

 [image: First Edition.]

 Mac OS X for Unix Geeks

Ernest E. Rothman

Brian Jepson

Rich Rosen

Editor
Isabel Kunkle

Copyright © 2009 Brian Jepson, Ernest Rothman and Richard Rosen

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://safari.oreilly.com). For more information,
 contact our corporate/institutional sales department: 800-998-9938 or
 corporate@oreilly.com.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly
 Media, Inc. Mac OS X for Unix Geeks, the image of a
 leopard, and related trade dress are trademarks of O’Reilly Media,
 Inc.
Many of the designations uses by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Preface

Once upon a time, Unix came with only a few standard utilities. If you
 were lucky, it included a C compiler. When setting up a new Unix system,
 you’d have to crawl the Net looking for important software: Perl, gcc, bison,
 flex, less, Emacs, and other utilities and languages.
 That was a lot of software to download through a 28.8-Kbps modem. These
 days, Unix distributions come with many more features, and more and more
 users are gaining access to a wide-open pipe.
Free Linux distributions pack most of the GNU tools onto a CD-ROM, and
 now commercial Unix systems are catching up. Solaris comes with a companion
 CD of free software including a big selection of GNU utilities, and just
 about every flavor of Unix (including Mac OS X) now includes Perl. Mac OS X
 also comes with many tools, most of which are open source and complement the
 tools associated with Unix.
This book serves as a bridge for Unix developers and system
 administrators who’ve been lured to Mac OS X because of its Unix roots. When
 you first launch the Terminal application, you’ll find yourself at home in a
 Unix shell. However, Apple’s credo is “Think Different,” and you’ll soon
 find yourself doing things a little differently. Some of the standard Unix
 utilities you’ve grown accustomed to may not be there, /etc/passwd and /etc/group have been supplanted with something
 called Directory Services, and when it comes to developing applications,
 you’ll find that things like library linking and compiling have a few new
 twists to them.
Despite all the beauty of Mac OS X’s Aqua interface, you’ll find that
 some things are different on the Unix side. But rest assured, the changes
 are easy to deal with if you know what to do. This book is your survival
 guide for taming the Unix side of Mac OS X.
Audience for This Book

This book is aimed at Unix developers—a category that includes
 programmers who have switched to Linux from a non-Unix platform—as well as
 web developers who spend most of their time in ~/public_html over an ssh
 connection, and experienced Unix hackers. In catering to such a broad
 audience, we’ve chosen to include some material that advanced users might
 consider basic. However, this choice makes the book accessible to all Unix
 programmers who’ve switched to Mac OS X as their operating system of
 choice, whether they have been using Unix for 1 year or 10. If you are
 coming to Mac OS X with no Unix background, we suggest that you start with
 Learning Unix for Mac OS X Tiger by Dave Taylor
 (O’Reilly) to get up to speed with the basics.

Organization of This Book

This book is divided into four parts. Part I helps you map your current Unix knowledge to
 the world of Mac OS X. Part II discusses
 compiling and linking applications. Part III
 takes you into the world of Fink and covers packaging. Part IV discusses using Mac OS X as a server and
 provides some basic system management information. Appendix A provides useful reference
 information.
Here’s a brief overview of what’s in the book.
Part I, Getting Around

This part of the book orients you to Mac OS X’s unique way of
 expressing its Unix personality.
	Chapter 1, Inside the Terminal
	This chapter provides you with an overview of the Terminal
 application, including a discussion of the differences between the
 Terminal and the standard Unix xterm.

	Chapter 2, Searching and Metadata
	This chapter introduces Spotlight, a subsystem for searching
 your Mac. In this chapter, you’ll learn how to access this
 powerful metadata store from the command line.

	Chapter 3, Files and Filesystems
	Here you’ll learn about the layout of the Mac OS X
 filesystem, with descriptions of key directories and files.

	Chapter 4, Startup
	This chapter describes the Mac OS X boot process, from when
 the Apple icon first appears on your display to when the system is
 up and running.

	Chapter 5, Directory Services
	This chapter gets you started with Mac OS X’s powerful
 Directory Services system, which replaces or complements the
 standard Unix flat files in the /etc directory.

	Chapter 6, Printing
	This chapter explains how to set up a printer under Mac OS X
 and shows you around CUPS, the open source printing engine under
 Mac OS X’s hood.

	Chapter 7, The X Window System and VNC
	In this chapter, you’ll learn how to install and work with
 the X Window System and how to use both built-in Mac OS X and
 third-party tools for establishing VNC connections between Mac OS
 X and other Unix systems.

	Chapter 8, Third-Party Tools and Applications
	This chapter introduces some third-party applications that
 put a new spin on Unix features, such as SSH/SFTP frontends,
 TeX applications, the
 statistical package R, and multimedia-related applications.

	Chapter 9, Dual-Boot and Beyond
	Mac OS X isn’t the only operating system you can run on your
 Mac. In this chapter, you’ll learn how you can run many operating
 systems on your Mac, perhaps even two or three at a time.

Part II, Building Applications

Although Apple’s C compiler is based on the GNU Compiler
 Collection (GCC), there are important differences between compiling and
 linking on Mac OS X and on other platforms. This part of the book
 describes these differences.
	Chapter 10, Compiling Source Code
	This chapter describes the peculiarities of the Apple C
 compiler, including using macros that are specific to Mac OS X,
 working with precompiled headers, and configuring a source tree
 for Mac OS X.

	Chapter 11, Libraries, Headers, and Frameworks
	Here we discuss building libraries, linking, and
 miscellaneous porting issues
 you may encounter with Mac OS X.

Part III, Working with Packages

There are several packaging options for software that you compile,
 as well as for software you obtain from third parties. This part of the
 book covers software packaging on Mac OS X.
	Chapter 12, Fink
	In this chapter you’ll learn all about Fink, a package
 management system and porting effort that brings many open source
 applications to Mac OS X.

	Chapter 13, MacPorts
	MacPorts offers another way to install lots of open source
 software on your Mac. You’ll learn all about it in this
 chapter.

	Chapter 14, Creating and Distributing Installable Software
	This chapter describes the native package formats used by
 Mac OS X, as well as packaging options you can use to distribute
 applications.

Part IV, Serving and System Management

This part of the book talks about using Mac OS X as a server and
 discusses system administration.
	Chapter 15, Using Mac OS X As a Server
	In this chapter, you’ll learn about setting up your
 Macintosh to act as a server, selectively letting traffic in (even
 through a Small Office/Home Office firewall such as the one found
 in the AirPort base station), setting up Postfix, and setting up
 and configuring MySQL and PostgreSQL.

	Chapter 16, System Management Tools
	This chapter describes commands for monitoring system status
 and configuring the operating system.

	Chapter 17, Other Programming Languages: Perl, Python, Ruby, and Java
	This chapter describes the versions of Perl, Python, Ruby,
 and Java that ship with Mac OS X, as well as optional modules that
 can make your experience much richer.

Appendix

The appendix includes reference information that will be useful to
 newcomers.
	Appendix A
	If you are totally new to Mac OS X, this appendix will get
 you up to speed with the basics of its user interface. It also
 introduces terminology that we use throughout the book.

Xcode Tools

This book assumes that you have installed the Xcode tools, which
 include the latest version of Apple’s port of gcc. If you bought a boxed version of Mac OS X Tiger or Leopard, you can find the
 installer for Xcode in the Xcode
 folder on the same DVD that you used to install Mac OS X. Boxed versions
 of earlier releases of Mac OS X included Xcode on a separate CD-ROM. If
 you’d like to be absolutely sure that you have the latest versions of the
 tools, they are available to Apple Developer Connection (ADC) members at
 http://connect.apple.com.

Where to Go for More Information

Although this book will get you started with the Unix underpinnings
 of Mac OS X, there are many online resources that can help you get a better understanding of
 Unix for Mac OS X:
	Apple’s Open Source mailing lists page
	This page leads to all the Apple-hosted Darwin mailing
 lists and includes links to list archives.
	http://developer.apple.com/darwin/mail.html

	The Darwin project
	Darwin is a complete Unix operating system for x86 and
 PowerPC processors. Mac OS X is based on the Darwin project. Spend
 some time at the project’s web page to peek as deep under Mac OS X’s
 hood as is possible.
	http://www.opensource.apple.com/darwinsource/

	Fink
	Fink is a collection of open source Unix software that has
 been ported to Mac OS X. It is based on the Debian package
 management system and includes utilities to easily mix precompiled
 binaries and software built from source. Fink also includes complete
 GNOME and KDE desktop distributions.
	http://fink.sourceforge.net

	MacPorts
	MacPorts (formerly known as DarwinPorts), a project of
 OpenDarwin, is an open source community-based project that provides
 a unified porting system for Darwin, Mac OS X, FreeBSD, and
 Linux. At the time of this writing, it includes thousands of ports,
 including the GNOME desktop system. The MacPorts project is hosted
 by Apple, Inc.
	http://www.macports.org

	MacOSXHints
	MacOSXHints presents a collection of reader-contributed tips,
 along with commentaries from people who have tried the tips. It
 includes an extensive array of Unix tips.
	http://www.macosxhints.com

	Stepwise
	Before Mac OS X, Stepwise was the definitive destination for
 OpenStep and WebObjects programmers. Now Stepwise provides news,
 articles, and tutorials for Cocoa and WebObjects programmers.
	http://www.stepwise.com

	VersionTracker
	VersionTracker keeps track of software releases for Mac OS X and
 other operating systems.
	http://www.versiontracker.com

	MacUpdate
	MacUpdate also tracks software releases for Mac OS X.
	http://www.macupdate.com

	FreshMeat’s Mac OS X section
	FreshMeat catalogs and tracks the project history of thousands
 of applications (mostly open source).
	http://osx.freshmeat.net

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Used to indicate new terms, URLs, filenames, file extensions,
 directories, commands and options, modules, and Unix utilities. For
 example, a path in the filesystem will appear in the text as
 /Applications/Utilities.

	Constant width
	Used to show functions, variables, keys, attributes, the
 contents of files, or the output from commands.

	Constant width
 bold
	Used in examples to show commands or other text that should be
 typed literally by the user.

	Constant width italic
	Used in examples and commands to show text that should be
 replaced with user-supplied values, and to highlight comments in
 command output.

	Menus/Navigation
	Menus and their options are referred to in the text as
 File→Open, Edit→Copy, etc.
 Arrows are also used to signify a navigation path when using window
 options; for example, System
 Preferences→Accounts→username→Password
 means that you should launch System Preferences, click the icon for
 the Accounts preference panel, select the appropriate username, and
 then click on the Password pane within that panel.

	Pathnames
	Pathnames are used to show the location of a file or
 application in the filesystem. Directories (or
 folders for Mac and Windows users) are
 separated by a forward slash. For example, if you’re told to
 “...launch the Terminal
 application (/Applications/Utilities),” it means you
 can find the Terminal application in the Utilities subfolder of the Applications folder.

	$, #
	The dollar sign ($) is used
 in some examples to show the user prompt for the bash shell; the hash mark (#) is the prompt for the root user.

	Menu symbols
	When looking at the menus for any application, you will see
 some symbols associated with keyboard shortcuts for particular
 commands. For example, to open a document in Microsoft Word, you
 could go to the File menu and select Open (File→Open), or you could
 issue the keyboard shortcut ⌘-O.
Figure 1
 shows the symbols used in the various menus to denote a keyboard
 shortcut.
[image: These symbols, which appear in Mac OS X’s menus, are used for issuing keyboard shortcuts so you can quickly work with an application without having to use the mouse]

Figure 1. These symbols, which appear in Mac OS X’s menus, are used
 for issuing keyboard shortcuts so you can quickly work with an
 application without having to use the mouse

Rarely will you see the Control symbol used as a menu command
 option; it’s more often used in association with mouse-clicks to
 emulate a right-click on a two-button mouse or for working with the
 bash shell.
Note
This icon signifies a tip, suggestion, or general
 note.

Warning
This icon indicates a warning or caution.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international/local)
	707-829-0104 (fax)

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

We have a website for the book, where we list examples, errata, and
 any plans for future editions. The site also includes a link to a forum
 where you can discuss the book with the author and other readers. You can
 access this site at:
	http://www.oreilly.com/catalog/9780596520625/

For more information about books, conferences, Resource Centers, and
 the O’Reilly Network, see the O’Reilly website at:
	http://www.oreilly.com

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
 library that lets you easily search thousands of top tech books, cut and
 paste code samples, download chapters, and find quick answers when you
 need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments from the Previous Editions

This book builds on the first edition of Mac OS X for Unix
 Geeks, for which we had help from a number of folks. Thanks
 to:
	The folks at Apple, for technical review and handholding in so
 many tough spots!

	Erik Ray, for some early feedback and pointers to areas of
 library linking pain.

	Simon St.Laurent, for feedback on early drafts and for prodding
 us toward more Fink coverage.

	Chris Stone, for tech review and helpful comments on the
 Terminal application.

	Tim O’Reilly, for deep technical and editorial help.

	Brett McLaughlin, for lots of great technical comments as well
 as helpful editorial ones.

	Brian Aker, for detailed technical review and feedback on Unixy
 details.

	Chuck Toporek, for editing, tech review, and more.

	Elaine Ashton and Jarkko Hietaniemi, for deeply detailed
 technical review and help steering the book in a great
 direction.

	Steven Champeon, for detailed technical review and help on Open
 Firmware and the boot process.

	Simon Cozens, for technical review and for pushing us toward
 including an example of how to build a Fink package.

	Wilfredo Sanchez, for an immense amount of detail on everything,
 and for showing us the right way to do a startup script under Jaguar.
 His feedback touched nearly every aspect of the book, and without it
 there would have been gaping holes and major errors.

