a value shorter than its declared length, it will be
 blank-padded out to the declared length. This does not occur with
 VARCHAR variables.
When used in MySQL tables, the choice of CHAR or VARCHAR can be significant because it can
 affect the amount of disk storage needed. However, in stored
 programs, the additional memory requirements will be minimal and,
 use CHARs and VARCHARs can be used interchangeably in
 all expressions, there is little advantage to either data type. We
 generally use VARCHARs because
 they are capable of storing longer strings.
The CHAR data type can
 store a maximum of 255 bytes, and the VARCHAR a maximum of 65,532 bytes.
The ENUM data type

The ENUM data
 type is used to store one of a set of permissible values. These
 values can be accessed as their string value or as their indexed
 position in the set of possibilities. If you attempt to assign a
 value into an ENUM that does
 not appear in the list, MySQL will either issue a warning and
 insert a NULL or—if the sql_mode includes one of the "strict"
 values (see the later section "MySQL 5 "Strict"
 Mode")—issue an error.
Example 3-15
 illustrates the use of ENUMs in
 stored programs.
Example 3-15. Using ENUMs in stored programs
CREATE PROCEDURE sp_enums(in_option ENUM('Yes','No','Maybe'))
BEGIN
 DECLARE position INTEGER;
 SET position=in_option;
 SELECT in_option,position;
END

Query OK, 0 rows affected (0.01 sec)

CALL sp_enums('Maybe')

+-----------+----------+
| in_option | position |
+-----------+----------+
| Maybe | 3 |
+-----------+----------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

CALL sp_enums(2)

+-----------+----------+
| in_option | position |
+-----------+----------+
| No | 2 |
+-----------+----------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

CALL sp_enums('What?')

ERROR 1265 (01000): Data truncated for column 'in_option' at row 1

The SET data type

The SET type is similar
 to the ENUM type, except that
 multiple values from the list of allowable values can occur in the
 variables (see Example
 3-16). As with the ENUM
 type, an attempt to assign a value not in the list will generate
 an error in "strict" mode, and a warning otherwise.
Example 3-16. Behavior of SET variables in stored programs
CREATE PROCEDURE sp_set(in_option SET('Yes','No','Maybe'))
BEGIN

 SELECT in_option;
END

Query OK, 0 rows affected (0.00 sec)

CALL sp_set('Yes')

+-----------+
| in_option |
+-----------+
| Yes |
+-----------+
1 row in set (0.01 sec)

Query OK, 0 rows affected (0.01 sec)

CALL sp_set('Yes,No,Maybe')

+--------------+
| in_option |
+--------------+
| Yes,No,Maybe |
+--------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

CALL sp_set('Yes,No,Go away')

ERROR 1265 (01000): Data truncated for column 'in_option' at row 1

Numeric Data Types

MySQL supports two families of numeric types:
	Exact numeric types such as the INT and DECIMAL types

	Approximate numeric types such as FLOAT

Accurate numeric types store an exact value for a number. The
 various INT types (INT, BIGINT, TINYINT) differ in that they use different
 amounts of storage, which therefore restricts the magnitude of the
 numbers that they can store. Each type can be signed (capable of
 storing positive or negative numbers) or unsigned, which further
 restricts the maximum values that the type may store (allowing a
 variable to be unsigned doubles the maximum possible number that can
 be stored). Table 3-9
 shows the limits for the various integer types.
Table 3-9. Limits for the various integer data types
	Data type
	Storage (bits)
	Signed maximum
	Unsigned maximum

	TINYINT
	8
	127
	255

	SMALLINT
	16
	32767
	65535

	MEDIUMINT
	24
	8388607
	16777215

	INT
	32
	2147483647
	4294967295

	BIGINT
	64
	 9223372036854775807

	 9223372036854775807

Floating-point data types (FLOAT, DOUBLE, REAL) store numbers of variable size and
 precision. In MySQL tables, FLOAT
 types use 32 bits of storage by default, while DOUBLE uses 64 bits of storage.
Be aware, however, that the floating-point data types store
 approximate representations of numbers. Most of the time this is
 unimportant, but in some circumstances you will want to use the
 precision data types, such as DECIMAL or NUMERIC, to avoid rounding errors that can
 occur when performing mathematical operations on floating-point
 numbers.

Date and Time Data Types

MySQL stores date-times with a precision down to one second.
 In MySQL tables, columns of the DATE data type can store the date part of
 a date-time only, while the DATETIME can store both a date and a
 time.

TEXT and BLOB Data Types

In MySQL tables, the TEXT
 data type can store up to 64K of data, and LONGTEXT can store up to 4,294,967,295
 characters. BLOB and LONGBLOB data types can store similar
 amounts of data, but are able to store binary as well as character
 data.

MySQL 5 "Strict" Mode

MySQL 5 "strict " mode applies when either STRICT_TRANS_TABLES or STRICT_ALL_TABLES is included in the list of
 options supplied to the sql_mode
 configuration variable. STRICT_ALL_TABLES will cause any attempt to
 set a column to an invalid value to fail with an error. STRICT_TRANS_TABLES has the same effect, but
 only if the table is transactional.
If neither of these settings is in effect, MySQL will either
 accept the update or do a "best fit" of the invalid value into a legal
 column value. For instance, if you try to assign a string value into
 an integer column, MySQL may set the value of the column to 0. A
 warning will be generated whenever such a "truncation" occurs.
Strict mode will also cause errors to occur for missing columns
 in an INSERT statement, unless that
 column has an associated DEFAULT
 clause.
STRICT_ALL_TABLES can have
 some dubious side effects when you are performing multirow updates or
 inserts into nontransactional tables. Because there is no rollback
 capability for a nontransactional table, the error may occur after a
 certain number of valid row updates have occurred. This means that in
 the event of a strict-mode error on a nontransactional table, the SQL
 statement may partially succeed. This is rarely desirable behavior,
 and for this reason the default setting in MySQL 5.0 is STRICT_TRANS_TABLES.
You can change your strict mode at any time with a SET statement:
 SET sql_mode='STRICT_ALL_TABLES'
The strict mode also determines how stored programs deal with
 attempts to assign invalid values to variables. If either of the
 strict modes is in effect, then an error will be generated whenever an
 attempt to assign an invalid value to a variable occurs. If no strict
 modes are in effect, then only warnings are generated.
Note that this behavior is controlled by the sql_mode settings that are in effect when
 the program is created, not when it is run. So once a strict stored
 program is created, it remains strict, even if the sql_mode settings are relaxed later on. In
 the same way, programs that are created when none of the strict modes
 are in effect will continue to generate warnings rather than errors
 when invalid data is assigned, regardless of the sql_mode that is in effect when the program
 runs.
Stored Program Behavior and Strict Mode

All variables in a MySQL stored program must be declared
 before use—with the exception of "user" variables, which are
 prefixed by the @ symbol and may be defined outside of the stored
 program. Furthermore, variables in MySQL stored programs must be
 assigned an explicit data type, and this data type cannot change
 during program execution. In this respect, the MySQL stored program
 language resembles "strongly typed" languages such as C, Java, and
 C# rather than dynamically typed languages such as Perl and
 PHP.
When created in strict mode, as explained in the previous
 section, stored programs will reject with an error any attempt to
 assign an invalid or inappropriate value to a variable. Such
 rejected assignments will include attempts to assign strings to
 numeric data or attempts to assign values that exceed the storage
 limitations declared for the variable.
However, when a stored program is created in non-strict mode,
 MySQL will perform a best attempt to convert invalid data and will
 generate a warning rather than an error. This allows you to—for
 instance—assign a string value to a variable defined as an integer.
 This non-strict behavior can lead to unexpected results or subtle
 bugs if you do not carefully ensure that you always use variables in
 ways that are appropriate for their data type. For these reasons it
 is usually best to create stored programs in strict mode and
 generate an error that you cannot possibly fail to notice during
 program testing or execution.

Program Examples

We'll illustrate these differences with an example that
 compares the behavior of the MySQL stored program in non-strict mode
 with several other programming languages.
Example 3-17 shows
 a Java program that intends to concatenate an integer value to a
 string value with the intention of printing the string "99 bottles of beer on the wall".
 Unfortunately for the beer, the programmer accidentally declared
 variable c as an int, rather than as a String. The Java compiler detects this
 error during compile time when it detects an attempt to assign a
 string expression to an integer variable, and the program fails to
 compile—no harm done.
Example 3-17. Type checking in a Java program
$cat simplejava.java
package simplejava;

public class SimpleJava {

 public static void main(String[] args) {
 String b;
 int a;
 int c;
 a=99;
 b="Bottles of beer on the wall";
 c=a+" "+c;

 System.out.println(c);

 }
}

$javac simplejava.java
simplejava.java:11: incompatible types
found : java.lang.String
required: int
 c=a+" "+c;
 ^
1 error

Now let's look at an equivalent example (in a dynamically
 typed language—in this case, PHP). In PHP and Perl, variable data
 types change on the fly as required. In Example 3-18, the variable
 c started as a number, but when
 subjected to a string assignment, the data type dynamically changed
 to a string. The program therefore works as required.
Example 3-18. Dynamic variable typing in PHP
$cat simplephp.php
<?php
 $a=99;
 $b="Bottles of beer on the wall";
 $c=0; #c is a number
 $c=$a." ".$b; #c is now a string

 print $c."\n";
?>

$php simplephp.php
99 Bottles of beer on the wall

Now let's look at the equivalent non-strict MySQL stored
 program version of this logic, as shown in Example 3-19. This procedure
 has the same data type error as in the previous examples—the
 variable c should be defined as a
 VARCHAR, but it is instead
 declared as an INT.
Example 3-19. MySQL stored program non-strict type checking
CREATE PROCEDURE strict_test()
BEGIN

 DECLARE a INT;
 DECLARE b VARCHAR(20);
 DECLARE c INT;

 SET a=99;
 SET b="Bottles of beer on the wall";
 SET c=CONCAT(a," ",b);
 SELECT c;
END

Query OK, 0 rows affected (0.01 sec)

mysql> call strict_test();
+------+
| C |
+------+
| 99 |
+------+
1 row in set (0.00 sec)

Query OK, 0 rows affected, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'b' at row 1 |
| Warning | 1265 | Data truncated for column 'c' at row 1 |
+---------+------+--+
2 rows in set (0.01 sec)

Without the strict mode, MySQL does not generate an error when
 the attempt to supply a string to an integer value occurs, nor does
 it dynamically convert the data type of the integer variables.
 Instead, it assigns only the numeric part of the string expression
 to the integer—leading to an unexpected and erroneous result.
 However, if we had created the procedure when in strict mode, we
 would have generated a runtime error, as shown in Example 3-20.
Example 3-20. Stored program type checking in strict mode
mysql> CALL strict_test();
ERROR 1406 (22001): Data too long for column 'b' at row 1

It's almost always preferable for your programs to operate in
 strict mode. While a non-strict program will sometimes be able to
 continue where a strict program would fail with an error, the risk
 that the non-strict program will exhibit unexpected and
 inappropriate behaviors is usually too high. Remember that the
 behavior of a stored program depends on the setting of the variable
 sql_mode when the
 program is created,not when the program is run.
Tip
Stored programs should almost always operate in strict mode
 to avoid unpredictable behavior when invalid data assignments
 occur. The strict mode for a stored program is determined by the
 setting of the sql_mode
 variable in effect when the program is created, not when the
 program is run.

As always, the onus is on the programmer to ensure that data
 types are used appropriately. As Bruce Eckel noted in his article
 "Strong Typing vs. Strong Testing" (http://www.mindview.net/WebLog/log-0025), strong
 typing in computer languages only provides an
 illusion of safety—true validation of correct behavior can only be obtained through strong
 testing . You should not assume that by declaring a variable
 as being of a certain type you are implicitly performing validation
 of the data being applied to that variable.

Conclusion

In this chapter we provided an overview of the building
 blocks of the MySQL stored program language. The MySQL stored program
 language—based on the ANSI SQL:2003 PSM specification—is a
 block-structured language that supports all the programming
 fundamentals that you would expect from a procedural language. The
 major aspects of the stored program language with which you should be
 familiar at this point are:
	The DECLARE statement,
 which allows you to define and initialize program
 variables.

	Stored program parameters, which allow you to pass
 information into or—in the case of stored procedures—out of a
 stored program.

	The SET statement, which
 allows you to change the value of a program variable.

	MySQL functions, operators, and data types—the MySQL stored
 program language utilizes most of the equivalents available in the
 MySQL SQL language.

Stored program type checking is very dependent on the setting of
 the sql_mode configuration
 variable. If a program is created when the sql_mode variable includes one of the strict
 settings (STRICT_TRANS_TABLES or
 STRICT_ALL_TABLES), then the
 program will reject invalid variable assignments with an error. If
 neither of the strict modes is in effect, then the stored program will
 generate an error when invalid data assignments occur, but will
 continue execution. Non-strict stored program behavior can lead to
 unexpected and subtle bugs, and we recommend that you usually use the
 strict mode when creating your stored programs.

Chapter 4. Blocks, Conditional Statements, and Iterative Programming

This chapter describes the constructs in the MySQL language that
 control the scope and flow of execution.
In MySQL, as in all block-structured languages, groups of
 statements may be grouped together into blocks
 . A block can normally occur whenever a single statement
 would be permitted, and the block may contain its own distinct variable,
 cursor, and handler declarations.
The MySQL stored program language supports two types of stored
 program control statements: conditional control statements and iteration
 (looping) statements. Almost every piece of code you write requires
 conditional control, which is the ability to direct the flow of
 execution through your program based on a condition. You do this with
 IF-THEN-ELSE and CASE statements.
Iterative control structures—otherwise known as
 loops—let you execute the same code repeatedly.
 MySQL provides three different kinds of loop constructs:
	Simple loop
	Continues until you issue a LEAVE statement to terminate the
 loop

	REPEAT UNTIL loop
	Continues until an expression evaluates as true

	WHILE loop
	Continues as long as an expression evaluates as true

Block Structure of Stored Programs

 Most MySQL stored programs consist of one or more blocks (the only exception is
 when a stored program contains only a single executable statement).
 Each block commences with a BEGIN
 statement and is terminated by an END statement. So in the simplest case, a stored program
 consists of a program definition statement (CREATE PROCEDURE, CREATE
 FUNCTION, or CREATE
 TRIGGER) followed by a single block that contains the
 program code to be executed:
 CREATE {PROCEDURE|FUNCTION|TRIGGER} program_name
 BEGIN
 program_statements
 END;
The purpose of a block is twofold:
	To logically group related code
 segments
	For instance, a handler declaration (see Chapter 6 for an explanation of
 error handlers) can include a block definition allowing it to
 execute multiple commands. All of the statements within the
 block will be executed if the handler is invoked.

	To control the scope of variables and other
 objects
	You can define a variable within a block that is not
 visible outside the block. Furthermore, you can declare a
 variable within a block that overrides the definition of a
 variable with the same name declared outside of the
 block.

Tip
A compound statement consists of a BEGIN-END block, which encloses one or
 more stored program commands.

Structure of a Block

A block consists of various types of declarations (e.g.,
 variables, cursors, handlers) and program code (e.g., assignments,
 conditional statements, loops). The order in which these can occur
 is as follows:
	Variable and condition declarations. Variables were
 discussed earlier in Chapter
 3, and condition declarations are discussed in Chapter 6.

	Cursor declarations, discussed in Chapter 5.

	Handler declarations, discussed in Chapter 6.

	Program code.

If you violate this order—for instance, by issuing a DECLARE statement after a SET statement—MySQL will generate an error
 message when you try to create your stored program code. The error
 messages do not always clearly indicate that you have used
 statements in the wrong order, so it's important to develop the
 habit of declaring things in the correct order.
Tip
The order of statements in a block must be Variables and
 conditions, followed by Cursors, then Exception handlers, and
 finally Other statements. We remember this order using the
 following mnemonic: "Very Carefully Establish Order" in your
 stored programs.

You can also name a block with a label.
 The label can occur both before the BEGIN statement and after the END statement. Labeling a block has the
 following advantages:
	It improves code readability—for instance, by allowing you
 to quickly match the BEGIN
 statement with its associated END statement.

	It allows you to terminate block execution with the
 LEAVE statement (see the
 section describing this statement later in this chapter).

So a simplified representation of the structure of a block
 is:
 [label:] BEGIN
 variable and condition declarations]
 cursor declarations
 handler declarations

 program code

 END[label];

Nested Blocks

If all stored programs contained only a single block, the
 block structure would be hardly worth mentioning. However, many
 programs include blocks that are defined within an enclosing block—at least
 within the main block that encloses all the stored program code. As
 suggested earlier, variables declared within a
 block are not available outside the block, but
 may be visible to blocks that are declared within the block. You can
 override an "outer" variable with a new definition within the block,
 and you can manipulate this variable without affecting the value of
 the "outer" variable.
Let's illustrate some of these principles with some
 examples.
In Example 4-1, we
 create a variable within a block. The variable is not available in
 the outer block, so this example generates an error.
Example 4-1. Declarations within a block are not visible outside the
 block
mysql> CREATE PROCEDURE nested_blocks1()
BEGIN
 DECLARE outer_variable VARCHAR(20);
 BEGIN
 DECLARE inner_variable VARCHAR(20);
 SET inner_variable='This is my private data';
 END;
 SELECT inner_variable,' This statement causes an error ';
END;
$$

Query OK, 0 rows affected (0.00 sec)

mysql> CALL nested_blocks1()

ERROR 1054 (42S22): Unknown column 'inner_variable' in 'field list'

In Example 4-2, we
 modify a variable declared in the "outer" block inside of an "inner"
 block. The changes made are visible outside of the inner
 block.
Example 4-2. Variables within a block can override variables defined
 outside the block
mysql> CREATE PROCEDURE nested_blocks2()
BEGIN
 DECLARE my_variable varchar(20);
 SET my_variable='This value was set in the outer block';
 BEGIN
 SET my_variable='This value was set in the inner block';
 END;
 SELECT my_variable, 'Changes in the inner block are visible in the outer block';
END;
$$

Query OK, 0 rows affected (0.00 sec)

mysql> CALL nested_blocks2()
//

+---------------------+---+
| my_variable | Changes in the inner block are visible in the outer block |
+---------------------+---+
| This value was set | |
| in the inner block | Changes in the inner block are visible in the outer block |
+---------------------+---+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

In Example 4-3, we
 create a variable in the inner block with the same name as one in
 the outer block. When we change the value within the inner block,
 the changes are not reflected in the outer block—that's because
 although the two variables have the same name, they are really two
 separate variables. Overriding a variable name inside of a block in
 this way can be fairly confusing, reducing code readability and
 possibly encouraging bugs. In general, don't override variable
 definitions in this way unless you have a very compelling
 reason.
Example 4-3. Changes made to an overloaded variable in an inner block
 are not visible outside the block
mysql> CREATE PROCEDURE nested_blocks3()
BEGIN
 DECLARE my_variable varchar(20);
 SET my_variable='This value was set in the outer block';
 BEGIN
 DECLARE my_variable VARCHAR(20);
 SET my_variable='This value was set in the inner block';
 END;
 SELECT my_variable, 'Can''t see changes made in the inner block';
END;
//

Query OK, 0 rows affected (0.00 sec)

mysql> CALL nested_blocks3()
$$

+---------------------------+---+
| my_variable | Can't see changes made in the inner block |
+---------------------------+---+
| This value was set in the | |
| outer block | Can't see changes made in the inner block |
+---------------------------+---+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Tip
Avoid overriding a variable declared within an outer block
 inside an inner block.

In our final nested blocks example (Example 4-4), we use a block
 label and the LEAVE statement to
 terminate block execution. We discuss the use of the LEAVE statement later in this chapter, but
 for now it's enough to point out that you can terminate execution of
 a block with a LEAVE statement at
 any time, providing that the block is labeled.
Example 4-4. Example of using a LEAVE statement to exit a labeled
 block
mysql> CREATE PROCEDURE nested_blocks5()
 outer_block: BEGIN
 DECLARE l_status int;
 SET l_status=1;
 inner_block: BEGIN
 IF (l_status=1) THEN
 LEAVE inner_block;
 END IF;
 SELECT 'This statement will never be executed';
 END inner_block;
 SELECT 'End of program';
END outer_block$$

Query OK, 0 rows affected (0.00 sec)

mysql> CALL nested_blocks5()$$

+----------------+
| End of program |
+----------------+
| End of program |
+----------------+
1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Conditional Control

 Conditional control—or "flow of control"—statements
 allow you to execute code based on the value of some expression. As we
 said earlier, an expression can be any combination of MySQL literals,
 variables, operators, and functions that returns a value. Conditional
 control statements allow you to take different actions depending on
 the value of such an expression, which could refer to parameters to
 the stored program, to data in the database, or to other variable data
 (such as the day of the week or the time of the day).
The MySQL stored program language supports two conditional
 control statements : IF and CASE. Both
 IF and CASE perform very similar functions, and
 there is always a way to rewrite an IF statement as a CASE statement or vice versa. Usually,
 choosing between IF and CASE is a matter of personal preference or
 programming standards. However, there are circumstances in which one
 type of statement is more readable or efficient than the other.
The following subsections describe the syntax of both
 statements, provide usage examples, and, finally, compare the pros and
 cons of each.
The IF Statement

All programmers will be familiar with some variation of the
 IF statement, and MySQL's
 implementation of the IF
 statement contains no surprises. The syntax of IF in stored programs is:
 IF expression THEN commands
 [ELSEIF expression THEN commands]
 [ELSE commands]
 END IF;
TRUE or FALSE (or neither)?

The commands associated with IF or ELSEIF statements will only be executed
 if the associated expression evaluates to
 TRUE. Expressions such as 1=1 or 2>1 will evaluate to TRUE.
 Expressions such as 1>3 will evaluate to FALSE.
However, if you are performing an operation on one or more
 variables, and one of the variables has a NULL value, then the
 result of the expression can be NULL—neither TRUE nor FALSE. This
 can lead to some erroneous conclusions if your code assumes that
 expressions that are not TRUE are necessarily FALSE, or vice
 versa. So, for instance, in Example 4-5, if we can't find
 'alpha' or 'beta' in the version string, we assume
 that the release is production. However, if l_version is NULL, then the ELSE condition will always fire,
 although we actually have no basis for making any such
 assertion.
Example 4-5. Incorrectly assuming that NOT TRUE = FALSE
 IF (INSTR(l_version_string,'alpha')>0) THEN
 SELECT 'Alpha release of MySQL';
 ELSEIF (INSTR(l_version_string,'beta')>0) THEN
 SELECT 'Beta release of MySQL';
 ELSE
 SELECT 'Production release of MySQL';
 END IF;

Tip
Don't assume that the result of an expression is either
 TRUE or FALSE. It could also evaluate to NULL (UNKNOWN) if any
 of the participating variables is NULL.

Also note that any expressions that return numeric values—or
 strings that look like numbers—may evaluate to TRUE, FALSE, or
 NULL. The rules are:
	If the absolute value of a numeric expression is 1 or
 greater, then it will be evaluated to TRUE by the IF or ELSEIF statement. Note that the term
 "absolute value" means that both 1 and -1 will evaluate to
 TRUE.

	If the value of the numeric expression is 0, then it
 will evaluate to FALSE.

Simple IF-THEN combinations

In its simplest form, IF can be used to specify a set of
 statements that executes only if a condition evaluates to TRUE.
 The syntax for this type of IF
 statement is as follows:
IF expression THEN
 statements
END IF;
Three-Valued Logic
Boolean expressions can return three
 possible results. When all values in a Boolean expression are
 known, the result is either TRUE or FALSE. For example, there is
 no doubt when determining the truth or falsity of an expression
 such as:
 (2 < 3) AND (5 < 10)
Sometimes, however, you don't know all values in an
 expression. That's because databases allow for values to be
 NULL, or missing. What, then, can be the result from an
 expression involving NULLs? For example:
 2 < NULL
Because you don't know what the missing value is, the only
 answer you can give is "I don't know." This is the essence of
 so-called three-valued logic, that you can
 have not only TRUE and FALSE as a possible result, but also
 NULL.
To learn more about three-valued logic, we recommend C. J.
 Date's book Database In Depth: Relational Theory for
 the Practitioner (O'Reilly).

Example 4-6 shows
 a simple IF statement.
Example 4-6. Example of simple IF statement
IF sale_value > 200 THEN

 CALL apply_free_shipping(sale_id);
END IF
;
We can include multiple statements between the THEN and END
 IF clauses, as in Example 4-7.

Example 4-7. Multistatement IF statement
IF sale_value > 200 THEN
 CALL apply_free_shipping(sale_id);
 CALL apply_discount(sale_id,10);
END IF;

As shown in Example
 4-8, we can also include any other executable statement
 inside the IF statement, such
 as looping constructs, SET
 statements, and other IF
 statements (although, as we will see later, it's often best to
 avoid nesting IF statements in
 this manner if possible).
Example 4-8. Nested IF statements
IF sale_value > 200 THEN
 CALL apply_free_shipping(sale_id);
 IF sale_value > 500 THEN
 CALL apply_discount(sale_id,20);
 END IF;
END IF;

It is not necessary to break the IF statement across multiple lines; all
 of the IF statements in Example 4-9 are treated
 identically by MySQL.
Example 4-9. Alternate formatting for IF statements
IF sale_value > 200 THEN CALL apply_free_shipping(sale_id); END IF;

IF sale_value > 200
THEN
 CALL apply_free_shipping(sale_id);
END IF;

IF sale_value > 200 THEN
 CALL apply_free_shipping(sale_id);
END IF;

It's probably OK to put a very simple IF statement on a single line, but it is
 definitely not a good practice to do this for complex or nested
 IF structures. For instance,
 which is easier to read, understand, and maintain? This:
 IF sale_value > 200 THEN
 CALL apply_free_shipping(sale_id);
 IF sale_value > 500 THEN
 CALL apply_discount(sale_id,20);
 END IF;
 END IF;
Or this:
 IF sale_value > 200 THEN CALL apply_free_shipping(sale_id); IF sale_value >
 500 THEN CALL apply_discount(sale_id,20);END IF;END IF;
Some programmers like to place the THEN clause on a separate line, as
 follows:
 IF sale_value > 200
 THEN
 CALL apply_free_shipping(sale_id);
 END IF;
But this is really a matter of personal preference and/or
 programming standards.
Tip
For any nontrivial IF
 statement, use indenting and formatting to ensure that the logic
 of your IF statement is
 easily understood.

IF-THEN-ELSE statements

Adding an ELSE
 condition to your IF statements
 allows you to specify statements that will execute if the IF condition is NOT TRUE. We'll
 emphasize again—because it is important—that NOT TRUE does not
 always mean FALSE. If the IF
 statement condition evaluates to NULL, then the ELSE statements will still be executed;
 this can lead to subtle bugs if you don't protect against NULL
 variables in your IF
 conditions.
An IF-THEN-ELSE
 block has the following syntax:
 IF expression THEN
 statements that execute if the expression is TRUE
 ELSE
 statements that execute if the expression is FALSE or NULL
 END IF;
So in Example
 4-10, we apply shipping to an order if it is less than
 $200; otherwise, we apply a discount (and don't charge
 shipping).
Example 4-10. Simple IF-THEN ELSE example
IF sale_value <200 THEN
 CALL apply_shipping(sale_id);
ELSE
 CALL apply_discount(sale_id);
END IF;

IF-THEN-ELSEIF-ELSE statements

The full syntax of the IF statements allows for multiple
 conditions to be defined. The first condition that evaluates
 to TRUE will execute. If none of the statements evaluates to TRUE,
 then the ELSE clause (if
 present) will execute. The syntax for an IF-THEN-ELSEIF-ELSE IF statement looks
 like this:
 IF expression THEN
 statements that execute if the expression is TRUE
 ELSEIF expression THEN
 statements that execute if expression1 is TRUE
 ELSE
 statements that execute if all the preceding expressions are FALSE or NULL
 END IF;
You can have as many ELSEIF conditions as you like.
The conditions do not need to be mutually exclusive. That
 is, more than one of the conditions can evaluate to TRUE. The
 first condition that evaluates to TRUE is the one that executes.
 Creating overlapping conditions like this can be useful, but you have to
 be very careful when ordering the conditions. For instance,
 consider the IF-ELSEIF
 statement shown in Example
 4-11.
Example 4-11. Example of an IF-ELSEIF block with overlapping
 conditions
IF (sale_value>200) THEN
 CALL free_shipping(sale_id);
ELSEIF (sale_value >200 and customer_status='PREFERRED') THEN
 CALL free_shipping(sale_id);
 CALL apply_discount(sale_id,20);
END IF;

The intention of this code fragment is clear: apply free
 shipping to all orders over $200, and add a 20% discount for
 preferred customers. However, because the first condition will
 evaluate to TRUE for all orders over $200, the ELSEIF condition will not be evaluated for any orders over
 $200, and our preferred customers will not get their discount. No
 discount for preferred customers means no end-of-year bonus for
 our stored procedure programmer!
There are a number of better ways to craft this statement:
 for one thing, we could move the ELSEIF condition into the IF clause to ensure that it gets
 evaluated first; alternately, we could nest an IF statement within the sale_value>200 IF clause to test the
 customer status, as shown in Example 4-12.
Example 4-12. Two ways of correcting the logic error in the previous
 example
/* Reordering the IF conditions */
IF (sale_value >200 and customer_status='PREFERED') THEN
 CALL free_shipping(sale_id);
 CALL apply_discount(sale_id,20);
ELSEIF (sale_value>200) THEN
 CALL free_shipping(sale_id);

END IF;

/* Nesting the IF conditions */

IF (sale_value >200) THEN
 CALL free_shipping(sale_id);
 IF (customer_satus='PREFERRED') THEN
 CALL apply_discount(sale_id,20);
 END IF;
END IF:

Both of the alternatives shown in Example 4-12 are perfectly
 valid. Generally we want to avoid nesting IF statements where possible, but if
 there are a lot of additional evaluations that we need to conduct
 when the sale_value is greater
 than $200, then it might make sense to perform the sale_value test once, and then
 individually test for all the other conditions. So let's say our
 business rules state that for orders over $200 we give free
 shipping, along with a variable discount based on the customer's
 status in our loyalty program. The logic in a single IF-ELSEIF block might look like that
 shown in Example
 4-13.
Example 4-13. IF block with many redundant conditions
IF (sale_value >200 and customer_status='PLATINUM') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,20); /* 20% discount */

ELSEIF (sale_value >200 and customer_status='GOLD') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,15); /* 15% discount */

ELSEIF (sale_value >200 and customer_status='SILVER') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,10); /* 10% discount */

ELSEIF (sale_value >200 and customer_status='BRONZE') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,5); /* 5% discount*/

ELSEIF (sale_value>200) THEN
 CALL free_shipping(sale_id); /* Free shipping*/

END IF;

In this case, the constant repetition of the sale_value condition and the free_shipping call actually undermines
 the readability of our logic—as well as imposing a
 performance overhead (see Chapter
 22). It might be better to use a nested IF structure that makes it clear that
 everyone gets free shipping for orders over $200, and that
 discounts are then applied based on the customer loyalty status
 only. Example 4-14
 shows the nested IF
 implementation.
Example 4-14. Using nested IF to avoid redundant evaluations
IF (sale_value > 200) THEN
 CALL free_shipping(sale_id); /*Free shipping*/

 IF (customer_status='PLATINUM') THEN
 CALL apply_discount(sale_id,20); /* 20% discount */

 ELSEIF (customer_status='GOLD') THEN
 CALL apply_discount(sale_id,15); /* 15% discount */

 ELSEIF (customer_status='SILVER') THEN
 CALL apply_discount(sale_id,10); /* 10% discount */

 ELSEIF (customer_status='BRONZE') THEN
 CALL apply_discount(sale_id,5); /* 5% discount*/
 END IF;

END IF;

The CASE Statement

The CASE statement is an
 alternative conditional execution or flow control statement.
 Anything that can be done with CASE statements can be done with IF statements (and vice versa), but
 CASE statements are often more
 readable and efficient when multiple conditions need to be evaluated, especially when the conditions
 all compare the output from a single expression.
Simple CASE statement

 CASE statements
 can take two forms. The first—sometimes referred to as a
 simple CASE statement—compares the output of an
 expression with multiple conditions:
 CASE expression
 WHEN value THEN
 statements
 [WHEN value THEN
 statements ...]
 [ELSE

 statements]
 END CASE;
This syntax is useful when we are checking the output of
 some expression against a set of distinct values. For instance, we
 could check the customer loyalty status from our previous example
 using the simple CASE statement
 shown in Example
 4-15.
Example 4-15. Example of a simple CASE statement
CASE customer_status
 WHEN 'PLATINUM' THEN
 CALL apply_discount(sale_id,20); /* 20% discount */

 WHEN 'GOLD' THEN
 CALL apply_discount(sale_id,15); /* 15% discount */

 WHEN 'SILVER' THEN
 CALL apply_discount(sale_id,10); /* 10% discount */

 WHEN 'BRONZE' THEN
 CALL apply_discount(sale_id,5); /* 5% discount*/
END CASE;

As with the IF command,
 you can specify multiple WHEN
 statements and you can specify an ELSE clause that executes if none of the
 other conditions apply.
However, it is critical to realize that a CASE statement will raise an exception
 if none of the conditions apply. This means that in Example 4-15 if the customer_status was not one of 'PLATINUM', 'GOLD', 'SILVER', or 'BRONZE' then the following runtime
 exception would occur:
 ERROR 1339 (20000): Case not found for CASE statement
We could create an exception handler to cause this error to
 be ignored (as described in Chapter
 6), but it is probably better practice to code an ELSE clause to ensure that all possible
 conditions are handled. So, we should probably adapt the previous
 example to include an ELSE
 clause that applies a zero discount to a customer who meets none
 of the preceding conditions.
Tip
If none of the CASE
 statements matches the input condition, CASE will raise MySQL error 1339. You
 should either construct an error handler to ignore this error,
 or ensure that the exception never occurs by including an
 ELSE clause in your CASE statement.

The simple CASE statement
 is useful when comparing the value of an expression to a series of
 specific values. However, the simple CASE statement cannot easily or
 naturally match ranges, or handle more complex conditions
 involving multiple expressions. For these more complex "cases" we
 can use a "searched" CASE
 statement, described in the next section.

"Searched" CASE statement

The searched CASE statement is functionally
 equivalent to an IF-ELSEIF-ELSE-END
 IF block. The searched CASE statement has the following
 syntax:
 CASE
 WHEN condition THEN
 statements
 [WHEN condition THEN
 statements...]
 [ELSE
 statements]
 END CASE;
Using the searched CASE
 structure, we can implement the free shipping and discount logic
 that we implemented earlier using IF. A direct translation of our sales
 discount and free shipping logic using a searched CASE statement is shown in Example 4-16.
Example 4-16. Example of a searched CASE statement
CASE
 WHEN (sale_value >200 AND customer_status='PLATINUM') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,20); /* 20% discount */

 WHEN (sale_value >200 AND customer_status='GOLD') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,15); /* 15% discount */

 WHEN (sale_value >200 AND customer_status='SILVER') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,10); /* 10% discount */

 WHEN (sale_value >200 AND customer_status='BRONZE') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,5); /* 5% discount*/

 WHEN (sale_value>200) THEN
 CALL free_shipping(sale_id); /* Free shipping*/

END CASE;

However, remember that if none of the WHERE clauses is matched, a 1339 error
 will occur. Therefore, this code will cause a fatal error if the
 order is less than $200 or the customer is not in our loyalty
 program—not a happy outcome. So we should protect our code—and our
 job security—by including an ELSE clause as shown in Example 4-17.
Example 4-17. Adding a dummy ELSE clause to our searched CASE
 example
CASE
 WHEN (sale_value >200 AND customer_status='PLATINUM') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,20); /* 20% discount */

 WHEN (sale_value >200 AND customer_status='GOLD') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,15); /* 15% discount */

 WHEN (sale_value >200 AND customer_status='SILVER') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,10); /* 10% discount */

 WHEN (sale_value >200 AND customer_status='BRONZE') THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 CALL apply_discount(sale_id,5); /* 5% discount*/

 WHEN (sale_value>200) THEN
 CALL free_shipping(sale_id); /* Free shipping*/
 ELSE
 SET dummy=dummy;

END CASE;

Note that because MySQL lacks a NULL (do nothing) statement in the
 stored program language, we had to add a dummy statement—but this
 statement has negligible overhead .
As with our IF
 implementation of this logic, we could also use nested CASE statements to perform the same logic with arguably greater
 clarity. In Example
 4-18 we combine simple and searched CASE statements, and also include a "not
 found" handler to avoid having to include ELSE statements. We enclose the entire
 thing in a block so that our handler does not inadvertently
 influence other statements within the stored program.
Example 4-18. Using nested CASE statements and a block-scoped "not
 found" handler
BEGIN
 DECLARE not_found INT DEFAULT 0;
 DECLARE CONTINUE HANDLER FOR 1339 SET not_found=1;

 CASE
 WHEN (sale_value>200) THEN
 CALL free_shipping(sale_id);
 CASE customer_status
 WHEN 'PLATINUM' THEN
 CALL apply_discount(sale_id,20);
 WHEN 'GOLD' THEN
 CALL apply_discount(sale_id,15);
 WHEN 'SILVER' THEN
 CALL apply_discount(sale_id,10);
 WHEN 'BRONZE' THEN
 CALL apply_discount(sale_id,5);
 END CASE;
 END CASE;

END;

IF Versus CASE

We've seen that both IF and
 CASE statements can implement the
 same flow control functionality. So which is best? To a large
 extent, choosing between IF and
 CASE is more a matter of personal
 preference and programming standards than of any implicit advantages
 offered by either of the two statements. However, when deciding
 between CASE and IF, consider the following:
	Consistency in style is probably more important than any
 slight advantages either approach might have in a particular
 circumstance. We therefore suggest that you choose between
 CASE and IF consistently, and not randomly
 switch between the two depending on your mood, the weather, or
 your horoscope!

	CASE is slightly more
 readable when you are comparing a single expression against a
 range of distinct values (using a "simple" CASE statement).

	IF is probably a more
 familiar and easily understood construct when you are evaluating
 ranges or complex expressions based on multiple
 variables.

	If you choose CASE, you
 need to ensure that at least one of the CASE conditions is matched, or define
 an error handler to catch the error that will occur if no
 CASE condition is satisfied.
 IF has no such
 restriction.

Remember—whichever construct you use—that:
	Once any condition in the CASE or IF structure is satisfied, no more
 conditions will be evaluated. This means that if your conditions
 overlap in any way, the order of evaluation is critical.

	The MySQL stored program language uses three-valued logic;
 just because a statement is NOT TRUE does not mean that it is
 necessary FALSE—it could be NULL.

	You should think carefully about the readability of your
 statements—sometimes a nested set of IF or CASE statements will be more readable
 and possibly more efficient. However, more often it is better to
 avoid nesting, especially if the statements become deeply nested
 (say three or more levels).

Iterative Processing with Loops

 In this section we examine the statements that the MySQL
 stored program language provides for iteratively (repeatedly)
 processing commands. There are many reasons why a program may need to
 iterate:
	A program that supports a user interface may run a main loop
 that waits for, and then processes, user keystrokes (this doesn't
 apply to stored programs, however).

	Many mathematical algorithms can be implemented only by
 loops in computer programs.

	When processing a file, a program may loop through each
 record in the file and perform computations.

	A database program may loop through the rows returned by a
 SELECT statement.

It's fairly obvious that it is the last case—processing rows
 returned by a SELECT statement—that
 will be the most common reason for looping in MySQL stored programs,
 and we will give this topic a great deal of consideration in Chapter 5. In this chapter, we
 consider the looping commands in their general form.
LOOP Statement

The simplest possible looping construct is the LOOP statement. The syntax for this
 statement is as follows:
 [label:] LOOP
 statements
 END LOOP
 [label];
The statements between the LOOP and END
 LOOP statements will be repeated indefinitely, until the
 LOOP is terminated. You can
 terminate the LOOP using the
 LEAVE statement, which we will
 describe shortly.
You can supply labels to the loop, which have the same syntax
 as those we can add to BEGIN-END
 blocks. Labels can help you identify the END LOOP statement that corresponds to a
 particular LOOP statement.
 Equally important, labels can be used to control execution flow, as
 we will see in subsequent sections.
Example 4-19 shows
 a very simple (and very dangerous) loop. It will continue forever,
 or at least until you manage to somehow terminate it. Because stored
 programs run inside of the database server, using Ctrl-C or other
 forms of keyboard interrupts will be ineffective—you will only be
 able to terminate this loop by issuing a KILL command against the MySQL session, or
 by shutting down the database server. In the meantime, the loop will
 consume as much CPU as it can, so we don't recommend that you run
 this example on your mission-critical production systems.
Example 4-19. Infinite loop (don't try this at home!)
Infinite_loop: LOOP
 SELECT 'Welcome to my infinite
 loop from hell!!';
END LOOP inifinite_loop;

Obviously we almost never want to program an infinite loop,
 and therefore we need some way to terminate the loop. We can do this
 with the LEAVE statement, so let's move on to this statement without
 delay....

LEAVE Statement

The LEAVE statement allows
 us to terminate a loop. The general syntax for the LEAVE statement is:
 LEAVE label;
LEAVE causes the current
 loop to be terminated. The label matches the loop to be terminated,
 so if a loop is enclosed within another loop, we can break out of
 both loops with a single statement.
In the simplest case, we simply execute LEAVE when we are ready to exit from the
 LOOP, as shown in Example 4-20.
Example 4-20. Using LEAVE to terminate a loop
SET i=1;
myloop: LOOP
 SET i=i+1;
 IF i=10 then
 LEAVE myloop;
 END IF;
END LOOP myloop;
SELECT 'I can count to 10';

LEAVE can be used to exit
 from any of the alternative looping structures, as we'll examine in
 upcoming sections. In fact, you can also use LEAVE if you want to break out of a named
 BEGIN-END block (introduced
 earlier in this chapter).

ITERATE Statement

The ITERATE statement is
 used to restart execution at the beginning of a loop, without
 executing any of the remaining statements in the loop. ITERATE has the following syntax:
 ITERATE label;
When MySQL encounters the ITERATE statement, it recommences
 execution at the start of the nominated loop. In Example 4-21, we print all odd
 numbers less than 10. ITERATE is
 used to repeat the loop if the number we have is not odd. LEAVE is used to terminate the loop once
 we reach 10.
Example 4-21. Using ITERATE to return to the start of a loop
SET i=0;
loop1: LOOP
 SET i=i+1;
 IF i>=10 THEN /*Last number - exit loop*/
 LEAVE loop1;
 ELSEIF MOD(i,2)=0 THEN /*Even number - try again*/
 ITERATE loop1;
 END IF;

 SELECT CONCAT(i," is an odd number");

END LOOP loop1;

While this loop is useful to illustrate the use of LEAVE and ITERATE to control a loop, it is a rather
 poorly constructed algorithm. We could easily have halved the number
 of loop iterations by incrementing the loop variable i by two rather than by one.
ITERATE causes the
 execution of the loop to restart at the top of the loop. If you are
 using a REPEAT loop (see the next section), this means that the loop
 will re-execute unconditionally, bypassing the UNTIL condition that would otherwise terminate the loop.
 This may result in unexpected behavior. In a WHILE loop, ITERATE will result in the WHILE condition being re-evaluated before
 the next iteration of the loop.
We can construct just about any conceivable form of loop using
 the LOOP, LEAVE, and ITERATE statements. However, in practice
 these "manual" loops are awkward when compared to some of the
 alternatives we are about to consider. The WHILE and REPEAT statements described in the
 following sections allow us to create loops that are easier to
 write, read, and maintain.

REPEAT ... UNTIL Loop

The REPEAT and UNTIL statements can be used to create a
 loop that continues until some logical condition is met. The syntax
 for REPEAT...UNTIL is:
 [label:] REPEAT
 statements
 UNTIL expression
 END REPEAT [label]
A REPEAT loop continues
 until the expression defined in the UNTIL clause evaluates to TRUE. In
 essence, a REPEAT loop is
 logically equivalent to a LOOP-LEAVE-END
 LOOP block like this one:
 some_label:LOOP
 statements
 IF expression THEN LEAVE some_label; END IF;
 END LOOP;
The REPEAT loop is somewhat
 easier to maintain because it is more obvious which conditions will
 cause the loop to terminate. The LEAVE statement in a simple loop could be
 anywhere, while the UNTIL
 statement is always associated with the END
 REPEAT clause at the very end of the loop. Furthermore, we
 don't need to specify a label for the REPEAT loop since the UNTIL condition is always specific to the
 current loop. However, we still recommend using labels with REPEAT loops to improve readability,
 especially if the loops are nested.
Example 4-22 shows
 using REPEAT to print out odd
 numbers less than 10. Compare this syntax with that of our previous
 example using the LOOP and
 LEAVE statements.
Example 4-22. Example of a REPEAT loop
SET i=0;
loop1: REPEAT
 SET i=i+1;
 IF MOD(i,2)<>0 THEN /*Even number - try again*/
 Select concat(i," is an odd number");
 END IF;
UNTIL i >= 10
END REPEAT;

There are a few things worth noting about the REPEAT loop:
	A REPEAT loop is always
 guaranteed to run at least once—that is, the UNTIL condition is first evaluated
 after the first execution of the loop. For loops that should not
 run even once unless some condition is satisfied, use WHILE (see the next section).

	Using ITERATE in a
 REPEAT loop can lead to
 unexpected outcomes, since doing so bypasses the UNTIL test and may result in the loop
 executing even though the UNTIL condition is no longer
 satisfied. Therefore, you will probably not want to use ITERATE in a REPEAT loop.

WHILE Loop

A WHILE loop executes as
 long as a condition is true. If the condition is not true to begin
 with, then the loop will never execute—unlike the REPEAT loop, which is guaranteed to
 execute at least once.
The WHILE loop has the
 following syntax:
 [label:] WHILE expression DO
 statements
 END WHILE [label]
A WHILE loop is
 functionally equivalent to a simple LOOP-LEAVE-END LOOP construction that has
 a LEAVE clause as its very first
 statement, as described in the "LEAVE Statement" section. Example 4-23 demonstrates the
 LOOP-LEAVE-END-LOOP.
Example 4-23. LOOP-END LOOP that implements same functionality as WHILE
 loop
myloop: LOOP
 IF expression THEN LEAVE myloop; END IF;
 other statements;
END LOOP myloop;

Example 4-24 shows
 our odd-numbers-less-than-10 loop implemented using WHILE.
Example 4-24. Odd numbers less than 10 implemented as a WHILE
 loop
SET i=1;
loop1: WHILE i<=10 DO
 IF MOD(i,2)<>0 THEN /*Even number - try again*/
 SELECT CONCAT(i," is an odd number");
 END IF;
 SET i=i+1;
END WHILE loop1;

Nested Loops

We often want to nest loops. In the simple code in Example 4-25, we print out the
 elementary "times table" using a nested LOOP-LEAVE-END
 LOOP structure.
Example 4-25. Example of nesting loops
DECLARE i,j INT DEFAULT 1;
outer_loop: LOOP
 SET j=1;
 inner_loop: LOOP
 SELECT concat(i," times ", j," is ",i*j);
 SET j=j+1;
 IF j>12 THEN
 LEAVE inner_loop;
 END IF;
 END LOOP inner_loop;
 SET i=i+1;
 IF i>12 THEN
 LEAVE outer_loop;
 END IF;
END LOOP outer_loop;

When nesting loops, it is particularly useful to label the
 start and the end of the loop so as to clearly associate the start
 of each loop with its end. Of course, if we need to use LEAVE, we must label the loop.

Parting Comments on Loops

We've now seen three simple and identical looping algorithms
 implemented using the three looping constructs available within the
 MySQL stored program language. Each of the three loop constructs is
 capable of implementing virtually any loop logic that you might need
 to implement.
The example loops given in this chapter are fairly simplistic
 and have little real-world relevance. We did this partially for the
 sake of clarity, but also because the reality is that in stored
 programming, almost all your looping constructs will involve
 iterating through the rows returned by a SELECT statement, which is the subject of
 the next chapter.

Conclusion

In this chapter we looked at conditional and iterative control
 structures in the MySQL stored program language. Almost any nontrivial
 program will need to make some kind of decision based on input data,
 and these decisions will usually be expressed as IF or CASE statements.
Looping is another extremely common programming task—especially
 common in stored programs that need to iterate through the outputs
 from some SQL statement. MySQL provides a number of alternative ways
 to format a loop, including a simple loop terminated by a LEAVE statement, a REPEAT UNTIL loop, and a WHILE loop.

Chapter 5. Using SQL in Stored Programming

While we can use the MySQL stored program language to perform
 traditional programming tasks, in reality almost all stored programs
 will engage in an interaction with the database through the execution of
 SQL statements. This chapter focuses on how you can use SQL within your
 stored programs.
In this chapter we'll look at the various ways in which you can
 use SQL inside of stored programs:
	Simple (non-SELECT) SQL
 statements that do not return a result set can be freely embedded
 within stored procedures and functions.

	A SELECT statement that
 returns only a single row can pass its result INTO local variables.

	A SELECT statement that
 returns multiple rows can form the basis for a cursor that allows
 you to loop through each row, taking whatever action you deem
 appropriate for that row.

	Any SELECT statement can be
 included in a stored procedure (but not in a stored function)
 "unbound" by an INTO clause or a
 CURSOR statement. The result set
 from such a SQL statement will be returned to the calling program
 (but not, alas, to a calling stored procedure).

	SQL statements can be prepared dynamically using MySQL
 server-side prepared statements (in stored procedures only).

Using Non-SELECT SQL in Stored Programs

 When we include a SQL statement that does not return a
 result set—such as an UPDATE,
 INSERT, or SET statement—within a stored program, it
 will execute exactly as it would if it were executed in some other
 context (such as if it were called from PHP or issued from the MySQL
 command line).
SQL statements within stored programs follow the same syntax as
 they would outside of the stored program. The SQL statements have full
 access to any stored program variables, which can be used wherever a
 literal or expression would normally be provided to the SQL.
You can use all the major categories of SQL statements inside
 stored programs. DML, DDL, and utility statements can be used without
 restriction.
Example 5-1 uses a
 combination of DDL and DML to create and manipulate the data in a
 table.
Example 5-1. Embedding non-SELECT statements in stored programs
CREATE PROCEDURE simple_sqls()
BEGIN
 DECLARE i INT DEFAULT 1;

 /* Example of a utility statement */
 SET autocommit=0;

 /* Example of DDL statements */
 DROP TABLE IF EXISTS test_table ;
 CREATE TABLE test_table
 (id INT PRIMARY KEY,
 some_data VARCHAR(30))
 ENGINE=innodb;

 /* Example of an INSERT using a procedure variable */
 WHILE (i<=10) DO
 INSERT INTO TEST_TABLE VALUES(i,CONCAT("record ",i));
 SET i=i+1;
 END WHILE;

 /* Example of an UPDATE using procedure variables*/
 SET i=5;
 UPDATE test_table
 SET some_data=CONCAT("I updated row ",i)
 WHERE id=i;

 /* DELETE with a procedure variable */
 DELETE FROM test_table
 WHERE id>i;

END;

Using SELECT Statements with an INTO Clause

 If you have a SELECT
 statement that returns only a single row, you can return that row into
 stored program variables by using the INTO statement within the SELECT statement. The format for such a
 SELECT is:
 SELECT expression1 [, expression2]
 INTO variable1 [, variable2 ...]other SELECT statement clauses
Example 5-2 shows how
 we can retrieve details from a single customer. The customer ID is
 passed in as a parameter.
Example 5-2. Using a SELECT-INTO statement
CREATE PROCEDURE get_customer_details(in_customer_id INT)
BEGIN
 DECLARE l_customer_name VARCHAR(30);
 DECLARE l_contact_surname VARCHAR(30);
 DECLARE l_contact_firstname VARCHAR(30);

 SELECT customer_name, contact_surname,contact_firstname
 INTO l_customer_name,l_contact_surname,l_contact_firstname
 FROM customers
 WHERE customer_id=in_customer_id;

 /* Do something with the customer record */

END;

If the SQL statement returns more than one row, a runtime error
 will result. For instance, if we omitted the WHERE clause in Example 5-2, the following error
 would result when we tried to run the stored procedure:
mysql> CALL get_customer_details(2) ;
ERROR 1172 (42000): Result consisted of more than one row

Creating and Using Cursors

 To handle a SELECT
 statement that returns more than one row, we must create and then
 manipulate a cursor. A cursor is an object that
 provides programmatic access to the result set returned by your
 SELECT statement. Use a cursor to
 iterate through the rows in the result set and take action for each
 row individually.
Currently, MySQL only allows us to fetch each row in the result
 set from first to last as determined by the SELECT statement. We cannot fetch from the
 last to first row, and cannot jump directly to a specific row in the
 result set.
Defining a Cursor

Define a cursor with the DECLARE statement, which has the following
 syntax:
 DECLARE cursor_name CURSOR FOR SELECT_statement;
As we mentioned in Chapter
 3, cursor declarations must occur after all of our variable
 declarations. Declaring a cursor before declaring our variables
 generates error 1337, as shown in Example 5-3.
Example 5-3. Declaring a cursor before a variable generates a 1337
 error
mysql> CREATE PROCEDURE bad_cursor()
BEGIN
 DECLARE c CURSOR FOR SELECT * from departments;
 DECLARE i INT;
END;

ERROR 1337 (42000): Variable or condition declaration after cursor or handler declaration

A cursor is always associated with a SELECT statement; Example 5-4 shows a simple
 cursor declaration that retrieves certain columns from the customers table.
Example 5-4. Simple cursor declaration
DECLARE cursor1 CURSOR FOR
 SELECT customer_name, contact_surname,contact_firstname
 FROM customers;

A cursor can reference stored program variables within the
 WHERE clause or (less frequently)
 the column list. In Example
 5-5, the cursor includes a reference to a stored procedure
 parameter, both in the WHERE
 clause and in the SELECT list.
 When the cursor is opened, it will use the value of the parameter
 variable to determine which rows to return.
Example 5-5. Cursor definition including a stored procedure
 variable
CREATE PROCEDURE cursor_demo (in_customer_id INT)
BEGIN
 DECLARE v_customer_id INT;
 DECLARE v_customer_name VARCHAR(30);
 DECLARE c1 CURSOR FOR
 SELECT in_customer_id,customer_name
 FROM customers
 WHERE customer_id=in_customer_id;

Cursor Statements

The MySQL stored program language supports three
 statements for performing operations on cursors :
	OPEN
	Initializes the result set for the cursor. We must open
 a cursor before fetching any rows from that cursor. The syntax
 for the OPEN statement is
 very simple:
 OPEN cursor_name;

	FETCH
	Retrieves the next row from the cursor and moves the
 cursor "pointer" to the following row in the result set. It
 has the following syntax:
 FETCH cursor_name INTO variable list;
The variable list must contain one variable of a
 compatible data type for each column returned by the SELECT statement contained in the
 cursor declaration. We'll discuss FETCH in more detail later in this
 chapter.

	CLOSE
	Deactivates the cursor and releases the memory
 associated with that cursor. The syntax for this statement
 is:
CLOSE cursor_name ;
We should close a cursor when we have finished fetching
 from it, or when we need to open that cursor again after
 changing a variable that affects the cursor's result
 set.

In the following sections, we will see many examples of these
 statements in action.

Fetching a Single Row from a Cursor

This is the most basic use of a cursor: we open a cursor,
 fetch a single row, and then close the result set, as shown in Example 5-6 (opening the cursor
 defined in Example 5-4).
 This is logically equivalent to a simple SELECT with an INTO clause.
Example 5-6. Fetching a single row from a cursor
OPEN cursor1;
FETCH cursor1 INTO l_customer_name,l_contact_surname,l_contact_firstname;
CLOSE cursor1;

Fetching an Entire Result Set

The most common way that cursors are processed is to fetch each row identified by the
 cursor's SELECT statement,
 perform one or more operations on the data retrieved, and then close
 the cursor after the last row has been retrieved.
Example 5-7 shows
 how we can declare and open a cursor, then fetch rows from the
 cursor in a loop, and finally close the cursor.
Example 5-7. Simple (flawed) cursor loop
 DECLARE c_dept CURSOR FOR
 SELECT department_id
 FROM departments;

 OPEN c_dept;
 dept_cursor: LOOP
 FETCH c_dept INTO l_dept_id;
 END LOOP dept_cursor;
 CLOSE c_dept;

While this code might seem sensible and complete, there is a
 problem: if we attempt to fetch a row after the last row in the
 cursor has been fetched, MySQL will raise the "no data to fetch"
 error (MySQL error 1329; SQLSTATE
 02000). So the code in Example 5-7 will abort as shown
 here:
 mysql> call simple_cursor_loop();
 ERROR 1329 (02000): No data to FETCH
To avoid this error, we declare an error handler that will
 catch "no data to fetch" and set a flag (implemented as a local
 variable). We then interrogate that variable to determine if the
 last row has been fetched. Using this technique, we can terminate
 our loop and close the cursor with intuitive, easy-to-understand
 code.
We discuss error handlers in detail in Chapter 6. However, in this
 situation, we will add the following statement to our code:
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_row_fetched=1;
This handler instructs MySQL to do two things when the "no
 data to fetch" scenario occurs:
	Set the value of the "last row variable" (l_last_row_fetched) to 1.

	Allow the program to continue executing.

Our program can now check the value of l_last_row_fetched. If it is set to 1,
 then we know that the last row has been fetched, and we can
 terminate the loop and close the cursor.
It is very important that we reset the "end of result set"
 indicator after the cursor has been closed. Otherwise, the next time
 we try to fetch from this cursor, the program will immediately
 terminate the loop, thinking that we are done.
Example 5-8 shows
 all of these steps: declare the CONTINUE handler, loop through the rows of
 the result set, leave the loop if the variable has been set, and
 then clean up.
Tip
Almost all cursor loops require a NOT FOUND handler to avoid raising a
 fatal "no data to fetch" condition.

Example 5-8. Simple cursor loop
DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_row_fetched=1;

SET l_last_row_fetched=0;
OPEN cursor1;
cursor_loop:LOOP
 FETCH cursor1 INTO l_customer_name,l_contact_surname,l_contact_firstname;
 IF l_last_row_fetched=1 THEN
 LEAVE cursor_loop;
 END IF;
 /*Do something with the row fetched*/
END LOOP cursor_loop;
CLOSE cursor1;
SET l_last_row_fetched=0;

Note that we don't have to process all
 the rows in the result set; we can issue the LEAVE statement at any time to terminate
 the cursor loop if we have processed all the data we need.

Types of Cursor Loops

We can use any of the three looping constructs (simple loop,
 WHILE loop, and REPEAT UNTIL loop) to iterate through the
 rows returned by a cursor. In each case, we need to construct the
 loop so that the loop will terminate when the "last row variable" is
 set by the NOT FOUND
 handler.
Consider the cursor and the NOT
 FOUND handler shown in Example 5-9.
Example 5-9. Cursor declaration with associated handler
DECLARE dept_csr CURSOR FOR
 SELECT department_id,department_name, location
 FROM departments;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

The simplest construct is the LOOP-LEAVE-END LOOP sequence. In this
 case, our cursor loop would look like that shown in Example 5-10.
Example 5-10. A LOOP-LEAVE-END LOOP cursor loop
OPEN dept_csr;
dept_loop1:LOOP
 FETCH dept_csr INTO l_department_id,l_department_name,l_location;
 IF no_more_departments=1 THEN
 LEAVE dept_loop1;
 END IF;
 SET l_department_count=l_department_count+1;
END LOOP;
CLOSE dept_csr;
SET no_more_departments=0;

The logic of Example
 5-10 is simple: we open the cursor and then iteratively fetch
 the rows. If we try to fetch beyond the end of the result set, the
 handler sets no_more_departments
 to 1 and we call the LEAVE
 statement to terminate the loop. Finally, we close the cursor and
 reset the no_more_departments
 variable.
The WHILE loop is very
 familiar to programmers and might therefore seem like a natural
 choice for constructing a cursor loop. In fact, however, you will
 very likely find that the REPEAT
 UNTIL loop is a more appropriate construct for a cursor
 loop. The REPEAT always executes
 its body at least once before evaluating the continuation
 expression. In the context of cursor processing, we usually will
 want to fetch at least once before checking to see if we are done
 processing the cursor's result set. Hence, using the REPEAT UNTIL loop can produce more
 readable code, as shown in Example 5-11.
Example 5-11. Cursor loop with REPEAT UNTIL loop
DECLARE dept_csr CURSOR FOR
 SELECT department_id,department_name, location
 FROM departments;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

SET no_more_departments=0;
OPEN dept_csr;
REPEAT
 FETCH dept_csr INTO l_department_id,l_department_name,l_location;
UNTIL no_more_departments
END REPEAT;
CLOSE dept_csr;
SET no_more_departments=0;

However, this loop only works because we did nothing with each
 row fetched by the cursor. Fetching rows from a cursor just for the
 heck of it is very unusual—it is far more common to do something
 with the rows returned. For instance, in our first LOOP-LEAVE-END
 LOOP example, we at least counted the rows returned by the
 cursor. However, since the final fetch returns no rows, we need a
 way to avoid processing after that final fetch. So in fact, even if
 we use the REPEAT UNTIL loop, we
 still need a LEAVE statement to
 avoid processing the nonexistent row returned (or rather, not
 returned) by the final fetch. Thus, if we want to count the number
 of rows returned by the cursor (or do anything else with the
 results) we will need to include loop labels and a LEAVE statement, as in the amended version
 of our previous example, shown in Example 5-12.
Example 5-12. Most REPEAT UNTIL loops also need a LEAVE statement
DECLARE dept_csr CURSOR FOR
 SELECT department_id,department_name, location
 FROM departments;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

SET no_more_departments=0;
OPEN dept_csr;
dept_loop:REPEAT
 FETCH dept_csr INTO l_department_id,l_department_name,l_location;
 IF no_more_departments THEN
 LEAVEdept_loop;
 END IF;
 SET l_department_count=l_department_count+1;
UNTIL no_more_departments
END REPEAT dept_loop;
CLOSE dept_csr;
SET no_more_departments=0;

The necessity of including a LEAVE statement in almost every REPEAT UNTIL loop makes the presence of
 the UNTIL clause
 redundant—although it arguably improves readability and protects you
 against the possibility of an infinite loop if your LEAVE statement fails to execute (perhaps
 you miscoded the IF clause). In
 the end, valid cursor loops can be established in either fashion,
 and there is no compelling case to recommend one style over the
 other. All we can say is that your code as a whole will be more
 readable if you use a consistent style for all of your cursor
 loops.
An alternative to a LEAVE
 statement would be an IF
 statement that executes whatever post-processing occurs once we
 determine that the FETCH has
 reached the end of the result set. Example 5-13 shows how we
 could construct this loop for our example. In this case, an IF statement is added that performs row
 processing only if the no_more_departments variable has not been
 set.
Example 5-13. Using an IF block as an alternative to a LEAVE statement in
 a REPEAT UNTIL cursor loop
DECLARE dept_csr CURSOR FOR
 SELECT department_id,department_name, location
 FROM departments;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

SET no_more_departments=0;
OPEN dept_csr;
dept_loop:REPEAT
 FETCH dept_csr INTO l_department_id,l_department_name,l_location;
 IF no_more_departments=0 THEN
 SET l_department_count=l_department_count+1;
 END IF;
UNTIL no_more_departments
END REPEAT dept_loop;
CLOSE dept_csr;
SET no_more_departments=0;

The third style of cursor loop involves the WHILE-END WHILE loop. WHILE evaluates its condition before the
 first execution of the loop, so it is a less logical choice than
 REPEAT-UNTIL or LOOP-END LOOP, since logically we cannot
 know if we have reached the end of the cursor until we have fetched
 at least one row. On the other hand, WHILE is probably the looping construct
 used in the widest variety of other programming languages, so it
 might confer a clearer understanding of the program's intentions to
 those who are not familiar with the MySQL stored program
 language.
In any case, the WHILE loop
 also requires a LEAVE statement
 if there is any processing of the cursor results attempted within
 the loop, so the code in Example 5-14 looks very
 similar to our previous examples.
Example 5-14. A cursor WHILE loop
DECLARE dept_csr CURSOR FOR
 SELECT department_id,department_name, location
 FROM departments;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

SET no_more_departments=0;
OPEN dept_csr;
dept_loop:WHILE(no_more_departments=0) DO
 FETCH dept_csr INTO l_department_id,l_department_name,l_location;
 IF no_more_departments=1 THEN
 LEAVE dept_loop;
 END IF;
 SET l_department_count=l_department_count+1;
END WHILE dept_loop;
CLOSE dept_csr;
SET no_more_departments=0;

Nested Cursor Loops

It is not uncommon to nest cursor loops. For instance, one
 loop might retrieve a list of interesting customers, while an inner
 loop retrieves all the orders for those customers. The most
 significant issue relating to this sort of nesting is that the NOT
 FOUND handler variable will be set whenever either cursor
 completes—so you are going to need to be very careful to ensure that
 a NOT FOUND condition does not
 cause both cursors to be closed.
For instance, consider the nested cursor loops shown in Example
 5-15.
Example 5-15. A (flawed) nested cursor loop
CREATE PROCEDURE bad_nested_cursors()
 READS SQL DATA
BEGIN

 DECLARE l_department_id INT;
 DECLARE l_employee_id INT;
 DECLARE l_emp_count INT DEFAULT 0 ;
 DECLARE l_done INT DEFAULT 0;

 DECLARE dept_csr cursor FOR
 SELECT department_id FROM departments;

 DECLARE emp_csr cursor FOR
 SELECT employee_id FROM employees
 WHERE department_id=l_department_id;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_done=1;

 OPEN dept_csr;
 dept_loop: LOOP — Loop through departments
 FETCH dept_csr into l_department_id;

 IF l_done=1 THEN
 LEAVE dept_loop;
 END IF;

 OPEN emp_csr;
 SET l_emp_count=0;
 emp_loop: LOOP -- Loop through employee in dept.
 FETCH emp_csr INTO l_employee_id;

 IF l_done=1 THEN
 LEAVE emp_loop;
 END IF;
 SET l_emp_count=l_emp_count+1;
 END LOOP;
 CLOSE emp_csr;

 SELECT CONCAT('Department ',l_department_id,' has ',
 l_emp_count,' employees');

 END LOOP dept_loop;
 CLOSE dept_csr;

END;

This stored procedure contains a subtle bug. When the first
 "inner" loop through the emp_csr
 cursor completes, the value of l_done is set to 1. Consequently, at the
 next iteration through the "outer" loop through the dept_csr, the value of l_done is still set to 1 and the outer
 loop is inadvertently terminated. As a result, we only ever process
 a single department. There are two possible solutions to this
 problem: the easier of the two is simply to reset the "not found"
 variable at the end of each loop, as in Example 5-16.
Example 5-16. A correct nested cursor example
CREATE PROCEDURE good_nested_cursors1()
 READS SQL DATA
BEGIN

 DECLARE l_department_id INT;
 DECLARE l_employee_id INT;
 DECLARE l_emp_count INT DEFAULT 0 ;
 DECLARE l_done INT DEFAULT 0;

 DECLARE dept_csr cursor FOR
 SELECT department_id FROM departments;
 DECLARE emp_csr cursor FOR
 SELECT employee_id FROM employees
 WHERE department_id=l_department_id;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_done=1;

 OPEN dept_csr;
 dept_loop: LOOP -- Loop through departments
 FETCH dept_csr into l_department_id;

 IF l_done=1 THEN
 LEAVE dept_loop;
 END IF;

 OPEN emp_csr;
 SET l_emp_count=0;
 emp_loop: LOOP -- Loop through employee in dept.
 FETCH emp_csr INTO l_employee_id;

 IF l_done=1 THEN
 LEAVE emp_loop;
 END IF;
 SET l_emp_count=l_emp_count+1;
 END LOOP;
 CLOSE emp_csr;
 SET l_done=0;

 SELECT CONCAT('Department ',l_department_id,' has ',
 l_emp_count,' employees');

 END LOOP dept_loop;
 CLOSE dept_csr;

END;

It is always good practice to reset the value of a "not found"
 variable once it has been used so that subsequent cursor iterations
 are not affected.
Tip
Always reset the "not found" variable set by a NOT FOUND handler after you terminate a
 cursor loop. Failure to do this may cause subsequent or nested
 cursor loops to terminate prematurely.

A slightly more complex—but arguably more robust solution—is
 to give each cursor its own handler. Because you can only have one
 NOT FOUND handler active within
 any particular block, this can only be done by enclosing each cursor
 in its own block. For instance, we could place the sales cursor in
 its own block with its own NOT
 FOUND handler, as in Example 5-17.
Example 5-17. Nested cursors using nested blocks
]
DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_customer=1;
SET l_last_customer=0;
OPEN customer_csr;
cust_loop:LOOP /* Loop through overdue customers*/

 FETCH customer_csr INTO l_customer_id;
 IF l_last_customer=1 THEN LEAVE cust_loop; END IF; /*no more rows*/
 SET l_customer_count=l_customer_count+1;

 sales_block: BEGIN
 DECLARE l_last_sale INT DEFAULT 0;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_sale=1;
 OPEN sales_csr;
 sales_loop:LOOP /* Get all sales for the customer */

 FETCH sales_csr INTO l_sales_id;
 IF l_last_sale=1 THEN LEAVE sales_loop; END IF; /*no more rows*/

 CALL check_sale(l_sales_id); /* Check the sale status */
 SET l_sales_count=l_sales_count+1;

 END LOOP sales_loop;
 SET l_last_sale=0;
 CLOSE sales_csr;
 END sales_block;

END LOOP cust_loop;
SET l_last_customer=0;
CLOSE customer_csr;

Note that we now have a separate "not found" variable for each
 cursor, and we have eliminated any possibility that the closing of
 one cursor could affect the status of another. However, also note
 that we still reset the "not found" variables after we completed
 each cursor loop—this remains highly recommended since you may still
 wish to reopen a cursor within the same block.

Exiting the Cursor Loop Prematurely

Don't assume that you can only exit the cursor loop when the
 last row has been retrieved—you can issue a LEAVE statement at any time that you think
 that your processing has been completed. You may be looking for only
 one or a limited number of candidate records in the result set, or
 you may have detected some other condition suggesting that further
 processing is unnecessary.

Cursor Error Conditions

Cursor statements must occur in the sequence OPEN-FETCH-CLOSE. Any variation on this
 sequence will result in runtime errors.
For instance, if you try to CLOSE or FETCH from a cursor that is not open, you
 will encounter a Cursor is not
 open error, as shown in Example 5-18.
Example 5-18. Cursor is not open error
mysql> CREATE PROCEDURE csr_error2()
BEGIN
 DECLARE x INT DEFAULT 0;
 DECLARE c cursor for select 1 from departments;
 CLOSE c;

END;

Query OK, 0 rows affected (0.00 sec)
mysql> CALL csr_error2();

ERROR 1326 (24000): Cursor is not open

Attempting to open a cursor that is already open results in a
 Cursor is already open error, as
 shown in Example
 5-19.
Example 5-19. Cursor is already open error
mysql> CREATE PROCEDURE csr_error3()
BEGIN
 DECLARE x INT DEFAULT 0;
 DECLARE c cursor for select 1 from departments;
 OPEN c;
 OPEN c;

END;
//

Query OK, 0 rows affected (0.00 sec)
mysql> CALL csr_error3();

ERROR 1325 (24000): Cursor is already open

Using Unbounded SELECT Statements

 MySQL stored procedures (but not functions) can return
 result sets to the calling program (though not, unfortunately,
 directly to another stored procedure). A result set is returned from a
 stored procedure whenever a SQL statement that returns a result set is
 not associated with either an INTO
 clause or a cursor. We call these SQL statements
 unbounded. Such SQL statements will usually be
 SELECT statements, although other
 statements that return result sets—SHOW, EXPLAIN, DESC, and so on—can also be included within
 the stored procedure.
We have used unbounded SELECT
 statements throughout many of our examples in order to return
 information about stored procedure execution. You'll most likely do
 the same either for debugging purposes or to return some useful status
 information to the user or calling program. Example 5-20 shows an example of
 a stored procedure that uses this feature to return a list of
 employees within a specific department.
Example 5-20. Using unbounded SELECTs to return data to the calling
 program
CREATE PROCEDURE emps_in_dept(in_department_id INT)
BEGIN
 SELECT department_name, location
 FROM departments
 WHERE department_id=in_department_id;

 SELECT employee_id,surname,firstname
 FROM employees
 WHERE department_id=in_department_id;
END;

When run, the stored procedure from Example 5-20 produces the
 following output:
mysql> CALL emps_in_dept(31) //
+-------------------+----------+
| department_name | location |
+-------------------+----------+
| ADVANCED RESEARCH | PAYSON |
+-------------------+----------+
1 row in set (0.00 sec)

+-------------+----------+-----------+
| employee_id | surname | firstname |
+-------------+----------+-----------+
149	EPPLING	LAUREL
298	CHARRON	NEWLIN
447	RAMBO	ROSWALD
596	GRESSETT	STANFORD
745	KANE	CARLIN
894	ABELL	JAMIE
1043	BROOKS	LYNN
1192	WENSEL	ZENAS
1341	ZANIS	ALDA
1490	PUGH	ALICE
1639	KUEHLER	SIZA
1788	RUST	PAINE
1937	BARRY	LEO
+-------------+----------+-----------+
13 rows in set (0.00 sec)
In some respects, using stored procedures to return result sets
 in this way provides similar functionality to creating a view to
 support specific queries. Like a view, the stored procedure can
 encapsulate complex SQL operations, thus making it easier for a user
 to retrieve data without necessarily having to understand the
 complexities of the schema design. Encapsulating SQL inside a stored
 procedure can also improve security, because you can perform complex
 validation checks or even encryption/decryption before returning the
 result set.
Unlike a view, a stored procedure can return multiple result
 sets, as shown in Example
 5-20. Returning multiple result sets can be a convenient way to
 encapsulate all of the logic required to produce multiple sets of
 application data in a single call to the database.
Retrieving the Result Sets in the Calling Program

It is relatively easy to retrieve a result set from a stored
 procedure. Provided that the stored procedure returns only a single
 result set, it can be handled in the same way as a normal SQL call.
 Example 5-21 shows a PHP
 program using the mysqli
 interface that retrieves a single result set from a stored procedure
 call.
Example 5-21. Retrieving a stored procedure result set from PHP
1 <h1>Department listing</h1>
2 <table border="1" width="90%">
3 <tr> <td>Department ID</td>
4 <td>Department Name</td>
5 <?php
6 $hostname="localhost";
7 $username="root";
8 $password="secret";
9 $database="sqltune";
10
11 $p1="";
12 $p2="";
13
14
15 $dbh = new mysqli($hostname, $username, $password, $database);
16
17 /* check connection */
18 if (mysqli_connect_errno()) {
19 printf("Connect failed: %s\n", mysqli_connect_error());
20 exit();
21 }
22
23 if ($result_set = $dbh->query("call department_list()"))
24 {
25 printf('');
26 while($row=$result_set->fetch_object())
27 {
28 printf("<tr><td>%s</td><td>%s</td></tr>\n",
29 $row->department_id, $row->department_name);
30 }
31 }
32 else // Query failed - show error
33 {
34 printf("<p>Error retrieving stored procedure result set:%d (%s) %s\n",
35 mysqli_errno($dbh),mysqli_sqlstate($dbh),mysqli_error($dbh));
36 $dbh->close();
37 exit();
38 }
39 /* free result set */
40 $result_set->close();
41 $dbh->close();
42
43 ?>
44 </table>
45 </body>
46 </html>

The significant lines of code from Example 5-21 include:
	Line(s)
	Explanation

	23
	Call the department_list stored procedure,
 which will return a result set containing a list of
 departments. The $result_set object represents the
 result set that is returned.

	26
	Iteratively call the
 fetch_object method,
 which returns an object representing a single
 row.

	28 and
 29
	Extract individual
 columns from the $row
 object, by using the department_id and department_name properties, which
 contain the values for the corresponding
 columns.

The output of the PHP program is shown in Figure 5-1.
[image: Output of a PHP program that retrieves a stored procedure result set]

Figure 5-1. Output of a PHP program that retrieves a stored procedure
 result set

The ability to return multiple result sets from a stored
 procedure can be either a blessing or a curse, depending on your
 perspective. The multiple result set feature can allow you to return
 multiple logically related sets of data in a single operation. For
 instance, all the result sets necessary to populate a multilevel
 master-detail report can be requested from the database in one
 operation. This could result in a greater level of separation
 between presentation (often web) logic and data access (database)
 logic.
However, handling multiple result sets may require unfamiliar
 processing requirements in our client-side programming. Some
 third-party report-generating tools may be unprepared for the
 possibility of multiple result sets being sent out by a single
 database call. In fact, some of these third-party tools may be
 unable to cope with a stored procedure sending out a result set at
 all.
Luckily, the major programming interfaces we use with
 MySQL—PHP, Java, Perl, Python, and .NET C# and VB.NET—are all
 capable of handling multiple result sets. In Chapters 13 through 17, we explore in detail how to
 process result sets and perform other operations on MySQL stored
 procedures in these languages. To give you a preview of the general
 process, Example 5-22
 shows how we retrieve multiple results sets from a MySQL stored
 procedure in Java.
Example 5-22. Retrieving multiple result sets from a stored procedure in
 Java
1 private void empsInDept(Connection myConnect, int deptId) throws SQLException {
2
3 CallableStatement cStmt = myConnect
4 .prepareCall("{CALL sp_emps_in_dept(?)}");
5 cStmt.setInt(1, deptId);
6 cStmt.execute();
7 ResultSet rs1 = cStmt.getResultSet();
8 while (rs1.next()) {
9 System.out.println(rs1.getString("department_name") + " "
10 + rs1.getString("location"));
11 }
12 rs1.close();
13
14 /* process second result set */
15 if (cStmt.getMoreResults()) {
16 ResultSet rs2 = cStmt.getResultSet();
17 while (rs2.next()) {
18 System.out.println(rs2.getInt(1) + " " + rs2.getString(2) + " "
19 + rs2.getString(3));
20 }
21 rs2.close();
22 }
23 cStmt.close();
24 }

Let's step through the important parts of Example 5-22:
	Line(s)
	Explanation

	3
	Create a CallableStatement object
 corresponding to the stored procedure from Example
 5-20.

	5
	Provide the parameter
 (department_id) to the
 stored procedure.

	6
	Execute the stored
 procedure.

	7
	Create a ResultSet object corresponding to
 the first result set.

	8-11
	Loop through the rows
 in that result set and print the results to the
 console.

	15
	Use the getMoreResults method to move to
 the next result set.

	16
	Create a ResultSet object for the second
 result set.

	17-20
	Retrieve the rows
 from the result set and print them to the
 console.

Returning Result Sets to Another Stored Procedure

We know that we can return result sets to a calling program
 (such as PHP)—but is there a way to return the result set to another
 stored procedure?
Unfortunately, the only way to pass a result set from one
 stored procedure to another is to pass the results via a temporary
 table. This is an awkward solution, and— because the temporary table
 has scope throughout the entire session—it creates many of the same
 maintainability issues raised by the use of global variables. But if
 one stored program needs to supply another stored program with
 results, then a temporary table can be the best solution.
Let's look at an example. In Example 5-23, we have a stored
 procedure that is responsible for creating a temporary table that
 contains all overdue sales. Although this SQL is simple enough that
 we could replicate the SQL in every stored procedure that needs to
 process overdue orders, our performance is improved if we create
 this list only once during our batch run, and modularity and
 maintainability are improved if we define this query in only one
 place.
Example 5-23. Stored procedure that creates a temporary table
CREATE PROCEDURE sp_overdue_sales ()

BEGIN
 DROP TEMPORARY TABLE IF EXISTS overdue_sales_tmp;
 CREATE TEMPORARY TABLE overdue_sales_tmp AS
 SELECT sales_id,customer_id,sale_date,quantity,sale_value
 FROM sales
 WHERE sale_status='O';

END;

In Example 5-24 we
 see a stored procedure that calls the previous stored procedure and
 consumes the rows placed in the temporary table. In practice, this
 is pretty much equivalent to passing the result set from one stored
 procedure to another.
Example 5-24. Stored procedure that consumes data from a temporary
 table
CREATE PROCEDURE sp_issue_invoices()

BEGIN
 DECLARE l_sale_id INT;
 DECLARE l_last_sale INT DEFAULT 0;

 DECLARE sale_csr CURSOR FOR
 SELECT sales_id
 FROM overdue_sales_tmp;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_sale=1;

 CALL sp_overdue_sales();

 OPEN sale_csr;
 sale_loop:LOOP
 FETCH sale_csr INTO l_sale_id;
 IF l_last_sale THEN
 LEAVE sale_loop;
 END IF;
 CALL sp_issue_one_invoice(l_sale_id);
 END LOOP sale_loop;
 CLOSE sale_csr;

END;

Note that in MySQL, temporary tables have scope only within
 the specific session that creates the table, and they are
 automatically de-allocated when that session completes. So we don't
 have to worry about cleaning up the temporary table or be concerned
 that the table could be simultaneously updated by another
 session.

Performing Dynamic SQL with Prepared Statements

 MySQL supports a facility known as server-side
 prepared statements , which provides an API-independent way of preparing a
 SQL statement for repeated execution efficiently and securely.
 Prepared statements are interesting from a stored programming
 perspective because they allow us to create dynamic SQL calls.
We create a prepared statement with the PREPARE statement:
 PREPARE statement_name FROMsql_text
The SQL text may contain placeholders for data values that must
 be supplied when the SQL is executed. These placeholders are
 represented by ? characters.
The prepared statement is executed with the, EXECUTE statement:
 EXECUTE statement_name [USING variable [,variable...]]
The USING clause can be used
 to specify values for the placeholders specified in the PREPARE statement. These must be supplied as
 user variables (prefixed with the @
 character), which we described in Chapter 3.
Finally, we can drop the prepared statement with the DEALLOCATE statement:
 DEALLOCATE PREPARE statement_name
An example of using prepared statements within the MySQL
 command-line client is shown in Example 5-25.
Example 5-25. Using prepared statements
mysql> PREPARE prod_insert_stmt FROM "INSERT INTO product_codes VALUES(?,?)";
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql>
mysql> SET @code='QB';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @name='MySQL Query Browser';
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE prod_insert_stmt USING @code,@name;
Query OK, 1 row affected (0.00 sec)

mysql> SET @code='AD';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @name='MySQL Administrator';
Query OK, 0 rows affected (0.02 sec)

mysql> EXECUTE prod_insert_stmt USING @code,@name;
Query OK, 1 row affected (0.00 sec)

mysql> DEALLOCATE PREPARE prod_insert_stmt;
Query OK, 0 rows affected (0.00 sec)

Now, the idea of prepared statements is to reduce the overhead
 of re-parsing (preparing) a SQL statement for execution if all that
 has changed is a few data values, and to enhance security by allowing
 SQL statement parameters to be supplied in a way that prevents SQL
 injection (for more about SQL injection, see Chapter 18). Stored procedures don't
 need prepared statements for these reasons, since the SQL statements
 in stored procedures are already "prepared" for execution. Moreover,
 SQL injection is not really a threat in stored programs (ironically
 enough, unless you use prepared
 statements!).
However, prepared statements come in handy in stored programs,
 because they allow you to execute dynamic SQL
 from within a procedure (but not from within a trigger
 or function). A SQL statement is dynamic if it is constructed at
 runtime (whereas a static SQL statement is one that is constructed at
 the time of compilation of the program unit). You will generally rely
 on dynamic SQL only when you don't have all the information you need
 at compile time to complete your statement. This usually occurs
 because you need input from a user or from some other data
 source.
The stored procedure in Example 5-26 offers a
 demonstration of running dynamic SQL as a prepared statement; it will,
 in fact, execute any SQL that is passed in as an
 argument.
Example 5-26. Stored procedure with dynamic SQL
CREATE PROCEDURE execute_immediate(in_sql VARCHAR(4000))
BEGIN

 SET @tmp_sql=in_sql;
 PREPARE s1 FROM @tmp_sql;
 EXECUTE s1;
 DEALLOCATE PREPARE s1;

END;

SQL executed as a prepared statement within a stored procedure
 acts pretty much the same way as a static SQL statement that is
 embedded inside the stored procedure. However, the EXECUTE statement does not support an
 INTO clause, nor is it possible to
 define a cursor from a prepared statement. Therefore, any results from
 a prepared statement will be returned to the calling program and
 cannot be trapped in the stored procedure. To catch the rows returned
 by a dynamic SQL call, store them in a temporary table, as outlined in
 the section "Returning Result
 Sets to Another Stored Procedure," earlier in this
 chapter.
You should rely on dynamic SQL only when needed. It is more
 complex and less efficient than static SQL, but it does allow you to
 implement otherwise impossible tasks and create useful, generic
 utility routines. For instance, the stored procedure in Example 5-27 accepts a table
 name, column name, WHERE clause,
 and value; the procedure uses these parameters to build up an UPDATE statement that can update any table
 column value.
Example 5-27. Stored procedure that can update any column in any
 table
CREATE PROCEDURE set_col_value
 (in_table VARCHAR(128),
 in_column VARCHAR(128),
 in_new_value VARCHAR(1000),
 in_where VARCHAR(4000))

BEGIN
 DECLARE l_sql VARCHAR(4000);
 SET l_sql=CONCAT_ws(' ',
 'UPDATE',in_table,
 'SET',in_column,'=',in_new_value,
 ' WHERE',in_where);
 SET @sql=l_sql;
 PREPARE s1 FROM @sql;
 EXECUTE s1;
 DEALLOCATE PREPARE s1;
END;

We could call this program to zero-out the salary of employee ID
 1 (eat this, CEO!) by invoking the procedure as follows:
 mysql> CALL set_col_value('employees','salary','0','employee_id=1')
Another common application of dynamic SQL is to build up conditional WHERE clauses. Often, we construct user
 interfaces in which the user may specify multiple search criteria.
 Handling the "missing" conditions without dynamic SQL can lead to
 complex and awkward SQL, which can be difficult for MySQL to optimize.
 Example 5-28 shows a
 simple example of a search procedure that allows the user to specify
 any combination of customer name, contact name, or phone
 number.
Example 5-28. Search procedure without dynamic SQL
CREATE PROCEDURE sp_customer_search
 (in_customer_name VARCHAR(30),
 in_contact_surname VARCHAR(30),
 in_contact_firstname VARCHAR(30),
 in_phoneno VARCHAR(10))

BEGIN
 SELECT *
 FROM customers
 WHERE (customer_name LIKE in_customer_name
 OR in_customer_name IS NULL)
 AND (contact_surname LIKE in_contact_surname
 OR in_contact_surname IS NULL)
 AND (contact_firstname LIKE in_contact_firstname
 OR in_contact_firstname IS NULL)
 AND (phoneno LIKE in_phoneno
 OR in_phoneno IS NULL) ;

END;

The SQL in Example
 5-28 is not yet unbearably complex, but as
 the number of candidate search columns increases, the maintainability
 of this statement will rapidly diminish. Even with this statement,
 however, we may be legitimately concerned that the SQL is not
 correctly optimized for the specific search criteria supplied by the
 end user. We may therefore wish to build up a more customized search
 query. Example 5-29 shows
 a procedure in which we construct the WHERE clause dynamically to match the search
 criteria supplied by the user and call that SQL dynamically using
 prepared statements.
Example 5-29. Search procedure with dynamic SQL
CREATE PROCEDURE sp_customer_search_dyn
 (in_customer_name VARCHAR(30),
 in_contact_surname VARCHAR(30),
 in_contact_firstname VARCHAR(30),
 in_phoneno VARCHAR(10))

BEGIN
 DECLARE l_where_clause VARCHAR(1000) DEFAULT 'WHERE';

 IF in_customer_name IS NOT NULL THEN
 SET l_where_clause=CONCAT(l_where_clause,
 ' customer_name="',in_customer_name,'"');
 END IF;

 IF in_contact_surname IS NOT NULL THEN
 IF l_where_clause<>'WHERE' THEN
 SET l_where_clause=CONCAT(l_where_clause,' AND ');
 END IF;
 SET l_where_clause=CONCAT(l_where_clause,
 ' contact_surname="',in_contact_surname,'"');
 END IF;

 IF in_contact_firstname IS NOT NULL THEN
 IF l_where_clause<>'WHERE' THEN
 SET l_where_clause=CONCAT(l_where_clause,' AND ');
 END IF;
 SET l_where_clause=CONCAT(l_where_clause,
 ' contact_firstname="',in_contact_firstname,'"');
 END IF;

 IF in_phoneno IS NOT NULL THEN
 IF l_where_clause<>'WHERE' THEN
 SET l_where_clause=CONCAT(l_where_clause,' AND ');
 END IF;
 SET l_where_clause=CONCAT(l_where_clause,
 ' phoneno="',in_phoneno,'"');
 END IF;

 SET @sql=CONCAT('SELECT * FROM customers ',
 l_where_clause);

 PREPARE s1 FROM @sql;
 EXECUTE s1;
 DEALLOCATE PREPARE s1;

END;

Although the procedure in Example 5-29 is longer and more
 complicated than the static example shown in Example 5-28, it may execute
 faster because we have eliminated redundant WHERE clauses from the SQL that is finally
 executed. In that way, we give MySQL better data on which to base its
 decisions regarding indexes and other optimizations.
You will probably not need to use dynamic SQL and prepared statements very often, but they can
 certainly save the day when you are faced with the need to construct a
 SQL statement based on user input or stored program parameters.
 However, a final word of caution: when you construct SQL based on user
 input, you allow for the security attack known as SQL
 injection to occur, and SQL injection in stored procedures can
 pose a particularly high risk because of the unique execution context
 of stored procedures. We discuss SQL injection in stored programs in
 detail within Chapter
 18.

Handling SQL Errors: A Preview

Error handling in MySQL stored programs is such an
 important and complex topic that we have dedicated an entire
 chapter—Chapter 6—to this topic.
 However, let's provide a quick summary here.
By default, if a SQL statement within a stored program generates
 an error, the stored program will cease execution and the error will
 be returned to the calling program. If you don't want this to happen,
 you must specify an error handler using the
 following syntax:
 DECLARE {CONTINUE | EXIT} HANDLER FOR
 {SQLSTATE sqlstate_code| MySQL error code| condition_name}stored_program_statement
The handler nominates an error condition—using a MySQL error
 code, an ANSI-standard SQLSTATE, or
 a named condition—and describes what is to happen if the error is
 encountered. The handler can do one of two things:
	Allow execution to CONTINUE.

	Immediately exit the block or stored program containing the
 handler.

The handler specifies stored program statements that will be
 executed when the handler is activated. These statements often set a
 status variable that could be checked within the main line of the
 program but that could also specify a BEGIN-END block containing many lines of
 code.
We have already looked at the use of handlers in determining
 when a cursor has returned the last row of its result set (see "Fetching an Entire Result
 Set" earlier in this chapter).
We discuss handlers in depth in the next chapter.

Conclusion

In this chapter we reviewed the facilities MySQL provides for
 including SQL within stored programs. The following types of SQL
 statements can appear in stored programs:
	Simple embedded non-SELECT statements, including DML
 statements (INSERT, DELETE, UPDATE) and DDL statements (CREATE, DROP, ALTER, etc.) can be included within
 stored programs without any particular restrictions.

	SELECT statements that
 return only one row may include an INTO clause that stores the results of
 the SELECT statement into
 stored program variables.

	SELECT statements allow
 you to iterate through the rows returned by a multirow SELECT statement by using a cursor.
 Cursors involve a bit more programming effort, including a looping
 structure and a condition handler to prevent "no data to fetch"
 errors when all rows from the cursor have been retrieved.
 Nevertheless, cursors will probably be your main mechanism for
 performing complex data processing in stored programs.

	"Unbounded" SELECT
 statements—those without an INTO clause or a CURSOR statement—can be included within
 stored procedures (but not within stored functions). The output
 from these SELECT statements
 will be returned to the calling program (but not to a calling
 stored procedure). You will need to employ special code in your
 calling program to handle result sets from stored procedures,
 especially if more than a single result set is returned.

SQL statements can also be prepared dynamically using MySQL
 server-side prepared statements.
If your SQL statements generate an error, your stored program
 will terminate and return control to the calling program unless you
 create an error handler that "catches" the error
 and takes appropriate action. We saw a simple example of an error
 handler in this chapter and looked at NOT
 FOUND handlers that handle the end of a cursor result set.
 In the next chapter we'll cover the topic of error handlers in greater
 detail.

Chapter 6. Error Handling

The perfect programmer, living in a perfect world, would always
 write programs that anticipate every possible circumstance. Those
 programs would either always work correctly, or fail "gracefully" by
 providing comprehensive diagnostic information to the support team and
 very readable messages to the user.
For a certain class of applications—software supporting life
 support systems or the space shuttle, for instance—this level of
 perfection is actually a part of the requirements, because any
 unexpected failure of the software would be catastrophic. However, in
 the world of business applications, we usually make certain assumptions
 about our execution environment—we assume the MySQL server will be
 running, that our tables have not been dropped, that the host machine is
 not on fire, and so on. If any of these conditions occurs, then we
 accept that our application will fail. In many other circumstances, we
 can and should anticipate potential failures and write code to manage
 those situations. This is where exception handling comes into
 play.
When a stored program encounters an error condition, execution
 ceases and an error is returned to the calling application. That's the
 default behavior. What if we need a different kind of behavior? What if,
 for example, we want to trap that error, log it, or report on it, and
 then continue execution of our application? For that kind of control, we
 need to define exception handlers in our programs.
When developing MySQL stored programs, a very common
 scenario—fetching to the end of a result set—also requires that we
 define an exception handler.
In this chapter we explain how to create various types of
 exception handlers and how to improve the readability of error handling
 by using "named" conditions. We also identify several gaps in
 exception-handling functionality in MySQL 5, and explore ways of
 compensating for these omissions.
Introduction to Error Handling

 Let's begin by looking at several examples of stored
 program error handling.
A Simple First Example

Consider a simple stored procedure that creates a location
 record, as shown in Example
 6-1.
Example 6-1. Simple stored procedure without error handling
CREATE PROCEDURE sp_add_location
 (in_location VARCHAR(30),
 in_address1 VARCHAR(30),
 in_address2 VARCHAR(30),
 zipcode VARCHAR(10))
 MODIFIES SQL DATA
BEGIN
 INSERT INTO locations
 (location,address1,address2,zipcode)
 VALUES
 (in_location,in_address1,in_address2,zipcode);
END$$

This procedure works fine when the location does not already
 exist, as shown in the following output:
 mysql> CALL sp_add_location('Guys place','30 Blakely Drv',
 'Irvine CA','92618-20');

 Query OK, 1 row affected, 1 warning (0.44 sec)
However, if we try to insert a department that already exists,
 MySQL raises an error:
 mysql> CALL sp_add_location('Guys place','30 Blakely Drv',
 'Irvine CA','92618-20');

 ERROR 1062 (23000): Duplicate entry 'Guys place' for key 1
If the stored procedure is called by an external program such
 as PHP, we could probably get away with leaving
 this program "as is." PHP, and other external programs, can detect
 such error conditions and then take appropriate action. If the
 stored procedure is called from another stored procedure, however,
 we risk causing the entire procedure call stack to abort. That may
 not be what we want.
Since we can anticipate that MySQL error 1062 could be raised
 by this procedure, we can write code to handle that specific error
 code. Example 6-2
 demonstrates this technique. Rather than allow the exception to
 propagate out of the procedure unhandled (causing failures in the
 calling program), the stored procedure traps the exception, sets a
 status flag, and returns that status information to the calling
 program.
The calling program can then decide if this failure warrants
 termination or if it should continue execution.
Example 6-2. Simple stored procedure with error handling
CREATE PROCEDURE sp_add_location
 (in_location VARCHAR(30),
 in_address1 VARCHAR(30),
 in_address2 VARCHAR(30),
 zipcode VARCHAR(10),
 OUT out_status VARCHAR(30))
 MODIFIES SQL DATA
BEGIN
 DECLARE CONTINUE HANDLER
 FOR 1062
 SET out_status='Duplicate Entry';

 SET out_status='OK';
 INSERT INTO locations
 (location,address1,address2,zipcode)
 VALUES
 (in_location,in_address1,in_address2,zipcode);
END;

We'll review in detail the syntax of the HANDLER clause later in this chapter. For
 now, it is enough to understand that the DECLARE CONTINUE HANDLER statement tells
 MySQL that "if you encounter MySQL error 1062 (duplicate entry for
 key), then continue execution but set the
 variable out_status to 'Duplicate Entry'."
As expected, this implementation does not return an error to
 the calling program, and we can examine the status variable to see
 if the stored procedure execution was successful. In Example 6-3 we show a stored
 procedure that creates new department records. This procedure calls
 our previous procedure to add a new location. If the location
 already exists, the stored procedure generates a warning and
 continues. Without the exception handling in sp_add_location, this procedure would
 terminate when the unhandled exception is raised.
Example 6-3. Calling a stored procedure that has an error
 handler
CREATE PROCEDURE sp_add_department
 (in_department_name VARCHAR(30),
 in_manager_id INT,
 in_location VARCHAR(30),
 in_address1 VARCHAR(30),
 in_address2 VARCHAR(30),
 in_zipcode VARCHAR(10)
)
 MODIFIES SQL DATA
BEGIN
 DECLARE l_status VARCHAR(20);

 CALL sp_add_location(in_location,in_address1,in_address2,
 in_zipcode, l_status);
 IF l_status='Duplicate Entry' THEN
 SELECT CONCAT('Warning: using existing definition for location ',
 in_location) AS warning;
 END IF;

 INSERT INTO departments (manager_id,department_name,location)
 VALUES(in_manager_id,in_department_name,in_location);

END;

Handling Last Row Conditions

One of the most common operations in a MySQL stored program
 involves fetching one or more rows of data. You can do this in a
 stored program through the use of a cursor (explained in Chapter 5). However, MySQL (and the
 ANSI standard) considers an attempt to fetch past the last
 row of the cursor an error. Therefore, you almost always
 need to catch that particular error when looping through the results
 from a cursor.
Consider the simple cursor loop shown in Example 6-4. At first glance,
 you might worry that we might inadvertently have created an infinite
 loop, since we have not coded any way to leave the dept_loop loop.
Example 6-4. Cursor loop without a NOT FOUND handler
CREATE PROCEDURE sp_fetch_forever()
 READS SQL DATA
BEGIN
 DECLARE l_dept_id INT;
 DECLARE c_dept CURSOR FOR
 SELECT department_id
 FROM departments;

 OPEN c_dept;
 dept_cursor: LOOP
 FETCH c_dept INTO l_dept_id;
 END LOOP dept_cursor;
 CLOSE c_dept;
END

Bravely, we run this program and find that the seemingly
 infinite loop fails as soon as we attempt to fetch beyond the final
 row in the result set:
 mysql> CALL sp_fetch_forever();
 ERROR 1329 (02000): No data to FETCH
Since we likely want to do something with the data after we've
 fetched it, we cannot let this exception propagate out of the
 procedure unhandled. So we will add a declaration for a CONTINUE HANDLER in the procedure, setting
 a flag to indicate that the last row has been fetched. This
 technique is shown in Example
 6-5.
Example 6-5. Cursor loop with a NOT FOUND handler
1 CREATE PROCEDURE sp_not_found()
2 READS SQL DATA
3 BEGIN
4 DECLARE l_last_row INT DEFAULT 0;
5 DECLARE l_dept_id INT;
6 DECLARE c_dept CURSOR FOR
7 SELECT department_id
8 FROM departments;
9 /* handler to set l_last_row=1 if a cursor returns no more rows */
10 DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_last_row=1;
11
12 OPEN c_dept;
13 dept_cursor: LOOP
14 FETCH c_dept INTO l_dept_id;
15 IF (l_last_row=1) THEN
16 LEAVE dept_cursor;
17 END IF;
18 /* Do something with the data*/
19
20 END LOOP dept_cursor;
21 CLOSE c_dept;
22
23 END;

In plain English, the handler on line 10 says "When a fetch
 from a cursor returns no more rows, continue execution, but set the
 variable l_last_row to 1." After
 retrieving each row, we check the l_last_row variable and exit from the
 cursor loop if the last row is returned. Without this handler, our
 cursor loop will fetch too many times and raise an exception.
Now that you have seen two simple examples of declaring
 handlers for error situations that you can anticipate, let's explore
 this functionality in more detail.

Condition Handlers

 A condition handler defines the
 actions that the stored program is to take when a specified event—such
 as a warning or an error—occurs.
Here is the syntax of the DECLARE
 HANDLER command:
 DECLARE {CONTINUE | EXIT} HANDLER FOR
 {SQLSTATE sqlstate_code| MySQL error code| condition_name}
 handler_actions
Note that handlers must be defined after any variable or cursor
 declarations, which makes sense, since the handlers frequently access
 local variables or perform actions on cursors (such as closing them).
 They must also be declared before any executable statements. Chapter 4 includes more details on the
 rules governing the positioning of statements within a block.
The hander declaration has three main clauses;
	Handler type (CONTINUE,
 EXIT)

	Handler condition (SQLSTATE, MySQL error code, named
 condition)

	Hander actions

Let's look at each of these clauses in turn.
Types of Handlers

Condition handlers can be one of two types:
	EXIT
	When an EXIT handler
 fires, the currently executing block is terminated. If this
 block is the main block for the stored program, the procedure
 terminates, and control is returned to the procedure or
 external program that invoked the procedure. If the block is
 enclosed within an outer block inside of the same stored
 program, control is returned to that outer block.

	CONTINUE
	With a CONTINUE
 handler, execution continues with the statement following the
 one that caused the error to occur.

In either case, any statements defined within the hander (the
 handler actions) are run before either the
 EXIT or CONTINUE takes place.
Let's look at examples of both types of handlers. Example 6-6 shows a stored
 procedure that creates a department record and attempts to
 gracefully handle the situation in which the specified department
 already exists.
Example 6-6. Example of an EXIT handler
1 CREATE PROCEDURE add_department
2 (in_dept_name VARCHAR(30),
3 in_location VARCHAR(30),
4 in_manager_id INT)
5 MODIFIES SQL DATA
6 BEGIN
7 DECLARE duplicate_key INT DEFAULT 0;
8 BEGIN
9 DECLARE EXIT HANDLER FOR 1062 /* Duplicate key*/ SET duplicate_key=1;
10
11 INSERT INTO departments (department_name,location,manager_id)
12 VALUES(in_dept_name,in_location,in_manager_id);
13
14 SELECT CONCAT('Department ',in_dept_name,' created') as "Result";
15 END;
16
17 IF duplicate_key=1 THEN
18 SELECT CONCAT('Failed to insert ',in_dept_name,
19 ': duplicate key') as "Result";
20 END IF;
21 END$$

Let's examine the logic for Example 6-6:
	Line(s)
	Explanation

	7
	Declare a status variable that
 will record the status of our insert attempt.

	8-15
	This BEGIN-END block encloses the
 INSERT statement that
 will attempt to create the department row. The block
 includes the EXIT handler
 that will terminate the block if a 1062 error
 occurs.

	11
	Attempt to insert our row—if we
 get a duplicate key error, the handler will set the variable
 and terminate the block.

	14
	This line executes only if the
 EXIT handler did not
 fire, and reports success to the user. If the handler fired,
 then the block was terminated and this line would never be
 executed.

	17
	Execution will then continue on
 this line, where we check the value of the variable and—if
 the hander has fired—advise the user that the insert was
 unsuccessful.

Following is the output from this stored procedure for both
 unsuccessful and successful execution:
 MySQL> CALL add_department('OPTIMIZER RESEARCH','SEATTLE',4) //

 +--+
 | Result |
 +--+
 | Failed to insert OPTIMIZER RESEARCH: duplicate key |
 +--+
 1 row in set (0.02 sec)

 MySQL> CALL add_department('CUSTOMER SATISFACTION','DAVIS',4);

 +--+
 | Result |
 +--+
 | Department CUSTOMER SATISFACTION created |
 +--+
 1 row in set (0.00 sec)
Example 6-7
 provides an example of the same functionality implemented with a
 CONTINUE handler. In this
 example, when the handler fires, execution continues with the
 statement immediately following the INSERT statement. This IF statement checks to see if the handler
 has fired, and if it has, it displays the failure message.
 Otherwise, the success message is displayed.
Example 6-7. Example of a CONTINUE handler
CREATE PROCEDURE add_department
 (in_dept_name VARCHAR(30),
 in_location VARCHAR(30),
 in_manager_id INT)
 MODIFIES SQL DATA
BEGIN
 DECLARE duplicate_key INT DEFAULT 0;

 DECLARE CONTINUE HANDLER FOR 1062 /* Duplicate key*/
 SET duplicate_key=1;

 INSERT INTO departments (department_name,location,manager_id)
 VALUES(in_dept_name,in_location,in_manager_id);

 IF duplicate_key=1 THEN
 SELECT CONCAT('Failed to insert ',in_dept_name,
 ': duplicate key') as "Result";
 ELSE
 SELECT CONCAT('Department ',in_dept_name,' created') as "Result";
 END IF;
END$$

EXIT or CONTINUE?
The choice between creating an EXIT handler and creating a CONTINUE handler is based primarily on
 program flow-of-control considerations.
An EXIT handler will exit
 from the block in which it is declared, which precludes the
 possibility that any other statements in the block (or the entire
 procedure) might be executed. This type of handler is most
 suitable for catastrophic errors that do not allow for any form of
 continued processing.
A CONTINUE handler allows
 subsequent statements to be executed. Generally, you will detect
 that the handler has fired (through some form of status variable
 set in the handler) and determine the most appropriate course of
 action. This type of handler is most suitable when you have some
 alternative processing that you will execute if the exception
 occurs.

Handler Conditions

The handler condition defines the circumstances under which
 the handler will be invoked. The circumstance is always associated
 with an error condition, but you have three choices as to how you
 define that error:
	As a MySQL error code.

	As an ANSI-standard SQLSTATE code.

	As a named condition. You may define your own named
 conditions (described in the later section "Named Conditions") or use
 one of the built-in conditions SQLEXCEPTION, SQLWARNING, and NOT FOUND.

MySQL has its own set of error codes that are unique to the
 MySQL server. A handler condition that refers to a numeric code
 without qualification is referring to a MySQL error code. For
 instance, the following handler will fire when MySQL error code 1062
 (duplicate key value) is encountered:
 DECLARE CONTINUE HANDLER FOR 1062 SET duplicate_key=1;
SQLSTATE error codes are defined by the ANSI standard and are
 database-independent, meaning that they will have the same value
 regardless of the underlying database. So, for instance, Oracle, SQL
 Server, DB2, and MySQL will always report the same SQLSTATE value (23000) when a duplicate
 key value error is encountered. Every MySQL error code has an
 associated SQLSTATE code, but the
 relationship is not one-to-one; some SQLSTATE codes are associated with many
 MySQL codes; HY000 is a general-purpose SQLSTATE code that is raised for MySQL
 codes that have no specific associated SQLSTATE code.
The following handler will fire when SQLSTATE 23000 (duplicate key value) is
 encountered:
 DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET duplicate_key=1;
SQLSTATE or MySQL Error Code?
In theory, using the SQLSTATE codes will make your code more
 portable to other database platforms and might therefore seem to
 be the best choice. However, there are a number of reasons to use
 MySQL error codes rather than SQLSTATE codes when writing MySQL stored
 programs:
	In reality, it is unlikely that you will move your
 stored programs to another RDBMS. The Oracle and SQL Server
 stored program languages are totally incompatible with MySQL.
 The DB2 stored program language is somewhat compatible (both
 are based on the SQL:2003 standard). It is very likely,
 however, that you will use MySQL-specific syntax as you write
 your application, which will prevent your stored code from
 being portable.

	Not all MySQL error codes have SQLSTATE equivalents. Although every
 MySQL error code is associated with some SQLSTATE error code, often it will
 be a general-purpose SQLSTATE that is not specific (such
 as HY000). Therefore, you will almost certainly have to code
 some handlers that refer directly to MySQL error codes. You'll
 probably find that the advantages of using a consistent
 handler format will outweigh the theoretical portability
 advantage of SQLSTATE error
 codes.

We will, for the most part, use MySQL error codes in this
 book.

When the MySQL client encounters an error, it will report both
 the MySQL error code and the associated SQLSTATE code, as in the following
 output:
 mysql> CALL nosuch_sp();

 ERROR 1305 (42000): PROCEDURE sqltune.nosuch_sp does not exist
In this case, the MySQL error code is 1305 and the SQLSTATE code is 42000.
Table 6-1 lists
 some of the error codes you might expect to encounter in a MySQL
 stored program together with their SQLSTATE equivalents. Note, again, that
 many MySQL error codes map to the same SQLSTATE code (many map to HY000, for
 instance), which is why you may wish to sacrifice portability and
 use MySQL error codes— rather than SQLSTATE codes—in your error
 handlers.
Table 6-1. Some common MySQL error codes and SQLSTATE codes
	MySQL error code
	SQLSTATE code
	Error message

	1011
	HY000
	Error on delete of '%s' (errno:
 %d)

	1021
	HY000
	Disk full (%s); waiting for
 someone to free some space . . .

	1022
	23000
	Can't write; duplicate key in
 table '%s'

	1027
	HY000
	'%s' is locked against
 change

	1036
	HY000
	Table '%s' is read
 only

	1048
	23000
	Column '%s' cannot be
 null

	1062
	23000
	Duplicate entry '%s' for key
 %d

	1099
	HY000
	Table '%s' was locked with a READ
 lock and can't be updated

	1100
	HY000
	Table '%s' was not locked with
 LOCK TABLES

	1104
	42000
	The SELECT would examine more than
 MAX_JOIN_SIZE rows; check your WHERE and use SET
 SQL_BIG_SELECTS=1 or SET SQL_MAX_JOIN_SIZE=# if the SELECT
 is okay

	1106
	42000
	Incorrect parameters to procedure
 '%s'

	1114
	HY000
	The table '%s' is
 full

	1150
	HY000
	Delayed insert thread couldn't get
 requested lock for table %s

	1165
	HY000
	 INSERT
 DELAYED can't be used with table '%s' because it
 is locked with LOCK
 TABLES

	1242
	21000
	Subquery returns more than 1
 row

	1263
	22004
	Column set to default value; NULL
 supplied to NOT NULL column '%s' at row %ld

	1264
	22003
	Out of range value adjusted for
 column '%s' at row %ld

	1265
	1000
	Data truncated for column '%s' at
 row %ld

	1312
	0A000
	 PROCEDURE %s can't return a result
 set in the given context

	1317
	70100
	Query execution was
 interrupted

	1319
	42000
	Undefined CONDITION:
 %s

	1325
	24000
	Cursor is already
 open

	1326
	24000
	Cursor is not open

	1328
	HY000
	Incorrect number of FETCH variables

	1329
	2000
	No data to FETCH

	1336
	42000
	 USE is not allowed in a stored
 program

	1337
	42000
	Variable or condition declaration
 after cursor or handler declaration

	1338
	42000
	Cursor declaration after handler
 declaration

	1339
	20000
	Case not found for CASE statement

	1348
	HY000
	Column '%s' is not
 updatable

	1357
	HY000
	Can't drop a %s from within
 another stored routine

	1358
	HY000
	 GOTO is not allowed in a stored
 program handler

	1362
	HY000
	Updating of %s row is not allowed
 in %s trigger

	1363
	HY000
	There is no %s row in %s
 trigger

You can find a complete and up-to-date list of error codes in
 Appendix B of the MySQL reference manual, available online at http://dev.mysql.com/doc/.

Handler Examples

Here are some examples of handler declarations:
	If any error condition arises (other than a NOT FOUND), continue execution after
 setting l_error=1:
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SET l_error=1;

	If any error condition arises (other than a NOT FOUND), exit the current block or
 stored program after issuing a ROLLBACK statement and issuing an
 error message:
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 ROLLBACK;
 SELECT 'Error occurred - terminating';
 END;

	If MySQL error 1062 (duplicate key value) is encountered,
 continue execution after executing the SELECT statement (which generates a
 message for the calling program):
 DECLARE CONTINUE HANDER FOR 1062
 SELECT 'Duplicate key in index';

	If SQLSTATE 23000
 (duplicate key value) is encountered, continue execution after
 executing the SELECT
 statement (which generates a message for the calling
 program):
 DECLARE CONTINUE HANDER FOR SQLSTATE '23000'
 SELECT 'Duplicate key in index';

	When a cursor fetch or SQL retrieves no values, continue
 execution after setting l_done=1:
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET l_done=1;

	Same as the previous example, except specified using a
 SQLSTATE variable rather than
 a named condition:
 DECLARE CONTINUE HANDLER FOR SQLSTATE '02000'
 SET l_done=1;

	Same as the previous two examples, except specified using
 a MySQL error code variable rather than a named condition or
 SQLSTATE variable:
 DECLARE CONTINUE HANDLER FOR 1329
 SET l_done=1;

Handler Precedence

As we've described, MySQL lets you define handler conditions
 in terms of a MySQL error code, a SQLSTATE error, or a named condition such
 as SQLEXCEPTION. It is possible,
 therefore, that you could define several handlers in a stored
 program that would all be eligible to fire when
 a specific error occurred. Yet only one handler can fire in response
 to an error, and MySQL has clearly defined rules that determine the
 precedence of handlers in such a situation.
To understand the problem, consider the code fragment in Example 6-8. We have declared
 three different handlers, each of which would be eligible to execute
 if a duplicate key value error occurs. Which handler will execute?
 The answer is that the most specific handler
 will execute.
Example 6-8. Overlapping condition handlers
DECLARE EXIT HANDLER FOR 1062 SELECT 'MySQL error 1062 encountered';
DECLARE EXIT HANDLER FOR SQLEXCEPTION SELECT 'SQLException encountered';
DECLARE EXIT HANDLER FOR SQLSTATE '23000' SELECT 'SQLSTATE 23000';

INSERT INTO departments VALUES (1, 'Department of Fred',22,'House of Fred');

Handlers based on MySQL error codes are the most specific type
 of handler, since an error condition will always correspond to a
 single MySQL error code. SQLSTATE
 codes can sometimes map to many MySQL error codes, so they are less
 specific. General conditions such as SQLEXCEPTION and SQLWARNING are not at all specific.
 Therefore, a MySQL error code takes precedence over a SQLSTATE exception, which, in turn, takes
 precedence over a SQLEXCEPTION
 condition.
Tip
If multiple exception handlers are eligible to fire upon an
 error, the most specific handler will be invoked. This means that
 a MySQL error code handler fires before a SQLSTATE handler, which, in turn, fires
 before a SQLEXCEPTION
 handler.

This strictly defined precedence allows us to define a
 general-purpose handler for unexpected conditions, while creating a
 specific handler for those circumstances that we can easily
 anticipate. So, for instance, in Example 6-9, the second handler
 will be invoked if something catastrophic happens (perhaps a jealous
 colleague drops your database tables), while the first will fire in
 the more likely event that someone tries to create a duplicate row
 within your database.
Example 6-9. Example of overlapping condition handling
DECLARE EXIT HANDLER FOR 1062
 SELECT 'Attempt to create a duplicate entry occurred';
DECLARE EXIT HANDLER FOR SQLEXCEPTION
 SELECT 'Unexpected error occurred -
 make sure Fred did not drop your tables again';

Note, however, that we generally don't advise creating
 SQLEXCEPTION handlers until MySQL
 implements the SIGNAL statement;
 see "Missing SQL:2003
 Features" later in this chapter.

