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“There remains one more game.”
“What is 1it?”
“Ennui,” I said. “The easiest of all. No

rules, no boards, no equipment.”
“What is Ennui?” Amanda asked.
“Ennui is the absence of games.”

—Donald Barthelme, Guilty Pleasures.

Unfortunately, as recent studies of education in this country
have made clear, one of the chief characteristics of mathemat-

ical classes, pcpprin"v on the lower levels of nnhhr Pdnrnnnn 18

ennui. Some teachers may be poorly tralned in mathematlcs

and others not) trained at all. If mathematics bores them, can
you blame their students for being bored?

LA RFLGAIEER LEANCAE SLLATANEANT ASSL RSRAE23, RASE RS2

Like science, mathematics 1s a kmd of game that we play with
the universe. The best mathematicians and the best teachers of
mathematics obviously are those who both understand the
rules of the game, and who relish the excitement of playing it.
Raymond Smullyan, who has enormous zest for the games of
philosophy and mathematics, once taught an elementary
course in geometry. In his delightful book 5000 B.C. and Other
Philosophical Fantasies (1983) he tells how he once introduced
his students to the Pythagorean theorem:

I drew a right triangle on the board with squares on the hy-
potenuse and legs and said, “Obviously, the square on the hy-
potenuse has a larger area than either of the other two
squares. Now suppose these three squares were made of
beaten gold, and you were offered either the one large
square or the two small squares. Which would you chooser”

Interestingly enough, about half the class opted for the one
large square and half for the two small ones. A lively argu-
ment began. Both groups were equally amazed when told
that it would make no difference.

vil



It is this sense -of surprise that all great mathematicians feel,
and all great teachvers of mathematics are able to communicate.
I know of no better way to do this, especially for beginning stu-
dents, than by way of games, puzzles, paradoxes, magic tricks,
and all the other curious paraphernalia of “recreational
mathematics.”

“Puzzles and games provide a rich source of example
problems useful for illustrating and testing problem-solving
methods,” wrote WNils Nilsson in his widely used textbook
Problem-Solving Methods in Artificial Intelligence. He quotes Mar-
vin Minsky: “It is not that the games and mathematical prob-
lems are chosen because they are clear and simple; rather it is
that they give us, for the smallest initial structures, the greatest com-
plexity, so that one can engage some really formidable situations
after a relatively minimal diversion into programming.”

Nilsson and Mimnsky had in mind the value of recreational
mathematics in learning how to solve problems by computers,
but its value in leaxrning how to solve problems by hand is just
as great. In this book, the tenth collection of the Mathematical
Games columns that I wrote for Scientific American, you will

find an assortment of mathematical recreations of every vari-
ety. The last three chapters (the third was written especially for
this volume) deal with John H. Conway’s fantastic game of
Life, the full wonnders of which are still being explored.

The two previously published articles on Life, in which 1 had
the privilege of introducing this game for the first time,
aroused more interest among computer buffs around the
world than any other columns I have written. Now that Life
software is becoming available for home-computer screens,
there has been a renewed interest in this remarkable recrea-
tion. Although Life rules are incredibly simple, the complexity
of its structure is so awesome that no one can experiment with
its “life forms” without being overwhelmed by a sense of the
infinite range and depth and mystery of mathematical struc-
ture. Few have expressed this emotion more colorfully than the

British-American mathematician James J. Sylvester:

Mathematics is not a book confined within a cover and bound
between brazen clasps, whose contents it needs only patience
to ransack; it is not a mine, whose treasures may take long to
reduce into possession, but which fill only a limited number
of veins and lodes; it is not a soil, whose fertility can be ex-
hausted by the yield of successive harvests; it is not a conti-
nent or an ocean, whose area can be mapped out and its con-
tour defined: it is limitless as that space which it finds too




INTRODUCTION

narrow for its aspirations; its possibilities are as infinite as the
worlds which are forever crowding in and multiplying upon
the astronomer’s gaze; it is as incapable of being restricted
within assigned boundaries or being reduced to definitions of
permanent validity, as the consciousness, the life, which
seems to slumber in each monad, in every atom of matter, in
each leaf and bud and cell, and is forever ready to burst forth
into new forms of vegetable and animal existence.

\ Martin Gardner
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The miraculous paradox of smooth round
objects conquering space by simply tumbling
over and over, instead of laboriously lifting
heavy limbs in order to progress, must have
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—VLADIMIR NABOKOV, Speak, Memory

Things would be very different without the wheel. Transpor-
tation aside, if we consider wheels as simple machines—pulleys,
gears, gyroscopes and so on—it is hard to imagine any ad-
vanced society without them. H. G. Wells, in The War of the
Worlds, describes a Martian civilization far ahead of ours but
using no wheels in its intricate machinery. Wells may have in-
tended this to be a put-on; one can easily understand how the
American Indian could have missed discovering the wheel, but
a society capable of sending spaceships from Mars to the earth?

Until recently the wheel was believed to have originated in
Mesopotamia. Pictures of wheeled Mesopotamian carts date
back to 3000 B.c. and actual remains of massive disk wheels
have been unearthed that date back to 2700 B.c. Since World
War II, however, Russian archaeologists have found pottery
models of wheeled carts in the Caucasus that suggest the wheel
may have originated in southern Russia even earlier than it did
in Mesopotamia. There could have been two or more inde-
pendent inventions. Or it may have spread by cultural diffu-
sion as John Updike describes it in a stanza of his poem, Wheel:



The Eskimos had never heard

Of centripetal force when Byrd

Bicycled up onto a floe

And told them, “This how white man go.”

It seems surprising that evolution never hit on the whee
a means for making animals go, but on second thought
alizes how difficult it would be for biological mechdnisms to
rmake wheeled feet rotate. Perhaps the tumbleweed is the clos-
est nature ever came to wheeled transport. (On the other hand,
tbhe Dutch artist Maurits C. Escher designed a creature capable
of curling itself into a wheel and rolling along at high speeds.
‘Who can be sure such creatures have not evolved on other
planets?) There may also be submicroscopic swivel devices in-
side the cells of living bodies on the earth, designed to unwind
and rewind double-helix strands of DNA, but their existence is
still conjectural.

A rolling wheel has many paradoxical properties. It is easy
to see that points near its top have a much faster ground speed
than points near its bottom. Maximum speed is reached by a
point on the rim when it is exactly at the top, minimum speed
(zero) when the point touches the ground. On flanged train
wheels whose rims extend slightly below a track, there 1s even
a short segment in which a point on the rim moves backward.
G. K. Chesterton, in an essay on wheels in his book Alarms and
Discursions, likens the wheel to a healthy society in having “a
part that perpetually leaps helplessly at the sky; and a part that
perpetually bows down its head into the dust.” He reminds his
readers, in a characteristically Chestertonian remark, that “one
cannot have a Revolution without revolving.”

The most subtle of all wheel paradoxes is surprisingly little
known, considering that it was first mentioned in the Mechan-
ica, a Greek work attributed to Aristotle but more likely written
by a later disciple. “Aristotle’s wheel,” as the paradox is called,
is the subject of a large literature to which such eminent math-
ematicians as Galileo, Descartes, Fermat and many others con-
tributed. As the large wheel in Figure 1 rolls from A to B, the
rim of the small wheel rolls along a parallel line from C to D.
(If the two lines are actual tracks, the double wheel obviously
cannot roll smoothly along both. It either rolls on the upper
track while the large wheel continuously slides backward on
the lower track, or it rolls on the lower track while the small
wheel slips forward on the upper track. This is not, however,
the heart of the paradox.) Assume that the bottom wheel rolls
without slipping from A to B. At every instant that a unique
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Figure 1

Aristotle’s wheel paradox

point on the rim of the large wheel touches line AB, a unique

int on the small wheel is in contact with line CD. In other
words, all points on the small circle can be put into one-to-one
- correspondence with all points on the large circle. No points
on either circle are left out. This seems to prove that the two
circumferences have equal lengths.

Aristotle’s wheel is closely related to Zeno’s well-known par-
adoxes of motion, and it is no less deep. Modern mathemati-
cians are not puzzled by it because they know that the number
of points on any segment of a curve is what Georg Cantor
called aleph-one, the second of his transfinite numbers. It rep-
resents the “power of the continuum.” Ali points on a one-inch
segment can be put in one-to-one correspondence with all
points on a line a million miles long as well as on a line of in-
finite length. Moreover, it is not hard to prove that there are
aleph-one points within a square or cube of any size, or within
an infinite Euclidian space having any finite number of dimen-
stons. Of course, mathematicians before Cantor were not fa-
miliar with the peculiar properties of transfinite numbers, and
it is amusing to read their fumbling attempts to resolve the
wheel paradox.

Galileo’s approach was to consider what happens when the
two wheels are replaced by regular polygons such as squares
[see Figure 2]. After the large square has made a complete turn
along AB, the sides of the small square have coincided with CD

Figure 2
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Galileo’s approach to the wheel paradox



in four segments separated by three jumped spages. If the
wheels are pentagons, the smail pentagon will jump four
spaces on each rotation, and so on for higher-ordg’{l" polygons.
As the number of sides increases, the gaps also; increase in
number but decrease in length. When the limit is jeached—-the
circle with an infinite number of sides—the gaps will be infinite
in number but each will be infinitely short. These Galilean gaps
are none other than the mystifying “infinitesimals” that later so
muddied the early development of calculus.

And now we are in a quagmire. If the gaps made by the
small wheel are infinitely short, why should their sum cause the
wheel to slide a finite distance as the large wheel rolls smoothly
along its track? Readers interested in how later mathematicians
replied to Galileo, and argued with one another, will find the
details in the articles listed in this chapter’s bibliography.

As a wheel travels a straight line, any point on its circumfer-
ence generates the familiar cycloid curve. When a wheel rolls
on the inside of a circle, points on its circumference generate
curves called hypocycloids. When it rolls on the outside of a
circle, points on the circumference generate epicycloids. Let
R/r be the ratio of the radii, R for the large circle, v for the
small. If R/r is irrational, a point a on the rolling circle, once in
contact with point & on the fixed circle, will never touch 4 again
even though the wheel rolls forever. The curve generated by @
will have an aleph-null infinity of cusps. If R/r is rational, a and
b will touch again after a finite number of revolutions. If R/r is
integral, a returns to b after exacily one revolution.

Consider hypocycloids traced by a circle of radius r as it rolls
inside a larger circdle of radius R. When Riris 2, 3, 4, ...,
points a and b touch again after one revolution and the curve
will have R/r cusps. For example, a three-cusped deltoid results
when R/r equals 3 [see Figure 3, left]. The same deltoid is pro-
duced when R/r is 3/2; that is, when the rolling circle’s radius

Figure 3

The deltoid The astroid “Two-cusped” hypocycloid
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is two-thirds that of the fixed circle. All line segments tangent
to the deltoid, with ends on the curve, have the same length. A
four-cusped astroid is generated when R/r equals 4 or 4/3 [see
.. Figure 3, middle]. The two ratios apply to all higher-order hy-
pocycloids of this type: when R/r is either n or n/(n—1), the
' rolling circle produces an n-cusped curve.
. There is a surprising result when R/r equals 2 [see Figure 3,
. right]. The hypocycloid degenerates into a straight line coincid-
ing with a diameter of the larger circle. Its two ends may be
regarded as degenerate cusps. Can you guess the shape of the
region swept over by a given diameter of the smaller circle? It
is a region bounded by an astroid. This is the same as saying
that the astroid is the envelope of a line segment that rotates
while it keeps its ends on two perpendicular axes, as shown in
Figure 4.

Figure 4

4\
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Astroid drawn as the envelope of a moving line segment

. The simplest case of an epicycloid traced by a point on the
« rim of a wheel rolling outside another circle is seen when the
two circles are equal. The result is a heart-shaped curve called



The cardioid

8

the cardioid [see Figure 5]. All chords drawn through its cusp
have the same length. The cardioid in the illustration was

drawn by dividing the fixed circle into 32 equal arcs and then
drawing a set of circles whose centers are on this fixed circle
and that pass through other points on the same circle. The fig-
ure can be shaded to produce a dazzling Op-art pattern [see
Figure 6]. (Both pictures are from Hermann von Baravalle,
Geometrie als Sprache der Formen, Stuttgart, 1963.)

Figure 6

Op-art cardioid
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"T'he cardioid is also generated by a point on the circumfer-
ence of a circle that rolls twice around a fixed circle inside it
thiat is half as large in diameter. This fact underlies a problem
- that was incorrectly answered in The American Mathematical
. Mlomnthly for December, 1959 (Problem E 1362) but correctly an-
¢ sweered in the March 1960 issue of the same journal. Imagine
a girl whose bare waist is a perfect circle. Rolling around her
walist, while she remains motionless, is a hula hoop with a di-
arneter twice that of her waist. When a point on the hoop,
touching the girl’s navel, first returns to her navel, how far has
that point traveled? Since the point traces a cardioid, this is
equuivalent to asking for the cardioid’s length. It is not hard to
show that it is four times the diameter of the hoop or eight
tirmes the diameter of the girl’s waist.

When a rolling circle is half the diameter of a fixed circle
thiat it touches externally, the epicycloid is the two-cusped ne-
phroid (meaning kidney-shaped) that is shown in Figure 7.
The drawing both shows the rolling circle and demonstrates a
meithod of constructing the nephroid as the envelope of circles
whose centers are on the fixed circle and that are tangent to
thve wvertical central axis. As before, the curve can also be gen-
erated by rolling a circle around a smaller circle inside it; in
this case, when R/r is 3/2. This is the same ratio as that which
produces a deltoid, but now it is the larger circle that does the
rolling.

Figure 7
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The cardioid and the nephroid are both caustics, curves en-
veloped by reflected light rays. The cardioid appears when the
rays originate at a point on the circumference and are reflected
by the circumference. The nephroid is produced by parallel
rays crossing the circle, or from rays originating at the cusp of
a cardioid and reflected by the cardioid. The cusped curve that
one often sees on the surface of tea or coffee it a cup, when
slanting light falls across the liquid from a wimdiow or other
light source far to one side, is a good approximation of a ne-
phroid cusp. Pleasant approximations are also frequently seen
on photographs that appear in girlie magazines.

There are varied and perplexing problems that involve non-
circular “wheels.” For example, suppose a square wheel rolls
without slipping on a track that is a series of equal arcs, convex
sides up. What kind of curve must each arc be to prevent the
center of the wheel from moving up and down? (In other
words, the wheel's center must travel a straighit horizontal
path.) The curve is a familiar one and, amazingly, the same
curve applies to similar tracks for wheels that are regular poly-
gons with any number of sides. The answer will be disclosed in
the answer section at the end of this Qhapter.

And can any reader solve this ‘new riddle frrom Stephen
Barr: What type of conveyance has eight wheels, carries only

one person and never pollutes the atmosphere?

ANSWERS

The main problem was to describe the track that allows a
square wheel to roll along it so that its center travels a straight
horizontal line. The track is a series of catenary arcs. This ap-
plies to all wheels that are regular polygons. (If a wheel is an
irregular convex polygon, the track must have arcs that are dif-
ferently shaped catenaries, one for each side of the wheel.) If
the wheel turns with a constant speed, its horizontal speed will
vary. For details of the proof I must refer readers to “Rockers
and Rollers,” by Gerson B. Robison, in Mathematics Magazine
for January, 1960, pages 139-144, and the solution to Problem
E1668 in The American Mathematical Monthly for January, 1965,
pages 82—83.
The riddle’s answer is a pair of roller skates.

ADDENDUM

When I said that a point at the top of a wheel mowves faster with
respect to the ground than any other point on the wheel, I
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.could have added that it moves exactly twice as fast as the cen-
ter of the wheel. A. J. Knisely called attention to this in a short
.article, “The Rolling Wheel,” in Scientific American, July 1891,
.and described a simple way of demonstrating it with a spool of
thread.

. George Lenfestey wrote to say that although he enjoyed my
olumn on the wheel, it ruined his day:

The trouble is, I've been sitting here wasting the better part
of the afternoon imagining that gorgeous blue-eyed blond
girl of yours in the hip huggers and halter top, twirling that
hula hoop around her perfectly-formed golden middle.
Please try to be more considerate in the future.

In my column I spoke of how difficult it would be for evo-
ution to introduce a wheel into living organisms. A few years
ter, to my amazement, I read in Scientific American (“How
Bacteria Swim,” by Howard C. Berg) about the discovery that
bacteria rotate their flagella like tiny propellers! In his Oz
books L. Frank Baum introduced the “Wheelers” who have
our wheels instead of four feet, and a bird called the “Ork”
hat flies by means of a propeller on its tail. These creatures
‘are of course as imaginary as Escher’s rolling animal or the fa-
‘bled “hoop snake” that is said to bite its tail and roll like a

-sranwy o

from predators by curling into a ball and rolling down a hill.
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DIOPHANTINE ANALYSIS

AND FERMAT'S LAST THEOREM

The methods of Diophantus

May cease to enchant us

After a life spent trying to gear ‘'em
To Fermat’s Last Theorem.

—]J. A. LinpnoN, A Clerthew

n old chestnut, common in puzzle books of the late 19th cen-

1 i 06 LIIC
tury (when prices of farm animals were much lower than to-
“day), goes like this. A farmer spent $100 to buy 100 animals of
three different kinds. Each cow cost $10, each pig $3 and each
sheep 50 cents. Assuming that he bought at least one cow, one
pig and one sheep, how many of each animal did the farmer
buy?

At first glance this looks like a problem in elementary alge-
bra, but the would-be solver quickly discovers that he has writ-
ten a pair of simultaneous equations with three unknowns,
each of which must have a value that is a positive integer. Find-
ing integral solutions for equations is today called Diophantine
analysis. In earlier centuries such analysis allowed integral frac-
tions as values, but now it is usually restricted to whole num-
bers, including zero and negative integers. Of course in prob-
lems such as the one I have cited the values must be positive
integers. Diophantine problems abound in puzzle literature.
The well-known problem of the monkey and the coconuts, and
the ancient task of finding right-angle triangles with integral
sides, are among the classic instances of Diophantine problems.

The term “Diophantine” derives from Diophantus of Alex-
1w e wae a prontinent Greek mathematician of his time,




DIOPHANTINE ANALYSIS AND FERMAT'S LAST THEOREM

but to this day no one knows in what century he lived. Most
authorities place him in the third century A.p. Nothing is
known about him except some meager facts contained in a
rhymed problem that appeared in a later collection of Greek
puzzles. The verse has been quoted so often and its algebraic
solution is so trivial, that I shall not repeat it here. If its facts
are correct, we know that Diophantus had a son who died in
his middle years and that Diophantus lived to the age of 84.
About half of his major work, Arithmetica, has survived. Be-
cause many of its problems call for a solution in whole num-
bers, the term Diophantine became the name for such analysis.
Diophantus made no attempt at a systematic theory, and al-
most nothing is known about Diophantine analysis by earlier

£ mathematicians.

Today Diophantine analysis is a vast, complex branch of
number theory with an enormous literature. There is a com-
£ plete theory only for linear equations. No general method is
f  known (it may not even exist) for solving equations with pow-
& ers of 2 or higher. Even the simplest nonlinear Diophantine
f. equation may be fantastically difficult to analyze. It may have
no solution, an infinity of solutions or any finite number.
Scores of such equations, so simple a child can understand
them, have resisted all attempts either to find a solution or to

I prove none is possible.

The simplest nontrivial Diophantine equation has the linear

. form ax+by=c, where x and y are two unknowns and a, b and

c are given integers. Let us see how such an equation underlies

£ the puzzle in the opening paragraph. Letting x be the number

of cows, y the number of pigs and z the number of sheep, we
can write two equations:

10x+ 3y +2/2=100
x+y+2z2=100

£ To get rid of the fraction, multiply the first equation by 2.
& From this result, 20x+6y+2=200, subtract the second equa-
j tion. This eliminates z, leaving 19x+5y=100. How do we find
p integral values for x and y? There are many ways, but I shall
i give only an old algorithm that utilizes continued fractions and
i that applies to all equations of this form.

E Put the term with the smallest coefficient on the left: 5y=
$: 100 —19x. Dividing both sides by 5 gives y=(100— 19x)/5. We
b next divide 100 and 19x by 5, putting the remainders (if any)
¢ over 5 to form a terminal fraction. In this way the equation is
transformed to y=20— 3x — 4x/5.

1
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The term “Diophantine™ derives from Diophantus of Alex-
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- About half of his major work, Arithmetica, has survived. Be-
cause many of its problems call for a solution in whole num-
_bers, the term Diophantine became the name for such analysis.
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the puzzle in the opening paragraph. Letting x be the number
of cows, y the number of pigs and z the number of sheep, we
can write two equations:

10x+ 3y +2/2=100
x+y+2z=100

To get rid of the fraction, multiply the first equation by 2.
From this result, 20x+6y+2=200, subtract the second equa-
tion. This eliminates z, leaving 19x+ 5y=100. How do we find
integral values for x and y? There are many ways, but I shall
give only an old algorithm that utilizes continued fractions and
that applies to all equations of this form.

Put the term with the smallest coefficient on the left: 5y=
100 —19x. Dividing both sides by 5 gives y=(100—19x)/5. We
next divide 100 and 19x by 5, putting the remainders (if any)
over 5 to form a terminal fraction. In this way the equation is
transformed to y=20—3x —4x/5.

11
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It is obvious that if x and y are positive integers (as they must
be), x must have a pasitive value that will make 4x/5 an integer.
Clearly x must be a mmultiple of 5. The lowest such multiple is
5 itself. This gives y a ~walue of 1 and z (going back to either of
the two original equations) a value of 94. We have found a so-
lution: 5 cows, 1 pigg, 94 sheep. Are there other solutions? If
negative Integers are allowed, there are an infinite number, but
here we cannot allow megative animals. When x is given a value
of 10, or any higher multiple of 5, y becomes negative. The
problem therefore lvas only one solution.

In this easy example the first integral fraction obtained, 4x/5,
does not contain a y term. For equations of the same form but
with larger coefficients, the procedure just described must
often be repeated many times. The terminal fraction is made
equal to a new unknown integer, say a, the term with the low-
est coefficient is put on the left, and the procedure is repeated
to obtain a new termmimnal fraction. Eventually you are sure to
end with a fraction that has only one unknown and is simple
enough so that you <an see what values the unknown must
have to make the Fraction integral. By working backward
through whatever series of equations has been necessary, the
original problem is solved.

For an example of an equation similar to the one just ana-
lyzed that has no solution, assume that cows cost $5, pigs $2
and sheep 50 cents. The two equations are handled exactly as
before. The first is doubled to eliminate the fraction and the

cecond i< stibtra i i i 1
second is subtracted, producing the Diophantine equation 9x+

3y=100. Using the procedure of continued fractions, you end
with y=33—3x—1/3, which shows that if x is integral, y cannot
be. In this case, however, we can tell at once that 9x+ 3y =100
has no solution by applying the following old theorem. If the
coefficients of x and y have a common factor that is not a factor
of the number on the right, the equation is unsolvable in inte-
gers. In this case 9 and 3 have 3 as a common divisor, but 3 is
not a factor of 100. It is easy to see why the theorem holds. If
the two terms on the left are each a multiple of n, so will their
sum be; therefore the term on the right also must be a multiple
of n. An even simpler instance would be 4x+8y=101. The left
side of the equality obviously must be an even integer, so that
it cannot equal the odd number on the right. It is also good to
remember that if all three given numbers do have a common
factor, the equation can immediately be reduced by dividing all
terms by the common divisor.

As an example of a variant of the basic problem that has a
finite number (more than one) of positive-integer solutions,
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. consider the case in which cows cost $4, pigs $2 and sheep a
: third of a dollar. As before, the farmer spends $100 on 100
’ animals, buying at least one of each. How many of each does
e buy?
:. Many geometric problems are solved by finding integral so-
futions for Diophantine equations. In the chapter on triangles
i my Mathematical Circus I gave two classic examples: Finding
gnteger solutions for a problem involving two crossed-ladders,
and for a problem concerning the location of a spot inside an
¢quilateral triangle. Among the many geometrical Diophantine
sroblems that are still unsolved, one of the most difficult and
otorious is known as the problem of the “integral brick” or
tional cuboid.” The “brick” is a rectangular parallelepiped.
here are seven unknowns: The brick’s three edges, its three
ce diagonals, and the space diagonal that goes from one cor-
er through the brick’s center to the opposite corner [see Figure
. Can a brick exist for which all seven variables have integer

Figure 8
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The integral brick, an unsolved Diophantine problem

The problem is equivalent to finding integer solutions for
the seven unknowns in the following set of equations:

a?+b?=c?
a®+d*=é?
b+ di=f
b2+ e2=g?

. The problem has not been shown to be impossible, nor has

it been solved. John Leech, a British mathematician, has been
searching for a solution, and 1 am indebted to him for the fol-
lowing information. The smallest brick with integral edges and
‘ face diagonals (only the space diagonal is nonintegral) has
. edges of 44, 117 and 240. This was known by Leonhard Euler

13
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to be the minimum solution. If all values are integral except a
face diagonal, the smallest brick has edges of 104, 153 and 672,
a result also known to Euler. (The brick’s space diagonal is
697). The third case, where only an edge is nonintegral, has
not, as far as Leech knows, been considered before. It too has
solutions, but the numbers are, as Leech puts it, “hideous.” He
suspects that the smallest such brick may be one with edges of
7,800, 18,720, and the irrational square root of 211, 773, 121.
Of course the brick’s volume is also irrational.

A much easier geometric problem, which 1 took from a puz-
zle book by L. H. Longley-Cook, is illustrated in Figure 9. A
rectangle (the term includes the square) is drawn on graph pa-
per as shown and its border cells are shaded. In this case the
shaded cells do not equal the unshaded cells of the interior rec-
tangle. Is it possible to draw a rectangle of proportions such
that the border—one cell wide—contains the same number of
cells as there are within the border? If so, the task is to find all
such solutions. The Diophantine equation that is involved can
be solved easily by a factoring trick, which I shall explain in the
answer section.

Figure 9

A simple Diophantine problem

In ancient times the most famous Diophantine problem,
posed by Archimedes, became known as the “cattle problem.”
It involves eight unknowns, but the integral solutions are so
huge (the smallest value contains more than 200,000 digits)
that it was not solved until 1965 when a computer managed to
do it. The interested reader will find a good discussion of the
cattle problem in Eric Temple Bell's The Last Problem, and the
final solution, by H. C. Williams and others, in the journal
Mathematics of Computation (see bibliography).

The greatest of all Diophantine problems, still far from
solved, is the “last theorem” of Pierre de Fermat, the 17th-
century French amateur number theorist. (He was a jurist by
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profession.) Every mathematician knows how Fermat, reading
Diophantus’ Arithmetica, added a note in Latin to the eighth
problem of the second book, where an integral solution is
asked for x?+y2=a?. Fermat wrote that such an equation had
= po solution in integers for powers greater than 2. (When the
¢ power is 2, the solution is called a “Pythagorean triple” and
there are endless numbers of solutions.) In brief, Fermat as-
serted that x*+y*=g" has no solution in integers if n is a posi-
tive integer greater than 2. “I have discovered a truly marvel-
ous demonstration,” Fermat concluded his note, “which this
gnargin is too narrow to contain.”

, To this day no one knows if Fermat really had such a proof.
.accause the greatest mathematicians since Fermat have failed
40 find a proof, the consensus is that Fermat was mistaken. Lin-
ering doubts arise from the fact that Fermat always did have
# proof whenever he said he did. For example, consider the
QDiophantine equation y*=x2+2. It is easy to find by trial and
‘error that it has the solutions 32=52+2 and 3°= —52+2. To
prove, however, that there are no other integral solutions, Bell
writes in Men of Mathematics, “requires more innate intellectual
‘capacity . . . than it does to grasp the theory of relativity.” Fer-
mat said he had such a proof alt_hough he did not publlsh it.
“This time he was not guessing,” Bell continues. “The problem
i8 hard; he asserted that he had a proof; a proof was later
found.” Fermat did publish a relatively elementary proof that
%'+ y*=a* has no solution, and later mathematicians proved the
impossibility of the more difficult x3+93=a% The cases of n=
5 and n="7 were settled early in the 19th century.

It can be shown that Fermat’s last theorem is true if it holds
for all prime exponents greater than 2. By 1978 the theorem
had been proved for all exponents less than 125,000, so if
there is a counterexample it will involve numbers with more
~ than a million digits. Proving the theorem continues to be the
~ deepest unsolved problem in Diophantine theory. Some math-
_ematicians believe it may be true but unprovable, now that
Kurt Gédel has shown, in his famous undecidability proof, that
- arithmetic contains theorems that cannot be established inside
~ the deductive system of arithmetic. (If Fermat’s last theorem is
* Godelian-undecidable, it would have to be true, because if it
- were false, it would be decidable by a single counterexample.)

I earnestly ask readers not to send me proofs. I am not com-
- petent to evaluate them. Ferdinand Lindemann, the first to
prove (in 1882) that pi is transcendent, once published a long
proof of Fermat’s last theorem that turned out to have its fatal

15
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mistake right at the beginning. Dozens of other fallacious
proofs have been published by leading mathematicians. When
David Hilbert was asked why he never tackled the problem, his
reply was: “Before beginning I should put in three years of in-
tensive study, and I haven’t that much time to squander on a
probable failure.”

The mathematics departments of many large universities re-
turn all proofs of Fermat’s last theorem with a form letter stat-
ing that the paper will be evaluated only after an advance pay-
ment of a specified fee. Edmund Landau, a German
mathematician, used a form letter that read: “Dear SirYfMadam:
Your proof of Fermat's last theorem has been received. The
first mistake is on page , line .» Landau would
then assign the filling in of the blanks to a graduate student.

Donald E. Knuth whimsically asks for a proof of Fermat’s
last theorem as the last exercise at the end of his preface to the
first volume of his series The Art of Computer Programming
(1968). His answer states that someone who read a preliminary
draft of the book reported that he had a truly remarkable
proof but that the margin of the page was too small to contain
1t.

Euler failed to prove Fermat’s last theorem, but he made a
more general conjecture that, if it is true, would include the
truth of Fermat's last theorem as a special case. Euler sug-
gested that no nth power greater than 2 can be the integral
sum of fewer than n nth powers. As we have seen, it has long
been known that the conjecture holds when n is 3, for this is
merely Fermat's last theorem with powers of 3. It is not yet
known whether or not x!+y*+zt=a* has a solution.

In 1966, about two centuries after Euler made his guess, a
counterexample was published. Leon J. Lander and Thomas
R. Parkin, with the help of a computer program, showed that
Euler’s conjecture fails for n=5. The counterexample with the
lowest coefficients is:

275+ 845+ 1105+ 1335 = 144°.

This result suggests that if there are intelligent creatures liv-
ing somewhere in a space of five dimensions, their puzzle
books surely contain the following problem. What is the small-
est hypercube of five dimensions that can be built with unit hy-
percubes such that the same number of unit hypercubes will
form four smaller hypercubes, with no unit hypercubes left
over? The answer is a cube of 144X 144X 144x144x144
units.
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ANSWERS

"'1. The problem about the farmer and the animals reduces
to the Diophantine equation 1lx+5y=200. Applying the
3é;‘gtzhod of continued fractions, three solutions in positive in-
egers can be found:

Pigs Sheep
29 66
18 72

7 78

‘2. L. H. Longley-Cook, in Fun with Brain Puzzlers (Fawcett,
965), Problem 87, solves the rectangle problem as follows. Let
and y be the sides of the large rectangle. The total number of
Is it contains is xy. The border, one cell wide, contains 2x +
4 cells. Since we are told that the border contains xy/2 cells,
can write the equation:

xy/2=2x+2y—4.

Doubie both sides and rearrange the terms:
xy—4x—4y=—8.

* Add 16 to each side:

' xy—4x—4y+16=8.

. The left side can be factored:

(x—4)(y—4)=8.

«Itis clear that (x—4) and (x —y) must be positive integral fac-
‘tors of 8. The only pairs of such factors are 8, 1 and 4, 2. They
' provide two solutions: x=12, y=5, and x=8, y=6.

-~ The problem is closely related to integral-sided right trian-
- gles. The width of the border is an integer only when the di-
« agonal of the large rectangle cuts it into two such “Pythagorean
- triangles.”

If we generalize the problem to allow nonintegral solutions
for borders of any uniform width, keeping only the proviso
that the area of the border be equal to the area of the rectangle
within it, there is an unusually simple formula for the width of
the border. (I am indebted to S. L. Porter for it.) Merely add
two adjacent sides of the border, subtract the diagonal of the
large rectangle and divide the resuit by four. This procedure
gives the width of the border.

17
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Several readers generalized this problem to three dimen-
sioms, seeking integral edges for a brick composed of unit
cubes equal to the number of unit cubes required to cover it on
all sides with a one-unit layer of cubes. Daniel Sleator used a
computer to find the complete solution, a total of 20 bricks.
The smallest-volume brick has edges of 8, 10, 12; the largest,
%, 13, 132. This confirms a guess made by M. H. Greenblatt in
M exthrematical Entertainments (Crowell, 1965), page 11, that the
problem has “about” 20 solutions.

ADDENDUM

One of the most famous of all unsolved problems in Diophan-
tine theory, the so-called Hilbert’s tenth problem, was bril-
liantly solved in 1970 by Yu. V. Matijasevic, a 22-year-old grad-
uate student at the University of Leningrad. In 1900 the great
G-erman mathematician David Hilbert compiled a list of 23 out-
standing unsolved problems that he hoped would be solved
during the twentieth century. Problem 10 was to find a general
algorithm that would decide whether any given polynomial
Diophantine equation, with integer coefficients, has a solution
in integers.

Miatijasevic proved that there is no such algorithm. In other
words, he “solved” Hilbert’s tenth problem by proving it had
no solution. The Fibonacci number sequence plays a key role
in his proof.

Y Y e & M o~ 1 1
For details see “Hilbert’s T Problem,” by Martin Davis

and Reuben Hersh in Scientific American, November 1973,
pages 84-91, and “Hilbert’s Tenth Problem is Unsolvable,” by
Martin Davis in The American Mathematical Monthly, Volume 80,
March 1973, pages 233-269.
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THE KNOTTED MOLECULE

AND OTHER PROBLEMS

1. THE KNOTTED MOLECULE

Enormously long chainlike molecules (long in relation to their
breadth) have been discovered in living organisms. The ques-
l:iOli has arisen: Can ciirl smnlaclas hava bnattad forme? Max

SUCIHL IIIVICTUUILD JIAVU RIIULLLLE LUL RIG: dvidea

Delbriick of the California Institute of Technology, who re-

ceived a Nobel prize in 1960, proposed the following idealized
problem:

Assume that a chain of atoms, its ends joined to form a

closed space curve, consists of rigid, straight-line segments

P A P “h »
each one unit long. At every node where two such “links” meet,

a 90-degree angle is formed. At each end of each link, there-
fore, the next link may have one of four different orientations.
The entire closed chain could be traced along the edges of a
cubical lattice, with the proviso that at each node the joined
links form a right angle [see Figure 10]. At no point is the chain
allowed to touch or intersect itself; that is, two and only two
links meet at every node.

Figure 10

Example of a 13-link chain
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What is the shortest chain of this type that is tied in a single
overhand (trefoil) knot? In the answer I shall reproduce the
shortest chain Delbriick has found. It has not been proved
minimal; perhaps a reader will discover a shorter one. (I wish
to thank John McKay for calling this problem to my attention.)

2. PIED NUMBERS

The old problem of expressing integers with four 4’s (dis-
cussed in a Scientific American column reprinted as Chapter 5 of
The Incredible Dr. Matrix) has been given many variations. In an
intriguing new variant proposed by Fitch Cheney one is al-
lowed to use only pit and symbols for addition, subtraction,
multiplication, division, square root and the “round-down
function.” In the last operation, indicated by brackets, one
takes the greatest integer that is equal to or less than the value
enclosed by the brackets. Parentheses also may be used, as in
algebra, but no other symbols are allowed. Each symbol and pi
may be repeated as often as necessary, but the desideratum is
to use as few pi symbols as possible. For example, 1 can be writ-
ten [VA] and 3 even more simply as [7].

The reader is invited to do his best to express the integers
from 1 through 20 according to these rules, and to compare
them with the best Cheney was able to achieve.

3. THE FIVE CONGRUENT POLYGONS

L. Vosburgh Lyons contributed a fiendish dissection problem
to a magic magazine in 1969 [see Figure 11]. The polygon [at
left in illustration] can be dissected into four congruent polygons
lat right]. Can the reader discover the only way in which the
same polygon can be cut into five congruent polygons?

Figure 11

L. Vosburgh Lyons’ dissection problem
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4. STARTING A CHESS GAME

A full set of 32 chessmen is placed on a chessboard, one piece
to a cell. A “move” consists in transferring a piece from the cell
it is on to any empty cell. (This has nothing to do with chess
moves.) Gilbert W. Kessler, a mathematics teacher in a Brook-
lyn high school, thought of the following unusual problem:
How can you place the 32 pieces so that a maximum number
of transfer moves are required to arrange the pieces in the cor-
rect starting position for a game of chess?

It is not specified which side of the board is the black side,
but the playing sides must, as in regulation chess, be sides with
a white square in the bottom right corner, and of course the
queen must go on a square matching her own color. One is
tempted at first to think that the maximum is 33 moves, but the
problem is trickier than that.

5. THE TWENTY BANK DEPOSITS

A Texas oilman who was an amateur number theorist opened
a new bank account by depositing a certain integral number of
dollars, which we shall call x. His second deposit, y, also was an
integral number of dollars. Thereafter each deposit was the
sum of the two previous deposits. (In other words, his deposits
formed a generalized Fibonacci series.) His 20th deposit was
exactly a million dollars. What are the values of x and y, his
first two deposits? (I am indebted to Leonard A. Monzert of
West Newton, Mass., for sending the problem of which this is
a version.)

The problem reduces to a Diophantine equation that is
somewhat tedious to solve, but a delightful shortcut using the
golden ratio becomes available if I add that x and y are the two
positive integers that begin the longest possible generalized Fi-
bonacci chain ending in a term of 1,000,000.

6. THE FIRST BLACK ACE

A deck of 52 playing cards is shuffled and placed face down
on the table. Then, one at a time, the cards are dealt face up
from the top. If you were asked to bet in advance on the dis-
tance from the top of the first black ace to be dealt, what posi-
tion (first, second, third, ...) would you pick so that if the
game were repeated many times, you would maximize your
chance in the long run of guessing correctly?
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7. ADODECAHEDRON-QUINTOMINO PUZZLE

John Horton Conway defines a “quintomino” as a regular pen-
tagon whose edges (or triangular segments) are colored with
five different colors, one color to an edge. Not counting rota-
tions and reflections as being different, there are 12 distinct
quint()minoes. Letting 1, 2, 3, 4, 5 represent the five colors, the
12 quintominoes can be symbolized as follows:

A. 12345 G. 13245
B. 12354 H. 13254
C. 12435 J. 13425
D. 12453 K. 13524
E. 12534 L. 14235
F.

12543 M. 14325

The numbers indicate the cyclic order of colors going either
‘clockwise or counterclockwise around the pentagon [see Figure
12, left]. In 1958 Conway asked himself if it was possible to
color the edges of a regular dodecahedron [Figure 12, middie]
in such a way that each of the 12 quintominoes would appear
on one of the solid’s 12 pentagonal faces. He found that it was
indeed possible. Can readers find a way to do it?

Figure 12

NN

&

The A quintomino The dodecahedron Schlegel diagram of dodecahedron

Those who like to make mechanical puzzles can construct a
cardboard model of a dodecahedron with small magnets glued
to the inside of each face. The quintominoes can be cut from
metal and colored on both sides (identical colors opposite each
other) so that any piece can be “reflected” by turning it over.
The magnets, of course, serve to hold the quintominoes on the
faces of the solid while one works on the puzzle. The problem
is to place the 12 pieces in such a way that the colors match
across every edge.

Without such a model, the Schlegel diagram of a dodecahe-
dron [Figure 12, right] can be used. This is simply the distorted
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skeleton of the solid, with its back face stretched to become the
figure’s outside border. The edges are to be labeled (or col-
ored) so that each pentagon (including the one delineated by
the pentagonal perimeter) is a different quintomino.

8. SCRAMBLED QUOTATION

Letters in the sentence “Roses are red, violets are blue” are
scrambled by the following procedure. The words are written
one below the other and flush at the left:

ROSES
ARE

RED
VIOLETS
ARE
BLUE

The columns are taken from left to right and their letters
from the top down, skipping all blank spaces, to produce this
ordering:

RARVABOREIRLSEDOEUELESETS.

The task is to find the line of poetry that, when scrambled
by this procedure, becomes

TINFLABTTULAHSORIOOASAWEIKOKNARGEKEDYE-
ASTE.

Walter Penney of Greenbelt, Md., contributed this novel
word problem to the February 1970 issue of Word Ways: The
Journal of Recreational Linguistics. That lively quarterly is cur-
rently being published privately by A. Ross Eckler, Spring Val-
ley Road, Morristown, N.J. 07960.

9. THE BLANK COLUMN

A secretary, eager to try out a new typewriter, thought of a
sentence shorter than one typed line, set the controls for the
two margins and then, starting at the left and near the top of
a sheet of paper, proceeded to type the sentence repeatedly.
She typed the sentence exactly the same way each time, with a
period at the end followed by the usual two spaces. She did
not, however, hyphenate any words at the end of a line: When
she saw that the next word (including whatever punctuation
marks may have followed it) would not fit the remaining space
on a line, she shifted to the next line. Each line, therefore,
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started flush at the left with a word of her sentence. She fin-
ished the page after typing 50 single-spaced lines.

Without experimenting on a typewriter, answer this ques-
tion: Is there sure to be at least one perfectly straight column
of blank spaces on the sheet, between the margins, running all
the way from top to bottom? (T. Robert Scott originated this
problem, which was sent to me by his friend W. Lloyd Milligan
of Columbia, S.C.)

THE CHILD WITH THE WART

. “What are the ages, in years only, of your three children?”
- “The product of their ages is 36.”
- “Not enough information.”
 “The sum of their ages equals your house number.”
: “Still not enough information.”
' “My oldest child—and he’s at least a year older than either
of the others—has a wart on his left thumb.”
A: “That’s enough, thank you. Their ages are. . ..”
Complete A’s sentence. (Mel Stover of Winnipeg was the first
of several readers to send this problem, the origin of which 1
do not know.)

DewEme O

1otted chain known that meets all the con-
links [see Figure 13]. It is reproduced
from Max Delbrick’s paper, “Knotting Problems in Biology,”

Figure 13

C{L__'J

Solution to the knot problem
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in Mathematical Problems in the Biological Sciences: Proceedings of
Symposia in Applied Mathematics, Vol. 14, 1962, pages 55-68.

If links are not required to be at right angles to their adja-
cent links, knots of 24 links are possible.

2. Figure 14 gives Fitch Cheney’s answers to the problem of
expressing the integers 1 through 20 by using pi, as few times
as possible, and the symbols specified. He was able to express
all integers from 1 through 100 without using more than four
pi’s in each expression.

Figure 14
1 = [V 11 = [(wxw)+Va]
2 = [Vn Val 12 = [wxu]+[n]
3 = [n] 13 = [(wxmw)+m]
4 = [w+Vnl 14 = [{mxm)}+m+ V]
5 = [n Vvl 15 = [ xm]+[mw+m]
6 = [w+m] 16 = [(mXmw)+mw+w)
7 = [wv) 17 = [mxwx V]
8 = [(wxw)— V] 18 = [wx=]+[nxn]
9 = [mxmw] 19 = [(wxm) +(mwxw)]
10 = [=xn]+{Varl 20 = [wVa] [n+ Val

How the first 20 integers can be “pied”

Hundreds of readers improved on Cheney’s answers. Here
are some typical ways of shortening six of the expressions:

14 = [ [w] X (w+ V)]

15 = [17])([17\/1?]

16 = [wVa X [7]]

18 = [w] X [w+ ]

19 = [w(w+ )]

20 = [m/Va] or [(wVa) V7]

These improvements reduce the total number of pr’s to 50.
John W. Gosling was the first of many readers to achieve 50,
but it is only fair to add that the problem did not specifically
allow exponention and that many who wrote earlier than Gos-
ling would probably have achieved 50 had they used exponents
for integers 7 and 20. (Without exponents, 7 requires three pi’s
and 20 requires four.) Numerous readers lowered the number
of pi’s below 50 by adding other symbols, such as the factorial
sign or the “unary negative operator,” which has the effect of
rounding up instead of down. Bernard Wilde and Carl Thune,
Mark T. Longley-Cook, V. E. Hoggatt, Jr., Robert L. Caswell
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and others conjectured that by using nested radical signs to re-
duce a divisor, any positive integer can be expressed with three
i’s.
Cheney and John Leech each pointed out that if —[—] is
interpreted in a standard way to mean 4, then further reduc-
tions are possible:

2 = —[—Vn]

4 = —[—m)

8 = —[—-mw]—[—m7]
10 = —[—7Xm]

11 = [(—[—=]]
12 = [~wX{(—m)]

13 = —[wx(—m)]
16 = [—w]X[—7]

3. The large polygon in Figure 15 can be cut into five con-

gruent polygons as shown. The method obviously enables one
to dissect the polygon into any desired number of congruent
shapes. L. Vosburgh Lyons first published this in The Pallbear-
ers Review for July, 1969, page 268.

m

Solution to the dissection problem

4. The 32 chess pieces can be placed so that 36 “moves” are
needed to transfer the pieces to a correct starting position with
black at the top and white at the bottom [see Figure 16].

It was stated in the problem that it was not necessary for
black to be at the top. However, if the final position is black at
the bottom, then 37 moves are required to produce a starting
Pattern with the queens on the right color. 1If it is required that
black be at the top, then a standard starting position, with
white at the bottom, requires 38 moves to effect the change.

5. The Texas oilman’s bank deposit problem reduces to the
Diophantine equation 2,584x+4,181y=1,000,000. It can be
solved by Diophantine techniques such as the continued-frac-
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Figure 16

A solution to the chess problem

tion method explained in Chapter 2. The first two deposits are
$154 and $144.