	Andy Lester, Chris Stone, and James Duncan Davidson, for
 reviewing parts of the book and pointing out spots that needed
 touching up.

Acknowledgments from Brian Jepson

Thanks to Nathan Torkington, Rael Dornfest, and Chuck Toporek for
 helping shape and launch the previous editions of this book, and to Ernie
 Rothman and Rich Rosen for making it a reality with me. Thanks also to
 Charles Stephen Edge, Jr., for his helpful tech review of the manuscript.
 A big thanks to Isabel Kunkle, our editor, who helped us launch this new
 edition, keep it on track, and get it into your hands. Thanks also to
 readers of the previous edition who wrote to us asking for a new edition.
 Your encouragement means a lot!
I’d especially like to thank my wife, Joan, and my stepsons, Seiji
 and Yeuhi, for their support and encouragement through my late-night and
 weekend writing sessions, and for their patience throughout the unusual
 experiments I inflicted upon the home network and various computers during
 the writing and research of this book.

Acknowledgments from Ernest E. Rothman

I would first like to thank Brian Jepson, who conceived this book
 and was generous enough to invite me to participate in its development,
 and Rich Rosen, for joining us first as a technical reviewer and later as
 a coauthor. I would like to express my gratitude to Charles Stephen Edge,
 Jr., for his many useful comments as technical reviewer, and to our editor
 Isabel Kunkle, for editing, encouragement, patience, and kindness. I am
 also grateful to the visionary folks at Apple, Inc., for producing and
 constantly improving Mac OS X, and to the developers who spend a great
 deal of time writing applications and posting helpful insights on
 newsgroups, mailing lists, websites, and blogs. Finally, I am very
 grateful to my lovely wife, Kim, for her love, patience, and
 encouragement, and to my Newfoundland dogs, Max Bear and Joseph, for their
 love and patience. Both Max and Joseph were at my side for most of the
 time that I worked on the book, but my beloved Max (4/19/2002–5/5/2008)
 passed away suddenly before its completion. He will be forever in my
 heart.

Acknowledgments from Rich Rosen

First, my thanks to Brian Jepson and Ernie Rothman for giving me
 this opportunity to work with them on this book. Thanks also to Isabel
 Kunkle, for providing all sorts of help and guidance throughout this
 process, and to Charles Stephen Edge, Jr., for keeping us honest and
 making sure everything we said made sense.
On a personal note, my gratitude goes out to Leon Shklar, for
 providing me with so many great opportunities at the most opportune times,
 and to Dave Makower, for his steadfast friendship and his wealth of Mac
 knowledge. Likewise, I’m grateful to Igor Novgorodtsev for allowing me to
 borrow his copy of the Tiger edition of this book when I needed it.
Thanks to my parents, Arthur and Toby, for their lifelong support
 and encouragement. Most of all, I thank my wife, Celia, for nourishing my
 ears, my eyes, my heart, and my soul.

Part I. Getting Around

This part of the book orients you to Mac OS X’s unique way of
 expressing its Unix personality. You’ll start out with a quick overview of
 the Terminal application—Mac OS X’s Unix interface—and then go on to learn
 more about Spotlight and searching, the filesystem, startup processes, and
 more. You’ll also see how to run Linux on your Mac, as well as how to run
 Mac OS X on x86 PCs.
Chapters in this part of the book include:
	Chapter 1, Inside the Terminal
	Chapter 2, Searching and Metadata
	Chapter 3, Files and Filesystems
	Chapter 4, Startup
	Chapter 5, Directory Services
	Chapter 6, Printing
	Chapter 7, The X Window System and VNC
	Chapter 8, Third-Party Tools and Applications
	Chapter 9, Dual-Boot and Beyond

Chapter 1. Inside the Terminal

The first order of business when exploring a new flavor of Unix is to
 find the command prompt. In Mac OS X, you won’t find the command prompt in
 the Dock or on a Finder menu. Instead, you’ll need to use the Terminal
 application, located in /Applications/Utilities. Inside the Terminal,
 Unix users will find a familiar command-line environment. In this chapter
 we’ll describe the Terminal’s capabilities, comparing them to the
 corresponding functionality of X11 terminal emulators such as xterm when appropriate. We’ll also highlight key
 features of some alternatives to the Terminal. The chapter concludes with a
 synopsis of the open command, which you
 can use to launch native Mac OS X applications from the Terminal, and a
 quick look at a freeware application that allows you to open a Terminal
 window from a Finder window.
Mac OS X Shells

Mac OS X comes with the Bourne Again SHell (bash) as the default user shell and also
 includes the TENEX C shell (tcsh), the Korn shell (ksh),
 and the Z shell (zsh). bash, ksh, and
 zsh are compatible with sh, the original Bourne shell. When tcsh is invoked
 through the csh link, it behaves much
 like csh. Similarly, /bin/sh is a hard link to bash, which also reverts to traditional
 behavior when invoked through this link (see the bash manpage for more information).
The version of bash that ships
 with Mac OS X is, according to its manpage, a conformant implementation of
 the Shell and Utilities portion of the IEEE POSIX Standard 1003.1
 specification. Invoking bash with the
 --posix command-line option changes the default behavior of bash to comply with the POSIX 1003.1 standard
 in cases where the default behavior differs from this standard.
Note
Apple promotes Mac OS X 10.5.x Leopard as an Open Brand UNIX 03
 registered product, conforming to the SUSv3 and POSIX 1003.1
 specifications for the C API, Shell Utilities, and Threads.

If you install additional shells, you should add them to the
 /etc/shells file. To change the Terminal’s default shell, see Customizing the Terminal” later in this chapter. To change a
 user’s default shell (used for both the Terminal and remote console
 logins), see Modifying a user” in Chapter 5.

The Terminal and xterm Compared

There are several differences between Mac OS X’s Terminal
 application and the xterm and
 xterm-like applications common to
 Unix systems running the X Window System:
	You cannot customize the characteristics of the Terminal with
 command-line switches such as -fn, -fg, and -bg. Instead, you must use the Terminal
 Inspector or the Terminal Preferences.

	Unlike xterm, in which each
 window corresponds to a separate process, a single master process
 controls the Terminal. However, each shell session is run as a
 separate child process of the Terminal. You can force a separate
 instance of some applications, including Terminal, by using the
 open command with the -n and -a switches, as described later in this
 chapter.

	A selection made in the Terminal is not automatically put into
 the clipboard. You use ⌘-C to copy and ⌘-V to paste. Even before you
 press ⌘-C, the selected text is
 contained in a location called the pasteboard.
 One similarity between the Terminal and xterm is that selected text can be pasted
 in the same window with the middle button of a three-button mouse (or
 with Shift-⌘-V). If you want to paste selected text into another
 window, you must drag and drop it with the mouse or use copy and
 paste. The operations described in The Services Menu,” later in this chapter, also use the
 pasteboard.

	The value of $TERM is
 xterm-color when running under
 Terminal (it’s set to xterm under
 xterm by default).

	Pressing Page Up or Page Down scrolls the Terminal window,
 rather than letting the running
 program handle it. Use Shift-Page Up or Shift-Page Down if you want a
 character-mode program to receive those keystrokes.

	Terminal makes full use of Input Manager and CoreText, Mac OS X’s native text and
 graphics rendering engines, to fully support non-English languages and to make
 everything faster and smoother.

If you need an xterm, you can
 have it: simply type xterm in the
 Terminal and press Enter, and the X11 environment will start up along with
 an xterm window. See Chapter 7 for more information about
 the X Window System.
Note
Beginning with Leopard, the X11 package is installed by default. In earlier releases of Mac OS X,
 however, the X11 package was available as an optional installation. So,
 if you’re installing an earlier release of Mac OS X, you can either
 install X11 by selecting to “customize” your installation of Mac OS X,
 or you can install X11 from the installation DVD at a later time.

There are also Mac OS X-native applications that offer alternatives
 to Apple’s Terminal, such as Terminator and iTerm (both freeware
 applications). We’ll have more to say about these programs later in this
 chapter.
Enabling the root User
By default, the Mac OS X root
 user account is disabled, so you have to use sudo to perform administrative tasks. Even
 the most advanced Mac OS X users should be able to get by with sudo, and we suggest that you do not enable
 the root user account. However, if
 you must enable the root user
 account in Leopard, start Directory Utility (/Applications/Utilities), click the lock to
 authenticate yourself, and select Edit→Enable Root User. In earlier Mac
 OS X releases, you can enable the root user account by starting NetInfo Manager
 (/Applications/Utilities), clicking the
 lock to authenticate yourself, and selecting Security→Enable Root User.
 Though we do not recommend it, you can run a login (sh) shell as root, even if the root user is not enabled, by entering the
 command sudo -i. You can also run
 an alternative shell, say tcsh, as
 root with the command sudo /bin/tcsh. Alternatively, you can run a
 default shell process with administrative privileges with the sudo -s command.

Using the Terminal

If you haven’t launched the Terminal, don’t open it just yet. First, drag Terminal’s
 application icon from the Utilities
 subdirectory of the Applications
 folder, and park it in the Dock so you’ll have quick access to it when you
 need to access the command line. (If you have launched it, drag its Dock
 icon to a different location along the Dock, or Control/right-click it and
 choose “Keep in Dock”). Now you’ve got the Terminal right where you can
 find it quickly. To launch the Terminal, click its icon in the Dock
 once.
Note
The full path to the Terminal is
 /Applications/Utilities/Terminal.app,
 although the Finder by default hides the .app extension.
 Terminal.app is not a binary file.
 Like all .app applications, it’s a
 Mac OS X bundle: a folder that contains a collection of files, including
 the binary and support files for the Terminal’s user interface.
You can Control-click (or right-click) on the Terminal in the
 Finder and select Show Package Contents to see what’s inside. You can
 also use the Unix commands ls and
 cd to explore the directory
 /Applications/Utilities/Terminal.app/.

After the Terminal starts, a Terminal window appears. It shows the
 last login, the tty name (the name of
 the Unix device for standard input), and a bash prompt. By default, the prompt consists of
 your computer name, a colon, and the current directory followed by a
 space, your username, and the $ character, as shown in Figure 1-1.
[image: The Terminal window]

Figure 1-1. The Terminal window

If you’d like to be greeted by a banner message each time you open a new Terminal window, you’ll have to
 create or edit the /etc/motd file
 (this file already existed in Mac OS X releases prior to Leopard).
 Regardless of whether you want to create an motd file or just change the message contained
 in an existing motd file, you’ll need
 administrative privileges to edit the file. The sudo vi /etc/motd
 command can be used to open the file in the vi editor as the superuser. You’ll need to be
 an administrative user to use sudo.
 When you execute a command preceded by sudo, you’ll be prompted for your
 password.
Note
The first user you create while installing Mac OS X is an
 administrative user, but you can also check the box marked “Allow user
 to administer this computer” when you create new users in System
 Preferences→Accounts.

Launching Terminal Windows

One difference xterm
 users will notice is that there is no obvious way to launch a new
 Terminal window with user-specified settings from the command line. For
 example, the Mac OS X Terminal has no simple equivalent to the following
 commands:
xterm &
xterm -e -fg green -bg black -e pine -name pine -title pine &
Instead, you create a new Terminal window by pressing ⌘-N or
 selecting Shell→New Window→Basic (or one of the other settings) from the
 menu bar. It is also possible to open a new Terminal window (or tab)
 with the help of osascript,
 which is a command-line program for executing AppleScript code. For example, the shell script
 (nw) shown in Example 1-1 opens a new Terminal
 window.
Example 1-1. A script to open a new Terminal window
#!/bin/sh
Script nw opens a new Terminal window
osascript <<EOF
tell app "System Events"
 keystroke "n" using command down
end tell
EOF

This shell script uses osascript to invoke AppleScript, which in
 turn interacts with System Events to achieve the effect of pressing ⌘-N.
 (In principle, this script should work when executed from other terminal
 emulators, provided that they make use of the ⌘-N keystroke to open new
 windows. For example, it works just as well with iTerm.)
You could also command the Terminal application directly. It
 supports the AppleScript verb “do script”. If you give it a blank
 script, it will just open a new window, as shown in Example 1-2.
Example 1-2. Another script to open a new Terminal window
#!/bin/sh
Script: nw2
Opens a new Terminal window
osascript <<EOF
tell app "Terminal"
 do script ""
end tell
EOF

The menu bar selection Shell→New Window offers a mix of choices, which include:
 several predefined settings as well any custom settings you have
 defined. Of these, one menu option will have “⌘-N” next to it. That
 option will open a new window with your default settings for Terminal.
 The predefined settings include Basic, Grass, Homebrew, Novel, Ocean,
 Pro, and Red Sands, and they differ in their text, background color, and
 other attributes. Later, we’ll discuss how you can create your own
 settings.
Note
To cycle between open Terminal windows, you can use the same keystroke
 that most other Mac OS X applications use: ⌘-`. You can also switch
 between windows by pressing ⌘-Right
 Arrow or ⌘-Left Arrow, by using the Window menu, or by using
 the Terminal’s Dock menu (Control-click or right-click on the Terminal
 Dock icon). You can also jump to a particular Terminal window with
 ⌘-number (see the Window menu for a list of
 numbers). To cycle through tabs, use ⌘-{ or ⌘-}, or ⌘-Shift-Right
 Arrow or Left Arrow.