Scope of Condition Handlers

The scope of a handler determines which
 statements within the stored program are covered by the handler. In
 essence, the scope of a handler is the same as for a stored program
 variable: the handler applies to all statements in the block in
 which it is defined, including any statements in nested blocks.
 Furthermore, handlers in a stored program also cover statements that
 execute in any stored program that might be called by the first
 program, unless that program declares its own handler.
For instance, in Example
 6-10 the handler will be invoked when the INSERT statement executes (because it
 violates a NOT NULL constraint).
 The handler fires because the INSERT statement is contained within the
 same block as the handler—even though the INSERT statement is in a nested
 block.
Example 6-10. Handler scope includes statements within BEGIN-END
 blocks
DECLARE CONTINUE HANDLER FOR 1048 SELECT 'Attempt to insert a null value';
BEGIN
 INSERT INTO departments (department_name,manager_id,location)
 VALUES (NULL,1,'Wouldn''t you like to know?');
END;

However, in Example
 6-11 the handler will not be invoked—the scope of the handler
 is limited to the nested block, and the INSERT statement occurs outside that
 block.
Example 6-11. Handlers within a nested block do not cover statements in
 enclosing blocks
BEGIN
 BEGIN
 DECLARE CONTINUE HANDLER FOR 1216 select
 'Foreign key constraint violated';
 END;
 INSERT INTO departments (department_name,manager_id,location)
 VALUES ('Elbonian HR','Catbert','Catbertia');
END;

Handler scope extends to any stored procedures or functions
 that are invoked within the handler scope. This means that if one
 stored program calls another, a handler in the calling program can
 trap errors that occur in the program that has been called. So, for
 instance, in Example
 6-12, the handler in calling_procedure() traps the null value
 exception that occurs in sub_procedure (
).
Example 6-12. A handler can catch conditions raised in called
 procedures
CREATE PROCEDURE calling_procedure()
BEGIN
 DECLARE EXIT HANDLER FOR 1048 SELECT 'Attempt to insert a null value';
 CALL sub_procedure();
END;

Query OK, 0 rows affected (0.00 sec)

CREATE PROCEDURE sub_procedure()
BEGIN
 INSERT INTO departments (department_name,manager_id,location)
 VALUES (NULL,1,'Wouldn''t you like to know');
 SELECT 'Row inserted';

END;

Query OK, 0 rows affected (0.00 sec)

CALL calling_procedure();

+--------------------------------+
| Attempt to insert a null value |
+--------------------------------+
| Attempt to insert a null value |
+--------------------------------+
1 row in set (0.01 sec)

Query OK, 0 rows affected (0.01 sec)

Of course, a handler in a procedure will override the scope of
 a hander that exists in a calling procedure. Only one handler can
 ever be activated in response to a specific error condition.

Named Conditions

So far, our examples have used conditions based on MySQL error
 codes, SQLSTATE codes, or
 predefined named conditions (SQLEXCEPTION,
 SQLWARNING, NOT FOUND). These handlers do the job
 required, but they do not result in particularly readable code, since
 they rely on the hardcoding of literal error numbers. Unless you
 memorize all or most of the MySQL error codes and SQLSTATE codes (and expect everyone
 maintaining your code to do the same), you are going to have to refer
 to a manual to understand exactly what error a handler is trying to
 catch.
You can improve the readability of your handlers by defining a
 condition declaration, which associates a MySQL error code or SQLSTATE code with a meaningful name that
 you can then use in your handler declarations. The syntax for a
 condition declaration is:
 DECLARE condition_name CONDITION FOR {SQLSTATE sqlstate_code | MySQL_error_code};
Once we have declared our condition name, we can use it in our
 code instead of a MySQL error code or SQLSTATE code. So instead of the following
 declaration:
 DECLARE CONTINUE HANDLER FOR 1216 MySQL_statements;
we could use the following more readable declaration:
 DECLARE foreign_key_error CONDITION FOR 1216;

 DECLARE CONTINUE HANDLER FOR foreign_key_error MySQL_statements;
Tip
Create named conditions using condition declarations, and use these named
 conditions in your handlers to improve the readability and
 maintainability of your stored program code.

Missing SQL:2003 Features

 The SQL:2003 specification includes a few useful
 features that—at the time of writing—are not currently implemented in
 the MySQL stored program language. The absence of these features
 certainly limits your ability to handle unexpected conditions, but we
 expect that they will be implemented in MySQL server 5.2.
 Specifically:
	There is no way to examine the current MySQL error code or
 SQLSTATE code. This means that
 in an exception handler based on a generic condition such as
 SQLEXCEPTION, you have no way
 of knowing what error just occurred.

	You cannot raise an exception of your own to indicate an
 application-specific error or to re-signal an exception after
 first catching the exception and examining its context.

We'll describe these situations in the following sections and
 suggest ways to deal with them.
Directly Accessing SQLCODE or SQLSTATE

Implementing a general-purpose exception handler would be a
 good practice, except that if you cannot reveal the reason why the
 exception occurred, you make debugging your stored programs
 difficult or impossible. For instance, consider Example 6-13.
Example 6-13. General-purpose—but mostly useless—condition
 handler
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
 SET l_status=-1;
 Set l_message='Some sort of error detected somewhere in the application';
END;

Receiving an error message like this is not much help—in fact,
 there is almost nothing more frustrating than receiving such an
 error message when trying to debug an application. Obscuring the
 actual cause of the error makes the condition handler worse than
 useless in most circumstances.
The SQL:2003 specification allows for direct access to the values of SQLCODE (the "vendor"—in this case
 MySQL—error code) and the SQLSTATE code. If we had access to these
 codes, we could produce a far more helpful message such as shown in
 Example 6-14.
Example 6-14. A more useful—but not supported—form of condition
 handler
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
 SET l_status=-1;
 SET l_message='Error '||sqlcode||' encountered';
END;

We can partially emulate the existence of a SQLCODE or SQLSTATE variable by defining a more
 comprehensive set of condition handlers that create appropriate
 SQLCODE variables when they are
 fired. The general approach would look like Example 6-15.
Example 6-15. Using multiple condition handlers to expose the actual
 error code
DECLARE sqlcode INT DEFAULT 0;
DECLARE status_message VARCHAR(50);

DECLARE CONTINUE HANDLER FOR duplicate_key
BEGIN
 SET sqlcode=1052;
 SET status_message='Duplicate key error';
END;

DECLARE CONTINUE HANDLER FOR foreign_key_violated
BEGIN
 SET sqlcode=1216;
 SET status_message='Foreign key violated';
END;

DECLARE CONTINUE HANDLER FOR NOT FOUND
BEGIN
 SET sqlcode=1329;
 SET status_message='No record found';
END;

In most circumstances, it is best not to define a SQLEXCEPTION handler, because without the
 ability to display the SQLCODE or
 SQLSTATE, it is better to let the
 exception occur and allow the calling application to have full
 access to the error codes and messages concerned.
Tip
Until MySQL implements a SQLSTATE or SQLSTATE variable, avoid creating a
 general-purpose SQLEXCEPTION
 handler. Instead, create handlers for individual error conditions
 that generate appropriate messages and status codes.

Creating Your Own Exceptions with the SIGNAL
 Statement

So far in this chapter, we have talked about how you can
 handle errors raised by MySQL as it executes SQL statements within
 the stored program. In addition to these system-raised exceptions,
 however, you will surely have to deal with errors that are specific
 to an application's domain of requirements and rules. If that rule
 is violated in your code, you may want to raise your
 own error and communicate this problem back to
 the user. The SQL:2003 specification provides the SIGNAL statement for this purpose.
The SIGNAL statement allows
 you to raise your own error conditions. Unfortunately, at the time
 of writing, the SIGNAL statement
 is not implemented within the MySQL stored program language (it is
 currently scheduled for MySQL 5.2).
You can't use the SIGNAL
 statement in MySQL 5.0, but we are going to describe it here, in
 case you are using a later version of MySQL in which the statement
 has been implemented. Visit this book's web site (see the Preface for details) to check on
 the status of this and other enhancements to the MySQL stored
 program language.
So let's say that we are creating a stored procedure to
 process employee date-of-birth changes, as shown in Example 6-16. Our company
 never employs people under the age of 16, so we put a check in the
 stored procedure to ensure that the updated date of birth is more
 than 16 years ago (the curdate()
 function returns the current timestamp).
Example 6-16. Example stored procedure with date-of-birth
 validation
CREATE PROCEDURE sp_update_employee_dob
 (p_employee_id INT, p_dob DATE, OUT p_status varchar(30))
BEGIN
 IF DATE_SUB(curdate(), INTERVAL 16 YEAR) <p_dob THEN
 SET p_status='Employee must be 16 years or older';
 ELSE
 UPDATE employees
 SET date_of_birth=p_dob
 WHERE employee_id=p_employee_id;
 SET p_status='Ok';
 END IF;
END;

This implementation will work, but it has a few disadvantages.
 The most significant problem is that if the procedure is called from
 another program, the procedure will return success (at least, it
 will not raise an error) even if the update was actually rejected.
 Of course, the calling program could detect this by examining the
 p_status variable, but there is a
 good chance that the program will assume that the procedure
 succeeded since the procedure call itself does not raise an
 exception.
We have designed the procedure so that it depends on the
 diligence of the programmer calling the procedure to check the value
 of the returning status argument. It is all too tempting and easy to
 assume that everything went fine, since there was no error.
To illustrate, if we try to set an employee's date of birth to
 the current date from the MySQL command line, everything seems
 OK:
 mysql> CALL sp_update_employee_dob(1,now(),@status);
 Query OK, 0 rows affected (0.01 sec)
It is only if we examine the status variable that we realize
 that the update did not complete:
 mysql> SELECT @status;
 +------------------------------------+
 | @status |
 +------------------------------------+
 | Employee must be 16 years or older |
 +------------------------------------+
 1 row in set (0.00 sec)
This stored procedure would be more robust, and less likely to
 allow errors to slip by, if it actually raised an error condition
 when the date of birth was invalid. The ANSI SQL:2003 SIGNAL statement allows you to do
 this:
SIGNAL takes the following
 form:
 SIGNAL SQLSTATE sqlstate_code|condition_name [SET MESSAGE_TEXT=string_or_variable];
You can create your own SQLSTATE codes (there are some rules for
 the numbers you are allowed to use) or use an existing SQLSTATE code or named condition. When
 MySQL implements SIGNAL, you will
 probably be allowed to use a MySQL error code (within designated
 ranges) as well.
When the SIGNAL statement
 is executed, a database error condition is raised that acts in
 exactly the same way as an error that might be raised by an invalid
 SQL statement or a constraint violation. This error could be
 returned to the calling program or could be trapped by a handler in
 this or another stored program. If SIGNAL were available to us, we might
 write the employee date-of-birth birth procedure, as shown in Example 6-17.
Example 6-17. Using the SIGNAL statement (expected to be implemented in
 MySQL 5.2)
CREATE PROCEDURE sp_update_employee_dob
 (p_employee_id int, p_dob date)
BEGIN
 DECLARE employee_is_too_young CONDITION FOR SQLSTATE '99001';

 IF DATE_SUB(curdate(), INTERVAL 16 YEAR) <P_DOB THEN
 SIGNAL employee_is_too_young
 SET MESSAGE_TEST='Employee must be 16 years or older';
 ELSE
 UPDATE employees
 SET date_of_birth=p_dob
 WHERE employee_id=p_employee_id;
 END IF;
END;

If we ran this new procedure from the MySQL command line (when
 MySQL implements SIGNAL), we
 would expect the following output:
 mysql> CALL sp_update_employee(1,now());
 ERROR 90001 (99001): Employee must be 16 years or older
Using SIGNAL, we could make
 it completely obvious to the user or calling program that the stored
 program execution failed.

Emulating the SIGNAL Statement

The absence of the SIGNAL
 statement makes some stored program logic awkward, and in some cases
 demands that calling applications examine OUT variables, rather than SQL return
 codes, to check the results of some operations.
There is, however, a way to force an error to occur and pass
 some diagnostic information back to the calling application. You
 can, in other words, emulate SIGNAL in MySQL 5.0, but we warn you: this
 solution is not pretty!
Where we would otherwise want to use the SIGNAL statement to return an error to the
 calling application, we can instead issue a SQL statement that will
 fail—and fail in such a way that we can embed our error message
 within the standard error message.
The best way to do this is to issue a SQL statement that
 attempts to reference a nonexistent table or column. The name of the
 nonexistent column or table can include the error message itself,
 which will be useful because the name of the column or table is
 included in the error message.
Example 6-18 shows
 how we can do this. We try to select a nonexistent column name from
 a table and we make the nonexistent column name comprise our error
 message. Note that in order for a string to be interpreted as a
 column name, it must be enclosed by backquotes (these are the quote
 characters normally found on your keyboard to the left of the 1
 key).
Example 6-18. Using a nonexistent column name to force an error to the
 calling program
CREATE PROCEDURE sp_update_employee_dob2
 (p_employee_id INT, p_dob DATE)
BEGIN

 IF datediff(curdate(),p_dob)<(16*365) THEN
 UPDATE 'Error: employee_is_too_young; Employee must be 16 years or older'
 SET x=1;
 ELSE
 UPDATE employees
 SET date_of_birth=p_dob
 WHERE employee_id=p_dob;
 END IF;
END;

If we try to run the stored procedure from the MySQL command
 line, passing in an invalid date of birth, we get a somewhat
 informative error message:
 MySQL> CALL sp_update_employee_dob2(2,now()) ;

 ERROR 1054 (42S22): Unknown column 'Error: employee_is_too_young; Employee must be 16
 years or older' in 'field list'
The error code is somewhat garbled, and the error code is not
 in itself accurate, but at least we have managed to signal to the
 calling application that the procedure did not execute successfully
 and we have at least provided some helpful information.
We can somewhat improve the reliability of our error
 handling—and also prepare for a future in which the SIGNAL statement is implemented—by
 creating a generic procedure to implement our SIGNAL workaround. Example 6-19 shows a procedure
 that accepts an error message and then constructs dynamic SQL that
 includes that message within an invalid table name error.
Example 6-19. Standard procedure to emulate SIGNAL
CREATE PROCEDURE 'my_signal'(in_errortext VARCHAR(255))
BEGIN
 SET @sql=CONCAT('UPDATE '',
 in_errortext,
 '' SET x=1');

 PREPARE my_signal_stmt FROM @sql;
 EXECUTE my_signal_stmt;
 DEALLOCATE PREPARE my_signal_stmt;
END$$

We could now implement our employee date-of-birth update
 routine to call this routine, as shown in Example 6-20.
Example 6-20. Using our SIGNAL emulation procedure to raise an
 error
CREATE PROCEDURE sp_update_employee_dob2(p_employee_id INT, p_dob DATE)

BEGIN

 IF datediff(curdate(),p_dob)<(16*365) THEN
 CALL my_signal('Error: employee_is_too_young; Employee must be 16
 years or older');
 ELSE
 UPDATE employees
 SET date_of_birth=p_dob
 WHERE employee_id=p_employee_id;
 END IF;
END$$

Not only does this routine result in cleaner code that is
 easier to maintain, but when MySQL does implement SIGNAL, we will only need to update our
 code in a single procedure.

Putting It All Together

 We have now covered in detail the error-handling
 features of MySQL. We'll finish up this discussion by offering an
 example that puts all of these features together. We will take a
 simple stored procedure that contains no exception handling and apply
 the concepts from this chapter to ensure that it will not raise any
 unhandled exceptions for all problems that we can reasonably
 anticipate.
The example stored procedure creates a new departments row. It takes the names of the
 new department, the manager of the department, and the department's
 location. It retrieves the appropriate employee_id from the employees table using the manager's name.
 Example 6-21 shows the
 version of the stored procedure without exception handling.
Example 6-21. Stored procedure without error handling
CREATE PROCEDURE sp_add_department
 (p_department_name VARCHAR(30),
 p_manager_surname VARCHAR(30),
 p_manager_firstname VARCHAR(30),
 p_location VARCHAR(30),
 out p_sqlcode INT,
 out p_status_message VARCHAR(100))
 MODIFIES SQL DATA
BEGIN

 DECLARE l_manager_id INT;
 DECLARE csr_mgr_id cursor for
 SELECT employee_id
 FROM employees
 WHERE surname=UPPER(p_manager_surname)
 AND firstname=UPPER(p_manager_firstname);

 OPEN csr_mgr_id;
 FETCH csr_mgr_id INTO l_manager_id;

 INSERT INTO departments (department_name,manager_id,location)
 VALUES(UPPER(p_department_name),l_manager_id,UPPER(p_location));

 CLOSE csr_mgr_id;
END$$

This program reflects the typical development process for many
 of us: we concentrate on implementing the required functionality (the
 "positive") and generally pay little attention to (or more likely,
 want to avoid thinking about) what could possibly go wrong. The end
 result is a stored program that contains no error handling.
So either before you write the program (ideally) or after the
 first iteration is done, you should sit down and list out all the
 errors that might be raised by MySQL when the program is run.
Here are several of the failure points of this stored
 procedure:
	If the manager's name is incorrect, we will fail to find a
 matching manager in the employees table. We will then attempt to
 insert a NULL value for the MANAGER_ID column, which will violate
 its NOT NULL constraint.

	If the location argument
 does not match a location in the locations table, the foreign key
 constraint between the two tables will be violated.

	If we specify a department_name that already exists, we
 will violate the unique constraint on the department_name.

The code in Example
 6-22 demonstrates these failure scenarios.
Example 6-22. Some of the errors generated by a stored procedure without
 error handling
mysql> CALL sp_add_department
 ('Optimizer Research','Yan','Bianca','Berkshire',@p_sqlcode,@p_status_message)

ERROR 1062 (23000): Duplicate entry 'OPTIMIZER RESEARCH' for key 2

mysql> CALL sp_add_department
 ('Optimizer Research','Yan','Binca','Berkshire',@p_sqlcode,@p_status_message);

ERROR 1048 (23000): Column 'MANAGER_ID' cannot be null

mysql> CALL sp_add_department('Advanced Research','Yan','Bianca','Bercshire',@p_
sqlcode,@p_status_message)

ERROR 1216 (23000): Cannot add or update a child row: a foreign key constraint fails

The good news is that MySQL detects these problems and will not
 allow bad data to be placed into the table. If this stored procedure
 will be called only by the host language, such as PHP or Java, we
 could declare ourselves done. If, on the other hand, this program
 might be called from another MySQL stored program, then we need to
 handle the errors and return status information so that the calling
 stored program can take appropriate action. Example 6-23 shows a version of
 the stored procedure that handles all the errors shown in Example 6-22.
Example 6-23. Stored procedure with error handling
1 CREATE PROCEDURE sp_add_department2
2 (p_department_name VARCHAR(30),
3 p_manager_surname VARCHAR(30),
4 p_manager_firstname VARCHAR(30),
5 p_location VARCHAR(30),
6 OUT p_sqlcode INT,
7 OUT p_status_message VARCHAR(100))
8 BEGIN
9
10 /* START Declare Conditions */
11
12 DECLARE duplicate_key CONDITION FOR 1062;
13 DECLARE foreign_key_violated CONDITION FOR 1216;
14
15 /* END Declare Conditions */
16
17 /* START Declare variables and cursors */
18
19 DECLARE l_manager_id INT;
20
21 DECLARE csr_mgr_id CURSOR FOR
22 SELECT employee_id
23 FROM employees
24 WHERE surname=UPPER(p_manager_surname)
25 AND firstname=UPPER(p_manager_firstname);
26
27 /* END Declare variables and cursors */
28
29 /* START Declare Exception Handlers */
30
31 DECLARE CONTINUE HANDLER FOR duplicate_key
32 BEGIN
33 SET p_sqlcode=1052;
34 SET p_status_message='Duplicate key error';
35 END;
36
37 DECLARE CONTINUE HANDLER FOR foreign_key_violated
38 BEGIN
39 SET p_sqlcode=1216;
40 SET p_status_message='Foreign key violated';
41 END;
42
43 DECLARE CONTINUE HANDLER FOR not FOUND
44 BEGIN
45 SET p_sqlcode=1329;
46 SET p_status_message='No record found';
47 END;
48
49 /* END Declare Exception Handlers */
50
51 /* START Execution */
52
53 SET p_sqlcode=0;
54 OPEN csr_mgr_id;
55 FETCH csr_mgr_id INTO l_manager_id;
56
57 IF p_sqlcode<>0 THEN /* Failed to get manager id*/
58 SET p_status_message=CONCAT(p_status_message,' when fetching manager id');
59 ELSE
60 /* Got manager id, we can try and insert */
61 INSERT INTO departments (department_name,manager_id,location)
62 VALUES(UPPER(p_department_name),l_manager_id,UPPER(p_location));
63 IF p_sqlcode<>0 THEN/* Failed to insert new department */
64 SET p_status_message=CONCAT(p_status_message,
65 ' when inserting new department');
66 END IF;
67 END IF;
68
69 CLOSE csr_mgr_id;
70
71 / * END Execution */
72
73 END

Let's go through Example
 6-23 and review the error-handling code we have added.
	Line(s)
	Significance

	12 and 13
	Create condition declarations for
 duplicate key (1062) and foreign key (1216) errors. As we
 noted earlier, these declarations are not strictly necessary,
 but they improve the readability of the condition handlers we
 will declare later.

	31-48
	Define handlers for each of the
 exceptions we think might occur. The condition names match
 those we defined in lines 10 and 11. We didn't have to create
 a NOT FOUND condition,
 since this is a predefined condition name. Each handler sets
 an appropriate value for the output status variables p_sqlcode and p_status_message.

	57
	On this line we check the value of
 the p_sqlcode variable
 following our fetch from the cursor that retrieves the
 manager's employee_id. If
 p_sqlcode is not 0, then we
 know that one of our exception handlers has fired. We add some
 context information to the message—identifying the statement
 we were executing—and avoid attempting to execute the insert
 into the departments
 table.

	53
	Check the value of the p_sqlcode variable following our
 insert operation. Again, if the value is nonzero, we know that
 an error has occurred, and we add some context information to
 the error message. At line 53, we don't know what error has
 occurred—it could be either the foreign key or the unique
 index constraint. The handler itself controls the error
 message returned to the user, and so we could add handling for
 more error conditions by adding additional handlers without
 having to amend this section of code.

Running the stored procedure from the MySQL command line shows
 us that all the exceptions are now correctly handled. Example 6-24 shows the output
 generated by various invalid inputs.
Example 6-24. Output from stored procedure with exception handling
mysql> CALL sp_add_department2('Optimizer Research','Yan','Bianca','Berkshire',
@p_sqlcode,@p_status_message)

Query OK, 0 rows affected (0.17 sec)

mysql> SELECT @p_sqlcode,@p_status_message

+------------+---+
| @p_sqlcode | @p_status_message |
+------------+---+
| 1052 | Duplicate key error when inserting new department |
+------------+---+
1 row in set (0.00 sec)

mysql> CALL sp_add_department2('Optimizer Research','Yan','Binca','Berkshire',
@p_sqlcode,@p_status_message)

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p_sqlcode,@p_status_message

+------------+--+
| @p_sqlcode | @p_status_message |
+------------+--+
| 1329 | No record found when fetching manager id |
+------------+--+
1 row in set (0.00 sec)

mysql> call sp_add_department2('Advanced Research','Yan','Bianca','Bercshire',
@p_sqlcode,@p_status_message)

Query OK, 0 rows affected (0.12 sec)

mysql> SELECT @p_sqlcode,@p_status_message

+------------+--+
| @p_sqlcode | @p_status_message |
+------------+--+
| 1216 | Foreign key violated when inserting new department |
+------------+--+
1 row in set (0.00 sec)

Handling Stored Program Errors in the Calling
 Application

 Throughout this chapter, we've often talked about
 "returning the error to the calling application." In our examples we
 have used the MySQL command-line client to represent the calling
 application since this client is common to all environments and
 readers, and it allows you (and us) to quickly test out the stored
 program.
In production environments, however, the calling application
 will not be the MySQL command-line program, but possibly a web-based
 application using PHP , Perl, Java, Python, or .NET (C# or Visual Basic) to
 interface with the MySQL stored program. In Chapters 12 through 17, we look in detail at how to
 invoke stored programs from a variety of languages. We also cover
 various techniques for retrieving status and error messages from these
 languages. However, since we're on the topic of error
 handling , let's briefly look at how we can process errors
 generated by a stored program called from each of these
 languages.
PHP

PHP provides a variety of ways of interacting with MySQL.
 There are four major interfaces available:
	PEAR (PHP Extension and Application
 Repository)
	The PEAR repository includes a standard,
 database-independent module called PEAR DB that can be used to
 interface with almost any relational database.

	mysql
	PHP includes a MySQL-specific interface inventively
 called the mysql
 extension.

	mysqli
	Commencing with PHP 5, a new interface—mysqli—was introduced (according to
 the developer, the "i"
 stands for "any one of: improved, interface, ingenious,
 incompatible, or incomplete"). This interface provides better
 support for new features of MySQL.

	PDO (PHP Data Objects)
	PDO, a new interface with PHP 5.1, provides a PHP 5N
 compatible, object-oriented, database-independent
 interface.

The mysqli and PDO
 interfaces provide the best support for MySQL stored programs and
 other new features of MySQL 5.0.
In Chapter 13, we show
 in detail how to use stored programs with each of the major PHP
 interfaces and provide examples of both procedural and nonprocedural
 styles. For now, let's look at a simple example showing how to
 process errors using the object-oriented variant of the mysqli interface.
In Example 6-25, a
 simple stored procedure—one without OUT parameters or result sets—is executed
 on line 8. If the method call returns failure, we can examine
 various properties of the database connection object ($dbh in this example). $dbh->errno contains the MySQL error
 code, $dbh->error contains the
 error message, and $dbh->sqlstate contains the SQLSTATE code.
Example 6-25. Error handling in the PHP 5 mysqli interface
1 $dbh = new mysqli($hostname, $username, $password, $database);
2 /* check connection */
3 if (mysqli_connect_errno()) {
4 printf("Connect failed: %s\n", mysqli_connect_error());
5 exit();
6 }
7
8 if ($dbh->query("call error_test_proc(1)")) /*execute stored procedure*/
9 {
10 printf("Stored procedure execution succeeded");
11 }
12 else // Stored procedure failed - show error
13 {
14 printf("<p>Stored procedure error: MySQL error %d (SQLSTATE %s)\n %s\n",
15 $dbh->errno,$dbh->sqlstate,$dbh->error);
16 }

Perl

The Perl DBI interface provides a consistent interface to
 various relational databases. The error-handling techniques for Perl
 are very similar to those of PHP.
DBI objects—such as database and statement handles—include the
 following properties:
	Err
	Contains the database-specific return code (in our case,
 the MySQL error code).

	Errstr
	Contains the full message text.

	State
	Contains the SQLSTATE
 variable. However, the SQLSTATE variable usually includes
 only a generic success or failure code.

Each of these items can be referenced as a method or a
 property, so, for instance, you can reference the last MySQL error
 code for the connect handle $dbh
 as either $dbh::err or $dbh->err.
Example 6-26 shows
 a simple Perl code fragment that executes a stored procedure and
 checks the error status. On line 5 we execute a simple stored
 procedure (one without parameters or result sets). If the stored
 procedure call fails, we interrogate the error methods from the
 database handle.
Example 6-26. Error handling in Perl DBI
1 $dbh = DBI->connect("DBI:mysql:$database:$host:$port",
2 "$user", "$password",
3 { PrintError => 0}) || die $DBI::errstr;
4
5 if ($dbh->do("call error_test_proc(1)"))
6 {
7 printf("Stored procedure execution succeeded\n");
8 }
9 else
10 {
11 printf("Error executing stored procedure: MySQL error %d (SQLSTATE %s)\n %s\n",
12 $dbh->err,$dbh->state,$dbh->errstr);
13 }

Java/JDBC

MySQL provides a Java JDBC 3.0 driver—MySQL Connector/J—that
 allows Java programs to interact with a MySQL server.
Like most modern object-oriented languages, Java uses
 structured exception handling to allow for flexible and efficient
 interception and handling of runtime errors. Rather than check the
 error status of every database call, we enclose our JDBC statements
 within a try block. If any of
 these statements causes a SQLException error, then the catch handler will be invoked to handle
 the error.
The catch handler has
 access to a SQLException object
 that provides various methods and properties for diagnosing and
 interpreting the error. Of most interest to us are these three
 methods:
	getErrorCode()
	Returns the MySQL-specific error code

	getSQLState()
	Returns the ANSI-standard SQLSTATE code

	getMessage()
	Returns the full text of the error message

Example 6-27 shows
 an example of invoking a simple stored procedure that involves no
 OUT parameters or result sets. On
 line 8 we create a statement object, and on line 9 we use the
 execute method of that object to
 execute the stored procedure. If an error occurs, the catch block on line 11 is invoked, and the
 relevant methods of the SQLException object are used to display
 the details of the error.
Example 6-27. Stored procedure error handling in Java/JDBC
1 try {
2 Class.forName("com.mysql.jdbc.Driver").newInstance();
3
4 String ConnectionString="jdbc:mysql://" + hostname + "/" + database + "?user=" +
5 username + "&password=" + password;
6 System.out.println(ConnectionString);
7 Connection conn = DriverManager.getConnection(ConnectionString);
8 Statement stmt=conn.createStatement();
9 stmt.execute("call error_test_proc(1)");
10 }
11 catch(SQLException SQLEx) {
12 System.out.println("MySQL error: "+SQLEx.getErrorCode()+
13 " SQLSTATE:" +SQLEx.getSQLState());
14 System.out.println(SQLEx.getMessage());
15 }

Python

Python can connect to MySQL using the MySQLdb extension. This extension
 generates Python exceptions if any MySQL errors are raised during
 execution. We enclose our calls to MySQL in a try block and catch any errors in an
 except block.
Example 6-28 shows
 how we can connect to MySQL and execute a stored procedure in
 Python. Line 1 commences the try
 block, which contains our calls to MySQL. On line 2 we connect to
 MySQL. On line 7 we create a cursor (SQL statement handle), and on
 line 8 we execute a stored procedure call.
Example 6-28. Stored procedure error handling in Python
1 try:
2 conn = MySQLdb.connect (host = 'localhost',
3 user = 'root',
4 passwd = 'secret',
5 db = 'prod',
6 port=3306)
7 cursor1=conn.cursor()
8 cursor1.execute("CALL error_test_proc()")
9 cursor1.close()
10
11 except MySQLdb.Error, e:
12 print "Mysql Error %d: %s" % (e.args[0], e.args[1])

If any of these calls generates a MySQL error condition, we
 jump to the except block on line
 11. The MySQLdb.Error object
 (aliased here as e) contains two
 elements: element 0 is the MySQL error code, and element 1 is the
 MySQL error message.

C# .NET

MySQL provides an ADO.NET connector—MySQL Connector/Net—that allows any
 .NET-compatible language to interact with a MySQL server.
In this chapter we provide a short example of handling stored
 procedure errors from a C# program. More details are provided in
 Chapter 17.
As in Java, C# provides an exception-handling model that
 relieves the developer of the necessity of checking for error
 conditions after every statement execution. Instead, commands to be
 executed are included within a try block. If an error occurs for any of
 these statements, execution switches to the catch block, in which appropriate error
 handling can be implemented.
Example 6-29 shows
 an example of error handling for a simple stored procedure (one
 without output parameters or result sets) in C#. A statement object
 for the stored procedure is created on line 15, and the statement is
 executed on line 17. If a MySqlException (essentially any MySQL
 error) occurs, the error handler defined on line 19 is
 invoked.
Example 6-29. Error handling in C#/ADO.NET
1 MySqlConnection myConnection;
2 myConnection = new MySqlConnection();
3 myConnection.ConnectionString = "database="+database+";server="+server+
4 ";user id="+user+";Password="+password;
5 try {
6 myConnection.Open();
7 }
8 catch (MySqlException MyException) {
9 Console.WriteLine("Connection error: MySQL code: "+MyException.Number
10 +" "+ MyException.Message);
11 }
12
13 try {
14
15 MySqlCommand myCommand = new MySqlCommand("call error_test_proc(1)",
16 myConnection);
17 myCommand.ExecuteNonQuery();
18 }
19 catch (MySqlException MyException) {
20 Console.WriteLine("Stored procedure error: MySQL code: " + MyException.Number
21 + " " + MyException.Message);
22 }

catch blocks have access to
 a MySQLException object; this
 object includes Message and
 Number properties, which contain
 the MySQL error message and error number, respectively.

Visual Basic .NET

The process for handling stored program errors in Visual Basic
 .NET (VB.NET) is practically identical to that of C#.
Example 6-30 shows
 an example of error handling for a simple stored procedure (one without output
 parameters or result sets) in VB.NET. A statement object for the
 stored procedure is created on lines 16 and 17, and the statement is
 executed on line 18. If a MySqlException (essentially any MySQL
 error) occurs, the error handler defined in lines 20-24 is
 invoked.
Example 6-30. Stored procedure error handling in VB.NET
1 Dim myConnectionString As String = "Database=" & myDatabase & _
2 " ;Data Source=" & myHost & _
3 ";User Id=" & myUserId & ";Password=" & myPassword
4
5 Dim myConnection As New MySqlConnection(myConnectionString)
6
7 Try
8 myConnection.Open()
9 Catch MyException As MySqlException
10 Console.WriteLine("Connection error: MySQL code: " & MyException.Number & _
11 " " + MyException.Message)
12 End Try
13
14 Try
15
16 Dim myCommand As New MySqlCommand("call error_test_proc(1)")
17 myCommand.Connection = myConnection
18 myCommand.ExecuteNonQuery()
19
20 Catch MyException As MySqlException
21 Console.WriteLine("Stored procedure error: MySQL code: " & _
22 MyException.Number & " " & _
22 MyException.Message)
23 End Try

Catch blocks have access to
 a MySQLException object; this
 object includes Message and
 Number properties, which contain
 the MySQL error message and error number, respectively.

Conclusion

In this chapter we examined the MySQL error handlers that allow
 you to catch error conditions and take appropriate corrective actions.
 Without error handlers, your stored programs will abort whenever they
 encounter SQL errors, returning control to the calling program. While
 this might be acceptable for some simple stored programs, it is more
 likely that you will want to trap and handle errors within the stored
 program environment, especially if you plan to call one stored program
 from another. In addition, you need to declare handlers for cursor
 loops so that an error is not thrown when the last row is retrieved
 from the cursor.
Handlers can be constructed to catch all errors, although this
 is currently not best practice in MySQL, since you do not have access
 to an error code variable that would allow you to differentiate
 between possible error conditions or to report an appropriate
 diagnostic to the calling program. Instead, you should declare
 individual handlers for error conditions that can reasonably be
 anticipated. When an unexpected error occurs, it is best to let the
 stored program abort so that the calling program has access to the
 error codes and messages.
Handlers can be constructed that catch either ANSI-standard
 SQLSTATE codes or MySQL-specific
 error codes. Using the SQLSTATE
 codes leads to more portable code, but because specific SQLSTATE codes are not available for all
 MySQL error conditions, you should feel free to construct handlers
 against MySQL-specific error conditions.
To improve the readability of your code, you will normally want
 to declare named conditions against the error codes you are handling,
 so that the intention of your handlers is clear. It is far easier to
 understand a handler that traps DUPLICATE_KEY_VALUE than one that checks for
 MySQL error code 1062.
At the time of writing, some critical SQL:2003 error-handling
 functionality has yet to be implemented in MySQL, most notably the
 ability to directly access the SQLSTATE or SQLSTATE variables, as well as the ability
 to raise an error condition using the SIGNAL statement. In the absence of a
 SQLSTATE or SQLCODE variable, it is good practice for
 you to define handlers against all error conditions that can
 reasonably be anticipated that populate a SQLCODE-like variable that you can use
 within your program code to detect errors and take appropriate action.
 We expect MySQL to add these "missing" features in version 5.2—you
 should check to see if they have been implemented in the time since
 this book was written (see the book's web site for details). Note also
 that it is currently possible to provide a workaround (though a
 somewhat awkward one) for the missing SIGNAL statement if you find that it is
 absolutely necessary in your programs.

Part II. Stored Program Construction

This part of the book describes how you can use the elements
 described in Part I to build
 functional and useful stored programs. In Chapter 7 we outline the commands
 available for creating and modifying stored programs and provide some
 advice on how to manage your stored program source code. Chapter 8 outlines transaction handling
 in stored programs, while Chapter
 9 details the built-in functions that can be used in stored
 programs. Chapters 10 and 11 detail two "special" types of stored
 programs: Chapter 10 shows how
 you can create and use stored functions; Chapter 11 describes triggers, which
 are stored programs that are invoked in response to DML executed on a
 database table.
Chapter 7,
 Creating and Maintaining Stored Programs
Chapter 8,
 Transaction Management
Chapter 9, MySQL
 Built-in Functions
Chapter 10,
 Stored Functions
Chapter 11,
 Triggers

Chapter 7. Creating and Maintaining Stored Programs

In this chapter, we'll explain how to create, maintain, and delete
 stored programs .
By definition, a stored program exists in the database (it
 wouldn't be stored otherwise, right?). So the
 fundamental process of creating a stored program involves submitting SQL statements to
 MySQL, just as creating a table involves submitting the CREATE TABLE statement. The basic process of
 creating and maintaining a stored program is very similar to that of
 creating any other kind of database object: you write some SQL to create
 the object and you (hopefully) save that SQL somewhere safe so that you
 can reuse it later. At some later time you may alter the object (or drop
 and recreate it), and you may want to find out information about
 it.
Creating Stored Programs

The CREATE PROCEDURE,
 CREATE FUNCTION, and CREATE TRIGGER statements allow you to
 create the various stored program objects: procedures, functions, and
 triggers.
You are no doubt familiar with the CREATE statements used to create tables,
 indexes, and other objects. There are some minor differences between
 the process of creating these objects and the process of creating
 stored programs. In addition to describing these differences, the
 following subsections describe the various environments in which you
 can issue the CREATE PROCEDURE,
 CREATE FUNCTION, and CREATE TRIGGER statements.
Before we dig into the syntax for creating and maintaining
 stored programs, let's look at the mechanics of editing the stored program text and submitting it to MySQL.
 There are three main ways you can edit your stored program code and
 submit it to MySQL:
	Edit the stored program using a standard editor such as vi,
 Emacs, or Notepad, and then use the MySQL command-line console to
 submit the statements.

	Edit and create the stored program inside the MySQL Query
 Browser.

	Use a third-party graphical tool—such as Quest Software's
 Toad for MySQL—to create the stored program.

Editing Stored Programs Using a System Editor

It is not a good idea to create a stored program by typing
 code directly into the MySQL command-line client. Instead, we
 normally use a GUI program such as the MySQL Query Browser (see the
 next section, "Using the
 MySQL Query Browser") or use a text editor or program editor
 to create the procedure and then load it into the database using the
 MySQL command-line client.
In Figure 7-1 we
 demonstrate creating a stored procedure using the Emacs editor on
 Linux. Emacs allows you to create a "shell" window—shown in the
 lower half of the Emacs window in Figure 7-1—in which you can
 execute the MySQL client.
[image: Editing a stored program in Linux with Emacs]

Figure 7-1. Editing a stored program in Linux with Emacs

In the top window in Figure 7-1, we create a text
 file called helloworld.sql. It
 contains a DROP PROCEDURE
 statement—used to delete the procedure in case it
 already exists—and a CREATE
 PROCEDURE statement.
In the lower window, we execute the MySQL command-line client
 and then use the SOURCE statement
 to execute the commands held in the external file. Our stored
 procedure is now created.
In Windows, we could use a text or program editor, such as
 Notepad, and run the MySQL client in a separate window. Figure 7-2 shows how to do
 that.
[image: Editing a stored program in Windows with Notepad]

Figure 7-2. Editing a stored program in Windows with Notepad

Using the MySQL Query Browser

Using a text editor and the command-line client to edit and
 create a stored program is certainly feasible, as shown in the
 previous section, but it is hardly an efficient or productive
 process. Your stored program development will probably be faster and
 more pleasurable if you use a specialized graphical tool to create
 your program.
MySQL provides a graphical tool—the MySQL Query Browser
 (introduced in Chapter 1)—to
 help us edit and create stored programs. The Query Browser also
 allows us to execute simple SQL statements and perform some basic
 schema management. Let's walk through the steps required to create a
 procedure using the Query Browser.
First we invoke the Create Stored Procedure/Function option
 from the Script menu, as shown in Figure 7-3. This opens the
 Create Stored Procedure dialog box (see Figure 7-4).
[image: Creating a stored procedure in the Query Browser (step 1)]

Figure 7-3. Creating a stored procedure in the Query Browser (step
 1)

In the dialog box, type the name of the stored program and
 click the appropriate button to create either a stored procedure or
 a stored function.
The MySQL Query Browser loads a template file for the stored
 program. Into this template we can enter the stored program code. In
 this case, we simply add the SELECT 'Hello
 World'; text, as shown in Figure 7-5.
Finally, we click the Execute button to execute the script and
 create our procedure. Make sure that you use the Execute option in
 the Script menu (middle left of the window) rather than the Execute
 button (upper right). If we are successful, the procedure name
 should appear in the Schemata window on the right, as shown in Figure 7-6.
[image: Creating a stored procedure in the Query Browser (step 2)]

Figure 7-4. Creating a stored procedure in the Query Browser (step
 2)

Our stored procedure has now been created.

Using Third-Party Tools

The MySQL Query Browser is a fine tool for creating and
 maintaining stored programs. However, there are many tools on the
 market that provide additional features such as code formatting,
 improved editing features, and more powerful administration and
 schema management capabilities. Some of these products are also able
 to work with other RDBMS systems such as Oracle and SQL
 Server.
Quest Software's Toad for MySQL, illustrated in Figure 7-7, is such an
 Integrated Development Environment (IDE) product. Toad is a standard
 in the Oracle community for stored program (PL/SQL) development and
 is available for Oracle, DB2, and SQL Server as well as for
 MySQL.
[image: Creating a stored procedure in the Query Browser (step 3)]

Figure 7-5. Creating a stored procedure in the Query Browser (step
 3)

[image: Creating a stored procedure in the Query Browser (step 4)]

Figure 7-6. Creating a stored procedure in the Query Browser (step
 4)

[image: Editing stored programs with Toad for MySQL]

Figure 7-7. Editing stored programs with Toad for MySQL

Handling Semicolons in Stored Program Code

When you type the text of a stored program, you will need to
 deal with the issue of semicolons in your code.
MySQL uses the semicolon to mark the end of a SQL statement.
 However, stored programs usually contain semicolons within the
 program code, and this can cause MySQL to get rather confused. For
 instance, in Example 7-1,
 note that while we are typing in the text of a stored procedure, the
 first semicolon in the stored procedure causes MySQL to try to
 compile the procedure, causing an error because the stored procedure
 code is not yet complete.
Example 7-1. Semicolons indicate end of SQL statement, causing an error
 when creating a stored procedure
Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 2 to server version: 5.0.16-nightly-20051017-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE PROCEDURE HelloWorld()
 -> BEGIN
 -> SELECT 'Hello World';
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near 'SELECT 'Hello
World'' at line 3
mysql>

To avoid this kind of error, we need to inform MySQL that we
 are not going to use semicolons to define the end of a statement. In
 Example 7-2 we use the
 DELIMITER statement to change the delimiter from ";" to "$$", allowing us to successfully create
 the procedure.
Example 7-2. Using a nondefault delimiter when creating a stored
 object
mysql> DELIMITER $$

mysql> CREATE PROCEDURE HelloWorld()
 -> BEGIN
 -> SELECT 'Hello World';
 -> END$$
Query OK, 0 rows affected (0.00 sec)

Editing an Existing Stored Program

 There are two approaches to editing the text of existing
 stored programs. The easiest —though probably not the best—way to edit
 an existing stored program is to use the MySQL Query Browser to edit
 the stored program in place. By "in place," we mean that you work
 directly with the copy of the stored program held in the database. A
 better way is to edit an external text file that contains the stored
 procedure code. We describe these approaches in the following
 subsections.
Editing a Program in Place

Editing a stored program in place is certainly easy, as shown
 in Figure 7-8. To edit
 an existing stored program in this way, you simply locate and select
 the stored program in the MySQL Query Browser's Schemata browser,
 right-click, and select Edit Procedure (or Edit Function) from the
 context menu. The relevant stored program code is loaded from the
 database into the edit window where you can make your changes.
 Clicking the Execute button runs the modified script and replaces
 the stored program in the database.
[image: Editing a stored program in place with the MySQL Query Browser]

Figure 7-8. Editing a stored program in place with the MySQL Query
 Browser

Maintaining Stored Programs in External Files

There are a number of reasons why you may not want to edit
 stored programs in place, as we did in Figure 7-8:
	When you retrieve the text for a stored program from the
 database (as Query Browser and other similar programs do), you
 may find that the text of the stored program is slightly
 different from the version you originally created. In
 particular, the name of the stored routine may be quoted and the
 name of the database prepended. This prepending of the database
 name is a bad idea if you want to migrate stored programs to
 other databases.

	It is definitely best practice to use a source control
 system (such as Microsoft SourceSafe, Subversion, or CVS) to
 store each changed iteration of your stored program. This allows
 you to roll back changes to a stored program that turn out to be
 problematic, and allows you to retrieve a specific version of a
 program when multiple versions are in use.

Some third-party MySQL development tools allow you to load and
 save your stored program source directly into a version control
 system such as CVS. For instance, in Toad for MySQL we can check
 files in and out of CVS or SourceSafe from within our programming
 environment, as shown in Figure
 7-9.
[image: Toad for MySQL provides integration with version control systems]

Figure 7-9. Toad for MySQL provides integration with version control
 systems

Regardless of whether your IDE directly supports integration
 with a version control system, you should still use version control
 to maintain stored program code. Rather than extract the stored
 program code from the database, you will extract it from an external
 file before editing, and you will save the external file—and check
 it into your version control system—when it is complete.
Figure 7-10 shows
 how we can perform these actions on a Linux system using the MySQL
 Query Browser as our editing environment and RCS as our version
 control system.
[image: Maintaining stored program source code in a source control system]

Figure 7-10. Maintaining stored program source code in a source control
 system

Let's work through the steps highlighted in Figure 7-10:
	Before we get started, we need to extract the source file
 from the version control system and lock it for editing. In the
 RCS system this is done with the co
 -l command.

	Now we can load the source file into an edit window in the
 MySQL Query Browser.

	After making our edits, we can save our changes to the
 database by clicking the Execute button.

	We can perform basic testing of the stored program by
 running it from within the Query Browser. Double-clicking the
 stored program name in the Schemata browser is one way to do
 this.

	If we are satisfied that our changes are good, we can save
 them back to the disk file we originally loaded.

	Now we check the changes back into version control. In RCS
 this is done with the ci
 command.

SQL Statements for Managing Stored Programs

This section summarizes the syntax of the statements used to create, modify, and remove
 stored programs from the database. This section provides only an
 overview; we'll drill down into many of the details of these
 statements in other chapters.
CREATE PROCEDURE

The CREATE PROCEDURE
 statement—you guessed it—creates a stored procedure. The syntax for
 the statement is:
 CREATE PROCEDURE procedure_name ([parameter[,...])
 [LANGUAGE SQL]
 [[NOT] DETERMINISTIC
]
 [{CONTAINS SQL|MODIFIES SQL DATA|READS SQL DATA|NO SQL}]
 [SQL SECURITY {DEFINER|INVOKER}]
 [COMMENT comment_string]procedure_statements
The procedure_name follows
 the normal conventions for the naming of database objects (see Chapter 3).
The parameter list consists
 of a comma-separated list of arguments that can be provided to the
 stored procedure. We spent quite a bit of time on parameters in
 Chapter 3, but to summarize,
 each parameter is of the form:
 [{IN|OUT|INOUT}] parameter_name datatype
By default, parameters are of the IN type: this means that their values must
 be specified by the calling program and that any modifications made
 to the parameter in the stored program cannot be accessed from the
 calling program. OUT parameters,
 on the other hand, can be modified by the stored program, and the
 modified values can be retrieved from the calling program.
An INOUT parameter acts as
 both an IN and an OUT parameter: the calling program can
 supply a value and can see whatever changes are made to the
 parameter inside the stored procedure.
The following are descriptions of the other keywords you can
 specify in the CREATE PROCEDURE
 statement:
	LANGUAGE SQL
	Indicates that the stored procedure uses the SQL:PSM
 standard stored procedure language. Since MySQL currently
 supports only those stored procedures written in this
 language, specifying this keyword is unnecessary at present.
 However, in future versions, MySQL might support stored
 procedures written in other languages (Java, for instance),
 and if this occurs, you may need to specify this
 keyword.

	SQL SECURITY
 {DEFINER|INVOKER}
	Determines whether the stored procedure should execute
 using the permissions of the user who created the stored
 procedure (DEFINER) or the
 permissions of the user who is currently executing the stored
 procedure (INVOKER). The
 default is DEFINER. We look
 at the implications of these two security modes in Chapter 18.

	[NOT]
 DETERMINISTIC
	Indicates whether the stored procedure will always
 return the same results if the same inputs are provided. For
 instance, an SQRT function
 is deterministic because the square root of a number never
 changes, while an AGE
 function is nondeterministic because people are getting older
 all the time (sigh). By default, MySQL will assume that a
 stored procedure (or function) is NOT
 DETERMINISTIC .
In fact, the only time this keyword is critical is when
 you are creating a stored function (but because the CREATE PROCEDURE syntax allows you
 to specify it, we mention it here): when binary logging is
 enabled, you need to specify either DETERMINISTIC or one of NO SQL or READS SQL DATA to create your
 function. This issue is examined in depth in Chapter 10.

	NO SQL|CONTAINS SQL|READS SQL
 DATA|MODIFIES SQL DATA
	Indicates the type of access to database data that the
 stored procedure will perform. If a program reads data from
 the database, you may specify the READS SQL DATA keyword. If the
 program modifies data in the database, you could specify
 MODIFIES SQL DATA. If the
 procedure or function performs no database accesses, you may
 specify NO SQL.[*]

	COMMENT comment_string
	Specifies a comment that is stored in the database along
 with the procedure definition. You can see these comments in
 the INFORMATION_SCHEMA.ROUTINES table,
 in the output of SHOW
 PROCEDURE/FUNCTION STATUS, and in a SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement.

The procedure code consists of one or more SQL or stored
 program language statements. If there is more than one statement—and
 there almost always will be—then the statements must be enclosed in
 a BEGIN-END block.

CREATE FUNCTION

The CREATE FUNCTION
 statement creates a stored function. This statement has a very
 similar syntax to CREATE
 PROCEDURE:
 CREATE FUNCTION function_name ([parameter[,...])
 RETURNS datatype
 [LANGUAGE SQL]
 [[NOT] DETERMINISTIC]
 [{ CONTAINS SQL|NO SQL|MODIFIES SQL DATA|READS SQL DATA}]
 [SQL SECURITY {DEFINER|INVOKER}]
 [COMMENT comment_string]function_statements
There are only a few fundamental differences between the
 syntax of CREATE PROCEDURE and
 that of CREATE FUNCTION:
	CREATE FUNCTION
 includes a mandatory RETURNS
 statement that specifies the data type that will be returned
 from the function call.

	With CREATE FUNCTION,
 you cannot specify the IN,
 OUT, or INOUT modifiers to parameters. All
 parameters are implicitly IN
 parameters.

	The function body must contain one or more RETURN statements, which terminate
 function execution and return the specified result to the
 calling program.

We look at stored functions in detail in Chapter 10.

CREATE TRIGGER

The CREATE TRIGGER
 statement creates a trigger. Its syntax follows:
 CREATE [DEFINER = { user|CURRENT_USER }] TRIGGER trigger_name
 {BEFORE|AFTER}
 {UPDATE|INSERT|DELETE}
 ON table_name
 FOR EACH ROWtrigger_statements
As with other stored programs, the trigger name must conform
 to the general rules for naming objects, as outlined in Chapter 3. There are several
 differences between this statement syntax and that of CREATE PROCEDURE and CREATE FUNCTION:
	DEFINER
	This optional clause specifies the security privileges
 that the trigger code will assume when it is invoked. The
 default CURRENT_USER
 setting results in the trigger executing with the privileges
 of the account that executes the CREATE TRIGGER statement. Specifying
 a user allows the trigger to
 execute with the privileges of another account.

	BEFORE
 or AFTER
	These clauses control the sequence in which the trigger
 will fire—either before or after the triggering statement is
 executed.

	UPDATE, INSERT, or
 DELETE
	These clauses specify the type of DML statement that
 will cause the trigger to be invoked.

	trigger_statements
	This code can be one or more stored program language
 statements. If more than one statement is specified, they must
 all be contained within a BEGIN-END block.

Triggers are described in detail in Chapter 11.

ALTER PROCEDURE/FUNCTION

You can use the ALTER
 statement to change the SQL
 SECURITY characteristic of a stored procedure or stored
 function, or to change the comment associated with the procedure or
 function. This statement cannot currently be issued for triggers.
 The syntax of this statement is shown below:
 ALTER {PROCEDURE|FUNCTION} procedure_or_function_name
 [SQL SECURITY {DEFINER|INVOKER}]
 [COMMENT comment_string]

DROP PROCEDURE/FUNCTION/TRIGGER

You can use the DROP
 statement to remove a stored procedure, function, or trigger from
 the database:
 DROP {PROCEDURE|FUNCTION|TRIGGER} [IF EXISTS] program_name
IF EXISTS is only valid for
 stored procedures and functions, not for triggers.
We frequently include a DROP
 PROCEDURE IF EXISTS statement in the same source file as
 our CREATE statement to remove
 the previous definition of the procedure before creating the new
 version (see Figure
 7-10 for an example of this).

[*] A strict interpretation of the ANSI standard
 suggests that NO SQL is
 only applicable for non-SQL languages (PHP, Java, etc.).
 Although NO SQL is
 arguably only really intended for non-SQL stored
 procedures, the current behavior of MySQL makes the
 NO SQL clause the best
 choice when you must specify a SQL clause for a function that
 performs no database accesses.

Getting Information About Stored Programs

This section describes ways you can retrieve information about
 the stored programs that exist in your database.
In releases of MySQL prior to 5.0, extracting information about
 objects in the database was achieved by issuing SHOW statements. MySQL has extended the
 SHOW statement in version 5 to
 include information about stored programs.
However, in 5.0, MySQL also introduced the INFORMATION_SCHEMA database, which contains
 various tables that provide information about the objects that exist
 within the server. These tables are typically referred to as the
 data dictionary or as server
 metadata.
If you are a long-time user of the MySQL server, then using
 SHOW statements may seem a more
 natural approach to obtaining information about stored programs.
 However, the INFORMATION_SCHEMA
 tables—in addition to being ANSI standard—have the advantage of being
 amenable to various handy SELECT
 operations, such as grouping, counting, joining, and advanced
 filtering operations. You can also use INFORMATION_SCHEMA tables within your stored
 program code—something that is not practical with SHOW statement output.
SHOW PROCEDURE/FUNCTION STATUS

The SHOW PROCEDURE STATUS
 and SHOW FUNCTION
 STATUS statements return information about the stored
 programs within the server. The syntax of this form of the SHOW statement is:
 SHOW {PROCEDURE|FUNCTION} STATUS [LIKE pattern]
Figure 7-11
 provides an example of SHOW
 PROCEDURE status output.
[image: SHOW PROCEDURE STATUS]

Figure 7-11. SHOW PROCEDURE STATUS

SHOW CREATE PROCEDURE/FUNCTION

The SHOW CREATE PROCEDURE
 and SHOW CREATE FUNCTION
 statements return the CREATE statement necessary to re-create a
 particular stored program. Figure 7-12 shows the output
 of this version of SHOW. Note
 that we used the "View Field pop-up editor" right-click option to
 load the text output returned by this statement into a more readable
 Field Viewer window.

INFORMATION_SCHEMA.ROUTINES Table

The INFORMATION_SCHEMA.ROUTINES table returns
 a variety of information about stored procedures and functions. You
 can use the WHERE clause and
 column lists within the SELECT
 statement to format this output in various interesting ways.
[image: SHOW CREATE FUNCTION]

Figure 7-12. SHOW CREATE FUNCTION

This table does not contain information about triggers, but
 you can retrieve trigger information from the INFORMATION_SCHEMA.TRIGGERS table
 described in the next section.
Figure 7-13 shows
 the structure of the INFORMATION_SCHEMA.ROUTINES table.
You can use INFORMATION_SCHEMA.ROUTINES to return any
 of the data returned by the SHOW PROCEDURE
 STATUS, SHOW FUNCTION
 STATUS, SHOW CREATE
 PROCEDURE, and SHOW CREATE
 FUNCTION statements. For instance, in Figure 7-14, we produce a
 report that includes both the procedure/function definitions and
 other information about these programs.

INFORMATION_SCHEMA.TRIGGERS Table

The
 INFORMATION_SCHEMA.TRIGGERS table contains details about
 all of the triggers that are defined on the MySQL server. Figure 7-15 shows the output
 from a query against this table (using the "View Field pop-up
 editor" right-click option to view the contents of the action_statement column).
[image: Structure of the INFORMATION_SCHEMA.ROUTINES table]

Figure 7-13. Structure of the INFORMATION_SCHEMA.ROUTINES table

Conclusion

 In this chapter we looked at the process of creating and
 managing stored objects (procedures, functions, and triggers). Let's
 conclude with an outline of what we regard as the best practices for
 creating and managing stored objects:
	Make sure that the reference (e.g., official) copy of each
 of your stored programs exists as a file on disk, not as the copy
 stored in the MySQL server. Stored programs might need to be
 shared between multiple servers, and you therefore need at least
 one copy—not on a server—that represents the current
 version.

	Use a version control system to maintain a copy of any
 version of a stored program that is deployed to a MySQL server. In
 other words, subject stored program code to the same discipline
 that you apply to other program code.

	When you are editing a stored program, check it out of the
 source control system and load the checked-out copy into the MySQL
 Query Browser or other tool.
[image: Viewing the INFORMATION_SCHEMA.ROUTINES table]

Figure 7-14. Viewing the INFORMATION_SCHEMA.ROUTINES table

	When you are satisfied with your changes, save the stored
 program code to a disk file and check it into the version control
 system.

	Deploy the stored program by creating command-line routines
 using the MySQL client program, and embed these into Make files or
 other build/deploy scripts that you can use to apply schema
 changes and other server object changes.
[image: Viewing the INFORMATION_SCHEMA.TRIGGERS table]

Figure 7-15. Viewing the INFORMATION_SCHEMA.TRIGGERS table

Chapter 8. Transaction Management

A transaction is a set of one or more SQL
 statements that are logically grouped together and that must be either
 applied to the database in their entirety or not applied at all.
Consider the commonly cited example of a funds transfer from one
 account to another. In its most simple form, this transfer will involve
 two UPDATE statements: one to reduce
 the account balance in the "from" account, and another to increase the
 account balance in the "to" account. Suppose that the "from" account has
 been updated, but then the change to the "to" account cannot be
 completed. We must be sure to undo that first update, or the money that
 was to be transferred will have, in effect, "disappeared."
We expect database transactions to conform to the
 ACID principle, which means that transactions
 should be:
	Atomic
	The transaction is indivisible—either all the statements in
 the transaction are applied to the database, or none are.

	Consistent
	The database remains in a consistent state before and after
 transaction execution.

	Isolated
	While multiple transactions can be executed by one or more
 users simultaneously, one transaction should not see the effects
 of other concurrent transactions.

	Durable
	Once a transaction is saved to the database (an action
 referred to in database programming circles as a
 commit), its changes are expected to
 persist. Even if the user turns off her
 computer or the database server goes down, the changes will be
 saved. This usually means that the result of the transaction must
 be written to a nonvolatile form of storage, such as a hard disk
 (alternatively, it could be redundantly stored in multiple memory
 stores, written to battery-backed memory, or written to solid
 state disk).

Stored programs provide an excellent mechanism for defining,
 encapsulating, and managing transactions. Without the features available
 in stored progams, the calling program would need to issue the relevant
 SQL statements for the transaction and provide the logic to control
 locking and handle transaction failure. With MySQL stored program
 support , we can now encapsulate the multiple, interdependent SQL
 statements of the transaction into a single stored program. The
 application code, such as a PHP program, calls the stored program and
 transfers the responsibility for transaction management to the program executing in the database server.
In this chapter we review transactional support in MySQL and show
 how to create a transaction within a stored program. We also discuss how
 to deal with common transaction-related issues, such as lock timeouts,
 deadlocks, and locking strategies. We conclude by providing a
 general-purpose set of guidelines for transaction design.
Transactional Support in MySQL

 MySQL is virtually unique in modern relational databases
 in that transactions are not mandatory. Under certain circumstances,
 they are not even possible. In fact, with MySQL, transactional support
 is a property not of the MySQL server itself, but of the underlying
 storage engine employed. Currently, the two most popular storage
 engines used with MySQL are MyISAM and InnoDB, although a small number
 of users use BerkeleyDB:
	MyISAM
	MyISAM does not support transactions.
 Using a nontransactional storage engine is fine for certain
 applications—in particular those that are overwhelmingly
 read-only. Certainly, if you do not need to manage transactions,
 you can improve the performance of some applications by avoiding
 the overhead associated with transaction management. If, on
 the other hand, you are building an application with a
 significant amount of updates and concurrent updates to the
 database, you will probably want to avoid MyISAM and instead
 rely on a transactional engine.

	InnoDB
	InnoDB is the most popular transaction-safe MySQL storage
 engine. It supports ACID transactions as well as row-level
 locking and multiversion concurrency.

	Berkeley DB
	This storage engine also supports transactions but is
 currently less widely used than InnoDB.

In a survey conducted by MySQL AB (http://dev.mysql.com/tech-resources/quickpolls/storage-engines.html),
 about 60% of respondents reported using MyISAM as their primary
 storage engine, while 37% used InnoDB and about 1% used BerkeleyDB.
 However, these figures are likely to change over the next few years,
 as MySQL AB releases additional storage engine types, many of which
 will be transactional.
Tip
This chapter assumes that you are using a transactional
 storage engine such as InnoDB or BerkeleyDB.

First, we need to discuss the concept of isolation
 levels and sessions.
Isolation Levels

Before we can talk sensibly about transactions and isolation
 levels, we need to be clear on the concept of a
 session. A database session is a unique
 connection to the database that commences when you log on to MySQL
 and that terminates when you disconnect—either explicitly or when
 MySQL notices that your client program has "gone away."
Every session has its own memory areas and—more
 importantly—can hold locks on data or have a unique view of certain
 data. Isolation levels determine the degree to
 which transactions in one session may affect the data seen or
 accessed by another session. All isolation levels are compromises
 between concurrency —the ability for multiple sessions to perform
 operations on the database at the same time—and
 consistency—the degree to which a session sees
 a logical and correct view of the data regardless of what activities
 might be going on in other sessions.
The isolation level of a transaction also determines the
 degree to which that transaction conforms to the ACID properties
 described at the beginning of this chapter. Each of the four
 isolation levels represents a different balance between the
 isolation and concurrency of transactions. At the highest isolation
 levels, very few transactions will be able to execute concurrently,
 but the chances of one transaction interfering with another will be
 minimized. At the lower isolation levels, many transactions will be
 able to execute concurrently, but the chances of conflicts between
 transactions will be higher.
The ANSI standard defines four isolation levels, all of which
 are supported by MySQL when using the InnoDB engine:
	READ UNCOMMITTED
	This is the lowest possible isolation level. Sometimes
 called dirty read, this level permits a
 transaction to read rows that have not yet been committed.
 Using this isolation level might improve performance, but the
 idea of one user retrieving data changed by another user,
 which might not actually be committed, is usually
 unacceptable.

	READ COMMITTED
	At this isolation level, only committed rows can be seen
 by a transaction. Furthermore, any changes committed after a
 statement commences execution cannot be seen. For example, if
 you have a long-running SELECT statement in session A that
 queries from the BOOKS
 table, and session B inserts a row into BOOKS while A's query is still
 running, that new row will not be visible
 to the SELECT.

	REPEATABLE READ
	At this isolation level, no changes to the database that
 are made by other sessions since the transaction commenced can
 be seen within the transaction, until the transaction is
 committed or rolled back (cancelled). This means that if you
 re-execute a SELECT within
 your transaction, it will always show the same results (other
 than any updates that occurred in the same
 transaction).

	SERIALIZABLE
	At this isolation level, every transaction is completely
 isolated so that transactions behave as if they had executed
 serially, one after the other. In order to achieve this, the
 RDBMS will typically lock every row that is read, so other
 sessions may not modify that data until the transaction is
 done with it. The locks are released when you commit or cancel
 the transaction.

You can change the isolation level in your MySQL session with
 the SET statement:
 SET TRANSACTION ISOLATION LEVEL {READ UNCOMMITTED | READ COMMITTED
 |REPEATABLE READ | SERIALIZABLE}
Under normal circumstances, you should avoid changing the
 transaction isolation level from the default of REPEATABLE READ. In particular, think
 carefully before setting the isolation level to READ UNCOMMITTED or SERIALIZABLE. READ UNCOMMITTED can lead to serious
 problems with the integrity of the data returned by the SELECT statement, while SERIALIZABLE will have a noticeable,
 negative effect on performance and can also increase the chance of
 "deadlocks"
 (described later in this chapter).

Transaction Management Statements

Use the following transaction management statements in MySQL stored programs:
	START
 TRANSACTION
	Signifies the commencement of a new transaction. If an
 existing transaction is already in progress, then START TRANSACTION will issue an
 implicit COMMIT . When you issue START
 TRANSACTION, the autocommit property (described in
 the next section) is effectively and implicitly set to 0 until
 the transaction ends. We recommend that you explicitly commit
 or roll back existing transactions before any START TRANSACTION statements, since
 the implicit COMMIT might
 not be obvious to someone reading or maintaining your
 code.

	COMMIT
	Saves all changes made in the transaction to the
 database and then terminates a transaction. COMMIT also releases any locks that
 might be in effect, whether they are explicit locks from
 FOR UPDATE or LOCK TABLES or implicit locks
 acquired as a result of executing DML statements.

	ROLLBACK
	Undoes any changes to the database made by the
 transaction and then terminates that transaction. Like
 COMMIT, ROLLBACK releases any locks held by
 the transaction.

	SAVEPOINT
 savepoint_name
	Creates a named savepoint identifier that can be the
 target of a ROLLBACK TO
 SAVEPOINT statement.

	ROLLBACK TO SAVEPOINT
 savepoint_name
	Performs a rollback on all statements that have been
 executed since the specified savepoint was created. In this
 way, you can roll back only part of a transaction, preserving
 some subset of your changes to still be saved. You may find
 savepoints useful when you need to save part of your work
 after an error has occurred. See the section "Working with
 Savepoints" later in this chapter for more
 details.

	SET TRANSACTION
	Allows you to change the isolation level of your
 transaction. See the section "Isolation Levels"
 earlier in this chapter for more details.

	LOCK TABLES
	Allows you to explicitly lock one or more tables. Note
 that LOCK TABLES implicitly
 closes any currently open transactions . We recommend that you explicitly commit or
 roll back your transaction before any LOCK TABLES statements. We rarely
 want to lock entire tables in the normal course of transaction
 processing, so we don't usually include LOCK TABLES statements in our
 transactional code.

Defining a Transaction

 The default behavior of MySQL is to perform a COMMIT after the execution of each
 individual SQL statement, effectively turning every statement into an
 individual transaction. This approach is inadequate for most complex
 applications.
To enable transactions, allowing multiple SQL statements to be
 executed before a COMMIT or
 ROLLBACK is performed, you must
 take one of the following two steps:
	Set the MySQL autocommit
 property or variable to 0. The default setting for AUTOCOMMIT is 1.

	Explicitly initiate a transaction with the START TRANSACTION statement.

Since it is dangerous to assume that the MySQL environment is
 running with the necessary transaction setting, you should generally
 include either a SET AUTOCOMMIT=0
 or START TRANSACTION statement in
 any transactional stored program.
The SET autocommit=0
 statement simply ensures that MySQL will not implicitly issue a
 COMMIT after every SQL statement.
 Note, however, that if you have already initiated a transaction,
 issuing SET autocommit will have no
 effect. START TRANSACTION, on the
 other hand, implicitly commits any currently outstanding changes in
 your session, terminating the existing transaction and starting a new
 one.
We recommend that you leave nothing to chance when programming
 transactions in MySQL stored programs. Therefore, we suggest that you
 always explicitly commence a transaction with a START TRANSACTION statement and explicitly end your transaction with a
 COMMIT or ROLLBACK.
Tip
Wherever possible, define explicitly the beginning and end of
 every transaction with START
 TRANSACTION and COMMIT/ROLLBACK statements. Place the
 START TRANSACTION statement at
 the beginning of your transaction, and terminate it with either
 COMMIT or ROLLBACK. If your program ends with
 conditional logic as part of its error handling, you may, in fact,
 need to use both of these statements—in different branches of your
 IF or CASE statement.

Example 8-1 shows a
 transaction implemented in a stored procedure using a SET AUTOCOMMIT statement.
Example 8-1. Commencing a transaction using SET AUTOCOMMIT
CREATE PROCEDURE tfer_funds
 (from_account int, to_account int,tfer_amount numeric(10,2))
BEGIN
 SET autocommit=0;

 UPDATE account_balance
 SET balance=balance-tfer_amount
 WHERE account_id=from_account;

 UPDATE account_balance
 SET balance=balance+tfer_amount
 WHERE account_id=to_account;

 COMMIT;
END;

Example 8-2 shows an
 example of defining a transaction using START
 TRANSACTION.
Example 8-2. Commencing a transaction using START TRANSACTION
CREATE PROCEDURE tfer_funds
 (from_account int, to_account int,tfer_amount numeric(10,2))
BEGIN
 START TRANSACTION;

 UPDATE account_balance
 SET balance=balance-tfer_amount
 WHERE account_id=from_account;

 UPDATE account_balance
 SET balance=balance+tfer_amount
 WHERE account_id=to_account;

 COMMIT;
END;

As we've said, transactions normally complete when either a
 COMMIT or a ROLLBACK statement is executed. However, be
 aware that some statements—usually Data Definition Language (DDL)
 statements—can cause implicit COMMITs. The statements that implicitly
 commit, and should therefore be avoided when a transaction is active,
 include the following:
	 ALTER
 FUNCTION
	 ALTER
 PROCEDURE
	 ALTER
 TABLE

	 BEGIN
	 CREATE
 DATABASE
	 CREATE
 FUNCTION

	 CREATE
 INDEX
	 CREATE
 PROCEDURE
	 CREATE
 TABLE

	 DROP
 DATABASE
	 DROP
 FUNCTION
	 DROP
 INDEX

	 DROP
 PROCEDURE
	 DROP
 TABLE
	 UNLOCK
 TABLES

	 LOAD
 MASTER DATA
	 LOCK
 TABLES
	 RENAME
 TABLE

	 TRUNCATE
 TABLE
	 SET
 AUTOCOMMIT=1
	 START
 TRANSACTION

Working with Savepoints

 Savepoints allow you to perform a partial rollback of
 the changes in your transaction. If you issue an unqualified ROLLBACK, any and all changes in your
 current session are erased. If, however, you place a SAVEPOINT statement in your program, then
 you can roll back to that point in your program (and your
 transaction). In other words, any changes made before that statement
 can still be saved to the database with a COMMIT.
Generally, savepoints are intended to allow you to recover from a
 statement-level error without having to abort and restart your
 transaction. In these circumstances, the transaction includes one or
 more statements that might fail, yet should not force the invalidation
 of the entire transaction. Usually you will want to roll back to a
 savepoint, as part of handling the error, and then take the
 appropriate action, as indicated by the particular error that was
 raised.
Example 8-3
 demonstrates the use of a savepoint with a transaction that creates or
 updates a location record, and then
 creates or updates a departments
 record that resides at that location:
Example 8-3. Example of a transaction that uses a savepoint
1 CREATE PROCEDURE savepoint_example(in_department_name VARCHAR(30),
2 in_location VARCHAR(30),
3 in_address1 VARCHAR(30),
4 in_address2 VARCHAR(30),
5 in_zipcode VARCHAR(10),
6 in_manager_id INT)
7 BEGIN
8 DECLARE location_exists INT DEFAULT 0;
9 DECLARE duplicate_dept INT DEFAULT 0;
10
11
12 START TRANSACTION;
13
14 -- Does the location exist?
15 SELECT COUNT(*)
16 INTO location_exists
17 FROM locations
18 WHERE location=in_location;
19
20 IF location_exists=0 THEN
21
22 INSERT INTO AUDIT_LOG (audit_message)
23 VALUES (CONCAT('Creating new location',in_location));
24
25 INSERT INTO locations (location,address1,address2,zipcode)
26 VALUES (in_location,in_address1,in_address2,in_zipcode);
27 ELSE
28
29 UPDATE locations set address1=in_address1,
30 address2=in_address2,
31 zipcode=in_zipcode
32 WHERE location=in_location;
33
34 END IF;
35
36 SAVEPOINT savepoint_location_exists;
37
38 BEGIN
39 DECLARE DUPLICATE_KEY CONDITION FOR 1062;
40 DECLARE CONTINUE HANDLER FOR DUPLICATE_KEY /*Duplicate key value*/
41 BEGIN
42 SET duplicate_dept=1;
43 ROLLBACK TO SAVEPOINT savepoint_location_exists;
44 END;
45
46 INSERT INTO AUDIT_LOG (audit_message)
47 VALUES (CONCAT('Creating new department',in_department_name));
48
49 INSERT INTO DEPARTMENTS (department_name,location,manager_id)
50 VALUES (in_department_name,in_location, in_manager_id);
51
52 IF duplicate_dept=1 THEN
53
54 UPDATE departments
55 SET location=in_location,
56 manager_id=in_manager_id
57 WHERE department_name=in_department_name;
58 END IF;
59
60 END;
61
62 COMMIT;
63
64 END;

Here is an explanation of this complex transaction logic:
	Line(s)
	Explanation

	12
	The START
 TRANSACTION statement denotes the start of the
 transaction. We can place this statement after our
 declarations, since they do not participate in any way in the
 transaction.

	15
	In this SQL statement we check to
 see if a matching location exists.

	20-26
	If the location does not exist (line
 20), we insert an audit log record (lines 22-23) and then
 create the location (lines 25-26).

	29-32
	If the location already exists, we
 update it with new detail.

	36
	Whether or not the location existed
 in line 20, it definitely exists now, so we establish a
 savepoint indicating that we have gotten this much work
 done.

	39-44
	Define an error handler that will
 fire in the event of a duplicate key error. If the handler is
 invoked, it will issue a rollback to our savepoint and then
 set the duplicate_dept
 variable so that we can detect that the rollback has occurred.
 You will find more information about handler logic in Chapter 6.

	46-50
	Insert an audit record and then
 insert a new department. If a department already exists with
 this name, the handler will fire, setting the duplicate_dept variable and rolling
 back to the savepoint. This partial rollback will undo the
 audit log entry for the new department, but will preserve the
 inserts or update executed to ensure that the location
 existed.

	52-58
	Check the duplicate_dept variable to see if
 there was a problem inserting the department. If so, then
 update the existing DEPARTMENTS record with the new
 information.

Now that you have seen how to use the SAVEPOINT and ROLLBACK TO statements, we need to point out
 two undesirable side effects of this approach and then offer a
 restructuring of the program that renders savepoints unnecessary.
 These are the side effects:
	The insert into the AUDIT_LOG table on line 46 will, indeed,
 be rolled back when the department cannot be inserted. However,
 the overhead of inserting and then rolling back that insert might
 not be trivial in a high-throughput environment.

	The execution flow of the transaction is unclear. The
 rollback is defined in the handler on line 43, but actually will
 be triggered only when the insert fails on line 49. It is hard to
 tell just by looking at the INSERT statement what will happen,
 making it difficult to understand the overall logic of the
 transaction. It is, quite simply, more complicated than
 necessary.

We can rewrite this program to avoid the use of savepoints
 altogether (see Example
 8-4). A hint of this approach was offered earlier in the
 procedure (lines 20-34): check to see if the record exists, then issue
 the INSERT or UPDATE as appropriate. The resulting logic
 is more straightforward, and actually reduces the number of SQL
 statements we need to code.
Example 8-4. Alternative to the SAVEPOINT implementation
CREATE PROCEDURE nosavepoint_example(in_department_name VARCHAR(30),
 in_location VARCHAR(30),
 in_address1 VARCHAR(30),
 in_address2 VARCHAR(30),
 in_zipcode VARCHAR(10),
 in_manager_id INT)
BEGIN
 DECLARE location_exists INT DEFAULT 0;
 DECLARE department_exists INT DEFAULT 0;

 START TRANSACTION;

 -- Does the location exist?
 SELECT COUNT(*)
 INTO location_exists
 FROM locations
 WHERE location=in_location;

 IF location_exists=0 THEN

 INSERT INTO AUDIT_LOG (audit_message)
 VALUES (CONCAT('Creating new location',in_location));

 INSERT INTO locations (location,address1,address2,zipcode)
 VALUES (in_location,in_address1,in_address2,in_zipcode);
 ELSE

 UPDATE locations set address1=in_address1,
 address2=in_address2,
 zipcode=in_zipcode
 WHERE location=in_location;

 END IF;

 -- Does the department exists?
 SELECT COUNT(*)
 INTO department_exists
 FROM departments
 WHERE department_name=in_department_name;

 IF department_exists=1 THEN

 UPDATE departments
 SET location=in_location,
 manager_id=in_manager_id
 WHERE department_name=in_department_name;

 ELSE

 INSERT INTO AUDIT_LOG (audit_message)
 VALUES (CONCAT('Creating new department',in_department_name));

 INSERT INTO DEPARTMENTS (department_name,location,manager_id)
 VALUES (in_department_name,in_location, in_manager_id);

 END IF;

 COMMIT;

END;

Tip
Savepoints can be used to partially roll back transactions in
 the event of an error. If you cannot achieve the same effect through
 the use of exception handlers and conditional logic, then
 savepoints may be required. Watch out for SAVEPOINT-based implementations, however,
 that result in unnecessary and unnecessarily complicated
 code.

One good use of savepoints is to implement "nested" transactions
 inside of discrete stored programs. You may with to implement a stored
 program that performs a small transaction, but you don't want a
 rollback in that program to abort any larger transaction that may be
 in progress. A savepoint is a good way to do this, since you can
 easily roll back only the statements that you have issued within the
 procedure. Example 8-5
 shows a stored program that implements this approach.
Example 8-5. Example of a "nested" transaction using a savepoint
CREATE PROCEDURE nested_tfer_funds(
 in_from_acct INTEGER,
 in_to_acct INTEGER,
 in_tfer_amount DECIMAL(8,2))
BEGIN

 DECLARE txn_error INTEGER DEFAULT 0 ;

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN
 SET txn_error=1;
 END;

 SAVEPOINT savepoint_tfer;

 UPDATE account_balance
 SET balance=balance-in_tfer_amount
 WHERE account_id=in_from_acct;

 IF txn_error THEN
 ROLLBACK TO savepoint_tfer;
 SELECT 'Transfer aborted ';
 ELSE
 UPDATE account_balance
 SET balance=balance+in_tfer_amount
 WHERE account_id=in_to_acct;

 IF txn_error THEN
 ROLLBACK TO savepoint_tfer;
 SELECT 'Transfer aborted ';
 END IF;
 END IF;

END;

The program in Example
 8-5 creates a savepoint before issuing any DML statements.
 Should any errors occur, the program issues a rollback to that
 savepoint to ensure that the DML statements issued by the program—but
 only those statements—are reversed.

Transactions and Locks

The ACID properties of a transaction can only be
 implemented by restricting simultaneous changes to the database. This
 is achieved by placing locks on modified data. These locks persist until the
 transaction issues a COMMIT or
 ROLLBACK statement.
Without locks, a change made by one transaction could be
 overwritten by another transaction that executes at the same time.
 Consider, for example, the scenario shown in Figure 8-1, based on the
 tfer_funds procedure of Example 8-2. When two different
 sessions run this program for the same account number, we encounter
 some obvious difficulties if locks are not in place.
[image: Illustration of a transaction without locking]

Figure 8-1. Illustration of a transaction without locking

In this scenario, account 2 starts with a balance of $2,000.
 Transaction A reduces the balance of the account by $100. Before
 transaction A commits, transaction B increases the account value by
 $300. Because transaction B cannot see the uncommitted updates made by
 transaction A, it increases the balance to $2,300. Because we allowed
 two transactions to simultaneously modify the same row, the database
 is now in an inconsistent state. The end balance for the account will
 be the value set by whichever transaction commits last. If transaction
 B is the last to commit, then the owner of account 2 will have $100
 more than she should. On the other hand, if transaction A commits
 first, the account owner will be $300 out of pocket!
This clearly unacceptable result is completely avoidable when
 locks are placed on rows that have been changed, as is illustrated in
 Figure 8-2.
Now, when transaction A updates account 2, the relevant row is
 locked and cannot be updated by another transaction. Transaction B
 must wait for transaction A to be committed before its update can
 proceed. When transaction A commits, transaction B applies its update
 to the modified account balance, and the integrity of the account
 balance is maintained.
[image: Illustration of a transaction with locking]

Figure 8-2. Illustration of a transaction with locking

The downside of this locking strategy is that transaction B must
 wait for transaction A to complete. The more programs you have waiting
 for locks to clear, the less throughput your transactional system will
 be able to support.
MySQL/InnoDB minimizes the amount of lock contention by locking
 at the row level only. In our example, updates to other rows in the
 ACCOUNT_BALANCE table are able to
 proceed without restriction. Furthermore, with InnoDB, reads do not
 normally cause locks to occur, and readers do not
 need to wait for locks to be released before accessing data. Other
 transactional storage engines—and other RDBMS systems—may behave
 differently.
You can, however, place locks on rows that have only been read
 by using the FOR UPDATE or LOCK IN SHARE MODE clause in the SELECT statement, and this is sometimes
 required to implement a specific locking strategy (see "Optimistic and Pessimistic Locking
 Strategies," later in this chapter).
In the following subsections we'll look at various types of
 locking situations, problems, and strategies.
Situations in Which Locks Arise

While it is possible for you to lock rows explicitly, you will
 generally rely on the storage engine to lock rows (or an entire
 table) implicitly, which it will do under the following
 circumstances:
	When an UPDATE
 statement is executed, all rows modified will be locked.

	An INSERT statement
 will cause any primary or unique key records to be locked. This
 will prevent a concurrent insert of a statement with an
 identical primary key.

	You can lock entire tables with the LOCK TABLES statement. This is not
 generally recommended, because it not only reduces concurrency,
 it operates above the storage engine layer, which might mean
 that any storage engine deadlock resolution mechanisms may be
 ineffectual.

	If you use the FOR
 UPDATE or LOCK IN SHARE
 MODE clauses in a SELECT statement, all of the rows
 returned by that SELECT
 statement will be locked.

Locking rows as they are read is an important technique that
 we'll demonstrate in subsequent examples. To read and simultaneously
 lock a row, you include the FOR
 UPDATE or LOCK IN SHARE
 MODE clause in the SELECT statement, as follows:
 SELECT SELECT_statement options
 [FOR UPDATE|LOCK IN SHARE MODE]
The two locking options differ in the following ways:
	FOR UPDATE
	When you use this clause, you acquire an exclusive lock
 on the row with the same characteristics as an UPDATE on that row. Only one
 SELECT statement can
 simultaneously hold a FOR
 UPDATE lock on a given row; other SELECT statements (or DML
 statements) will have to wait until the transaction
 ends.

	LOCK IN SHARE
 MODE
	When you use this clause, it prevents any DML from being
 applied to the row you have locked. However—unlike FOR UPDATE—any number of SHARE MODE locks can be applied to a
 single row simultaneously.

Deadlocks

A deadlock occurs when two transactions
 are each waiting for the other to release a lock—they each block
 each other, and neither can proceed. For instance, consider the
 situation in which one transaction attempts to transfer $100 from
 account 2 to account 1. Simultaneously, another transaction attempts
 to transfer $300 from account 1 to account 2. If the timing of the
 two transactions is sufficiently unfortunate, then each may end up
 waiting for the other to release a lock, resulting in a stalemate
 that will never end. Figure
 8-3 shows the sequence of events.
[image: Sequence of events that leads to a deadlock condition]

Figure 8-3. Sequence of events that leads to a deadlock
 condition

When MySQL/InnoDB detects a deadlock situation, it will force
 one of the transactions to roll back and issue an error message, as
 shown in Example 8-6. In
 the case of InnoDB, the transaction thus selected will be the
 transaction that has done the least work (in terms of rows
 modified).
Example 8-6. Example of a deadlock error
mysql> CALL tfer_funds(1,2,300);
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

Deadlocks can occur in any database system, but in row-level
 locking databases like MySQL/InnoDB, the possibility of a deadlock
 is usually low. You can further reduce the frequency of
 deadlocks by locking rows or tables in a consistent order, and
 by keeping your transactions as short as possible.
If you are building (or debugging) an application in which
 deadlocks seem likely to occur, and you cannot reorganize your
 transactions to avoid them, you can add logic to your programs to
 handle deadlocks and retry the transaction.
Example 8-7 shows a
 modified version of the stored procedure in Example 8-2 that will retry its
 transaction up to three times in the event of a deadlock.
Example 8-7. Stored procedure with deadlock-handling logic
1 CREATE PROCEDURE tfer_funds2
2 (from_account INT, to_account INT,
3 tfer_amount numeric(10,2), OUT out_status INT,
4 OUT out_message VARCHAR(30))
5 BEGIN
6
7 DECLARE deadlock INT DEFAULT 0;
8 DECLARE attempts INT DEFAULT 0;
9
10 tfer_loop:WHILE (attempts<3) DO
11 BEGIN
12 DECLARE deadlock_detected CONDITION FOR 1213;
13 DECLARE EXIT HANDLER FOR deadlock_detected
14 BEGIN
15 ROLLBACK;
16 SET deadlock=1;
17 END;
18 SET deadlock=0;
19
20 START TRANSACTION;
21
22 UPDATE account_balance
23 SET balance=balance-tfer_amount
24 WHERE account_id=from_account;
25
26 UPDATE account_balance
27 SET balance=balance+tfer_amount
28 WHERE account_id=to_account;
29
30 COMMIT;
31
32 END;
33 IF deadlock=0 THEN
34 LEAVE tfer_loop;
35 ELSE
36 SET attempts=attempts+1;
37 END IF;
38 END WHILE tfer_loop;
39
40 IF deadlock=1 THEN
41 SET out_status=-1;
42 SET out_message="Failed with deadlock for 3 attempts";
43
44 ELSE
45 SET out_status=0;
46 SET out_message=CONCAT("OK (",attempts," deadlocks)");
47 END IF;
48
49 END;

The error-handling techniques in Example 8-7 rely on statements
 introduced in Chapter 6. Here
 is a line-by-line explanation of the code:
	Line(s)
	Explanation

	10
	Commence a WHILE loop that will control
 attempts to execute (and possibly re-execute) the
 transaction. The WHILE
 loop condition of (attempts<3) ensures that we
 will try no more than three times to complete this
 task.

	11
	Define an anonymous BEGIN block within the loop to
 contain the transaction. The END statement for this block
 appears on line 32. The block allows us to trap an error
 within the body of the loop, but not exit the loop
 itself.

	12-18
	Prepare the block for the
 execution of the transaction. Define an EXIT handler and associate it with
 the deadlock error. When a deadlock occurs, the handler will
 set a variable indicating failure, issue a ROLLBACK, and then terminate the
 block, while remaining within the loop.

	20-30
	The SQL statements that make up
 the transaction for this program.

	33-37
	Determine if it is time to leave
 the loop or increment the counter. If a deadlock did not
 occur, the value of the deadlock variable is 0, so we use
 the LEAVE statement to
 terminate the WHILE
 loop.
 If deadlock equals 1, then the
 BEGIN-END block has
 terminated because of a deadlock, so we increment the
 attempts variable and
 (provided that attempts
 has not yet reached 3) allow the loop to re-execute the SQL
 statements and thereby retry the transaction.

	40-47
	On these lines we examine the
 deadlock and attempts variables to determine
 the final state of the transaction. If deadlock=1, then our most recent
 attempt to execute the transaction failed with a deadlock,
 and—since we have tried three times—we terminate with an
 error. Otherwise, we signal a successful end to the
 transaction, although we note how many times we encountered
 a deadlock in the process.

Going to this much effort to handle deadlocks will be overkill
 for most applications. Unless your application design is
 particularly vulnerable to deadlocks, you will encounter deadlocks
 so infrequently that you actually weaken your application by
 including so much hard-to-maintain deadlock-handling code.
As noted above, there are usually other ways to avoid deadlock
 scenarios. For instance, in Example 8-8 we lock the rows to
 be updated in numerical order before issuing any UPDATEs. Because the rows are always
 locked in the same order, one instance of this transaction should
 not cause a deadlock if another session runs the same
 program.
Example 8-8. Locking rows in order to avoid deadlock conditions
CREATE PROCEDURE tfer_funds3
 (from_account INT, to_account INT,tfer_amount NUMERIC(10,2))
BEGIN
 DECLARE local_account_id INT;
 DECLARE lock_cursor CURSOR FOR
 SELECT account_id
 FROM account_balance
 WHERE account_id IN (from_account,to_account)
 ORDER BY account_id
 FOR UPDATE;

 START TRANSACTION;

 OPEN lock_cursor;
 FETCH lock_cursor INTO local_account_id;

 UPDATE account_balance
 SET balance=balance-tfer_amount
 WHERE account_id=from_account;

 UPDATE account_balance
 SET balance=balance+tfer_amount
 WHERE account_id=to_account;

 CLOSE lock_cursor;

 COMMIT;
END;

Lock Timeouts

A deadlock is the most severe result of locking. Yet, in many
 other situations, a program in one session may be unable to read or
 write a particular row, because it is locked by another session. In
 this case, the program can and—by default—will wait for a certain
 period of time for the lock to be released. It will then either
 acquire the lock or time out. You can set the length of time a
 session will wait for an InnoDB lock to be released by setting the
 value of the innodb_lock_wait_timeout configuration
 value, which has a default of 50 seconds.
When a timeout occurs, MySQL/InnoDB will roll back the
 transaction and issue an error code 1205, as shown in Example 8-9.
Example 8-9. Lock timeout error
mysql> SELECT * FROM account_balance FOR UPDATE;
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

So if you have very long-running transactions, you may want to
 increase the value of innodb_lock_wait_timeout or introduce
 error-handling code to cope with the occasional 1205 error.
In some circumstances—particularly when you mix MySQL/InnoDB
 and non-InnoDB tables in the same transaction (a practice we do not
 normally recommend)—MySQL/InnoDB may be unable to detect a deadlock.
 In such cases, the "lock wait timeout" error will eventually occur.
 If you are mixing MySQL/InnoDB and non-InnoDB tables, and you are
 particularly concerned about deadlocks, you may want to implement
 error-handling logic for lock timeouts similar to that implemented for deadlocks in Example 8-7.

Optimistic and Pessimistic Locking Strategies

If your transaction reads data that subsequently participates
 in an UPDATE, INSERT, or DELETE, you need to take steps to ensure
 that the integrity of your transaction is not jeopardized by the
 possibility of another transaction changing the relevant data
 between the time you read it and the time you update it.
For instance, consider the transaction in Example 8-10. This variation
 on our funds transfer transaction makes sure that there are
 sufficient funds in the "from" account before executing the
 transaction. It first queries the account balance, and then takes an
 action depending on that value (the balance must be greater than the
 transfer amount).
Example 8-10. Funds transfer program without locking strategy
CREATE PROCEDURE tfer_funds4
 (from_account int, to_account int,tfer_amount numeric(10,2),
 OUT status int, OUT message VARCHAR(30))
BEGIN
 DECLARE from_account_balance NUMERIC(10,2);

 SELECT balance
 INTO from_account_balance
 FROM account_balance
 WHERE account_id=from_account;

 IF from_account_balance >= tfer_amount THEN

 START TRANSACTION;

 UPDATE account_balance
 SET balance=balance-tfer_amount
 WHERE account_id=from_account;

 UPDATE account_balance
 SET balance=balance+tfer_amount
 WHERE account_id=to_account;
 COMMIT;

 SET status=0;
 SET message='OK';
 ELSE
 SET status=-1;
 SET message='Insufficient funds';
 END IF;
END;

Unfortunately, as currently written, this program might under
 the right circumstances allow the "from" account to become
 overdrawn. Since some amount of time elapses between the query that
 establishes the current balance and the update transaction that
 reduces that balance, it is possible that another transaction could
 reduce the balance of the account within that period of time with
 its own UPDATE statement. This
 program's UPDATE would, then,
 cause a negative balance in the account.
Figure 8-4 shows
 the business policy violation that can result from a poor locking
 strategy. Transaction A determines that account 1 has sufficient
 funds before executing the transfer, but in the meantime transaction
 B has reduced the available funds by $300. When transaction A
 finally executes its update, the result is a negative
 balance.
[image: Error resulting from a poor locking strategy]

Figure 8-4. Error resulting from a poor locking strategy

There are two typical solutions to this kind of
 scenario:
	The pessimistic locking
 strategy
	Assume that concurrent updates are quite likely to
 occur, and write programs to prevent them from happening.
 Generally, this means you will need to lock rows as they are
 read. Other transactions that want to update the row must wait
 until the "pessimistic transaction" ends.

	The optimistic locking
 strategy
	Assume that it is unlikely that
 anyone will update a row between the time we view it and the
 time we update it. Since we cannot be sure that this
 assumption is true, we must then, at the last possible moment,
 make sure that the row has not been updated. If the row has
 been updated, the transaction cannot be trusted and will have
 to be aborted.

Pessimistic locking strategy

Let's explore the pessimistic strategy first, with a simple
 example. We ensure that nobody modifies the balance of the "from"
 account by locking it with the FOR
 UPDATE clause as we retrieve the balance. We can now
 rest assured that when we issue our UPDATE statement, the balance of the
 account cannot have been altered. Example 8-11 shows how easy
 this is; all we needed to do was move the SELECT statement inside of the
 transaction and cause it to lock the rows selected with the
 FOR UPDATE clause.
Example 8-11. Pessimistic locking strategy
CREATE PROCEDURE tfer_funds5
 (from_account INT, to_account INT,tfer_amount NUMERIC(10,2),
 OUT status INT, OUT message VARCHAR(30))
BEGIN
 DECLARE from_account_balance NUMERIC(10,2);

 START TRANSACTION;

 SELECT balance
 INTO from_account_balance
 FROM account_balance
 WHERE account_id=from_account
 FOR UPDATE;

 IF from_account_balance>=tfer_amount THEN

 UPDATE account_balance
 SET balance=balance-tfer_amount
 WHERE account_id=from_account;

 UPDATE account_balance
 SET balance=balance+tfer_amount
 WHERE account_id=to_account;
 COMMIT;

 SET status=0;
 SET message='OK';
 ELSE
 ROLLBACK;
 SET status=-1;
 SET message='Insufficient funds';
 END IF;
END;

The pessimistic locking strategy usually results in the
 simplest and most robust code —code that ensures consistency
 between SELECT and DML
 statements within your transaction. The pessimistic strategy can,
 however, lead to long-held locks that degrade performance (forcing
 a large number of sessions to wait for the locks to be released).
 For instance, suppose that after you validate the balance of the
 transaction, you are required to perform some long-running
 validation—perhaps you need to check various other databases
 (credit checking, blocked accounts, online fraud, etc.) before
 finalizing the transaction. In this case, you may end up locking
 the account for several minutes—leading to disgruntlement if the
 customer happens to be trying to withdraw funds at the same
 time.

Optimistic locking strategy

The optimistic locking strategy assumes that it is unlikely that the row will be
 updated between the initial SELECT and the end of the transaction,
 and therefore does not attempt to lock that row. Instead, the
 optimistic strategy requires that we perform a check
 just before the update to ensure that the row
 has not been altered.
To detect if a row has been changed, we simply refetch the
 row—locking the row as we do so—and compare the current values
 with the previous values.
Example 8-12
 demonstrates the optimistic locking strategy. If the account row
 has changed since the time of the initial balance check, the
 transaction will be aborted (line 33), although alternatively you
 could retry the transaction.
Example 8-12. Optimistic locking strategy
1 CREATE PROCEDURE tfer_funds6
2 (from_account INT, to_account INT, tfer_amount NUMERIC(10,2),
3 OUT status INT, OUT message VARCHAR(30))
4
5 BEGIN
6
7 DECLARE from_account_balance NUMERIC(8,2);
8 DECLARE from_account_balance2 NUMERIC(8,2);
9 DECLARE from_account_timestamp1 TIMESTAMP;
10 DECLARE from_account_timestamp2 TIMESTAMP;
11
12 SELECT account_timestamp,balance
13 INTO from_account_timestamp1,from_account_balance
14 FROM account_balance
15 WHERE account_id=from_account;
16
17 IF (from_account_balance>=tfer_amount) THEN
18
19 -- Here we perform some long running validation that
20 -- might take a few minutes */
21 CALL long_running_validation(from_account);
22
23 START TRANSACTION;
24
25 -- Make sure the account row has not been updated since
26 -- our initial check
27 SELECT account_timestamp, balance
28 INTO from_account_timestamp2,from_account_balance2
29 FROM account_balance
30 WHERE account_id=from_account
31 FOR UPDATE;
32
33 IF (from_account_timestamp1 <> from_account_timestamp2 OR
34 from_account_balance <> from_account_balance2) THEN
35 ROLLBACK;
36 SET status=-1;
37 SET message=CONCAT("Transaction cancelled due to concurrent update",
38 " of account" ,from_account);
39 ELSE
40 UPDATE account_balance
41 SET balance=balance-tfer_amount
42 WHERE account_id=from_account;
43
44 UPDATE account_balance
45 SET balance=balance+tfer_amount
46 WHERE account_id=to_account;
47
48 COMMIT;
49
50 SET status=0;
51 SET message="OK";
52 END IF;
53
54 ELSE
55 ROLLBACK;
56 SET status=-1;
57 SET message="Insufficient funds";
58 END IF;
59 END$$

Optimistic locking strategies are often employed by
 transactions that involve user interaction, since there is
 sometimes the chance that a user will "go to lunch," leaving a
 pessimistic lock in place for an extended period. Since stored
 programs do not involve direct user interaction, optimistic
 strategies in stored programs are not required for this reason.
 However, an optimistic strategy might still be selected as a means
 of reducing overall lock duration and improving application
 throughput—at the cost of occasionally having to retry the
 transaction when the optimism is misplaced.

Choosing between strategies

Don't choose between optimistic and pessimistic
 strategies based on your personality or disposition. Just because
 your analyst assures you that you are a fairly fun-loving,
 optimistic guy or gal, that does not mean you should affirm this
 by always choosing the optimistic locking strategy!
The choice between the two strategies is based on a
 trade-off between concurrency and robustness: pessimistic locking
 is less likely to require transaction retries or failures, while
 optimistic locking minimizes the duration of locks, thus improving
 concurrency and transaction throughput. Usually, we choose
 optimistic locking only if the duration of the locks or the number
 of rows locked by the pessimistic solution would be
 unacceptable.

Transaction Design Guidelines

 A well-designed transaction should have the following
 properties:
	The integrity of the database will be maintained at all
 times.

	The duration and coverage of locks will be minimized. Locks
 should be applied to as few rows as possible and maintained for
 the shortest possible duration.

	Rollbacks will be minimal—transactions that eventually issue a rollback have needlessly
 consumed resources.

	User expectations about the persistence of data will be met.
 For instance, a user who clicks a Save or Apply button has a
 reasonable expectation that the data will not disappear if he
 subsequently clicks Cancel on another page.

To achieve these goals, we recommend the following general
 guidelines for transaction design:
	Keep transactions small
	A transaction should generally include as small a logical
 unit of work as possible to reduce the duration of locks.

	Avoid a transaction design that encourages
 rollbacks
	For instance, rather than trying an insert and rolling
 back if there is a "duplicate key" error, check for the
 existence of the key value before issuing the DML.

	Avoid savepoints whenever
 possible
	The existence of a savepoint may indicate that you have
 failed to check for success criteria before issuing a DML
 statement and may indicate a transaction design that encourages
 rollbacks.

	By default, rely on a pessimistic locking
 strategy
	Lock rows that you SELECT if the results of the SELECT statement affect DML executed
 later in the transaction. Pessimistic locking is easy to
 implement and is a robust solution. However, issue SELECTs with FOR UPDATE as late in the transaction
 as possible to minimize duration of locks.

	Consider optimistic locking for
 throughput-critical transactions
	Optimistic locking requires more coding (to handle failed
 transactions) and may lead to user frustration if the optimism
 is misplaced. However, optimistic locking can reduce lock
 duration and thereby increase throughput for high-volume
 transactions.

	Explicitly commence transactions and avoid leaving
 transactions "dangling"
	Stored programs that issue transactional statements should
 generally take responsibility for commencing and terminating the
 transaction, rather than assuming that some external program is
 going to handle a COMMIT or
 ROLLBACK.

While these are reasonable guidelines, there are sometimes
 trade-offs that you will need to consider:
	Unlike any other MySQL statement, the COMMIT statement always requires a
 physical write to disk to complete. Therefore, although it is a
 good idea in general to commit as soon as some logical unit of
 work is completed, there is a strong performance incentive to
 commit infrequently when possible. This usually means that for
 OLTP operations, you commit when the logical transaction is
 complete, whereas in batch programs and bulk operations, you
 commit infrequently. We discuss the performance implications of
 COMMIT in Chapter 21.

	Checking all possible success criteria before issuing a DML
 statement might be overly expensive in some cases. It might be
 preferable to let a DML statement fail and then roll back to a
 savepoint under certain circumstances.

	The trade-offs for the optimistic and pessimistic locking
 strategies are heavily dependent on the characteristics of your
 application.

	Modular design considerations may sometimes lead you to
 write a stored program in such a way that the control of the
 overall transaction is delegated to a higher-level program.

Conclusion

In this chapter we looked at how to manage transactions in MySQL
 stored programs, allowing us to group together related database
 changes, applying them all or aborting them all as a single logical
 unit. Implementing transactions using stored programs is a fairly
 natural choice, since a stored program can encapsulate complex
 transaction logic into a single database call, providing good
 separation between database and application logic.
To use transactions in MySQL, you will need to create tables
 using one of the transactional storage engines—such as the InnoDB
 engine that ships with the MySQL standard distributions.
By default, transactions are disabled in MySQL; to enable them
 you need to either set AUTOCOMMIT=0
 or (recommended) commence a transaction with the START TRANSACTION statement. Transactions
 are normally terminated with a COMMIT or ROLLBACK statement, though be aware that
 certain DDL statements can cause implicit COMMITs to occur.
Savepoints can be used to partially roll back transactions in
 the event of an error. We believe, however, that the reliance on
 savepoints is justified in only a very few specific
 circumstances.
Transactional databases use locking mechanisms to prevent data inconsistencies or logical errors when
 rows are updated, inserted, and deleted. MySQL/InnoDB minimizes the
 overhead of these locking mechanisms by using an efficient row-level
 locking mechanism in which readers never block other readers or
 writers. Even with this row-level locking, though, you should
 construct your transactions to minimize the duration of any locks
 taken out as a result of DML statements or SELECTs with the FOR UPDATE or LOCK
 IN SHARE MODE clause.
In rare circumstances, errors can occur if a lock timeout is
 exceeded or if an irresolvable lock conflict arises (a deadlock).
 There are mechanisms for reducing the frequency with which these
 occur, but you may want to add exception handlers to your stored
 programs or restructure them to handle these occurrences.
Whenever you SELECT data that
 is used to construct DML statements later in a transaction, you need
 to ensure that the data is not changed between the time it is read and
 the time the read data is used to modify the database. Locking the
 data as it is read—a pessimistic locking strategy—is usually the
 simplest and most robust solution. However, an optimistic locking
 strategy—in which the data is confirmed just prior to the DML being
 applied—can reduce the duration of locks and improve transaction
 throughput in some circumstances.
Good transaction design can improve the reliability, integrity,
 and performance of your application. In general, transactions—and the
 duration of locks—should be kept as short as possible. However, the
 overriding consideration is to maintain data integrity and the
 reliability of transaction processing.

Chapter 9. MySQL Built-in Functions

This chapter provides a reference to the MySQL built-in functions that you can use in your MySQL stored programs.
 You can use virtually all of the MySQL functions that are available in
 SQL statements within stored programs, so if you are already familiar
 with traditional MySQL functions, you can safely skip this chapter.
 Because this is a reference chapter, we expect you will come back to it
 from time to time when you need to use a particular function—so don't
 feel guilty if you decide to skip or only briefly review this
 chapter.
In general, you can use any of the standard MySQL functions inside
 stored programs except those functions that work on groups or sets of
 data. These functions—often used in combination with the GROUP BY clause in a SQL statement—include
 MAX, MIN, COUNT, AVERAGE, and SUM. These functions are not applicable in
 stored programs (other than in SQL statements embedded in the programs)
 because stored program variables are scalar (consist of only a single
 value).
This chapter looks at the built-in functions that we anticipate you might want to use in stored
 programs; we describe these in the following categories:
	String functions

	Numeric functions

	Date and time functions

	Other functions

MySQL includes a huge number of built-in functions, however, so we
 can't cover all of them in depth; for a complete list, refer to the
 online MySQL Reference Manual (http://dev.mysql.com/doc/).
String Functions

String functions perform operations on string data types such as VARCHAR, CHAR, and TEXT.
ASCII

 string1=ASCII(string2)
ASCII returns the ASCII
 character code corresponding to the first character in the provided
 input string.
Since the ASCII function
 returns only the ASCII code for the first character, we can create a
 stored function to extend this capability to allow us to return the
 ASCII codes corresponding to all of the characters in the string.
 Example 9-1 shows an
 implementation of such a stored function. It uses the LENGTH and SUBSTR functions to extract each character
 in the input string, and then uses the ASCII and CONCAT functions to build up a string
 consisting of all of the ASCII codes corresponding to the entire
 input string.
Example 9-1. Using the ASCII function
CREATE FUNCTION ascii_string (in_string VARCHAR(80))
 RETURNS VARCHAR(256)
 DETERMINISTIC
BEGIN
 DECLARE i INT DEFAULT 1;
 DECLARE string_len INT;
 DECLARE out_string VARCHAR(256) DEFAULT '';

 SET string_len=LENGTH(in_string);
 WHILE (i<string_len) DO
 SET out_string=CONCAT(out_string,ASCII(SUBSTR(in_string,i,1)),' ');
 SET i=i+1;
 END WHILE;
 RETURN (out_string);

END

Query OK, 0 rows affected (0.00 sec)

SELECT ascii_string('MySQL Rocks!')

+---------------------------------------+
| ascii_string('MySQL Rocks!') |
+---------------------------------------+
| 77 121 83 81 76 32 82 111 99 107 115 |
+---------------------------------------+
1 row in set (0.00 sec)

CHAR

 string=CHAR(ascii code [,...])
CHAR returns the characters corresponding to one or more
 ASCII codes provided. Example
 9-2 uses the CHAR function
 to create a temporary table containing the ASCII characters for the
 first 128 ASCII codes.
Example 9-2. Using the CHAR function to generate an ASCII chart
CREATE PROCEDURE ascii_chart()
BEGIN
 DECLARE i INT DEFAULT 1;

 CREATE TEMPORARY TABLE ascii_chart
 (ascii_code INT, ascii_char CHAR(1));

 WHILE (i<=128) DO
 INSERT INTO ascii_chart VALUES(i,CHAR(i));
 SET i=i+1;
 END WHILE;

END

Query OK, 0 rows affected (0.01 sec)

CALL ascii_chart()

Query OK, 1 row affected (5.96 sec)

SELECT * FROM ascii_chart

+------------+------------+
| ascii_code | ascii_char |
+------------+------------+
1	☺
2	☻
3	♥
4	♦
5	♣
6	♠
7	
8	
9	
10	
11	♂
12	♀
13	
14	♬
15	☼
16	▸
17	◂
18	↕
19	!!
20	¶
21	§
22	--
23	_
24	↑
25	↓
26	→
27	←

CHARSET

 character_set=CHARSET(string)
CHARSET returns the
 character set of the supplied string.
 SET var1=CHARSET("My name is Guy") ; → latin1

CONCAT

 string1=CONCAT(string2 [,...])
CONCAT returns a string
 consisting of the concatenation of all of the supplied input
 strings. If any of the input strings is NULL, then CONCAT will also return NULL.
Example 9-3 uses
 the CONCAT function to create a
 well-formatted name including—if appropriate—title and middle
 initial. First, we use the ISNULL
 function to check for NULLs in the input string so as to avoid
 inadvertently returning a NULL string if one of the inputs is
 NULL.
Example 9-3. Using CONCAT to concatenate strings
CREATE FUNCTION concat_example(in_title VARCHAR(4),
 in_gender CHAR(1),
 in_firstname VARCHAR(20),
 in_middle_initial CHAR(1),
 in_surname VARCHAR(20))

 RETURNS VARCHAR(60)
BEGIN
 DECLARE l_title VARCHAR(4);
 DECLARE l_name_string VARCHAR(60);

 IF ISNULL(in_title) THEN
 IF in_gender='M' THEN
 SET l_title='Mr';
 ELSE
 SET l_title='Ms';
 END IF;
 END IF;

 IF ISNULL(in_middle_initial) THEN
 SET l_name_string=CONCAT(l_title,' ',in_firstname,' ',in_surname);
 ELSE
 SET l_name_string=CONCAT(l_title,' ',in_firstname,' ',
 in_middle_initial,' ',in_surname);
 END IF;

 RETURN(l_name_string);
END;

Query OK, 0 rows affected (0.00 sec)

SELECT concat_example(null,'F','Mary',null,'Smith')

+--+
| concat_example(null,'F','Mary',null,'Smith') |
+--+
| Ms Mary Smith |
+--+
1 row in set (0.00 sec)

If your database is running in ANSI mode (sql_mode='ANSI') or if the sql_mode variable includes the PIPES_AS_CONCAT setting, you can use the
 || (pipe) characters to concatenate strings. The use of pipe
 characters to indicate concatenation in stored programs is dependent
 on the setting of sql_mode when
 the stored program is created, not when it runs. So you can happily
 use the || method of concatenating strings provided that you set
 sql_mode='ANSI'when you create
 the program. If the program runs when sql_mode is set to some other value, the
 stored program will still return the correct results.
Example 9-4
 illustrates the use of ANSI mode and || characters to perform string
 concatenation. Note that while sql_mode was set to 'ANSI' when the stored function was
 created, the stored program still returned the correct results even
 though the sql_mode had been set
 to 'TRADITIONAL' at
 runtime.
Example 9-4. Using || to concatenate when sql_mode=ANSI
set sql_mode='ANSI'

Query OK, 0 rows affected (0.00 sec)

CREATE FUNCTION concat_example_ansi(
 in_title VARCHAR(4),
 in_gender CHAR(1),
 in_firstname VARCHAR(20),
 in_middle_initial CHAR(1),
 in_surname VARCHAR(20))

 RETURNS VARCHAR(60)
BEGIN
 DECLARE l_title VARCHAR(4);
 DECLARE l_name_string VARCHAR(60);

 IF ISNULL(in_title) THEN
 IF in_gender='M' THEN
 SET l_title='Mr';
 ELSE
 SET l_title='Ms';
 END IF;
 END IF;

 IF ISNULL(in_middle_initial) THEN
 SET l_name_string=l_title||' '||in_firstname||' '||in_surname;
 ELSE
 SET l_name_string=l_title||' '||in_firstname||' '||
 in_middle_initial||' '||in_surname;
 END IF;

 RETURN(l_name_string);
END;

Query OK, 0 rows affected (0.00 sec)

SET sql_mode='TRADITIONAL'

Query OK, 0 rows affected (0.00 sec)

SELECT concat_example_ansi(null,'F','Mary',null,'Smith')

+---+
| concat_example_ansi(null,'F','Mary',null,'Smith') |
+---+
| Ms Mary Smith |
+---+

CONCAT_WS

 string1=CONCAT_WS(delimiter,string2 [,...])
CONCAT_WS acts like the
 CONCAT function, but it inserts
 the specified delimiter between each string. Note in Example 9-3 that we manually
 inserted single space characters between each string, as shown
 below:
 SET l_name_string=CONCAT(l_title,' ',in_firstname,' ',
 in_middle_initial,' ',in_surname);
Using CONCAT_WS, we could
 simplify this statement as follows:
 SET l_name_string=CONCAT_WS(' ',l_title ,in_firstname ,
 in_middle_initial,in_surname);

INSERT

 string=INSERT(original_string,position,length,new_string)
INSERT inserts
 new_string into the
 original_string at the specified
 position, optionally overwriting up to
 length characters of the original
 string.
Example 9-5 shows
 how we might use the INSERT
 function to emulate the MySQL REPLACE function to implement "search and
 replace" functionality. We first use the INSTR function to find the location of the
 "find string" and then replace it with the "replace string." We set
 length to the length of the find string
 so that the find string is overwritten with the replace string, even
 if the two strings are of different lengths.
Example 9-5. Using the INSERT function
CREATE FUNCTION my_replace
 (in_string VARCHAR(255),
 in_find_str VARCHAR(20),
 in_repl_str VARCHAR(20))

 RETURNS VARCHAR(255)
BEGIN
 DECLARE l_new_string VARCHAR(255);
 DECLARE l_find_pos INT;

 SET l_find_pos=INSTR(in_string,in_find_str);

 IF (l_find_pos>0) THEN
 SET l_new_string=INSERT(in_string,l_find_pos,LENGTH(in_find_str),in_repl_str);
 ELSE
 SET l_new_string=in_string;
 END IF;
 RETURN(l_new_string);

END

Query OK, 0 rows affected (0.00 sec)

SELECT my_replace('We love the Oracle server','Oracle','MySQL')

+--+
| my_replace('We love the Oracle server','Oracle','MySQL') |
+--+
| We love the MySQL server |
+--+
1 row in set (0.00 sec)

INSTR

 position=INSTR(string,substring)
INSTR returns the location
 of the first occurrence of a substring within a string. If no
 occurrence of the substring is found, INSTR returns 0.
In Example 9-5 we
 used INSTR to locate the "find
 string" within a string prior to using INSERT to replace that string with the
 "replace string."