The shortcut, given that x and y start the longest possible Fi-
bonacci chain terminating in 1,000,000, rests on the fact that
the longer a generalized Fibonacci series continues, the closer
the ratio of two adjacent terms approaches the golden ratio. To
find the longest generalized Fibonacci chain that ends with a
given number, place the number over x and let it equal the
golden ratio. In this case the equation is

Y
v

(&

1 00N 0NN 1
1,UUU,Uuy 1

X 2

Solve for x and change the result to the nearest integer. It is
618,034. Because no other integer, when related to 1,000,000,
gives a closer approximation of the golden ratio, 618,034 is the
next-to-last term of the longest possible chain of positive inte-
gers in a generalized Fibonacci series ending in 1,000,000. One
can now easily work backward along the chain to the first two
terms. (This method is explained in Litton Industries’ Proble-
matical Recreations, edited by Angela Dunn, Booklet 10, Prob-
lem 41.)

6. Contrary to most people’s intuition, your best bet is that
the top card is a black ace.

The situation can be grasped easily by considering simpler
cases. In a packet of three cards, including the two black aces
and, say, a king, there are three equally probable orderings:
AAK, AKA, KAA. It is obvious that the probability of the first
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ace’s being on top is 2/3 as against 1/3 that it is the second card.
For a full deck of 52 cards the probability of the top card’s
being the first black ace is 51/1,326, the probability that the
first black ace is second is 50/1,326, that it is third is 49/1,326,
and so on down to a probability of 1/1,326 that it is the 51st
card. (It cannot, of course, be the last card.)

In general, in a deck of n cards (n being equal to or greater
than 2) the probability that the first of two black aces is on top
is n— 1 over the sum of the integers from 1 through n—1. The
probability that the first black ace is on top in a packet of four
cards, for instance, 1s 1/2.

The problem is given by A. E. Lawrence in “Playing with
Probability,” in The Mathematical Gazette, Vol. 53, December
1969, pages 347-354. As David L. Silverman has noticed, by
symmetry the most likely position for the second black ace is on

the bottom. The probability for each position of the second
~ black ace decreases through the same values as before but in
reverse order from the last card (51/1,326) to the second from
the top (1/1,326).

Several readers pointed out that the problem of the first
black ace is a special case of a problem discussed in Probability
with Statistical Applications, by Frederick Mosteller, Robert E. K.
Rourke and George B. Thomas, Jr. (Addison-Wesley, 1961).
Mosteller likes to call it the “needle in the haystack” problem
and give it in the practical form of a manufacturer who has,
say, four high-precision widgets randomly mixed in his stock
with 200 low-precision ones. An order comes for one high-
precision widget. Is it cheaper to search his stock or to tool up
and make a new one? His decision depends on how likely he is
to find one near the beginning of a search. In the case of the
52-card deck there is a better-than-even chance that an ace will
be among the first nine cards at the top of a shuffled deck or—
what amounts to the same thing—among the first nine cards
picked at random without replacement.

7. The three essentially distinct solutions of the dodecahe-
dron-quintomino puzzle are shown on Schlegel diagrams in
Figure 17. They were first published by John Horton Conway,
the inventor of the problem, in the British mathematical jour-
nal Eureka for October, 1959, page 22. Each solution has a mir-
ror reflection, of course, and colors can be interchanged with-
out altering the basic pattern. The letters correspond to those
assigned previously to the 12 quintominoes. The letter outside
each diagram denotes the quintomino on the solid’s back face,
represented by the diagram’s perimeter.
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Figure 17

Three basic solutions to the dodecahedron-quintomino problem

Conway found empirically that whenever the edges of 11
faces were correctly labeled, the 12th face was automatically la-
beled to correspond with the remaining quintomino. He did
not prove that this must always be true.

Because the regular dodecahedron is the “dual” of the reg-
ular icosahedron, the problem is equivalent to coloring the
edges of the regular icosahedron so that at its 12 vertexes the
color permutations correspond to the permutations of colors
on the 12 quintominoes.

In 1972 a white plastic version of Conway’s puzzle was on
sale in the United States under the name “Enigma.” Patterns
of black dots were used instead of colors.

8. The scrambled quotation 1s “There is no frigate like a
book/To take us lands away.” It is the first two lines of a poem
by Emily Dickinson.

9. There is certain to be at least one column of blank spaces
on that typed page. Assume that the sentence is n spaces long,
including the first space following the final period. This chain
of n spaces will begin each typed line, although the chain may
be cyclically permuted, beginning with different words in dif-
ferent lines. Consequently the first n spaces of every line will
be followed by a blank space.

10. Only the following eight triplets have a product of 36: 1,
1,36;1,2,18; 1,3,12; 1,4,9; 1,6, 6; 2,2,9; 2,3, 6, and 3,
4, 3. Speaker A certainly knew his own house number. He
would therefore be able to guess the correct triplet when he
was told it had a sum equal to his house number—unless the
sum was 13, because only two triplets have identical sums, 1+
6+6 and 2+2+9, both of which equal 13. As soon as A was
told that B had an oldest child he eliminated 1, 6, 6, leaving 2,
2, 9 as the ages of B’s three children.
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Points

Have no parts or joints.
How then can they combine
To form a line?

—]J. A. LinpON

Every finite set of n elements has 2" subsets if one includes the
original set and the null, or empty, set. For example, a set of
three elements, ABC, has 23=8 subsets: ABC, AB, BC, AC, A, B,
C, and the null set. As the philosopher Charles Sanders Peirce
once observed (Collected Papers 4. 181), the null set “has obvious
logical peculiarities.” You can’t make any false statement about
its members because it has no members. Put another way, if
you say anything logically contradictory about its members, you
state a truth, because the solution set for the contradictory
statement is the null set. Put colloquially, you are saying some-
thing true about nothing.

In modern set theory it is convenient to think of the null set
as an “existing set” even though it has no members. It can also
be said to have 2" subsets because 2°=1, and the null set has
one subset, namely itself. And it is a subset of every set. If set
A is included in set B, it means that every member of set A is a
member of set B. Therefore, if the null set is to be treated as
a legitimate set, all its members (namely none) must be in set
B. To prove it by contradiction, assume the null set is not in-
cluded in set B. Then there must be at least one member of the
null set that is not a member of B, but this is impossible be-
cause the null set has no members.
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T'he n elements of any finite set obviously cannot be put into
one-to-one correspondence with its subsets because there are
always more than n subsets. Is this also true of infinite sets?
The answer is yes, and the general proof is one of the most
beautiful in all set theory.

It is an indirect proof, a reductio ad absurdum. Assume that all
elements of N, a set with an infinity of members, are matched
ome-to-one with all of N's subsets. Each matching must meet
one of two conditions:

(1) An element is paired with a subset that includes that ele-
merut. Let us call all such elements blue.

(2) An element is paired with a subset that does not include
that element. We call all such elements red.

"T'he red elements form a subset of our initial set N. Can this
subset be matched to a blue element? No, because every blue
eletment 1s in its matching subset, therefore the red subset
would have to include a blue element. Can the red subset be
paired with a red element? No, because the red element would
then be included in its subset and would therefore be blue.
Since the red subset cannot be matched to either a red or blue
element of N, we have constructed a subset of N that is not
paired with any element of N. No set, even if infinite, can be
put into one-to-one correspondence with its subsets. If n is a
transfinite number, then 2"—by definition it is the number of
subsets of n—must be a higher order of infinity than n.

Georg Cantor, the founder of set theory, used the term
aleph-null for the lowest transfinite number. It is the cardinal
number of the set of all integers, and for that reason is often
called a “countable infinity.” Any set that can be matched one-
to-one with the counting numbers, such as the set of integral
fractions, is said to be a countable or aleph-null set. Cantor
showed that when 2 is raised to the power of aleph-null—giv-
ing the number of subsets of the integers—the result is equal
to the cardinal number of the set of all real numbers (rational
or irrational), called the “power of the continuum,” or c. It is
the cardinal number of all points on a line. The line may be a
segment of any finite length, a ray with a beginning but no
end, or a line going to infinity in both directions. Figure 18
shows three intuitively obvious geometrical proofs that all three
kinds of line have the same number of points. The slant lines
projected from point P indicate how all points on the line seg-
ment AB can be put into one-to-one correspondence with all
points on the longer segment, on a ray, and on an endless line,

The red-blue proof outlined above (Cantor published it in
1830) of course generates an infinite hierarchy of transfinite
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Figure 18

Number of points on a line segment AB is the same as on a
jonger line segment (left), a ray (center) and a line (right)

numbers. The ladder starts with the set of counting numbers,
aleph-null, next comes ¢, then all the subsets of ¢, then all the
subsets of all the subsets of ¢, and so on. The ladder can also
be expressed like this:

aleph-null, ¢, 27, 22, 222: Cees

Cantor called ¢ “aleph-one” because he believed that no
transfinite number existed between aleph-null and ¢. And he
called the next number aleph-two, the next aleph-three, and so
on. For many years he tried unsuccessfully to prove that ¢ was
the next higher transfinite number after aleph-null, a conjec-
ture that came to be called the “continuum hypothesis.” We
now know, thanks to proofs by Kurt Godel and Paul Cohen,
that the conjecture is undecidable within standard set theory,
everf when strengthened by the axiom of choice. We can as-
sume without contradiction that Cantor’s alephs catch all trans-
finite numbers, or we can assume, also without contradiction,
a non-Cantorian set theory in which there is an infinity of
transfinite numbers between any two adjacent entries in Can-
tor’s ladder. (See Chapter 3 of my Mathematical Carnival for a
brief, informal account of this.)

Cantor also tried to prove that the number of points on a
square is the next higher transfinite cardinal after ¢. In 1877
he astounded himself by finding an ingenious way to match all
the points of a square to all the points of a line segment. Imag-
ine a square one mile on a side, and a line segment one inch
long [see Figure 19]. On the line segment every point from 0 to
1 is labeled with an infinite decimal fraction: The point corre-
sponding to the fractional part of pi is .14159 .. ., the point
corresponding to 1/3 is .33333 ... and so on. Every point is
represented by a unique string of aleph-null digits, and every
possible aleph-null string of digits represents a unique point on
the line segment. (A slight difficulty arises from the fact that a
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Figure 19
T3205. —>f--1
|
|
i B
.14159... 1743125095,

Points in square mile and on line segment

fraction such as .5000 ... is the same as .4999 ..., but it is
easily overcome by dodges we need not go into here.)

Now consider the square mile. Using a Cartesian coordinate
system, every point on the square has unique x and y coordi-
nates, eachh of which can be represented by an endless decimal
fraction. The illustration shows a point whose x coordinate is
the fractional part of pi and whose y coordinate is the frac-
tional part of the square root of 3, or .73205. . . . Starting with
the x coordinate, alternate the digits of the two numbers:
1743125095. ... The result is an endless decimal labeling a
unique point on the line segment. Clearly this can be done with
every point on the square. It is equally obvious that the map-
ping proced ure can be reversed: we can select any point on the
line segment and, by taking alternate digits of its infinite deci-
mal, can split it into two endless decimals that as coordinates
label a unique point on the square. (Here we must recognize
and overcome the subtle fact that, for example, the following
three distinct points on the segment—.449999 . . .| 459090. ..,
and .540909 . . .—all map the same point [%, 4] in the square.)
In this way the points of any square can be put into one-to-one
correspondence with the points on any line segment; therefore
the two sets are equivalent and each has the cardinal number ¢.

The proof extends easily to a cube (by interlacing three co-
ordinates), or to a hypercube of n dimensions (by interlacing n
coordinates). Other proofs show that ¢ also numbers the points
in an infinite space of any finite number of dimensions, even
an infinite space of aleph-null dimensions.

Cantor hoped that his transfinite numbers would distinguish
the different orders of space but, as we have seen, he himself
proved that this was not the case. Mathematicians later showed
that it is the topological way the points of space go together
that distinguishes one space from another. The matchings in
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the previous paragraphs are not continuous; that is, points
close together on, for instance, the line are not necessarily close
together on the square, and vice versa. Put another way, you
cannot continuously deform a line to make it a square, or a
square to make it a cube, or a cube to make a hypercube, and
SO on.

Is there a set in mathematics that corresponds to 27 Of
course we know it is the number of all subsets of the real num-
bers, but does it apply to any familiar set in mathematics? Yes,
it is the set of all real functions of x, even the set of all real one-
valued functions. This is the same as the number of all possible

rmutations of the points on a line. Geometrically it is all the
curves (including discontinuous ones) that can be drawn on a
plane or even a small finite portion of a plane the size, say, of
a postage stamp. As for 2 to the power of 24, no one has yet
found a set, aside from the subsets of 2¢, equal to it. Only
aleph-null, ¢, and 2¢ seem to have an application outside the
higher reaches of set theory. As George Gamow once said, “we
find ourselves here in a position exactly opposite to that of
... the Hottentot who had many sons but could not count be-
yond three.” There
but most mathematicians have only three “sons” to count with
them. This has not prevented philosophers from trying to find
metaphysical interpretations for the transfinite numbers. Can-
tor himself, a deeply religious man, wrote at length on such
matters. In the United States, Josiah Royce was the philoso-

e sirlan svmmAda tha s - 1 ?
pner wno maaec the most extensive use of Cantor’s ale

ticularly in his work The World and the Individual.

The fact that there is no highest or final integer is involved
in a variety of bewildering new paradoxes. Known as super-
tasks, they have been much debated by philosophers of science
since they were first suggested by the mathematician Hermann
Weyl. For instance, imagine a lamp (called the Thomson lamp
after James F. Thomson, who first wrote about it) that is
turned off and on by a push-button switch. Starting at zero
time, the lamp is on for 1/2 minute, then it is off for 1/4 min-
ute, then on for 1/8 minute and so on. Since the sum of this
halving series, 1/2+1/4+1/8+ .. .,is 1, at the end of one min-
ute the switch will have been moved aleph-null times. Will the
lamp be on or off?

Everyone agrees that a Thomson lamp cannot be con-
structed. Is such a lamp logically conceivable or is it nonsense
to discuss it in the abstract? One of Zeno’s celebrated para-
doxes concerns a constant-speed runner who goes half of a cer-
tain distance in 1/2 minute, a fourth of the distance in the next

ta mes meAlace TadAd 1
ere is an endless ladder of transfinite numbers,
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1/4 minute, an eighth of the distance in the next 1/8 minute
and so on. At the end of one minute he has had no difficulty
reaching the last point of the distance. Why, then, cannot we
say that at the end of one minute the switch of the Thomson
lamp has made its last move? The answer is that the lamp must
then be on or off and this is the same as saying that there is a
last integer that is either even or odd. Since the integers have
no last digit, the lamp’s operation seems logically absurd.

Another supertask concerns an “infinity machine” that cal-
culates and prints the value of pi. Each digit is printed in half
the time it takes to print the preceding one. Moreover, the dig-
its are printed on an idealized tape of finite length, each digit
having half the width of the one before it. Both the time and
the width series converge to the same limit, so that in theory
one might expect the pi machine, in a finite time, to print all
the digits of pi on a piece of tape. But pi has no final digit to
print, and so again the supertask seems self-contradictory.

One final example: Max Black of Cornell University imag-
ines a machine that transfers a marble from tray A to tray B in
one minute and then rests for a minute as a second machine
returns the marble to A. In the next halfminute the first
machine moves the marble back to B; then it rests for a half-
minute as the other machine returns it to A. This continues, in
a halving time series, until the machines’ movements become,
as Black puts it, a “grey blur.” At the end of four minutes each
machine has made aleph-null transfers. Where is the marble?
Once more, the fact that there is no last integer to be odd or
even seems to rule out the possibility, even in principle, of such
a supertask. (The basic articles on supertasks, by Thomson,
Black and others, are reprinted in Wesley C. Salmon’s 1970 pa-
perback anthology Zeno’s Paradoxes.)

One is tempted to say that the basic difference between su-
pertasks and Zeno’s runner is that the runner moves continu-
ously whereas the supertasks are performed in discrete steps
that form an aleph-null set. The situation is more complicated
than that. Adolph Griinbaum, in Modern Science and Zeno’s Par-
adoxes, argues convincingly that Zeno's runner could also com-
plete his run by what Griinbaum calls a “staccato” motion of
aleph-null steps. The staccato runner goes the first half of his
distance in 1/4 minute, rests 1/4 minute, goes half of the re-
maining distance in 1/8 minute, rests 1/8 minute and so on.
When he is running, he moves twice as fast as his “legato”
counterpart, but his overall average speed is the same, and it is
always less than the velocity of light. Since the pauses of the
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staccato runner converge to zero, at the end of one minute he
too will have reached his final point just as an ideal bouncing
ball comes to rest after an infinity of discrete bounces.
Grinbaum finds no logical objection to the staccato run, even
though it cannot be carried out in practice. His attitudes to-
ward the supertasks are complex and controversial. He regards
infinity machines of certain designs as being logically impossi-
ble and yet in most cases, with suitable qualifications, he de-
fends them as logically consistent variants of the staccato run.
These questions are related to an old argument to the effect
that Cantor was mistaken in his claim that aleph-null and ¢ are
different orders of infinity. The proof is displayed in Figure
20. The left side is an endless list of integers in serial order.

Figure 20

INTEGERS DECIMAL FRACTIONS
1 A
2 .2
3 3
10 .01
1 11
12 .21
100 .001
103 101
1234 4321

Fallacious proof concerning two alephs

Each is matched with a number on the right that is formed by
reversing the order of the digits and putting a decimal in front
of them. Since the list on the left can go to infinity, it should
eventually include every possible sequence of digits. If it does,
the numbers on the right will also catch every possible se-
quence and therefore will represent all real numbers between
0 and 1. The real numbers form an aleph-one set. Since this
set can be put in one-to-one correspondence with the integers,
an aleph-null set, the two sets appear to be equivalent.
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I would be ashamed to give this proof were it not for the fact
that every year or so I receive it from a correspondent who has
rediscovered it and convinced himself that he has demolished
Cantorian set theory. Readers should have little difficulty
seeing what is wrong.

ANSWERS

The fundamental error in the false proof that the counting
numbers can be matched one-to-one with the real numbers is
that, no matter how long the list of integers on the left (and
their mirror reversals on the right), no number with aleph-null
digits will ever appear on each side. As a consequence no irra-
tional decimal fraction will be listed on the right. The mirror
reversals of the counting numbers, with a decimal point in
front of each, form no more than a subset of the integral frac-
tions between 0 and 1. Not even 1/3 appears in this subset be-
cause its decimal form requires aleph-null digits. In brief, all
that is proved is the well-known fact that the counting numbers
can be matched one-to-one with a subset of integral fractions.
The false proof reminds me of a quatrain I once perpetrated:

Pivse
Pi goes on and on and on . . .
And e is just as cursed.
I wonder: Which is larger
When their digits are reversed?

ADDENDUM

Among physicists, no one objected more violently to Cantorian
set theory than Percy W. Bridgman. In Reflections of a Physicist
(1955) he says he “cannot see an iota of appeal” in Cantor’s
proof that the real numbers form a set of higher infinity than
the integers. Nor can he find paradox in any of Zeno’s argu-
ments because he is unable to think of a line as a set of points
(see the Clerihew by Lindon that I used as an epigraph) or a
time interval as a set of instants.

“A point is a curious thing,” he wrote in The Way Things Are
(1959), “and 1 do not believe that its nature is appreciated,
even by many mathematicians. A line is not composed of points
in any real sense.... We do not construct the line out of
points, but, given the line, we may construct points on it. ‘All
the points on the line’ has the same sort of meaning that the
‘entire line’ has. ... We create the points on a line Just as we
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create the numbers, and we identify the points by the numeri-
cal values of the coordinates.”

Merwin J. Lyng, in The Mathematics Teacher (April 1968, page
393), gives an amusing variation of Black’s moving-marble su-
pertask. A box has a hole at each end: Inside the box a rabbit
sticks his head out of hole A, then a minute later out of hole B,
then a half-minute later out of hole A, and so on. His students
concluded that after two minutes the head is sticking out of
both holes, “but practically the problem is not possible unless
we split hares.”

For what it is worth, I agree with those who believe that par-
adoxes such as the staccato run can be stated without contra-
diction in the language of set theory, but as soon as any ele-
ment is added to the task that involves a highest integer, you
add something not permitted, therefore you add only non-
sense. There is nothing wrong in the abstract about an ideal
bouncing ball coming to rest, or a staccato moving point reach-
ing a goal, but nothing meaningful is added if you assume that
at each bounce the ball changes color, alternating red and blue;
then ask what color it is when it stops bouncing, or if the stac-
cato runner opens and shuts his mouth at each step and you
ask if it is open or closed at the finish.

A number of readers called my attention to errors in this
chapter, as I first wrote it as a column, but I wish particularly
to thank Leonard Gillman, of the University of Texas at Austin
for rev1ew1ng the column and suggesting numerous revisions
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NONTRANSITIVE DICE

AND OTHER PROBABILITY PARADOXES

Probability theory abounds in paradoxes that wrench common
sense and trap the unwary. In this chapter we consider a star-
thng new paradox involving the relation called transitivity and

a group of paradoxes stemming from the careless application
Qf Whﬂt iQ called the ‘l’\rin!‘;‘l’\lp of ndifferonce

hat 1s called the principle of indifference.

Transitivity is a binary relation such that if it holds between
A and B and between B and C, it must also hold between A and
C. A common example is the relation “heavier than.” If A is
heavier than B and B is heavier than C, then A is heavier than
C. The three sets of four dice shown “unfolded” in Figure 21
were designed by Bradley Efron, a statistician at Stanford Uni-
versity, to dramatize some recent discoveries about a general
class of probability paradoxes that violate transitivity. With any
of these sets of dice you can operate a betting game so contrary
to intuition that experienced gamblers will find it almost im-
possible to comprehend even after they have completely ana-
lyzed it.

The four dice at the top of the illustration are numbered in
the simplest way that provides the winner with the maximum
advantage. Allow someone to pick any die from this set. You
then select a die from the remaining three. Both dice are
tossed and the person who gets the highest number wins.
Surely, it seems, if your opponent is allowed the first choice of
a die before each contest, the game must either be fair or favor
your opponent. If at least two dice have equal and maximum
probabilities of winning, the game is fair because if he picks
one such die, you can pick the other; if one die is better than
the other three, your opponent can always choose that die and
win more than half of the contests. This reasoning is com-
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Figure 21
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Nontransitive dice

pletely wrong. The incredible truth is that regardless of which
die he picks you can always pick a die that has a 2/3 probability
of winning, or two-to-one odds in your favor!

The paradox (insofar as it violates common sense) arises
from the mistaken assumption that the relation “more likely to
win” must be transitive between pairs of dice. This is not the
case with any of the three sets of dice. In each set the relation
“more likely to win” is indicated by an arrow that points to the
losing die. Die A beats B, B beats C, C beats D—and D beats A!
In the first set the probability of winning with the indicated die
of each pair is 2/3. This is easily verified by listing the 36 pos-
sible throws of each pair, then checking the 24 cases in which
one die bears the highest number.

The other two sets of four dice, also designed by Efron, have
the same nontransitive property but fewer numbers are re-
peated in order to make an analysis of the dice more ditficult.
In the second set the probability of winning with the indicated
die is also 2/3. Because ties are possible with the third set it
must be agreed that ties will be broken by rolling again. With
this procedure the winning probability for each of the four
pairings in the third set is 11/17, or .647.

It has been proved, Efron writes, that 2/3 is the greatest pos-
sible advantage that can be achieved with four dice. For three
sets of numbers the maximum advantage is .618, but this can-
not be obtained with dice because the sets must have more than
six numbers. If more than four sets are used (numbers to be
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randomly selected within each set), the possible advantage ap-
proaches a limit of 3/4 as the number of sets increases.

A fundamental principle in calculating probabilities such as
dice throws is one that goes back to the beginnings of classical
probability theory in the 18th century. It was formerly called
“the principle of insufficient reason” but is now known as “the
principle of indifference,” a crisper phrase coined by john
Maynard Keynes in A Treatise on Probability. (Keynes is best
known as an economist, but his book on probability has become
a classic. It had a major influence on the inductive logic of Ru-
dolf Carnap.) The principle is usually stated as follows: If you
have no grounds whatever for believing that any one of n mu-
tually exclusive events is more likely to occur than any other, a
probability of 1/n is assigned to each.

For example, you examine a die carefully and find nothing
that favors one side over another, such as concealed loads,
noncubical shape, beveling of certain edges, stickiness of cer-
tain sides and so on. You assume that there are six equally
probable ways the cube can fall; therefore you assign a proba-
bility of 1/6 to each. If you toss a penny, or play the Mexican
game of bettlng on which of two sugar cubes a fly will alight on
first, your ignorance of any possible bias prompts you to assign
a probability of 1/2 to each of the two outcomes. In none of
these camylpa do you i feel Ubliga.,c,d to make btdlellLd}, !:lupu i-
cal tests. The probabilities are assigned a priori. They are
based on symmetrical features in the structures and forces in-

~F e pen ;
volved. The die is a regu!ar solid, the pmbauilny of the ny's

balancing on its edge is virtually zero, there is no reason for a
fly to prefer one sugar cube to another and so on. Ultlmately,
of course, your analysis rests on empirical grounds, since only
experience tells you, say, that a weighted die face would affect
the odds, whereas a face colored red (with the others blue)
would not.

Some form of the pr1nc1ple of indifference is indispensable
in probability theory, but it must be carefully qualified and ap-
plied with extreme caution to avoid pitfalls. In many cases the
traps spring from a difficulty in deciding on what are the
equally probable cases. Suppose, for instance, you shuffle a
packet of four cards—two red, two black—and deal them face
down in a row. Two cards are picked at random, say by placing
a penny on each, What is the probability that those two cards
are the same color?

One person reasons: “There are three equally probable
cases. Either both cards are black, both are red or they are dif-
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ferent colors. In two cases the cards match, therefore the
matching probability is 2/3.”

“No,” another person counters, “there are four equally prob-
able cases. Either both cards are black, both are red, card x 1s
black and y is red or x is red and y is black. More simply, the
cards either match or they do not. In each way of putting it the
matching probability clearly 1s 1/2.”

The fact is that both people are wrong. (The correct proba-
bility will be given in the Answer Section. Can the reader cal-
culate it?) Here the errors arise from a failure to identify cor-
rectly the equally probable cases. There are, however, more
confusing paradoxes—actually fallacies—in which the principle
of indifference seems intuitively to be applicable, whereas it ac-
tually leads straight to a logical contradiction. Cases such as
these result when there are no positive reasons for believing n
events to be equally probable and the assumption of equiprob-
ability is therefore based entirely, or almost entirely, on
ignorance.

For example, someone tells you: “There is a cube in the next

room whose size has been selected by a randomizing device.
The cube’s pdge is not less than one foot or more than three

A Li%W AW S~ passu Lisdizas a T 222802 L La2gKk22 a2l N

feet.” How would you estimate the probability that the cube’s

edge is between one and two feet as compared with the prob-
ability that it is between two and three feet? In your total ig-
norance of additional information, is it not reasonable to in-
voke the principle of indifference and regard each probability
as 1/2?

It is not. If the cube’s edge ranges between one and two feet,
its volume ranges between 13, or one, cubic foot and 2%, or
eight, cubic feet. But in the range of edges from two to three
feet, the volume ranges between 2° (eight) and 33 (27) cubic
feet—a range almost three times the other range. If the prin-
ciple of indifference applies to the two ranges of edges, it is
violated by the equivalent ranges of volume. You were not told
how the cube’s “size” was randomized, and since “size” 1s am-
biguous (it could mean either the cube’s edge or its volume)
you have no clues to guide your guessing. If the cube’s edge
was picked at random, the principle of indifference does in-
deed apply. It is also applicable if you are told that the cube’s
volume was picked at random, but of course you then have to
assign a probability of 1/2 to each of the two ranges from one
to 14 and from 14 to 27 cubic feet, and to the corresponding
ranges for the cube’s edge. If the principle applies to the edge,
it cannot apply to the volume without contradiction, and vice
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versa. Since you do not know how the size was selected, any ap-
plication of the principle is meaningless.

Carnap, in attacking an uncritical use of the principle in
Harold Jeffreys’ Theory of Probability, gives the following exam-
ple of its misuse. You know that every ball in an urn is blue,
red or yellow, but you know nothing about how many balls of
each color are in the urn. What is the probability that the first
ball taken from the urn will be blue? Applying the principle of
indifference, you say it is 1/2. The probability that it is not blue
must also be 1/2. If it is not blue, it must be red or yellow, and
because you know nothing about the number of red or yellow
balls, those colors are equally probable. Therefore you assign
to red a probability of 1/4. On the other hand, if you begin by
asking for the probability that the first ball will be red, you
must give red a probability of 1/2 and blue a probability of 1/4,
which contradicts your previous estimates.

It is easy to prove along similar lines that there is life on
Mars. What is the probability that there is simple plant life on
Mars? Since arguments on both sides are about equally cogent,
we answer 1/2. What is the probability that there is simple an-
imal life on Mars? Again, 1/2. Now we are forced to assert that
the probability of there being “either plant or animal life” on
Mars is 1/2+1/2=1, or certainty, which is absurd., The philos-
opher Charles Sanders Peirce gave a similar argument that
seems to show that the hair of inhabitants on Saturn had to be
either of two different colors. Many variants of this fallacy can
be found in Chapter 4 of Keynes's book. It is easy to invent
others.

In the history of metaphysics the most notorious misuse of
the principle surely was by Blaise Pascal, who did pioneer work
on probability theory, in a famous argument that became
known as “Pascal’'s wager.” A few passages from the original
and somewhat lengthy argument (in Pascal’s Pensées, Thought
233) are worth quoting:

“God i1s, or he is not.” To which side shall we incline? Reason
can determine nothing about it. There is an infinite gulf
fixed between us. A game is playing at the extremity of this
infinite distance in which heads or tails may turn up. What
will you wager? There is no reason for backing either one or
the other, you cannot reasonably argue in favor of either. . . .

Yes, but you must wager. ... Which will you choose? . . .
Let us weigh the gain and the loss in choosing “heads” that
God is. ... If you gain, you gain all. If you lose, you lose
nothing. Wager, then, unhesitatingly that he is.
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Lord Byron, in a letter, rephrased Pascal’s argument etfec-
tively: “Indisputably, the firm believers in the Gospel have a
great advantage over all others, for this simple reason—that, if
true, they will have their reward hereafter; and if there be no
hereafter, they can be but with the infidel in his eternal sleep,
having had the assistance of an exalted hope through life,
without subsequent disappointment, since (at the worst for
them) out of nothing nothing can arise, not even sorrow.” Sim-
ilar passages can be found in many contemporary books of re-
ligious apologetics.

Pascal was not the first to insist in this fashion that faith in
Christian orthodoxy was the best bet. The argument was
clearly stated by the fourth-century African priest Arnobius
the Elder, and non-Christian forms of it go back to Plato. This
is not the place, however, to go into the curious history of de-
fenses and criticisms of the wager. I content myself with men-
tioning Denis Diderot’s observation that the wager applies with
equal force to other major faiths such as Islam. The mathe-
matically interesting aspect of all of this is that Pascal likens the
outcome of his bet to the toss of a coin. In other words, he ex-
plicitly invokes the principle of inditterence to a situation in
which its application is mathematically senseless.

The most subtle modern reformulation of Pascal’'s wager is
by William James, in his famous essay The Will to Believe, in
which he argues that philosophical theism is a better gamble
than atheism. In a still more watered-down form it is even used
occasionally by humanists to defend optimism against pessi-
mism at a time when the extinction of the human race seems
as likely in the near future as its survival.

“While there is a chance of the world getting through its
troubles,” says the narrator of H. G. Wells’s little read novel
Apropos of Dolores, “1 hold that a reasonable man has to behave
as though he was sure of it. If at the end your cheerfulness is
not justified, at any rate you will have been cheerful.”

ANSWERS

The probability that two randomly selected cards, from a set of
two red and two black cards, are the same color is 1/3. If you
list the 24 equally probable permutations of the four cards,
then pick any two positions (for example second and fourth
cards), you will find eight cases in which the two cards match
in color. One way to see that this probability of 8/24 or 1/3 is
correct is to consider one of the two chosen cards. Assume that
it is red. Of the remaining three cards only one is red, and so
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the probability that the second chosen card will be red is 1/3.
Of course, the same argument applies if the first card is black.
Most people guess that the odds are even, when actually they
are two to one in favor of the cards’ having different colors.

ADDENDUM

The following letter, from S. D. Turner, contains some sur-
prising information:

Your bit about the two black and two red cards reminds me
of an exercise I did years ago, which might be called N-Card
Monte. A few cards, half red, half black, or nearly so, are
shown face up by the pitchman, then shuffied and dealt face
down. The sucker is induced to bet he can pick two of the
same color.

The odds will always be against him. But because the
sucker will make erroneous calculations (like the 2/8 and 1/2
in your 2:2 example), or for other reasons, he will bet. The
pitchman can make a plausible spiel to aid this: “Now, folks,
you don’t need to pick two blacks, and you don’t need to pick

. - 132

two reds. If you draw either pair you win!
The probability of getting two of the same color, where
there are R reds and B blacks, is:

(Dp _ _RI+B2—(R+B)
(R+B) R+B—1)

This yields the figures in the table [see Figure 22], one in
lowest-terms fractions, the other in decimal. Only below and
to the left of the stairstep line does the sucker get an even
break or better. But no pitchman would bother with odds
more favorable to the sucker than the 1/3 probability for 2:2,
or possibly the 2/5 for 3:3.

Surprisingly, the two top diagonal lines are identical, That
is, if you are using equal reds and blacks, odds are not
changed if a card is removed before the two are selected! In
your example of 2:2, the probability is 1/3 and it is also 1/3
when starting with 2:1 (as is evident because the one card not
selected can be any one of the three), The generality of this
can be shown thus: If B=R and B=R-1 are substituted into
(1), the result in each case is R-1/ 2R-1.

Some readers sent detailed explanations of why the argu-
ments behind the fallacies that I described were wrong, appar-
ently not realizing that these fallacies were intended to be
howlers based on the misuse of the principle of indifference.
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Figure 22
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26 490

Probability of drawing two cards of the same color

Several readers correctly pointed out that although Pascal did
invoke the principle of indifference by referring to a coin flip
in his famous wager, the principle is not essential to his argu-
ment. Pascal posits an infinite gain for winning a bet in which
the loss (granting his assumptions) would always be finite re-
gardless of the odds.

Efron’s nontransitive dice aroused almost as much interest
among magicians as among mathematicians. It was quickly per-
ceived that the basic idea generalized to k sets of n-sided dice,
such as dice in the shapes of regular octahedrons, dodecahe-
drons, icosahedrons, or cylinders with n flat sides. The game
also can be modeled by k sets of n-sided tops, spinners with =
numbers on each dial, and packets of n playing cards.

Karl Fulves, in his magic magazine The Pallbearers Reuview
(January 1971) proposed using playing cards to model Efron’s
dice. He suggested the following four packets: 2, 3, 4, 10, §, Q;
1,2,8,9,9 10;6,6,7,7, 8, 8; and 4, 5, 5, 6, Q, K. Suits are
irrelevant. First player selects a packet, shuffles it, and draws a
card. Second player does the same with another packet. If the
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chosen cards have the same value, they are replaced and two
more cards drawn. Ace is low, and high card wins. This is
based on Efron’s third set of dice where the winning probabil-
ity, if the second player chooses properly, is 11/17. To avoid
giving away the cyclic sequence of packets, each could be
placed in a container (box, cup, tray, etc.) with the containers
secretly marked. Before each play, the containers would be
randomly mixed by the first player while the second player
turned his back. Containers with numbered balls or counters
could of course be substituted for cards.

In the same issue of The Pallbearers Review cited above, Co-
lumbia University physicist Shirley Quimby proposed a set of
four dice with the following faces:

3,4, 5, 20, 21, 22

1, 2,16, 17, 18, 19
10, 11, 12, 13, 14, 15
6,7, 8,9, 23, 24

Note that numbers 1 through 24 are used just once each in
this elegant arrangement. The dice give the second player a
winning probability of 2/3. If modeled with 24 numbered
cards, the first player would select one of the four packets,
shuffle, then draw a card. The second player would do like-
wise, and high card wins.

R. C. H. Cheng, writing from Bath University, England, pro-
posed a novel variation using a single die. On each face are
numbers 1 through 6, each numeral a different color. Assume
that the colors are the rainbow colors red, orange, yellow,
green, blue, and purple. The chart below shows how the nu-
merals are colored on each face.

Face Red Orange Yellow Green Blue Purple

A 1 2 3 4 5 6
B 6 1 2 3 4 5
C 5 6 1 2 3 4
D 4 5 6 1 2 3
E 3 4 5 6 1 2
F 2 3 4 5 6 1

The game is played as follows: The first player selects a
color, then the second player selects another color. The die is
rolled and the person whose color has the highest value wins.
It is easy to see from the chart that if the second player picks
the adjacent color on the right—the sequence is cyclic, with red
to the “right” of purple—the second player wins five out of six
times. In other words, the odds are 5 to 1 in his favor!
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To avoid giving away the sequence of colors, the second
player should occasionally choose the second color to the right,
where his winning odds are 4 to 2, or the color third to the
right where the odds are even. Perhaps he should even, on
rare occasions, take the fourth or fifth color to the right where
odds against him are 4 to 2 and 5 to 1 respectively. Mel Stover
has suggested putting the numbers and colors on a 6-sided log
instead of a cube.

This, too, models nicely with 36 cards, formed in six piles,
each bearing a colored numeral. The chart’s pattern is obvious,
and easily applied to n? cards, each with numbers 1 through =,
and using = different colors. In presenting it as a betting game
you should freely display the faces of each packet to show that
all six numbers and all six colors are represented. Each packet
is shuffled and placed face down. The first player is “gener-
ously” allowed first choice of a color, and to select any packet.
The color with the highest value in that packet is the winner.
In the general case, as Cheng pointed out in his 1971 letter,
the second player can always choose a pile that gives him a
probability of winning equal to (n-1)/n.

A simpler version of this game uses 16 playing cards. The
four packets are:

AS, JH, QC, KD
KS, AH, JC, QD
QS, KH, AC, JD
JS, QH, KC, AD

Ace here is high, and the cyclic sequence of suits is spades,
hearts, clubs, diamonds. The second player wins with 3 to 1
odds by choosing the next adjacent suit, and even odds if he
goes to the next suit but one.

These betting games are all variants of nontransitive voting
paradoxes, about which there is extensive literature.
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“Holmes,” 1 cried, “this is impossible.”

“Admirable!” he said. “A most illuminating
remark. It is impossible as 1 state it, and
therefore 1 must in some respect have stated
it wrong. . .."”

—Sir ARTHUR CoNAN DOYLE,
The Adventure of the Priory School

It is commonly supposed that Euclid, the ancient Greek geo-
meter, wrote only one book, his classic Elements of Geometry. Ac-
tually he wrote at least a dozen, including treatises on music
and branches of physics, but only five of his works survived.
One of his lost books was a collection of geometric fallacies
called Pseudaria. Alas, there are no records of what it con-
tained. It probably discussed illicit proofs that led to absurd
theorems but in which the errors were not immediately
apparent.

Since Euclid’s time hundreds of amusing examples of geo-
metric fallacies have been published, some of them genuine
mistakes and some deliberately contrived. This month we con-
sider five of the best. All are theorems that could have been in
Eudlid’s Pseudaria, since none requires more than a knowledge
of elementary plane geometry to follow their steps down the
garden path to the false conclusion. (Q.E.D.: Quite Entertain-
ingly Deceptive.) The reader is urged to examine each proof
carefully, step by step, to see if he can discern exactly where
the proof goes wrong before the errors are revealed in the An-
swer Section.
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Figure 23
A E B A B Y C
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Obtuse angle equals right angle
Al triangles are isoceles
ABCD is a paralielogram

THEOREM 1: AN OBTWUSE ANGLE IS SOMETIMES EQUAL TO A RIGHT
ANGLE. This was orte of Lewis Carroll’s favorites. Figure 23,
left, reproduces Carroll’s diagram and labeling. I know of no
better way for a high school geometry teacher to convey the
importance of deductive rigor than to chalk this diagram on
the blackboard and chuallenge a class to find where the fallacy
lies. The construction and proof are described by Carroll as
follows (I quote from The Lewis Carroll Picture Book, edited by
Stuart Dodgson Collingwood, London, 1899; reprinted in the
Dover paperback Diversions and Digressions of Lewis Carroll,
1961):

Let ABCD be a square. Bisect AB at E, and through E draw
EF at right angles to A B, and cutting DC at F. Then DF=FC.

From C draw CG = (CCB. Join AG, and bisect it at H, and from
H draw HK at right angles to AG.

Since AB, AG are mot parallel, EF, HK are not parallel.
Therefore they will meet, if produced. Produce EF, and let
them meet at K. Join KD, KA, KG, and KC.

The triangles KAH, KGH are equal, because AH=HG, HK is
common, and the angles at A are right. Therefore KA=KG.

The triangles KDF, KCF are equal, because DF=FC, FK is
common, and the angles at F are right. Therefore KD=KC,
and angle KDC=angle KCD.

Also DA=CB=CG.

Hence the triangles KDA, KCG have all their sides equal.
Therefore the angles KDA, KCG are equal. From these equals
take the equal angles KDC, KCD. Therefore the remainders are
equal: i.e., the angle (GCD=the angle ADC. But GCD 1s an ob-
tuse angle, and ADC 1is a right angle.

Therefore an obtuse angle sometimes =a right angle.

Q.E.D.
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THeoreM 2: EVERY TRIANGLE 1s 1s0sCELES. This marvelous
absurdity is also in The Lewis Carroll Picture Book. Carroll prob-
ably came on both proofs in the first (1892) edition of W. W.
Rouse Ball's Mathematical Recreations and Essays, where they ap-
peared for the first time. Carroll has explained it so well that
again 1 give his diagram [see Figure 23, middle] and quote his
wording:

Let ABC be any triangle. Bisect BC at D, and from D draw
DE at right angles to BC. Bisect the angle BAC.

(1) If the bisector does not meet DE, they are parallel.
Therefore the bisector is at right angles to BC. Therefore AB =
AC, i.e., ABC is isosceles.

(2) If the bisector meets DE, let them meet at F. Join FB, FC,
and from F draw FG, FH, at right angels to AC, AB.

Then the triangles AFC, AFH are equal, because they have
the side AF common, and the angles FAG, AGF equal to the an-
gles FAH, AHF. Therefore AH=AG, and FH=FG.

Again, the triangles BDF, CDF are equal, because BD=DC,
DF is common, and the angles at D are equal. Therefore FB=
FC.

Again, the triangles FHB, FGC are right-angled. Theretore
the square on FB =the squares on FH, HB; and the square on
FC=the squares on FG, GC. But FB =FC, and FH = FG. There-
fore the square on HB=the square on GC. Therefore HB =
GC. Also, AH has been proved =to AG. Therefore AB =AC; te.,
ABC is isosceles.

Therefore the triangle ABC is always isosceles.

Q.E.D.

THEOREM 3: IF A QUADRILATERAL ABCD HAS ANGLE A EQUAL TO
ANGLE C, AND AB EQUALS CD, THE QUADRILATERAL IS A PARAL-
LeLoGraM. P. Halsey of London contributed this subtle fal-
lacy to The Mathematical Gazeite, October, 1959, pages 204-205.
On the quadrilateral shown in Figure 23 right, draw BX per-
pendicular to AD, and DY perpendicular to BC. Join BD. Tri-
angles ABX and CYD are congruent, therefore BX equals DY
and AX equals CY. It follows that triangles BXD and DYB are
congruent, consequently XD equals YB. Since AB equals CD
and AD equals BC, the quadrilateral ABCD must be a parallel-
ogram. The proof is strongly convincing, yet the theorem is
false. Can the reader provide a counterexample?

TueoreMm 4: P gquars 2. Figure 24 is based on the familiar
yin-yang symbol of the Orient. Let diameter AB equal 2. Since
a circle’s circumference is its diameter times pi, the largest
semicircle, from A to B, has a length of 2n/2=m. The two next-

53



iy

CHAPTER 6

Figure 24

A

B

Pi equals 2

smallest semicircles, which form the wavy line that divides the
yin from the yang, are each equal to w/2 and so their total
length is pi. In similar fashion the sum of the four next-small-
est semicircles (each m/4) also is pi, and the sum of the eight
next-smallest semicircles (each 7/8) also i1s pi. This can be con-
tinued endlessly. "fl”he semicircles grow smaller and more nu-
merous, but they always add to pi. Clearly the wavy line ap-
proaches diameter AB as a limit. Assume that the construction
is carried out an infinite number of times. The wavy line must
always retain a length of pi, yet when the radii of the semicir-
cles reach their limit of zero, they coincide with diameter AB,
which has a length of 2. Consequently pi equals 2.

THEOREM 5: EUCLID’S PARALLEL POSTULATE CAN BE PROVED BY
EucLip’s OTHER Ax1oMms. First, some historical background.
Among Euclid’s 10 axioms, his fifth postulate states that if a
line A crosses two other lines, making the sum of the interior
angles on the same side of A less than 180 degrees, the two
lines will intersect on that side of A. A variety of seemingly un-
related theorems can be substituted for this axiom since they
require it for their proof: The theorem that the interior angles
of every triangle add to 180 degrees, or that a rectangle exists,
or that similar noncongruent triangles exist, or that through
three points not in a straight line only one circle can be drawn,
and many others.

Hundreds of attempts have been made since Euchid’s time to
replace his cumbersome fifth postulate with one that is simpler
and more intuitively obvious. The most famous became known
as “Playfair’s postulate” after the Scottish mathematician and
physicist John Playfair. In his popular 1795 edition of Euclid’s
Elements he substituted for the fifth postulate the equivalent

5
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but more succinct statement, “Through a given point can be
drawn only one line parallel to a given line.” Actually this form
of the fifth postulate was suggested by Proclus, in a fifth-cen-
tury Greek commentary on Euclid, as well as by later mathe-
maticians who preceded Playfair, but the parallel postulate still
bears Playfair’s name.