As an alternative to creating a new Terminal window, you can
 create a new Terminal tab within the current Terminal window by pressing
 ⌘-T or selecting Shell→New Tab→Basic (or some other setting from the
 list) from the menu bar. Terminal tabs may be opened with different
 predefined settings, just like Terminal windows. For example, you may
 have a Basic tab and a Homebrew tab in the same Terminal window. You can
 rearrange the order of tabs within a Terminal window by dragging a tab
 with your mouse, just as you can with Safari or Firefox tabs. You can
 also move an active tab to a new window by selecting Window→Move Tab to
 New Window from the menu bar. Alternatively, you can move a tab to a new
 window by dragging it with your mouse onto the desktop, provided that
 the tab is not the active one in the window. And, should you decide that
 you have too many open Terminal windows, you can merge all of them into
 one Terminal window as tabs by selecting Window→Merge All Windows from
 the menu bar. In that case, each open Terminal window will become a tab
 in a single window. Figure 1-2 shows several tabs
 within the same Terminal window, with the rightmost tab active.
[image: A Terminal window with several tabs]

Figure 1-2. A Terminal window with several tabs

You can customize startup options for new Terminal windows by
 creating a new setting, and if you’d like, you can export the new
 settings to .terminal files.
 Those files can subsequently be imported into your other
 Macs that are running Leopard or sent to other users. See Exporting and Importing Terminal Settings” later in this
 chapter for more details.
Double-clickable shell scripts

Executable shell scripts are double-clickable in Mac OS X. That is,
 when you double-click any executable script in the Finder, a new
 Terminal window will open to run the script. The new window will open
 with Terminal’s default settings. However, you can stuff the shell
 script full of osascript commands
 to set the Terminal window’s characteristics after it launches. The
 osascript command lets you run
 AppleScript from the command line. Example 1-3 shows a shell script that sets
 the size and title of the Terminal window and then launches the
 vim editor.
Example 1-3. Launching the vim editor
#!/bin/sh
Script RunVim
osascript <<EOF
tell app "Terminal"
 set number of rows of first window to 34
 set number of columns of first window to 96
 set custom title of first window to "Vim Editor"
end tell
EOF
vim $@

As with any shell script, you’ll need to make it executable
 before you can run it. For example, to make RunVim executable, you would issue the
 following chmod
 command:
chmod +x RunVim
You can assign a custom-made icon to your shell scripts. To
 change a script’s icon, use the following procedure:
	Copy the desired icon to the clipboard.

	Select your script in the Finder and open the Get Info
 window (⌘-I). The file’s icon appears in the upper-left
 corner.

	Click the current icon so that it is highlighted, and use
 the Paste option (Edit→Paste or ⌘-V) to paste the new icon over
 it.

	Close the Get Info window by typing ⌘-W. The pasted icon is
 now associated with the script.

To add the shell script application to the Dock, locate the
 application in the Finder and drag its icon to the Dock. Now you can
 click on the script’s Dock icon to invoke the script. You can also
 drag the executable’s icon to the Places section of the Finder’s
 Sidebar, although this section of the Finder is intended primarily for
 quick access to frequently visited folders.

The Contextual Menu

Users familiar with the X Window System know that right-clicking
 an xterm window opens a
 terminal-related contextual menu. Mac OS X’s Terminal also has a contextual menu that can be accessed by
 Control-clicking (or right-clicking, if you have a two- or three-button
 mouse). In Tiger, the Terminal contextual menu includes the choices Copy,
 Paste, Paste Selection, Paste Escaped Text, Select All, Clear
 Scrollback, Send Break (equivalent to Control-C), Send Hard Reset, Send
 Reset, and Window Setting. Each of these items also has a keyboard
 shortcut. In Leopard, the contextual menu choices are limited to Search in
 Spotlight, Search in Google, Look Up in Dictionary, Copy, Paste, and
 Show Inspector. The contextual menu items from Tiger’s Terminal are
 available as various menu bar items in Leopard.

Customizing the Terminal

As noted earlier, you can customize many attributes of Terminal
 windows (and tabs) through the Terminal application’s Preferences. In this
 section, we’ll discuss tweaking the Terminal’s Preferences and some
 on-the-fly customizations you can make.
Preferences

Terminal’s Preferences are organized into four panes: Startup,
 Settings, Window Groups, and Encodings. In the Encodings preference
 pane, you can select various encodings required for a wide variety of
 languages. The other three groups of preferences require further
 discussion.
Startup

Under the Startup preference pane, you can configure Terminal so
 that when it starts, either a new window with a particular setting is
 opened, or a window group (see the upcoming section Window groups”) is opened. The other item you can
 configure in the Startup preference pane is listed under “Shells open
 with”. One choice is the system login utility (/usr/bin/login), and the other selection is
 the complete path of some specific command, such as an alternative
 shell. This is similar to the “Run command” option that’s available on
 the Shell tab for a particular Terminal setting, but the choice you
 make in “Shells open with” affects all Terminal settings unless you’ve
 specified a “Run command” and also deselected the “Run inside shell”
 option in the setting. (Otherwise, the “Run command” is fed into your
 shell of choice.)
Note
You can change the default shell in the Terminal Preferences,
 but this change applies only to Terminal (i.e., it will not affect
 the login shell used for remote or console logins). Changing a
 user’s default shell is covered in Modifying a user” in Chapter 5.

Settings

Though we briefly discussed some of the options available in
 the Settings preference pane earlier, let’s now take a closer look.
 The predefined settings are listed in the left subwindow of the
 Settings pane, and the options associated with each setting are
 accessible via a set of tabs in the right subwindow. The options are
 organized into five categories: Text, Window, Shell, Keyboard, and
 Advanced. Table 1-1 summarizes
 the options available on each tab.
Table 1-1. Options for Terminal settings
	Tab
	Options

	Text
	Font: Choose your
 font.
Text: Enable and
 disable attributes such as antialiasing, bold fonts, blinking
 text, American National Standards Institute (ANSI) colors, and
 bright colors for bold
 text.
Cursor: Select a cursor
 style and color, and turn blinking on or off.

	Window
	Title: Specify your
 own window title and indicate whether to include in that title
 the active process name, shell command name, setting name, tty
 name, dimensions, and command
 key.
Background: Set the
 color and opacity (no background
 image).
Window size: Set the
 number of rows and
 columns.
Scrollback: Set the
 size of the scrollback buffer (the number of rows of previous
 input and output you can scroll upwards to
 review).

	Shell
	Startup: Choose a
 command to run on startup (for example, an alternate
 shell).
When the shell exits:
 Specify an action to take when the shell exits (e.g., when you
 type logout or exit). Choices include “Close the
 window,” “Close if the shell exited cleanly,” and “Don’t close
 the window.”
Prompt before
 closing: Indicate when to prompt when closing a
 Terminal window. Choices include “Always,” “Never” (the
 default), or “Only if there are processes running other than
 [those in the specified list].”

	Keyboard
	This tab controls key
 mappings for function, arrow, page up/down, and other
 keys.

	Advanced
	Declare your terminal
 (i.e., set the terminal type variable, $TERM) as ansi, dtterm, rxvt, vt52, vt100, vt102, xterm, or xterm-color (the default); have the
 Delete key send a Control-H; escape non-ASCII input; paste
 newlines as carriage returns (on by default); enforce strict
 VT-100 keypad behavior; scroll to the bottom on input; toggle
 the audible and visual bells; and set the international
 character encoding.

In pre-Leopard releases, one configurable option was
 “Option-click to position cursor.” If you enabled this feature, you
 were able to Option-click with the mouse to position the cursor in
 Terminal applications such as vim
 or Emacs (saving you many keystrokes when you needed to move the
 insertion point). This option also worked over a remote login session,
 if the behavior was supported by the remote host’s terminal
 capabilities. Beginning in Leopard, the Option-click behavior is the
 default behavior.

Window groups

There are situations in which you will want to routinely have
 several Terminal windows and tabs open, each having its own process
 and attributes. For example, you might be editing a file with
 vim in one window and running
 octave in
 another, with both windows having black backgrounds and white text. At
 the same time, you might be monitoring some output file using
 tail in another Terminal window,
 this one having a fixed size of 80 rows ×80 columns and displaying
 black text on a white background. If this setup is one that you use
 frequently, you’re in luck: you can save the time that it normally
 takes you to get things going by saving that set of Terminal windows
 as a window group.
Before you can establish a window group, you’ll need to define a
 setting (under the Settings preference pane) corresponding to each
 window that will be in the window group. When defining a setting, be
 sure to specify the commands, if any, that must run when a window (or
 tab) opens with that particular setting. Next, open the Terminal
 windows (and tabs) that will go into the window group to make sure
 that the settings work properly. Once you’re satisfied that the
 settings are correct for the window group’s Terminal windows, make
 sure that only those windows that are to be members of the group are
 open. Then, select Window→Save Windows as Group. This selection will
 give you the opportunity to enter a name for the new window group and
 decide if the window group should open by default whenever the
 Terminal application starts. If you don’t elect to start the window
 group by default, you can always make that choice later in Terminal’s
 Startup preference pane. In the Window Group preference pane, you can
 delete window groups, export window groups as .terminal files, or import window
 groups.
Once you’ve established a window group, you can open it by
 selecting Window→Open Window
 Group→Window_group_name.

Customizing the Terminal on the Fly

You can customize the Terminal in shell scripts using escape
 sequences or AppleScript commands. xterm users may be familiar with the
 following command to set the xterm window’s
 title:
echo '^[]0;My-Window-Title^G'
Mac OS X’s Terminal accepts this sequence as well.
^[is the ASCII ESC character, and ^G is the ASCII BEL character. (The BEL character rings the Terminal bell, but in this
 context, it terminates an escape sequence.) The escape sequences
 described here are ANSI escape sequences. ANSI escape sequences are used to
 manipulate a Terminal window (such as by moving the cursor or setting
 the title).
To type the ^[characters on
 the command line in bash or
 tcsh, use the key sequence
 Control-V, Control-[(press Control-V and release, then
 press Control-[). To type ^G, use
 Control-V, Control-G. The vim editor
 supports the same key sequence, whereas Emacs uses Control-Q instead of
 Control-V.
You can capture the bash
 escape sequence in a function that you can include in your .bash_profile script:
function set_title ()
{
 case $TERM in
 term | xterm-color | rxvt | vt100 | gnome)
 echo -n -e "\033]0;$*\007" ;;
 *) ;;
 esac
}
Then you can change the title by issuing the following
 command:
$ set_title your fancy title here
You may want to package this as a shell script and make it
 available to everyone who uses your system, as shown in Example 1-4.
Example 1-4. Setting the Terminal title in a shell script
#!/bin/bash
#
Script settitle
Usage: settitle title
#
if [$# == 0]; then
 echo "Usage: settitle title"
else
 echo -n -e "\033]0;$*\007"
fi

You can also use osascript to execute
 AppleScript commands that accomplish the same thing:
osascript -e \
 'tell app "Terminal" to set custom title of first window to
 "Hello, World"'

Exporting and Importing Terminal Settings

If you want to save your customizations, the procedure to follow
 depends on whether you are running Mac OS X 10.4 Tiger or 10.5
 Leopard.
Saving Terminal settings in Mac OS X 10.4 Tiger

In pre-Leopard Mac OS X releases, you can launch a
 customized Terminal window from the command line by saving some
 prototypical Terminal settings to a .term file and then using the open command to launch the .term file. (For more information on
 open, see The open Command,” later in this chapter.) You can also
 launch a .term file by
 double-clicking it in the Finder. To create a .term file in Tiger, open a new Terminal
 window, then open the Terminal Inspector (File→Show Info or ⌘-I) and
 set the desired attributes, such as the window size, font, and text
 and background colors. Then save the Terminal session (File→Save or
 ⌘-S) to a .term file, such as
 proto.term. If you save this file
 to ~/Library/Application
 Support/Terminal, you’ll be able to launch a new Terminal
 window with the proto.term file’s
 special attributes from the File→Library menu.
Alternatively, you can launch such a Terminal window from the
 command line by issuing a command like one of the following (depending
 on where you saved proto.term):
$ open ~/Library/Application\ Support/Terminal/proto.term
$ open ~/Documents/proto.term
The .term file is an
 XML property list (plist) that you can edit with a text editor
 such as vim (it can be invoked
 with vi, which is a symbolic link
 to vim) or with the Property List Editor application (/Developer/Applications/Utilities).[1] By default,
 opening the .term file creates a
 new Terminal window with the specified settings. You can configure the
 window so that it executes a command upon opening by adding an
 execution string to the .term file. When you launch the Terminal
 window, this string is echoed to standard output before it is
 executed. Example 1-5
 shows an execution string that connects to a remote host via ssh and exits when you log out.
Example 1-5. An execution string to connect to a remote host
<key>ExecutionString</key>
<string>ssh xyzzy.oreilly.com; exit</string>

Saving Terminal settings in Mac OS X 10.5 Leopard

In Leopard, the closest thing to .term files are settings you create in the
 Terminal Preferences. Settings can be exported as (or imported from)
 .terminal files. Older .term files can also be imported as
 settings, so don’t panic if you switched to Leopard from an earlier
 release of Mac OS X and don’t want to lose all your .term files. We’ll discuss how to import
 .term files later.
Terminal 2.0, which ships with Leopard, comes with several
 predefined settings. You can quickly see which predefined settings are
 available in the Terminal Inspector by opening a new Terminal window
 and then selecting Shell→Show Inspector from the menu bar or by
 pressing ⌘-I. You can also use the Inspector to change the setting of
 an open Terminal window or tab to another available predefined
 setting, as shown in Figure 1-3.
[image: Changing a Terminal window setting with the Inspector]

Figure 1-3. Changing a Terminal window setting with the Inspector

To create a new custom setting, select Terminal→Preferences from
 the menu bar (or press ⌘-,) and then select the Settings preference
 pane. On the left side of the Settings window, you’ll see a listing of
 the predefined settings. The right portion of the Settings window
 shows the options associated with the currently selected
 setting.
You can define a new setting by clicking on the plus sign (+) at
 the bottom left of the Settings window and giving the new setting
 whatever name you want. In the example that follows, we’ve used
 “Proto.” Once that’s done, you can click the new setting (e.g., Proto)
 in the left side of the Settings window and set its attributes on the
 right.
Warning
Each time you add a new setting, that new setting becomes your
 default.