LCASE

 string1=LCASE(string2)
LCASE returns an input
 string with any of its uppercase letters translated to lowercase.
 Nonalphabetic characters are ignored.
Here are some examples of the effect of LCASE:
 SET a=LCASE('McTavish Jewelers'); → 'mctavish jewelers'
 SET b=LCASE('23rd June'); → '23rd june'

LEFT

 string=LEFT(string2,length)
LEFT returns the leftmost
 characters (the number is specified by
 length) in the input string.
 SET a=LEFT('Hi There',2); → 'Hi'

LENGTH

 characters=LENGTH(string)
LENGTH returns the number
 of bytes in the input string. For single-byte character sets (e.g.,
 English, Swedish), this is equivalent to the number of characters in
 the string. However, for multibyte character sets (e.g., Kanji,
 Klingon), you may be better off using the CHAR_LENGTH function, which returns the
 number of characters rather than the number of bytes.
 SET a=LENGTH(null); → NULL
 SET b=LENGTH(''); → 0
 SET c=LENGTH('Guy'); → 3
 SET d=LENGTH('Guy '); → 4

LOAD_FILE

 string=LOAD_FILE(file_name)
LOAD_FILE loads the
 contents of the specified file into a variable of a suitable data
 type—usually BLOB or TEXT. The file has to be accessible to the
 MySQL server—that is, the file needs to exist on the machine that
 hosts the MySQL server, and the server needs to have sufficient
 permissions to read the file.
Example 9-6 shows
 how we can use the LOAD_FILE
 function to load the contents of an operating system file and report
 the number of bytes loaded. Note that on Windows we need to use
 double-backslash characters, \\, instead of single slashes as
 directory separators. Thus, in order to specify the file 'c:\tmp\mydata.txt' we specified 'c:\\tmp\\mydata.txt'.
Example 9-6. Using LOAD_FILE to read an OS file
CREATE PROCEDURE filesize(in_file_name VARCHAR(128))

BEGIN
 DECLARE mytext TEXT;
 SET mytext=LOAD_FILE(in_file_name);
 SELECT in_file_name||' contains '||length(mytext)||' bytes'
 AS output;
END

Query OK, 0 rows affected (0.00 sec)

CALL filesize('c:\\tmp\\mydata.txt')

+-------------------------------------+
| output |
+-------------------------------------+
| c:\tmp\mydata.txt contains 98 bytes |
+-------------------------------------+
1 row in set (0.02 sec)

LOCATE

 position=LOCATE(substring, string [,start_position])
LOCATE is similar to the
 INSTR function in that it
 searches for the location of a substring within a string. However,
 it also allows us to specify a starting position for the search. If
 the substring is not found, LOCATE returns 0.
In Example 9-7 we
 use LOCATE to count the number of
 occurrences of a substring within a string. Once we find an instance
 of the substring, we set the starting position to just past that
 string and repeat until all instances of the substring have been
 found.
Example 9-7. Using LOCATE to find substrings
CREATE FUNCTION count_strings
 (in_string VARCHAR(256),in_substr VARCHAR(128))
 RETURNS INT
 DETERMINISTIC
BEGIN
 DECLARE l_count INT DEFAULT 0;
 DECLARE l_start INT DEFAULT 1;
 DECLARE l_pos INT;

 MainLoop:
 LOOP
 SET l_pos=LOCATE(in_substr,in_string,l_start);
 IF l_pos=0 THEN
 LEAVE MainLoop;
 ELSE
 SET l_count=l_count+1;
 SET l_start=l_pos+1;
 END IF;

 END LOOP;
 RETURN(l_count);
END

Query OK, 0 rows affected (0.00 sec)

SELECT count_strings('She sells sea shells by the sea shore','sea') as count

+-------+
| count |
+-------+
| 2 |
+-------+
1 row in set (0.00 sec)

LPAD

 string1=LPAD(string2,length,pad)
LPAD adds occurrences of
 the pad string to the input string until
 the output string reaches the specified
 length.
 SET a=LPAD('Hello',10,'.'); → '.....Hello'
 SET b=lpad('hi',10,'()'); → '()()()()hi'

LTRIM

 string1=LTRIM(string2)
LTRIM trims any leading
 spaces from a string.
 SET a=LTRIM(' Hello'); → 'Hello'

REPEAT

 string1=REPEAT(string2,count)
REPEAT returns a string in
 which the input string is repeated count
 times.
 SET a=REPEAT('Dive! ',3); → 'Dive! Dive! Dive!'

REPLACE

 string1=REPLACE(string2,search_string,replace_string)
REPLACE returns a string in
 which all occurrences of the
 search_string
 are replaced by the
 replace_string.
 SET a=REPLACE('Monty & David','&','and'); → 'Monty and David'

RPAD

 string1=RPAD(string2,length,pad)
RPAD adds a sequence of
 pad characters to the string up to the
 specified length.
 SET var1=RPAD("MySQL",10,".") ; → MySQL.....

RTRIM

 string1=RTRIM(string2)
RTRIM trims any trailing
 spaces from a string.
 SET a=RTRIM('Guy '); → 'Guy'

STRCMP

 position=STRCMP(string1,string2)
STRCMP compares two strings
 and determines if the first string is "before" or "after" the second
 string in the ASCII collation sequence. The function returns -1 if
 the first string is before the second string, 1 if the first string
 collates after the second string, and 0 if the two strings are
 identical.
 SET a=STRCMP('Guy','Guy') → 0
 SET b=STRCMP('Guy','Steven') → -1
 SET c=STRCMP('Steven','Guy') → 1

SUBSTRING

 string1=SUBSTRING(string2, position [,length])
SUBSTRING returns a portion
 of the supplied string starting at the specified
 position from the beginning of the string
 (starting at 1). If a negative position is specified, then the
 substring commences from the end of the string; for example, -2
 indicates the second to last character of the string. If
 length is omitted, SUBSTRING returns all of the remaining
 portion of the input string.
 SET a=SUBSTR('MySQL AB',7) → 'AB'
 SET b=SUBSTR('MySQL AB',-2) → 'AB'
 SET c=SUBSTR('MySQL AB',3,3) → 'SQL'

TRIM

 string1=TRIM([[BOTH|LEADING|TRAILING] [padding] FROM]string2)
TRIM strips leading and/or
 trailing characters from a string. By default, it trims both leading
 and trailing spaces.
 SET a=TRIM(LEADING '>' FROM '>>>>>>>>>Fred'); → 'Fred'
 SET b=TRIM(BOTH '-' FROM '---------Fred-------'); → 'Fred'
 SET c=TRIM(BOTH FROM ' Guy ') → 'Guy';
 SET d=TRIM(' Guy '); → 'Guy'

UCASE

 string1=UCASE(string2)
UCASE converts a string to
 uppercase.

Other String Functions

Table 9-1 lists
 the string functions not covered in previous sections. Some of these
 functions are aliases for functions we have already discussed, while
 others are rarely used in mainstream MySQL programming. You can find
 out more about these functions by reading the section "Functions and
 Operators" in the MySQL Reference Manual,
 available online.
Table 9-1. Additional string functions
	Function
	Syntax
	Description

	BINARY
	
 string1=BINARY(string2)
	Returns the binary representation
 of a string. This function can be used to force
 case-sensitive comparisons when they would otherwise not
 occur.

	BIT_LENGTH
	
 bits=BIT_LENGTH(string)
	Returns the number of bits in a
 string.

	CHAR_LENGTH
	
 length=CHAR_LENGTH(string)
	Returns the number of characters
 in a string. Like LENGTH,
 except that it returns the number of characters, rather than
 the number of bytes, for multibyte character
 sets.

	CHARACTER_LENGTH
	
 length=CHARACTER_LENGTH(string)
	Alias for CHAR_LENGTH.

	COMPRESS
	
 string1=COMPRESS(string2)
	Returns a compressed version of a
 string.

	DECODE
	
 string1=DECODE(string2,password)
	Decrypts a string that has been
 encrypted with ENCODE
 .

	ELT
	
 string1=ELT(number,string2[,...])
	Returns one of the elements in a
 list.

	ENCODE
	
 string1=ENCODE(string2,password)
	Encrypts a string. The string can
 be decrypted with DECODE.

	ENCRYPT
	
 string1=ENCRYPT(string2,seed)
	Encrypts a string. The string
 cannot be decrypted with DECODE.

	EXPORT_SET
	
 string=ENCODE_SET(number,on_string,
 off_string,seperator,no_of_bits)
	Returns the binary representation
 of a number encoded with strings for on and off
 bits.

	FIELD
	
 number=FIELD(string1,string2[,...])
	Searches for a string in a list of
 strings.

	INET_ATON
	
 number=INET_ATON(IPAddress)
	Converts an IP address into a
 numeric representation.

	INET_NTOA
	
 IPAddress=INET_NTOA(number)
	Converts a number into a
 corresponding IP address.

	LOWER
	
 string1=LOWER(string2)
	Synonym for LCASE.

	MID
	
 string1=MID(string2,start
 [,length])
	Returns a substring. Similar to
 SUBSTR.

	OCTET_LENGTH
	
 length=OCTET_LENGTH(string)
	Alias for LENGTH.

	ORD
	
 position=ORD(string)
	Returns the ordinal value of the
 character in the ASCII character set.

	PASSWORD
	
 string1=PASSWORD(string2)
	Encrypts the given string as a
 MySQL password.

	POSITION
	
 position=POSITION(substring
 IN string)
	Returns the position of the
 substring in the string. Similar to LOCATE.

	QUOTE
	
 string1=QUOTE(string2)
	Returns a string with special
 characters preceded by an escape character.

	REVERSE
	
 string1=REVERSE(string2)
	Reverses the order of characters
 in a string.

	RIGHT
	
 string1=RIGHT(string2,length)
	Returns the rightmost portion of a
 string.

	SHA
	
 string1=SHA(string2)
	Returns a 160-bit Secure Hash
 Algorithm (SHA) checksum for the string.

	SHA1
	
 string1=SHA1(string2)
	Alias for SHA.

	SOUNDEX
	
 string1=SOUNDEX(string2)
	Returns the SOUNDEX for a string.
 In theory, two strings that "sound alike" will have similar
 SOUNDEX values.

	SPACE
	
 spaces=SPACE(count)
	Returns the specified number of
 space characters.

	SUBSTRING_INDEX
	
 string1=SUBSTRING_INDEX(string2,
 delimiter,count)
	Returns a string from a
 character-delimited set of strings.

	UNCOMPRESSED_LENGTH
	
 length=UNCOMPRESSED_LENGTH(
 compressed_string)
	Returns the length of a compressed
 string as if it were decompressed.

	UNCOMPRESS
	
 string1=UNCOMPRESS(string2)
	Reverses the effect of COMPRESS.

	UNHEX
	
 character=UNHEX(HexNumber)
	Converts a hexadecimal number to
 its ASCII equivalent.

	UPPER
	
 string1=UPPER(string2)
	Converts a string to uppercase.
 Synonym for UCASE.

Numeric Functions

 Numeric functions perform operations on
 numeric data types such as INT and FLOAT.
ABS

 number1=ABS(number2)
ABS returns the absolute
 value of a number—that is, the magnitude of the value ignoring any
 minus sign.
 SET var1=ABS(2.143); → 2.143
 SET var2=ABS(-10); → 10
 SET var3=ABS(10); → 10
 SET var4=ABS(-2.3); → 2.3

BIN

 binary_number=BIN(decimal_number)
BIN returns the binary
 (base 2) representation of an integer value.
 SET var1=BIN(1); → 1
 SET var2=BIN(2); → 10
 SET var3=BIN(3); → 11
 SET var4=BIN(45); → 101101

CEILING

 number1=CEILING(number2)
CEILING returns the next
 integer number that is higher than the input floating-point
 number.
 SET var1=CEILING(3.5); → 4
 SET var2=CEILING(-3.5); → -3

CONV

 number1=CONV(number2,from_base,to_base)
CONV converts numbers from one base system to another.
 Although CONV is, in essence, a
 numeric function, it may return values that you may need to deal
 with as strings (e.g., hexadecimal numbers).
The following CONV
 statements convert the number 45 (base 10) into binary (base 2),
 hexadecimal (base 16), and octal (base 8):
 SET var1=CONV(45,10,2); → 101101
 SET var2=CONV(45,10,16); → 2D
 SET var3=CONV(45,10,8) ; → 55
These statements convert the number 45 (base 2) into base 10,
 and converts 45 (base 8) into base 2:
 SET var4=CONV(101101,2,10); → 45
 SET var5=CONV(55,8,2); → 101101

FLOOR

 number1=FLOOR(number2)
FLOOR returns the largest
 integer value not greater than X.
 SET var1=FLOOR(3.5); → 3
 SET var2=FLOOR(-3.5); → -4

FORMAT

 string=FORMAT(number,decimal_places)
FORMAT returns a string
 representation of a number with comma separators at each thousand
 and with the specified number of decimal places.
 SET var1=FORMAT(21321.3424,2); → 21,321.34

HEX

 HexNumber=HEX(DecimalNumber)
HEX returns the hexadecimal
 representation of a number.
 SET var1=HEX(9); → 9
 SET var2=HEX(11); → B
 SET var3=HEX(32); → 20

LEAST

 number1=LEAST(number, number2 [,..])
LEAST returns the number in
 the input series with the smallest numerical value.
 SET var1=LEAST(32,432,-2,-1.4); → -2

MOD

 remainder=MOD(numerator,denominator)
MOD returns the remainder
 (modulus) when the first number is divided by the second
 number.
MOD is particularly handy
 when you want something to happen at regular intervals in a loop.
 For instance, Example 9-8
 purges (deletes) rows from the LOG_ARCHIVE table based on some criteria.
 As we discuss in Chapter 22,
 reducing commit frequency is an important optimization for
 transactional storage engines such as InnoDB. However, we do want to
 commit at regular intervals; otherwise, we risk losing all the work
 if the program fails midway through execution.
So Example 9-8
 calculates the modulus of the delete count divided by 100. If this
 modulus is 0—which happens every 100 rows—a COMMIT is issued. The end result is that
 the program commits the delete operations every 100 rows.
Example 9-8. Using the MOD function to perform periodic COMMITs
CREATE PROCEDURE bulk_processing_example()
 MODIFIES SQL DATA
BEGIN
 DECLARE delete_count INT DEFAULT 0;
 DECLARE last_row INT DEFAULT 0;
 DECLARE l_rec_id INT;

 DECLARE c1 CURSOR FOR SELECT rec_id FROM log_archive;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET last_row=1;

 OPEN c1;
 MainLoop:
 LOOP
 FETCH c1 INTO l_rec_id;
 IF last_row THEN
 LEAVE MainLoop;
 END IF;
 IF purge_due(l_rec_id) THEN
 DELETE FROM log_archive WHERE rec_id=l_rec_id;
 SET delete_count=delete_count+1;
 IF MOD(delete_count,100)=0 THEN
 COMMIT;
 END IF;
 END IF;
 END LOOP MainLoop;
 CLOSE c1;

END;

You can also calculate a modulus using
 numerator % denominator
 or numerator MOD
 denominator. Thus, these three
 assignments are all equivalent:
 SET var1=MOD(5,3); → 2
 SET var2=5%3; → 2
 SET var3=5 MOD 3 ; → 2

POWER

 result=POWER(number,power)
POWER returns the result of
 raising the first number to the power of the second number. You can
 use POW as a synonym for POWER.
 SET var1=POWER(3,2); → 9 (3*3)
 SET var2=POWER(2,3); → 8 (2*2*2)
 SET var3=POWER(4,.5); → 2 (square root of 4)
 SET var4=POWER(10,-2); → 0.01
 SET var5=POWER(10,-3); → 0.001
 SET var6=POW(2,2); → 4

RAND

 number=RAND([seed])
RAND returns a random
 floating-point number between 0 and 1. If
 seed is specified, it is used to
 initialize the random-number generator, which lets you avoid
 generating repeatable sequences.
 SET var1=RAND(); → 0.86494333191304
 SET var2=RAND(); → 0.96148952838172
 SET var3=RAND(5); → 0.40613597483014
 SET var4=RAND(); → 0.21261767690314
 SET var5=RAND(5) ; → 0.40613597483014
 SET var6=RAND(); → 0.17861983010417
RAND can be used within
 stored programs to generate or select random table data. For
 instance, in Example 9-9,
 we use the RAND function to
 randomly select the employee of the week (and you thought we based
 it on performance!). We first find the maximum employee_id and then generate a random
 number between 1 and that number. Since RAND returns a floating-point number
 between 0 and 1, we multiply that number by the maximum employee
 number, generating a number between 0 and the maximum employee
 number. Next, we use FLOOR to
 convert the number to an integer value, and then add 1 to avoid
 generating an employee_id of
 0.
Example 9-9. Using the RAND function to retrieve random rows
CREATE PROCEDURE select_winner()
 READS SQL DATA
BEGIN
 DECLARE winner_id INT;
 DECLARE max_employee_id INT;
 DECLARE winner_name VARCHAR(70);

 SELECT MAX(employee_id)
 INTO max_employee_id
 FROM employees;

 SET winner_id=FLOOR(RAND()*max_employee_id)+1;

 SELECT CONCAT_WS(' ','Employee of the week is',firstname,surname)
 FROM employees
 WHERE employee_id=winner_id;
END;

ROUND

 integer=ROUND(number [,decimals])
ROUND converts a
 floating-point number to the nearest integer value or—if the second
 argument is specified—to the specified number of decimal
 points.
 SET var1=PI(); → 3.141593
 SET var2=ROUND(PI()); → 3
 SET var3=ROUND(PI(),4); → 3.1416
 SET var5=ROUND(4.49); → 4
 SET var6=ROUND(4.51); → 5

SIGN

 number1=SIGN(number2)
SIGN returns -1 if a number
 is less than 0, 0 if the number is 0, and 1 if the number is greater
 than 0.
 SET var1=SIGN(-5); → -1
 SET var2=SIGN(0); → 0
 SET var3=SIGN(5); → 1

SQRT

 number1=SQRT(number2)
SQRT returns the square
 root of a number. It is equivalent to POWER(number
 ,.5).
 SET var1=SQRT(4); → 2
 SET var2=SQRT(64); → 8
 SET var3=POWER(64,.5); → 8

Other Numeric Functions

Table 9-2 lists
 additional numeric functions. These functions are rarely used in
 mainstream MySQL applications; in this category are the
 trigonometric and logarithmic functions that you probably studied in
 high school and have never used since!
Table 9-2. Additional numeric functions
	Function
	Syntax
	Description

	ACOS
	
 number1=ACOS(number2)
	Arc cosine of a
 number.

	ASIN
	
 number1=ASIN(number2)
	Arc sine of a
 number.

	ATAN
	
 number1=ATAN(number2)
	Arc tangent of a
 number.

	COT
	
 number1=COT(number2)
	Cotangent of a
 number.

	CRC32
	
 number=CRC32(string)
	Cyclic redundancy check value for
 a string.

	DEGREES
	
 degrees=DEGREES(radians)
	Converts radians to
 degrees.

	EXP
	
 number1=EXP(number2)
	Natural logarithm (base
 e) to the power of a
 number.

	LN
	
 number1=LN(number2)
	Natural logarithm of a
 number.

	LOG
	
 number1=LOG(number2,base)
	Logarithm of a number in the base
 specified.

	LOG10
	
 number=LOG10(number2)
	Base 10 logarithm of a
 number.

	LOG2
	
 number1=LOG2(number)
	Base 2 logarithm of a
 number.

	PI
	
 number=PI()
	Returns the value of
 PI.

	RADIANS
	
 radians=RADIANS(degrees)
	Converts radians to
 degrees.

	SIN
	
 number1=SIN(number2)
	Sine of a number (expressed in
 radians).

	TAN
	
 number1=TAN(number2)
	Tangent of a number expressed in
 radians.

Date and Time Functions

 Date and time functions operate on MySQL date-time data
 types such as DATE and DATETIME.
ADDTIME

 date1=ADDTIME(date2,time_interval)
ADDTIME adds the specified
 time interval to the date-time provided and returns the amended
 date. Time intervals are specified in the format
 hh:mm:ss.hh, so you can add any time interval
 down to one-hundredth of a second.
 SET var1=NOW(); → 2005-07-21 18:56:46
 SET var2=ADDTIME(NOW(),"0:00:01.00"); → 2005-07-21 18:56:47
 SET var3=ADDTIME(NOW(),"0:01:00.00"); → 2005-07-21 18:57:46
 SET var4=ADDTIME(NOW(),"1:00:00.00") ; → 2005-07-21 19:56:46

CONVERT_TZ

 datetime1=CONVERT_TZ(datetime2,fromTZ,toTZ)
This function converts a date-time value from one time zone to
 another. The valid time zone values can be found in the table
 mysql.time_zone_name.
You may have to load the MySQL time zone tables; for
 instructions, see the MySQL manual section "MySQL Server Time Zone
 Support."

CURRENT_DATE

 date=CURRENT_DATE()
CURRENT_DATE returns the
 current date. It does not show the time.
 SET var1=CURRENT_DATE(); → 2005-07-21

CURRENT_TIME

 time=CURRENT_TIME()
CURRENT_TIME returns the
 current time. It does not show the date.
 SET var1=CURRENT_TIME(); → 22:12:21

CURRENT_TIMESTAMP

 timestamp=CURRENT_TIMESTAMP()
CURRENT_TIMESTAMP returns
 the current date and time in the format yyyy-mm-dd
 hh:mm:ss.
 SET var1=CURRENT_TIMESTAMP(); → 2005-07-21 22:15:02

DATE

 date=DATE(datetime)
DATE returns the date part
 of a date-time value.
 SET var1=NOW(); → 2005-07-23 12:08:52
 SET var2=DATE(var1) ; → 2005-07-23

DATE_ADD

 date1=DATE_ADD(date2, INTERVAL interval_value interval_type)
DATE_ADD returns the
 date-time that results from adding the specified interval to the
 date-time provided. Possible intervals are listed in Table 9-3.
 SET var1=NOW(); → 2005-07-20 22:33:21
 SET var2=DATE_ADD(NOW(), INTERVAL 7 DAY); → 2005-07-27 22:33:21
 SET var3=DATE_ADD(NOW(), INTERVAL 0623 DAY_HOUR) ; → 2005-08-15 21:33:21
 SET var4=DATE_ADD(NOW(), INTERVAL 06235959 DAY_SECOND) ; → 2005-10-01 02:46:00
 SET var5=DATE_ADD(NOW(), INTERVAL 2 MONTH); → 2005-09-20 22:33:21
 SET var6=DATE_ADD(NOW(), INTERVAL 10 YEAR); → 2015-07-20 22:33:21
 SET var7=DATE_ADD(NOW(), INTERVAL 3600 SECOND); → 2005-07-20 23:33:21
Table 9-3. Date-time formats for DATE_ADD and DATE_SUB
	Interval name
	Interval format

	DAY
	 dd

	DAY_HOUR
	 ddhh

	DAY_MINUTE
	 dd
 hh:mm

	DAY_SECOND
	 dd
 hh:mm:ss

	HOUR
	 hh

	HOUR_MINUTE
	 hh:mm

	HOUR_SECOND
	
 hh:mm:ss

	MINUTE
	 mm

	MINUTE_SECOND
	 mm:ss

	MONTH
	 mm

	SECOND
	 ss

	YEAR
	 yyyy

DATE_FORMAT

 string=DATE_FORMAT(datetime,FormatCodes)
DATE_FORMAT accepts a
 date-time value and returns a string representation of the date in
 the desired format. Format codes are shown in Table 9-4.
 SET var1=NOW(); → 2005-07-23 13:28:21
 SET var2=DATE_FORMAT(NOW(),"%a %d %b %y"); → Sat 23 Jul 05
 SET var3=DATE_FORMAT(NOW(),"%W, %D %M %Y"); → Saturday, 23rd July 2005
 SET var4=DATE_FORMAT(NOW(),"%H:%i:%s") ; → 13:28:21
 SET var5=DATE_FORMAT(NOW(),"%T"); → 13:28:21
 SET var6=DATE_FORMAT(NOW(),"%r"); → 01:28:22 PM
Table 9-4. Format codes for DATE_FORMAT
	Code
	Explanation

	%%
	The % sign

	%a
	Short day of the week
 (Mon-Sun)

	%b
	Short month name
 (Jan-Feb)

	%c
	Month number (1-12)

	%d
	Day of the month
 (1-31)

	%D
	Day of the month with suffix (1st,
 2nd, 3rd, etc.)

	%e
	Day of the month, numeric
 (1-31)

	%h
	12-hour clock hour of the day
 (1-12)

	%H
	24-hour clock hour of the day
 (00-23)

	%i
	Minute of the hour
 (00...59)

	%I
	12-hour clock hour of the day
 (1-12)

	%j
	Day of the year
 (1-365)

	%k
	24-hour clock hour of the day
 (00-23)

	%l
	12-hour clock hour of the day
 (1-12)

	%m
	Month of the year
 (1-12)

	%M
	Long month name
 (January-December)

	%p
	AM/PM

	%r
	Hour, minute, and second of the
 day, 12-hour format (hh:mm:ss
 AM|PM)

	%s
	Seconds within a minute
 (0-59)

	%S
	Seconds within a minute
 (0-59)

	%T
	Hour, minute, and second of the
 day, 24-hour format
 (HH:mm:ss)

	%u
	Week of the year (0-52) (Monday is
 the first day of the week)

	%U
	Week of the year (0-52) (Sunday is
 the first day of the week)

	%v
	Week of the year (1-53) (Monday is
 the first day of the week)

	%V
	Week of the year (1-53) (Sunday is
 the first day of the week)

	%w
	Numeric day of the week (0=Sunday,
 6=Saturday)

	%W
	Long weekday name (Sunday,
 Saturday)

	%y
	Year, numeric, 2
 digits

	%Y
	Year, numeric, 4
 digits

DATE_SUB

 date1=DATE_SUB(date2, INTERVAL interval_value interval_type)
DATE_SUB returns the
 date-time resulting from subtracting the specified interval from the
 date-time provided. Possible intervals are listed in Table 9-3.
Example 9-10 shows
 a stored procedure that determines if an employee's date of birth
 indicates an age of greater than 18 years. DATE_SUB is used to create a date 18 years
 earlier than the current date. This date is compared to the date of
 birth and, if it is earlier, we can conclude that the employee is
 less than 18 years old.
Example 9-10. Using DATE_SUB
CREATE PROCEDURE validate_age
 (in_dob DATE,
 OUT status_code INT,
 OUT status_message VARCHAR(30))
BEGIN

 IF DATE_SUB(now(), INTERVAL 18 YEAR) <in_dob THEN
 SET status_code=-1;
 SET status_message="Error: employee is less than 18 years old";
 ELSE
 SET status_code=0;
 SET status_message="OK";
 END IF;
END;

DATEDIFF

 days=DATEDIFF(date1,date2)
DATEDIFF returns the number
 of days between two dates. If date2 is
 greater than date1, then the result will
 be negative; otherwise, it will be positive.
Example 9-11 uses
 DATEDIFF to calculate the number
 of days that have elapsed since a bill due date, and returns
 appropriate status and messages if the bill is more than 30 or 90
 days old.
Example 9-11. Using DATEDIFF
CREATE PROCEDURE check_billing_status
 (in_due_date DATE,
 OUT status_code INT,
 OUT status_message VARCHAR(30))
BEGIN
 DECLARE days_past_due INT;

 SET days_past_due=FLOOR(DATEDIFF(now(),in_due_date));
 IF days_past_due>90 THEN
 SET status_code=-2;
 SET status_message='Bill more than 90 days overdue';
 ELSEIF days_past_due >30 THEN
 SET status_code=-1;
 SET status_message='Bill more than 30 days overdue';
 ELSE
 SET status_code=0;
 SET status_message='OK';

 END IF;
END;

DAY

 day=DAY(date)
DAY returns the day of the
 month (in numeric format) for the specified date.
 SET var1=NOW(); → 2005-07-23 13:47:13
 SET var2=DAY(NOW()); → 23

DAYNAME

 day=DAYNAME(date)
DAYNAME returns the day of
 the week—as in Sunday, Monday, etc.—for the specified date.
 SET var1=NOW(); → 2005-07-23 13:50:02
 SET var2=DAYNAME(NOW()); → Saturday

DAYOFWEEK

 day=DAYOFWEEK(date)
DAYOFWEEK returns the day
 of the week as a number, where 1 returns Sunday.
 SET var1=NOW(); → 2005-07-23 13:53:07
 SET var2=DATE_FORMAT(NOW(),"%W, %D %M %Y"); → Saturday, 23rd July 2005
 SET var3=DAYOFWEEK(NOW()); → 7

DAYOFYEAR

 day=DAYOFYEAR(date)
DAYOFYEAR returns the day
 of the year as a number, where 1-JAN returns 1 and 31-DEC returns 365 (except in leap years,
 where it returns 366).
 SET var1=NOW(); → 2005-07-23 13:55:57
 SET var2=DAYOFYEAR(NOW()); → 204

EXTRACT

 date_part=EXTRACT(interval_name FROM date)
EXTRACT returns a specified
 portion of a date-time. The applicable intervals are shown in Table 9-3.
 SET var1=NOW(); → 2005-07-23 14:01:03
 SET var2=EXTRACT(HOUR FROM NOW()); → 14
 SET var3=EXTRACT(YEAR FROM NOW()); → 2005
 SET var4=EXTRACT(MONTH FROM NOW()); → 7
 SET var5=EXTRACT(HOUR_SECOND FROM NOW()); → 140103
 SET var6=EXTRACT(DAY_MINUTE FROM NOW()); → 231401

GET_FORMAT

 format=GET_FORMAT(datetime_type,locale)
GET_FORMAT returns a set of
 date formatting code—suitable for use with DATE_FORMAT—for various date-time types
 and locales.
Format type can be one of the following:
	DATE

	TIME

	DATETIME

	TIMESTAMP

Format code can be one of the following:
	INTERNAL

	ISO

	JIS

	USA

	EUR

 SET var1=GET_FORMAT(DATE,"USA"); → %m.%d.%Y
 SET var2=GET_FORMAT(DATE,"ISO"); → %Y-%m-%d
 SET var3=GET_FORMAT(DATETIME,"JIS") ; → %Y-%m-%d %H:%i:%s
 SET var4=NOW(); → 2005-07-24 13:27:58
 SET var5=DATE_FORMAT(NOW(),GET_FORMAT(DATE,"USA")); → 07.24.2005

MAKEDATE

 date=MAKEDATE(year,day)
MAKEDATE takes the year
 (YYYY) and day-of-year arguments and converts them to a date value.
 The day-of-year argument is in the form that would be returned by
 DAYOFYEAR.
 SET var1=MAKEDATE(2006,1); → 2006-01-01
 SET var2=MAKEDATE(2006,365); → 2006-12-31
 SET var3=MAKEDATE(2006,200); → 2006-07-19

MAKETIME

 time=MAKETIME(hour,minute,second)
MAKETIME takes the hour,
 minute, and second arguments and returns a time value.
 SET var4=MAKETIME(16,30,25); → 16:30:25
 SET var5=MAKETIME(0,0,0); → 00:00:00
 SET var6=MAKETIME(23,59,59); → 23:59:59

MONTHNAME

 monthname=MONTHNAME(date)
MONTHNAME returns the full
 name of the month corresponding to the provided date.
 SET var1=NOW(); → 2005-07-24 13:44:54
 SET var2=MONTHNAME(NOW()); → July

NOW

 datetime=NOW()
NOW returns the current
 date and time. We have used this function in many previous examples
 as input to date and time functions.

SEC_TO_TIME

 time=SEC_TO_TIME(seconds)
SEC_TO_TIME returns a time
 value for a given number of seconds. The time is shown in hours,
 minutes, and seconds.
 SET var1=SEC_TO_TIME(1); → 00:00:01
 SET var2=SEC_TO_TIME(3600); → 01:00:00
 SET var3=SEC_TO_TIME(10*60*60); → 10:00:00

STR_TO_DATE

 date=STR_TO_DATE(string,format)
STR_TO_DATE takes a string
 representation of a date (as might be returned by DATE_FORMAT) and returns a standard
 date data type in the format specified by
 the format argument. The format string is
 the same as that used in DATE_FORMAT; possible values are listed in
 Table 9-4.
 SET var1=STR_TO_DATE("Sun 24 Jul 05","%a %d %b %y"); → 2005-07-24
 SET var2=STR_TO_DATE("Sunday, 24th July 2005","%W, %D %M %Y"); → 2005-07-24
 SET var3=STR_TO_DATE("3:53:54","%H:%i:%s"); → 03:53:54
 SET var4=STR_TO_DATE("13:53:54","%T"); → 13:53:54
 SET var5=STR_TO_DATE("01:53:54 PM","%r"); → 13:53:54

TIME_TO_SEC

 seconds=TIME_TO_SEC(time)
TIME_TO_SEC returns the
 number of seconds in the specified time
 value. If a date-time is provided, TIME_TO_SEC provides the number of seconds
 in the time part of that date only.
 SET var1=NOW(); → 2005-07-24 14:05:21
 SET var2=TIME_TO_SEC("00:01:01"); → 61
 SET var3=TIME_TO_SEC(NOW()); → 50721

TIMEDIFF

 time=TIMEDIFF(datetime1,datetime2)
TIMEDIFF returns the time
 difference between two arguments specified as date-time data
 types.
 SET var1=TIMEDIFF("2005-12-31 00:00:01","2005-12-31 23:59:59"); → -23:59:58

TIMESTAMP

 datetime=TIMESTAMP(date,time)
TIMESTAMP returns a
 date-time value from a specified date and time.
 SET var2=TIMESTAMP("2005-12-31","23:30:01"); → 2005-12-31 23:30:01

TIMESTAMPADD

 date_time=TIMESTAMPADD(interval_type,interval_value,date_time)
TIMESTAMPADD adds the
 specified interval_value, which is of the
 interval_type data type, to the
 datetime provided and returns the
 resulting date-time.
Possible values for interval_type
 are listed in Table
 9-3.
 SET var1=NOW(); → 2005-07-31 16:08:18
 SET var2=TIMESTAMPADD(YEAR,100,NOW()); → 2105-07-31 16:08:18
 SET var3=TIMESTAMPADD(HOUR,24,NOW()); → 2005-08-01 16:08:18

TIMESTAMPDIFF

 interval_value=TIMESTAMPDIFF(interval_type,date_time1,date_time2)
TIMESTAMPDIFF returns the
 difference between two date-times, expressed in terms of the
 specified interval_type.
 SET var1=NOW(); → 2005-07-31 16:12:30
 SET var2=TIMESTAMPDIFF(YEAR,NOW(),"2006-07-31 18:00:00"); → 1
 SET var3=TIMESTAMPDIFF(HOUR,NOW(),"2005-08-01 13:00:00"); → 20

WEEK

 number=WEEK(date_time[,start_of_week])
WEEK returns the number of
 weeks since the start of the current year. Weeks are considered to
 start on Sunday unless you specify an alternative start day
 (1=Monday) in the second argument.
 SET var1=NOW(); → 2005-07-31 16:20:09
 SET var2=WEEK(NOW()); → 31

WEEKDAY

 number=WEEKDAY(date)
WEEKDAY returns the number
 for the current day of the week, with Monday returning a value of
 0.
 SET var1=NOW(); → 2005-07-31 16:22:05
 SET var2=DAYNAME(NOW()); → Sunday
 SET var3=WEEKDAY(NOW()); → 6

YEAR

 number=YEAR(datetime)
YEAR returns the year
 portion of the datetime argument, which
 is specified in date-time format.
 SET var1=NOW(); → 2005-07-31 16:27:12
 SET var2=YEAR(NOW()); → 2005

YEARWEEK

 YearAndWeek=YEARWEEK(datetime[,StartOfWeek])
YEARWEEK returns the year
 and week of the year for the given date. Weeks are considered to
 start on Sunday unless you specify an alternative start day
 (1=Monday) in the second argument.
 SET var1=NOW(); → 2005-07-31 16:30:24
 SET var2=DAYNAME(NOW()); → Sunday
 SET var3=YEARWEEK(NOW()); → 200531
 SET var4=YEARWEEK(NOW(),1); → 200530

Other Date and Time Functions

Table 9-5 lists
 date and time functions not discussed in previous sections. Some of
 these are synonyms for functions we have discussed above, while
 others are rarely required in MySQL programming.
Table 9-5. Additional date-time functions
	Function
	Syntax
	Description

	ADDDATE
	
 datetime=ADDDATE(date,interval_value,
 intervaltype)
	Synonym for DATE_ADD.

	CURDATE
	
 datetime=CURDATE(
)
	Alias for NOW.

	CURTIME
	
 time=CURTIME()
	Current time.

	DAYOFMONTH
	
 day=DAYOFMONTH(datetime)
	Day of the month.

	FROM_DAYS
	
 days=FROM_DAYS(datetime)
	Number of days since the start of
 the current calendar.

	HOUR
	
 number=HOUR(datetime)
	Hour of the day for the given
 date.

	LAST_DAY
	
 date=LAST_DAY(date)
	Returns the last day of the month
 for the given date.

	LOCALTIME
	
 datetime=LOCALTIME(
)
	Synonym for NOW.

	LOCALTIMESTAMP
	
 datetime=LOCALTIMESTAMP(
)
	Synonym for NOW.

	MICROSECOND
	
 microseconds=MICROSECOND(datetime)
	Microsecond portion of the
 provided time.

	MINUTE
	
 minute=MINUTE(datetime)
	Minute part of the given
 time.

	MONTH
	
 month=MONTH(datetime)
	Month part of the given
 time.

	PERIOD_ADD
	
 date=PERIOD_ADD(year_month,
 months)
	Adds the specified number of
 months to the provided year_month
 value.

	PERIOD_DIFF
	
 date=PERIOD_DIFF(
 year_month_1,year_month_2)
	Returns the number of months
 between the two year_month values
 provided.

	QUARTER
	
 quarter=QUARTER(datetime)
	Returns the quarter of the given
 date.

	SECOND
	
 seconds=SECOND(datetime)
	Returns the seconds portion of the
 provided datetime.

	SUBDATE
	
 date1=SUBDATE(date2,
 interval_value, interval_type)
	Synonym for DATE_SUB.

	SUBTIME
	
 datetime1=SUBTIME(datetime2,
 time)
	Subtracts the
 time from the
 datetime.

	SYSDATE
	
 datetime=SYSDATE(
)
	Synonym for NOW.

	TO_DAYS
	
 datetime=TO_DAYS(days)
	Adds the
 days argument to the start of the
 standard calendar.

	WEEKOFYEAR
	
 week=WEEKOFYEAR(datetime)
	Synonym for WEEK.

Other Functions

 The miscellaneous built-in functions described in the
 following sections perform operations that do not fall into the
 categories described in earlier sections.
BENCHMARK

 zero=BENCHMARK(no_of_repeats, expression)
BENCHMARK executes the
 specified expression repeatedly. It is intended to be used to
 benchmark MySQL performance. This function has very little
 applicability in a stored program context, although in theory you
 could use it to repeatedly execute a stored program.

COALESCE

 value=COALESCE(value[,...])
COALESCE returns the first
 non-NULL value in the provided list of values.
 SET var1=1; → 1
 SET var2=2; → 2
 SET var3=NULL; →
 SET var4=COALESCE(var1,var2,var3); → 1
 SET var5=COALESCE(var3,var2,var1) ; → 2

CURRENT_USER

 username=CURRENT_USER()
CURRENT_USER returns the
 username and hostname of the current MySQL user. It may report a
 different value from that returned by USER, since the USER function reports the connection
 requested by the user, rather than the connection that was actually
 used.
 SET var1=CURRENT_USER(); → root@%
 SET var2=USER(); → root@mel601439.quest.com

DATABASE

 database_name=DATABASE()
DATABASE returns the name
 of the database currently in use.
 USE prod;
 SET var1=database(); → prod

GET_LOCK

 return_code=GET_LOCK(lock_name,timeout)
GET_LOCK allows you to
 define and acquire a user-defined lock. The
 lock_name can be a string of your choice.
 GET_LOCK will attempt to acquire
 the lock; then, if no other session holds the lock, it will return
 1. If the lock is held by another session, GET_LOCK will wait until
 timeout seconds has elapsed; then, if the
 lock can still not be acquired, it will return 0.
Only one "user" lock can be held at any time—that is, each
 invocation of GET_LOCK releases
 any previous locks.
GET_LOCK can be used to
 ensure that only one copy of a stored program is executing a
 particular segment of code at any one time. Note, however, that for
 most activities that might be performed by a stored program, table
 locking is preferable.
Example 9-12
 provides an example of both the GET_LOCK and RELEASE_LOCK functions.
Example 9-12. Example of GET_LOCK and RELEASE_LOCK
CREATE PROCEDURE sp_critical_section()

 BEGIN
 DECLARE lock_result INT;

 IF get_lock('sp_critical_section_lock',60) THEN
 /* This block can only be run by one user at a time*/
 SELECT 'got lock';
 /* Critical code here */
 SET lock_result=release_lock('sp_critical_section_lock');
 ELSE
 SELECT 'failed to acquire lock';
 /* Error handling here */
 END IF;
 END;

IFNULL

 value1=IFNULL(value2,nullvalue)
IFNULL returns the value
 provided as value2. If that value is
 NULL, it returns the value provided in the second argument.

INTERVAL

 position=INTERVAL(search,number, ...)
INTERVAL returns the
 position (starting at 0) that the search
 value would take within the specified list of
 numbers. The list must be in ascending
 order.
 SET var2=INTERVAL(20,5,10,30,50); → 2

IS_FREE_LOCK

 integer=IS_FREE_LOCK(string)
IF_FREE_LOCK returns 1 if
 the specified user-defined lock is available (e.g., not locked) and
 0 if the lock is taken. See GET_LOCK.

ISNULL

 integer=ISNULL(value)
ISNULL returns 1 if the
 parameter value is NULL and returns 0 otherwise.

NULLIF

 value1=NULLIF(value2,value3)
NULLIF returns NULL if the
 two values provided are equal. Otherwise, it returns the first
 value.

RELEASE_LOCK

 integer=RELEASE_LOCK(string)
RELEASE_LOCK releases a
 lock acquired by the GET_LOCK
 function. See GET_LOCK for more
 details and an example of usage.

SESSION_USER

Synonym for USER .

SYSTEM_USER

Synonym for USER.

USER

 username=USER()
USER returns the username
 and hostname for the current MySQL connection. This function reports
 the username and hostname that were used to establish the
 connection, while the CURRENT_USER function reports the username
 from the mysql.user table that is
 actually in use.
 SET var1=CURRENT_USER(); → root@%
 SET var2=USER(); → root@mel601439.quest.com

UUID

 string=UUID()
UUID returns a 128-bit
 Universal Unique Identifier (UUID). Each invocation of UUID returns a unique value. Part of the
 UUID is generated from your computer name and part from the current
 date and time. Therefore, you can be quite confident that UUIDs are
 unique across the world (subject to the very small chance that a
 computer with your exact configuration generated a UUID at the exact
 same time).
 SET var1=UUID(); → 7a89e3d9-52ea-1028-abea-122ba2ad7d69
 SET var2=UUID(); → 7a9ca65d-52ea-1028-abea-122ba2ad7d69
 SET var3=UUID(); → 7aa78e82-52ea-1028-abea-122ba2ad7d69

VERSION

 string=VERSION()
VERSION reports the current
 version of the MySQL server software.
 SET var1=VERSION(); → 5.0.18-nightly-20051211-log
In Example 9-13 we
 extract the major version of the version string and print an
 (impossible) error message if the version does not support stored
 programs.
Example 9-13. Using the VERSION function
CREATE PROCEDURE sp_mysql_version()

BEGIN
 DECLARE major_version INT;

 SET major_version=SUBSTR(version(),1,INSTR(version(),'.')-1);
 IF major_version>=5 THEN
 SELECT 'Good thing you are using version 5 or later';
 ELSE
 SELECT 'This version of MySQL does not support stored procedures',
 'you must be dreaming';
 END IF;

END;

This function returns the MySQL server version. There are no
 arguments for the function.

Conclusion

In this chapter we took a quick look at the built-in functions
 that you can use in your stored programs. In general, these are the
 same functions that you can use in standard MySQL. The only exception
 is that you cannot use aggregate functions that might be used in SQL
 statements that include a GROUP_BY
 clause.
We did not want to bulk up this book with verbose descriptions
 of every single function supported by MySQL. For functions not
 listed—or for those that received only cursory treatment in this
 chapter—refer to the MySQL Reference Manual
 available online (http://dev.mysql.com/doc/
).

Chapter 10. Stored Functions

A stored function is a stored program that
 returns a value. While stored procedures may return values via OUT or INOUT variables, a function can—and
 must—return data only via a single RETURN value. Unlike stored procedures, stored
 functions can be used in expressions wherever you can use a
 built-in function of the same return data type and can be used inside of
 SQL statements such as SELECT,
 UPDATE, DELETE, and INSERT.
In this chapter we will look at how and when to use stored
 functions.
The use of stored functions can improve the readability and
 maintainability of stored program code by encapsulating commonly used
 business rules or formulas. You can also use stored function return
 values to control the overall program flow.
Using stored functions in standard SQL statements can simplify the
 syntax of the SQL by hiding complex calculations and avoiding the
 repetitive coding of these calculations throughout your code. Stored
 functions can also be used in SQL to implement operations that would
 otherwise require subqueries or joins, although you need to be careful
 to avoid possible performance problems that can occur if a function
 called from a SQL statement itself calls other SQL statements.
Stored functions may not return result sets and may not include
 dynamic SQL.
Creating Stored Functions

 We provided an overview of the CREATE FUNCTION statement in Chapter 7, but we will recap here. You
 create a stored function using the following syntax:
 CREATE FUNCTION function_name (parameter[,...])
 RETURNS datatype
 [LANGUAGE SQL]
 [[NOT] DETERMINISTIC]
 [{CONTAINS SQL | NO SQL | MODIFIES SQL DATA | READS SQL DATA}]
 [SQL SECURITY {DEFINER|INVOKER}]
 [COMMENT comment_string]function_statements
Most of the options for the CREATE
 FUNCTION statement also apply to CREATE PROCEDURE and are documented in Chapter 7. However, the following are
 unique to stored functions:
	The RETURNS clause is
 mandatory and defines the data type that the function will
 return.

	You cannot specify the IN, OUT, or INOUT modifiers to parameters. All
 parameters are implicitly IN
 parameters.

	The function body must contain one or more RETURN statements, which terminate
 function execution and return the specified result to the calling
 program, as described in the following section.

The RETURN Statement

The RETURN statement
 terminates stored function execution and returns the specified value
 to the calling program. You can have as many RETURN statements in your stored function
 as makes sense. Example
 10-1 shows an example of a stored function that has multiple
 RETURN statements.
Example 10-1. Simple stored function with multiple RETURN
 statements
CREATE FUNCTION cust_status(in_status CHAR(1))
 RETURNS VARCHAR(20)
BEGIN
 IF in_status = 'O' THEN
 RETURN('Overdue');
 ELSEIF in_status = 'U' THEN
 RETURN('Up to date');
 ELSEIF in_status = 'N' THEN
 RETURN('New');
 END IF;
END;

However, it is usually regarded as good practice to include
 only a single RETURN statement
 ("one way in and one way out"), and to use variable assignments
 within conditional statements to change the return value. Aside from
 arguably resulting in more comprehensible program flow, using a
 single RETURN statement can avoid
 the situation in which none of the RETURN statements get executed. "Falling
 out" of a function, rather than exiting cleanly via a RETURN statement, will cause a runtime
 error, as shown in Example
 10-2.
Example 10-2. "Falling out" of a function without executing a RETURN
 statement
mysql> SELECT cust_status('X');
ERROR 1321 (2F005): FUNCTION cust_status ended without RETURN

Example 10-3 shows
 our previous example recoded to include only a single RETURN statement.
Example 10-3. Simple stored function with single RETURN statement
CREATE FUNCTION cust_status(in_status CHAR(1))
 RETURNS VARCHAR(20)
BEGIN
 DECLARE long_status VARCHAR(20);

 IF in_status = 'O' THEN
 SET long_status='Overdue';
 ELSEIF in_status = 'U' THEN
 SET long_status='Up to date';
 ELSEIF in_status = 'N' THEN
 SET long_status='New';
 END IF;

 RETURN(long_status);
END;

Tip
It is good practice to include only a single RETURN statement—as the last line of
 executable code—in your stored functions . Avoid any flow control that could allow the
 stored function to terminate without calling a RETURN statement.

Parameters to Stored Functions

Stored functions can include multiple parameters, but these
 may only be IN parameters. That
 is, you can specify neither the OUT nor INOUT clause (nor even the IN clause) when defining your parameters
 (see Chapter 7 for a more
 detailed description of OUT and
 INOUT parameters). So, for
 instance, the function defined in Example 10-4 will not
 compile.
Example 10-4. Function will not compile due to the INOUT clause
CREATE FUNCTION f_inout(INOUT x INT) RETURNS INT
BEGIN
 SET x=1;
 RETURN(1);
END;

Tip
Stored functions cannot include OUT or INOUT parameters; if you need to return
 multiple variables from your stored program, then a procedure is
 possibly more appropriate than a function.

The DETERMINISTIC and SQL Clauses

When binary logging is enabled, MySQL needs to know if a
 stored function that modifies SQL is deterministic—that is, if it
 always performs the same actions and returns the same results when
 provided with the same inputs. Since the default for stored programs
 is NOT DETERMINISTIC CONTAINS
 SQL, you need to explicitly set the appropriate keywords
 in order for the function to compile when binary logging is enabled.
 This requirement relates to the need to ensure that changes made in
 the stored function can be correctly replicated to another server.
 If the actions performed by the function are nondeterministic, then
 correct replication cannot be assured.
A nondeterministic routine is one that can produce different
 outputs when provided with the same inputs. In this context,
 "outputs" include not just the return values of the stored program,
 but also any modifications that may be made to data within the MySQL
 databases. Currently, MySQL only cares about the determinism of a
 function or a procedure in the context of replication. In the
 future, however, the DETERMINISTIC keyword may also be used to
 perform certain optimizations (such as caching function return
 values) or to allow a function to be used in an index or partition
 definition.
If you declare a stored function without one of the SQL mode
 clauses NO SQL or READS SQL, and if you have not specified
 the DETERMINISTIC clause,
 and if the binary log is enabled, you may
 receive the following error:
ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in
its declaration and binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)
To avoid this error, you must do one of the following:
	Specify one or more of the DETERMINISTIC, NO SQL, and/or READS SQL DATA keywords in your stored
 function definition.

	Set the value of log_bin_trust_routine_creators to 1
 (SET GLOBAL
 log_bin_trust_routine_creators = 1)

Of course, you should not specify that a stored function is
 DETERMINISTIC if it is not, and
 you should avoid setting log_bin_trust_routine_creators to 1 unless
 you are unconcerned about the correctness of data recovery or
 replication. Therefore, as a general rule, you should avoid creating
 nondeterministic stored functions that modify data.
The use of the NOW function
 or any similar time-based functions does not necessarily cause a
 stored function to become nondeterministic (at least from a
 replication perspective), since MySQL logs the timestamp in the
 binary log, resulting in NOW()
 being calculated correctly during replication or recovery. Likewise,
 a single random number will also not cause the routine to become
 nondeterministic, since the seed to the random number generator will
 be identical on the slave and during data recovery. However,
 multiple calls to RAND() will
 cause a routine to become nondeterministic.
This restriction on nondeterministic routines applied to both
 stored functions and stored procedures in the initial production
 release of MySQL 5.0, but from 5.0.16 on it applies only to stored
 functions.
If your function is nondeterministic, and it reads but does
 not modify the database, then you may use the clauses NOT DETERMINISTIC READS SQL DATA to allow
 the function to be created. If the function is nondeterministic and
 performs no database access at all, then we recommend using NOT DETERMINISTIC NO SQL.
The relevant ANSI standard intended that the NO SQL clause should pertain only to
 "external" stored programs written in nondatabase languages such as
 (for instance) Java or PHP. Therefore, the use of NO SQL may not be strictly correct from a
 standards perspective. However, we think that the alternatives—to
 specify READS SQL DATA for a
 function that performs no database access at all or to declare a
 nondeterministic function as DETERMINISTIC—are clearly unacceptable.
 Therefore, we recommend that you use NO
 SQL when required to denote that a stored function
 performs no database operations.
Issues relating to replication and nondeterministic functions
 are expected to be resolved in MySQL 5.1 with the introduction of
 row-level binary logging.

SQL Statements in Stored Functions

 You can include SQL statements within stored
 functions , although you should be very careful about including
 SQL statements in a stored function that might itself be used inside a
 SQL statement (more on that later).
However, you cannot return a result set from a stored function:
 trying to create a stored function that contains a SELECT statement without an INTO clause will result in a 1415 error, as
 shown in Example
 10-5.
Example 10-5. Stored functions cannot return result sets
mysql> CREATE FUNCTION test_func()
 -> RETURNS INT
 -> BEGIN
 -> SELECT 'Hello World';
 -> RETURN 1;
 -> END;$$
ERROR 1415 (0A000): Not allowed to return a result set from a function

Calling Stored Functions

A function can be called by specifying its name and parameter
 list wherever an expression of the appropriate data type may be used.
 To show how stored functions can be called, we'll use the simple
 stored function shown in Example
 10-6.
Example 10-6. Simple stored function
CREATE FUNCTION isodd(input_number int)
 RETURNS int
BEGIN
 DECLARE v_isodd INT;

 IF MOD(input_number,2)=0 THEN
 SET v_isodd=FALSE;
 ELSE
 SET v_isodd=TRUE;
 END IF;

 RETURN(v_isodd);

END ;

From the MySQL command line, we can invoke our simple stored
 function in a number of ways. Example 10-7 shows how to call
 the stored function from a SET
 statement and from a SELECT
 statement.
Example 10-7. Calling a stored function from the MySQL command line
mysql> SET @x=isodd(42);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;
+------+
| @x |
+------+
| 0 |
+------+
1 row in set (0.02 sec)

mysql> SELECT isodd(42)
 -> ;
+-----------+
| isodd(42) |
+-----------+
| 0 |
+-----------+

From within a stored procedure, we can invoke the function both
 within a SET clause and within a
 variety of flow control statements. Example 10-8 shows how to call a
 stored function from within a SET
 statement, as well as from an IF
 statement.
Example 10-8. Calling a stored function from within a stored
 procedure
SET l_isodd=isodd(aNumber);

IF (isodd(aNumber)) THEN
 SELECT CONCAT(aNumber," is odd") as isodd;
ELSE
 SELECT CONCAT(aNumber," is even") AS isodd;
END IF;

Programming languages support a variety of methods for calling a
 stored function. Java and .NET languages (VB.NET and C#) provide
 methods to call stored functions directly. However, in many of the
 dynamic languages (PHP, Perl, Python) there is no API for directly
 accessing a stored function. (We give guidelines for common
 programming languages in Chapters
 12 through 17.)
If a language does not support a method for directly
 calling a stored function, you should embed the call in a
 SELECT statement without a FROM clause and retrieve the function result
 from the subsequent result set. For instance, in PHP, with the
 mysqli interface, we can retrieve a
 stored function result as shown in Example 10-9.
Example 10-9. Calling a stored function from PHP
$stmt=$my_db->prepare("SELECT isodd(?)") or die($my_db->error);

$stmt->bind_param('i',$aNumber) or die($stmt->error);

$stmt->execute() or die($stmt->error);

$stmt->bind_result($isodd);

$stmt->fetch();

if ($isodd == 1)
 printf("%d is an odd number\n",$aNumber);
else
 printf("%d is an even number\n",$aNumber);

Some languages specifically support calling stored
 functions . For instance, Java JDBC allows a stored function to
 be called directly, as shown in Example 10-10.
Example 10-10. JDBC support for stored functions
CallableStatement PreparedFunc =
 MyConnect.prepareCall("{ ? = call isodd(?) }");
PreparedFunc.registerOutParameter(1, Types.INTEGER);

PreparedFunc.setInt(1, aNumber);
PreparedFunc.execute();

if (PreparedFunc.getInt(1) == 1)
 System.out.println(aNumber + " is odd");
else
 System.out.println(aNumber + " is even");

Using Stored Functions in SQL

 So far, we have looked at stored functions as though
 they were simply a variant on the stored procedure syntax—a special
 type of stored procedure that can return a value. While this is
 certainly a valid use for a stored function, stored functions have an
 additional and significant role to play: as user-defined
 functions (UDFs) within SQL statements.
Consider the SELECT statement
 shown in Example 10-11:
 it returns a count of customers by status, with the one-byte status
 code decoded into a meaningful description. It also sorts by the
 decoded customer status. Notice that we must repeat the rather awkward
 CASE statement in both the SELECT list and the ORDER BY clause.
Example 10-11. SQL statement with multiple CASE statements
SELECT CASE customer_status
 WHEN 'U' THEN 'Up to Date'
 WHEN 'N' THEN 'New'
 WHEN 'O' THEN 'Overdue'
 END as Status, count(*) as Count
 FROM customers
 GROUP BY customer_status
 ORDER BY CASE customer_status
 WHEN 'U' THEN 'Up to Date'
 WHEN 'N' THEN 'New'
 WHEN 'O' THEN 'Overdue'
 END

Now imagine an application with many similar CASE statements, as well as complex
 calculations involving business accounting logic, scattered throughout
 our application. Such statements—often with embedded expressions far
 more complex than the one shown in Example 10-11—result in code
 that is difficult to understand and maintain. Whenever the CASE constructs or business calculations
 need to be modified, it will be necessary to find and then modify a
 large number of SQL statements, affecting many different
 modules.
Stored functions can help us minimize this problem, by
 centralizing the complex code in one program unit, and then deploying
 that program wherever needed. Example 10-12 shows the result
 of transferring the logic in the previous query's CASE expression into a stored
 function.
Example 10-12. Stored function for use in our SQL statement
CREATE FUNCTION cust_status(IN in_status CHAR(1))
 RETURNS VARCHAR(20)
BEGIN
 DECLARE long_status VARCHAR(20);

 IF in_status = 'O' THEN
 SET long_status='Overdue';
 ELSEIF in_status = 'U' THEN
 SET long_status='Up to date';
 ELSEIF in_status = 'N' THEN
 SET long_status='New';
 END IF;

 RETURN(long_status);
END;

We can now use this function in our SQL statement, as shown in
 Example 10-13.
Example 10-13. Stored function in a SQL statement
SELECT cust_status(customer_status) as Status, count(*) as Count
 FROM customers
 GROUP BY customer_status
 ORDER BY cust_status(customer_status);

Notice that the repetition has been removed and the query is
 also much more readable, since it is hiding the details of the
 customer status formula. If and when a programmer needs to understand
 the logic used to determine customer status, she can open up the
 stored function and take a look.
Using SQL in Stored Functions

You can include SQL statements inside of stored functions that
 are themselves used within SQL statements as user-defined functions.
 However, be careful when doing so, since functions calling SQL
 inside of SQL statements can lead to unpredictable and often poor
 performance.
For instance, consider the stored function shown in Example 10-14.
Example 10-14. Stored function to return customer count for a sales
 rep
CREATE FUNCTION customers_for_rep(in_rep_id INT)
 RETURNS INT
 READS SQL DATA
BEGIN
 DECLARE customer_count INT;

 SELECT COUNT(*)
 INTO customer_count
 FROM customers
 WHERE sales_rep_id=in_rep_id;

 RETURN(customer_count);

END;

This function returns the number of customers assigned to a
 given sales representative. We might use this function in a stored
 program when calculating a commission, as shown in Example 10-15.
Example 10-15. Using the sales rep function in a stored program
IF customers_for_rep(in_employee_id) > 0 THEN
 CALL calc_sales_rep_bonus(in_employee_id);
ELSE
 CALL calc_nonrep_bonus(in_employee_id);
END IF;

If this stored function is called for a single employee, then
 the use of the stored function is probably appropriate—it improves
 the clarity of the business logic, and performance would be no worse
 than it would be with an embedded SQL statement.
However, consider the case where we want to issue a query
 listing all the sales representatives with more than 10 customers
 together with their customer counts. In standard SQL, the query
 might look like that shown in Example 10-16.
Example 10-16. Standard SQL to retrieve sales reps with more than 10
 customers
SELECT employee_id,COUNT(*)
 FROM employees JOIN customers
 ON (employee_id=sales_rep_id)
 GROUP BY employee_id
 HAVING COUNT(*) > 10
 ORDER BY COUNT(*) desc;

Alternately, we can use our stored function, which
 will—apparently—avoid the join between employees and customers and
 also avoid a GROUP BY. The stored
 function version of the query is shown in Example 10-17.
Example 10-17. Function-based query to retrieve sales reps with more than
 10 customers
SELECT employee_id,customers_for_rep(employee_id)
 FROM employees
 WHERE customers_for_rep(employee_id)>10
 ORDER BY customers_for_rep(employee_id) desc

Although the stored function solution looks a lot simpler, it
 actually takes much longer to run than the standard SQL. For every
 row retrieved from the employees
 table, the stored function must be called three times (once for the
 SELECT, once for the WHERE, and once for the ORDER BY). Furthermore, each invocation of
 the stored function performs a full table scan of the customers table—resulting in three such
 full scans for each employee row. In contrast, the standard SQL
 performs just one scan of the customers table and then joins that to the
 employees table using the primary
 key (employee_id).
For our sample data, the standard SQL returned the required
 results almost instantaneously, while the stored function solution
 took almost half a minute. Figure 10-1 compares the
 execution times for the two solutions.
Using a stored function inside of a SQL statement that, in
 turn, contains SQL will not always cause such
 extreme response time degradation. In general, though, you should
 think twice about using a function that contains SQL inside of
 another SQL statement unless the embedded SQL is very efficient—such
 as a SQL statement that retrieves data via a quick index
 lookup.
[image: Comparison of performance between standard SQL and SQL using a stored function containing embedded SQL]

Figure 10-1. Comparison of performance between standard SQL and SQL
 using a stored function containing embedded SQL

Tip
Be careful using SQL inside of stored functions that are
 called by other SQL statements. The resulting performance can be
 very poor unless the stored function is extremely
 efficient.

Conclusion

A stored function is a special type of stored program that
 returns a single result. Stored functions can be used in SQL
 statements or within other stored programs wherever an expression that
 returns a corresponding data type can be used.
Stored functions have the following limitations when compared to
 stored procedures:
	They may not include OUT
 or INOUT parameters.

	They may not return result sets.

A stored function terminates when a RETURN statement is encountered. In general,
 it is good practice to include a single RETURN statement at the end of the function
 rather than including multiple RETURN statements inside flow control
 statements. If a stored function terminates without issuing a RETURN statement, an error will be
 raised.
You can use stored functions within standard SQL. Doing so can
 improve the readability and maintainability of the SQL by centralizing
 the definition of complex calculations, decodes, or other application
 logic.
Be careful, however, when using stored functions inside SQL
 statements if those functions embed SQL statements. Stored functions
 that include SQL can often perform badly when included within standard
 SQL statements.

Chapter 11. Triggers

Database triggers are stored programs that are executed in response to some
 kind of event that occurs within the database. In the current MySQL
 implementation of triggers, triggers fire in response to a DML statement
 (INSERT, UPDATE, DELETE) on a specified table.
Triggers are a powerful mechanism for ensuring the integrity of
 your data, as well as a useful means of automating certain operations in
 the database, such as denormalization and audit logging.
Creating Triggers

 Triggers are created with the—you guessed it—CREATE TRIGGER statement, which has the following syntax:
 CREATE [DEFINER={user|CURRENT_USER}] TRIGGER trigger_name
 {BEFORE|AFTER}
 {UPDATE|INSERT|DELETE}
 ON table_name
 FOR EACH ROW
 trigger_statements
Let's look at each part of the CREATE
 TRIGGER statement in turn:
	DEFINER
 ={user | CURRENT_USER
 }
	Controls the account that will be used to check privileges
 when the trigger is invoked. The default of CURRENT_USER indicates that the
 trigger statements will run with the authority of the account
 that issued the CREATE
 TRIGGER statement, rather than the account that issued
 the DML that caused the trigger to fire.

	trigger_name
	The trigger name follows the normal conventions for
 MySQL's naming of database objects. While you can call your
 trigger virtually anything, we recommend that you adopt a
 predictable naming convention. There can be only one trigger for
 any combination of BEFORE or
 AFTER and UPDATE, INSERT, or DELETE (for example, there can be only
 one BEFORE UPDATE trigger on
 a table), so a sensible convention might result in
 triggers being given names such as
 table_name _bu (for a BEFORE UPDATE trigger) or
 table_name _ai (for an AFTER INSERT trigger).

	BEFORE|AFTER
	Specifies whether the trigger fires before or after the
 DML statement itself has been executed. We'll discuss the
 implications of this shortly.

	UPDATE|INSERT|DELETE
	Defines the DML statement to which the trigger is
 associated.

	ON
 table_name
	Associates the trigger with a specific table.

	FOR EACH ROW
	This clause is mandatory in the initial MySQL
 implementation. It indicates that the trigger will be executed
 once for every row affected by the DML statement. The ANSI
 standard also provides for a FOR EACH
 STATEMENT mode, which might be supported in an
 upcoming version of MySQL.

	trigger_statements
	Define the statements that will be executed when the
 trigger is invoked. If there is more than one statement, then
 the statements need to be enclosed in a BEGIN-END block.

Prior to MySQL 5.1.6, you needed the SUPER privilege to create a
 trigger. In 5.1.6 and above, the TRIGGER privilege is required.
Referring to Column Values Within the Trigger

Trigger statements can include references to the values of the
 columns being affected by the trigger. You can access and sometimes
 modify the values of these columns.
To distinguish between the values of the columns "before" and
 "after" the relevant DML has fired, you use the NEW and OLD modifiers. For instance, in a BEFORE UPDATE trigger, the value of the
 column mycolumn before the update
 is applied is OLD.mycolumn, and
 the value after modification is NEW.mycolumn.
If the trigger is an INSERT
 trigger, only the NEW value is
 available (there is no OLD
 value). Within a DELETE trigger,
 only the OLD value is available
 (there is no NEW value).
Within BEFORE triggers you
 can modify a NEW value with a
 SET statement—thus changing the
 effect of the DML.

Triggering Actions

Triggers will normally execute in response to the DML
 statements matching their specification—for instance, BEFORE INSERT will always be invoked in
 response to an INSERT
 statement.
However, triggers also fire in response to implicit—as well as
 explicit—DML. Some statements are capable of generating DML as a
 side effect of their primary activity. For instance, an INSERT statement that contains an ON DUPLICATE KEY UPDATE clause can issue
 an implicit UPDATE statement
 causing BEFORE UPDATE or AFTER UPDATE triggers to fire. Likewise,
 the REPLACE statement can cause
 both INSERT and DELETE triggers to fire (since, for an
 existing row, REPLACE issues a
 DELETE followed by an INSERT).

BEFORE and AFTER Triggers

The BEFORE and AFTER clauses determine when your trigger
 code executes: either before or
 after the DML statement that causes the trigger
 to be invoked.
The most significant difference between BEFORE and AFTER triggers is that in an AFTER trigger you are not able to modify
 the values about to be inserted into or updated with the table in
 question—the DML has executed, and it is too late to try to change
 what the DML is going to do.
IF you try to modify a NEW
 value in an AFTER trigger, you
 will encounter an error, as shown in Example 11-1.
Example 11-1. AFTER triggers cannot modify NEW values
mysql> CREATE TRIGGER account_balance_au
 AFTER UPDATE ON account_balance FOR EACH ROW
BEGIN
 DECLARE dummy INT;

 IF NEW.balance<0 THEN
 SET NEW.balance=NULL;
 END IF;

END
$$

ERROR 1362 (HY000): Updating of NEW row is not allowed in
 after trigger
Although you can do pretty much anything you need to do in a
 BEFORE trigger, you still may
 wish to use AFTER triggers for
 activities that logically should occur in a transaction after a DML
 has successfully executed. Auditing activities, for example, are
 best executed in an AFTER
 trigger, since you will first want to make sure that the DML
 succeeded.

Using Triggers

Triggers can be used to implement a variety of useful
 requirements, such as automating the maintenance of denormalized or
 derived data, implementing logging, and validating data.
Maintaining Derived Data

We often need to maintain redundant "denormalized" information
 in our tables to optimize critical SQL queries. The code to perform
 this denormalization could be placed within the
 application code, but then you would have to make sure that any and
 every application module that modifies the table also performs the
 denormalization. If you want to guarantee that
 this code is run whenever a change is made to the table, you can
 attach that functionality to the table itself, via a trigger.
Let's take a look at an example of the value of denormalized
 data in our tables. Suppose that we have a table within our database
 that contains the total sales for all orders from each customer.
 This allows us to quickly identify our most significant customers
 without having to do a costly query on the very large sales table.
Unfortunately, we have a variety of order processing systems,
 not all of which can be modified to maintain this table. So we need
 a way of making sure that the table is modified every time an
 INSERT occurs into the sales table. A trigger is an ideal way of
 maintaining the values in this summary table.
Example 11-2 shows
 example triggers that maintain the values in the customer_sales_totals table whenever there
 is an UPDATE, INSERT, or DELETE operation on the sales table.
Example 11-2. Using triggers to maintain denormalized data
DELIMITER $$

CREATE TRIGGER sales_bi_trg
 BEFORE INSERTON sales
 FOR EACH ROW
BEGIN
 DECLARE row_count INTEGER;

 SELECT COUNT(*)
 INTO row_count
 FROM customer_sales_totals
 WHERE customer_id=NEW.customer_id;

 IF row_count > 0 THEN
 UPDATE customer_sales_totals
 SET sale_value=sale_value+NEW.sale_value
 WHERE customer_id=NEW.customer_id;
 ELSE
 INSERT INTO customer_sales_totals
 (customer_id,sale_value)
 VALUES(NEW.customer_id,NEW.sale_value);
 END IF;

END$$

CREATE TRIGGER sales_bu_trg
 BEFORE UPDATEON sales
 FOR EACH ROW
BEGIN

 UPDATE customer_sales_totals
 SET sale_value=sale_value+(NEW.sale_value-OLD.sale_value)
 WHERE customer_id=NEW.customer_id;

END$$

CREATE TRIGGER sales_bd_trg
 BEFORE DELETEON sales
 FOR EACH ROW
BEGIN

 UPDATE customer_sales_totals
 SET sale_value=sale_value-OLD.sale_value
 WHERE customer_id=OLD.customer_id;

END$$

Implementing Logging

The ability to identify the source and nature of updates to
 application data is increasingly critical in our security-conscious
 societies. Indeed, the tracking of database changes is often
 mandated by government and industry regulations such as
 Sarbanes-Oxley and HIPAA. Although an application can be designed
 and implemented such that it performs its own auditing, many
 organizations require that any database
 updates—including those performed directly against the database
 using command-line clients or database utilities—also be logged.
 Triggers are an ideal way of implementing this kind of logging .
Suppose that we are building a financial application, for
 which we must track all modifications to a user's account balance.
 In Chapter 8, we implemented
 such a scheme using a stored procedure that controlled all account
 balance transactions. However, triggers provide a superior solution
 since they will also log any transactions performed
 outside of the stored procedure.
Example 11-3 shows
 a trigger that will perform this type of logging for UPDATE statements. In order to ensure
 universal logging, we would need to create a similar trigger for
 INSERT and DELETE statements.
Example 11-3. Using triggers to implement audit logging
CREATE TRIGGER account_balance_au
 AFTER UPDATE ON account_balance FOR EACH ROW
 BEGIN
 INSERT into transaction_log
 (user_id, description)
 VALUES (user(),
 CONCAT('Adjusted account ',
 NEW.account_id,' from ',OLD.balance,
 ' to ', NEW.balance));
END;

Validating Data with Triggers

A typical and traditional use of triggers in relational
 databases is to validate data or implement business rules to ensure
 that the data in the database is logically consistent and does not
 violate the rules of the business or the application. These triggers
 are sometimes referred to as check constraint
 triggers .
Data validation triggers may perform tasks such as:
	Implementing checks on allowable values for
 columns
	For instance, a percentage value must fall between 0 and
 100, a date of birth cannot be greater than today's date, and
 so on.

	Performing cross-column or cross-table
 validations
	For example, an employee cannot be his own manager, a
 sales person must have an associated quota, and seafood pizzas
 cannot include anchovies (here the authors must agree to
 disagree: Guy hates anchovies, while Steven finds them almost
 a requirement for an enjoyable pizza!).

	Performing advanced referential
 integrity
	Referential constraints are usually best implemented
 using foreign key constraints; sometimes, however, you may
 have some advanced referential integrity that can only be
 implemented using triggers. For instance, a foreign key column
 may be required to match a primary key in one of a number of
 tables (an arc relationship).

A data validation trigger typically prevents a DML operation
 from completing if it would result in some kind of validation check
 failing.
If MySQL 5.0 or 5.1 implemented all ANSI-standard
 functionality, we would implement such checks in a database trigger
 by issuing a SIGNAL statement, as
 shown in Example
 11-4.
Example 11-4. ANSI-standard trigger to enforce a business rule
CREATE TRIGGER account_balance_bu
 BEFORE UPDATE
 ON account_balance
 FOR EACH ROW
BEGIN
 -- The account balance cannot be set to a negative value.
 IF (NEW.balance < 0) THEN
 -- Warning! Not implemented in MySQL 5.0...
 SIGNAL SQLSTATE '80000'
 SET MESSAGE_TEXT='Account balance cannot be less than 0';
 END IF;
END;

Unfortunately, MySQL 5.0 and 5.1 do not support the SIGNAL statement; we expect it to appear
 in version 5.2. Consequently, we do not currently have a standard
 way of aborting a DML statement that violates a business
 rule.
Luckily, we can use a variation on the workaround we
 introduced in Chapter 6 to
 force a trigger to fail in such a way that it prevents the DML
 statement from completing and provides a marginally acceptable error
 message.
In Example 6-19,
 we introduced a stored procedure—my_signal—that used dynamic SQL to create
 an "Invalid table name" error
 condition and embedded an error message of our choosing into that
 error. Unfortunately, we cannot call the my_signal procedure directly, because
 triggers are forbidden from executing dynamic SQL. However, we can
 include very similar logic into the trigger that will have the same
 effect. Example 11-5
 shows a trigger that ensures that there will be no negative account
 balance. If a negative account balance is detected, the trigger
 attempts to execute a SELECT
 statement that references a nonexistent column. The name of the
 column includes the error message that we will report to the calling
 program.
Example 11-5. MySQL trigger to perform data validation
CREATE TRIGGER account_balance_bu
 BEFORE UPDATE
 ON account_balance
 FOR EACH ROW
BEGIN
 DECLARE dummy INT;
 IF NEW.balance<0 THEN
 SELECT 'Account balance cannot be less than 0' INTO dummy
 FROM account_balance
 WHERE account_id=NEW.account_id;
 END IF;
END;

Example 11-6 shows
 how the trigger prevents any updates from proceeding if the end
 result would be to create an account_balance row with a negative value
 in the balance column. While the
 error code is not ideal, and the error message is embedded in
 another error message, we at least have prevented the UPDATE from creating a negative balance,
 and we have provided an error message that does include the reason
 why the UPDATE was
 rejected.
Example 11-6. Behavior of our data validation trigger
SELECT * FROM account_balance WHERE account_id=1;

+------------+---------+---------------------+
| account_id | balance | account_timestamp |
+------------+---------+---------------------+
| 1 | 800.00 | 2005-12-13 22:12:28 |
+------------+---------+---------------------+
1 row in set (0.00 sec)

UPDATE account_balance SET balance=balance-1000 WHERE account_id=1;

ERROR 1054 (42S22): Unknown column 'Account balance cannot be less than 0' in 'field list'

SELECT * FROM account_balance WHERE account_id=1;

+------------+---------+---------------------+
| account_id | balance | account_timestamp |
+------------+---------+---------------------+
| 1 | 800.00 | 2005-12-13 22:12:28 |
+------------+---------+---------------------+
1 row in set (0.00 sec)

UPDATE account_balance SET balance=500 WHERE account_id=1;

Query OK, 1 row affected (0.15 sec)
Rows matched: 1 Changed: 1 Warnings: 0

SELECT * FROM account_balance WHERE account_id=1;

+------------+---------+---------------------+
| account_id | balance | account_timestamp |
+------------+---------+---------------------+
| 1 | 500.00 | 2005-12-13 22:12:34 |
+------------+---------+---------------------+
1 row in set (0.00 sec)

This trigger can be easily modified to use the SIGNAL statement when it becomes
 available.

Trigger Overhead

It is important to remember that, by necessity,
 triggers add overhead to the DML statements to which they apply. The actual
 amount of overhead will depend upon the nature of the trigger, but—as
 all MySQL triggers execute FOR EACH
 ROW—the overhead can rapidly accumulate for statements that
 process large numbers of rows. You should therefore avoid placing any
 expensive SQL statements or procedural code in triggers.
We will look at an example of trigger overhead in Chapter 22.

Conclusion

MySQL triggers allow you to execute stored program code whenever
 a DML statement is issued against a database table. In MySQL 5.0,
 triggers can be used to automate denormalization or logging.
Implementation of data validation in MySQL triggers is more of a
 challenge, as in MySQL there is no easy or straightforward way to
 raise an error condition or abort the transaction when validation
 fails. This will be remedied when the SIGNAL statement is implemented in MySQL
 5.2. In this chapter we presented a workaround that does allow data
 validation triggers to be created in the interim, although the error
 text generated is far from ideal.

Part III. Using MySQL Stored Programs in Applications

Stored programs can be used for a variety of purposes, including
 the implementation of utility routines for MySQL DBAs and developers.
 However, the most important use of stored programs is within
 applications, as we describe in this part of the book. Stored programs
 allow us to move some of our application code into the database server
 itself; if we do this wisely, we may benefit from applications that are
 more secure, efficient, and maintainable. In Chapter 12 we consider the merits of,
 and best practices for, using stored programs inside modern—typically
 web-based—applications. In the subsequent chapters, Chapters 13 through 17, we show how to use stored
 procedures and functions from within the development languages most
 commonly used in conjunction with MySQL: PHP, Java, Perl, Python, and
 .NET languages such as C# and VB.NET.
Chapter 12, Using
 MySQL Stored Programs in Applications
Chapter 13, Using
 MySQL Stored Programs with PHP
Chapter 14, Using
 MySQL Stored Programs with Java
Chapter 15, Using
 MySQL Stored Programs with Perl
Chapter 16, Using
 MySQL Stored Programs with Python
Chapter 17, Using
 MySQL Stored Programs with .NET

Chapter 12. Using MySQL Stored Programs in Applications

In the next few chapters we are going to show you how to use
 stored programs in a variety of external programming
 environments—PHP , Java , Perl , Python , and .NET . In those chapters we'll describe how to use the MySQL
 drivers provided with these languages to execute stored programs,
 retrieve the output of stored programs, and handle any error conditions
 that may arise during execution. Before we delve into those specific
 environments, we'll start with a general discussion of using MySQL
 stored programs in applications .
The purpose of this preliminary chapter is twofold:
	To present the overall benefits of using stored programs in
 your applications.

	To outline the general principles and program flow
 considerations that apply when using stored programs from any
 programming environment. Chapters
 13 through 17 will
 describe the details for specific programming environments.

The Pros and Cons of Stored Programs in Modern
 Applications

 There is a persistent—and often lively—debate in the
 programming community about the benefits and appropriateness of using
 stored programs in applications.
Database stored programs first came to prominence in the late
 1980s and early 1990s during what might be called the
 client/server revolution. In the client/server
 environment of that time, stored programs had some obvious advantages
 (aspects of which persist in N-tier and
 Internet-based architectures):
	Client/server applications typically had to carefully
 balance processing load between the client PC and the (relatively)
 more powerful server machine. Using stored programs was one way to
 reduce the load on the client, which might otherwise be
 overloaded.

	Network bandwidth was often a serious constraint on
 client/server applications ; execution of multiple server-side operations in a
 single stored program could reduce network traffic.

	Maintaining correct versions of client software in a
 client/server environment was often problematic. Centralizing at
 least some of the processing on the server allowed a greater
 measure of control over core logic.

	Stored programs offered clear security advantages, because
 in the client/server paradigm, end users typically connected
 directly to the database to run the application. By restricting
 access to stored programs only, users would not be able to perform
 ad hoc operations against tables and other database
 structures.

The use of stored programs in client/server applications was,
 and is, most prevalent in applications that use Microsoft SQL Server
 (and its technological predecessor, Sybase) and Oracle. The Microsoft
 SQL Server and Oracle stored program languages (Transact-SQL and
 PL/SQL, respectively) have substantially different
 characteristics—especially regarding the ability of a stored program
 to return a result set. The differences between the two languages have
 resulted in somewhat different usage patterns:
	SQL Server-based applications
	For these applications, the dominant pattern is to
 encapsulate all database interaction between client and
 server—including queries—into stored programs. This is cited as
 providing better security and reduced network traffic.

	Oracle-based applications
	For these applications, it was initially impossible to
 return a result set from a stored program and, although this
 became possible in later releases, it was never particularly
 convenient or easy to do so. As a result, Oracle-based
 applications tended to use stored programs to implement
 transaction processing, but would use native SQL to retrieve
 result sets.

With the emergence of three-tier architectures and web
 applications, many of the incentives to use stored programs from
 within applications disappeared. Application clients are now often
 browser-based; security is predominantly handled by a middle tier; and
 the middle tier possesses the ability to encapsulate business logic.
 Most of the functions for which stored programs were used in
 client/server applications can now be implemented in middle-tier code
 (e.g., in PHP, Java, C#, etc.). Transferring processing to the middle
 tier can also enhance load balancing and scalability.
Even so, many of the original advantages of stored programs
 (such as enhanced security and reduction in network traffic) still
 apply, if to a reduced degree. The use of stored programs is still
 regarded as a "best practice" by many application developers and
 architects.
Today, there are three schools of thought regarding the use of
 stored programs in applications:
	All stored programs, all the
 time
	This segment of the development community continues to
 believe that stored programs should be used for
 all interaction between the client (now the
 middle tier) and the database. They argue that this pattern
 provides more security to the database, and also provides a
 level of abstraction between the underlying data model and the
 business logic in the middle tier.

	Stored programs only when absolutely
 necessary
	This segment believes that stored programs should play
 only a minor role in a modern application development. They
 argue that stored programs add additional and unnecessary
 complexity to the application design; that they fragment the
 logic between the middle tier and the database; and that they
 get in the way of object-relational mapping schemes such as Java
 J2EE's CMP and Hibernate.

	Use what works
	This segment (probably the quiet majority) is fairly
 pragmatic—they use stored programs selectively when the use of a
 stored program seems warranted, but they tend to use native SQL
 when it is easier and more convenient to do so.

It's up to you to decide which model works best for you and your
 application. In the next few sections we will try to provide you with
 as much information as we can to help you make an informed decision.
 To sum up our personal feelings on the matter, we do think that an
 application that encapsulates all database interaction within stored
 programs is employing a valid and effective pattern. In particular,
 this kind of application can be made virtually immune to SQL injection
 attacks, and will be much less vulnerable to exploits based on
 compromised passwords. We also believe in separating data access logic
 from business logic, and the use of stored programs is a good way to
 do this. However, stored programs are not a natural choice for all
 applications; for instance, using stored programs exclusively tends to
 interfere with object-relational mapping schemes such as J2EE CMP and
 Hibernate.
In the next few sections, we'll look in some detail at the
 advantages stored programs offer an application and compare those to
 possible disadvantages. To summarize here, stored programs offer these
 advantages:
	Stored programs can improve the security of your database
 server.

	Stored programs offer a mechanism to abstract data access
 routines, hiding your implementation behind a procedural interface
 and making it easier to evolve your data structures over
 time.

	Stored programs can reduce network traffic.

	Stored programs can be used to implement functionality that
 is needed—and can be called—from multiple applications, and from
 multiple places within a single application. This can be handy
 when applications written in frameworks that don't interoperate
 very well (.NET and Java for instance) access the same
 database.

	Stored programs allow for a convenient division of duties
 between those whose skills are database-centric and those whose
 skills are programming-centric.

	You can often improve the portability of your application
 code by moving logic into stored programs.

Against these possible advantages, consider the following
 disadvantages:
	Stored programs might be slower—especially for
 computationally expensive operations—than equivalent middle-tier
 code.

	The use of stored programs can lead to fragmentation of your
 application logic—logic may be split between the database and the
 application server tier, making it difficult to track down design
 flaws or implementation bugs.

	Stored programs are usually written in a different language
 from your application server tier, requiring a wider range of
 skills in your development team.

	Stored programs can be more difficult to debug (depending on
 the implementation: MySQL does not yet offer an integrated stored
 program debugger).

	Most object-relational mapping systems (e.g., J2EE CMP and
 Hibernate) cannot seamlessly exploit stored programs.

	While stored program calls may sometimes be more portable
 than native SQL, in practice this is not true for all
 implementations. Of the "big four," only DB2 and MySQL implement
 the ANSI standard for stored programs. As a result, MySQL stored
 program calls often look and act substantially different from
 calls made in Oracle or SQL Server.

Advantages of Stored Programs

 Let's look at each of the advantages of stored programs in turn.
They Enhance Database Security

We'll see in Chapter 18
 how the default security mode of stored programs (SQL SECURITY DEFINER) permits a stored
 program to execute SQL statements even if the calling database
 account lacks the security privileges to execute these statements as
 native SQL. By granting a database account access to stored programs
 only—without granting direct permissions on underlying tables—we can
 ensure that access to the database occurs only in the manner defined
 by our stored programs. We can also ensure that these SQL statements
 are surrounded by whatever business rule validation or logging is
 required. This concept is explained in more detail in Chapter 18.
In the event that an application account is compromised (for
 instance, the password is "cracked"), the attacker will
 still only be able to execute our stored
 programs, as opposed to being able to run any ad hoc SQL. While such
 a situation constitutes a severe security breach, at least we are
 assured that the hacker will be subject to the same checks and
 logging as a normal application user. The hacker will also be denied
 the opportunity to retrieve information about the underlying
 database schema, which will hinder attempts to perform further
 malicious activities.
The security advantages of stored programs are a powerful
 motivation to include stored programs in our applications,
 especially with today's increasing focus on securing the underlying
 database. However, the security advantages of stored programs can
 only be realized if stored programs are used exclusively within an
 application. This is because, to be fully effective, this strategy
 requires that the database connection account have no direct access
 to the underlying database tables; hence, this account must perform
 operations only through stored programs. One alternative to this
 approach is to grant read-only access to the underlying tables, and
 then use stored programs exclusively for update operations. At least
 then, a malicious user will not be able to make arbitrary changes to
 the data.
Another security advantage inherent in stored programs is
 their resistance to SQL injection attacks. As we will see in Chapter 18, a SQL injection attack
 can occur when a malicious user manages to "inject" SQL code into
 the SQL code being constructed by the application. Stored programs
 do not offer the only protection against SQL injection attacks, but
 applications that rely exclusively on stored programs to interact
 with the database are virtually immune to this type of attack
 (provided that those stored programs do not themselves build dynamic
 SQL strings without fully validating their inputs).

They Provide a Mechanism for Data Abstraction

It is generally a good practice to separate your data access
 code from your business logic and presentation logic. Data access
 routines are often used by multiple program modules, and are likely
 to be maintained by a separate group of developers. A very common
 scenario requires changes to the underlying data structures, while
 minimizing the impact on higher-level logic. Data
 abstraction makes this much easier to accomplish.
The use of stored programs provides a convenient way of
 implementing a data access layer. By creating a set of stored
 programs that implement, all of the data access routines required by
 the application, we are effectively building an API for the
 application to use for all database interactions.

They Reduce Network Traffic

Stored programs can radically improve application performance
 by reducing network traffic in certain situations. Several such situations are
 described in this section.
One scenario involves an application that may need to accept
 input from the end user, read some data in the database, decide what
 statement to execute next, retrieve a result, make a decision,
 execute some SQL, and so on. If the application code is written
 entirely outside of the database, each of these steps would require
 a network round trip between the database and the application. The
 time taken to perform these network trips can easily dominate
 overall user response time.
Consider a typical interaction between a bank customer and an
 ATM machine. The user requests a transfer of funds between two
 accounts. The application must retrieve the balance of each account
 from the database, check withdrawal limits and possibly other policy
 information, issue the relevant UPDATE statements, and finally issue a
 COMMIT—all before advising the
 customer that the transaction has succeeded. Even for this
 relatively simple interaction, at least six separate database
 queries must be issued, each with its own network round trip between
 the application server and the database. Figure 12-1 shows the
 sequence of interactions that would be required without a stored
 program.
[image: Network round trips without a stored program]

Figure 12-1. Network round trips without a stored program

On the other hand, if a stored program is used to implement
 the funds transfer logic, only a single database interaction is
 required. The stored program takes responsibility for checking
 balances, withdrawal limits, and so on. Figure 12-2 illustrates the
 reduction in network round trips that occurs as a result.
[image: Network round trips involving a stored program]

Figure 12-2. Network round trips involving a stored program

Network round trips can also become significant when an
 application is required to perform some kind of aggregate processing
 on very large record sets in the database. If the application needs
 to (for instance) retrieve millions of rows in order to calculate
 some sort of business metric that cannot easily be computed using
 native SQL (average time to complete an order, for instance), then a
 very large number of round trips can result. In such a case, the
 network delay may again become the dominant factor in application
 response time. Performing the calculations in a stored program will
 reduce network overhead, which might reduce
 overall response time—but make sure you take into account the
 considerations outlined in the section "They Can Be Computationally
 Inferior" later in this chapter. We provide an example of a
 stored program reducing network traffic in Chapter 22.

They Allow for Common Routines Across Multiple Application
 Types

While it is commonplace for a MySQL database to be at the
 service of a single application, it is not at all uncommon for
 multiple applications to share a single database. These applications
 may run on different machines and be written in different languages;
 it may be hard—or impossible—for these applications to share code.
 Implementing common code in stored programs may allow these
 applications to share critical common routines.
For instance, in Chapter
 8 we created a procedure called txfer_funds that performed a
 transactional-safe, logged transfer of funds between two accounts.
 Some versions of the stored procedure contained code for handling
 deadlocks and an optimistic locking strategy. Now, in a banking
 application, a transfer of funds transactions might originate from
 multiple sources, including a bank teller's console, an Internet
 browser, an ATM, or a phone banking application. Each of these
 applications could conceivably have its own database access code
 written in largely incompatible languages, and, without stored
 programs, we might have to replicate the transaction logic—including
 logging, deadlock handling, and optimistic locking strategies—in
 multiple places in multiple languages.

They Facilitate Division of Duties

It is reasonably commonplace for the responsibility for coding
 application logic to be held by one set of developers and the
 responsibility for database design and access routines to be held by
 a different set of developers. These two groups may have different
 skill sets, and application development efficiency may be enhanced
 if the database developers are able to implement the data access
 routines directly in MySQL using the stored program language.

They May Provide Portability

While all relational databases implement a common set of SQL
 syntax—typically SQL99 entry-level or similar—each RDBMS offers
 proprietary extensions to this standard SQL. If you are attempting
 to write an application that is designed to be independent of the
 underlying RDBMS vendor, or if you want to avoid RDBMS vendor
 lock-in, you will probably want to avoid these extensions in your
 application. However, using these extensions is highly desirable if
 you want to optimize your use of the underlying database. For
 instance, in MySQL, you will often want to employ MySQL hints,
 execute non-ANSI statements such as LOCK
 TABLES, or use the REPLACE statement.
Using stored programs can help you avoid RDBMS-dependent code
 in your application layer while allowing you to continue to take
 advantage of RDBMS-specific optimizations. In theory—but only
 sometimes in practice—stored program calls against different
 databases can be made to look and behave identically from the
 application's perspective. Of course, the underlying stored program
 code will need to be rewritten for each RDBMS, but at least your
 application code will be relatively portable.
Unfortunately, not all RDBMSs implement stored programs in a
 consistent manner. This limits the portability that stored programs
 can offer. We discuss this in more detail in the section "They Do Not Provide
 Portability" later in this chapter.

Disadvantages of Stored Programs

So far, we've seen that stored programs can offer some
 significant advantages. Now let's look at the downside of using stored
 programs.
They Can Be Computationally Inferior

In Chapter 22 we
 compare the performance of MySQL stored programs and other languages
 when performing computationally intensive routines. Our conclusion
 is that stored programs, in general, and MySQL stored programs, in
 particular, are slower than languages such as PHP, Java, and Perl
 when executing "number crunching" algorithms, complex string
 manipulation, and the like.
Most of the time, stored programs are dominated by database
 access time—where stored programs have a natural performance
 advantage over other programming languages because of their lower
 network overhead. However, if you are writing a number-crunching
 routine—and you have a choice between implementing it in the stored
 program language or in another language such as Java—you may wisely
 decide against using the stored program solution.

They Can Lead to Logic Fragmentation

While it is generally useful to encapsulate data access logic
 inside stored programs, it is usually inadvisable to "fragment"
 business and application logic by implementing some of it in stored
 programs and the rest of it in the middle tier or the application
 client.
Debugging application errors that involve interactions between
 stored program code and other application code may be many times
 more difficult than debugging code that is completely encapsulated
 in the application layer. For instance, there is currently no
 debugger that can trace program flow from the application code into
 the MySQL stored program code.

They Do Not Provide Portability

We said earlier that stored programs could be used to build
 RDBMS-independent applications by encapsulating RDBMS-dependent SQL
 in stored program calls. Unfortunately, this is only possible for
 RDBMS types that support similar semantics for processing parameters
 and returning result sets.
The stored programs implemented by MySQL, DB2, and Microsoft
 SQL Server all behave in a very similar way—all can return multiple
 result sets, and for most languages, the calls for accessing these
 result sets are compatible.
Unfortunately, Oracle is an exception in this regard; Oracle
 stored programs can return result sets, but they are returned as
 references in output parameters, rather than as result sets in their
 own right. In order to retrieve these result sets, you have to write
 application code that is highly Oracle specific.
So while applications that use only stored programs are
 reasonably portable between MySQL and either DB2 or SQL Server, if
 portability between MySQL and Oracle is your objective, you are
 probably better advised to use ANSI-standard SQL calls, rather than
 stored program calls, at least when implementing calls that will
 return result sets.

Calling Stored Programs from Application Code

Most languages used to build applications that interact with
 MySQL are able to fully exploit stored programs , although in some languages, support for advanced
 features such as multiple result sets is a recent addition. In the
 following chapters we will explain in detail how to use stored
 programs from within PHP, Java, Perl, Python, and the .NET languages
 VB.NET and C#. In this section we want to give you an introduction to
 the general process of calling a stored program from an external programming
 language.
In general, the techniques for using stored programs differ from
 those for standard SQL statements in two significant respects:
	While SQL statement calls may take parameters , stored programs can also have OUT or INOUT parameters. This means that you
 need to understand how to access the value of an OUT or INOUT parameter once the stored program
 execution completes.

	A SELECT statement can
 return only one result set, while a stored program can return any
 number of result sets, and you might not be able to anticipate the
 number or structure of these result sets.

So, calling a stored program requires a slightly different
 program flow from standard SQL processing. The overall sequence of
 events is shown in the UML "retro" diagram (e.g., flowchart) in Figure 12-3.
Here's a brief description of each of these steps. Remember that
 in the next five chapters, we will be showing you how to follow these
 steps in various languages.
Preparing a Stored Program Call for Execution

We'll normally want to call a stored program more than once in
 our application. Typically, we first create a statement handle for
 the stored program. We then iteratively execute the program, perhaps
 providing different values for the program's parameters with each
 execution.
It's usually possible to bypass the preparation stage and
 execute a stored program directly—at least if the stored program
 returns no result sets. However, if the stored program takes
 parameters and you execute the stored program more than once in your
 program, we recommend that you go to the extra effort of preparing
 the statement that includes your stored program call.

Registering Parameters

We can pass parameters into stored programs that require them
 as literals (e.g., concatenate the text of the parameter values into
 the stored program CALL
 statement).
[image: General processing flow when calling a stored program from an external language]

Figure 12-3. General processing flow when calling a stored program from
 an external language

However, in all of the languages we discuss in subsequent
 chapters, there are specific parameter-handling methods that allow
 us to re-execute a stored program with new parameters without having
 to re-prepare the stored program call. As we said previously, it's
 best to use these explicit methods if you are going to execute the
 stored program more than once—both because it is slightly more
 efficient and because, in some cases, only the prepared statement
 methods offer full support for bidirectional parameters and multiple
 result sets.
The methods for passing parameters to stored programs are
 usually the same as the methods used to pass parameters (or "bind
 variables") to normal SQL statements.

Setting Output Parameters

Some languages allow us to specifically define and process
 output parameters . In other languages, we can only access the values
 of OUT or INOUT parameters by employing "user
 variables" (variables prefixed with @) to set and retrieve the parameter
 values.
Both techniques—the direct API calls provided by .NET and JDBC
 and the session variable solution required by other languages—are
 documented in the relevant language-specific chapters that
 follow.

Executing the Stored Program

Once the input parameters are set and—in the case of .NET and
 Java—once the output parameters are registered, we can execute the
 stored program. The method for executing a stored program is usually the same as the method
 for executing a standard SQL statement.
If the stored program returns no result sets , output parameters can immediately be accessed. If
 the stored program returns one or more result sets, all of those
 result sets must be processed before the output parameter values can
 be retrieved.

Retrieving Result Sets

The process of retrieving a single result set from a stored program is
 identical to the process of retrieving a result set from other SQL
 statements—such as SELECT or
 SHOW—that return result
 sets.
However, unlike SELECT and
 SHOW statements, a stored program
 may return multiple result sets, and this requires a different flow
 of control in our application. To correctly process all of the
 result sets that may be returned from a stored program, the
 programming language API must include a method to switch to the
 "next" result set and possibly a separate method for determining if
 there are any more result sets to return.
JDBC and ADO.NET languages have included these methods since
 their earliest incarnations (for use with SQL Server and other
 RDBMSs that support multiple result sets), and these interfaces have
 been fully implemented for use with MySQL stored programs . Methods exist to retrieve multiple result sets in
 PHP, Perl, and Python, but these methods are relatively immature—in
 some cases, they were implemented only in response to the need to
 support stored programs in MySQL 5.0.

Retrieving Output Parameters

Once all result sets have been retrieved, we are able to
 retrieve any stored program output parameters. Not all languages
 provide methods for directly retrieving the values of output
 parameters—see the "Setting
 Output Parameters" section earlier for a description of a
 language-independent method of retrieving output parameters
 indirectly through user variables.
JDBC and ADO.NET provide specific calls that allow you to
 directly retrieve the value of an output parameter.

Closing or Re-Executing the Stored Program

Now that we have retrieved the output parameters, the current
 stored program execution is complete. If we are sure that we are not
 going to re-execute the stored program, we should close it using
 language-specific methods to release all resources associated with
 the stored program execution. This usually means closing the prepared statement object associated with the
 stored program call. If we want to re-execute the stored program, we
 can modify the input parameters and use the language-specific
 execute method to run the stored program as many times as needed.
 Then you should close the prepared statement
 and release resources.

Calling Stored Functions

In some languages—JDBC and .NET, in particular—stored
 functions can be invoked directly, and you have
 language-specific techniques for obtaining the stored function
 return value. However, in other languages, you would normally need
 to embed the stored function in a statement that supports an
 appropriate expression such as a single-line SELECT statement.

Conclusion

There is no "one-size-fits-all" answer to the question "Should I
 use stored programs in my application?" There are those who believe
 that virtually all of an application's database interactions should be
 made through stored program calls, and those who believe that stored
 programs should be used only in very special circumstances. You will
 need to make your own determination as to the value of using MySQL
 stored programs in your application.
As we've discussed in this chapter, the use of stored programs
 can provide significant advantages:
	Stored programs can substantially improve the security of
 your application.

	Stored programs can be used to provide an abstract data
 access layer that can improve the separation between business
 logic and data access logic (of course, stored programs are not
 required to do this—they are just one means
 to do so).

	Stored programs can reduce network traffic.

	Stored programs can be used to implement common routines
 accessible from multiple applications.

	Stored programs allow for a convenient division of duties
 between those whose skills are database-centric and those whose
 skills are programming-centric.

	The use of stored programs can (sometimes) improve
 application portability.

But you also need to consider the potential disadvantages of
 using stored programs:
	Stored programs are often slower—especially for
 computationally expensive operations—than equivalent middle-tier
 code.

	The use of stored programs can lead to fragmentation of your
 application logic—logic may be split between the database and
 application server tier, making it difficult to track down design
 flaws or implementation bugs.

	The use of stored programs usually results in your
 application's leveraging more than one programming language,
 requiring additional skills in your development team.

	Most object-relational mapping systems (e.g., J2EE CMP and
 Hibernate) do not know how to work with stored programs.

	Although stored program calls may sometimes be more portable
 than native SQL, in practice this is not true for all
 implementations. In particular, Oracle stored program calls often
 look and act substantially different from calls made in MySQL,
 DB2, or Microsoft SQL Server.

In this chapter we briefly reviewed the general programming
 logic involved in calling stored programs from external programming
 languages. In subsequent chapters we will explain the detailed
 techniques for handling stored program calls in PHP, Java, Perl,
 Python, C#, and VB.NET.

Chapter 13. Using MySQL Stored Programs with PHP

The combination of PHP and MySQL is one of the most popular and
 powerful partnerships in open source web development and is a key
 component of the LAMP (Linux-Apache-MySQL-PHP/Perl/Python) stack. There
 are reportedly more than 18 million web sites based on PHP technology
 (according to http://www.netcraft.com), and the
 majority of these are using MySQL as the underlying database.
PHP started off as a simple CGI-based processor for amateur web
 development in the mid-1990s. It borrowed heavily from the Perl language
 (at the time, the most popular approach for CGI-based dynamic web
 development), but was more tightly integrated with HTML and—unlike
 Perl—was designed specifically for web development.
PHP takes a similar approach to dynamic web content as Microsoft's
 ASP (Active Server Pages) and J2EE's JSP (Java 2 Enterprise Edition Java
 Server Pages). All of these technologies involve embedding tags into
 HTML pages (renamed appropriately as PHP, ASP, or JSP pages, of course)
 that control the dynamic content of the page. In the case of PHP, the
 tags contain PHP code. The PHP code is executed by the PHP engine, which
 is usually deployed within the web server (Apache, IIS, etc.) and
 typically interacts with a database to provide dynamic, data-driven
 content.
As a language, PHP delivers much of the flexibility and power of
 the popular Perl open source scripting language and has a wide variety
 of interfaces to back-end databases. It is probably fair to characterize
 PHP as having a shallower learning curve than the ASP.NET or J2EE
 alternatives. Also, since PHP is open source, software licensing costs
 are, of course, minimal (although many larger enterprises seek support
 from Zend Corporation or another commercial entity).
In this chapter we will review the use of PHP with MySQL and show
 how stored programs can be used within PHP-based applications.
Options for Using MySQL with PHP

PHP currently offers multiple ways of working with MySQL. Some
 of the more popular methods include:
	PEAR (PHP Extension and Application Repository) DB
 package
	This package offers a database-independent API for
 communicating with relational databases from PHP. PEAR::DB
 includes support for MySQL, but provides only rudimentary
 support for MySQL stored programs.

	PHP MySQL extension (ext/mysql)
	This PHP extension provides MySQL-specific support for
 working with MySQL. However, the mysql extension does not include
 methods for working with advanced MySQL features introduced in
 MySQL 4.1 and 5.0 and will probably never provide direct support
 for stored programs.

	mysqli interface (ext/mysqli)
	This PHP extension was introduced to support new features
 in MySQL 4.1 and 5.0.

	PDO (PHP Data Objects)
	PDO is a database-independent interface that will probably
 become the successor to the PEAR::DB interface. PDO became an
 officially supported interface only in PHP 5.1, so it is the
 newest of the PHP database interfaces.

Only the mysqli and PDO
 extensions provide full support for MySQL stored programs. In this
 chapter we will show how each can be used to interface with MySQL and
 how to use MySQL stored programs.

Using PHP with the mysqli Extension

 Before we look at how to invoke stored programs using
 PHP and the mysqli extension, let's
 look at how we perform operations in PHP involving simple SQL
 statements. These operations will form the foundation for using stored
 programs in PHP. If you already feel very familiar with mysqli, you might want to skip forward to
 "Calling Stored Programs
 with mysqli," later in this chapter.
Enabling the mysqli Extension

The mysqli extension ships
 as standard with PHP 5.0 and above, but you may need to enable it.
 You do this by ensuring that ext_mysqi is listed in the extensions
 section of your php.ini file. The ext_mysqli extension should be included in
 your default php.ini file, but may be commented
 out. In Windows, it can be found in the Windows extension section.
 The relevant line will look something like this:
 extension=php_mysqli.dll
On Unix or Linux, the line should look like:
 extension=mysqli.so

Connecting to MySQL

To connect to MySQL we first create an object representing a
 connection using the mysqli call.
 The mysqli call takes arguments
 containing the hostname, username, password, database, and port
 number. The mysqli_connect_errno(
) call will contain any error code associated with the
 connection, and mysqi_connect_error(
) will contain the error text.
In Example 13-1 we
 create an object—$mysqli—representing a MySQL connection,
 and check for any error condition.
Example 13-1. Creating a mysqli connection
Create a connection
<?php
 $mysqli = new mysqli("localhost", "root", "secret", "test");
 if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit ();
 } else {
 printf("Connect succeeded\n");
 }
?>

Checking for Errors

The mysqli connection
 object includes properties that reflect any error condition
 associated with the most recent operation. These properties
 include:
	errno
	Contains the MySQL-specific error code

	sqlstate
	Contains the ANSI SQLSTATE error code

	error
	Contains the text of the most recent error

When we are using prepared statements (see the section "Using Prepared Statements"
 later in this chapter), similar properties can be accessed as part
 of the statement object.
Although PHP 5 supports Java- or C#-style exception handling,
 the mysqli classes do not
 currently throw exceptions, so it is usually necessary to check
 these error codes after every operation.
There are a couple of different common styles for error
 checking. First, we could check to see if the mysqli call returned TRUE (1) or FALSE (0):
 if ($mysqli->query($sql) <> TRUE) {
 printf("Statement failed %d: (%s) %s\n"
 ,$mysqli->errno,$mysqli->sqlstate,$mysqli->error);
 }
If we wanted to make our code very compact, we could do this
 using an "or" statement, as in this example:
 $mysqli->query($sql) or printf("Statement failed %d: (%s) %s\n"
 ,$mysqli->errno,$mysqli->sqlstate,$mysqli->error);
Unfortunately, this technique is not very reliable, as there
 are some mysqli methods that
 return the number of rows affected, rather than TRUE or FALSE. For
 these calls, you need to explicitly check the value of $mysqli->errno after the calls, as
 follows:
 $mysqli->query($sql);
 if ($mysqli->errno <> 0) {
 printf("Statement failed %d: (%s) %s\n"
 ,$mysqli->errno,$mysqli->sqlstate,$mysqli->error);
 }
It is probably wiser to explicitly check the value of errno after key method calls so that you
 can use a consistent style of coding and can avoid introducing bugs
 that may occur if you misinterpret a method that returns no rows as
 having encountered an error.

Executing a Simple Non-SELECT Statement

To issue a "one-off" statement that returns no result set, we
 can use the query method of the mysqli connection object. Example 13-2 provides an
 example of issuing a simple, one-off statement.
Example 13-2. Issuing a simple statement in mysqli
$mysqli->query("CREATE TABLE guy_1 (guys_integers INT)");
if ($mysqli->errno <> 0) {
 printf("Statement failed %d: (%s) %s\n"
 ,$mysqli->errno,$mysqli->sqlstate,$mysqli->error);
}

Retrieving a Result Set

If the statement issued from the query object returns a result
 set, we can retrieve the rows using the fetch_object() method. This method returns a row object, from which
 we can retrieve the values of the columns returned. Example 13-3 shows us cycling
 through the results of a query.
Example 13-3. Retrieving a result set from a simple query
$sql="SELECT employee_id, surname, salary
 FROM employees
 WHERE salary>95000
 AND department_id=1
 AND status='G'";
$results=$mysqli->query($sql);
if ($mysqli->errno) { die ($mysqli->errno." ".$mysqli->error); }
while($row=$results->fetch_object()) {
 printf("%d\t%s\t%d\n",$row->employee_id,$row->surname,$row->salary);
}

An alternative to the fetch_object(
) method is the fetch_row(
) method, in which columns can be referenced by number
 rather than name. Example
 13-4 illustrates this technique.
Example 13-4. Retrieving a result set using fetch_row
$sql="SELECT employee_id, surname, salary
 FROM employees
 WHERE salary>95000
 AND department_id=1
 AND status='G'";
$results=$mysqli->query($sql);
if ($mysqli->errno) { die ($mysqli->errno." ".$mysqli->error); }
while($row=$results->fetch_row()) {
 printf("%d\t%s\t%d\n",$row[0],$row[1],$row[2]);
}

The use of fetch_row()
 results in code that is harder to read and maintain and is not
 generally recommended. However, as we shall soon see, the use of
 fetch_row() is convenient when
 you don't know what the result set will look like when you are
 writing your code (for instance, when processing a dynamic SQL
 statement).

Managing Transactions

As with most of the programmatic interfaces to MySQL, you are
 always free to manage transactions by executing the usual MySQL
 statements—for example, SET
 AUTOCOMMIT, START
 TRANSACTION, COMMIT,
 and ROLLBACK. However, instead of
 using these statements, you may want to take advantage of the native
 methods available in the mysqli
 interface. These methods can assist with managing transactions and
 can be more convenient and result in simpler code. Of course, these
 statements are only meaningful if you are using a transactional
 storage engine such as InnoDB.
The following methods of the mysqli object (illustrated in Example 13-5) are
 transaction-oriented:
	autocommit()
	Enables or disables the autocommit setting for the
 current connection

	commit()
	Issues a COMMIT of
 the transaction

	rollback()
	Issues a (you guessed it) rollback of the
 transaction

Example 13-5. Using mysqli transaction-handling methods
$mysqli->autocommit(FALSE);
$mysqli->query("UPDATE account_balance
 SET balance=balance-$tfer_amount
 WHERE account_id=$from_account");
if ($mysqli->errno) {
 printf("transaction aborted: %s\n",$mysqli->error);
 $mysqli->rollback();
 }
 else {
 $mysqli->query("UPDATE account_balance
 SET balance=balance+$tfer_amount
 WHERE account_id=$to_account");
 if ($mysqli->errno) {
 printf("transaction aborted: %s\n",$mysqli->error);
 $mysqli->rollback();
 }
 else {
 printf("transaction succeeded\n");
 $mysqli->commit();
 }
}

Using Prepared Statements

For SQL statements that may be re-executed, you can use the
 mysqli prepared statement
 interfaces. By preparing a statement before execution, you reduce
 the overhead of re-executing the statement. Furthermore, if a statement contains
 variable parameters, using the prepare and execute calls is safer than appending
 these parameters to the SQL and executing, since SQL code cannot be
 "injected" into prepared statement parameters (see Chapter 18 for a discussion of the
 security implications of SQL injection).
To create a prepared statement, we use the prepare() method of the mysqli interface, which returns a mysqli_stmt object. Any parameters within
 the prepared statement should be represented by ? characters, which can then be associated
 with PHP variables through the bind_param(
) method.
Example 13-6
 illustrates the process of preparing a statement, binding
 parameters, and repeatedly executing a SQL statement.
Example 13-6. Preparing and multi-executing a simple SQL
 statement
1 #Preparing the statment
2 $insert_stmt=$mysqli->prepare("INSERT INTO x VALUES(?,?)")
3 or die($mysqli->error);
4 #associate variables with the input parameters
5 $insert_stmt->bind_param("is", $my_number,$my_string); #i=integer
6 #Execute the statement multiple times....
7 for ($my_number = 1; $my_number <= 10; $my_number++) {
8 $my_string="row ".$my_number;
9 $insert_stmt->execute() or die ($insert_stmt->error);
10 }
11 $insert_stmt->close();

The relevant sections of this code are shown here:
	Line
	Explanation

	2
	Prepare an INSERT statement. The statement
 has two input parameters, corresponding to the values to be
 inserted into the table.

	5
	Use bind_param() to associate PHP
 variables with the SQL parameters. bind_param() takes two input
 values: first a string indicating the data types of the
 parameters to follow (i=integer, d=double, s=string,
 b=blob). So the "is"
 string indicates that the first parameter is to be treated
 as an integer, and the second as a string. The following
 arguments to bind_param(
) signify the PHP variables to be associated with
 the ? placeholders.

	7
	Create a loop that repeats for
 each of the numbers 1 to 10.

	9
	Execute the prepared statement.
 Each execution will insert the values of the PHP variables
 $my_number and $my_string into the
 table.

	11
	Close the prepared statement,
 releasing any resources associated with the
 statement.

Retrieving Result Sets from Prepared Statements

To retrieve a result set from a prepared statement, we must
 first associate the columns in the result set with the PHP variables
 that will hold their values. This is done using the bind_result() method of the prepared
 statement object. We then use the fetch(
) method of the prepared statement to retrieve each row.
 Example 13-7 illustrates
 this technique.
Example 13-7. Retrieving a result set from a prepared statement
 $sql="SELECT employee_id,surname,firstname
 FROM employees
 WHERE department_id=?
 AND status=?
 LIMIT 5";
 $stmt = $mysqli->prepare($sql);
 if ($mysqli->errno<>0) {die($mysqli->errno.": ".$mysqli->error);}
 $stmt->bind_param("is",$input_department_id,$input_status) or die($stmt-error);
 $stmt->bind_result($employee_id,$surname,$firstname) or die($stmt->error);

 $input_department_id=1;
 $input_status='G';
 $stmt->execute();
 if ($mysqli->errno<>0) {die($stmt.errno.": ".$stmt->error) ;}
 while ($stmt->fetch()) {
 printf("%s %s %s\n", $employee_id,$surname,$firstname);
 }

Getting Result Set Metadata

If we don't know in advance the structure of the result set
 being returned by our query, we can use the result_metadata() method of the prepared
 statement to retrieve the column definitions. This method returns a
 result object that can be queried to return the names, lengths, and
 types of the columns to be returned.
Example 13-8 shows
 us retrieving the structure of a result set from a prepared
 statement.
Example 13-8. Retrieving metadata from a prepared statement
 $metadata = $stmt->result_metadata();
 $field_cnt = $metadata->field_count;
 while ($colinfo = $metadata->fetch_field()) {
 printf("Column: %s\n", $colinfo->name);
 printf("max. Len: %d\n", $colinfo->max_length);
 printf("Type: %d\n\n", $colinfo->type);
 }

Processing a Dynamic Result Set

Sometimes we need to process a SQL statement without knowing
 exactly what the columns in the result set will be. In these cases,
 we can use the result_metadata()
 interface to determine the composition of the result set and
 dynamically bind the resulting columns. However, the process is not
 exactly intuitive. Example
 13-9 provides some PHP code that will produce an HTML table
 based on an arbitrary SELECT
 statement.
Example 13-9. Processing a dynamic result set
1 require_once "HTML/Table.php";
2 $table =new HTML_Table('border=1');
3
4 $stmt=$mysqli->prepare($sql);
5 if ($mysqli->errno) {die($mysqli->errno.": ".$mysqli->error);}
6
7 # Retrieve meta-data and print table headings
8 $metadata = $stmt->result_metadata();
9 $field_cnt = $metadata->field_count;
10 $colnames=array();
11 while ($colinfo = $metadata->fetch_field()) {
12 array_push($colnames,$colinfo->name);
13 }
14 $table->addRow($colnames);
15 $table->setRowAttributes(0,array("bgcolor" => "silver"));
16
17
18 # Declare an array to receive column data
19 $stmt_results=array_fill(0,$field_cnt,'');
20 # Set first element of the bind_result parameter as the statement handle
21 $bind_result_parms[0]=$stmt;
22 # Add the references to the column arrays to the parameter list
23 for ($i=0;$i<$field_cnt;$i++) {
24 array_push($bind_result_parms, &$stmt_results[$i]);
25 }
26 #Pass the array to the bind_result function
27 call_user_func_array("mysqli_stmt_bind_result", $bind_result_parms);
28 $stmt->execute();
29 $row=0;
30 while($stmt->fetch()) {
31 $row++;
32 for ($i=0;$i<$field_cnt;$i++) {
33 $table->setCellContents($row,$i,$stmt_results[$i]);
34 }
35 }
36 $stmt->close();
37 print $table->toHtml();

Let us step through this rather complicated example:
	Line(s)
	Explanation

	1 and 2
	Set up the HTML table that will
 hold our result set. We're using the PEAR Table class to create our HTML
 table—available at http://pear.php.net.

	4
	Prepare the SQL statement. The
 text of the SQL statement is contained in the variable
 $sql: we don't have to
 know the text of the SQL, since this code will process the
 output from any SELECT
 statement.

	8
	Retrieve the result set
 metadata.

	9
	Note the number of columns that
 will be returned by the query.

	10-13
	Retrieve the name of each column
 to be returned into an array.

	14 and 15
	Create and format a nHTML table
 row containing our column names.