Whatever form the fifth axiom was given, it always seemed
less self-evident than Euclid’s other axioms, and some of the
greatest mathematicians labored to eliminate it entirely by
proving it on the basis of the other nine. (For a good account
of this history see W. B. Frankland, Theories of Parallelism, an
Historical Critigue, Cambridge University Press, 1910.) The
18th-century French geometer Joseph Louis Lagrange was
convinced that he had produced such a proof by showing (with-
out assuming Euclid’s fifth postulate) that the angles of any tri-
angle add to a straight angle. In the middle of the first para-
graph of a lecture to the French Academy on his discovery,

however, he suddenly said, “Il faut que j’y songe encore” (“I

shall have to think it over again”), put his papers in his pocket
and abruptly left the hall.

More than a century ago it was established that it is as im-
possible to prove the fifth postulate as it is to trisect the angle,
square the circle or duplicate the cube, yet even in this century

r

splendid example is the heart of a 310-page book, Euclid or
Einstein, privately printed in 1931 by Very Rev. Jeremiah Jo-
seph Callahan, then president of Duquesne University. Since
the general theory of relativity assumes the consistency of a
non-Euclidean geometry, a simple way to demolish Einstein is
to show that non-Euclidean geometry is contradictory. This Fa-
ther Callahan proceeds to do by a lengthy, ingenious proof of
the parallel postulate. It is a pleasant exercise to retrace Father
Callahan’s reasoning in an effort to find exactly where it goes
astray. (For those who give up, the error is exposed by D. R.
Ward’s “A New Attempt to Prove the Parallel Postulate” in The
Mathematical Gazette, Vol. 17, pages 101-104, May, 1933.)

A simple proof of the parallel postulate uses the diagram
shown in Figure 25. AB is the given line and C the outside
point. From C drop a perpendicular to AB. It can be shown,
without invoking the parallel postulate, that only one such per-
pendicular can be drawn. Through C draw EF perpendicular
to CD. Again, the parallel postulate is not needed to prove that
this too is a unique line. Lines EF and AB are parallel. Once
more, the theorem that two lines, each perpendicular to the
same line, are parallel is a theorem that can be established
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Figure 25

E C F

A D B

A proof of the paralle! postulate

without the parallel postulate, although the proof does require
other Euclidean assumptions (such as the one that straight
lines are infinite in length) that do not hold in elliptic non-Eu-
clidean geometry. Elliptic geometry does not contain parallel
lines, but given Euclid’s other assumptions one can assume that
parallel lines do exist.

We have apparently now proved the parallel postulate. Or
have we’?

This and hundreds of other false proofs of Euclid’s fifth

e iR C ST IR oot ¢ o~ L~ ancil irtbyiitiney
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be deceived. It helps one to understand why it took so long for
geometers to realize that the parallel postulate was independ-

b cabiane thior s o 31T o
ent Ox thne otners, tnat Oonc may assuine either that no parallel

line can be drawn through the outside point, or that at least
two can. (It turns out that if two can, an infinite number can.)

Tew saemmbh amon | s
In each case a consistent non-Euclidean geometry is constructible.

Even after non-Euclidean geometries were found to be as
free of logical contradiction as Euclidean geometry, many em-
inent mathematicians and scientists could not believe that non-
Euclidean geometry would ever have a useful application to
the actual space of the universe. It is well known that Henri
Poincaré argued in 1903 that if physicists ever found empirical
evidence suggesting that space was non-Euclidean, it would be
better to keep Euclidean geometry and change the physical
laws. “Euclidean geometry, therefore,” he concluded, “has
nothing to fear from fresh experiments.” Not so well known is
the fact that Bertrand Russell and Alfred North Whitehead
once voiced the same view. In 1910, in the famous 11th edition
of The Encyclopaedia Britannica, the article on “Geometry, Non-
Euclidean” is by Russell and Whitehead. If scientific observa-
tion were ever to conflict with Euclidean geometry, they assert,
the simplicity of Euclidean geometry is so overwhelming that it
would be preferable “to ascribe this anomaly, not to the falsity
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of Euclidean geometry (as applied to space), but to the falsity
of the laws in question. This applies especially to astronomy.”

Six years later Einstein’s general theory of relativity made
this statement, along with Poincar€’s, hopelessly naive. Not
only does non-Euclidean geometry provide a simpler descrip-
tion of the space-time of general relativity; it is even possible
that space may close on itself (as it does in Einstein’s early
model of the universe) to introduce topological properties that
are in principle capable of being tested, and that could make
the choice of non-Euclidean geometry as the best description
of space more than a trivial matter of convention.

Russell was quick to alter the opinion expressed in the Bri-
tannica article but Whitehead was slow to get the point. In 1922
he wrote an embarrassing book, The Principle of Relativity, that
attacked Einstein’s use of a generalized non-Euclidean geome-
try (in which curvature varies from spot to spot) by arguing
that simplicity demands that the geometry applied to space
must be either Euclidean (Whitehead’s preference) or, if the
evidence warrants it, a non-Euclidean geometry in which the
curvature is everywhere constant.

) 72 TR tha maral af all thic? Intiition is
Intuition 1§

What is the moral of all this? Int powerful tool in

a

a powerfu 1
mathematics and science but it cannot always be trusted. The
structure of the universe, like pure mathematics itself, has a

way of being much stranger than even the greatest mathema-

ticians and physicists suspect.

ANSWERS

The errors in the fallacious geometric proofs are briefly ex-
plained as follows:

THEOREM 1. AN OBTUSE ANGLE 1S SOMETIMES EQUAL TO A RIGHT
ANGLE. The mistake lies in the location of point K. When the
figure is accurately drawn, K is so far below line DC that, when
G and K are joined, the line falls entirely outside the original
square ABCD. This renders the proof totally inapplicable.

THEOREM 2. EVERY TRIANGLE Is ISOSCELES. Again the error is
one of construction. F is always outside the triangle and at a
point such that, when perpendiculars are drawn from F to
sides AB and AC, one perpendicular will intersect one side of
the triangle but the other will intersect an extension of the
other side. A detailed analysis of this fallacy can be found in
Eugene P. Northrop’s Riddles in Mathematics (1944), Chapter 6.
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THEOREM 3. IF A QUADRILATERAL ABCD HAS ANGLE A EQUAL TO
ANGIE C, AND AB EQUALS CD, THE QUADRILATERAL IS A PARAL-
LELOWGRAM. The proof is correct if X and Y are each on a side
of thee quadrilateral or if both X and Y are on projections of the
sides. It fails if one is on a side and the other is on an extension
of .a side, as shown in Figure 26. This figure meets the theo-
rem’s conditions but obviously is not a parallelogram.

Figure 26

A X D

Quadrilateral-theorem counterexample

"THEOREM 4. P1 EQUALS 2. It is true that as the semicircles are
mad e smaller their radii approach zero as a limit and therefore
thie wavy line can be made as close to the diameter of the large
circle as one pleases. At no step, however, do the semicircles
alter their shape. Since they always remain semicircles, no mat-
ter how small, their total length always remains pi. The fallacy
is an excellent example of the fact that the elements of a con-
verging infinite series may retain properties quite distinct from
those of the limit itself.

"THEOREM 5. EUCLID’S PARALLEL POSTULATE CAN BE PROVED BY
EvcrLip’s oTHER axioMs. The proof is valid in showing that
one line can be constructed through C that is parallel 1o AB,
but 1t fails to prove that there is only one such parallel. There
are many other methods of constructing a parallel line through
C; the proof does not guarantee that all these parallels are the
same line. Indeed, in hyperbolic non-Euclidean geometry an in-
finity of such parallels can be drawn through C, a possibility
that can be excluded only by adopting Euclid’s fifth postulate
or ome equivalent to it. Elliptic non-Euclidean geometry, in
which no parallel can be drawn through C, is made possible by
discarding, along with the fifth postulate, certain other Euclid-
ean assumptions.

I
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7

THE COMBINATORICS

OF PAPER FOLDING

The easiest way to refold a road map is
differently.

—JonEs’s, Rule of the Road

One of the most unusual and frustrating unsolved problems in

modern combinatorial theory, proposed many years ago by

Qfﬂnlcls}w M 'T]Qm IQ thp prnblem Of del.\.l 1111111115 Lhe n‘lilll
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of different ways to fold a rectangular “map.” The map is pre-

creased along vertical and horizontal lines to form a matrix of
identical rectancles. The folds are confined to the creases. and
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the final result must be a packet with any rectangle on top and
all the others under it. Since there are various ways to define
what is meant by a “different” fold, we make the definition
precise by assuming that the cells of the unfolded map are
numbered consecutively, left to right and top to bottom. We
wish to know how many permutations of these n cells, reading
from the top of the packet down, can be achieved by folding.
Cells are numbered the same on both sides, so that it does not
matter which side of a cell is “up” in the final packet. Either
end of the packet can be its “top,” and as a result every fold
will produce two permutations, one the reverse of the other.
The shape of each rectangle is irrelevant because no fold can
rotate a cell 90 degrees. We can therefore assume without al-
tering the problem that all the cells are identical squares.

The simplest case is the 1-by-n rectangle, or a single strip of
n squares. It is often referred to as the problem of folding a
strip of stamps along their perforated edges until all the
stamps are under one stamp. Even this special case is still un-
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solved in the sense that no nonrecursive formula has been
found for the number of possible permutations of n stamps.
Recursive procedures (procedures that allow calculating the
number of folds for n stamps provided that the number for
n—1 stamps is known) are nonetheless known. The total num-
ber of permutations of n objects 1s n! [that is, factorial n, or n X
X 1]. All n! permutations can be folded with
a strip of two or three stamps, but for four stamps only 16 of

(rn—1xn-2).

the 4!

=24 permutations are obtainable [see Figure 27). For five

stamps the number of folds jumps to 50 and for six stamps it
is 144. John E. Koehler wrote a computer program, reported
in a 1968 paper, with which he went as high as n=16, for
which 16,861,984 folds are possible. W. F. Lunnon, in another
1968 paper, carried his results to =24, and in a later paper,
to n=28. Koehler showed in his article that the number of pos-
sible stamp folds is the same as the number of ways of joining
n dots on a circle by chords of two alternating colors in such a
way that no chords of the same color intersect.

The simplest rectangle that is not a strip is the trivial 2-by-2

square. It i1s easy to find that only eight of the 4! =24 permu-
tations can be folded, half of which (as explained above) are
Figure 27
5 ? Ty
4 S
e L A i
f;)%\:\'\ S\)“Srs ,\f} r‘\w;w S ‘sr J%‘-’l & ‘,,’1{?&)? JJ%‘I‘JJ:\ﬁfUL
£ BN § BT g E M
APRET ABEX Y A A
b o ‘\:é\%"’ %, § z (595 '\\&\\ ,5, N aa \{Xs ﬁf Ny \\\i)?
e S { b ok J e A ¥ o
i N Y, o5 a3 P T 1 Y A
h ) ! AR o ) A
L‘J ! Urs ; [».r\ »r\r.r\ss;’ u
1234 2341 3412 4123
T, TP s 2,
Irf’( B R”;F;h \‘\\*_‘ s“‘&; \\&"’w\ e
_j; N 1{5’5’-5\‘\“\;\ S 5\1‘\\1&\;{ 50} ﬁ\:‘“"\\\\:n I f b '\"pE:. }\\\;\
) T ! . = o
%, ‘r""‘é LAY ) \E“q\g‘\, § S‘—%‘\:\\\\ ) N"\ﬂb&\” \\‘f\g{\
d S k! =, v
L Uy vt P (Fad
1243 2431 3124 4312
P . 5‘5%;‘““‘\~
f!! T2 0% R N~ ey EA NI
Il wTO R T YRR Sy ST
. Y " s ST TENT = J . B I
L i‘h » & S| ;J! ey K i i’ ,‘;"” Y RN Ny q/ 7
L N S 4 j <% YN Ny KNy Ly
AR Rt NN EN 3 XY FAE SN
e RN RN R s NG
,3.’\J \\‘“i""‘ N‘\_J?a'v” v
4
1342 2134 3421 4213
T
% \ “‘L CK\ U . s’f";
r(".,{e'f“;:d“”"} Jg'i;}\\’\\ ()H'\”w 1“;'5_ o 1‘1‘. ;’:'.“:\‘\ S!{ J'.’l.
A A TN ',‘uﬁ;\x@.c?, ok \\\ 5 ~®
SRR i 77Ny ¥ MR o Ey Vo
,5’ IR & "-«Sb‘ Pl " C RN K2 W AN A
< d o 4 ey TR [ T DAY " - R A N
(T 3 Lo S ¥ ho¥ Tee N 4 7 A
- [V S S - e?; < b
g RN oo = i Al
1432 2143 3214 4321

The 16 ways to fold a four-stamp strip
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reversals of the other half. The 2-by-3 rectangle is no longer
trivial, because now it becomes possible to tuck one or more
cells into open pockets. This greatly confuses matters. As far as
I know, nothing has been published on the nonstrip rectangles.
I was able to fold 60 of the 6!=720 permutations (10 folds for
each cell on top), but it is possible I missed a few.

An amusing pastime is to find six-letter words that can be
put on the 2-by-3 map (lettering from left to right and from
the top down) so that the map can be folded into a packet that
spells, from the top down, an anagram of the original word.
Each cell should be labeled the same on both sides to make it
easier to identify in the packet. For example, it is not hard to
fold 1LL-FED to spell FILLED and SQUIRE to spell RisQUE. On the
other hand, 0SBERG (an anagram for the last name of the Ar-
gentine writer Jorge Luis Borges that appears on page 361 of
Vladimir Nabokov’s novel Ada) cannot be folded to BoRrces,
nor can BORGEs be folded to osBerG. Can the reader give a
simple proof of both impossibilities?

The 2-by-4 rectangle is the basis of two map-fold puzzles by
Henry Ernest Dudeney (see page 130 of his 536 Puzzles & Cu-
rious Problems. Scribner’s, 1967). Dudeney asserts there are 40
ways to fold this rectangle into a packet with cell No. 1 on top,
and although he speaks tantalizingly of a “little law” he discov-
ered for identifying certain possible folds, he offers no hint as
to its nature. I have no notion how many of the 8!=40,320
permutations can be folded.

3 . o oerinallac
When one considers the 3-by-3, the smallest

1ontrivial
square, the problem becomes fantastically complex. As far as I
know, the number of possible folds (of the 9!=362,880 per-
mutations) has not been calculated, although many paperfold
puzzles have exploited this square. One was an advertising pre-
mium, printed in 1942 by a company in Mt. Vernon, N.Y., that
is diagrammed in Figure 28. On one side of the paper there
are the faces of Mussolini and Hitler. On the back of the re-
maining cell of the same row is the face of Tojo, the wartime
prime minister of Japan. Above this cell is a prison window
with open spaces die-cut between two bars; below the Tojo cell
a similar window appears on the back of the cell, as indicated
by the dotted lines. The problem is to fold the square into a
Packet so that at each end two of the faces appear behind the
bars; that is, so that on each side of the packet the top cell
bears a picture of a window and directly under it a face shows
through the open slots between the bars. The fold is not diffi-
cult, but it does require a final tuck.
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Figure 28

A map-fold problem from World War il

A much tougher puzzle using a square of the same size is the
creation of Robert Edward Neale, a Protestant minister, pro-
fessor of psychiatry and religion at the Union Theological
Seminary and the author of the influential book In Praise of
Play (Harper & Row, 1969). Neale is a man of many avocations.
One of them is origami, the Oriental art of paper folding, a
field in which he is recognized as one of the country’s most cre-
ative experts. Magic is another of Neale’s side interests; his fa-
mous trick of the bunny in the top hat, done with a folded dol-
lar bill, is a favorite among magicians. The hat is held upside
down. When its sides are squeezed, a rabbit’s head pops up.
(The interested reader can obtain Bunny Bill, a manuscript de-
scribing the fold, from Magic, Inc., 5082 North Lincoln Ave-
nue, Chicago, Ill. 60625. The fold is far from simple, by the
way.)

Figure 29 shows Neale’s hitherto unpublished Beelzebub
puzzle. Start by cutting a square from a sheet of paper or thin
cardboard, crease it to make nine cells, then letter the cells (the
same letter on opposite sides of each cell) as indicated. First try
to fold the square into a packet that spells (from the top down)
these eight pseudonyms of the fallen angel who, in Milton’s
Paradise Lost, is second in rank to Satan himself: Bel Zeebub,
Bub Blezee, Ube Blezbe, Bub Zelbee, Bub Beelze, Zee Bubble,
Buz Lebeeb, Zel Beebub. If you can master these names, you
are ready to tackle the really fiendish one: Beelzebub, the true
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Figure 29

Robert Edward Neale's Beelzebub puzzle

name of “the prince of the devils” (Matthew 12:24). Its ex-
tremely difficult fold will be explained in the Answer Section.
No one who succeeds in folding all nine names will wonder
why the goneral mn.—_f 1dinn ey enhloesy 11 T | R
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Neale has invented a variety of remarkable paper-fold puz-

zles, but there is space for only two more. One is in effect a
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30]. The numbers may represent six colors: all the 1-cells are
one color, the 2-cells a second color and so on. Here opposite

sides of each cell are different. After numbering or coloring as

shown at the top in the illustration, turn the sheet over (turn it
sideways, exchanging left and right sides) and then number or
color the back as shown at the bottom. The sheet must now be
folded to form a curious species of tetraflexagon. (Tetraflexa-
gons were the topic of an earlier column that is reprinted in
The 2nd Scientific American Book of Mathematical Puzzles &
Diversions.

To fold the tetraflexagon, position the sheet as shown at the
top in the illustration. (It helps if you first press the creases so
that the solid lines are what origamians call “mountain folds”
and the dotted lines are “valley folds.”) Reach underneath and
seize from below the two free corners of the 1-cells, holding
the corner of the upper cell between the tip of your left thumb
and index finger and the corner of the lower cell between the
tip of your right thumb and finger. A beautiful maneuver can
now be executed, one that is easy to do when you get the knack
even though it is difficult to describe. Pull the corners simul-
taneously down and away from each other, turning each 1-cell
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Figure 30
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Front (top) and back (bottom) of the unfolded tetraflexagon

over so that it becomes a 5-cell as you look down at the sheet.
The remaining cells will come together to form two opentop
boxes with a 6-cell at the bottom of each box [see Figure 31).
Shift your grip to the two inside corners of the 5-cells—cor-
ners diagonally opposite the corners you were holding. Push
down on these corners, at the same time pulling them apart.
The boxes will collapse so that the sheet becomes a flat 2-by-2
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Figure 31

First step in folding the tetraflexagon

tetraflexagon with four l-cells on top and four 2-cells on the
underside [see Figure 32]. If the collapsing is not properly
done, you will find a 4-cell in place of a 1-cell, and/or a $-cell
in place of a 2-cell. In either case simply tuck the wrong square
out of sight, replacing it with the correct one.
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Final step in folding the tetraflexagon

The tetraflexagon is flexed by folding it in half (the two sides
going back), then opening it at the center crease to discover a
new “face,” all of whose cells have the same number (or color).
It is easy to flex and find faces 1, 2, 3 and 4. It is not so easy to
find faces 5 and 6.

One of Neale’s most elegant puzzles is his “Sheep and
Goats,” which begins with a strip of four squares and a tab for
later gluing [see Figure 33.] Precrease the sheet (folding it both
ways) along all dotted lines. Then color half of each square
[dark grey in illustration] black—on both sides, as if the ink had
soaked right through the paper.

The strip is folded as shown in steps a, b, ¢ and d. The first
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Figure 33

Neale's “Sheep and Goats” problem

fold is back and down. The next three folds are valley folds,
first to the right, then up, then left. After the last fold slide the
tab under the double-leaved black triangle at the top left of the
square. Glue the tab to the bottom leaf of the triangle. You
should now have a square with four black and four white tri-
angles on each side. These are the sheep and goats.

The problem is: By folding only along precreased lines,
change the paper to a square of the same size that is all white
on one side and all black on the other. In other words, separate
the sheep from the goats. It is not easy, but it is a delight to
make the moves rapidly once you master the steps—which 1
shall diagram in the Answer Section, along with the answer to
the tetraflexagon puzze. (To make the manipulations smoother,
it is a good plan to trim a tiny sliver from all single edges after
the square has been folded and glued.)

Anyone interested in learning some of Neale’s more tradi-
tional origami figures will find six of his best (including his
Thurber dog) in Samuel Randlet’s The Best of Origami (E. P.
Dutton, 1963). Some of his dollar-bill folds (including the
jumping frog) are in Folding Money: Volume 11, edited by Rand-
lett (Magic, Inc., 1968).

ANSWERS

A simple proof that on the two-by-three rectangle OSBERG can-
not be folded to spell BORGEs (or vice versa) is to note that in
each case the fold requires that two pairs of cells touching only
at their corners would have to be brought together in the final
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packet. It is evident that no fold can put a pair of such cells
together.

The square puzzle with the faces and prison windows is
solved from the starting position shown. Fold the top row back
and down, the left column toward you and right, the bottom
row back and up. Fold the right packet of three cells back and
tuck it into the pocket. A face is now behind bars on each side
of the final packet. The central face of the square cannot be
put behind bars because its cell is diagonally adjacent to each
of the window cells.

Space prevents my giving solutions for the eight pseudonyms
of Beelzebub, but Beelzebub itself can be obtained as follows.
Starting with the layout shown, fold the bottom row toward
you and up to cover BBE. Fold the left column toward you and
right to cover ZU. Fold the top row toward you and down, but
reverse the crease between L and Z so that LZ goes between B
and B on the left and the upper E goes on top of the lower E.
You now have a rectangle of two squares. On the left, from the
top down, the cells are BLZBUB, on the right EEE. The final
move is difficult. Fold the right panel (EEE) toward you and
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tween Z and B, and the other two E’s together go between B
and L. Once you grasp what is required it is easier to combine
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tightly locked packet that spells Beelzebub. The solution is

unique. If the cells of the original “map” are numbered 1
thronoeh O the final nacket 1c 462190795
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To find the 5- face of the tetraflexagon, start with face 1 on
the top and 2 on the bottom. Mountain-fold in half vertically,
left and right panels going back, so that if you were to open
the flexagon at the center crease you would see the 4-face. In-
stead of opening it, however, move left the lower inside square
packet (with 4 and 3 on its outsides) and move right the upper
square packet (also with 4 and 3 on its outsides). Insert your
fingers and open the flexagon into a cubical tube open at the
top and bottom. Collapse the tube the other way. This creates
a new tetraflexagon structure that can be flexed to show faces
1, 3 and 5.

A similar maneuver creates a structure that shows faces 2, 4
and 6. Go back to the original structure that shows faces 1, 2,
3 and 4 and repeat the same moves as before except that you
begin with the 2-face uppermost and the l-face on the
underside.

Figure 34 shows how to separate the sheep from the goats:

(1) Start with the two-color square folded as shown.

(2) Fold in half along the horizontal diagonal by folding the
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Figure 34

Solution to the “Sheep and Goats” problem

bottom corner up to make a “hat” with a white triangle at the
lower left-hand corner.

(3) Open the hat’s base and continue opening until you can
flatten the hat to make the small square shown.

(4) Insert a left finger into the pocket on the right of the up-
per face of drawing No. 3. Pull upward and flatten as shown.

(5} Turn the paper over s dpumyc and repeat the prPVlnl]ﬂ

move on the other side. The result is a rectangle with a white
triangle in the upper right-hand corner.
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(6) Open the rectangle into a cubical tube open at the

ric tGp

at
and bottom. Collapse the tube the other way to make a rectan-
gle again, except that now it is colored as shown.

(7) Insert your right thumb into the pocket on the left of
drawing No. 6, lift up the flap and flatten it as shown.

(8) Turn the paper over sideways and do the same on the
other side. You should now have a small square, black on both
sides.

(9) Reach into the square from above, open it and flatten to
make an inverted hat, black on both sides.

(10) Open the hat by separating its bottom points and flat-
ten the large square that results. It will be the same size as the
square you started with, but now it is all white on one side and
all black on the other—all sheep and all goats.

Repeating the same sequence of moves will mix the sheep
and the goats again. With practice the folds can be done so
rapidly that you can hold the square out of sight under a table
for just a few moments and produce the change almost as if by
magic.
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ADDENDUM
The “little law’’ that Henry Ernest Dudeney hinted about in

connection withh his map-fold problem has probably been redis-
covered. Mark B. Wells of the Los Alamos Scientific Labora-
tory used a computer to confirm that the 2X3 map has 10
folds for each cell on top. The program also found that the
order-3 square has 152 folds for each cell on top. In his 1971
paper Lunnom proved that for any rectangular map every
cyclic permutation of every possible fold is also a possible fold.
Thus it is necessary to determine only the folds for one cell on
top because the cyclic permutations of these folds give all the
other folds. For example, since 123654789 is a possible fold, so
also are 236547891, 365478912 and so on. It is a strange law
because the folds for cyclic permutations differ wildly. It is not
yet known whether the law applies to all polyomino-shaped
maps or to maps with equilateral triangles as cells.

In his 1971 paper Lunnon used an ingenious diagram based
on two perpendicular slices through the center of the final
packet. He was able to write a simple backtrack program for

x-by-y maps, extend the problem to higher dimensions and dis-
cover several remarkable theorems. For example, the edges of
one cross section always diagram x linear maps of y cells each,
and the edges of the other cross section diagram y linear maps
of x cells each.

The 2x3, 2> 4,2X5,2x6, and 3 X4 maps have respectively
60, 320, 1980, 10512, and 15552 folds. The order-3 square
has 1368 folds, the order-4 has 300608, the order-5 has
186086600. In all cases the number of folds is the same for
each cell on top, as required by cyclic law. The order-2 cube,
folded through the fourth dimension, has 96 folds. The order-3
cube has 85109616. Many other results are tabulated by Lun-
non in his 1971 paper, but a nonrecursive formula for even
planar maps remains elusive.

The linear map-fold function, as Lunnon calls it, is the limit
approached by the ratio between adjacent values of the num-
ber of possible folds for a 1Xn strip. It is very close to 3.5. In
his unpublished 1981 paper Lunnon narrows the upper and
lower bounds to 3.3868 and 3.9821.

In 1981 Harmony Books in the United States, and Pan
Books in England brought out a large paperback book called
Folding Frenzy. It contains six 3 X 3 squares, with red and green
patterns on both sides, and five pages partially die-cut. Without
removing any pages, there are nine puzzles to solve by folding
the squares. The puzzles are credited to Jeremy Cox.

In describing one of his map-fold puzzles (Modern Puzzles,
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No. 214) Dudeney mentioned a curious property of map folds
that is not at all obvious until you think about it carefully It
applies not only to rectangular maps, but also to maps in the
shape of any polyomino; that is, a shape formed by Jommg
unit squares at their edges. Assume that any such map is red
on one side, white on the other. No matter how it is folded into
a 1x1 packet, the colors on the tops of each cell will alternate
regardless of which side of the packet is up. If the cells of the
map are colored like a checkerboard, with each cell the same
color on both sides, the final packet (after any sort of folding)
will have leaves that alternate colors. If the checkerboard col-
oring is such that each cell is red on one side, white on the
other, all cells in the folded packet will have their red sides fac-
ing one way, their white sides facing the other way.

It occurred to me in 1971 that the parity principles involved
here could be the basis for a variety of magic tricks. One ap-
peared under the title “Paradox Papers” in Karl Fulves’ magic
periodical, The Pallbearers Review. 1t goes like this: Fold a sheet
of paper twice in each direction so that the creases make 16
cells. It is a good plan to fold the paper each way along every

crease to make refolding easier later on

CAdi LU IIIdiRi TLaValiaiig LGOI 2 2GRLE RAS2.

Assume in your mind that the cells are checkerboard colored
black and red, with red at the top left corner. Five red playing
cards are taken from a deck and someone selects one of them.
With a red pencil jot the names of the five cards in five cells,

using abbreviations such as 4D and QH. Tell your audience
that you are taking cells at random, but artuallv you must put
the name of the chosen card on one of the ‘black cells, and
the other four names on “red” cells.

Have another card chosen, this time from a set of five black
cards. Turn the sheet over, side for side, and jot the names of
the five black cards on cells, again apparently at random. Use
a black pencil. Put the chosen card on a *“red” cell, the others
on “black” cells.

Ask someone to fold the sheet any way he likes to make a
1 X 1 packet. With a pair of shears, trim around the four sides
of the packet. Deal the 16 pieces on the table. Five names will
be seen, all the same color except for one—the chosen card of
the other color. Turn over the 16 pieces. The same will be true
of the other sides.

Gene Nielsen, in the May 1972 issue of the same journal,
suggested the following variant. Pencil X's and O’s on all the
cells, alternating them checkerboard fashion. Turn over the
sheet horizontally, and put exactly the same pattern on
the other side. Spectators will not realize that each cell has an

Ia
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X on one side, a O on the other. Someone folds the sheet ran-
domly into a packet. Pretend you are using PK to influence the
folding so that it will produce a startling result. Trim the sides
of the packet and spread the pieces on the table. All X’s face
one way, all O’s face the other way.

Swami, a magic periodical published in Calcutta by Sam
Dalal, printed my “Paper Fold Prediction” in its July 1973 is-
sue. Start by numbering the cells of a 3x3 sheet from 1
through 9, taking the cells in the usual way from left to right
and top down. Put the digits on one side of the paper only.
After someone folds the sheet randomly, trim the sides of the
packet and spread the pieces. Add all the numbers showing.
Reverse the pieces and add the digits on the other sides. The
two sums will be different. Explain that by randomly folding
the sheet, the nine digits are randomly split into two sets.
Clearly there is no way to know in advance what either sum
will be when the pieces are spread.

Repeat the same procedure, but this time use a 4 X 4 square
with cells numbered 1 through 16. The sheet is randomly
folded and the edges trimmed. Before spreading the pieces,
hold them to your forehead and announce that the sum will be
68. Put down the packet, either side uppermost, and spread
the pieces. The numbers showing will total 68. Discard the
pieces before anyone discovers that the sum on the reverse
sides also 1s 68.

The trick works because if the original square has an odd
number of cells, the sums on the two sides will not be equal.
(On the 3x 3 they will be 20 and 25.) However, if the square
has an even number of cells, the sum is a constant equal to
(n? +n)/4 where n is the highest number. You can now repeat
the trick with a 5x5 square, but instead of predicting a sum,
predict that the difference between the sums on the two sides of
the pieces will be 13.

The principle applies to cells numbered with other se-
quences. For example, hand a wall calendar to someone and
ask him to tear out the page for the month of his birth. He
then cuts from the page any 4X4 square of numbers. The
sheet is folded, the packet trimmed, the pieces spread, and the
visible numbers added. The sum will be equal to four times
the sum of the sheet’s lowest and highest numbers. You can
predict this as soon as you see the square that has been cut, or
you can divine the number later by ESP.

Some other suggestions. Allow a spectator to write any digit
he likes in each cell of a sheet of any size, writing left to right
and top down. As he writes, keep a running total in your head
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by subtracting the second number from the first, adding the
third, subtracting the fourth, and so on. The running total is
likely to fluctuate between plus and minus. The number you
end with, whether plus or minus, will be the difference be-
tween the two sums after the sheet is folded, trimmed, and the
pieces spread.

Magic squares lend themselves to prediction tricks of a simi-
lar nature. For example, suppose a 4 X4 map bears the num-
bers of a magic square. After folding, trim only on two oppo-
site sides of the packet. This will produce four strips. Have
someone select one of the four. The other three are destroyed.
You can predict the sum of the numbers on the selected strip
because it will be the magic square’s constant. Of course you do
not tell the audience that the numbers form a magic square.

Many of these tricks adapt easily to nonsquare sheets, such
as a 3 x 4. The underlying principles deserve further explora-
tion by mathematical magic buffs.
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A SET OF QUICKIES

The following problems are of the “quickie” type in the sense
that they are quickly stated and, at least so I believed when 1
first gave them, not hard to solve if properly approached.
Some are joke questions, and others contain booby traps to
catch the unwary.

Problem 1: You want to construct a rigid wire skeleton of a
one-inch cube by using 12 one-inch wire segments for the
cube’s 12 edges. These you intend to solder togeiher at the
cube’s eight corners.

“Why not cut down the number of soldering points,” a
friend suggests, “by using one or more longer wires that you
can bend at sharp right angles at various corners?”

Adopting your friend’s suggestion, what is the smallest num-
ber of corners where soldering will be necessary to make the
cube’s skeleton rigid? (Philip G. Smith, Jr.)

Problem 2: An intelligent horse learns arithmetic, algebra,
geometry and trigonometry but is unable to understand the
Cartesian coordinates of analytic geometry. What proverb does
this suggest? (Howard W. Eves, in Mathematical Circles, Vol. 1.)

Problem 3: Your king is on a corner cell of a chesshoard and
your opponent’s knight is on the corner cell diagonally oppo-
site. No other pieces are on the board. The knight moves first.
For how many moves can you avoid being checked? (From
David L. Silverman’s collection of game problems, Your Move.)
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Problem 4: Nine heart cards from an ordinary deck are ar-
ranged [see Figure 35] to form a magic square so that each row,
column and main diagonal has the largest possible constant
sum, 27. (Jacks count 11, queens 12, kings 13.) Drop the re-
quirement that each value must be different. Allowing dupli-
cate values, what is the largest constant sum for an order-3
magic square that can be formed with nine cards taken from a
deck? (M. G.)

Figure 35

A magic square with nine hearts

Problem 5: Make a statement about n that is true for, and
only true for, all values of n less than one million. (Leo Moser.)

Problem 6: Why would a barber in Geneva rather cut the
hair of two Frenchmen than of one German-

Problem 7: With a black pencil draw a closed curve of any
shape you please. With a red pencil draw a second curve of the
same kind on top of the first one, never passing through a pre-
viously created intersection. Gircle all points where one curve
crosses the other [se¢ Figure 36]. Prove that the number of such
points is even. (M. G.)

Problem 8: Place a familiar mathematical symbol between 2
and 3 to express a number greater than 2 and less than 3.
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Figure 36

A topological theorem

Problem 9: A six-story house (not counting the basement)
has stairs of the same length from floor to floor. How many
times as high is a climb from the first to the sixth floor as a
climb from the first to the third foor?

Problem 10: Each of the two equal sides of an isosceles tri-
angle is one unit long. Without using calculus, find the length
of the third side that maximizes the triangle’s area.

Problem 11: What three positive integers have a sum equal
to their product?

Problem 12: A string, lying on the floor in the pattern shown
in Figure 37, is too far away for you to see how it crosses itself
at points A, B and C. What is the probability that the string is
knotted? (L. H. Longley-Cook, Fun with Brain Puzzlers.)

Problem 13: If AB, BC, CD and DE are common English
words, what familiar word is pcaBe? (David L. Silverman, Word
Ways, August 1969.)

Problem 14: Time, March 7, 1938, reported that one Samuel
Isaac Krieger claimed to have found a counterexample to Fer-
mat’s unproved last theorem. Krieger announced that it was
1,324"+731"=1,961", where n is a certain positive integer
greater than 2, and which Krieger refused to disclose. A re-
_porter on The New York Times, said Time, easily proved that
Krieger was mistaken. How?
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Figure 37

C

Is the string probably knotted?

Problem 15: What familiar English word begins and ends
with und?

Problem 16: A man arrives at a random spot several miles
from the Pentagon. He looks at the building through binocu-
lars. What is the probability that he will see three of its sides?
(F. T. Leahy, jr.)

Problem 17: Change 11030 to a person by adding two
straight line segments.

Problem 18: A boy and a girl are sitting on the front steps of
their commune,

“I'm a boy,” said the one with black hair.

“I'm a girl,” said the one with red hair.

If at least one of them is lying, who is which? (Adapted from
a problem by Martin Hollis, in Tantalizers.)

Problem 19: A “superqueen” is a chess queen that also moves
like a knight. Place four superqueens on a five-by-five board so
that no piece attacks another. If you solve this, try arranging
10 superqueens on a 10-by-10 board so that no piece attacks
another. Both solutions are unique if rotations and reflections
are ignored. (Hilario Fernandez Long.)

Problem 20:

ABCD
DCBA

¢ & »

12300
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ABCD are four consecutive digits in increasing order. DCBA
are the same four in decreasing order. The four dots represent
the same four digits in an unknown order. If the sum is
12,300, what murnber is represented by the four dots? (W. T.
Williams and G. H. Savage, The Strand Problems Book.)

Problem 21: A “primeval snake” is formed by writing the
positive integers consecutively along a snaky path [see Figure
38). If continued upward to infinity, every prime number will
fall on the same diagonal line. Explain. (M. G.)

Figure 38
&%
5|6 5|9
51 52 55
50 5'3 54
45 46 49
4!4 4|7 4'8

39 40 413

.. e 4!1 4|2

3{3 ;IA 3'7 -/

32 35 36
2Q8 31
2|6 2|9 30
21 22 25
20 2|3 24
15 16 19
1!1 1|7 18
g 10 1|3
2e
?,7
s~
»

The primeval snake

Problem 22: Find two positive integers, x and y, such that the
product of their greatest common divisor and their lowest com-
mon multiple is xy.

Problem 23: ““Feemster owns more than a thousand books,”
said Albert.

“He does not,”’ said George. “He owns fewer than that.”
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“Surely he owns at least one book,” said Henrietta.
If only one statement is true, how many books does Feemster
own?

Problem 24: In this country a date such as July 4, 1971, 1s
often written 7/4/71, but in other countries the month is given
second and the same date is written 4/7/71. If you do not know
which system is being used, how many dates in a year are am-
biguous in this two-slash notation? (David L. Silverman.)

Problem 25: Why are manhole covers circular instead of
square?

Problem 26: How many different 10-digit numbers, such as
7.829,034,651, can be written by using all 10 digits? Numbers
starting with zero are excluded.

Problem 27: Many years ago, on a sultry July night in
Omaha, it was raining heavily at midnight. Is it possible that 72
hours later the weather in Omaha was sunny?

Problem 28: What well-known quotation is expressed by this
statement in symbolic logic?

2BV ~ 2B=?

Problem 29: Regular hexagons are inscribed in and circum-
scribed outside a circle [see Figure 39]. If the smaller hexagon
has an area of three square units, what is the area of the larger
hexagon? (Charles W. Trigg, Mathematical Quickes.)

Figure 39

Hexagon probiem
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Problem 30: “I was n years old in the year n2,” said Smith in
1971. ‘When was he born?

Problem 31: If you think of any base greater than 2 for a
numbe r system, I can immediately write down the base without
asking you a question. How can I do this? (Fred Schuh, The
Master Book of Mathematical Recreation.)

- Problem 32: What was the name of the Secretary General of
the Unuited Nations 35 years ago?

Problem 33: You have one red cube and a supply of white
cubes all the same size as the red one. What is the largest num-
ber of white cubes that can be placed so that they all abut the
red cube, that is, a positive-area portion of a face of each white
cube is pressed flat against a positive-area portion of a face of
the red cube. Touching at corner points or along edges does
not count. (M. G.) ’

Problem 34: What four consecutive letters of the alphabet

i rmrd e o e L ilicee Fzit battnse sarma 1oy
cdan Ut: dlldllgcu LO bpcu d ldlllllldl fuul-}cu.cu W\.udp (}V{ul bay

R. Pearce, Word Ways, February 1971.)

& 35: r15u1c 40 is a u1as m o
300 yards in diameter, with a small island at t
two black spots are trees. A man who canno
a few vyards longer than 300 yards.

means of getting to the island?

:E

Figure 40

Lake, island, and trees

Prob[em 36: A boy, a girl and a dog are at the same spot on
a straight road. The boy and the girl walk forward—the boy at
four miles per hour, the girl at three miles per hour. As they
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proceed the dog trots back and forth between them at 10 miles
per hour. Assume that each reversal of its direction is instan-
taneous. An hour later, where is the dog and which way is 1t
facing? (A. K. Austin.)

ANSWERS

1. The smallest number of soldering points remains eight no
matter how wires are bent. Because an odd number of edges
meet at each corner of a cube, every point requires soldering.

2. Do not put Descartes before the horse.

3. You can evade check forever. Head toward the board’s
center, always moving your king to a color opposite to that of
the knight. Since a knight changes the color of its cell at every
move, whenever the king is on a color different from the
knight’s, no knight move can check the king. Your only danger
lies in being trapped in a corner where you can be forced to
move diagonally and be checked by the knight’s next move.

4. The highest constant is 36 [see Figure 41].

5. One answer: “The value of n is less than one million.

6. He makes twice as much money.

Figure 41

Answer to the card problem
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7. The black curwe divides the plane into a number of re-
gions. Trace a romrdl trip along the red curve and it is obvious
that every regiom you enter you must also leave or you will
never get back to where you started. Since each entrance and
exit is a pair of crossing points, the total number of such spots
must be even.

Figure 42

Amnswer to the triangle probiem

8.2.3.

9. Two and a half times as high.

10. With one unit side as base and the other unit side free to
rotate [see Figure 42], the triangle’s area is greatest when the al-
titude is maximum. "The third side will then be the square roc.
of 2.

11, 1+2+43=1>2 x3.

12. Only two of the eight possible combination
the 2/

'

of crussings
=1/4
177X,

o »

robability of a knot

create a knot. malkin pI ty knot

or
/AL, A RALIS

13. House.

14. The first number, 1,324, raised to any power must end
in 6 or 4. The other two numbers, 731 and 1,961, raised to any
power must end in 1. Since no number ending in 6 or 4, added
to a number ending in 1, can produce a number ending in 1,
the equation has no solution.

15. Underground.

16. One proof that the probability is 1/2: Suppose the man
has a Doppelginger directly opposite him on the other side of
the Pentagon’s center and the same distance away. If either
man sees three sides, his double must see only two. Since there
is an equal probability that either man is at either spot, the
probability is 1/2 that he will see three sides.

17. HOBO.

18. The four possible true-false combinations for the two
statements are TT, TF, FT and FF. The first is eliminated be-
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cause we were told that one statement is false. The second and
third are eliminated because in each case, if one person lied,
the other cannot have spoken truly. Therefore both lied. The
boy has red hair, the girl black hair.

19. Figure 43 shows the two solutions,

Figure 43

SENR N ““‘5 rljff
PP T

Superqueen solutions

20. If ABCD=1,234, it is impossible to obtain a sum as large
as 12,300. If ABCD= 3,456, it is impossible to obtain a sum as
small as 12,300. Therefore ABCD =2,345, from which it is easy
to determine that the four dots stand for 4,523.

21. It is well known that every prime greater than 3 is one
more or one less than a multiple of 6. It is easy to see that
every number of the form 6z *+ 1 must fall on the same diag-
onal, therefore the diagonal is certain to catch every prime.

22. Any two positive integers.

23. There are three permissible combinations of true and
false for the three statements: TFF, FTF and FFT. The only
noncontradictory combination is FTF, which means that
Feemster owns no books at all.

24. Each month has 11 ambiguous dates (a date such as
8/8/71 is not ambiguous), making 132 in all.

25. A square manhole cover, turned on edge, could slip
through its hole and fall into the sewer.

26. Ten digits can be permuted in 10! = 3,628,800 different
ways. A 10-digit number cannot start with zero, so that we
must subtract 3,628,800/10=362,880 to obtain the answer:
3.265,920.

27. No, because after 72 hours it would have been midnight
again.

28. “To be or not to be, that is the question.”
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Figure 44

Calculating hexagon areas

99, Instead of inscribing the hexagon as shown, turn it to the
position shown in Figure 44. The grey lines divide the larger
hexagon into 24 congruent triangles, 18 of which form the
smaller hexagon. The ratio of areas is 18 : 24=3 : 4, and so if
the smaller hexagon has an area of three, the larger one has
an area of four.

30. Smith. was born in 1892. He was 44 in 442 =1936.

31. I write “10.” This is any base written in that base system’s
notation.

32. The same as it is now.

33. Twenty white cubes can abut the grey cube. Arrange
seven white cubes as shown in Figure 45. The grey cube goes
on top as indicated. Seven more white cubes, in the same pat-
tern and position as the first layer, form layer No. 3. In be-
tween layer No. 1 and layer No. 3 six more white cubes can be
placed: two on each of two opposite sides of the grey cube and

single cubes on the remaining two sides.

Figure 45

Arrangement of the cubes
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34. The consecutive letters RSTU will spell “rust” or “ruts.”

35. He ties one end of the rope to the tree at the edge of the
lake, walks around the lake holding the other end of the rope
and ties that end to the same tree. The doubled rope is now
firmly stretched between the two trees, making it easy for the
man to pull himself through the water, by means of the rope,
to the island.

36. The dog can be at any point between the boy and the
girl, facing either way. Proof: At the end of one hour, place
the dog anywhere between the boy and the girl, facing in
either direction. Time-reverse all motions and the three will re-
turn at the same instant to the starting point.

ADDENDUM

The answers to the 36 “quickie” type problems brought more
surprises by mail than any previous collection of short prob-
lems. Readers caught ambiguous phrasings, indulged in amus-
ing quibbles, found alternate and sometimes better answers,
spotted some errors, and argued that the last problem is mean-
ingless. I shall comment on this correspondence, taking the
problems in numerical order, and add some further observa-
tions of my own.

(4) C. C. Cousins, Charles W. Bostick, and others noticed
that four of the court cards in the illustration for the answer to
this problem are incorrectly drawn. The Jack of Diamonds and
the Jack of Clubs should be one-eyed, and the King of Spades
and King of Hearts should face the other way. Some readers
thought the Queen of Diamonds should face the other way.
But Bostick took the trouble to examine 30 different decks
made in the United States and found that in 18 of them the
Queen of Diamonds faced right, and in 12 cases she faced left,
so this card cannot be considered wrong.

(5) This theorem is related to a paradox of induction that I
came across in Karl Popper’s Conjectures and Refutations where
he attributes it to J. Agassi. “All events occur before the year
3000.” Since this statement has so far been confirmed by every
event in the history of the universe, some theories of induction
are forced to regard it as strongly confirmed, thus suggesting
that it is highly probable the world will end before 3000.

(8) Larry S. Liebovitch, instead of using a decimal point,

solved this problem by using “In,” the symbol of “natural log
of.” Thus 21n3=2.19+.
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(11) Problem E 2262, in The American Mathematical Monthly
(Novernber 1971, pages 1021-1023), By G. J. Simmons and D.
E. Rawlinson, generalized this question by asking for all other
sets of k positive integers of which the same statement could be
made. It turns out it can be made for all positive integers, but
only & very small set have unique answers. When k=2, the only
answer is 2+2=2x2. Our problem provided the only answer
for k=3. For k=4itis 2+4+1+1=2x4x1x 1L

Readers of the periodical showed that for all values of & not
exceeding 1,000, the only values with unique solutions are 2,3,
4,6, 24, 114, 174, and 444. It is possible, the editor comments,
that no other values have unique answers other than the eight
listed.