Settings are saved in the ~/Library/Preferences/com.apple.Terminal.plist
 file. You’ll be able to launch a new Terminal window with your new
 setting’s special attributes from either the Shell→New Window menu or
 the Shell→New Tab menu.
You can also export your new setting as a .terminal file, which can be imported in another Leopard installation
 later. This is done as follows. In the Settings window, select the
 setting to be exported (e.g., Proto), then click on the gear icon (see
 Figure 1-4) at the
 bottom of the left part of the window and select Export to save the
 setting to a .terminal file, such
 as Proto.terminal. You can save
 the .terminal file to a
 convenient location, such as ~/Documents. Like .term files in older Mac OS X versions, a .terminal file is an XML property list
 (plist), which you can
 edit.
[image: Exporting a setting as a .terminal file]

Figure 1-4. Exporting a setting as a .terminal file

Warning
Although double-clicking a .term file in older Mac OS X versions
 opens a new Terminal window with the attributes defined in that
 file, double-clicking a .terminal (or .term) file in Leopard imports the
 settings it contains into Terminal’s configuration. Every time you
 launch a given .terminal file,
 a new setting with the attributes defined in that .terminal file is created in Terminal’s
 Preferences. The primary purpose of a .terminal file in Leopard is to save a
 setting that you can import to another Leopard installation. This
 means that .terminal files cannot be used to
 open new Terminal windows.

You can import a .terminal (or
 .term) file into the Terminal’s
 list of settings without launching it by clicking on the gear icon at
 the bottom of the left part of the Settings window, selecting Import,
 and navigating to the desired .terminal file in the file browser
 that appears.

[1] For more information on XML, see Learning
 XML by Erik T. Ray or XML in a
 Nutshell by Elliotte Rusty Harold and W. Scott Means
 (both from O’Reilly).

Working with File and Directory Names

Although Unix supports complex file and directory names containing
 spaces, Unix users have traditionally avoided using spaces in file and
 directory names. Instead, they may use capitalization or hyphens or
 underscores to imply spaces, as follows:
textFile.txt
text-file.txt
text_file.txt
However, most Mac users tend to insert spaces into file and directory names, and these names are
 often long and descriptive. Although this practice is okay if you’re going
 to work in the graphical user interface (GUI) all the time, it creates a
 small hurdle to jump over when you’re working on the command line. Unix
 shells will interpret a string containing embedded spaces as separate
 command-line arguments. A command such as the following, for example,
 would fail because the shell would interpret the string as separate
 arguments:
$ cd ~/Documents/My Shell Scripts
To get around this, you have two choices: escape the spaces, or quote the entire file or directory
 name.
Note
By default, files whose names begin with a dot are invisible in
 the Finder. You can make files named with a leading dot visible in the
 Finder by entering the command defaults write
 com.apple.finder AppleShowAllFiles true and then restarting
 the Finder with the command killall
 Finder.

To escape a space on the command line, simply insert a backslash (\) before the
 space. This also works with other special characters, such as parentheses.
 The following special characters have meaning to the shell
 and so must be escaped: * # ` " ' \ $ | & ? ;
 ~ () < > ! ^. Here is an example of how to use a
 backslash to escape a space character in a file or directory name:
$ cd ~/Documents/My\ Shell\ Scripts
Alternatively, you can use quotation marks around the file or
 directory name that contains the space, as follows:
$ cd ~/Documents/"My Shell Scripts"
There is one other way to get around this problem, but it involves
 using the Finder in combination with the Terminal application. Let’s look
 at an example. To launch Microsoft Word 2008 from the Terminal, you could enter the
 path as follows, using escape characters:
$ open -a /Applications/Microsoft\ Office\ 2008/Microsoft\ Word
Or you could enter the path using quotes:
$ open -a "/Applications/Microsoft Office 2008/Microsoft Word"
As you can see, neither method is very pretty, and both require you
 to know a lot of detail about the path. Now for the easy way:
	Type the name of the command and any initial arguments it
 requires on the command line (in this case, open -a), followed by a space. Don’t press
 Return yet!

	Locate Microsoft Word in the Finder, and drag its icon to the
 Terminal window to insert the path after the space. When you do this,
 the spaces and any other special characters in the path will
 automatically be escaped with backslashes:
$ open -a /Applications/Microsoft\ Office\ 2008/Microsoft\ Word

	Press Return to invoke the command and launch Word 2008.

You can also drag and drop URLs from a web browser. For example, to use curl to download files from the command line:
	Open a new Terminal window and type curl -O, with a space after the -O switch.

	Bring up your web browser and navigate to http://www.oreilly.com.

	Drag the image at the top of the page to the Terminal window.
 You should now see the following in the Terminal window:
$ curl -O http://www.oreilly.com/graphics_new/header_main.gif

	Press Return in the Terminal window to download header_main.gif to your computer.

Tab Completion

If you want to type a long pathname, you can cut down on the
 number of keystrokes required by using tab completion. For example, to
 enter the path /Library/StartupItems, you can type /Li<Tab>, which gives you /Library/. (This works
 because /Library/ is the only
 folder at the root of the filesystem whose name begins with the letter
 “L.”) Next, type S<Tab>. This
 time, because there is more than one folder under /Library/ that begins with the letter “S,”
 instead of the path being completed automatically, you’re given a choice
 of completions: Screen Savers,
 Scripts, Security, Spotlight, and StartupItems. Type as many letters as are
 necessary to narrow down your choice, followed by a Tab (in this case,
 t<Tab>). The full key
 sequence for /Library/StartupItems would be /Li<Tab>St<Tab>.
If you have multiple completions where a space is involved, you
 can type a literal space with \<Space>. For example, suppose you have
 two directories, PROJECT FOLDER and
 PROJECT. To get a completion for
 PROJECT
 FOLDER, you could use PRO<Tab>\ <Space><Tab>. The
 first <Tab> completes the
 word PROJECT, begun with the string
 “PRO”. Adding the string “\ ” at this point and pressing Tab again
 completes the folder name PROJECT FOLDER.

Changing Your Shell

Although other shells are available in Mac OS X, as we noted earlier, the
 default shell in Mac OS X releases beginning with Tiger is bash. (Early versions of Mac OS X shipped
 with tcsh as the default shell.)
 You can change the default shell for Terminal in its Preferences menu,
 but this does not affect the login shell used for remote or console
 logins. To change your default shell in a more pervasive manner, see
 Modifying a user” in Chapter 5.
Note
If you install additional shells on the system, you’ll need to
 add them to the /etc/shells file
 to make Mac OS X aware that they are legitimate shells.

The Services Menu

The Mac OS X Services menu (Terminal→Services) exposes a
 collection of services that can work with the currently running
 application. In the case of the Terminal, the services operate on text
 that you have selected (the pasteboard). To use a service, select a region
 of text in the Terminal window and choose one of the following items from
 the Services menu:
	ChineseTextConverter
	This service can be used to convert selected text to
 either simplified Chinese or traditional Chinese.

	Disk Utility
	This service invokes Disk Utility to calculate either a
 CRC-32 or an MD5 image checksum of a disk whose path has been
 selected in the Terminal window.

	Finder
	Once you have selected a filename in the Terminal window,
 the Finder Services menu allows you to open that file (Finder→Open),
 show its enclosing directory (Finder→Reveal), or show its
 information (Finder→Show Info).

	Font Book
	Not supported by the Terminal.

	Grab
	Not supported by the Terminal.

	Import Image
	Not supported by the Terminal.

	Mail
	The Mail→Send To service allows you to compose a new message to an email
 address, once you have selected that address in the Terminal window.
 You can also select a region of text and choose Mail→Send Selection
 to send a message containing the selected text.

	Make New Sticky Note (Shift-⌘-Y)
	This service creates a new Sticky (/Applications/Stickies) containing the
 selected text.

	Open URL
	This service opens the URL specified by the selected text in your default
 web browser.

	Script Editor
	This service gets the result of an AppleScript (after
 running the highlighted text as an AppleScript), makes a new
 AppleScript (in the Script Editor), or runs the selected text as an
 AppleScript without returning the result.

	Search With Google (Shift-⌘-L)
	This service searches for the selected text using http://google.com in your default
 web browser.

	Send File To Bluetooth Device (Shift-⌘-B)
	This service displays a dialog that lets you choose a file
 to send to a Bluetooth device.

	Speech
	This service begins speaking the selected text. (Use
 Speech→Stop Speaking to interrupt.)

	Spotlight (Shift-⌘-F)
	This service invokes Mac OS X’s system-wide search
 technology, Spotlight, to search for the selected text. (Mac OS X
 provides command-line utilities for working with Spotlight. See
 Chapter 2.)

	Summarize
	This service condenses the selected text into a summary
 document. The summary service analyzes English text and makes it as
 concise as possible while retaining the original meaning.

	TextEdit
	The TextEdit service can open a filename, or open a new file containing the
 selected text.

When you use a service that requires a filename, you should select a
 fully qualified pathname, not just the filename, because the service does
 not know the shell’s current working directory. (As far as the service is
 concerned, you are invoking it on a string of text.)
Third-party applications may install additional services of their
 own.

Bonjour

Bonjour (http://developer.apple.com/networking/bonjour/index.html),
 originally announced in 2002 as Rendezvous, is a networking technology
 that allows Bonjour-enabled devices on a local network to automatically
 discover each other. It is based on a standard called ZeroConf (http://www.zeroconf.org) and allows computers on a network
 to assign useful IP addresses among themselves, without the need for a DHCP server (or,
 as the ZeroConf working group puts it, “a man in a white lab coat”).
 Bonjour works with multicast DNS (mDNS) and DNS Service Discovery (DNS-SD) to allow your Mac to
 discover computers and services (such as SSH and web servers) on the local
 network.
Like many Mac OS X applications (e.g., iTunes), Terminal is
 Bonjour-enabled. For example, you can select Shell→New Remote Connection
 (or press Shift-⌘-K) to make an SSH connection to any other Mac OS X
 system on the local area network (LAN), provided it allows such
 connections. The other Macs on the LAN are identified by their computer
 names, as specified in their Sharing System Preferences panes.
If you have computers with other operating systems on your network,
 they may be able to take advantage of Bonjour, too. Apple makes a
 Bonjour for Windows available at http://www.apple.com/support/downloads/bonjourforwindows.html,
 and most current Linux distributions include the avahi package, which provides what you need to
 work with Bonjour services from Linux.
Note
You can learn more about Bonjour by reading Apple’s Bonjour
 Overview Document, available here: http://developer.apple.com/documentation/Cocoa/Conceptual/NetServices/NetServices.pdf.

Alternative Terminal Applications

As noted earlier, other Aqua-native terminal applications are
 available; the freeware iTerm (http://iterm.sourceforge.net), developed by Fabian and
 Ujwal S. Sathyam, is a particularly attractive one. Although Mac OS X’s
 Terminal is rich with useful features, iTerm offers some interesting
 features that make it worthy of consideration. We won’t cover iTerm in
 great detail, but we will touch on a few of its more attractive
 aspects.
Before getting into what makes iTerm distinct, here are some
 similarities between iTerm and Terminal:
	iTerm and Terminal use the same Services menu.

	Both iTerm and Terminal support transparency, language
 encodings, and AppleScript, and both have contextual menus that can be
 accessed by Control-clicking (or right-clicking, if you have a two- or
 three-button mouse) in a window. iTerm has a slightly more extensive
 contextual menu than Terminal, though.

	Both iTerm and Terminal (beginning with Leopard) support
 tabs.

	Both iTerm and Terminal support Bonjour.

iTerm supports several language encodings, xterm-color/vt100/xterm-new/xterm-256color/ansi/rxvt/linux
 emulations, and many GUI features. Particularly interesting features of
 iTerm include support for multiple tabbed terminal sessions within each
 window, support for background images, profiles that allow you to open new
 iTerm sessions with preset terminal settings, and bookmarks for launching
 iTerm windows or tabs that automatically execute commands. The default
 value for $TERM is xterm-color, but this can be changed either on
 the fly, with a bash shell command
 such as TERM=vt100, or by selecting
 Bookmarks→Manage Profiles→Terminal
 Profiles and adjusting the Terminal Settings Type field.
iTerm’s tabbed view is similar to Terminal’s tabbed view, as shown
 in Figure 1-5.
[image: Using tabs with iTerm]

Figure 1-5. Using tabs with iTerm

Tabs in iTerm can be dragged to new windows, and one iTerm window
 can be dragged onto another to form a new tab. The effect of dragging and
 dropping windows and tabs in iTerm is no different from the same set of
 actions in Terminal. Additionally, the same bash (or tcsh) shell commands that can be used to
 customize the Terminal’s title bar and tabs work just as well in iTerm, as
 shown in Figure 1-6.
[image: Customized tab labels in iTerm]

Figure 1-6. Customized tab labels in iTerm

iTerm’s support for profiles and bookmarks is similar to Terminal’s support for
 settings. Bookmarks are used to define iTerm sessions with preset terminal
 settings. For example, you can define the color or typeface to use for
 text as well as a command to execute upon opening a new tab or window with
 a given bookmark. Aside from the command that a bookmark will execute,
 other attributes must be selected from predefined profiles. There are
 three types of profiles in iTerm: Keyboard, Terminal, and Display
 profiles. To define new profiles, select Bookmarks→Manage Profiles (or
 press Option-⌘-B) to access the Profiles window, shown in Figure 1-7. Click the Add button at
 the bottom left of the Profiles window to add a new profile in any of the
 three categories. After you’ve added a new profile, select it in the left
 subwindow of the Profiles window to reveal its options in the right
 subwindow, as shown in Figure 1-7.
[image: Adding a Terminal profile in iTerm]