	19
	Initialize an array that will
 contain the column values for each row returned by the SQL
 statemnet.

	21
	Create an array variable that we
 are going to use to pass to the bind_result() call. To perform a
 dynamic bind ,we have to use the procedural version of
 bind_result()—mysqli_stmt_bind_result()—which
 takes as its first argument the prepared statement object.
 So the first element of our array is the statement
 object.

	23 and 24
	Add an element to $bind_result_parms for each column
 to be returned. Because mysqli_stmt_bind_result() expects
 to have these passed "by reference" rather than "by value,"
 we prefix these array elements with the & symbol.

	27
	Bind the result variables to the
 dynamic SQL. The process is complicated—because bind_result() cannot accept an
 array of result variables, we need to call the PHP function
 call_user_func_array(),
 which allows an array to be passed as an argument to a
 function that normally requires a static set of variables.
 We also have to use the procedural version of bind_result(), mysqli_stmt_bind_result().
 Nevertheless—despite the complexity—we have now successfully
 bound the elements of stmt_results to receive the output
 of the fetch command.

	28–34
	Execute the SQL and fetch the
 results of the SQL. The results for each column will be
 placed in the stmt_results array.

	36 and 37
	Close the prepared statement and
 print out the contents of the HTML table that we have
 built.

The procedure for rendering the results of dynamic SQL in
 mysqli is more complicated than
 we would like. However, the technique outlined above can be used
 when we do not know in advance what the SQL is or what result set it
 will output—and this can be particularly important when dealing with
 stored procedures, since they may return an unpredictable result set
 sequence.
Figure 13-1 shows
 the output produced by Example
 13-9 when provided with a simple query against the departments table.

Calling Stored Programs with mysqli

All of the mysqli methods
 for calling standard SQL statements can also be used to call
 stored programs. For instance, in Example 13-10, we call a
 stored procedure that does not return a result set using the
 query method.
Example 13-10. Calling a stored procedure without a result set in
 mysqli
 $sql = 'call simple_stored_proc()';
 $mysqli->query($sql);
 if ($mysqli->errno) {
 die("Execution failed: ".$mysqli->errno.": ".$mysqli->error);
 }
 else {
 printf("Stored procedure execution succeeded\n");
 }

If the stored procedure returns a single result set, we can
 retrieve the result set as for a SELECT statement by using the fetch_object() method. Example 13-11 shows such a
 simple stored procedure.
[image: Sample output from the dynamic SQL PHP routine]

Figure 13-1. Sample output from the dynamic SQL PHP routine

Example 13-11. Stored procedure with a single result set
CREATE PROCEDURE department_list()
 READS SQL DATA
 SELECT department_name,location from departments;

Example 13-12
 shows how we would retrieve the result set from this stored
 procedure call using query()
 and fetch_object(
).
Example 13-12. Retrieving a result set from a stored procedure
 $sql = "call department_list()";
 $results = $mysqli->query($sql);
 if ($mysqli->errno) {
 die("Execution failed: ".$mysqli->errno.": ".$mysqli->error);
 }
 while ($row = $results->fetch_object()) {
 printf("%s\t%s\n", $row->department_name, $row->location);
 }

You will often want to execute the same stored procedure
 multiple times—possibly with varying input parameters—so it is a
 best practice to use mysqli
 prepared statements. We can use prepared statements with stored
 procedure in pretty much the same way as we would for any other SQL
 statement. For instance, in Example 13-13, we see a
 stored procedure that accepts an input parameter and generates a
 result set based on the value of that input parameter.
Example 13-13. Stored procedure with result set and input
 parameter
CREATE PROCEDURE customers_for_rep(in_sales_rep_id INT)
 READS SQL DATA
 SELECT customer_id,customer_name
 FROM customers
 WHERE sales_rep_id=in_sales_rep_id;

We can create a prepared statement for this stored procedure
 and use the bind_param() method
 to associate the stored procedure input parameter with a PHP
 variable. Example 13-14
 illustrates this technique.
Example 13-14. Using a prepared statement to execute a stored procedure
 with input parameter and result set
1 $sql = "CALL customers_for_rep(?)";
2 $stmt = $mysqli->prepare($sql);
3 if ($mysqli->errno) {die($mysqli->errno.":: ".$mysqli->error);}
4
5 $stmt->bind_param("i", $in_sales_rep_id);
6 $in_sales_rep_id = 1;
7 $stmt->execute();
8 if ($mysqli->errno) {die($mysqli->errno.": ".$mysqli->error);}
9
10 $stmt->bind_result($customer_id,$customer_name);
11 while ($stmt->fetch()) {
12 printf("%d %s \n", $customer_id,$customer_name);
13 }

Let's look at this example line by line:
	Line(s)
	Explanation

	1–3
	Create a prepared statement for
 the stored procedure call; the ? symbol in the SQL text
 indicates the presence of an input parameter.

	5
	Associate a PHP variable ($in_sales_rep_id) with the stored
 procedure's input parameter.

	7–10
	Execute the stored procedure and
 associate PHP variables ($customer_id and $customer_name) with the columns
 in the output result set.

	11–13
	Retrieve the result set from the
 stored procedure call.

Handling Output Parameters

The mysqli extension does
 not currently include a method for directly retrieving output parameters from a stored program. However, it is relatively easy
 to work around this limitation by using a user variable to hold the
 output parameter and then using a simple SQL statement to retrieve
 that value. Example
 13-15 shows a stored procedure that returns the number of
 customers for a specific sales representative as a stored procedure
 output variable.
Example 13-15. Stored procedure with an output parameter
CREATE PROCEDURE sp_rep_customer_count(
 in_emp_id DECIMAL(8,0),
 OUT out_cust_count INT)
 NOT DETERMINISTIC READS SQL DATA
BEGIN

 SELECT count(*)
 INTO out_cust_count
 FROM customers
 WHERE sales_rep_id=in_emp_id;
END;

To retrieve the output parameter from this stored procedure,
 we specify a user variable (see Chapter 3 for a description of user
 variables) to hold the value of the output parameter, and then we
 issue a simple SELECT statement
 to retrieve the value. Example
 13-16 illustrates the technique.
Example 13-16. Retrieving the value of an output parameter in
 mysqli
 $sql="CALL sp_rep_customer_count(1,@customer_count)";
 $stmt = $mysqli->prepare($sql);
 if ($mysqli->errno) {die($mysqli->errno.": ".$mysqli->error);}
 $stmt->execute();
 if ($mysqli->errno) {die($mysqli->errno.": ".$mysqli->error);}
 $stmt->close();

 $results = $mysqli->query("SELECT @customer_count AS customer_count");
 $row = $results->fetch_object();
 printf("Customer count=%d\n",$row->customer_count);

Retrieving Multiple Result Sets

If a stored procedure returns more than one result set, then
 you can use mysqli's multi_query() method to process all the
 results. The specific coding technique in PHP depends somewhat on
 whether you know the exact number and structure of the result sets.
 For instance, in the case of the very simple stored procedure in
 Example 13-17, we know
 that two, and only two, result sets will be returned, and we know
 the exact structure of each.
Example 13-17. Stored procedure that returns two result sets
 CREATE PROCEDURE stored_proc_with_2_results(in_sales_rep_id INT)
 DETERMINISTIC READS SQL DATA
BEGIN

 SELECT employee_id,surname,firstname
 FROM employees
 WHERE employee_id=in_sales_rep_id;

 SELECT customer_id,customer_name
 FROM customers
 WHERE sales_rep_id=in_sales_rep_id;
END;

To process this stored procedure, we first call multi_query() to set up the multiple
 results, and then we call store_result(
) to initialize each result set. We can use fetch_object() or fetch_row() to access each row in the
 result set. Example
 13-18 illustrates this technique.
Example 13-18. Fetching two result sets from a stored procedure in
 mysqli
 $query = "call stored_proc_with_2_results($employee_id)";
 if ($mysqli->multi_query($query)) {

 $result = $mysqli->store_result();
 while ($row = $result->fetch_object()) {
 printf("%d %s %s\n",$row->employee_id,$row->surname,$row->firstname);
 }
 $mysqli->next_result();
 $result = $mysqli->store_result();
 while ($row = $result->fetch_object()) {
 printf("%d %s \n",$row->customer_id,$row->customer_name);
 }
 }

Of course, we don't always know exactly how many result sets a
 stored procedure might return, and each result set can have an
 unpredictable structure. The next_ result(
) method will return TRUE if there is an additional result
 set, and we can use the field_count property and fetch_field() method to retrieve the
 number of columns as well as their names and other properties, as
 shown in Example
 13-19.
Example 13-19. mysqli code to process a variable number of result
 sets
1 $query = "call stored_proc_with_2_results($employee_id)";
2 if ($mysqli->multi_query($query)) {
3 do {
4 if ($result = $mysqli->store_result()) {
5 while ($finfo = $result->fetch_field()) {
6 printf("%s\t", $finfo->name);
7 }
8 printf("\n");
9
10 while ($row = $result->fetch_row()) {
11 for ($i=0;$i<$result->field_count;$i++) {
12 printf("%s\t", $row[$i]);
13 }
14 printf("\n");
15 }
16 $result->close();
17 }
18 } while ($mysqli->next_result());

Let's look at this example line by line:
	Line(s)
	Explanation

	2
	Use the multi_query() call to invoke the
 stored procedure.

	3–18
	Define a loop that will continue
 so long as mysqli->next_result(
) returns TRUE: the loop will execute at least
 once, and then will continue as long as there are result
 sets to process.

	4
	Use store_result() to retrieve the
 result set into the $result object. We can use either
 store_result() or
 use_result(): store_result() uses more memory,
 but allows some additional functionality (such as seek_result()).

	5–7
	Loop through the column in the
 result set. Each call to fetch_field() stores the details
 of a new column into the $finfo object. On line 6 we print
 the name of the column.

	10–15
	This loop repeats for each row in
 the result set. We use fetch_row(
) rather than fetch_object(), since it is
 easier to refer to a column by number when we do not know
 its name.

	11–13
	Loop through each column in a
 particular row. We use the field_count property of the result
 set to control that loop. On line 12 we print the value of a
 particular column, referring to the column by
 number.

	16
	Close the result
 set.

	18
	The while condition on this line will
 cause the loop to repeat if there is an additional result
 set and to terminate otherwise.

Using MySQL with PHP Data Objects

 As we outlined earlier in this chapter, PDO is a database-independent object-oriented, interface to
 relational databases for use in PHP 5.x. PDO was officially released
 with PHP 5.1, although "experimental" versions were available with the
 5.0 release. PDO provides a very powerful and easy-to-use syntax, as
 well as providing good support for MySQL stored programs.
We'll start with a brief review of PDO basics; if you are
 already familiar with PDO, you might want to skip forward to the
 section "Calling Stored
 Programs with PDO" later in this chapter.
Connecting to MySQL

To create a connection to MySQL, we create a database handle
 using the PDO constructor method. The constructor takes three
 arguments:
	dsn
	The "dsn" string
 represents the database to be connected; it has the form
 'mysql:dbname=
 dbname ;host=
 hostname ;port=
 port_no '.

	user
	The username to be used for the connection.

	password
	The password for the user account specified.

This method will throw an exception if the connection cannot
 be made, so you will normally enclose it in a try/catch block. The getMessage() method of the PDOException exception will contain
 details of any problems encountered when establishing the
 connection.
Example 13-20
 shows a connection to MySQL being established.
Example 13-20. Connecting to MySQL using PDO
<?php

$dsn = 'mysql:dbname=prod;host=localhost;port=3305';
$user = 'root';
$password = 'secret';

try {
 $dbh = new PDO($dsn, $user, $password);
}
catch (PDOException $e) {
 die('Connection failed: '.$e->getMessage());
}

print "Connected\n";

?>

Executing a Simple Non-SELECT Statement

You can execute a simple one-off statement that does not
 return a result set (e.g., is not a SELECT, SHOW
 STATUS, etc.) with the exec(
) method of the database object, as shown in Example 13-21.
Example 13-21. Executing a non-select with PDO
$sql="CREATE TABLE my_numbers (a_number INT)";
$dbh->exec($sql);

The exec() method returns
 the number of rows returned, as opposed to a success or failure
 status. Example 13-22
 shows a code fragment that uses the return value to determine the
 number of rows inserted.
Example 13-22. Using the return value from the exec() method
$rows=$dbh->exec("INSERT INTO my_numbers VALUES (1), (2), (3)");
printf("%d rows inserted\n",$rows);

Catching Errors

Some PDO methods return a success or failure status, while
 others—like $dbh->exec()—
 return the number of rows processed. Therefore, it's usually best to
 check for an error after each statement has executed. The errorCode() method returns the SQLSTATE from the most recent execution,
 while errorInfo() returns a
 three-element array that contains the SQLSTATE, MySQL error code, and MySQL
 error message.
Example 13-23
 checks the errorCode() status
 from the preceding exec() call,
 and—if the SQLSTATE does not
 indicate success (00000)—prints the error information from errorInfo().
Example 13-23. Using PDO error status methods
$sql="CREATE TABLE my_numbers (a_number INT)";
$dbh->exec($sql);
if ($dbh->errorCode()<>'00000') {
 $error_array=$dbh->errorInfo();
 printf("SQLSTATE : %s\n",$error_array[0]);
 printf("MySQL error code : %s\n",$error_array[1]);
 printf("Message : %s\n",$error_array[2]);
}

The output from Example
 13-23 is shown in Example 13-24.
Example 13-24. Output from the errorInfo() method
SQLSTATE : 42S01
MySQL error code : 1050
Message : Table 'my_numbers' already exists

If you want to produce a more succinct error output, you can
 use the PHP implode() function
 to join the elements of the errorInfo(
) call into a single string, as shown in Example 13-25.
Example 13-25. Generating a succinct error message
$sql="CREATE TABLE my_numbers (a_number INT)";
$dbh->exec($sql);
if ($dbh->errorCode()<>'00000') {
 die("Error: ".implode(': ',$dbh->errorInfo())."\n");
}

Managing Transactions

If you are using a transactional storage engine such as
 InnoDB, then you can control transactions using the standard MySQL
 statements such as SET AUTOCOMMIT
 , START
 TRANSACTION , COMMIT
 , and ROLLBACK
 . However, instead of using these statements, you may
 want to take advantage of the native methods available in the
 PDO interface, which allow you to directly control
 transactions. These methods are applied to the database connection
 object and include beginTransaction(
), commit(), and
 rollback().
Example 13-26
 illustrates the use of these transaction control methods to
 implement transaction logic in PDO.
Example 13-26. Using PDO transaction control methods
 $dbh->beginTransaction();

 $dbh->exec("UPDATE account_balance
 SET balance=balance-$tfer_amount
 WHERE account_id=$from_account");

 if ($dbh->errorCode()<>'00000') {
 printf("transaction aborted: %s\n",implode(': ',$dbh->errorInfo()));
 $dbh->rollback();
 }
 else
 {
 $dbh->exec("UPDATE account_balance
 SET balance=balance+$tfer_amount
 WHERE account_id=$to_account");
 if ($dbh->errorCode()<>'00000')
 {
 printf("transaction aborted: %s\n",implode(': ',$dbh->errorInfo()));
 $dbh->rollback();
 }
 else
 {
 printf("transaction succeeded\n");
 $dbh->commit();
 }
 }

Issuing a One-Off Query

The query() method can be
 used to generate a one-off query. It returns an object containing
 the result set returned by the query. Individual columns may be
 accessed either by column name or column number (using column name
 is recommended to improve readability and maintainability). Example 13-27 shows a query
 being executed and the results accessed by column name.
Example 13-27. Issuing a simple query in PDO
$sql = 'SELECT department_id,department_name FROM departments';
foreach ($dbh->query($sql) as $row) {
 printf("%d \t %s\n",$row['department_id'],$row['department_name']);
}

In Example 13-28
 we retrieve the column results by column number.
Example 13-28. Accessing query results by column number
$sql = 'SELECT department_id,department_name FROM departments';
foreach ($dbh->query($sql) as $row) {
 printf("%d \t %s\n",$row[0],$row[1]);
}

Using the query() method
 is a convenient way to quickly execute a query, but it is not a good
 way to execute a query that will be re-executed, and it has less
 functionality than the prepare()
 and execute() methods that we
 are going to discuss next.

Using Prepared Statements

PDO prepared statements should be used whenever you are going to repetitively
 execute a statement. The prepare(
) and execute()
 methods also allow you to exercise greater control over statement
 execution, and they offer some additional capabilities that are
 particularly important when executing stored procedures.
The prepare() method
 accepts a SQL statement and returns a PDOStatement object. The execute() method of the statement can
 then be used to execute the statement. Example 13-29 shows the use
 of prepare() and execute() to execute a simple INSERT statement.
Example 13-29. Prepared statement without result set
$sql = 'INSERT INTO my_numbers VALUES(1),(2),(3)';

$sth = $dbh->prepare($sql);
$sth->execute() or die (implode(':',$sth->errorInfo()));

If the SQL statement passed to the statement is a query, then
 we can use the fetch() method of
 the statement to access the result set. Each call to fetch() returns an array containing the
 values for that row. As with the query call, we can access the
 column values by name or by column number. Example 13-30 shows us
 accessing the column values by name.
Example 13-30. Retrieving a result set from a prepared statement
$sql='SELECT department_id,department_name FROM departments LIMIT 5';

$sth=$dbh->prepare($sql) or die (implode(':',$sth->errorInfo()));

$sth->execute() or die (implode(':',$sth->errorInfo()));

while($row=$sth->fetch()) {
 printf("%d \t %s \n",$row['department_id'],$row['department_name']);
}

Binding Parameters to a Prepared Statement

We usually create prepared statements with the intention of re-executing the
 statement—often in association with new parameter values.
If you want to re-execute a SQL statement while changing the
 WHERE clause criteria, DML
 values, or some other part of the SQL, you will need to include
 placeholders for substitution variables (sometimes called
 SQL parameters or bind
 variables). These are represented in the SQL text by
 including variable names prefixed by :, or as ? symbols.
We then use the bindParam(
) method to associate PHP variables with the placeholders
 in the SQL text. This must occur after the prepare() method has been called but
 before the execute() method.
 bindParam() requires that you
 specify the data type of the parameter as a PDO constant (such as
 PDO::PARAM_INT) and—for certain
 data types such as strings—a length.
Once we have associated PHP variables with a SQL parameter
 using bindParam(), we are ready
 to execute our SQL. If we wish to re-execute the SQL, we can simply
 change the values of the PHP variables and re-issue the execute() call: we do not have to call
 bindParam() whenever the
 parameter values change.
Example 13-31
 shows how we can bind parameters to a prepared statement.
Example 13-31. Binding parameters to a prepared statement
1 $sql='SELECT customer_id,customer_name
2 FROM customers
3 WHERE sales_rep_id=:sales_rep_id
4 AND contact_surname=:surname';
5 $sth = $dbh->prepare($sql);
6 if ($dbh->errorCode()<>'00000') {
7 die("Error: ".implode(': ',$dbh->errorInfo())."\n");
8 }
9
10 $sth->bindParam(':sales_rep_id', $sales_rep_id, PDO::PARAM_INT);
11 $sth->bindParam(':surname', $surname, PDO::PARAM_STR, 30);
12
13 $sales_rep_id=41;
14 $surname = 'SMITH';
15 $sth->execute();
16 if ($dbh->errorCode()<>'00000') {
17 die("Error: ".implode(': ',$dbh->errorInfo())."\n");
18 }
19 while($row=$sth->fetch()) {
20 printf("%d %s \n",$row['customer_id'],$row['customer_name']);
21 }

Let's look at this example line by line:
	Line(s)
	Explanation

	1–5
	Prepare a PDO statement for a
 SELECT statement that
 will retrieve customer details for a particular customer
 contact_surname and
 sales_rep_id.
 Placeholders are defined in the SQL text to represent the
 values for those two columns.

	10
	Call the bindParam() method to associate
 the PHP variable $sales_rep_id with the placeholder
 :sales_rep_id. The third
 parameter indicates the data type of the placeholder. A
 complete list of PDO data types can be found in the PDO
 documentation (see http://www.php.net/manual/en/ref.pdo.php).

	11
	Call bindParam() again to associate a
 PHP variable with the :surname placeholder. In this
 case, we also specify a maximum length for the parameter as
 specified in the fourth parameter.

	13–14
	Assign values to the PHP variables
 that have been associated with the prepared statement
 placeholders. Typically, we would assign new values to these
 variables before we execute the prepared
 statement.

	15–22
	Execute the prepared statement and
 retrieve rows in the usual fashion.

Getting Result Set Metadata

Sometimes we will need to execute a SQL statement without
 being sure about the structure of the result set that it might
 return. This is particularly true of stored programs, which can
 return multiple result sets in possibly unpredictable ways. We can
 determine the result set to be returned by a prepared statement by
 using PDO metadata methods.
The prepared statement object supports a columnCount() method, which returns the
 number of columns to be returned by the prepared statement. getColumnMeta() can be called to obtain
 an array containing details about a specific column such as its
 name, data type, and length.
Table 13-1
 lists the elements contained in the array returned by getColumnMeta().
Table 13-1. Elements of the getColumnMeta() array
	Array element name
	Description

	 native_type
	MySQL data type of the
 column

	 flags
	Any special flags, for the column,
 such as "not null"

	 name
	Display name for the
 column

	 len
	Length of the
 column

	 precision
	Precision for decimal or
 floating-point numbers

	 pdo_type
	Internal PDO data type used to
 store the value

In Example 13-32
 we use the getColumnMeta()
 function to retrieve and print names, data types, and lengths of
 columns returned by a query.
Example 13-32. Obtaining column metadata using the getColumnMeta()
 method
$sth = $dbh->prepare("SELECT employee_id,surname,date_of_birth
 FROM employees where employee_id=1");
$sth->execute() or die (implode(':',$sth->errorInfo()));
$cols=$sth->columnCount();

for ($i=0; $i<$cols ;$i++) {
 $metadata=$sth->getColumnMeta($i);
 printf("\nDetails for column %d\n",$i+1);
 printf(" Name: %s\n",$metadata["name"]);
 printf(" Datatype: %s\n",$metadata["native_type"]);
 printf(" Length: %d\n",$metadata["len"]);
 printf(" Precision: %d\n",$metadata["precision"]);
}

Processing a Dynamic Result Set

Using the columnCount()
 method and (optionally) the getColumnMeta(
) method, we can fairly easily process a result set even
 if we have no idea what the structure of the result set will be when
 we code.
Example 13-33
 shows a PHP function that will accept any SELECT statement and output an HTML table
 showing the result set.
Example 13-33. PDO function to generate an HTML table from a SQL
 statement
1 function sql_to_html($dbh,$sql_text) {
2 require_once "HTML/Table.php";
3 $table = new HTML_Table('border=1');
4
5 $sth = $dbh->prepare($sql_text) or die(implode(':', $sth->errorInfo()));
6 $sth->execute() or die(implode(':', $sth->errorInfo()));
7 $cols = $sth->columnCount();
8
9 for ($i = 0; $i < $cols; $i ++) {
10 $metadata = $sth->getColumnMeta($i);
11 $table->setCellContents(0, $i, $metadata["name"]);
12 }
13 $table->setRowAttributes(0, array ("bgcolor" => "silver"));
14
15 $r = 0;
16 while ($row = $sth->fetch()) {
17 $r ++;
18 for ($i = 0; $i < $cols; $i ++) {
19 $table->setCellContents($r, $i, $row[$i]);
20 }
21 }
22
23 print $table->toHtml();
24 }

Let's step through the code:
	Line(s)
	Explanation

	2 and 3
	Initialize the HTML table. We're
 using the PEAR Table
 class to create our HTML table (available at http://pear.php.net).

	5 and 6
	Prepare and execute the SQL in the
 usual fashion.

	7
	Retrieve the number of columns in
 the result set. We'll need to refer to the column count
 several times, so it's handy to store the results in a local
 variable.

	9–12
	Loop through the columns. For each
 column, we retrieve the column name and add that column name
 to the header row in our HTML table.

	16–21
	Loop through the rows from the
 result set using the fetch(
) method in the usual fashion.

	18–20
	Loop through the columns returned
 for a particular row. On line 19 we apply the column value
 to the appropriate cell of the HTML table.

	23
	Print the HTML to generate the
 table.

Figure 13-2 shows
 the output generated by the PDO routine for a simple SQL statement that prints some
 columns from the employees
 table.

Calling Stored Programs with PDO

All of the PDO methods we've examined so far can be used with
 stored programs. For instance, you can use the exec() method to call a simple stored
 program that doesn't return a result set, as shown in Example 13-34.
Example 13-34. Calling a simple stored procedure in PDO with the exec()
 method
$sql='call simple_stored_proc()';
$dbh->exec($sql);
if ($dbh->errorCode()<>'00000') {
 die("Error: ".implode(': ',$dbh->errorInfo())."\n");
}

If the stored procedure returns a single result set, then you
 have the same choices as for a SELECT statement or another SQL statement
 that returns a result set. That is, you can use prepare() and execute() for the statement, or you can
 use the query() method.
 Generally we advise that you use prepare(
) and execute(), since
 these can be more efficient and have greater flexibility. Example 13-35 shows the use
 of query() to retrieve a single
 result set from a stored procedure.
Example 13-35. Retrieving a single stored procedure result set using the
 PDO query() method
$sql = 'call stored_proc_with_1_result()';
foreach ($dbh->query($sql) as $row) {
 printf("%d \t %s\n",$row[0],$row[1]);
}

[image: Output from PDO dynamic query example]

Figure 13-2. Output from PDO dynamic query example

The prepare(), execute(), and fetch() sequence for retrieving a single
 result set from a stored procedure is exactly the same as for a
 SELECT statement. Example 13-36 shows the use
 of this sequence to retrieve a result set from a stored
 procedure.
Example 13-36. Retrieving a single stored procedure result set using
 prepare(), execute(), and fetch()
$sql='call stored_proc_with_1_result()';

$sth=$dbh->prepare($sql) or die (implode(':',$sth->errorInfo()));

$sth->execute() or die (implode(':',$sth->errorInfo()));

while($row=$sth->fetch()) {
 printf("%s \t %s \n",$row['department_name'],$row['location']);
}

Binding Input Parameters to Stored Programs

If we use prepare() to
 ready our stored procedure for execution, we can bind parameters to
 the stored procedure using the bindParam(
) call, just as we have done with standard SQL statements,
 as shown in Example
 13-37.
Example 13-37. Binding parameters to stored procedures
$sql='CALL customers_for_rep(:sales_rep_id,:surname)';
$sth = $dbh->prepare($sql);
if ($dbh->errorCode()<>'00000') {
 die("Error: ".implode(': ',$dbh->errorInfo())."\n");
}

$sth->bindParam(':sales_rep_id', $sales_rep_id, PDO::PARAM_INT);
$sth->bindParam(':surname', $surname, PDO::PARAM_STR, 30);

$sales_rep_id=41;
$surname = 'SMITH';
$sth->execute();

Handling Multiple Result Sets

If a stored procedure returns more than one result set, then
 you can use the nextRowset()
 method to move through each result set in sequence. The specific
 coding technique in PHP depends somewhat on whether you know the
 exact number and structure of the result sets. For instance, in the
 case of the very simple stored procedure in Example 13-38, we know that
 two, and only two, result sets will be returned, and we know the
 exact structure of each.
Example 13-38. Stored procedure that returns two result sets
CREATE PROCEDURE stored_proc_with_2_results(in_sales_rep_id INT)
 DETERMINISTIC READS SQL DATA
BEGIN

 SELECT employee_id,surname,firstname
 FROM employees
 WHERE employee_id=in_sales_rep_id;

 SELECT customer_id,customer_name
 FROM customers
 WHERE sales_rep_id=in_sales_rep_id;
END;

To process this stored procedure, we merely need to code
 fetch() loops to retrieve each
 result set and add a nextRowset(
) call between the first set of fetches and the second.
 Example 13-39
 illustrates this technique.
Example 13-39. Fetching two result sets from a stored procedure in
 PDO
$sth = $dbh->prepare("call stored_proc_with_2_results($employee_id)");
$sth->execute() or die (implode(':',$sth->errorInfo()));

while ($row1=$sth->fetch()) {
 printf("%d %s %s\n",$row1['employee_id'],$row1['surname'],$row1['firstname']);
}

$sth->nextRowset();

while ($row2=$sth->fetch()) {
 printf("%d %s \n",$row2['customer_id'],$row2['customer_name']);
}

Of course, we don't always know exactly how many result sets a
 stored procedure might return, and each result set can have an
 unpredictable structure. Therefore, we often want to combine the
 nextRowset() method with the
 getColumnMeta() method we saw
 earlier to dynamically process the result sets that the stored
 procedure produces. For instance, the stored procedure in Example 13-40 will return
 different result sets depending on whether the employee is a sales
 representative or not.
Example 13-40. Stored procedure that returns a variable number of result
 sets
CREATE PROCEDURE sp_employee_report(in_emp_id decimal(8,0))
 READS SQL DATA
BEGIN
 DECLARE customer_count INT;

 SELECT surname,firstname,date_of_birth
 FROM employees
 WHERE employee_id=in_emp_id;

 SELECT department_id,department_name
 FROM departments
 WHERE department_id=
 (select department_id
 FROM employees
 WHERE employee_id=in_emp_id);

 SELECT count(*)
 INTO customer_count
 FROM customers
 WHERE sales_rep_id=in_emp_id;

 IF customer_count=0 THEN
 SELECT 'Employee is not a current sales rep';
 ELSE
 SELECT customer_name,customer_status
 FROM customers
 WHERE sales_rep_id=in_emp_id;

 SELECT customer_name,sum(sale_value)
 FROM sales JOIN customers USING (customer_id)
 WHERE customers.sales_rep_id=in_emp_id
 GROUP BY customer_name;
 END IF;

It's relatively simple to handle variable result set types
 with varying results. First, we construct a loop that will continue
 as long as nextRowset() returns
 TRUE. Within that loop we use the getColumnMeta() call to retrieve the
 names and types of columns and then fetch the rows using the methods
 we discussed previously in the section "Getting Result Set
 Metadata," earlier in this chapter.
Example 13-41
 shows some PDO code that will process the multiple, variable result
 sets output by the stored procedure shown in Example 13-40. In fact, this
 code is capable of processing the result sets from any stored
 procedure specified in the $sql
 variable.
Example 13-41. PDO code to process multiple result sets from a stored
 procedure
1 function many_results($dbh, $sql_text) {
2 $sth = $dbh->prepare($sql_text);
3 $sth->execute() or die(implode(':', $sth->errorInfo()));
4
5 do {
6 if ($sth->columnCount() > 0) { /* Yes, there is a result set */
7
8 #Print off the column names
9 for ($i = 0; $i < $sth->columnCount(); $i ++) {
10 $meta = $sth->getColumnMeta($i);
11 printf("%s\t", $meta["name"]);
12 }
13 printf("\n");
14
15 #Loop through the rows
16 while ($row = $sth->fetch()) {
17 #Loop through the columns
18 for ($i = 0; $i < $sth->columnCount(); $i ++) {
19 printf("%s\t", $row[$i]);
20 }
21 printf("\n");
22
23 }
24 printf("-------------------\n");
25 }
26 }
27 while ($sth->nextRowset());
28 }

Let's walk through this example:
	Line(s)
	Explanation

	2–3
	Prepare and execute a stored
 procedure call in the usual manner.

	5–27
	This is our main loop. It executes
 once for each result set returned by the stored procedure—
 it will continue until nextRowset(
) returns FALSE. Note that this loop will always
 execute at least once (though it may do nothing if there are
 no rows returned).

	6
	Check to make sure that there is a
 result set. Remember that the loop will execute at least
 once, so we should check that there is at least one result
 set.

	9–12
	Loop through the column names and
 print them off (as a header row).

	16–23
	This loop repeats once for each
 row returned by a result set.

	18–20
	Loop through each column in the
 current row and print out its value.

	27
	Having processed all columns in
 all the rows for a particular result set, we call nextRowset() to move onto the
 next result. If nextRowset(
) returns FALSE, then we will terminate the loop
 having processed all of the output.

Handling Output Parameters

As we discussed in Chapter
 3, MySQL stored procedures can include input (IN), output (OUT), and input-output (INOUT) parameters. For instance, the
 stored procedure shown in Example 13-42 contains an
 output parameter that will contain the number of customers for a
 specific sales representative.
Example 13-42. Stored procedure with an OUT parameter
CREATE PROCEDURE 'sp_rep_customer_count'(
 in_emp_id DECIMAL(8,0),
 OUT out_cust_count INT)
 READS SQL DATA
BEGIN
 SELECT count(*) AS cust_count
 INTO out_cust_count
 FROM customers
 WHERE sales_rep_id=in_emp_id;

END ;

The PDO specification for the bindParam() method allows you to identify
 a parameter that might return an output value by associating the
 PDO::PARAM_INPUT_OUTPUT constant
 with the parameter. Example
 13-43 shows how we would use this method to retrieve the
 value of an output parameter from this stored procedure.
Example 13-43. Binding an output parameter in PDO (not implemented at time
 of writing)
sql = "call sp_rep_customer_count(?,?)";
$sth = $dbh->prepare($sql) or die(implode(':', $sth->errorInfo()));
$sth->bindParam(1,$sales_rep_id,PDO::PARAM_STR,4000);
$sth->bindParam(2,$customer_count, PDO::PARAM_INT|PDO::PARAM_INPUT_OUTPUT);
$sth->execute() or die(implode(':', $sth->errorInfo()));

Unfortunately, as we write this chapter, the ability to use
 bindParam() to retrieve output
 parameters is not implemented in the PDO MySQL driver (Bug# 11638
 current as of MySQL 5.0.19). There is every chance, however, that
 the method will have been implemented by the time you read this
 book, so please visit the book's web site where we will report on
 the status of the PDO driver.
Even without the bindParam(
) method, we can extract the value of an output parameter.
 We can do this by using a user variable to retrieve the value of the
 output parameter, and then retrieve this value using a simple
 SELECT statement. Example 13-44 shows how to do
 this. We use the @customer_count
 variable to hold the value of the output parameter and then, in a
 subsequent step, fetch the value of @customer_count using a one-line SELECT.
Example 13-44. Getting the value of an output parameter without
 bindParam
$sql="call sp_rep_customer_count(1,@customer_count)";
$sth = $dbh->prepare($sql);
$sth->execute() or die (implode(':',$sth->errorInfo()));

Now get the output variable

$sql="SELECT @customer_count";
foreach ($dbh->query($sql) as $row) {
 printf("Customer count=%d\n",$row[0]);
}

If the parameter were of type INOUT, we would simply issue a SET statement to set the value before
 execution and then issue a SELECT
 statemnet to retrieve the altered value after execution. We showed
 how to do this with the mysqli
 driver earlier in this chapter.

A Complete Example

Let's put PDO to use to create a web page that executes a
 stored procedure and formats the results in HTML. The stored
 procedure is shown in Example
 13-45. This stored procedure generates some useful data about
 the MySQL server, including the details of currently connected
 sessions, status variables, and configuration settings for the
 database. The number and types of result sets varies depending upon
 the input parameters: if a valid database is provided in the first
 parameter, a list of objects for that table is returned. The server
 version is returned in an output parameter.
To help us generate a well-formatted report, the stored
 procedure outputs a header row for each of the result sets it
 returns. This header row is issued as a single-row, single-column
 result set in which the column name is table_header.
Example 13-45. MySQL server status stored procedure
CREATE PROCEDURE sp_mysql_info(in_database VARCHAR(60),
 OUT server_version VARCHAR(100))
 READS SQL DATA
BEGIN

 DECLARE db_count INT;

 SELECT @@version
 INTO server_version;

 SELECT 'Current processes active in server' AS table_header;
 SHOW FULL PROCESSLIST;

 SELECT 'Databases in server' AS table_header;

 SHOW DATABASES;

 SELECT 'Configuration variables set in server' AS table_header;
 SHOW GLOBAL VARIABLES;
 SELECT 'Status variables in server' AS table_header;
 SHOW GLOBAL STATUS;

 SELECT COUNT(*)
 INTO db_count
 FROM information_schema.schemata s
 WHERE schema_name=in_database;
 IF (db_count=1) THEN
 SELECT CONCAT('Tables in database ',in_database) AS table_header;
 SELECT table_name
 FROM information_schema.tables
 WHERE table_schema=in_database;
 END IF;
END;

Our PDO example prompts the user to provide login details for
 a MySQL server, connects to that server, and attempts to execute the
 stored procedure. Each result set is formatted as an HTML table and
 the "special" heading rows are formatted as HTML headers. The output
 parameter that contains the MySQL server version is retrieved and
 displayed at the commencement of the output. Example 13-46 displays the
 complete PDO example.
Example 13-46. A complete PDO example
1 <HTML>
2 <TITLE>MySQL Server Statistics</TITLE>
3 <H1>Enter MySQL Server Details</H1>
4 Enter your database connection details below:
5 <p>
6 <FORM ACTION="<?php echo $_SERVER['PHP_SELF']; ?>" METHOD=POST>
7 <TABLE>
8 <TR><TD>Host:</TD><TD> <input type="text" name="mhost"></TD></TR>
9 <TR><TD>Port:</TD><TD> <input type="text" name="mport"></TD></TR>
10 <TR><TD>Username:</TD><TD> <input type="text" name="muser"></TD></TR>
11 <TR><TD>Password:</TD><TD> <input type="password" name="mpass"></TD></TR>
12 <TR><TD>Database:</TD><TD> <input type="test" name="mdb"></TD></TR>
13 </TABLE>
14 <TR><TD><input type="submit" name="Submit" value="Submit">
15 </FORM>
16
17 <?php
18 require_once "HTML/Table.php";
19
20 $html_text = array ();
21
22 if (IsSet ($_POST['Submit'])) {
23 $dsn = 'mysql:dbname='.$_POST['mdb'].';host='.$_POST['mhost'].
24 ';port='.$_POST['mport'];
25 $user = $_POST['muser'];
26 $password = $_POST['mpass'];
27
28 try {
29 $dbh = new PDO($dsn, $user, $password);
30 } catch (PDOException $e) {
31 echo 'Connection failed: '.$e->getMessage();
32 }
33 $sql = 'call sp_mysql_info(:dbname,@server_version)';
34 $sth = $dbh->prepare($sql);
35 $sth->bindParam(':dbname', $_POST['mdb'], PDO::PARAM_STR, 30);
36 $sth->execute() or die(implode(':', $sth->errorInfo()));
37
38 do {
39 if ($sth->columnCount() > 0) { /* Yes, there is a result set */
40 $col0 = $sth->getColumnMeta(0);
41 if ($col0["name"] == "table_header") { /*format this as a heading */
42 $row = $sth->fetch();
43 array_push($html_text, "<h2>$row[0]</h2>");
44 }
45 else { /* Format this as a table */
46 $table = new HTML_Table('border=1');
47 for ($i = 0; $i < $sth->columnCount(); $i ++) {
48 $meta = $sth->getColumnMeta($i);
49 $table->setCellContents(0, $i, $meta["name"]);
50 }
51 $table->setRowAttributes(0, array ("bgcolor" => "silver"));
52
53 #Loop through the rows
54 $r = 0;
55 while ($row = $sth->fetch()) {
56 #Loop through the columns in the row
57 $r ++;
58 for ($i = 0; $i < $sth->columnCount(); $i ++) {
59 $table->setCellContents($r, $i, $row[$i]);
60 }
61 }
62 array_push($html_text, $table->toHtml());
63 }
64 }
65 }
66 while ($sth->nextRowset());
67
68 foreach ($dbh->query("SELECT @server_version") as $row) {
69 $mysql_version = $row[0];
70 }
71
72 print "<h1>MySQL Server status and statistics</h1>";
73 printf("Host: %s
", $_POST['mhost']);
74 printf("Port: %s
", $_POST['mport']);
75 printf("Version: %s
", $mysql_version);
76 foreach($html_text as $html) {
77 print $html;
78 }
79 }
80 ?>
81 </html>

This code uses most of the techniques we have seen in previous
 examples, as explained next:
	Line(s)
	Explanation

	1–15
	Create the HTML form in which the
 user enters the server details. This is standard PHP HTML.
 You can see the resulting input form in Figure
 13-3.

	18
	We are using the PEAR HTML
 Table module to create
 our HTML tables. You can obtain this from http://pear.php.net.

	20
	Create an array to store our HTML.
 We do this because we want to display the MySQL version
 string before the HTML tables, although
 as a stored procedure output variable we can only retrieve
 it after all result sets have been
 closed. So we need to store our HTML in a variable rather
 than print it as we go.

	22
	This if statement starts the section of
 code that is executed once the user clicks the Submit button
 defined on line 14.

	23–32
	Build up the PDO dsn string from the user input and
 connect to the MySQL server.

	33–36
	Prepare and execute the stored
 procedure, binding as an input parameter the database name
 provided in the HTML form. A user variable—@server_version —is provided to
 receive the value of the second, output
 parameter.

	38–66
	This is the loop that will repeat
 for each result set returned by the stored procedure. The
 loop will continue as long as the $sth->nextRowset() call on
 line 66 returns true.

	42–46
	If the first column in the result
 set is named table_header, then this result set
 is a "title" for the subsequent result set, so we format the
 column value as an HTML header (line 45).

	47–48
	Otherwise (the result set is not a
 "title"), create a new table object to contain the result
 set output.

	47–51
	Retrieve the column names for the
 result set and add them to the first row of the HTML
 table.

	54–61
	Loop through each row of the
 output and push the column values into the appropriate cells
 of the HTML table.

	62
	Add the HTML for the table to our
 array variable—we'll print the contents of this array later
 (after we get the value of the output
 parameter).

	68–70
	Now that all result sets have been
 retrieved, we can get the value of the output parameter,
 which is now contained in the user variable @server_version.

	72–75
	Print the major header line, and
 some server details, including host, port, and MySQL server
 version.

	76–78
	Print all of the HTML that we
 saved in the $html_text
 variable. This includes the HTML tables and
 headings.

Figure 13-3 shows
 the output from this PHP example.

Conclusion

In this chapter we saw how we can use MySQL stored programs
 within PHP by using either the mysqli or PDO extension. Both interfaces
 provide all the tools you need to take advantage of MySQL stored
 procedures and functions from within your PHP application.
[image: Output from our complete PDO example]

Figure 13-3. Output from our complete PDO example

Chapter 14. Using MySQL Stored Programs with Java

PHP is undoubtedly the most popular language used in combination
 with MySQL to build commercial applications and—in particular—web
 applications. However, for applications that aspire to possibly greater
 scalability and standards compliance, Java offers an attractive alternative. The Java JDBC
 database-independent API provides robust and mature methods for
 performing all types of database interaction from within the Java
 environment and includes very strong support for handling stored
 programs. The J2EE standard provides a way for Java to be used within
 commercial and open source web or application servers to construct
 scalable and efficient web applications that can take advantage of MySQL
 as a database server, and MySQL stored programs as the interface to the
 database. There are also alternative Java frameworks such as
 Hibernate and Spring, which can expedite database access without
 adding all the overhead and complexity of a J2EE solution, and these can
 leverage stored programs as well.
In this chapter we will commence with a quick review of how you
 can use Java JDBC to perform interactions with the database not
 involving stored programs, including the basic prerequisite functions of
 installing and registering the JDBC driver and obtaining a connection to
 a MySQL server. We will also explain how to execute basic SQL from the
 driver and how to handle database errors.
Next, we'll proceed to examine the JDBC syntax for invoking stored
 programs, including handling input and output parameters and processing
 multiple result sets.
Finally, we'll look at how stored programs can be utilized within
 some of the popular Java frameworks, including servlets or
 Enterprise JavaBeans (EJB) within an application
 server, from Hibernate, or within the Spring framework.
Review of JDBC Basics

Before examining how we can use stored programs in
 JDBC , let's look at how JDBC supports database operations
 that don't include stored programs. These basic operations will serve
 as the foundation for JDBC that does use stored programs. If you are
 already familiar with JDBC, you might want to skip forward to "Using
 Stored Programs in JDBC," later in this chapter.
Installing the Driver and Configuring Your IDE

While the JDBC interface itself is part of native
 Java , to use JDBC with MySQL we will need to install a
 MySQL-aware JDBC driver. MySQL provides such a driver, Connector/J,
 which we can download from http://dev.mysql.com/downloads/connector/j.html.
 Installation is a simple matter of unpacking the contents of a .zip
 file or a tar archive to a convenient location on our hard
 drive.
To allow our Java programs to access the Connector/J archive,
 we need to add the Connector/J JAR (Java Archive) file to our
 system's CLASSPATH. For instance,
 if we unpacked the Connector/J files into a directory called
 C:\MySQL\ConnectorJ, then our CLASSPATH might look like this:
 Set CLASSPATH=C:\MySQL\ConnectorJ\mysql-connector-java-3.1.10-bin.jar;.
Most Java IDEs require that we specify any required libraries in
 either a general or a project-specific dialog box. For example, in
 Eclipse, we can open the Properties dialog box for the project,
 select Java Build Path, click Add External JARs, then add the
 location of the Connector/J JAR file. Figure 14-1 shows the Eclipse
 dialog box for adding a required library.

Registering the Driver and Connecting to MySQL

Within our Java program we will normally import the java.sql package so that we don't have to
 fully qualify our references to JDBC classes, as shown in Example 14-1.
Example 14-1. Importing the java.sql package
package jdbc_example;

import java.sql.*;

Before we can connect to MySQL, we need to initialize the
 Connector/J driver. This is done with the static Class.forName() method, shown in Example 14-2. We can then
 create a Connection object that
 represents a specific MySQL connection by using DriverManager.getConnection() with an
 appropriately formatted URL. This also is shown in Example 14-2 .
[image: Configuring Eclipse for Connector/J]

Figure 14-1. Configuring Eclipse for Connector/J

Example 14-2. Connecting to a MySQL instance
Class.forName("com.mysql.jdbc.Driver").newInstance();

Connection myConnection = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/test?user=root&password=secret");

The URL for the getConnection(
) method has the following (simplified) format:
 jdbc:mysql://host[:port]/[database][?Name1=Value1][&Name2=Value2]...
The name/value pairs following the ? character typically
 include user and password together with other optional
 connection parameters (relating to the use of SSL, timeouts, etc.).
 You can find a full list of optional connection parameters in the
 Connector/J documentation at http://dev.mysql.com/doc/connector/. The following
 are examples of possible URLs:
	jdbc:MySQL://localhost/?user=root
	Connect to the MySQL server on the local host at the
 default port (3306) and connect to root (no password).

	jdbc:MySQL://fred:3305/test?user=joe&password=joe1
	Connect to the MySQL server on host fred at port number 3305. Connect as joe/joe1 to database test.

Issuing a Non-SELECT Statement

Now that we have created our connection object, we are ready
 to issue a SQL statement. The simplest way to execute a SQL
 statement that does not return a result set (such as INSERT, UPDATE, DELETE, or a DDL statement) is to use the
 createStatement() and executeUpdate() methods of the
 JDBC Connection
 interface.
The createStatement()
 method creates a reuseable Statement object. The executeUpdate() instance method of this
 Statement object can be used to
 execute the statement. Example
 14-3 shows the use of the createStatement() and executeUpdate() methods to execute the
 SET AUTOCOMMIT=0 command.
Example 14-3. Issuing a SQL statement that returns no result set
Statement stmt1 = myConnection.createStatement();
stmt1.executeUpdate("set autocommit=0");

In general, it's not a good idea to create statements in this
 way except for one-off SQL statements. For any statement that may be
 re-executed (perhaps with different parameters), we should use the
 PreparedStatement interface (see
 the "Using Prepared
 Statements" section later in this chapter).

Issuing a SELECT and Retrieving a Result Set

If our statement is a SELECT statement or another MySQL command
 that returns a result set, we can call the executeQuery() method of a Statement object. This creates a ResultSet object through which we can
 iterate in much the same way as we would iterate through the rows
 returned by a stored program cursor. This is, however, quite
 different programmatically from the way in which the java.util.Iterator interface is normally
 used to iterate through Java collections.
The next() method of the
 ResultSet object allows us to
 move to the next row in the result set—the very first call to next(
) will move to the first row—while getInt(
), getString(), and
 other similar methods allow us to retrieve specific columns from the
 current row. Columns can be specified by name or by number. Example 14-4 shows us
 processing a simple query in JDBC.
Example 14-4. Processing a SELECT in JDBC
Statement stmt2 = myConnection.createStatement();
ResultSet results = stmt2.executeQuery("SELECT department_id, department_name " +
 " FROM departments");
while(results.next())
{
 int departmentID = results.getInt("department_id"); // Get column by name
 String departmentName = results.getString(2); // Got column by number
 System.out.println(departmentID + ":" + departmentName);
}
results.close();

As with non-SELECT
 statements, we should use the PreparedStatement interface rather than
 Statement if there is a chance
 that we will re-execute the SQL (potentially with different
 parameters).

Getting Result Set Metadata

If we don't know the exact structure of the result when we
 write our code (perhaps the SQL is entered by the end user or
 dynamically generated by some other module), then we can create a
 ResultSetMetaData object that
 contains information about the structure of the ResultSet object. Example 14-5 shows the use of
 this interface to print a list of column names and data types being
 returned from a query. Take special note that the first
 metadata result column has an index of 1 where most Java
 programmers would assume it to be 0.
Example 14-5. Using the ResultSetMetaData object to get result set
 structure
Statement stmt3 = myConnection.createStatement();
ResultSet results2 = stmt2.executeQuery("SELECT *" +
 " FROM departments");
ResultSetMetaData meta1 = results2.getMetaData();

for (int i = 1; i <= meta1.getColumnCount(); i++)
{
 System.out.println("Column " + i + " "
 + meta1.getColumnName(i) + " ("
 + meta1.getColumnTypeName(i) + ")");
}

Using Prepared Statements

Most Java applications—particularly those running in a middle
 tier such as in a J2EE- compliant application server—re-execute SQL
 statements many times during the life of a database session. While
 the "parameters" to the statement, such as WHERE clause arguments, might change, the
 SQL itself is usually executed many times. Prepared
 statements are statement objects that are permanently
 associated with a particular SQL statement. They can be re-executed
 with new parameters when required. Using a prepared statement
 results in reduced overhead for the MySQL server, since re-executing
 an existing statement takes less processing time than executing a
 new SQL statement.
Note that although the MySQL server supports a feature (since
 4.1) called server-side prepared statements
 , and although the JDBC implementation of prepared
 statements may leverage the MySQL implementation, the prepared
 statements we are discussing here are a JDBC feature, and are not
 specific to any particular RDBMS or version of MySQL.
The PreparedStatement
 interface extends the Statement
 interface and therefore inherits methods from that interface. The
 primary extensions in the PreparedStatement interface relate to
 specifying parameters prior to execution so that the PreparedStatement instance can be
 re-executed in a new context.
To create a prepared statement, we use the prepareStatement() method of the Connection interface, providing a SQL
 string as the argument. Any variable portions of the SQL string are
 represented by the ? character.
 In Example 14-6 we
 create a prepared statement that includes a single parameter value
 representing a specific product identifier.
Example 14-6. Creating a prepared statement
PreparedStatement prepared1 = myConnection.prepareStatement(
 "select product_id,product_description,normal_value" +
 " from products " +
 " where product_id=?");

Before each execution of the prepared statement, we need to
 provide values for all the parameters of the statement. The PreparedStatement interface provides
 setInt(), setString(), and other similar methods
 for doing this. Each method takes the parameter number as the first
 argument and a value of the appropriate data type as the second
 argument. For instance, in Example 14-7, we set the value
 of the product identifier that will be provided to the prepared
 statement defined in Example
 14-6 to a value of 12. Take note again that the index of the
 first parameter is 1 and not—as we might expect—0.
Example 14-7. Setting a parameter value in a prepared statement
prepared1.setInt(1, 12);

Now we can execute the prepared statement using its instance
 method executeQuery() if it is
 expected to return a result set, or executeUpdate() otherwise (see Example 14-8).
Example 14-8. Executing a prepared statement
ResultSet pstmtResults1 = prepared1.executeQuery();

Example 14-9 shows
 the prepared statement being declared, the parameter set, and a
 result set retrieved.
Example 14-9. PreparedStatement example
PreparedStatement prepared1 = myConnection.prepareStatement(
 "select product_id,product_description,normal_value" +
 " from products " +
 " where product_id=?");
prepared1.setInt(1, 12);
ResultSet pstmtResults1 = prepared1.executeQuery();
while (pstmtResults1.next())
{
 System.out.println("Product Description: " + pstmtResults1.getString(2));
}
pstmtResults1.close();

Of course, if we were only going to execute the prepared
 statement once, this would all be wasted effort. The point is that
 having created the prepared statement, we can execute it any number
 of times, feeding different parameters to the prepared statement
 each time. Example
 14-10 illustrates this principle by executing the prepared
 statement in a loop to print descriptions of the first 10 product
 IDs.
Example 14-10. Executing a prepared statement repetitively
for (int i = 1; i <= 10; i++)
{
 prepared1.setInt(1, i);
 pstmtResults1 = prepared1.executeQuery();
 pstmtResults1.next();
 System.out.println("Product ID: " + i +
 " Product Description: " + pstmtResults1.getString(2));
}
pstmtResults1.close();

Handling Transactions

Although we can issue commands such as COMMIT, ROLLBACK, START
 TRANSACTION, and SET
 AUTOCOMMIT using the setUpdate(
) method of Statement
 or PreparedStatement objects, it
 is probably easier to perform transaction control using the methods
 provided by the Connection
 interface.
The Connection interface
 supports a setAutocommit()
 method, together with commit()
 and rollback() methods, which
 allow us to disable MySQL autocommit and to perform explicit commit
 and rollback operations within a connection. So a transaction in
 JDBC would look like this:
 myConnection.setAutoCommit(false);
 /* transactional statements go in here */
 myConnection.commit();

Handling Errors

JDBC methods generally throw a SQLException if the SQL that is being
 issued results in a database error being generated. Classes that
 contain JDBC statements should therefore either use a throws clause to indicate that such an
 exception might be raised, or include the JDBC statements within a
 try/catch block.
Example 14-11
 illustrates the first technique; the createDemoTables() method will throw a
 SQLException if a MySQL error
 occurs. It is up to the caller to catch that exception; otherwise,
 the unhandled exception might crash the Java program. This technique
 is recommended for generic or low-level database code that cannot
 interpret the exception within the context of the application.
 Pointless catching and re-throwing of exceptions is one of the
 cardinal sins of Java programming, because it leads to massive stack
 traces that just obscure what is actually causing the
 problem.
Example 14-11. Throwing a SQLException
static public void createDemoTables(Connection myConnection)
 throws SQLException
{
 Statement s1 = connection.createStatement();
 s1.executeUpdate("CREATE TABLE DEMO " +
 " (MyInt INT, " +
 " MyString VARCHAR(30))");
}

Example 14-12
 shows the alternative approach. Here, the JDBC calls are enclosed in
 a try/catch block that catches
 the SQLException and reports the
 error message. Since the exception is caught, the createDemoTables() method no longer needs
 to declare the throws clause.
 This technique should be used when the catch block is able to adequately deal
 with the error by logging it or handling it programmatically. The
 catch block may also re-throw the exception as an application
 exception that includes valuable context information with regard to
 what the application was trying to do when the SQL failed.
Example 14-12. Catching a SQLException
static public void createDemoTables(Connection connection)
{
 try
 {
 Statement s1 = connection.createStatement();
 s1.executeUpdate("CREATE TABLE DEMO" +
 " (MyInt INT," +
 " MyString VARCHAR(30))");
 }
 catch(SQLException exception)
 {
 System.out.println("Error while creating demo tables: " +
 exception.getErrorCode() +
 " SQLSTATE:" + exception.getSQLState());
 exception.printStackTrace();
 }
}

The getErrorCode() and
 getMessage() methods are
 typically used to report on the specifics of the database error
 concerned. However, the SQLException class inherits a lot of
 useful diagnostic methods from its super classes Exception and Throwable. In particular, printStackTrace() will print a stack
 trace for the exception to standard output, while getStackTrace() allows programmatic
 access to the trace.

Using Stored Programs in JDBC

 So far we have mainly reviewed the JDBC calls that can
 be used with any database and that don't relate in any way to stored
 program calls. If you have used JDBC with other RDBMS types or with
 previous versions of MySQL, you probably haven't learned much. Let's
 move on to processing stored program calls in JDBC (Figure 14-2).
Stored program calls are very similar to standard JDBC calls. A
 stored program strongly resembles a prepared statement that executes a
 query, with the following exceptions:
	A stored program can return more than one result set.

	A stored procedure can be associated with output—as well as
 input—parameters. This means that we need a way to retrieve the
 altered values from any stored procedure parameters that are
 defined as OUT or INOUT.

In addition to the general sequence of processing involved in
 creating and executing a prepared statement, when executing a stored
 program, we may need to retrieve multiple result sets and also—when
 the stored program execution has completed—retrieve the results of any
 output variables.
Using the CallableStatement Interface

The CallableStatement
 interface extends the PreparedStatement interface. It includes
 all of the methods of the PreparedStatement interface, as well as
 additional methods specific to stored program calls. You create a
 CallableStatement with the
 prepareCall() method of a
 Connection object:
 CallableStatement statementName = ConnectionName.prepareCall(sql_text);
The single argument to the prepareCall() method contains the MySQL
 statements required to invoke the stored program. Any parameters are
 indicated by ? characters. The
 entire call must be enclosed in braces, "{" and "}", which are the standard JDBC escape
 sequences for indicating database-independent syntax. So to call the
 stored procedure sp_test_inout_rs2, which has two
 parameters, we would use the following syntax:
[image: JDBC program flow when executing a stored program]

Figure 14-2. JDBC program flow when executing a stored program

 CallableStatement callableStmt =
 myConnection.prepareCall("{CALL sp_test_inout_rs2(?,?)}");
sp_test_inout_rs2 is a
 stored procedure that has both an IN and an OUT parameter and that returns two result
 sets. The stored procedure takes the name of a MySQL schema as an
 IN argument and returns a list of
 tables and a list of stored routines owned by that schema. It
 returns the number of tables in the specified database as an
 OUT parameter. The text for this
 stored procedure is shown in Example 14-13.
Example 14-13. Example stored procedure used in Java examples
CREATE PROCEDURE sp_test_inout_rs2(IN in_user VARCHAR(30),OUT table_count INT)
BEGIN

 SELECT table_name,table_type
 FROM information_schema.tables
 WHERE upper(table_schema)=upper(in_user);

 SELECT routine_name,routine_type
 FROM information_schema.routines
 WHERE upper(routine_schema)=upper(in_user);

 SELECT COUNT(*)
 INTO table_count
 FROM information_schema.tables
 where upper(table_schema)=upper(in_user);

END ;

Registering OUT Variables

If the stored procedure includes any OUT variables, you need to identify these
 to JDBC. The registerOutParameter(
) instance method of CallableStatement allows you to identify
 these parameters. This method has the following syntax:
 callableStatementInstance.registerOutParameter(parameter_number,data_type);
Parameters are identified by number, starting with 1 for the
 first parameter. The data types are those contained in java.sql.Types and include INTEGER, CHAR, NUMERIC, DATE, etc.
In sp_test_inout_rs2, our
 second parameter is an OUT
 integer parameter, so we issue the statement to identify the
 parameter in Example
 14-14.
Example 14-14. Registering a stored procedure OUT or INOUT
 parameter
callableStmt.registerOutParameter(2, Types.INTEGER);

Supplying Input Parameters

No matter how many times we execute our stored procedure, we
 only have to create the CallableStatement and register output
 parameters once. However, most executions of a stored procedure will
 have different input parameters , so the first step in a new execution is to identify
 the values of those parameters. The syntax for setting input
 parameter values is the same as that for a PreparedStatement; we use the setInt(), setFloat(), setString(), setDate(), or other appropriate methods
 of the PreparedStatement
 interface to set each value. In our example stored procedure, we
 have only a single VARCHAR input
 parameter, so we set its value as shown in Example 14-15.
Example 14-15. Setting the value of an input parameter
callableStmt.setString(1, schemaName);

schemaName is a Java String
 containing the name of the schema for which we want to retrieve
 information.

Executing the Procedure

Now we are ready to execute the stored procedure, which we do
 with the execute() instance
 method shown in Example
 14-16.
Example 14-16. Executing a stored procedure
callableStmt.execute();

The execute() method
 returns a Boolean value, which resolves to true if the stored procedure returns at
 least one result set. So we could call execute() as shown in Example 14-17.
Example 14-17. Executing a stored procedure that might return a result
 set
boolean hasResults = callableStmt.execute();

If you know that your stored procedure does not return a
 result set, you can use the executeUpdate(
) method instead, as shown in Example 14-18.
Example 14-18. Executing a stored procedure that does not return a result
 set
CallableStatement noResultStmt = connection.prepareCall("{call sp_noresult()}");
noResultStmt.executeUpdate();

Retrieving a Result Set

As we noted earlier, the initial execute() call will return true only if the stored procedure returns
 at least one result set. If this is so, or if you know in advance
 that the stored procedure has a result set, you can retrieve it in
 the usual fashion. Example
 14-19 shows how to retrieve a single result set from a stored
 procedure call.
Example 14-19. Retrieving a single result set from a stored procedure
 call
ResultSet rs1 = callableStmt.getResultSet();
while (rs1.next())
 System.out.println(rs1.getString("table_name") + " " +
 rs1.getString("table_type"));

In this case, we knew the names and types of the columns in
 our result set. If we did not, we could call the getMetaData() method to retrieve the
 result set structure. ResultSetMetaData is described in the
 section "Getting Result Set
 Metadata" earlier in this chapter.

Retrieving Multiple Result Sets

If the stored procedure has more than one result set, you can
 use the getMoreResults() method
 to move to the next set. If there are no more result sets , getMoreResults(
) will return false. So
 to get a second result set, we can call getMoreResults() and then retrieve the
 result set. Example
 14-20 illustrates this technique.
Example 14-20. Obtaining a second result set from the stored procedure
 call
if (callableStmt.getMoreResults())
{
 ResultSet rs2 = callableStmt.getResultSet();
 while (rs2.next())
 System.out.println(rs2.getString(1) + " " + rs2.getString(2));
 rs2.close();
}

In this example, we used the column numbers rather than column
 names to retrieve the results. Using column names (rs2.getString("department_id") for
 instance) leads to more readable code, but when you are processing
 dynamic result sets, it may be more convenient to refer to the
 columns by number.

Dynamically Processing Result Sets

It is possible—but very unusual—that we might call a stored
 program without knowing the number and types of input and output
 parameters. However, because we often use unbounded SELECT statements within stored programs
 to generate debugging or other messages, and because it is
 relatively easy to conditionally create result sets in our stored
 program code, we may find that we need to execute a stored program
 without knowing exactly how many result sets will be returned or
 what the structure of each result set will look like.
We therefore need to be familiar with the process of
 dynamically processing result sets. Example 14-21 implements a
 method that will execute a stored program passed as a parameter and
 print out all the result sets generated by that stored
 program.
Example 14-21. JDBC code to dynamically process multiple result
 sets
1 private void executeProcedure(Connection connection, String sqlText)
2 throws SQLException {
3
4 CallableStatement cs = connection.prepareCall("{CALL " + sqlText + "}");
5 boolean moreResultSets = cs.execute();
6 while (moreResultSets) {
7
8 ResultSet rs = cs.getResultSet();
9 ResultSetMetaData rsmd = rs.getMetaData();
10
11 StringBuffer buffer = new StringBuffer();
12 for (int i = 1; i <= rsmd.getColumnCount(); i++)
13 buffer.append(rsmd.getColumnName(i)).append("\t");
14 System.out.println(buffer.toString());
15
16 while (rs.next()) {
17 buffer.setLength(0);
18 for (int i = 1; i <= rsmd.getColumnCount(); i++)
19 buffer.append(rs.getString(i)).append("\t");
20 System.out.println(buffer.toString());
21 }
22
23 moreResultSets = cs.getMoreResults();
24 }
25 }

Let's step through Example 14-21:
	Line(s)
	Explanation

	4
	Create a CallableStatement object that
 invokes the stored procedure text provided as an argument to
 the Java procedure.

	5
	Execute the stored procedure. The
 moreResultSets Boolean
 value will be true if the
 stored procedure returns any result sets.

	6-24
	This loop will continue to execute
 provided that moreResultSets is true. This means that the code
 within the loop will execute once for each result set
 returned by the stored procedure.

	8-9
	On line 8 we get a ResultSet object for the current
 result set, and on line 9 we retrieve the ResultSetMetaData object for that
 ResultSet.

	11-14
	Print out the column names for the
 current result set, as retrieved from the ResultSetMetaData
 object.

	16-22
	Loop through the rows of the
 current result set. The loop will continue for each row
 returned by the current result set.

	18-21
	Loop through each column in the
 current row. The getColumnCount(
) method of the ResultSetMetaData object tells us
 how many columns we will need to process, and we use
 getString() to retrieve
 the value. getString()
 will get a string representation of non-string SQL data
 types such as dates or numeric data.

	23
	Use the getMoreResults() method of the
 CallableStatement object
 to determine if there are more result sets. If this call
 returns true, then the
 CallableStatement will
 move to the next result set and the while loop defined on line 6 will
 continue, allowing us to repeat the above process for the
 next result set.

Retrieving Output Parameter Values

Once all of the result sets have been retrieved, it is time to
 retrieve the values of any OUT or
 INOUT parameters that the
 procedure may have declared. Remember that in order to do this, we
 must have used the registerOutParameter(
) method to set the types of these parameters before we
 executed the stored procedure.
To get the values of output parameters, we use "get" methods
 (getInt(), getFloat(), getString(), etc.) that are similar to
 those used to retrieve column values, but instead of applying the
 methods to the ResultSet object,
 we apply them to the CallableStatement object. In the case of
 our sp_test_inout_rs2 stored
 procedure, which has a single integer OUT parameter (the second parameter), we
 can simply retrieve the value of the OUT parameter with the code shown in Example 14-22.
Example 14-22. Retrieving the value of an output parameter
System.out.println("Out parameter = " + callableStmt.getInt(2));

Stored Programs and J2EE Applications

 While it is certainly possible to use JDBC inside Java
 to construct client/server applications or even Java applets, the most
 significant interaction between Java programs and a relational
 database often occurs with a J2EE application server environment,
 usually within the context of a J2EE-based web application. This
 application server could be a commercial J2EE implementation such as
 WebLogic or WebSphere or—perhaps more typically in combination with
 MySQL—an open source J2EE server such as Tomcat or JBoss.
Modern J2EE applications follow one of two major patterns with respect to
 database interaction:
	Servlet pattern
	In the servlet pattern, JDBC code is included within Java
 programs running within the application server. These programs
 are known as servlets . These servlets are free to communicate directly
 with the database through embedded JDBC code, although many
 applications will choose to interact with the database through
 an object-relational mapping interface such as Hibernate.

	EJB pattern
	In an Enterprise JavaBeans (EJB) based application, access
 to database objects is abstracted via entity EJB beans. Each
 entity bean represents either a table or a common multitable
 entity, and each instance of the entity bean typically
 represents a row in that table or result set. The EJB pattern
 contains methods to retrieve, update, delete, and insert rows
 within this logical table.

A full tutorial on J2EE database programming is beyond the scope
 of this book (and probably beyond the expertise of its authors).
 However, in this section we will take a quick look at how you might
 use stored programs within a J2EE application.
Using Stored Programs Within Java Servlets

In a servlet-based Java web application, Java code in the
 application or web server controls the generation of dynamic HTML
 content based on business logic contained within the Java code and
 through interaction with back-end databases via JDBC. Servlet
 technology actually predates J2EE (servlets were introduced in Java 1.1), and there is a wide
 variety of possible servlet implementation patterns.
In this section, we will use a simple servlet to render the
 output from a stored procedure that contains multiple and
 unpredictable result sets and that also contains both input and
 output parameters. The stored procedure generates a selection of
 MySQL server status information, takes as an input parameter a
 specific database within the server, and returns as an output
 parameter the MySQL version identifier. The stored procedure is
 shown in Example
 14-23.
Example 14-23. Stored procedure to return MySQL server status
 information
CREATE PROCEDURE sp_mysql_info
 (in_database VARCHAR(60),
 OUT server_version VARCHAR(100))
 READS SQL DATA
BEGIN

 DECLARE db_count INT;

 SELECT @@version
 INTO server_version;

 SELECT 'Current processes active in server' as table_header;
 SHOW full processlist;

 SELECT 'Databases in server' as table_header;

 show databases;

 SELECT 'Configuration variables set in server' as table_header;
 SHOW global variables;
 SELECT 'Status variables in server' as table_header;
 SHOW global status;

 /* See if there is a matching database */
 SELECT COUNT(*)
 INTO db_count
 FROM information_schema.schemata s
 WHERE schema_name=in_database;
 IF (db_count=1) THEN
 SELECT CONCAT('Tables in database ',in_database) as table_header;
 SELECT table_name
 FROM information_schema.tables
 WHERE table_schema=in_database;
 END IF;

END;

Note that the stored procedure uses a special technique to
 output "heading" rows for the result sets. When a single row is
 returned with a column named table_header, that row represents a title
 or heading for the subsequent result set.
Our example is going to use an HTML page to request the user
 to enter specific server information, and then use a servlet within
 the application server to display the output of the stored
 procedure. The HTML for the input form is very simple and is shown
 in Example
 14-24.
Example 14-24. HTML input form for our servlet example
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <TITLE>MySQL Server status</TITLE>
 </head>

<body>
 <H2>Enter MySQL Server details</H2>
 <FORM name="statusForm" method="post" action="mystatus">
 <TABLE>
 <TR><TD>Host:</TD><TD> <input type="text" name="mhost"></TD></TR>
 <TR><TD>Port:</TD><TD> <input type="text" name="mport"></TD></TR>
 <TR><TD>Username:</TD><TD>
 <input type="text" name="muser"></TD></TR>
 <TR><TD>Password:</TD><TD>
 <input type="password" name="mpass"></TD></TR>
 <TR><TD>Database:</TD><TD> <input type="text" name="mdb"></TD></TR>
 </TABLE>
 <INPUT type="submit" value="Submit" />
 </FORM>
</body>
</html>

The HTML renders the data entry screen shown in Figure 14-3.
Example 14-25
 shows the code for the Java servlet that is invoked when the user
 clicks the Submit button.
[image: Data entry form for our servlet example]

Figure 14-3. Data entry form for our servlet example

Example 14-25. Servlet code that invokes our stored procedure
1 public class StatusServlet extends HttpServlet
2 {
3 public void doPost(HttpServletRequest request, HttpServletResponse response)
4 throws ServletException, IOException
5 {
6 String hostname = request.getParameter("mhost");
7 String port = request.getParameter("mport");
8 String username = request.getParameter("muser");
9 String password = request.getParameter("mpass");
10 String database = request.getParameter("mdb");
11 StringBuffer html = new StringBuffer();
12
13 response.setContentType("text/html");
14 PrintWriter out = response.getWriter();
15
16 try {
17 Class.forName("com.mysql.jdbc.Driver").newInstance();
18 String connString = "jdbc:mysql://" + hostname + ":" + port + "/" +
19 database + "?user=" + username + "&password=" + password;
20 Connection connection = DriverManager.getConnection(connString);
21
22 CallableStatement myproc =
23 connection.prepareCall("{CALL sp_mysql_info(?,?)}");
24 myproc.registerOutParameter(2, Types.VARCHAR);
25 myproc.setString(1, database);
26
27 boolean moreResultSets = myproc.execute();
28 while (moreResultSets) {
29 ResultSet rs = myproc.getResultSet();
30 ResultSetMetaData rsmd = rs.getMetaData();
31 if (rsmd.getColumnName(1).equals("table_header")) {
32 rs.next();
33 html.append("<h2>").append(rs.getString(1))
34 .append("</h2>");
35 } else {
36 makeTable(rs, rsmd, html);
37 }
38 moreResultSets = myproc.getMoreResults();
39 }
40 String version = myproc.getString(2);
41
42 out.println("<HTML><HEAD><TITLE>MySQL Server status</TITLE></HEAD>");
43 out.println("<H1>MySQL Server status and statistics</H1>");
44 out.println("Server:\t" + hostname + "
");
45 out.println("Port:\t" + port + "
");
46 out.println("Version::\t" + version + "
");
47 out.println(html.toString());
48 out.println("</HTML>");
49 } catch (SQLException e) {
50 out.println(e.getErrorCode() + " " + e.getMessage());
51 e.printStackTrace(out);
52 } catch (InstantiationException e) {
53 e.printStackTrace(out);
54 } catch (IllegalAccessException e) {
55 e.printStackTrace(out);
56 } catch (ClassNotFoundException e) {
57 e.printStackTrace(out);
58 } finally {
59 out.flush();
60 out.close();
61 }
62 }
63
64 private void makeTable(ResultSet rs, ResultSetMetaData rsmd, StringBuffer html)
65 throws SQLException
66 {
67 html.append("<table border=\"1\"><tr>");
68
69 for (int i = 1; i <= rsmd.getColumnCount(); i++)
70 html.append("<td bgcolor=\"silver\">").append(rsmd.getColumnName(i))
71 .append("</td>");
72 html.append("</tr>");
73
74 while (rs.next()) {
75 html.append("<tr>");
76 for (int i = 1; i <= rsmd.getColumnCount(); i++)
77 html.append("<td>").append(rs.getString(i)).append("</td>");
78 html.append("</tr>\n");
79 }
80
81 html.append("</table>\n");
82 }
83 }

Let's examine this servlet code:
	Line(s)
	Explanation

	6-10
	Retrieve the server connection
 details as entered by the user on the calling HTML
 form.

	11
	Create a StringBuffer object for building
 the HTML text to avoid churning lots of throwaway String objects.

	13 and 14
	Initialize an output stream to
 return HTML output.

	17-20
	Create a connection to the MySQL
 server using the connection details supplied by the
 user.

	22-25
	Prepare the stored procedure shown
 in Example
 14-23. On line 24 we register our output parameter,
 and on line 25 we supply the input parameter—the name of a
 database within the server—provided by the user in the HTML
 form.

	27
	Execute the stored
 procedure.

	28-39
	This loop executes once for each
 result set returned by the stored procedure.

	29 and 30
	Retrieve a result set and—on line
 30—a ResultSetMetaData
 object for that result set.

	31-37
	If the first column in the result
 set is called "table_header", then the result
 set represents a heading row for a subsequent result set, so
 we create an HTML header tag. Otherwise, we pass the result
 set to the makeTable()
 method, which returns an HTML table formatted from the
 result set (see below for a description of the makeTable()
 method).

	37
	Call the getMoreResults() method to see if
 there are further result sets. If there are, then moreResultSets will be set to
 true and the loop will
 continue. Otherwise, it will be set to false and the loop will
 terminate.

	40
	Now that all result sets have been
 processed, retrieve the value of the output parameter, which
 contains the MySQL version string.

	42-48
	Write our formatted HTML report to
 the print stream.

	49-57
	Catch any exceptions and print a
 stack trace to the print stream.

	58-61
	Whether there is an exception or
 not, we must flush and close the print stream to send our
 output back to the calling session.

	64-82
	Define the private makeTable() method that takes
 ResultSet and ResultSetMetaData objects and
 appends an HTML table representation of that result set to
 the specified StringBuffer.

	69-72
	Loop through the column names for
 the result set and format HTML to create the heading row for
 the table.

	74-79
	Loop through the rows returned by
 the result set and—in lines 76-77—append the columns in each
 row. We generate HTML to create an HTML table cell for each
 row returned in the result set.

Figure 14-4 shows
 the output generated by the servlet and stored procedure.

Using Stored Programs from EJB

Enterprise JavaBeans (EJB) is a feature of the J2EE
 specification that provides for distributed server-side Java
 components intended for enterprise systems development.
 Entity EJBs provide a way to represent persistent data—usually
 data from an RDBMS—in the EJB component model.
[image: Output from our stored procedure/servlet example]

Figure 14-4. Output from our stored procedure/servlet example

In most J2EE applications, EJBs represent a mapping of relational data to Java
 objects. In a very simple case, an EJB may represent a database
 table, and each instance of the EJB might represent a row in that
 table. However, the relationships between EJBs and relational tables
 can be as complex as the developer chooses, and an EJB may represent
 a complex business object that is represented across many database
 tables.
Each EJB includes various methods that allow the application
 to interact with the underlying data. Some of these methods are
 listed in Table
 14-1.
Table 14-1. Some of the methods of an entity EJB
	Method or method
 type
	Description

	ejbFind
 find_type
	Various "finder" methods allow the
 application to find a particular instance of an EJB (perhaps
 a specific row in a table). There will always be at least an
 ejbFindByPrimaryKey()
 method.

	ejbCreate
	Creates a new instance of an
 entity bean. This is roughly equivalent to inserting a row
 into the database.

	ejbStore
	Applies the in-memory contents of
 the entity bean to the database. It usually involves one or
 more UPDATE
 statements.

	ejbRemove
	Permanently removes an instance of
 an entity bean—usually associated with deleting one or more
 database rows.

	ejbLoad
	Loads a particular instance of an
 EJB. This is equivalent to reading a certain table row into
 memory.

Entity EJBs in a J2EE application are responsible for
 representing all persistent data in the application, where
 persistent means that the data will continue to
 exist when the current thread, process, or application ceases to
 run. There are two styles of persistence management in entity EJBs:
	Bean-Managed Persistence (BMP)
	In this mode, the interaction with the underlying data
 source is controlled by code that is contained within the EJB.
 In most cases, this means that the programmer includes JDBC
 code within the bean to query and update the underlying
 tables, or uses an abstraction layer such as Hibernate or
 Spring to generate the JDBC calls.

	Container-Managed Persistence
 (CMP)
	In this mode, the interaction with the underlying data
 source is controlled by the EJB container itself. The
 container generates SQL to retrieve and maintain data based on
 deployment data that defines the relationship between the data
 represented by the entity bean and the data held in the
 relational database.

In CMP, the SQL is issued by the EJB container itself and is
 not under developer control. Consequently it is not really feasible
 to use stored programs in conjunction with a CMP EJB. It's fair to
 say that CMP is the recommended method of implementing entity bean
 persistence, since it reduces the effort involved in implementing
 the bean and since (somewhat surprisingly) CMP implementations can
 outperform BMP implementations. Most J2EE experts recommend using
 BMP only when there is a very complex relationship between beans and
 the underlying tables or when some special SQL coding is required
 for performance or security reasons.
Note also that the J2EE specification does not forbid
 accessing the database from session beans, and the programmer is
 free to implement JDBC within a session bean framework in order to
 retrieve and maintain persistent data. In this model, JDBC calls
 would be embedded in the session bean much as we embedded JDBC
 within a Java servlet in the "Using Stored Programs Within Java
 Servlets" section earlier in this chapter.
However, in the case in which our database logic is contained
 in a BMP-based entity bean, we can certainly use a stored program
 implementation if we choose.
For instance, Example
 14-26 shows a typical EJB method that we might use to locate
 an EJB representing a particular customer using the customer's phone
 number. The bean method accepts the phone number and returns the
 primary key of the relevant customer (the customer_id). This customer_id would later be used by the
 ejbLoad() method to load the
 relevant bean.
Example 14-26. EJB method to find a customer by phone number
public int ejbFindByPhoneNo(String phoneNo) throws FinderException
{
 try {
 Connection connection = getConnection();
 PreparedStatement statement = connection.prepareStatement
 ("SELECT customer_id FROM customers WHERE phoneno=?");
 statement.setString(1, phoneNo);
 ResultSet resultSet = statement.executeQuery();
 if (!resultSet.next())
 {
 statement.close();
 connection.close();
 throw new FinderException("Could not find: " + phoneNo);
 }
 statement.close();
 connection.close();
 return resultSet.getInt(1);
 }
 catch(SQLException e) {
 throw new EJBException ("Could not find: " + phoneNo, e);
 }
}

The SQL within a BMP entity bean can be implemented as a
 stored program. Example
 14-27 shows such a finder method. The finder method calls the
 stored procedure GetCustomerIdByPhoneno, which returns a
 customer_id that matches a
 particular customer name.
Example 14-27. EJB finder method that uses a stored procedure
public int ejbFindByPhoneNoSP(String phoneNo) throws FinderException
{
 try {
 Connection connection = getConnection();
 String sqlText = "{call getcustomeridbyphoneno(?,?,?)}";

 CallableStatement custStmt = connection.prepareCall(sqlText);
 custStmt.registerOutParameter(2, Types.INTEGER);
 custStmt.registerOutParameter(3, Types.INTEGER);

 custStmt.setString(1, phoneNo);
 custStmt.execute();
 if (custStmt.getInt(3) == 1) // Not Found indicator
 throw new FinderException("Could not find: " + phoneNo);

 return custStmt.getInt(2);
 }
 catch(SQLException e) {
 throw new EJBException("Could not find: " + phoneNo, e);
 }
}

Using Stored Procedures with Hibernate

 J2EE provides entity EJBs as a mechanism for mapping
 Java objects to database tables. In CMP the J2EE system itself
 generates the SQL necessary to create the EJBs from the database and
 to update the database to reflect changes made to the EJBs. The
 generic term for a framework that synchronizes program objects with
 relational database data in this manner is an
 Object-Relational Mapping (ORM) framework
 .
J2EE and the EJB model have its supporters as well as its
 detractors, but almost everyone agrees that it is mainly suitable for
 large-scale distributed applications. To get the benefits of ORM for
 non-J2EE applications, programmers typically adopt an alternative ORM
 framework, the most popular of which is Hibernate (http://www.hibernate.org).
Database stored programs and ORM are not necessarily a perfect
 fit. Gavin King— the creator of Hibernate—was quoted as saying:
Stored procedures are essentially a nonrelational view of a
 relational database ... my view, currently, is that the goal of an
 object-relational mapping tool should be to map between tables and
 objects, not between objects and "some other stuff."[*]

It's true that programmers who are building applications that
 make widespread use of stored procedures will get less benefit from
 Hibernate than those working with native SQL; in particular, Hibernate
 cannot auto-generate stored procedure calls, so the programmer needs
 to configure Hibernate with every stored procedure call that might be
 required.
However, demand for stored procedures in Hibernate has remained
 high, and their use is now fully supported. This support allows
 Hibernate to be used with legacy applications that rely on stored
 procedures and also allows new applications to take advantage of both
 Hibernate and stored procedures where appropriate.
In this section we will provide a brief overview of using
 Hibernate with MySQL stored procedures. We're going to assume you have
 some basic familiarity with Hibernate—if you are new to Hibernate, you
 will find a review of Chapter 2
 ("Introduction to Hibernate") of the Hibernate Reference
 Documentation helpful. Our examples in this section are
 based on the Event class described
 in that chapter.
Hibernate Support for MySQL Stored Procedures

For every supported RDBMS, Hibernate includes a Dialect definition that defines the
 capabilities and configurations that the RDBMS supports. At the time
 of writing, the Hibernate (3.1rc3) MySQLDialect definition did not include a
 reference to stored procedures and, consequently, Hibernate would
 generate the following error when configured to use a MySQL stored
 procedure:
 [java] Hibernate: { call getEvent(?) }
 [java] Exception in thread "main" java.lang.UnsupportedOperationException: org.
 hibernate.dialect.MySQLDialect does not support
 resultsets via stored procedures.
Modifying the Hibernate MySQLDialect.java
 file to reflect MySQL 5.0's ability to execute stored procedures is
 relatively simple, and we have submitted a modified version of this
 file to the Hibernate team for inclusion in an upcoming release of
 Hibernate (JIRA key HHH-1244, scheduled for 3.1 production). You can
 also obtain this file from this book's web site, where we will also
 include information about the current status of Hibernate support
 for MySQL stored procedures.

Using a Stored Procedure to Load an Object

The load() method of the
 Hibernate session object allows you to create a Hibernate object
 using the Hibernate mappings. Under the hood, Hibernate will
 generate a SELECT statement to
 extract the appropriate data from the database. Example 14-28 shows us
 creating and loading an Event
 object for the event #1.
Example 14-28. Loading a Hibernate object in a Java application
Long id = new Long(1);
Event event = (Event) session.load(Event.class, id);

We can load the Event
 object using a stored procedure. A simple stored procedure to
 retrieve details for a specific event is shown in Example 14-29.
Example 14-29. Stored procedure to load an Event object
CREATE PROCEDURE getEvent (in_event_id INTEGER)
BEGIN
 SELECT event_id, title, event_date
 FROM events
 WHERE event_id = in_event_id;

END;

To use this stored procedure, we need to create a definition
 for it in the mapping document and add a loader entry to the class definition.
 Example 14-30 shows the
 changes we made to the mapping document (Events.hbm.xml) to enable our stored
 procedure loader.
Example 14-30. Defining the loader stored procedure in the Hibernate
 mapping document
1 <hibernate-mapping>
2 <class name="Event" table="EVENTS">
3 <id name="id" column="EVENT_ID">
4 <generator class="increment" />
5 </id>
6 <property name="title" />
7 <property name="date" type="timestamp" column="EVENT_DATE" />
8
9 <loader query-ref="getEventSP"></loader>
10 </class>
11
12 <sql-query name="getEventSP" callable="true">
13 <return alias="event" class="Event">
14 <return-property name="id" column="EVENT_ID" />
15 <return-property name="title" column="TITLE" />
16 <return-property name="date" column="EVENT_DATE" />
17 </return>
18 { call getEvent(?) }
19 </sql-query>

Let's look at the important parts of this document:
	Line(s)
	Explanation

	9
	The mapping tag loader defines the SQL that will
 be used when the data for a class is first loaded. query-ref refers to a named query
 defined elsewhere in the mapping—in this case getEventSP.

	12-19
	The sql-query section defines a named
 SQL query that can be used elsewhere in the mapping or from
 Java code.

	12
	The name property allows you to
 provide a meaningful name for the SQL query. The callable property—if set to
 true— indicates that the
 SQL query should be executed as a JDBC CallableStatement—i.e., it is a
 stored procedure or function.

	13-17
	The return section provides details
 about the result set that will be returned by the sql-query section.

	13
	The alias property provides an alias
 that can be used to prefix column names in the SQL and is
 not of much interest for a callable SQL. The class property indicates that the
 SQL will return properties relating to the specified class
 (in this case the Event
 class).

	18
	The SQL code that is executed by
 this sql-query. For a
 callable SQL, this should be in the same format used in the
 prepareCall() method of
 the Connection interface,
 as described earlier in this chapter.

Once we rebuild our application, all subsequent load() calls will use the getEvent() stored procedure to retrieve
 event data from the database.

Hibernate Queries

It is typical for an application to generate lists of matching
 objects by issuing Hibernate queries . For instance, to create a List object that includes all events, we
 might include the code shown in Example 14-31 in our
 application.
Example 14-31. Simple Hibernate query to retrieve all objects
List result = session.createQuery("from Event").list();

We could retrieve all Events objects raised since yesterday with
 the Hibernate query shown in Example 14-32.
Example 14-32. Hibernate query with WHERE clause
List result =
 session.createQuery("from Event as e where e.date > ?")
 .setDate(0, yesterday).list();

Let's implement the query expressed in Example 14-32 through a
 stored procedure call. A stored procedure to return events raised
 after a specified date is shown in Example 14-33.
Example 14-33. Stored procedure to support a Hibernate query
CREATE PROCEDURE getRecentEvents(in_event_date DATETIME)
BEGIN
 SELECT event_id AS EVENT_ID, title AS EVENT_TITLE, event_date AS EVENT_DATE
 FROM events
 WHERE event_date > in_event_date;
END;

As in the previous example, we need to add a definition for
 the stored procedure call to the mapping file. Example 14-34 shows the
 mapping for our new stored procedure.
Example 14-34. Mapping for our query stored procedure
<sql-query name="getRecentEventsSP" callable="true">
 <return alias="event" class="Event">
 <return-property name="id" column="EVENT_ID" />
 <return-property name="title" column="EVENT_TITLE" />
 <return-property name="date" column="EVENT_DATE" />
 </return>
 { call getRecentEvents(?) }
</sql-query>

Now we can use that named query in our Java code. Instead of
 using the createQuery() method,
 we use the getNamedQuery()
 method, supplying the name we have given our stored procedure call
 in the mapping file and supplying any necessary parameters. Example 14-35 shows the
 technique.
Example 14-35. Using a stored procedure to execute a Hibernate query in
 Java code
List result = session.getNamedQuery("getRecentEventsSP")
 .setDate(0,yesterday).list();

Using Stored Procedures for Persistence

By default, Hibernate constructs and issues INSERT, UPDATE, and DELETE statements, as appropriate, to
 persist the contents of Java objects in the database. However, we
 can configure Hibernate to use stored procedure calls
 instead.
For a stored procedure to be used with Hibernate it must
 accept the same parameters—in the same order—as the SQL that
 Hibernate would generate by default. For instance, in the case of a
 stored procedure to replace an INSERT statement, the stored procedure
 will have to provide parameters representing every column in
 Hibernate's INSERT statement, and
 these parameters must appear in the same order as the columns appear
 in that INSERT statement. The
 easiest way of determining this sequence is to log the SQL generated
 by Hibernate before converting it to a stored procedure call.
For UPDATE and DELETE, the stored procedure must return
 the number of rows affected by the operation as either a function
 return value or as the first parameter (which will, of course, need
 to be an OUT parameter).
Warning
The Hibernate documentation implies that a stored function
 should be used to implement UPDATE and DELETE functionality and that the stored
 function should return the number of rows affected. Unfortunately,
 Hibernate treats stored function return values in a way that works
 for SQL Server but not for MySQL, so for now it is necessary to
 implement the UPDATE or
 DELETE through a stored
 procedure.

Example 14-36
 shows stored procedures designed to replace the Hibernate-generated DML
 statements to maintain Event
 objects. Note that in the case of the updateEvent and deleteEvent procedures, the first
 parameter is an OUT parameter
 that returns the number of rows affected by the DML operation. This
 parameter is neither required nor permitted for the createEvent procedure.
Example 14-36. Stored procedure to implement a Hibernate update
 operation
CREATE PROCEDURE updateEvent
 (OUT row_count INTEGER, in_event_date DATETIME,
 in_title VARCHAR(60), in_event_id INTEGER)
BEGIN
 UPDATE events
 SET title = in_title, event_date = in_event_date
 WHERE event_id = in_event_id;

 SET row_count = ROW_COUNT();
END $$

CREATE PROCEDURE deleteEvent(OUT row_count INTEGER, in_event_id INTEGER)
BEGIN
 DELETE FROM events
 WHERE event_id = in_event_id;

 SET row_count = ROW_COUNT();
END$$

CREATE PROCEDURE createEvent
 (InEventDate DATE, InEventTitle VARCHAR(60), InEventId INT)
BEGIN
 INSERT INTO events (event_date, title, event_id)
 VALUES(InEventDate, CONCAT(InEventId, InEventTitle), InEventId);
END$$

To ensure that Hibernate uses these stored procedures in place of its self-generated SQL, we need to add
 entries in the mapping document to associate the specific operation
 with the stored procedure call. Example 14-37 shows the
 entries we added to the Event
 class definition (in Event.hbm.xml) to enable the stored
 procedures.
Example 14-37. Configuring Hibernate to use stored procedures for UPDATE,
 INSERT, and DELETE
<sql-insert callable="true">{call createEvent (?, ?, ?)}</sql-insert>
<sql-update callable="true">{call updateEvent(?,?,?,?)}</sql-update>
<sql-delete callable="true">{call deleteEvent(?,?)}</sql-delete>

Once we rebuild our application, Hibernate will use these
 stored procedure calls in place of the INSERT, UPDATE, or DELETE SQL statements that it would
 normally generate.
We have now completely converted the Event mapping to use stored procedures.
 Hibernate will now use MySQL stored procedures exclusively when
 querying, loading or modifying objects of the Event class.

[*] http://www.theserverside.com/talks/videos/GavinKing/interview.tss?bandwidth=dsl

Using Stored Procedures with Spring

 Spring (http://www.springframework.org) is a popular,
 lightweight framework for the development of Java applications. Spring
 offers many facilities that support the development of Java
 applications, including support for Model-View-Controller design, POJO
 (Plain Old Java Objects) , integration with J2EE objects, Aspect Oriented
 Programming, integration with other complementary frameworks such as
 Hibernate, and abstraction layers for transaction management and
 database access. Spring aims to deliver on many of the promises of the
 J2EE framework, but in a less invasive and more productive
 manner.
Spring's JDBC abstraction layer eliminates much of the
 repetitive coding normally associated with even simple SQL queries.
 The abstraction layer includes a StoredProcedure class that can be used to
 incorporate stored procedure calls into a Spring application. In this
 section we will provide a brief overview of how to access a MySQL
 stored procedure from within a Spring application.
Example 14-38 shows
 the stored procedure we are going to use in our Spring example. It
 accepts a single input parameter—the department_id—and returns two result sets.
 The first result set contains a list of employees in that department,
 and the second contains a list of customers associated with the
 department. The stored procedure includes an OUT parameter that returns the total value
 of all sales associated with the department.
Example 14-38. Stored procedure for use with our Spring example
CREATE PROCEDURE sp_department_report
 (in_dept_id INTEGER, OUT sales_total DECIMAL(8,2))
BEGIN

 SELECT employee_id, surname, firstname, address1, address2, salary
 FROM employees
 WHERE department_id = in_dept_id;

 SELECT customer_id, customer_name, address1, address2, zipcode
 FROM customers
 WHERE sales_rep_id IN
 (SELECT employee_id FROM employees
 WHERE department_id = in_dept_id);

 SELECT SUM(sale_value)
 INTO sales_total
 FROM sales
 WHERE customer_id IN
 (SELECT customer_id
 FROM customers
 WHERE sales_rep_id IN
 (SELECT employee_id
 FROM employees
 WHERE department_id = in_dept_id));
END

The natural way to represent the customer and employee rows
 returned by the stored procedure is to create customer and employee
 Java classes. Example
 14-39 shows part of the class that would represent employees.
 We created a similar class for customers.
Example 14-39. Java class to represent employees
public class Employee
{
 private long id;
 private String surname;
 private String firstName;
 private String address1;
 private String address2;
 private double salary;

 public Employee(long id, String surname, String firstName,
 String address1, String address2, double salary)
 {
 this.id = id;
 this.surname = surname;
 this.firstName = firstName;
 this.address1 = address1;
 this.address2 = address2;
 this.salary = salary;
 }

 public String toString() {
 return "Employee : " + employeeId + " " + surname;
 }

 public String getSurname() {
 return surname;
 }

 public String getFirstName() {
 return firstName;
 }

 /* Other getters and setters would go here */
}

To represent the stored procedure, we create a new class that
 extends the Spring StoredProcedure
 class, as shown in Example
 14-40.
Example 14-40. Class to represent a stored procedure in Spring
1 private class MyStoredProcedure extends StoredProcedure
2 {
3 public MyStoredProcedure(DataSource ds)
4 {
5 setDataSource(ds);
6 setSql("sp_department_report");
7
8 declareParameter(new SqlReturnResultSet("Employees",
9 new RowMapper() {
10 public Object mapRow(ResultSet rs, int rowNum)
11 throws SQLException {
12 Employee e = new Employee(
13 rs.getInt("employee_id"),
14 rs.getString("surname"),
15 rs.getString("firstname"),
16 rs.getString("address1"),
17 rs.getString("address2"),
18 rs.getDouble("salary"));
19 return e;
20 }
21 }));
22
23 declareParameter(new SqlReturnResultSet("Customers",
24 new RowMapper() {
25 public Object mapRow(ResultSet rs, int rowNum)
26 throws SQLException {
27 Customer c = new Customer(
28 rs.getInt("customer_id"),
29 rs.getString("customer_name"),
30 rs.getString("address1"),
31 rs.getString("address2"),
32 rs.getString("zipcode"));
33 return c;
34 }
35 }));
36
37 declareParameter(new SqlParameter("department_id", Types.INTEGER));
38
39 declareParameter(new SqlOutParameter("sales_total", Types.DOUBLE));
40
41 compile();
42 }
43
44 }

Let's look at the significant lines of this class:
	Line(s)
	Explanation

	3
	The constructor method for the
 class. It takes a single argument that represents the MySQL
 server connection.

	5
	Set the data source that was
 provided as an argument.

	6
	Set the SQL associated with the
 stored procedure. The SQL should contain only the stored
 procedure name —parentheses, the CALL statement, and parameter
 placeholders are neither required nor allowed.

	8–39
	The declareParameter() method
 invocations define input and output parameters and also any
 result sets returned by the stored procedure.

	8–21
	Specify the definition of the
 first—employee list—result set. The SqlReturnResultSet class represents
 a result set.

	9
	Create an implementation of the
 RowMapper interface that
 will map the result set rows.

	10
	The mapRow(
) method processes a single row in a result set. It
 returns an object that represents the row.

	12–18
	Create an Employee object to hold a single
 employee row from the result set. We create the Employee object using the default
 constructor with the values of the current row as arguments.
 We use the normal JDBC syntax to retrieve each column from the
 row and assign it to the appropriate constructor
 argument.

	19
	Return the new Employee object to the RowMapper, which will add it to the
 Map being constructed for
 the current result set.

	23–35
	Repeat the process for the second
 result set, which is used to create a Map of customer
 objects.

	37
	Define our single input
 parameter—department_id—using the SqlParameter method.

	39
	Define our single output
 parameter—sales_total—using
 the SqlOutParameter
 method.

Now that we have created a class that knows how to process the
 inputs and outputs of our stored procedure, we are ready to use the
 stored procedure within our Java code. The StoredProcedure class takes, as its
 argument, a Map that includes all
 of the required parameters to the stored procedure call. The class
 returns a Map that contains all of
 the result sets and output parameters. Example 14-41 shows us using
 the StoredProcedure class in our
 Java code.
Example 14-41. Using a Spring stored procedure class
1 MyStoredProcedure msp = new MyStoredProcedure(datasource);
2 Map inParameters = new HashMap();
3 inParameters.put("department_id", new Integer(department_id));
4 Map results = msp.execute(inParameters);
5
6 List employees = (List) results.get("Employees");
7 System.out.println("Employees of department " + department_id);
8 for (int i = 0; i < employees.size(); i++) {
9 Employee e = (Employee) employees.get(i);
10 System.out.println(e.getEmployeeId() + "\t" +
11 e.getFirstname() + "\t" + e.getSurname());
12 }
13
14 List customers = (List) results.get("Customers");
15 System.out.println("Customers of department " + department_id);
16 for (int i = 0; i < customers.size(); i++) {
17 Customer c = (Customer) customers.get(i);
18 System.out.println(c.getCustomerId() + "\t" + c.getCustomerName());
19 }
20
21 Double salesTotal = (Double) results.get("sales_total");
22 System.out.println("Total sales for the department " +
23 department_id + "=" + salesTotal);

Here is an explanation of this code:
	Line(s)
	Explaination

	1
	Create a new instance of our
 MyStoredProcedure class,
 passing an existing DriverManagerDataSource object
 (datasource) to represent
 the MySQL connection.

	2
	Create a HashMap that will hold the
 procedure's input parameters.

	3
	Add name-value pairs to the HashMap for each input parameter. In
 this case, we have only a single parameter—department_id.

	4
	Use the execute() method of the StoredProcedure object to execute
 the stored procedure. We pass in the Map containing input parameters, and
 we retrieve a new Map
 containing all the outputs of the stored procedure
 call.

	6
	Use the get() method of the Map to retrieve a List that represents the rows in the
 first result set (employees).

	8
	Iterate through each element in the
 List. This is equivalent to
 moving through each row in the result set.

	9
	Cast each list entry to an Employee object representing the
 current row in the result set.

	10
	Use the methods we created for the
 Employee class to extract
 and display the details for the current
 employee.

	14-19
	Process the second result set
 (customers) in the same way
 as for the employees result
 set.

	21-23
	Retrieve and display the value of
 the single OUT parameter
 (sales_total).

Conclusion

 In this chapter we looked at how to use MySQL stored
 programs from within Java programs. Java programs access relational
 databases through the JDBC interfaces supported by the MySQL
 Connector/J driver.
We first reviewed the fundamentals of using JDBC to process
 basic SQL—queries, updates, inserts, deletes, DDL, and utility
 statements. We showed how to use the PreparedStatement interface to execute SQL
 statements that are repeatedly executed, possibly with variable query
 parameters or DML inputs. Finally, we looked at JDBC structures for
 implementing transaction and error handling.
JDBC fully supports stored programs through the CallableStatement interface. Callable
 statements support multiple result sets, and they support IN, OUT,
 and INOUT parameters. The ResultSetMetaData interface can be used to
 determine the structure of result sets returned by stored programs if
 this is not known in advance.
Stored programs are suitable for use in J2EE applications, and
 stored procedures can be invoked from within J2EE application servers
 such as JBoss, WebLogic, and WebSphere. We can use stored programs in
 J2EE applications wherever we might embed standard SQL calls—from
 servlets, session EJBs, or Bean Managed Persistence (BMP) EJBs. However, stored programs cannot easily be
 leveraged from within Container Managed Persistence (CMP) EJBs.
We can use stored procedures in ORM frameworks such as
 Hibernate, although doing so involves more work than letting Hibernate
 generate its own native SQL. The Spring framework also provides full
 support for MySQL stored procedures.
As with other application development environments, the use of
 stored programs from within Java code offers a number of advantages,
 including encapsulation of complex transaction logic, abstraction of
 the underlying schema, and potential performance improvements from
 reduction in network round trips.

Chapter 15. Using MySQL Stored Programs with Perl

Perl is an open source programming language widely used for
 system administration tasks, web site development, data manipulation,
 and reporting. Perl was the brainchild of Larry Wall, who initially
 developed the language to provide a language for the easy manipulation
 of text files and the like. Perl rapidly became very popular among the
 Unix community as a powerful, easy-to-use, general-purpose programming
 language. During the explosion of the World Wide Web, Perl's ease of use
 and database connectivity capabilities made it the preferred choice for
 CGI-based data-driven web sites.
From very early on, Perl was an extensible language and benefited
 greatly from a wide variety of user-contributed packages allowing it to
 do everything from handling Unix mail to performing complex statistical
 analyses. One category of extension showed particularly rapid
 uptake—extensions that enabled Perl to interact with relational
 databases, allowing Perl users to manipulate RDBMS data as easily as
 they could manipulate text files. Initially, these extensions were
 platform specific—the extension used to access Oracle had little in
 common with that used to access Sybase, for instance.
Perl's DBI (DataBase Interface) module evolved to provide a common
 syntax for interacting with relational databases. DBI defines interfaces
 and utilities common to all databases, while for each specific
 relational database, we use a DBD (DataBase Driver) module that contains
 the database-specific implementation of the DBI interface, and may also
 include database-specific utility routines. The preferred way to use
 MySQL with Perl is through the DBD::mysql module.
In this chapter we will first provide a general overview of
 DBD::mysql capabilities and then move
 on to show how to use DBD::mysql to
 call MySQL stored programs.
Review of Perl DBD::mysql Basics

 Let's start with a review of how to install the DBD::mysql driver, and how to use that driver to perform
 traditional interactions (i.e., those not using stored programs) with
 MySQL. These form the building blocks that we can use to work with
 stored programs. However, if you are already familiar with the Perl
 DBI, you may wish to skip forward to "Executing Stored Programs with
 DBD::mysql," later in this chapter.
Installing DBD::mysql

To access MySQL from Perl, you will normally use the DBD::mysql package. DBD::mysql is a Perl package that
 implements the classes defined by the DBI package that allow Perl to
 interact with relational databases in a database-independent
 manner.
The DBI package is probably already included in your Perl
 distribution. If it is not, you can follow the instructions given in
 this section.
Tip
Make sure to install the DBI package before
 installing the DBD::mysql
 package.

Installing DBD::mysql on Linux or Unix

The easiest way to install DBD::mysql on a Linux/Unix system is to
 use the CPAN (Comprehensive Perl Archive Network) shell. To invoke
 the CPAN shell, run the following command from a command line (as
 root):
 [root@guyh3 root]# perl -MCPAN -e 'shell'
This invokes the CPAN command line:
 [root@guyh3 root]# perl -MCPAN -e 'shell'

 cpan shell -- CPAN exploration and modules installation (v1.61)
 ReadLine support enabled

 cpan>
You can then type install
 DBD::mysql to download, build and install the DBD::mysql driver. It's probably best to
 specify force install, because
 otherwise the DBD::mysql driver
 will not install unless it has passed all the built-in tests.
 Unfortunately, the tests will probably fail if you have a
 nonstandard database password, so we generally use force install to ensure that the
 installation succeeds.
The CPAN install session will look something like
 this:
 cpan> force install DBD::mysql
 CPAN: Storable loaded ok
 Going to read /root/.cpan/Metadata
 Database was generated on Wed, 15 Jun 2005 11:57:49 GMT
 Running install for module DBD::mysql
 Running make for R/RU/RUDY/DBD-mysql-2.9008.tar.gz
 CPAN: Digest::MD5 loaded ok
 Checksum for /root/.cpan/sources/authors/id/R/RU/RUDY/DBD-mysql-2.9008.tar.gz ok
 Scanning cache /root/.cpan/build for sizes
 DBD-mysql-2.9008/
 DBD-mysql-2.9008/t/
 DBD-mysql-2.9008/t/60leaks.t
 DBD-mysql-2.9008/t/40listfields.t
 DBD-mysql-2.9008/t/10dsnlist.t
 *** LOTS of other output ***
 Failed 16/18 test scripts, 11.11% okay. 725/732 subtests failed, 0.96% okay.
 make: *** [test_dynamic] Error 2
 /usr/bin/make test -- NOT OK
 Running make install
 Installing /usr/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi/auto/DBD/mysql/
 mysql.so
 Files found in blib/arch: installing files in blib/lib into architecture dependent
 library tree
 Installing /usr/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi/DBD/mysql.pm
 Installing /usr/share/man/man3/DBD::mysql.3pm
 Writing /usr/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi/auto/DBD/mysql/.
 packlist
 Appending installation info to /usr/lib/perl5/5.8.0/i386-linux-thread-multi/
 perllocal.pod
 /usr/bin/make install -- OK

Installing DBD::mysql on Windows

If you are using Perl on Windows, you probably are
 using the ActiveState binary distribution (http://www.activestate.com). Activestate Perl
 includes the Perl Package Manager, which can be used to download
 binary versions of Perl packages from the ActiveState site. To use
 PPM you simply type ppm from a
 Windows command prompt. If you are working through a proxy server,
 you may need to set appropriate values for HTTP_proxy, HTTP_proxy_user, and HTTP_proxy_pass, as shown below:
 C:\>set HTTP_proxy=http://something.proxy.com:8080
 C:\>set HTTP_proxy_user=myusername
 C:\>set HTTP_proxy_pass=mypassword
 C:\>ppm
 PPM interactive shell (2.1.6) - type 'help' for available commands.
 PPM> install DBD::mysql
 Install package 'DBD-mysql?' (y/N): y
 Installing package 'DBD-mysql'...
 Bytes transferred: 597532
 Installing C:\Perl\site\lib\auto\DBD\mysql\mysql.bs
 Installing C:\Perl\site\lib\auto\DBD\mysql\mysql.dll
 Installing C:\Perl\site\lib\auto\DBD\mysql\mysql.exp
 Installing C:\Perl\site\lib\auto\DBD\mysql\mysql.lib
 Installing C:\Perl\html\site\lib\Mysql.html
 Installing C:\Perl\html\site\lib\DBD\mysql.html
 Installing C:\Perl\html\site\lib\DBD\mysql\INSTALL.html
 Installing C:\Perl\html\site\lib\Bundle\DBD\mysql.html
 Installing C:\Perl

\site\lib\Mysql.pm
 Installing C:\Perl\site\lib\Mysql\Statement.pm
 Installing C:\Perl\site\lib\DBD\mysql.pm
 Installing C:\Perl\site\lib\DBD\mysql\GetInfo.pm
 Installing C:\Perl\site\lib\DBD\mysql\INSTALL.pod
 Installing C:\Perl\site\lib\Bundle\DBD\mysql.pm
 Writing C:\Perl\site\lib\auto\DBD\mysql\.packlist

Connecting to MySQL

To connect to MySQL from a Perl program, we first need to
 issue the use DBI clause to load
 the DBI driver that forms the foundation for the DBD::mysql driver. We then create a
 database handle using the DBI->connect() method.
The connect method has the
 following syntax:
 Database_handle=DBI->connect(DataSourceName,UserName,PassWord,[Attributes]);
The resulting database handle is used in all subsequent
 interactions with the database.
The DataSourceName specifies the
 database details for the connection. The syntax depends on the type
 of database used, but for MySQL it has the following format:
 dbi:mysql:database:host:port
where hostname indicates the
 hostname or IP address of the machine hosting the MySQL instance,
 port defines the port on which the MySQL
 server is listening (3306 by default), and
 database specifies the database within
 the server to which the connection is being made.
Attributes defines some optional
 attributes for the connection; we'll discuss attributes in the
 next section.
In Example 15-1 we
 connect to a database prod on the
 MySQL server on the local machine localhost at port 3306. We connect as
 root with the password secret.
Example 15-1. Connecting to a MySQL database from Perl
use strict;
use DBI;
my $dbh = DBI->connect("DBI:mysql:prod:localhost:3306", "root", "secret");

Connection attributes

DBD:MySQL allows you to specify the following attributes at
 connection time:
	AutoCommit
	Determines whether each SQL statement will
 automatically commit following execution. This is relevant
 only for transactional databases such as InnoDB.

	PrintError
	Determines whether MySQL errors will be printed as
 warnings.

	RaiseError
	Determines whether MySQL errors will terminate
 execution.

These attributes are represented as an associative array
 within the connect() method,
 and each takes an argument of either 1 (true) or 0 (false). Example 15-2 shows how to
 set up a connection in which automatic commits are suppressed and
 in which any errors encountered are reported without terminating
 execution.
Example 15-2. Setting database handle attributes on connection
my $dbh = DBI->connect("DBI:mysql:prod:localhost:3306",
 "root", "secret", { AutoCommit => 0, PrintError => 1, RaiseError => 0 })

You can modify any of these database handle attributes
 during execution, as shown in Example 15-3.
Example 15-3. Enabling autocommit
$dbh->{AutoCommit} = 1; #Enable autocommit

Handling Errors

As shown earlier, we can set up some basic error-handling
 defaults at connection time that will control whether MySQL errors
 cause immediate termination of a program. However, we will often
 want to check the error status of a DBD::mysql call immediately after
 execution and take appropriate action if the call fails.
Usually, a DBI method will return true if it is successful, or false otherwise, and so we can check that
 return status to determine whether the call was successful, as shown
 in Example 15-4. Details
 about the actual status of execution can be found in the err and errstr properties of the database handle.
 These properties can be used to determine the root cause of the
 error or to report the error to the user.
Example 15-4. Checking for errors in a DBI statement
my $dbh = DBI->connect("DBI:mysql:prod:localhost:3306",
 "root", "secret", { AutoCommit => 0, PrintError => 0, RaiseError => 0 })
 || die "Connection error: ".$DBI::errstr;

Issuing a Simple One-off Statement

The DBI do() method allows
 us to execute a simple statement that returns no result sets and
 takes no parameters. Example
 15-5 shows the use of the do() method to set the value for a user
 variable.
Example 15-5. Using do() to execute a simple SQL
$dbh->do('set @myvariable=10')||die $DBI::errstr;

Preparing a Statement for Reuse

To execute a statement more than once, or to execute a SQL
 statement that retrieves a result set, we first need to prepare, and
 then execute, the statement. Example 15-6 shows the use of
 prepare() and execute() rather than do() to execute a simple SQL
 statement.
Example 15-6. Using prepare() and execute()
my $sth=$dbh->prepare('set @myvariable=9')||die $DBI::errstr;
$sth->execute||die $DBI::errstr;

Using Bind Variables

One of the advantages of using prepared statements is that they can be re-executed with altered
 parameters without having to be redefined each time. Bind
 variables— also known as substitution
 variables —are indicated within a SQL statement by ? placeholders. Prior to execution, we
 call the bind_param() method to
 set the values of these variables.
In Example 15-7 we
 prepare a statement and then bind and execute() the statement 10 times in a
 loop. Each execution inserts unique rows into the appropriate
 table.
Example 15-7. Using bind_param() to set placeholder values
my $sth=$dbh->prepare('INSERT INTO bind_example(col1,col2) VALUES(?,?)')
 ||die $DBI::errstr;
for (my $i=1; $i<=10;$i++) {
 $sth->bind_param(1,$i);
 $sth->bind_param(2,'Row# '.$i);
 $sth->execute||die $DBI::errstr;
}
$sth->finish;

Alternatively, we can specify the bind variables in the execute
 method, as shown in Example
 15-8.
Example 15-8. Specifying bind values in the execute() method
my $sth = $dbh->prepare('INSERT INTO bind_example(col1,col2) VALUES(?,?)')
 || die $DBI::errstr;
for (my $i = 1 ; $i <= 10 ; $i++) {
 my $col2_value = 'Row2#' . $i;
 $sth->execute($i, $col2_value) || die $DBI::errstr;
}

Issuing a Query and Retrieving Results

In line with the core philosophy of Perl —There's More Than One Way To Do It?— Perl DBI and
 the DBD::mysql driver provide a
 number of ways to retrieve rows from a query. In Example 15-9, we use the
 fetchrow_array method, which is
 probably the most commonly used approach.
Example 15-9. Retrieving rows with fetchrow_array
 my $sql =
 "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
 my $sth = $dbh->prepare($sql) || die $DBI::errstr;
 $sth->execute || die $DBI::errstr;
 while (my @row = $sth->fetchrow_array) {
 print $row[0] ."\t". $row[1] . "\n";
 }
 $sth->finish;

After we have prepared and executed a SQL statement that
 returns a result set (SELECT,
 SHOW STATUS, etc.), we can use
 the fetchrow_array method to
 retrieve each row into a Perl array. We can then refer to the column
 values as numbered elements in that array (starting with element 0,
 of course!).