(12) James A. Ulrich was the first to argue that the proba-
bility of the string’s being knotted is 1 because there is no way
a closed loop of string can exist without its ends being tied.

(13) “House” remains the best answer, but less familiar
words such as “ye” and “el” allow other solutions. George A.
Miller sent a computer printout of 269 alphabetized answers,
and all the words (from “abhor” to “wavey”) are found In
standard dictionaries.

(14) Martin Kruskal provided a photocopy of the New York
Times account (February 22, 1938) of Samuel Isaac Krieger’s
preposterous claim to have disproved Fermat's last theorem.
He had saved the clipping since he had seen it as a small boy.

(15) Solomon W. Golomb proposed “underfund” and “un-
derwound” as alternate answers.

(16) The probability of 1/2 that a distant viewer will see
three sides of the Pentagon is correct only as a limit as the
viewer’s distance from the Pentagon building approaches infin-
ity. My solution ignored the fact that there are five infinitely
long strips, each crossing the building, inside of which both the
viewer and his Doppelginger can see only two sides (and if very
close to the Pentagon, only one side). This was pointed out by
readers too numerous to list.

The probability is zero, commented P. H. Lyons, “if the
smog in Washington is anything like what it is here In
Toronto.”

(1'7) Walter C. Eberlin and David Dunlap independently
added two strokes to 11030 so that when it is viewed in a mir-
ror it spells “peon,” a word closely related to “hobo” 1n
meaning.

Richard Ellingson took advantage of the fact that I did not

. v -
el et T
S R



A SET OF QUICKIES

specify that the lines of 11030 could not be rearranged. His so-
lution was:
/L%\
0]
i\
(20) Hans Marbet, of Switzerland, pointed out that if ABCD
are replaced by any four consecutive digits, and the four dots
replaced by the same digits in the order CDAB, there is a valid

solution for a number system with the base A+B +D. For ex-
ample, in base 16:

4567
7654
6745

12300

(21) A. P. Evans, William B. Friedman, and others wrote to
say that you don’t need to know that all primes greater than 3
have the form of 6n plus or minus 1. Only four parallel diag-
onals can be drawn through the snake. Call them, top to bot-
tom, A,B,C,D. All numbers on A are divisible by 3 and there-
fore cannot be prime. All on B and D are divisible by 2, and
hence cannot be prime. Therefore all the primes must fall on
C. “I don’t suppose it would be sporting,” Evans adds, “to ask
readers to come up with a diagram on which a straight line can
be drawn that contacts all prime numbers and only prime
numbers.”

that,” I meant him to mean fewer than the amount specified by
Albert. If “that” is taken to refer to “a thousand” instead of
“more than a thousand,” however (as many readers pointed
out), Feemster could own exactly 1,000 books as well as none.

(24) Howard ]J. Frohlich passed along a friend’s view that a
date such as 8/8/71 could also be called “ambiguous” because
you do not know whether the first 8 refers to the day or the
month.

(25) Since I failed to ask why manhole covers and holes are
round instead of square, scores of readers sensibly replied that
the covers are round to fit the holes. John W. Stack cited as his
authority for this answer M. A. Nhole’s Comprehensive Review of
Equilateral Rectangular Beams and Circular Receptacles, pages 31—
4207, published in 1872 by the Sewer and Street Company,
Inc. P. H. Lyons had another answer: To reduce the decisions
a sewer worker has to make in replacing the cover.
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Some covers and holes are square, according to John Bush,
who told of a recent explosion near his home in Brooklyn that
blew off a Consolidated Edison square manhole cover. After
the smoke cleared the cover was found at the bottom of the
manhole. “Geometria invincibilis est,” Bush concluded.

(28) The Hamlet rebus, “To be or not to be,” was invented
by Golomb, a fact I did not know when I gave it.

Jim Levy wrote to say that strictly speaking the symbol for
“or” should be one that represented exclusive disjunction
(either but not both) rather than inclusive disjunction (either
or both), otherwise the statement implies that a person can be
and not be simultaneously.

(32) “Can you answer this?” Golomb wrote in 1971. “No, U
Thant!”

(33) The problem of the touching cubes was one I thought
of several years ago and had answered with 20 cubes. 1 was
staggered to receive two different solutions, each with 22
cubes. Figure 46 shows how five white cubes can abut the top
side of the grey cube. Since none extends beyond line AB, this
formation can go on four sides of the grey cube [see Figure 47].

Figure 46

Five cubes abut one side of the shaded cube

Two more cubes plug up the holes on face A and its opposite
side. This solution was first received from Kenneth J. Fawcett,
Jr., and later from Rudolf K. M. Bergan, Michael J. and Alice
E. Fischer, Leigh Janes, K. B. Mallory, Allen J. Schwenk and
George Starbuck.
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Figure 47

Arrangement for 22-cube solution

The other solution, found independently by Bergan, Ru-
dolph A. Krutar and Robert S. Holmes, is shown as drawn by
Holmes [Figure 48]. Eight cubes go on two opposite faces of the
grey cube, and six abut the grey cube in the middle layer. Even
the fact that as many as eight nonintersecting unit squares can
overlap one unit square is, as far as I know, a previously un-
known result.

Stanley Ogilvy later pointed out that because the bottom cor-
ners of the three lowest squares in Figure 46 are not on a hor-
izontal line, there is just enough room below them to permit
three more squares, joined face to face, to go beneath the other
five squares. This provides another way for eight cubes to abut
one face, and leads to another solution with 22 cubes.

While I was still recovering from the 22-cube solution,
Holmes (who is working for his doctorate in particle physics at
the University of Rochester) delivered the knockout punch: a
24-cube solution! Later Janes, in collaboration with Michael
Bradley, reported a 23-cube solution.

It is hard to believe, but as far as I know no one has seriously
considered before the simple question of how many unit cubes
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Figure 48

Another 22-cube solution

can share a positive surface area with a given unit cube. My in-
nocent answer of 20 is indeed the best if one adds the condi-
tion that the surface of the given unit cube (we shall distin-
guish it from the others by making it grey and leaving
the other cubes white) be completely covered by the touch-
ing cubes. This proviso, however, was not part of the original
problem.

Holmes's technique begins with placing seven white cubes
on one grey face [see Figure 49]. Three pairs of cubes (think of
each pair as being glued together) are placed around a face of
the grey cube so that the midpoint of each pair touches a cor-
ner of the grey face. A seventh white cube (P, drawn with bro-
ken lines) overlaps the grey face as indicated, the two faces
having an axis of symmetry shown as a diagonal line. By rotat-
ing the white cubes clockwise, keeping corner A on the left
edge of the fixed grey face and preserving the bilateral sym-
metry, the pattern shown in Figure 50 is reached. If the bro-
ken-line cube P is now moved up a trifle, the two meeting cor-
ners of each pair of glued cubes can have a tiny positive-area
overlap with a corner of the grey face. These three overlaps
can be made arbitrarily small without allowing the white cubes
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Figure 49

Beginning arrangement for Holmes's 24-cube solution

Figure 50

—

Step 2 in the 24-cube arrangement
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P and €2 to project to the left beyond the vertical line CD. As a
result aagle ¢ and distance d can also be made arbitrarily small.

This pattern of seven cubes goes on the front and rear faces
of the grey cube. Then one cube goes exactly on top of the
grey cube, another goes flush against the grey cube’s base and
two mnore cubes abut the right face of the grey cube. Although
18 cubes now abut five faces of the grey one, its sixth face (on
the 1eft) remains completely exposed. Figure 51 shows the grey
cube with the exposed face toward you. On both its left and
right sides are seven cubes; they are not shown in the drawing.
(Also not shown are the single cubes above and below and the
two cubes that abut the grey cube’s back face.) Cube K is placed
so that it overlaps the top of the grey face along a thin horizon-
tal strip of height d that can be arbitrarily small. This allows
five moTe cubes to abut the face, below cube K, as shown,
bringing the total number of touching cubes to 24 (7+7+1+
1+2 + 1 +5).

Figure 51

Final step in 24-cube solution covers remaining exposed face

A full proof of this construction would be long and tedious,
but interested readers should have no difficulty convincing
themselves that it can be done in spite of the extremely minute
overlaps that are involved. The 24-cube solution is probably
maximum, although proving it appears to be formidable. Until




A SET OF QUICKIES

that is done there will remain the gnawing suspicion that one
or more additional white cubes can somehow be squeezed in.

Theodore Katsanis posed an interesting related problem.
What is the méinimum number of unit cubes that can touch an-
other unit cube in such a way that’no other cube can be added?
If “touch” is defined as in the original problem, the answer is
obviously six. Suppose, however, we enlarge the meaning of
touch to include contact along edges and corners. The maxi-
mum problem is again trivial, answered by 26 cubes, but the
minimum problem is not. The lowest Katsanis could get is
nine, but perhaps some reader can do better.

(34) Commented P. H. Lyons: “I hope some readers tried
other languages, such as Hawaiian. If the letters of the alpha-
bet need not be in alphabetical order, I have a fair-sized list of
other answers in English.”

(35) William B. Friedman proposed placing the rope so that
half of it is high above the water and the other half still higher.
The man could then walk along the lower rope, holding on to
the upper one, and not even get wet. If the rope is hemp,
wrote P. H. Lyons, the man could smoke it and fly to the
island.

(36) This question (about the boy, the girl and the dog)
stirred up a hornet’s nest. Some mathematicians defended the

he N H :
answer as being valid, others insisted the pmh'e.u has no an-

swer because it is logically contradictory. There is no way the
three can start moving, it was argued, because the instant they

A thha
do the dog will no longer be between the boy and the g'rl This

plunges us into deep waters off the coast of Zeno. The issue is
discussed in detail in Chapter 13.
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“It’s as simple as tit-tat-toe, three-in-a-row,
and as easy as playing hooky. I should
hope we can find a way that’s a little more
complicated than that, Huck Finn.”

—MARK TwalN,
The Adventures of Huckleberry Finn

Ticktacktoe (the spelling varies widely) is not nearly so simple
as Tom Sawyer thought. When Charles Sanders Peirce wrote
his Elements of Mathematics, a texibook that was noi published
until 1976, he included a 17-page analysis of only the side
opening of this ancient game. It was one of Peirce’s many an-
ticipations of “modern math.” Today’s progressive teachers
frequently use ticktaktoe to introduce their pupils to such con-
cepts as the intersection of sets, rotational and mirror-reflec-
tion symmetry, and higher Euclidean space. In this chapter we
consider some unusual aspects of the game not covered in two
earlier columns reprinted in The Scientific American Book of
Mathematical Puzzles & Diversions (Chapter 4), and Mathematical
Carnival (Chapter 16).

The traditional game, as most readers surely know, is a draw
if both players do their best. From time to time pictures of a
ticktacktoe game appear in advertisements and cartoons, and
sometimes they provide pleasant little puzzles. For example, on
May 13, 1956, in the New York Herald Tribune, there was an
IBM advertisement with the unfinished game at the left in Fig-
ure 52. Which player went first, assuming that the players were
not stupid? It takes only a moment to realize that O could not



<.

Figure 52
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Three easy ticktackioe puzzles

have gone first or X would have played the top left corner on
his second move. The other two patterns are almost as trivial.
Does the center one, from a Little Lulu cartoon in The Saturday
Evening Post (January 16, 1937), depict a possible game? At the
right is a pattern from an advertisement by publisher Lyle
Stuart in The New York Times (June 1, 1971). In which cell must
the last move have been made?

If the first player, say X, opens in the center cell, he can
force a draw that always ends with the same basic pattern. This
underlies several prediction tricks. For example, the magician
draws the finish of a game, with all cells filled, on a square
sheet of paper that he turns face down without letting anyone
see it. He then plays a ticktacktoe game with someone, writing
on another square sheet. After the game ends in a draw he
turns over his “prediction.” The two patterns match cell for
cell.

The technique is explained in Figure 53. X plays the center
opening. If O marks any corner cell, X forces the draw shown
at the left in the illustration (moves are numbered in order of
play). It is only necessary for X to remember where to make his
second move, since all moves are forced from then on; a simple
rule for the second move is to consider the corner opposite O’s
first move and then play adjacent to it on the clockwise side. If
O responds to the opening with a side cell, X forces the draw
shown at the right. In this situation only O’s moves are forced

Figure 53

0,olX, 0]0

X0, X{X[O,
BXSXQ ()4)(9><

A ticktacktoe prediction trick

><

X
O
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and X must remember how to play his next four moves. The
following simple rule was proposed by a magician who signed
himself “Thorson” when he described this trick in the Septem-
ber 1960 issue of M.U.M., official organ of the Society of
American Magicians: X makes his second, third and fourth
moves adjacent and clockwise to O’s previous moves, and his
fifth move in the only remaining empty ceil.

Note that the two final results are identical. Of course, each
game can be played in any of four different orientations. The
magician, recalling which corner of his inverted prediction has
the O surrounded by three X’s, casually turns over the square
sheet along the proper axis—orthogonal or diagonal—so that
his predicted pattern matches the orientation of the game just
completed.

The trick can even be repeated. This time X substitutes
counterclockwise for clockwise in the rules, having drawn a
prediction that is a mirror image of the preceding one. The
two predictions will not match in any orientation and few peo-
ple will realize that they are mirror reflections of each other.

Dozens of variations of planar ticktacktoe have been ana-
lyzed. Standard games on squares of higher order than 3,
when the goal on an order-n board is to get »n In a row, are
uninteresting because the second player can easily force a
draw. My first column on ticktacktoe discussed games in which
counters are moved over the board (one such version goes back
to ancient Greece), and toetacktick, in which the first to get
three in a row loses.

A. K. Austin’s “wild ticktacktoe,” in which players may use
either X or O on every move, was shown to be a first-player win
in my Sixth Book of Mathematical Games, Chapter 12, Problem 3.
What about “wild toetacktick,” in which players can choose
either mark on each move and the first three-in-a-row loses? In
1964 Solomon W. Golomb and Robert Abbott independently
found that the simple symmetry strategy by which the first
player can force at least a draw in standard toetacktick also ap-
plies to the wild version. A center opening is followed by play-
ing directly opposite the other player’s moves, always choosing
X if he played O and O if he played X. The question remains:
Does the first player have a winning strategy in wild toetacktick?
Abbott made an exhaustive tree diagram of all possible plays
and proved that the second player too can force a draw. Tame
toetacktick also is a draw if both sides play rationally.

An amusing variation appears in David L. Silverman’s book
of game puzzles, Your Move. The rules are the same as in
standard ticktacktoe except that one player tries to achieve a
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draw and the other player wins if either of them gets three in
a row. Can the reader show that no matter who plays first the
player trying to force a row of three can always do so? Silver-
man does not answer this in his book, but I shall give his solu-
tion in the Answer Section.

It is impossible to describe all the other planar variants that
have been proposed, such as using numbers or letters as marks
for the goal of forming a certain sum or spelling a certain
word; playing on the vertexes of curious nine-point graphs (for
a game on one such graph see my Mathematical Magic Show,
Chapter 5, Problem 5); using counters with X on one side and
O on the other, with the counters turned over according to
specified rules. Games have been marketed in which flip-overs
are randomized by concealed magnets that may or may not re-
verse a counter or by tossing beanbags at a board to cause cu-
bical cells to alter their top symbols by rotating.

If ticktacktoe is played on an unlimited checkerboard, it is a
trivial win for the first player if the goal is to get four or any
smaller number of one’s marks in an orthogonal or diagonal

row. When the goal is five in a row, this game is far from triv-
ial. It is the ancient Oriental game known as go-moku (five
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stones) in Japan, where it is played on the intersections of a go
board. (The game is sold in the U.S. by Parker Brothers under
the name of Pegity.) Although it is widely believed that a first-
player winning strategy exists, this has not yet, to my knowl-
edge, been proved.

There is no doubt about the first plaver’s strong advantage
in unrestricted go-moku. Indeed, it is so overwhelming that in
Japan the standard practice is to weaken the first player by not

allowing the following moves:

(1) A move that simultaneously creates a “fork™ of two or
more intersecting rows of open threes. By “open three” is
meant any pattern in which a play will form a row of four ad-
jacent stones that is open at both ends. There is one exception.
A fork move is permitted if it is the only way to block an op-
ponent from completing a row of five.

(2) A move that forms a row of more than five. In other
words, the winning move must be exactly five.

In master play, both rules are usually applied only to the
first player. Under these rules, the game is commonly called
“renju” in Japan.

It has been conjectured that if there is a winning strategy for
the first player in unrestricted go-moku, on a large enough
board, there will be a winning strategy on a sufficiently large
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board even if the prohibitions are observed, but this is far from
established. Even if a winning strategy is found for unre-
stricted go-moku, difficult questions will remain. What is the
smallest board on which the first player can win? What is the
shortest way to win? The two questions may or may not be an-
swered by the same line of play.

It is not possible that the second player has a winning strat-
egy in unrestricted go-moku or similar games in any dimen-
sion. The bare bones of the simple reductio ad absurdum proof,
first formulated by John Nash for the game of hex, are as fol-
lows. Assume that a second-player winning strategy exists. If it
does, the first player can make an irrelevant, random first
play—a play that can only be an asset—and then, since he is
now in effect the second player, win by appropriating the sec-
ond player’s strategy. Because this contradicts the assumption,
it follows that no second-player winning strategy exists. The
first player can either win or at least force a draw if the game
allows draws.

Go-moku is a stimulating game. To catch its special flavor
the reader is urged to study a position from Silverman’s book

r E's
[see Figure 54} and determine how O can play and win in five

moves. Note that X has an open-end diagonal of three, which
he threatens to lengthen to an open-end row of four.

Figure 54

O X0
X|[X|0 X
O X110

X

Go-moku problem: 0 to play and win

When ticktacktoe i1s extended to three dimensions, the first
player wins easily on an order-3 cube by first taking the center
cell. As Silverman points out, if the first player fails to open
with the center cell, the second player can win by taking it; if
the center is permanently prohibited to both players, the first
player has an easy win. Three-dimensional toetacktick (the first
row of three loses) is also a win for the first player. He plays
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the same strategy used for forcing a draw in planar toetacktick:
He first takes the center and then always plays symmetrically
opposite his opponent. Since drawn positions are impossible on
the order-3 cube, this technique forces the second player even-
tually to form a row of three. Daniel 1. A. Cohen, in a paper
listed in the bibliography, proves that, as in the case of planar
toetacktick, this 1s a unique winning strategy. The first player
loses if he does not open by taking the central cell, and also
loses if, after making this first move, he does not follow anti-
podal play.

Draw games are possible on the order-4 cube, but whether
the first player can force a win is not, as far as I know, posi-
tively established. (There cannot, of course, be a second-player
win because of Nash’s proof.) As with go-moku, the first player
has a strong advantage and a winning strategy is believed to
exist. Many computer programs for this game have been writ-
ten, but the complexity of play is so enormous that I do not
think a first-player win has yet been rigorously demonstrated.
About a dozen readers have sent me what they consider win-
ning strategies, but detailed formal proofs are still unverified.
Most of the strategies involve first taking four of the eight cen-
tral cells and then proceeding to a forced win. Virtually noth-
ing is known about three-dimensional games where counters
are allowed to move from cell to cell.

Another unexplored type of 3-space game is one in which
two players alternately draw from a limited supply of unit
cubes of two or more colors to build a larger cube with some
winning objective in view, for example, using cubes of n colors
and trying to get a row, on an order-n cube, in which all =
colors appear. For such games gravity imposes restraints, since
cubes cannot be suspended in midair.

Because drawn games of standard ticktacktoe are possible in
2-space on an order-3 board, and in 3-space on an order-4
board, it was once conjectured that in a space of » dimensions
the smallest board allowing a draw was one with n+ 1 cells on
a side. It turned out, however, that although in n-space a board
of order n+1 or higher always allows a draw, it is sometimes
possible for an n-space board of fewer than n+ 1 cells on a side
to allow a draw. This was first established about 1960 by Alfred
W. Hales, when he constructed a draw on the order-4 hyper-
cube, or fourth-dimension cube.

Several readers have sent informal but probably valid proofs
that the first player can always win on the order-4 hypercube.
Whether or not he can force a win on the order-5 hypercube
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is yet another of the many unanswered questions about exten-
sions and variants of what most people, like Tom Sawyer, re-
gard as a “simple” game.

ANSWERS

The second game in Figure 52 is not possible. Zero must have
played first and last, but X had a win before the final move, so
" the last move would not have been made. In the third game, X
could have completed a win if his first two moves had been on
either side, therefore the first two moves must have been di-
agonally opposite, and his final move in the top right corner.
These two problems are so easily solved that 1 will add here
a difficult one that involves what chess players call retrograde
analysis. Figure 55 shows the pattern after two perfect players
have agreed to a draw. Your task is to determine the first and
last moves. If you can’t solve it, you will find the solution in the
Journal of Recreational Mathematics, Vol. 11, No. 1, 1978, page
70. The problem had been earlier posed in the same journal
by Les Marvin.

Figure 55

X0|0
X

X0

What were the first and last moves?

In Silverman’s first problem, X can always win, regardless of
whether he plays first or second. Assume that the cells are
numbered (left to right, top to bottom) from 1 to 9. Here is
Silverman’s proof:

If X begins, he takes 1. O must take 5, otherwise X can get
three of his marks in a row by standard ticktacktoe strategy. X2
forces 03, then X4 forces 07, which completes three O’s in a
line, giving X the win.

If O starts the game, he has a choice of corner, side or center
opening. If he opens at the center (5), X responds with 1. If
the move is 02, X7 forces 04, then X9 forces 08, which loses.
If O’s second move is 3, X4 forces 07, which also loses. If O’s
second move is 6, X7 forces O to lose at 4. If O’s second move
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is 9, X2 forces 03, then X4 forces O to lose at 7. All other lines
of play are symmetrically equivalent.

If O opens at the side, say at 4, X5 will win. As before, there
are four basically different continuing lines of play: (1) O1, X3,
07 (loses), (2) 02, X3, 07, X9, O1 (loses), (3) 03, X9, 01, X8, 02
(loses), (4) 06, X3, 07, X9, O1 (loses).

A corner opening by O, say at 1, is met with X5, which leads
again to four basically different continuations: (1) 02, X7, 03
(loses), (2) 03, X8, 02 (loses), (3) 06, X8, 02, X7, 03 (loses), (4)
09, X2, 08, X3, 07 (loses).

When this game is played on a four-by-four field (X winning
if there are four of either mark in a row, O winning if the final
position is drawn), the play is so enormously more complex,
Silverman informs me, that it has not yet been fully analyzed.

O wins Silverman’s go-moku problem by playing O1 [see Fig-
ure b6]. X2 is forced, O3 forces X4, 05 forces X6, then 07 cre-
ates an open-end diagonal row of four O’s, which X cannot
block. If X plays at either end, O wins by playing at the opposite
end. As Silverman points out in his book, O wins only by coun-
terattacking. He loses quickly if he plays defensively by trying
to block X’s open-end diagonal row of three.

Figure 56
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Solution to the go-moku problem

Note that when X plays on the cell marked 2 it creates a fork.
This 1s permitted, however, because the move is forced. It is
the only way to prevent O from winning on the next move.
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ADDENDUM

John Selfridge reports that a solution has been found for his
“4 X 4 infinity” ticktacktoe. This is played on a strip that is four
cells high and infinitely wide, the winner being the first to get
four of his marks in an orthogonal or diagonal row. Carlyle
Lustenberger, in his master’s thesis in computer science at
Pennsylvania State University, developed a computer program
with a winning strategy for the first player on a four-by-30
board. The actual lower bound for the width is a few cells
shorter, but I have not obtained the details.

The three-by-infinity board is a trivial win for the first player
on his third move; indeed, the same win can be achieved if
only one cell is added to the side or corner cell of the tradi-
tional order-3 ticktacktoe field. The five-by-infinity board re-
mains unsolved. If a win for the first player could be found on
this board, it would, of course, solve the go-moku game when
it is played on an arbitrarily large square, with no restrictive
rules.

Owen Patashnik, of Bell Laboratories, was the first to write
a computer program that establishes a first-player win in 4 X
4 x4 ticktacktoe. I had the honor of announcing the verifica-
tion of his 1977 program in my Scientific American column of
January 1979. It required 1,500 hours of computing time, and
has been likened to the computer proot of the four-color map
theorem in its length and complexity. I will say no more about
it here because Patashnik has so thoroughly and amusingly re-
ported on it in his paper listed in the bibliography. The pro-
gram’s set of 2,929 strategic moves for winning is probably far
from minimal, but I know of no program that has reduced
them.

In 1973 the Netherlands issued a 30+ 10 cents stamp depict-
ing a drawn pattern in a ticktacktoe game.

Shein Wang, a computer scientist at the University of
Guelph, Guelph, Ontario, Canada, has been publishing a
monthly Gomoku Newsletter since 1979, and the university has,
since 1975, been sponsoring a North American computer go-
moku tournament. The programs have been steadily improving.

A popular variation of go-moku is on sale in the United
States under the trade name Pente. Invented by Gary Gabel, it
combines go-moku with elements of go. (See Newsweek, May 10,
1982, page 78.)

Several readers wrote to emphasize that Nash’s proof applies
only to unrestricted go-moku. The proof rests on the irrele-
vance of an extra stone, but in restricted go-moku the rules
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permit situations in which an extra stone can damage the
player who owns it.

Henry Pollak and Claude Shannon apparently were the first
to prove that the second player can force a draw in unre-
stricted n-in-a-row ticktacktoe on a large enough board when
n=9 or more. Their 1955 proof has not been published. It is
given by T. G. L. Zetters in his answer to a problem, American
Mathematical Monthly, Vol. 87, August—September 1980, pages
575-576. Zetters goes on to show how the proof can be ex-
tended to n=8 or more. So far as I know, the question is still
open for n=>35, 6 and 7.

W. F. Lunnon, writing in 1971 from University College, in
Cardiff, gave a simple pairing strategy of unknown origin that
guarantees a draw for the second player in 5x5 ticktacktoe.
Number the cells as shown in Figure 57. Whenever the first
player occupies a numbered cell, the second player takes the
other cell of the same number. Since every line of five has a
pair of like-numbered cells, the first player cannot occupy all
five. If the first player takes the unlabeled center, the second
player may take any cell, and if the cell he is required to take
by the pairing strategy is occupied, he may play anywhere.

Lunnon also reported that he and Neil Sloane, of Bell Labs,
had together found a remarkable second-player drawing strat-

egy, based on cell pairing, for the 6 x 6 board. Not only does it

Figure 57

/7 | 10 | 12 7] 4

1 3 3 8 2

W. F. Lunnon's pairing strategy
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block wins on any row, column or main diagonal, it also blocks
a win on any broken diagonal! The cells are numbered as
shown in Figure 58. As before, the strategy is to take the cell
with the same number as the cell just taken.

Figure 58

11 13 2 | 13 3 | 12

6 | 14 5| 14 4 | 12

16 3 11 1| 16 2

17 4 | 11 6 | 17 5

7 8 | 18 9| 10 | 18

Lunnon-Sloane second-player drawing strategy

There is more. The Lunnon-Sloane numbering leads to an
elegant proof that 9-in-a-row unrestricted go-moku is a draw.
Cover the infinite board with copies of the 6 X6 matrix. The
second player can force a draw by always taking the nearest
cell with the same number as that of the previous play. It is
easy to see that the first player can obtain no line longer than 8.

For n X n boards, n equal to 6 or higher, it is trivially easy to
put a unique pair of numbers in each row of n cells and so pro-
vide a drawing strategy for the second player. For n equal to 3
or 4, no such labeling is possible, and the draw has to be estab-
lished in uglier ways.
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PLAITING POLYHE

DRONS

In Plato’s dialogue Phaedo, Socrates tells a story in which the
earth, viewed from outer space, appears “many-colored like
the balls that are made of 12 pieces of leather.” Historians take
this to mean that the Greeks made balls by stitching together
12 ieather pentagons stained with different colors and stuffing
the interior to make the surface spherical. Rigid pentagons that
are regular and identical would of course make a regular do-
decahedron, one of the five Platonic solids.

There are all kinds of methods for constructing the five reg-
ular convex solids out of flat pieces of heavy paper or card-
board, and many problems have been proposed about ways of
coloring their faces. The idea of weaving or braiding a regular
solid from strips of paper seems to have been explored first by
an English physician, John Gorham, who published in London
in 1 888 a now rare book about it: A System for the Construction of
Plaited Crystal Models on the Type of the Ordinary Plait. His tech-
niques were improved by A. R. Pargeter and by James Brunton
in papers listed in the Bibliography. This year Jean ]. Peder-
sen, a mathematics teacher at the University of Santa Clara, hit
on an ingenious variation of the plaiting technique. It applies
not only to the Platonic solids but also to many other polyhe-
drons, providing models of stunning multicolored symmetry
and suggesting fascinating combinatorial theorems and puzzles.

Unlike Mrs. Pedersen’s predecessors, who used crooked and
asymmetrical basic patterns, she weaves each Platonic solid
from n congruent straight strips. Assume that each strip is a
different color and that each model has the following properties:

(1) Every edge is crossed at least once by a strip; that is, no
edge is an open slot.
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(2) Every color has an equal area exposed on the model’s
surface. (An equal number of faces will be the same color on
all Platonic solids except the dodecahedron, which has bico-
lored faces when braided by this technique.)

Mrs. Pedersen has proved that if the above two properties
are met, the number of necessary and sufficient bands for the
tetrahedron, the cube, the octahedron, the icosahedron and
the dodecahedron are respectively two, three, four, five and
S1X.

Let us see how this works for the tetrahedron. Although the
model can be plaited with one straight band, it will have some
open edges. Therefore at least two bands are necessary. As
shown in Figure 59, valley-crease each strip along the broken
lines. (Scoring the lines with a hard pencil will facilitate clean
folding.) Overlap two triangles as shown and fold the under-
neath strip into a tetrahedron. Wrap the other strip around
two faces of this tetrahedron, then tuck the end triangle into
the open slot. If you use construction paper of good quality
and strips of different colors, the result is a rigid tetrahedron
with two adjacent faces (of course, any two of its faces must be
adjacent) of one color and two of the other color.

Figure 59

N !
£ /
/ N /
/ N /
/ N/
N

To construct the cube three strips, each a different color, will
do the trick [see Figure 60]. Valley-fold each along the broken
lines. The reader can have the pleasure of weaving the three
strips—it is quite easy—into a rigid cube. He will find that
there are two essentially different ways to make a model with
two faces of each color.

One method makes a cube that has adjacent pairs of faces
with like colors. If you think of each band as being glued to-
gether where its end squares overlap, this model consists of
three closed bands, each pair of which is linked. Imagine that

Plaiting a tetrahedron
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Figure 60

Plaited three-strip cube

the surface is flexible and that the cube is stuffed, like the
leather dodecahedron mentioned by Plato, until it is spherical.
The coloring, as Piet Hein has suggested, is a striking three-
dimensional analogue of the familiar yin-yang symbol of the
Orient. Like the yin-yang, it is asymmetrical (has either left or
right handedness). Piet Hein proposes calling the three regions
yin, yang and lee, the last two terms honoring C. N. Yang and
T. D. Lee, the two Chinese-American physicists who shared a

Nobel vbrize in
Nobel pPriZe in 1957 for their role in ove

metry law of parity.
The other way of plaiting the three strips produces a cube

with opposite faces of like color. Again regard the three bands

as being joined at their ends. Inspection reveals an unexpected
structure. As Mrs. Pedersen has noted, the bands are topolog-

ically equivalent to the Borromean rings that are used as a

trademark for Ballantine beer. Although the three bands can-
not be separated, no pair is interlocked. If any one band is re-
moved, the other two will slide apart.

The octahedron requires four valley-creased strips, each like
the strip shown in Figure 61. These cannot be woven to make
a model with opposite faces of the same color. (Can you prove
it?) A model is possible, however, with like colors on pairs of
adjacent faces, the four colors meeting at one corner and the
same four, in reverse cyclic order, meeting at the diametrically
opposite corner. A good procedure is to start with the two
pairs of overlapping strips held together by a paper clip as
shown in the illustration. Fold one pair into an octahedron,
then weave the other pair around it, with both of the free ends
tucked in slots, to achieve the desired color pattern. After the
model is completed you can reach into the interior and remove
the paper clips.

The octahedron is more difficult to make than the cube, but
if the reader will set himself the task, he will find, as with all
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Figure 61

How strips are clipped together to weave an octahedron

such models, that there is an aesthetic delight in feeling the
solid acquire permanent rigidity when the final tuck is made.
Mrs. Pedersen has found that handsome models of this solid
and the other four solids can be made by using colored cloth
tape glued to construction paper for rigidity.

The icosahedron is woven with five valley-creased strips [see
Figure 62]. A charming model can be constructed with each
color on two pairs of adjacent faces, the pairs diametrically op-
posite each other. All five colors go in one direction around
one corner and in the opposite direction, in the same order,
around the diametrically opposite corner. Each band circles an
“equator” of the icosahedron,.its two end triangles closing the
band by overlapping. In making the model, when the five over-
lapping pairs of ends surround a corner, all except the last pair

can be pasted together or held with paper clips, which are re-

Figure 62

The five-banded icosahedron
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moved later. The last overlapping end then slides into the
proper slot. An expert will soon dispense with the use of paste
or paper clips for this model.

Only the dodecahedron cannot be plaited with straight-sided
strips so that each face is a solid color. Mrs. Pedersen discov-
ered, however, that by using six strips the dodecahedron
shown in Figure 63 can be woven. The obtuse angles made by
the valley folds [broken lines] with the strip’s sides are each 108
degrees, the interior angle of the regular pentagon. The bro-
ken lines must equal the shorter line segments on the sides,
making each section of the strip a truncated pentagon.

Figure 63

The six-banded dodecahedron

To construct the dodecahedron, the most difficult of the Pla-
tonic solids, Mrs. Pedersen suggests starting with three pairs of
strips, each overlapped and glued together to make the curved,
bracelet-like structure shown in Figure 64. Using two bracelets,
overlap and glue together the pairs of ends to make a pair of
braided closed bands. Slip one bracelet inside the other so that
each circles a different equator of the dodecahedron. The
third bracelet then is woven around a third equator, and its
four free ends are tucked into slots on opposite sides of a pair
of adjacent pentagonal faces. The technique is similar to the
one used for making the cube with opposite faces of like color.
Once the construction is mastered it is possible to use only pa-
per clips to keep each bracelet together. The paper clips can be
removed after the model is completed.

Note that every face of the finished dodecahedron has two
colors. The same two colors are on the diametrically opposite
face but are reversed in their arrangement. All diametrically
opposite corners are mirror images in the order of the three or
four colors that surround them. The model in the illustration,
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Figure 64

How pairs of strips are clipped together to weave
a dodecahedron

on which like colors are indicated by the same shade, appears
asymmetrical, but when the actual model is turned in one’s
hands, its curious symmetry becomes apparent. The eight cor-
ners that are surrounded by exactly three colors mark the ver-
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three triangles mark the vertexes of an inscribed tetrahedron.
It is difficult to explain the exact procedure for plaiting the
last two models. so that I shall leave their construction as ad-
ditional exercises for the patient and intrigued reader. It may
help to construct each solid first by conventional means, then

weave the I"Fnll‘lt‘Pl‘l cfrlr\c aronnd ﬂ' T can onlv nromice to re-
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port later if and where Mrs. Pedersen publlshes instructions
for the Platonic solids as well as for more elaborate and less
regular polyhedrons that can also be formed by weaving con-
gruent strips.

Mrs. Pedersen has devised a technique, involving the use of
gummed tape or adding-machine tape, for folding the strips
for all five models without drawing any fold lines. This tech-
nique, along with instructions for making what she calls a
golden dodecahedron (each face has a pentagonal hole sur-
rounded by five triangles of different colors), are given in her
Fibonacei Quarterly article listed in the bibliography.

For years I was puzzled by the fact that Plato, repeating the
earlier views of Pythagoras and his followers, identified the
universe with the dodecahedron rather than the icosahedron,
which I took for granted to be more nearly spherical. I found
the answer recently in Volume I of Howard Eves’s entertaining
work In Mathematical Circles. Contrary to almost everyone’s in-
tuition, it is the dodecahedron that is most like a sphere. If the

1
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two solids are inscribed in the same unit sphere (a sphere with
a radius of 1), the 20-faced icosahedron has a volume of 2.556 +,
whereas the 12-faced dodecahedron has a larger volume of
2.785 +. Their surface areas are in the same ratio as their vol-
umes: 9.574 + for the icosahedron, 10.514+ for the dodeca-
hedron. The ancient Greeks had good reason to use the do-
decahedron for their leather spheres.

If a cube and an octahedron are inscribed in a unit sphere,
* the cube has the greater volume and greater surface, and again
their surface areas are in the same ratio as their volumes. The
octahedron’s volume and area are respectively 1.333+ and
6.928 +; the cube’s volume and area, 1.539+ and 8. An inter-
esting mechanical question, difficult to formulate precisely and
perhaps even more difficult to answer, is which solid of each
pair—cube or octahedron, icosahedron or dodecahedron—
rolls more easily when used as a gaming device?

If a cube and an octahedron are inscribed in the same
sphere, which solid surrounds the larger inscribed sphere?
The surprising answer, as Eves explains, is that the two inner
spheres are the same. This is also true of the inscribed spheres
of a dodecahedron and an icosahedron that are inscribed in
the same outer sphere.

Here are three polyhedron problems:

(1) What is the simplest nonconvex polyhedron that, like the
cube, has a surface of n faces, each a unit square?

(2) It each face of a regular tetrahedron is a different color,
how many different tetrahedrons can you make by using the
same four colors? Rotations, of course, are not counted as dif-
ferent. Can you devise a simple formula that applies to all the
Platonic solids, giving the number of different colorings possi-
ble when each of the n faces has a different color and the same
n colors are used?

(3) If three colors are applied to a cube, each color going on
two faces as in Mrs. Pedersen’s plaited model, how many dif-
ferent colorings are possible? Again, as customary, rotations
are not considered different. How many such cubes can be
woven with Mrs. Pedersen’s three bands, assuming there are
no loose end squares that are not tucked in?

ANSWERS

1. The simplest nonconvex polyhedron with unit-square
faces is the 30-face solid formed by attaching a unit cube to
each face of a unit cube. Mrs. Pedersen found a way to braid
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this solid with three strips, each crossing once diagonally over
every face of the solid. An infinite family of nonconvex poly-
hedrons with congruent square faces is obtained by joining any
number of these crosses to form a chain.

2. A regular tetrahedron can be colored with four colors
only in two ways, each a mirror reflection of the other. The
simple formula that applies to all five Platonic solids is to divide
the factorial of the number of faces by twice the number of
edges. For example, the cube can be colored with six colors in
61/24=30 ways, the octahedron with eight colors in 8!/24=
168 ways, and so on.

3. A cube can be colored with three colors, each color going
on two faces, in six ways: One with all pairs of opposite faces
alike, two ways that are mirror images with all like colors on
adjacent pairs of faces, and three ways with just one pair of op-
posite faces alike. Only the first three ways can be plaited with
three five-square straight strips in the manner explained.

ADDENDUM

I was all wet in my argument that the dodecahedron is more
spherelike than the icosahedron. Physicist F. C. Frank was the
first to inform me that although the dodecahedron is closer in
both volume and surface area to a sphere in which both are
inscribed, the icosahedron is closer in both volume and area to
a sphere that the two Platonic solids circumscribe. 1f you stuff
each solid until it expands to make a sphere, you need less
stuffing (in proportion to volume) to make the dodecahedron
spherical. But if you carve away portions of each solid until
you have a sphere, you carve away a smaller proportion of the
volume of the icosahedron. Thus with respect to the insphere
and circumsphere there is a standoff concerning which is the
most spherical.

However, as Frank, Gary Goodman, Tom McCormick, Rob-
ert Dewar, and others pointed out, the sphere is well known
for its property of having the greatest volume per surface area
of any other solid. If this property is taken as the essence of
sphericity, the icosahedron comes out ahead. There is nothing
deceptive about our intuition when we observe the five Platonic
solids and conclude that the tetrahedron looks the least like a
sphere and the icosahedron looks the most like a sphere.

A definitive paper on the question, “Platonic Sphericity,” by
Norman T. Gridgeman, of Ottawa, was published in the Jour-
nal of Recreational Mathematics in 1973. Gridgeman upholds the
commonsense view that the icosahedron is the most spherical,
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then goes on to discuss less obvious ways to measure “spheric-
ity.” He thinks Plato could have been influenced by knowing
that the dodecahedron is closer to the circumsphere, and that
this may have been augmented by the fact that the dodecahe-
dron’s pentagonal faces are closer to circles than the triangular
faces of the icosahedron. Perhaps Plato was also influenced,
Gridgeman speculates, by the correspondence between the do-
decahedron’s 12 sides and the 12 signs of the zodiac.
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“An admirable place for playing halma,” said
Chelifer, as they entered the Teatro
Metastasio.

—ALpous HUXLEY, Those Barren Leaves

Two new families of puzzles based on a long-neglected
counter-moving game have recently come to light. Each family
offers a series of unsolved problems and the opportunity to de-
vise ingenious proofs that some solutions are impossible. The
puzzles stem from Dialogue on Puzzles, a splendid collection of
unusual problems by Kobon Fujimura and Michio Matsuda
published in 1971 in Japan. (Unfortunately the book is not
available in English.) Fujimura has translated the puzzle books
of Sam Loyd and Henry Ernest Dudeney into Japanese and is
the author of several delightful books that contain his own
original puzzles. The two new counter-moving puzzles are de-
rived from one problem created by Matsuda.

Matsuda’s problem exploits the simple rules of a popular
late-19th-century British proprietary game called Halma, after
the Greek word for leap. The game was invented in 1883 by
George Howard Monks, a 30-year-old Harvard Medical School
graduate who was then pursuing advanced studies in London.
He later became a prominent Boston surgeon. Halma is still
played in Britain but, although it was issued here in 1938 by
Parker Brothers, it has never caught on in this country.

The traditional Halma board has 16 cells on a side [see Figure
65]. If two players are competing, each begins by placing his
19 counters in a section called a “yard.” There are two yards,
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Figure 65

The Halma board

one at the top left corner of the board and the other at the bot-
tom right corner. The counters are identical except that the
two sets are of contrasting colors. The goal is to occupy the op-
posing player’s yard, and the first player to move all his
counters into the opposite yard is the winner. Two kinds of
moves are allowed:

(1) A “step.” This is a move, like the move of a chess king, to
any one of the eight adjoining cells.

(2) A “hop.” This is a leap over another counter, as in check-
ers, except that the leap may be made in any direction, orthog-
onal or diagonal. The jumped piece is not removed.

A connected chain of hops counts as a single move. It is not
compulsory to make a hop. A player may continue a chain of
jumps as long as possible or stop wherever he pleases. The
color of a jumped piece does not matter; a chain of jumps may
be a mixture of friendly and enemy counters. Steps and hops
may not, however, be combined in the same move. Players al-
ternate turns, moving one counter at a time.

Halma can also be played by four people, with each player
having 13 counters. The yards are at the four corners of the
board behind the boundaries indicated by the broken lines in
the illustration. The four-player game can be each man for
himself, with each seeking to reach the diagonally opposite
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yard, or pairs of opposite (or adjacent) players can be partners
who help each other, and the first pair to yard all 26 of their
counters is the winner. Halma strategy is so complex, however,
that the game is best when only two people play.

Of many later games based on Halma the two most popular
in the United States have been Camelot and Chinese checkers,
both of which appeared on the market in the 1930’s. Camelot
was a revival (with minor changes) by Parker Brothers of a late-
19th-century Parker game called Chivalry. Chinese checkers,
which has no connection whatever with China, is played on a
hexagonal-cell board that is usually shaped like a six-pointed
star. The hexagonal tessellation allows steps and hops in only
six directions. A French version of Halma, known as Grasshop-
per, can be played on a standard checkerboard [see Figure 66].
It 1s an excellent game.

Figure 66

Grasshopper

To prevent a stubborn player in games of the Halma type
from forcing a draw by keeping a man permanently in his own
yard it is wise to add extra rules. Sidney Sackson, the New
York City game inventor and game collector, suggests the
following. If a counter can leave its own yard by jumping an
enemy counter, or by a chain of jumps that starts with a leap
over an enemy counter, it must do so, although once out of the
yard it may stop jumping at any desired spot. After a counter
has left its yard it may not rest in the yard again, although it
may hop across it.

The Halma problem devised by Matsuda for the Japanese
chessboard, which has nine cells on a side, begins with nine
counters in a square array at the board’s lower left corner.
How few moves of the Halma type, Matsuda asked himself, are
needed to transfer the nine counters to the same formation at
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the upper right corner? He found a solution in 17 moves, but
this was reduced to 16 moves [see Figure 67] by H. Ajisawa and
T. Maruyama. The 16-move solution is believed to be minimum.

Figure 67

Solution to Matsuda’s problem on the Japanese chessboard

When I saw this elegant solution, I at once began tackling
the same problem on the Western chessboard with eight cells
on a side and on smaller square boards with seven and six cells
on a side. In each case, a square of 3 X 3 counters is diagonally
shifted to the opposite corner. Using the technique of first es-
tablishing a diagonal ladder—a basic strategy, by the way, of all
games of the Halma type—the best I could achieve was 15 for
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the chessboard, 13 for the order-7 and 12 for the order-6. I
have been unable to prove that any of these are minimum so-
lutions. It is not hard to show that at least 12 moves are nec-
essary for the order-8 square, 10 for the order-7 and 11 for the
order-6.

Next 1 experimented with a similar transfer of the nine-
counter square, on the same three boards, to the lower right
corner instead of the corner diagonally opposite. The order-6
board has many solutions in nine moves, one of which is shown
in Figure 68. Nine is obviously minimal because each counter
must move once. (It is necessary that at least one counter hop
to and from the fourth row on its way to the other yard, con-
sequently nine-move solutions cannot be achieved on a three-
by-six board.) On the order-7 board 10 moves will do it. This
too is readily seen to be minimal since the first piece to move
must move at least once again to reach the adjacent yard.