Figure 1-7. Adding a Terminal profile in iTerm

While a profile determines certain attributes of an iTerm window (or
 tab), bookmarks are used to open windows and tabs with those attributes. A
 bookmark may also be defined to execute commands within a window or
 tab.
The default bookmarks are Default, which specifies the default login
 shell, and Bonjour, which includes ssh and sftp connections to SSH- and Bonjour-enabled
 computers on the LAN. To define a new bookmark, select Bookmarks→Manage
 Bookmarks (or press Shift-⌘-B). Then, click the plus sign in the
 bottom-left corner of the Bookmarks window to add a new bookmark. You’ll
 need to specify the bookmark’s name, and a command (which can be a login
 shell). You may also select predefined Terminal, Keyboard, and Display
 profiles as well as a shortcut key, as shown in Figure 1-8.
[image: Adding a new iTerm bookmark]

Figure 1-8. Adding a new iTerm bookmark

The bookmark’s name is used when you open a session from the New
 icon in iTerm’s toolbar. You can also create a bookmark group (similar to
 Terminal’s window groups), by clicking on the icon with the red plus sign
 to add a folder in the bookmark listing and then, in the Bookmarks window,
 dragging and dropping bookmarks onto the new bookmark folder. Figure 1-9 shows a Bookmark folder with two
 bookmarks, in the Bookmark window.
[image: A bookmark group in iTerm]

Figure 1-9. A bookmark group in iTerm

Once you’ve defined a bookmark group, you can open any individual
 bookmark in the bookmark group by selecting
 Bookmarks→BookmarkGroupName→Individual Bookmark. If no iTerm window is
 open, the bookmark will open in a new iTerm window; otherwise, the
 bookmark will open in the frontmost iTerm window. If you’d like to open
 every member of the bookmark group at the same time, you can select
 Bookmarks→BookmarkGroupName→Open All. In this
 case, the set of bookmarks associated with the group will open as tabs
 within the same iTerm window. If at least one iTerm window is already
 open, the group will open as tabs in the frontmost window, adding to
 whatever tabs are already present in that window. The effect of an iTerm
 bookmark group is similar to that of a window group in Terminal, but
 Terminal window groups are not restricted to opening as tabs in the same
 window.
Note
Though we’ve borrowed Terminal’s “window group” terminology to
 describe iTerm’s bookmark folders as “bookmark groups,” iTerm actually
 had the bookmark group capability (along with tabs) several years before
 Terminal received a major overhaul for Leopard.

iTerm’s contextual menu (the menu that appears when you right-click
 or Control-click in a window) consists of the following items: New Tab
 (allows you to choose a session from the bookmarks), Select (selects a tab
 from the current window), Browser (opens the selected URL in your default
 web browser), Mail (opens a compose mail window with the selected email
 address as the recipient), Copy, Paste, Save, Select All, Clear Buffer,
 Info, and Close.
Although iTerm had some clear advantages over Terminal in
 pre-Leopard releases of Mac OS X (most notably bookmarks and tabs), that
 is no longer the case at the time of this writing, considering the
 impressive array of features in Leopard’s Terminal application. The one feature that could tip the
 scale in favor of iTerm is its support of background images in iTerm windows,
 assuming that this feature is of paramount importance to you. Oddly
 enough, Tiger’s version of the Terminal application supported background
 images, but it lacked tabs and window groups. Overall, with the addition
 of useful features such as tabs and window groups, Leopard’s Terminal
 application makes the search for an alternative much less appealing than
 it was in Tiger.
Note
Terminator (http://software.jessies.org/terminator/) is a cross-platform, Java-based, freeware alternative to
 Terminal. Though it supports tabs, its feature set seems to come up
 short when compared to Terminal and iTerm. On the other hand, if having
 a cross-platform terminal emulator program is important to you, this one
 is worth a try.

The open Command

The open shell command lets
 you open Finder windows and launch Aqua applications. To open a directory
 in the Finder, use open followed by
 the name of the directory. For example, to open a Finder window containing
 the current directory, enter the following command:
$ open .
To open your Public folder (~/Public) in a Finder window, use the
 following:
$ open ~/Public
To open the /Applications
 folder in a Finder window, use the following:
$ open /Applications
To open an application, you need only its name and the -a switch. For example, to open Xcode
 (/Developer/Applications), you would
 use the following:
$ open -a Xcode
To open multiple instances of a program, give the -n switch a whirl (but note that some
 applications, such as Firefox, may refuse to open a second
 instance):
$ open -n -a Terminal
Note
You are not required to enter the path for the application, only
 its name. The only time you are required to enter the path is if you
 have two different versions of an application with similar names on your
 system.

You can also use the -a
 option to open a file with something other than the application with which
 it’s associated. For example, to open an XML file in Xcode instead of the
 default XML editor, the Property List Editor, enter this command:
$ open -a Xcode data.xml
To open multiple files, you can use wildcards:
$ open *.c
To force a file to be opened with TextEdit, use -e:
$ open -e *.c
The -e option directs the file
 to be opened in TextEdit; it cannot be used to open a file in another text
 editor, such as BBEdit, Smultron, or TextMate However, if you want to open
 a file using BBEdit, you can use the following:
$ open -a BBEdit filename
Note
Many popular text editors include their own command-line
 applications for editing documents from the command line: BBEdit uses
 bbedit, TextWrangler has edit, Smultron gives you smultron (after you choose Help→Install
 Command-Line Utility from within
 Smultron), and TextMate uses mate.

If you want to use TextEdit on a file that is owned by an administrator (or
 root), sudo
 open -e won’t work. You’ll need to specify the full path to the
 TextEdit executable, as in:
$ sudo /Applications/TextEdit.app/Contents/MacOS/TextEdit filename
If you find yourself doing this often, you might want to create an
 alias for the path to TextEdit’s executable file. For
 example, you could enter the following into your .bash_profile file:
alias sudotext="sudo /Applications/TextEdit.app/Contents/MacOS/TextEdit "
Then, the next time you want to open a text file that would
 otherwise require use of the sudo
 command, you could just enter the following:
$ sudotext filename
When you enter that command, you’ll be prompted for the admin
 password; once authenticated, the file you’ve specified will be opened in
 TextEdit, just as you hoped it would.
Note
In pre-Leopard Mac OS X releases, the open-x11 command
 is used to open X11-based applications in Apple’s X11 environment. In
 Leopard, you can simply launch the X11 application as you
 would any other Unix application, as in:
$ xeyes
You can learn more about X11 in Chapter 7.

While the open command can be
 used to open a specific directory in a Finder window from Terminal (for
 example, with open /Applications),
 you might conversely want to open a Terminal window with its working
 directory set to the directory in the current Finder window. A nifty little freeware application that
 makes this process easy is Thomas Wiesehöfer’s OpenTerminal (http://homepage.mac.com/thomasw/OpenTerminal/). To install OpenTerminal, download it from the OpenTerminal
 website, unzip the downloaded file, then drag and drop the enclosed
 OpenTerminal application icon to a convenient location (e.g., /Applications/Utilities). Then, open another
 Finder window and select View→Customize Toolbar. Finally, drag the
 OpenTerminal icon to the Finder toolbar, as shown in Figure 1-10.
[image: Installation of OpenTerminal in the Finder toolbar]

Figure 1-10. Installation of OpenTerminal in the Finder toolbar

Once OpenTerminal has been installed, you can click on its icon in
 the Finder toolbar to open a Terminal window with its working directory
 set to the directory in the current Finder window, as shown in Figure 1-11.
The first time you execute OpenTerminal you’ll be presented with its
 Preferences window, in which you can configure OpenTerminal’s various
 settings. If you want to change a setting in the Preferences later, you’ll
 need to launch OpenTerminal by Option-clicking on its icon in the Finder
 toolbar.
[image: Using OpenTerminal]

Figure 1-11. Using OpenTerminal

Finally, if you’d like to be able to open a Terminal window by
 Control/right-clicking on a folder in the Finder and selecting More→Open
 Terminal, you can add this optional contextual menu item by installing
 OpenTerminalContextMenu.plugin. To
 install the contextual menu item, drag and drop it into either /Library/Contextual Menu Items (if you
 want to give this capability to all users) or ~/Library/Contextual Menu Items (if you’d like
 to keep this capability to yourself).

Chapter 2. Searching and Metadata

If a Unix geek needs to find something on her system, she’ll probably
 use locate or find, depending on what she’s looking for.
 Because locate is based on a static
 database that’s regenerated only periodically (see Periodic Jobs” in Chapter 4), it would be
 the best choice for things that don’t change a lot (e.g., virtually anything
 in /usr). It’s also much faster because
 it has that database to consult. Trusty old find, slow as molasses, is what you want when you
 need more control over the search or when you’re looking for something that
 locate doesn’t know about, such as
 files that have been created recently.
Beginning with Tiger, though, Mac OS X has offered another search
 capability: Spotlight, which stores file metadata and sifts through it
 faster than a herd of sheep can clear a field. Spotlight comes in two forms:
 a GUI interface accessible from the menu bar, and a suite of command-line
 utilities. This chapter introduces you to Spotlight and shows you how to
 take advantage of all it has to offer.
Spotlight

Remember the relentless disk grinding you heard after you first
 installed the operating system? That was Spotlight creating its initial database. Spotlight is a
 repository of metadata for certain types of files. It
 gathers information about any file (or data record, such as an iCal event
 or video file) for which it has an importer (an operating system
 plug-in that extracts metadata from a file). To see all the importers on
 your system, look in /System/Library/Spotlight and /Library/Spotlight.
By default, Spotlight has importers for the following files and
 data:
	AppleWorks files

	Applications

	Archives

	Audio files

	Automator actions

	Bookmarks

	Chat transcripts

	Fonts

	iCal entries

	Images

	iPhoto pictures

	iWeb documents

	Keynote presentations

	Mail messages

	Microsoft Entourage data

	Microsoft Office documents

	MIDI files

	Numbers documents

	Pages documents

	PDFs

	PostScript files

	Quartz Composer compositions

	QuickTime movies

	RTF documents

	System preferences

	vCard files

To perform a Spotlight query, simply click the magnifying glass icon
 in the top-right section of the menu bar or press ⌘-Space. A Spotlight
 search field drops down, in which you enter a search term, as shown in
 Figure 2-1. You can also invoke Spotlight
 to search for files right in the Search field in the upper-right part of a
 Finder title bar. (This is shown later in Figure 2-3.)
[image: Using the Spotlight menu]

Figure 2-1. Using the Spotlight menu

If you position your mouse over an item in the list that comes up
 from a Spotlight query, a little pop-up window shows you the location of
 the item, as shown in Figure 2-2.
[image: Spotlight menu item location]

Figure 2-2. Spotlight menu item location

You can get a more detailed Spotlight search window by pressing
 Option-⌘-Space. This window, shown
 in Figure 2-3, lets you
 configure a number of aspects of your search, such as Kind (Any,
 Applications, Documents, Folders,
 Images, Movies, Music, PDF, Presentations, Text, and Other), Location,
 Date, Name, Contents, and Other. If you select Other, you’ll be presented
 with a large array of search criteria choices.
[image: Searching with the Spotlight window]

Figure 2-3. Searching with the Spotlight window

Performing Spotlight Searches

Unix geeks might never use Spotlight if Mac OS X didn’t include
 some command-line goodies for
 performing searches. You can perform a simple Spotlight search from the
 shell with the following syntax:
$ mdfind term
For example:
$ mdfind Newfoundland
/Users/eer/Sites/index.html
/Volumes/Macintosh HD/Applications/Microsoft Office 2008/Office/
timezones.xml
/Volumes/Macintosh HD/Applications/Microsoft Office 2008/Office/
Holidays
/Volumes/Macintosh HD/Developer/Documentation/DocSets/
com.apple.ADC_Reference_Library.DeveloperTools.docset/Contents/
Resources/Documents/documentation/Darwin/Reference/ManPages/man1/
tsort.1.html
/Volumes/Macintosh HD/Library/Dictionaries/
New Oxford American Dictionary.dictionary/Contents/Images/
Newfoundland (dog).png
/Volumes/Macintosh HD/usr/share/zoneinfo/Canada/Newfoundland
/Volumes/Macintosh HD/Library/Documentation/Acknowledgements.rtf
/Users/eer/Sites/JOEY/Joseph.html
/Users/eer/Sites/MaxBear/MaxBear.html
/Users/eer/Sites/Samson/Samson.html
/Applications/Microsoft Office 2008/Office/timezones.xml
/Applications/Microsoft Office 2008/Office/Holidays
/Developer/Documentation/DocSets/
com.apple.ADC_Reference_Library.DeveloperTools.docset/Contents/
Resources/Documents/documentation/Darwin/Reference/ManPages/man1/
tsort.1.html
/Library/Dictionaries/New Oxford American Dictionary.dictionary/
Contents/Images/Newfoundland (dog).png
/usr/share/zoneinfo/Canada/Newfoundland
/Library/Documentation/Acknowledgements.rtf
If you have a good idea of where you want to search, you can
 use the -onlyin option,
 as shown here:
$ mdfind -onlyin /Users/eer/Sites Newfoundland
/Users/eer/Sites/index.html
/Users/eer/Sites/JOEY/Joseph.html
/Users/eer/Sites/MaxBear/MaxBear.html
/Users/eer/Sites/Samson/Samson.html
Of course, you can also do the following:
$ mdfind Newfoundland | grep /Users/eer/Sites
/Users/eer/Sites/index.html
/Users/eer/Sites/JOEY/Joseph.html
/Users/eer/Sites/MaxBear/MaxBear.html
/Users/eer/Sites/Samson/Samson.html
You can use the -live option to
 update the results in real time as they change, and as quickly as
 Spotlight can index them.
Although you can find interesting results with simple keyword
 searches, you can refine your search by specifying any of the metadata
 attribute keys. You can find a comprehensive list of common metadata
 attribute keys and descriptions in the MDItem.h header
 file, located deep in the /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/Metadata.framework/Versions/A/Headers/
 directory.
For example, to find all the songs on your system authored by
 Jethro Tull (as indicated by the kMDItemAuthors key), you could use this
 search:
$ mdfind "kMDItemAuthors == 'Jethro Tull'"
/Users/.../iTunes Music/Jethro Tull/Songs From The Wood/Pibroch.mp3
/Users/.../iTunes Music/Jethro Tull/Songs From The Wood/Fire At Midnight.mp3
/Users/.../iTunes Music/Jethro Tull/Stand Up/A New Day Yesterday.m4a
[... and so forth ...]
You can perform more complex queries using regular expressions with mdfind, as well. For example, the following
 query uses the and (&&) operator to combine two search
 criteria (the author is “Jethro Tull” and the genre does not contain
 “Rock”):
$ mdfind "kMDItemAuthors == 'Jethro Tull' && \
 kMDItemMusicalGenre != '*Rock*'"
/Users/.../iTunes Music/Jethro Tull/A Little Light Music/15 Bouree.m4a
/Users/.../iTunes Music/Jethro Tull/A Little Light Music/
Locomotive Breath.m4a
/Users/.../iTunes Music/Jethro Tull/Stand Up/A New Day Yesterday.m4a
[... and so forth ...]
Including the wildcard characters (*) around Rock allow you to match genres such as “Prog
 Rock” and “Rock and Roll.”