There's More Than One Way To Do It

Perl DBI offers at least five other ways of
 retrieving rows from a statement handle, described in the following
 subsections.
fetchrow_arrayref method

The fetchrow_arrayref method, shown in Example 15-10, is similar
 in usage to fetchrow_array, and
 has the advantage of returning a reference to an array, rather
 than the array itself. This has a small positive impact on
 performance for each row, since the data is not copied into a new
 array.
Example 15-10. Retrieving rows with fetchrow_arrayref
my $sql =
 "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
my $sth = $dbh->prepare($sql) || die $DBI::errstr;
$sth->execute || die $DBI::errstr;
while (my $row_ref = $sth->fetchrow_arrayref) {
 print $row_ref->[0]."\t".$row_ref->[1]."\n";
}
$sth->finish;

fetchrow_hashref method

The fetchrow_hashref method, shown in Example 15-11, returns the
 row as an associative array in which each element of the array is
 keyed by the column name, rather than the column position. This
 has the advantage of improving readability, although you have to
 know the column names that will be returned by the query.
Example 15-11. Retrieving rows with fetchrow_hashref
my $sql =
 "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
my $sth = $dbh->prepare($sql) || die $DBI::errstr;
$sth->execute || die $DBI::errstr;
while (my $hash_ref = $sth->fetchrow_hashref) {
 print $hash_ref->{customer_id} . "\t" .
 $hash_ref->{customer_name} . "\n";
}
$sth->finish;

fetchall_arrayref method

The fetchall_arrayref
 method allows you to retrieve an entire result set in a single
 operation. For noninteractive applications where the result set
 can fit into available memory, this can be a very efficient way to
 retrieve a result set. However, it is not necessarily appropriate
 for interactive applications where the user may wish to view only
 the first page of data before looking at the rest (for instance,
 on a web search page you rarely scroll through the entire list of
 matching sites). If the result set is too large for available
 memory, this method may degrade overall system performance as
 memory is swapped out to disk.
There are two main modes for the fetchall_arrayref method. In the first
 and simplest case, shown in Example 15-12, no arguments
 are provided to the method, and the method passes a reference to
 an array. Each element in the array contains references to an
 array containing the column values for a particular row.
Example 15-12. Retrieving rows with fetchall_arrayref
my $sql =
 "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
my $sth = $dbh->prepare($sql) || die $DBI::errstr;
$sth->execute || die $DBI::errstr;
my $table = $sth->fetchall_arrayref||die $DBI::errstr;
for my $i (0 .. $#{$table}) {
 for my $j (0 .. $#{ $table->[$i] }) {
 print "$table->[$i][$j]\t";
 }
 print "\n";
 }

Providing {} as the
 argument to fetchall_arrayref
 returns the columns as hashes, indexed by column name. In Example 15-13, we repeat
 our previous query but access our columns as hash
 references.
Example 15-13. Using fetchall_arrayref, returning hash
 references
my $sql =
 "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
my $sth = $dbh->prepare($sql) || die $DBI::errstr;
$sth->execute || die $DBI::errstr;
my $table = $sth->fetchall_arrayref({}) || die $DBI::errstr;
foreach my $row (@$table) {
 print $row->{customer_id} . "\t" . $row->{customer_name} . "\n";
}

You can also provide array or hash slice references as an
 argument to fetchall_arrayref
 to restrict the columns returned.

dump_results method

The dump_results
 method provides a quick-and-dirty way to print the output of a
 query. By default, dump_results
 will output all of the rows from a statement handle to standard
 output, surrounding the values in quotes, separating with commas,
 terminating each row with a line feed, and truncating columns (if
 necessary) to a maximum of 35 bytes per value. These default
 behaviors can be changed by providing arguments to dump_results:
 my $Rowcount=$statement_handle->dump_results(
 [column_length],[line separator],[column separator],[file handle]);
Example 15-14
 shows dump_results in
 action.
Example 15-14. Using dump_results to display a result set
 my $sql =
 "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
 my $sth = $dbh->prepare($sql) || die $DBI::errstr;
 $sth->execute || die $DBI::errstr;
 my $row_count = $sth->dump_results;
 $sth->finish;

The output of dump_results is shown in Example 15-15.
Example 15-15. Output from dump_results
'398', 'BELL INDUSTRIES INC.', 'DAHL', 'PHILIPPA'
'2985', 'GEORGIA-PACIFIC CORPORATION', 'OBRIEN', 'DOYLE'
'4776', 'CFC INTERNATIONAL INC', 'KINDRED', 'TOM'
'8756', 'INFODATA SYSTEMS INC', 'WEATHERFORD', 'KRISTIE'
'10746', 'ADTRAN INC.', 'EATON', 'RAYBURN'

bind_col and fetch methods

The final method we're going to look at differs from all the
 preceeding techniques: instead of the fetch() method returning an array or a
 reference to an array, we associate Perl variables ahead of time
 to each column that will be returned by the query. We perform this
 association with the bind_col
 method. Then we call the fetch
 method, which automatically deposits the values of the columns
 concerned into the variables nominated earlier. The Perl variables
 must be passed by reference (preceded by a \ character), which
 results in a theoretical performance advantage.
Example 15-16
 provides an example of using this technique.
Example 15-16. Using bind_col and fetch() to retrieve data from a
 query
 my ($customer_id, $customer_name);
 my $sql =
 "SELECT customer_id,customer_name FROM customers WHERE sales_rep_id=1";
 my $sth = $dbh->prepare($sql) || die $DBI::errstr;
 $sth->execute || die $DBI::errstr;
 $sth->bind_col(1, \$customer_id);
 $sth->bind_col(2, \$customer_name);

 while ($sth->fetch) {
 print join("\t", ($customer_id, $customer_name)), "\n";
 }

Getting Result Set Metadata

We don't necessarily always know the exact structure of the
 result set that will be returned by a SQL statement: the SQL might
 have been built up dynamically or even supplied by the user. To
 allow for this possibility, DBI lets us retrieve details about the
 result set using attributes of the statement handle. The NUM_OF_FIELDS statement handle attribute
 returns the number of columns in the result set, while the NAME and TYPE attributes are arrays containing the
 names and data types of each column.
Example 15-17
 shows how we can use these attributes to print out the structure of
 a result set.
Example 15-17. Retrieving result-set metadata
 my $sth = $dbh->prepare($sql) || die $DBI::errstr;
 $sth->execute || die $DBI::errstr;
 foreach my $colno (0 .. $sth->{NUM_OF_FIELDS} - 1) {
 print "Name= "
 . $sth->{NAME}->[$colno]
 . "\tType="
 . $sth->{TYPE}->[$colno] . "\n";

 }

These attributes let us write code that can handle dynamically
 any result set that might be returned. For instance, the code in
 Example 15-18 will
 print the result set returned from a SQL statement contained within
 the $sql variable, without
 knowing in advance the structure of the result set that SQL might
 return.
Example 15-18. Handling a dynamic result set
1 my $sth = $dbh->prepare($sql) || die $DBI::errstr;
2 $sth->execute || die $DBI::errstr;
3
4 # Print a title row
5 print join("\t",@{$sth->{NAME}}),"\n";
6
7 # Print out the values
8 while (my @row = $sth->fetchrow_array) {
9 print join("\t",@row),"\n";
10 }
11 $sth->finish;

Let's examine this example line by line:
	Line(s)
	Explanation

	5
	Print the names of each column in
 the result set—separated by tab characters—as a header
 row.

	8-10
	This loop repeats once for each
 row in the result set.

	9
	Print out a tab-separated list of
 column values for a particular row.

Performing Transaction Management

If you're using a transactional storage engine such as InnoDB,
 you may want to implement transactional logic within your
 Perl code. While you can do that by issuing the MySQL
 START TRANSACTION, ROLLBACK , and COMMIT
 statements with the DBI do() method, DBI provides some native
 routines that might be more convenient.
The AutoCommit attribute of
 the connection handle can be set to 0 to disable automatic commits
 after each statement, while the rollback() and commit() methods of the connection handle
 can be used to explicitly roll back or commit transactions.
Example 15-19
 uses these methods to control transaction logic in a simple Perl
 script.
Example 15-19. DBI transaction management commands in action
 $dbh->{AutoCommit} = 0;

 $dbh->do(
 "UPDATE account_balance
 SET balance=balance-$tfer_amount
 WHERE account_id=$from_account"
);
 if ($DBI::err) {
 print "transaction aborted: ".$DBI::errstr . "\n";
 $dbh->rollback;
 }
 else {
 $dbh->do(
 "UPDATE account_balance
 SET balance=balance+$tfer_amount
 WHERE account_id=$to_account"
);
 if ($DBI::err) {
 print "transaction aborted: ".$DBI::errstr . "\n";
 $dbh->rollback;
 }
 else {
 printf("transaction succeeded\n");
 $dbh->commit;
 }
 }

Executing Stored Programs with DBD::mysql

 We can use the techniques we've discussed in the
 previous sections for executing stored programs, although there are some circumstances
 in which you will need to use some additional techniques—specifically,
 if you need to retrieve multiple result sets or retrieve the value of
 an output parameter.
To execute a simple, one-off stored procedure that returns no
 result sets, we can simply invoke it with the do() method of the database handle, as shown
 in Example 15-20.
Example 15-20. Executing a very simple stored procedure
my $sql = 'call simple_stored_proc()';

$dbh->do($sql)||die $DBI::errstr;

Stored procedures that return only a single result set can be
 treated in the same manner as simple SELECT statements. Example 15-21 shows a stored
 procedure that returns just one result set.
Example 15-21. Simple stored procedure with a result set
CREATE PROCEDURE department_list()
 SELECT department_name,location from departments;

Example 15-22 shows
 how we would retrieve that result set in Perl. The approach is exactly
 the same as the one we would use for a SELECT statement or other SQL that returns a
 result set.
Example 15-22. Fetching a single result set from a stored procedure
 my $sth = $dbh->prepare('call department_list()') || die $DBI::errstr;
 $sth->execute || die $DBI::errstr;
 while (my @row = $sth->fetchrow_array) {
 print join("\t",@row),"\n";
 }
 $sth->finish;

Input parameters can be treated in the same way as placeholders
 in standard SQL. Input parameters are indicated in the prepare statement as ? characters, and the values are set using
 the bind_param method.
Example 15-23 shows
 a simple stored procedure that accepts an input parameter.
Example 15-23. Simple stored procedure with an input parameter
CREATE PROCEDURE customer_list(in_sales_rep_id INTEGER)
 SELECT customer_id,customer_name
 FROM customers
 WHERE sales_rep_id=in_sales_rep_id;

In Example 15-24 we
 use bind_param to set that value
 before executing the stored procedure and retrieving the result set.
 The example executes the stored procedure nine times, supplying 1-9
 for the sales_rep_id
 parameter.
Example 15-24. Specifying an input parameter
 my $sth = $dbh->prepare('call customer_list(?)') || die $DBI::errstr;

 for (my $sales_rep_id = 1 ; $sales_rep_id < 10 ; $sales_rep_id++) {
 print "Customers for sales rep id = " . $sales_rep_id;
 $sth->execute($sales_rep_id) || die $DBI::errstr;
 while (my @row = $sth->fetchrow_array) {
 print join("\t", @row), "\n";
 }
 }
 $sth->finish;

Handling Multiple Result Sets

Since stored procedures may return multiple result
 sets , DBI provides a method—more_results—to move to the next result
 set in a series. The DBD::mysql
 driver implementation of this method was still experimental at the
 time of writing (it is available in developer releases 3.0002.4 and
 above). We'll keep you updated on the status of DBD::mysql at this book's web site (see
 the Preface for
 details).
Example 15-25
 shows a simple stored procedure that returns two result sets.
Example 15-25. Stored procedure with two result sets
CREATE PROCEDURE sp_rep_report(in_sales_rep_id int)
BEGIN

 SELECT employee_id,surname,firstname
 FROM employees
 WHERE employee_id=in_sales_rep_id;

 SELECT customer_id,customer_name
 FROM customers
 WHERE sales_rep_id=in_sales_rep_id;

END

Because we know in advance the number and structure of the
 result sets returned by the stored procedure, it is relatively
 simple to process the results. In Example 15-26, we simply
 retrieve the first result set as usual, call more_results, and then process the next
 result set.
Example 15-26. Fetching two result sets from a stored procedure
 my $sth = $dbh->prepare("CALL sp_rep_report(?)") || die $DBI::errstr;
 $sth->execute($sales_rep_id) || die $DBI::errstr;

 # first result set: employee_id,surname,firstname
 print 'Employee_id' . "\t" . 'Surname' . "\t" . 'Firstname' . "\n";
 while (my $row = $sth->fetchrow_hashref) {
 print $row->{employee_id} . "\t" .
 $row->{surname} . "\t" .
 $row->{firstname} . "\n";
 }

 $sth->more_results;

 # second result set: customer_id,customer_name
 print 'Customer_id' . "\t" . 'Customer Name' . "\n";
 while (my $row = $sth->fetchrow_hashref) {
 print $row->{customer_id} . "\t" . $row->{customer_name} . "\n";
 }
 $sth->finish;

Handling Dynamic Result Sets

A stored program can return a variable number of result sets,
 and the structure and number of those result sets can be
 unpredictable. To process the output of such stored programs, we
 need to combine the more_results
 method with the DBI attributes that contain result set metadata;
 these were outlined in the earlier section "Getting Result Set
 Metadata." The more_results method returns false if there
 are no further result sets, so we can continue to call more_results until all of the result sets
 have been processed. Example
 15-27 illustrates this technique.
Example 15-27. Dynamically processing multiple result sets
1 sub execute_procedure() {
2 my ($dbh, $stored_procedure_call) = @_;
3 my $sth = $dbh->prepare($stored_procedure_call)
4 || die $DBI::err . ": " . $DBI::errstr;
5 $sth->execute || die DBI::err . ": " . $DBI::errstr;
6 my $result_set_no = 0;
7
8 do {
9 print "\n", ('=' x 20) . " Result Set # ",
10 ++$result_set_no . ('=' x 20), "\n\n";
11
12 print join("\t", @{ $sth->{NAME} }),"\n", ('-' x 54), "\n";
13
14 while (my @row = $sth->fetchrow_array()) {
15 print join("\t", @row), "\n";
16 }
17 }until (!$sth->more_results);
18 }

Let's step through this code:
	Lines
	Explanation

	1–7
	Here we define our subroutine, and
 have it extract a database connection handle ($dbh) and stored procedure call
 from the parameters passed to the procedure. The stored
 procedure call is prepared and executed (lines
 3–5).

	8–17
	Specify an until loop that will execute until
 more_results returns
 false. This loop will
 execute at least once.

	9 and 10
	This statement prints a "divider"
 line to separate each result set returned by the stored
 procedure.

	12
	Print out the column names for the
 current result set.

	14–16
	Loop through the rows in the
 current result set by calling fetchrow_array to retrieve rows
 until all rows have been processed.

	15
	Print the column values for the
 current row and print each column value.

	17
	Call more_results to move to the next
 result set. If more_results returns false, then there are no more
 result sets to be retrieved and the loop will
 terminate.

Handling Output Variables

A stored procedure may contain OUT or INOUT parameters that can return
 individual scalar values from the stored procedure call. The DBI
 specification provides the bind_param_inout method for retrieving the
 values of such parameters. Unfortunately, this method is not
 implemented in the DBD::mysql
 driver as we write this—we'll keep you posted on the status of this
 method for MySQL at the book's web site.
Luckily, we don't need the bind_param_inout method to retrieve the
 value of an output parameter. We can pass in a user variable (see
 Chapter 3) to receive the
 output parameter value, and then select the value of that variable
 in a subsequent SELECT. Example 15-28 shows an
 example of this technique as an alternative to using bind_param_inout.
Example 15-28. Retrieving an output parameter without the bind_param_inout
 method
 my $sql =
 'call sp_rep_customer_count(1,@customer_count)'; #watch out for the "@"!
 my $sth = $dbh->prepare($sql);
 $sth->execute() || die $DBI::errstr;
 $sth->finish;

 # Now get the output variable

 my @result = $dbh->selectrow_array('SELECT @customer_count')
 || die $DBI::errstr;
 print "customer_count=", $result[0], "\n";

Watch out when creating strings that include user variables in
 Perl. By default, the @ symbol
 indicates a Perl array and—if the @ appears in a double-quoted string—Perl
 will attempt to replace the apparent array with a Perl value. So you
 should always include these types of strings in single quotes or
 escape the user variable reference by preceding the @ symbol with "\" (e.g., SELECT \@user_var).
Also, remember that if the stored program includes any result
 sets, you must process all of these result sets before attempting to
 retrieve the values of an output parameter.

A Complete Example

In this section we'll put all of the techniques we have
 described so far into an example procedure that implements a simple
 web-based MySQL server status display. The example will prompt the
 user for MySQL server details and return selected status information
 about that server. The information will be provided by a single
 stored program that returns multiple result sets and includes both
 input and output parameters.
The stored procedure is shown in Example 15-29. The stored
 procedure returns, as result sets, the output of various SHOW statements and—if a valid database
 name is provided as an input parameter—details about objects in that
 particular database. The server version is returned as an output
 parameter.
Example 15-29. Stored procedure that generates an employee report
CREATE PROCEDURE sp_mysql_info
 (in_database VARCHAR(60),
 OUT server_version VARCHAR(100))
 READS SQL DATA
BEGIN

 DECLARE db_count INT;

 SELECT @@version
 INTO server_version;

 SELECT 'Current processes active in server' as table_header;
 SHOW full processlist;

 SELECT 'Databases in server' as table_header;

 SHOW databases;

 SELECT 'Configuration variables set in server' as table_header;
 SHOW global variables;
 SELECT 'Status variables in server' as table_header;
 SHOW global status;

 /* See if there is a matching database */
 SELECT COUNT(*)
 INTO db_count
 FROM information_schema.schemata s
 WHERE schema_name=in_database;
 IF (db_count=1) THEN
 SELECT CONCAT('Tables in database ',in_database) as table_header;
 SELECT table_name
 FROM information_schema.tables
 WHERE table_schema=in_database;
 END IF;
END;

To help us generate a well-formatted report, the stored
 procedure outputs a header row for each of the result sets it
 returns. This header row is issued as a single-row, single-column
 result set in which the column name is table_header.
Our Perl example is contained in Example 15-30. This is a Perl
 CGI script, designed to be run from the "CGI bin" directory of a web
 server such as Apache or Microsoft IIS. The program generates HTML
 to prompt for user input, connects to MySQL, runs the stored
 procedure, and generates the HTML to output the results.
Example 15-30. Perl CGI program to display server status
 information
1 #!/usr/bin/perl
2 use CGI qw(:standard);
3 use HTML::Table;
4 use DBI;
5 use strict;
6 if (!param()) {
7 my $form_tbl = new HTML::Table();
8 $form_tbl->addRow("Hostname:", textfield('hostname', 'localhost'));
9 $form_tbl->addRow("Username:", textfield('username', 'root'));
10 $form_tbl->addRow("Password:", password_field('password'));
11 $form_tbl->addRow("Database:", textfield('database'));
12 $form_tbl->addRow("Port:", textfield('port', 3306));
13 print header, start_html('MySQL Server Status'),
14 h1('Enter MySQL Server details'), start_form, $form_tbl->getTable,
15 submit,end_form, hr;
16 }
17 else {
18 my $hostname = param('hostname');
19 my $username = param('username');
20 my $password = param('password');
21 my $db = param('database');
22 my $port = param('port');
23 my @html_body;
24
25 my $dbh = DBI->connect("DBI:mysql:$db:$hostname:$port",
26 "$username", "$password", { PrintError => 0 });
27 if (DBI::err) {
28 print header, start_html("Error"), $DBI::errstr;
29 }
30 else {
31 my $sth = $dbh->prepare('call sp_mysql_info(?,@server_version)')
32 || die $DBI::err . ": " . $DBI::errstr;
33 $sth->bind_param(1, $db);
34 $sth->execute || die DBI::err . ": " . $DBI::errstr;
35 do {
36 if ($sth->{NAME}->[0] eq "table_header") {
37 my @row = $sth->fetchrow_array();
38 push(@html_body, h2($row[0]), p);
39 }
40 else {
41 my $table = new HTML::Table();
42 $table->setBorder(1);
43 foreach my $colno (0 .. $sth->{NUM_OF_FIELDS}) {
44 $table->setCell(1, $colno + 1, $sth->{NAME}->[$colno]);
45 $table->setCellBGColor(1, $colno + 1, "silver");
46 }
47 my $rowno = 1;
48 while (my @row = $sth->fetchrow_array()) {
49 $rowno++;
50 foreach my $colno (0 .. $#row) {
51 $table->setCell($rowno, $colno + 1, $row[$colno]);
52 }
53 }
54 push(@html_body, $table->getTable);
55 }
56 } until (!$sth->more_results);
57
58 $sth = $dbh->prepare('SELECT @server_version') || die $DBI::errstr;
59 $sth->execute() || die $DBI::errstr;
60 my @row = $sth->fetchrow_array();
61 my $mysql_version = $row[0];
62
63 print header, start_html('MySQL Server Status'),
64 h1('MySQL Server Status');
65 print "Server: ", $hostname, br, "Port: ", $port, br,
66 "Database:", $db, br "Version:", $mysql_version, br;
67 for my $html (@html_body) {
68 print $html;
69 }
70 print end_html;
71 }
72 }

Let's step through this example:
	Line(s)
	Explanation

	1–4
	Define the path to the Perl
 executable—necessary for CGI programs— and import the Perl
 packages we are going to use. These packages include the
 Perl CGI module that assists with HTML formatting, the
 HTML::Table package to
 assist us with our HTML tables, and— of course—the DBI
 package to allow database connectivity.

	6–16
	Create the HTML input form as
 shown in Figure
 15-1. Lines 7–12 create an HTML table that contains
 our input fields, while lines 13–15 print titles and other
 HTML. All HTML is generated by the CGI
 package.

	17–72
	Executed once the user clicks the
 Submit button on our HTML form.

	18–22
	Retrieve the values the user
 entered on the input form and assign them to Perl
 variables.

	25–29
	Using the inputs provided by the
 user, establish a connection to the MySQL
 database.

	31–34
	Prepare the stored procedure call,
 bind the database name provided by the user as the first
 parameter, and execute the stored procedure.

	35–56
	Execute once for each result set
 returned by the stored procedure.

	36–39
	If the result set contains a
 column called table_header, then the result set
 is treated as a title heading for a subsequent result set,
 and so we generate an H2 heading row.
 All HTML
 output is added to the @html_body array to be printed
 once we have retrieved all result sets and the value for the
 output variable.

	41–46
	If the result set does not
 represent a heading, then we initialize an HTML table to
 display the results. Here we create the heading row for the
 HTML table. Lines 43–46 loop through the column names in the
 result set and create a corresponding HTML table
 heading.

	48–53
	Loop through the rows in the
 result set and generate HTML table rows. The loop commencing
 on line 48 iterates through each row, and the loop
 commencing on line 50 iterates through each column in each
 row. Line 51 sets the value for a specific row/column
 combination.

	54
	Add the HTML for our table to the
 @html_body
 array.

	56
	The until clause controls the
 execution of the loop that commenced on line 35. While the
 more_results call returns
 true, indicating that
 there are more result sets, the loop will continue to
 execute.

	58–61
	Now that all result sets have been
 processed, we can retrieve the value of the output
 parameter. When we prepared the stored procedure on line 31,
 we provided a user variable—'@server_version'—to receive the
 value of the output parameter. Now we issue a SELECT statement to get the value
 of that variable.

	63–66
	Having retrieved all the result
 sets and having retrieved the output parameter, we can
 generate the HTML output. These lines print the heading and
 server details (including the server
 version).

	67–69
	Output the HTML that we have
 accumulated into the @html_body array during our
 program execution. This includes header rows and HTML tables
 constructed in our main loop.

	70
	This completes our HTML output and
 our Perl example.

This Perl program first generates the HTML input form, as
 shown in Figure
 15-1.
When the user clicks the Submit button, the CGI Perl script
 generates output, as shown in Figure 15-2.
[image: Input form for our example]

Figure 15-1. Input form for our example

Conclusion

In this chapter we reviewed the Perl DBD::mysql package, which allows Perl to
 connect to MySQL databases. We also showed how to use DBD::mysql to interact with MySQL stored
 procedures. Perl provides all of the mechanisms necessary for stored
 procedure processing, although some of these mechanisms were
 experimental as we wrote this chapter. We'll keep you updated with the
 status of these extensions at this book's web site.
[image: Output from our CGI example]

Figure 15-2. Output from our CGI example

Chapter 16. Using MySQL Stored Programs with Python

Python is an open source, object-oriented, cross-platform
 language commonly used for system administration, application
 development, and many other purposes. Python is often used in very
 similar types of applications as Perl. However, Python devotees believe
 that Python offers many advantages over Perl in that it is natively
 object oriented, results in more readable and maintainable code, and
 enables greater programmer productivity, especially for large-scale
 developments. (Perl devotees have a different opinion, of
 course!)
The Python language includes a specification for a
 vendor-independent database-access API, the Python Database API
 Specification v2.0. You can find the specification for this API at
 http://www.python.org/peps/pep-0249.html. The
 MySQL implementation of this API is called MySQLdb , and is available at http://sourceforge.net/projects/mysql-python.
In this chapter we will review how to interact with a MySQL
 database using Python and the MySQLdb
 module, and explain how to exploit MySQL stored programs through this
 interface.
Installing the MySQLdb Extension

 You can obtain the MySQLdb module for Python at http://sourceforge.net/projects/mysql-python. For
 Windows users, the MySQLdb module
 is packaged as a Windows executable. For Linux or Unix users, the
 module is packaged as a gzip tar archive; you should download the
 archive and, after unpacking it, run the following commands in the
 root directory of the archive (as the root user or using the sudo command):
 python setup.py build
 python setup.py install

MySQLdb Basics

In this section we'll review the basic methods provided in the
 Python MySQLdb extension for
 establishing a connection to a MySQL server and processing simple SQL
 statements. These methods provide a foundation that we can use when
 working with stored programs. If you are already familiar with the
 MySQLdb extension, then you might
 like to skip forward to "Using
 Stored Programs with MySQLdb," later in the chapter.
Creating a Connection

Before we can use MySQLdb,
 we need to import the module. We can then use the connect() method of the base MySQLdb class to create a connection
 object. The connect() method
 takes five arguments—host,
 user, passwd, db, and port—which identify the MySQL server,
 account, and database to which we intend to connect. Each of the
 arguments is optional, with sensible default values (localhost for the hostname, for
 instance).
Example 16-1
 illustrates the basic technique.
Example 16-1. Connecting to MySQL from Python
import MySQLdb

conn = MySQLdb.connect (host = "localhost",
 user = "root",
 passwd = "secret",
 db = "mysql",
 port=3306)

Usually we will want to retrieve connection details from the
 command line. Python includes a powerful and useful command-line
 option parser that allows us to do this. Example 16-2 shows how to
 retrieve MySQL connection details from the command line and set up a
 connection.
Example 16-2. Getting connection details from the command line
import MySQLdb
from optparse import OptionParser

parser = OptionParser()
parser.add_option("-u","--username", dest="username",default="root")
parser.add_option("-H","--hostname",default="localhost")
parser.add_option("-p","--password",dest="password",default="")
parser.add_option("-d","--database",dest="database",default="mysql")
parser.add_option("-P","--port",dest="port",type="int",default=3306)
(options, args) = parser.parse_args()

conn = MySQLdb.connect (host = options.hostname,
 user = options.username,
 passwd = options.password,
 db = options.database,
 port=options.port)

Another option is to use a defaults file to store your
 connection details. In Example
 16-3 we read our connection details from the file
 ./mysqldb, which contains name-value pairs
 including the host, user, and password options.
Example 16-3. Getting connection details from a defaults file
try:
 option_file = ".mysqldb"
 conn = MySQLdb.connect(read_default_file = "./.mysqldb")
 print "Connected"
except MySQLdb.Error, e:
 print "Top level Error %d: %s" % (e.args[0], e.args[1])
 sys.exit (1)

Older versions of the MySQLdb extension did not enable stored
 procedure result sets by default. To override the connection
 flags—and allow stored procedures to return result sets—you add the
 CLIENT.MULTI_RESULT flag to your
 connection options. You will also need to import the CLIENT identifer from the MySQLdb.constants module. Example 16-4 illustrates this
 procedure.
Example 16-4. Enabling procedure result sets in older versions of
 MySQLdb
import MySQLdb
from MySQLdb.constants import CLIENT

conn = MySQLdb.connect(other connection_options ,
 client_flag=CLIENT.MULTI_RESULTS)

Handling Exceptions

Python employs an exception-handling paradigm for error
 handling, and this paradigm is fully supported within the MySQLdb module.
Without exception handling , any errors result in program termination and a
 traceback message being generated. For instance, if our connection
 details were invalid, we could expect a message such as that shown
 in Example 16-5.
Example 16-5. Traceback error stack for invalid connection
Traceback (most recent call last):
 File "C:\tools\eclipse\workspace\Python1\MySQLexamples1.py", line 16, in ?
 port=options.port)
 File "C:\tools\python\Lib\site-packages\MySQLdb__init_ _.py", line 66, in Connect
 return Connection(*args, **kwargs)
 File "C:\tools\python\Lib\site-packages\MySQLdb\connections.py", line 134, in _ _init_ _
 super(Connection, self).__init_ _(*args, **kwargs2)
_mysql_exceptions.OperationalError: (1045, "Access denied for user 'root'@'localhost'
(using password: NO)")

We can handle the connection failure, or any other MySQL
 error, by enclosing the commands in a try/except block and catching any MySQLdb.Error that might be raised. If an
 error is raised by any statement within the try block, control will pass to the
 except block, which can
 interrogate the MySQLdb.Error
 structure to determine the error code (args[0]) and error message (args[1]). Example 16-6 shows this
 technique.
Example 16-6. Using an exception handler to catch MySQL errors
try:
 conn = MySQLdb.connect (host = options.hostname,
 user = options.username,
 passwd = options.password,
 db = options.database,
 port=options.port)

except MySQLdb.Error, e:
 print "Error connecting %d: %s" % (e.args[0], e.args[1])

Executing a Simple Statement

To execute a SQL statement with MySQLdb, we create a cursor object using
 the cursor() method of the
 connection object. We can then use the execute() method of the cursor object to
 execute a statement. The rowcount
 property of the cursor object will reveal the number of rows
 affected by the SQL statement. Example 16-7 shows how to
 execute an UPDATE statement in
 this manner.
Example 16-7. Executing a simple SQL statement
 cursor1=conn.cursor()
 cursor1.execute("UPDATE employees "+
 " SET manager_id=28"+
 " WHERE manager_id=24")
 print "%d rows updated" % cursor1.rowcount
 cursor1.execute("COMMIT")
 cursor1.close()

Passing Parameters to a Statement

The execute() method allows
 for parameters to a statement to be passed as the second parameter
 to the execute() method. This
 parameter argument consists of a Python list containing the
 parameter values. These are substituted into the SQL statement
 contained in the execute clause.
 The standard Python string formats (%s) indicate the position of the
 parameters within the SQL.
In Example 16-8 we
 submit a SQL statement in a for
 loop which iterates through a few values of the old_manager parameter. For each employee
 formally reporting to these managers, we update the employees to
 report to a new manager.
Example 16-8. Using parameters when executing a SQL statement
 new_manager=24
 cursor1=conn.cursor()
 for old_manager in [28,87,60]:
 cursor1.execute("UPDATE employees "+
 " SET manager_id=%s"+
 " WHERE manager_id=%s",
 [new_manager,old_manager])
 print "%d employees updated from manager %d to %d" % \
 (cursor1.rowcount,old_manager,new_manager)
 cursor1.execute("COMMIT")
 cursor1.close()

Retrieving Rows from a Query

The Python DB API gives us a couple of methods for retrieving
 result sets from a cursor that executes a SELECT statement or another MySQL
 statement that might return a result set.
The simplest method—fetchone(
)—retrieves a single row from the cursor and returns that
 row as a Python list. To retrieve all rows, we create a loop that
 calls fetchone() until we
 encounter a None object. Columns
 in the row can be accessed by retrieving individual elements in the
 list. Example 16-9 shows
 this technique.
Example 16-9. Using fetchone() to retrieve rows from a cursor
 cursor1=conn.cursor();
 cursor1.execute("SELECT department_id,department_name "+
 " FROM departments")
 while True:
 row = cursor1.fetchone ()
 if not row:
 break
 print "%6d %-20s" % (row[0], row[1])
 cursor1.close()

The fetchall() method
 retrieves all rows in a single operation and returns them as a
 sequence of sequences (rows of columns).
In Example 16-10
 we use fetchall() to retrieve
 all rows into the allrows object,
 which is a sequence of sequences. We iterate through the allrows sequence, creating row objects, each of which comprises a
 sequence of values for that row. We then print out each row
 value.
Example 16-10. Using fetchall() to retrieve rows
 cursor1=conn.cursor();
 cursor1.execute("SELECT department_id,department_name "+
 " FROM departments")
 allrows=cursor1.fetchall()
 for row in allrows:
 print "%6d %-20s" % (row[0],row[1])
 cursor1.close()

The fetchmany() method is
 a compromise between fetchone()
 and fetchall() in which we
 retrieve rows in batches. The size of each batch is defined as an
 argument to fetchmany().
In order to retrieve all rows using fetchmany(), we need to construct two
 loops: one to retrieve each batch, and an inner loop to retrieve
 each row in the batch. We terminate the outer loop when we have
 retrieved an empty set from fetchmany(
).
Example 16-11
 shows fetchmany() in
 action.
Example 16-11. Using fetchmany() to retrieve rows
1 cursor1=conn.cursor()
2 cursor1.execute("SELECT department_id,department_name "+ \
3 " FROM departments ORDER BY department_id")
4 while True:
5 somerows=cursor1.fetchmany(10)
6 if not somerows :
7 break
8 for row in somerows:
9 print "%6d %-20s" % (row[0],row[1])
10 cursor1.close()

Let's look at this code line by line:
	Line(s)
	Explanation

	4
	This is the outer loop in which we
 loop over batches returned by fetchmany(). The loop will
 continue indefinitely, so we need to end it explicitly with
 a break
 statement.

	5
	Call fetchmany(10) to fetch a batch of
 10 rows.

	6 and 7
	If fetchmany() returns an empty
 sequence, we break out of the loop we constructed on line 4,
 having retrieved all of the rows from the result
 set.

	8 and 9
	Iterate through each row in the
 batch of rows returned by fetchmany() and return the row
 value.

In previous examples, we have retrieved rows as lists of
 columns. MySQLdb also supports
 retrieving rows as dictionaries in which each element is indexed by
 column name rather than by column offset. To retrieve rows as
 dictionaries, we specify the MySQLdb.cursors.DictCursor type as an argument to the con_cursor() method, as shown in Example 16-12.
Example 16-12. Using DictCursor to retrieve rows as Python
 dictionaries
 cursor1 = conn.cursor (MySQLdb.cursors.DictCursor)
 cursor1.execute ("SELECT department_id,department_name "+
 " FROM departments")
 result_set = cursor1.fetchall ()
 for row in result_set:
 print "%s, %s" % (row["department_id"], row["department_name"])

It is not necessary to use one of the fetch family of methods, at least in
 recent versions of Python (2.2 and later). Instead, you can access the rows
 directly from the cursor following a successful execute(). In Example 16-13 we retrieve the
 column values from the cursor as a sequence.
Example 16-13. . Accessing column values directly from a cursor as a
 sequence
 cursor1=conn.cursor();
 cursor1.execute("SELECT department_id,department_name "+
 " FROM departments")
 for row in cursor1:
 print "%6d %-20s" % (row[0], row[1])
 cursor1.close()

We can also retrieve the row directly into appropriately named
 variables, as shown in Example
 16-14.
Example 16-14. Accessing column values directly from a cursor, using named
 variables
 cursor1=conn.cursor();
 cursor1.execute("SELECT department_id,department_name "+
 " FROM departments")
 for department_id, department_name in cursor1:
 print "%6d %-20s" % (department_id, department_name)
 cursor1.close()

Managing Transactions

The Python DB API specifies methods to the connection class
 that can manipulate the autocommit setting and explicitly issue
 commits and rollbacks. The methods are:
	autocommit({True|False})
	Turns autocommit on (True) or off (False). This is equivalent to
 issuing a SET AUTOCOMMIT=
 statement.

	commit()
	Commit the active transaction in the connection.

	rollback()
	Roll back any active transaction in the
 connection.

Python exception handling is well suited to handling
 transaction control logic using a try /except /else structure:
	try
	This block contains the statements that constitute the
 transaction.

	except
	This block fires if any errors are encountered. It
 issues a rollback and notifies the user or calling application
 that the transaction has failed.

	else
	This block executes if no exceptions have been raised.
 It is responsible for committing the transaction and advising
 of successful completion.

Example 16-15
 illustrates the use of the try/except/else structure and the
 connection transaction methods to manage transaction logic.
Example 16-15. Transaction logic in MySQLdb
 try:
 conn.autocommit(False)
 csr1.execute("UPDATE account_balance "+
 " SET balance=balance-%s "+
 "WHERE account_id=%s",
 [tfer_amount,from_account])
 csr1.execute("UPDATE account_balance "+
 " SET balance=balance+%s "+
 "WHERE account_id=%s",
 [tfer_amount,to_account])

 except MySQLdb.Error, e:
 conn.rollback()
 print "Transaction aborted: %d: %s" % (e.args[0], e.args[1])
 else:
 conn.commit()
 print "Transaction succeeded"

Getting Metadata

If we need to retrieve information about the result set that
 will be returned by a cursor, we can use the description property of the cursor class. The description property consists of a
 sequence of sequences. The primary sequence consists of one sequence
 for each column in the result set. The sequence for each column
 consists of the following items:
	The name of the column

	A code representing the data type of the column

	The "display size" of the column, which can be used to
 allocate space in output formats

	The "internal" size of the column

	The precision (for numeric columns)

	The scale (for numeric columns)

You will most often want to access the first and third
 elements in the sequence so that you can format titles and display
 lengths for the output of a query. For instance, Example 16-16 uses cursor.description to generate titles for
 the output of a query.
Example 16-16. Retrieving result set metadata
 cursor1=conn.cursor()
 cursor1.execute("SELECT *"+
 " FROM employees")
 print "%-20s %8s" % ("Name","Length")
 print "-----------------------------"
 for col_desc in cursor1.description:
 print "%-20s %8d " % \
 (col_desc[0],col_desc[3])

Dynamically Processing a Result Set

Using cursor.description,
 we can handle the output of a query even if we don't know what the
 SQL will be when we are writing our Python code (such as whether the SQL was dynamically
 generated or provided by the user).
In Example 16-17,
 adapted from the Python Cookbook by David
 Ascher, Alex Martelli, and Anna Ravenscroft (O'Reilly, 2005), we
 define a function that will accept any SQL statement and "pretty
 print" the output.
Example 16-17. Dynamically processing a result set
1 def dynamic_sql(sql):
2 names=[]
3 lengths=[]
4 dividers=[]
5 cursor1=conn.cursor()
6 cursor1.execute(sql)
7 for col_desc in cursor1.description:
8 col_name=col_desc[0]
9 col_length=col_desc[2]
10 col_length=max(col_length,len(col_name))
11 names.append(col_name)
12 lengths.append(col_length)
13 dividers.append('-' * col_length)
14 format = " ".join(["%%-%ss" % col_len for col_len in lengths])
15 print format % tuple(names)
16 print format % tuple(dividers)
17 rows=cursor1.fetchall()
18 for row in rows:
19 print format % tuple(row)
20 cursor1.close()

Let us step through this example:
	Line(s)
	Explanation

	1
	Define the function and its input
 parameter: a string containing the SQL to be
 executed.

	2–4
	These are the empty lists that we
 will use to store column names, lengths, and divider strings
 (for our column underlines).

	5–6
	Create and execute a cursor with
 the SQL provided as a parameter to the
 function.

	7–13
	Loop through the elements
 (columns) in cursor1.description. Lines 8–9
 retrieve the column name and display length.

	10
	Set the column length to be equal
 either to the display length or to the length of the column
 name (so that we have room for our titles if the column name
 is longer than the column data).

	11 and 12
	Store the column names and lengths
 in the appropriate list.

	13
	Append a series of dashes equal to
 the column length. These will form the column dividers for
 our output.

	14
	Create a format string that will
 be used to format column names, dividers, and column data.
 The format strings are simply string formats of the
 appropriate lengths for each column as determined in line
 10.

	15 and 16
	Print the column headings for our
 formatted output.

	17–19
	Issue a fetchall() to retrieve all rows
 from the query and then print each row according to the
 format we constructed in line 14.

	20
	All done! So we close the
 cursor.

If we submit a SQL statement to this function, as shown
 below:
 dynamic_sql("SELECT * FROM departments")
the function generates a nicely formatted result set:
 DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION
 ------------- --------------- ---------- ---------------
 1 DUPLIN 33 MORENO VALLEY
 2 MADISON 19 BEAVER
 3 MCHENRY 5 OKEECHOBEE
 4 CHARITON 25 TULLYTOWN
 5 SUMMERS 12 OLD CHURCH
 6 LINCOLN 20 SWENGEL
 7 CHAMPAIGN 37 AMF GREENSBORO
 8 WILKES 23 CUSHING
 9 CRAVEN 32 TAHOE PARADISE
 10 COTTONWOOD 4 WICHITA
 11 TAZEWELL 35 KLAWOCK

Using Stored Programs with MySQLdb

 The techniques for calling stored programs with MySQLdb differ
 only slightly from those for using traditional SQL statements. That
 is, we create a cursor, execute the SQL to call the stored program,
 and iterate through result sets. The two key differences are that we
 must potentially deal with multiple result sets and that we may have
 to retrieve output parameters from the stored program call.
If you read the Python DB API specification, you might notice
 that the specification includes a cursor method for directly calling
 stored programs—the callproc cursor
 method. The callproc method was not
 implemented in MySQLdb as we went
 to press, although the maintainer of MySQLdb, Andy Dustman, is working on an
 implementation that will likely be available by the time you read
 this. Check out the book's web site (see the Preface) for an update. This
 method is not implemented in MySQLdb (version 1.2, at least). Luckily,
 everything you need to call stored programs is available through other
 methods, so you don't need to wait for callproc to use stored programs with
 Python.
Calling Simple Stored Programs

The procedure for calling a simple stored program—one that
 returns no result sets and takes no parameters—is the same as for
 executing any non-SELECT
 statement. We create a cursor and execute the SQL text, as shown in
 Example 16-18.
Example 16-18. Executing a simple stored procedure
 cursor1=conn.cursor()
 cursor1.execute("call simple_stored_proc()")
 cursor1.close()

If the stored procedure takes input parameters, we can supply
 them using the second argument to the execute() method. In Example 16-19, we define a
 Python function that accepts input parameters and applies them to
 the sp_apply_discount
 procedure.
Example 16-19. Supplying input parameters to a stored procedure
def apply_discount(p1,p2):

 cursor1=conn.cursor()
 cursor1.execute("call sp_apply_discount(%s,%s)",(p1,p2))
 cursor1.close()

Retrieving a Single Stored Program Result Set

Retrieving a single result set from a stored program is
 exactly the same as retrieving a result set from a SELECT statement. Example 16-20 shows how to
 retrieve a single result set from a stored procedure.
Example 16-20. Retrieving a single result set from a stored
 procedure
 cursor1=conn.cursor(MySQLdb.cursors.DictCursor)
 cursor1.execute("CALL sp_emps_in_dept(%s)",(1))
 for row in cursor1:
 print "%d %s %s" % \
 (row['employee_id'],row['surname'],row['firstname'])
 cursor1.close()

If you receive a 1312 error at this point (PROCEDURE X can't return a result set in the given
 context), then it is an indication that you need to
 specify the CLIENT.MULTI_RESULTS
 flag in your connection, as outlined in "Creating a Connection"
 earlier in this chapter.

Retrieving Multiple Stored Program Result Sets

Unlike other SQL statements, stored programs can return
 multiple result sets. To access more than one result set, we use the
 nextset() method of the cursor object to move to the next result
 set.
For instance, suppose that we have a stored procedure that
 returns two result sets, as shown in Example 16-21.
Example 16-21. Stored procedure that returns two result sets
CREATE PROCEDURE sp_rep_report(in_sales_rep_id int)
 READS SQL DATA
BEGIN

 SELECT employee_id,surname,firstname
 FROM employees
 WHERE employee_id=in_sales_rep_id;

 SELECT customer_id,customer_name
 FROM customers
 WHERE sales_rep_id=in_sales_rep_id;

END;

To retrieve the two result sets, we fetch the first result
 set, call nextset(), then
 retrieve the second result set. Example 16-22 shows this
 technique.
Example 16-22. Retrieving two results from a stored procedure
 cursor=conn.cursor(MySQLdb.cursors.DictCursor)
 cursor.execute("CALL sp_rep_report(%s)",(rep_id))
 print "Employee details:"
 for row in cursor:
 print "%d %s %s" % (row["employee_id"],
 row["surname"],
 row["firstname"])
 cursor.nextset()
 print "Employees customers:"
 for row in cursor:
 print "%d %s" % (row["customer_id"],
 row["customer_name"])
 cursor.close()

Retrieving Dynamic Result Sets

It's not at all uncommon for stored programs to return
 multiple result sets and for the result set structures to be
 unpredictable. To process the output of such a stored program, we
 need to combine the nextset()
 method with the cursor.description property described in
 the "Getting
 Metadata" section earlier in this chapter. The nextset() method returns a None object if there are no further result
 sets, so we can keep calling nextset(
) until all of the result sets have been processed. Example 16-23 illustrates
 this technique.
Example 16-23. Retrieving dynamic result sets from a stored
 procedure
1 def call_multi_rs(sp):
2 rs_id=0;
3 cursor = conn.cursor()
4 cursor.execute ("CALL "+sp)
5 while True:
6 data = cursor.fetchall()
7 if cursor.description: #Make sure there is a result
8 rs_id+=1
9 print "\nResult set %3d" % (rs_id)
10 print "--------------\n"
11 names = []
12 lengths = []
13 rules = []
14 for field_description in cursor.description:
15 field_name = field_description[0]
16 names.append(field_name)
17 field_length = field_description[2] or 12
18 field_length = max(field_length, len(field_name))
19 lengths.append(field_length)
20 rules.append('-' * field_length)
21 format = " ".join(["%%-%ss" % l for l in lengths])
22 result = [format % tuple(names), format % tuple(rules)]
23 for row in data:
24 result.append(format % tuple(row))
25 print "\n".join(result)
26 if cursor.nextset()==None:
27 break
28 print "All rowsets returned"
29 cursor.close()

Example 16-23
 implements a Python function that will accept a stored procedure name
 (together with any arguments to the stored procedure), execute the
 stored procedure, and retrieve any result sets that might be
 returned by the stored procedure.
Let's step through this code:
	Line(s)
	Explanation

	2
	 rs_id is a numeric variable that
 will keep track of our result set sequence.

	3–4
	Create a cursor and execute the
 stored procedure call. The sp variable contains the stored
 procedure text and is passed in as an argument to the Python
 function.

	5
	Commence the loop that will be
 used to loop over all of the result sets that the stored
 procedure call might return.

	6
	Fetch the result set from the
 cursor.

	7
	Ensure that there is a result set
 from the stored procedure call by checking the value of
 cursor.description. This
 is a workaround to a minor bug in the MySQLdb implementation (version
 1.2) in which nextset()
 returns True even if
 there is no next result set, and only returns False once an attempt has been
 made to retrieve that null result. This bug is expected to
 be resolved in an upcoming version of MySQLdb.

	11–22
	Determine the structure of the
 result set and create titles and formats to nicely format
 the output. This is the same formatting logic we introduced
 in Example
 16-17.

	23–25
	Print out the result
 set.

	26
	Check to see if there is another
 result set. If there is not, nextset() returns None and we issue a break to exit from the loop. If
 there is another result set, we continue the loop and repeat
 the process starting at line 6.

	28 and 29
	Acknowledge the end of all result
 sets and close the cursor.

Example 16-24
 shows a stored procedure with "dynamic" result sets. The number and
 structure of the result sets to be returned by this stored procedure
 will vary depending on the status of the employee_id provided to the
 procedure.
Example 16-24. Stored procedure with dynamic result sets
CREATE PROCEDURE sp_employee_report
 (in_emp_id INTEGER,
 OUT out_customer_count INTEGER)
BEGIN

 SELECT employee_id,surname,firstname,date_of_birth
 FROM employees
 WHERE employee_id=in_emp_id;

 SELECT department_id,department_name
 FROM departments
 WHERE department_id=
 (select department_id
 FROM employees
 WHERE employee_id=in_emp_id);

 SELECT COUNT(*)
 INTO out_customer_count
 FROM customers
 WHERE sales_rep_id=in_emp_id;

 IF out_customer_count=0 THEN
 SELECT 'Employee is not a current sales rep';
 ELSE
 SELECT customer_name,customer_status
 FROM customers
 WHERE sales_rep_id=in_emp_id;

 SELECT customer_name,SUM(sale_value) as "TOTAL SALES",
 MAX(sale_value) as "MAX SALE"
 FROM sales JOIN customers USING (customer_id)
 WHERE customers.sales_rep_id=in_emp_id
 GROUP BY customer_name;
 END IF;
END

We can use the Python function shown in Example 16-23 to process the
 output of this stored procedure. We would invoke it with the
 following command:
 call_multi_rs("sp_employee_report(1,@out_customer_count)")
We pass in 1 to produce a
 report for employee_id=1; the
 @out_customer_count variable is
 included to receive the value of the stored procedure's output
 parameter (see the next section, "Obtaining Output
 Parameters"). Partial output from this procedure is shown in
 Example 16-25.
Example 16-25. Output from a dynamic stored procedure call
Result set 1

employee_id surname firstname date_of_birth
----------- ------- --------- -------------------
1 FERRIS LUCAS 1960-06-21 00:00:00

Result set 2

department_id department_name
------------- ---------------
14 KING

Result set 3

customer_name customer_status
------------------------------- ---------------
GRAPHIX ZONE INC DE None
WASHINGTON M AAAIswAABAAANSjAAS None

Obtaining Output Parameters

As you know, stored procedures can include OUT or INOUT parameters, which can pass data back
 to the calling program. The MySQLdb extension does not provide a
 method to natively retrieve output parameters , but you can access their values through a simple
 workaround.
Earlier, in Example
 16-24, we showed a stored procedure that returned multiple
 result sets, but also included an output parameter. We supplied a
 MySQL user variable (prefixed by the @ symbol) to receive the value of the
 parameter. All we need to do now, in Example 16-26, is to retrieve
 the value of that user variable using a simple SELECT.
Example 16-26. Retrieving the value of an output parameter
 call_multi_rs("sp_employee_report(1,@out_customer_count)")
 cursor2=conn.cursor()
 cursor2.execute("SELECT @out_customer_count")
 row=cursor2.fetchone()
 print "Customer count=%s" % row[0]
 cursor2.close()

What about INOUT
 parameters? This is a little trickier, although luckily we don't
 think you'll use INOUT parameters
 very much (it's usually better practice to use separate IN and OUT parameters). Consider the stored
 procedure in Example
 16-27.
Example 16-27. Stored procedure with an INOUT parameter
CREATE PROCEDURE randomizer(INOUT a_number FLOAT)
 NOT DETERMINISTIC NO SQL
 SET a_number=RAND()*a_number;

To handle an INOUT
 parameter, we first issue a SQL statement to place the value into a
 user variable, execute the stored procedure, and then retrieve the
 value of that user parameter. Code that wraps the stored procedure
 call in a Python function is shown in Example 16-28.
Example 16-28. Handling an INOUT stored procedure parameter
def randomizer(python_number):
 cursor1=conn.cursor()
 cursor1.execute("SET @inoutvar=%s",(python_number))
 cursor1.execute("CALL randomizer(@inoutvar)")
 cursor1.execute("SELECT @inoutvar")
 row=cursor1.fetchone()
 cursor1.close()
 return(row[0])

A Complete Example

 In this section we will present a complete Python
 program that uses a stored procedure to report on the status and
 configuration of a MySQL server through a web interface.
The stored procedure we will use is shown in Example 16-29. It takes as an
 (optional) argument a database name, and reports on the objects within
 that database as well as a list of users currently connected to the
 server, server status variables, server configuration variables, and a
 list of databases contained within the server. It contains one
 OUT parameter that reports the
 server version.
Example 16-29. The stored procedure for our complete Python example
CREATE PROCEDURE sp_mysql_info
 (in_database VARCHAR(60),
 OUT server_version VARCHAR(100))
 READS SQL DATA
BEGIN

 DECLARE db_count INT;

 SELECT @@version
 INTO server_version;

 SELECT 'Current processes active in server' as table_header;
 SHOW full processlist;

 SELECT 'Databases in server' as table_header;

 SHOW databases;

 SELECT 'Configuration variables set in server' as table_header;
 SHOW global variables;
 SELECT 'Status variables in server' as table_header;
 SHOW global status;

 SELECT COUNT(*)
 INTO db_count
 FROM information_schema.schemata s
 WHERE schema_name=in_database;
 IF (db_count=1) THEN
 SELECT CONCAT('Tables in database ',in_database) as table_header;
 SELECT table_name
 FROM information_schema.tables
 WHERE table_schema=in_database;
 END IF;

END$$

The number and type of result sets is unpredictable, since a
 list of database objects is generated only if a database matching the
 stored procedure's first parameter is found on the server.
Prior to every major result set, the stored procedure generates
 a one-row "title" as a result set. This result set is identified by
 the column title table_header.
In this example we are going to use the Apache mod_python module to run Python code from
 within an Apache web page. mod_python allows the Apache web server to
 run Python code without having to execute an external Python program.
 You can find out more about downloading and configuring mod_python at http://www.modpython.org.
The HTML part of our web page is shown in Example 16-30. It displays an
 HTML form that asks for MySQL server connection details, including a
 database name.
Example 16-30. HTML form for mod_python example
<html>
<head>
<title>MySQL Server Statistics</title>
</head>
<h1>Enter MySQL Server Details</h1>
 Enter your database connection details below:
 <p>
 <form action="form.py/call_sp" method="POST">
 <table>

 <tr><td>Host:</td>
 <td> <input type="text" name="mhost" value="localhost"></td></tr>
 <tr><td>Port: </td>
 <td><input type="text" name="mport" value="3306"></td></tr>
 <tr><td>Username: </td>
 <td> <input type="text" name="musername" value="root"></td></tr>
 <tr><td>Password: </td>
 <td> <input type="password" name="mpassword"></td></tr
 <tr><td>Database: </td>
 <td> <input type="test" name="mdatabase" value="prod"></td></tr>
 </table>
 <input type="submit">
 </form>
</html>

The most important part of this HTML is the action="form.py/call_sp" portion of the
 FORM tag. This tells Apache that
 when the form is submitted, the Python program form.py should be executed with the function
 call_sp() as the entry point. All
 of the input values of the form are passed to the Python function as
 arguments.
Figure 16-1 shows
 the data entry form created by this HTML.
Example 16-31 shows
 the Python code that is invoked when the user clicks the Submit Query
 button.
[image: mod_python input form]

Figure 16-1. mod_python input form

Example 16-31. Python code for our mod_python example
1 import MySQLdb
2
3 def call_sp(mhost,musername,mpassword,mdatabase,mport):
4 html_tables=[]
5 html_out=[]
6
7 try:
8 conn = MySQLdb.connect (host = mhost,
9 user = musername,
10 passwd =mpassword,
11 db = mdatabase,
12 port=int(mport))
13
14 csr1=conn.cursor();
15 csr1.execute("call sp_mysql_info(%s,@server_version)",(mdatabase))
16 while True:
17 rows=csr1.fetchall()
18 col_desc=csr1.description
19 if col_desc<>None: #Make sure there is a result
20 if (col_desc[0][0] == "table_header"):
21 #This is a special result set that contains a header only
22 html="<h2>%s</h2>" % rows[0][0]
23 else:
24 html=html_table(col_desc,rows)
25 html_tables.append(html)
26 if csr1.nextset()==None:
27 break
28 #Get stored procedure output parameter
29 csr1.execute("SELECT @server_version")
30 row=csr1.fetchone()
31 mysql_version=row[0]
32 csr1.close()
33
34 #Build up the html output
35 html_out.append("<html><head><title>"+
36 "MySQL Server status and statistics"+
37 "</title></head>"+
38 "<h1>MySQL Server status and statistics</h1>")
39 html_out.append("Host: %s
" % mhost)
40 html_out.append("Port: %s
" % mport)
41 html_out.append("Version: %s
" % mysql_version)
42 html_out.append("".join(html_tables))
43
44 html_out.append("</html>")
45 return "".join(html_out)
46
47 except MySQLdb.Error, e:
48 return "MySQL Error %d: %s" % (e.args[0], e.args[1])
49
50 def html_table(col_desc,rows):
51 # Create HTML table out of cursor.description and cursor.fetchall
52 html_out=[]
53 html_out.append('<table border=1><tr>')
54 for col in col_desc:
55 html_out.append('<td>%s</td>' % col[0])
56 html_out.append('</tr>')
57 for row in rows:
58 html_out.append('<tr>')
59 for col in row:
60 html_out.append('<td>%s</td>' % col)
61 html_out.append('</tr>')
62 html_out.append('</table>')
63 s='\n'.join(html_out)
64 return s

There are two main functions in this Python code:
	call_sp()
	Invokes the stored procedure to generate the MySQL server
 status report. This is the routine referred to in the action clause of the <form> tag within the calling
 HTML.

	html_table()
	A utility function that creates an HTML table from a
 MySQLdb cursor result
 set.

Let's start with the call_sp() routine:
	Line(s)
	Explanation

	8–12
	Call the MySQLdb.connect() method to create
 the MySQL connection using the parameters specified on the
 HTML form.

	14–15
	Create and execute a cursor that
 invokes the stored procedure.

	16
	The WHILE loop that commences on this
 line will iterate through all of the result sets in the stored
 procedure. The loop ends on line 27.

	17–18
	On line 17 we use fetchall() to retrieve all the rows
 in the current result set. On line 18 we retrieve the column
 details for that result set.

	20–22
	If the title for the first column in
 the result set is table_header, then this result set
 contains a heading for a subsequent result set. In that case,
 we generate an HTML header consisting of the single row and
 column returned within the result set.

	23–24
	Otherwise, create an HTML table to
 represent the result set. This is done using the other
 function in the file—html_table ()—which we will discuss
 shortly.

	26–27
	Request the next result set. If
 there are no further result sets, we issue break to terminate the loop that
 commenced on line 16. Otherwise, the loop repeats and we
 process the next result set.

	29–32
	Retrieve the value of the OUT parameter.
 On line
 29 we issue a SELECT to
 retrieve the user variable that contains the stored procedure
 OUT variable. When we
 called the stored procedure on line 15, we specified @server_version for the second
 (OUT) parameter. Now we
 issue a SELECT to retrieve
 the value of that parameter.

	35–45
	So far, we have stored HTML that we
 want to generate into an array called html_tables. Now we construct the
 final HTML to return to the calling form.
 Lines
 35–41 add the initial HTML output into an array html_out. In line 42 we add the HTML
 generated from the result sets to that HTML. Finally, we
 return all of the HTML to the calling form on line
 45.

The second function—html_table(
)—generates an HTML table when passed the results of the
 cursor.description and cursor.fetchall output. We call this in our
 main program on line 24 when we encounter a result set that we need to
 format as a HTML table:
	Line(s)
	Explanation

	50
	The routine takes two arguments. The
 first (col_desc) is a
 columns.description
 structure as returned by the description() method of the cursor object. The second is a
 results structure as would be returned by the fetchall() method.

	54–55
	Loop through the rows in the
 col_desc parameter—each row
 representing a column in the result set—and generate HTML to
 create a title row for our HTML table.

	57–60
	Generate the bulk of the HTML table.
 The loop on line 57 iterates through the rows in the result
 set. The loop on line 59 iterates through the columns in a
 specific row. On line 60 we generate the HTML for a specific
 value (for a particular column in a particular
 row).

	63–64
	Consolidate all of the HTML
 fragments—stored in the html_out array— into a single
 string, which is returned to the calling
 function.

Figure 16-2 shows
 the output from our mod_python
 example.
[image: Output from our mod_python example]

Figure 16-2. Output from our mod_python example

Conclusion

The Python MySQLdb extension
 contains all of the tools you need to interface with MySQL and MySQL
 stored procedures. Python is a pleasure to program, and it is a very
 viable alternative to other dynamic scripting languages such as PHP
 and Perl. Using mod_python (or CGI)
 allows us to easily implement dynamic web content in Python using
 MySQL as the backend.

Chapter 17. Using MySQL Stored Programs with .NET

ADO.NET is Microsoft's database-independent, language-neutral
 data access interface included within the .NET framework. ADO.NET allows .NET languages such as
 C# and VB.NET to communicate with various data sources,
 primarily relational databases such as SQL Server, Oracle, and, of
 course, MySQL. MySQL provides an ADO-compliant driver—Connector/Net—that
 allows us to work with MySQL databases using the ADO.NET
 interfaces.
First, we'll start with a quick review of how we can use ADO.NET
 to process standard SQL statements against a MySQL database. Next, we'll
 examine the ADO.NET syntax for invoking stored programs, including
 handling input and output parameters and processing multiple result
 sets. Finally, we'll show how we can use a MySQL stored procedure as the
 basis for an ASP.NET web application.
Review of ADO.NET Basics

 Before looking at how to invoke stored programs using
 ADO.NET, let's review how we perform operations in ADO.NET involving
 simple SQL statements. These operations form the foundation of stored
 program interactions. If you are already familiar with using ADO.NET
 with MySQL, you might want to skip forward to "Using Stored Programs in
 ADO.NET," later in this chapter.
Installing the Connector/Net Driver and Configuring Your
 IDE

To connect to MySQL from ADO.NET, we first need to download
 and install the Connector/Net provider from MySQL. We can download
 the Connector/Net driver from the MySQL web site at http://dev.mysql.com/downloads/connector/net/.
Once we have installed the Connector/Net driver, we are ready
 to write .NET programs to connect to MySQL. However, we must add a
 reference to the Connector/Net driver in our .NET
 application.
To do this in Visual Studio, select Project → Add Reference
 from the main menu, then select the Browse tab. We find the
 MySQL.Data.dll file on our
 system, usually located in a directory such as C:\Program Files\MySQL\MySQL Connector Net
 <x.x.x>\bin\.NET <y.y>; where "x.x.x" corresponds to the version of the
 Connector/Net driver (currently 1.0.7) and "y.y" corresponds to the version of .NET
 that we are using (usually 1.1 or 2.0). Figure 17-1 shows how we can
 configure Visual C# Visual Studio Express Edition to use the
 Connector/Net driver.
[image: Adding a reference to the Connector/Net driver in Visual C# Express]

Figure 17-1. Adding a reference to the Connector/Net driver in Visual C#
 Express

Registering the Driver and Connecting to MySQL

To use the MySQL driver in your program code, we will normally
 first import the MySQL.Data.MySqlClient namespace so we
 don't have to fully qualify every reference to Connector/Net
 classes. In VB.NET, this means we would include Imports MySql.Data.MySqlClient as the
 first line of our VB.NET module. In C#, we would include a using MySql.Data.MySqlClient; statement
 within the Using directives
 region, as shown in Figure
 17-2.
[image: Adding the "using" clause in Visual C# Express]

Figure 17-2. Adding the "using" clause in Visual C# Express

To establish a connection to MySQL we need to create a
 MySQLConnection object. The Constructer method for the MySQLConnection object accepts a string
 that defines the server, database, and connection credentials. This
 string consists of a set of name-value pairs separated by
 semicolons. For instance, the following string defines a connection
 to a server on the localhost at
 port 3306 and connects to database prod using the account fred and the password freddy:
 Server=localhost;Port=3306;Database=prod;Username=fred;Password=freddy
Table 17-1
 lists the most important keywords that you can provide for the
 MySQLConnection object; you can
 find a complete list in the Connector/Net documentation that ships
 with the driver.
Table 17-1. Some of the keyword values for the MySQLConnection
	Keyword
	Description

	 Host
	Name of the host on which the
 MySQL server is located. This could be an IP address,
 hostname, or localhost.

	 Port
	Port number upon which the MySQL
 server is listening.

	 Database
	Name of the database for initial
 connection.

	 Username
	MySQL username to use for the
 connection.

	 Password
	Password for the MySQL
 account.

It would be unusual—and probably bad practice—to hardcode the
 MySQLConnection details in your
 program. More often, you will retrieve the keywords from
 command-line arguments or from a login dialog box.
Once the MySQLConnection
 object is initialized, we can establish the connection using the
 open() method. If the connection
 fails, a MySQLException will be
 thrown, so we need to enclose this call in a try block if we don't want to throw a
 non-handled exception (see "Handling Errors," later in
 this chapter). Example
 17-1 shows us connecting to MySQL from within a VB.NET program, with the connection details specified as
 command-line arguments.
Example 17-1. Connecting to MySQL in VB.NET
 Sub Main(ByVal CmdArgs() As String)

 Dim myHost As String = CmdArgs(0)
 Dim myUserId As String = CmdArgs(1)
 Dim myPassword As String = CmdArgs(2)
 Dim myDatabase As String = CmdArgs(3)

 Dim myConnectionString As String = "Database=" & myDatabase & _
 " ;Data Source=" & myHost & _
 ";User Id=" & myUserId & ";Password=" & myPassword

 Dim myConnection As New MySqlConnection(myConnectionString)

 Try
 myConnection.Open()
 Console.WriteLine("Connection succeeded")
 Catch MyException As MySqlException
 Console.WriteLine("Connection error: MySQL code: " _
 & MyException.Number & " " & MyException.Message)
 End Try

Example 17-2
 implements the same logic in C#.
Example 17-2. Connecting to MySQL in C#
static void Main(string[] args)
{
 String myHost=args[0];
 String myUserId=args[1];
 String myPassword=args[2];
 String myDatabase=args[3];

 String myConnectionString = "Database=" + myDatabase +
 " ;Host=" + myHost +
 ";UserName=" + myUserId + ";Password=" + myPassword;

 MySqlConnection myConnection;
 myConnection = new MySqlConnection();
 myConnection.ConnectionString = myConnectionString;

 try {
 myConnection.Open();
 Console.WriteLine("Connection succeded");
 }
 catch (MySqlException MyException) {
 Console.WriteLine("Connection error: MySQL code: "+MyException.Number
 +" "+ MyException.Message);
 }

Issuing a Non-SELECT Statement

It is fairly straightforward to execute a non-SELECT statement—such as UPDATE, INSERT, DELETE, or SET—in .NET. First, we create a new
 MySQLCommand object, passing it
 the SQL statement to be executed and the name of the active
 connection (these can also be specified using the properties of the
 MySqlCommand object at a later
 time).
The ExecuteNonQuery()
 method of the MySqlCommand
 executes a statement that returns no result sets. It returns the
 number of rows affected by the statement. Example 17-3 shows an example
 of this in C#.
Example 17-3. Executing a non-SELECT SQL statement in C#
 MySqlCommand NonSelect = new MySqlCommand(
 "DELETE FROM employees WHERE employee_id=2001", myConnection);
 int RowsAffected = NonSelect.ExecuteNonQuery();

Example 17-4 shows
 the same logic in VB.NET.
Example 17-4. Executing a non-SELECT statement in VB.NET
Dim NonSelect As MySqlCommand
NonSelect = New MySqlCommand(_
 "DELETE FROM employees WHERE employee_id=2001", myConnection)
Dim RowsAffected As Int16
RowsAffected = NonSelect.ExecuteNonQuery()

Reusing a Statement Object

We don't have to create a new statement object for every SQL
 statement we execute. By changing the CommandText property of the MySqlCommand object, we associate the
 object with a new SQL statement text, which we can submit to the
 database by calling the ExecuteNonQuery() method. Example 17-5 provides an
 example of this technique in C#.
Example 17-5. Reusing a MySqlCommand object in C#
MySqlCommand NonSelect = new MySqlCommand("set autocommit=0",myConnection);
int RowsAffected=NonSelect.ExecuteNonQuery();

NonSelect.CommandText = "update departments "+
 "set location=location "+
 "where department_id=1";
RowsAffected = NonSelect.ExecuteNonQuery();
Console.WriteLine(RowsAffected + " rows affected");

Using Parameters

A lot of the time we execute the same logical SQL statement
 with different values for the WHERE clause or some other variable part
 of the statement. It might seem simple to do this by manipulating
 the CommandText and "pasting it"
 in the variable portions. For instance, in Example 17-6 we generate a new
 unique SQL statement to update employees' salaries based on some
 values in arrays.
Example 17-6. "Paste" method of changing SQL parameters (not
 recommended)
For i = 1 To N
 NonSelect.CommandText = "UPDATE employees " + _
 " SET salary= " + EmployeeSal(i).ToString + _
 " WHERE employee_id=" + EmployeeID(i).ToString
 NonSelect.ExecuteNonQuery()

Next

While this method will work—and is, in fact, a common
 technique—it is neither efficient nor safe. In particular, this
 style of coding cannot take advantage of MySQL server-side prepared
 statements, and it is vulnerable to SQL injection (a form of attack
 in which SQL syntax is inserted into parameters, leading to
 unintended SQL syntax being executed).
A far better way of performing this kind of iterative
 processing is to use the Parameters collection of the MySqlCommand object. Parameters are
 prefixed in the SQL text with the "?" character. You then use the Parameter methods of the MySqlCommand object to define the
 parameters and set their values, as shown in Example 17-7.
Example 17-7. Using parameters in VB.NET
1 Dim ParameterSQL As MySqlCommand
2 Dim SQLText As String
3 SQLText = "UPDATE employees " + _
4 " SET salary= ?NewSal" + _
5 " WHERE employee_id= ?EmpID"
6 ParameterSQL = New MySqlCommand(SQLText, myConnection)
7
8 Dim EmpSal As MySqlParameter
9 EmpSal = ParameterSQL.Parameters.Add("?NewSal", MySqlDbType.Float)
10 Dim EmpId As MySqlParameter
11 EmpId = ParameterSQL.Parameters.Add("?EmpID", MySqlDbType.Int16)
12 Dim RowCount As Int16
13
14 For i = 1 To N
15 EmpSal.Value = EmployeeSal(i)
16 EmpId.Value = EmployeeID(i)
17 RowCount = ParameterSQL.ExecuteNonQuery()
18 Console.WriteLine(RowCount.ToString)
19 Next

Let's step through this example:
	Line(s)
	Explanation

	3
	Create the text for our SQL. The
 parameters in the SQL (?NewSal and ?EmpID) are prefixed by ?
 characters to distinguish them from normal MySQL
 identifiers.

	6
	Create the MySqlCommand object and associate
 it with our SQL text.

	8–9
	Declare a MySqlParameter object for the
 NewSal parameter on line
 8, and on line 9, associate it with the MySqlCommand object. The name of
 the parameter provided to the Add() method should match exactly
 the name of the parameter in your SQL text. The second
 argument to Add()
 specifies the data type of the parameter.

	10–11
	Create a second parameter to
 represent the EmpID
 parameter.

	14–19
	Iterate through the EmployeeSal and EmployeeID arrays, which contain
 new salaries for specific employees.

	15–16
	Assign the appropriate values to
 the parameter objects. The values are taken from the
 EmployeeSal and EmployeeID arrays.

	17
	The ExecuteNonQuery() method executes
 the SQL with the parameters supplied.

Using parameters rather than hardcoded literals is highly
 recommended, especially since—as we will see later—we really must
 use parameters if we are going to invoke stored programs in
 .NET.
Example 17-8 shows
 the logic of Example
 17-7 expressed in C# .NET.
Example 17-8. Using parameters in C#
String SQLText = "UPDATE employees " +
 " SET salary= ?NewSal" +
 " WHERE employee_id= ?EmpID";
MySqlCommand ParameterSQL = new MySqlCommand(SQLText,myConnection);

MySqlParameter EmpSal = ParameterSQL.Parameters.Add(
 "?NewSal", MySqlDbType.Float);
MySqlParameter EmpId = ParameterSQL.Parameters.Add(
 "?EmpID", MySqlDbType.Int16);

for(i=1;i<=N;i++)
 {
 EmpSal.Value = EmployeeSal[i];
 EmpId.Value = EmployeeID[i];
 RowCount = ParameterSQL.ExecuteNonQuery();
 }

Issuing a SELECT and Using a DataReader

MySQL supports a wide variety of methods of dealing with the
 output from a query. In this section, we will first review what is
 arguably the most straightforward of these methods: the DataReader.
A DataReader allows us to
 fetch rows from a result set in a manner similar to the fetching of
 rows from a stored program cursor. To create a MySqlDataReader object, we use the ExecuteReader() method of the MySqlCommand object. We iterate through
 the MySqlDataReader using the
 Read() method, and retrieve data
 values using GetInt32(),
 GetString(), and other data
 type-specific Get methods.
Example 17-9 is an
 example of using a MySqlDataReader in C#.
Example 17-9. Using a MySqlDataReader in C#
1 String SelectText = "SELECT department_id, department_name FROM departments";
2 MySqlCommand SelectStatement = new MySqlCommand(SelectText, myConnection);
3 MySqlDataReader SelectReader = SelectStatement.ExecuteReader();
4 while (SelectReader.Read())
5 {
6 Console.WriteLine(SelectReader.GetInt32(0) + "\t" +
7 SelectReader.GetString(1));
8 }
9 SelectReader.Close();

Let us step through this example:
	Line(s)
	Explanation

	2
	Create a MySqlCommand object for a SELECT statement.

	3
	Use the ExecuteReader() method to create
 a MySqlDataReader
 object.

	4-8
	Loop through the rows returned by
 the SELECT statement
 using the Read() method
 of the MySqlDataReader.

	6
	Use the GetInt32() and GetString() methods to retrieve
 the current values for the department_id and department_name columns. The
 argument for these methods is the numeric position of the
 column in the result set—starting with "0" as the first
 column.

	9
	Close the Reader. We should always
 do this since it releases database resources and is also a
 prerequisite for retrieving OUT parameters from stored
 procedures.

Example 17-10
 shows the logic in Example
 17-9 implemented in VB.NET.
Example 17-10. Using a MySqlDataReader in VB.NET
 Dim SelectText As String
 Dim SelectStatement As MySqlCommand
 Dim SelectReader As MySqlDataReader
 SelectText = "SELECT department_id, department_name FROM departments"
 SelectStatement = New MySqlCommand(SelectText, myConnection)
 SelectReader = SelectStatement.ExecuteReader()
 While (SelectReader.Read())
 Console.WriteLine(SelectReader.GetInt32(0).ToString + _
 " " + SelectReader.GetString(1))
 End While
 SelectReader.Close()

Getting DataReader Metadata

The DataReader provides
 methods for retrieving information about the columns that will be
 returned in the Reader. This information is essential if we are
 going to process dynamic SQL—for instance, SQL that is entered at a
 terminal by an end user or generated on-the-fly by some other module
 in our program.
The FieldCount() method
 returns the number of columns in the DataReader's result set. GetFieldType() and GetName() return the name and data type of
 a column within the result set, where GetName(0) would return the name of the
 first column. Example
 17-11 uses these methods to retrieve the names and data types
 of a query from within VB.NET and displays those to the
 console.
Example 17-11. Accessing DataReader metadata
SelectText = "SELECT * FROM departments"
SelectStatement = New MySqlCommand(SelectText, myConnection)
SelectReader = SelectStatement.ExecuteReader()
For i = 0 To SelectReader.FieldCount() - 1
 Console.WriteLine(SelectReader.GetName(i) + " " + _
 SelectReader.GetFieldType(i).ToString)
Next

DataSets

While DataReaders offer a
 convenient way to access query result sets, the ADO.NET DataSet class provides an alternative that
 is a little more complex, but that offers increased flexibility and
 functionality. In particular, because we can only ever have a single
 DataReader open simultaneously
 for a given connection, we are likely to use DataSets in most complex
 applications.
DataSets provide an
 in-memory, datasource-independent representation of data that can
 persist even when a connection is closed. DataSets offer a number of methods for
 handling data modification, including a mechanism for
 resynchronizing data when a closed connection is reopened.
In this section we will provide a simple example of using a
 DataSet to retrieve the outputs
 only from a simple SQL query.
A DataSet object contains a
 collection of tables, each of which includes a collection of columns
 and rows. We can access and manipulate the tables, columns, and rows
 in the DataSet using the DataTable, DataColumn, and DataRow objects.
A DataSet is associated
 with its data source through a DataAdapter object. In our case, we have
 to create a MySqlDataAdapator
 object to associate a DataSet
 with a MySqlCommand.
The general steps for processing a SQL query through a
 DataSet are as follows:
	Create the MySqlCommand
 object.

	Create a MySqlDataAdpator object and associate
 it with the MySQLCommand.

	Create a DataSet
 object.

	Use the MySqlDataAdapter object to populate
 the DataSet.

	Use the DataTable,
 DataColumn, and DataRow objects to retrieve the
 contents of the DataSet.

Example 17-12
 shows an example of populating and examining a DataSet object in C# .
Example 17-12. Populating a DataSet from a simple SQL statement in
 C#
1 String SqlText = "SELECT * FROM departments";
2 MySqlCommand SqlCmd = new MySqlCommand(SqlText, myConnection);
3
4 MySqlDataAdapter MyAdapter=new MySqlDataAdapter(SqlCmd);
5 DataSet MyDataSet=new DataSet();
6 int rows = MyAdapter.Fill(MyDataSet);
7
8 DataTable MyTable=MyDataSet.Tables[0];
9
10 //Write column headings
11 foreach(DataColumn MyColumn in MyTable.Columns)
12 {
13 Console.Write(MyColumn.Caption+"\t");
14 }
15 Console.WriteLine();
16
17 //Write Column Rows
18 foreach(DataRow MyRow in MyTable.Rows)
19 {
20 foreach(DataColumn MyColumn in MyTable.Columns)
21 {
22 Console.Write(MyRow[MyColumn]+"\t");
23 }
24 Console.WriteLine();
25 }

Let's step through this example:
	Line(s)
	Explanation

	1–2
	Define a MySqlCommand object (SqlCmd) that will issue our
 query.

	4
	Create a new MySQLDataAdapator object and
 associate it with SqlCmd
 (our MySqlCommand
 object).

	5
	Create a new DataSet and, in line 6, we
 populate this data set with the output of the SELECT statement (via the MySqlDataAdapter).

	8
	Declare a DataTable (MyTable) that references the first
 table (index "0") in the DataSet
 MyDataSet. Remember that a DataSet can contain multiple
 tables, but in this case we know that we need only concern
 ourselves with the first and only DataTable in the DataSet.

	11–15
	Print the names of the columns in
 the DataTable. We do this
 by iterating through the Columns collection in the DataTable and printing the
 Caption property for each
 column.

	18–25
	Print out the data rows. We do
 this by iterating through the Rows collection in the DataTable. For each Row, we iterate through the
 Columns collection to
 print an individual column value. MyRow[MyColumn] represents the
 value of a specific column within a specific
 row.

Example 17-13
 shows this logic in VB.NET .
Example 17-13. Populating a DataSet from a SELECT statement in
 VB.NET
 Dim TabChr As Char = Microsoft.VisualBasic.Chr(9)
 Dim SqlText As String = "SELECT * FROM departments"
 Dim SqlCmd As MySqlCommand = New MySqlCommand(SqlText, myConnection)

 Dim MyAdapter As MySqlDataAdapter = New MySqlDataAdapter(SqlCmd)

 Dim MyDataSet As DataSet = New DataSet
 Dim rows As Integer = MyAdapter.Fill(MyDataSet)

 Dim MyTable As DataTable = MyDataSet.Tables(0)

 For Each MyColumn As DataColumn In MyTable.Columns
 Console.Write(MyColumn.Caption + "" & TabChr & "")
 Next
 Console.WriteLine()
 For Each MyRow As DataRow In MyTable.Rows
 For Each MyColumn As DataColumn In MyTable.Columns
 Console.Write(MyRow(MyColumn).ToString + "" & TabChr & "")
 Next
 Console.WriteLine()
 Next
 End Sub

As we will see later, using a DataSet is a good technique for stored
 procedures, which might return multiple result sets. However, for a
 single result set, we can populate the DataTable directly from the MySqlDataAdaptor() method, as shown in
 Example 17-14.
Example 17-14. Populating a DataTable directly from a MySqlDataAdapter()
 method
 String SqlText = "SELECT * FROM departments";
 MySqlCommand SqlCmd = new MySqlCommand(SqlText, myConnection);

 MySqlDataAdapter MyAdapter = new MySqlDataAdapter(SqlCmd);
 DataTable MyTable = new DataTable();

 MyAdapter.Fill(MyTable);

Handling Errors

The Connector/Net methods will throw a MySqlException exception if the database
 returns an error with respect to any of our ADO.NET calls. Therefore, we will usually want to enclose our
 ADO.NET sections in a try/catch
 block to ensure that we do not generate an unhandled exception
 condition at runtime. Example
 17-15 shows a simple example of using an exception handler in
 VB.NET .
Example 17-15. Error handling in VB.NET
 Sub CreateDemoTables()
 Dim MySqlText As String
 MySqlText = "CREATE TABLE DEMO" & _
 " (MyInt INT," & _
 " MyString VARCHAR(30)) "

 Dim CrDemoSQL As MySqlCommand

 Try
 CrDemoSQL = New MySqlCommand(MySqlText, myConnection)
 CrDemoSQL.ExecuteNonQuery()
 Catch MyException As MySqlException
 Console.WriteLine("Error creating demo tables:")
 Console.WriteLine(MyException.Number.ToString & ": " & _
 MyException.Message)
 Console.WriteLine(MyException.StackTrace)
 End Try

 End Sub

In this example, the SQL statement is executed within a
 Try block. If an error occurs,
 control is passed to the Catch
 block that creates a MySqlException object call "MyException". The Number property returns the MySQL error
 code; the Message property
 contains the MySQL error message. StackTrace generates a familiar .NET stack
 trace that can be useful during debugging (though not so useful for
 Auntie Edna or other end users).
Example 17-16
 demonstrates the same exception handling in C# .
Example 17-16. Exception handling in C#
 static void CreateDemoTables()
 {
 String MySqlText= "CREATE TABLE DEMO" +
 " (MyInt INT," +
 " MyString VARCHAR(30)) ";

 try
 {
 MySqlCommand CrDemoSQL=new MySqlCommand(MySqlText,myConnection);
 CrDemoSQL.ExecuteNonQuery();
 }
 catch(MySqlException MyException)
 {
 Console.WriteLine("Error creating demo tables:");
 Console.WriteLine(MyException.Number +
 ": " + MyException.Message);
 Console.WriteLine(MyException.StackTrace);
 }
 }

Managing Transactions

You can execute the usual MySQL statements to manage your
 transactions in .NET programs, such as BEGIN TRANSACTION, COMMIT, and ROLLBACK. However, instead of using these
 statements, you may want to take advantage of the built-in
 transaction object to manage your transactions. Doing so may help
 make your code more readable and maintainable.
Connector/Net allows us to create a MySqlTransaction object that represents a
 transaction. Methods to the MySqlTransaction object allow us to commit
 and roll back our transaction, or to set the transaction isolation
 levels.
Example 17-17
 shows an example of using these facilities in C#.
Example 17-17. Transaction management in C#
1 static void TferFunds(int FromAccount, int ToAccount, float TferAmount)
2 {
3 String TransSQL = "UPDATE account_balance " +
4 " SET balance=balance+?tfer_amount " +
5 "WHERE account_id=?account_id";
6 MySqlCommand TransCmd = new MySqlCommand(TransSQL, myConnection);
7 MySqlParameter P_tfer_amount = TransCmd.Parameters.Add("?tfer_amount",
8 MySqlDbType.Float);
9 MySqlParameter P_account_id = TransCmd.Parameters.Add("?account_id",
10 MySqlDbType.Int32);
11
12 MySqlTransaction myTransaction = myConnection.BeginTransaction();
13 try
14 {
15 //Remove amount from from_account
16 P_tfer_amount.Value = TferAmount * -1;
17 P_account_id.Value = FromAccount;
18 TransCmd.ExecuteNonQuery();
19 //Add amount to to_account;
20 P_tfer_amount.Value = TferAmount;
21 P_account_id.Value = ToAccount;
22 TransCmd.ExecuteNonQuery();
23
24 myTransaction.Commit();
25 Console.WriteLine("Transaction Succeeded");
26 }
27 catch (MySqlException TransException)
28 {
29 Console.WriteLine("Error in transaction: ");
30 Console.WriteLine(TransException.Message);
31 try
32 {
33 myTransaction.Rollback();
34 Console.WriteLine("Transaction rollback");
35 }
36 catch (MySqlException RollbackException)
37 {
38 Console.WriteLine("Failed to rollback transaction:");
39 Console.WriteLine(RollbackException.Message);
40 }
41 }
42 }

The function is designed to transfer some money from one
 account to another. It is absolutely essential that both operations
 succeed or fail as a unit, and therefore they are enclosed within a
 transaction.
This is a relatively long example and ties in the use of
 parameters and exception handlers, so let us step through it line by
 line:
	Line(s)
	Explanation

	3–9
	Create a SQL UPDATE statement to adjust the
 account balance for a specific account. The statement
 includes parameters for the account ids and amounts, so we
 can reuse the statement to do both parts of the transfer and
 could also reuse it for subsequent
 transactions.

	12
	The BeginTransaction() method of the
 connection indicates the commencement of the
 transaction.

	13
	Declare a try/catch block that will handle
 any errors that occur within our transaction.

	15–22
	Execute the transfer by placing
 the appropriate values into the account and amount
 parameters, and then executing the UPDATE statement twice— once to
 reduce the balance in the "from" account and once to
 increase the balance in the "to" account.

	24
	Commit the transaction. Note that
 this statement would be reached only if all of the previous
 statements succeed. If any of the previous ADO.NET
 statements raised an exception, control would be assumed by
 the code in the catch
 block.

	27–41
	This is the catch block that will be invoked
 if a SQL error occurs. It executes a ROLLBACK statement (line 33) to
 undo any parts of the transaction that may have successfully
 executed.

	31–41
	We've nested another catch block without the main error
 handler to catch any problems that occur when we execute the
 rollback. This might seem a bit paranoid, but it is possible
 that the errors that caused the statements to fail will also
 cause us to fail to execute a rollback (the server may have
 crashed, for instance).

Example 17-18
 implements the same transaction logic in VB.NET .
Example 17-18. Transaction handling in VB.NET
 Sub TferFunds(ByVal FromAccount As Integer, _
 ByVal ToAccount As Integer, _
 ByVal TferAmount As Single)

 Dim TransSQL As String = "UPDATE account_balance " + _
 " SET balance=balance+?tfer_amount " + _
 "WHERE account_id=?account_id"
 Dim TransCmd As MySqlCommand = New MySqlCommand(TransSQL, myConnection)
 Dim P_tfer_amount As MySqlParameter = _
 TransCmd.Parameters.Add("?tfer_amount", MySqlDbType.Float)
 Dim P_account_id As MySqlParameter = _
 TransCmd.Parameters.Add("?account_id", MySqlDbType.Int32)
 Dim myTransaction As MySqlTransaction = myConnection.BeginTransaction
 Try
 'Remove amount from FromAccount
 P_tfer_amount.Value = TferAmount * -1
 P_account_id.Value = FromAccount
 TransCmd.ExecuteNonQuery()
 'Add amount to ToAccount
 P_tfer_amount.Value = TferAmount
 P_account_id.Value = ToAccount
 TransCmd.ExecuteNonQuery()

 myTransaction.Commit()
 Console.WriteLine("Transaction Succeded")

 Catch TransException As MySqlException
 Console.WriteLine("Error in transaction: ")
 Console.WriteLine(TransException.Message)
 Try
 myTransaction.Rollback()
 Console.WriteLine("Transaction rollback")
 Catch RollbackException As MySqlException
 Console.WriteLine("Failed to rollback transaction:")
 Console.WriteLine(RollbackException.Message)
 End Try
 End Try
 End Sub

Using Stored Programs in ADO.NET

 Stored programs have always been an integral and
 important part of application development within SQL Server, and SQL
 Server support is a primary focus of the ADO.NET interfaces. Unlike
 some implementations of stored programs (Oracle's for instance), SQL
 Server's stored programs can directly return multiple result sets,
 which results in the ADO.NET interfaces providing very natural support
 for the MySQL implementation.
Calling a Simple Stored Procedure

Let's start with a very simple stored procedure. Example 17-19 shows a simple
 stored procedure that takes no parameters and returns no result
 sets.
Example 17-19. A simple stored procedure
CREATE PROCEDURE sp_simple()
BEGIN
 SET autocommit=0;
END;

Calling this stored procedure is only slightly more complex
 than calling a non-SELECT
 statement, as described in "Issuing a Non-SELECT
 Statement" earlier in this chapter. The procedure for calling
 this stored procedure differs in two small ways:
	The text for the SQL call contains only the stored
 procedure—the CALL statement
 is unnecessary, as are parentheses to represent the parameter
 list.

	The CommandType
 property of the MySqlCommand
 object should be set to CommandType.StoredProcedure.

Example 17-20
 illustrates the process of calling the simple stored procedure from
 Example 17-19 in
 VB.NET. The name of the stored procedure is used to initialize the
 MySqlCommand object, and the
 CommandType for that object is
 set to CommandType.StoredProcedure. The stored
 procedure is then executed using the ExecuteNonQuery() method of the MySqlCommand object.
Example 17-20. Calling a simple stored procedure in VB.NET
 Dim SpSimple As MySqlCommand
 SpSimple = New MySqlCommand("sp_simple", myConnection)
 SpSimple.CommandType = CommandType.StoredProcedure
 SpSimple.ExecuteNonQuery()

Example 17-21
 shows the same logic implemented in C#.
Example 17-21. Calling a simple stored procedure in C#
 MySqlCommand SpSimple;
 SpSimple = new MySqlCommand("sp_simple", myConnection);
 SpSimple.CommandType = CommandType.StoredProcedure;
 SpSimple.ExecuteNonQuery();

Supplying Input Parameters

Earlier in this chapter we saw how to use the Parameters collection of the MySqlCommand class to specify parameters
 to simple SQL statements. The Parameters collection can be used to
 manipulate stored procedure parameters as well. In this section
 we'll look at specifying input parameters . Example
 17-22 shows a simple stored procedure that takes a single
 input parameter.
Example 17-22. Stored procedure with an input parameter
CREATE PROCEDURE sp_simple_parameter(in_autocommit INT)
BEGIN
 SET autocommit=in_autocommit;
END;

To specify a value for this parameter, we can create a
 parameter object using the Parameters.Add() method of the MySqlCommand object. We can then use the
 Values property of the resulting
 object to set a value for the parameter prior to executing the
 procedure. Example
 17-23 shows us doing just that in C#.
Example 17-23. Calling a stored procedure with an input parameter in
 C#
1 MySqlCommand SpCmd;
2 SpCmd = new MySqlCommand("sp_Simple_Parameter", myConnection);
3 SpCmd.CommandType = CommandType.StoredProcedure;
4 MySqlParameter Parm1 = SpCmd.Parameters.Add(
5 "in_autocommit",MySqlDbType.Int32);
6
7 Parm1.Value = 0;
8
9 SpCmd.ExecuteNonQuery();

In lines 1–3 we create the stored procedure definition. On
 line 4 we create a parameter object representing the first (and
 only) parameter to the stored procedure. On line 7 we assign a value
 to this parameter, and finally—on line 9—we execute the stored
 procedure.
Note that once the stored procedure (including its parameters)
 is defined, we can change the parameter value and re-execute the
 procedure as many times as we like. We'll see an example of this
 technique at the end of this chapter.
Example 17-24
 shows how we can set the stored procedure parameter and execute the
 stored procedure in VB.NET.
Example 17-24. Calling a stored procedure with an input parameter in
 VB.NET
 Dim SpCmd As MySqlCommand
 SpCmd = New MySqlCommand("sp_Simple_Parameter", myConnection)
 SpCmd.CommandType = CommandType.StoredProcedure
 Dim Parm1 As MySqlParameter
 Parm1 = SpCmd.Parameters.Add("in_autocommit", MySqlDbType.Int32)
 Parm1.Value = 0
 SpCmd.ExecuteNonQuery()

Using a DataReader with a Stored Program

Retrieving a single result set from a stored procedure can be
 achieved by using pretty much the same coding as we would use to
 obtain the results of a SELECT
 statement. Consider a stored procedure that returns only a single
 result set, as shown in Example 17-25.
Example 17-25. Stored procedure with a single result set
CREATE PROCEDURE Sp_one_result_set()
 SELECT department_id,department_name
 FROM departments;

To retrieve a result set from this stored procedure, we can
 use the ExecuteReader() method to
 return a DataReader object and
 then loop through the DataReader
 in the usual way. Example
 17-26 shows how to do this in C#.
Example 17-26. Creating a DataReader from a stored procedure in C#
MySqlCommand SpCmd;
SpCmd = new MySqlCommand("sp_one_result_set", myConnection);
SpCmd.CommandType = CommandType.StoredProcedure;
MySqlDataReader MyReader=SpCmd.ExecuteReader();
while (MyReader.Read())
{
 Console.Write(MyReader.GetInt32(0)+"\t");
 Console.WriteLine(MyReader.GetString(1));
}

Example 17-27
 shows how to create a DataReader
 from a stored procedure execution in VB.NET.
Example 17-27. Creating a DataReader from a stored procedure in
 VB.NET
Dim SpCmd As MySqlCommand
SpCmd = New MySqlCommand("sp_one_result_set", myConnection)
SpCmd.CommandType = CommandType.StoredProcedure
Dim MyReader As MySqlDataReader = SpCmd.ExecuteReader
While MyReader.Read
 Console.Write(MyReader.GetInt32(0).ToString + _
 "" & Microsoft.VisualBasic.Chr(9) & "")
 Console.WriteLine(MyReader.GetString(1))
End While
MyReader.Close()

Processing Multiple Result Sets in a DataReader

The DataReader class
 provides a method for processing multiple result sets : the DataReader
 method NextResult() will return
 true if there is an additional result set available from the
 SqlCommand and will move the
 DataReader to that result
 set.
To illustrate, let's retrieve the two result sets returned
 from the stored procedure in Example 17-28.
Example 17-28. Stored procedure returning two result sets
CREATE PROCEDURE sp_two_results()
BEGIN
 SELECT location,address1,address2
 FROM locations;
 SELECT department_id,department_name
 FROM departments;
END;

We can process the second result set by calling the NextResult() method after finishing with
 the first result set, then reading the rows from the second result
 set. Example 17-29
 illustrates this technique in VB.NET.
Example 17-29. Processing two result sets using a DataReader in
 VB.NET
 Dim TabChr As Char = Microsoft.VisualBasic.Chr(9)
 Dim SpCmd As MySqlCommand
 SpCmd = New MySqlCommand("sp_two_results", myConnection)
 SpCmd.CommandType = CommandType.StoredProcedure
 Dim MyReader As MySqlDataReader = SpCmd.ExecuteReader
 While MyReader.Read
 Console.Write(MyReader.GetString(0) + TabChr)
 Console.Write(MyReader.GetString(1))
 Console.WriteLine(MyReader.GetString(2))
 End While
 MyReader.NextResult()
 While MyReader.Read
 Console.Write(MyReader.GetInt32(0).ToString +TabChr)
 Console.WriteLine(MyReader.GetString(1))
 End While
 MyReader.Close()

Using this technique is a bit cumbersome, especially if there
 is a large number of result sets. As we will see later on, writing
 code to dynamically process multiple result sets from a DataReader,
 or processing multiple result sets using the DataSet class, can often result in simpler
 and more robust code.

Dynamically Processing Result Sets

In the previous example, we knew exactly how many result sets
 to expect from the stored procedure and we knew in advance the
 number and types of columns to be returned from each. While this is
 a realistic scenario, we may often need to process a stored
 procedure where the number and types of result sets might change
 depending on the input parameters.
For instance, the stored procedure in Example 17-30 returns a
 different set of result sets depending on the characteristics of the
 employee whose identity is defined by the input employee_id parameter. If the employee is
 a sales representative, then three result sets are returned.
 Otherwise, only two result sets are returned. Furthermore, the
 structure of the second result set for a sales rep is different from
 the result set returned by a normal employee.
Example 17-30. Stored procedure that returns an unpredictable number of
 result sets
CREATE PROCEDURE sp_employee_report
 (in_emp_id decimal(8,0),
 OUT out_customer_count INT)
 READS SQL DATA

BEGIN

 SELECT employee_id,surname,firstname,date_of_birth,address1,address2,zipcode
 FROM employees
 WHERE employee_id=in_emp_id;

 SELECT department_id,department_name
 FROM departments
 WHERE department_id=
 (SELECT department_id
 FROM employees
 WHERE employee_id=in_emp_id);

 SELECT count(*)
 INTO out_customer_count
 FROM customers
 WHERE sales_rep_id=in_emp_id;

 IF out_customer_count=0 THEN
 SELECT 'Employee is not a current sales rep';
 ELSE
 SELECT customer_name,customer_status,contact_surname,contact_firstname
 FROM customers
 WHERE sales_rep_id=in_emp_id;

 SELECT customer_name,sum(sale_value) as "TOTAL SALES",
 max(sale_value) as "MAX SALE"
 FROM sales JOIN customers USING (customer_id)
 WHERE customers.sales_rep_id=in_emp_id
 GROUP BY customer_name;
 END IF;

END$$;

To process this stored procedure, our code needs to:
	Loop through all of the result sets with no assumption as
 to how many there may be.

	Loop through the columns in each result set without
 knowing at compile time how many columns exist in each result
 set.

We can easily achieve the first objective simply by iterating
 through the result sets of a DataReader as long as the NextResult() call returns true.
We achieve the second objective by using the FieldCount property of the Reader and the GetName() and GetString() methods, which allow us to
 retrieve the name and value for each column, as shown in Example 17-31.
Example 17-31. Processing result sets dynamically with a
 DataReader
1 static void EmployeeReport(int EmployeeId)
2 {
3 MySqlCommand SpCmd = new MySqlCommand("sp_employee_report", myConnection);
4 SpCmd.CommandType = CommandType.StoredProcedure;
5 MySqlParameter Param_empid = SpCmd.Parameters.Add(
6 "in_emp_id", MySqlDbType.Int32);
7
8 Param_empid.Value = EmployeeId;
9 MySqlDataReader EmpReader=SpCmd.ExecuteReader();
10
11 do
12 {
13 //Print Column Names
14 Console.WriteLine("-------------------------------------");
15 for (int i = 0; i < EmpReader.FieldCount; i++)
16 {
17 Console.Write(EmpReader.GetName(i)+"\t");
18 }
19 Console.WriteLine("\n-----------------------------------");
20 //Print out the row values
21 while (EmpReader.Read())
22 {
23 for (int i = 0; i < EmpReader.FieldCount; i++)
24 {
25 Console.Write(EmpReader.GetString(i)+"\t");
26 }
27 Console.WriteLine();
28 }
29 } while (EmpReader.NextResult());
30 EmpReader.Close();
31 }

Let's step through this example:
	Line(s)
	Explanation

	3–5
	Define a MySqlCommand object to call the
 stored procedure. The object has a single parameter that
 corresponds to the EmployeeId argument passed to our
 routine on line 1.

	8–9
	Assign the value of the stored
 procedure parameter to the value of the input parameter and
 create a MySqlDataReader
 to process the result sets.

	11–29
	This loop will continue until a
 call to NextResult()
 returns false. In other words, it will continue until all of
 the result sets have been retrieved from the stored
 procedure.

	15–18
	Print out the names of the columns
 of the result set. FieldCount returns the number of
 columns; GetName(i)
 returns the name of a particular column.

	21–28
	Loop through each row in the
 result set.

	23–26
	Loop through each column in the
 current row. We use GetString(i) to retrieve the value
 of the current column. GetString will successfully
 retrieve values for most MySQL data types (numbers, dates,
 etc.), but if we need to retrieve the values into a more
 appropriate variable (perhaps we want to perform some
 calculations on a float, for instance), then we can use
 Get Type
 (i) to
 determine the appropriate method (GetFloat(i) for
 instance).

	30
	Close the DataReader having processed all of
 the rows in all of the result sets.

Example 17-32
 shows Example 17-31
 writen in VB.NET.
Example 17-32. Processing dynamic result sets using a DataReader in
 VB.NET
Sub EmployeeReport(ByVal EmployeeId As Integer)

 Dim i As Integer = 0
 Dim TabChr As Char = Microsoft.VisualBasic.Chr(9)
 Dim RetChr As Char = Microsoft.VisualBasic.Chr(10)
 Dim SpCmd As MySqlCommand
 SpCmd = New MySqlCommand("sp_employee_report", myConnection)
 SpCmd.CommandType = CommandType.StoredProcedure
 Dim Param_empid As MySqlParameter
 Param_empid = SpCmd.Parameters.Add("in_emp_id", MySqlDbType.Int32)
 Param_empid.Value = EmployeeId
 Dim EmpReader As MySqlDataReader = SpCmd.ExecuteReader
 Do
 Console.WriteLine("-------------------------------------")

 For i = 0 To EmpReader.FieldCount - 1
 Console.Write(EmpReader.GetName(i) + TabChr)
 Next

 Console.WriteLine(RetChr+ "-----------------------------------")
 While EmpReader.Read()

 For i = 0 To EmpReader.FieldCount - 1
 Console.Write(EmpReader.GetString(i) + TabChr)
 Next
 Console.WriteLine()
 End While
 Loop While EmpReader.NextResult()
 EmpReader.Close()
 End Sub

Using DataSets with Stored Programs

DataSets offer an
 alternative to the DataReader
 class for retrieving result sets from stored procedures. We can
 store more than one result set into a single DataSet object, which allows us to easily
 process the multiple result sets that might be returned by a stored
 procedure.
A DataReader may be more
 convenient than a DataSet for
 processing a single result set where we know the column names and
 types in advance. However, when we are processing more than one
 result set, or when we don't know the structure of the result sets
 in advance, we find the DataSet
 more convenient.
Example 17-33
 shows us dynamically processing multiple result sets from a stored
 procedure using a DataSet. We've
 used this stored procedure before: see Example 17-28.
Example 17-33. Dynamically processing multiple result sets using a DataSet
 in VB.NET
1 Dim TabChr As Char = Microsoft.VisualBasic.Chr(9)
2 Dim SpCmd As MySqlCommand
3 SpCmd = New MySqlCommand("sp_two_results", myConnection)
4 SpCmd.CommandType = CommandType.StoredProcedure
5
6 Dim MyAdapter As MySqlDataAdapter = New MySqlDataAdapter(SpCmd)
7 Dim SpDataSet As DataSet = New DataSet
8 MyAdapter.Fill(SpDataSet)
9
10 For Each SpTable As DataTable In SpDataSet.Tables
11 For Each SpCol As DataColumn In SpTable.Columns
12 Console.Write(SpCol.ToString() + TabChr)
13 Next
14 Console.WriteLine()
15
16 For Each SpRow As DataRow In SpTable.Rows
17 For Each SpCol As DataColumn In SpTable.Columns
18 Console.Write(SpRow(SpCol).ToString + TabChr)
19 Next
20 Console.WriteLine()
21 Next
22 Next

You may want to review the section "DataSets " earlier in this chapter if you're not sure of the
 relationship between MySqlCommands, MySqlDataAdapters, and DataSets.
Let's look at how Example 17-33 works, line by
 line:
	Line(s)
	Explanation

	2–4
	Create a MySqlCommand object to represent
 our stored procedure call in the usual way.

	6
	Create a MySqlDataAdapter object and
 associate it with the MySqlCommand
 object.

	7
	Create a new DataSet object.

	8
	Populate the DataSet from our MySqlDataAdapter. Since MySqlDataApadapter is associated
 with the MySqlCommand for
 our stored procedure, this results in all of the results
 sets from the stored procedure being stored into the
 DataSet.

	10
	The DataSet will now contain one
 DataTable for each result
 set returned by the stored procedure. Here we iterate
 through these tables using the Tables collection of the DataSet object.

	11–13
	Iterate through the columns in the
 current DataTable using
 the Columns collection
 and print the column name.

	16–21
	Iterate through the DataRows in the current DataTable using the Rows collection of the DataTable object.

	17–19
	Iterate through the columns in the
 current DataRow and print
 the appropriate column value. SpRow(SpCol) represents a specific
 column value for a specific row.

Example 17-34
 shows this logic implemented in C#.
Example 17-34. Dynamically processing result sets using a DataSet in
 C#
 MySqlCommand SpCmd;
 SpCmd = new MySqlCommand("sp_two_results", myConnection);
 SpCmd.CommandType = CommandType.StoredProcedure;

 MySqlDataAdapter MyAdapter = new MySqlDataAdapter(SpCmd);
 MyAdapter.SelectCommand = SpCmd;
 DataSet SpDataSet = new DataSet();
 MyAdapter.Fill(SpDataSet);

 foreach (DataTable SpTable in SpDataSet.Tables)
 {
 foreach (DataColumn SpCol in SpTable.Columns)
 {
 Console.Write(SpCol.ToString() + "\t");
 }
 Console.WriteLine();

 foreach (DataRow SpRow in SpTable.Rows)
 {
 foreach (DataColumn SpCol in SpTable.Columns)
 {
 Console.Write(SpRow[SpCol] + "\t");
 }
 Console.WriteLine();
 }
 }

Retrieving Output Parameters

We've left the processing of output parameters until almost the end of this chapter, because
 obtaining the value of an output parameter (OUT or INOUT) is the last
 thing we should do when processing a stored program. In particular,
 we should make sure that we have retrieved all
 result sets from the stored procedure before trying to access the
 value of the output parameter. Before all the result sets are
 processed, the value of the parameter will be NULL, which could lead
 to subtle bugs—especially if there is a variable number of output
 parameters.
To use an output parameter in Connector/Net, we define the
 parameter as we would for an input parameter, but set the ParameterDirection property of the
 parameter to either Output or
 InputOutput.
Example 17-35 is
 an example of a stored procedure that contains an OUT parameter.
Example 17-35. Stored procedure with an OUT parameter
CREATE PROCEDURE sp_custsales
 (in_customer_id INT,
 OUT out_sales_total FLOAT)
BEGIN
 SELECT customer_name
 FROM customers
 WHERE customer_id=in_customer_id;

 SELECT sum(sale_value)
 INTO out_sales_total
 FROM sales
 WHERE customer_id=in_customer_id;

END;

In Example 17-36
 we execute this stored procedure and retrieve the value of the
 output parameter. Prior to executing the stored procedure, we set
 the value of the Parameter.Direction property to ParameterDirection.Output. After we have
 processed all of the rows from the result set returned by the stored
 procedure, we can examine the parameter's Value property to see the value placed by
 the stored procedure into the OUT
 parameter.
Example 17-36. Processing a stored procedure with an OUT parameter in
 C#
 static void CustomerSales(int CustomerId)
 {
 MySqlCommand SpCustSales;
 MySqlParameter PCustId,PSalesTotal;
 MySqlDataReader CustReader;

 SpCustSales = new MySqlCommand("sp_custsales", myConnection);
 SpCustSales.CommandType = CommandType.StoredProcedure;
 PCustId = SpCustSales.Parameters.Add(
 "in_customer_id", MySqlDbType.Int32);
 PSalesTotal = SpCustSales.Parameters.Add(
 "out_sales_total", MySqlDbType.Float);
 PSalesTotal.Direction = ParameterDirection.Output;

 PCustId.Value = CustomerId;
 CustReader=SpCustSales.ExecuteReader();
 while (CustReader.Read())
 {
 Console.WriteLine(CustReader.GetString(0));
 }
 CustReader.Close();
 Console.WriteLine(PSalesTotal.Value);

 Console.WriteLine("====");

 }

Example 17-37
 shows this logic coded in VB.NET.
Example 17-37. Processing an output parameter in VB.NET
Sub CustomerSales(ByVal CustomerId As Integer)

 Dim SpCustSales As MySqlCommand
 Dim PCustId As MySqlParameter
 Dim PSalesTotal As MySqlParameter
 Dim CustReader As MySqlDataReader

 SpCustSales = New MySqlCommand("sp_custsales", myConnection)
 SpCustSales.CommandType = CommandType.StoredProcedure
 PCustId = SpCustSales.Parameters.Add("in_customer_id", MySqlDbType.Int32)
 PSalesTotal = SpCustSales.Parameters.Add("out_sales_total", MySqlDbType.Float)
 PSalesTotal.Direction = ParameterDirection.Output

 PCustId.Value = CustomerId
 CustReader = SpCustSales.ExecuteReader()
 While CustReader.Read()
 Console.WriteLine(CustReader.GetString(0))
 End While
 CustReader.Close()
 Console.WriteLine(PSalesTotal.Value)

 End Sub

Tip
Make sure you have processed all of the result sets returned
 from a stored procedure before attempting to access any output
 parameters.

Calling Stored Functions

In languages such as Perl or PHP, if we want to get the
 results of a stored function call, we simply embed it into a
 SELECT statement and retrieve the
 result of the function call as a single-row SELECT.
This technique is available to us in ADO.NET , but we also have the option of retrieving the
 result of a function call in a more direct fashion. We can call a
 function as we would a stored procedure that has no result sets, and
 we can retrieve the results of the function execution by associating
 a parameter with ParameterDirection set to ReturnValue.
For instance, consider the very simple stored function in
 Example 17-38, which
 returns a date formatted just the way we like it.
Example 17-38. Simple MySQL stored function
CREATE FUNCTION my_date()
 RETURNS VARCHAR(50)
BEGIN
 RETURN(DATE_FORMAT(NOW(),'%W, %D of %M, %Y'));
END$$

To call this directly in ADO.NET, we call the function as we
 would a stored procedure, but we create a special parameter to
 retrieve the function return value with the Direction property set to ReturnValue. Example 17-39 shows us
 processing our simple date function in C#.
Example 17-39. Processing a stored function in C#
 MySqlCommand FCmd = new MySqlCommand("my_date", myConnection);
 FCmd.CommandType = CommandType.StoredProcedure;
 MySqlParameter rv = FCmd.Parameters.Add("rv", MySqlDbType.String);
 rv.Direction = ParameterDirection.ReturnValue;
 FCmd.ExecuteNonQuery();
 Console.WriteLine("return value=" + rv.Value);

Example 17-40
 shows the same logic in VB.NET.
Example 17-40. Processing a stored function in VB.NET
 Dim FCmd As MySqlCommand = New MySqlCommand("my_date", myConnection)
 FCmd.CommandType = CommandType.StoredProcedure
 Dim rv As MySqlParameter = FCmd.Parameters.Add("rv", MySqlDbType.String)
 rv.Direction = ParameterDirection.ReturnValue
 FCmd.ExecuteNonQuery()
 Console.WriteLine("return value=" + rv.Value)

Using Stored Programs in ASP.NET

 In the final section of this chapter, let's put our
 newly acquired Connector/Net and stored program skills to work to
 create a simple ASP.NET application.
The stored procedure we will use is shown in Example 17-41. It takes as an
 (optional) argument a database name, and it reports on the objects
 within that database, along with a list of users currently connected
 to the server, server status variables, server configuration
 variables, and a list of databases contained within the server. It
 contains one OUT parameter that
 reports the server version.
Example 17-41. Stored procedure for our ASP.NET example
CREATE PROCEDURE sp_mysql_info
 (in_database VARCHAR(60),
 OUT server_version VARCHAR(100))
 READS SQL DATA
BEGIN

 DECLARE db_count INT;

 SELECT @@version
 INTO server_version;

 SELECT 'Current processes active in server' as table_header;
 SHOW full processlist;

 SELECT 'Databases in server' as table_header;

 SHOW databases;

 SELECT 'Configuration variables set in server' as table_header;
 SHOW global variables;
 SELECT 'Status variables in server' as table_header;
 SHOW global status;

 SELECT COUNT(*)
 INTO db_count
 FROM information_schema.schemata s
 WHERE schema_name=in_database;
 IF (db_count=1) THEN
 SELECT CONCAT('Tables in database ',in_database) as table_header;
 SELECT table_name
 FROM information_schema.tables
 WHERE table_schema=in_database;
 END IF;

END$$

The number and type of result sets is unpredictable, since a
 list of database objects is generated only if a database matching the
 stored procedure's first parameter is found on the server.
Prior to every major result set, the stored procedure generates
 a one-row "title" as a result set. This "title" result set is
 identified by the column title table_header.
First, we need to create an ASP.NET form to retrieve the
 information we need to connect to the MySQL server and to obtain the
 parameters we need to call the stored procedure.
Creating the input form in Visual Studio is fairly
 straightforward. We create TextBox
 controls to retrieve our input parameters, as shown in Figure 17-3.
[image: ASP.NET form]

Figure 17-3. ASP.NET form

Notice that in addition to the standard TextBox controls, we also added Literal and PlaceHolder controls. These controls allow
 us to insert dynamic content when the stored procedure is
 executed.
Next, we add the code that controls the database interaction.
 All of our database interaction logic is contained within the method
 associated with the Submit button. This logic is shown in Example 17-42.
Example 17-42. Database access logic for our ASP.NET page
1 void FindButton_Click(object sender, EventArgs e)
2 {
3 //Arrays of grids and literals for our output.
4 System.Web.UI.WebControls.DataGrid[] DataGrids;
5 DataGrids = new System.Web.UI.WebControls.DataGrid[20];
6 System.Web.UI.WebControls.Literal[] Literals;
7 Literals = new System.Web.UI.WebControls.Literal[20];
8
9
10 String myConnectionString = "Database=" + tDatabase.Text +
11 " ;Host=" + tHost.Text +
12 ";UserName=" + tUsername.Text+ ";Password=" + tPassword.Text;
13
14
15 MySqlConnection myConnection = new MySqlConnection();
16 myConnection.ConnectionString = myConnectionString;
17
18 try
19 {
20 myConnection.Open();
21 MySqlCommand SpCmd = new MySqlCommand("sp_mysql_info", myConnection);
22 SpCmd.CommandType = CommandType.StoredProcedure;
23 MySqlParameter InDbParm = SpCmd.Parameters.Add(
24 "in_database",MySqlDbType.String);
25 InDbParm.Value = tDatabase.Text;
26 MySqlParameter OutMyVersion = SpCmd.Parameters.Add(
27 "server_version", MySqlDbType.String);
28 OutMyVersion.Direction = ParameterDirection.Output;
29
30 MySqlDataAdapter MyAdapter = new MySqlDataAdapter(SpCmd);
31 MyAdapter.SelectCommand = SpCmd;
32 DataSet SpDataSet = new DataSet();
33 MyAdapter.Fill(SpDataSet);
34
35 ReportHeaderl.Text = "<h1>MySQL Server status and statistics</h1>" +
36 "Host:"+tHost.Text+"
"+
37 " Port: "+tPort.Text+"
"+
38 "Version:"+OutMyVersion.Value+"
";
39
40 int grid_no = 0;
41 int heading_no=0;
42 foreach (DataTable SpTable in SpDataSet.Tables) {
43 if (SpTable.Columns[0].ColumnName == "table_header")
44 {
45 Literals[heading_no]=new Literal();
46 Literals[heading_no].Text="<h2>"+ SpTable.Rows[0][0]+"</h2>";
47 PlaceHolder.Controls.Add(Literals[heading_no]);
48 heading_no++;
49 }
50 else
51 {
52 DataGrids[grid_no] = new DataGrid();
53 DataGrids[grid_no].DataSource = SpTable;
54 DataGrids[grid_no].DataBind();
55 DataGrids[grid_no].BorderWidth = 1;
56 DataGrids[grid_no].HeaderStyle.BackColor =
57 System.Drawing.Color.Silver;
58 PlaceHolder.Controls.Add(DataGrids[grid_no]);
59 grid_no++;
60 }
61 }
62
63
64
65 }
66 catch (MySqlException MyException)
67 {
68 Response.Write("Connection error: MySQL code: " + MyException.Number
69 + " " + MyException.Message);
70 }
71
72
73 }

There is quite a bit of code in this example, but the basic
 principles are fairly simple:
	We connect to MySQL using the connection information
 given.

	We call the stored procedure, passing the database name as
 an input parameter.

	We cycle through the result sets in the stored procedure. If
 the result set is a one-line, one-column "title" for a subsequent
 result set, we store an HTML header into a literal control and add
 this to the Placeholder control
 we placed on the HTML form earlier.

	If the result set is not a "title" result set, we bind the
 result set to a DataGrid
 control and add that to the Placeholder.

	When all of the result sets have been processed, we retrieve
 the output parameter (MySQL version) and display this and other
 information in the Literal
 control we placed on the ASP.NET form earlier.

Let's examine this code in a bit more detail:
	Line(s)
	Explanation

	4-7
	Create an array of DataGrid and Literal controls. DataGrids are data-bound controls
 similar to HTML tables. Literals are controls in which we
 can insert regular HTML arguments. Later in the code, we will
 populate the controls in these arrays with data from the
 stored procedure output and insert the resulting controls into
 the Placeholder control on
 the ASPX page.

	10–20
	Construct a MySqlConnection string using the
 parameters provided in the input form and then establish a
 connection. The final connection call is embedded within a
 try/catch block so that we
 will handle any errors that might occur when attempting to
 connect.

	21–28
	Set up the stored procedure for
 execution. Both input and output parameters are
 defined.

	30–31
	Create a MySqlDataAdpator associated with the
 stored procedure.