Figure 68
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Orthogonal transfer on an order-6 board

Thirteen moves will solve the problem on the order-8 board.
That 12 are necessary is evident from a simple parity check.
The six counters in column 1 and column 3 can hop only to
column 7, therefore three of the six must each make at least
one step move. I tried vainly for weeks to find a 12-move so-
lution until Donald E. Knuth, a mathematician at Stanford
University, came to my rescue by devising a proof of impossi-
bility in 12 moves. It is too involved to give here, but it is based
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on the necessity for one of the original four corner counters to
step to a different color, the fact that the reverse of a solution
is another solution and other considerations. Readers may en-
joy searching for minimum solutions to the six transfer
problems.

The second family of puzzles suggested by Matsuda’s prob-
lem is based on removmg every jumped counter from the
board. The goal is to remove all counters but one, the last
counter reaching a specified cell, and do it in a minimum num-
ber of Halma moves. Such problems are similar to those of the
classic peg-solitaire game discussed in an earlier column (re-
printed in my book Unexpected Hanging and Other Mathematical
Diversions) except that the greater freedom of movement allows
for much shorter solutions, and proofs of minimum solutions
are usually much more difficult.

Consider, for example, the puzzle on a five-square board
that was first issued in 1908 by Sam Loyd [see Figure 69, No. 1].
He labeled each counter with the name of a hopeful in that
year’s presidential election. The idea was to eliminate eight
men, leaving one’s favorite on the center cell. Loyd allowed
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move. Eight jumps are clearly minimal and there are many
such solutions for each counter. Henry Ernest Dudeney, in his
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by disallowing step moves, counting jump chains as single
moves and allowing any counter to end at the center. He gave
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of no proof. Counter 5 jumps 8, 9, 3, 1; counter 7 jumps 4; 6
jumps 2 and 7; then 5 returns to its original cell by leaping 6.

Figure 69
. 00 0} 0/010]
01010, 0]0J0] 0]00]
0Jol0) OO, | oJolo]
L i 0} 6
QOO QO® | 0000
61010 : 6]01010J0; 0101010;
BNOJO} .. OO® OO0 |
T O e

Six Halma solitaire problems
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Let us combine the rules of the two rival puzzlists by allowing
both steps and hops, as in Halma, and counting a chain of hops
as one move. Each hopped counter is of course removed. Can
the reader find one of the many three-move solutions that
leave the last counter on the center cell? The solution is an el-
egant one that begins with two step moves and ends with an
eight-jump chain.

Similar problems are shown in the same illustration, num-
bered 2 through 6. The second is to be solved in three Halma
moves, the surviving counter on the cell initially occupied by
the counter at the top of the triangle. The third problem is to
be solved in three moves, last counter on the board’s center
cell. The fourth problem is to be solved in a minimum number
of moves, last counter on the cell initially occupied by counter
6, the triangle’s center. The fifth problem is to be solved in
three moves, surviving counter at the board’s center. The last
problem, the most difficult of the six, calls for three moves that
end with the lone counter on one of the board’s four center
cells.

The field of Halma puzzles is so unexplored that it is a chal-

lenge to devise and solve new p1

prove by simple arguments that the solution actually is mini-
mal. 1 have not the slightest notion, for example, how few

moves are required on an order-7 board with 25 counters in a

IZZ!eQ t]’\pn See I'F one can
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square array in the center to leave the last counter on the cen-
ter cell I have avoided trying this problem for fear of accom-

no other work for the next month or so,
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ANSWERS

The six Halma problems can be solved as follows. None of the
solutions is unique:

1. Counter 6 steps diagonally up and right, 8 (or 4) steps di-
agonally down and left, 5 jumps all counters to end at the
center.

It is possible in three all-jump moves (no steps) to end on
either a corner cell or a side cell of the original pattern, but
when steps are not allowed, four moves are necessary (they
were given earlier) to reach the center. Two moves suffice to
remove eight counters but the survivor will be outside the orig-
inal pattern.

2. Counter 4 steps up, 3 jumps 8, 9, 4, 1, 2, 5, 6, then 7
jumps counter 3. A Three-move solution that puts the last
counter on the board’s center cell is: 4 steps up, 6 steps down,
and 3 jumps the remaining eight counters. A neat symmetrical
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solution: 1 steps up and 7 jumps 3 (or 7 steps down and 1
jumps 3), then 1 jumps the rest.

3. Counter 6 steps up, 8 (or 4) steps down, 5 jumps all
counters to rest on the center cell. This pattern and its solution
are equivalent to the first problem, with each diagonal move
changed to vertical and each vertical move to diagonal, all hor-
izontal moves remaining the same. There are similarly equiva-
lent patterns and solutions on the checkerboard and the
Chinese checkers board.

4. Counter 6 can jump all counters in one move, returning
to its original cell at the center. The problem is equivalent to a
10-counter equilateral triangle on the Chinese checkers board.

5. Counter 11 hops diagonally up and right (eliminating
counter 8), 6 jumps 10 counters and returns to its former cell,
then 5 removes 6 as it leaps to the center.

6. Counter 8 steps diagonally up and right, 14 jumps 9, 1, 3,
11 and returns to its former spot, then 8 jumps 11 counters to
end on the cell originally occupied by 11.

Another problem, a three-by-four rectangle on a five-by-six
field, can be solved in three all-jump moves, the final counter

resting on any of the 12 cells of the original pattern. In two

moves the board can be cleared but the last counter will be out-
side the original pattern.

ADDENDUM

Five readers (Katsumi Takemura, Seiichi Fusamura, Mitsu-
nobu Matsuyama, James Stuart, and Y. Dvir) lowered to 12 the
moves required to transfer the 3 X3 square of counters diago-
nally from corner to corner on the order-7 board.

The three-move solution given for the Halma solitaire prob-
lem involving the order-4 array on an order-6 board appar-
ently not only is fundamentally unique for ending on one of
the central cells but also seems to be the only three-move solu-
tion that eliminates all but one counter when this last counter
can end anywhere on the board. When the order-4 square is at
the center of a standard eight-by-eight chessboard, a pretty
four-move solution puts the last counter on a corner of the
board. And I found a four-move solution that leaves four
counters at the corners of the order-4 square when it is cen-
tered on the order-6 field.

Here are some more of my results: The order-5 array (on
the order-7 board) has four-move solutions that end on any
cell originally occupied; the order-6 formation (on the order-8
board) has six-move solutions to any cell formerly occupied,
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and a five-move solution to the board’s corner, and there are
two-move solutions for the order-3 array that place the last
counter on any cell of the order-5 board’s border.

John W. Harris was the only reader to send results for the
order-7 array on the order-9 Japanese chessboard. He found
a solution, to the center cell, in seven moves.

If a square array of nine counters are placed at a corner of
a 4 X6 board, it is a pleasant task to shift them to the diagonally
opposite corner in ten moves. The small size of the board
makes it an attractive puzzle to market. I offer it free 1o any
firm that cares to manufacture it, either with marbles, counters,
or pegs in holes. I found a solution in ten moves and proved it
to be minimal.
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ADVERTISING PREMIUMS

Inexpensive advertising premiums are popular in all countries
where businesses compete for consumer attention, and fre-
quently such premiums are based on mathematical puzzles.
Many premiums of this kind have been discussed in columns
that are reprinted in my earlier book collections, and one in-
volving a “map fold” will be found in this book in the chapter
on paper folding. Now I shall consider some classic puzzle pre-
miums that I have not previously discussed.

One of the oldest and best is the T-puzzle shown in Figure
70. The reader is urged to trace or photocopy the four pieces,
paste them on cardboard, cut them out and try to fit them to-
gether to make a capital 7. 1 know of no polygon-dissection
puzzle with as few pieces that is so intractable. The number of
giveaway premiums based on this puzzle, particularly in the
early decades of the century, runs into the hundreds.

Figure 70

The classic T-puzzle
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Less well known, although equally ancient and charming, is
the square puzzle shown in Figure 71. It is best shown to a
friend by first giving him only the four nonsquare pieces and
asking him to make a square. After he succeeds, hand him the
square piece and see how much longer it takes him to make a
square that uses all five pieces.

Figure 71

The Pythagorean-square puzzle

I have not seen this as a die-cut premium in recent years, but

: slons are Curr\'ntliyy on C'J]n in thn ]Thlfpr'l

States. Milton Bradley’s One Way was designed by Henry Ad-
ams, and another version, designed by Frank Armbruster, is

led Madago M m
called Madagascar Madness. Armbruster’s instructions point

out how the puzzle illustrates the Pythagorean theorem. If the
big and little squares shown in the illustration are on the sides
of a right triangle, the square formed by all five pieces will, of
course, be the square on the hypotenuse.

In this country the most prolific creator of mathematical pre-
miums unquestionably was Sam Lloyd (1841-1911), the fa-
mous Philadelphia-born puzzlist and chess-problem inventor.
In his cluttered, musty office in a decaying Manhattan building
occupied by The Evening Globe, Loyd concocted hundreds of
puzzles of fantastic variety and ingenuity. As described in a
1911 magazine article, his small office “would be dark even if
the one window were washed, a cataclysm of which there seems
no immediate prospect. There are two desks, a typewriter and
a printing-press in it, and countless shelves loaded with papers,
pictures, magazines, stereotype plates and one thousand other
things which have spilled out upon the floor and risen like
strange, dirty snowdrifts breast high in the corners. Sam Loyd
says he does all his business on a cash basis and keeps no
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books. The reason probably is that he couldn’t find the books.
That would be too much of a puzzle even for him.”

Loyd'’s first big success with a premium came with his inven-
tion, at the age of 17, of the Trick Donkeys. The task is to ar-
ramge three cardboard rectangles so that two riders are astride
tw donkeys. The puzzle is still widely used as a giveaway item
throughout the world. Loyd’s original version, which P. T.
Barmum distributed by the millions to publicize his circus, is re-
produced in the chapter on Loyd in The Scientific American Book
of Mathematical Puzzles & Diversions. Modernized versions can
be found in the article “Problem-solving” in Scientific American
for April 1963; on page 124 of The Mind (a Life Science Li-
brary book), and in an American Can Company advertisement
in Tzame for March 22, 1968. Loyd once related in an interview
that Barnum used to make periodic treks to his office saying,
“Hamng it all, Sam, show me how to do my puzzle. I've forgotten
agair.’’

Another of Loyd’s early premium hits, even more widely
used today than then, is nothing more than a pencil with a
short loop of string on its eraser end. Loyd designed the trick
for agents of the New York Life Insurance Company, who
would attach the pencil to prospective customers’ coats with the
promise to remove it if a sale was consummated. The 1oop 1s
placed around a lapel buttonhole, then the doth is pulled for-
ward through the loop until the pencil goes back far enough
for 1ts point to enter the buttonhole from behind. When the

P ceton add S oo ~L
pencil 1s pulled foward through the hole, it is fastened in such

a way that it seems impossible to remove the pencil without cut-
ting the string.

Loyd produced numerous geometric puzzles, but none with
a more unexpected solution than his Pony Puzzle, shown in
Figure 72 exactly as he himself originally drew it. The problem
is to rearrange the six pieces to make the best possible picture
of a trotting horse. In his Cyclopedia of Puzzles Loyd claimed
that over one billion copies of the Pony Puzzle had been sold.

The most spectacular of all Loyd premiums, by all odds, was
his mind-bending “Get off the Earth” paradox. He patented
the device in 1896 and first sold it as a premium to advertise
Bergen Beach, a resort that had just opened in New Jersey.
Copies of the original are now rare collector’s items. The art,
based on Loyd’s sketches, was done by Anthony Fiala, then a
cartoonist on The Brooklyn Daily Eagle. (Later Fiala was com-
mander of the Ziegler Polar Expedition of 1903—-1905 and
wrote a book about it, Fighting the Polar Ice.) The puzzle con-
sisted of a cardboard disk fastened by a central rivet to a card-
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Figure 72

A

Qe

Sam Loyd's Pony Puzzle

board rectangle A tab attached to the disk projected through
a curved slot in the backing so that by moving the tab up or
down the disk could be rotated to two positions [see Fzgures 73,
74] In one of the posmons you can count 13 Chinese warriors.
When the disk is turned to the other ‘pOSltlon, there are Uluy
12 warriors. Which man vanishes, the premium asked, and
where does he gor

r()r more Llldll d YCdI LU)/U llllCU Illb WCCKI)’ PULLIC LU LUITin
in The Brooklyn Daily Eagle with letters from readers attempting
to explain this astonishing phenomenon In Loyd’s own
Lcugtuy, mock-serious CXplaﬁauuu Udu'ual“'y' 3, 10:1/, pPagc 44)
he called attention to a curious feature easily overlooked by a
person unless he has tried the difficult task of drawing human
figures properly around the rim of a disk. “The grotesqueness
of the figures and a necessary legerdemain feat of changing a
right leg for a left one between the fourth and fifth men does
the trick. If it were not for that particular acrobatic feat, all of
the men on the left side would come down head end first.
Some pirates, who brought out the puzzle in different parts of
Europe, with different figures, found it absolutely necessary to
retain that flop over of the legs.”

At that time Americans were aroused over the “yellow peril,”
a fact that explains the premium’s unpleasant racist connota-
tions. As if not to be partial to either China or Japan (the two
nations had been at war in 1894), Loyd provided the Metro-
politan Life Insurance Company in 1897 with a more elaborate
Japanese version of his paradox. Nine Japanese men alternate
around the circle with eight lanterns. When the disk is turned,
one man vanishes and a ninth lantern appears, giving the
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Figure 73

Loyd's greatest puzzie starts with 13 Chinese warriors

Figure 74

Now there are only 12 warriors. Which one disappears?
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impression that a2 man has turned into a lantern. The premium
announced a contest with 20 prizes, from $5 to $100, for the
best explanation. Although the names of the winners were
printed, none of the prize-winning letters were published. Per-
haps the reason is to be found in a typical “explanation” that
was quoted: “When the handle is down I find nine Japanese,
but when the handle is up there are only eight, as one has dis-
appeared.” In 1909 Loyd issued a third version of the paradox
called Teddy (Roosevelt) and the Lions, in which an African
native seems to turn into a lion. It too is reproduced in the
chapter on Loyd in The Scientific American Book of Mathematical
Puzzles & Diversions.

The basic principle behind Loyd's three versions was not
original with him. He simply took earlier linear forms of the
paradox and bent them into circular shape. 1 have seen in a
private collection of advertising cards an 1880 premium,
copyrighted by Wemple and Company of New York, called
“The Magical Eggs.” A rectangular card is cut into four smaller
rectangles. Different arrangements of the pieces produce
eight, nine or 10 eggs. Scores of variations on this paradox
have since been used in the United States and abroad. The lat-
est and funniest version, in three pieces, is “The Vanishing Le-
prechaun,” skillfully drawn by Pat Patterson, a Toronto
graphic designer, and issued in Canada by William Elliott, a
producer of puzzles and magic tricks. The paradox 1s repro-

Figure 75

129

Which leprechaun vanishes?
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duced in Figure 75. An eight-by-19-inch two-color print on pa-
perboard can be obtained from W. A. Elliott Company, 212
Adelaide Street West, Toronto 1, Canada.

From hundreds of other mathematical premiums I select as
a final specimen a card that advertises a brand of Scoth whisky
[see Figure 76]. This seemingly trivial addition problem trips
most people whether they have had a drink or not. To obtain
the correct sum the use of a pocket or desk calculator is
advised.

Figure 76

Can you add this column of fig-
ures? Place your hand over all
but the top number and move it -
down the column, revealing one
number at a time. Add all the
numbers, as you go along. When i
you get the total, turn over for
correct answer.

T e

e
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o

o

0
0
1000
30
1000
20
1000
10

0
4

An advertising giveaway card

ANSWERS

Solutions to the two dissection puzzles, and Sam Loyd’s pony
puzzle, are shown in Figures 77, 78, and 79. I leave it to the
reader to decide which leprechaun vanishes and where the lit-
tle fellow hides. i
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Figure 77

Solution to the T-puzzie

Figure 78

Solution 1o the square puzzle

Figure 79

Solution to Sam Loyd’s Pony Puzzle

ADDENDUM

Manuel R. Pablo, of the Naval Research Laboratory, Washing-
ton, D.C., surprised me by finding another solution to the old
T puzzle. By turning one piece over he produced the fat T
shown in Figure 80. Other readers, keeping the five-sided
piece in its standard orientation, produced Ts with arms of dif-
ferent lengths.
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Figure 80

Pablo’s solution to the T-puzzle

Note that if one piece is turned over, the four pieces fit
neatly together to form the isosceles trapezoid shown in Figure
81. The T puzze, packed in this trapezoidal form, was on sale
in 1975 as the “Teezer” puzzle, made by Hoi Polloi, New York
City.

Figure 81

The “Teezer” puzzle

The T puzzle has been made with the T in many different
shapes, but the puzzle is difficult only if the five-sided piece has
the sarme width as the others. The mind has a strong tendency
to assuine that this piece must go either vertically or horizon-
tally, an assumption that of course makes the solution impossible.

David Frost was so intrigued by the leprechaun paradox that
he arranged for Pat Patterson to provide an enlargement that
he could display on the TV talk show he was then hosting.
After demonstrating the paradox, Frost asked if anyone in the
audience could explain it. Nobody could. Finally a lady stood
up to say that her husband understood how it worked. Frost
turned to the husband. His explanation was identical with the
one I quoted for Loyd’s vanishing Chinese warrior. When the
rectangles are arranged one way, the man said, there are 15
leprechauns. But when you arrange them the other way, there
are only 14,
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In showing the paradox to friends, an amusing bit of busi-
ness is to ask which leprechaun vanishes. If they pick one, put
a penny on the upper half and another penny on the lower
half. After shifting the pieces, the pennies of course mark por-
tions of leprechauns that are still there. Let them try again.
The number of pennies on the figures increase, but without
casting much light on the mystery.

Many readers wrote to say that if the lower half of the pic-
ture is cut in two parts by a vertical cut between the ninth and
tenth leprechauns, you can arrange the four pieces to make 13
leprechauns. Other permutations produced by other cuts will
give 16 and 17 figures, though they get distorted as they in-
crease. Of course you can produce similar changes by rotating
Loyd’s disk.

Dozens of imitations and variations of the leprechauns have
been printed since the item was first marketed, some of them
pornographic. You will find an early discussion of how they all
work, with many examples, in my Mathematics, Magic and Mys-
fery, and in Mel Stover’s cover article, “The Disappearing Man
and Other Vanishing Paradoxes,” listed in the blbhography
£
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SALMON ON AUSTIN’S DOG

In Chapter 8 one of the short problems, posed by A. K. Austin
of the University of Sheffield, England, aroused considerable
controversy among readers. Indeed, the problem proved to be
an amusing new variant of Zeno’s famous paradox of Achilles
and the Tortoise, and one that, so far as I know, had never
beenn formulated before. Here is how I phrased the problem
and its answer:

“A boy, a girl and a dog are at the same spot on a straight
road. The boy and the girl walk forward—the boy at four
miles per hour, the girl at three miles per hour. As they pro-
ceed, the dog trots back and forth between them at 10 miles
per hour. Assume that each reversal of its direction is instan-
taneous. An hour later, where is the dog and which way is it
facing?”

Answer: “The dog can be at any point between the boy and
the girl, facing either way. Proof: At the end of one hour,
place the dog anywhere between the boy and the girl, facing
in either direction. Time-reverse all motions and the three
will return at the same instant to the starting point.”

Even before this answer appeared I began receiving letters
from readers protesting that the problem is meaningless be-
cause 1its inittal conditions are logically contradictory. No mat-
ter how small we make the starting interval, many wrote, the
dog will have to make an infinity of reversals that would drive
it crazy. Others contended that the three “points” (as in all such
problems, the boy, the girl and the dog symbolize ideal points)
could never get started because the “instant” they did so the
dog would either leap ahead of both boy and girl or run the
opposite way, thereby ceasing to be between the boy and girl.
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As Wesley C. Salmon, a noted philosopher of science, im-
mediately recognized, Austin’s paradox has innumerable other
forms, one of the simplest of which is a time reversal of the
familiar puzzle about two locomotives and a bird. The loco-
motives, starting at A and B, 30 miles apart, move toward each
other on the same track at, say, 15 miles per hour until they
collide at C. A bird, starting at A, flies back and forth at 60
miles per hour between the locomotives until they collide. How
long is the bird’s path? There 1s no need to sum an infinite se-
ries. Since the bird flies for one hour, the path must be 60
miles. If we time-reverse the event, specifying that the bird end
at A, a unique zigzag path is defined that the bird can travel in
either direction.

Suppose, however, we do not state where the bird must be
after the locomotives have moved backward to points A and B.
Without this information a unique path for the bird cannot be
defined. Because the bird can now take an infinity of possible
paths, the most we can say is that the backward-flying bird
must end somewhere between A and B.

But is it really permissible to say this? No, many mathemati-
cians contend, because a singularity arises in the time-reversed
version that creates contradictory initial conditions. “There is
no general justification in analysis,” one mathematician put it,
“for inverting the limit operator.” When the locomotives move
toward each other, it is only the bird’s position that converges.
“The velocity vector diverges, so that there is the same diffi-
culty (as in Austin’s problem) in finding a unique inverse to the
limit process. The accepted rules of differential calculus have
evolved because if followed properly they avoid contradictions.”

It is helpful to plot a space-time graph of the bird’s path
from A to C' [see Figure 82]. Of course, we cannot finish draw-
ing the bird’s path to C' because the zigzags are infinite, but
we certainly can assume that the ideal line exists. Surely if this
line can go down from A to C ’, there is no logical objection to
" saying that it can go up from C’ to A. If the final destination
of the bird is not specified, an uncountable infinity of such
graphs can start at C' and end anywhere on the track between
A and B. It is true that calculus cannot solve Austin’s similar
problem if “solve” means to pinpoint the dog’s final position,
but Austin’s “solution” is precisely one that shows this to be im-
possible. Since the dog is not told how to start, it can start in
any way it pleases provided it always stays between the boy and
the girl. Consequently its path can end anywhere between boy
and girl.

Salmon has commented on Austin’s problem as follows:

1356
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Figure 82
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Space-time graph of bird’s path between moving locomotives

“Almost everyone has heard the old chestnut about the bird
that flies back and forth between two approaching locomotives
... [as given above]. Or, to achieve historical perspective, sup-
pose Achilles is pursuing the tortoise and a Trojan fly buzzes
back and forth between them. Given a set of velocities and dis-
tances, and our latter-day assurance that Achilles will overtake
the tortoise at a determinate time and place (see my book Zeno’s
Paradoxes), we can easily figure out how far the fly will travel.
Up to this point we have no new Zenonian paradoxes. ... We
see that Austin’s problem is just the time-reversal of the bird-
and-train problem.

“In order to retain historical perspective, let us go back to
Achilles and the tortoise. In spite of the initial handicap tradi-
tionally imposed on Achilles, he catches the tortoise, and to re-
dress the grievance he has long held against Zeno he keeps on
running, steadily increasing his lead over the fortunate tor-
toise. [I consider the tortoise fortunate in this version of the
tale, at least in comparison with Lewis Carroll’s account “What
the Tortoise Said to Achilles,” in which Achilles stops and seats




SALMON ON AUSTIN'S DOG

himself on the back of the tortoise, much to the tortoise’s dis-
comfort.] Now consider the Trojan fly, which attempts to con-
tinue flying back and forth between the two runners even after
the faster overtakes the slower. When Achilles and the tortoise
are just even, the fly finds itself precisely in the position of
Austin’s dog.

“For the sake of definiteness, say that the tortoise travels at
one mile per hour, Achilles at five miles per hour (he has been
running since 500 B.C., so that he is not as fleet as he once was)
and the fly at 10 miles per hour. They all arrive at the common
meeting point without difficulty. How can they go on? If the
three start simultaneously from the common point, the fly im-
mediately either advances ahead of both or moves behind both,
each of which violates the condition that the fly be always in
the interval between the two (end points included). It would
seem we could argue that in any time interval ¢ > 0, however
small, the tortoise travels a distance of le, Achilles runs a dis-
tance of 5e and the fly goes 10e. Hence in an arbitrarily smail
time after the meeting the fly leaves the interval between the
tortoise and Achilles. Even if we have shown how Achilles can
perform the ‘supertask’ of catching the tortoise, and how the
tortoise can perform the ‘supertask’ of initiating its motion, it
appears that the fly now faces the new ‘supertask’ of continuing
to fly back and forth between Achilles and the tortoise after the
tortoise has been overtaken. In other words, the fly now faces
the supertask of not passing Achilles!

“The apparent difficulty seems to me analogous to the prob-
lem pointed out by Zeno in his regressive dichotomy paradox.
There is no doubt that the fly will outdistance both Achilles
and the tortoise if it flies steadily in one direction without turning
around, even in the arbitrarily small period of duration e. This
fact does not render the fly’s motion impossible, however, since
no matter how small a time interval we choose the fly has al-
ready reversed its direction during that interval (infinitely
many times, so that it is really quite dizzy). This simply means
that there is no initial nonzero interval during which it flies
straight without reversing its direction; thus it does not follow
that the fly immediately leaves the interval between the tortoise
and Achilles. In fact, we can see precisely how the fly’s rapid
reversals enable it to stay between Achilles and the tortoise
after the meeting by examining the time reversal of this motion
in the fly’s approach to the point of meeting from the earlier
side. The fact that the fly does not traverse an initial nonzero
straight path is analogous to the fact that the tortoise, 1n leav-
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ing its starting point, does not traverse any initial nonzero seg-
ment of its path. The lack of a suitable initial segment is not a
serious obstacle to either of them.

“The recent literature on Zeno’s paradoxes has contained a
good deal of discussion of ‘infinity machines.” These are ideal-
ized devices that purportedly perform an infinite sequence of
tasks; they have been introduced into the discussion because of
difficulties they seem to encounter in completing the infinite
sequence of tasks (a ‘supertask’). The resolution of the prob-
lems surrounding the infinity machines is strongly analogous to
the resolution of the progressive form of Zeno’s dichotomy
paradox. The motion of the Trojan fly up to and including the
moment Achilles overtakes the tortoise involves exactly the
same considerations. I am not aware that anyone has explicitly
introduced the kind of infinity machine that would be analo-
gous to the regressive form of Zeno’s dichotomy paradox, a
machine whose difficulty lies in getting started with its series of
tasks, in contrast with the usual infinity machine whose diffi-
culty lies in finishing its series of tasks. As it turns out, our Tro-
Jan fly, in its motion from the point of meeting of Achilles and
the tortoise through the subsequent part of the run in which
Achilles is ahead of the tortoise, constitutes just such an infinity
machine (as does Austin’s dog)—a regressive infinity machine,
we might say. Just as the treatment of the standard infinity ma-
chine closely parallels the resolution of the progressive dichot-
omy paradox, so does the treatment of the Trojan fly in the
latter part of its flight closely parallel the resolution of the re-
gressive dichotomy paradox.

“One further problem about the motion of the fly deserves
explicit attention, namely what is the state of motion of the fly
at the precise instant of meeting? The fly’s position is well de-
termined; it coincides with the position of Achilles and the tor-
toise. The mathematical function that describes the fly’s posi-
tion is a continuous function of time that passes through the
meeting point at the appropriate instant. The fly’s velocity
function, on the other hand, is discontinuous. Its value is + 10
when the fly is moving forward, —10 when it is moving back-
ward and (we might as well say) zero when the fly meets either
Achilles or the tortoise (or both). Thus we can appropriately
assign the value zero to the fly’s velocity at the instant when all
three meet. Obviously the velocity function has infinitely many
discontinuities on each side in the neighborhood of the point
of common meeting. Each finite discontinuity in the velocity
function corresponds to an infinite discontinuity in the acceler-
ation, since it requires an infinite acceleration for the fly to
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change velocity instantaneously from +10 to —10 and vice
versa. Moreover, as Austin’s problem and its solution show, the
state of motion of the fly (or dog) at the point of meeting does
not uniquely determine how the motion is to continue beyond
that point. In other words, although we have shown how (in
some sense of ‘possible’) it is possible for the fly to continue its
motion through the meeting point and beyond, the motion be-
yond the meeting point can be executed in infinitely many dis-
tinct ways, all of which are consistent with the conditions im-
posed by the problem. To say that there are alternative ways of
performing a task does not, however, prove that the task is im-
possible to execute.

“In the customary formulations Zeno’s Achilles and dichot-
omy paradoxes involve a finite number of discontinuities of the
type just mentioned: Achilles and the tortoise are assumed to
accelerate instantaneously at their starting points to their re-
spective average velocities, and to decelerate instantaneously to
zero at the finish. Similarly, most of the ‘infinity machines’ (for
example Black’s transferring machines and the Thomson
lamp) involve infinitely many such discontinuities clustering

around some moment of termination (see Zeno’s Paradoxes
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pages 204—244). Using a mathematical function supplied by
Richard Friedberg, Adolf Grinbaum has shown how such mo-

tions can be modified so as to eliminate all the discontinuities
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and still achieve the desired total outcome. It seems reasonable

to conjecture that a similar approach could be applied to the
problem of the Trojan fly (or Austin’s boy-girl-dog) in order to

achieve a totally unobjectlonable descrlptlon of the motion.”

ADDENDUM

I had expected Professor Salmon’s analysis of Austin’s paradox
to produce many letters of disagreement, but evidently Salmon
argued his case skillfully because I received not a single one.
Of course the debate is largely verbal, a question of what sort
of language to use in making the problem and its solution
precise.

Many other problems are analogous to Austin’s dog in the
sense that there is a precise answer in forward time, but hope-
less ambiguity when the event is time reversed. Consider for
instance a point starting at the earth’s equator and moving due
north with uniform speed along a loxodrome. It will circle the
north pole a countable infinity of times, reaching the pole at a
precise instant. But time-reverse the event and the point can
cross the equator at any spot. Because there is no “last” revo-
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lution around the pole, there is no precise beginning of the
time-reversed event that will determine a unique spiral path.

Mathematics Magazine, which originally published Austin’s
paradox as problem Q503 (January 1971), returned to the par-
adox in its September issue by publishing comments by four
mathematicians, all of whom considered the problem self-con-
tradictory. The magazine did not publish Salmon’s reply to one
comment. I reproduce it below:

In the September—October number, Lyle E. Pursell com-
ments on Quickie Q503 (Austin’s boy-girl-dog problem) as
follows:

The author’s solution to the problem looks like a proposal to
sum an infinite series by starting at the “last” term! Since, if
the latter three reverse their motions as the author suggests
in his solution, then the dog must reverse his direction infi-
nitely many times before the boy and the girl get back to the
starting point.

While no original texts have survived to the press date, it

Since Achilles must run half of the racecourse before he can
run the whole, and he must run a quarter before he can com-
plete the half, etc., it is evident that Achilles must run infi-
nitely many distances before he can have reached any point,
however near, beyond his starting point. To say that Achilles
has run any finite (i.e., nonzero) distance looks like a pro-
posal to sum an infinite series starting at the “last” term!

Although Austin’s dog must reverse his direction between
segments whereas Zeno’s Achilles keeps going in the same di-
rection, does this difference really have any bearing upon the
absurdity involved in the “proposal to sum an infinite series by
starting at the ‘last’ term!”? It appears that Austin’s dog ex-
humes Zeno’s old regressive dichotomy paradox. If Achilles
can run a racecourse, why cannot Austin’s dog do what is re-
quired of him?
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NIM AND HACKENBUSH

“The good humour is to steal. .

—W1i1LL1aM SHAKESPEARE, Corporal Nym in
The Merry Wives of Windsor

In recent decades a great deal of significant theoretical work

has been done ©on a type of two-person game that so far has no
agrpprl -on name. Sometimes these games are called “nim-like
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games,” “take-away games” or “disjunctive games.” All begin
with a finite set of elements that can be almost anything:
counters nebhbl es, empty cells of a hnnrd lines on a granh, and
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so on. Players alternately remove a positive number of these
elements in accordance with the game’s rules. Since the ele-
ments diminish in number with each move, the game must
eventually end. None of the moves is dictated by chance; there
is “complete information” in that each player knows what his
opponent does. Usually the last player to move wins.

The game must also be “impartial.” This means that permis-
sible moves depend solely on the pattern of elements prior to
the move and mot on who plays or on what the preceding
moves were. A game in which each player has his own subset
of the elements is not impartial. Chess, for example, is partial
because a player is not allowed to move an opponent’s piece. It
follows from the above conditions that every pattern of ele-
ments is a certain win for either the first or the second player
if the game 1s played rationally. A pattern is called “safe” (or
some equivalent term) if the person who plays next is the loser
and “unsafe” it the person who plays next is the winner. Every
unsafe pattern can be made safe by at least one move, and
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every safe pattern becomes unsafe through any move. Other-
wise it is easy to prove the contradictory result that both play-
ers could force a win. The winner’s strategy is playing so that
every unsafe position left by the loser becomes a safe one.

The best-known example of such a game is nim. The word
was coined by the Harvard mathematician Charles L. Bouton
when he published the first analysis of the game in 1901. He
did not explain why he chose the name, so we can only guess
at its origin. Did he have in mind the German nimm (the im-
perative of nehmen, “to take”) or the archaic English “nim”
(“take”), which became a slang word for “steal”? A letter to The
New Scientist pointed out that John Gay’s Beggar’s Opera of 1727
speaks of a snuffbox “nimm’d by Filch,” and that Shakespeare
probably had “nim” in mind when he named one of Falstaff’s
thieving attendants Corporal Nym. Others have noticed that
NIM becomes wWIN when it is inverted.

Nim begins with any number of piles (or rows) of objects
with an arbitrary number in each pile. A move consists in tak-
ing away as many objects as one wishes, but only from one pile.
At least one object must be taken, and it is permissible to take
the entire pile. The player who takes the last object wins. Bou-
ton’s method of determining whether a nim position is safe or
unsafe is to express the pile numbers in binary notation, then
add them without carrying. If and only if each column adds to
an even number (zero is even) is the pattern safe. An equiva-
lent but much easier way to identify the pattern (with practice
one can do it in one’s head) is to express each pile number as
a sum of distinct powers of 2, eliminate all pairs of like powers
and add the powers that remain. The final sum is the nim sum
of the pattern. In current parlance this is called the “Grundy
number” or “Sprague-Grundy” number of the pattern, after
Roland Sprague and P. M. Grundy, who independently
worked out a general theory of take-away games based on as-
signing (by techniques that vary with different games) single
numbers to each state of the game.

For example, assume that a game of nim begins with three
piles of three, five and seven counters.

3=2+1
h=4+1
7=4+2+1

Pairs of 4’s, 2’s and I’s are crossed out as shown. The sum of
what remains is 1. This is the nim sum of the pattern. If and
only if the nim sum is zero is the pattern safe, otherwise it is
unsafe (as it is here). If you play an unsafe pattern, you win by
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changing it to safe. Here removing one counter from any pile
will lower the nim sum to zero. In three-pile nim, with no pile
exceeding seven counters, the safe nim patterns are O—n-n,
where n in the first triplet is any digit from 1 through 7, and
1-2-3, 1-4-5, 1-6-7, 2-4-6, 2-5-7, 3-4-7, 3-5-6. If your op-
ponent plays next, he is sure to leave a pattern with a nonzero
nim sum that you can lower to zero again, thereby maintaining
your winning strategy.

Like all games of this type, nim has its misére form, in which
the player who takes the last piece is the loser. In many take-
away games the strategy of musére play is enormously compli-
cated, but in nim only a trivial modification is required at the
end of the play. The winner need only play a normal strategy
until it is possible to leave an odd number of single-counter
piles. This forces his opponent to take the last counter.

Many take-away games seem to demand a strategy different
from that of nim but actually do not. Suppose the rules of nim
allow a player (if he wishes) to take from a pile, then divide the
remaining counters of that pile into two separate piles. (If the
counters are In rows, this is the same as taklng contlguous
counters from inside a row and regarding those that remain as
being two distinct rows.) One might expect this maneuver to
complicate the strategy, but it has no effect whatever. To win,
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is unsafe, play a standard move to make it safe. For example,
in the 3-5-7 game suppose your first move is taking a counter

1 ; A% Bhonent re
from the three-pile, leaving the safe 2-5-7. Your opponent re-

moves two counters from the seven-pile and splits the remain-
ing five counters into a two-pile and a three-pile. The pattern
is now 2-5-2-3. Its nim sum is six, which you make safe by tak-
ing two from the five-pile.

A pleasant counter-moving game on a chessboard is shown
in Figure 83. No fewer than two columns may be used. In this
example we use all eight columns. Black and white counters
are placed on arbitrary squares in each column, black on one
side, white on the other. (A randomizing device, such as a die,
can be used for the placement.) Players sit on opposite sides
and alternate moves. A move consists in advancing one of your
counters any desired number of empty cells in its column. It
may not leap its opposing counter, so that when two counters
meet, neither may move again. The last player to move wins.

An astute reader may see at once that this game is no more
than a thinly disguised nim. The “piles” are the empty cells be-
tween each pair of opposing counters. In the illustration, the
piles are 5—1-4-2-0-3-6-3, which has an unsafe nim sum of
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Figure 83

A nim game on a chessboard

4. The first player can win by moving the counter in column
one, three or seven forward four spaces. If the game had be-
gun with all the counters in each player’s first row, the pattern
would have been 6-6—6—6—6—6—6-6, a safe position because its
nim sum is zero. The first player must lose. The second player
groups the columns into four pairs, then duplicates each of his
opponent’s moves in the paired column, a strategy that ensures
a Zero nim sum after every move.

Suppose we complicate the rules by allowing either player to
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the winning strategy?
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A better-disguised game bas

ful pencil-and-paper game recently invented by John Horto
Conway, the University of Cambridge mathematician who in-
vented “Life,” the topic of three of this book’s chapters. Con-
way calls the new game Hackenbush, but it has also been called
Graph and Chopper, Lizzie Borden’s Nim and other names.

The initial pattern is a set of disconnected graphs, such as
the Hackenbush Homestead as drawn by Conway [see Figure
84]. An “edge” is any line joining two “nodes” (spots) or one
node to itself. In the latier case the edge is a “loop” (for ex-
ample, each apple on the tree). Between two nodes there can
be multiple edges (for example, the light bulb). Every graph
stands on a base line that is not part of the graph. Nodes on
the base line, which is shown as a broken line in the illustra-
tions, are called “base nodes.”

Two players alternate in removing any single edge. Gravity
now enters the game because taking an edge also removes any
portion of the graph that is no longer connected to the base
line. For instance, removing edge A eliminates both the spider

L
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Figure 84

F
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The Hackenbush Homestead

and the window since both would fall to the ground, but re-
moving the edge joining the spider to t}‘c window removes
only the spider. Taking edge B chops down the entire apple
tree. If one edge of the streetlight’s base is taken, the structure
still atauda, but Lal\llls the second €dg€ on a later move Loppxes
the entire structure. The person who takes the picture’s last

edge Is the winner.

3
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unsafe (first-player win), and the winner’s s strategy is is to convert
every unsafe pattern to safe. To evaluate a picture each graph
must be assigned a number measuring the graph’s “weight.”
To arrive at the asstgnment the first step is to collapse all the
“cycles” (closed circuits of two or more edges) to loops, turning
the graph into what Conway calls an apple tree, although in
many cases the loops are best regarded as being flower petals.
To see how 1t works, consider Conway’s girl [see Figure 85]. She
incorporates two cycles: her head and her skirt. First the two
nodes of her head are brought together and then the two
edges are bent into loops. Do the same with the five nodes and
five edges of the skirt. The girl is now a flower girl [middle fig-
ure]. The next step is to change her to an ordinary tree by re-
placing each loop with a single branch [figure at right].

We now calculate this tree’s weight. First, label 1 all edges
with a terminal node (a node unconnected to another edge) or,
to put it differently, all edges that, if removed, cause no other
edges to fall off the tree. Label 2 all edges that support only
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Figure 85

WEIGHT = 4

Girl en one foot

one edge. Each remaining edge is labeled with one more than
the nim sum of all the edges it immediately supports. Consider
the edge corresponding to the girl's hair between her head and
her hair ribbon. It immediately supports 1-1-1. A pair of 1's
cancel, giving a nim sum of 1. Add 1 to the nim sum and this
edge has a weight of 2. The edge that forms the body above
the skirt immediately supports edges of values 2-1-2—1-2. The
nim sum is 2. Add 1 and the edge has a weight of 3.

The girl’s unraised thigh supports 3—1-1-3-1-1-1, a nim
sum of 1, to which 1 is added to give the thigh a value of 2.
The calf below it has a value of 3, the foot a value of 4. (In
each case we simply add 1 to the value of the single, immedi-
ately supported edge.) Since the foot is the only support of the
entire graph, the girl has a weight of 4. All edge values are
now transferred to corresponding edges on the original girl.

With practice, edge values can be computed directly on the
original graph, but it requires great care. For example, the
girl’s five skirt edges, raised thigh, and body are all “immedi-
ately” supported by her unraised thigh. This is clear in the tree
graph but is not so obvious in the original graph because many
of the immediately supported edges are not close to the thigh.

If a graph has more than one base node, such as the door,
barrel and lamp in the Homestead, collapse the base cycle into
loops, remembering that the broken line segment between a
pair of base nodes is not part of the graph. The door’s trans-
formations are shown in Figure 87b. Since the nim sum of
1-1-1 is 1, the door’s weight is 1. A girl standing on both feet
[see Figure 86] has a weight of 3. Note how the two cycles
formed by her skirt and legs collapse into seven loops. A win-
ning move, for a game played with her alone, is taking the top
of her head or one of her hairs. This lowers the value of her
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Figure 86

WEIGHT = 3 3

Girl on both feet

head to zero, her body to 1 and her weight to zero. In this
manner a weight can be assigned to each of the five graphs that
make up the Hackenbush Homestead: The apple tree, house
(including window, spider, chimney, television antenna and
drainpipe), door, barrel and streetlight.

If Hackenbush is played with only the girl on one foot, the
game 1s as trivial as playing nim with only one pile. The first
player can win at once by taking the supporting foot. The poor
girl collapses and he acquires all her edges. In the case of a fig-
ure with more than one base node, such as the door, we must
remember to take an edge so that the remaining nim sum is
zero. A first player can do this only by taking the door’s top
edge, leaving two graphs of weight 1 each, or a combined nim
sum of zero. Taking either side leaves only one graph (of
weight 2), which can be taken entirely by the second player.

A picture consisting of n graphs, such as the five graphs of
the Homestead, is treated exactly like five piles in nim. The
nim sum of all the weights is the total Grundy number. If and
only if this number is zero is the picture safe and the second
player assured of winning. As in nim, the winning strategy is
to play so that the nim sum of what remains is always zero.

The reader is invited to determine the weight of each graph
in the Hackenbush Homestead and verify that the Home-
stead’s nim sum is 10. Since this is not zero, the first player can
win. It turns out (of course Conway designed it that way) that
there is only one edge the first player can take that will guar-
antee a win by lowering the nim sum to zero. Which edge is it?

My account of hackenbush is only a brief introduction to this
game. For a fantastic amount of additional information about
the game, its deep theorems and its numerous variations, see
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Conway’s On Numbers and Games, and the two volumes of Win-
ning Ways by Berlekamp, Conway, and Guy. Both works also
contain an abundance of material on other nim-like games and
the theory behind them in both standard and museére play.

ANSWERS

The first problem was to explain how the winning strategy in
a chessboard version of nim is affected by allowing players to
move their counters backward. The answer: It has almost no
effect. If the loser retreats, the winner merely advances his op-
posing counter until the number of spaces separating the two
men is the same as before. This preserves the status quo, leav-
ing the basic strategy unaltered. The winner never retreats
and, since the chessboard is finite, the loser’s retreats must
eventually cease. This variation of the game has been attrib-
uted to D. G. Northcott and is known as Northcott’s nim.

How the various parts (graphs) of John Horton Conway’s
Hackenbush Homestead are transformed, as explained, into
apple trees, then trees and labeled is shown in Figures 87, 88.
The graphs have weights of 15-1-1-4-1, therefore the Home-
stead’s nim sum is 10. The only way the first player can reduce
this Grundy number to zero is by lowering the apple tree’s
weight to 5. “The tree trunk supports two branches of 8 and
6,” Conway writes, “and these must be changed to 2 and 6, or

Figure 87 a& b

—————4

WEIGHT =1

Weighing the Hackenbush apple tree, door, barrel
and streetlight
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Figure 87 c & d

______ NN

WEIGHT =4

Weighing the Hackenbush apple tree, door, barrel
and streetlight

8 and 12, to have nim sum 4. Clearly we must choose the left

branch. Climbing the tree, we discover that there is a unique
winning move—chop the twig bearing the second apple from
the left.”

This chop lowers the tree’s weight (the
5 [see Figure 89]. The graphs now have weights of 5-1-1-4-1,
which have a nim sum of zero.
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Figure 88
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Weighing the Hackenbush house

Figure 89

WEIGHT =5

Apple tree after the winning chop
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One of the least explored areas of modern mathematics is a
class of problems that combine graph theory and arithmetic.
Recreational problems of this type have been discussed before
in my earlier book collections; for example, in the chapter on
Magic Stars and Polyhedrons in Mathematical Carnival. In this
chapter we take up a family of numbered-graph problems that
has recently been defined and developed by Solomon W. Go-
lomb, professor of engineering and mathematics at the Univer-
sity of Southern California. He is the author of Polyominoes
(Scribner’s, 1965), numerous articles on recreational topics and
many technical papers. What follows is extracted from his cor-
respondence and from his paper “How to Number a Graph.”
Golomb has coined the term “graceful graph” for any graph
that can be “gracefully numbered.” He explains this terminol-
ogy with a simple example: The graceful numbering of the
graph shown in Figure 90. It is called the “complete graph for
four points” because every pair of its four nodes is joined by a
line called an edge. The graph is topologically equivalent to the

Figure 90

A graceful graph
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skeleton of a tetrahedron. It is planar because it can be drawn
on the plane without intersecting edges. A graph, as we shall
see, need not be planar in order to be gracefully numbered,
but it must be without loops (lines joining a node to itself) or
multiple edges (more than one edge connecting the same pair
of nodes).