Inspecting a File’s Attributes

Now that you’ve found some songs by Jethro Tull that aren’t
 classified as Rock, how do you figure out what the deal is with those
 tunes? Are they easy listening? Something worse? The mdls utility lets you see all of the attributes for a given
 file:
$ cd ~/Music/iTunes/iTunes\ Music/Jethro\ Tull/A\ Little\ Light\ Music/
$ mdls "15 Bouree.m4a"
kMDItemAlbum = "A Little Light Music"
kMDItemAudioBitRate = 255
kMDItemAudioChannelCount = 2
kMDItemAudioTrackNumber = 15
kMDItemAuthors = (
 "Jethro Tull"
)
kMDItemCodecs = (
 AAC
)
kMDItemContentCreationDate = 2007-11-27 19:17:23 -0500
kMDItemContentModificationDate = 2007-11-27 19:17:23 -0500
kMDItemContentType = "public.mpeg-4-audio"
kMDItemContentTypeTree = (
 "public.mpeg-4-audio",
 "public.audio",
 "public.audiovisual-content",
 "public.data",
 "public.item",
 "public.content"
)
kMDItemCopyright = "℗ Digital Remaster (P) 2006 The
copyright in this sound recording is owned by The Ian Anderson
Group Of Companies Ltd under exclusive licence to Chrysalis
Records Ltd"
kMDItemDisplayName = "15 Bouree.m4a"
kMDItemDurationSeconds = 366.2016666666667
kMDItemFSContentChangeDate = 2007-11-27 19:17:23 -0500
kMDItemFSCreationDate = 2007-11-27 19:17:23 -0500
kMDItemFSCreatorCode = "hook"
kMDItemFSFinderFlags = 0
kMDItemFSHasCustomIcon = 0
kMDItemFSInvisible = 0
kMDItemFSIsExtensionHidden = 0
kMDItemFSIsStationery = 0
kMDItemFSLabel = 0
kMDItemFSName = "15 Bouree.m4a"
kMDItemFSNodeCount = 0
kMDItemFSOwnerGroupID = 502
kMDItemFSOwnerUserID = 502
kMDItemFSSize = 11969252
kMDItemFSTypeCode = ""
kMDItemKind = "MPEG-4 Audio File"
kMDItemLastUsedDate = 2007-11-27 19:17:23 -0500
kMDItemMediaTypes = (
 Sound
)
kMDItemMusicalGenre = "Pop"
kMDItemRecordingYear = 2007
kMDItemStreamable = 0
kMDItemTitle = "Bouree"
kMDItemTotalBitRate = 255
kMDItemUsedDates = (
 2007-11-27 00:00:00 -0500
)
This sampling gives you an idea of what sorts of search terms you
 can use with your mdfind
 queries—that’s a lot of information, all stored in /.Spotlight-V100! Note also that importers
 are free to define their own attributes.
Note
Keep in mind an important distinction when speaking of metadata: the owner (in terms of
 filesystem permissions) of a file is not necessarily its author. For
 example, if you rip an MP3 file from a CD-ROM, you’re the owner.
 However, iTunes consults the Gracenote database (formerly the CDDB,
 located at http://www.gracenote.com) and uses
 the information it finds there to determine the file’s authors. On the
 other hand, if you create a Word document on your Mac, you’ll not only
 be the owner of the file, but also its author.

Managing Spotlight

Spotlight is modestly configurable: you can use System
 Preferences→Spotlight to control the order in which results are
 presented, exclude certain file types, and specify directories that the
 indexing process can skip. You can do quite a bit from the shell prompt
 as well.
The mdutil command controls Spotlight settings on a volume-by-volume basis,
 and mdimport lets you work with the various importers installed on your
 system. For example, mdutil can
 turn indexing on or off for an entire volume with the -i option (it takes an argument of on or off):
$ sudo mdutil -i off "/Volumes/Macintosh HD/"
/Volumes/Macintosh HD:
 Indexing disabled for volume.
This setting is persistent across reboots. You can inspect a
 volume’s setting with the -s
 option:
$ sudo mdutil -s "/Volumes/Macintosh HD/"
/Volumes/Macintosh HD/:
 Status: Indexing Disabled
You can use mdimport to list
 all the importers installed on your system and to debug or view
 statistics on the import process (see the mdimport(1) manpage for more details):
$ mdimport -L
2008-02-25 15:36:24.037 mdimport[467:10b] Paths: id(502) (
 "/System/Library/Spotlight/Audio.mdimporter",
 "/System/Library/Spotlight/Chat.mdimporter",
 "/Developer/Applications/Xcode.app/Contents/Library/Spotlight/
 SourceCode.mdimporter",
 "/Library/Spotlight/Microsoft Entourage.mdimporter",
 "/System/Library/Spotlight/QuickTime.mdimporter",
[... and so forth ...]
You can also use mdimport to
 list all the attributes supported by the importers on your
 system:
$ mdimport -A
'kMDItemAcquisitionMake' 'Device make'
 'Make of the device used to acquire this document'
'kMDItemAcquisitionModel' 'Device model'
 'Model of the device was used to acquire this document'
'kMDItemAlbum' 'Album'
 'Title for a collection of media, such as a record album'
'kMDItemAperture' 'Aperture'
 'Aperture setting of the camera when the picture was taken'
[... and so forth ...]
mdimport also has a number of
 features of interest to people developing their own metadata importers.
 For example, the -X option prints
 out an XML schema for the metadata on your system, and -p displays performance statistics for a run
 of mdimport.
It’s possible that at some point you may need to rebuild your
 Spotlight database. Fortunately, that’s quite easy to do.
 Select System Preferences→Spotlight, click the Privacy tab, and drag
 your hard drive icon from your Desktop to the list. Then select System
 Preferences→Quit System Preferences from the menu bar. Next, select
 System Preferences→Spotlight again, select your hard drive icon in the
 list on the Privacy tab, and press the minus button (–). Then quit
 System Preferences again, as described previously.
Note
Spotless (http://www.fixamacsoftware.com/software/spot2/) is a
 shareware utility to help manage Spotlight. You can use Spotless to
 enable or disable indexing on selected volumes.

Apple’s Hiding Places for File Metadata

Apple’s HFS+ filesystem has been stashing away metadata since its introduction in Mac OS X 8.1.
 Resource forks are invisible portions of files used for stashing additional
 or secondary information or metadata. The primary portion of the
 file—indeed, the only part of a file most Unix geeks are used to thinking
 about—is called the data fork. Before Mac OS X, files
 contained data forks containing the file’s data and resource forks
 containing application resources. These are now contained in the
 application bundle itself, although resource forks are still used in a few
 odd places (such as text clippings, which you can create by dragging and
 dropping text selections to the Finder).
You can inspect a file’s resource fork by appending /rsrc to the filename. For example:
$ ls -l Sample.textClipping
-rw-r--r--@ 1 bjepson bjepson 0 Apr 5 19:42 Sample.textClipping
$ ls -l Sample.textClipping/rsrc
-rw-r--r-- 1 bjepson bjepson 1350 Apr 5 19:42 Sample.textClipping/rsrc
The contents of a resource fork, even for something simple like a
 text clipping, are not necessarily human-readable, but there’s usually
 something you can dig out:
$ file Sample.textClipping/rsrc
Sample.textClipping/rsrc: ms-windows icon resource
$ strings Sample.textClipping/rsrc
Apple's HFS+ filesystem has been stashing away metadata since its
introduction in Mac OS X 8.1. Resource forks are invisible portions
of files used for stashing
Note that when you used ls -l
 to look at the Sample.textClipping
 file, it displayed the @ symbol just
 after the permissions, which indicates the file has extended attributes.
 You can use the @ option to get some
 information about these attributes:
$ ls -l@ Sample.textClipping
-rw-r--r--@ 1 bjepson bjepson 0 Apr 5 19:42 Sample.textClipping
 com.apple.FinderInfo 32
 com.apple.ResourceFork 1350
Mac OS X also makes use of HFS+ metadata, which consists of extended attributes
 that are associated with files. For example, if you look at the root of
 your Mac’s hard drive in the Finder, you’ll see only a small subset of the
 directories (such as Library, System, Applications, and Users). But if you drop down into the Terminal,
 you’ll find plenty more. The files that don’t appear in the Finder have an attribute (V) that makes
 them invisible to it. The traditional hidden files in Unix—files whose
 names begin with a dot (.)—are also
 hidden from the Finder, even though they do not necessarily have the
 V attribute.
You can inspect a file’s HFS+ metadata with GetFileInfo and set it with SetFile, both of which are
 located in /usr/bin and are part of
 the Xcode package. Here’s what GetFileInfo has to say about one of those
 invisible files (in this case, the Mac OS X kernel):
$ GetFileInfo /mach_kernel
file: "/mach_kernel"
type: ""
creator: ""
attributes: aVbstclinmedz
created: 03/05/2008 00:25:01
modified: 03/05/2008 00:25:01
An uppercase attribute is toggled on, and a lowercase attribute is
 toggled off. The SetFile manpage
 describes all these attributes. For example, to make the
 kernel visible in the Finder, you can use this command (you’ll only need
 to use sudo for files that you don’t
 own):
$ sudo SetFile -a v /mach_kernel
And to change it back (which we suggest you do), you can use
 this:
$ sudo SetFile -a V /mach_kernel
Note
You can also set a Finder option to show all hidden files; that
 is, those with the V attribute and
 those whose names begin with a dot (.). See the section Working with File and Directory Names” in Chapter 1 for details.

Unix File System (UFS)

Although UFS doesn’t natively support resource forks or HFS+
 (Hierarchical File System) attributes, Mac OS X finds a place to stash
 that info for UFS files. If the file has either a resource fork or any
 attributes that depend on HFS+ semantics, this information goes into a
 separate file named .filename, where
 filename is the name of the original file
 (this is known as the AppleDouble
 format):
$ touch Foo
$ ls -al
total 4
drwxr-xr-x 2 bjepson bjepson 1024 Feb 21 20:54 .
drwxr-xr-x 6 bjepson bjepson 1024 Feb 21 20:53 ..
-rw-r--r-- 1 bjepson bjepson 0 Feb 21 20:54 Foo
$ SetFile -a S Foo
$ ls -al
total 6
drwxr-xr-x 2 bjepson bjepson 1024 Feb 21 20:54 .
drwxr-xr-x 6 bjepson bjepson 1024 Feb 21 20:53 ..
-rw-r--r-- 1 bjepson bjepson 82 Feb 21 20:54 ._Foo
-rw-r--r-- 1 bjepson bjepson 0 Feb 21 20:54 Foo