	23–33
	Create a DataSet, and use the MySqlDataAdapter to populate the
 DataSet. This effectively
 executes the stored procedure and populates the DataSet with all the result sets
 from that stored procedure call.

	35–38
	Now that we have retrieved all of
 the result sets, we can access the value of the output
 parameter. Consequently, we can populate the Literal control with HTML to
 generate the first part of our report, which provides identity
 information for the MySQL server.

	42–61
	Generate the bulk of the report,
 which is based on the result sets generated from the stored
 procedure. This loop iterates through the DataTables contained within the
 DataSet.

	43–49
	If the first column within the table
 is called table_header,
 then this is a heading row, so we create a Literal containing an H2 HTML header
 containing the text of the row.

	50–60
	If the result set is not a heading,
 then we need to create an HTML table to represent the output.
 We use the ASP.NET DataGrid
 control, which is a data-bound table control. Line 53 attaches
 the DataGrid to the current
 DataTable. Lines 55–57
 format the DataGrid.
 Finally on line 58 we add the DataGrid to the PlaceHolder control on the ASP.NET
 page.

Figure 17-4 shows
 some of the output generated by our ASP.NET application. The ASP.NET
 code can render virtually any output that might be returned by the
 stored procedure, so if we want to add a new set of output to the
 procedure, we do not need to modify the ASP.NET code.

Conclusion

In this chapter we looked at calling stored programs
 from within .NET code written in both C# and VB.NET.
Because of Microsoft's long history of stored procedures with
 SQL Server, support for stored programs in the ADO.NET interfaces is
 robust and feels very natural. There is no reason to avoid the use of
 stored programs in .NET applications, and no reason to avoid calling
 stored programs directly from .NET code.
[image: ASP.NET form in action]

Figure 17-4. ASP.NET form in action

Part IV. Optimizing Stored Programs

This final part of the book hopes to take you from "good" to
 "great." Getting programs to work correctly is hard enough: any program
 that works is probably a good program. A "great" program is one that
 performs efficiently, is robust and secure, and is easily
 maintained.
Stored procedures and functions raise a number of unique security
 concerns and opportunities: these are discussed in Chapter 18. Chapters 19 through 22 cover performance optimization of
 stored programs. Chapter 19 kicks
 off with a general discussion of performance tuning tools and
 techniques. The performance of your stored programs will be largely
 dependent on the performance of the SQL inside, so Chapters 20 and 21 provide guidelines for tuning SQL.
 Chapter 22 covers performance
 tuning of the stored program code itself.
Chapter 23 wraps up the
 book with a look at best practices in stored program development. These
 guidelines should help you write stored programs that are fast, secure,
 maintainable, and bug-free.
Chapter 18,
 Stored Program Security
Chapter 19,
 Tuning Stored Programs and Their SQL
Chapter 20, Basic
 SQL Tuning
Chapter 21,
 Advanced SQL Tuning
Chapter 22,
 Optimizing Stored Program Code
Chapter 23, Best
 Practices in MySQL Stored Program Development

Chapter 18. Stored Program Security

Security has always been critical in the world of databases and
 stored programs that work with those databases. Yet database security
 has taken on heightened importance in the last decade, with the global
 reach of the Internet and the increasing tendency for the database to be
 the target of those trying to compromise application security. In this
 chapter we explore two different aspects of security as it pertains to
 MySQL stored programming:
	Controlling access to the execution and modification of stored
 programs themselves

	Using stored programs to secure the underlying data in MySQL
 databases

Stored programs—in particular, stored procedures—are subject to
 most of the security restrictions that apply to other database objects,
 such as tables, indexes, and views. Specific permissions are required
 before a user can create a stored program, and, similarly, specific
 permissions are needed in order to execute a program.
What sets the stored program security model apart from that of
 other database objects—and from other programming languages—is that
 stored programs may execute with the permissions of the user who
 created the stored program, rather than those of
 the user who is executing the stored program. This
 model allows users to execute operations via a stored program that they
 would not be privileged to execute using straight SQL.
This facility—sometimes called definer rights
 security—allows us to tighten our database security: we can ensure that
 a user gains access to tables only via stored program code that
 restricts the types of operations that can be performed on those tables
 and that can implement various business and data integrity rules. For
 instance, by establishing a stored program as the only mechanism
 available for certain table inserts or updates, we can ensure that all
 of these operations are logged, and we can prevent any invalid data
 entry from making its way into the table.
We can also create stored programs that execute with the
 privileges of the calling user, rather than those of the user who
 created the program. This mode of security is sometimes called
 invoker rights security, and it offers other
 advantages beyond those of definer rights, which we will explore in this
 chapter.
Before delving into the two execution modes available in MySQL, we
 will first examine the basic permissions needed to create, manage, and execute stored
 programs . Then we'll go into a detailed discussion of definer
 rights and invoker rights, and consider how these capabilities might be
 used in our applications. Finally, we will consider the use of stored
 programs to increase the general security of our MySQL server and,
 conversely, identify ways in which the use of stored programs can
 reduce overall security if developers are not
 careful.
Permissions Required for Stored Programs

 MySQL 5.0 introduced a few new privileges to manage stored programs. These privileges are:
	CREATE ROUTINE
	Allows a user to create new stored programs.

	ALTER ROUTINE
	Allows a user to alter the security mode, SQL mode, or
 comment for an existing stored program.

	EXECUTE
	Allows a user to execute a stored procedure or
 function.

With these distinct privileges available, we can very granularly
 decide what we want to allow individual developers to be able to do
 (as in "Sam can run program X, but not make any changes to
 it.").
Granting Privileges to Create a Stored Program

To give a user permission to create a stored procedure,
 function, or trigger, grant the CREATE
 ROUTINE privilege to that user using the GRANT statement. We can do this for a
 specific database or for all databases on the server. For example,
 the following GRANT statement
 gives the user sp_creator
 permission to create stored programs within the database mydatabase:
 GRANT CREATE ROUTINE ON mydatabase.* TO sp_creator;

Granting Privileges to Modify a Stored Program

The ALTER ROUTINE privilege gives a user permission to change the security mode,
 SQL mode, or comment for a stored procedure or function. However,
 this privilege does not allow us to change the actual program code
 of a procedure. To change the program code, we must DROP and then CREATE a new program. In the following
 example, we change the security mode, sql_mode setting, and comment for a
 procedure:
 ALTER PROCEDURE simple_stored_proc
 SQL SECURITY INVOKER
 READS SQL DATA
 COMMENT 'A simple stored procedure';

Granting Privileges to Execute a Stored Program

The EXECUTE privilege gives
 a user permission to execute a stored procedure or function. (For
 triggers, see Chapter 11.)
 EXECUTE privileges should be
 granted selectively, especially if the program is created with the
 "definer rights" security setting (see the section "The SQL SECURITY Clause"
 later in this chapter). The syntax for this form of the GRANT statement is:
 GRANT EXECUTE ON [{PROCEDURE|FUNCTION}] database.program_name TOuser
You can omit the ON
 PROCEDURE or ON FUNCTION
 clause if you are performing a wildcard grant, as in
 the following example:
 GRANT EXECUTE ON mydatabase.* TO sp_creator;
If you are granting access to a specific program, you must
 specify ON PROCEDURE or ON FUNCTION explicitly; it is possible for
 a stored procedure and a stored function to have the same name, and
 it is unacceptable to issue an ambiguous security command. To grant
 the EXECUTE privilege on the
 procedure mydatabase.test1, issue
 the following statement:
 GRANT EXECUTE ON PROCEDURE mydatabase.test1 TO sp_creator;

Execution Mode Options for Stored Programs

Stored program code differs from any other kind of code that
 might execute against the database in that it can have database
 privileges that are different from those of the account that executes
 the stored program. Normally, when we execute some SQL—whether it is
 inside the MySQL client, a PHP program, or whatever—the activities
 that the SQL will perform (read table X, update table Y, etc.) will be
 checked against the privileges that are associated with the database
 account to which we are connected. If our account lacks privilege to
 perform the activity, the SQL statement will fail with the appropriate
 error.
Stored programs can be defined to act in the same way, if the
 SQL SECURITY INVOKER clause is
 included in the CREATE PROCEDURE or
 CREATE FUNCTION statement used to
 create the program. However, if SQL SECURITY
 DEFINER (the default) is specified instead, then the stored
 program executes with the privilege of the account that
 created the stored program, rather than the
 account that is executing the stored program.
 Known as definer rights, this execution mode can
 be a very powerful way of restricting ad hoc table modifications and
 avoiding security breaches. Definer rights can also be a problem,
 however, if you are relying on traditional security privileges to
 secure your database.
Let's go through a quick example before we dig in more deeply. A
 user creates a procedure to execute a simple transaction, as shown in
 Example 18-1.
Example 18-1. Simple transaction using definer rights security
CREATE PROCEDURE tfer_funds
 (from_account INT, to_account INT,tfer_amount NUMERIC(10,2))
 SQL SECURITY DEFINER
BEGIN
 START TRANSACTION;

 UPDATE account_balance
 SET balance=balance-tfer_amount
 WHERE account_id=from_account;

 UPDATE account_balance
 SET balance=balance+tfer_amount
 WHERE account_id=to_account;

 INSERT into transaction_log
 (user_id, description)
 values(user(), concat('Transfer of ',tfer_amount,' from ',
 from_account,' to ',to_account));

 COMMIT;
END;

We grant the EXECUTE
 privilege on this procedure to Fred, who has no other privileges to
 the account_balance table:
 GRANT EXECUTE ON PROCEDURE prod.tfer_funds TO 'FRED'@'%';
Now, Fred would like to make some illicit changes to the
 account_balance table, but he is
 unable to do so directly:
 C:\bin32>mysql -uFRED -pFRED -Dprod
 Welcome to the MySQL monitor. Commands end with ; or \g.
 Your MySQL connection id is 7 to server version: 5.0.18-nightly-20051211-log

 Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

 mysql> SELECT * FROM account_balance;
 ERROR 1142 (42000): SELECT command denied to user 'FRED'@'localhost' for table
'account_balance'
 mysql> INSERT INTO account_balance (account_id,balance) values(324,4000);
 ERROR 1142 (42000): INSERT command denied to user 'FRED'@'localhost' for table
'account_balance'
 mysql> ARGH!
 -> ;
 ERROR 1064 (42000): You have an error in your SQL syntax; check the manual
 that corresponds to your MySQL server version for the right syntax to use
 near 'ARGH'!' at line 1
Fred can use the stored procedure to adjust balances (as shown
 in Figure 18-1), but by
 doing so he is required to take the money "from" somewhere and to
 create an incriminating row in the transaction_log table:
 mysql> CALL tfer_funds(324,916,200);
 Query OK, 0 rows affected (0.44 sec)

 mysql> SELECT * FROM transaction_log WHERE user_id LIKE 'FRED%';
 +---------------------+----------------+---------------------------------+
 | txn_timestamp | user_id | description |
 +---------------------+----------------+---------------------------------+
 | 2005-04-14 11:23:45 | FRED@localhost | Transfer of 200 from 324 to 916 |
 +---------------------+----------------+---------------------------------+
 2 rows in set (0.00 sec)

 mysql> ARGH!
 -> ;
 ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near ARGH!' at line 1
[image: A definer rights stored program can execute SQL that the user does not have direct permission to execute]

Figure 18-1. A definer rights stored program can execute SQL that the user
 does not have direct permission to execute

In short, using "definer rights" lets us grant permission to use
 the database only in ways that we clearly define through stored
 programs. If you like, you can think of such stored programs as an API
 to the database that we provide to users.
The down side of using stored programs in this way is that it
 makes it much harder to be certain how you have restricted access to
 certain objects. For instance, we can issue the following statement to
 try and make sure that Fred cannot look at account balances:
 REVOKE SELECT ON prod.account_balance FROM 'FRED'@'%';
However, we would need to review all of the stored programs that
 Fred has access to before we could be 100% sure that he cannot perform
 any such activity.
If we want stored programs to succeed only if the user has
 sufficient privileges to execute the SQL statements that they contain,
 then we need to create an invoker rights program
 instead. Example 18-2
 shows the tfer_funds stored
 procedure created with the SQL SECURITY
 INVOKER option specified.
Example 18-2. Invoker rights stored procedure
CREATE PROCEDURE tfer_funds
 (from_account INT, to_account INT,tfer_amount NUMERIC(10,2))
 SQL SECURITY INVOKER
BEGIN
 START TRANSACTION;

 UPDATE account_balance
 SET balance=balance-tfer_amount
 WHERE account_id=from_account;

 UPDATE account_balance
 SET balance=balance+tfer_amount
 WHERE account_id=to_account;

 INSERT into transaction_log
 (user_id, description)
 values(user(), concat('Transfer of ',tfer_amount,' from ',
 from_account,' to ',to_account));

 COMMIT;
END;

Now if we want Fred to be able to execute this stored program,
 we will have to explicitly grant him access to the tables involved.
 Otherwise, he gets a security error when he executes the
 procedure:
 mysql> CALL tfer_funds(324,916,200);
 ERROR 1142 (42000): UPDATE command denied to user 'FRED'@'localhost' for table
'account_balance'
Figure 18-2
 illustrates these operations.
As well as arguably clarifying the relationship between users
 and table privileges, the use of the SQL
 SECURITY INVOKER option allows us to prevent certain
 security holes that can arise when stored programs execute dynamic
 SQL. A stored program that can execute dynamic SQL (see Chapter 5) and that runs with definer
 rights can represent a significant security risk; see the section
 "SQL Injection in Stored
 Programs" later in this chapter.
The SQL SECURITY Clause

The SQL SECURITY clause of
 the CREATE PROCEDURE and CREATE FUNCTION statements determines
 whether the program will operate with the privileges of the invoker
 or those of the definer. The syntax is straightforward:
[image: An invoker rights procedure can only issue SQL that the user has permission to execute]

Figure 18-2. An invoker rights procedure can only issue SQL that the
 user has permission to execute

 CREATE {PROCEDURE|FUNCTION} program_name (parameter_definitions)
 [SQL SECURITY {INVOKER|DEFINER}]stored_program_statements
If no SQL SECURITY clause
 appears, then the program is created with the SQL SECURITY DEFINER option.
The SQL SECURITY clause can
 be changed without having to re-create the stored procedure or
 function using the ALTER
 PROCEDURE or ALTER
 FUNCTION statement as follows:
 ALTER {PROCEDURE|FUNCTION} program_name
 SQL SECURITY {INVOKER|DEFINER};
The SQL SECURITY clause
 applies only to procedures or functions; a related clause— DEFINER—can be applied to triggers if you
 want to change the execution privileges under which a trigger runs.
 See Chapter 11 for more
 details about this clause.

Using Definer Rights to Implement Security Policies

As we have already discussed, stored programs defined with the
 SQL SECURITY DEFINER clause can
 execute SQL statements that would normally not be available to the
 account executing the stored program. We can use this facility to
 provide extensive control over the way in which the user interacts
 with the database.
If we write our application without stored programs, then our
 front-end code (written in, say, PHP) interacts directly with the
 underlying MySQL tables. As a consequence, each MySQL account that
 will be used to run the application must be granted all of the
 permissions required by the application code.
Directly granting privileges to accounts, however, can lead to
 significant security problems. Users can take advantage of any
 client tool, including the MySQL command line, to connect to this
 account, thereby circumventing any security controls that might have
 been placed within the application logic.
Let's take a look at a scenario that demonstrates the security
 issues with a MySQL application that does not use stored programs.
 If an application performs operations on tables within the prod schema, we might create an account
 for that application and grant it rights to perform queries and DML
 on all of the tables in that schema:
 GRANT SELECT, UPDATE, DELETE, INSERT ON prod.* TO myapp@'%'
The myapp account is now a
 highly privileged account—a hacker who got hold of the account
 password could delete any or all rows in any of the application
 tables, select any data (salaries, credit cards, etc.), and perform
 any number of malicious or dishonest activities.
On the other hand, in a scenario in which we use stored
 programs to control access to the database, we only need to grant
 EXECUTE permission on the
 programs that make up the application:
 GRANT EXECUTE ON prod.* TO myapp@'%'
A user connecting to the myapp account can still get her work done,
 by calling the appropriate elements in the application—but that is
 precisely all that the user can do. If the
 capability is not implemented within the application, then it is not
 available to the user. This significantly reduces the exposure of
 the database to malicious users if the connection information for
 the myapp account is
 compromised.
For instance, our application might contain internal logic
 that prevents a user from accessing the salary information of
 employees unless the user is a senior-level manager or a member of
 the Payroll department. However, this application-level restriction
 can easily be circumvented if the user logs into the database using
 the MySQL Query Browser and issues SQL against the database.
By using a "definer rights" stored program, we can ensure that
 the user gains access to database tables only via code that we
 provide within the stored program. In that way, we can ensure that
 the security and integrity of our database is maintained, even if a
 user logs onto the database directly.
Example 18-3 shows
 a stored procedure that returns employee details. The stored
 procedure was created with the SQL SECURITY
 DEFINER clause, so anyone with the EXECUTE privilege on this procedure will
 be able to view the employee details, even if he or she doesn't have
 the SELECT privilege on this
 table.
The stored procedure checks the ID of the user who executes
 the procedure and compares this ID with information in the employees table. If the user executing the
 stored procedure is a senior-level manager or a member of the
 Payroll department, then the employee details are returned without
 modification. Otherwise, the employee details are returned with the
 salary details obscured.
Example 18-3. Procedure that restricts access to employee salary
 data
1 CREATE PROCEDURE sp_employee_list(in_department_id DECIMAL(8,0))
2 SQL SECURITY DEFINER READS SQL DATA
3 BEGIN
4 DECLARE l_user_name VARCHAR(30);
5 DECLARE l_not_found INT DEFAULT 0;
6 DECLARE l_department_name VARCHAR(30);
7 DECLARE l_manager_id INT;
8
9 DECLARE user_csr CURSOR FOR
10 SELECT d.department_name,e.manager_id
11 FROM departments d JOIN employees e USING(department_id)
12 WHERE db_user=l_user_name;
13
14 DECLARE CONTINUE HANDLER FOR NOT FOUND SET l_not_found=1;
15
16 /* Strip out the host from the user name */
17 SELECT SUBSTR(USER(),1,INSTR(USER(),'@')-1)
18 INTO l_user_name;
19
20 OPEN user_csr;
21 FETCH user_csr INTO l_department_name,l_manager_id;
22 CLOSE user_csr;
23
24 IF l_department_name='PAYROLL' OR l_manager_id IN (0,1) THEN
25 SELECT surname,firstname,salary
26 FROM employees
27 WHERE department_id=in_department_id
28 ORDER BY employee_id;
29 ELSE
30 /* Not authorized to see salary */
31 SELECT surname,firstname,'XXXXXXX' AS salary
32 FROM employees
33 WHERE department_id=in_department_id
34 ORDER BY employee_id;
35 END IF;
36
37 END;

Let's look at the key parts of this code:
	Line(s)
	Explanation

	17
	Retrieve the name of the account
 currently executing the stored procedure.

	20–22
	Retrieve the employee record with
 the matching ID.

	24–28
	If the corresponding user is in
 the Payroll department or is a first- or second-level
 manager, then we return the employee salary
 unmasked.

	31–34
	Otherwise, return the data with
 the salary details masked.

Fred is a software developer with our company who should not
 be able to see employee salary details. When he executes the stored
 procedure, the salary details are masked out, as shown in Example 18-4.
Example 18-4. Using a stored procedure to restrict access to sensitive
 information
C:\>mysql -ufred -pfred -Dprod
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 21 to server version: 5.0.18-nightly-20051211-log
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CALL sp_employee_list(3);
+-------------+-----------+---------+
| surname | firstname | salary |
+-------------+-----------+---------+
RAYMOND	GOLDIE	XXXXXXX
RACE	ARLENA	XXXXXXX
HAGAN	LYNNA	XXXXXXX
MARSTEN	ALOYS	XXXXXXX
FILBERT	LEON	XXXXXXX
RAM	SANCHO	XXXXXXX
SAVAGE	SORAH	XXXXXXX
FLOOD	ULRIC	XXXXXXX
INGOLD	GUTHREY	XXXXXXX
WARNER	WORTH	XXXXXXX
LEOPARD	AUSTIN	XXXXXXX
ROBBINETTE	BRIAN	XXXXXXX
REUTER	LORIS	XXXXXXX
MITCHELL	HUGO	XXXXXXX

Fred is unable to select from the employees table directly, so there is no
 way for him to retrieve the employee salary data, as shown in Example 18-5.
Example 18-5. Direct access to the underlying tables is denied
mysql> SELECT * FROM employees;
ERROR 1142 (42000): SELECT command denied to user 'fred'@'localhost' for table
'employees'

Jane is a member of the Payroll department, so when she
 executes the procedure, she can see the salary details, as shown in
 Example 18-6.
Example 18-6. The stored procedure allows authorized users to view salary
 details
C:\>mysql -uJane -pJane -Dprod
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 21 to server version: 5.0.18-nightly-20051211-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CALL sp_employee_list(3);
+-------------+-----------+--------+
| surname | firstname | salary |
+-------------+-----------+--------+
RAYMOND	GOLDIE	53465
RACE	ARLENA	45733
HAGAN	LYNNA	85259
MARSTEN	ALOYS	49200
FILBERT	LEON	97467
RAM	SANCHO	58866
SAVAGE	SORAH	83897
FLOOD	ULRIC	84275
INGOLD	GUTHREY	60306
WARNER	WORTH	47473

Note that, like Fred, Jane may not directly access the
 employees table. Instead, she
 must call the sp_employee_list
 procedure when she wants to see the salaries for a department. If we
 move her to another department, she will automatically lose the
 ability to view these salary details.
We can also use definer rights programs to ensure that
 transactions applied to the database always conform to various
 business rules and regulatory compliance measures that we might have
 in place. Using a stored program to control all inserts into the
 sales table, for example, could
 be used to automate the maintenance of audit and summary tables. We
 saw an example of logging DML within a stored procedure in Example 18-2.

Stored Program or View?

It is sometimes possible to use a view rather than a stored
 program to implement some aspects of database security. For example,
 a user can select from a view even if he does not have access to the
 underlying tables, so with a view you can control which columns and
 rows a user can see.
Using CASE statements and
 WHERE clause conditions, it is
 often possible to create views that restrict access to only
 appropriate rows or—using updatable views—those that restrict
 modifications. For instance, the two views in Example 18-7 were designed to
 perform some of the security limitations provided by the stored
 procedure from Example
 18-3.
Definer Rights in N-tier
 Applications
In the days when client/server applications ruled the earth,
 end users were often given individual database accounts, and they
 authenticated themselves to the application by connecting to the
 database. In modern web-based or N-tier
 applications, users typically authenticate with a middle-tier
 application or web server, and all users share a pool of common
 "proxy" database connections.
The definer rights stored program security model was first
 defined during the client/server era, and it largely reflects this
 idea that the end user might actually know her database username
 and password. Nevertheless, the definer rights model still has a
 valid role in a web-based environment, since it helps limit the
 exposure if the proxy account is compromised.
In a modern application that uses proxy accounts, access to
 the password for the proxy account will be carefully restricted.
 The proxy account should generally be used only by the application
 server. If a malicious user obtains the password to the proxy
 account, however, he could then have unrestricted access to the
 underlying database tables.
By using stored programs to mediate between the application
 server and the database, we can carefully limit the activities
 that the proxy account can undertake. We can also implement
 auditing, alarming, and logging to help us identify any malicious
 use of this account.
Of course, you should very carefully secure an application's
 proxy database account under any scenario. But if you are careful
 to limit that proxy account to execution of application stored
 programs, you will also limit the damage a malicious user can
 inflict in a compromised scenario.

Example 18-7. Using a view to implement security policies
CREATE VIEW current_user_details_view AS
 SELECT departments.department_name,employees.manager_id
 FROM employees join departments using (department_id)
 WHERE db_user=convert(SUBSTR(USER(),1,INSTR(USER(),'@')-1) using latin1) ;

CREATE VIEW employees_view AS
 SELECT firstname,surname,salary,db_user,
 CASE WHEN u.department_name='PAYROLL' OR u.manager_id IN (0,1) THEN
 salary
 ELSE '0000000000'
 END CASE AS salary
 FROM employees e, current_user_details_view u ;

Using a view to implement these kinds of access restrictions
 is attractive, since the view implementation would allow the user
 more flexible query capabilities (aggregate functions, WHERE clause restrictions, etc.). On the
 other hand, as the security restrictions become more complex, it
 becomes increasingly difficult—and ultimately impossible—to create
 views to implement those restrictions. Finally, most organizations
 must ensure the integrity of transactions, and this cannot be
 encoded in view definitions.

Handling Invoker Rights Errors

When you create a stored program with invoker rights, you can
 be sure that the stored program will succeed only if the user
 executing the stored program has the necessary privileges. This
 means that you don't have to be particularly careful about who gets
 EXECUTE privileges to the
 program—the program will never let them do something that they
 didn't already have the privilege to do in native SQL. What this
 means, however, is that the program is now more likely to raise an
 exception at run-time, since we can't know in advance that the user
 has the required privileges.
The possibility of runtime security exceptions in invoker
 rights programs means that you will generally want to add handler
 logic to these programs. Consider the stored procedure shown in
 Example 18-8.
Example 18-8. Stored procedure using invoker rights
CREATE PROCEDURE sp_cust_list (in_sales_rep_id INT)
 SQL SECURITY INVOKER
BEGIN
 SELECT customer_id, customer_name
 FROM customers
 WHERE sales_rep_id=in_sales_rep_id;
END;

This stored procedure includes the SQL SECURITY INVOKER clause, so any user
 who invokes the stored procedure must have the SELECT privilege on the customers table. When Fred, who does not
 have this privilege, runs sp_cust_list, he will see the error
 message shown in Example
 18-9.
Example 18-9. Invoker privileges can lead to unhandled security-violation
 errors
mysql> CALL sp_cust_list(14);
ERROR 1142 (42000): SELECT command denied to
 user 'fred'@'localhost' for table 'customers'

Under some circumstances, throwing an unhandled exception in
 this way might be sufficient. For many applications, however, it
 will be necessary to trap the error and provide better information
 and guidance to the user. Consider the revised implementation of the
 sp_cust_list procedure, shown in
 Example 18-10.
Example 18-10. Handling security violations with invoker rights
 procedures
CREATE PROCEDURE sp_cust_list2 (in_sales_rep_id INT)
 SQL SECURITY INVOKER
BEGIN
 DECLARE denied INT DEFAULT 0;

 DECLARE command_denied CONDITION FOR 1142;
 DECLARE CONTINUE HANDLER FOR command_denied SET denied=1;

 SELECT customer_id, customer_name
 FROM customers
 WHERE sales_rep_id=14;

 IF denied =1 THEN
 SELECT 'You may not view customer data.'
 AS 'Permission Denied';
 END IF;
END;

Now when Fred runs this program, he is denied the ability to
 see the customer information, but at least gets a clearer
 explanation of the problem, as shown in Example 18-11.
Example 18-11. Handling security violations in a stored procedure
mysql> CALL sp_cust_list2(14);
+--+
| Permission Denied |
+--+
| You may not view customer data. |
+--+
1 row in set (0.00 sec)

Stored Programs and Code Injection

 SQL injection is the name given to
 a particular form of security attack in applications that rely on
 dynamic SQL. With dynamic SQL, the SQL statement is constructed,
 parsed, and executed at runtime. If that statement is pieced together
 from one or more fragments of SQL syntax, a malicious user could
 inject unintended and unwanted code for execution
 within the dynamic SQL framework.
For an example of code injection , consider the PHP code shown in Example 18-12. This code
 requests a department ID from the user (line 7) and then builds up a
 SQL statement to retrieve the names of all employees in that
 department (lines 24-35).
See Chapter 13 for a
 detailed discussion of interfacing between PHP and MySQL.
Example 18-12. PHP code susceptible to SQL injection
1 <html>
2 <title>Employee Query</title>
3 <h1>Employee Query</h1>
4
5 <FORM ACTION="<?php echo $_SERVER['PHP_SELF']; ?>" METHOD=POST>
6 <p>Enter Department Id:
7 <input type="text" name="department" size="60">
8 <input type="submit" name="submit" value="submit"><p>
9 </form>
10
11 <?php
12 require_once "HTML/Table.php";
13
14
15 /*Check to see if user has hit submit*/
16 if (IsSet ($_POST['submit'])) {
17 $dbh = new mysqli($hostname, $username, $password, $database);
18
19 /* check connection */
20 if (mysqli_connect_errno()) {
21 printf("Connect failed: %s\n", mysqli_connect_error());
22 exit ();
23 }
24 $sql="SELECT employee_id,surname,firstname FROM employees".
25 " WHERE department_id =".$_POST['department'];
26 print $sql;
27 if ($result_set = $dbh->query($sql)) {
28 $table =new HTML_Table('border=1');
29 $table->addRow(array('ID','Surname','Firstname'));
30 $table->setRowAttributes(0,array("bgcolor" => "silver"));
31
32 while ($row = $result_set->fetch_row()) {
33 $table->addRow(array($row[0],$row[1],$row[2]));
34 }
35 print $table->toHtml();
36 }
37 else {
38 printf("<p>Error retrieving stored procedure result set:%d (%s) %s\n",
39 mysqli_errno($dbh), mysqli_sqlstate($dbh), mysqli_error($dbh));
40 }
41
42
43 result_set->close();
44 $dbh->close();
45? >
46
47 </body></html>

Notice, however, that this program does not perform any
 validation of the user input; it is simply appended directly to the
 end of the SELECT statement. This
 careless method of construction allows a user to type in text that
 subverts the intention of the programmer, and—in this case—it causes
 the application to return data that was never intended. Figure 18-3 demonstrates this
 problem. The user enters UNION and
 SELECT clauses, and causes the
 application to return not just the names of employees for a specific
 department, but also the salaries of all employees in all
 departments.
[image: Using SQL injection to obtain employee salaries]

Figure 18-3. Using SQL injection to obtain employee salaries

The application intended to issue a SQL statement that looked
 something like this:
 SELECT employee_id,surname,firstname
 FROM employees
 WHERE department_id =1;
However, by "injecting" SQL into the department_id, the application was tricked
 into running this SQL instead:
 SELECT employee_id,surname,firstname
 FROM employees
 WHERE department_id =-1
 UNION
 SELECT salary,surname,firstname
 FROM employees
Using this technique, it would be possible for a malicious user
 to "coerce" the application to display data from any tables to which
 it has access, even potentially including internal MySQL tables such
 as mysql.user.
Although it is distressingly easy to create an application that
 is vulnerable to SQL injection, it is, thankfully, not all that
 difficult to immunize an application from such an attack. Essentially,
 SQL injection becomes possible when the application fails to validate
 user input before inserting that text into a SQL statement. So the
 simplest solution is often to validate that input. For instance, in
 Example 18-13, we check
 that the user input represents a numeric value before inserting it
 into the SQL.
Example 18-13. Using simple validation to protect against SQL
 injection
 $department=$_POST['department'];
 if (is_numeric($department)) {

 $sql="SELECT employee_id,surname,firstname FROM employees".
 " WHERE department_id = $department";
 if ($result_set = $dbh->query($sql)) {

Most of the APIs that support MySQL allow you to predefine
 parameters or "bind variables" to a SQL statement and to supply these
 just prior to execution of the SQL. These APIs will typically not
 allow the injection of SQL syntax into the resulting SQL and will
 often validate the data type of the user input. So, for instance, in
 Example 18-14, we use the
 bind_param() method of the mysqli PHP interface to accept only a
 numeric parameter. Even if the parameter were a string, it would be
 impossible to "inject" SQL syntax when using mysqli prepared SQL statements.
Example 18-14. Binding parameters to resist SQL injection
$sql="SELECT employee_id,surname,firstname FROM employees ".
 " WHERE department_id = ? ";
 $sth=$dbh->prepare($sql) or die($dbh->error);
 $sth->bind_param("i",$department);
 $sth->bind_result($employee_id,$surname,$firstname);
 $sth->execute() or die ($dbh->error);
 $table =new HTML_Table('border=1');
 $table->addRow(array('ID','Surname','Firstname'));
 $table->setRowAttributes(0,array("bgcolor" => "silver"));

 while ($sth->fetch()) {
 $table->addRow(array($employee_id,$surname,$firstname));
 }

Protecting Against SQL Injection with Stored Programs

MySQL stored programs provide yet another way to protect
 against SQL injection attacks. The CALL statement that is used to invoke
 stored programs cannot be modified by a UNION statement or other SQL syntax—it can
 only accept parameters to the stored program call. This makes a
 stored program call effectively immune to SQL injection—regardless
 of whether the application validates user input or uses parameter
 binding.
To illustrate, consider the short stored procedure in Example 18-15, which returns
 employee details for a specific department.
Example 18-15. Stored procedure to replace embedded SQL in PHP
CREATE PROCEDURE emps_in_dept(in_dept_id int)
 READS SQL DATA
BEGIN
 SELECT employee_id,firstname,surname
 FROM employees
 WHERE department_id=in_dept_id;
END;

We can use this stored procedure in our PHP program as the
 mechanism by which we retrieve our employee list, as shown in Example 18-16. This PHP code
 contains the same lack of input validation as our original example,
 and does not use parameter binding. Nevertheless, it is immune to
 SQL injection because the stored procedure can only accept a numeric
 input, and, additionally, the SQL statement within the stored
 procedure cannot be modified.
Example 18-16. Stored procedure calls are (usually) immune to SQL
 injection
 $department = $_POST['department'];
 $sql="CALL emps_in_dept($department)";
 if ($result_set = $dbh->query($sql)) {
 $table =new HTML_Table('border=1');
 $table->addRow(array('ID','Surname','Firstname'));
 $table->setRowAttributes(0,array("bgcolor" => "silver"));
 while ($row = $result_set->fetch_row()) {
 $table->addRow(array($row[0],$row[1],$row[2]));
 }
 print $table->toHtml();

Tip
Although there are many ways of structuring application code
 to withstand a SQL injection attack, stored programs that do not
 contain prepared statements are immune to SQL statement injection,
 and an application that interacts with the database only through
 these stored programs will also be immune to SQL injection.

SQL Injection in Stored Programs

There is, unfortunately, one circumstance in which a stored
 program itself might be vulnerable to a SQL injection attack: when
 the stored program builds dynamic SQL using a PREPARE statement that includes values
 passed into the stored program as parameters.
We looked initially at prepared statements in Chapter 5: using prepared
 statements, we can build dynamic SQL that potentially includes
 strings provided as parameters to the stored program. These
 parameter strings might include SQL fragments and, hence, make the
 program susceptible to SQL injection.
Consider the stored procedure shown in Example 18-17; for reasons
 known only to the author, the stored procedure builds the SQL
 dynamically and executes it as a stored procedure. Strangely, the
 author also used a very long VARCHAR parameter even though department_id is a numeric column.
Example 18-17. Stored procedure susceptible to SQL injection
CREATE PROCEDURE 'emps_in_dept2'(in_dept_id VARCHAR(1000))
BEGIN
 SET @sql=CONCAT(
 "SELECT employee_id,firstname,surname
 FROM employees
 WHERE department_id=",in_dept_id);
 PREPARE s1 FROM @sql;
 EXECUTE s1;
 DEALLOCATE PREPARE s1;
END;

This stored procedure is susceptible to exactly the same form
 of SQL injection attack as the PHP code shown in Example 18-12. For instance,
 we can extract employee details from the stored procedure by
 executing it as shown in Example 18-18.
Example 18-18. Injecting SQL into a stored procedure call
mysql> CALL emps_in_dept2("-1 UNION SELECT salary,surname,firstname
 FROM employees ");
+-------------+-----------+----------+
| employee_id | firstname | surname |
+-------------+-----------+----------+
105402	FERRIS	LUCAS
89949	KIPP	STAFFORD
77142	HOLMES	GUTHREY
86839	KNOX	TALIA
55638	MORALES	JOHN

If the PHP application relied on this stored procedure to
 retrieve department_ids, it would
 continue to be vulnerable to SQL injection attack.
SQL injection through stored programs can be serious, since
 stored programs that execute with definer rights can execute SQL not
 normally available to the user invoking the stored programs. Not
 only would the database be vulnerable to SQL injection attacks
 through a privileged account associated with a web application, but
 SQL could be injected by a nonprivileged user at the MySQL command
 line.
In this example, the use of dynamic SQL was unnecessary and
 arguably dangerous, since no validation of the input parameter was
 undertaken. In general, dynamic SQL inside of stored programs
 represents a significant security risk. We recommend the following
 policies to minimize your vulnerability:
	Use prepared statements inside of stored programs only
 when absolutely necessary.

	If you must use a prepared statement, and if that prepared
 statement includes strings provided as input parameters, make
 sure to validate that the strings are of the expected data type
 and length. For instance, in our previous example, had the input
 parameter been defined as an INTEGER, then the SQL injection would
 not be possible.

	Consider using invoker rights (SQL SECURITY INVOKER) when a stored
 program includes prepared statements. This limits your exposure,
 since the invoker will only be able to inject SQL that is within
 her security rights.

Conclusion

In this chapter we looked at the basic security permissions
 required for creating and executing stored programs and at how the
 SQL SECURITY clause affects the
 security context of an executing stored program.
By default—or if the SQL SECURITY
 DEFINER clause is specified—stored programs execute with the
 permissions of the account that created the
 stored program. This means that a database user can execute a stored
 program that can perform database operations not available to that
 user through normal SQL. You can use this feature to implement a
 scheme in which a user can manipulate the database through stored
 programs but has no privilege to manipulate the database through
 normal SQL. Restricting database access in this way through stored
 programs can improve database security, since you can ensure that
 table accesses are restricted to known routines that perform
 appropriate validation or logging. You can reduce your exposure should
 the database account involved be compromised.
If the SQL SECURITY INVOKER
 clause is specified, then the stored program will execute with the
 permissions of the account that is executing the stored program. In
 this case, an exception will be raised if the stored program attempts
 to execute a SQL statement that the invoker does not have permission
 to execute as native SQL.
Stored programs in MySQL 5.0 are implicitly resistant to SQL
 injection—unless they include dynamic SQL via prepared statements. We
 recommend that you exercise caution when using dynamic SQL in stored
 programs—take every precaution to ensure that the stored procedure or
 function is not vulnerable to malicious SQL injection. If prepared
 statements and dynamic SQL are necessary, then make sure to validate
 input parameters, and consider using the SQL
 SECURITY INVOKER mode to limit your exposure.

Chapter 19. Tuning Stored Programs and Their SQL

This chapter kicks off the set of chapters in this book that are
 concerned with optimizing the performance of your stored programs. Like
 any program, a stored program might be correct in all of its functional
 aspects, but still be considered a failure if it does not perform well.
 Performance tuning of MySQL stored programs is of particular importance
 because the stored program language is interpreted, and thus it does not
 benefit from the performance improvements that can be obtained by
 optimizing compilers such as the ones common in languages such as C and
 Java. (Strictly speaking, Java is also an interpreted language, but the
 Java JVM performs a number of sophisticated optimizations.) Stored
 programs also almost always involve significant database activity and
 therefore are quite likely to become a performance bottleneck for the
 application as a whole.
We believe that there are three main principles of stored program
 optimization:
	Optimize SQL
	The SQL inside of a stored program must be optimized if the
 stored program has any chance of running efficiently. Untuned SQL
 statements can easily take hundreds or even thousands of times
 longer to return results than well-tuned SQL statements, so we
 therefore recommend tuning the SQL inside a stored program before
 tuning the stored program code itself. We'll look at SQL tuning in
 detail in the next few chapters.

	Break up complex SQL
	Sometimes you can use stored programs to break up complex
 and hard-to-tune SQL statements into distinct, smaller statements
 that are easier to tune individually—both for the MySQL optimizer
 (the part of MySQL that determines how SQL should be executed) and
 for the programmer who is trying to tune the SQL. We'll look at
 these cases in Chapter
 22.

	Perform non-SQL optimization
	Finally, optimizations that are common and well known in
 other programming languages also apply to the MySQL stored program
 language. Loop structures, use of recursion, caching, and
 branching structures can all affect how fast the SQL will run.
 We'll examine how to optimize the non-SQL stored program code in
 detail in Chapter
 22.

In this chapter, we provide a brief overview of the way in which
 MySQL processes SQL statements, review the tuning tools at our disposal, and provide a brief overview of
 tuning. In subsequent chapters we will delve more deeply into the tuning
 of stored programs and the SQL statements they contain.
Why SQL Tuning Is So Important

 It might be surprising to you that a book dedicated to
 stored programming has such extensive coverage of SQL tuning . The reason for this is simple: we regard SQL tuning
 as an essential skill for anyone writing MySQL stored programs. The
 simple fact is this:
The vast majority of your stored program execution time is
 going to be spent executing SQL statements.

Furthermore, poorly tuned (or untuned) SQL can result in
 programs that are slower by orders of magnitude
 (e.g., thousands of times slower). Finally, untuned SQL almost never
 scales well as data volumes increase, so even if your program seems to
 run in a reasonable amount of time today, ignoring SQL statement
 tuning now can result in major problems later.
An Instructive Example

The following example demonstrates just how critical the role
 of SQL tuning is in overall system performance. An application
 executes a query (which might even be implemented within a stored
 program) that involves a simple join between two tables, as shown
 here:
 SELECT sum(sale_value)
 FROM ta_10000 a,tb_10000 b
 WHERE a.sales_id=b.sales_id;
The tables grow in size with each day'accumulation s of data.
 Initial performance is satisfactory, but within a few days
 performance is questionable, and within a week the application is
 virtually unusable. You are called in to examine the situation. When
 you examine the relationship between table size and elapsed time,
 you discover the relationship shown in Figure 19-1.
Not only is the performance of the query growing worse as the
 tables grow, but the rate of increase is itself accelerating.
 Extrapolating the performance trend, you predict that by the time
 the tables reach their estimated peak sizes of 1,000,000 rows each,
 the join will take more than 20 hours to complete!
[image: Response time and table row counts—before tuning]

Figure 19-1. Response time and table row counts—before tuning

After examining the SQL statements involved in the
 application, the problem—and the solution—seems obvious. An index is
 needed to support the join, and you can create one with the
 following statement:
 CREATE INDEX i_tb_1000 ON tb_1000 (sales_id)
Once the index is created, the performance trend adopts the
 profile shown in Figure
 19-2.
[image: Table row counts versus elapsed time—after tuning]

Figure 19-2. Table row counts versus elapsed time—after tuning

The performance improvement is remarkable—the elapsed time for
 the query has been reduced by more than 99%, and the SQL is more
 than 100 times faster. Furthermore, the SQL will now scale
 appropriately as the volumes of data in the tables increase.
No amount of server tuning, stored program tuning, or hardware
 upgrades could have obtained this improvement. Any such efforts
 would also have been ultimately futile, because the exponential
 degradation would eventually overwhelm any performance improvements
 gained by other measures. For these reasons, SQL tuning should always be
 performed before attempting any other optimization.
Tip
SQL tuning is the most important aspect of overall MySQL
 tuning. Ensure that SQL is tuned before starting any other
 optimization exercises.

How MySQL Processes SQL

 The following sections provide a brief overview of the
 parsing and caching steps that MySQL undertakes as it processes
 a SQL statement.
Parsing SQL

A SQL statement sent to the MySQL server must first be
 parsed. Parsing involves the following
 actions:
	Ensure that the SQL statement contains valid
 syntax.

	Check that that you have been granted appropriate access
 to the objects involved.

	Confirm that all required objects exist.

	Determine an execution plan for the SQL statement.

The execution plan represents MySQL's
 strategy for retrieving or modifying the data specified by the SQL
 statement. The optimizer is that part of the
 MySQL code that is responsible for making these decisions. Here are
 some of the questions that the optimizer needs to ask before it can
 come up with its plan:
	Is there a way to rewrite the SQL so that it will execute
 more efficiently?

	Are there any indexes available to retrieve the required
 data?

	Will using these indexes improve performance? If so, which
 of the possible indexes should be used?

	If multiple tables are to be processed, in what order
 should the tables be processed?

Compared to some of the major relational databases (Oracle,
 SQL Server, DB2), MySQL's optimizer might seem, at first glance, to
 be relatively simplistic. MySQL's optimizer is, however, extremely
 effective. You will only rarely need to rewrite a SQL statement to
 make it perform more efficiently—the optimizer will usually make the
 right decision. Since the optimizer cannot create "missing" indexes
 that might make your statement run faster, the most important thing
 you can do to assist the optimizer is to create a good set of
 supporting indexes on your tables .
Understanding how the optimizer makes its decisions will help
 you to make sound database design and SQL programming decisions. In the next two chapters, we
 will look at specific SQL tuning scenarios, explain how the
 optimizer deals with each of these scenarios, and discuss techniques
 for optimizing the SQL involved.

Caching

MySQL supports some in-memory structures (also known generally
 as caches), which can improve the performance of SQL
 statements.
Buffer pool and key cache

Almost every SQL statement needs to work with data from the
 database—either to return it to the calling program or to modify
 it as instructed by an INSERT,
 UPDATE, or DELETE statement. In many cases,
 however, MySQL can obtain this data without the overhead of disk
 I/O by retrieving the required data from one of a number of
 caches.
For MyISAM tables, MySQL relies on the operating system to
 cache the data contained in the individual files that make up the
 tables. All operating systems include read caches, and if you read
 from a MyISAM file more than once, there is a chance that the data
 will still be in the operating system cache when you try to read
 it a second time. You will usually have very little control over
 the size of the OS read cache, since it is normally managed by the
 operating system itself.
MyISAM does, however, have its own cache for index blocks.
 This is controlled by the startup parameter KEY_BUFFER_SIZE.
The InnoDB storage engine maintains a single cache for both
 index and table blocks. This is controlled by the parameter
 INNODB_BUFFER_POOL_SIZE.
Correctly sizing these two buffers can help reduce the
 amount of disk I/O required to satisfy the data requirements of
 your SQL statements. In general, you should allocate as much
 memory as possible to these caches. However, beware of allocating
 too much memory for the MyISAM key buffer—you
 might inadvertently starve the OS read buffer and reduce the
 amount of memory available for caching table data.

Table cache

The table cache maintains metadata
 about tables in memory and also contains the link to the storage
 handler's physical representation of the table. In MyISAM, these
 links are file descriptors pointing to the .frm files and the .MYD
 files. Each session that needs to access a table will require its
 own table cache entry. The default value of TABLE_CACHE (typically 256) is often too
 small for systems with large numbers of tables and/or high numbers
 of concurrent users.

Query cache

Before MySQL goes to the trouble of parsing a SQL
 statement, it will look in the query cache to
 see if it already has in memory a copy of the SQL statement and
 its result set. If it finds a match, it can return the result set
 directly from the query cache. This "shortcut" can greatly improve
 query performance. So what are the criteria for determining a
 match?
In order for MySQL to take advantage of a cached result set,
 the new SQL statement must match exactly the
 statement associated with the result set, including whitespace and
 comments . If the same logical statement is written more
 than once within an application, there is a very good chance that
 the statements will not be physically identical, thus negating a
 key performance enhancement.
In addition, if any table referred to in the statement is
 modified, then that statement and its result set will be flushed
 from the query cache. This behavior makes the query cache most
 useful for applications or tables that are read-intensive. If a
 table is being modified many times a second—as might be the case
 in an OLTP application—then it is unlikely that queries against
 that table are going to remain in cache long enough to be useful.
 Remember: any modification to the table will cause queries using
 that table to be flushed—even if the modification does not impact
 the rows returned by the query.
Some SQL statements cannot be cached at all—particularly if
 they contain a function that is not guaranteed to return the same
 result every time it is called. For instance, the CURDATE function will return a different
 value (the current date-time) every time it is called. So if you
 include a call to CURDATE in
 your query, it will not be cached.
The query cache will be most effective when at least some of
 the following are true:
	The SQL statements being cached are expensive to execute
 (they may require scans of big tables or sort
 operations).

	The result sets are relatively small (otherwise, the
 result set may not fit in the cache).

	The SQL statements are executed with some frequency
 (otherwise, the result set may be flushed from the cache
 before the SQL is re-executed).

	The underlying tables are rarely modified.

You can control the size of the cache with the SET GLOBAL query_cache_size=
 size statement.
You can view statistics about query cache usage with the
 SHOW STATUS LIKE 'qcache%';
 statement.
Stored programs can benefit from the query cache. A stored
 program that returns a result set will be cached, and any
 subsequent execution of that program can be satisfied using the
 query cache. However, SQL statements within stored programs cannot
 currently be satisfied from the cache (we might imagine that when
 they execute within the database, they are executing "behind the
 cache").

Table statistics

Like most query optimizers, MySQL maintains
 statistics about table and index data so that it can use this
 additional information to formulate the most efficient execution
 plan.
You can view the statistics that MySQL keeps for a table
 with the SHOW TABLE STATUS
 statement. Example
 19-1 shows an example of using this statement.
Example 19-1. Viewing table statistics
mysql> SHOW TABLE STATUS LIKE 'sales' \G
*************************** 1. row ***************************
 Name: sales
 Engine: InnoDB
 Version: 9
 Row_format: Fixed
 Rows: 2500137
 Avg_row_length: 114
 Data_length: 285016064
Max_data_length: 0
 Index_length: 0
 Data_free: 0
 Auto_increment: 2500001
 Create_time: 2004-12-28 10:47:35
 Update_time: NULL
 Check_time: NULL
 Collation: latin1_swedish_ci
 Checksum: NULL
 Create_options:
 Comment: InnoDB free: 1766400 kB
1 row in set (0.60 sec)

You can view the statistics that MySQL keeps for the indexes
 on a table with the SHOW
 INDEXES statement, as shown in Example 19-2.
Example 19-2. Viewing index statistics
mysql> SHOW INDEXES FROM sales \G
*************************** 1. row ***************************
 Table: sales
 Non_unique: 0
 Key_name: PRIMARY
Seq_in_index: 1
 Column_name: SALES_ID
 Collation: A
 Cardinality: 2500137
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
1 row in set (0.18 sec)

The two most important columns in the output from these
 commands are Rows and Avg_row_length from SHOW TABLE STATUS and Cardinality from SHOW INDEXES.
 Cardinality reports the number of distinct
 rows in the index—this helps MySQL to determine how efficient the
 index will be in retrieving rows. Indexes that have a high
 cardinality -to-rows ratio are often called
 selective indexes.
These statistics are created by MySQL (or the storage
 engine) during certain operations such as bulk loads/deletes,
 index creation, and ALTER TABLE
 operations. You can request that MySQL update the statistics with
 the ANALYZE TABLE statement. If your database is subject to large
 fluctuations in data volumes, you may want to run ANALYZE TABLE periodically, but be aware
 that this statement places a read lock on the table, preventing
 concurrent update, and therefore should not be run during times of
 heavy concurrent updates activity.
The optimizer also obtains additional statistics at runtime
 by probing a table's indexes to determine the
 relative cardinality of an index against the
 query values requested. Through this analysis, the optimizer may
 determine that although an index has low overall cardinality, it
 is highly selective for the values provided in the query.
Suppose, for instance, that we have an index on gender
 ('male', 'female', 'unsure'). MySQL will ignore this index
 for a query that requests all males or all females, but will
 choose to use the index for a query of all those unsure of their
 gender. Since this group comprises only a small proportion of the
 rows, the index will, in this case, help MySQL locate the total
 result set quickly. We'll look in detail in the next chapter at
 how MySQL chooses indexes.

SQL Tuning Statements and Practices

 MySQL provides several statements and utilities that assist with tuning SQL, and you need to be familiar with these resources.
 The statements and utilities are described in the following
 sections.
EXPLAIN Statement

The most important SQL tuning statement in the MySQL language
 is EXPLAIN. EXPLAIN exposes the execution plan that
 the optimizer will use to resolve a particular SQL statement.
 Without EXPLAIN, you are doomed
 to trial-and-error tuning.
EXPLAIN has a simple
 syntax:
 EXPLAIN sql_text;
EXPLAIN returns a result
 set consisting of at least one row for each table referenced in the
 SQL. Additional rows might be returned to indicate how subqueries or
 derived tables are used in the query. Example 19-3 is a simple
 demonstration of an explain plan for a two-table join (we used the
 \G option to print the output
 with each column on a separate line).
Example 19-3. Example of EXPLAIN output
mysql> EXPLAIN SELECT customer_name
 -> FROM employees join customers
 -> ON(customers.sales_rep_id=employees.employee_id)
 -> WHERE employees.surname='GRIGSBY'
 -> AND employees.firstname='RAY' \G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: employees1
 type: ref
possible_keys: PRIMARY,i_employees_name3
 key: i_employees_name4
 key_len: 80
 ref: const,const
 rows: 15
 Extra: Using where; Using index6
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: customers2
 type: ref
possible_keys: i_customers_sales_rep
 key: i_customers_sales_rep8
 key_len: 9
 ref: sqltune.employees.EMPLOYEE_ID7
 rows: 55589
 Extra: Using where
2 rows in set (0.04 sec)

Let's take a look at the most important pieces of information
 from these plans. Numbers used in the explanation below correspond
 to superscripts in the EXPLAIN
 output above.
	For joins, the order of the rows output by EXPLAIN corresponds to the join order,
 so the presence of the employees table in the first row
 indicates that employees was
 the first table in the join.

	customers is the second
 table in the join.

	MySQL had a choice between the primary key index and the
 i_employees_name
 index.

	MySQL chose the i_employees_name index to retrieve
 rows from employees. This
 index was on (surname,
 firstname).

	MySQL has determined that it will fetch only a single row
 in this stage of the query (e.g., it determined that there was
 only one employees row with
 that particular surname+firstname combination).

	Because the columns in the i_employees_name index were the only
 employees columns included in
 the SQL, MySQL was able to satisfy this part of the query using
 the index alone—accessing rows in the table itself was
 unnecessary.

	MySQL was required to find rows in the customers table that matched specific
 values of employees.employee_id.

	MySQL used the i_customers_sales_rep index to
 retrieve these rows (this was an index on customers.sales_rep_id).

	MySQL expected to retrieve about 5558 rows from customers. The value here refers to
 the number of rows that are expected to be processed each time
 this step is executed—which, in this case, is only once.

We'll look at a variety of EXPLAIN outputs for common query scenarios
 in the next few chapters. For now, the main thing to recognize and
 accept is that if you are going to be tuning SQL statements, you
 will need to get familiar with the EXPLAIN statement and learn how to
 interpret the EXPLAIN
 output.
Tip
The EXPLAIN statement is
 the primary tool in your SQL tuning toolbox. You should become
 competent in the interpretation of EXPLAIN output.

EXPLAIN and Stored Programs

Unfortunately, there is no way to directly obtain EXPLAIN output for the SQL statements
 inside stored programs. EXPLAIN
 will generate an error if asked to explain a CALL statement or a stored program
 name.
We hope that this restriction will be relaxed in future
 releases. In the meantime, to tune the SQL in your stored programs,
 you need to work with the SQL outside of the stored program and only
 add it to the program when you are satisfied that it is
 optimized.

Details of the EXPLAIN Output

The output from the EXPLAIN
 statement consists of lines containing the following columns:
	id
	Identifies the individual SELECT statement within a SQL
 statement that contains multiple SELECT clauses. There will be
 multiple SELECT statements
 in SQL statements that contain subqueries, in-line views, or
 UNION operations. All rows
 in the EXPLAIN output that
 have the same ID will belong to the same SELECT statement.

	select_type
	This column identifies the type of the SELECT statement responsible for
 this step. Table
 19-1 lists the possible values.
Table 19-1. Possible values for the select_type column of the
 EXPLAIN statement output
	select_type
	Explanation

	SIMPLE
	A simple SELECT statement that does
 not involve either subqueries or UNIONs.

	PRIMARY
	If the SQL contains
 subqueries or UNIONs, PRIMARY indicates the
 outermost SQL. PRIMARY could be the
 SELECT statement
 that contains subqueries within it or the first
 SELECT in a
 UNION.

	UNION
	The second or subsequent
 SELECT statements
 contributing to a UNION
 operation.

	UNION
 RESULT
	The result set of a UNION
 operation.

	SUBQUERY
	A subquery that returns rows
 that are not "dependent" on the rows in the outer
 SELECT. In
 practice, this means that the subquery does not
 contain references to columns in other SELECT
 statements.

	DEPENDENT
 SUBQUERY
	A subquery whose results are
 dependent on the values in an outer SELECT. This is typical of
 EXISTS subqueries
 and of IN
 subqueries (which MySQL rewrites as EXISTS).

	DEPENDENT
 UNION
	The second or subsequent
 SELECT in a
 UNION that is
 dependent on rows from an outer SELECT.

	DERIVED
	 SELECT that appears within a
 subquery within the FROM clause of another
 SQL.

	table
	Indicates the name of the table involved in this step.
 If the table is aliased within the SQL statement, then the
 name of the alias rather than the name of the table will be
 reported.

	type
	Indicates the method by which rows will be selected from
 the table involved. Table 19-2 shows the
 possible values for the type column.
Table 19-2. Possible values for the type column of the EXPLAIN
 statement output
	type
	Explanation

	all
	All rows in the table
 concerned will be read. This occurs primarily when no
 suitable index exists to retrieve the rows, or when
 MySQL determines that a full scan of the table will be
 less expensive than an index lookup.

	const
	An index is used to retrieve
 all values from the table matching a constant value
 supplied in the WHERE clause.

	eq_ref
	An index is used to retrieve
 all rows from the table that match the rows supplied
 by a previous SELECT. eq_ref is typically seen in
 conjunction with a well-optimized, indexed join.
 eq_ref indicates
 that all parts of a unique or primary key index are
 used.

	ref
	 Like eq_ref except that either
 only part of the index can be used or the index is not
 unique or primary.

	ref_or_null
	 Like ref except that the
 condition also includes a search for null
 values.

	index
 merge
	 Occurs when MySQL merges
 multiple indexes to retrieve the
 results.

	unique_subquery
	An index lookup is used to
 satisfy the result of a subquery.

	range
	An index is used to retrieve
 a range of values from the table. This occurs
 typically when >, <, or BETWEEN operators are
 involved.

	index
	A full scan of the index is
 undertaken to find the necessary rows.

	possible_keys
	Lists all of the keys (indexes) that MySQL considered as
 having potential to resolve this step. If an index is listed
 here, but is not used to resolve the step, you can consider
 using optimizer hints to force or encourage the use of the
 index. If the index is not listed, then in all probability
 MySQL cannot use it.

	key
	Indicates the key (index) that MySQL used to resolve the
 query.

	key_len
	Shows the length of the columns in the index used to
 resolve the query. If there is more than one column in the
 index, key_len might
 indicate that only part of the index is used.

	ref
	Shows which columns are used to select rows from the
 table. ref may list columns
 from other tables (join columns from other tables) or the word
 const if a constant value
 will be used (this constant value might have come from a
 WHERE clause literal, or
 might have been obtained earlier in the query
 execution).

	rows
	Indicates the number of rows that MySQL estimates will
 be processed by this step.

	Extra
	Contains additional information about the execution
 step. Possible values for Extra are shown in Table 19-3. Multiple
 values from this column may appear in the Extra column, separated by
 semicolons.
Table 19-3. Possible values for the extra column of the EXPLAIN
 statement output
	Extra
	Explanation

	distinct
	MySQL will stop searching
 for more rows after the first match is
 found.

	not
 exists
	Occurs in a LEFT JOIN when there is an
 additional WHERE
 clause condition that indicates that the WHERE clause condition will
 never be satisfied. A LEFT
 JOIN with an IS
 NULL condition will generate this output.
 This allows the optimizer to eliminate the table from
 further processing.

	range checked
 for each record
	There is no good
 general-purpose index to support a join. MySQL will
 determine on a row-by-row basis whether to use an
 index and/or which index to use.

	Using
 filesort
	MySQL needs to return rows
 in order, and no index is available to support that
 ordering. MySQL will need to sort the rows and may
 need to write to disk during that sorting. Even if
 there is sufficient memory to avoid a disk sort, you
 will still see this tag if a sort is
 necessary.

	Using
 index
	This step could be resolved
 by reading an index alone. Typically, this occurs when
 all of the columns required to resolve the step are
 present in an index.

	Using index for
 group-by
	Same as
 Using index, but
 used to support a GROUP
 BY operation.

	Using
 temporary
	A temporary table is created
 to hold intermediate results. Often seen in
 conjunction with using
 filesort.

	Using
 where
	The results returned by this
 step are filtered to satisfy the WHERE clause
 condition.

	Using
 sort_union
	Similar to using union except that the
 rows had to be sorted before the UNION could be performed,
 usually because range conditions are
 involved.

	Using
 union
	A form of index merge in
 which rows that appeared in any of the index scans are
 returned. Typically used to support WHERE clause conditions that
 include OR
 conditions.

	Using
 intersect
	A form of index merge in
 which only the rows appearing in all of the index
 scans are returned. Typically used to support WHERE clause conditions that
 include only AND
 conditions.

Extended EXPLAIN

An undocumented feature of the EXPLAIN statement can be used to reveal
 the rewrites that MySQL performs on a statement
 prior to execution.
If you issue the statement EXPLAIN
 EXTENDED sql, followed by SHOW WARNINGS, MySQL will print the SQL
 that it actually executes, including any rewrites applied to the SQL
 by the optimizer. For instance, in Example 19-4, we see how MySQL
 rewrites an IN subquery to an
 EXISTS subquery.
Example 19-4. Using EXPLAIN EXTENDED
mysql> EXPLAIN EXTENDED SELECT COUNT(*) FROM ta_5000 WHERE sales_id IN (SELECT sales_
id FROM tb_5000)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: ta_5000
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 5131
 Extra: Using where
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: tb_5000
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4985
 Extra: Using where
2 rows in set, 1 warning (0.04 sec)

mysql> SHOW WARNINGS \G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select count(0) AS 'count(*)' from 'sqltune'.'ta_5000' where <in_optimizer>
('sqltune'.'ta_5000'.'SALES_ID',<exists>(select
1 AS 'Not_used' from 'sqltune'.'tb_5000' where (<cache>('sqltune'.'ta_5000'.
'SALES_ID') = 'sqltune'.'tb_5000'.'SALES_ID')))
1 row in set (0.05 sec)

Most of the time, MySQL rewrites are not particularly
 significant. However, if you are completely at a loss to understand
 MySQL's refusal to use an index or some other execution plan
 decision, examining the rewrite might be useful.

Optimizer Hints

Optimizer hints are instructions that you
 can embed in your SQL that do not change the meaning of the SQL, but
 rather instruct or suggest to the optimizer how you would like the SQL to be executed.
Most of the time, you will not need to add hints. In fact,
 hints can be dangerous because they limit the choices the optimizer
 has available, and if data in the tables change or if new indexes
 are added to the table, MySQL may be unable to adapt because of your
 hints. However, there definitely will be situations where you will
 discover that the optimizer has made a less than perfect decision
 and you will want to give the optimizer specific
 instructions.
Table 19-4
 lists the commonly used optimizer hints . We will see examples of each of these hints in the
 next two chapters.
Table 19-4. MySQL optimizer hints
	Hint
	Where it appears
	What it does

	STRAIGHT_JOIN
	After the SELECT clause
	Forces the optimizer to join the
 tables in the order in which they appear in the FROM clause. Use this if you want
 to force tables to be joined in a particular
 order.

	USE
 INDEX(index
 [,index...])
	After a table name in
 the FROM
 clause
	Instructs MySQL to only consider
 using the indexes listed. MySQL may choose to use none of
 the indexes if it calculates that using them would not be
 faster than scanning the entire table.

	FORCE
 INDEX(index
 [,index...])
	After a table name in
 the FROM
 clause
	Instructs MySQL to use one of the
 indexes listed. This differs from USE INDEX in that MySQL is
 instructed not to perform a table scan of the data unless it
 is impossible to use any of the indexes
 listed.

	IGNORE
 INDEX(index
 [,index...])
	After a table name in
 the FROM
 clause
	Instructs MySQL not to consider
 any of the listed indexes when working out the execution
 plan.

Measuring SQL and Stored Program Execution

When we execute a SQL statement from the MySQL command line,
 MySQL is kind enough to report on the elapsed time taken to execute
 the statement:
 mysql> CALL TestProc1();
 Query OK, 0 rows affected (9.35 sec)
Elapsed time is a good first measurement of SQL or stored
 program performance, but there are lots of reasons why elapsed time
 might vary between runs that may have absolutely nothing to do with
 how well the SQL statement is optimized:
	Other users may be running jobs on the host while we
 execute our SQL statements; we will be contending with them for
 CPU, disk I/O, and locks.

	The number of physical I/Os necessary to execute our
 statement will vary depending on the amount of data cached in
 the operating system, the MyISAM key cache, the InnoDB buffer pool, and/or some other storage
 engine-specific cache.

For these reasons, it is sometimes better to obtain additional
 metrics to work out whether our tuning efforts are successful.
 Useful execution statistics can be obtained from the SHOW STATUS statement, although the level of detail will vary
 depending on our storage engine, with InnoDB currently offering the
 most comprehensive selection of statistics.
Generally, we will want to compare before and after variables
 for each statistic and—because the statistics are sometimes computed
 across all sessions using the MySQL server—ensure that our session
 has exclusive use of the server while the statement runs.
In Example 19-5,
 we calculate the number of logical and physical reads performed
 while counting the number of rows on the InnoDB-based sales table. Logical reads are the number
 of block requests from the InnoDB buffer pool, while physical reads
 reflect the number of blocks that actually had to be read from
 disk.
Example 19-5. Examining InnoDB execution statistics before and after SQL
 statement execution
mysql> /* Logical reads before execution*/
SHOW STATUS LIKE 'Innodb_buffer_pool_read_requests';
+----------------------------------+-------+
| Variable_name | Value |
+----------------------------------+-------+
| Innodb_buffer_pool_read_requests | 598 |
+----------------------------------+-------+
1 row in set (0.01 sec)

mysql> /* Physical reads before execution*/
SHOW STATUS LIKE 'Innodb_data_reads';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Innodb_data_reads | 79 |
+-------------------+-------+
1 row in set (0.01 sec)

mysql>
mysql> SELECT count(*) from sales;
+----------+
| count(*) |
+----------+
| 2500000 |
+----------+
1 row in set (27.67 sec)

mysql>
mysql> /* Logical reads after execution*/
SHOW STATUS LIKE 'Innodb_buffer_pool_read_requests';
+----------------------------------+--------+
| Variable_name | Value |
+----------------------------------+--------+
| Innodb_buffer_pool_read_requests | 365177 |
+----------------------------------+--------+
1 row in set (0.46 sec)

mysql> /* Physical reads after execution*/
SHOW STATUS LIKE 'Innodb_data_reads';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
| Innodb_data_reads | 17472 |
+-------------------+-------+
1 row in set (0.01 sec)

Subtracting the before values from the after values gives us a
 logical read count of 364,579 and a physical read count of 17,393.
 We also note the elapsed time of 27.67 seconds.
The next time we execute this query, we might see a lower
 physical read count and a lower elapsed time because the data we
 need is already in cache. However, we would not expect the logical
 read count to change unless the data in the table was changed. This
 makes the logical read statistics (Innodb_buffer_pool_read_requests) arguably
 the most useful statistics for determining if our SQL tuning efforts
 have been successful.
Table 19-5
 shows the SHOW STATUS variables
 that are most useful for measuring SQL execution performance.
Table 19-5. SHOW STATUS statistics that are useful when measuring SQL
 performance
	SHOW STATUS
 statistic
	Explanation

	Innodb_buffer_pool_read_requests
	Number of requests from the InnoDB
 buffer pool. This statistic is sometimes called
 logical reads since it reflects the
 absolute number of data reads required to satisfy a query.
 This value will remain constant between runs provided that
 our data does not change. If we observe a reduction in this
 statistic, then we have almost certainly improved the
 performance of our query.

	Innodb_data_reads
	Number of blocks from disk that
 InnoDB had to read to execute the query. If the cache is
 empty, then this value will be equal to Innodb_buffer_pool_read_requests.
 If all of the required blocks are in the cache, then this
 statistic will be 0. Usually, the value will be somewhere in
 between. If two executions of the same SQL have different
 response times, we can look at this statistic to determine
 if the difference is because one execution required more
 physical I/O[a].

	Innodb_rows_read
	Number of rows read by InnoDB to
 satisfy the query. For some SQL statements, we may see
 excessive values for this statistic, which generally
 indicates that the SQL is inefficient (because it is
 accessing the same rows twice, or because it is accessing
 more rows than are required).

	Last_query_cost
	Optimizer's "cost" estimate for
 the last SQL executed. Unlike the other metrics, this
 statistic does not require us to have to calculate a delta
 value. Higher costs indicate that the optimizer thinks the
 SQL will take longer to run.

	Sort_rows
	Number of rows that had to be
 sorted.

	Sort_merge_passes
	Number of disk sort "merge runs"
 that had to be performed. The fewer merge runs, the faster
 the sort. Chapter 21
 describes sort optimization in detail.

	[a] For example, if we execute a new SQL statement
 twice, the second execution will usually have a lower
 elapsed time because the first execution brings the
 required blocks into the InnoDB buffer pool or the
 MyISAM key cache.

The Slow Query Log

One way to identify SQL statements or stored programs that may
 need tuning is to enable the MySQL slow query
 log. We can do this by adding the following lines to our
 MySQL initialization files:
 log_slow_queries
 long_query_time=N
This will cause MySQL to write any queries that exceed an
 elapsed time exceeding N seconds to a log
 file. The log file can be found in the MySQL data directory and is
 named hostname-slow.log. For each
 SQL statement identified, MySQL will print the SQL statement along
 with a few execution statistics, as shown in Example 19-6.
Example 19-6. Example of slow query log contents
Time Id Command Argument
Time: 050214 23:42:30
User@Host: root[root] @ localhost [127.0.0.1]
Query_time: 67 Lock_time: 0 Rows_sent: 1 Rows_examined: 101199
use sqltune;
select count(*) from customers where contact_surname not in (select surname from
employees);

The slow query log execution statistics are not particularly
 enlightening, and there is no EXPLAIN output, so we would normally paste
 the SQL into our MySQL client for further analysis.
Starting with MySQL 5.1.6, the slow query log can be directed
 to the database table mysql.slow_log. This allows us to more
 easily access the information from MySQL clients and gives us the
 power to analyze the information using SQL statements. We enable
 logging to this table by specifying log_output=TABLE in our initialization
 file.

About the Upcoming Examples

 For every significant tuning principle in the following
 chapters, we have provided at least one benchmarked example to
 illustrate the performance gains that can be obtained. However, you
 should be aware of the following:
	Any example is just that—an example. Your real-life
 performance might not show the same improvements that we obtained
 in our tests, and indeed you might find that some of the
 techniques shown do not work for you at all. Differences in data
 volumes and distributions, the MySQL version, and the storage
 engine you are using—as well as many other factors—might result in
 significantly different outcomes. Nevertheless, the principles we
 outline are fairly general-purpose and should work for a wide
 range of applications and data types.

	All of our examples were done using MySQL 5.0 with either
 the InnoDB or MyISAM storage engine (with the InnoDB engine being
 our default). Many of the optimizations involved (index merges,
 for instance) appeared only in 5.0, and you will certainly see
 different results if you use a different storage engine such as
 HEAP or BDB.

	We looked only at "standard" SQL that is common to all of
 the storage engines. We felt that specialized operations—such as
 full text search or spatial queries—were beyond the scope of this
 book, since our intention is to provide a foundation in SQL tuning
 with respect to stored program development only.

We used a Perl program (MyTrace.pl) to perform our tests. This
 program can take a normal SQL file, such as you might submit to the
 MySQL command-line client, and it generates several varieties of
 performance reports that we used to display the execution plans and
 the performance characteristics of our examples.
We could have used the MySQL command line to do our tests, but
 we decided to develop this utility for a number of reasons:
	The EXPLAIN output is a
 bit awkward. When the output is printed one line per row, the
 output can become garbled when wrapped to the column length. If
 the output is printed one line per column (with the \G option), then the output appears very
 verbose. Either way, the output is hard to read. There is also no
 way to select which columns to display in the output.

	It's rather difficult to obtain the changed values from the
 SHOW STATUS statement that can
 reveal useful metrics such as logical or physical reads.

	For benchmarking purposes, we wanted to do things like
 averaging statistics over a number of executions, measuring
 statistics only on a second or subsequent execution so as to avoid
 discrepancies caused by caching of data.

	The utility was capable of generating comma-separated output
 that we could easily load into Excel to generate charts and
 perform analyses.

MyTrace.pl provides modified
 formats for EXPLAIN output and
 these formats are used throughout the next few chapters. We think
 you'll find this format easier to read and understand. For instance,
 whereas in the MySQL command-line client you might generate EXPLAIN output that looks like this:
 mysql> EXPLAIN EXTENDED SELECT COUNT(*) FROM ta_5000
 where sales_id in (select sales_id from tb_5000)\G
 *************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: ta_5000
 type: ALL
 possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 5131
 Extra: Using where
 *************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: tb_5000
 type: ALL
 possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4808
 Extra: Using where
 2 rows in set, 1 warning (0.01 sec)
we would show the EXPLAIN in
 a more truncated format, as follows:
 Short Explain

 1 PRIMARY select(ALL) on ta_5000 using no key
 Using where
 2 DEPENDENT SUBQUERY select(index_subquery) on tb_5000 using i_tb_5000
 Using index
or in a more extended format like this:
 Explain plan

 ID=1 Table=a Select type=SIMPLE Access type=ALL Rows=5158
 Key= (Possible=)
 Ref= Extra=
 ID=1 Table=b Select type=SIMPLE Access type=ref Rows=1
 Key=i_tb_5000 (Possible=i_tb_5000)
 Ref=sqltune.a.SALES_ID Extra=Using index
The output also includes timings for each stage of statement
 execution and details of any SHOW
 STATUS variables that changed during execution:
 Phase Elapsed (s)

 Parse 0.0001
 Exec 1.3808
 Fetch 0.0001

 Total 1.3810

 Statistic Value

 Bytes_received 99
 Bytes_sent 4862
 Com_select 1
 Handler_read_first 1
 Handler_read_key 5003
 Handler_read_rnd_next 5001
 Innodb_buffer_pool_pages_data 57
 Innodb_buffer_pool_pages_misc 7
 Innodb_buffer_pool_read_requests 15217
 Innodb_buffer_pool_reads 57
 Innodb_data_read 933888
 Innodb_data_reads 57
 Innodb_pages_read 57
 Innodb_rows_read 10000
 Questions 2
 Select_scan 1
 Table_locks_immediate 2
 Uptime 3
You may find the MyTrace.pl
 utility useful. You can find documentation and download instructions
 for this utility at this book's web site.

Conclusion

There is nothing to be gained by trying to optimize a stored
 program without first optimizing the SQL statements that it contains.
 This chapter, therefore, intended to make you familiar with some basic
 principles of tuning MySQL stored programs and the SQL statements
 within those programs. With this knowledge, you will be able to better
 absorb the more specific tuning advice in the following
 chapters.
Remember that the performance of individual SQL statements can
 vary substantially, at least in part depending on whether the
 statement and/or the data it identifies resides in a MySQL memory
 cache. For this reason, you should be wary of basing your tuning
 efforts only on the elapsed time of SQL statements. Consider also
 calculating the number of logical reads required by your statements,
 as this will only decrease as efficiency improves. Unfortunately, at
 the time of writing, you can reliably obtain the logical read rate
 only from the InnoDB storage engine.
The EXPLAIN statement reveals
 how MySQL will execute a SQL statement. In order to effectively tune
 SQL, you need to become familiar with EXPLAIN and adept at interpreting its
 output.
Indexes exist primarily to improve query performance, so it's
 not surprising that creating a good set of indexes is the single most
 important thing you can do to obtain better SQL performance. In
 particular, you should support WHERE clause conditions and join conditions
 with appropriate indexes—this often means creating a concatenated
 ("composite" or multicolumn) index.

Chapter 20. Basic SQL Tuning

In this chapter, we will tune simple SQL statements that may be
 included in MySQL stored programs. In particular, we'll optimize two of
 the most often executed SQL operations: retrieving data from a single
 table and joining two or more tables. Topics include:
	How to determine when the use of an index is required to
 optimize a query

	How to construct the best indexes to support specific
 queries

	How MySQL chooses between available indexes, and how to direct
 MySQL to use a specific index if necessary

	How to avoid "suppressing" an index

	What to do when no index will suffice to optimize a
 query

	How MySQL processes joins between multiple tables

	How to create indexes that optimize table joins

	How to determine the optimal join order and how to force MySQL
 to use a particular join order

Chapter 21 builds on these
 fundamentals, optimizing more complex SQL operations.
Examples in this chapter are based on tables created using the
 InnoDB storage engine. Although the same MySQL optimizer is used for all
 storage engines, you may observe different behaviors in other storage
 engines because of differences in optimizer statistics and indexing
 approaches.
Tuning Table Access

 When retrieving data from a table, MySQL can basically
 follow one of two paths to locating the relevant rows:
	Read every row in the table concerned (a full
 table scan), and return only those rows that match the
 WHERE clause criteria.

	Use an index to find a subset of rows, and return the rows
 that match the WHERE clause
 criteria.

Unless we need to retrieve a substantial proportion of the rows
 from a table, we probably want to use an index. It should not come as
 a big surprise, therefore, that much of this section will address
 creating the best indexes for our queries.
Index Lookup Versus Full Table Scan

A common mistake made by those new to SQL tuning is to assume
 that it is always better to use an index to
 retrieve data. Typically, an index lookup requires three or four
 logical reads for each row returned. If we only have to traverse the
 index tree a few times, then that will be quicker than reading every
 row in that table. However, traversing the index tree for a large
 number of rows in the table could easily turn out to be more
 expensive than simply reading every row directly from the
 table.
For this reason, we generally want to use an index only when
 retrieving a small proportion of the rows in the table. The exact
 break-even point will depend on your data, your indexes, and maybe
 even your server configuration, but we have found that a reasonable
 rule of thumb is to use an index when retrieving no more 5-10% of
 the rows in a table.
To illustrate this point, consider a scenario in which we are
 trying to generate sales totals over a particular period of time. To
 get sales totals for the previous week, for example, we might
 execute a statement such as the following:
 SELECT SUM(s.sale_value),COUNT(*)
 FROM sales s
 WHERE sale_date>date_sub(curdate(),INTERVAL 1 WEEK);
Since we have sales data for many years, we would guess that
 an index on sales_date would be
 effective in optimizing this query—and we would be right.
On the other hand, suppose that we want to get the sales
 totals for the preceding year. The query would look like
 this:
 SELECT SUM(s.sale_value),COUNT(*)
 FROM sales s
 WHERE sale_date>date_sub(curdate(),INTERVAL 1 YEAR);
It is not immediately obvious that an index-driven retrieval
 would result in the best query performance; it depends on the number
 of years of data in the table and the relative volume of data for
 the preceding year. Luckily, MySQL will, in most situations, make a
 good determination in such cases, provided that you have given MySQL
 a good set of indexes with which to work.
The MySQL optimizer predicts when to use an index based on the
 percentage of data from the table it expects to retrieve given our
 WHERE clause. The optimizer
 chooses to use the index for small intervals, while relying on a
 full table scan for large intervals. This basic algorithm works well
 when the volume of data is evenly distributed for the different
 indexed values. However, if the data is not evenly distributed, or
 if the statistics on table sizing are inaccurate, then the MySQL
 optimizer may make a less than perfect decision.
Figure 20-1 shows
 the elapsed time for retrieving various proportions of rows when
 forcing an index scan or a full table scan, or when allowing the
 MySQL optimizer to make that decision. In this example, MySQL
 switched from an index scan to a full table scan when the rows
 returned represented approximately 7% of the total. However, in this
 case, the index outperformed the table scan until about 17% of the
 rows were retrieved. So although MySQL made the correct decision in
 most cases, there were a few cases where forcing an index lookup
 would have improved performance.
[image: Full table scan versus indexed lookup]

Figure 20-1. Full table scan versus indexed lookup

Tip
As a very rough rule of thumb, you should not expect an
 index to improve performance unless you are retrieving less than
 5–15% of the table data.

There are a number of circumstances in which MySQL might not
 pick the best possible index. One of these circumstances is when the
 data is "skewed." In the preceding example, sales were fairly evenly
 distributed over a five-year period. However, in the real world this
 is unlikely to be true—sales will be greater during certain periods
 (Christmas, perhaps) and we might hope that sales would increase
 over time. This "skewed" table data can make it harder for the MySQL
 optimizer to make the best decision.
If you think that your data may be skewed and that MySQL may
 choose a table scan or index inappropriately, you can use the
 USE INDEX, FORCE INDEX, or IGNORE INDEX optimizer hints , as appropriate, to force or suppress the index.
 Take care to only use these hints when absolutely necessary, as they
 can also prevent the MySQL optimizer from selecting the best plan if used inappropriately. These hints
 are explained in more detail later, in the section "Manually Choosing an
 Index."
It's also worth noting that it is sometimes possible to
 resolve a query using an index alone—provided that the index
 contains all of the columns from the table that are referenced in
 both the SELECT and WHERE clauses. In this case, the index can
 be used in place of the table, and can perform
 very efficiently, even when retrieving a very large proportion (or
 all) of the rows in the table. See the section
 "Covering indexes
 " later in this chapter for more details.

How MySQL Chooses Between Indexes

In the above examples, MySQL switched between an index and a
 full table scan as the number of rows to be retrieved increased.
 This is a pretty neat trick—just how did MySQL work this out?
When you send a SQL statement to the MySQL server, MySQL has
 to parse the statement, which involves all of
 the following: verify that the SQL syntax is correct; ensure that
 the user has the necessary authority to run the statement; and
 determine the exact nature of the data to be retrieved. As part of
 this process, MySQL determines if any of the indexes defined on the
 table would help optimize the query.
The MySQL optimizer has a general sense of the "selectivity"
 of an index—how many rows an average index lookup will return—and of
 the size of the table. The optimizer examines the index to work out
 how many rows will have to be used given the values in the WHERE clause and the range of values in
 the index. MySQL then calculates the relative overhead of using the index and compares this value to the
 overhead of scanning the full contents of the table.
For most queries, this simple but effective strategy allows
 MySQL to choose between a full table scan and an indexed lookup, or
 to choose between multiple candidate indexes.

Manually Choosing an Index

You can add hints to your SQL statement
 to influence how the optimizer will choose between various indexing
 options. You should only do this if you have determined that MySQL
 is not making the optimal decision on index utilization. These hints
 can appear after the table name within the FROM clause. The three hints are:
	USE INDEX(
 list_of_indexes
)
	Tells MySQL to consider only the indexes listed (i.e.,
 to ignore all other indexes)

	IGNORE INDEX(
 list_of_indexes)
	Tells MySQL to ignore any of the listed indexes when
 determining the execution plan

	FORCE INDEX(
 list_of_indexes)
	Tells MySQL to use one of the listed indexes even if it has determined that a full table
 scan would be more efficient

For instance, to force the use of an index named sales_i_date, we could write a query as
 follows:
 SELECT SUM(s.sale_value),count(*)
 FROM sales s FORCE INDEX(sales_i_date)
 WHERE sale_date>date_sub(curdate(),INTERVAL 1 WEEK);

Prefixed ("Partial") Indexes

MySQL allows you to create an index based on the first few
 characters of a column. For instance, the following statement
 creates an index based on the first four bytes of the customer's
 address:
 CREATE INDEX i_cust_name_l4 on customers(address1(4));
Partial indexes generally use less storage than "full"
 indexes, and in some cases may actually improve performance, since a
 smaller index is more likely to fit into the MySQL memory cache.
 However, we encourage you to create partial indexes with great care. A very short partial index may
 actually be worse than no index at all. For very long columns, the
 partial index might be as good as the full index—it all depends on
 how many bytes you need to read to get an exact match on the column
 concerned.
For instance, consider searching for a customer by address, as
 follows:
 SELECT *
 FROM customers
 WHERE address1 = '1000 EXCEPTIONABLE STREET';
There might be plenty of customers that have an address
 starting with '1000'. Many fewer
 will have an address starting with '1000
 E', and by the time we extend the search to '1000 EX', we might be matching only a
 single customer. As we extend the length of the partial index, it
 becomes more "selective" and more likely to match the performance of
 a full index.
Figure 20-2 shows
 the results of doing the above search for various prefix lengths.
 For this data, prefix lengths of 1 or 2 are
 worse than no index at all; a length of 3 is slightly better than no
 index; while lengths greater than 3 are quite effective. Once the
 length hits 6, no further increase in the length of the prefix
 increased the effectiveness of the index. Remember that the optimum
 length for your prefixed index depends entirely on the data item you are
 searching for—in this case, short prefixes did not work well because
 most addresses started with street numbers that were not very
 selective. For more selective data—surname for instance—prefixed
 indexes could be much more effective.
[image: Performance of "partial" indexes of various lengths]

Figure 20-2. Performance of "partial" indexes of various lengths

Concatenated Indexes

A concatenated index—often called a
 composite index—is an index that is created
 on multiple columns. For instance, if we frequently retrieve
 customers by name and date of birth, we might create an index as
 follows:
 CREATE INDEX i_customers_first_surname_dob ON
 customers(contact_surname, contact_firstname,date_of_birth);
There is very little chance that two customers would have the
 same first name, surname, and date of birth, so use of this index
 would almost always take us to a single, correct customer. If you
 find that you frequently need to query against the same set of
 multiple columns' values on a table, then a concatenated index based
 on those columns should help you optimize your queries.
Tip
If a query references multiple columns from a single table
 in the WHERE clause, consider
 creating a concatenated (composite or multicolumn) index on those
 columns.

For instance, to optimize the following query, we should
 probably create a concatenated index on customer_id, product_id, and sales_rep_id:
 SELECT count(*), SUM(quantity)
 FROM sales
 WHERE customer_id=77
 AND product_id=90
 AND sales_rep_id=61;
This index would be defined as follows:
 CREATE INDEX I_sales_cust_prod_rep ON
 sales(customer_id,product_id,sales_rep_id);
We can use a concatenated index to resolve queries where only
 some of the columns in the index are specified, provided that at
 least one of the "leading" columns in the index is included.
For instance, if we create an index on (surname,firstname,date_of_birth), we can
 use that index to search on surname or on surname and firstname, but we cannot use it to search
 on date_of_birth. Given this
 flexibility, organize the columns in the index in an order that will
 support the widest range of queries. Remember that you can rarely
 afford to support all possible indexes because of the overhead
 indexes add to DML operations—so make sure you pick the most
 effective set of indexes.
Tip
A concatenated index can support queries that provide a
 subset of the columns in the index, provided that none of the
 leading columns is omitted. Pick the order of your columns in the
 concatenated index carefully to support the widest possible range
 of queries.

Merging multiple indexes

While a concatenated index on all the columns in the
 WHERE clause will almost always
 provide the best performance, sometimes the sheer number of column
 combinations will prevent us from creating all of the desirable
 concatenated indexes.
For instance, consider the sales table in our sample database. We
 may want to support queries based on any combination of customer_id, product_id, and sales_rep_id—that would only require
 four indexes. Add another column and we would need at least six
 indexes. All of these indexes take up space in the database
 and—perhaps worse—slow down inserts, updates, and deletes.
 Whenever we insert or delete a row, we have to insert or delete
 the index entry as well. If we update an indexed column, we have
 to update the index as well.
If you can't create all of the necessary indexes, do not
 despair. MySQL 5.0 can merge multiple indexes quite effectively.
 So instead of creating a concatenated index on the three columns,
 we could create indexes on each of the columns concerned. MySQL
 will merge rows retrieved from each index to find only those rows
 matching all conditions.
Index merges can be identified by the index_merge access type in the EXPLAIN statement output. All the
 indexes being merged will be listed in the keys column, and the Extra column will include a Using intersect clause with the indexes
 being merged listed. Example
 20-1 shows the EXPLAIN
 output for a query that performs an index merge.
Example 20-1. Example of an index merge
SELECT count(*), SUM(quantity)
 FROM sales
 WHERE customer_id=77
 AND product_id=90
 AND sales_rep_id=61

Explain plan

ID=1 Table=sales Select type=SIMPLE Access type=index_merge Rows=1
 Possible keys=i_sales_customer,i_sales_product,i_sales_rep
 Key=i_sales_rep,i_sales_customer,i_sales_product Length=9
 Ref=
 Extra=Using intersect(i_sales_rep, i_sales_customer,i_sales_product);
 Using where

Not all index merges are equal; just as indexes on different
 columns will have different performance characteristics (due to
 their selectivity), different combinations of
 merged indexes will yield the best result. Figure 20-3 shows the
 performance for the three possible single-column indexes created
 to support our example query, and shows the performance of each
 possible merge of two indexes. As you can see, the best result was
 obtained by merging the two most selective indexes.
[image: Comparison of various single-column indexes and index merge performance]

Figure 20-3. Comparison of various single-column indexes and index
 merge performance

Covering indexes

Creating a covering index is a very powerful technique for
 squeezing the last drop of performance from your indexes. If there
 are only a few columns in the SELECT clause that are not also in the
 WHERE clause, you can consider
 adding these columns to the index. MySQL will then be able to
 resolve the query using the index alone, avoiding the I/Os
 involved in retrieving the rows from the table. Such an index is
 sometimes called a covering index.
For our previous example, if we add the quantity column to the index, our query
 can be resolved from the index alone. In the EXPLAIN output, the Extra column will include the tag
 Using index to indicate that
 the step was resolved using only the index, as in Example 20-2.
Example 20-2. Using a covering index
SELECT count(*), SUM(quantity)
 FROM sales
 WHERE customer_id=77
 AND product_id=90
 AND sales_rep_id=61

Explain plan

ID=1 Table=sales Select type=SIMPLE Access type=ref Rows=1
 Possible keys=i_sales_cust_prod_rep_quant
 Key=i_sales_cust_prod_rep_quant Length=27
 Ref=const,const,const
 Extra=Using index

For queries that retrieve only a single row, the savings
 gained by covering indexes are probably going to be hard to notice. However,
 when scanning multiple rows from a table, the cost savings add up
 rapidly. In fact, it is often quicker to use a covering index to
 return all the rows from a table than to perform a full table
 scan. Remember that for normal indexed retrieval, the (very rough)
 rule of thumb is that the index probably isn't worth using unless
 you are accessing maybe 10% of the rows in the table. However, a
 covering index might be appropriate even if all of the rows are
 being read.
Tip
Covering indexes—which allow a query to be resolved from
 the index alone—can be efficient even if all or most of a table
 is being accessed.

Comparing the Different Indexing Approaches

Figure 20-4
 summarizes the performance of the various options for resolving our
 sample query (retrieving sales totals for a specific sales rep,
 customer, and product). Even for this simple query, there is a wide
 range of indexing options; in fact, we did not try every possible
 indexing option. For example, we didn't try a concatenated index on
 product_id + sales_rep_id.
There are a several key lessons to be learned from these
 examples:
	Not all index plans are equal
	Novice SQL programmers are often satisfied once they see
 that the EXPLAIN output
 shows that an index is being used. However, there is a
 huge difference between the performance
 provided by the "best" and the "worst" index (in this example,
 the worst index was more than 10,000 times more expensive than
 the best index!).

	Concatenated indexes rule
	The best possible index for any particular table access
 with more than one column in the WHERE clause will almost always be a
 concatenated index.

	Think about over-indexing
	If the SELECT list
 contains only a few columns beyond those in the WHERE clause, it is probably worth
 adding these to the index.

	Remember that indexes come at a
 cost
	Indexes are often essential to achieve decent query
 performance, but they will slow down every INSERT and DELETE and many UPDATE operations. You need to make
 sure that every index is "paying its way" by significantly
 improving query performance.

	Rely on merge joins to avoid huge numbers of
 concatenated indexes
	If you have to support a wide range of column
 combinations in the WHERE
 clause, create concatenated indexes to support the most common
 queries, and single-column indexes that can be merged to
 support less common combinations.
[image: Comparison of different indexing techniques when retrieving sales total for specific product, customer, and sales rep]

Figure 20-4. Comparison of different indexing techniques when
 retrieving sales total for specific product, customer, and
 sales rep

Avoiding Accidental Table Scans

There are a few circumstances in which MySQL might perform a
 full table scan even if a suitable index exists and perhaps even
 after you instruct MySQL to use an index with the FORCE INDEX hint. The three main reasons for such "accidental"
 table scans are:
	You modify an indexed column in the WHERE clause with a function or an
 operator.

	You are searching for a substring within an indexed
 column.

	You are using only some of the columns within a
 concatenated index, and the order of columns in the index does
 not support searching on the columns you have specified.

Let's look at each situation in the following sections.
Accidentally suppressing an index using a function

One of the most common causes for what might appear to be an
 inexplicable refusal by MySQL to use an index is some kind of
 manipulation of the query column.
For instance, let's suppose that we are trying to find all
 customers that are older than 55 (we might want to target them for
 a specific sales campaign). We have an index on date_of_birth and the index is certainly
 selective, but MySQL does not use the index, as shown in Example 20-3.
Example 20-3. Index suppressed by function on query column
SELECT *
 FROM customers
 WHERE (datediff(curdate(),date_of_birth)/365.25) >55

Short Explain

1 SIMPLE select(ALL) on customers using no key
 Using where

The problem here is that by enclosing the date_of_birth column within the DATEDIFF function, we prevent MySQL from
 looking up values in the index. If we rewrite the query so that
 the functions are applied to the search value rather than the
 search column, we see that the index can be used, as shown in
 Example 20-4.
Example 20-4. Applying a function to the search value does not suppress
 the index
SELECT *
 FROM customers
 WHERE date_of_birth < date_sub(curdate(),interval 55 year)

Short Explain

1 SIMPLE select(range) on customers using i_customer_dob
 Using where

Tip
Avoid modifying search columns in the WHERE clause with functions or
 operators, as this could suppress an index lookup. Where
 possible, modify the search value instead.

Accidentally suppressing an index using a substring

Another way to suppress an index on a column is to
 search on a nonleading substring of the column. For instance,
 indexes can be used to find the leading segments of a
 column, as shown in Example
 20-5.
Example 20-5. Indexes can be used to search for a leading portion of a
 string
SELECT *
 FROM customers
 WHERE customer_name like 'HEALTHCARE%'

Short Explain

1 SIMPLE select(range) on customers using i_customer_name
 Using where

But we can't use the index to find text strings in the
 middle of the column, as demonstrated in Example 20-6.
Example 20-6. Indexes can't be used to find nonleading
 substrings
SELECT * FROM customers WHERE customer_name LIKE '%BANK%'

Short Explain

1 SIMPLE select(ALL) on customers using no key
 Using where

Tip
If you have text strings and need to search for words
 within those strings, you could consider using the MyISAM
 full-text search capability. Otherwise, be aware that you can
 only use indexes to find leading substrings
 within character columns.

Creating concatenated indexes with a poor column
 order

Another time we might experience an accidental table
 scan is when we expect a concatenated index to support the query,
 but we are not specifying one of the leading columns of the index.
 For instance, suppose that we created an index on customers as follows:
 CREATE INDEX i_customer_contact
 ON customers(contact_firstname, contact_surname)
It might seem natural to create this index with firstname before surname, but that is usually a poor
 choice, since concatenated indexes can only be used if the leading
 columns appear in the query, and it is more common to search on
 surname alone than on firstname alone.
For instance, the index can support a query to find a
 customer by contact_firstname:
 SELECT *
 FROM customers
 WHERE contact_firstname='DICK'

 Short Explain

 1 SIMPLE select(ref) on customers using i_customer_contact
 Using where
But MySQL cannot use the index if only contact_surname is specified:
 SELECT *
 FROM customers
 WHERE contact_surname='RADFORD'

 Short Explain

 1 SIMPLE select(ALL) on customers using no key
 Using where
We probably should have created the index as (contact_surname,contact_firstname) if we
 need to support searching by surname only. If we want to support
 searching whenever either the surname or the
 firstname appears alone, then we will need an additional
 index.
Tip
A concatenated index cannot be used to resolve a query
 unless the leading (first) column in the index appears in the
 WHERE clause.

Optimizing Necessary Table Scans

We don't necessarily want to avoid a full table scan at all
 cost. For instance, we might choose not to create an index to
 support a unique query that only runs once every month if that index
 would degrade UPDATE and INSERT statements that are being executed
 many times a second.
Furthermore, sometimes the nature of our queries leaves no
 alternative to performing a full table scan. For instance, consider
 an online book store that maintains a database of books in stock.
 One of the key tables might contain a row for each individual book,
 as shown in Figure
 20-5.
[image: Single-table book catalog]

Figure 20-5. Single-table book catalog

Every day, an inventory report is run that summarizes
 inventory and outstanding orders. The core of the report is the SQL
 shown in Example
 20-7.
Example 20-7. SQL for inventory report example
SELECT publisher,
 SUM(quantity_in_stock) on_hand_quantity,
 SUM(quantity_in_stock*wholesale_price) on_hand_value,
 SUM(books_on_order) books_on_order,
 SUM(books_on_order*wholesale_price) order_value
 FROM book_catalog
 GROUP BY publisher

Short Explain

1 SIMPLE select(ALL) on book_catalog using no key
 Using temporary; Using filesort

There is no WHERE clause to
 optimize with an index, so (we might think) there is no alternative
 to a full table scan. Nevertheless, the person who determines
 whether or not we get a raise this year strongly encourages us to
 improve the performance of the query. So what are we going to
 do?
If we must read every row in the table, then the path to
 improved performance is to decrease the size of that table. There
 are at least two ways of doing this:
	Move any large columns not referenced in the query to
 another table (provided that this doesn't degrade other critical
 queries).

	Create an index based on all of the columns referenced in
 the query. MySQL can then use the index alone to satisfy the
 query.

Let's consider splitting the table as a first option. We can
 see in Figure 20-5 that
 the book_catalog table contains
 both a BLOB column containing a
 picture of the book's cover and a TEXT column containing the publisher's
 description of the book. Both of these columns are large and do not
 appear in our query. Furthermore, it turns out that these columns
 are never accessed by a full table scan—the only time the
 description and cover picture are accessed is when a customer pulls
 up the details for a single book on the company's web site.
It therefore may make sense to move the BLOB and TEXT columns to a separate table. They can
 be quickly retrieved via index lookup when required, while their
 removal will make the main table smaller and quicker to scan. The
 new two-table schema is shown in Figure 20-6.
Removing the BLOB and
 TEXT columns reduced the size of
 the table by about 60% and more than halved the time required to
 perform a full table scan (see Figure 20-7).
Another option to consider when faced with a seemingly
 unavoidable full table scan is to create an index on the columns
 concerned and resolve the query with an index
[image: Two-column book schema]

Figure 20-6. Two-column book schema

[image: Optimizing a full table scan by removing long columns or using a full index scan]

Figure 20-7. Optimizing a full table scan by removing long columns or
 using a full index scan

scan rather than a table scan. The index is likely to be
 smaller than the table. For our example report, we could create an
 index as follows:
 CREATE INDEX i_book_inventory ON book_catalog
 (publisher,quantity_in_stock,wholesale_price,books_on_order)
The EXPLAIN output (which
 follows) shows that now only the index is used to resolve the query
 (as shown by the Using index note
 in the Extra column), and, as we
 can see in Figure 20-7,
 this results in even better performance than removing the large
 columns from the original table.
 SELECT publisher,
 SUM(quantity_in_stock) on_hand_quantity,
 SUM(quantity_in_stock*wholesale_price) on_hand_value,
 SUM(books_on_order) books_on_order,
 SUM(books_on_order*wholesale_price) order_value
 FROM book_catalog
 GROUP BY publisher

 Short Explain

 1 SIMPLE select(index) on book_catalog using i_book_inventory
 Using index
One of the reasons that the index performs so well in this
 case is that MySQL uses the index to optimize the GROUP BY clause. Previous examples all
 created and sorted temporary tables (shown by Using
 temporary;using filesort in the EXPLAIN output). Because the leading
 column of the index was publisher, and because this column is also
 the column to be sorted to support the GROUP BY clause, no sort was required.
 We'll discuss the topic of optimizing GROUP
 BY and ORDER BY using
 indexes in detail in the next chapter.

Using Merge or Partitioned Tables

Sometimes we are faced with queries that retrieve a proportion
 of the table that is too high to be optimized by an index, but that
 is still only a fraction of that table's total. For instance, we
 might want to optimize a query that retrieves sales data for a
 particular year. An index to support such a query might return too
 high a percentage of rows in the table and actually take longer than
 a full table scan.
One possible way to optimize this scenario is to create a
 separate table for each year's sales, so that we are able to
 retrieve data for a particular year from the particular table, thus
 avoiding the overhead of scanning all of our sales data.
Separate tables for each year would make application code
 fairly awkward; the programmer would need to know which table to use
 for a given query, and we would have to provide some way to retrieve
 data for all years when necessary. To avoid this problem, MyISAM
 offers merge tables. A MyISAM merge table is a
 logical table that comprises multiple real tables that are UNIONed together. You can insert into a
 merge table (provided that the INSERT_METHOD is not set to NO), and you can query from it as you
 would a normal table.
For instance, we could create separate sales tables for each
 year, as shown in Example
 20-8.
Example 20-8. Creating MyISAM merge tables
CREATE TABLE SALES2000 TYPE=MYISAM AS
SELECT *
 FROM sales
 WHERE sale_date BETWEEN '2000-01-01' AND '2000-12-31';

CREATE TABLE SALES2001 TYPE=MYISAM AS
SELECT *
 FROM sales
 WHERE sale_date BETWEEN '2001-01-01' AND '2001-12-31';

 . . . Create other "year" tables . . .
CREATE TABLE all_sales
 (sales_id INT(8) NOT NULL PRIMARY KEY,
 . . . Other column definitions . . .
 Gst_flag NUMERIC(8,0))
 TYPE=MERGE
 UNION=(sales_pre_2000,sales2001,sales2002,
 sales2003,sales2004,sales2005,sales2006)
 INSERT_METHOD=LAST ;

If we need to obtain sales data for a particular year, we can
 do so fairly quickly by accessing one of the merge table's
 constituents directly. For queries that span year boundaries, we can
 access the merge table itself. We also have the advantage of being
 able to purge old rows very quickly by rebuilding the merge table
 without the unwanted years and then dropping the old table.
However, you should bear in mind that when you access the
 merge table directly, you will experience an additional overhead as
 MySQL merges the individual tables into a logical whole. This means
 that scanning the merge table will take substantially longer than
 scanning a single table containing all of the necessary data.
In MySQL 5.1 (which is alpha as we finalize this chapter), we
 can create a partitioned table to provide a similar solution to
 merge tables , as well as to provide other management and
 performance advantages. Example
 20-9 shows the syntax for creating a MySQL 5.1 partitioned
 table that is similar to the MyISAM merge table created in the
 previous example.
Example 20-9. Creating MySQL 5.1 partitioned tables
CREATE TABLE sales_partitioned (
 sales_id INTEGER NOT NULL,
 customer_id INTEGER NOT NULL,
 product_id INTEGER NOT NULL,
 sale_date DATE NOT NULL,
 quantity INTEGER NOT NULL,
 sale_value DECIMAL (8,0) NOT NULL
) ENGINE=InnoDB
PARTITION BY RANGE (YEAR(sale_date)) (
 PARTITION p_sales_pre2000 VALUES LESS THAN (2000),
 PARTITION p_sales_2000 VALUES LESS THAN (2001),
 PARTITION p_sales_2001 VALUES LESS THAN (2002),
 PARTITION p_sales_2002 VALUES LESS THAN (2003),
 PARTITION p_sales_2003 VALUES LESS THAN (2004),
 PARTITION p_sales_2004 VALUES LESS THAN (2005),
 PARTITION p_sales_2005 VALUES LESS THAN (2006),
 PARTITION p_sales_2006 VALUES LESS THAN (2007)
) ;

If we issue a query that requires data from only one of the
 partitions, MySQL will be able to eliminate unnecessary partitions
 from the scan, allowing us to rapidly retrieve information for an
 individual year. Partitioned tables offer a host of other performance advantages, such as
 rapid purging of stale data, parallel processing of large result
 sets, and easier distribution of I/O across multiple disk devices.
 Partitioning is one of the major new features of MySQL 5.1.

Tuning Joins

 So far we have looked at tuning SQL queries against a
 single table only. Let's move on to tuning SQL queries that join rows
 from two or more tables.
How MySQL Joins Tables

MySQL currently joins tables using a fairly simple technique with a
 complicated-sounding name. The MySQL manual refers to the join
 algorithm as single-sweep multi-join. In
 essence, when MySQL joins two tables, it will read the rows from the
 first table and—for each row—search the second table for matching
 rows. Further details can be found in the MySQL Internals Manual;
 see http://dev.mysql.com/doc/internals/en/index-merge-overview.html.

Joins Without Indexes

The basic join algorithm is not very well suited to joining
 multiple tables unless there are indexes to support the
 join.[*] Performance might be adequate for very small tables,
 but as table sizes increase, the join overhead will increase rapidly. Even worse, the join overhead
 will increase almost exponentially.
Figure 20-8 shows
 how response time increases for nonindexed joins as the size of each
 table increases. This semi-exponential degradation is extremely
 undesirable: if we extrapolate the response time curve for larger
 tables, we predict that it would take 20 minutes to join two tables
 of 100,000 rows, 20 hours to join two tables with 1 million rows
 each, and 81 days to join two tables of 10
 million rows each! This is definitely not the way you want your
 applications to perform as your database grows in size.
[image: Table size versus elapsed time for nonindexed joins]

Figure 20-8. Table size versus elapsed time for nonindexed joins

Joins with Indexes

To get predictable and acceptable performance for our join, we
 need to create indexes to support the join. Generally, we will want
 to create concatenated indexes based on any columns in a table that
 might be used to join that table to another table. However, we don't
 need an index on the first (or "driving") table's columns; that is,
 if we are joining customers to
 sales, in that order, then our
 index needs to be on sales—we
 don't need an index on both tables.
Creating an index on the join column not only reduces
 execution time, but also prevents an exponential increase in
 response time as the tables grow in size. Figure 20-9 shows how the
 response time increases as the number of rows increases when there
 is an index to support the join. Not only is performance much better
 (about 0.1 second compared to more than 25 seconds for two tables of
 20,000 rows), but the increase in response time is far more
 predictable. Extrapolating the response time for the indexed join,
 we can predict that joining two tables of 10 million rows each could
 be achieved in only 40 seconds—compared to 81 days for the
 nonindexed join.[*]
Tip
Unless you are sure that the tables involved will always be
 very small, always create an index (concatenated, if appropriate)
 to support a join of one table to another.

[image: Response time versus table size for an indexed join]

Figure 20-9. Response time versus table size for an indexed join

Join Order

By far, the most important factor in the optimization of MySQL
 joins is to ensure that each successive join is supported by an
 index. Beyond that, we should:
	Ensure that any rows to be eliminated by WHERE clause conditions are done so as
 early as possible in the join.

	Pick an optimal join order. A good rule of thumb is to
 join tables from smallest to largest.

Generally, the MySQL optimizer can be relied upon to pick a
 good join order. However, if we need to change the join order, we
 can use the STRAIGHT_JOIN hint to
 ensure that the tables are joined in the order in which they appear
 in the FROM clause. For instance,
 the following use of STRAIGHT_JOIN ensures that the join order
 is from the smallest table (ta_1000) to the largest (ta_5000):
 SELECT STRAIGHT_JOIN count(*)
 FROM ta_1000 JOIN ta_2000 USING (sales_id)
 JOIN ta_3000 USING (sales_id)
 JOIN ta_4000 USING (sales_id)
 JOIN ta_5000 USING (sales_id);
Figure 20-10
 shows the difference in elapsed time when joining tables in either
 ascending or descending order of table size. Joining from smallest
 to largest is about twice as fast as joining from largest to
 smallest.
Tip
When determining a join order, tables with WHERE clauses that eliminate rows should
 be introduced to the join as early as possible. After that, try to
 join tables from smallest to largest.

[image: Table size and join order]

Figure 20-10. Table size and join order

A Simple Join Example

Based on our discussions so far, here is a summary of the most
 important rules for optimizing MySQL joins:
	Ensure that every join is supported by an index.

	Eliminate rows as early as possible in the join
 sequence.

	Join tables from smallest to largest.

Let's apply these rules to a simple example.
Consider the case in which we are listing all sales for a
 particular customer. The query looks like this:
 SELECT SUM(sale_value)
 FROM sales JOIN customers
 ON (sales.customer_id=customers.customer_id)
 WHERE customer_name='LARSCOM INC'
With just the primary key indexes in place, the EXPLAIN output looks like this:
 Short Explain

 1 SIMPLE select(ALL) on sales using no key
 1 SIMPLE select(eq_ref) on customers using PRIMARY
 Using where
This execution plan satisfies our first rule: an index (the
 primary key customer_id of
 customers) is used to join
 sales to customers.
However, our second rule—eliminating rows as early as possible
 in the join sequence—is violated: all of the sales rows are read first, even though
 only some of those sales (those for a particular customer) are
 needed. Furthermore, we are joining the larger table sales (2.5 million rows) to the smaller
 table customers (100,000
 rows).
So, what we need to achieve is an efficient join from customers to sales. This means indexing the sales.customer_id column so that we can
 find sales for a particular customer. The following index should do
 the trick:
 CREATE INDEX i_sales_customer ON sales(customer_id)
The execution plan now looks like this:
 Short Explain

 1 SIMPLE select(ALL) on customers using no key
 Using where
 1 SIMPLE select(ref) on sales using i_sales_customer
 Using where
This is better, but we could improve matters further if we did
 not have to do the full scan on customers. Adding the following index will
 let us obtain the desired customer more efficiently:
 CREATE INDEX i_customer_name ON customers(customer_name)
Once this is done, the execution plan looks like this:
 Short Explain

 1 SIMPLE select(ref) on customers using i_customer_name
 Using where; Using index
 1 SIMPLE select(ref) on sales using i_sales_customer
 Using where
This is the optimal execution plan for this query. The desired
 customer is found quickly by the index, and then matching sales for
 that customer are found using the i_sales_customer index. Figure 20-11 shows the
 performance improvements gained by our optimizations.
[image: Optimization of a simple join]

Figure 20-11. Optimization of a simple join

[*] We are hoping to see a join algorithm that can perform
 adequately in the absence of indexes—the hash join algorithm—in
 MySQL 5.2.

[*] Joining two very large tables may involve other types of
 overhead, such as passing the data back to the client and
 fitting the tables in memory, but the overhead of actually
 performing the join with the index will be massively less than
 that of the unindexed join.

Conclusion

In this chapter we examined some of the basic principles for
 tuning simple SQL statements. Tuning SQL inside of MySQL stored
 programs is probably the single most important thing we can do to
 avoid poorly performing stored programs.
For SQL statements that retrieve a small proportion of the rows
 from a table (say, 5 to 15%), you will probably want to create indexes
 to obtain good performance. Here are some best practice guidelines for
 creating indexes:
	Create concatenated indexes that include all of the columns
 referenced in the WHERE
 clause.

	Consider adding additional columns that appear in the
 SELECT list to allow for an
 "index only" access path.

	Create concatenated indexes to support the widest possible
 range of queries—concatenated indexes can be used for queries that
 reference only a subset of the columns in the index, provided that
 the "leading" columns are in the WHERE clause. This means that you should
 put the most commonly used columns first in the index.

	If the number of concatenated indexes needed to support all
 possible queries is too large (say five or more), create
 single-column indexes on selective columns that MySQL can
 merge.

MySQL can join large tables effectively only if an index exists
 on the join columns for at least one of the tables being joined. To
 optimize basic joins:
	Create a concatenated index on all of the columns used to
 join the two tables.

	Make sure that any WHERE
 clause conditions are executed before the tables are joined. That
 is, the "driving table" should be the table that has the most
 selective condition in the WHERE clause. This will create the most
 efficient join.

	Provided that joins are supported by indexes and that
 WHERE clause conditions are
 processed in the first few tables to be joined, be aware that the
 best join order will be from smallest table to largest
 table.

Chapter 21. Advanced SQL Tuning

In the last chapter, we emphasized that high-performance stored
 programs require optimized SQL statements. We then reviewed the basic
 elements of SQL tuning — namely, how to optimize single-table accesses and
 simple joins. These operations form the building blocks for more complex
 SQL operations.
In this chapter, we will look at optimizing such SQL operations
 as:
	Subqueries using the IN and
 EXISTS operators

	"Anti-joins" using NOT IN
 or NOT EXISTS

	"Unamed" views in FROM
 clauses

	Named or permanent views

	DML statements (INSERT,
 UPDATE, and DELETE)

Tuning Subqueries

 A subquery is a SQL statement that
 is embedded within the WHERE clause
 of another statement. For instance, Example 21-1 uses a subquery to
 determine the number of customers who are also employees.
Example 21-1. SELECT statement with a subquery
SELECT COUNT(*)
 FROM customers
 WHERE (contact_surname, contact_firstname,date_of_birth)
 IN (select surname,firstname,date_of_birth
 FROM employees)

We can identify the subquery through the DEPENDENT SUBQUERY tag in the Select type column of the EXPLAIN statement output, as shown
 here:
 Explain plan

 ID=1 Table=customers Select type=PRIMARY Access type=ALL
 Rows=100459
 Key= (Possible=)
 Ref= Extra=Using where
 ID=2 Table=employees Select type=DEPENDENT SUBQUERY Access type=ALL
 Rows=1889
 Key= (Possible=)
 Ref= Extra=Using where
The same query can also be rewritten as an EXISTS subquery, as in Example 21-2.
Example 21-2. SELECT statement with an EXISTS subquery
SELECT count(*)
 FROM customers
 WHERE EXISTS (SELECT 'anything'
 FROM employees
 where surname=customers.contact_surname
 AND firstname=customers.contact_firstname
 AND date_of_birth=customers.date_of_birth)

Short Explain

1 PRIMARY select(ALL) on customers using no key
 Using where
2 DEPENDENT SUBQUERY select(ALL) on employees using no key

Note that the EXPLAIN output
 for the EXISTS subquery is
 identical to that of the IN
 subquery. This is because MySQL rewrites IN-based subqueries as EXISTS-based syntax before execution. The
 performance of subqueries will, therefore, be the same, regardless of
 whether you use the EXISTS or the
 IN operator.
Optimizing Subqueries

When MySQL executes a statement that contains a subquery in
 the WHERE clause, it will execute
 the subquery once for every row returned by the main or "outer" SQL
 statement. It therefore follows that the subquery had better execute
 very efficiently: it is potentially going to be executed many times.
 The most obvious way to make a subquery run fast is to ensure that
 it is supported by an index. Ideally, we should create a
 concatenated index that includes every column referenced within the
 subquery.
For our example query in the previous example, we should
 create an index on all the employees columns referenced in the
 subquery:
 CREATE INDEX i_customers_name ON customers
 (contact_surname, contact_firstname, date_of_birth)
We can see from the following EXPLAIN output that MySQL makes use of the
 index to resolve the subquery. The output also includes the Using index clause, indicating that
 only the index is used—the most desirable
 execution plan for a subquery.
 Short Explain

 1 PRIMARY select(ALL) on employees using no key
 Using where
 2 DEPENDENT SUBQUERY select(index_subquery) on customers
 using i_customers_name
 Using index; Using where
Figure 21-1 shows
 the relative performance of both the EXISTS and IN subqueries with and without an index.
[image: Subquery performance with and without an index]

Figure 21-1. Subquery performance with and without an index

Not only will an indexed subquery outperform a nonindexed
 subquery, but the un-indexed subquery will also degrade
 exponentially as the number of rows in each of the tables increases.
 (The response time will actually be proportional to the number of
 rows returned by the outer query times the number of rows accessed
 in the subquery.) Figure
 21-2 shows this exponential degradation.
Tip
Subqueries should be optimized by creating an index on all
 of the columns referenced in the subquery. SQL statements
 containing subqueries that are not supported by an index can show
 exponential degradation as table row counts increase.