Each node is labeled with a nonnegative integer. The lowest
integer (by convention) is 0, and no two integers may be alike.
After the nodes are numbered every edge is labeled with the
difference between the numbers of its two end nodes. Like
node numbers, all edge numbers also must be distinct (no two
alike). The objective is to do all these things and keep the larg-
est node number as small as possible. Obviously it cannot be
smaller than the number of edges. If the largest node number
equals the number of edges, e, the edge numbers will run con-
secutively from 0 through ¢, and we shall have achieved a
graceful numbering. The number ¢ will represent three values:
the total number of edges, the highest node number and the
highest edge number. Any graph that can be gracefully num-
bered is a graceful graph. Some graceful graphs have only one
basic numbering, others more than one. (Trivial variations ob-
tained by such symmetry operations as rotations and reflec-
tions, or by replacing each node number n by e-n, are not con-
sidered different.) A graph that cannot be numbered gracefully
is called an ungraceful graph.

As Golomb points out, every complete graph can be drawn
with all its nodes on a straight line and the remaining edges
can be added as curved lines [see left side of Figure 91]. Let us
go further. Imagine that the straight line is the edge of a ruler
with a length equal to the largest edge number of a numbered
graph. The nodes of the graph are marks on the ruler at
points that correspond to their numbers, each number indicat-
ing the mark’s distance from the zero end of the ruler. Golomb
calls such a ruler a “Euclidean model” of a numbered complete

Figure 91

6 3 4

Ruler version (feft) of a complete graph (right}
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graph. The problem of gracefully labeling a complete graph of
n nodes is equivalent to the problem of putting n marks on a
ruler (always including the ruler’s two ends as marks) so that
every distance between a pair of marks is a distinct integer. In
this example the ruler is marked at points 0, 1, 4 and 6, the
node numbers of the complete graph for four points after it is
gracefully numbered. Such a ruler clearly can measure lengths
of one, two, three, four, five and six units. At the right of the

ruler is shown another way of drawing the complete graph for

four points: as a four-sided polygon with all its diagonals. (The
intersection of the diagonals is not, of course, a node). Note
that the distances between adjacent marks on the ruler, to-
gether with the ruler’s length, correspond to the perimeter
numbers of the gracefully labeled square graph.

A closely related but less restricted ruler problem was dis-
cussed in Chapter 6 of my book The Incredible Dr. Matrix. Dr.
Matrix’ rulers measure all integral distances from zero to the
length of the ruler, but the numbers of its “edges” (distances
between any pair of marks) are not required to be different.
With the added proviso that all such distances must be differ-
ent, Dr. Matrix’ ruler problem becomes identical with the prob-
lem considered here: That of finding a ruler with marks that
correspond to the graceful numbering of a complete graph
with » nodes. Golomb proves in his paper that this can be done
only if n is 1, 2, 3, or 4. Expressed differently, no complete
graph for n points, when n exceeds 4, can be gracefully
numbered.

If we keep the requirement that all distances between pairs
of marks must be different, but we do not insist that they run
consecutively from zero to the ruler’s total length, we can still
look for the shortest possible ruler of » marks (end points are
included as marks) on which all distances between a pair of
marks (which correspond to the edge numbers of the complete
graph for n points) are different. In the chart of the shortest-
known rulers when n is from 2 through 11 [see Figure 92], only
the first three entries are solutions to Dr. Matrix’ ruler prob-
lem. They correspond to the graceful numbering of complete
graphs for two, three and four points. The other rulers do not
have consecutive integral distances from zero to the ruler’s
length; they correspond to what Golomb calls the “best” num-
bering of complete graphs for more than four points. The
numbers in each row give the distances between adjacent
marks on rulers of two, three, four, ..., 11 marks. The chart,
which extends downward to infinity, is called the Golomb
triangle.
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Figure 92
NODES | EDGES DISTANCES BETWEEN ADJACENT MARKS LENGTH
2 1 1 1
3 3 1 2 3
4 6 1 3 2 6
5 10 1 3 5 2 11
6 15 1 3 6 5 2 17
7 21 1 3 6 8 5 2 25
8 28 1 3 6 11 8 5 2 36
) 36 1 3 12 10 8 6 5 2 47
10 45 i 3 6 12 16 11 8 5 2 64
11 55 1 8 10 5 7 21 4 2 11 72

GOLOMB’'S TRIANGLE: Shortest Golomb rulers known in 1972,

We can put the difference between Dr. Matrix’ rulers and
Golomb’s rulers as follows. Dr. Matrix’ rulers minimize the
number of marks for a ruler of length % that can measure all
integral distances from 1 through % Golomb’s rulers do not
necessarily include all the integral distances from 1 through &;
with Golomb’s rulers, for a ruler with a given number of
marks, the length of the ruler is minimized and all the integral
distances the ruler does measure are different. If we draw a
graph corresponding to a Dr. Matrix ruler, we may find two
edges with the same edge number. By omitting all edges with
duplicate numbers we can get a graceful graph that Golomb
calls a “graceful approximation” of a complete graph. For ex-
ample, by dropping one edge (the line between points 1 and 4)
from a complete graph for five points [see Figure 93] the graph
can be gracefully numbered. It is equivalent to Dr. Matrix’
ruler with marks at points 0, 1, 4, 7 and 9.

It is worth noting that on Golomb rulers not only are all dif-
ferences between pairs of node numbers distinct, but also all



Figure 93

4 3 7

Graceful graph for a Dr. Matrix ruler

sums of pairs of node numbers, including the pairing of a node
number with itself. “That this is equivalent to the differences
being distinct is surprising,” Golomb writes, “but fantastically
simple to prove.” (Proof: if a—b=c—d, then a+d=b+c, and
conversely.)

With a yardstick, or 36-unit ruler as an example, here is a
quick way to prove that all distances measured by a Golomb
ruler are distinct. The yardstick has eight marks. The top row
[see Figure 94], taken from Golomb’s triangle, gives the dis-
tances between adjacent marks on this ruler. These seven num-
bers, together with the ruler’s total length, correspond to the
eight edge numbers on the perimeter of an eight-sided poly-
gon when it is made into a complete graph by drawing all its
diagonals and then numbered as gracefully as possible. The

Figure 94

1 3 6 11 8 5 2
4 9 17 19 13 7
10 20 25 24 15
21 28 30 26
20 33 32
34 35

36

Proof for eight-mark Golomb ruler
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second row of numbers is obtained by adding successive pairs
of numbers in the row above it. The third row consists of add-
ing successive triplets in the top row, the fourth row of adding
successive quadruplets, and so on. The bottom number is the
ruler’s length. It is, of course, the sum of all the numbers in
the top row. The 28 numbers of this triangle are the 28 edge
numbers of the complete graph for eight points when it is
given the best ungraceful numbering. If all these numbers are
different, no two edge numbers of the complete graph will be
alike and no two distances between pairs of marks on the cor-
responding ruler will be alike.

Golomb admits that for all rulers longer than six units the
results were obtained (by himself and others) partly by trial
and error. They have not yet been proved to be rulers of min-
imal length. (The ruler of length 47, for nine marks, was first
found in 1965 by Matthew J. C. Hodgart of Brighton in Eng-
land; the ruler of 72 lengths, for 11 marks, by Robert Reid of
Miraflores in Argentina, also in 1965.) Perhaps readers can im-
prove on these results or extend the triangle farther downward.

One of the many unusual properties for all graceful graphs

A A he; M1 h ic th
discovered by Golomb is that the nodes of such graphs can al-

ways be divided into two sets—those with even numbers and
those with odd—and the number of edges connecting the two

sets will be { (”+ 1)/2], where e is the total number of \,ds\.a in

the graph. The brackets mean that the expression i1s rounded
down to the nearest integer. Golomb calls this a2 “binary label-

.
ing.” For example, the even set of nodes in the graph at the

left of Figure 91 are numbered 0, 4 and 6, and the odd set has
only the number 1. Inspection shows that the two sets are in-
deed joined by [(6+ 1)/2]=3 edges.

Moreover, as Golomb proves, if all the nodes of a graph are
of even order (attached to an even number of edges), the
graph is graceful only if {(¢+1)/2] is even. When this value is
odd, binary labeling is impossible and therefore the graph can-
not be gracefully numbered. Of the topologically distinct
graphs with five or fewer nodes, only three are ungraceful. All
three have five nodes and all their nodes are of even order.
The three graphs violate Golomb’s condition that [(e+1)/2]
must be even [see Figure 95]. Note that the first two graphs are
planar whereas the third, the complete graph for five points, is
not. This shows that not all planar graphs, and not all non-
planar graphs, are graceful. Can a nonplanar graph be grace-
ful? Yes, as the graceful labeling of the Thomsen graph shows
[see Figure 96]. The Thomsen graph is sometimes called the
utilities graph because it diagrams the well-known (and unsolv-
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Figure 95

AN

The only ungraceful graphs with fewer than six nodes

Figure 96

0 1 2

K
s

g 6 3

A graceful numbering of the Thomsen graph

three utllltles without any crossing of edges The Thornsen
graph is one of an infinite family of graphs, known as “com-
plete bipartite graphs,” in which every node in a set of @ nodes
is joined to every node in a set of 4 nodes, but nodes within
each set are not connected. Golomb has established that all
complete bipartite graphs are graceful.

Skeletons of polyhedrons can be represented as planar
graphs known as Schlegel diagrams. Of the five Platonic solids
only the dodecahedron and icosahedron have not been shown
to be graceful. We have seen how to gracefully number the te-
trahedron. Can the reader gracefully number the Schlegel dia-
grams of the cube and octahedron [see Figure 97] before Go-
lomb’s labelings are given in the Answer Section? Can he do
the same for the diagram of the skeleton of the Great Pyramid
of Egypt? Can he discover graceful numberings for the dode-
cahedron or the icosahedron?

Three other graceful graphs by Golomb have six, seven and
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Figure 97

Three graceful Schlegel graphs: cube (left),
octahedron (center) and Great Pyramid (right)

Figure 98

w K w®

Three graceful graphs by Golomb with six, seven,
and ten nodes

10 nodes [see Figure 98]. Can the reader number these also be-
fore the solutions are given?

In addition to complete bipartite graphs there are other in-
finite families of graceful graphs. One found by Golomb is
shown in Figure 99. The question arises: As the number of
nodes approaches infinity, does the fraction of gracetul graphs
among all graphs of n nodes approach a limit? If so, what is
the limit? For several years no fractional value from 0 through

Figure 99

0 0 0 0
b 1

5
Y

///

3 6 S 12

.
-

An infirite family of graceful graphs
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1 was excluded, but recently Paul Erdos has been able to show
that the limit is 0. His prawof, not yet published, is ditficult.
Gary Bloom and Herbert Taylor found a fairly easy way to
show that the number of graceful graphs with e edges is
equal to or less then ¢, from which it follows at once that the
limit is 0.

Although many unsolved problems about graceful graphs,
some very technical, have now been cleared up by Golomb,
Erdos, and others, there are still several major questions that
remain unanswered:

(1) What are the necessary and sufficient conditions for a
graph to be graceful? It is mot even known if all tree graphs
are graceful. (Tree graphs are discussed in Chapter 17 of my
Mathematical Magic Show.) Gerhard Ringel in 1963 apparently
was the first to conjecture, in a different terminology and in-
dependently of Golomb’s work, that all tree graphs can be
gracefully numbered. This has been the subject of several pa-
pers by Alexander Rosa and other Czechoslovakian mathema-
ticians. The conjecture has been established only for special
kinds of trees such as “caterpillars”; trees with every node on
a central stalk or OI‘u'y' onc Cdse from the stalk [Sé'é" th“t,é?‘é' IOUJ
In a typical gracefully numbered caterpillar the edge numbers
run consecutively from one end of the tree to the other.

Figure 100

A graceful caterpillar

Golomb has discovered a similar algorithm for gracefully
numbering an infinite class of polyomino graphs such as the
pentomino and the heptomino [see Figure 101]. Note how the
consecutive numbers run diagonally upward, from left to right.
Unfortunately there is an infinite class of polyominoes with a
greater degree of concavity (the degree is not easy to define)
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Figure 101
8 4 12 1 - 9
3 <l ; .
° =0 d 412 16 4o : 14 18 14 2
! & i 16 3 ] 5 o
10 5 s o =5 % 13 v 6 1t 17 15 3 19 22
9 14 2 i " i .
oo 70 @ 16 iz 4 17 2t 2 0

Graceful polyominoes

for which this procedure fails even when they can be gracefully
numbered.

A simple graph found by Golomb [see Figure 102] is particu-
larly ungraceful because it is not ruled out by any known gen-
eral theorem.

Figure 102

N

A curiously ungraceful graph

(2) What are the rules for forming Golomb’s triangle? Put
another way, is there a general algorithm for finding the short-
est rulers that correspond to the best ungraceful numbering of
a complete graph for more than four points?

(3) Is there a graph that, when numbered as gracefully as
possible, violates the conjecture that on all such graphs the
highest node number and the highest edge number are equal?
Golomb is now searching for a counterexample; a graph with
the best numbering but with a highest node number that ex-
ceeds the highest edge number. (It cannot be the other way
around.) “If I find one,” Golomb writes in a letter, “the graph
will not only be ungraceful but downright disgraceful.”
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Figure 103

Soluticns to the graceful-graph problems

ANSWERS

six graphs that readers were asked to number
i

in Figure 103. None of these number-

N

olutions to the s
“gracefully” are shown
ings is unique.

Readers were also asked to improve on the rows of “Go-
lomb’s triangle,” each row giving the shortest-known rulers of
n marks (including end points) such that every distance be-
tween a pair of marks is a distinct integer. Walter Penney of
Greenbelt, Md., was the first to lower the eight-mark ruler to
length 34. The same ruler was also found by hand by Daniel
A. Lynch of Wildwood, N.J.

William Mixon of the University of Chicago was the first to
make an exhaustive computer search for all minimum-length
rulers through 11 marks. His results show that rulers of eight,
nine and 10 marks are unique, except of course for reversals
[see Figure 104]. These results were completely confirmed by
Ashok Kumar Chandra’s computer program at Stanford Uni-
versity and partly confirmed by the programs of Paul Steier,
James R. Van Zandt, Edward Schonberg and others. Working
by hand, Sheldon B. Akers found the nine-mark ruler, and




GOLOMB’S GRACEFUL GRAPHS

Figure 104
NODES LENGTH DIVISIONS

3 3 1,2

4 6 1,3, 2

5 1 1,35, 2
2,51,3

6 17 1,3,6,2,5
1,3,6,5 2
1,7,3, 2 4
1,7,4,2,3

7 25 1,3 6.8,5,2
1,6,4,9,3,2
1,10,5,3,4, 2
2,1,7,6,5 4
2,56,8 13

8 M 1,3,5,6,7,10, 2

9 44 1,4,7,13,2,8 6,3

10 55 1,5,4,13,3,8,7,12, 2

1Al 72 1,3,9,15,5,14,7, 10,6, 2
1,8,10,5,7,21,4,2,11,3

Minimum-length Golomb rulers

Wolfgang Harries, also working by hand, found all but one of
the rulers with six and seven marks.

The 10-mark ruler and one 11-mark ruler had been found
earlier by John P. Robinson of the University of Iowa with a
nonexhaustive computer search made in connection with work
on his 1966 doctorate on error-correcting codes. His best re-
sults, for rulers through 24 marks, are given in “A Class of Bi-
nary Recurrent Codes with Limited Error Propagation,” by Ro-
binson and Arthur ]J. Bernstein, in IEEE Transactions on
Information Theory (Volume IT-13, Number 1, January, 1967,
pages 106-113).

R. C. Ashenfelter of the Bell Telephone Laboratories was
the first to gracefully label the dodecahedron. Chandra devised
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a computer program that made an exbhaustive search for the
icosahedron and produced five fundamentally different labei-
ings. A partial search for the dodecahedron yielded a large
number of graceful labelings. This settles atfirmatively Go-
lomb’s conjecture that the skeletons of all five Platonic solids
are gracetul graphs.

~ADDENDUM

Many early references to Golomb rulers, in other terminolo-
gies, have come to light. The earliest known to me is a problem
by Henry D. Friedman that appeared in the SIAM Review, Vol.
5, July 1963, page 275.

Golomb rulers have practical applications to pulsed radar
and sonar codes (see “Synch-Sets: A Variant of Difference
Sets,” by G. ]J. Simmons, Proceedings of the Fifth Southeastern Con-
ference on Combinatorics, Graph Theory and Computing, Boca Ra-
ton, 1974, pages 625-645) and to X-ray diffraction crystallog-
raphy. Two Golomb rulers of length 17 provide counterexamples
to a “theorem” published by S. Picard in 1939 and used in crys-
tallography for many years.

Richard Guy reported (The American Mathematical Monthly,
Vol. 88, December 1981, page 756) that since Golomb revived
Ringel’s conjecture that all tree graphs are graceful, some 100
papers have dealt with partial results on this notorious and still
unanswered question.

Ronald L. Graham and Neil Sloane, both of Bell Laborato-
ries, have defined a “harmonious graph” as follows: A con-
nected graph, with » edges, is harmonious if its points can be
labeled with distinct integers (modulo n) so that the sums of the
pairs of numbers at the ends of each edge are also distinct
(modulo n). Harmonious graphs have much in common with
graceful graphs, and are related to error-correcting codes and
to a famous combinatorial problem known as the postage
stamp problem. See “On Additive Bases and Harmonious
Graphs,” by Graham and Sloane, STAM Journal on Algebraic and
Discrete Methods, Vol. 1, December 1980, pages 382—404. The
authors show (among many other things) that graphs known as
ladders, fans, and wheels are harmonious. Trees (with zero re-
peated once) may be harmonious. The Petersen graph and
skeletons of the tetrahedron, dodecahedron, and icosahedron
are harmonious. Skeletons of the cube and octahedron are not.
Almost all graphs, the authors conclude, are neither harmoni-
ous nor graceful.
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In recent years Golomb and Herbert Taylor have been ex-
ploring a two-dimensional analog of ruler problems which
have many practical applications. See their paper on “Two-
dimensional Synchronization Patterns for Minimum Ambigu-
ity,” in JEEE Transactions on Information Theory, Vol. I'T-28, July
1982, pages 600-604, and Golomb’s “Algebraic Constructions
for Costas Arrays,” to appear in fournal of Combinatorial Theory,
Series A, sometime in 1983.
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CHARLES ADDAMS’ SKIER

AND OTHER PROBLEMS

1. THE FLEXIBLE BAND

Gustavus J. Simmons, in charge of research and development
at Rolamite Inc., Albuquerque, N.M., sent this curious topo-
logical problem. Work at Rolamite involves complex banded
rolling systems. One of the Rolamite engineers, Virgil Erbert,
was confronted in the course of his work with the problem
shown in Figure 105. End A of a flexible band was fastened to
an object that was too large to pass through the slot at end B.
It was essential that the band be formed into the looped*con-
figuration shown in the illustration without detaching end A
from the object to which it was fastened. Can it be done?

It looks impossible, but the answer is yes. The reader is in-
vited to draw a rough facsimile of the band on a sheet of pa-

Figure 105

A looped-band topological puzzle
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per, cut it out and tape end A to a tabletop. The puzzle, which
is not difficult, is to manipulate the strip into the looped
configuration.

2. THE ROTATING DISK

Six players—all them A, B, C, D, E and F—sit around a circu-
lar table divided into six equal parts. At the center of the table
is a disk mounted on a central pin around which it can rotate
[see Figure 106]. The disk is marked with arrows and digits.

Figure 106

A

D

D. St. P. Barnard's game problem

The wheel is spun five times. After each spin each player
scores the number of points within his segment of the table. (If
the wheel stops with its arrows exactly between adjacent play-
ers, the spin is not counted.) The players keep a running total
of points, and the one with the largest total after the fifth spin
is the winner. If there are ties for the highest score, no one
wins and the game is played again.

The outcome of the first spin is shown in the illustration.
C is ahead with five points. After the second spin D is ahead.
After the fifth spin A is the winner. What was each player’s fi-
nal score? The information seems to be insufficient, yet the
question can be answered accurately by deductive reasoning.
This unusual logic problem is adapted from a puzzle in one of
D. St. P. Barnard’s popular “Brain-twister” columns in the Brit-
ish Observer.
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3. FRIEZE PATTERNS

A frieze is a pattern that endlessly repeats itself along an infi-
nite strip. Such patterns can exhibit different kinds of basic
symmetry, but here we shall be concerned only with what is
called “glide symmetry.” A glide consists of a slide (more tech-
nically a “translation”) combined with mirror reflection and a
half-turn. For example, repeatedly gliding the letter R to the
right along a strip generates the following frieze:

RERERBRERBRERBER...

H. S. M. Coxeter, a geometer at the University of Toronto,
recently investigated in depth a remarkable class of frieze pat-
terns that can be constructed very simply by using nonnegative
integers, if the lack of symmetry in the shapes of the numerals
is ignored [see Figure 107]. Think of the numerals as represent-
ing spots of colors, all I's the same color, all 2’s another color
and so on. In this instance any rectangular portion of the frieze
that i1s nine columns wide, such as the shaded one shown here,
can be regarded as the unit pattern. By gliding it left or right—
that is, sliding and simultaneously reflecting and inverting—
the infinite frieze pattern is generated.

Figure 107
e o « O 0 0 O o o &
.« o . 1 1 « e o
¢« o o 1 2 2 e s o
e o 3 s o
o o s 1 7 7 e o o
*« o . 1 16 * e .
« o s 1 2 g 9 e e
« o o 1 5 A
A 1 1 1 e e o
« o 0 0 o o .

A frieze pattern with glide symmetry
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To produce this type of frieze pattern, begin with infinite
borders of O's and 1's at top and bottom, and a path of num-
bers from top to bottom such as the zig-zag path of eight l's
shown on the left between the borders of 0’s. The numbers in
such a path (which may be straight, or crooked as it is here), as
well as the length of the path, can be varied to produce differ-
ent patterns. A simple formation rule, common to all such pat-
terns, is now applied to obtain all the other integers. The sur-
prising glide symmetry that results is a nontrivial consequence
of this rule.

Our puzzle, suggested by Coxeter, is to guess the simple
rule. Hint: It can be written as an equation with three terms
involving nothing more than multiplication and addition, and
no exponents. When Coxeter first showed the pattern given
here to the mathematician Paul Erdés, Erdés guessed the rule
in 20 seconds.

A discussion of the properties of such friezes, their fascinat-
ing historical background and their applications to determi-
nants, continued fractions and geometry can be found in Cox-
eter’'s “Frieze Patterns” in Acta Arithmetica, Volume 18 (1971),
pages 297-310. On friezes in general and their seven basic
kinds of symmetry see Coxeter’s modern classic, Introduction to
Geometry (Wiley, 1961), pages 47—49.

4. THE CAN OF BEER

On a picnic not long ago Walter van B. Roberts of Princeton,
N.J., was handed a freshly opened can of beer. “I started to
put it down,” he writes, “but the ground was not level and I
thought it would be well to drink some of the beer first in or-
der to lower the center of gravity. Since the can is cylindrical,
obviously the center of gravity is at the center of a full can and
will go down as the beer level is decreased. When the can is
empty, however, the center of gravity is back at the center.
There must therefore be a point at which the center of gravity
is lowest.”

Knowing the weight of an empty can and its weight when
filled, how can one determine what level of beer in an upright
can will move the center of gravity to its lowest possible point?
When Roberts and his friends worked on this problem, they
found themselves involved with calculus: Expressing the height
of the center of gravity as a function of the height of the beer,
differentiating, equating to zero and solving for the minimum
value of the height of the center of gravity. Later Roberts
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thought of an easy way to solve the problem without calculus.
Indeed, the solution is simple enough to get in one’s head.

To devise a precise problem assume that the empty can
weighs 1Y% ounces. It is a perfect cylinder and any asymmetry
introduced by punching holes in the top is disregarded. The
can holds 12 ounces of beer, therefore its total weight, when
filled, is 13% ounces. The can is eight inches high. Without us-
ing calculus determine the level of the beer at which the center
of gravity is at its lowest point.

5. THE THREE COINS

Three coins are on the table; a quarter, a half-dollar and a sil-
ver dollar. Smith owns one coin and Jones owns the other two.
All three coins are tossed simultaneously.

It is agreed that any coin falling tails counts zero for its
owner. Any coin falling heads counts its value in cents. The
tosser who gets the larger score wins all three coins. If all three
come up tails, no one wins and the toss is repeated.

What coin should Smith own so that the game is fair, that is,
so that the expected monetary win for each player is zero?

David L. Silverman, author of the excellent book of game
puzzles called Your Move (McGraw-Hill, 1971), is responsible
for this new and unpublished problem. It has an amazing an-
swer. Even more astonishing is a generalization, formally
proved by Benjamin L. Schwartz, of which this problem is a
special case.

6. KOBON TRIANGLES

Kobon Fujimura, a Japanese puzzle expert, recently invented
a problem in combinatorial geometry. It is simple to state, but
no general solution has yet been found. What is the largest
number of nonoverlapping triangles that can be produced by
n straight line segments?

It is not hard to discover by trial and error that for n=3, 4,
5 and 6 the maximum number of triangles is respectively one,
two, five and seven [see Figure 108]. For seven lines the prob-
lem is no longer easy. The reader is asked to search for the
maximum number of nonoverlapping triangles that can be
produced by seven, eight and nine lines.

The problem of finding a formula for the maximum number
of triangles as a function of the number of lines appears ta be
extremely difficult.
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Figure 108

P

Maximum number of nonoverlapping triangles for
three, four, five, and six lines

7. A NINE-DIGIT PROBLEM

One of the satisfactions of recreational mathematics comes
from finding better solutions for problems thought to have
been aiready solved in the best possible way. Consider the fol-
lowing digital problem that appears as Number 81 in Henry
Ernest Dudeney’s Amusements in Mathematics. (There is a Dover
reprint of this 1917 book.) Nine digits (0 is excluded) are ar-
ranged in two groups. On the left a three-digit number is to be
multiplied by a two-digit number. On the right both numbers
have two digits each:

158 79
28 46

In each case the product is the same: 3,634. How, Dudeney
asked, can the same nine digits be arranged in the same pat-
tern to produce as large a product as possible, and a product
that is identical in both cases? Dudeney’s answer, which he said
“Is not to be found without the exercise of some judgment and
patience,” was

174 96
32 58
5,568 5,568

Victor Meally of Dublin County in Ireland later greatly im-
proved on Dudeney’s answer with
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584 96
12 73
7,008 7,008

This remained the record until last year, when a Japanese
friend of Fujimura’s found an even better solution. It is be-
lieved, although it has not yet been proved, to give the highest
possible product. Can the reader find it without the aid of a
computer?

8. CROWNING THE CHECKERS

A well-known problem with checkers is begun by placing eight
checkers in a row. A move consists in picking up a checker, car-
rying it right or left over exactly two checkers, then placing it
on a checker to make a king. (Carrying a checker over a king
counts as moving it over two checkers.) In four moves form
four kings. The problem is not difficult, and it is easy to show
that for any even number of checkers, n, when = is at least 8,
a row of n/2 kings can always be produced in #/2 moves.

Numerous variants on this old problem have been proposed
by Dudeney and other puzzle inventors. The following varia-
tion on the theme, which I believe is new, was suggested and
solved by W. Lloyd Milligan of Columbia, S.C.

An even number of checkers, n, are placed in a row. First
move a checker over one checker to make a king, then move a
checker over two checkers, then a checker over three checkers,
and so on, each time increasing by one the number of checkers
to be passed over. The objective is to form #/2 kings in n/2
moves.

Can the reader prove that the problem cannot be solved un-
less n is a multiple of 4, and give a simple algorithm (proce-
dure) for obtaining a solution in all cases where #n is a multiple
of 47 A solution is easily found by trial and error when »n is 4
or 8, but for n=16 or higher it is not so easy without a system-
atic method.

9. CHARLES ADDAMS’ SKIER

Single-panel gag cartoons, like Irish bulls, are often based on
outrageous logical or physical impossibilities. Lewis Carroll
liked to tell about a man who had such big feet that he had to
put his pants on over his head. Almost the same kind of im-
possibility is the basis of a famous New Yorker cartoon by
Charles Addams of a woman skier going down a slope. Behind
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her you see her paraliel ski tracks approaching a tree, going
around the tree with a track on each side and then becoming

parallel again.

Suppose you came on a pair of such ski tracks on a snowy
slope, going around a tree exactly as in Addams’ cartoon. As-
sume that they are, in truth, tracks made by skis. Can you think
of at least six explanations that are physically possible?

ANSWERS

1. How to form a loop with the Rolamite band while end A
is taped to a tabletop is shown in Figure 109.

Figure 109

173

Solutions to the loop problem

Robert Neale, whom we encountered in the chapter on pa-
per folding, suggested applying this to a playing card, say the
joker. Use a razor blade to cut along the lines shown on the
card at the left of Figure 110. Discard the shaded cut-out re-
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Figure 110

The curious jokes

gion. By carefully executing the trick bend with the little
square loop, taking care not to crease or tear its sides, you can
produce the structure shown on the right. It is an amusing cur-
iosity to carry in a wallet and show to friends. How the devil
was it made? It looks, of course, as if the entire card had to be
somehow pushed through the tiny window!

2. The first two rows of the chart [see Figure 111] show the
results of the first two spins. The first spin was given, and we
were told that D had the highest total after the second spin.
This could happen only if the wheel distributed the points as
shown in the second row. Now comes the tricky part. Every op-
posite pair of digits on the disk used in the game add to 5. This

Figure 111

SPINS A B C D E F

1 1 2 5 4 3 0

2 0 1 2 5 4 3

3 5 4 3 0 1 2

4 5 4 3 0 1 2

5 4 3 0 1 2 5

FINAL SCORES 15 14 13 10 11 12

Solution to D. St. P. Barnard's problem
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means that every spin will give a combined sum of five points
to each pair of players seated opposite each other—namely AD,
BE and CF. At the end of the game, which has five spins, each
of these pairs of players will have a combined sum of 25 points.

We know that A won the game. Since his was the highest
score, D (who sits opposite) must have ended with the low-
est score. D’s final score must be less than 13, otherwise A’s fi-
nal score would be smaller. D’s final score cannot be 12. True,
A would score 13, but then a player of the pair BE, as well as
a player of the pair CF, would necessarily score 13 or better,
preventing A from being the highest scorer.

As we have seen, D cannot score more than 11. He already
has nine points at the end of the second spin, threfore, at least
one of the three remaining spins must give him zero. Since the
order of the results of each spin cannot affect the final scores,
we can assume that D scored zero after the third spin. This de-
termines the points for the other players as indicated in the
third row of the chart.

On the next two spins, D’s points can only be 0-0, 0-1, 1-1
or 0-2. We test each in turn. If 0-0 or 0-2, A will tie with
someone on his final score. If 1-1, F gets 5-5 and wins with a
score of 15. Only 0-1 remains for D. This makes A the winner,
with 15 points, and enables us to complete the chart as indi-
cated. We do not know the order of the last three spins, but
the final scores are accurate. The problem is No. 2 in D. St. P.
Barnard’s first puzzle book, Fifty Observer Brain-Twisters (Faber
and Faber, Ltd., 1962).

3. The formation rule for H. S. M. Coxeter’s frieze patterns
is that every four adjacent numbers

b
a d

satisfy the equation ad=bc+ 1.

4, Walter van B. Roberts answered his beer-can problem this
way: “Imagine that the beer is frozen so that the can of beer
can be placed horizontally on a knife-edge pivot and balanced
with the can’s top to the left. If it balances with the pivot under
the beer-filled part, adding more beer would make the can tip
to the left, whereas removing beer would make it tip to the
right. If it balances with the pivot under the empty part, the
reverse would be true. But if it balances with the pivot exactly
under the beer’s surface, any change in the amount of beer will
make the can tip to the left [see Figure 112]. Since in this case
the center of gravity moves toward the can’s top when any
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Figure 112

da
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PIVOT

The balanced beer can

change is made in the amount of beer, the center of gravity
must be at its lowest point when it coincides with the beer’s
surface.

“With the can balanced in this condition, imagine that the
ends are removed and their mass distributed over the side of
the can. This cannot upset the balance because it does not shift
the center of gravity of the system, but it allows us to con-
sider the can as an open-ended pipe whose mass per unit
length on the empty (left) side is proportional to the weight of
an empty can, whereas the mass on the beer-filled right side is
proportional to the weight of a full can. The moment of force
on the left is therefore proportional to the weight of an empty
can multiplied by the square of the length of the empty left
side, and the moment on the right side is similarly proportional
to the weight of a full can multiplied by the square of the
length of the beer-filled right side. Since the can is balanced,
these moments must be equal.

“Pencil and paper are now hardly required to deduce that
the square of the length of the empty part divided by the
square of the length of the full part equals the weight of a full
can divided by the weight of an empty can, or, finally, that the
ratio of the length of the empty part to the full part is the
square root of the ratio of the weight of a full can to an empty
one.”

Expressed algebraically, let @ and & stand for the lengths of
the empty and filled parts of the can when the center of gravity
is at its lowest point and E and F for the can’s weight when
empty and full. Then a2E = b°F, or a/b=V/FIE.

In the example given, the can weighs nine times as much
when it is full as it does when it is empty. Therefore the center
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of gravity reaches its lowest point when the empty part is three
times the length of the full part, in other words, when the beer
fills the can’s lower fourth. Since the can is eight inches high,
the level of the beer is 8/4=2 inches.

After the above solution appeared in Scientific American,
Mark H. Johnson wrote to say that the answer is not strictly ac-
curate. Because the tops and bottoms of the frozen can are at
unequal distances from the pivot, they exert unequal moments
of force. Distributing their masses over the can’s side, to make
a uniform and open pipe, would tilt the can slightly to the air
side. To solve the problem precisely one needs more data
about the can’s dimensions and the masses of its top, bottom
and side. Other readers reported that the solution also neglects
what naval architects and engineers call the “free surface ef-
fect.” When liquids are free to move inside containers, a slight
raising of the vessel’s center of gravity results.

5. Regardless of which coin Smith chooses, the game is fair,
The payoff matrices show [see Figure 113] that in every case the
person least likely to win (because he has only one coin) wins
just enough when he does win to make both his expectation
and that of his opponent zero.

As David Silverman suspected when he found this solution,
the problem is a special case of the following generalization. If

Figure 113
75 50 25 0
WIN 75 75 75 75 SUM =300
LOSS -100 -100 -100 o SUM=300
125 100 25 0
WIN -50 -50 125 125 SUM=150
LOSS —50 -50 -50 0 SUM=150
150 100 50 0
WIN —-25 ~-25 -25 150 SUM=75
LOSS —-25 -25 -25 ) SUM=75

Payotfs for player with silver dollar (top,)
half-dollar (middle), and quarter (bottomn)
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a set of coins have values that are adjacent in the doubling se-
ries 1—2—4—8—16 ... and the game is played as described,
it is a fair game regardless of how the coins are divided. We
assume, of course, that each player has at least one coin and
that each value is represented by only one coin.

Daniel S. Fisher, a high school student in Ithaca, N.Y., gen-
eralized Silverman’s generalization. He showed that Silver-
man’s game is fair for any division of ownership of the coins
when values of the coins are 1, n, n?, ..., n* and the coins are
weighted to fall tails with probability 1/n (n equal to or greater
than 2).

6. The maximum number of nonoverlapping triangles that
can be produced by seven, eight and nine lines are 11, 15 and
21 respectively [see Figure 114]. These are thought, although
not yet proved, to be maximal solutions.

Figure 114

Solution to triangie problem

7. The solution with the largest product is:

532 98
14 76
7,448 7,448
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The problem has 11 basic solutions:

532 %X 14=98 x 76 ="7,448
584x12=96x73="7,008
174 x32=96 x58=5,568
158 x32=79x64=5,056
186 x27=93 x 54=15,022
259 x 18=74X63=4,662
146 x29=73 x58=4,234
174 x23=69 x 58 =4,002
134 x29=67 x 58 =3,886
138 x 27=69x 54=3,726
158 x23=79x46=3,634

Many readers found all eleven by hand, others found them
with computer programs. Allan L. Sluizer pointed out that the
maximum answer has digits 1 through 5 in one of the mulu-
plications, and digits 6 through 9 in the other.

If 0 is included among the digits (though not as an initial
digit of a number), we may ask for solutions of the expression
abc Xde=fghxi. There are 64 solutions, all independently
found by Richard Hendrickson, R. F. Forker, and Sluizer. The
one with the smallest product is 306x27=459x 18=38,262.
The one with the largest product is 915xX64=732%x80=
58,560. The maximum solution is given by Dudeney, in his an-
swer to problem 82 of Amusements in Mathematics, as the maxi-
mum product obtainable if the ten digits are divided in any
manner whatever to form a pair of multiplications, each of
which gives the product. As in all such problems, 0 may not be
an initial digit. The lowest product is given by 3,485 x 2=6,970 X
1=6,970.

“It is extraordinary,” Dudeney once declared, “what a large
number of good puzzles can be made out of the ten digits.”
Here are some examples similar to our original problem. How
many solutions are there to ab X cde=fghi, using the nine posi-
tive digits? And how many to a Xbede=fghi? The seven solu-
tions to the first problem, and the two to the second, are given
by Dudeney in his answer to problem 80, Amusemenis n
Mathematics.

Using all ten digits, how many solutions are there for abXx
cde=fghij? 1 have not seen this answered in print, but Y. K.
Bhat, a correspondent in New Delhi, found nine:
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39x402=15,678
27x594=16,038
54 X 297=16,038
36 x495=17,820
45 x 396 = 17,820
52 x 367 =19,084
78 X 345=26,910
46 x 715=32,890
63 x927=58,401

How about abXc¢=de+fg=hi, excluding 0? In Modern Puz-
zles, problem 73, Dudeney gives the only answer: 17x4=93+
25 =68.

Clement Wood, in his rare Book of Mathematical Oddities (Lit-
tle Blue Book No. 1210), asserts that abXc=de X f=ghi (0 ex-
cluded) has only two solutions: 38 x4=78x2=156, and 58 x
3=29x6=174.

One final problem that I leave unanswered. Find the only so-
lution (excluding 0) to a X be =d X ¢f = g X hi. This was sent to me
in 1972 by Guy ]J. Crocker, who discovered it. I cannot recall
having seen it before.

8. If n 1s odd, it is obvious there is no solution. If n is even
but not a multiple of 4, an odd number of checkers must be
Jjumped on the final move. This would necessarily leave a sin-
gle checker in the row, therefore the assumption that there is
a solution when #n is not a multiple of 4 must be false.

If there are 4n checkers, the problem can be solved by work-
ing it backward according to the following algorithm. Start
with n/2 kings in a row. Take the top checker from either of
the two middle kings, jump over the largest group of kings and
put down the checker as a single man. On the next backward
move take the top checker from the other middle king and
jump in the same direction as before, jumping one fewer
checker. Follow this procedure until all kings in the direction
of the first jump are eliminated. Take the top checker from the
inside king and jump in the same direction as the previous
jumps, moving it over the proper number of checkers. Con-
tinue this procedure, always in the same direction, until all the
kings are reduced to single men. When these moves are taken
in reverse order, they provide one solution (there are many
others) to the original problem.
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9. Here are six possible explanations of the ski tracks:

(1) The skier bumped into the tree but protected himself
with his hands. Keeping one ski in place, he carefully lifted his
other foot and moved to the lower side of the tree. With his
back against the tree, he replaced his raised foot and ski on the
other side, then continued down the slope.

(2) The skier slammed into the tree with such force that his
skis came off and continued down the slope without him.

(3) Two skiers went down the hill, each wearing only one ski.

(4) One skier went down the hill twice, each time with one
ski on one foot.

(5) A skier went down a treeless slope, moving his legs apart
at one spot. Shortly thereafter a tree with a sharpened trunk
base was plunged into the snow at that spot.

(6) The skier wore stilts that were high enough and suffi-
ciently bowed to allow him to pass completely over the tree.

So many readers sent other preposterous explanations that
I can give only a sampling:

A small, supple tree that bent as the skier went over it was
proposed by John Ferguson, John Ritter, Brad Schaefer,
Oliver G. Selfridge and James Weaver. Ferguson also sug-
gested (among his 23 possibilities) a pair of skis pulled uphill
by long ropes and two toboggan teams of very small midgets,
four on each ski. Selfridge included this one: The skier, aware
of his ineptness, wore a protective lead suit. His impact on the
tree sheared out a cylindrical section. The dazed skier passed
between top and bottom parts of the tree before the top fell
down and balanced perfectly on the base.

Manfred R. Schroeder, director of the Drittes Physikalisches
Institut at the University of Gottingen, reported an actual ex-
perience he had in 1955 while skiing down a mountain in New
Hampshire. “I hit a small but sturdy tree with my right shin-
bone. The binding came loose and the ski and leg went around
different sides of the tree. Below the tree, leg and ski came to-
gether again. However, the binding did not engage (no auto-
matic step-in bindings then!) and the tracks ended in a spill
about ten yards farther down the slope. Even then, in spite of
considerable pain in the leg, I thought it was a worthwhile
experience.”

Johnny Hart, in his B.C. comic strip, has played with the
theme. Thor, speeding toward a tree on his stone wheel uni-
cycle, once went around the tree leaving two tracks. What hap-
pened on a later occasion is reproduced in Figure 115.
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Figure 115

By permission of Johnny Hart and Field Enterprises, Inc.
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CHESS TASKS

Everyone who calls a [chess] problem
“beautiful” is applauding mathematical beauty,
even if it is beauty of a comparatively lowly
kind. Chess problems are the hymn-tunes of
mathematics.

—G. H. HArDY, A Mathematician’s Apology

It has been my policy to avoid chess problems of the type
“Mate in n moves” on the assumption (perhaps a mistaken one)
that too few readers play chess and that, even among those
who do, too few like chess problems. In this chapter, however,
I shall consider a variety of what are called chess “task” prob-
lems. They have so little in common with actual play that they
are of more interest to puzzle buffs than to serious chess play-
ers. True, a knowledge of chess rules is essential. But apart
from that, even a tyro is as likely as a grandmaster to be able
to solve such problems.

What is a chess task? It is a chess problem where a person
seeks an objective in a way that maximizes or minimizes one or
more parameters. Among chess players the best-known task
question is: What is the shortest possible game? The answer, of
course, is the “fool’s mate.” White opens with, say, P-KB4.
Black replies P-K3. If White foolishly moves P-KN4, Black
checkmates on his second move, Q-Rb5.

The shortest game ending in perpetual check was published
in 1866 by one of the great pioneer chess problemists, Sam
Loyd. It is
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1. P-KB4 1. P-K4
2. K-B2 2. Q-KB3
3. K-N3 3. QxP(ch)

Black now has a perpetual check by moving his queen back
and forth from the square it is on to Black’s R3 square.

A much more difficult task was also posed in 1866 by Loyd.
What is the shortest game ending in stalemate? Loyd’s spectac-
ular 10-move solution has never been surpassed:

White Black

1. P-K3 1. P-QR4
2. Q-R5 2. R-R3

3. QxXQRP 3. P-KR4
4. QxBP 4. QR-KR3
5. P-KR4 5. P-KB3
6. QxXQP (ch) 6. K-B2

7. QxXNP 7. Q-06
8. QXN 8. Q-KR2
9. QxB 9. K-N3

10. Q—K6 (stalemate)

The final position is shown in Figure 116, No. 1. In 1882 a
search began for the shortest “no capture” stalemate that left
all 32 men on the board. The present record, 12 moves, was
found by C. H. Wheeler in 1887. It was forgotten, then redis-
covered independently by several men, including Loyd and
Henry Ernest Dudeney (who gives it as Problem 349 in his
Amusements in Mathematics). In January, 1906, Loyd published
in Lasker’s Chess Magazine a hilarious commentary on the game,
pretending to explain the strategy behind each crazy move and
calling attention to a five-move mate overlooked by Black when
he made his final stalemating move. (Loyd’s commentary can
be found in Alain C. White’s Sam Loyd and His Chess Problems,
1913, pages 128-129, currently available as a Dover reprint.)

Figure 116, No. 2 shows how 30 men, the largest number
known, can be placed in a legal position—a position that can
result in actual play—such that no move is possible by either
side: a double stalemate. It was published in 1882 by G. R.
Reichelm, who also showed how the position could be reached
in 25 moves. Note the pattern’s twofold symmetry.

Another remarkable task solved by Loyd is to play the short-
est game ending with only the two kings on the board. Loyd’s
17-move solution is given in Alain White’s book as Problem
116. The two kings are left on their own pawn squares. Differ-
ent 17-move solutions were later found by others, with the
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Figure 116, No. 1 & 2

1. Shortest stalemate game 2. Double stalemate with 30 men

kings left on other cells. No one has found a 17-move game
leaving the kings on their own starting squares. The two-king
ending is rare among task problems in that 17 moves (by each
player) can be proved an absolute minimum. Fifteen captures
must be made by each side, but neither player can capture on
his first move, and one more noncapture move can be proved
necessary.

Dudeney later found a 17-move game (Problem 352 of his
Amusements in Mathematics) that eliminates only the 14 pieces
(nonpawns) of both sides, leaving both kings and the 16 pawns
on their starting cells. Curiously, every move by Black is a mir-
ror copy of White’s preceding move. Here again, 17 moves can
be proved minimal.

Along similar lines, one of Dudeney’s great achievements
was a 16-move game ending with all 16 of White’s men on their
starting cells and Black with only his king on the board. After
Dudeney published this game [see Figure 116, No. 3] Loyd dis-
covered that White could checkmate in three moves. This is an-
other minimum, since no shorter mate is believed possible with
Black’s lone king on any other cell. Can the reader work out
the mate before it is revealed in the Answer Section? Dude-
ney’s game (Problem 351 of his Amusements in Mathematics) was
reduced by a half-move in 1898—that is, the final position is
achieved after White’s 16th move—but then there is no mate
in three because it is Black’s turn.