Preserving Metadata

In older versions of Mac OS X (before Tiger), you had to be
 very careful with what you did at the command line. If you used
 cp, mv, rsync, or any of the other command-line utilities that move files
 around, you could have lost part of your files and consequently wound up
 with files without applications associated with them. It was easy to
 miss this sort of mayhem, since this metadata isn’t apparent until you
 go looking for it, and it wasn’t always a disaster. For example, you
 could have copied a graphics file that kept its preview in its resource
 fork, and you probably wouldn’t have missed it—after all, the next time
 you opened the image, the application most likely regenerated the
 preview. But with other files, such as text clippings and web locations
 (drag a URL from Safari to the Finder to create one of these), you would
 have lost everything, since all of these files’ contents are contained
 in the resource fork. Here’s how it would go on Mac OS X 10.3 and
 earlier, using a Safari web location as an example:
$ ls -l "Resource Fork Example.webloc"
-rw-r--r-- 1 bjepson bjepson 0 Feb 21 15:54 Resource Fork
Example.webloc
$ ls -l "Resource Fork Example.webloc/rsrc"
-rw-r--r-- 1 bjepson bjepson 624 Feb 21 15:54 Resource Fork
Example.webloc/rsrc
$ cp "Resource Fork Example.webloc" foo.webloc
$ ls -l foo.webloc
-rw-r--r-- 1 bjepson bjepson 0 Feb 26 23:18 foo.webloc
$ ls -l foo.webloc/rsrc
-rw-r--r-- 1 bjepson bjepson 0 Feb 26 23:18 foo.webloc/rsrc
If the file had any HFS+ metadata, you would lose that, too. Compare the
 results of running GetFileInfo on a
 Firefox web location before and after copying it:
$ GetFileInfo "Resource Fork Example.webloc"
file: "/Users/bjepson/Desktop/Resource Fork Example.webloc"
type: "ilht"
creator: "MACS"
attributes: avbstclinmEdz
created: 02/26/2005 23:18:33
modified: 02/26/2005 23:18:33
$ cp "Resource Fork Example.webloc" foo.webloc
$ GetFileInfo foo.webloc
file: "/Users/bjepson/Desktop/foo.webloc"
type: ""
creator: ""
attributes: avbstclinmedz
created: 02/26/2005 23:18:52
modified: 02/26/2005 23:18:52
You could get around the problem with the help of ditto, a powerful
 command-line utility used to copy directories while preserving resource
 forks. The ditto utility
 has been kept in current releases of Mac OS X, even though other copying
 utilities have evolved. (See the ditto manpage for more details.)
Mac OS X Tiger and later finally made this problem (mostly) go
 away by making all the cp,
 mv, and rsync command-line utilities aware of the
 resource forks and HFS+ attributes:
$ cp "Resource Fork Example.webloc" foo.webloc
$ ls -l foo.webloc/rsrc
-rw-r--r-- 1 bjepson bjepson 444 Apr 5 20:22 foo.webloc/rsrc
$ GetFileInfo foo.webloc
file: "/Users/bjepson/Desktop/foo.webloc"
type: "ilht"
creator: "MACS"
attributes: avbstclinmEdz
created: 04/05/2008 20:22:01
modified: 04/05/2008 20:22:01
Note
Recent versions of Firefox are smart enough to stash the URL in the file
 itself, so although Firefox .webloc files contain resource forks and
 metadata, they will work fine even if this information is lost:
$ cat foo.webloc
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>URL</key>
 <string>http://www.cnn.com/</string>
 </dict>
</plist>

If you copy or move the file to a non-Mac system such as a
 FAT-formatted memory card, AppleDouble comes in to save the day:
$ cp "Resource Fork Example.webloc" "/Volumes/NO NAME/"
$ ls -al "/Volumes/NO NAME/" | grep Res
-rwxrwxrwx 1 bjepson bjepson 4434 Feb 27 09:45 ._Resource Fork
Example.webloc
-rwxrwxrwx 1 bjepson bjepson 0 Feb 27 09:45 Resource Fork
Example.webloc
And if you rm a file on a
 volume that’s using AppleDouble (including UFS as well), it cleans up
 the file:
$ rm "/Volumes/NO NAME/Resource Fork Example.webloc"
remove /Volumes/NO NAME/Resource Fork Example.webloc? y
$ ls -al "/Volumes/NO NAME/" | grep Res
[... no results ...]
For the most part, Mac OS X has you covered when it comes to
 preserving resource forks. There are a few gotchas that you need to
 watch out for, though. For example, sftp, ftp, and scp won’t preserve the resource fork for
 you.
Also, some tools, such as the Unison File Synchronizer (http://www.cis.upenn.edu/~bcpierce/unison/), will try to
 create the resource forks on the Unix, Linux, or Windows end of the
 transaction. While this sort of thing works smoothly for the most part,
 it can occasionally trip you up. We’ll talk about those issues and many
 others in the next chapter.

Chapter 3. Files and Filesystems

Apple’s Mac OS Extended filesystem, HFS+, has a lot going for it. Although its case-insensitivity caused
 trouble back in the very early days of Mac OS X, it is rarely a problem
 these days. Its transparent support of the metadata that is so crucial to
 Mac OS X, coupled with its excellent support for journaling, make it the
 filesystem of choice for the operating system today. But even if your hard
 disks, iPods, and external drives are all happily formatted with HFS+, chances are you’ll have to exchange
 files with something other than a Mac one of these days.
Note
Trouble? What kind of trouble? Here’s an example: Library for WWW in
 Perl (LWP), a suite of Perl modules for interacting with web servers, also
 includes a number of command-line utilities. One of these is named HEAD.
 Once upon a time, installing LWP on Mac OS X with the default options led
 to the command-line utilities being dropped in /usr/bin. This resulted in /usr/bin/head being overwritten with HEAD. I was surprised by how many things rely
 on that useful little utility. Although such mishaps are still possible
 today, they are less likely. LWP no longer installs HEAD by default, but
 you should always pay careful attention to what you’re installing,
 especially with older software.
Though it is not recommended for most users—even Unix geeks—you can
 format a filesystem as case-sensitive and journaled HFS+. You can even
 install Mac OS X on a case-sensitive journaled HFS+ partition, but you may
 run into trouble installing some third-party applications.

Mac OS X files are complicated constructs. Chapter 2 introduced you to the metadata that can
 lurk on the HFS+ filesystem and also discussed how that metadata is stored
 on other types of filesystems using the AppleDouble format. With much more
 than the usual contents of files to worry about, it’s very easy to drop bits
 of your files all over the place, especially on foreign filesystems. This
 chapter talks a bit more about these details, explains what you need to
 consider when you move files from HFS+ to other filesystems, and ends with a
 description of how files are laid out on a Mac.
Sharing Files with Other Operating Systems

If you’re going to move files between your Mac and another operating
 system, there are some things you need to watch out for. As we discussed
 in Chapter 2, the AppleDouble format will
 sprinkle some files with odd names across the filesystem, such as
 ._filename
 files. You’ll also find a few files created in the root, such as .Trashes (see Table 3-1, later in this
 chapter).
The most significant problem you’ll run into is moving large files
 around; if you’re not using a third-party utility, the only common
 filesystem that Mac OS X, Windows, and Linux can read and write is the
 ancient FAT32, which has a limit of 2 GB per file. However, if you
 don’t have Windows in the mix, you can take advantage of Linux’s support for Apple’s HFS+ filesystem. Linux will
 mount journaled HFS+ filesystems in read-only mode; if you’re willing to
 disable journaling, you can get read/write support. For example, if you
 have an external (such as USB) HFS+-formatted drive called iPod plugged into your Mac, you can turn off
 journaling with:
$ diskutil disableJournal /Volumes/iPod
Most Linux systems will automatically mount external drives when you
 plug them in. If this doesn’t happen, you can mount an external drive
 manually; see the mount(8) manpage
 for more details.
If you need to get a variety of computers talking to each other and
 sharing files, there are several solutions you can use for exchanging
 files across the network:
	Virtual SSH filesystems (Nautilus)
	If you’ve enabled SSH (System Preferences→Sharing→Remote Login),
 some versions of Linux will let you access your Mac’s hard drive
 over SSH. For example, if you’re using the default GNOME desktop on
 Ubuntu, you can click Places→Network, and your Mac will appear as an
 SSH server. Double-click the icon and provide your user ID and
 password, and your Mac’s hard drive will appear in GNOME’s
 Nautilus file manager. Note that this doesn’t actually
 mount your Mac’s hard drive on your Linux system, but instead lets
 you work with the SSH server through Nautilus and GTK+ applications.
 To actually mount directories from an SSH server, you’ll need to use sshfs, described next.

	FUSE and sshfs
	Linux and some Unix systems are compatible with FUSE (Filesystem in Userspace), which allows
 users to mount filesystems without having to use sudo or add modules to their kernels. One
 of the filesystems supported by FUSE is sshfs. Most current Linux distributions have FUSE and
 sshfs in their package
 repositories, but they are not usually installed by default. If you
 can’t find them, visit the FUSE website at http://fuse.sourceforge.net for installation
 instructions. Once you’ve installed FUSE and sshfs, you can mount an SSH server into
 your filesystem using the sshfs
 command shown here (by default, this mounts the user’s home
 directory; you can specify another directory by replacing example.net: with something such as
 example.net:/opt):
$ mkdir ~/server
$ sshfs example.net: ~/server/
bjepson@example.net's password: ********
$ ls ~/server/Maildir/
cur maildircache new tmp
You can then unmount the server with fusermount -u
 mountpoint:
$ fusermount -u ~/server
FUSE supports many other filesystems; check out its website
 for details. FUSE is also available for Mac OS X from Amit Singh’s
 MacFUSE project. For downloads and more information, see http://code.google.com/p/macfuse/ and Chapter 8 of this book.

	Network File System (NFS)
	Starting with Leopard (10.5), Mac OS X makes it extremely easy
 to set up NFS exports from your Mac. NSF security was also enhanced
 in Leopard with support of Kerberos authentication. Using sudo, create the /etc/exports file. In a text editor, add
 a line for each directory you want to export. See the exports(5) manpage for more information.
 For example, you could export your /usr/local directory in read-only mode to
 any computer that can reach yours with this line:
/usr/local -ro
After you’ve edited the exports file, force the NFS server to
 reload it with the following command:
$ sudo nfsd update
Now you’ll be able to mount the NFS shares from your Linux and
 Unix systems.
To access NFS servers from Mac OS X 10.5 (Leopard), use the
 /net directory. By default, the
 only directories in /net are
 /net/localhost and /net/broadcasthost. To mount an NFS
 server, you can cd to /net/HOSTNAME
 or /net/IP_ADDRESS.
 The server will be mounted on demand (bjepson-desktop.local is an Ubuntu
 system with a single NFS export, /usr):
$ ls /net/
broadcasthost localhost
$ cd /net/bjepson-desktop.local
$ ls
usr
You can see a list of NFS exports on a host with showmount -e:
$ showmount -e bjepson-desktop.local
Exports list on bjepson-desktop.local:
/usr/local 192.168.254.7

	Samba
	Samba (http://www.samba.org) is a
 file and printer sharing solution that’s compatible
 with the SMB/CIFS (Server Message Block/Common Internet Filesystem)
 protocol used by Windows. Although Samba has no native support for HFS+ metadata
 or resource forks, Mac OS X creates AppleDouble files (described in Chapter 2) on Samba shares as
 needed.

	Netatalk
	Netatalk (http://netatalk.sourceforge.net) is best known as a suite for introducing Unix servers to
 AppleTalk networks. However, it has a daemon, afpd, that can share files from a Linux
 or Unix system using the native Apple sharing protocol, AFP (Apple
 Filing Protocol). Early versions (and the versions that are bundled with
 many Linux distributions) supported only an earlier version of AFP,
 and were limited in the length of filenames. The most recent version
 of Netatalk can be made to work with Mac OS X, although it may
 require recompilation in order to support the password
 authentication scheme used by Leopard. For a great how-to on getting
 Netatalk to work with Leopard, see http://www.blackmac.de/archives/58-Make-Netatalk-talk-to-Leopard-Mac-OS-X-10.5.html.

	afpfs-ng
	If you’d like to mount AFP filesystems from a Linux or Unix
 system running FUSE, first make sure you have File Sharing enabled on your
 Mac under System Preferences→Sharing. Then, head on over to http://sourceforge.net/projects/afpfs-ng/ and
 download the afpfs-ng
 package. This is a FUSE module that lets users mount AFP
 filesystems. Once you’ve installed afpfs-ng, you can mount filesystems using
 an afp:// URL with the
 afpfs command. For
 example:
$ afpfs afp://bjepson:PASSWORD@192.168.254.7/bjepson ~/server/
Mounting 192.168.254.7 from bjepson on /home/bjepson/server/
Mounting of volume bjepson of server BCJ succeeded.
As with sshfs, you can
 unmount the directory with fusermount
 -u mountpoint.

Unison
Unison (http://www.cis.upenn.edu/~bcpierce/unison/) is a
 powerful file synchronizer that lets you keep Windows, Mac
 OS X, Linux, and Unix files in sync. It does so by maintaining a replica
 on each side of the synchronization, comparing the state of the
 filesystem against the last-known replica, and making intelligent
 decisions about which files are the most recent. In cases where it can’t
 figure something out (perhaps you’ve changed the file in both places),
 it prompts you to tell it what to do. It’s like rsync in many ways; in particular, it is fast
 and works well over a network (like rsync, it can work over ssh). However, its support for two-way
 syncing is what really differentiates it from the alternatives.