Rewriting a Subquery as a Join

Many subqueries can be rewritten as joins. For instance, our
 example subquery could have been expressed as a join, as shown in
 Example 21-3.
[image: Exponential degradation in nonindexed subqueries]

Figure 21-2. Exponential degradation in nonindexed subqueries

Example 21-3. Subquery rewritten as a join
SELECT count(*)
 FROM customers JOIN employees
 ON (employees.surname=customers.contact_surname
 AND employees.firstname=customers.contact_firstname
 AND employees.date_of_birth=customers.date_of_birth)

Subqueries sometimes result in queries that are easier to
 understand, and when the subquery is indexed, the performance of
 both types of subqueries and the join is virtually identical,
 although, as described in the previous section, EXISTS has a small advantage over IN. Figure 21-3 compares the
 three solutions for various sizes of tables.
[image: IN, EXISTS, and JOIN solution scalability (indexed query)]

Figure 21-3. IN, EXISTS, and JOIN solution scalability (indexed
 query)

However, when no index exists to support the subquery or the
 join, then the join will outperform both IN and EXISTS subqueries. It will also degrade
 less rapidly as the number of rows to be processed increases. This
 is because of the MySQL join optimizations. Figure 21-4 shows the
 performance characteristics of the three solutions where no index
 exists.
[image: Comparison of nonindexed JOIN, IN, and EXISTS performance]

Figure 21-4. Comparison of nonindexed JOIN, IN, and EXISTS
 performance

Tip
A join will usually outperform an equivalent SQL with a
 subquery—and will show superior scalability—if there is no index
 to support either the join or the subquery. If there are
 supporting indexes, the performance differences among the three
 solutions are negligible.

Using Subqueries in Complex Joins

Although a subquery, in general, will not outperform an
 equivalent join, there are occasions when you can use subqueries to
 obtain more favorable execution plans for complex joins —especially when index merge operations are
 concerned.
Let's look at an example. You have an application that from
 time to time is asked to report on the quantity of sales made to a
 particular customer by a particular sales rep. The SQL might look
 like Example
 21-4.
Example 21-4. Complex join SQL
SELECT COUNT(*), SUM(sales.quantity), SUM(sales.sale_value)
 FROM sales
 JOIN customers ON (sales.customer_id=customers.customer_id)
 JOIN employees ON (sales.sales_rep_id=employees.employee_id)
 JOIN products ON (sales.product_id=products.product_id)
 WHERE customers.customer_name='INVITRO INTERNATIONAL'
 AND employees.surname='GRIGSBY'
 AND employees.firstname='RAY'
 AND products.product_description='SLX';

We already have an index on the primary key columns for
 customers, employees, and products, so MySQL uses these indexes to
 join the appropriate rows from these tables to the sales table. In the process, it eliminates
 all of the rows except those that match the WHERE clause condition:
 Short Explain

 1 SIMPLE select(ALL) on sales using no key

 1 SIMPLE select(eq_ref) on employees using PRIMARY
 Using where
 1 SIMPLE select(eq_ref) on customers using PRIMARY
 Using where
 1 SIMPLE select(eq_ref) on products using PRIMARY
 Using where
This turns out to be a fairly expensive query, because we have
 to perform a full scan of the large sales table. What we probably want to do
 is to retrieve the appropriate primary keys from products, customers, and employees using the WHERE clause conditions, and then look up
 those keys (quickly) in the sales
 table. To allow us to quickly find these primary keys, we would
 create the following indexes:
 CREATE INDEX i_customer_name ON customers(customer_name);
 CREATE INDEX i_product_description ON products(product_description);
 CREATE INDEX i_employee_name ON employees(surname, firstname);
To enable a rapid sales
 table lookup, we would create the following index:
 CREATE INDEX i_sales_cust_prod_rep ON sales(customer_id,product_id,sales_rep_id);
Once we do this, our execution plan looks like this:
 Short Explain

 1 SIMPLE select(ref) on customers using i_customer_name
 Using where; Using index
 1 SIMPLE select(ref) on employees using i_employee_name
 Using where; Using index
 1 SIMPLE select(ref) on products using i_product_description
 Using where; Using index
 1 SIMPLE select(ref) on sales using i_sales_cust_prod_rep
 Using where
Each step is now based on an index lookup, and the sales lookup is optimized through a fast
 concatenated index. The execution time reduces from about 25 seconds
 (almost half a minute) to about 0.01 second (almost
 instantaneous).
Tip
To optimize a join, create indexes to support all of the
 conditions in the WHERE clause
 and create concatenated indexes to support all of the join
 conditions.

As we noted in the previous chapter, we can't always create
 all of the concatenated indexes that we might need to support all
 possible queries on a table. In this case, we may want to perform an
 "index merge" of multiple single-column indexes. However, MySQL will
 not normally perform an index merge when optimizing a join.
In this case, to get an index merge join, we can try to
 rewrite the join using subqueries, as shown in Example 21-5.
Example 21-5. Complex join SQL rewritten to support index merge
SELECT COUNT(*), SUM(sales.quantity), SUM(sales.sale_value)
 FROM sales
 WHERE product_id= (SELECT product_id
 FROM products
 WHERE product_description='SLX')
 AND sales_rep_id=(SELECT employee_id
 FROM employees
 WHERE surname='GRIGSBY'
 AND firstname='RAY')
 AND customer_id= (SELECT customer_id
 FROM customers
 WHERE customer_name='INVITRO INTERNATIONAL');

The EXPLAIN output shows
 that an index merge will now occur, as shown in Example 21-6.
Example 21-6. EXPLAIN output for an index merge SQL
Short Explain

1 PRIMARY select(index_merge) on sales using i_sales_rep,i_sales_cust
 Using intersect(i_sales_rep,i_sales_cust); Using where
4 SUBQUERY select(ref) on customers using i_customer_name

3 SUBQUERY select(ref) on employees using i_employee_name

2 SUBQUERY select(ref) on products using i_product_description

The performance of the index merge solution is about 0.025
 second—slower than the concatenated index but still about 1,000
 times faster than the initial join performance. This is an
 especially useful technique if you have a STAR
 schema (one very large table that contains the "facts,"
 with foreign keys pointing to other, smaller "dimension"
 tables).
Figure 21-5
 compares the performance of the three approaches. Although an index
 merge is not quite as efficient as a concatenated index, you can
 often satisfy a wider range of queries using an index merge, since
 this way you need only create indexes on each column, not
 concatenated indexes on every possible combination of
 columns.
Tip
Rewriting a join with subqueries can improve join
 performance, especially if you need to perform an index merge
 join—consider this technique for STAR joins.

[image: Optimizing a complex join with subqueries and index merge]

Figure 21-5. Optimizing a complex join with subqueries and index
 merge

Tuning "Anti-Joins" Using Subqueries

With an anti-join, we retrieve
 all rows from one table for which there is no matching row in another
 table. There are a number of ways of expressing anti-joins in MySQL.
Perhaps the most natural way of writing an anti-join is to
 express it as a NOT IN subquery.
 For instance, Example 21-7
 returns all of the customers who are not employees.
Example 21-7. Example of an anti-join using NOT IN
SELECT count(*)
 FROM customers
 WHERE (contact_surname,contact_firstname, date_of_birth)
 NOT IN (SELECT surname,firstname, date_of_birth
 FROM employees)

Short Explain

1 PRIMARY select(ALL) on customers using no key
 Using where
2 DEPENDENT SUBQUERY select(ALL) on employees using no key
 Using where

Another way to express this query is to use a NOT EXISTS subquery. Just as MySQL will
 rewrite IN subqueries to use the
 EXISTS clause, so too will MySQL
 rewrite a NOT IN subquery as a
 NOT EXISTS. So, from MySQL's
 perspective, Example 21-7
 and Example 21-8 are
 equivalent.
Example 21-8. Example of an anti-join using NOT EXISTS
SELECT count(*)
 FROM customers
 WHERE NOT EXISTS (SELECT *
 FROM employees
 WHERE surname=customers.contact_surname
 AND firstname=customers.contact_firstname
 AND date_of_birth=customers.date_of_birth)

Short Explain

1 PRIMARY select(ALL) on customers using no key
 Using where
2 DEPENDENT SUBQUERY select(ALL) on employees using no key
 Using where

A third but somewhat less natural way to express this query is
 to use a LEFT JOIN. This is a join
 in which all rows from the first table are returned even if there is
 no matching row in the second table. NULLs are returned for columns
 from the second table that do not have a matching row.
In Example 21-9 we
 join customers to employees and return NULL values for all of
 the employees who are not also customers. We can use this
 characteristic to eliminate the customers who are not also employees
 by testing for a NULL in a normally NOT
 NULL customer column.
Example 21-9. Example of an anti-join using LEFT JOIN
SELECT count(*)
 FROM customers
 LEFT JOIN employees
 ON (customers.contact_surname=employees.surname
 and customers.contact_firstname=employees.firstname
 and customers.date_of_birth=employees.date_of_birth)
 WHERE employees.surname IS NULL

Short Explain

1 SIMPLE select(ALL) on customers using no key

1 SIMPLE select(ALL) on employees using no key
 Using where; Not exists

Optimizing an Anti-Join

The guidelines for optimizing anti-joins using subqueries or
 left joins are identical to the guidelines for optimizing normal
 subqueries or joins. Scalability and good performance will be
 achieved only if we create an index to optimize the subquery or the
 join. For the previous examples, this would mean creating an index
 on customer names as follows:[*]
 CREATE INDEX i_customers_name ON employees(surname,firstname,date_of_birth);
Figure 21-6 shows
 the massive performance improvements that result when we create a
 supporting index for an anti-join.
[image: Comparison of anti-join techniques]

Figure 21-6. Comparison of anti-join techniques

Figure 21-6 also
 shows a substantial performance advantage for the NOT IN subquery over NOT EXISTS or LEFT JOIN when there is no index to
 support the anti-join. We noted earlier that MySQL rewrites the
 NOT IN-based statement to a
 NOT EXISTS, so it is at first
 surprising that there should be a performance difference. However,
 examination of the NOT IN rewrite
 reveals a number of undocumented compiler directives within the
 rewritten SQL that appear to give NOT
 IN a substantial performance advantage in the absence of
 an index.
Not only is the LEFT JOIN
 technique slower than NOT IN or
 NOT EXISTS, but it degrades much
 faster as the quantity of data to be processed increases. Figure 21-7 shows that the
 LEFT JOIN version of the
 anti-join degrades much more rapidly as the size of the tables being
 joined increases—this is the opposite of the effect shown for normal
 subqueries, where the join solution was found to be more scalable
 than the subquery solution (refer to Figure 21-3).
Tip
To optimize an anti-join, create indexes to support the
 subquery or right hand table of a LEFT
 JOIN. If you cannot support the subquery with an index,
 use NOT IN in preference to
 NOT EXISTS or LEFT JOIN.

[*] It might occur to you that creating an index on customers would produce a better join
 than the index on employees.
 However, LEFT JOINs can only
 be performed with the table that will return all rows as the
 first table in the join—this means that the join order can only
 be customers to employees, and therefore the index to
 support the join must be on employees.

Tuning Subqueries in the FROM Clause

 It is possible to include subqueries within the FROM clause of a SQL statement. Such
 subqueries are sometimes called unnamed views
 , derived tables , or inline views .
For instance, consider the query in Example 21-10, which retrieves
 a list of employees and department details for employees older than 55
 years.
[image: Scalability of various anti-join techniques (no index)]

Figure 21-7. Scalability of various anti-join techniques (no
 index)

Example 21-10. Example SQL suitable for rewrite with an inline view
SELECT departments.department_name,employee_id,surname,firstname
 FROM departments
 JOIN employees
 USING (department_id)
 WHERE employees.date_of_birth<date_sub(curdate(),interval 55 year)

Short Explain

1 SIMPLE select(range) on employees using i_employee_dob
 Using where
1 SIMPLE select(eq_ref) on departments using PRIMARY
 Using where

This query is well optimized—an index on date of birth finds the
 customers, and the primary key index is used to find the department
 name on the departments table.
 However, we could write this query using inline views in the FROM clause, as shown in Example 21-11.
Example 21-11. SQL rewritten with an inline view
SELECT departments.department_name,employee_id,surname,firstname
 FROM (SELECT * FROM departments) departments
 JOIN (SELECT * FROM employees) employees
 USING (department_id)
 WHERE employees.date_of_birth<DATE_SUB(curdate(), INTERVAL 55 YEAR)

Explain plan

1 PRIMARY select(ALL) on <derived2> using no key

1 PRIMARY select(ALL) on <derived3> using no key
 Using where
3 DERIVED select(ALL) on employees using no key

2 DERIVED select(ALL) on departments using no key

This execution plan is somewhat different from those we have
 looked at in previous examples, and it warrants some explanation. The
 first two steps indicate that a join was performed between two
 "derived" tables—our subqueries inside the FROM clause. The next two steps show how
 each of the derived tables was created. Note that the name of the
 table—<derived2>, for
 instance—indicates the ID of the step that created it. So we can see
 from the plan that <derived2>
 was created from a full table scan of departments.
Derived tables are effectively temporary tables created by
 executing the SQL inside the subquery. You can imagine that something
 like the following SQL is being executed to create the <derived2> table:
 CREATE TEMPORARY TABLE derived2 AS
 SELECT * FROM departments
Simply by using subqueries in the FROM clause, we have substantially weakened
 MySQL's chances of implementing an efficient join. MySQL must first
 execute the subqueries' statements to create the derived tables and
 then join those two derived tables. Derived tables have no indexes, so
 this particular rewrite could not take advantage of the indexes that
 were so effective in our original query (shown in Example 21-10). In this case,
 both the index to support the WHERE
 clause and the index supporting the join were unusable.
We could improve the query by moving the WHERE clause condition on employees into the subquery, as shown in
 Example 21-12.
Example 21-12. Rewritten SQL using an inline view
SELECT departments.department_name,employee_id,surname,firstname
 FROM (SELECT * FROM departments) departments
 JOIN (SELECT * FROM employees
 WHERE employees.date_of_birth
 <DATE_SUB(curdate(),INTERVAL 55 YEAR)) employees
 USING (department_id)

Explain plan

1 PRIMARY select(system) on <derived3> using no key

1 PRIMARY select(ALL) on <derived2> using no key
 Using where
3 DERIVED select(range) on employees using i_employee_dob
 Using where
4 DERIVED select(ALL) on departments using no key

This plan at least allows us to use an index to find the
 relevant customers, but still prevents the use of an index to join
 those rows to the appropriate department.
Tip
In general, avoid using derived tables (subqueries in the
 FROM clause), because the
 resulting temporary tables have no indexes and cannot be effectively
 joined or searched. If you must use derived tables, try to move all
 WHERE clause conditions inside of
 the subqueries.

Using Views

A view can be thought of as a "stored query". A view
 definition essentially creates a named definition for a SQL
 statement that can then be referenced as a table in other SQL
 statements. For instance, we could create a view on the sales table that returns only sales for
 the year 2004, as shown in Example 21-13.
Example 21-13. View to return sales table data for 2004
CREATE OR REPLACE VIEW v_sales_2004
 (sales_id,customer_id,product_id,sale_date,
 quantity,sale_value,department_id,sales_rep_id,gst_flag) AS
SELECT sales_id,customer_id,product_id,sale_date,
 quantity,sale_value,department_id,sales_rep_id,gst_flag
 FROM sales
 WHERE sale_date BETWEEN '2004-01-01' AND '2004-12-31'

The CREATE VIEW syntax
 includes an ALGORITHM clause,
 which defines how the view will be processed at runtime:
 CREATE [ALGORITHM = {UNDEFINED | MERGE
 | TEMPTABLE}] VIEWviewname
The view algorithm may be set to one of the following:
	TEMPTABLE
	MySQL will process the view in very much the same way as
 a derived table—it will create a temporary table using the SQL
 associated with the view, and then use that temporary table
 wherever the view name is referenced in the original
 query.

	MERGE
	MySQL will attempt to merge the view SQL into the
 original query in an efficient manner.

	UNDEFINED
	Allows MySQL to choose the algorithm, which results in
 MySQL using the MERGE
 technique when possible.

Because the TEMPTABLE
 algorithm uses temporary tables—which will not have associated
 indexes—its performance will often be inferior to native SQL or to
 SQL that uses a view defined with the MERGE algorithm.
Consider the SQL query shown in Example 21-14; it uses the
 view definition from Example
 21-13 and adds some additional WHERE clause conditions. The view WHERE clause, as well as the additional
 WHERE clauses in the SQL, is
 supported by the index i_sales_date_prod_cust, which includes the
 columns customer_id, product_id, and sale_date.
Example 21-14. SQL statement that references a view
SELECT SUM(quantity),SUM(sale_value)
 FROM v_sales_2004_merge
 WHERE customer_id=1
 AND product_id=1;

This query could have been written in standard SQL, as shown
 in Example
 21-15.
Example 21-15. Equivalent SQL statement without a view
SELECT SUM(quantity),SUM(sale_value)
 FROM sales
 WHERE sale_date BETWEEN '2004-01-01' and '2004-12-31'
 AND customer_id=1
 AND product_id=1

Alternately, we could have written the SQL using a derived
 table approach, as shown in Example 21-16.
Example 21-16. Equivalent SQL statement using derived tables
SELECT SUM(quantity),SUM(sale_value)
 from (SELECT *
 FROM sales
 WHERE sale_date BETWEEN '2004-01-01' AND '2004-12-31') sales
 WHERE customer_id=1
 AND product_id=1;

We now have four ways to resolve the query—using a MERGE algorithm view, using a TEMPTABLE view, using a derived table, and
 using a plain old SQL statement. So which approach will result in
 the best performance?
Based on our understanding of the TEMPTABLE and MERGE algorithms, we would predict that a
 MERGE view would behave very
 similarly to the plain old SQL statement, while the TEMPTABLE algorithm would behave similarly
 to the derived table approach. Furthermore, we would predict that
 neither the TEMPTABLE nor the
 derived table approach would be able to leverage our index on
 product_id, customer_id, and sale_date, and so both will be
 substantially slower.
Our predictions were confirmed. The SQLs that used the
 TEMPTABLE and the derived table
 approaches generated very similar EXPLAIN output, as shown in Example 21-17. In each case,
 MySQL performed a full scan of the sales table in order to create a temporary
 "derived" table containing data for 2004 only, and then performed a
 full scan of that derived table to retrieve rows for the appropriate
 product and customer.
Example 21-17. Execution plan for the derived table and TEMPTABLE view
 approaches
Short Explain

1 PRIMARY select(ALL) on <derived2> using no key
 Using where
2 DERIVED select(ALL) on sales using no key
 Using where

An EXPLAIN EXTENDED
 revealed that the MERGE view
 approach resulted in a rewrite against the sales table, as shown in Example 21-18.
Example 21-18. How MySQL rewrote the SQL to "merge" the view
 definition
SELECT sum('prod'.'sales'.'QUANTITY') AS 'SUM(quantity)',
 sum('prod'.'sales'.'SALE_VALUE') AS 'SUM(sale_value)'
 FROM 'prod'.'sales'
 WHERE (('prod'.'sales'.'CUSTOMER_ID' = 1)
 AND ('prod'.'sales'.'PRODUCT_ID' = 1)
 AND ('prod'.'sales'.'SALE_DATE' between 20040101000000 and 20041231000000))

Short Explain

1 PRIMARY select(range) on sales using i_sales_cust_prod_date
 Using where

Figure 21-8 shows
 the performance of the four approaches. As expected, the MERGE view gave equivalent performance to
 native SQL and was superior to both the TEMPTABLE and the derived table
 approaches.
[image: Comparison of view algorithm performance]

Figure 21-8. Comparison of view algorithm performance

Not all views can be resolved by a MERGE algorithm. In particular, views that
 include GROUP BY or other
 aggregate conditions (DISTINCT,
 SUM, etc.) must be resolved
 through a temporary table. It is also possible that in some cases
 the "merged" SQL generated by MySQL might be hard to optimize and
 that a temporary table approach might lead to better
 performance.
Tip
Views created with the TEMPTABLE algorithm may be unable to
 take advantage of indexes that are available to views created with
 the MERGE algorithm. Avoid
 using views that employ the TEMPTABLE algorithm unless you find that
 the "merged" SQL cannot be effectively optimized.

Tuning ORDER and GROUP BY

 GROUP BY, ORDER BY, and certain group functions
 (MAX, MIN, etc.) may require that data be sorted
 before being returned to the user. You can detect that a sort is
 required from the Using filesort
 tag in the Extra column of the
 EXPLAIN statement output, as shown
 in Example 21-19.
Example 21-19. Simple SQL that performs a sort
SELECT *
 FROM customers
 ORDER BY contact_surname, contact_firstname

Explain plan

ID=1 Table=customers Select type=SIMPLE Access type=ALL
 Rows=101999
 Key= (Possible=)
 Ref= Extra=Using filesort

If there is sufficient memory, the sort can be performed without
 having to write intermediate results to disk. However, without
 sufficient memory, the overhead of the disk-based sort will often
 dominate the overall performance of the query.
There are two ways to avoid a disk-based sort:
	Create an index on the columns to be sorted. MySQL can then
 use the index to retrieve the rows in sorted order.

	Allocate more memory to the sort.

These approaches are described in the following sections.
Creating an Index to Avoid a Sort

If an index exists on the columns to be sorted, MySQL can use
 the index to avoid a sort. For instance, suppose that the following
 index exists:
 CREATE INDEX i_customer_name ON customers(contact_surname, contact_firstname)
MYSQL can use that index to avoid the sort operation shown in
 Example 21-19. Example 21-20 shows the
 output when the index exists; note the absence of the Using filesort tag and that the i_customer_name index is used, even though
 there are no WHERE clause
 conditions that would suggest that the index was necessary.
Example 21-20. Using an index to avoid a sort
SELECT * from customers
 ORDER BY contact_surname, contact_firstname

Explain plan

ID=1 Table=customers Select type=SIMPLE
 Access type=index Rows=101489
 Key=i_customer_name (Possible=)
 Ref= Extra=

Reducing Sort Overhead by Increasing Sort Memory

When MySQL performs a sort, it first sorts rows within an area of memory defined by the
 parameter SORT_BUFFER_SIZE. If
 the memory is exhausted, it writes the contents of the buffer to
 disk and reads more data into the buffer. This process is continued
 until all the rows are processed; then, the contents of the disk
 files are merged and the sorted results are returned to the query.
 The larger the size of the sort buffer, the fewer the disk files
 that need to be created and then merged. If the sort buffer is large
 enough, then the sort can complete entirely in memory.
You can allocate more memory to the sort by issuing a SET SORT_BUFFER_SIZE statement. For
 instance, the following allocates 10,485,760 bytes (10M) to the
 sort:
 SET SORT_BUFFER_SIZE=10485760;
You can determine the current value of SORT_BUFFER_SIZE by issuing the following
 statement:
 SHOW VARIABLES LIKE 'sort_buffer_size';
As you allocate more memory to the sort, performance will
 initially improve up to the point at which the sort can complete
 within a single "merge run." After that point, adding more memory
 appears to have no effect, until the point at which the sort can
 complete entirely in memory. After this point, adding more memory
 will not further improve sort performance. Figure 21-9 shows where these
 two plateaus of improvement occurred for the example above. It also
 shows the effect of creating an index to avoid the sort
 altogether.
To find out how many sort merge runs were required to process
 our SQL, we can examine the value for the status variable SORT_MERGE_PASSES from the SHOW STATUS statement before and after our
 SQL executes.
[image: Optimizing ORDER BY through increasing sort buffer size or creating an index]

Figure 21-9. Optimizing ORDER BY through increasing sort buffer size or
 creating an index

Tip
To optimize SQL that must perform a sort (ORDER BY, GROUP
 BY), consider increasing the value of SORT_BUFFER_SIZE or create an index on
 the columns being sorted.

Tuning DML (INSERT, UPDATE, DELETE)

 The first principle for optimizing UPDATE, DELETE, and INSERT statements is to optimize any
 WHERE clause conditions used to
 find the rows to be manipulated or inserted. The DELETE and UPDATE statements may contain WHERE clauses, and the INSERT statement may contain SQL that
 defines the data to be inserted. Ensure that these WHERE clauses are efficient—perhaps by
 creating appropriate concatenated indexes .
The second principle for optimizing DML performance is to avoid
 creating too many indexes. Whenever a row is
 inserted or deleted, updates must occur to every index that exists
 against the table. These indexes exist to improve query performance,
 but bear in mind that each index also results in overhead when the row is created or deleted. For updates, only
 the indexes that reference the specific columns being modified need to
 be updated.
Batching Inserts

The MySQL language allows more than one row to be inserted in
 a single INSERT operation. For
 instance, the statement in Example 21-21 inserts five
 rows into the clickstream_log
 table in a single call.
Example 21-21. Batch INSERT statement
INSERT INTO clickstream_log (url,timestamp,source_ip)
values
 ('http://dev.mysql.com/downloads/mysql/5.0.html',
 '2005-02-10 11:46:23','192.168.34.87') ,
 ('http://dev.mysql.com/downloads/mysql/4.1.html',
 '2005-02-10 11:46:24','192.168.35.78'),
 ('http://dev.mysql.com',
 '2005-02-10 11:46:24','192.168.35.90'),
 ('http://www.mysql.com/bugs',
 '2005-02-10 11:46:25','192.168.36.07'),
 ('http://dev.mysql.com/downloads/mysql/5.1.html',
 '2005-02-10 11:46:25','192.168.36.12')

Batching INSERT operations
 in this way can radically improve performance. Figure 21-10 shows how the
 time taken to insert 10,000 rows into the table decreases as we
 increase the number of rows included within each INSERT statement. Inserting one row at a
 time, it took about 384 seconds to insert the rows. When inserting
 100 rows at a time, we were able to add the same number of rows in
 only 7 seconds.
[image: Performance improvement from multirow inserts]

Figure 21-10. Performance improvement from multirow inserts

Tip
Whenever possible, use MySQL's multirow insert feature to
 speed up the bulk loading of records.

Optimizing DML by Reducing Commit Frequency

If we are using a transactional storage engine—for instance,
 if our tables are using the InnoDB engine—we should make sure that
 we are committing changes to the database only when necessary.
 Excessive commits will degrade performance.
By default, MySQL will issue an implicit commit after every
 SQL statement. When a commit occurs, a storage engine like InnoDB
 will write a record to its transaction log on disk to ensure that
 the transaction is persistent (i.e., to ensure that the transaction
 will not be lost if MySQL or our program crashes). These transaction
 log writes involve a physical I/O to the disk and therefore always
 add to our response time.
We can prevent this automatic commit behavior by issuing the
 SET AUTOCOMMIT=0 statement and/or
 by issuing a START TRANSACTION
 statement before issuing our statements. We can then issue a
 COMMIT statement at regular
 intervals, reducing the number of writes to the transaction log that
 will be required. (Note, though, that MySQL will occasionally write
 to the transaction log anyway when memory buffers require
 flushing.)
Usually, the frequency with which we commit is driven by our
 application logic rather than by performance. For instance, if a
 user clicks a Save button in our application, he is going to expect
 that the information will be permanently saved to the database, and
 so we will be required to issue a COMMIT as a result. However, in batch
 applications, we can often choose to commit at relatively infrequent
 intervals. Reducing the commit frequency can have a huge effect on
 DML performance.
In Figure 21-11,
 we see how reducing the commit frequency affected the time taken to
 insert 10,000 rows into the database. At the default settings, it
 took about 850 seconds (about 14 minutes) to insert the 10,000 rows.
 If we commit only after every 100 rows have been inserted, the time
 taken is reduced to only 8 seconds.
In these tests, the InnoDB transaction log was on the same
 disk as the InnoDB tablespace files, which magnified the degradation
 caused by transaction log writes. Moving the transaction log to a
 dedicated disk can reduce—although not eliminate—the transaction log
 overhead.
[image: How commit frequency affects DML performance]

Figure 21-11. How commit frequency affects DML performance

Tip
When you are using a transactional storage engine (such as
 InnoDB) in situations where your application logic permits (batch
 applications, for instance), reducing the frequency at which you
 commit work can massively improve the performance of INSERTs, UPDATEs, and DELETEs.

We looked at how you can manipulate commit frequency in stored
 programs in Chapter 8.

Triggers and DML Performance

Because trigger code will be invoked for every row affected by
 the relevant DML operation, poorly performing triggers can have a
 very significant effect on DML performance . If our DML performance is a concern and there are
 triggers on the tables involved, we may want to determine the
 overhead of our triggers by measuring performance with and without the triggers.
We provide some more advice on trigger tuning in Chapter 22.

Conclusion

In this chapter, we looked at some more advanced SQL tuning
 scenarios.
We first looked at simple subqueries using the IN and EXISTS operators. As with joins and simple
 single-table queries, the most important factor in improving subquery
 performance is to create indexes that allow the subqueries to execute
 quickly. We also saw that when an appropriate index is not available,
 rewriting the subquery as a join can significantly improve
 performance.
The anti-join is a type of SQL operation that returns all rows
 from a table that do not have a matching row in a second table. These
 can be performed using NOT IN,
 NOT EXISTS, or LEFT JOIN operations. As with other
 subqueries, creating an index to support the subquery is the most
 important optimization. If no index exists to support the anti-join,
 then a NOT IN subquery will be more
 efficient than a NOT EXISTS or a
 LEFT JOIN.
We can also place subqueries in the FROM clause—these are sometimes referred to
 as inline views, unnamed
 views, or derived tables. Generally
 speaking, we should avoid this practice because the resulting
 "derived" tables will have no indexes and will perform poorly if they
 are joined to another table or if there are associated selection
 criteria in the WHERE clause. Named
 views are a much better option, since MySQL can "merge" the view
 definition into the calling query, which will allow the use of indexes
 if appropriate. However, views created with the TEMPTABLE option, or views that cannot take
 advantage of the MERGE algorithm
 (such as GROUP BY views), will
 exhibit similar performance to derived table queries.
When our SQL has an ORDER BY
 or GROUP BY condition, MySQL might
 need to sort the resulting data. We can tell if there has been a sort
 by the Using filesort tag in the
 Extra column of the EXPLAIN statement output. Large sorts can
 have a diabolical effect on our query performance, although we can
 improve performance by increasing the amount of memory available to
 the sort (by increasing SORT_BUFFER_SIZE). Alternately, we can
 create an index on the columns to be sorted. MySQL can then use that
 index to avoid the sort and thus improve performance.
We can achieve substantial improvements in performance by
 inserting multiple rows with each INSERT statement. If we are using a
 transactional storage engine such as InnoDB, we can improve the
 performance of any DML operations by reducing the frequency with which
 we commit data. However, we should never modify commit frequency at
 the expense of transactional integrity.
Most of our stored programs will perform only as well as the SQL
 that they contain. In the next chapter we will look at how to go the
 "last mile" by tuning the stored program code itself.

Chapter 22. Optimizing Stored Program Code

In this chapter, we look at techniques for optimizing the stored program code itself.
As we have said before, the performance of a typical stored
 program will primarily depend on the performance of the SQL in that
 stored program. This is why we have devoted several chapters to showing
 how to tune MySQL SQL statements.
As with any language, however, it is possible to write inefficient
 code in the MySQL stored program language itself. So in this chapter,
 we're going to assume that we have tuned our stored program's SQL
 statements and are now ready to tune the stored program code.
Before we dig into tuning stored program code we will briefly review the
 performance characteristics of stored programs and look at the circumstances under which stored programs
 can improve application performance. For example, under certain
 circumstances, we can use a stored program in place
 of SQL statements that are difficult to optimize. Stored
 programs can also improve the performance of network-intensive
 operations. However, note that stored programs are not, in general, a
 good solution when we want to do mathematically intensive
 computation.
Performance Characteristics of Stored Programs

MySQL stored programs can often add to application functionality
 and developer efficiency, and there are certainly many cases where the
 use of a procedural language such as the MySQL stored program language
 can do things that a nonprocedural language like SQL cannot. There are
 also a number of reasons why a MySQL stored program approach may offer
 performance improvements over a traditional SQL approach:
	It provides a procedural
 approach
	SQL is a declarative, nonprocedural language: this means
 that in SQL you don't specify how to retrieve data—you only
 specify the data that you want to retrieve (or change). It's up
 to MySQL itself—specifically, the MySQL query optimizer—to
 determine how to go about identifying the result set.
From time to time, we might have a very good idea about
 the most efficient way to retrieve the data, but find that the
 MySQL optimizer chooses another—less efficient—path.
When we think we know how the data should be retrieved but
 can't get the optimizer to play ball, we can sometimes use MySQL
 stored programs to force the desired approach.

	It reduces client-server traffic
	In a traditional SQL-based application, SQL statements and
 data flow back and forth between the client and the server. This
 traffic can cause delays even when both the client and the
 server programs are on the same machine. If the client and
 server are on different machines, then the overhead is even
 higher.
We can use MySQL stored programs to eliminate much of this
 overhead, particularly when we need to execute a series of
 related SQL statements. A succinct message is sent from the
 client to the server (the stored program execution request) and
 a minimal response is sent from the server to the client
 (perhaps only a return code). Furthermore, we can take advantage
 of database triggers to automatically execute statements in the
 database without any network interaction at all.
The resulting reduction in network traffic can
 significantly enhance performance.

	It allows us to divide and conquer complex
 statements
	As SQL statements become more complex, they also get
 harder and harder to fully optimize, both for the MySQL
 optimizer and for the programmer. We have all seen (and some of
 us have written) massive SQL statements with multiple
 subqueries, UNION operations,
 and complex joins. Tuning these "monster" SQL statements can be
 next to impossible for both humans and software
 optimizers.
It's often a winning strategy to break these massive SQL
 statements into smaller individual statements and optimize each
 individually. For instance, subqueries could be run outside of
 the SQL statement and the results forwarded to subsequent steps
 as query parameters or through temporary tables.

Having said that, we don't want to give you the impression that
 we think you should rewrite all of your non-trivial SQL statements in
 MySQL stored programs. In fact, it is usually the case that if you can
 express your needs in "straight" SQL, that will be the most efficient
 approach. And do remember that complex arithmetic computations will
 usually be slower in a stored program than in an equivalent SQL
 statement.

How Fast Is the Stored Program Language?

 It would be terribly unfair of us to expect the first
 release of the MySQL stored program language to be blisteringly fast.
 After all, languages such as Perl and PHP have been the subject of
 tweaking and optimization for about a decade, while the latest
 generation of programming languages—.NET and Java—have been the
 subject of a shorter but more intensive optimization process by some
 of the biggest software companies in the world. So right from the
 start, we expected that the MySQL stored program language would lag in
 comparison with the other languages commonly used in the MySQL
 world.
Still, we felt it was important to get a sense of the raw
 performance of the language. So we put together a number of test
 scripts. First off, we wanted to see how quickly the stored program
 language could crunch numbers. Stored programs generally do not
 perform computationally expensive operations, but—given that you
 sometimes have a choice between various application tiers when
 performing some computationally intensive task—it's worth knowing if
 the stored program language is up to the job.
To test basic compute performance, we wrote a stored program
 that determines the number of prime numbers less than a given input
 number. (We're sure that some of you will know better algorithms, but
 remember that the point is to compare languages, not to calculate
 prime numbers in the most efficient manner possible.) The stored
 program is shown in Example
 22-1.
Example 22-1. Stored program to find prime numbers
CREATE PROCEDURE sp_nprimes(p_num int)
BEGIN
 DECLARE i INT;
 DECLARE j INT;
 DECLARE nprimes INT;
 DECLARE isprime INT;

 SET i=2;
 SET nprimes=0;

 main_loop:
 WHILE (i<p_num) do
 SET isprime=1;
 SET j=2;
 divisor_loop:
 WHILE (j<i) DO
 IF (MOD(i,j)=0) THEN
 SET isprime=0;
 LEAVE divisor_loop;
 END IF;
 SET j=j+1;
 END WHILE ;
 IF (isprime=1) THEN
 SET nprimes=nprimes+1;
 END IF;
 SET i=i+1;
 END WHILE;
 SELECT CONCAT(nprimes,' prime numbers less than ',p_num);
END;

We implemented this algorithm in a variety of languages—C, Java,
 VB.NET, Perl, PHP, and PL/SQL (the Oracle stored program language).
 For instance, the Oracle implementation of the procedure is shown in
 Example 22-2; as you can
 see, while some of the language constructs differ, the algorithms are
 identical.
Example 22-2. Oracle implementation of the prime number procedure
PROCEDURE N_PRIMES
 (p_num NUMBER)
 IS

 i INT;
 j INT;
 nprimes INT;
 isprime INT;

BEGIN

 i:=2;
 nprimes:=0;

 <<main_loop>>
 WHILE (i<p_num) LOOP
 isprime:=1;
 j:=2;
 <<divisor_loop>>
 WHILE (j<i) LOOP
 IF (MOD(i,j)=0) THEN
 isprime:=0;
 EXIT divisor_loop;
 END IF;
 j:=j+1;
 END LOOP ;
 IF (isprime=1) THEN
 nprimes:=nprimes+1;
 END IF;
 i:=i+1;
 END LOOP;
 dbms_output.put_line(nprimes||' prime numbers less than '||p_num);
END;

We executed each program multiple times to seek the number of
 prime numbers less than 8000. The results are shown in Figure 22-1. We ran these tests
 on the same machine and did our best to minimize any interference from
 other running programs and, in every other way, to keep the playing
 field level. Nevertheless, for this computationally intensive trial,
 MySQL performed poorly compared with other languages—twice as slow as
 an Oracle stored procedure, five times slower than PHP or Perl, and
 dozens of times slower than Java, .NET, or C. Remember that Oracle in
 particular has been optimizing its stored procedure language for over
 a decade now; in comparison with the initial releases of PL/SQL, the
 MySQL stored program language is a speed demon!
[image: Finding prime numbers in various languages]

Figure 22-1. Finding prime numbers in various languages

We are confident that the MySQL stored program language will
 become more efficient in future releases, but for now we recommend
 that you avoid using this language for mathematically intensive
 operations.
Tip
The MySQL stored program language is relatively slow when it
 comes to performing arithmetic calculations. Avoid using stored
 programs to perform number crunching.

Reducing Network Traffic with Stored Programs

 If the previous section left you feeling less than
 enthusiastic about stored program performance, this section should
 cheer you right up. Although stored programs aren't particularly zippy
 when it comes to number crunching, you don't normally write stored
 programs that simply perform math—stored programs almost always
 process data from the database. In these circumstances, the difference
 between stored program and (for instance) Java performance is usually minimal—unless network
 overhead is a big factor. When a program is required to process
 large numbers of rows from the database, a stored program can
 substantially outperform programs written in client languages, because
 it does not have to wait for rows to be transferred across the
 network—the stored program runs inside the database.
Consider the stored program shown in Example 22-3; this stored
 program retrieves all sales rows for the past five months and
 generates some statistical measurements (mean and standard deviation)
 against those rows.
Example 22-3. Stored program to generate statistics
CREATE PROCEDURE sales_summary()
 READS SQL DATA
BEGIN

 DECLARE SumSales FLOAT DEFAULT 0;
 DECLARE SumSquares FLOAT DEFAULT 0;
 DECLARE NValues INT DEFAULT 0;
 DECLARE SaleValue FLOAT DEFAULT 0;
 DECLARE Mean FLOAT;
 DECLARE StdDev FLOAT;

 DECLARE last_sale INT DEFAULT 0;

 DECLARE sale_csr CURSOR FOR
 SELECT sale_value FROM SALES s
 WHERE sale_date >date_sub(curdate(),INTERVAL 6 MONTH);

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET last_sale=1;

 OPEN sale_csr;
 sale_loop: LOOP
 FETCH sale_csr INTO SaleValue;
 IF last_sale=1 THEN LEAVE sale_loop; END IF;

 SET NValues=NValues+1;
 SET SumSales=SumSales+SaleValue;
 SET SumSquares=SumSquares+POWER(SaleValue,2);

 END LOOP sale_loop;
 CLOSE sale_csr;

 SET StdDev = SQRT((SumSquares - (POWER(SumSales,2) / NValues)) / NValues);
 SET Mean = SumSales / NValues;

 SELECT CONCAT('Mean=',Mean,' StdDev=',StdDev);

END

Example 22-4 shows
 the same logic implemented in a Java program.
Example 22-4. Java program to generate sales statistics
import java.sql.*;
import java.math.*;

public class SalesSummary {

 public static void main(String[] args)
 throws ClassNotFoundException, InstantiationException,
 IllegalAccessException {
 String Username=args[0];
 String Password=args[1];
 String Hostname=args[2];
 String Database=args[3];
 String Port=args[4];

 float SumSales,SumSquares,SaleValue,StdDev,Mean;
 int NValues=0;

 SumSales=SumSquares=0;

 try
 {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 String ConnString=
 "jdbc:mysql://"+Hostname+":"+Port+
 "/"+Database+"?user="+Username+"&password="+Password;
 Connection MyConnect = DriverManager.getConnection(ConnString);

 String sql="select sale_value from SALES s" +
 " where sale_date >date_sub(curdate(),interval 6 month)";

 Statement s1=MyConnect.createStatement();
 ResultSet rs1=s1.executeQuery(sql);
 while (rs1.next())
 {
 SaleValue = rs1.getFloat(1);
 NValues = NValues + 1;
 SumSales = SumSales + SaleValue;
 SumSquares = SumSquares + SaleValue*SaleValue;
 }
 rs1.close();

 Mean=SumSales/NValues;
 StdDev = (float) Math.sqrt(((SumSquares -
 ((SumSales*SumSales) / NValues)) / NValues));

 System.out.println("Mean="+Mean+" StdDev="+StdDev+" N="+NValues);

 }
 catch(SQLException Ex) {
 System.out.println(Ex.getErrorCode()+" "+Ex.getMessage());
 Ex.printStackTrace();}

 }
}

As we saw earlier in this chapter, Java is much, much faster
 than the MySQL stored program language when it comes to performing
 calculations. Therefore, we expect that the Java program would be
 faster in this case as well. In fact, when we run the Java program on
 the same host as the relevant MySQL server, the Java program is
 faster—though not by much: the Java program completed in about 22
 seconds while the stored program took about 26 seconds (see Figure 22-2). Although Java is
 faster than the stored program when it comes to performing the
 arithmetic calculations needed, the bulk of the time is spent
 retrieving rows from the database, and so the difference is not very
 noticeable.
[image: Java versus stored program performance across the network]

Figure 22-2. Java versus stored program performance across the
 network

However, when we invoke each program from a remote host across a
 network with relatively high latency, we see that while the stored
 program execution time stays the same, the Java program takes
 much longer to execute (increasing from 22
 seconds to 5 minutes). The Java program has to fetch each row from the
 database across the network, and these network round-trips dominate
 the overall execution time. The lesson is clear: if your program
 causes a large amount of network traffic, such as those that fetch or
 change a large number of rows across the network, a stored program can
 outperform a program written in a client language such as Java or
 PHP.
Tip
Stored programs do not incur the network overhead of languages
 such as PHP or Java. If network overhead is an issue, then using a
 stored program can be an effective optimization.

Stored Programs as an Alternative to Expensive SQL

 Sometimes we can use a stored program to perform query
 or DML operations that perform badly in standard SQL. This usually
 happens when the "pure" SQL statement becomes overly complex because
 of limitations in the SQL syntax or when the MySQL optimizer isn't
 able to come up with a sensible plan for your SQL query. In this
 section we offer two scenarios in which a stored program can be
 expected to outperform a SQL statement that executes the same logical
 steps.
Avoid Self-Joins with Procedural Logic

One situation in which a stored program might offer a better
 solution is where you are forced to construct a query that joins a
 table to itself in order to filter for the required rows. For
 instance, in Example
 22-5, we issue a SQL statement that retrieves the most
 valuable order for each customer over the past few months.
Example 22-5. Finding the maximum sale for each customer
SELECT s.customer_id,s.product_id,s.quantity, s.sale_value
 FROM sales s, (SELECT customer_id,max(sale_value) max_sale_value
 FROM sales
 GROUP BY customer_id) t
 WHERE t.customer_id=s.customer_id
 AND t.max_sale_value=s.sale_value
 AND s.sale_date>date_sub(currdate(),interval 6 month);

This is an expensive SQL statement, partially because we first
 need to create a temporary table to hold the customer ID and maximum
 sale value and then join that back to the sales table to find the full details for
 each of those rows.
MySQL doesn't provide SQL syntax that would allow us to return
 this data without an expensive self-join. However, we can use a
 stored program to retrieve the data in a single pass through the
 sales table. Example 22-6 shows a stored
 program that stores maximum sales for each customer into a temporary
 table (max_sales_by_customer)
 from which we can later select the results.
Example 22-6. Stored program to return maximum sales for each customer
 over the last 6 months
1 CREATE PROCEDURE sp_max_sale_by_cust()
2 MODIFIES SQL DATA
3 BEGIN
4 DECLARE last_sale INT DEFAULT 0;
5 DECLARE l_last_customer_id INT DEFAULT -1;
6 DECLARE l_customer_id INT;
7 DECLARE l_product_id INT;
8 DECLARE l_quantity INT;
9 DECLARE l_sale_value DECIMAL(8,2);
10 DECLARE counter INT DEFAULT 0;
11
12 DECLARE sales_csr CURSOR FOR
13 SELECT customer_id,product_id,quantity, sale_value
14 FROM sales
15 WHERE sale_date>date_sub(currdate(),interval 6 month)
16 ORDER BY customer_id,sale_value DESC;
17
18 DECLARE CONTINUE HANDLER FOR NOT FOUND SET last_sale=1;
19
20 OPEN sales_csr;
21 sales_loop: LOOP
22 FETCH sales_csr INTO l_customer_id,l_product_id,l_quantity,l_sale_value;
23 IF (last_sale=1) THEN
24 LEAVE sales_loop;
25 END IF;
26
27 IF l_customer_id <> l_last_customer_id THEN
28 /* This is a new customer so first row will be max sale*/
29 INSERT INTO max_sales_by_customer
30 (customer_id,product_id,quantity,sale_value)
31 VALUES(l_customer_id,l_product_id,l_quantity,l_sale_value);
32 END IF;
33
34 SET l_last_customer_id=l_customer_id;
35
36 END LOOP;
37
38 END;

Let's look at the most significant lines in this
 program:
	Line(s)
	Explanation

	12
	Declare a cursor that will return
 sales for the past 6 months ordered by customer_id and then by descending
 sale_value.

	27-32
	Check to see whether we have
 encountered a new customer_id. The first row for any
 given customer will be the maximum sale for that customer,
 so we insert that row into a temporary table (line
 30).

The stored program is significantly faster than the standard
 SQL solution. Figure
 22-3 shows the elapsed time for the two solutions.
[image: Using a stored program to optimize a complex self-join]

Figure 22-3. Using a stored program to optimize a complex
 self-join

Optimize Correlated Updates

A correlated update is an UPDATE statement that contains a
 correlated subquery in the SET
 clause and/or WHERE clause.
 Correlated updates are often good candidates for optimization
 through procedural execution. In Example 22-7 we have an
 UPDATE statement that updates all
 customers who are also employees, and assigns the employee's manager
 as their sales representative.
Example 22-7. Correlated UPDATE statement
UPDATE customers c
 SET sales_rep_id =
 (SELECT manager_id
 FROM employees
 WHERE surname = c.contact_surname
 AND firstname = c.contact_firstname
 AND date_of_birth = c.date_of_birth)
 WHERE (contact_surname,
 contact_firstname,
 date_of_birth) IN
 (SELECT surname, firstname, date_of_birth
 FROM employees and);

Note that the UPDATE
 statement needs to access the employees table twice: once to identify
 customers who are employees and again to find the manager's
 identifier for those employees.
Example 22-8
 offers a stored program that provides an alternative to the
 correlated update. The stored program identifies those customers who
 are also employees using a cursor. For each of the customers
 retrieved by the cursor, an UPDATE is issued.
Example 22-8. Stored program alternative to the correlated update
CREATE PROCEDURE sp_correlated_update()
 MODIFIES SQL DATA
BEGIN
 DECLARE last_customer INT DEFAULT 0;
 DECLARE l_customer_id INT ;
 DECLARE l_manager_id INT;

 DECLARE cust_csr CURSOR FOR
 select c.customer_id,e.manager_id
 from customers c,
 employees e
 where e.surname=c.contact_surname
 and e.firstname=c.contact_firstname
 and e.date_of_birth=c.date_of_birth;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET last_customer=1;

 OPEN cust_csr;
 cust_loop: LOOP
 FETCH cust_csr INTO l_customer_id,l_manager_id;
 IF (last_customer=1) THEN
 LEAVE cust_loop;
 END IF;
 UPDATE customers
 SET sales_rep_id=l_manager_id
 WHERE customer_id=l_customer_id;
 END LOOP;

END;

Because the stored program does not have to do two separate
 accesses of the customers table,
 it is significantly faster than the standard SQL. Figure 22-4 compares the
 performance of the two approaches.
[image: Performance of a correlated update and stored program alternative]

Figure 22-4. Performance of a correlated update and stored program
 alternative

Optimizing Loops

In the remainder of this chapter we will look at techniques for
 the optimization of stored program code that does
 not involve SQL statements, starting with the
 optimization of loops .
Because the statements executed within a loop can be executed
 many times, optimizing loop processing is a basic step when optimizing the
 performance of a program written in any language. The MySQL stored
 program language is no exception.
Move Unnecessary Statements Out of a Loop

The first principle of optimizing a loop is to move
 calculations out of the loop that don't belong inside the loop
 (these are known as loop-invariant statements , since they do not vary with each execution of the
 loop body). Although such a step might seem obvious, it's surprising
 how often a program will perform calculations over and over within a
 loop that could have been performed just once before the start of
 loop execution.
For instance, consider the stored program in Example 22-9. This loop is
 actually fairly inefficient, but at first glance it's not easy to
 spot where the problem is. Fundamentally, the problem with this
 stored program is that it calculates the square root of the i variable for every value of the j variable. Although there are only 1,000
 different values of i, the stored
 program calculates this square root five
 million times.
Example 22-9. A poorly constructed loop
 WHILE (i<=1000) DO
 SET j=1;
 WHILE (j<=5000) DO
 SET rooti=sqrt(i);
 SET rootj=sqrt(j);
 SET sumroot=sumroot+rooti+rootj;
 SET j=j+1;
 END WHILE;
 SET i=i+1;
 END WHILE;

By moving the calculation of the square root of i outside of the loop—as shown in Example 22-10—we
 substantially reduce the overhead of this loop.
Example 22-10. Moving unnecessary calculations out of a loop
 WHILE (i<=1000) DO
 SET rooti=sqrt(i);
 SET j=1;
 WHILE (j<=5000) DO
 SET rootj=sqrt(j);
 SET sumroot=sumroot+rootj+rooti;
 SET j=j+1;
 END WHILE;
 SET i=i+1;
 END WHILE;

Figure 22-5 shows
 the performance improvements achieved from moving the calculation of
 the square root of the i variable
 outside of the inner loop.
[image: Performance improvements gained from removing unnecessary calculations within a loop]

Figure 22-5. Performance improvements gained from removing unnecessary
 calculations within a loop

Tip
Ensure that all statements within a loop truly belong within
 the loop. Move any loop-invariant statements outside of the
 loop.

Use LEAVE or CONTINUE to Avoid Needless Processing

Just as it is important to remove all unnecessary processing
 from a loop, it is equally important to leave the loop when you are
 finished. Again, this seems obvious, but it is easy to write a fully
 functional loop that performs unnecessary iterations. When you look
 at your code, it's not always that obvious that the loop is
 inefficient.
Consider the loop shown in Example 22-11: this is a
 variation on the loop used in Example 22-1 to count prime
 numbers. This loop is functionally correct, but inefficient. On line
 2 we cycle through all numbers less than the given number looking
 for divisors. If we find a divisor (line 4), we know that the number
 is not a prime number. However, in Example 22-11, we continue to
 check each number even though we have already found the first
 divisor. This is unnecessary, since once we find even a single
 divisor, we know that the number is not prime—there is no need to
 look for further divisors.
Example 22-11. Loop that iterates unnecessarily
1 divisor_loop:
2 WHILE (j<i) do /* Look for a divisor */
3
4 IF (MOD(i,j)=0) THEN
5 SET isprime=0; /* This number is not prime*/
6 END IF;
7 SET j=j+1;
8 END WHILE ;

Example 22-12
 shows the same loop, but with a LEAVE statement added that terminates the
 loop once a divisor is found.
Example 22-12. Loop with a LEAVE statement to avoid unnecessary
 iterations
 divisor_loop:
 WHILE (j<i) do /* Look for a divisor */

 IF (MOD(i,j)=0) THEN
 SET isprime=0; /* This number is not prime*/
 LEAVE divisor_loop; /* No need to keep checking*/
 END IF;
 SET j=j+1;
 END WHILE ;

Although the LEAVE
 statement terminates the loop and reduces the elapsed time for the
 stored procedure, it may decrease readability of the code because
 the loop now has two sections that determine if the loop
 continues—the WHILE clause
 condition and the LEAVE
 statement. Constructing a loop with multiple exit points makes the
 code harder to understand and maintain.
It would be equally valid in this case to modify the WHILE clause so that the loop ceases its
 repetitions once it has determined that the number is not a prime,
 as shown in Example
 22-13.
Example 22-13. Modifying the WHILE condition to avoid unnecessary
 iterations
 divisor_loop:
 WHILE (j<i AND isprime=1) do /* Look for a divisor */

 IF (MOD(i,j)=0) then
 SET isprime=0; /* This number is not prime*/
 END IF;
 SET j=j+1;
 END WHILE ;

Figure 22-6 shows
 the improvements gained in our prime number search when we add the
 LEAVE statement or modify the
 WHILE clause. Modifying the
 WHILE clause leads to a
 comparable performance increase without reducing the readability of
 the loop.
[image: Effect of using LEAVE or modifying WHILE clause to avoid unnecessary iterations]

Figure 22-6. Effect of using LEAVE or modifying WHILE clause to avoid
 unnecessary iterations

Tip
Make sure that your loops terminate when all of the work has
 been done, either by ensuring that the loop continuation
 expression is comprehensive or—if necessary—by using a LEAVE statement to terminate when
 appropriate.

IF and CASE Statements

 Another category of statement that is highly amenable to
 code optimization is the conditional statement category—IF and CASE statements. This is especially true if
 these statements are called repetitively within a loop. The essence of
 optimizing conditional statements like IF and CASE is to reduce the number of comparisons
 that are performed. You can do this by:
	Testing for the more likely matches earlier in the IF or CASE statement

	Stopping the comparison process as early as possible

Test for the Most Likely Conditions First

When constructing IF and
 CASE statements, try to minimize
 the number of comparisons that these statements are likely to make
 by testing for the most likely scenarios first. For instance,
 consider the IF statement shown
 in Example 22-14. This
 statement maintains counts of various percentages. Assuming that the
 input data is evenly distributed, the first IF condition (percentage>95) will match about once in
 every 20 executions. On the other hand, the final condition will
 match in three out of four executions. So this means that for 75% of
 the cases, all four comparisons will need to be evaluated.
Example 22-14. Poorly constructed IF statement
 IF (percentage>95) THEN
 SET Above95=Above95+1;
 ELSEIF (percentage >=90) THEN
 SET Range90to95=Range90to95+1;
 ELSEIF (percentage >=75) THEN
 SET Range75to89=Range75to89+1;
 ELSE
 SET LessThan75=LessThan75+1;
 END IF;

Example 22-15
 shows a more efficiently formed IF statement. In this variation, the first
 condition will evaluate as true in the majority of executions and no
 further comparisons will be necessary.
Example 22-15. Optimized IF statement
 IF (percentage<75) THEN
 SET LessThan75=LessThan75+1;
 ELSEIF (percentage >=75 AND percentage<90) THEN
 SET Range75to89=Range75to89+1;
 ELSEIF (percentage >=90 and percentage <=95) THEN
 SET Range90to95=Range90to95+1;
 ELSE
 SET Above95=Above95+1;
 END IF;

Figure 22-7 shows
 the performance improvement gained by reordering the IF statement so that the most commonly
 satisfied condition is evaluated first.
[image: Effect of optimizing an IF statement by reordering comparisons]

Figure 22-7. Effect of optimizing an IF statement by reordering
 comparisons

Tip
If an IF statement is to
 be executed repeatedly, placing the most commonly satisfied
 condition earlier in the IF
 structure may optimize performance.

Avoid Unnecessary Comparisons

Sometimes an IF or CASE statement will be constructed that
 has some kind of common condition in each comparison clause. For
 instance, in Example
 22-16, each of the expressions in the IF statement includes an employee_status='U' condition. Even if the
 employee_status is not equal to
 "U", each of these comparisons
 will need to be evaluated—adding some processing overhead.
Example 22-16. IF statement with common condition in each
 expression
IF (employee_status='U' AND employee_salary>150000) THEN
 SET categoryA=categoryA+1;
ELSEIF (employee_status='U' AND employee_salary>100000) THEN
 SET categoryB=categoryB+1;
ELSEIF (employee_status='U' AND employee_salary<50000) THEN
 SET categoryC=categoryC+1;
ELSEIF (employee_status='U') THEN
 SET categoryD=categoryD+1;
END IF;

Example 22-17
 shows a more optimized IF
 structure. In this example, the employee_status is checked first and
 then—only if employee_status='U'—are the additional
 comparisons are evaluated. Figure 22-8 demonstrates the
 optimization.
Example 22-17. Nested IF statement to avoid redundant comparisons
IF (employee_status='U') THEN
 IF (employee_salary>150000) THEN
 SET categoryA=categoryA+1;
 ELSEIF (employee_salary>100000) THEN
 SET categoryB=categoryB+1;
 ELSEIF (employee_salary<50000) THEN
 SET categoryC=categoryC+1;
 ELSE
 SET categoryD=categoryD+1;
 END IF;
END IF;

To be honest, under most circumstances, tuning IF statements will
 not greatly improve the performance of your code. The overhead of
 SQL processing will usually dominate overall execution time.
 Consequently, we suggest that when it comes to conditional
 statements, you should prioritize writing readable and maintainable
 code. If a particular IF
 statement becomes a bottleneck, then you should consider a rewrite
 that will improve performance even at the expense of
 maintainability.
[image: Effect of nesting an IF statement to eliminate redundant comparisons]

Figure 22-8. Effect of nesting an IF statement to eliminate redundant
 comparisons

Tip
If your IF or CASE statement contains compound
 expressions with redundant comparisons, consider nesting multiple
 IF or CASE statements to avoid redundant
 processing.

CASE Versus IF

We wondered if there was any performance difference between a
 CASE statement and an equivalent
 IF statement. We thought that
 CASE might be more optimal for
 comparing a variable against a range of set values, so we speculated
 that this statement:
 CASE customer_code
 WHEN 1 THEN
 SET process_flag=7;
 WHEN 2 THEN
 SET process_flag=9;
 WHEN 3 THEN
 SET process_flag=2;
 ELSE
 SET process_flag=0;
 END CASE;
might be more efficient than the equivalent IF statement:
 IF customer_code= 1 THEN
 SET process_flag=7;
 ELSEIF customer_code= 2 THEN
 SET process_flag=9;
 ELSEIF customer_code=3 THEN
 SET process_flag=2;
 ELSE
 SET process_flag=0;
 END IF;
In fact, the opposite turned out to be true. The IF statement is roughly 15% faster than
 the equivalent CASE
 statement—presumably this is the result of a more efficient internal
 algorithm for IF in the MySQL
 code.
As noted earlier, we advise you to structure your stored
 program's statements primarily for readability and maintainability,
 since it is almost always the elapsed time of SQL statements that
 dominates performance. However, if performance is critical, you may
 want to make a habit of using IF
 statements rather than CASE
 statements in your code.

Recursion

 A recursive routine is one that
 invokes itself. Recursive routines often offer elegant solutions to
 complex programming problems, but they also tend to consume large
 amounts of memory. They are also likely to be less efficient and less
 scalable than implementations based on iterative execution.
Most recursive algorithms can be reformulated using nonrecursive
 techniques involving iteration. Where possible, we should give
 preference to the more efficient iterative algorithm.
For example, in Example
 22-18, the stored procedure uses recursion to calculate the Nth element of
 the Fibonacci sequence, in which each element in the sequence is the
 sum of the previous two numbers.
Example 22-18. Recursive implementation of the Fibonacci algorithm
CREATE PROCEDURE rec_fib(n INT,OUT out_fib INT)
BEGIN
 DECLARE n_1 INT;
 DECLARE n_2 INT;

 IF (n=0) THEN
 SET out_fib=0;
 ELSEIF (n=1) then
 SET out_fib=1;
 ELSE
 CALL rec_fib(n-1,n_1);
 CALL rec_fib(n-2,n_2);
 SET out_fib=(n_1 + n_2);
 END IF;
END

Example 22-19 shows
 a nonrecursive implementation that returns the
 Nth element of the Fibonacci sequence.
Example 22-19. Nonrecursive implementation of the Fibonacci sequence
CREATE PROCEDURE nonrec_fib(n INT,OUT out_fib INT)
BEGIN
 DECLARE m INT default 0;
 DECLARE k INT DEFAULT 1;
 DECLARE i INT;
 DECLARE tmp INT;

 SET m=0;
 SET k=1;
 SET i=1;

 WHILE (i<=n) DO
 SET tmp=m+k;
 SET m=k;
 SET k=tmp;
 SET i=i+1;
 END WHILE;
 SET out_fib=m;
 END

Figure 22-9
 compares the relative performance of the recursive and nonrecursive
 implementations. Not only is the recursive algorithm less efficient
 for almost any given input value, it also degrades rapidly as the
 number of recursions increases (which is, in turn, dependent on which
 element of the Fibonacci sequence is requested). As well as being
 inherently a less efficient algorithm, each recursion requires MySQL
 to create the context for a new stored program (or function)
 invocation. As a result, recursive algorithms tend to waste memory as
 well as being slower than their iterative alternatives.
[image: Performance of recursive and nonrecursive calculations of Fibonacci numbers (note logarithmic scale)]

Figure 22-9. Performance of recursive and nonrecursive calculations of
 Fibonacci numbers (note logarithmic scale)

The maximum recursion depth—the number of times a procedure can
 call itself—is controlled by the MySQL configuration parameter
 max_sp_recursion_depth. The default
 value of 0 disables all recursive procedures. A procedure that
 attempts to recurse beyond the value of max_sp_recursion_depth will encounter a
 runtime error:
 mysql> CALL rec_fib(10,@x);
 ERROR 1456 (HY000): Recursive limit 0 (as set by the max_sp_recursion_depth variable)
 was exceeded for routine rec_fib
Recursion in stored functions is not allowed. An attempt to
 recurse in a function will always generate a runtime error:
 mysql> SELECT rec_fib(10);
 ERROR 1424 (HY000): Recursive stored functions and triggers are not allowed.
Tip
Recursive solutions rarely perform as efficiently as their
 nonrecursive alternatives.

Cursors

 When you need to retrieve only a single row from a
 SELECT statement, using the
 INTO clause is far easier than
 declaring, opening, fetching from, and closing a cursor. But does the
 INTO clause generate some
 additional work for MySQL or could the INTO clause be more efficient than a cursor?
 In other words, which of the two stored programs shown in Example 22-20 is more
 efficient?
Example 22-20. Two equivalent stored programs, one using INTO and the other
 using a cursor
CREATE PROCEDURE using_into
 (p_customer_id INT,OUT p_customer_name VARCHAR(30))
 READS SQL DATA
BEGIN
 SELECT customer_name
 INTO p_customer_name
 FROM customers
 WHERE customer_id=p_customer_id;
END;

CREATE PROCEDURE using_cursor
 (p_customer_id INT,OUT p_customer_name VARCHAR(30))
 READS SQL DATA
BEGIN

 DECLARE cust_csr CURSOR FOR
 SELECT customer_name
 FROM customers
 WHERE customer_id=p_customer_id;

 OPEN cust_csr;
 FETCH cust_csr INTO p_customer_name;
 CLOSE cust_csr;

END;

Certainly, it is simpler to code an INTO statement than to code DECLARE, OPEN, FETCH, and CLOSE statements, and we will probably only
 bother to do this—when we know that the SQL returns only one row—if
 there is a specific performance advantage. As it turns out, there is
 actually a slight performance penalty for using an explicit cursor.
 Figure 22-10 shows the
 relative performance of each of the stored programs in Example 22-20—over 11,000
 executions, the INTO-based stored
 program was approximately 15% faster than the stored program that used
 an explicit cursor.
[image: Relative performance of INTO versus CURSOR fetch]

Figure 22-10. Relative performance of INTO versus CURSOR fetch

Tip
If you know that a SQL statement will return only one row,
 then a SELECT ... INTO statement
 will be slightly faster than declaring, opening, and fetching from a
 cursor.

Trigger Overhead

Every database trigger is associated with a specific DML
 operation (INSERT, UPDATE, or DELETE) on a specific table—the trigger code
 will execute whenever that DML operation occurs on that table.
 Furthermore, all MySQL 5.0 triggers are of the FOR EACH
 ROW type, which means that the trigger code will execute
 once for each row affected by the DML operation. Given that a single
 DML operation might potentially affect thousands of rows, should we be
 concerned that our triggers might have a negative effect on DML
 performance? Absolutely!
For all of the reasons outlined previously, triggers can
 significantly increase the amount of time taken to execute DML
 operations and can have a detrimental effect on overall application
 performance if trigger overhead is not carefully managed.
The overhead of a trigger itself is significant, though not
 unmanageable. For instance, consider the trigger shown in Example 22-21; this trivial
 trigger serves no purpose, but it allows us to measure the overhead of
 a trigger that does virtually nothing.
Example 22-21. "Trivial" trigger
CREATE TRIGGER sales_bi_trg
 BEFORE INSERT
 ON sales
 FOR EACH ROW
 SET @x=NEW.sale_value;

When we implemented this trivial trigger, the time taken to
 insert 100,000 sales rows increased from 8.84 seconds to 12.9
 seconds—an increase of about 45%. So even the simplest of
 triggers adds a significant—though bearable—overhead.
But what about a complex trigger? In Chapter 11, we created a set of
 triggers to maintain a sales summary table. One of the triggers we
 created is the BEFORE INSERT
 trigger, shown in Example
 22-22.
Example 22-22. A more complex trigger
CREATE TRIGGER sales_bi_trg
 BEFORE INSERT ON sales
 FOR EACH ROW
BEGIN
 DECLARE row_count INTEGER;

 SELECT COUNT(*)
 INTO row_count
 FROM customer_sales_totals
 WHERE customer_id=NEW.customer_id;

 IF row_count > 0 THEN
 UPDATE customer_sales_totals
 SET sale_value=sale_value+NEW.sale_value
 WHERE customer_id=NEW.customer_id;
 ELSE
 INSERT INTO customer_sales_totals
 (customer_id,sale_value)
 VALUES(NEW.customer_id,NEW.sale_value);
 END IF;

END

This trigger checks to see if there is an existing row for the
 customer in the summary table and, if there is, updates that row;
 otherwise, it adds a new row. Since we are performing a single
 additional update or insert for every row inserted, we do expect an
 increase in our INSERT overhead.
 However, we might not expect that the time taken to insert 10,000 rows
 increases from 0.722 second to 64.36 seconds—almost 100 times
 more!
The problem with our trigger is obvious on reflection. The SQL
 that checks for a matching row is not supported by an index, so for
 every row inserted into sales, we
 are performing a full scan of customer_sales_totals. This is not a huge
 table, but these scans are performed for every row inserted, so the
 overhead adds up rapidly. Furthermore, the UPDATE statement is also not supported by an
 index, so a second scan of the customer_sales_totals table is performed to
 support the UPDATE.
The solution is to create an index on customer_sales_totals.customer_id, as shown
 in Example 22-23.
Example 22-23. Index to support our trigger
CREATE UNIQUE INDEX customer_sales_totals_cust_id
 ON customer_sales_totals(customer_id)

Once the index is created, the performance improves: time to
 insert 10,000 rows is reduced to about 4.26 seconds, which—although
 much slower than the performance we achieved without a trigger—is
 certainly more acceptable than 64 seconds. Performance variations are
 shown in Figure
 22-11.
[image: Trigger performance variations]

Figure 22-11. Trigger performance variations

The lesson here is this: since the trigger code will execute
 once for every row affected by a DML statement, the trigger can easily
 become the most significant factor in DML performance. Code inside the
 trigger body needs to be as lightweight as possible and—in
 particular—any SQL statements in the trigger should be supported by
 indexes whenever possible.

Conclusion

In this chapter we looked at the particular performance
 characteristics of stored programs and offered advice about when to
 use stored program logic in place of "straight" SQL and how to
 optimize the algorithms we write in the MySQL stored program
 language.
As we have emphasized repeatedly, the performance of most stored
 programs will depend primarily on the performance of the SQL
 statements found within the stored program. Before optimizing stored
 program statements, make sure that all of the SQL statements are fully
 optimized.
The MySQL stored program language is currently slower than most
 alternative procedural languages—such as Java and PHP—when it comes to
 number crunching. In general, we are better off implementing
 computationally expensive code in one of these other languages.
Stored programs can, however, really shine from a performance
 standpoint when a relatively small output is calculated from a large
 number of database rows. This is because other languages must transfer
 these rows across the network, while stored program execution occurs
 inside the database, minimizing network traffic.
Sometimes stored programs can also be used as an alternative to
 hard-to-optimize SQL. This will typically be true when the SQL
 language forces we to repetitively fetch the same data, or when the
 SQL logic is enormously complex and we need to "divide and conquer."
 However, a stored program solution will typically take more
 programming investment than a SQL equivalent, so we must be sure that
 we are obtaining the improvements we expect.
The optimization of stored program code follows the same general
 principles that are true for other languages. In particular:
	Optimize loop processing: ensure that no unnecessary
 statements occur within a loop; exit the loop as soon as you are
 logically able to do so.

	Reduce the number of comparisons by testing for the most
 likely match first, and nest IF
 or CASE statements when
 necessary to eliminate unnecessary comparisons.

	Avoid recursive procedures.

Because MySQL triggers execute once for each row affected by a
 DML statement, the effect of any unoptimized statements in a trigger
 will be magnified during bulk DML operations. Trigger code needs to be
 very carefully optimized—expensive SQL statements have no place in
 triggers.

Chapter 23. Best Practices in MySQL Stored Program Development

The objective of this chapter is to provide concrete, immediately
 applicable, quickly located advice that will assist you in writing code
 that is readable, maintainable, and efficient.
It might seem odd that we have written a "best practices" chapter
 for a language that is still in its first major release. Aren't "best
 practices" supposed to be determined and documented after years of trial
 and error, sweat, and heartache? Absolutely. Those are, in fact,
 precisely the kinds of best practices you will find in this
 chapter.
We spent more than a year between the first alpha release of MySQL
 5.0 in late 2004 and the most recent production release in early 2006,
 learning the hard way about what works and does not work in MySQL stored
 programs. Beyond that, while stored programs might be new to MySQL, they
 have been around in other databases for years—and both of us have plenty
 of experience (altogether over two decades' worth) to draw from—with
 MySQL, Oracle, and SQL Server. Most of the lessons learned in developing
 stored programs in other languages apply directly to MySQL.
We will start off with some general-purpose guidance that is
 intended to assist with software development in any language, then move
 on to guidelines specifically crafted for the MySQL stored program
 language. If you find yourself reading these and saying "Well, sure,
 of course that is what you are supposed to do!"
 then we congratulate you and hope that you not only
 know about these best practices, but also apply
 them as you write your code!
The Development Process

 To do your job well, you need to be aware of, and to
 follow, both "little" best practices—tips focused on particular coding
 techniques—and "big" best practices. This section offers some
 suggestions on the big picture: how to write your code as part of a
 high-quality development process .
In other words, if you (or your methodology) don't follow some
 form of the best practices in this section, you are less likely to
 produce high-quality, successful software.

Name
DEV-01: Set standards and guidelines before writing any
 code

Synopsis
These standards and guidelines might include many or all of
 the best practices described in this book. Of course, you need to
 make your own decisions about what is most important and practical
 in your own particular environment.
Key areas of development for which you should proactively
 set standards are:
	Selection of development tools
 : You should avoid relying on the MySQL
 command-line client to compile, execute, and test code, and
 avoid relying on a basic editor like Notepad or vi to write
 the code. MySQL AB and other software companies offer a
 multitude of tools (with a wide range of functionality and
 price) that will help you to dramatically improve your
 development environment. Decide on the tools to be used by all
 members of the development group.

	How SQL is written in stored
 programs: The SQL in your application can be the
 Achilles' heel of your code base. If you aren't careful about
 how you place SQL statements in your stored program code,
 you'll end up with applications that are difficult to
 optimize, debug, and manage over time.

	An exception-handling architecture
 : Users have a hard time understanding how to
 use an application correctly, and developers have an even
 harder time debugging and fixing an application if errors are
 handled inconsistently (or not at all). Use a consistent
 approach to handling runtime errors using exceptions.

	Processes for code review and
 testing : There are some basic tenets of
 programming that must not be ignored. You should never put
 code into production without first having it reviewed by one
 or more other developers, and performing tests on both the
 individual programs in your application and the overall
 application.

Benefits
By setting clear standards and guidelines for at least the
 areas we listed above (tools, SQL, error handling, and code review
 and testing), you ensure a foundation that will allow you to be
 productive and to produce code of reasonable quality. We offer
 detailed advice on most of these areas later in the
 chapter.

Challenges
The deadline pressures of most applications mitigate against
 taking the time up front to establish standards, even though we
 all know that such standards are likely to save time down the
 line.

Name
DEV-02: Ask for help after 30 minutes on a
 problem

Synopsis
Following this simple piece of advice might have more impact
 on the quality of your code (and your productivity) than anything
 else in this book!
How many times have you stared at the screen for hours,
 trying this and that in a vain attempt to fix a problem in your
 code? Finally, exhausted and desperate, you call over your cubicle
 wall: "Hey, Melinda (or Jose or Farik or Lakshmi), could you come
 over here and look at this?" When Melinda reaches your cube she
 sees in an instant what you, after hours, still could not see (and
 she doesn't even know MySQL all that well!). Gosh, it's like
 magic!
Except it's not magic and it's not mysterious at all.
 Remember: humans write software, so an understanding of human
 psychology is crucial to setting up processes that encourage
 quality software. We humans like to get things right, like to
 solve our own problems, and do not like to admit that we
 don't know what is going on. Consequently, we
 tend to want to hide our ignorance and difficulties. This tendency
 leads to many wasted hours, high levels of frustration, and,
 usually, nasty, spaghetti code.
Team leaders and development managers need to cultivate an
 environment in which we are encouraged to admit what we do not
 know, and ask for help earlier rather than later. Ignorance isn't
 a problem unless it is hidden from view. And by asking for help,
 you validate the knowledge and experience of others, building the
 overall self-esteem and confidence of the team.
There is a good chance that if you have already spent 30
 minutes fruitlessly analyzing your code, two more hours will not
 get you any further along to a solution. So get in the habit of
 sharing your difficulty with a coworker (preferably an assigned
 "buddy," so the line of communication between the two of you is
 officially acknowledged and doesn't represent in any way an
 acknowledgement of some sort of failure).

Example
Programmers are a proud and noble people. We don't like to
 ask for help; we like to bury our nose in our screen and create.
 So the biggest challenge to getting people to ask for help is to
 change behaviors. Here are some suggestions:
	The team leader must set the example. When we have the
 privilege to manage a team of developers, we go out of our way
 to ask each and every person on that team for help on one
 issue or another. If you are a coach to other teams of
 developers, identify the programmer who is respected by all
 others for her expertise. Then convince
 her to seek out the advice of others.
 Once the leader (formal or informal) shows that it is OK to
 admit ignorance, everyone else will gladly join in.

	Post reminders in work areas, perhaps even individual
 cubicles, such as "STUCK? ASK FOR HELP" and "IT'S OK NOT TO
 KNOW EVERYTHING." We need to be reminded about things that
 don't come naturally to us.

Benefits
Problems in code are identified and solved more rapidly.
 Fewer hours are wasted in a futile hunt for bugs.
Knowledge about the application and about the underlying
 software technology is shared more evenly across the development
 team.

Challenges
The main challenge to successful implementation of this best
 practice is psychological: don't be afraid to admit you don't know
 something or are having trouble figuring something out.

Resources
Peopleware: Productive Projects and
 Teams, by Tom DeMarco and Timothy Lister (Dorset
 House). This is a fantastic book that combines deep experience in
 project management with humor and common sense.

Name
DEV-03: Walk through each other's code

Synopsis
Software is written to be executed by a machine. These
 machines are very, very fast, but they aren't terribly smart. They
 simply do what they are told, following the instructions of the
 software we write, as well as the many other layers of software
 that control the CPU, storage, memory, etc.
It is extremely important, therefore, that we make sure the
 code we write does the right thing. Our computers can't tell us if
 we missed the mark ("garbage in, garbage out" or, unfortunately,
 "garbage in, gospel out"). The usual way we validate code is by
 running that code and checking the outcomes (well, actually, in
 most cases we have our users run the code and
 let us know about failures). Such tests are, of course, crucial
 and must be made. But they aren't enough.
It is certainly possible that our tests aren't comprehensive
 and leave errors undetected. It is also conceivable that the
 way in which our code was written produces
 the correct results in very undesirable ways. For instance, the
 code might work "by accident" (two errors cancel themselves
 out).
A crucial complement to formal testing of code is a
 formalized process of code review or walk-through. Code review
 involves having other developers actually read and review your
 source code. This review process can take many different forms,
 including:
	The buddy system: Each programmer
 is assigned another programmer to be ready at any time to look
 at his buddy's code and to offer feedback.

	Formal code walk-throughs: On a
 regular basis (and certainly as a "gate" before any program
 moves to production status), a developer presents or "walks
 through" her code before a group of programmers.

	Pair programming: No one codes
 alone! Whenever you write software, you do it in pairs, where
 one person handles the tactical work (thinks about the
 specific code to be written and does the typing), while the
 second person takes the strategic role (keeps an eye on the
 overall architecture, looks out for possible bugs, and
 generally critiques—always constructively). Pair programming
 is an integral part of Extreme Programming. However, note that
 reports from the field are mixed with regard to pair
 programming —there are some indications that it relies too
 heavily on an intimate relationship between members of a pair
 that is rarely achieved.

Benefits
Overall quality of code increases dramatically. The
 architecture of the application tends to be sounder, and the
 number of bugs in production code goes way down. A further
 advantage is that of staff education—not just awareness of the
 project, but also an increase in technological proficiency due to
 the synergistic effect of working together.

Challenges
The development manager or team leader must take the
 initiative to set up the code review process and must give
 developers the time (and training) to do it right. Also, code
 review seems to be the first casualty of deadline crunch. Further,
 a new project involving MySQL stored programs might not have the
 language expertise available on the team to do complete,
 meaningful walk-throughs.

Resources
	Handbook of Walkthroughs, Inspections, and
 Technical Reviews, by Daniel Freedman and Gerald M.
 Weinberg (Dorset House). Now in its third edition, this book
 uses a question-and-answer format to show you exactly how to
 implement reviews for all sorts of product and software
 development.

	Extreme Programming Explained, by
 Kent Beck (Addison Wesley). The first book on Extreme
 Programming offers many insights into pair programming.

	Extreme Programming Refactored, by
 Matt Stephens and Doug Rosenberg (APress). An often funny
 critical examination of Extreme Programming that argues
 against (in particular) pair programming.

Name
DEV-04: Use independent testers for functional
 sign-off

Synopsis
Individual developers should and must be responsible for
 defining and executing unit tests on the programs they write.
 Developers should not, on the other hand, be responsible for
 overall functional testing of their applications. There are
 several reasons for this:
	We don't own the requirements. We don't decide when and
 if the system works properly. Our users or customers have this
 responsibility. They need to be intimately connected with, and
 drive, the functional tests.

	Whenever we test our code, we follow the "pathways to
 success" without ever knowing it. In other words, the mindset
 we had when we wrote the code is the same mindset we have when
 testing the code. Other people, other eyes, need to run the
 software in complete ignorance of those pathways. It is no
 wonder that unit testing was so successful and yet integration
 testing has such problems.

To improve the quality of code that is handed over to
 customers for testing, your team leader or development manager
 should:
	Work with the customer to define the set of tests that
 must be run successfully before an application is considered
 to be ready for production.

	Establish a distinct testing group—either a devoted
 Quality Assurance organization or simply a bunch of developers
 who haven't written any of the software to be tested.

This extra layer of testing, based on the customer's own
 requirements and performed before the handoff to customers for
 their "sign off" test, will greatly improve code quality and
 customer confidence in the development team.

Example
We spend several days building a really slick application in
 PHP (or VB.NET or Java or . . .). It allows users to manage data
 in a few different tables, request reports, and so on. We then
 devote most of a day to running the application through its paces.
 We click here, click there, enter good data, enter bad data, find
 a bunch of bugs, fix them, and finally hand it over to our main
 customer, Johanna. We feel confident in our application. We can no
 longer break it.
Imagine how crushed we feel (and we bet you
 can imagine it, because undoubtedly the same
 thing has happened to you) when Johanna sits down in front of the
 computer, starts up the application, and in no more than three
 clicks of the mouse causes an error window to pop up on the
 screen. The look she sends our way ("Why are you wasting my
 time?") is not rewarding.
There is no way for us to convince Johanna that we really,
 truly did spend hours testing the application. Why should she
 believe such a thing?

Benefits
Quality of code handed to users for testing is higher, which
 means the end result moved to production is of correspondingly
 higher quality.
Customer confidence in the development organization remains
 high. This confidence—and the respect that comes with it—makes it
 easier for developers to negotiate with customers over the
 time-versus-quality dilemma so many of us face in software
 development.

Challenges
Many small development groups can't afford (i.e., can't
 convince management to spend the money) to staff a separate QA
 organization. At a minimum, you must make sure that customers have
 defined a clear set of tests. Then distribute the functional
 testing load to the developers so that they do not test their own
 code.

Resources
http://www.well.com/~vision/sqa.html:
 A gathering place for references related to the theory and
 practice of Software Quality Assurance. This site is growing to
 include information on Standards and Development Procedures,
 Product Evaluation and Process Monitoring, Configuration
 Management Monitoring, the role of SQA in the Product Development
 Cycle, and Automated Testing Tools.

Name
DEV-05: Use source controlled files to maintain the
 "reference" copy of your stored routines

Synopsis
Source code control systems (SCCSs) allow us to keep copies
 of major revisions of our program source code, allowing us to roll
 back an application's source code to an earlier point in time or
 to examine the source code in use with an earlier version of the
 application (which might still be in use somewhere). Virtually all
 professional software developers could—or at least should—employ
 an SCCS to store their application code.
Unfortunately, developers often fail to source control the
 DDL code to create database objects and often neglect to include
 stored program code in the SCCS. To some extent, the ability to
 extract the source code for a stored program from the database
 encourages us to edit a stored program "in place"—even when we
 would never dream of editing PHP code "in place" (e.g., directly
 editing the .php files in the
 Apache document directory).
If your stored programs are part of an application, then the
 source program code is just as much a part of the application
 source code as code written in other languages such as PHP or
 Java. You should therefore keep the "reference" copy of your
 stored program code in your version control system (such as CVS,
 ClearCase, BitKeeper, etc.). This means saving your stored program
 code as a text file and performing explicit check-in and check-out
 from your version control system.
Think of that text file as the original source code for your
 procedure. Applying the source code to the MySQL server is
 analogous to compiling that source as a binary. Extracting it from
 a server for editing is equivalent to decompiling a binary and is
 usually not how you obtain a copy of the
 source for editing. Instead, you should perform an explicit
 check-out of the source code from the SCCS, edit it in the MySQL
 Query Browser or other tool, and then apply it to a test database
 for unit testing. Later you can deploy the source code for the
 stored program to a production database by running a script that
 executes it inside of the MySQL command-line client.

Coding Style and Conventions

 Software developers are a very privileged bunch. We
 don't have to work in dangerous environments, and our jobs aren't
 physically taxing (though carpal tunnel syndrome is always a threat).
 We are paid to think about things, and then to write down our thoughts
 in the form of code. This code is then used and maintained by others,
 sometimes for decades. Now just think of your code as a form of poetry
 and rejoice in your fortunate circumstances!
Given this situation, we all have a responsibility to write code
 that can be easily understood and maintained (and, c'mon, let's admit
 our secret desires, admired) by developers who
 follow in our footsteps.
Tip
Steve McConnell's http://www.construx.com site, along with his book,
 Code Complete (Microsoft Press), offers
 checklists on coding style, naming conventions and rules, and module definitions.

Name
STYL-01: Adopt a consistent, readable format that is easy
 to maintain

Synopsis
Your code should have a "signature," a style that is
 consistent (all your programs look the same), readable (anyone can
 pick up your code and make sense of it), and maintainable (a minor
 change in the code shouldn't require 15 minutes of
 reformatting).
Ideally, everyone in your organization would adopt a similar
 style, so that everyone can easily understand everyone else's
 code. This can be tricky, as programmers sometimes take a dogmatic
 approach to such issues as size of indentation and use of
 whitespace. However, research and experience confirm that the
 benefit of adopting a similar style is not so much that any one
 standard confers a significant benefit over another, but rather
 that the use of a consistent standard throughout an organization
 improves efficiency and reduces maintenance costs.

Name
STYL-02: Adopt logical, consistent naming conventions for
 modules and data structures

Synopsis
Adopt and promote standard ways to define names of program
 elements. Choose a level of "formality" of naming conventions
 based on your needs. If, for example, you have a team of two
 developers working on a small code base, you can probably get away
 with naming conventions that don't go far beyond "use meaningful
 names." If you are building a massive application involving dozens
 of developers, you probably need to define more comprehensive
 rules.
Here are some general recommendations for
 conventions:
	Identify the scope of a variable in its
 name: A global variable can be prefaced with
 v_, for example.

	Use a prefix or suffix to identify the types
 of structures being defined: Consider, for example,
 declarations of cursors. A standard approach to declaring such
 a structure is <name>
 _csr. Cursors are quite
 different from variables; you should be able to identify the
 difference with a glance.

	Use a readable format for your
 names: Since the stored program language isn't case
 sensitive, the "camel notation" (as in minBalanceRequired), for example, is
 probably not a good choice for constructing names. Instead,
 use separators such as _ (underscore) to improve readability
 (as in min_balance_required). While MySQL
 allows names to be extremely long (compared with other
 databases and/or languages), keep them short, as well as
 readable.

	Consider portability: If you ever
 want to port your code to an alternate RDBMS (perish the
 thought!) you should consider adopting a naming convention
 that will work across RDBMS types. You can find a summary of
 the conventions for the "other" databases at http://www.dbazine.com/db2/db2-disarticles/gulutzan5.

It isn't possible to provide a comprehensive list of naming
 conventions in this book. The particular conventions you choose,
 furthermore, aren't nearly as important as the fact that you set
 some standard for naming conventions.

Name
STYL-03: Self-document using block and loop
 labels

Synopsis
While block and loop labels are often necessary to allow for
 variable scoping or as targets for LEAVE or ITERATE statements, they can also be a
 big help in improving the readability of code.
Use a label directly in front of loops and nested
 blocks:
	To name that portion of code and thereby self-document
 what it's doing

	So that you can repeat that name with the END statement of that block or
 loop

	To provide a target for a LEAVE or ITERATE statement

This recommendation is especially important when you have
 multiple nestings of loops (and possibly inconsistent
 indentation), as in the following:
 WHILE condition DO
 some code
 WHILE condition DO
 some code
 END WHILE;
 some code
 END WHILE;

Example
In this example we use labels for a block and two nested
 loops, and then apply them in the appropriate END statements. We can now easily see
 which loop and block are ending, no matter
 how badly the code is indented!
 CREATE PROCEDURE display_book_usage()
 READS SQL DATA
 BEGIN
 DECLARE v_month INT;
 DECLARE v_x INT;
 DECLARE yearly_analysis_csr CURSOR FOR SELECT ...;
 DECLARE monthly_analysis_csr CURSOR FOR SELECT ...;

 OPEN yearly_analysis_csr;
 yearly_analysis:
 LOOP
 FETCH yearly_analysis_csr INTO v_month;
 OPEN monthly_analysis_csr;
 monthly_analysis:
 LOOP
 FETCH monthly_analysis_csr INTO v_x;
 ... Lots of monthly analysis code ...
 END LOOP monthly_analysis;
 ...Lots of yearly analysis code
 END LOOP yearly_analysis;

Benefits
If you use labels, it's much easier to read your code,
 especially if it contains loops and nested blocks that have long
 bodies (i.e., the loop starts on page 2 and ends on page 7, with
 three other loops inside that outer loop—not that we recommend
 this!).

Name
STYL-04: Express complex expressions unambiguously using
 parentheses

Synopsis
The rules of operator precedence in the MySQL stored program
 language follow the commonly accepted precedence of algebraic
 operators. The rules of precedence often make many parentheses
 unnecessary. When an uncommon combination of operators occurs,
 however, it may be helpful to add parentheses even when the
 precedence rules apply.
The rules of evaluation do specify left-to-right evaluation
 for operators that have the same precedence level. However, this
 is the most commonly overlooked rule of evaluation when checking
 expressions for correctness.
Many developers apply a consistent rule for improved
 readability in this area: always use parentheses around every
 Boolean expression, including IF, ELSEIF, and WHILE statements, as well as variable
 assignments, regardless of the simplicity of the expressions. So,
 rather than:
 IF min_balance < 1000 THEN ...
you instead write:
 IF (min_balance < 1000) THEN ...

Example
You might not want a standard that requires you to always
 use parentheses, but in some situations, parentheses are all but
 required for readability. Consider the following
 expression:
 5 + Y**3 MOD 10
MySQL will not be the least bit confused by this statement;
 it will apply its unambiguous rules and come up with an answer.
 Developers, however, may not have such an easy time of it. You are
 better off writing that same line of code as follows:
 5 + ((Y ** 3) MOD 10)

Benefits
Everyone, including the author of the code, can more easily
 understand the logic and intent (which is crucial for maintenance)
 of complex expressions.

Name
STYL-05: Use vertical code alignment to emphasize
 vertical relationships

Synopsis
A common code formatting technique is vertical
 alignment. Here is an example in a SQL WHERE clause:
 WHERE COM.company_id = SAL.company_id
 AND COM.company_type_cd = TYP.company_type_cd
 AND TYP.company_type_cd = CFG.company_type_cd
 AND COM.region_cd = REG.region_cd
 AND REG.status = RST.status;
You should use vertical alignment only when the elements
 that are lined up vertically have a relationship with each other
 that you want to express. In the WHERE clause shown here, however, there
 is no relationship between the right sides of the various
 expressions. The relationship is between the left and right sides
 of each individual expression. This is, therefore, a misuse of
 vertical alignment.

Example
Developers often (and justifiably) use vertical alignment
 with program parameter lists, as in:
 CREATE PROCEDURE maximize_profits
 (
 IN advertising_budget NUMERIC(12,2),
 INOUT bribery_budget NUMERIC(12,2),
 IN merge_and_purge_on DATE ,
 OUT obscene_bonus NUMERIC(12,2))
Vertical alignment allows you to easily see the different
 parameter modes and data types.
Vertical alignment is also handy when declaring many
 variables, as in:
 CREATE PROCEDURE genAPI()
 DETERMINISTIC
 BEGIN
 DECLARE c_table CHAR(5) DEFAULT 'TABLE';
 DECLARE c_column CHAR(6) DEFAULT 'COLUMN';
 DECLARE c_genpky CHAR(6) DEFAULT 'GENPKY';
 DECLARE c_genpkyonly CHAR(10) DEFAULT 'GENPKYONLY';
 DECLARE c_sequence CHAR(7) DEFAULT 'SEQNAME';
 DECLARE c_pkygenproc CHAR(10) DEFAULT 'PKYGENPROC';
 DECLARE c_pkygenfunc CHAR(10) DEFAULT 'PKYGENFUNC';
 DECLARE c_usingxmn CHAR(8) DEFAULT 'USINGXMN';
 DECLARE c_fromod2k CHAR(8) DEFAULT 'FROMOD2K';
In this case, we want to be able to scan the list of values
 to make sure they are unique. I can also easily compare lengths of
 strings with the CHAR
 declarations, avoiding nuisance truncation exceptions on
 initialization.

Benefits
Careful and appropriate use of vertical alignment enhances
 readability. Used inappropriately, however, vertical alignment
 actually makes it harder to see what is really going on in your
 code.

Challenges
Vertical alignment is a "high maintenance" format. Add a
 new, long variable name, and you find yourself reformatting 20
 other lines of code to match.

Name
STYL-06: Comment tersely with value-added
 information

Synopsis
The best way to explain what your code is doing is to let
 that code speak for itself. You can take advantage of many
 self-documentation techniques, including:
	Use meaningful variable, procedure, and function
 names.

	Use the language construct that best reflects the code
 you are writing (choose the right kind of loop for your logic,
 label loops and BEGIN-END
 blocks, etc.).

Whenever you find yourself adding a comment to your code, first consider whether it
 is possible to modify the code itself to express your comment.
 Good reasons to add comments include:
	Program headers, explanations of workarounds, patches,
 operating-system dependencies, and other "exceptional"
 circumstances

	Complex or opaque logic

Example
Let's follow a trail of unnecessarily commented code to
 self-documenting code. We start with:
 -- If the first properties element is N...
 IF properties1 = 'N'
Yikes! Our line of code was incomprehensible and our comment
 simply repeated the code using the English language, rather than
 the stored program language. No added value, no real assistance,
 yet not at all uncommon. The least we can do is use the comment to
 "translate" from computer-talk to business requirement:
 -- If the customer is not eligible for a discount...
 IF properties1 = 'N'
That's better, but we have created a redundancy: if our
 requirement ever changes, We have to change the comment
 and the code. Why not change the names of our
 variables and literals so that the code explains
 itself?
 IF customer_discount_flag = const_ineligible
Much better! Now we no longer need a comment. Our remaining
 concern with this line of code is that it "exposes" a business
 rule; it shows how (at this moment in time) we determine whether a
 customer is eligible for a discount. Business rules are notorious
 for changing over time—and for being referenced in multiple places
 throughout our application. So our best bet is to hide the rule
 behind a self-documenting function call:
 IF NOT eligible_for_discount (customer_id)

Variables

 The MySQL stored program language is technically a
 strongly typed language in the sense that before
 you can work with a variable, you must first declare it. And when you
 declare it, you specify its type and, optionally, an initial or
 default value. Be aware, however, when not in "strict" mode (sql_mode contains neither STRICT_TRANS_TABLES nor STRICT_ALL_TABLES), MySQL will generate
 warnings only when you violate a variable's type or storage
 limits.
We strongly urge you, therefore, to take special care with
 declaring your variables.

Name
DAT-01: Use a consistent and meaningful variable naming
 style

Synopsis
All of us have a distinct variable naming style, often based
 on the conventions of our first programming language. In the very
 early days of programming, programmers were required to keep
 variable names short so as to reduce memory overhead. Various
 programming languages impose additional restrictions on the
 programmer: case-sensitivity, maximum lengths, and allowable
 characters, for instance.
However programmers might differ as regards the "one true
 style" that is optimal for a particular language, almost every
 programmer would agree that, above all, variable names should be
 meaningful, and whatever style might be
 employed, it should be employed consistently
 throughout your programs.
Meaningful variable names are those that clearly articulate
 the data that the variable holds. It's as simple as that. Avoid
 variable names that contain confusing or ambiguous abbreviations,
 and certainly avoid meaningless variable names such as v1, v2, etc.
Beyond being meaningful, conventions can help us understand
 the scope, data type, or some other property of our
 variables . In MySQL stored programs, we could use a
 convention that allows us to:
	Determine the data type of a variable from its
 name.

	Distinguish table column names from local variables or
 parameters.

	Identify the type of data held in the variables: data
 from a cursor, intermediate data, bits of SQL for a dynamic
 SQL, etc.

We believe that most of the above items are matters of
 personal preference and that, while arguments can be made for and
 against any or all of these styles, you can write high-quality
 code regardless of the style you adopt. We feel that the following
 recommendations, however, should be followed:
	You should generally identify local variables with a
 prefix or a suffix, especially if they are used to receive
 values from cursors. Creating local variables with the same
 name as a column returned by a cursor is dangerous.

	Because variable names are case insensitive, "camel"
 notation—in which capitalization is used to separate "words"
 within a variable name—is possibly inappropriate since
 isNull and isnull will reference the same
 variable.

Example
If you're not sold on the value of meaningful variable
 names, try to work out what this assignment statement is
 doing:
 SET ns=gs-tx+bn-fd;
Now try one with meaningful variable names:
 SET net_salary=gross_salary-tax+bonus-fund401k;

Name
DAT-02: Avoid overriding variable declarations within
 "inner" blocks

Synopsis
It is possible to declare a variable inside an inner block
 that has the same name as a variable in the enclosing block.
 Nevertheless—though legal—this practice can be extremely
 confusing.
For instance, in the following example the v_counter variable is declared both
 within the inner block and within the outer block:
 DECLARE v_counter INT DEFAULT 1;

 . . . Lots of code . . .

 inr_blk: BEGIN
 DECLARE v_counter INT DEFAULT 2;

 . . . Lots of code . . .

 SET v_counter=v_counter+1;

 END inr_blk;
There are two undesirable consequences to this
 practice:
	Someone reading the code might be confused as to which
 variable is being updated.

	It is not possible in the inner block to modify the
 value of a variable in the outer block. The SQL:2003
 specification allows us to prefix a variable name with its
 block label, but this isn't supported in MySQL yet.

It's much better to ensure that every variable declared in a
 stored program has a unique name, regardless of its block
 scope.

Name
DAT-03: Replace complex expressions with
 functions

Synopsis
A Boolean function evaluates to one of three values: TRUE
 (1), FALSE (0), or NULL. You can use Boolean functions to hide
 complex expressions; the result is code that is virtually as
 readable as "straight" English—or whatever language you use to
 communicate with other human beings.

Example
Consider this code:
 SELECT salary, status, hire_date
 INTO v_total_sal, v_emp_status, v_hire_date
 FROM employees
 WHERE employee_id=in_employee_id;

 IF (v_total_sal BETWEEN 10000 AND 50000)
 AND v_emp_status = 'N'
 AND DATEDIFF(NOW(), v_hire_date)> 365
 THEN
 CALL give_raise (in_employee_id);
 END IF;
Wow, that's hard to understand! It would be much easier if
 the code looked like this:
 IF eligible_for_raise(in_employee_id) THEN
 CALL give_raise(in_employee_id);
 END IF;

Benefits
It will be much easier for anyone to read your code; you can
 literally read it. If you then need to
 understand how the Boolean expression is computed, you can look
 "under the covers."
This is a technique that can be applied (with care) to
 existing "spaghetti code." As you go into a program to fix or
 enhance it, look for opportunities to simplify and shorten
 executable sections by shifting complexity to other functions or
 procedures.

Challenges
Before you modify existing code, make sure you have solid
 unit test scripts in place so you can quickly verify that your
 changes haven't introduced bugs into the program.

Name
DAT-04: Remove unused variables and code

Synopsis
You should go through your programs and remove any part of
 your code that is no longer used. This is a relatively
 straightforward process for variables and named constants. Simply
 execute searches for a variable's name in that variable's scope.
 If you find that the only place it appears is in its declaration,
 delete the declaration and, by doing so, delete one more potential
 question mark from your code.
There is never a better time to review all the steps you
 took, and to understand the reasons you took them, than
 immediately upon completion of your program. If you wait, you will
 find it particularly difficult to remember those parts of the
 program that were needed at one point but were rendered
 unnecessary in the end. "Dead zones" in your code become sources
 of deep insecurity for maintenance programmers.

Example
The following block of code has several dead zones that
 could cause a variety of problems. Can you find them all?
 CREATE PROCEDURE weekly_check (
 in_isbn VARCHAR(20),
 in_author VARCHAR(60)
)

 BEGIN
 DECLARE v_count INT;
 DECLARE v_counter INT;
 DECLARE v_available INT;
 DECLARE v_new_location INT DEFAULT 1056;
 DECLARE v_published_date DATE DEFAULT NOW();

 SET v_published_date=book_published_date(in_isbn);

 IF DATE_SUB(NOW(), INTERVAL 60 DAY) > v_published_date THEN
 CALL review_usage();
 ELSEIF DATE_SUB(NOW(), INTERVAL 24 DAY) > v_published_date
 THEN
 CALL check_availability (in_isbn, v_available, v_count);
 IF v_available
 AND /* Turn off due to Req A12.6 */ FALSE
 THEN
 CALL transfer_book (in_isbn, v_count - 1, v_new_location);
 END IF;
 -- Check for reserves
 -- CALL analyze_requests (isbn_in);
 END IF;
 END$$
Here are a few potential dead spots:
	The in_author
 parameter is declared but never used. It doesn't even have a
 default value, so you have to pass in an ignored value.

	v_counter is declared
 but not used.

	v_published_date is
 assigned a default value of NOW(
), which is immediately overridden by the call to
 book_published_date.

	The call to transfer_book has been turned off
 with the addition of AND
 FALSE.

	The call to analyze_requests has been commented
 out.

Benefits
It's much easier to maintain, debug, and enhance code that
 doesn't have "dead zones."

Challenges
There are sometimes valid reasons for keeping dead code in
 place. You may want to turn off code temporarily. Also, you may
 need to comment out some logic but still show that this action was
 done and explain why. In such cases, make sure that you include
 the necessary documentation in the code. Even better, use
 problem-tracking or bug-reporting software to keep a comprehensive
 history of any changes made to code.

Name
DAT-05: Don't assume that the result of an expression is
 TRUE or FALSE; it could be NULL

Synopsis
Three-valued logic—the logic that includes NULLs—is an
 essential part of the relational database model. However, the
 tendency of humans to think in terms of two-valued logic—an
 expression is either TRUE or FALSE—can lead to serious logic
 bugs.
For instance, consider the following logic, which is
 intended to retire employees older than 65 years and older, and
 keep those younger than 65 years:
 IF v_date_of_birth > DATE_SUB(NOW(), INTERVAL 65 YEAR) THEN
 CALL keep_employee(v_employee_id);
 ELSE
 CALL retire_employee(v_employee_id);
 END IF;
This logic seems valid from a two-valued logic perspective,
 but what if v_date_of_birth is
 NULL? If the date of birth is NULL, then the date comparison will
 return NULL, rather than TRUE or FALSE. Consequently, the ELSE condition will be executed and we
 will retire an employee, although in fact we have no idea how old
 the employee is.
NULL values can be handled in a couple of ways:
	Explicitly check that a value is NOT NULL before
 attempting a comparison.

	Explicitly check each condition: don't assume that an
 expression that is not TRUE, is necessarily FALSE.

If we are worried about the date of birth being NULL in the
 above example, we might recode it as follows:
 SET v_age_in_years=DATEDIFF(NOW(), v_date_of_birth)/365.25;

 IF v_age_in_years > 65 THEN
 CALL retire_employee(v_employee_id);
 ELSEIF v_age_in_years <= 65 THEN
 CALL keep_employee(v_employee_id);
 ELSE
 CALL invalid_dob_error(v_employee_id);
 END IF;

Name
DAT-06: Employ "user" variables for global data
 sparingly

Synopsis
A global variable is a data structure
 that can be referenced outside the scope or block in which it's
 declared. In MySQL, we can use "user" variables—which can be
 recognized by being prefixed with @—to set values that are available to
 any program within the current session.
In the following procedure, for example, we store the number
 of customers into the user variable @customer_count:
 CREATE PROCEDURE sp_customer_count()

 SELECT COUNT(*)
 INTO @customer_count
 FROM customers;
Other procedures can examine the @customer_count and make decisions
 without having to recalculate the value. For instance, in this
 procedure we use the session variable in our setup logic:
 CREATE PROCEDURE sp_crm_setup ()

 BEGIN
 IF @customer_count IS NULL THEN
 CALL sp_customer_count();
 END IF;

 IF @customer_count > 1000 THEN
 . . . Logic for larger enterprises
There is no doubt that the use of global variables can create easy solutions for difficult problems.
 However, the modern consensus is that global variables create
 their own problems and that these problems generally overwhelm any
 of the advantages they might confer.
Global variables defeat modularity and hinder code reuse,
 because any module that uses a global variable becomes dependent
 on some other module that creates or initializes the global
 variable. In the case of MySQL user variables—which don't require
 a formal declaration—there is also the chance that two programmers
 might create identical "global" variables of the same name, thus
 causing subtle bugs that might occur only when modules are called
 in a certain order.

References
Code Complete, by Steve McConnell
 (Microsoft Press) contains an excellent discussion on the pros and
 cons of global variables.

Name
DAT-07: Create stored programs in strict mode to avoid
 invalid data assignments

Synopsis
Stored program type checking is very dependent on the
 setting of the sql_mode
 configuration variable. If a program is created when the sql_mode variable includes one of the
 "strict" settings (STRICT_TRANS_TABLES or STRICT_ALL_TABLES), then the program
 will reject invalid variable assignments with an error. If neither
 of the strict modes is in effect, then the stored program will
 generate a warning when invalid data assignments occur, but will
 continue execution.
For instance, in the following program, we accidentally
 declared a variable as CHAR(1)
 instead of INT:
 CREATE PROCEDURE TenPlusTen()
 BEGIN
 DECLARE a INTEGER DEFAULT 10;
 DECLARE b CHAR(1) DEFAULT 10;
 DECLARE c INTEGER;
 SET c=a+b;
 SELECT c ;
 END;
If created in "non-strict" mode, this program generates a
 warning, but continues execution and returns the wrong result
 (10+10=11?):
 mysql> CALL TenPlusTen();
 +------+
 | C |
 +------+
 | 11 |
 +------+
 1 row in set (0.00 sec)

 Query OK, 0 rows affected, 1 warning (0.01 sec)

 mysql> SHOW WARNINGS;
 +---------+------+--+
 | Level | Code | Message |
 +---------+------+--+
 | Warning | 1265 | Data truncated for column 'B' at row 1 |
 +---------+------+--+
 1 row in set (0.00 sec)
If created in strict mode, the program generates an error
 during execution, which is clearly better than returning the wrong
 result:
 mysql> CALL TenPlusTen();
 ERROR 1406 (22001): Data too long for column 'b' at row 1
Non-strict stored program behavior can lead to unexpected
 and subtle bugs, and we recommend that you use strict mode when
 creating your stored programs. To enable strict mode, assign one
 of STRICT_TRANS_TABLES or
 STRICT_ALL_TABLES to your
 sql_mode variable:
 SET sql_mode='STRICT_TRANS_TABLES';
Remember, it is the sql_mode that was in effect
 when the program is created that determines
 program behavior.

Conditional Logic

 Follow the best practices in this section when you are using IF or CASE statements in stored programs.

Name
IF-01: Use ELSEIF with mutually exclusive
 clauses

Synopsis
When you need to write conditional logic that has several mutually exclusive clauses (in
 other words, if one clause is TRUE, no other clause evaluates to
 TRUE), use the ELSEIF
 construct:
 IF condA THEN
 ...
 ELSEIF condB THEN
 ...
 ELSEIF condN THEN
 ...
 ELSE
 ...
 END IF;

Example
At first glance, the following statement makes sense, but on
 closer examination, it's a mess:
 CREATE PROCEDURE process_lineitem(line_in INT)
 BEGIN

 IF line_in = 1 THEN
 CALL process_line1();
 END IF;
 IF line_in = 2 THEN
 CALL process_line2();
 END IF;
 ...
 IF line_in = 2045 THEN
 CALL process_line2045();
 END IF;

 END$$
Every IF statement is
 executed and each condition is evaluated. You should rewrite such
 logic as follows:
 CREATE PROCEDURE process_lineitem(line_in INT)
 BEGIN

 IF line_in = 1 THEN
 CALL process_line1();
 ELSEIF line_in = 2 THEN
 CALL process_line2();
 /*... */
 ELSEIF line_in = 2045 THEN
 CALL process_line2045();
 END IF;

 END$$

Benefits
This structure clearly expresses the underlying "reality" of
 your business logic: if one condition is TRUE, no others can be
 TRUE.
ELSEIF offers the most
 efficient implementation for processing mutually exclusive
 clauses. When one clause evaluates to TRUE, all subsequent clauses
 are ignored.

Name
IF-02: Use IF...ELSEIF only to test a single, simple
 condition

Synopsis
The real world is very complicated; the software we write is
 supposed to map those complexities into applications. The result
 is that we often end up needing to deal with convoluted logical
 expressions.
You should write your IF
 statements in such a way as to keep them as straightforward and
 understandable as possible. For example, expressions are often
 more readable and understandable when they are stated in a
 positive form. Consequently, you are probably better off avoiding
 the NOT operator in conditional
 expressions.

Example
It's not at all uncommon to write or maintain code that is
 structured like this:
 IF condA AND NOT (condB OR condC) THEN
 CALL proc1;
 ELSEIF condA AND (condB OR condC) THEN
 CALL proc2;
 ELSEIF NOT condA AND condD THEN
 CALL proc3;
 END IF;
It's also fairly common to get a headache trying to make
 sense of all of that. You can often reduce the trauma by trading
 off the simplicity of the IF
 statement itself (one level of IF and ELSEIF conditions) for the simplicity of
 clauses within multiple levels:
 IF condA THEN
 IF (condB OR condC) THEN
 CALL proc2;
 ELSE
 CALL proc1;
 END IF;
 ELSEIF condD THEN
 CALL proc3
 END IF;
Don't forget, by the way, to take into account the
 possibility of your expressions evaluating to NULL. This can throw
 a monkey wrench into your conditional processing.

Benefits
Following this best practice will make your code easier to
 read and maintain.
Breaking an expression into smaller pieces can aid
 maintainability; if and when the logic changes, you can change one
 IF clause without affecting the
 logic of others.

Challenges
Multiple levels of nested IF statements can also decrease
 readability. You need to strive for a workable balance.

Name
IF-03: Make sure that a CASE statement is inclusive, or
 construct a handler to catch any unmatched cases

Synopsis
If none of the CASE
 statements match as the input condition, CASE will raise MySQL error 1339
 (Case not found for CASE
 statement). You should either construct an error handler
 to ignore this error, or ensure that the exception never occurs by
 including an ELSE clause in
 every CASE statement (the
 easier solution).

Example
In the following example, the CASE statement will fail if the customer
 status is not one of 'PLATINUM', 'GOLD', 'SILVER', or 'BRONZE':
 CASE customer_status
 WHEN 'PLATINUM' THEN
 CALL apply_discount(sale_id,20); /* 20% discount */

 WHEN 'GOLD' THEN
 CALL apply_discount(sale_id,15); /* 15% discount */

 WHEN 'SILVER' THEN
 CALL apply_discount(sale_id,10); /* 10% discount */

 WHEN 'BRONZE' THEN
 CALL apply_discount(sale_id,5); /* 5% discount*/
 END CASE;
Here we add an ELSE
 clause to avoid the error. Since we don't have anything for the
 ELSE clause to do, we use a
 dummy SET statement.
 CASE customer_status
 WHEN 'PLATINUM' THEN
 CALL apply_discount(sale_id,20); /* 20% discount */
 WHEN 'GOLD' THEN
 CALL apply_discount(sale_id,15); /* 15% discount */
 WHEN 'SILVER' THEN
 CALL apply_discount(sale_id,10); /* 10% discount */
 WHEN 'BRONZE' THEN
 CALL apply_discount(sale_id,5); /* 5% discount */
 ELSE
 SET dummy=dummy;
 END CASE;
In this alternative solution, we construct a handler to
 allow the error to be ignored:
 DECLARE not_found INT DEFAULT 0;
 DECLARE no_matching_case CONDITION FOR 1339;
 DECLARE CONTINUE HANDLER FOR no_matching_case SET not_found=1
 CASE
 WHEN (sale_value>200) THEN
 CALL free_shipping(sale_id);
 CASE customer_status
 WHEN 'PLATINUM' THEN
 CALL apply_discount(sale_id,20);
 WHEN 'GOLD' THEN
 CALL apply_discount(sale_id,15);
 WHEN 'SILVER' THEN
 CALL apply_discount(sale_id,10);
 WHEN 'BRONZE' THEN
 CALL apply_discount(sale_id,5);
 END CASE;
 END CASE;
See Chapter 5 for more
 details.

Name
IF-04: Use CASE and IF consistently

Synopsis
Any conditional statement that can be expressed as an
 IF statement can also be
 expressed as a CASE
 statement—and vice versa. While you might heatedly debate the
 relative benefits of each over a few beers after work, it's fairly
 clear that you can write high-quality code no matter which
 statement you employ.
However, randomly alternating between the two statements
 does not lead to high-quality code. It's harder to compare the
 logic of two routines if—for instance—one expresses its branching
 logic with the CASE statement
 while the other uses IF. So try
 not to mix IF and CASE arbitrarily within your
 programs.

Loop Processing

 Follow the best practices in this section when you are performing iterative
 processing in stored programs using the various looping controls:
 LOOP, WHILE, and REPEAT.

Name
LOOP-01: Make sure the loop will terminate

Synopsis
One of the most annoying and potentially disruptive bugs
 that can be created in any language is the inadvertent infinite
 loop.
Making sure that a loop will terminate requires that you
 simulate all possible paths through the loop and assure yourself
 that the loop will always encounter an exit condition. If the loop
 does not terminate, it will likely consume excessive CPU and/or
 memory resources until it is manually terminated by the system
 administrator. In a worst-case scenario, the MySQL server itself
 may be terminated.

Example
The following stored procedure calculates the number of
 prime numbers less than the supplied input parameter. It's part of
 a larger routine that we plan to put in action when we're next
 contacted by extraterrestrial intelligences that announce their
 presence by broadcasting prime numbers at planet Earth.
 CREATE PROCEDURE check_for_primes(in_limit INT)
 BEGIN
 DECLARE i INT DEFAULT 2;
 DECLARE j INT DEFAULT 1;
 DECLARE n_primes INT DEFAULT 0;
 DECLARE is_prime INT DEFAULT 0;

 REPEAT

 -- See if i is a prime number
 SET j=2;
 SET is_prime=1;
 divisors: WHILE(j< i) DO
 IF MOD(i,j)=0 THEN
 SET is_prime=0;
 LEAVE divisors;
 END IF;
 SET j=j+1;
 END WHILE;

 IF is_prime THEN
 SET n_primes=n_primes+1;
 END IF;

 -- Move onto the next number
 IF (MOD(i,2)=0) THEN
 SET i=i+1;
 ELSE
 -- Next number is even, no need
 -- to check for it as a prime
 SET i=i+2;
 END IF;

 UNTIL (i=in_limit) END REPEAT;

 SELECT CONCAT(n_primes,' prime numbers <= ',in_limit);

 END$$
Unfortunately, this routine has a bug that will lead to an
 infinite loop if the input number is even. A clever programmer
 altered the loop increment value so that even numbers—which can
 never be prime—were skipped as the loop incremented.
 Unfortunately, the UNTIL loop
 contains an equality check, i=in_limit, that will never be satisfied
 if the input parameter is even, and hence the loop will never
 terminate.
This bug could have been detected or averted in a number of
 ways:
	Walk-through of the program's algorithm

	Testing of the routine with a variety of inputs
 (including, of course, even numbers)

	Adoption of a defensive programming philosophy that
 could have led to the inclusion of a more robust i>in_limit condition in the
 UNTIL clause

Name
LOOP-02: Make the termination conditions of a loop
 obvious

Synopsis
Loop logic is easier to determine if all the control logic
 is in one place, either in the WHILE or UNTIL clauses or in a LEAVE statement within the loop. It's
 particularly confusing to include a RETURN statement within a loop.
To that end, we suggest that you avoid LEAVE or RETURN statements within WHILE or REPEAT
 UNTIL loops.