A special class of task problem is known as a “one-move con-
struction task” because only immediately possible moves are
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Figure 116, No. 3 & 4

3. White to mate in three moves 4, 122 moves

considered. A classic example is the task of placing the eight
pieces of one color so that the largest number of moves can be
made. The proved maximum of 100 was achieved by M. Bezzel
in 1848 (see page 62 of The Sixth Book of Mathematical Games
from Scientific American). If all 16 men of one color are used, the
maximum was believed for 10 years to be 119 moves until
Nenad Petrovic increased it in 1949 to 122 [see Figure 116, No.
4]. When I first saw this pattern, I was unable to count more
than 104 moves until I realized that a promoted pawn must be-
come one of four different pieces, each of course a different
move. (Modern chess laws do not allow a pawn on the eighth
rank to remain a pawn.) The record for the 16 black and white
pieces is 173, for all 32 men it is 164, and for a legal position
with no promoted men or promotion moves it is 181. The
present record for an illegal position is shown in Figure 116,
No. 5. By arranging the colors of the border queens as shown,
W. A. Shinkman, in 1923, achieved 412 moves. Captures are,
of course, counted as moves.

The minimum number of moves for the eight pieces of one
color is 10 (see my The Unexpected Hanging and Other Mathemai-
ical Diversions, page 88). The same position also minimizes the
number of pieces (three) among the eight that are able to
move. Ten also is the record for minimum moves when the 16
pieces of both colors are used. In 1923 T. R. Dawson found
the record minimum for all 32 men in a legal position [see Fig-
ure 116, No. 6]. Only two moves can be made. E. Fielder
showed in 1938 how the same 32 men can be legally placed so
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Figure 116, N0.5 8 6
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5. 412 moves 6. Two moves

that only one man (the white queen) can move [see Figure 116,
No. 7]. No one has yet found a way to place legally all 32 men
so that no move is possible.

There are many legal ways to place the 16 nonpawns to
achieve a maximum of 46 captures, and all 32 men can be le-
gally placed to allow 88 captures. How about illegal positions?
If 32 black knights go on black cells and 32 white knights on
white cells, 336 captures are possible. This was considered the

Figure 116, No. 7

7. Only white queen can move
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maximum for many decades until 1967, when T. Marlow in-
geniously substituted two queens and two pawns for four
knights to raise the record to 338 [see Figure 116, No. 8]. It is
assumed that each capture by a pawn counts as four moves be-
cause it can become any of four pieces.

I have touched on only a small fraction of tasks concerning
moves and captures. Space does not allow discussing the
hundreds of tasks involving checks, discovered checks, mates,

- selfmates, stalemates, forced captures (every move a capture),

forced checks, forced mates and so on. Of special interest to
combinatorial mathematicians are one-move construction tasks
involving the placing of a specified set of men so that a maxi-
mum or a minimum number of cells are attacked or unat-
tacked, or to achieve some other goal that does not involve
moves or captures. A classic problem of this type (see Chapter
16 of The Unexpected Hanging) is to place eight queens (the
maximum) so that no queen attacks another. The similar tasks
of maximizing the number of nonattacking rooks (8), bishops
(14), knights (32) and kings (16) are considered in the same
chapter. A more difficult problem is to place 16 pawns (the
maximum) so that no three are in a straight line. Lines are not
restricted to rows, columns or diagonals but may have any ori-
entation. Think of each pawn as a point in the center of the
cell it occupies. No three such points may be colinear. One of
many solutions is shown in Figure 116, No. 9. It is the only one
in which two pawns occupy central cells.

Figure 116, No. 8 & 9

8. 338 captures 9. No three pawns in a line



CHESS TASKS

Another difficult task of the same general category is to
place eight queens so that 11 vacant squares are not attacked.
There are at least six basic ways to do it (the exact number is
not known), one of which will be given in the Answer Section.
Eleven unchecked cells is undoubtedly maximum, although no
proof is known to me.

A generalization of this problem—placing n queens on an
order-n square to leave a maximum number of unattacked va-
cant cells—has not, to my knowledge, been fully analyzed.
When n equals 1, 2 or 3, it is easy to see that no cell may be
unchecked. When n equals 4, only one cell may be unchecked.
For n equals 5 the problem is suddenly nontrivial. Three cells
may be unattacked, but the pattern is difficult to find and also
unique, except for rotations and reflections. Can the reader
find it before checking the answer? The maximum number of
unattacked cells when n equals 6, 7, 8, 9, 10, 11, 12 is believed
to be 5,7, 11, 16, 22, 27 and 36 respectively.

The minimum number of queens needed to attack all vacant
cells of square boards is a general problem that has been thor-
oughly explored for boards of order 2 through 13. Since no
piece attacks the cell it is on, the problem falls into three main
groups: solutions in which no queen attacks another, or all
queens are attacked, or some, but not all, are attacked. On the
standard chessboard five queens are required in all three cases,
and there are hundreds of solutions. Two tasks of this type on
smaller boards are particularly pretty because each has only
one basic solution. Can the reader put three queens on an or-
der-6 board so that all vacant cells are attacked? Can he put
four queens on an order-7 board so that all vacant celis are at-
tacked and no queen attacks another?

Four queens can be placed on the order-8 board so that a
maximum of 58 vacant cells are checked, leaving only two un-
checked empty cells. There are many ways to eliminate those
two squares by adding a single rook, bishop or king, but to
check all vacant cells with four queens and a knight seems to
have only one basic solution, which was first published by
J. Wallis in 1908. Can the reader discover it? (Hint: The four
queens must leave three of the vacant cells unchecked.)

It is easy to prove that nine kings, eight bishops or eight
rooks are needed to attack all vacant cells on a standard chess-
board. Much harder to find is the unique pattern by which 12
knights (the minimum) check all vacant cells. (See my Mathe-
matical Magic Show, Chapter 14.) To attack all 64 squares re-
quires 14 knights, or eight rooks, or 10 bishops, or 12 Kings.
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The eight pieces of one color can attack all 64 squares only
if the bishops are on the same color. With bishops on opposite
colors 63 squares is maximum. Douglas G. Smith, of Fresno,
CA., recently sent me the result of his long search for a way to
eliminate one of these eight pieces and still attack all vacant
cells. He found how to do it by dropping a bishop. I do not
know if his beautiful solution is unique (aside from rotations,
reflections and trivial rearrangements of the rooks and queen)
or if the task can be solved by dropping a knight or the king
instead of a bishop. To make the task completely clear: Place a
queen, king, two rooks, two knights and a bishop on a chess-
board so that all vacant cells are in check.

For readers who may want to go more deeply into this ob-
scure corner of chess recreations, I have listed basic references
in the Bibliography for this chapter.

ANSWERS

1. Sam Loyd’s three-move mate, all white men in starting
position and a lone black king on Black’s KR5:

1. P-Q4 1. K-R4
2. Q-Q3 2. K moves
3. Q-KR3 (mate)

or
1. P-Q4 1. K-Nb
2. P—K4 (ch) 2. K moves

3. P-KN3 (mate)

2. One of six known ways to place eight queens so that 11
vacant cells are unattacked is shown in Figure 117 a. The un-
checked squares are indicated by dots.

3. There is only one basic way to place five queens on an or-
der-5 board so that three vacant cells are unattacked [see Figure
117 b]. Mannis Charosh has suggested that the best systematic
search procedure for proving uniqueness is to explore the
equivalent problem of placing three queens so that five cells
are unchecked, taking advantage of the board’s symmetries to
shorten the search.

4. The only basic way to place three queens on an order-6

board so that all vacant cells are checked is shown in Figure
117 ¢.

5. The only basic way to put four queens on an order-7
board so that all vacant cells are checked and no queen attacks
another queen is shown in Figure 117 4.
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6. The only known basic way to place four queens and one
knight so that all vacant cells are attacked is shown in Figure
117 e.

7. Figure 117 f shows one way to place seven of the eight
pieces of one color so that all vacant cells are in check. The po-
sitions of the rooks and queen can be given trivial variations.

ADDENDUM

The problem of placing five queens on a 5 x 5 board so that
three cells are not attacked has appeared in many places since
I introduced it in my 1972 column. It is usually given in the
following form: Place five queens of one color and three of an-
other color on an order-b board so that no queen attacks a
queen of a different color. I myself gave it in this form in a
later (February 1978) column.

I had in 1972 confined the task to n queens on a board also
of order n. When I gave it again in 1978 for the order-5 board,
a number of readers generalized it to £ queens on an order-n
board. The best results came from Hiroshi Okuno, of Tokyo,
whose computer search provided valuable data for low values
of n and k. In 1983, Ronald L. Graham and Fan K. Chung,
both of Bell Laboratories, turned their attention to Okuno’s
data and made some truly remarkable discoveries about the
general problem. They will be reported in a paper that may
appear before this book is off the press.
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SLITHER, 3X+1

AND OTHER CURIOUS QUESTIONS

Pride in craftsmanship obligates the
mathematicians of one generation to dispose
of the unfinished business of their
predecessors.

—E. T. BELL, The Last Problem

Two familiar irrational numbers are w (3.141 . . ), the ratio of
the circumference of a circle to its diameter, and ¢ (2.718 .. .),
the base of natural logarithms. Each has a nonrepeating deci-
mal fraction. Both 7 and ¢ are also transcendental numbers,
that is, numbers that are not algebraic. Specifically, a transcen-
dental number is an irrational number that is not the root of
an algebraic equation with rational coetficients. Is the sum of w
and e transcendental? No mathematician knows if the sum is
even Irrational.

One might suppose that any two numbers with infinite, non-
repeating dectmal fractions would necessarily have a sum with
a nonrepeating (therefore irrational) decimal fraction. This 1s
not the case. The difference between w and 7, for instance, is
another transcendental. It is easy to compute. Represent 7 as
6.999 . . ., then subtract 7 (3.14159 . . .) to obtain the transcen-
dental number 3.858407. ... The sum of these two transcen-
dentals obviously is 6.999 . .., or 7.

It seems unlikely, but until someone proves otherwise ™ and
¢ could be related by a curious unknown formula that would
give their sum a repeating (rational) decimal fraction with a
very long period, say one of more than a billion digits. It also
is not known if we, @™, ¢ or T are irrational. It has been shown,
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however, that ¢ is transcendental, and it is easy to prove that
at least one of the two numbers, me and (w+¢), is transcenden-
tal. The unanswered questions about m and ¢ are among
hundreds of problems that are ridiculously simple to state but
so difficult and deep that long-lasting fame awaits the first per-
son to solve them.,

It is not easy to distinguish significant unsolved problems
from trivial ones. In A Mathematician’s Apology, G. H. Hardy
characterized a significant problem as being one connected to
such a large complex of other mathematical ideas that when it
is solved, it leads to important advances in mathematics and
perhaps in science as well. An example of an essentially trivial
but extremely difficult question is: If two people play the best
possible checker game, will it end in a draw, a victory for the
player who makes the first move or a victory for the player who
makes the second move? A computer, given enough time, will
probably work out the answer one day. When it does, the so-
lution is unlikely to lead to any breakthroughs in mathematics
or science. On the other hand, setting Fermat’s last theorem
would open all kinds of barred doors. (Please do not send me
proofs. I am incapable of spotting flaws and always return
them unread.)

There are dozens of unsolved map-coloring problems that,
although they may not be as profound as the recently solved
four-color theorem, are by no means trivial. Here is a noto-
rious one given in C. Stanley Ogilvy’s new revision of Tomor-
row’s Math, a splendid collection of unsolved problems for am-
ateurs. What is the minimum number of colors needed to color
the plane in such a way that any pair of points a unit distance
apart are in regions of different colors? The question was first
raised 20 years ago by Paul Erdés, a prolific inventor of
problems.

That such a map must have at least four colors was cleverly
established by Leo Moser with the diagram in Figure 118. Each
edge of this graph has a length of one unit. Imagine that the
graph is placed anywhere on a plane in which the problem is
solved with only three colors. If vertex a is on red, say, then b
and ¢ must be on the other two colors, and g also must be red.
Similarly, d and ¢ must be on the other two colors and f must
be red. Now, however, we have contradicted our assumption,
because f and g, which are a unit distance apart, are both on
red. At least four colors are therefore necessary.

Ogilvy’s book has a proof that seven different colors are
enough [see Figure 119]. The numbers give a repeating color
pattern for a hexagonal tesselation of the plane, each hexagon
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Figure 118
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Leo Moser's graph for proving four-color necessity

Figure 119

Proof of seven-color sufficiency

slightly less than one unit from corner to opposite corner. The
gap remaining to be closed 1s a big one. Do such maps of four,
five or six colors exist? No one yet knows.

There is an unusual class of unsolved arithmetic problems
that, to use a computer-science term, we can call “looping”
problems. A series of integers is generated according to a rule.
One then asks if the series always enters one or more loops in
which a finite set of integers keeps repeating cyclically. For ex-
ample, start with any positive integer. Halve it if it is even; tri-
ple it and add 1 if it is odd. Keep repeating this procedure un-
til the series loops in the cycle 2, 1, 4, 2, 1, 4, .. .. (Sample: 3,
10, 5, 16, 8,4, 2, 1, ... .) But does the series always enter the
2, 1, 4 loop? No one has proved that it does, nor has a coun-
terexample been found.

Since Ogilvy revised his book a group of workers in the Ar-
tificial Intelligence Laboratory at the Massachusetts Institute
of Technology have computer-tested all positive integers to
60,000,000 without finding an exception. They also discovered
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that if the rule 3n+1 (for odd integers) is replaced by 3n—1,
the result, in absolute values, is the same as starting with a neg-
ative integer and following the old rules. In this case all nega-
tive integers to — 100,000,000 were found to enter one of three
loops with the following absolute values:

1. 2,1,2,1,....

2. 5,14,7,20,10,5,....

3. 17, 50, 25, 74, 37, 110, 55, 164,
82, 41, 122, 61, 182, 91, 272,
136, 68, 34, 17, .. ..

Michael Beeler, William Gosper and Rich Schroeppel give
these results in HAKMEM (short for “Hacker’s Memo”), Memo
239, Artificial Intelligence Laboratory, M.I.T., 1972, page 64.
No one has yet come up with good ideas about how to establish
the general case for all nonzero integers. (Zero, of course, is
alreadyina 0, 0, 0, . . . loop.) No one knows if there are other
loops, or if there are integers that generate a nonlooping series
of numbers that diverge to infinity.

Gosper and Schroeppel, incidentally, proved an amusing
loop conjecture involving English names for numbers (HAK-
MEM, page 64). Spell out the name of any number. It need not
be rational or even real. Counting numbers must be named di-
rectly, and not by such circumlocutions as “twelve plus one” or
“twenty minus five,” and so on. Replace the name by the num-
ber of digits in the name and keep repeating the procedure.
Example: THE CUBE ROOT OF PI, FIFTEEN, SEVEN, FIVE, FOUR,
FOUR, FOUR, . . .. The series always, and quickly loops at FOUR.

In explaining a recent triangle-dissection problem, Ogilvy
wrote that it might “have a solution before this book appears.”
He was right. It had been known that any triangle can be cut
into four triangles similar to itself, or into » triangles similar to
itself when n is 6 or more. If n is 2 or 3, only a right triangle
can be properly cut. If n is 5, a right triangle can be dissected
into five triangles similar to itself, but for nonright triangles the
conditions for dissection were unknown when R. W. Freese,
Ann K. Miller and Zalman Usiskin wrote their article “Can
Every Triangle be Divided into n Triangles Similar to It?” (The
American Mathematical Monthly, Volume 77, October, 1970,
pages 867-869).

Recently it has been independently proved by several people
that when n is 5 and the triangle has no right angle, it can be
cut into five triangles similar to itself if and only if one angle is
120 degrees and the others are each 30 degrees [see Figure
120]. This unique dissection is given in “Partitioning a Trian-
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Figure 120

A unique dissection

gle into 5 Triangles Similar to It” (Mathematics Magazine, Vol-
ume 45, January, 1972, pages 37-42), by Z. Usiskin and S. G.
Wayment. Still open are questions such as: Which triangles can
be cut into n similar triangles not similar to themselves? For
what values of # can a quadrilateral be cut into n quadrilaterals
similar to one another and/or to itself?

In 1960, Stanislaw M. Ulam, another virtuoso puzzle maker,
published a fine collection of advanced unsolved problems,
most of them original. The book was reprinted in 1964 as a
paperback, Problems in Modern Mathematics. One of Ulam’s
topological-game problems seemed as uncrackable as it was cu-
rious. Imagine a cube divided into a lattice of unit cubes, like
a three-dimensional checkerboard. Players take turns marking
a unit edge of the lattice. The first player marks any edge.
Thereafter each marked edge must join the previously marked
edge. One end of the path remains fixed as the other end
grows one unit in length with each move, as though a bug were
crawling along the lattice lines and leaving a trail. Since the lat-
tice is finite, the path must eventually intersect itself to form a
closed-space curve. One of the players wins if the curve is knot-
ted. The other player wins if there i1s no knot. Who wins when
the game is played rationally?

John Horton Conway, a University of Cambridge mathema-
tician, found an ingenious proof that the “no knot” player can
always win regardless of whether he goes first or second. As-
sume that the game is played on a three-by-three-by-three cube
(a lattice of 27 unit cubes). This is the smallest cube on which
the path can knot. The following no-knot strategy extends
readily to all cubes of higher orders.

Through each lattice point there are various planes that are
perpendicular to a body diagonal (a diagonal joining diamet-
rically opposite corners) of the large cube. We shall call such a
plane a primary plane, or P plane. If the P plane goes through



SLITHER, 3X+1 AND OTHER CURIOUS QUESTIONS

a corner of the large cube, there may be only one adjacent
plane parallel to it and passing through points adjacent to
points on the P plane; otherwise there will be two such adja-
cent planes, one on each side of the P plane. We call these A
planes.

Imagine all lattice points on A planes—call them A points—
projected on the P plane, together with all edges joining A
points to P points. This puts on the P plane a graph equivalent
to one of the five shown in Figure 121. On each graph black
vertexes are lattice points originally on the P plane. The open
circle vertexes are A points projected from A planes. The C’s
mark the corners of the large cube.

Figure 121

[

Graphs for Stanislaw M. Ulam’s knot game

Note that the three graphs on the left have loose ends.
Those on the right do not. Conway has shown (his unpublished
proof is not difficult) that, given any lattice point, one can al-
ways find passing through it a P plane on which the graph has
no loose ends.

If your opponent goes first, you should choose a P plane
through either end of the marked edge that has a no-loose-
ends graph. One end of the path will be on an A plane. Play so
that the path returns to the P plane, that is, join the colored
end of the path to a black vertex. Each succeeding move by
your opponent must take the path off the P plane (to a colored
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spot). Your strategy is always to return the path to the P plane
by extending it to a black spot. Because the graph has no loose
ends, and because its colored and uncolored vertexes alternate,
you can always do so. It is obvious that when the path first
closes, it will have to be unknotted.

If you go first, mark any edge. After your opponent has
moved choose a P plane that goes through the path’s middle
vertex and on which the graph has no loose ends. Your no-
knot strategy is the same as before. Play so that the path always
returns to the P plane; in other words, always extend the path
to a black vertex. The path cannot be knotted when it first in-
tersects itself.

“I think it was obvious from the start,” Conway writes in a
letter, “that the no-knot player had the best of it. He only had
to make the path close, whereas the other player really had to
do things.”

Conway’s strategy does not apply to noncubical “brick” lat-
tices (because finding a no-loose-ends graph is not always pos-
sible) or to cubical games in which the no-knot player goes first
and moves are allowed at all times at either end of the growing
path. In both cases, so far as I know, winning strategies remain
unknown.

Three-dimensional lattices are awkward “boards” for actual
play, but closely related topological games on planar lattices
make excellent pencil-and-paper contests. David L. Silverman,
whose book Your Move includes several such games, is respon-
sible for the latest fad among Los Angeles puzzlers: an unpub-
lished, unsolved game that Silverman calls Slither. Its five-by-
six-point lattice is just large enough to have resisted all efforts
to determine which player has the win [see Figure 122]. In a tab-

Figure 122
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The game of Slither
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ulation of several hundred games the wins were about equally
divided between first and second players. The rules are simple.
Opponents take turns marking an orthogonal unit segment.
The segments must form a continuous path but may be added
to either end of the preceding path. The player forced to close
the path is the loser. (If the first to close it wins, it is a duller
game, although even that version is unsolved.) The illustration
shows a typical position in which the next play must be a losing
one. Perhaps a reader will discover a winning strategy for
either version (or both versions) of Slither.

Hallard T. Croft, a colleague of Conway’s at Cambridge, pe-
riodically sends lists of new unsolved problems to his friends.
A few years ago one of Croft’s problems asked if there existed
a finite set of points on the plane such that the perpendicular
bisector of the line segment joining any two points would al-
ways pass through at least two other points of the set. The
problem was solved by Leroy M. Kelly, a mathematician at
Michigan State University. Although the problem cannot be
called significant, Kelly’s solution, using only eight points, is so
elegant that I give it as an exercise.

ANSWERS

The solution for the problem of placing eight points so that the
perpendicular bisector of each pair of points passes through at
least two other points is shown in Figure 123.

David L. Silverman’s game of Slither produced a flood of
strategies of steadily mounting generality until finally Ronald
C. Read, a graph theorist at the University of Waterloo, re-
duced the standard game to monumental triviality.

Figure 123

Solution to the eight point problem
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Standard Slither is played on a rectangular field consisting of
a square lattice of dots. Players take turns drawing orthogonal
unit “edges” connecting adjacent dot pairs, adding each move
to either end of the continuous path that is formed. The player
who is forced to make the slithering line meet itself is the loser,
Several dozen readers immediately pointed out that on the
5-by-6 field that had been given as a sample playing field, the
first player has an easy win by taking the central edge and

. thereafter making his moves symmetrically opposite to his op-

ponent’s moves. He also wins the reverse version (the first to
close the path wins) by seizing the first winning opportunity
offered.

George A. Miller of Philadelphia was the first to provide a
general strategy for all rectangular boards. If the field has an
even number of dots, draw a2 Hamiltonian path along the lat-
tice lines, that is, a path visiting every dot once only. Color the
alternate edges red, beginning and ending with red. The first
player’s winning strategy is: Always play red. If the field con-
tains an odd number of dots, the second player’s winning strat-
egy is: After the first move, draw any Hamiltonian path start-
ing at one end of the first move, color the path as before and
always play red. Essentially the same strategy was also discov-
ered by Michael Kelly, by Oliver G. Selfridge, and others.

Next I found that this strategy applies if diagonal moves be-
tween adjacent dots are allowed, and also when the game is
played on triangular lattices. My elation was short-lived. When
I wrote to Read about it, he saw at once that these were merely
special cases of a general strategy that applies to any set of dots
in any formation in a space of any dimensions. Moreover, a
“move” can be the joining of any pair of dots, and it does not
matter whether this 1s allowed at both ends of the path or only
at the end of the preceding move.

Read explained it this way. A graph is said to have a *1-fac-
tor” if it is possible to join all the nodes in pairs so that every
node belongs to one and only one of the disjoint edges. Think
of an array of dots as the vertexes of a complete graph consist-
ing of all possible joining edges. Draw a 1-factor of the graph
with a red pencil. (A Hamiltonian path on square lattices is one
way of doing this, but the l-factor is more general because
some graphs have l-factors but no Hamiltonian path.) Any
move connecting two dots is now allowed.

If the number of dots is even, the graph can be l-factored
and the first player wins by always playing on red edges. If the
number of dots i1s odd, the second player disregards one end
of the first move, 1-factors the remaining dots and plays always
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on red. The player who first runs out of unused dots to move
to is the loser.

This obvious and trivial parity strategy was obscured in
Slither by the game’s many irrelevancies. Reverse Slither, in
which the first to close the path wins, is a more difficult matter.
As we have seen, a symmetry strategy wins for the first player
on all odd-by-even fields. The second player can win by bilat-
eral symmetry play if the first play is to 2 main diagonal of a
square or to a central orthogonal line of any rectangle that has
one. Selfridge has found a strategy for a second-player win on
all squares.

Michael Beeler of M.I.'T. wrote a computer program for re-
verse Slither. Here are some of its results:

1. The second player wins on squares through order 6.

2. Taking the center move is the only winning first play on
the 3 by 4, 4 by 5, 4 by 9 and 5 by 6.

3. A theory devised by Beeler, establishing a first-player win
on all 2xn fields (n greater than 2) is confirmed through
n=18.

4. On 3 X n fields, n=2 through 12, the first player wins if n
is even, loses if n 1s odd.

5. On 4 Xn fields, n=>5 through 9, the first player wins in all
cases.

6. The second player wins on the 5 by 7.

These data suggest the following unproved conjecture: The
first player wins on all nonsquare rectangles if the number of
spots is even. The second player wins on all squares and on all
nonsquare rectangles if the number of spots is odd.

ADDENDUM

The 3X + 1 problem, as it is now usually called, is still resisting
solution. According to Richard Guy, it was first proposed be-
fore World War Il by Lothar Collatz, now a mathematician at
the University of Hamburg, when he was a student. In a 1970
lecture H. S. M. Coxeter offered $50 for a proof he could un-
derstand or $100 for a counterexample. He has since been del-
uged with so many false proofs that he is no longer willing to
evaluate them. Indeed, it seems as easy to make subtle mistakes
in such proofs as in proofs of Fermat's last theorem. False
proofs have even been published; for example, in Fibonacci
Quarterly, Vol. 18, 1980, pages 231-242. In 1982 Paul Erdos
expressed his opinion—and who is more qualified to give
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one?—that if the conjecture is true, present-day number theory
lacks the tools for a proof.

A counterexample would be a number that either keeps gen-
erating larger and larger numbers forever, without ever re-
peating 2 number, or one that enters a loop higher than the
4-2-1. If a counterexample exists it would have to be exceedingly
large because the conjecture has been tested, according to Guy,
for all numbers less than 7 x 10'L. Early in the game it was ob-
served that it is not necessary to test even numbers, or odd
numbers of the form 4k+1, 16k+3, or 128k+7. This greatly
simplifies computer programs. Of course as soon as a sequence
hits a power of 2, often after many chaotic ups and downs, it
crunches quickly to 4-2-1. The power of 2 on which most se-
quences converge is 16.

Among numbers smaller than 50, the worst is 27. After 77
steps it reaches its peak of 9,232, then 34 steps are required to
take it down to 1. When John H. Conway introduces the
3X + 1 conjecture in lectures, he likes to stand by a blackboard
and say, “Let’s take some random small number, say 27, and
see what happens.” A graph theorist would describe the theo-
rem by saying that, if true, we can draw an infinite directed
tree, each point labeled with a distinct positive integer, that will
catch all the integers, and which will converge along the arrows
to a root that is the triangular cycle 4-2-1.

A simple proof that of the two numbers e and 7 +e¢, at least
one is transcendental, is given by David Brubaker in Mathemat-
ics Magazine, Vol. 44, November 1971, page 267.

On triangles that can be cut into five similar triangles not sim-
ilar to the original, see Guy’s report in The American Mathemat-
ical Monthly, Vol. 80, December 1973, page 1123. Apparently
there are ten essentially different cases. The equilateral trian-
gle and any isosceles triangle can be cut into five similar right
triangles, and the equilateral triangle can also be cut into five
similar triangles containing an angle of 120 degrees.

For more on “honest numbers” that spell with the same
number of letters as the number they represent (FOUR is the
only honest number in English), see Chapter 7 of my Incredible
Dr. Matrix.

An ultimate generalization of Slither was analyzed by Wil-
liam N. Anderson, Jr., in a paper listed in the Bibliography.
The game is played on an arbitrary finite graph, each player
taking an edge of the graph on his turn. Anderson presents a
strategy for this generalized Slither that is based on a matching
algorithm in a 1965 paper by |. Edmonds.
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MATHEMATICAL TRICKS WITH CARDS

“Do you like card tricks?”

“No, I hate card tricks,” I answered.
“Well, I'll just show you this one.”
Ke showed me three.

—SoMERSET MauGcHAM, Mr. Know-All

Maugham’s experience with card magicians is all too familiar.
“I don’t really like people who do card tricks,” Elsa Maxwell
once wrote (I quote from an autobiography of a lady magician,
You Don’t Have to Be Crazy, by Frances Ireland). “They never
stop &t one or two, but go on and on and on, and always make
you take cards, or turn up cards, or cover cards, until you are
worn out.”

Mathematical card tricks, let it be admitted at once, are pre-
cisely the kind of tricks that are the most boring to most peo-
ple. Nevertheless, they have a curious appeal to mathemati-
cians and mathematically minded magicians.

Many excellent card deceptions are based on a parity prin-
ciple, but the underlying even-odd structure is usually con-
cealed so ingeniously that if you follow the directions with
cards in hand you are likely to astonish yourself. Consider the
following trick invented about 1946 by the Chicago card expert
Ed Marlo. Magicians classify it as an “oil and water” effect, for
reasons that will be apparent in a moment. There are many
ways of achieving the same effect by secret and difficult
“moves,” but this version is entirely self-working.

Remove 10 red and 10 black cards from the deck and ar-
range them in two face-up piles, side by side, with all red cards.
on the left and all black cards on the right. First you tell your



MATHEMATICAL TRICKS WITH CARDS

watchers that you will demonstrate what you intend to do by
using only five cards of each color. With both hands simulta-
neously remove the top card from each pile and place them,
still face up, on the table at the bottom of each pile. Do the
same with the next two top cards, but this time cross your arms
before you place the two cards on the two new piles you are
starting. This puts a black card on the red one and a red card
on the black one. The next transfer of a pair of cards is made
with uncrossed arms, the next with crossed arms, and the fifth
and last pair is dealt with arms uncrossed. In other words, five
simultaneous deals are made, with arms crossed only on alter-
nate deals. On each side you now have a pile of five face-up
cards with their colors alternating. Put either pile on the other
one. Spread the 10 cards to show that colors alternate
throughout.

Square the cards and turn the packet face down. From its
top deal the cards singly and face up to form two piles again,
dealing alternately to the left and right. Call attention to the
fact that this procedure naturally separates the colors. At the
finish you will have five reds on the left and five blacks on
the right.

State that you will repeat this simple series of operations with
all 20 cards. Begin as before, with 10 face-up reds on the left
and 10 face-up blacks on the right. Transfer the cards to form
two new piles, just as you did before, crossing your arms on
alternate deals so that the colors alternate in each pile. After
all 20 cards are dealt put one pile on the other, square the
cards, turn the packet over and hold it face down in your left
hand.

Deal 10 cards face up to form two piles, dealing from left to
right and observing aloud that this brings the reds together on
the left and the blacks together on the right. After the 10 cards
have been dealt face up do not pause but continue smoothly
and deal the remaining 10 cards face down. It is best to put
down the cards so that they overlap in two vertical rows [see
Figure 124]. '

Pick up the five face-down cards on the left with your left
hand and the five face-down cards on the right with your right
hand. Cross your arms and put the cards down. You explain
that you have transferred half of the cards of each pile to the
pile of the opposite color but that like oil and water the colors
mysteriously refuse to mix. Turn over the face-down cards. To
everyone’s surprise (you hope) the reds are back with the reds
and the blacks are back with the blacks! Readers should have
little difficulty discovering why it works with any set of cards
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Figure 124
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The oil-and-water effect

containing an even number of cards of each color and why it
did not work when you demonstrated it with 10 cards.

After you have finished the oil-and-water trick put the two
piles together with either color on top. Turn the packet face
down and spread it in a fan. You are ready to perform a red-
black trick invented by Karl Fulves and published in his magic
periodical, The Pallbearers Review, September, 1971.

Ask someone to pull slightly forward any 10 cards he
pleases. The fan will resemble the one shown in Figure 125.
With your right hand count the jogged (protruding) cards to
make sure there are 10. Do this by removing the cards one at
a time from right to left, putting them into a face-down pile as
you count from one to 10. Close up the 10 cards remaining in
your left hand and place them in a second face-down pile
alongside the first.
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Figure 125

Ten cards jogged forward

Tell your audience that an amazing thing has happened. Al-
though 10 cards were selected randomly, the colors in the two
piles are so ordered that every nth card in one pile has a color
opposite to the color of the nth card in the other pile. To prove
this, turn over the top cards of each pile simultaneously. One
will be red and the other black. Place the black under the red,
turn the pair over and put it aside to form a new face-down
pile. Repeat the procedure with the cards now on top of the
two original piles. They will be red-black too. Indeed, every
pair you turn will be red-black!

As you show the pairs always put the black card under the
red before you turn them over and place them on the third
pile. When you finish, the cards in this face-down pile will have
alternating colors.

Now you are ready to perform a truly mystifying trick in
which parity is conserved in spite of repeated shuffling. Known
as Color Scheme, it was invented by Oscar Weigle, an amateur
magician who is now an editor at Grosset & Dunlap. It sold as
a manuscript in magic stores in 1949.

Give the packet of 20 cards to someone and ask him to hold
it under the table where neither he nor anyone else can see the
cards. Tell him to mix the cards by the following procedure.
(It is known as the Hummer shuffle, after Bob Hummer, the
magician who first used it in tricks.) Turn over the top two
cards (not one at a time but both together as if they were one
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card), place them on top and cut the packet. Your assistant is
to keep repeating this procedure of turn two, cut, turn two, cut
for as long as he wishes. The procedure will, of course, result
in a packet containing an unknown number of randomly dis-
tributed reversed cards.

With the cards still held under the table, tell your assistant to
do the following. Shift the top card to the bottom. Then turn
over the next card, produce it from under the table and place
it on the table. This procedure is repeated—card to bottom, re-
verse next card and deal—until 10 cards have been dealt to the
table. It will be apparent that the cards have become mysteri-
ously ordered. All the face-up cards are the same color and all
the face-down ones are of the opposite color.

The second and climactic half of the trick, which Weigle con-
fesses is a “bare-faced swindle,” now unfolds. Your assistant is
still holding 10 cards under the table. Ask him to shuffle them
by separating them into two packets; then, keeping all the
cards flat (no card must be allowed to turn over), weave the two
packets into each other in a completely random way. You can
demonstrate how to do this by using the 10 cards already dealt.
After your assistant has executed the shuffle a few times, ask
him to turn over the packet and shuffle the same way a few
more times. It he likes, he can give the packet a final cut.

Now he continues with the dealing procedure he used be-
fore: card to bottom, next card reversed and dealt. (The final
card 1s reversed and dealt.) In spite of the thorough mixing the
result is exactly the same as before. All the face-up cards match
the former face-up cards in color, and the same is true of all
face-down cards.

One of the oldest themes in card magic is to produce in some
startling fashion a card that has been randomly selected and
replaced. Here is a simple method that exploits a binary sort-
ing technique. Fulves published it in his periodical in Novem-
ber, 1970.

Take 16 cards from a shuffled deck and spread them face
down on the table without mentioning how many cards you are
using. A viewer selects a card, looks at it and places it on top of
the deck. The remaining cards in the spread are squared and
put on top of the deck above the chosen card. Ask him to cut
off about half of the deck, give or take half a dozen cards. Ac-
tually he can take between 16 and 32 cards. He hands this
packet to you.

Hold the packet in both hands. As your left thumb slides the
cards one at a time to the right, move your right hand forward
and back so that every other card, starting with the first one, is
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jogged forward. The resulting fan of cards will resemble the
one in Figure 125 except that the jogged cards are not ran-
domly distributed. Strip all the projecting cards from the fan
and discard them. Square the remaining cards and repeat the
procedure, jogging forward all the cards at odd positions, start-
ing with the first card. Strip them out and discard. Continue in
this way until one card is left. Before turning it over ask for
the chosen card’s name. It will be the card you hold.

A completely different method of locating a selected card
can be found in several books on card magic. Turn your back
and instruct someone to cut a shuffled deck into three approx-
imately equal piles. He turns over any pile and then reassem-
bles the deck by sandwiching the face-up pile between the
other two, which remain face down. He is told to remember
the top card of the face-up pile. With your back still turned,
ask him to cut the deck several times, then give it one thorough
riffle-shuffle. The shuffle will of course distribute the face-up
cards randomly throughout the deck.

Turn around, reverse the pack and spread it in a row. Look
for a long run of face-up cards, remembering that a cut may
have split the run so that part of it is at each end of the spread.
The first face-down card above the run is the chosen one. Slide
it from the spread, have the card named and then turn it over.

Our last trick, based on a curious shuffling principle discov-
ered by Fulves, is presented as a gambling proposition. All
cards of one suit (the suit can be chosen by the victim) are re-
moved from the deck. Assume that the discarded suit is dia-
monds. The remaining cards are arranged so that each triplet
has three different suits in the same order. (Card values are
ignored.) Again the victim may specify the ordering. Suppose
he chooses spades, hearts and clubs. The 39-card deck is ar-
ranged from the top down so that the suits follow the sequence
spades, hearts, clubs, spades, hearts, clubs and so on.

Place the deck face up in front of the victim. Ask him to cut
it in two packets and riffle-shuffle them together. As he makes
the cut, note the suit exposed on top of the lower half. We shall
call this suit & After the single shuffle the deck is turned face
down. The cards are now taken from the top three cards at a
time, and each triplet is checked to see if it contains two cards
of the same suit.

It is hard to believe, but:

(1) If K is spades, no triplet will contain two spades.
(2) If k& is hearts, no triplet will contain two clubs.
(3) If & is clubs, no triplet will contain two hearts.
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This assumes, of course, a spades-hearts-clubs ordering. If
the ordering is otherwise, the three rules must be modified ac-
cordingly; that is, spades must be changed to whatever suit is
at the top of each triplet, and so on. Let m stand for the suit
that you know cannot show twice in any triplet, and a and & for
the suits that can.

Betore dealing through the deck to inspect the triplets, make
the following betting proposition. For every triplet containing
a pair of m’s you will pay the victim $10. In return he must
agree to pay you 10 cents for every pair of a’s or b’s. It seems
like a good bet for the victim, but it is impossible for you to
lose, and the swindle can be repeated as often as you please.
Just arrange the cards again and allow the victim to make the
single riffle-shuffle. Naturally you always promise to pay him
for doublets of the suit that you know cannot show. The fact
that this suit may vary from deal to deal makes the bet partic-
ularly mystifying.

As Fulves has observed, the triplets have other unexpected
properties. Of the triplets containing pairs the a’s and #s will
alternate; after a pair of a’s the next pair will be #’s and vice
versa. Pairs of one suit always include a top card of the triplet.
Pairs of the other suit always include a bottom card.

No explanation of these tricks will be given. Readers will
find it stimulating, however, to analyze each trick to see if they
can comprehend exactly why it operates with such uncanny
precision.

ADDENDUM

Peter T. Sarjeant extended Fulves’ shuffling trick to the four
suits of a full deck. Arrange the cards so that from top down
the sequence is a repetition of clubs, diamonds, hearts, spades.
As before, the deck is placed face up and cut about in half.
Note the suit on the top of the bottom half. Call it & The
halves are then interlaced with a single riffle-shuffle.

When cards are taken four at a time from the top you will
find the following true of each quadruplet:

(1) It % is clubs, there will be no pair of hearts and no pair of
clubs.

(2) If k 1s diamonds, any suit may be paired.

(3) If & is hearts, there will be no pair of diamonds and no
pair of spades.

(4) If k is spades, any suit may be paired.
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Knowledge of these facts can, of course, be the basis of a va-
riety of betting swindles.

Edward M. Cohen proposed the following variation of
Fulves’ trick involving a selected card that goes sixteenth from
the top of the deck. He likes to begin by forming a square ar-
ray of 16 cards, face down on the table. A spectator picks a
row. Another person picks a column. The card at the intersec-
tion is turned face up and remembered. This card goes to the
bottom of the deck. The remaining 15 cards are swept into a
pile and the deck placed on top of them. The chosen card is
now sixteenth from the bottom.

Anyone may now cut the deck about in half (it is only nec-
essary that the lower portion contain more than 16 and less
than 32 cards). The top half is discarded. Hand the lower half
to someone with the request that he deal it into two piles, alter-
nating piles as he deals. The pile that gets the last card is dis-
carded. This procedure is repeated until only one card re-
mains. It will be the chosen card.

Hundreds of more elaborate card tricks have been based on
the binary principles that underlie this trick, but the one just
described is as simple, effective, and as easy to perform as any.
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Most of the work of John Horton Conway, a distinguished
mathematician at the University of Cambridge, has been in
pure mathematics. For instance, in 1967 he discovered a new
group—some call it “Conway’s constellation”—that includes all
but two of the then known sporadic groups. (They are called
“sporadic” because they fail to fit any classification scheme.) It
is a breakthrough that has had exciting repercussions in both
group theory and number theory. It ties in closely with an ear-
lier discovery by John Leech of an extremely dense packing of
unit spheres in a space of 24 dimensions where each sphere
touches 196,560 others. As Conway has remarked, “There is a
lot of room up there.”

In addition to such serious work Conway also enjoys recrea-
tional mathematics. Although he is highly productive in this
field, he seldom publishes his discoveries. One exception was
his paper on “Mrs. Perkins’ Quilt,” a dissection problem dis-
cussed in my Mathematical Carnival. Another was sprouts, a to-
pological pencil-and-paper game invented by Conway and
M. S. Paterson. It is also the topic of a chapter in the same
book.

In this chapter we consider Conway’s most famous brain-
child, a fantastic solitaire pastime he calls “Life.” Because of its
analogies with the rise, fall and alterations of a society of living
organisms, it belongs to a growing class of what are called “sim-
ulation games”—games that resemble real-life processes. To
play Life without a computer you need a fairly large checker-
board and a plentiful supply of flat counters of two colors.
(Small checkers or poker chips do nicely.) An Oriental “go”
board can be used if you can find flat counters small enough to
fit within its cells. (Go stones are awkward to use because they
are not flat.) It is possible to work with pencil and graph paper



THE GAME OF LIFE, PART |

but it is much easier, particularly for beginners, to use counters
and a board.

The basic idea is to start with a simple configuration of
counters (organisms), one to a cell, then observe how it changes
as you apply Conway’s “genetic laws” for births, deaths and
survivals. Conway chose his rules carefully, after a long period
of experimentation, to meet three desiderata:

(1) There should be no initial pattern for which there is a
simple proof that the population can grow without limit.

(2) There should be initial patterns that apparently do grow
without limat.

(3) There should be simple initial patterns that grow and
change for a considerable period of time before coming to an
end in three possible ways: Fading away completely (from
overcrowding or from becoming too sparse), settling into a sta-
ble configuration that remains unchanged thereafter, or enter-
ing an oscillating phase in which they repeat an endless cycle
of two or more periods.

In brief, the rules should be such as to make the behavior of
the population both interesting and unpredictable.

Conway’s genetic laws are delightfully simple. First note that
each cell of the checkerboard (assumed to be an infinite plane)
has eight neighboring cells, four adjacent orthogonally, four
adjacent diagonally. The rules are:

(1) Survivals. Every counter with two or three neighboring
counters survives for the next generation.

(2) Deaths. Each counter with four or more neighbors dies
(is removed) from overpopulation. Every counter with one
neighbor or none dies from isolation.

(3) Births. Each empty cell adjacent to exactly three neigh-
bors—no more, no fewer—is a birth cell. A counter is placed
on it at the next move.

It is important to understand that all births and deaths occur
simultaneously. Together they constitute a single generation or,
as we shall usually call it, a “tick” in the complete “life history”
of the initial configuration. Conway recommends the following
procedure for making the moves:

(1) Start with a pattern consisting of black counters.

(2) Locate all counters that will die. Identify them by putting
a black counter on top of each.

(3) Locate all vacant cells where births will occur. Put a white
counter on each birth cell.

(4) After the pattern has been checked and double-checked
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to make sure no mistakes have been made, remove all the dead
counters (piles of two) and replace all newborn white organ-
isms with black counters.

You will now have the first generation in the life history of
your initial pattern. The same procedure is repeated to pro-
duce subsequent generations. It should be clear why counters
of two colors are needed. Because births and deaths occur si-
multaneously, newborn counters play no role in causing other
deaths or births. It is essential, therefore, to be able to distin-
guish them from live counters of the previous generation while
you check the pattern to be sure no errors have been made.
Mistakes are very easy to make, particularly when first playing
the game. After playing it for a while you will gradually make
fewer mistakes, but even experienced players must exercise
great care in checking every new generation before removing
the dead counters and replacing newborn white counters with
black.

You will find the population constantly undergoing unusual,
sometimes beautiful and always unexpected change. In a few
cases the society eventually dies out (all counters vanishing), al-
though this may not happen until after a great many genera-
tions. Most starting patterns either reach stable figures—Con-
way calls them “still lifes"—that cannot change or patterns that
oscillate forever. Patterns with no initial symmetry tend to be-
come symmetrical. Once this happens the symmetry cannot be
lost, although it may increase in richness.

Conway originally conjectured that no pattern can grow
without limit. Put another way, any configuration with a finite
number of counters cannot grow beyond a finite upper limit to
the number of counters on the field. This is probably the deep-
est and most difficult question posed by the game. Conway of-
fered a prize of $50 to the first person who could prove or dis-
prove the conjecture before the end of 1970. One way to
disprove it would be to discover patterns that keep adding
counters to the field: A “gun” (a configuration that repeatedly
shoots out moving objects such as the “glider,” to be explained
below) or a “puffer train” (a configuration that moves but
leaves behind a trail of “smoke”). The results of the contest for
Conway’s prize are discussed in the next chapter.

Let us see what happens to a variety of simple patterns.

A single organism or any pair of counters, wherever placed,
will obviously vanish on the first tick.

A beginning pattern of three adjacent counters also dies im-
mediately unless at least one counter has two neighbors. Figure
196 shows the five triplets that do not fade on the first tick.
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Figure 126
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The fate of five triplets in “life”

(Their orientation is of course irrelevant.) The first three [a, b,
¢] vanish on the second tick. In connection with ¢ it is worth
noting that a single diagonal chain of counters, however long,
loses its end counters on each tick until the chain finally dis-
appears. The speed a chess king moves in any direction is
called by Conway (for reasons to be made clear later) the
“speed of light.” We say, therefore, that a diagonal chain de-
cays at each end with the speed of light.

Pattern d becomes a stable “block” (two-by-two square) on
the second tick. Pattern e is the simplest of what are called
“flip-flops” (oscillating figures of period 2). It alternates be-
tween horizontal and vertical rows of three. Conway calls it a
“blinker.”

Figure 127 shows the life histories of the five tetrominoes
(four rookwise-connected counters). The square [a] is, as we
have seen, a still-life figure. Tetrominoes b and ¢ reach a stable
figure, called a “beehive,” on the second tick. Beehives are fre-
quently produced patterns. Tetromino d becomes a beehive on
the third tick. Tetromino e is the most interesting of the lot.
After nine ticks it becomes four isolated blinkers, a flip-flop
called “traffic lights.” It too is a common configuration. Figure
128 shows 12 common forms of still life.

The reader may enjoy experimenting with the 12 pentomi-
noes (all possible patterns of five rookwise-connected counters)
to see what happens to each. He will find that five vanish be-
fore the fifth tick, two quickly reach a stable loaf, and four in
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Figure 128
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The commonest stable forms

a short time become traffic lights. The only pentomino that
does not end quickly (by vanishing, becoming stable or oscillat-
ing) is the R pentomino [“a” in Figure 129]. Conway has tracked
it for 460 ticks. By then it has thrown off a number of gliders.
Conway remarks: “It has left a lot of miscellaneous junk stag-
nating around, and has only a few small active regions, so it is
not at all obvious that it will continue indefinitely.” Its fate is

revealed in the addendum to this chapter.

Figure 129
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The R pentomino (a) and exercises for the reader

For such long-lived populations Conway sometimes uses a
computer with a screen on which he can observe the changes.
The program was written by M. J. T. Guy and S. R.
Bourne. Without its help some discoveries about the game
would have been difficult to make.

As easy exercises the reader is invited to discover the fate of
the Latin cross [“0” in Figure 129], the swastika [¢], the letter H
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[d], the beacon [e], the clock [f], the toad [g] and the pinwheel
[4]. The last three figures were discovered by Simon Norton. If
the center counter of the H is moved up one cell to make an
arch (Conway calls it “pi”), the change is unexpectedly drastic.
The H quickly ends but pi has a long history. Not until after
175 ticks has it settled down to five blinkers, six blocks and two
ponds. Conway also has tracked the life histories of all the hex-
ominoes, and all but seven of the heptominoes. Some hexomi-
noes enter the history of the R pentomino; for example, the
pentomino becomes a hexomino on its first tick.

One of the most remarkable of Conway’s discoveries is the
five-counter glider shown in Figure 130. After two ticks it has
shifted slightly and been reflected in a diagonal line. Geome-
ters call this a “glide reflection”; hence the figure’s name. After
two more ticks the glider has righted itself and moved one cell
diagonally down and to the right from its initial position. We
mentioned earlier that the speed of a chess king is called the
speed of light. Conway chose the phrase because it is the high-
est speed at which any kind of movement can occur on the
board. No pattern can replicate itself rapidly enough to move
at such speed. Conway has proved that the maximum speed
diagonally is a fourth the speed of light. Since the glider rep-
licates itself in the same orientation after four ticks, and has
traveled one cell diagonally, one says that it glides across the
field at a fourth the speed of light.

Figure 130
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The “glider”

Movement of a finite figure horizontally or vertically into
empty space, Conway has also shown, cannot exceed half the
speed of light. Can any reader find a relatively simple figure
that travels at such a speed? Remember, the speed is obtained
by dividing the number of ticks required to replicate a figure
by the number of cells it has shifted. If a figure replicates in
four ticks in the same orientation after traveling two unit
squares horizontally or vertically, its speed will be half that of
light. Figures that move across the field by self-replication are’
extremely hard to find. Conway knows of four, including the
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glider, which he calls “spaceships” (the glider is a “feather-
weight spaceship”; the others have more counters). I will dis-
close their patterns in the Answer Section.

Figure 131 depicts three beautiful discoveries by Conway
and his collaborators. The stable honey farm [a in Figure 131]
results after 14 ticks from a horizontal row of seven counters.
Since a five-by-five block in one move produces the fourth gen-
eration of this life history, it becomes a honey farm after 11
ticks. The “figure 8” [b in Figure 131], an oscillator found by
Norton, both resembles an 8 and has a period of 8. The form
¢, in Figure 131 called “pulsar CP 48-56-72,” is an oscillator
with a life cycle of period 3. The state shown here has 48
counters, state two has 56 and state three has 72, after which
the pulsar returns to 48 again. It is generated in 32 ticks by a
heptomino consisting of a horizontal row of five counters with
one counter directly below each end counter of the row.

Figure 131
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Three remarkable patterns, one stable and two oscillating

Conway has tracked the life histories of a row of n counters
through n=20. We have already disclosed what happens
through n=4. Five counters result in traffic lights, six fade
away, seven produce the honey farm, eight end with four bee-
hives and four blocks, nine produce two sets of traffic lights,
and 10 lead to the “pentadecathlon,” with a life cycle of period
15. Eleven counters produce two blinkers, 12 end with two bee-
hives, 13 with two blinkers, 14 and 15 vanish, 16 give “big
traffic lights” (eight blinkers), 17 end with four blocks, 18 and
19 fade away and 20 generate two blocks.

Conway also investigated rows formed by sets of » adjacent
counters separated by one empty cell. When n=5 the counters
interact and become interesting. Infinite rows with n=1 or
n=2 vanish in one tick, and if n=3 they turn into blinkers. If
n=4 the row turns into a row of beehives.
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The 5-5 row (two sets of five counters separated by a vacant
cell) generates the pulsar CP 48-56-72 in 21 ticks. The 5-5-5
ends in 42 ticks with four blocks and two blinkers. The 5-5-5-5
ends in 95 ticks with four honey farms and four blinkers,
5-5-5-5-5 terminates with a spectacular display of eight gliders
and eight blinkers after 66 ticks. Then the gliders crash in
pairs to become eight blocks after 86 ticks. The form 5-5-5-5-
5-5 ends with four blinkers after 99 ticks, and 5-5-5-5-5-5-5,
Conway remarks, “is marvelous to sit watching on the com-
puter screen.” This ultimate destiny is given in the addendum.

ANSWERS

The Latin cross dies on the fifth tick. The swastika vanishes on
the sixth tick. The letter H also dies on the sixth tick. The next
three figures are flip-flops: As Conway writes, “The toad pants,
the clock ticks and the beacon flashes, with period 2 in every
case.” The pinwheel’s interior rotates 90 degrees clockwise on
each move, the rest of the pattern remaining stable. Periodic
figures of this kind, in which a fixed outer border is required
to move the interior, Conway calls “billiard-table configura-
tions” to distinguish them from “naturally periodic” figures
such as the toad, clock and beacon.

The three known spaceships (in addition to the glider, or
“featherweight spaceship” are shown in Figure 132. To be pre-
cise, each becomes a spaceship in 1 tick. (The patterns in Fig-
ure 132 never recur.) All three travel horizontally to the right
with half the speed of light. As they move they throw off
sparks that vanish immediately as the ships continue on their
way. Unescorted spaceships cannot have bodies longer than six
counters without giving birth to objects that later block their

Figure 132

Lightweight (feft), middleweight (center),
and heavyweight (right) spaceships

motion. Conway has discovered, however, that longer space-
ships, which he calls “overweight” ones, can be escorted by two
or more smaller ships that prevent the formation of blocking
counters. Figure 133 shows a larger spaceship that can be es-
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Figure 133

Overweight spaceship with two escorts

corted by two smaller ships. Except for this same ship, length-
ened by two units, longer ships require a flotilla of more than
two companions. A spaceship with a body of 100 counters,
Conway finds, can be escorted safely by a flotilla of 33 smaller
ships.

ADDENDUM

My 1970 column on Conway’s “Life” met with such an instant
enthusiastic response among computer hackers around the
world that their mania for exploring “Life” forms was esti-
mated to have cost the nation millions of dollars in illicit com-
puter time. One computer expert, whom I shall leave name-
less, installed a secret switch under his desk. If one of his
bosses entered the room he would press the button and switch
his computer screen from its “Life” program to one of the
company’s projects. The next two chapters will go into more
details about the game. Here I shall comment only on some of
the immediate responses to two questions left open in the first
column.

The troublesome R pentomino becomes a 2-tick oscillator
after 1,103 ticks. Six gliders have been produced and are trav-
eling outward. The debris left at the center [see Figure 134]
consists of four blinkers, one ship, one boat, one loaf, four bee-
hives, and eight blocks. This was first established at Case West-
ern Reserve University by Gary Filipski and Brad Morgan, and
later confirmed by scores of “Life” hackers here and abroad.

The fate of the 5-5-5-5-3-5-5 was first independently found
by Robert T. Wainwright and a group of hackers at Honey-
well’s Computer Control Division, later by many others. The
pattern stabilizes as a 2-tick oscillator after 323 ticks with four
traffic lights, eight blinkers, eight loaves, eight beehives, and

223



R

SR S

P

by

o+

i
i

e

Pt e

Figure 134

v ‘ ) w
+ H 3
[0 HE T - - H
R R s .
ke 4 - b bod H
+opeb fogg -
RS -
b s i
eyt ,
! i :
f- b b — '
i + fodd b s +
4 - i E Y
. NP
TS NS SRTPUF I TP e 1 ¥ i
b
| i - .
L g
& ; .
| i
- 1
f " ! i
¢ : i -k =
I + 4 4 Pg o o

| (black) and final (open dots) state.
(Six gliders are out of sight.)

$ origina

R pentomino’

224



THE GAME OF LIFE, PART |

four blocks. Figure 135 reproduces a printout of the final
steady state. Because symmetry cannot be lost in the history of
any life form, the vertical and horizontal axes of the original
symmetry are preserved in the final state. The maximum pop-
ulation (492 bits) is reached in generation 283, and the final
population 1s 192.

Figure 135
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Initial pattern and final state of the 5-5-5-5-5-5-5 row
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Cellular automata theory began in the mid-fifties when John
von Neumann set himself the task of proving that self-replicat-
ing machines were possible. Such a machine, given proper in-
structions, would build an exact duplicate of itself. Each of the
two machines would then build another, the four would be-
come eight, and so on. (This proliferation of self-replicating
automata is the basis of Lord Dunsany’s amusing 1951 novel
The Last Revolution.) Von Neumann first proved his case with
“kinematic” models of a machine that could roam through a
warehouse of parts, select needed components and put to-
gether a copy of itself. Later, adopting an inspired suggestion
by his friend Stanislaw M. Ulam, he showed the possibility of
such machines in a more elegant and abstract way.

Von Neumann’s new proof used what is now called a “uni-
form cellular space” equivalent to an infinite checkerboard.
Each cell can have any finite number of “states,” including a
“quiescent” (or empty) state, and a finite set of “neighbor” cells
that can influence its state. The pattern of states changes in dis-
crete time steps according to a set of “transition rules” that ap-
ply simultaneously to every cell. The cells symbolize the basic
parts of a finite-state automaton and a configuration of live
cells is an idealized model of such a machine. Conway’s game
of “Life” is based on just such a space. His neighborhood con-
sists of the eight cells surrounding a cell; each cell has two
states (empty or filled), and his transition rules are the birth,
death and survival rules I explained in the previous chapter.
Von Neumann, applying transition rules to a space in which
each cell has 29 states and four orthogonally adjacent neigh-
bors, proved the existence of a configuration of about 200,000
cells that would self-reproduce.
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The reason for such an enormous configuration is that, for
von Neumann’s proof to apply to actual automata, it was nec-
essary that his cellular space be capable of simulating a Turing
machine: an idealized automaton, named for its inventor, the
British mathematician A. M. Turing, capable of performing
any desired calculation. By embedding this universal computer
in his configuration, von Neumann was able to produce a uni-
versal constructor. Because it could in principle construct any
desired configuration by stretching “arms” into an empty re-
gion of the cellular space, it would self-replicate when given a
blueprint of itself. Since von Neumann’s death in 1957 his ex-
istence proof (the actual configuration is too vast to construct
and manipulate) has been greatly simplified. The latest and
best reduction, by Edwin Roger Banks, a mechanical engineer-
ing graduate student at the Massachusetts Institute of Tech-
nology, does the job with cells of only four states.

Self-replication in a trivial sense—without using configura-
tions that contain Turing machines—is easy to achieve. A de-
lightfully simple example, discovered by Edward Fredkin of
M.I.T. about 1960, uses two-state cells, the von Neumann
neighborhood of four orthogonally adjacent cells and the fol-
lowing parity rule: Each cell with an even number of live
neighbors (0, 2, 4) at time ¢t becomes or remains empty at time
t+1, and each cell with an odd number of neighbors (1, 3) at
time ¢ becomes or remains live at time ¢+ 1. It 1s not hard to
show that after 2" ticks (n varying with different patterns) any
initial pattern of live cells will reproduce itself four times—
above, below, left and right of an empty space that it formerly
occupied. The four replicas will be displaced 2" cells from the
vanished original. The new pattern will, of course, replicate
again after another 2" steps, so that the duplicates keep quad-
rupling in the endless series 1, 4, 16, 64, . . . . Figure 136 shows
two quadruplings of a right tromino. Terry Winograd, in a
1967 term paper written when he was an M.L'T. student, gen-
eralized Fredkin’s rule to other neighborhoods, any number of
dimensions and cells with any prime number of states.

Ulam investigated a variety of cellular automata games, ex-
perimenting with different neighborhoods, numbers of states
and transition rules. In a 1967 paper “On Recursively Defined
Geometrical Objects and Patterns of Growth,” written with
Robert G. Schrandt, Ulam described a number of different
games. Figure 137 shows generation 45 of a history that began
with one counter on the central cell. As in Conway’s game, the
cells are two-state, but the neighborhood is that of von Neu-
mann (four adjacent orthogonal cells). Births occur on cells
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Figure 136

The replication of a tromino

that have one and only one neighbor, and all live cells of gen-
eration n vanish when generation n+ 2 is born. In other words,
only the last two generations survive at any step. In Figure 137
the 444 new births are shown as black cells. The 404 white cells
of the preceding generation will all disappear on the next tick.
Note the characteristic subpattern, which Ulam calls a “dog
bone.” Ulam experimented with games in which two configu-
rations were allowed to grow until they collided. In the ensuing
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Figure 137
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Generation 45 in a cellular game devised by
Stanislaw M. Ulam

“battle” one side would sometimes wipe out the other; some-
times both armies would be annihilated. Ulam also explored
games on three-dimensional cubical tessellations. His major pa-
pers on cellular automata are in Essays on Cellular Automata, ed-
ited by Arthur W. Burks.

Similar games can be devised for triangular and hexagonal
tessellations but, although they look different, they are not es-
sentially so. All can be translated into equivalent games on a
square tessellation by a suitable definition of “neighborhood.”
A neighborhood need not be made up of touching cells. In
chess, for instance, a knight's neighborhood consists of the
squares to which it can leap and squares on which there are
pieces that can attack it. As Burks has pointed out, games such
as chess, checkers and go can be regarded as cellular automata
games in which there are complicated neighborhoods and tran-
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sition rules and in which players choose among alternative next
states in an attempt to be first to reach a certain final state that
wins.

Among the notable contributions of Edward F. Moore to cel-
lular automata theory the best-known is a technique for prov-
ing the existence of what John W. Tukey named “Garden of
Eden” patterns. These are configurations that cannot arise in
a game because no preceding generation can form them. They
appear only if given in the initial (zero) generation. Because
such a configuration has no predecessor, it cannot be self-
reproducing. I shall not describe Moore’s ingenious technique
because he explained it informally in an article in Scientific
American (see “Mathematics in the Biological Sciences,” by Ed-
ward F. Moore; September, 1964) and more formally in a pa-
per that is included in Burks’s anthology.

Alvy Ray Smith III, a cellular automata expert at New York
University’s School of Engineering and Science, found a simple
application of Moore’s technique to Conway’s game. Consider
two five-by-five squares, one with all cells empty, the other with
one counter in the center. Because, in one tick, the central nine
cells of both squares are certain to become identical (in this
case all cells empty) they are said to be “mutually erasable.” It
follows from Moore’s theorem that a Garden of Eden config-
uration must exist in Conway’s game. Unfortunately the proof
does not tell how to find such a pattern and so far none is
known. It may be simple or it may be enormously complex.
Using one of Moore’s formulas, Smith has been able to calcu-
late that such a pattern exists within a square of 10 billion cells
on a side, which does not help much in finding one.

Smith has been working on cellular automata that simulate
pattern-recognition machines. Although this is now only of
theoretical interest, the time may come when robots will need
“retinas” for recognizing patterns. The speeds of scanning de-
vices are slow compared with the speeds obtainable by the
“parallel computation” of animal retinas, which simultaneously
transmit thousands of messages to the brain. Parallel compu-
tation is the only way new computers can increase significantly
in speed because without it they are limited by the speed of
light through miniaturized circuitry. The cover of the Febru-
ary, 1971, issue of Scientific American [reproduced in Figure
138] shows a simple procedure, devised by Smith, by which a
finite one-dimensional cellular space employs parallel compu-
tation for recognizing palindromic symmetry. Each cell has
many possible states, the number depending on the number of
different symbols in the palindrome, and a cell’s neighborhood
is the two cells on each side.
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Figure 138
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Cellular automaton

Smith symbolizes the palindrome 100 HOT TO HOOT with
four states of cells in the top row. T, O and H are represented
by blue, red and yellow respectively, and black marks the pal-
indrome’s two ends. Here we have indicated the colors by dif-
ferent shadings. The white cells in the other rows are in the
quiescent state. The horizontal rows below the top row are suc-
cessive generations of the top configuration when certain tran-
sition rules are followed in discrete time steps. In other words,
the picture is a space-time diagram of a single row, each suc-
cessive row indicating the next generation.

In the first transition each shade travels one cell to the left
and one cell to the right, except for the end shadings, which
are blocked by black; black moves inward at each step. Each
cell on which two shadings land acquires a new state, symbol-
ized by a cell divided into four triangles. The left triangle has
the shading that was previously on the left, the right triangle
has the shading previously on the right. The result of this first
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move is shown in the second row. When an adjacent pair of
cells forms a tilted square in the center that is a solid shading,
it indicates a “collision” of like shadings and is symbolized by
black dots in the two white triangles of the left cell. Dots re-
main in that cell for all subsequent generations unless a colli-
sion of unlike shadings occurs to the immediate right of the
dotted cell, in which case the dots are erased. When collisions
of unlike shadings occur, the left cell of the pair remains un-
dotted for all subsequent generations even though like shad-
ings may later collide on its right.

At each move the shadings continue to travel one cell left or
right (the direction in which the shaded triangles point) and all
rules apply. If the palindrome has » letters, with » even as in
this example (the scheme is modified slightly if » is odd), it is
easy to see that after /2 moves only two adjacent nonquiescent
cells remain. If the left cell of this pair is dotted, the automaton
has recognized the initial row as being palindromic. Down the
diagram’s center you see the colliding pairs of like shadings in
the same order as they appear on the palindrome from the
center to each end. As soon as recognition occurs the left cell
of the last pair is erased and the right cell is altered to an “ac-
cept” state, here symbolized by nested squares. An undotted
left cell would signal a nonpalindrome, in which case the left
cell would become blank and the right cell would go into a “re-
ject” state.

A Turing machine, which computes serially, requires in gen-
eral n? steps to recognize a palindrome of length n. Although
recognition occurs here at step n/2, the accept state is shown
moving in subsequent generations to the right to symbolize the
cell-by-cell transmission of the acceptance to an output bound-
ary of the cellular space. Of course it is easy to construct more
efficient palindrome-recognizing devices with actual electronic
hardware, but the point here is to do it with a highly abstract,
one-dimensional cellular space in which information can pass
only from a cell to adjacent cells and not even the center of the
initial series of symbols is known at the outset. As Smith puts it
anthropomorphically, after the first step each of the three dot-
ted cells thinks it is at the center of a palindrome. The dotted
cells at each end are disillusioned on the next move because of
the collision of unlike shadings at their right. Not until genera-
tion n/2 does the dotted cell at the center know it is at the center.

Now for some startling new results concerning Conway’s
game. Conway was fully aware of earlier games and it was with
them in mind that he selected his recursive rules with great
care to avoid two extremes: too many patterns that grow
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quickly without limit and too many that fade quickly. By strik-
ing a delicate balance he designed a game of surprising unpre-
dictability and one that produced such remarkable figures as
oscillators and moving spaceships. He conjectured that no fi-
nite population could grow (in number of members) without
limit, and he offered $50 for the first proof or disproof. The
prize was won in November, 1970, by a group in the Artificial
Intelligence Project at M.L.T. consisting of (in alphabetical or-
der) Robert April, Michael Beeler, R. William Gosper, ]Jr.,
Richard Howell, Rich Schroeppel and Michael Speciner. Using
a program devised by Speciner for displaying life histories on
an oscilloscope, Gosper made a truly astounding discovery: he
found a glider gun! The configuration in Figure 139 grows
into such a gun, firing its first glider on tick 40. The gun is an
oscillator of period 30 that ejects a new glider every 30 ticks.
Since each glider adds five more counters to the field, the pop-
ulation obviously grows without limit.

Figure 139
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A configuration that grows into a glider gun

The glider gun led the M.I.'T. group to many other amazing
discoveries. A series of printouts (supplied by Robert T. Wain-
wright of Yorktown Heights, N.Y.) shows how 13 gliders crash
to form a glider gun [see Figure 140]. The last five printouts
show the gun in full action. The group also found a way to po-
sition a pentadecathlon [see Figure 141], an oscillator of period
15, so that it “eats” every glider that strikes it. A pentadecath-
lon can also reflect a glider 180 degrees, making it possible for
two pentadecathlons to shuttle a glider back and forth forever.
Streams of intersecting gliders produce fantastic results. Strange
patterns can be created that in turn emit gliders. Sometimes
collision configurations grow until they ingest all guns. In other
cases the collision mass destroys one or more guns by shooting
back. The group’s latest burst of virtuosity is a way of placing
eight guns so that the intersecting streams of gliders build a
factory that assembles and fires a middleweight spaceship
about every 300 ticks.

233



234 CHAPTER 21

Figure 140
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Here and on the facing page 13 gliders crash to
form a glider gun (generation 75) that oscillates
with a period of 30, firing a glider in each cycle
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The existence of glider guns raises the exciting possibility
that Conway’s game will allow the simulation of a Turing ma-
chine, a universal calculator capable in principle of doing any-
i thing the most powerful computer can do. The trick would be
: to use gliders as unit pulses for storing and transmitting infor-
: mation and performing the required logic operations that are
handled in actual computers by their circuitry. If Conway’s
game allows a universal calculator, the next question will be
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Figure 141
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whether it allows a universal constructor, from which nontrivial
self-replication would follow. So far this has not been achieved
with a two-state space and Conway’s neighborhood, although it
has been proved impossible with two states and the von Neu-
mann neighborhood.

The M.I.T. group found many new oscillators [see Figure
142]. One of them, the barber pole, can be stretched to any
length and is a flip-flop, with each state a mirror image of the
other. Another, which they rediscovered, is a pattern Conway’s
group had found earlier and called a Hertz oscillator. Every
four ticks the hollow “bit” switches from one side of the central
frame to the other, making it an oscillator of period 8. The
tumbler, which was found by George D. Collins, Jr., of Mc-
Lean, Va., turns upside down every seven ticks.

Figure 142
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Barber pole (left), Hertz oscillator (middle),
and tumbler (right)

The Cheshire cat [see Figure 143] was discovered by C. R.
Tompkins of Corona, Calif. On the sixth tick the face vanishes,
leaving only a grin; the grin fades on the next tick and only a
permanent paw print (block) remains. The harvester was con-
structed by David W. Poyner of Basildon in England. It plows
up an infinite diagonal at the speed of light, oscillating with
period 4 and ejecting stable packages along the way [see Figure
144]. “Unfortunately,” writes Poyner, “I have been unable to
develop a propagator that will sow as fast as the harvester will
reap.”

Wainwright has made a number of intriguing investigations.
He filled a 120-by-120 square field with 4,800 randomly placed
bits (a density of one-third) and tracked their history for 450
generations, by which time the density of this primordial soup,
as Wainwright calls it, had thinned steadily to one-sixth.
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Figure 143

The Cheshire cat (0) faces to a grin (6)
and disappears, leaving a paw print (7)

Figure 144
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The harvester, shown at generations (0) left
and 10 (right)

Whether it would eventually vanish or, as Wainwright says,
percolate at a constant minimum density is anybody’s guess. At
any rate, during the 450 generations 42 short-lived gliders
were formed. Wainwright found 14 different patterns that be-
came glider states on the next tick. The pattern that produced
the greatest number of gliders (14 in all) is shown [a in Figure
145). A Z-pattern found by Collins and by Jeffrey Lund of Pe-
waukee, Wis., after 12 ticks becomes two gliders that sail off in
opposite directions [b in Figure 145]. Wainwright and others set
two gliders on a collision course that causes all bits to vanish on
the fourth tick {¢ in Figure 145]. Wallace W. Wagner of Ana-



THE GAME OF LIFE, PART Il 239

Figure 145

Two spawners of gliders and two collision courses

heim, Calif., found a collision course for two lightweight space-
ships that also ends (on the seventh tick) in total blankness {d
in Figure 145]. ‘

Wainwright has experimented with various infinite fields of
regular stable patterns, which he calls agars—rich culture me-
diums. When, for instance, a single “virus,” or bit, is placed in
the agar of blocks shown in Figure 146 so that it touches the
corners of four blocks, the agar eliminates the virus and re-
pairs itself in two ticks. If, however, the alien bit is positioned
as shown (or at any of the seven other symmetrically equivalent
spots), it initiates an inexorable disintegration of the pattern.
: The portion eaten away contains active debris that has overall
v bilateral symmetry along one axis and a roughly oval border
that expands, probably forever, in the four compass directions
] at the speed of light.

Figure 146

Agar doomed by a virus

: The most immediate practical application of cellular auto-
: mata theory, Banks believes, is likely to be the design of circuits
: capable of self-repair or the wiring of any specified type of new
circuit. No one can say how significant the theory may eventu-
ally become for the physical and biological sciences. It may
have important bearings on cell growth in embryos, the repli-
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cation of DNA molecules, the operation of nerve nets, genetic
changes in evolving populations and so on. Analogies with life
processes are impossible to resist. If a primordial broth of
amino acids is large enough, and there is sufficient time, self-
replicating, moving automata may result from complex transi-
tion rules built into the structure of matter and the laws of
nature. There is even the possibility that space-time itself is
granular, composed of discrete units, and that the universe, as
Fredkin and others have suggested, is a vast cellular automaton
run by an enormous computer. If so, what we call motion may
be only simulated motion. A moving spaceship, on the ultimate
microlevel, may be essentially the same as one of Conway’s
spaceships, appearing to move on the macrolevel whereas ac-
tually there is only an alteration of states of basic space-time
cells in obedience to transition rules that have not yet been
discovered.
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So much has been discovered about Conway’s “Life” since 1
first wrote the last two chapters, that it was impossible to sum-
marize the highlights in an addendum. A book could and
should be written about the game, an Encyclopedia of Life, or a
Handbook of Life, that would put all the important known Life
forms on record and thereby save Lifenthusiasts the labor of
rediscovering them. The eleven issues that appeared of Robert
Wainwright's periodical Lifeline continue to be the main repo-
sitory of such data. Wainwright is said to be working on a book,
and there are rumors of other books about “Life” that are in
the making. In the meantime, I will try in this chapter to pull
together some of the significant developments in “Life” since
my second column on the game ran in Scienfific American 1n
1971. Because so many basic forms were independently discov-
ered by many people, I shall not often attempt to credit first
discoverers.

The earliest and most important group of Lifenthusiasts was
at M.L.T., centering around William Gosper who is now work-
ing for Xerox at their Stanford research headquarters. In the
mid-70s the most active “Life” group was in the computer con-
trol division of Honeywell, Inc., Framington, Mass. It included
(alphabetical order) Thomas Holmes, Keith McClelland, Mi-
chael Sporer, Philip Stanley, Donald Woods, and his father
William Woods. In the late seventies, an active group of “Life”
hackers formed at the University of Waterloo, in Canada, with
John Abbott, David Buckingham, Mark Niemiec, and Peter
Raynham as the leaders. Most of what I shall report comes
from these three groups.

All still lifes with 13 or fewer bits have long been known.
The block and tub are the only 4-bit stable forms, and the boat
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is the only one with 5 bits. Figure 128 caught four of the five
6-bit still lifes, missing only the aircraft carrier shown in Figure
147. There are four 7-bit stable forms: the loaf, long boat, long
snake, and fishhook. The fishhook or “eater” is the smallest still
life lacking any kind of symmetry. Note that forms such as the
boat, barge, ship, and sinking ship can be stretched to any
length, and lakes can be made as large as you like, with any
number of barges, boats, and ships at anchor on the water.
There are nine 8-bit still lifes, ten 9-bit forms, 25 with 10 bits,
46 with 11 bits, 121 with 12 bits, and 149 with 13 bits. The sta-
ble pool table in Figure 148 was constructed out of long sink-
ing ships and parts of ponds by William Woods.

Figure 148

The stable pogl! table
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Figure 149
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Low-period oscillators

Hundreds of elegant oscillators have been found. Figure 149
shows a few of small size, with short periods. The M.LT.
group, early in the history of “Life,” found easy ways to con-
struct giant flip-flops (period-2 oscillators) such as the one
shown in Figure 150. It oscillates between the patterns shown
in black dots and circles.

Figure 150
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A flip-flop pattern that alternates between states
shown in black and with circles
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Another large class of “Life” forms that have been inten-
sively investigated are what the Honeywell group named the
fuses. These are stems one or more bits wide, either diagonal
or orthogonal, usually infinite in length, that burn steadily
from one end toward the other. The simplest is the fuse shown
in Figure 151 a, a diagonal of bits that either rises to infinity or
has a stable top as shown. It simply burns itself out without
producing any sparks or stable smoke. If you put another bit
to the left of the lower end, it forms a tiny flame that travels
along with the burning.

Figure 151
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Five fuses

Fuse b in Figure 151 oscillates with a period of 4, giving off
sparks that fade quickly. A “dirty fuse,” like the one shown in
¢ in Figure 151, leaves clouds of debris behind as it burns. At
one point it shoots off a glider. Fuse 4 in Figure 151, named
the “baker” by its discoverer, McClelland, is a confused fuse
that bakes a string of stable loaves while it burns. The last three
fuses all oscillate with periods of 4, and all four burn with the
speed of light.

Fuse e in Figure 151, eventually becomes a clean fuse of pe-
riod 4, but leaves behind a cloud consisting of three blocks,
three beehives, two blinkers, a ship, and four gliders. William
Woods calls it a “reverse fuse” because it explodes first, then
burns quietly for the rest of its endless life. The harvester, de-
scribed in the previous chapter, is of course a fuse.

Other unusual fuses are shown in Figure 152. Fuse a, found
by Steve Tower, has a period of 8. It leaves behind a trail of
beacons. Fuse b abandons a twin pair of boats every four ticks.
Orthogonal fuse ¢, which burns with a speed slower than light,
consumes two tubs every 18 ticks, then changes them to traffic
lights (four blinkers). It was discovered by Earl Abbe. Wain-
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Figure 152

BEEHIVE

More fuses

wright's fuse d consumes three fenceposts every 12 genera-
tions, and turns them into a beehive.

Two fuses of a more complicated nature, discovered by Don
Woods, are shown in Figure 153. The cow burns at light speed,
with period 8, slowly “chewing its cud” by eating the blocks on
either side, bringing them back again, then eating them a sec-
ond time. The two-glider fuse throws off two gliders every 12
ticks. I resist the impulse to describe two close relatives of
fuses, the wicks (infinite in both directions) and the kinkbombs.
Kinkbombs come in three varieties: duds, firecrackers, and
bombs, as detailed by Mark Horton in the 11th issue of Lifeline.

Figure 153
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Two remarkable fuses

There are 102 distinct patterns of bits within a 3 X 3 square
(excluding rotations and reflections, but including the patterns
consisting of nine bits and no bits). Some of these are polyo-
minoes, some not. All the letters of the alphabet in Braille are
among the 102. The fates of all 102 are known. Also known
are the fates of all polyominoes through the order-7
heptominoes.
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Methuselah patterns are those of fewer than 10 bits which
do not stabilize until after more than 50 generations. Two ex-
amples were given in the previous chapter: The 5-bit R-pen-
tomino and the pi-heptomino of 7 bits. The first generation of
the pi-heptomino, by the way, reappears in tick 31, but shifted
9 cells. Because of interaction with its exhaust, in generation
61, it fails to make it as a spaceship.

Other examples of Methuselahs are shown in Figure 154.

- The first one, a is the smallest known. It becomes the R-pen-

tomino in two ticks, giving it a life of 1,105 generations. Me-
thuselah b stabilizes (six blocks, twelve blinkers, one loaf) after
608 generations, ¢ (the thunderbird) lasts 243 ticks, and d goes
to 1,108. The heptomino e stabilizes after 148 ticks, having
produced three blocks, a ship, and two gliders. The acorn f,
found by Charles Corderman, is the most amazing Methuselah
known. It lives for 5,206 generations! When it stabilizes as an
“oak” of 633 bits, it has produced numerous gliders, 13 of
which escape.

Figure 154
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The Honeywell group tracked the life histories of the first
nine members of the 5-cell crosses, of which the simplest are
shown in Figure 155. The first is a portion of an infinite trellis

Figure 155

The five-cell cross series
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consisting of solid horizontal and vertical rows, two cells apart,
that surround an infinity of empty 2x 2 squares. Like the infi-
nite trellis, this cross vanishes in one tick. The next cross dis-
appears in 8 ticks. The third ends with many traffic lights in 6
ticks, and the fourth stabilizes after 34 ticks with eight blinkers,
having produced a truly spectacular display of fireworks along
the way. (Its 19th generation is a beautiful ring of blocks with
a checkerboard in the center.) Order-5 and order-7 crosses in
this sequence stabilize as four pulsars in 31 and 21 tcks re-
spectively, orders 6 and 8 go to four pulsars and a tub in 36
and 21 ticks respectively, and order-9 ends after 42 ticks with
16 blocks and 8 blinkers.

William Gosper, in 1971, found the eater (fishhook), the in-
credible 7-bit stable form shown with circles in Figure 156. It
has the ability to consume an enormous variety of “Life” forms,
then quickly repair itself. The first four pictures show the eater
about to ingest a glider, blinker, pre-beehive, and a lightweight
spaceship. In the fifth picture two eaters are poised to devour
one another. This is prevented by their amazing ability to self-
repair, so the pattern oscillates with period 3. The last picture
shows how two gliders collide to produce an eater on the 13th
tick. In recent years eaters of larger size have been discovered,
with a variety of bizarre feeding habits.

Figure 156

The eater (circles) and some of its prey

Extensive investigations have been made of different kinds
of agars (regular patterns that are infinite in two dimensions),
the procrastinators (forms that take more than 50 ticks to
become a single simple stable form), and puffer trains. The
puffers leave a trail of permanent smoke. Three are shown in
Figure 157. The first, discovered by Gosper, is an engine es-
corted between two lightweight spaceships. It puffs along at
haif the speed of light until after more than 1,000 ticks it de-
velops a period of 140. Paul Schick discovered an entire family
of puffer trains, the simplest of which, shown in b, leaves noth-
ing behind. The pair of mirror-image lightweight spaceships
pull alony the symmetrical heptomino engine with a period of
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Puffer trains

12. The switch-engine puffer train ¢ in Figure 157, moves too
slowly (one-twelfth the speed of light) to be of much use. It
travels diagonally like a glider, eventually producing eight
blocks every 288 generations. No escorting spaceships are
needed, but without the stabilizing block it’s smoke catches up
with the engine and destroys it.

The first Garden of Eden pattern, reproduced in Figure
158, was found by Roger Banks in 1971. It required an enor-
mous computer search of all possible predecessor patterns.
The confining rectangle (9 x 33) holds 226 bits. The only other
Garden of Eden pattern known was found by a French group
in 1974, led by J. Hardouin-Duparc, at the University of Bor-
deaux. It is mside a rectangle of 6 X 122.

Figure 158

A garden of Eden

Although any “Life” pattern generates only one successor,
the converse is not true. A given pattern may have two or more
predecessors. This is why searching for Garden of Eden pat-
terns is so difficult—the computer has to look at all possible
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predecessors at each backward tick. If the universe eventually
turns out to be one monstrous cellular automaton, one may
reasonably ask whether there is an initial Garden of Eden state
that required a creation because it has no predecessor pattern.
By the way, the fact that a “son” of a Garden of Eden pattern
may have more than one “father” has led Conway to offer $50
to the first person who can find a pattern that has a father but
no grandfather. The existence of such a pattern is still an open
question.

The most spectacular of the new developments in “Life” in-
volve gliders and their collisions. Gosper’s group found new
types of glider guns, more compact spaceship factories pro-
duced by glider crashes, and innumerable “Life” forms that eat
gliders or reflect them back at different angles. Before its
members broke up to go their separate ways, the M.I.T. group
managed to complete a 17-minute film about their discoveries
that has become a classic.

A pure glider generator is one that generates one or more
gliders with no debris left over. Two elegant ones found by the
Honeywell group are shown in Figure 159. The biloaf left in
four ticks produces two gliders going opposite ways. The 4-8-
12 diamond right in 15 ticks forms four gliders headed in four
different directions. Half a dozen 5-bit forms turn into a single
glider, and more than a hundred 6-bit forms do the same. A
search for predecessors of the original Gosper glider gun
turned up a pattern of 21 bits that is the smallest known,
though it seems possible there may be a way of positioning just
four gliders (20 bits) so that they crash and form a gun.

Figure 159

Two glider-generators

I mentioned earlier Gosper’s way of placing eight guns so
that their gliders crash to form a spaceship factory which fires
off a middleweight spaceship about every 300 generations.
Gosper soon improved this to four guns and one pentadecath-
lon. This pattern produces a factory that shoots off lightweight
or middleweight spaceships (depending on the timing) every
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60 ticks. Wainwright positioned three “newguns” that generate
a middleweight spaceship every 46 generations.

Lifenthusiasts have investigated thousands of ways that glid-
ers and spaceships can collide to produce an incredible variety
of stable patterns (including the null pattern of nothing at all),
as well as patterns that change, and patterns that produce new
gliders and/or spaceships. Figure 160 shows some unusual col-
lisions found by the Waterloo group. On the left is the pattern

- just before the crash; on the right, the outcome after the indi-

cated number of ticks (¢=ticks).

The breeder is one of the most remarkable life forms found
by the M.I.T. group; remarkable because its population growth
is so rapid. Figure 161 is a photograph of a computer scope
that shows the breeder breeding gliders. The little dots are
gliders, about 1,000 of them inside the triangular region. The
breeder consists of ten puffer trains moving east, their exhaust
carefully controlled so that they generate gliders that crash to
form guns that instantly spring into action along the horizontal
axis. The picture shows the breeder at generation 3,333.
Thirty guns are firing northeast at a rate of one glider per tick.
The firing rate increases without limit until at about tick 6,500
the number of gliders starts to exceed the age of the breeder.
Seeing the breeder in action was one of the most awesome high
points of my visit to M.I.T.

When I wrote the previous chapter for the February 1971
issue of Scientific American, 1 raised the question of whether the
rules of “Life” permit the construction of a universal com-
puter. I had the pleasure of reporting the next month that
“Life” is indeed universal. Gosper at M.I.'T. and Conway at
Cambridge independently “universalized” the “Life” space by
showing how gliders could be used as pulses to simulate a Tur-
ing machine. Exactly how this is done is too complicated to go
into here, but you will find it clearly outlined by Conway in the
second volume of Winning Ways, the book he coauthored with
Elwyn Berlekamp and Richard Guy.

The universality of “Life” means that it is possible in princi-
ple to use moving gliders to perform any calculation that can
be performed by the most powerful digital computer. For ex-
ample, one can arrange a formation of glider guns, eaters, and
other “Life” forms so that a stream of gliders, with gaps in the
right places, will calculate pi, ¢, the square root of 2, or any
other real number to any number of decimal places. Of course,
it would be a very inetficient way to do such calculations, none-
theless they are possible if you have a large enough field and
sufficient ingenuity to build the needed “machine.”

In Winning Ways Conway uses Fermat’s last theorem to illus-
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Figure 161
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The breeder

trate “Life’s” computing power as well as its limitations. A
“Life” machine can be constructed that will steadily test the val-
ues of the four variables in Fermat’s famous formula. The pro-
gram could be designed to halt, say by fading away, if it found
a counterexample to Fermat’s conjecture. On the other hand,
if the conjecture is true, the “Life” machine will keep searching
forever for the right combination of values. We know from un-
decidability theory that there is no way to know in advance
whether any given problem is solvable, therefore there is no
way to know in advance whether any given pattern in “Life”
will continue to change or to reach a stable end.

In 1981, in a letter telling me he had found “Life” to be uni-
versal, Conway added a note on the back of the envelope. “If
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(ask Gosper) gliders can crash to form a pentadecathlon, then
I can produce self-replicating machines, and it’s undecidable
whether a given machine is self-replicating.”

I cannot remember if I asked Gosper this question, but at
any rate, gliders can crash to form pentadecathlons, and Con
way states flatly, in Winning Ways, that self-replicating machines
can be constructed in “Life” space. We are not speaking now
of moving forms like spaceships, but of machines that will
build exact copies of themselves. The original machine may
either remain in the space or it can be programmed to self-
destruct after it has replicated itself. So far as I know no one
has built such a machine, but if Conway is right (his proof has
not been published), it is possible to build them.

253



254

CHAPTER 22

Conway also asserts in Winning Ways that he has proved that
“Life” patterns exist which move steadily in any desired ra-
tional direction, recovering their initual forms after a fixed
number of moves. As for spaceships (which move without pro-
ducing smoke), no new ones have been discovered other than
those already known to Conway in 1970.

Conway goes on to speculate that if you imagine a suffi-
ciently large broth of randomly placed bits, one would expect
that by pure chance self-replicating creatures would arise, and
those best adapted to survive would live longer than the others.
Interactions with the environment would produce mutations.
As in organic evolution, most mutations would be harmful, but
some would have survival value. “It’s probable,” Conway
writes, “given a large enough “Life” space, initially in a random
state, that after a long time, intelligent self-reproducing ani-
mals will emerge and populate some parts of the space.”

I would prefer the word “possible” here to “probable,” but
there is no question that “Life’s” analogy with biological evolu-
tion on earth is remarkable. One science fantasy writer, the
widely read Piers Anthony, plays with this theme in his 1976
novel, Ox. Diagrams of “Life” patterns head each chapter, and
the book’s plot involves intelligent, sentient beings called “pat-
tern entities” or “sparkle clouds” that have evolved by just the
process Conway imagines, in a cellular space of dimensions
higher than our spacetime. Their behavior is totally deter-
mined by transition rules, but like us they imagine themselves
to have free wills. There is an amusing Chapter 11 in which
Cal explains the rules of “Life” to Aquilon and she experi-
ments with some simple patterns.

“Try this one,” Cal suggests, giving her the R-pentomino:

“That’s similar to the one I just did. You've just tilted it
sideways, which makes no topological difference, and added
one dot.”

“Try 1t,” he repeated.

She tried it, humoring him. But soon it was obvious that
the solution was not a simple one. Her numbered patterns
grew and changed, taking up more and more of the working
area. The problem ceased to be merely intriguing; it became
compulsive. Cal well understood this; he had been through it
himself. She was oblivious to him now, her hair falling across
her face in attractive disarray, teeth biting lips. “What a dif-
ference a dot makes!” she muttered.

In Chapter 13 Aquilon, still tracking the pattern’s fate, ex-
claims: “This R-pentomino is a menace! I'm getting a head-
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ache! It just goes on and on.” Gosper once said that to him the
most impressive aspect of Conway’s game is how it demon-
strates the impossibility of predicting the outcome of processes
that are rigidly determined by extremely simple rules of
change. After Aquilon has learned about gliders and glider
guns, she remarks: “If I were a pattern, I'd be very careful
where I fired my gliders! That game plays a rough game!”

“It does,” Cal replies. “As does all nature.”

Much work has been done on variants of “Life”: playing by
other rules, and on other lattices such as triangular or hexag-
onal, and in dimensions higher than two. One-dimensional
“Life” has also been explored—see the articles by Jonathan
Miller and Munemi Miyamoto. “Life” has been investigated on
wraparound fields that are cylinders and toruses, and even
Moebius surfaces and Klein bottles. Some interesting results
have emerged, but nothing compares with “Life” in the com-
bination of richness of interesting forms with such simple tran-
sition rules. This is a tribute to Conway’s intuition, and to the
thoroughness with which he and his friends initially explored
hundreds of alternate possibilities, including games with two or
more sexes. Attempts have also been made to invent competi-
tive games based on “Life,” for two or more players, but so far
without memorable results.

“Life” may have some practical uses. There have been at-
tempts to apply it to socioeconomic systems, and a generaliza-
tion of “Life” has been suggested as an explanation of why
some nebulas have spiral arms (see the article by Kenneth
Brecher). Arthur Appel and Arthur Stein, at IBM, found a
way of applying rules similar to “Life’s” in programs designed
to identify the hidden edges in computer drawings of solid
shapes.

I spoke earlier of the possibility that the universe is a vast
cellular automaton, operated by the movements of ultimate
particles (perhaps not yet discovered) according to unknown
transition rules. Physicists are now searching for a GUT
(Grand Unification Theory) that will bring together all the
forces of nature into one unified theory based on a gauge
structure. As physicist Claudio Rebbi explained in his article on
“The Lattice Theory of Quark Confinement” (Scientific Amert-
can, February 1983), a popular approach is to think of the
gauge game as being played by particles on an abstract lattice
of four-dimensional cubes—a sort of spacetime “Life.” This
suggestion was made in 1974 by Kenneth Wilson, and is now
known as lattice gauge theory.

The game metaphor for GUT carries with it the implication
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that the basic particles of the universe (pieces), the fundamen-
tal laws (transition rules), and spacetime (board) are not logical
necessities. They are simply given. It is folly, as Hume and the
positivists have taught us, to ask why they are what they are.
Like chess players, physicists should accept the game and enjoy
their (endless?) task of trying to guess how it is played, not
waste energy speculating on why the game is designed the way
it is. Now we are back to Leibniz and his stupendous vision of
a transcendent Mind, contemplating all possible games, then
choosing for our universe the Game that best suits the Mind’s
incomprehensible purposes.
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