Example
In the following example, borrowed from the prime number
 routine in the preceding section, a WHILE loop contains a LEAVE clause—there are two ways for the
 loop to terminate, and this makes the code harder to analyze and
 trace:
 SET j=2;
 SET is_prime=1;
 divisors: WHILE(j< i) DO
 IF MOD(i,j)=0 THEN
 SET is_prime=0;
 LEAVE divisors;
 END IF;
 SET j=j+1;
 END WHILE;
One way to improve the readability of the loop would be to
 move all of the termination logic into the WHILE clause:
 SET j=2;
 SET is_prime=1;
 divisors: WHILE(j< i AND is_prime=1) DO
 IF MOD(i,j)=0 THEN
 SET is_prime=0;
 END IF;
 SET j=j+1;
 END WHILE;
Alternatively, we could employ a simple loop and place all
 termination logic within the loop.

Name
LOOP-03: Use a single LEAVE in simple loops

Synopsis
This best practice is another variation on "one way in, one
 way out." It suggests that, whenever possible, you consolidate all
 exit logic in your simple loop to a single LEAVE statement.

Example
Here is another variant on our prime counting loop. It
 contains some new logic to handle the special cases of 1 and 2 (1
 is not prime; 2 is prime).
 SET j=2;
 SET is_prime=1;
 divisors: LOOP
 IF (j=1) THEN
 SET is_prime=0;
 LEAVE divisors;
 END IF;

 IF (j=2) THEN
 SET is_prime=1;
 LEAVE divisors;
 END IF;

 IF MOD(i,j)=0 THEN
 SET is_prime=0;
 END IF;

 SET j=j+1;
 IF (is_prime=0 OR j>=i) THEN
 LEAVE divisors;
 END IF;

 END LOOP divisors;
The multiple LEAVE
 statements make it difficult for us to work out which segments of
 the code are actually executed for any given number. A rewrite
 that relies on a single LEAVE
 looks like this:
 SET j=2;
 SET is_prime=1;
 divisors: LOOP

 IF (i=1) THEN
 SET is_prime=0;

 ELSEIF (i=2) THEN
 SET is_prime=1;

 ELSEIF MOD(i,j)=0 THEN
 SET is_prime=0;
 SELECT i,'is divisible by',j;

 END IF;

 IF (i=2 OR is_prime=0 OR j+1>=i) THEN
 LEAVE divisors;
 END IF;

 SET j=j+1;

 END LOOP divisors;
Now we have a single place in the code where we make the
 decision to leave the loop, and, consequently, our code is more
 readable and robust.

Name
LOOP-04: Use a simple loop to avoid redundant code
 required by a WHILE or REPEAT UNTIL loop

Synopsis
This guideline is particularly relevant when you are writing
 cursor loops.
The structure of MySQL cursors, and the necessity of setting
 an indicator variable to detect the end of the cursor, means that
 you usually want to execute the cursor loop at least once. You
 will then continue executing the loop until the indicator variable
 changes.
This sounds like a perfect opportunity to apply the REPEAT UNTIL loop. So as you start to
 create the program, you create a structure that looks like
 this:
 DECLARE dept_csr CURSOR FOR
 SELECT department_name
 FROM departments;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

 OPEN dept_csr;
 REPEAT
 FETCH dept_csr INTO v_department_name;
 UNTIL (no_more_departments) END REPEAT;

 CLOSE dept_csr;
 SET no_more_departments=0;
Of course, you always want to do something with the data
 fetched from a cursor, but you need to make sure that you don't
 try to process data after the last row has been returned. So in
 order to keep the REPEAT loop,
 you create an IF structure to
 enclose your processing:
 DECLARE dept_csr CURSOR FOR
 SELECT department_name
 FROM departments;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

 OPEN dept_csr;
 REPEAT
 FETCH dept_csr INTO v_department_name;
 IF (no_more_departments=0) THEN
 SET v_count= v_count+1;
 END IF;
 UNTIL (no_more_departments) END REPEAT;

 CLOSE dept_csr;
 SET no_more_departments=0;
The problem with this solution is that you now have
 redundant tests to determine if you have reached the end of the
 cursor. If you change the CONTINUE handler, you will have to
 change your code in two places.
The code would be simpler and more maintainable if the test
 were conducted only once:
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more_departments=1;

 OPEN dept_csr;
 dept_loop: LOOP
 FETCH dept_csr INTO v_department_name;
 IF (no_more_departments) THEN
 LEAVE dept_loop;
 END IF;
 SET v_count= v_count+1;

 END LOOP;
 CLOSE dept_csr;
 SET no_more_departments=0;

Exception Handling

 Even if you write such amazing code that it contains no
 errors and never acts inappropriately, your users might still
 use your program incorrectly. The result?
 Situations that cause programs to fail. MySQL provides
 exceptions to help you catch and handle error
 conditions.

Name
EXC-01: Handle exceptions that cannot be avoided but can
 be anticipated

Synopsis
If you are writing a program in which you can predict that a
 certain error will occur, you should include a handler in your
 code for that error, allowing for a graceful and informative
 failure.

Example
This recommendation is easily demonstrated with a simple,
 single-row lookup cursor. An error that often occurs is No data to FETCH, which indicates that
 the cursor didn't identify any rows. Consider the following
 function that returns the name of a department for its ID:
 CREATE FUNCTION department_name(in_dept_id INT) RETURNS VARCHAR(30)
 READS SQL DATA
 BEGIN
 DECLARE v_dept_name VARCHAR(30);

 DECLARE dept_csr CURSOR FOR
 SELECT department_name
 FROM departments
 WHERE department_id=in_dept_id;

 OPEN dept_csr;
 FETCH dept_csr INTO v_dept_name;
 CLOSE dept_csr;

 RETURN v_dept_name;
 END;
As currently coded, this function will raise the No data to FETCH error if an invalid
 department ID is passed in.
 mysql> SELECT department_name(1);
 +--------------------+
 | department_name(1) |
 +--------------------+
 | DUPLIN |
 +--------------------+
 1 row in set (0.00 sec)

 mysql> SELECT department_name(60);
 ERROR 1329 (02000): No data to FETCH
That may be fine for some scenarios, but in this particular
 case, we simply want to return a special string (No such Department). The program that
 calls department_name can then
 decide for itself if it wants or needs to raise an error or simply
 proceed. In this case, the solution is to add a simple CONTINUE handler:
 CREATE FUNCTION department_name(in_dept_id INT) RETURNS VARCHAR(30)
 READS SQL DATA
 BEGIN
 DECLARE v_dept_name VARCHAR(30);

 DECLARE dept_csr CURSOR FOR
 SELECT department_name
 FROM departments
 WHERE department_id=in_dept_id;

 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET v_dept_name='No such Department';

 OPEN dept_csr;
 FETCH dept_csr INTO v_dept_name;
 CLOSE dept_csr;

 RETURN v_dept_name;
 END;

Name
EXC-02: Use named conditions to improve code
 readability

Synopsis
Any MySQL programmer worth her salt knows all the MySQL
 error codes by heart, right? Wrong!
Exception handlers defined against MySQL error codes might
 work, but they will almost never be easy to read.
The best way to improve the readability of your exception
 handling routines is to define a named condition for every MySQL
 error code that you might be anticipating. So instead of the
 following declaration:
 DECLARE CONTINUE HANDLER FOR 1216 mysql_statements;
you should use the following, more readable
 pair of declarations:
 DECLARE foreign_key_error CONDITION FOR 1216;

 DECLARE CONTINUE HANDLER FOR foreign_key_error mysql_statements;

Name
EXC-03: Be consistent in your use of SQLSTATE and MySQL
 error codes in exception handlers

Synopsis
You often have the choice between a MySQL error code and an
 ANSI-standard SQLSTATE code
 when creating your exception handler. Be as consistent as possible
 in your choice between the two. In some cases, an explicit
 SQLSTATE code might not be
 available for the error you are trying to catch, and you will want
 to use a MySQL error code. Unless portability is your primary
 concern—and in reality, this will rarely be the case—we recommend
 that you use MySQL error codes exclusively in your stored
 programs.

Name
EXC-04: Avoid global SQLEXCEPTION handlers until MySQL
 implements SIGNAL and SQLCODE features

Synopsis
In the initial 5.0 release of MySQL, it is not possible to
 access the MySQL error code or SQLSTATE code that caused a handler to
 be invoked. You also can't raise your own exceptions (the SIGNAL/RESIGNAL statements are not yet
 supported). What this means is that unless your handler is very
 specific, you won't know exactly why it was raised. Furthermore,
 you won't have a reliable mechanism for propagating the exception
 to the calling program.
Under normal circumstances, it can be very helpful to
 implement a general-purpose exception handler. This handler would
 acquire all kinds of handy information about the current state.
 If, however, you are unable to determine the error that was
 raised, this kind of general-purpose handler is of little use, and
 it can even cause a loss of useful
 information. For instance, in the following example, a
 general-purpose hander is invoked but cannot report accurately the
 reason it fired:
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 SET v_status=-1;
 SET v_message='Some sort of error detected somewhere in the application';
 END;
Given these restrictions, it is best not to create general
 SQLEXCEPTION handlers. Rather,
 you should handle only specific, foreseeable errors, and let the
 calling program handle any unexpected errors.

SQL in Stored Programs

 One area in which the MySQL stored program language
 really shines is the ease with which you can include SQL inside of
 stored program code (this was, after all, one of the key motivations
 for the introduction of this functionality in MySQL). While you might
 occasionally write stored programs without any SQL, it would be almost
 completely pointless to use stored programs if it weren't for their
 ability to issue SQL.
Best practices related to SQL inside of MySQL stored programs
 are, therefore, among the most important in this chapter.

Name
SQL-01: Start a transaction explicitly with the START
 TRANSACTION statement

Synopsis
Although MySQL will automatically initiate a transaction on
 your behalf when you issue DML statements, you should issue an
 explicit START TRANSACTION
 statement in your program to mark the beginning of your
 transaction.
It's possible that your stored program might be run within a
 server in which autocommit is
 set to TRUE, and by issuing an explicit START TRANSACTION statement you ensure
 that autocommit does not remain
 enabled during your transaction. START
 TRANSACTION also aids readability by clearly delineating
 the scope of your transactional code.

Name
SQL-02: Don't leave transactions "dangling"

Synopsis
Once you start a transaction, you should take responsibility
 for completing the transaction. Since transactions lock rows and
 potentially block other transactions, you need to ensure that
 transactions do not persist indefinitely. Generally, you should
 place the START TRANSACTION and
 COMMIT or ROLLBACK statements in the same stored
 program. This program may also call other programs, and you need
 to make sure that these called programs do not contain
 transactional code.
There are some exceptions to this recommendation. In
 particular, modular design might prompt you to break down a
 transaction into separate modules and control the overall
 transaction state from a master procedure.

Name
SQL-03: Avoid use of savepoints—they can obscure program
 logic and reduce program efficiency

Synopsis
Savepoints allow you to define a point within a transaction
 to which you can roll back without losing all of the changes made
 by the transaction. In essence, a savepoint facilitates the
 "partial rollback" of a transaction.
Indiscriminate use of savepoints can lead to inefficient and
 hard-to-maintain code. This is because when you roll back to a
 savepoint, your program flow is harder to follow, and you have
 almost by definition wasted system resources by issuing DML that
 you later aborted.
Quite often, you will find that instead of rolling back to a
 savepoint, you can simply issue a SELECT statement to validate an
 operation prior to actually issuing the DML. This technique was
 demonstrated in Chapter
 8.
A valid use of a savepoint is within a stored program that
 you are using to execute a "nested" transaction without affecting
 the status of a transaction that may be in progress in the calling
 program. The "nested" program creates a savepoint and rolls back
 to that savepoint if any errors occur. In this way the procedure
 could be safely called by a program that has an open transaction,
 since any rollback issued in the nested program would affect only
 statements issued in that program.

Name
SQL-04: Use an appropriate locking strategy

Synopsis
There are two major patterns in transaction management: the
 optimistic locking strategy and the
 pessimistic locking strategy.
The pessimistic locking strategy assumes that concurrent updates are quite likely.
 To prevent this, the transaction locks rows as they are read.
 Other transactions that want to update the row must wait until the
 pessimistic transaction ends.
The optimistic locking strategy assumes that in the period of time between a user
 reading and then updating a row, it is unlikely that another user
 will attempt to update that same row. Of course, optimism in and
 of itself is not sufficient; when following this locking strategy,
 the program should check to ensure that the row has not been
 updated, immediately prior to the update. If the row has been
 updated, then the transaction is aborted.
Each locking strategy is based on assumptions regarding the
 behavior of other transactions or application users. Each has
 different implications for the duration of any locks acquired
 during the transaction and the possibility that a transaction will
 be aborted. Make sure that you weigh carefully the implications of
 the two strategies and pick the approach that best suits your
 application.

Name
SQL-05: Keep transactions small

Synopsis
The larger the transaction, the more likely it is that the
 transaction will lock rows needed by another transaction, and the
 greater the chance that a deadlock might occur. Transactions
 should therefore usually be no larger than is absolutely
 necessary.

Name
SQL-06: Always reset the NOT FOUND variable after
 completing a cursor loop

Synopsis
You should usually terminate a cursor loop when a CONTINUE handler for the NOT FOUND condition fires and modifies
 the value of a status variable. For instance, in the following
 fragment, the CONTINUE handler
 sets the v_last_row_fetched
 variable to 1, and we test this value after each FETCH call:
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET v_last_row_fetched=1;

 OPEN cursor1;
 cursor_loop:LOOP
 FETCH cursor1 INTO v_customer_name, v_contact_surname, v_contact_firstname;
 IF v_last_row_fetched=1 THEN
 LEAVE cursor_loop;
 END IF;
 -- Do something with the row fetched.
 END LOOP cursor_loop;
 CLOSE cursor1;
 SET v_last_row_fetched=0;
It is important to reset this status value to 0 after the
 cursor loop terminates; otherwise, subsequent or nested cursor
 loops may terminate prematurely.
The following code incorrectly fetches employees for only a
 single department, because after the first cursor loop, the status
 variable continues to indicate that the last row has been
 fetched:
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET v_not_found=1;

 SET v_dept_id=1;
 WHILE(v_dept_id<=10) DO
 OPEN dept_emp_csr;
 emp_loop:LOOP
 FETCH dept_emp_csr INTO v_employee_id;
 IF v_not_found THEN
 LEAVE emp_loop;
 END IF;
 CALL process_employee(v_employee_id);
 END LOOP;
 CLOSE dept_emp_csr;

 SET v_dept_id= v_dept_id+1;
 END WHILE;

Name
SQL-07: Use SELECT FOR UPDATE when retrieving rows for
 later update

Synopsis
Use the SELECT FOR UPDATE
 statement to request that locks be placed on all rows identified
 by the query. You should do this whenever you expect to change
 some or all of those rows, and you don't want another session to
 change them out from under you. Any other session trying to update
 the rows, or lock the rows (perhaps using FOR UPDATE), will have to wait.

Example
Here we are processing a special bonus payment for needy
 employees. We issue the FOR
 UPDATE clause so that the rows concerned are locked
 until our transaction completes:
 CREATE PROCEDURE needy_bonus()
 BEGIN
 DECLARE v_employee_id INT;
 DECLARE v_salary NUMERIC(8,2);
 DECLARE v_last_emp INT DEFAULT 0;

 DECLARE emp_csr CURSOR FOR
 SELECT employee_id,salary
 FROM employees
 WHERE salary <45000
 FOR UPDATE;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET v_last_emp=1;

 START TRANSACTION;
 OPEN emp_csr;
 emp_loop:LOOP
 FETCH emp_csr INTO v_employee_id, v_salary;
 IF v_last_emp THEN
 LEAVE emp_loop;
 END IF;
 CALL grant_raise(v_employee_id, v_salary);
 END LOOP emp_loop;
 CLOSE emp_csr;
 SET v_last_emp=0;

 COMMIT;

 END;
You can also use the LOCK IN SHARE
 MODE clause to lock the rows against update but continue
 to allow reads.

Name
SQL-08: Avoid including SQL in functions that may be used
 in SQL

Synopsis
You are free to include SQL statements within stored
 functions (with the exception of SQL statements that return result
 sets to the calling program). You should, however, be very wary of
 doing so if you think that your stored function might itself be
 called inside a SQL statement.
When you use a function that contains SQL in a SQL
 statement, you are effectively "nesting" two SQL statements. For
 every row returned by the "outer" SQL, you will have to execute
 the "inner" SQL. Such nested SQL statements can exhibit extremely
 unpredictable or undesirable performance.
For instance, consider the simple stored function
 below:
 CREATE FUNCTION cust_contact_name (in_customer_id INT)
 RETURNS VARCHAR(100)
 READS SQL DATA
 BEGIN
 DECLARE v_contact_name VARCHAR(100);

 SELECT CONCAT(contact_firstname,' ',contact_surname)
 INTO v_contact_name
 FROM customers
 WHERE customer_id=in_customer_id ;

 RETURN(v_contact_name);

 END$
It contains an efficient query, but nevertheless, if we
 include it in a query against the customers table as follows:
 SELECT cust_contact_name(customer_id) FROM customers
our execution time is about five times greater than if we
 performed the same operation within the SQL itself:
 SELECT CONCAT(contact_firstname,' ', contact_surname) FROM customers
The situation becomes even worse if the SQL inside the
 function is not completely optimized. In Chapter 10 we provide an example
 in which the use of a stored function inside a SQL statement
 lengthens execution time by a factor of 300!

Dynamic SQL

 "Dynamic" means that the SQL statement that you execute
 is constructed, parsed, and compiled at runtime, not at the time the
 code is compiled. Dynamic SQL offers a tremendous amount of
 flexibility—but also complexity and more than a little risk.
In the MySQL stored program language, you can process dynamic
 SQL by using the MySQL prepared statement feature. You can
 create a prepared statement with the PREPARE statement, supplying the SQL text in
 a session variable. The SQL can then be executed with the EXECUTE statement.

Name
DYN-01: Bind, do not concatenate, variable values into
 dynamic SQL strings

Synopsis
When you bind a variable value into a dynamic SQL string,
 you can insert a "placeholder" into the string. This allows MySQL
 to parse a "generic" version of that SQL statement, which can be
 used over and over again, regardless of the actual value of the
 variable, without repeated parsing.
This technique also makes your code more resistant to SQL
 injection attacks (see Chapter
 18), since the value supplied to placeholders cannot
 include SQL fragments.

Example
Here's an example of binding with the PREPARE
 and EXECUTE statements. This
 program updates any numeric column in the specified table, based
 on the supplied name:
 CREATE PROCEDURE update_anything
 (in_table VARCHAR(60),
 in_where_col VARCHAR(60),
 in_set_col VARCHAR(60),
 in_where_val VARCHAR(60),
 in_set_val VARCHAR(60))
 BEGIN

 SET @dyn_sql=CONCAT(
 'UPDATE ' , in_table ,
 ' SET ' , in_set_col, ' = ?
 WHERE ' , in_where_col, ' = ?');

 PREPARE s1 FROM @dyn_sql;
 SET @where_val=in_where_val;
 SET @set_val=in_set_val;
 EXECUTE s1 USING @where_val,@set_val;
 DEALLOCATE PREPARE s1;

 END$$
If you want to update the salary of employee #1 to $100,000,
 you might call this stored procedure as follows:
 CALL update_anything_g('employees','employee_id','salary', 1,100000)
The dynamic SQL generated will look like this:
 'UPDATE employees SET salary = ? WHERE employee_id = ?'
The ? characters indicate
 placeholders that will be replaced with the values for salary and employee_id. Those values are provided
 in the USING clause of the
 EXECUTE statement. Attempts to
 "inject" SQL into these values will fail (although injection into
 the table or column name parameters is still possible—we'll
 address that in the next best practice).

Name
DYN-02: Carefully validate any parameter values that
 might be used to construct dynamic SQL

Synopsis
Whenever you create a dynamic SQL statement based on
 parameters to a procedure or user inputs, you should always guard
 carefully against SQL injection (see Chapter 18). SQL injection allows
 the user to provide fragments of SQL as parameters to your stored
 programs, potentially subverting the resulting dynamic SQL.
Therefore, you should always carefully validate the inputs
 to your stored programs if they contribute to your dynamic
 SQL.
In the previous example, we prevented SQL injection through
 the careful use of placeholders. Variable binding could not,
 however, address the potential vulnerability of concatenating in
 the names of tables and columns.
In the modified version below, we perform a SQL query to
 confirm that the parameter inputs do, in fact, represent valid
 table and column names. Once we validate the inputs, we then
 construct and execute the dynamic SQL:
 CREATE PROCEDURE update_anything_2
 (in_table VARCHAR(60),
 in_where_col VARCHAR(60),
 in_set_col VARCHAR(60),
 in_where_val VARCHAR(60),
 in_set_val VARCHAR(60))
 BEGIN

 DECLARE v_count INT;

 SELECT COUNT(*)
 INTO v_count
 FROM information_schema.columns
 WHERE table_name=in_table
 AND column_name IN (in_set_col,in_where_col);

 IF (v_count <2) THEN
 SELECT 'Invalid table or column names provided';
 ELSE
 SET @dyn_sql=CONCAT(
 'UPDATE ' , in_table ,
 ' SET ' ,in_set_col, ' = ?
 WHERE ' , in_where_col, ' = ?');

 SELECT @dyn_sql;
 PREPARE s1 FROM @dyn_sql;
 SET @where_val=in_where_val;
 SET @set_val=in_set_val;
 EXECUTE s1 USING @where_val,@set_val;
 DEALLOCATE PREPARE s1;
 END IF;

 END;

Name
DYN-03: Consider the invoker rights method for stored
 code that executes dynamic SQL

Synopsis
The definer rights model—in which
 stored programs execute with the permissions of the creator rather
 than the invoker—generally confers significant security
 advantages, since you can allow access to database objects only
 under the controlled conditions implemented in your stored
 programs.
However, in the case of stored programs that contain dynamic
 SQL, the definer rights model can create security concerns, since
 these programs can conceivably be vulnerable to SQL injection, as
 described in Chapter 18.
 Since the creator of the stored program is almost always a highly
 privileged user, the implications of SQL injection into a definer
 rights procedure is potentially very serious indeed.
Whenever you create a stored program that processes a
 dynamic SQL statement, you should consider defining the program
 with the invoker rights model. Do this by
 adding the following clause to the program header:
 SQL SECURITY INVOKER
This clause ensures that the dynamic SQL string is parsed
 under the authority of the account currently running the
 program.
Without the SQL SECURITY
 INVOKER clause, the stored program will execute with the
 privileges of the user that created the stored program. Since—by
 definition—you don't know exactly the full text of the dynamic SQL
 to be executed, you almost always want the SQL to be rejected if
 the user does not have sufficient privileges.
Using the alternative definer rights
 model also magnifies the potential vulnerabilities
 created should your stored program be susceptible to SQL
 injection.

Example
In the previous examples, we created a stored program that
 would update the value of any column in any table. Since we
 omitted the SQL SECURITY
 clause, a user can use the stored program to update tables to
 which she wouldn't normally have access. We didn't intend
 that!
So we should have defined the stored program with invoker
 rights, as follows:
 CREATE PROCEDURE update_anything_2
 (in_table VARCHAR(60),
 in_where_col VARCHAR(60),
 in_set_col VARCHAR(60),
 in_where_val VARCHAR(60),
 in_set_val VARCHAR(60))
 SQL SECURITY INVOKER
 BEGIN

Program Construction

 There are as many ways to write and structure a program
 as there are programmers—or so it sometimes seems. We offer
 suggestions on how to structure your programs and how best to design
 parameter lists that we have found effective.

Name
PRG-01: Encapsulate business rules and formulas behind
 accurately named functions

Synopsis
This might be one of the most important best practices you
 will ever read—and, we hope, follow. There is only one aspect of
 every software project that never changes: the fact that
 everything always changes. Business requirements, data structures,
 user interfaces: all of these things change and change frequently.
 Your job as a programmer is to write code that adapts easily to
 these changes.
So whenever you need to express a business rule (such as,
 "Is this string a valid ISBN?"), put it inside a subroutine that
 hides the individual steps (which might change) and returns the
 results (if any).
And whenever you need a formula (such as, "the total fine
 for an overdue book is the number of days overdue times $.50"),
 express that formula inside its own function.

Example
Suppose that you must be at least 10 years old to borrow
 books from the library. This is a simple formula and very unlikely
 to change. We set about building the application by creating the
 following logic:
 IF v_dob > DATE_SUB(now(), INTERVAL 10 YEAR) THEN
 SELECT 'Borrower must be at least 10 yrs old';
 ELSE
 INSERT INTO borrower
 (firstname,surname,date_of_birth)
 VALUES(v_firstname, v_surname, v_dob);
 END IF;
Later, while building a batch-processing script that checks
 and loads over 10,000 borrower applications, we include the
 following check in the program:
 load_data:BEGIN
 IF DATEDIFF(now(), v_dob)/365 < 10 THEN
 select ('Borrower is not ten years old.');
 ELSE
 . . . load data . . .
 END IF;
 END load_data;
And so on from there. We are left, unfortunately, with a
 real job on our hands when we get a memo that says: "In order to
 support a new city-wide initiative to increase literacy, the
 minimum age for a library card has been changed from 10 to 8." And
 then, of course and by the way, there is the minor bug we
 introduced into our second construction of the rule (we forgot
 about leap years).
If only we had created a simple function the first time we
 needed to calculate minimum valid age! It would be something like
 this:
 CREATE FUNCTION borrower_old_enough (in_dob DATE)
 RETURNS INT
 NO SQL
 BEGIN
 DECLARE v_retval INT DEFAULT 0;
 IF (in_dob < DATE_SUB(NOW(), INTERVAL 10 YEAR)) THEN
 SET v_retval=1;
 ELSE
 SET v_retval=0;
 END IF;
 RETURN(v_retval);
 END;
And this function copes correctly with a NULL input, for
 which we forgot to check in those other programs. We can correct
 the age calculation logic in one place and easily change the
 minimum age from 10 to 8:

Benefits
You can update business rules and formulas in your code
 about as quickly and as often as users change that which was
 supposedly "cast in stone." Developers apply those rules
 consistently throughout the application base, since they are
 simply calling a program.
Your code is much easier to understand, since developers
 don't have to wade through complex logic to understand which
 business rule is being implemented.

Challenges
It's mostly a matter of discipline and advance planning.
 Before you start building your application, create a set of
 programs to hold business rules and formulas for distinct areas of
 functionality. Make sure that the names of the programs clearly
 identify their purpose. Then promote and use them rigorously
 throughout the development organization.

Name
PRG-02: Standardize module structure using function and
 procedure templates

Synopsis
Once you adopt a set of guidelines for how developers should
 write procedures and functions, you need to help those developers
 follow their best practices. The bottom line is that guidelines
 will be followed if you make it easier to follow them than to
 ignore them.
For module standards, you can use either of the following
 approaches:
	Create a static template file that contains the generic
 logical structure for a procedure and/or function. Developers
 then copy that file to their own file, "de-genericize" the
 template by performing search-and-replace operations on
 placeholder strings with their own specific values (such as
 table names), and modify it from there.

	Use a program (one that you've written or a commercially
 available tool) that generates the code you want. This
 approach can be more flexible and can save you time, depending
 on how sophisticated a generator you use/create.

Example
Here's a simple function template that reinforces the single
 RETURN recommendation and
 encourages a standard header.
 CREATE FUNCTION f_<name>
 (IN in_<parm> <datatype>)
 RETURNS <datatype>
 DETERMINISTIC
 BEGIN
 /*
 || STANDARD COPYRIGHT STATEMENT HERE
 || Author:
 || File:
 ||
 || Modification history:
 */

 DECLARE retval <datatype> DEFAULT <value>
 -- Put your code here

 RETURN retval;

 END
Some third-party products (Toad for MySQL, for instance)
 allow you to define such a template and have it automatically
 applied to new stored programs.

Benefits
The quality of each individual program is higher, since it's
 more likely to conform to best practices.
Programs are more consistent across the team and therefore
 easier to maintain and enhance.

Name
PRG-03: Limit execution section sizes to a single page
 (50-60 lines) using modularization

Synopsis
Sure, you're laughing out loud. You write code for the real
 world. It's really complicated. Only 50 or 60 lines? You're lucky
 if your programs are less than 500 lines! Well, it's not a matter
 of complexity; it's more an issue of how you handle that
 complexity.
If your executable sections go on for hundreds of lines,
 with a loop starting on page 2 and ending on page 6, and so on,
 you will have a hard time "grasping the whole" and following the
 logic of the program.
An alternative is to use step-wise refinement (a.k.a. "top
 down decomposition"): don't dive into all the details immediately.
 Instead, start with a general description (written in actual code,
 mind you) of what your program is supposed to do. Then implement
 all subprogram calls in that description following the same
 method.
The result is that at any given level of refinement, you can
 take in and easily comprehend the full underlying logic at that
 level. This technique is also referred to as "divide and
 conquer."

Example
Consider the following procedure. The entire program might
 be hundreds of lines long, but the main body of assign_workload (starting with BEGIN /*main*/) is only 24 lines long.
 Not only that, you can read it pretty much as an exciting novel:
 "For every telesales rep, if that person's case load is less than
 his department's average, assign the next open case to that person
 and schedule the next appointment for that case" (well, maybe not
 that exciting).
 CREATE PROCEDURE assign_workload()
 BEGIN /*main*/
 DECLARE v_last_row INT DEFAULT 0;
 DECLARE v_case_id, v_telesales_id, v_department_id INT;

 DECLARE telesales_cur CURSOR FOR
 SELECT telesales_id,department_id FROM telesales;

 DECLARE CONTINUE HANDLER FOR NOT FOUND SET v_last_row=1;

 OPEN telesales_cur;
 ts_loop:LOOP
 FETCH telesales_cur INTO v_telesales_id, v_department_id;
 IF v_last_row THEN LEAVE ts_loop; END IF;

 IF analysis_caseload(v_telesales_id)<
 analysis_avg_cases(v_department_id) THEN

 SET v_case_id=assign_next_open_case(v_telesales_id);
 CALL schedule_case(v_case_id);
 END IF;
 END LOOP;
 CLOSE telesales_cur;
 SET v_last_row=0;

 END$$

Benefits
You can implement complicated functionality with a minimum
 number of bugs by using step-wise refinement. A developer can
 understand and maintain a program with confidence if he can read
 and grasp the logic of the code.

Challenges
You have to be disciplined about holding off writing the
 low-level implementation of functionality. Instead, come up with
 accurate, descriptive names for procedures and functions that
 contain the implementations themselves.

Resources
http://www.construx.com: Contains lots
 of good advice on writing modular code.

Name
PRG-04: Avoid side-effects in your programs

Synopsis
Build lots of individual programs. Design each program so
 that it has a single, clearly defined purpose. That purpose
 should, of course, be expressed in the program's name, as well as
 in the program header.
Avoid throwing extraneous functionality inside a program.
 Such statements are called side-effects and
 can cause lots of problems for people using your code—which means
 your code won't get used, except perhaps as source for a
 cut-and-paste session (or—in hardcopy form—for kindling).

Example
Here's a program that by name and "core" functionality
 displays information about all books published within a certain
 date range:
 CREATE PROCEDURE book_details (
 in_start_date DATE,
 in_end_date DATE)
 BEGIN
 DECLARE v_title, v_author VARCHAR(60);
 DECLARE v_last_book, v_book_id INT DEFAULT 0;

 DECLARE book_cur CURSOR FOR
 SELECT book_id,title,author
 FROM books
 WHERE date_published BETWEEN in_start_date
 AND in_end_date;

 OPEN book_cur;
 book_loop:LOOP
 FETCH book_cur INTO v_book_id, v_title, v_author;
 IF v_last_book THEN LEAVE book_loop; END IF;

 CALL details_show(v_title, v_author);
 CALL update_borrow_history (v_book_id);
 END LOOP;
 END$$
Notice, however, that it also updates the borrowing history
 for that book. Now, it might well be that at this point in time
 the display_book_info procedure
 is called only when the borrowing history also needs to be
 updated, justifying to some extent the way this program is
 written.
However, regardless of current requirements, the name of the
 program is clearly misleading; there is no way to know that
 display_book_info also updates
 borrowing history. This is a hidden side-effect, and one that can
 cause serious problems over time.

Benefits
Your code can be used with greater confidence, since it does
 only what it says (via its name, for the most part) it's going to
 do. Developers will call and combine single-purpose programs as
 needed to get their jobs done.

Name
PRG-05: Avoid deep nesting of conditionals and
 loops

Synopsis
Many studies have confirmed that excessive nesting of
 IF, CASE, or LOOP structures leads to code that is
 difficult to understand. More than two or three levels of nesting
 is probably undesirable.
Consider the following logic:
 IF v_state='CA' THEN
 IF v_quantity > 100 THEN
 IF v_customer_status='A' THEN
 IF v_product_code='X' THEN
 SET v_discount=.04;
 ELSEIF v_product_code='Y' THEN
 SET v_discount=.04;
 ELSE
 SET v_discount=.01;
 END IF;
 ELSE
 SET v_discount=0;
 END IF;
 ELSEIF v_quantity > 50 THEN
 SET v_discount=.1;
 . . . More logic . . .
 END IF;
It's fairly difficult to determine which set of conditions
 is applied to any particular discount. For instance, consider the
 highlighted line above—it takes a bit of puzzling to work out
 which states, quantities, and so on are associated with this
 discount: and that is with the vast majority of the logic removed.
 There are a few possible solutions to this deep nesting:
	Including multiple conditions in each IF or
 ELSEIF clause: For instance, we might test for a
 specific combination of state, quantity, and status on the one
 line.

	Removing parts of the logic to separate
 subroutines: For instance, we might create separate
 subroutines that calculate discounts for each state.

	Creating a data-driven solution:
 For instance, in the above example it would probably be
 preferable to create a table that includes the discount for
 each combination of values.

Name
PRG-06: Limit functions to a single RETURN statement in
 the executable section

Synopsis
A good general rule to follow as you write your stored
 programs is: "one way in and one way out." In other words, there
 should be just one way to enter or call a program (there is; you
 don't have any choice in this matter). And there should be one way
 out, one exit path from a program (or loop) on successful
 termination. By following this rule, you end up with code that is
 much easier to trace, debug, and maintain.
For a function, this means you should think of the
 executable section as a funnel; all the lines of code narrow down
 to the last executable statement:
 RETURN return value;

Example
Here's a simple function that relies on multiple RETURNs:
 CREATE FUNCTION status_desc (in_cd CHAR(1))
 RETURNS VARCHAR(20)

 DETERMINISTIC
 BEGIN

 IF in_cd = 'C' THEN
 RETURN 'CLOSED';
 ELSEIF in_cd = 'O' THEN
 RETURN 'OPEN';
 ELSEIF in_cd = 'I' THEN
 RETURN 'INACTIVE';
 END IF;
 END;
At first glance, this function looks very reasonable. Yet
 this function has a deep flaw, due to the reliance upon separate
 RETURNs: if you don't pass in
 "C", "O", or "I" for the cd_in argument, the function
 raises:
 mysql> SELECT status_desc('A');
 ERROR 1321 (2F005): FUNCTION status_desc ended without RETURN
Here's a rewrite that relies upon a single RETURN at the end of the
 function:
 CREATE FUNCTION status_desc (in_cd CHAR(1))
 RETURNS VARCHAR(20)

 DETERMINISTIC
 BEGIN
 DECLARE v_status VARCHAR(20) ;
 IF in_cd = 'C' THEN
 SET v_status='CLOSED';
 ELSEIF in_cd = 'O' THEN
 SET v_status='OPEN';
 ELSEIF in_cd = 'I' THEN
 SET v_status='INACTIVE';
 END IF;
 RETURN v_status;
 END$$
This program also safely and correctly returns NULL if the
 program doesn't receive a value of "C", "O", or "I", unlike the first
 implementation.

Benefits
You're less likely to write a function that raises the
 exception ERROR 1321 (2F005): FUNCTION %s
 ended without RETURN—a nasty and embarrassing
 error.
A single RETURN function
 is easier to trace and debug, since you don't have to worry about
 multiple exit pathways from the function.

Name
PRG-07: Use stored programs to implement code common to
 multiple triggers

Synopsis
Because you often need to create both an UPDATE and an INSERT trigger to maintain a derived or
 denormalized column, you might find yourself replicating the same
 logic in each trigger. For instance, in a previous example we
 created BEFORE UPDATE and
 BEFORE INSERT triggers to
 calculate free shipping and discount rate. If the logic is
 nontrivial, you should implement the logic in a stored procedure
 or function and call that routine from your trigger.

Example
Imagine that we are trying to automate the maintenance of a
 superannuation (18K plan) for our employees. We might create a
 trigger as follows to automate this processing upon insertion of a
 new employee row:
 CREATE TRIGGER employees_bu
 BEFORE UPDATE
 ON employees
 FOR EACH ROW
 BEGIN
 DECLARE v_18k_contrib NUMERIC(4,2);

 IF NEW.salary <20000 THEN
 SET NEW.contrib_18k=0;
 ELSEIF NEW.salary <40000 THEN
 SET NEW.contrib_18k=NEW.salary*.015;
 ELSEIF NEW.salary<55000 THEN
 SET NEW.contrib_18k=NEW.salary*.02;
 ELSE
 SET NEW.contrib_18k=NEW.salary*.025;
 END IF;
 END$$
But we need to ensure that this column is maintained when we
 create a new employee row. Instead of performing a copy-and-paste
 into a BEFORE INSERT trigger,
 we should locate this logic in a stored function as
 follows:
 CREATE FUNCTION emp18k_contrib(in_salary NUMERIC(10,2))
 RETURNS INT
 DETERMINISTIC
 BEGIN
 DECLARE v_contrib NUMERIC(10,2);
 IF in_salary <20000 THEN
 SET v_contrib=0;
 ELSEIF in_salary <40000 THEN
 SET v_contrib=in_salary*.015;
 ELSEIF in_salary<55000 THEN
 SET v_contrib=in_salary*.02;
 ELSE
 SET v_contrib=in_salary*.025;
 END IF;

 RETURN(v_contrib);
 END;
Now we can use that function in both the INSERT and the UPDATE triggers. If the logic changes,
 we can modify the logic in one place and can therefore eliminate
 the risk of any inconsistency between inserted and updated
 rows.
 DROP TRIGGER employees_bu$$

 CREATE TRIGGER employees_bu
 BEFORE UPDATE
 ON employees
 FOR EACH ROW
 BEGIN
 SET NEW.contrib_18k=emp18k_contrib(NEW.salary);
 END;

Performance

 Most of the best practices outlined so far concentrate on the maintainability and
 correctness of our stored programs. The following practices
 concentrate on the performance of stored programs.

Name
PER-01: Concentrate on tuning SQL to improve stored
 program performance

Synopsis
There are many ways to improve stored program performance,
 but none of these are likely to have much effect if the SQL within
 the stored program is inefficient.
Most stored programs contain SQL, and for almost all of
 those stored programs, the SQL makes up the vast majority of
 stored program elapsed time. Attempts to tune the stored program
 by other means (loop tuning, for instance) should only be
 attempted once the SQL in the stored program has been
 tuned.

Name
PER-02: Carefully create the best set of indexes for your
 application

Synopsis
The primary purpose of indexes is to allow MySQL to rapidly
 retrieve the information you need. Just as the index in this book
 allows you to find some information without having to read the
 entire book, an index allows MySQL to get rows from the table
 without reading the entire table.
Determining the optimal set of indexes for your application
 is, therefore, probably the single most important step you can
 take to optimize MySQL stored program performance. In general, you
 should create indexes that support WHERE clause conditions and joins. You
 should also create multicolumn (concatenated) indexes, so that a
 single index can support all of the columns in the WHERE clause or all of the columns
 required to join two tables.
You should create indexes to support joins, since without an
 appropriate index, joins will degrade rapidly as the row counts in
 the involved tables increase.

Name
PER-03: Avoid accidental table scans

Synopsis
One of the most common causes of poor application
 performance is the "accidental" full table scan. An accidental
 table scan occurs when the nature of the query, or the
 expectations of the programmer, suggests that the query will be
 satisfied using an index, but instead a full table scan is
 performed.
Accidental table scans can occur under the following
 circumstances:
	The index that you believe supports the query does not
 exist.

	You have an index that includes the columns in the
 query, but you don't include the foremost, "leading" columns
 in your query.

	You suppress an index by enclosing the column concerned
 with a function or an expression.

	You specify a nonleading substring as the search
 condition. For instance, you try to find all employees whose
 name ends in "STONE"
 (WHERE name LIKE
 '%STONE').

Most accidental table scans can be resolved by
 creating a new index or rewording the SQL so that the index
 is not suppressed. See Chapters
 20 and 21 for more
 details.

Name
PER-04: Optimize necessary table scans

Synopsis
Using an index to retrieve rows from a table is worthwhile
 only when you are retrieving a relatively small subset of rows
 from the table. Over a certain proportion of the table (say
 5-20%), it is more efficient to read every row from the table.
 However, it is still possible to optimize these "necessary" table
 scans. For instance:
	You can move long, infrequently accessed columns to a
 secondary table.

	You can create an index on all of the columns required
 for the query. MySQL can then scan the entire index to resolve
 the query. Since the index will normally be smaller than the
 table, it ought to be quicker to scan the index.

These techniques are discussed in detail in Chapter 21.

Name
PER-05: Avoid using stored programs for computationally
 expensive routines

Synopsis
Like most stored program implementations, MySQL stored
 programs are optimized for database access, not computational
 speed. If you have a choice, place your most computationally
 expensive routines in client or middle-tier code. For instance,
 you might want to implement your most expensive calculations in
 PHP or Java rather than in stored programs.

Name
PER-06: Move loop invariant expressions outside of
 loops

Synopsis
Whenever you set out to tune your stored programs (having
 completed your SQL optimization), you should first take a look at
 your loops. Any inefficiency inside a loop's body will be
 magnified by the multiple executions of that code.
A common mistake is to put execute code within the body of a
 loop that has the same result with each iteration of the loop.
 When you identify such a scenario, extract the static code, assign
 the outcomes of that code to one or more variables in advance of
 the loop, and then reference those variables inside the
 loop.

Example
At first glance, this loop block seems sensible enough, but
 in reality it is quite inefficient:
 WHILE (i<=1000) do
 SET j=1;
 WHILE (j<=1000) do
 SET counter=counter+1;
 SET sumroot=sumroot+sqrt(i)+sqrt(j);
 SET j=j+1;
 END WHILE;
 SET i=i+1;
 END WHILE;
This code contains two loops: we calculate the square root
 of i inside of the inner loop,
 even though it only changes for each iteration of the outer loop.
 Consequently, we calculate the square root 1,000,000 times, even
 though we have only 1,000 distinct values.
Here's the optimized version of that same code:
 WHILE (i<=@i) do
 SET rooti=sqrt(i);
 SET counter=counter+1;
 SET j=1;
 WHILE (j<=@j) do
 SET sumroot=sumroot+rooti+sqrt(j);
 SET j=j+1;
 END WHILE;
 SET i=i+1;
 END WHILE;
A small change, but one that will have a massive effect on
 performance.

Name
PER-07: Optimize conditional structures

Synopsis
The performance of IF and
 CASE statements is highly
 dependent on the number of comparisons that the statement must
 execute. The number of comparisons can be optimized in two
 ways:
	By placing the comparisons that are most frequently true
 earliest in the set of comparisons, you reduce the number of
 comparisons that must be executed.

	If any comparison is repeated in multiple expressions
 within the CASE or IF statement, you can extract that
 comparison and "nest" multiple CASE or IF statements. The inner comparisons
 need only be executed when the outer comparison evaluates to
 TRUE.

Name
PER-08: Structure IF and CASE statements so more likely
 expressions appear earliest in the list

Synopsis
When MySQL processes a CASE or an IF statement, it works through every
 ELSEIF or WHEN condition in the statement until if
 finds a condition that returns TRUE. If you place the condition
 that is most likely to evaluate to TRUE at the beginning of your
 conditional statement, you will improve the overall efficiency of
 your program.
Your primary concern, however, should be the readability of
 your IF and CASE statement. Don't worry about
 reorganizing the clauses of your IF and CASE statements unless you have
 identified them as a bottleneck in application performance.

Example
In this example the most likely condition is tested
 last:
 IF (percentage>95) THEN
 SET Above95=Above95+1;
 ELSEIF (percentage >=90) THEN
 SET Range90to95=Range90to95+1;
 ELSEIF (percentage >=75) THEN
 SET Range75to89=Range75to89+1;
 ELSE
 SET LessThan75=LessThan75+1;
 END IF;
To optimize the statement, we can reword it so that in most
 cases, only one comparison is necessary:
 IF (percentage<75) THEN
 SET LessThan75=LessThan75+1;
 ELSEIF (percentage >=75 AND percentage<90) THEN
 SET Range75to89=Range75to89+1;
 ELSEIF (percentage >=90 and percentage <=95) THEN
 SET Range90to95=Range90to95+1;
 ELSE
 SET Above95=Above95+1;
 END IF;

Conclusion

In this final chapter, we've attempted to enumerate coding
 practices that will result in efficient, robust, and easily
 maintainable stored programs. These practices are based on lessons
 learned in various development environments—including Oracle and SQL
 Server stored procedures—as well as from our experiences with the
 MySQL stored program language. We hope that you find these practices
 worthy of consideration. We do not, however, hope or expect that you
 will automatically adopt every recommendation. As always, you should
 exercise your judgment, tempered by your unique understanding of your
 own specific requirements, before adopting any standard,
 recommendation, or practice.

About the Authors
Guy Harrison has worked with databases for more than a decade, has conducted many MySQL and Oracle training seminars, and is author of several books on Oracle, including "Oracle Desk Reference" (Prentice Hall PTR). Currently a product architect at Quest Software, Harrison has conducted many training seminars and has authored several articles for the Oracle Technical Journal. He resides in Australia.
Steven Feuerstein is considered one of the world's leading experts on the Oracle PL/SQL language. He is the author or coauthor of "Oracle PL/SQL Programming", "Oracle PL/SQL Best Practices", "Oracle PL/SQL Programming: Guide to Oracle8i Features", "Oracle PL/SQL Developer's Workbook", "Oracle Built-in Packages, Advanced Oracle PL/SQL Programming with Packages", and several pocket reference books (all from O'Reilly). Steven is a Senior Technology Advisor with Quest Software, has been developing software since 1980, and worked for Oracle Corporation from 1987 to 1992. He is currently designing and building Qnxo (www.qnxo.com), the world's first active mentoring software.

Colophon
The animal on the cover of MySQL Stored Procedure
 Programming is a middle spotted woodpecker
 (Dendrocopos medius). Often mistaken for the more
 common great spotted woodpecker, the middle spotted woodpecker is
 distinguished by its smaller size and bright red crown. The bird can be
 found high among the trees in the deciduous forests of Europe and
 southwest Asia. Preferring oaks, hornbeams, and elms, the woodpecker tends
 to stay in the same area once it finds a patchwork of these trees. Despite
 their non-migratory nature, middle spotted woodpeckers are constantly on
 the move, making them difficult to spot and a rare treat for
 birdwatchers.
The cover image is from Wood's Animate
 Creation. The cover font is Adobe ITC Garamond. The text font
 is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
 code font is LucasFont's TheSans Mono Condensed.

OEBPS/httpatomoreillycomsourceoreillyimages173423.png
Transaction A Transaction B Balance of Account #2

$2,000

UPDATE account_balance
SET balance=balance-100 —————————————§1900
WHERE account_i

Account #2 is locked and cannot be
updated untlthe tansaction commits

Time

oMM $1.900

UPDATE account_balance
SET balance=balance+300 ————> 52,200

‘ WHERE account_id=2
COMMIT ———————————————§2,200

OEBPS/httpatomoreillycomsourceoreillyimages173411.png.jpg
MySQL Query Browser
Flo Edt

L)

Gabick N Rafesh

View Query Sarit Tools Help

’.nnw procedure status

@

Enater S

=lolx|

PR LY L

I

3 rows Ftched i 0.0505: (000629

Q Fesuteet] @ bound sql Resultset 2 |

bb Name Type Definer Modiied Created Securly_ype | Comment
> pod calisodd PROCEDURE roo@locahost 20050502215623 2000502215623 DEFINER

prod testt PRAOCEDURE | root@ocahost | 20050424143322 2005042414352 DEFINER

smal | sp_pimes PRAOCEDURE | root@osahost | 20050422 040357 20050422040357 DEFINER

1 [

[o1 132 | P saaeh

Z

OEBPS/httpatomoreillycomsourceoreillyimages173527.png
Stored procedure _ 075

0 0 30]
Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173463.png.jpg
3 websited. n =101 x|
S e ——rr

TGS BB @] 8| R
=

ual Web Developer 2005 Express E

@
Headng 1 < v Ties NewRoman « 24t~ |[B]

Web.canfig) MySQLStaty

x| Start Page

o EEEEED
Enter MySQL Server Details B Cwasenpersten

3 Data
Host: |ficalhost

Custary aspx
Port: 306

=] mysQustatus.aspx.
3 eb.confg

Username: [fost

Password: [”

Database: | [frod

PSubmit
Literal "ReportHeadert’ |
"PlaceHolder "PlaceHolder | (l5olution Explorer [Database Explorer

<> 2
Bl =
& Misc -
)
Accessiey
Algn
Atonicselction
Class
Misc

=

oo] 8 sowee || [S|

Ready

OEBPS/httpatomoreillycomsourceoreillyimages173361.png.jpg
MySOL Quei = i=e)x]
it View Query Script Tools Help

YIE 00 0.0,

Undo Redo | Open Save Contiie Step | Execute Stop

1 DELIMITER §§ ‘Schemata |Bookmarks |History
2
3 DROP PROCEDURE IF EXISTS my_sqn$§
R CPERTE PROCEDURE my g umber INT, OLT vt e FLOAT > Flmaximize.profis |2
6 SET out_number=SQRT(input_number); b Pl modol
- |
B
9* DELIMITER ; Filneedy_bonus |
10 Falnested_cursors2 |||
Filnumeric_test
5l num_fields
1 FE Oreilly1

‘Syntax | Functions | Params | Trx

p

~ [Data Manipulation ||*]
£ DELETE @
DO
ZHANDLER
£ INSERT)

426 |Sciipt executed. 7

OEBPS/httpatomoreillycomsourceoreillyimages173401.png.jpg
Fie Edt

@

Unda

View Query Scrpt Tooks

W2

Redo Lad Swe Sewh

© e =]

step s

L 0 Resset] | @ Helloworld

Schemata | Bockmaks Hitory

pELTNITER §7

DROP PROCEDVRE IF EXISTS
CREATE PROCEDURE “proa”

DETERMINISTIC
BEGIN

SELECT 'Hells Werld';

ENws s

pELDATER 5

A

‘HelloWorla'ss
“HelloWerld:

5 oot
B cusor_swaple

» 53] cutomer_sdes
B de it

» B enpioyee_it

(8 Helloworld
Tew_salay
» Bl oho oroc

Syntax | Functions _ Fetams.

1 discount_piice: decimal(3.2)

= Data Maripuatian
55 Data Defintion

5 MysL Uity

5 Transactional and Locking

OEBPS/httpatomoreillycomsourceoreillyimages173371.png.jpg
MySOL Query Erowse
Fle Edt View Quety Scipt Tools Help

QO CH © e

Undo Reds | Open Save Coninie

OResuiltset 1 « | @ sp_emps_in_dept *

Step

RO O

Schemata | Bookmarks | History

1 DELIMITER §§

2

3 DROP PROCEDURE IF EXISTS sp_emps_in_depts§

4* CREATE PROCEDURE sp_emps_in_dept(n_employee_id INT)
5 BEGIN

6 SELECT employee_id,sumame firstname,address1,address2,zipcode,date_of_birth]
7 FROM employees

8 employee_id;

9

11°* DELIMITER;
12

b Fal sp_employee_ist|[#]

b i sp_injectable
FEalsp_issue_invoices

b Falsp_issue_one_iny|

b Falsp_mysql_info

b Falsp_nprimes.

b B i

‘Syntax | Functions | Params | Trx

3

~ = Data Manipulation
£ DELETE
DO

L HANDLER

L AINSERT |
[T L 0]

SN

OEBPS/httpatomoreillycomsourceoreillyimages173441.png.jpg
¥)MySOL Server Statistics - Mozilla Firefox o =10l x|
He B Wen Go fodkmas ook teb)

B G . o» & 9 @)
M oo erexiofindlescncle | e e e R o B
sookmats

Enter MySQL Server Details

Enter your daffbase connection details below:

Host: localhost
Port 3308
Usermarne: [root

Password:

Database: [prod|

Submit

MySQL Server status and statistics
Host: localhost

Port: 3306

Version: 5.0.17-nightly-20051120-log

Current processes active in server

Id [User Host db |Command Time |State [Info

5 [[root [tocathost Sleep |[17489

9 [lroot[[10.10.10.14009 prod|sleep 535

63/root 2% prod|Query [0 SHOW FULL PROCESSLIST

Databases in server

Database
finformation_schema
fmysdl

fprod

oo

A Lo

OEBPS/httpatomoreillycomsourceoreillyimages173515.png
Multple merge runs

Single merge run

~——— Index

—— No index

Elapsed time (seconds)

2 /

No disk sort

0 100 1,000 10,000 100,000
Sort buffer size (KB)

OEBPS/httpatomoreillycomsourceoreillyimages173405.png.jpg
MySQL Query Browser - root@localhost:3306 / prod =10l x|
ey R 3 ~

H o 06 e N
©Resitsel] @ Helowold O Resiset? [© putting_it_all_together Schemata | Bakmarks _Histow

pELTNITER 77
DROP PROCEDURE IF EXISTS ‘prod’. putting_it_all togsther'$s
CREATE PROCEDURE “prod’ . puccing_it_all_togather’ (in_departmen
MODIFIS SQL DATA
DETERMINISTIC
BEGIN
DECLARE 1_employse_id INT;
DECLARE 1 salary NOERTC (5,7 5
DECLARE 1 deparcaenc_id INT;
DECLARE 1 new_salary NUMERIC(Z,Z);
DECLARE dane INT DEFRVLT 0
DECLARE curl CURSOR EOR
SELECT employee_id, salary, deparcmenc_id
FROM employees
VHERE department_id=in_department_id
rox vppaTE ;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET done=l;

CREATE TEMPORARY TABLE IF NOT EXISTS sup_raizes

(employee_id INT, departmenc_id INT, nav_salary NUMERTC(
opEN curl;
enp_loop: 100D

FETCH curl INTO 1_employee_id, 1_salary, 1_deparcmenc_id

IE done=l THEN

R
=
enployes_ist
{_discount_pice: decinal 2)
elowarid
new_salaty
P php_pros)
~ B8] puting_i_atogether
Edi rocedure
Drop Procedure
Copy 5QL to Clpboard

EREE

Create New Schema
Create New Table
Create New View
Create New Procedure | Function

~ Refresh

ke Defalt schema.

OEBPS/httpatomoreillycomsourceoreillyimages173349.png.jpg
MySOL Query Erowse
Fle Edt View Quety Scipt Tools Help

0@ | oH

Undo Redo | Open Save

O Resuitset 1 1 | @ HelloWorld *

Contnue

Step

B

Bookmarks |History.

1° DELIMITER $§

2

3* DROP PROCEDURE IF EXISTS HelloWorlds$
4°* CREATE PROCEDURE HelloWorld 0

5 BEGIN

6 SELECT "Hello World';

7 ENDSS

[Product_Codes
[Haccount_balance
[bind_example
[books
[Mcreditcards
Meustomers

[departments

[Hemolovee:

‘Syntax | Functions | Params | Trx

2

~ 5 Data Manipulation ||
2 DELETE 1
ADO
L HANDLER
£ INSERT K|

623

OEBPS/httpatomoreillycomsourceoreillyimages173407.png.jpg
Ble Edt Edtor Creste

Vew Took Advanced Window Help

2

[tRzen=alalss v,

T

su |

=3
BIRE BIE(e e 5% 5%
Tosd Onine | _prod@locahost” Editor: book _detats.sd | Trx

CREATE PROCEDURE S oo
in_otarc_dace D1
i ena_dace |V SN
PeRrRnse [Force Comments
Brom
DEcLARE 1_cicle, |
DECLARE 11last b

DECLRE hook_cur
SELECT book_i fird

FROH books
VHERE date_published BETUEEN in_start_date
WD in_end_date;

st Sets | SrptOutput | Evplin Pl

B

S

Al Executed

Duratior:

Record 0ot 0

| [Vesion Conial

&[@ 28 w

O autaCommi

2t Col4

Dore

e ostiproalosalos:

OEBPS/httpatomoreillycomsourceoreillyimages173379.png.jpg
MySOL Query Erowse
Fle Edt View Quety Scipt Tools Help

0 2H

Undo Redo | Open Save

@ Resultset 1 « |@© HelloWorld.sql * |@©f_discount_price.sql *

© e

Coninte:

Step

L5 N

Schemata | Bookmarks |History.

1 DELIMITER $§

2

3* DROP FUNCTION IF EXISTS f_discount_price$$
4

5 CREATE FUNCTION f_discount_price

6 normal_price NUMERIC(:,))
7 RETURNS NUMERIC(5,)
8 DETERMINISTIC
9 BEGIN
10
11 DECLARE discount_piice NUMERIC(S,
2
13 IF (nomal_price500) THEN
1 SET discount_price=normal_pice".;
15
16 ELSEIF (nomal_price»100) THEN
17 SET discount_price=normal_price".’;
18
19 ELSE
20 SET discount_price=normal_price;
21
2 ENDIF;
23
24 RETURN(discount_price);
25
26 ENDSS

2

aremps=maep
Filenums
[examplel

b Falexecute_immediat

b Filfree_shipping
A funciion.
& genAPI

b Fagive_raise
F&lgood_loop

ampl

‘Syntax | Functions | Params | Trx

B
~ 5 Data Manipulation ||*1
2 DELETE 1
ADO
L HANDLER
£ INSERT K2l

629 |Script executed.

OEBPS/httpatomoreillycomsourceoreillyimages173473.png
Response time (seconds)

30

5

20

5,000

10,000
Number of rows in each table

15,000

20,000

OEBPS/httpatomoreillycomsourceoreillyimages173507.png
Indexmergeonsiles] 0025

2

Concatenstedsaesndes | 0008

0 5 0 15 20 25 30
Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173439.png
) Dynamic Query example - Mozilla Firefox

Ele Edt Yiew Go Bookmarks Toos Help

G- 80 QM=o |

[employee_ic[sumame [frstname [date_of birth

[t [FERRIS [Lucas [1984-04-17 07.04.27
[[xep [sTAFFORD [1953-04-22 06:04:50
[[mornES [cuTHREY [1974-09-12 08:09:22
[4 [rrvox [rarza [1966-08-14 11:08:14
[s [MorATES [rOEN [1956-06-2207.06:14
6 [kELLERER [GLaDYS [1966-08-09 07.0825
F [samvTcLAR [ELBERTA [1970-05-14 110553
s [vnasTaTT [NORMA [1955-06-18 11:06:13
B [prcHER [sTacia [1979-09-15 050943
[10 [coomEs [RovDEN [1953-12-02 121224
[11 [avo [EariE [1973-08-06 08:0831
[12 [carrsON [RUE [1953-05-10 02:0555
[13 [RoBBINS [[SAUNDERS [1957-06-24 09:0644
[14 [GarvT [ranTHE [1956-07-25 065:07.38
[15 [savace [ESSA [1969-11-25 011101
[16 [ravadoND [GOLDIE [1954-08-11 050817
[17 [LavPER [cHADWICK ([1982-02-15 090228
[18 [ran [pranca [1972-12-09 031202
10 [oracE [RantER [1959-04-07 02:04:12
[20 [rarsTEN [PRENTICE |[1980-07-20 10:0740
[21 [prLy |GopDARD [1978-10-27 02:10:14

NEH

OEBPS/httpatomoreillycomsourceoreillyimages173465.png.jpg
0 a oo plo [— =10l x|
Fie Bt Vew Favorkes Took Hep

L
0= 0 [& o] m fyw B 2 - O A O S

[
| deress [et tocaostssssiwebisted iysQLstatus aspx ERERES
[
[

| @ sneat: 11
Gogle-] | Glowath <> || i)owond -] @isese - | 15— a2 sczrv |2 *
ooty -
. . =
MySQL Server status and statistics
Host:lamp VM
Port: 3306

Version:5.0.17-nightly-20051128-log

Current processes active in server

1d User Host db Command Time State
43root 10.10.10.1:1358 prod Sleep 48
44 root localhost Sleep 20
45 oot localhost Sleep 20

4600t 10.10.10.11366 prod Query 0

Databases in server

Database
information_schema
mysdl

prod

test Iy

Configuration variables set in server

Variable_name Value

auto_increment_increment 1

auto_increment_offset 1

avtomatic_sp_privileges oN

back_log 50

basedir fustflocall

binlog_cache_size 32768 =
[&foone [0 [[[53 iocalntranet v

OEBPS/httpatomoreillycomsourceoreillyimages173503.png
Elapsed time (seconds)

5,000

10,000
Number of of rows in table

50,000

—e— Indexed JOIN
—a— Indexed IN
—a— Indexed EXISTS

20,000

OEBPS/httpatomoreillycomsourceoreillyimages173495.png
Smallestto largest —

0 05 1 15 2 25 3 35 4
Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173425.png
Time

Transaction A Transaction B Status

UPDATE account_balance
SET balance=balance-100 ———————————————» Account #2 i locked
WHERE account_id=2

UPDATE account_balance
SET balance=balance~300 —————>Account #1s locked
WHERE account_id=1
UPDATE account_balance
SET balance=balance +100 > Waits for lock on account #1
WHERE account_id=1 1o be released

UPDATE account_balance
SET balance=balance+300 ——————» Waits for lock on account #2
WHERE account_ic 1o be released

OEBPS/httpatomoreillycomsourceoreillyimages173433.png
| Customer | |Applvzalmn| | Database |

equest funds transfer
! Gllstored pogram
N ~ H Return status
Prntrecept "

OEBPS/httpatomoreillycomsourceoreillyimages173363.png.jpg
MySOL Query Browses

Ble Edit View Query Scipt Toos Help

0@ 2H

Undo Redo | Open Save

© my_sart » @ Resultset 2 « |@New Script » | @ discounted_price *

Coninue

00 v .o

sep | Exece Swp

1* DELIMITER $§

2

3* DROP PROCEDURE IF EXISTS discounted_price$$
4

5* CREATE PROCEDURE discounted_price

6 (nomal_price NUMERIC(E,2),
7 OUT discount_price NUMERIC(E,2))
8
9 BEGIN
10 IF (normal_price>500) THEN
1 SET discount_price=normal_pice".;
2 ELSEIF (normal_price>100) THEN
13 SET discount_price=normal_price".o;
1 ELSE
15 SET discount_price=normal_price;
16 END IF;
17
18 ENDSS
19
20* DELIMITER ;
21

Schemata | Bookmarks |History.

Fildeep_nesting
b FEdept_10pct_raise

[display_book _usa
%8 donothing

b Felsifs

b Falemployee_list

b Filemps_in_dept2
Falenum:

‘Syntax | Functions | Params

T

p

~ £ Data Manipulation
£ DELETE
£DO
ZLHANDLER

(D

£ INSERT

81 Script executed.

OEBPS/httpatomoreillycomsourceoreillyimages173459.png.jpg
£

ample2.

osoft Visual C# 2005 Express Edition =5
Fle Edt UVew Refoctor Projct Buld Debug Data Took Vindow Communty Hep

cEHS | SBR[-a-F|) E ol .
DRhLr | fE 2 0P8 88386
C5_5P_Examplez.cs|| G o¢ Exanple2 | Start Page | - x

[565 C5_sP_Examplez.program =] [39standarasary I |

B fregion Using directives

(5] Selution'C3_5p_Example? (1 proect)
& cs_sp_Examplez

- & Properties

& Assenblyinfo.cs
2 References
) 5.5 Examplez.cs

T | com | projets romse [Recert |

namespace €5_SP_Exanplez
[5P _Exemp Lookin [NET 1.1 Flor s

[Seowad]

|xoqio01 &¢|

fusing System;
using System.Collections.Generic;
using System.Text;

using MySql.Data.MySglclienc;
using System.Data;

Hendragion

E iemscREetnen Descripton: MySQL Data.dl
N Company: MySOL AB.
public static MySqlCq File Version: 1.0.6.15336
Date Created: 27/03/2005 10:31 AM
Size: 144 KB

static void Main(stri
static void FunetionC
static void Standards
f

HySeqlConmand Nons

.- =
int Rovshfrected vsdl I |
Console.Vriteline | Fissofype: [Conponent Fies a1 o oon ore” manfes) =
Nonsie Lect . command

o =

Rowshfrected

NonSelect.ExecuteNonQuey
< »

Ready ins2 Col6t Ched ms

OEBPS/httpatomoreillycomsourceoreillyimages173469.png
Production Account

Stored procedure

User Fred check_credit_card

SELECT FROM credit_cards
WHERE....

SELECT FROM credit_cards

WHERE.

SELECT statement denied.....

4,>< Table
SELECT statement dened.... CREDIT_CARDS

OEBPS/httpatomoreillycomsourceoreillyimages173511.png
Elapsed time (seconds)

500
450
400
350
300
250
200
150
100

50

5,000

10,000
Number of rows in table

15,000

—e—NOTIN
—a— NOTEXISTS
—a— LEFTJOIN

20,000

OEBPS/httpatomoreillycomsourceoreillyimages173351.png.jpg
View Query Script Tools Help

GoBack GoNext Refresh

Execute

Runas [Nomal Script *] | (JErecute | coninie @stepino (siepover sion

Stop

1° DELIMITER $§ ¥

2

3* DROP PROCEDURE IF EXISTS “test’.'query_browser_example'$$
4°* CREATE PROCEDURE “test’.'query_browser_example’ ()

5 BEGIN

6

7 ENDSS

8

9° DELIMITER

10

10:1

OEBPS/httpatomoreillycomsourceoreillyimages173357.png.jpg
ot@127. 306

¥ MySQL Query Browse:

File Edit View Query Script Tools Help

0O CH

QResultset 1 « |@variable_demo *

© 0 0.0

Undo Redo | Open Save Continue Step | Execute Stop R

Schemata |Bookmarks |History

1° DELIMITER $§ 2
2
3 * DROP PROCEDURE IF EXISTS variable_demo$$ Jinformation_schema f
4° CREATE PROCEDURE pariable_demo() “Imysal 4|
5 BEGIN -~ Bprod
6 DECLARE my_integer NT; /" 32-bitinteger ¥/ i
7 DECLARE my_big_integer BIGINT, /*64-bitinteger”/ v HlProduct_Codes
8 DECLARE my_currency NUMERIC(S,); /* Number with 2 decimals®/{|| b Maccount_balance
9 DECLAREmy_pi FLOAT /* Floating point number’/ » Ebind_example
10 DEFAULT] /" initialized as PI*/ » Tbook
11 DECLAREmy_text TEXT; /*huge text?/ SBO00RS
12 DECLARE my_dob DATE H|| b Dcreditcards
13 DEFAULT '1960-06-21" /* My Binthday %/ M| > Weustomers &l
14 DECLARE my_varchar VARCHAR(:0) za— e G
15 DEFAULT Hello World""; /" Up to 30 bytes of text’/
16 Syntax|Functions |Params [Trx
17 SETmy_integer=20;
18 SETmy_big_integer-POWER (my_integer,”); L
19 v £ Data Manipulation 3
20 ENDSS ADELETE U
21
22° DELIMITER; £D0
23 ZHANDLER
AINSERT &
& ol

4:18

OEBPS/httpatomoreillycomsourceoreillyimages173453.png.jpg
LGRS

Back | Foward | Rebad stop

Boakmarks

MySQL Server Status

Port: 3306
Database:prod
Version: 5.0.17-nightly-20051128-log

Current processes active in server

[l [User [Host [[Command [Time [State [Tufo
1 oot [10.10.10.1:1647 fprod|[Sleep [15078
[33[froot e rod[Query o [SHOW FULL PROCESSLIST|

Databases in server

Datwbase |
fisormation_schemal
fyed |
[prod

frest

Configuration variables set in server

[Vaiable_name [Value
[auto_increment_increment 1
[auto_increment_offset 1
[automatic_sp_privileges o
[back log 50

e

Nl

OEBPS/httpatomoreillycomsourceoreillyimages173471.png.jpg
2 Employee Query

| Fie Edt vew Favortes Took Hep |

| Qak ~ O - [B | Psearch ravortes @ | (0 o - 7| @) soro
| address [] hitp:focaihostinjectiont .php B> E

| Gocgle- [G eaws | P | Eair |#dosios 2

[onice =

F|

Employee Query

Enter Department Id: [TUNION SELECT salary, sumame firstname from empmye;_

submit

_~Employee salary, not ID, shown

D [Surtiame [Firstname
msswfmms LUCAS

89549 KPP STAFFORD

[77142[EOLMES GUTHREY

/86839 [KNOX TALLA

55638 [MORALES [FomY

80147 [KELLEHER GLADYS

60990 [SAINTCLAIR |ELBERTA.

[42342[UMSTATT NORMA.

[43754 [PILCEER STACIA

86809 [GOOMES ROYDEN

89411 MATO [EARLE

52151 [appTanN [ore =

[&]oone i [[(5 Localiranet 7

OEBPS/httpatomoreillycomsourceoreillyimages173383.png.jpg
¥ MySQL Query Browse:

306

Fle Edi View Query Script Tools Help

Qe CH

Undo Redo | Open Save

Q@Resultset 1 « |@employee_listsgl *

@ employee_list *

Continue Step

=loix|

ol en

Exeate| Stop

<| Schemata | Bookmarks |>

1° DELIMITER $§

2

3* DROP PROCEDURE IF EXISTS employee_list$$

4

5 CREATE PROCEDURE employee_list (in_dept_id INT)

6
7
8
9
10
11
12

READS SQL DATA
BEGIN

SELECT employee_id, surname firstname

FROM employees

WHERE department_id=in_dept_id;

ENDS$$

13 * DELIMITER;

14

2

_

b Maccount_balan
b Mbind_example
b Meustomers

[~ >

|

Syntax |Functions |Params

ad
~ & Data Manipulatio
£ DELETE

6:16 |Script executed

OEBPS/httpatomoreillycomsourceoreillyimages173353.png.jpg
File Edit

MySOL Query Browsef

View Query Script Tools Help

00

Undo Redo.

Open save

@ Resuilset 1 « | @ query_browser_example *

© e

Continue~ Step

@. @

Bece Siop

Schemata |Bookmarks |History.

1
2
3
4
5

6
7
8
9
0

1

* DELIMITER §§

* DROP PROCEDURE IF EXISTS ‘test'.‘query_browser_example's§
* CREATE PROCEDURE ‘test.'query_browser_example' 0
BEGIN
SELECT *Hello World'|
ENDS$

* DELIMITER ;

Jinformation_schema

b Filcall_example

> Ellmy_sqrt

b Fal putting_it_all_toge
[query_browser_ex

‘Syntax | Functions | Params [T

L

~ [Data Manipulation ||*]
£DELETE Ul
£DO
ZHANDLER

£ INSERT

OEBPS/httpatomoreillycomsourceoreillyimages173537.png
(]

0.01

Elapsed time (seconds)

0001

0.0001

15
Fibonacd number

b

2%

—e— Recursive

—a— Nonrecursive.

30

OEBPS/httpatomoreillycomsourceoreillyimages173539.png
01 02 03 04 05 06
Elapsed time (seconds)

07

OEBPS/httpatomoreillycomsourceoreillyimages173429.png
Standard QL 051

LI T ' R R N A
Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173541.png
Complx trigger with
supporting indexl £

Complex rigger
gt
6437
Tivialrigger | 098

Notrigger I 07

0 10 20 30 40 50 60 70
Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173519.png
g g8¢g 8

(spuoas) awn pasdefy

100 150 200

Commit frequency (rows)

50

OEBPS/httpatomoreillycomsourceoreillyimages173373.png.jpg
MySQL Query Browser
File Edit

View Query Script

3306

Tools Help

=loix|

© . © e indentD

©w. .9

Back. Next Execute. Stop.
OResuliset 1 |@New Script * |©sp_emps_in_dept * |@Resultset2
EMPLOYEE_ID |[SURNAME |[FIRSTNAME [ADDRESS1 ADDRESS2
’) PP AFFORD 4407 SA R RNDO
10 GOOMES ~ ROYDEN 1221 SPOTLESS STREET MAPLE
15 SAVAGE ~ NESSA 5617 TRIPOD TURNPIKE CRESTWOOD 7
21 DILLY GODDARD 3785 HOODWINK LANE SALIDA
81 SLACK AMELLIA 7899 FRIGHT STREET BOISE
106 ROWLEY ~ MARION 10357 RESPONSE STREET DEL RIO WOODS =
109 LONDON ~ DARIUS 5049 ARCHETYPE CIRCLE HANLEY
178 DOWNEY ~OZELLE 1077 OBSTRUCTIONS CIRCLE ~ LOWER GENEGANTSLET ¢
211 GREELEY ~ AMORETTE 5450 WEAKENS LANE ETHEL
242 MASSEY POLLY 7761 LASTLY CIRCLE MERIDIANVILLE
257 HATCHER ~ EZEKIEL 9605 WAITRESS TURNPIKE EL PASO
278 LYON NANCY 9859 BUNDLE STREET WAXAHACHIE
295 RALEY GUTHREY 1289 DIGGER STREET DWALE
311 LESSMAN ~ MORTON 2691 RIOTS TURNPIKE URB VALLE PUERTO REAL
354 SHANNON ~ REECE 10448 SOMEPLACE DRIVE CENTER
359 sToCck EDITHA 6943 BELIEVABLE STREET HINTON
398 RAAB DELORIS 7106 CLEVERLY CIRCLE TIGNALL
L1452 UMSTATT AMBROSE 9808MYSTICSTREET ____ WESTAUGUSTA |

[

]

52 rows fetched in 0:01.5962 Start

W First| ¥ Last| P Search

Query finished

y

OEBPS/httpatomoreillycomsourceoreillyimages173493.png
Response time (seconds)

0.1
009
0.08
0.07
0.06
005
0.04
003
0.02
001

5,000

10,000
Number of rows in each table

15,000

20,000

OEBPS/httpatomoreillycomsourceoreillyimages173489.png
tang oumnsreroved |
ranincecscon [N

02 04 06 08
Elapsed time (seconds)

12

OEBPS/httpatomoreillycomsourceoreillyimages173475.png
Response time (seconds)

0.1
009
0.08
0.07
0.06
005
0.04
003
0.02
001

5,000

10,000
Number of rows in each table

15,000

20,000

OEBPS/httpatomoreillycomsourceoreillyimages173447.png.jpg
) MySQL Server status - Mozilla Firefox

Ele Edt Vew Go Booknarks Toos telp
G- & O D IO s3] O o [GL *
Enter MySQL Server details

Host: localhost
Port 3306
Usemarne: [root

Password:

Database: [orod

Submit k

==

OEBPS/httpatomoreillycomsourceoreillyimages173521.png
MySQL stored procedure. |

Oradle stored procedure IEEGEG—G—— .07
PHP I 136
Perl 178
Java @ 034
VB.NET W 036
g B 03
o 2 4 & 8 W u u
Elapsed time (seconds)

195

OEBPS/httpatomoreillycomsourceoreillyimages173449.png.jpg
)MySQL Server status - Mozilla Firefox
Ble Edt Vew Go Bookmarks Toos telp

- - & 0)0 mwitecshosencomy 5] © e [GL *
MySQL Server status and statistics

Server: lamp VM Iy

Por 306

Version:: 5.0.13-beta-nightly-20050907-log

Current processes active in server

Td [User Host b |Command Time [State [Tnfo
14]ro0t [10.10.10.1:1788 prodSlecp (9870 [aul
15root [10.10.10.1:1884[prodSlecp (9389 [aut
16]ro0t [10.10.10.1:2370 fprod|Query [0 il [SHOW ll processtist

Databases in server

Database
information_schema
fmysdl

fprod

fest

Configuration variables set in server

Variable_name Value
auto_increment_increment 1
Jauto_increment_offset 1
avtomatic_sp_privileges o
lback_log 50
lbasedic ustflocall

[n [onmca
oo

N Lo

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages173505.png
Elapsed time (seconds)

250

200

150

10,000

20,000
Number of rows in tables

30,000

—a— EXISTS

40,000

OEBPS/httpatomoreillycomsourceoreillyimages173385.png.jpg
Fle Edt HTMLTdy Nevigate Search Project MyEcipse Run PHPjApache Window Help

i [
LN

%-9

g% | EX@bvHB[$-0-a-

S Quantum DB

=10l
o[Wre Gheva

= Navigator £ = B[[lphptutorial.ohp MPE2

B clcenteer. |
& calcemeren
& Calcenterweb
&3 Deimysa
2 bepartmente
& DynaniresukSets
& Exbemo
& Functonrest
& 8¢ _cxanple
0 ysa_stored_procs
e mysatsm
& Orasessons
& o
& perysaL
W PHPMYSQL
project
[B) department ist.of
[P dept_ist.php
5y st
8] phonfoohp
8] ptutorl oo
& prmes
& pythont
& racstas
& Sskssunmary
o siplezeva
& srecprocerampie ||
13 KMLExamples

<html><head><title>Employee listing</titles<head><body>
<ni>Employee listing</hi>

<form methoa="post” >
<p>Enter Department T
<input type="text” neme="dept id" size=r4ts

<imput types"submit” mames"submit’ values"Submit’><p>
</torm>

<ophp

§hostnawe = "localhost”;

§username = "root”;

§passuord = "2brozh";

§atapase = "prod”,

if (IsSet (3 _POST['submit'1)) [{
S = new mysgli(§hostname, fusernawe, §passuord, jastabass);

/% check comnection +/

if (mysqli connect_errna()] {
princ("Connect failed: %s\n", mysgli_comnect_error());
exit ();

)
§oept_id = §_POST['dept_id'];

if (§result set = §dbh->query("call employee_list(fdepc_id)")) (
print ('<table border=ri" widch=r3osts <crs .
 <tel>Employes_id</ td><te>Surname</ td><td>Firstnane</ td></tr>] 5
while (§rou = Sresult_set->fetch_object()) {
PEABCE (7> <t a</ t> <>t a</ L <td>t o</ t></ L\ B,
srou->employee_id, §rov->surneme, irov->firstname]:
)
) else ¢
PrintE("<pErroriid (53) s\n", nysqli_errno(fabn),
nysuli_sglstate (§ah), mysqli_error (§abh)):
)
print (r</table> ")
Scbn->close ()
)

e
" o

B | o1 [prblems | conse [ookmarks [@ prp rowser 23

50

[wmte | soqeimmn | 3922

OEBPS/httpatomoreillycomsourceoreillyimages173481.png
Indexes used

Productonly | 100, 047

Salesrep only I 9,652

Customeronly [4,954
Salesrep + product M 2,491
Product + customer [2,321
Sales rep + customer |l 495

0 2000 4000 €000 80000 100000
Logical reads

120,000

OEBPS/httpatomoreillycomsourceoreillyimages173531.png
With LEAVE - 193

Modified WHILE 2163
condition

0 50 100 150
Elapsed time (seconds)

200

OEBPS/httpatomoreillycomsourceoreillyimages173485.png
Book_catalog

Bookid

ishn

title

subtitle

author

publisher
pub_date

editon
descrption
jacket_image
‘quantity_in_stock
minimum_quantity
books_on_order
wholesale_price
retal_price

T

VARCHAR(20)
VARCHAR(80)
VARCHAR(80)
VARCHAR(80)
VARCHAR(80)
DATE

INT

TBT

BL0B

DECIMAL(8,2)
DECIMAL(8,2)

OEBPS/httpatomoreillycomsourceoreillyimages173421.png
Time

Transaction A

UPDATE account_balance

Transaction B Balance of Account #2

$2,000

SET halance=balance-10) ———————$1,900

WHERE account

ommir

UPDATE account_balance
SET balance=balance+300 —————>$2,300
WHERE account_id=2

$1.900

COMMIT ———————————— 52,300

OEBPS/httpatomoreillycomsourceoreillyimages173479.png
ol
12

Index length (in characters)

1o

T

110

110

110

539

§3n

- 3766
—— 2927
I
— 3505

0 10000 20000 30000 40000 50000 60000 70,000 80000
Logical reads

OEBPS/httpatomoreillycomsourceoreillyimages173457.png.jpg
MySQL Server status and st

ics - Mozilla Firefox =10l x|

Ele Edt Vew Go Bookmarks Tooks Help (]

I E G . & (] @
L hetpsfiampvmiform.pyjcall_sp o« g o T el e Rl
W

Bockmarks

MySQL Server status and statistics

Host: localhost
Port: 3306

Version: 5.0.17-nightly-20051128-log

Current process

es active in server

Id [User [Host

db_|Command Time State Infor

34/root [10.10.10.1:1120

prod[Sleep 3451 Mone

36]lroot 24

prod|Query [0 |None||SHOW FULL PROCESSLIST

Databas

Database
finformation_schema
fmysdl

fprod

fest

Configuration vai

in server

riables set in server

Variable_name Value
auto_increment_increment 1
Jauto_increment_offset 1
avtomatic_sp_privileges o
lback_log 50
lbasedic ustflocall

i

N Lo

OEBPS/httpatomoreillycomsourceoreillyimages173437.png
|department_id [department_name [tocation

0 [pupLDT [MORENO VALLEY
[2 [paapisor [BEAVER

E [pacEENRY [orEECHOBEE

[[cEARTTON [TuLLYTOWN

5 [svrovERS [oLp cHURCH

6 [Lovcorw [swENGEL

[[cEAMPAIGN [4MF GREENSBORO
8 [wmrES [cusmmG

[s [cravEw [TAHOE PARADISE
[10 [corTorwoon [wrcHTA

11 [razEwELL [kLawock

[12 [wraTCOM [LARE MOHEGAN
13 [OPTOMIZER RESEARCH [BASTROP

[14 [xkmiG [xENOSHA

[15 [srarr [parsow

[16 [casTow [oLIvERRIDGE

17 [paarsHALL [Ur® MELISA

[18 [rRoCRINGHAM [EGGERTSVILLE

OEBPS/httpatomoreillycomsourceoreillyimages173533.png
2 4 6 8
Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173355.png.jpg
©.0.0

GoBack GoNext Refresh

Tansacon Q) @ O |

Tools Help

CALL “test’ . query_browser_example’ ()

Execite Stop

(@Ewplain () compare ‘ | b b e b b i b

© query_browser_example [X] @ Resultset 2 x

Schemata | Bookmarks |¢ >’

Hello World 2
Hello World b linformation_schema
S empty
“Imysql
S prod
S small
v Ctest
query_browser_exar
“Iworld
Syntax |Functions [Params [T
»
7 & Data Manipulation || *!
£ DELETE /
DO
L HANDLER
S INSERT <

1 rows fetched in 0:00.7135

W First| ¥ Last| £ Search

7 Star Eaing | Aply Changes

Query finished.

OEBPS/httpatomoreillycomsourceoreillyimages173413.png.jpg
MySQL Query Browse:
Fle Edt Vew Query St Tooks Help

3] ’.m Create funccion isodd

Gabitk N Refesh

e | e oo | @ \

306 / prod

[1]@ Resultset 1
Function Create Function
b isodd CREATE FUNCTION ‘prod isodelinput_nmber nt] RETURNS int(11}BEGIN-DECLARE v isodd INT: |

[T =0l
Tet | inay |
[CREATE FUNCTION o wod frput_ramber] RETURNS H(1T) =
oecin

DECLARE v isodd INT:

IF MOD(input_number 21=0 THEN
SET v_isoddeFALSE
ELSE
SET v_isodd=TRUE:
END IF;
RETURN(y_isodd):
EnD

o e 013 00005 [/el I

I [[

OEBPS/httpatomoreillycomsourceoreillyimages212508.jpg
Building High-Performance Web Applications
with PHE, Perl, Python, Java & .NET

Programming

Guy Harrison
O’REILLY® with Steven Feuerstein

OEBPS/httpatomoreillycomsourceoreillyimages173513.png
173
PainolgsaL 018

11.40
Merge view | 024

0 2 4 6 8 0 2w
Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173397.png.jpg
¥ MySQL Query Browser - root@localhost via socket -0x

Edit View Query Sc

Tools Help

©.90. 9 @. 8 N
Go Back Go Next Refresh

Tarsacion @ @ @ | @eroan Qoo | 2

Schemata | Bookmarks |¢ >

)

= [prod =
b [sALES

b Meustomers. [t

b M departments

% p Memployees
[Mproduct

Give a name for the Stored Procedure or Function to be created. || — " °%“®

B HelloWorld

HelloWorld| Elo-work
small L
38 Cancel Create Function | | CreateProcedure | 17 sgitune

Syntax | Functions | Params |Ti

Data Manipulation
DELETE

DO
ZHANDLER
ZINSERT =

B0

tart Editing| + Apply Changes | 1 First| »1 Last| £

arch

Default schema set to prod'

OEBPS/httpatomoreillycomsourceoreillyimages173431.png
| Customer | |Applvzalmn| | Database |

equest funds transfer
§ Query “from” account
i Acountbalance

I

Queryto” account
Account balance

Check withdrawal limit
Withdrawal limit H
1

Update from” account
Return status H
Update “to” account___ ¢
Retumstatus

Commit
Return status

Wiite auditlog
Return status.

Pinteceipt

OEBPS/httpatomoreillycomsourceoreillyimages173477.png
MySQL switched from index
retrieval to full table scan here

§ 10

% —e— Force index

g

3 —a— Force table scan

2 6p—uma®

£ Butthe index outperforms ==l
4 The table scan untilthis point

0 5 10 15 b % 30 3]
Percent of table accessed

OEBPS/httpatomoreillycomsourceoreillyimages173445.png
Prepare the stored vlu%um
(callable statement]

¥

Register output
parameters

¥

Setinput
parameters

¥

Execute

¥

More result sets?

Yes
12

Getand process
result set

!

Retrieve output
parameter values

No

Re-execute
program?

No

v

Close the stored
program

OEBPS/httpatomoreillycomsourceoreillyimages173487.png
Book_catalog

Bookid N

isbn VARCHAR(20)
title VARCHAR(80)
subtitle VARCHAR(80)
author VARCHAR(80)
publisher VARCHAR(80)
pub_date DATE
edition INT
description BT
jacket_image BL0B

quantity_in_stock ~ INT
minimum_quantty T
books_on_order ~ INT
wholesale_price DECIMAL(82)

retai_price DECIMAL(8.2)
1.1
Book_detais
Bookid INTEGER(11) ~ <plfi>
desciption BT

Jacket_image BL0B

OEBPS/httpatomoreillycomsourceoreillyimages173461.png.jpg
£

ample2.

osoft Visual C# 2005 Express Edi

Mo it Vow Refactor P d Dab Dma Took Wedow Conmumty beb
I LG =T 5
EENSST BEBABR

EledE

57| Siatrage) C5 5P _Ewamplez.cs| G5 5 a2 | =
B [Bscoor coampiz rogran] @ mvcomecton
8| o#region Using airectives
G using System:
using System.Collections.Generic;

using System.Text:

System.Data;

Hendragion

namespace CS_SP_Exanplez
¢

0 class Program
¢

public static HySglComnection myConnection;

static void Main(stringl] args)[.]
static void FunctionCall()

static void Standardsol()

«

MySqlCommand NonSelect = new HySqlCommand(
"DELETE FROM ewployees VHERE employee id=2001
int Rowshffected = NonSelect.ExecuteNonQueryl():
Console.Uriteline (RousAffected + " rovs affected”
NonSelect.ComoandText = "update departments " +
"set location=locatic
"where department_i

< o

T Solution C5_5P_Example? (1 pr
& cs_sp_Examplez
& L Properties
Assembiyinfo.cs
& References
@) 5.5 Examplez.cs

Ready

Lne ol

h1

OEBPS/httpatomoreillycomsourceoreillyimages173467.png
User Fred

SELECT FROM credit_cards
WHERE.

SELECT statement denied....

Production Account

X

Stored procedure
check_cedit_card

SELECT FROM credit_cards
WHERE...

Table
(CREDIT_CARDS

OEBPS/httpatomoreillycomsourceoreillyimages173529.png
10 15 2 b 30 35 4
Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173419.png.jpg
MySQL Query Browser - root@localhost:3306 / prod B X3 =1of x|
Flo Edt Vew Query Sapt Toos Window Help

QU @) | @ e () o

@ Resulset 1 © Heldwold | @ Resultset 2

@ puting Lol oosther @ recfbsd | @ Soitd @ Soipts
[50L uey s
USELECT CONCAT(trigge:r schews, . Crigger name) AS trigger name,
2 CONCAT WS(', Action_timing,event manipulation,
B ,event_object_table) AS trigger_event,
4 action_statement
S FROM information schema.TRIGGERS
tigger_nane tigger_evert acton_sament
rod account_balnce._au BEFORE UPDATE OF ascount_balnce WBEGINY DECLARE dumy INT-1 % SE
P prod sccount_balance_upid_ig AFTER UPDATE OF account_balance

HBEGINS. $INSERT into tansaction_log % {

prod customes_bi 56t NEW upper_customer_nam

BEFORE INSERT OF customers
BEFORE UPDATE OF customers

IPPER(N.

prod customers_bu # set NEW upper_customer_name=UPPER(

Tew | g |

BEGIN E

INSERT ino tansaction_log

user_i, descriplion]

VALUES{user(, CONCAT(Adiusted account
NEW account_id” rom LD, balance.
"to " NEW.balncel):

D

4 rows Ftched in 0.0134 (00423

TTROFR T T e
7

2 [[

OEBPS/httpatomoreillycomsourceoreillyimages173517.png
e

5) awn

pU0>S) a1

posdey

100

80

60

Number of rows in each INSERT

2

OEBPS/httpatomoreillycomsourceoreillyimages173365.png.jpg
MySOL Query Erowse
Fle Edt View Quety Scipt Tools Help

YT 00 v .o

b Fa putting_it_all_toge
3 query_browser_ex

Undo Redo | Open save Contnie Sep | Execte Sop
@ Resultset 2 » |@© simple_loop * Schemata | Bookmarks | History
1 DELIMITER S
2 A o =
3 DROP PROCEDURE IF EXISTS simple_loops$
4 < Gtest
5 * CREATE PROCEDURE simple_loop) > Elcall example
6 BEGIN =iiales
7 DECLARE counter INT DEFAULT 0; b Bllmy_sqrt
8
9

my_simple_loop: LOOP

10 SET counter=counter+;

1 IF counter=10 THEN

2 LEAVE my_simple_loop; | mpf-discount price

13 END IF; 7)

14 END LOOP my_simple_loop; L

15 SELECT I can count 10 10’

16 z

s ‘Syntax | Functions | Params | Trx

18 5

19* DELIMITER ; = =

5 & Data Manipulaton (2]
5 DELETE |
ADO
L HANDLER

£ INSERT

OEBPS/httpatomoreillycomsourceoreillyimages173377.png.jpg
¥ MySQL Query Browse: 306

File Edit View Query Script Tools Help

0O CH

Undo Redo | Open Save

OResultset 1 + |@call_example.sql

1Bl

™

History

1° DELIMITER $3

2

3* DROP PROCEDURE IF EXISTS call_example

4 33

5°* CREATE PROCEDURE call_example

6 (employee_id INT, employee_type VARCHAR(?0))

7 NOsQL
8 BEGIN
9 DECLARE Lbonus_amount NUMERIC(
10
11 IF employee_type='MANAGER' THEN
12 CALL calc_manager_bonus(employee_id ,|_bonus_amount);
13 ELSE
14 CALL calc_minion_bonus(employee_id,|_bonus_amount)
15 END IF;
16 CALL grant_bonus(employee_id,|_bonus_amount);
17 END;
18 3%

[Maccount_balance
Mbind_example

T departments

Trx

~ & Data Manipulation

2.1 |Script executed

OEBPS/httpatomoreillycomsourceoreillyimages173451.png.jpg
fox =lolx]

£)MySQL Server Status - Mo:

Fle Edt View Go Bookmarks Tools Help (2]
g (x] .
B

Enter MySQL Server details

Hostname: [localhost
Username: [roat

Password: ===
Database: [prod

Port 3308

Subrrit Query.

[Done. 7

OEBPS/httpatomoreillycomsourceoreillyimages173483.png
‘o ideas |
Product only | EEG——— 100,047 364,686

Salesreponly [9,652

Customer only I 4,954

Merge rep + product | 2,491

Merge customer + product [l 2,321
Merge customer +rep W 495
(oncatenate customer + product | 42
Concatenate customer + product-+ rep B 11

(Concatenate customer + product + rep +quantity | 9

050,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000
Logical reads

Indexing

OEBPS/httpatomoreillycomsourceoreillyimages173525.png
Stored procedure . 2044

0 50 100 150 200
Elapsed time (seconds)

250

OEBPS/httpatomoreillycomsourceoreillyimages173455.png.jpg
IMySQL Server Stat

Mozilla Firefox: —[ol x|
Ele Edt Vew Go Gookmarks Toos Help ©

[repipampmimod syt] I . X @
L hetpsffiampvmimod_py.heml 0w 5 ChR e ma o
m

Bockmarks

Enter MySQL Server Details

Enter your database connection details below:

Host: localhost

Port: 3306

Username: [root

Password: [| K
Database: [ood |

Subrrit Query.

Dore

OEBPS/httpatomoreillycomsourceoreillyimages173427.png
Time

\

Transaction A Transaction B Balance

SELECT balance
FROM account_balance ——————————————-§1,100
WHERE account 1

UPDATE account_balance
SET balance=balance-300 —————p> $800
WHERE account_i

UPDATE account_balance
SET balance=balance ~1000 ———————————=-$200
WHERE account_i

OEBPS/httpatomoreillycomsourceoreillyimages173389.png.jpg
e Edt Yew Go Bookmarks Tooks Hehp [+ Re)
@ @J € %R [0 eoiocahostidepartmen st oo | [

LI Customize Links | Frez Hotmal | | Windows tedia || Windows

Department listing

Department ID Department Name

1 [pupLv

2 [napison

3 MCHENRY

e - ~|cHarTon

I5 [stmaErs

3 [Loveorn

i [cHaMPAIGN

8 [wmrES

g ||CRAVEN

10 . ~ |corronwoop

11 |[TAZEWELL

12 |wHATCOM |

13 |oPTIMZER RESEARCH

14 KING

15 |sMITH

16 |casTow

17 MARSHALL

8 [ROCKINGHAM

19 [rackson

|20 [rock 1sLAND =
[one.

OEBPS/httpatomoreillycomsourceoreillyimages173497.png
1376
Add index on 115
sales.customer_id .
Add index on
customer.customer_name I B
0 2 46 8 10 oo

Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173393.png
B Helloworld - Notepad

Flo Edt Format View Hel

[peLTnITER §5
[DROP PROCEDURE IF EXISTS Helloworld$$
[CREATE PROCEDURE Hellowar 1d()

"Hello world

C:\sql\mysql\tutorialnysql —urgot —psecret —Dprod
ielcone to the MySQL monitor. Commands end with 5 or \g.

[Your MySQL connection id is 63 to server version: 5.8.157nt
[Type *helps’ or *\h’ for help. Type ’\e’ to clear the huffer

Inysql> source hellovorld.sql
Query OK. B rous affected (B.31 sec)

query OK. B rous affected (8.8 sec)>
nysql>

OEBPS/httpatomoreillycomsourceoreillyimages173375.png.jpg
Eile

0@ 2

Undo Redo.

MySOL Query Erowse

Edit View Query Sciipt Tools

Help

@ . @

™

Open Comiue Siep | Exece Stop

@ Resuitset 1 « |© sp_emps_in_dept » | @ sp_update_salary * Schemata | Bookmarks |History.
1° DELIMITER §§

2
3 DROP PROCEDURE IF EXISTS sp_update_salarys$ b Filsp_nprimes_float ||

2

CREATE PROCEDURE sp_update_salary

P&l sp_overdue_sales

5 in_employee_id INT, =
6 in_new_salary NUMERIC(5,) b Flsp_product_code
7 BEGIN b Filsp. ustomer.
8 IF in_new_salary <5000 OR in_new_salary > THEN
9 SELECT 'lllegal salary; salary must be between $5,000 and $500,000'; PoUpeas 222
10 ELSE b P8l stored_proc_with ||~
1 UPDATE employees Flls_found_rows ([
2 SET salary=in_new_salary W =
13 WHERE employee_id=in_employee_id; B %miw{mm
14 END IF; 77—
15 ENDSS
16 :
. [— ‘Syntax | Functions [Params [Trx
18 B
~ & Data Manipulation ||*]
5 DELETE |
ADO
L HANDLER
£ INSERT)
635 |Script executed.

OEBPS/httpatomoreillycomsourceoreillyimages173491.png
Response time (seconds)

30

5

20

5,000

10,000
Number of rows in each table

15,000

20,000

OEBPS/httpatomoreillycomsourceoreillyimages173499.png
Subquery

EXISTS,

028
10375

0
Elaspsed time (seconds)

7.0

100

I Noindex
I Index

1,000

OEBPS/httpatomoreillycomsourceoreillyimages173387.png
E =lolx|

Bl Edt Uew Go Bookmarks Took Mindow tep
o] sk - Foed - Rebed sion [nipifocahostenp sz <] g8 search| Pk

| Rriome | Wbsocknaris Zmodte.org Lvlatine Lmcatevors

Employee listing

Enter Department ID: [_syibmit

[Employee_id[Sumame [Firstname

53 [sarms [B
[73 [pornt [avDRIS

7 [crRnasHAW [ADRENNE

[s2 [FrecENs [casTon

[ss [owEs [ForrEST

[100 [rorEs [Lucas

[103 [EsBIT [pERRE

[112 [rarE [EDGar

[138 |caTES [porryarma

[143 [wEAVER [Razra

[148 [snavTH [xEGAN

[256 [ams [amERYT

[262 [BrROWAY [ErERN

[316 [rrvERA [Evry

338 [sELBY [szopE

[342 [ForBES [paarx

[351 [ramssEae [crarrEIs -
L vy e

S B2 @ | b ==

OEBPS/httpatomoreillycomsourceoreillyimages173399.png.jpg
MySOL Query Erowse
Fle Edt View Quey Scipt Tools Help

09 H

Undo Reds | Open Save

OResuiltset 1 « | @ HelloWorld *

Contnue:

Step

SE O\

Schemata |Bookmarks |History.

1°* DELIMITER $§

2

3* DROP PROCEDURE IF EXISTS ‘prod’. HelloWorld's§
4°* CREATE PROCEDURE prod’. HelloWorld"

5 BEGIN

6 SELECT "HelloWorld']

7 ENDSS

8

9* DELIMITER ;

10

b Falsp_nprimes_float
P&l sp_overdue_sales
b Falsp_product_code

b Falstored_proc_with.
Fils_found_rows

Filtest_nextrowset

‘Syntax | Functions | Params

T

p

~ £ Data Manipulation
£ DELETE
£ADO

L HANDLER

£ INSERT

(D

622

OEBPS/httpatomoreillycomsourceoreillyimages173523.png
2566

Remote host

2584 I Stored procedre
oaltost (S8 =™

0 50 100 150 200 250 300 350

Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173395.png.jpg
Edit View Query

GoBack GoNext Refres|

Tarsacen @ © ©

Tools Help

Execute

Execute Selection

Step Over
Step lnto.

BRI -

Pause

Continue:
Stop,

Toggle Breakpoint

Clear Breakpoints

Create Stored Procedure/Function,

Edit All Stored Procedures/Functions

Schemata | Bookmarks [¢ >

2

= 4 prod =
b [sALES

b Meustomers
b [departments
b Memployees
> Mproducts

4] Helloworld
hello_world

I small

i sqlune

Syntax | Functions | Param:

s |Ti

Data Manipulation
£ DELETE

£DO
ZHANDLER
ZINSERT

SN0

tar Ediing| Apply Changes | 1 First] Last] P Search

' |Default schema set to 'prod’

OEBPS/httpatomoreillycomsourceoreillyimages173359.png.jpg
MySOL Query Browset

Fle Edit View Query Scipt Toos Help

0@

Undo Reds | Open Save

00 v o

Comiue Sep | Execme Sop

© my_sqrt * |@ Resultset 2 » |© New Script * Schemata | Bookmarks | History
1° DELIMITER §§
2
3 DROP PROCEDURE IF EXISTS my_sarts$ information_schema
4 P

Jmysql
5 CREATE PROCEDURE my_sqfinput_number INT)

6 sea |~ Sproc |

7 DECLARE |_sqrt FLOAT; b [Product_Codes
8 SET |_sqrt=SQRT(input_number); b Wlaccaiitalance
9 SELECT Lsqr; =
10 ENDSS b [bind_example
1n b [books
EeQ DELMITER H| > Mereditcards
13 Al . m

P2z |

‘Syntax | Functions | Params |Trc

£

~ [Data Manipulation ||*]
£ DELETE 4
DO
ZLHANDLER
£ INSERT)

OEBPS/httpatomoreillycomsourceoreillyimages173381.png.jpg
MySOL Query Erowse

Edit View Query S

é@\ (=

Undo Reds | Open Save

Tools Help

©my_sqrt » |@ discounted_price » |@ Resultset 2 «

@ trigger.sql *

© e

Coninte:

Step

©.©

Brecte Stop

N

Schemata |Bookmarks |History.

1°* DELIMITER $§

7

3° DROP TRIGGER sales_bi_trgs$

1

5° CREATE TRIGGER sales_bi_trg

6 BEFORE INSERT ON sales

7 FOR EACH ROW

8 BEGIN

9 IF NEW.sale_value > 500 THEN
10 SET NEW.free_shipping="Y';
1 ELSE
2 SET NEW.free_shipping='N';
13 END IF;
1
15 IF NEW.sale_value > 1000 THEN
16 SET NEW.discount=NEW.sale_value".
17 ELSE
18 SET NEW.discount=");
19 END IF;
20 ENDSS
21

2
[Tsales
¥ SALESID

@ CUSTOMER_ID
@ PRODUCT_ID

9 SALE_DATE

@ QuANTITY

@ SALE_VALUE

@ DEPARTMENT_ID

>

‘Syntax | Functions | Params | Trx

B

~ £ Data Manipulation ||*]
£ DELETE 4
£ADO
L HANDLER
£ INSERT)

21 Script executed.

OEBPS/httpatomoreillycomsourceoreillyimages173391.png
=lofx|

File Edit Options Buffers Tools In/Out Signals Help

OC®*x L RGH?

§ DELDMITER §5

DROP PROCEDURE IF EXISTS HelloWorld §§
CREATE PROCEDURE HelloWorld()

DETERMINISTIC
BESIN
SELECT *Hello World’;
ENDSS]]
;== hellovorld.sql QL) =-L9--AL1-

[gharrisobquyh-rhd-vnZ |3 mysql —uroot —psecret —Dprod

Welcone to the MySOL monitor. Comnands end with ; or \g

Your MySOL connection id is 1 to server version: 5.0.16-nightly-20051017-log
Type ‘help;’ or *\W for help. Type “\e’ to clear the buffer

nysql> sofwee hellovorld.sql

souzce hellovorld. sql

Query OK, 0 rows affected, 1 warning (0.07 sec)

Query OK, 0 rows affected (0.03 sec)

nysql> I

Cusss Ashellx Shell: run) --113--A11-

OEBPS/httpatomoreillycomsourceoreillyimages173417.png.jpg
MySQL Query Browser - root@localhost:3306 / prod [y =101x|
Fle Edt Vew Query Sapt Took Heb

ELECT comcat(reutine_schens, . ,routine_namel, .
(<) routing_typesiButinende inieion @ R
Nt ol

Gobidc FROM information_schema.routines

o @ U O | @t Qooe | @ 2202

L) OFedial ik @ Resulset2 | Schomata | Booknake Hetoy
Conoaloutine_schema, toutine_eme)_| rouine_ype, “outine_defriton)]
pred callsodd PROCEDURE BEGINDECLARE Lisodd INT; DECLARE all ~m
prdcras_the_server FUNCTION BEGINDECLARE 1_vabie VARCHARI2DL I (W SRECIFICHANE
prod.cust_status FUNCTION BEGIN-DECLARE long_status VARCHAR(20):. @ ROUTINE CATALOD
prod deps_t_localon FUNCTION begin declare location_ count i select cou. .
prodf_bound_sql FUNCTION BEGIN-DECLARE » INTSELECT COUNT() ° RDUT\NE’WPE
predinorly FUNCTION BEGINSET 43 RETURN(3)END 6. DTDADERHEER
pod _umbound_sdl FUNCTION BEGINSELECT * FROM DEPARTMENTS LI o TN
prodisodd FUNCTION BEGINDECLARE v_isodd INT -IF MOD(input. & ROUTINE_DEFINITION

> prodsp_gel_cusid PROCEDURE begin §fdeclae c_cus_csrcursor for ¥ sel G EXTERNAL_NAME
prod sp_get_cust_name - O EXTERNAL_LANGUAGE
e =8| o papaeren_sTvie
prodsp_gelproductid || TRt | Binay | © I5_DETERMINISTIC
prod.sp_get_prod_name [begin = Z :St,g:;:,AEEESS
prod sp_get_rep_id declare c_cust_cst cursor for & SECURITY_TYPE
pod s pick s . O CREATED
prodtest] declae contine handier (o scate 02000 s b cLAtome_id=1: G LAST_ALTERED
podledtune L 0L 1D
prodiotal_salary Pttty - @ ROUTINE_COMMENT
sml.sp_rpines o DEFINER -

end e

Prox] Functions_params T

Data Maripiation
Data Definton
My5QL Uity
Transactionsl and Locking

‘ | _>l_‘

aK
1210 Ftched n 00085 (0015

3 9 [[

OEBPS/httpatomoreillycomsourceoreillyimages173443.png.jpg
Sowce Refactar

J&88% -9 [%-0--

¢ MyEclipse - StatusServlet.java - Eclipse Platform
Navigate Search Project

[=loix|

MyEclpse Run Window Help

|- @ | 50 5| @myecipse &

perl o

;

CalCenterEAR
2 CalCenterE)8 ¢ Properties for JDBC_example

122 Callcenterweb

ZBE ~

= O[] searchs.
i B
* Created on 9/08/2005 =

@ statuss... R\ s 5|52 outine £2 =8
BRW o~
B mysdlsop. zee.serviet

i

42 Departmente 8
12 DynamicResutsets

15 Functontest
51 0BC_example

B sbe_sxample
= JRE System Libre
&) mysabconnector
8 Pysal_stored_procs

3 MysQLsPEsample
122 MysQLSPEsampletve

5 saessummary

8 storedprocesanple
& XMLExamples

Infa
Buiders
Deployment
JavaBuldPath
Java Campler
Javada Location
Java Task Tags
35P Compiation Support
MyEclpse-Yizos

WyEcipse-
Packaging ¢ |
i Look i [mysafcomectoriava3110 - & o B

XDockt Cor

Java Build Path

—
e =
3485 v s Flders on hebuld pat

= JRE System Lbrary [ye1s] Add 38Rs.

Add External J8Rs,

el)

x

File name:

Fiesofbpe: [arzn - Cancel

[y comectaiova3 1 105 = Gpen

|| JDBC_example

[wnste [sommer |11 |

OEBPS/httpatomoreillycomsourceoreillyimages173501.png
Elapsed time (seconds)

250

150

100

5,000

100,00 150,00
Number of rows in each table

20,000

OEBPS/httpatomoreillycomsourceoreillyimages173415.png.jpg
MySQL Query Browser =1oix]
Tenscin () ‘ (&) Ewlin () Comeae ‘) o ‘ [=Y

@ Rosulset1 |

Field Type Null Key Default Extra
» rarchar(64) NO

ROUTINE ChTALDG Rtz b

ROUTINE_TYPE wvarchai(3] NO

DTD_IDENTIFIER wvarchai(64] YES

ROUTINE_BODY wvarchai(8] NO

EXTERNAL_NAME wvarchai(64] YES

EXTERNAL_LANGUAGE wvarchai(64] YES

PARAMETER_STYLE wvarchai(8] NO

IS_DETERMINISTIC wvarchai(3] NO

SOL_PATH wvarchar(64] YES

SECURITY_TYPE wvarchai(7] NO
y | 2
bt i oS o) [e e [t | s
L1 [[7

OEBPS/httpatomoreillycomsourceoreillyimages173535.png
SinglelF

saenc: ['
Nested IF

statements - 102

0 0 30
Elapsed time (seconds)

OEBPS/httpatomoreillycomsourceoreillyimages173409.png.jpg
MySQL Query Browser - oot 127
Scipt Tods Help

i)

Relo | Open swve

[OResutset 1 1@ book _cetails.sal *

7.0.0.1:3306

© 0

oo

[History|

‘Schemata|

1° DELIMITER 55
2

3* DROP PROCEDURE IF EXISTS ‘prod . ‘book_deails §5
4* CREATE PROCEDURE book._details (

5 in_stan_date DATE,
6 inend due DATE)
7 DETERMINISTIC
8 BEGIN
9 DECLARE L_ite)_author VARCHAR(:);
10 DECLARE |last_book, |_book id INT DEFAULT
n
12 DECLARE book cur CURSOR FOR
13 SELECT book idite.author
1 FROM books.
15 WHERE date_published BETWEEN in_stan_date
16 AND in_end_date;
17
18 OPEN book_cur.
10 book JoopLOOP
20 FETCH book_cur INTO I_book _id_iie,_author,
21 IF Last_book THEN LEAVE book_loop: END IF;
2
3 CALL details_show(Litle)_author;,
2 CALL update_borrow_histor 1_book id);
25 ENDLOOP;
2 ENDSS
27
28* DELIMITER
2

Eiltoeans
» Ebosean uncion
> Elcheck forpines
> BlcheckSo_pime
» Em«uuymj
b Blcheck o pim

b Blcheck sae

gharriso® guyh thi-vmai-
Bl Edt View Temind Tabs Help

(gharrisodguyh-shd-va2 ~1S co -1 book details.sqlt—(1)
RCS/book_details.sql,v book_details.sql

revision 1.2 (locked)
done
[gharrisodguyh-rhd-va2
[gharrisodguyh-rhd-va2 ~1S
[gharrisodguyh-rhd-va2 ~]S ci book_details.sql:
RCS/book_details.sql,v <-- book details.sql
new revision: 1.3; previous revision: 1.2
enter log message, terminated with single
>> Added update to borrow history table
done

. g

or end of file:

722 |Scopt saved.

[gharrisodguyh-rhd-v2 ~1$

OEBPS/httpatomoreillycomsourceoreillyimages173435.png
Prepare the stored
program for execution

¥

Prepare output
parameters

¥

Setinput
parameters

¥

Execute the stored
program

¥

More result sets?

Yes

¥V

Getand process
result set

!

Retrieve output
parameter values

Re-execute
program?

No

v

Close the stored
program

No

OEBPS/httpatomoreillycomsourceoreillyimages173509.png
11669
LEFTJOIN

11367 it i
NOT EXITS, W Vithoutndex
034 [With index
74.61
NOTIN
032

0 4 60 8 100 120 0
Elapsed time (seconds)

1

OEBPS/httpatomoreillycomsourceoreillyimages173369.png.jpg
1306 =loix|
File Edit View Query Script Tools Help

YL I E IR

¥ MySQL Query Browser

Undo Redo Open Save Continue Step Execute Stop.
OResuliset 1 + |®cursorLsql « Schemata |Bookmarks |History
1 DELIMITER $§
2 3
3* DROP PROCEDURE IF EXISTS qprsor_example b Maccount_balance ||
o » Tbind_example
5 CREATE PROCEDURE cursor_example() - |
6 READS SQL DATA b Mcustomers
7 BEGIN b [departments
8 DECLARE |employee_id INT; » Mlemployees
9 DECLARE Lsalary ~NUMERIC(%,2); @
10 DECLARE |_department_id INT; bRl a
11 b Mproducts 7
12 DECLARE done ~ INT DEFAULT 0; b Msales
13 =
14 DECLARE curl CURSOR FOR % M
15 SELECT employee_id, salary, department_id ||| Htest
16 FROM employees;
17
18 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done=1;
19 Syntax |Functions |Params | Trx
20 OPEN curl;
21 emp_loop:LOOP Ved
22 FETCH curl INTO |_employee_id, |_salary, |_department_id; < & Data Manpulation |2
23 IF done=1 THEN 7
24 LEAVE emp_loop; ADELETE B
25 END IF; #D0
26 END LOOP emp_loop; ZHANDLER
27 [cLOSE cury; ZINSERT
28
20 END: £ LOAD DATA INFILE
30°

7

OEBPS/httpatomoreillycomsourceoreillyimages173403.png.jpg
Ele Edt Create Vew Tooks Advanced Window Helo

Fae e N s T

J:Y:S Session Monitor MSSQL Data

BRELEEE

Dlbor =

T roctprod@lampit

Toad Orline”_prod@lamp¥M

Edior Unted>” |

prod

=1 s

yameters | Sotrce.

. e

&)

P{) apply_balance

pi)auto_inc
() bad_cusar_varables
() bad_loop

pi) book_detals

i) boslean_function
pi) bosleans

pi) caling_procedre
i) check._for_piines
i) check._for_piines2
i) check._for_piines3
i) check_for_primesd.
Pl check_sale

p{) cursor_iepeat_loop
() cursor_sinple_loop
() customers_for_rep
pi) desp_nesting

i) dept_10pct_raise:
i) discouried_pice

CREATE PROCEDURE assign_vorkload (]
BEGIN

DECLARE 1_last_row INT D o

DECLARE 1 case_id,]_telesales_id,] department_id INT:

DECLIRE telesales_cur CURSOR FOR
SELECT telesales_id,department_id FRON telesales;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET 1_last_row=1;

OPEN telesales_cur;
ts_loop:LoOP

IF 1_last_row THEN LELVE t3_loop: END IF:

analysis_caseload(l_telesales_id)<
analysis_avg_cases(l_department_id) THEN

SET 1_case i
CALL Schedule_case (1_case_id) ;

ssign_next_open_case(l_telesales_id) ;

D
END LOOP;

CLOSE telesales_cur:
SET 1_last_rou-0;

]

SR e s poniellicn SRR

© autocommit +[Done

rostiprodalampii ~

OEBPS/httpatomoreillycomsourceoreillyimages173367.png.jpg
¥ MySQL Query Browser 306 =lolx|
File Edit View Query Script Tools Help

YL 00 w0

Undo Redo Open Save Continue Step Execute Stop.
@Resuliset 1 «|® customer_sales.sql « Schemata |Bookmarks [History
1° DELIMITER §§ 2
2 s B
3 DROP PROCEDURE IF EXISTS customer_sales % Wdeparimerts il
o » Memployees
5 CREATE PROCEDURE customer_sales > Wiocations
6 (in_customer_id INT) o M
7 READS SQL DATA > Mprodicts v
8 BEGIN b [Msales &
9 DECLARE total_sales NUMERIC(5,”); Wl » Ox =
10 i
11 SELECT SUM(sale_value) —
12 INTO total_sales
© M salas Syntax [Functions [Params [Trx
14 WHERE customer_id=in_customer_id; P
15 - 0
16 SELECT CONCAT(Total sales for \in_customer_id,'is "total_sales); ~ @ Data Manipulation gy
17 END; ZADELETE 4
18° 53 i

166