Working with Bonjour

If you want to integrate Apple’s Bonjour with your Linux or Unix
 systems, you’ll need two packages: Avahi and nss-mdns. Avahi
 is included with most current Linux distributions, and it supports
 service discovery on the local network. It is compatible with Apple’s
 Bonjour, so you can configure Avahi to advertise network shares, among
 other things. For more information about Avahi, see http://www.avahi.org. The other package, nss-mdns, is a plug-in for the GNU C Library’s Name Server Switch that
 lets you resolve hostnames ending in .local (the same scheme used by Bonjour). See
 http://0pointer.de/lennart/projects/nss-mdns/ for
 more information. Avahi and nss-mdns work together to provide a
 Bonjour-compatible networking scheme that lets your Unix or Linux
 systems work with Mac OS X systems on your network. Avahi and nss-mdns are installed on most Linux
 distributions by default and should be available in your distribution’s
 package repositories.
By default, Netatalk’s AFP shares are not advertised over Bonjour.
 If your Linux system is running Avahi (most are), you can
 advertise AFP shares over Bonjour by creating a file called
 /etc/avahi/services/afp.service
 with the following contents:
<?xml version="1.0" standalone='no'?><!--*-nxml-*-->
<!DOCTYPE service-group SYSTEM "avahi-service.dtd">
<service-group>
 <name replace-wildcards="yes">%h</name>
 <service>
 <type>_afpovertcp._tcp</type>
 <port>548</port>
 </service>
</service-group>
Once you’ve done this, AFP shares from your Unix or Linux host
 will be advertised via Bonjour and consequently will be easily
 accessible from Mac clients. You’ll see these shares in the Shared
 section of the Finder sidebar. You can also create service files for SSH
 (type: _ssh._tcp, port: 22), Samba (type: _smb._tcp, port: 139), and NFS
 (type: nfs._tcp, port: 2049). However, neither of these will show up in
 the Finder. You can locate SSH servers over Bonjour by selecting
 Shell→New Remote Connection from within the Terminal. You can enumerate
 NFS exports over Bonjour by typing showmount
 -A -e in the Terminal.
Creating and Burning Disk Images
You can create a disk image from the Terminal using hdiutil. For example, you can create an image of ~/Documents/COURSES with this
 command:
$ hdiutil create -srcdir ~/Documents/COURSES \
 ~/Desktop/COURSESBAK.dmg
Once this command has completed, enter the following command to
 burn the disk image to disc (you’ll be prompted to insert a
 disc):
$ hdiutil burn ~/Desktop/COURSESBAK.dmg
Please insert a disc:
You can also create a disk image with a fixed size, copy files
 to it, and burn it:
$ hdiutil create -size 400m ~/Desktop/COURSESBAK.dmg \
 -fs HFS+ -volname COURSES
$ open ~/Desktop/COURSESBAK.dmg
$ cp -R ~/Documents/COURSES/ /Volumes/COURSES/
$ umount /Volumes/COURSES/
$ hdiutil burn ~/Desktop/COURSESBAK.dmg

Troubleshooting

If you use multiple solutions in combination, you may run into
 trouble if they disagree about what’s going on under the hood of their
 AppleDouble implementations. For example, suppose you have a single
 Internet location (.webloc) file in the ~/Desktop directory on your Mac:
$ cd ~/Desktop/
$ ls -l
total 8
-rw-r--r--@ 1 bjepson bjepson 0 May 16 11:44 Safari.webloc
Next, suppose you copy the file to a Linux server that you have
 mounted as a Samba share. After you copy the file, you’ll see the same kind of
 AppleDouble file format that’s used by Mac OS X. All is well with the
 world:
$ mount
/dev/disk0s2 on / (hfs, NFS exported, local, journaled)
devfs on /dev (devfs, local)
fdesc on /dev (fdesc, union)
map -hosts on /net (autofs, automounted)
map auto_home on /home (autofs, automounted)
//bjepson@bjepson-desktop/bjepson on /Volumes/bjepson (smbfs, nodev,
nosuid, mounted by bjepson)
$ cp Safari.webloc /Volumes/bjepson/Desktop/
$ ls -al /Volumes/bjepson/Desktop/
total 74
drwxr-xr-x 2 bjepson bjepson 16384 May 16 11:54 .
drwx------ 0 bjepson bjepson 16384 May 15 21:44 ..
-rwx------ 1 bjepson bjepson 4495 May 16 11:52 ._Safari.webloc
-rwx------@ 1 bjepson bjepson 0 May 16 11:52 Safari.webloc
Now, suppose this directory on the Linux server is also shared
 using Netatalk’s afpd. Things will
 get weird if you create another Internet location file on the Mac and
 then use the Finder to drag and drop that file across to the AFP share
 on the Linux box.
Log into your Linux system over SSH (or open a shell window on it
 directly) and look at what’s going on under the hood. Instead of
 creating a file that adheres to the AppleDouble format used by Apple,
 Netatalk creates an .AppleDouble directory that contains the
 metadata that HFS+ would normally store transparently. Here’s what
 you’ve got on the Linux side now:
$ ls -al
total 20
drwxr-xr-x 3 bjepson bjepson 4096 2008-05-16 11:59 .
drwxr-xr-x 39 bjepson bjepson 4096 2008-05-16 11:59 ..
drwxr-xr-x 2 bjepson bjepson 4096 2008-05-16 11:59 .AppleDouble
-rw-r--r-- 1 bjepson bjepson 0 2008-05-16 11:59 Hackszine.com.webloc
-rwx------ 1 bjepson bjepson 4495 2008-05-16 11:52 ._Safari.webloc
-rwx------ 1 bjepson bjepson 0 2008-05-16 11:52 Safari.webloc
$ ls -al .AppleDouble/
total 12
drwxr-xr-x 2 bjepson bjepson 4096 2008-05-16 11:59 .
drwxr-xr-x 3 bjepson bjepson 4096 2008-05-16 11:59 ..
-rw-rw-rw- 1 bjepson bjepson 1326 2008-05-16 11:59 Hackszine.com.webloc
We suggest that you use only one point of entry (either Samba
 or Netatalk, but not both) for a given directory,
 but if you need to have it both ways, a workaround is to add options:ro,noadouble to the filesystem’s entry
 in AppleVolumes.default on the Linux
 server. For example, on Ubuntu, you’d change the home directory line in
 /etc/netatalk/AppleVolumes.default
 to read:
~/ "Home Directory" options:ro,noadouble
This makes the AFP share read-only and disables the creation of
 .AppleDouble
 (except when a resource fork is created, which won’t happen because
 you’re accessing it read-only). This solution gives you quick and dirty
 access to the files on the Linux server via AFP when you need it, but
 forces you to update them through only Samba.

Files and Directories

Mac OS X’s filesystem contains traces of Unix, NeXTSTEP, and Mac OS
 9. If you type ls -a / on your Mac
 (e.g., using the Terminal or a remote ssh connection), you’ll see some familiar
 things, such as /etc and /var. However, you’ll also notice some
 unfamiliar directories, such as /Desktop
 DB, /Library, and
 /Documents. The
 tables in the rest of this chapter list and describe some of the files and
 directories you may encounter.
The Root Directory

Table 3-1
 describes the files and directories (the latter are indicated with a
 trailing slash) that you may find in your root directory (/). Classic files that may appear in this
 directory are listed in Table 3-2, and the remaining
 tables in this chapter describe the contents of significant
 subdirectories.
Table 3-1. Mac OS X’s root directory
	File or
 directory
	Description

	 /.DS_Store
	Contains Finder settings,
 such as the icon location and window size. This file will appear
 in any directory that you’ve viewed with the
 Finder.

	 /.Spotlight-V100/
	Contains metadata used by
 Spotlight. For more information, see Chapter 2.

	 /.Trashes/
	Contains files that have
 been dragged to the Trash. On a boot volume, such files are
 stored in ~/.Trash. On a
 nonboot volume, these files are in /.Trashes/uid/.

	 /.com.apple.timemachine.supported

	Indicates that a drive
 could be used by Time Machine as a backup target.

	 /.fseventsd/
	Used by the FSEvents API,
 which provides notifications about changed files.

	 /.hotfiles.btree
	A B-Tree index for
 providing fast access to frequently used files.

	 /Applications/
	Holds all your Mac OS X
 applications. Its Utilities
 subdirectory includes lots of useful things, such as the
 Terminal, the Console, and the Activity Monitor.

	 /bin/
	Contains essential system
 binaries.

	 /Desktop DB
	Along with /Desktop DF, contains housekeeping
 information used by the Finder.

	 /Desktop DF
	See /Desktop DB.

	 /dev/
	Contains files that
 represent various devices. See Table 3-4.

	 /Developer/
	Contains Apple’s Xcode
 tools and documentation. Available only if you have installed
 the Xcode tools.

	 /etc/
	Contains system
 configuration files. See Table 3-3. This directory is a
 symbolic link to /private/etc.

	 /home/
	Used by the automounter
 for NFS-mounted home directories.

	 /Installer Log File
	May be left by some
 third-party application installers.

	 /Library/
	Contains support files
 for locally installed applications, among other things. See
 Table 3-7.

	 /lost+found/
	Stores orphaned files
 discovered by fsck. You’ll
 only find this on UFS volumes.

	 /mach_kernel
	Contains the Darwin
 kernel.

	 /mach_kernel.ctfsys
	Contains an alternate
 copy of the kernel, used by dtrace(1).

	 /net/
	Used by the automounter
 for NFS-mounted directories.

	 /Network/
	Contains network-mounted
 Application, Library, and Users directories, as well as a
 Servers directory that contains
 directories mounted by the automount daemon.

	 /opt/
	Contains the MacPorts
 installation (see Chapter 13).

	 /private/
	Contains the tmp, var, etc, and cores directories.

	 /sbin/
	Contains executables for
 system administration and configuration.

	 /sw/
	Contains the Fink
 installation (see Chapter 12).

	 /System/
	Contains a subdirectory,
 Library, that holds support
 files for the system and system applications, among other
 things. See Table 3-6.

	 /tmp/
	Holds temporary files.
 This directory is a symbolic link to /private/tmp.

	 /User Guides And
 Information/
	An alias to /Library/Documentation/User Guides and
 Information; contains hardware-specific documentation
 and information about Mac OS X.

	 /Users/
	Contains home directories
 for the users on the system. The root user’s home directory is
 /var/root (actually
 /private/var/root).

	 /usr/
	Contains BSD Unix
 applications and support files.

	 /var/
	Contains frequently
 modified files, such as log files. This directory is a symbolic
 link to /private/var.

	 /Volumes/
	Contains all visible
 mounted filesystems, including removable media and mounted disk
 images.

Although neither Intel-based Macs nor Mac OS X Leopard supports
 Mac OS 9 (Classic), you may find the files and directories listed in
 Table 3-2 in the root
 directory of older Macs, or installations that have been
 upgraded.
Table 3-2. Classic files in the root directory
	File or
 directory
	Description

	 /Applications (Mac OS 9)/

	Contains all of your OS 9
 applications, if you have Mac OS X and Mac OS 9 (Classic)
 installed.

	 /Desktop Folder/
	The Mac OS 9 desktop
 folder used by Classic.

	 /Documents/
	The Mac OS 9 documents
 folder used by Classic.

	 /Shared Items/
	Gives OS 9 multiuser
 systems a place where users can store files for other users to
 access.

	 /System Folder/
	The Mac OS 9 system
 folder.

	 /Temporary Items/
	Contains temporary files
 used by Mac OS 9.

	 /TheFindByContentFolder/

	Created by Sherlock
 2.

	 /TheVolumeSettingsFolder/

	Keeps track of shared
 volume details, such as open windows and desktop
 printers.

	 /Trash/
	Used by Mac OS 9 to store
 deleted files until the Trash is emptied.

	 /VM Storage
	The Mac OS 9 virtual
 memory file.

The /etc Directory

The /etc directory contains
 configuration files for Unix applications and services.
 Table 3-3 lists the contents of
 the /etc directory.
Table 3-3. The /etc directory
	File or
 directory
	Description

	 6to4.conf
	Configuration file for
 encapsulating IPv6 within IPv4. See ip6config(8).

	 AFP.conf
	Contains the AFP
 Reconnect Server key, which is used to authenticate clients that
 attempt to reconnect. (This file is created by Mac OS X when it
 is needed.)

	 afpovertcp.cfg
	Causes Mac OS X to use
 TCP/IP as the default transport protocol for the Apple File
 Protocol (AFP). Use this file to configure the defaults for AFP
 over TCP/IP.

	 aliases
	Mail aliases file.
 Symbolic link to /etc/postfix/aliases.

	 aliases.db
	Mail aliases db file created when you run
 newaliases.

	 amavisd.conf
	Configuration file for
 amavisd(8), an interface
 between mail servers and content scanners (such as virus or spam
 filters).

	 apache2/
	Contains configuration
 files for the Apache web server.

	 appletalk.cfg
	AppleTalk configuration
 file for routing or multihoming. See the appletalk.cfg(5)
 manpage.

	 asl.conf
	Configuration file for
 the syslogd(8) asl_action
 module, which can take actions when certain messages appear in
 the system log. See asl.conf(5).

	 authorization
	Controls how
 applications, such as installers, can temporarily obtain
 root privileges.

	 auto_home
	Configuration file used
 for NFS-automounted home directories.

	 auto_master
	Configuration file for
 automounting NFS servers.

	 autofs.conf
	Configuration file for
 the automounter.

	 bashrc
	Global configuration file
 for bash, the Bourne-again
 shell.

	 csh.cshrc
	Global csh configuration file, processed
 when the shell starts up. If you have a .cshrc or .tcshrc file in your home directory,
 tcsh will execute its
 contents as well.

	 csh.login
	Global csh login file, processed when a
 login shell starts up. If you have a .login file in your home directory,
 tcsh will execute its
 contents as well.

	 csh.logout
	Global csh logout file, processed when a
 user logs out of a login shell.

	 cups/
	Contains configuration
 files for the Common Unix Printing System (CUPS).

	 defaults/
	Contains default
 configuration files for applications and
 utilities.

	 dnsextd.conf
	Configuration file for
 dnsext(8), a daemon that
 provides certain extensions to BIND.

	 dumpdates
	Dump date records created
 by dump(5), which is run by
 /etc/daily.

	 efax.rc
	Configuration file for
 fax(1).

	 find.codes
	Undocumented.

	 fstab
	Configuration file for
 network shares that should be mounted at boot. Edit with
 sudo vifs and use sudo automount -cv to have changes
 take effect without rebooting.

	 fstab.hd
	Undocumented.

	 ftpusers
	List of users who are
 prohibited from using FTP.

	 gdb.conf
	Global gdb configuration
 file.

	 gettytab
	Terminal configuration
 database.

	 group
	Group permissions file.
 See Chapter 5.

	 hostconfig
	System configuration file
 that controls many of the startup items described in Chapter 4.

	 hosts
	Host database; a mapping
 of IP addresses to hostnames. You can use this as a supplement
 to other directory services, such as DNS. Mac OS X 10.1 and
 earlier consulted this file only in single-user mode, but as of
 Mac OS X 10.2 (Jaguar), this file is used at other times. For
 more information, see Chapter 5.

	 hosts.equiv
	List of trusted remote
 hosts and host/user pairs. This is used by rsh and is inherently insecure. You
 should instead use ssh,
 which is a secure alternative. See ssh-keygen(1) for details on
 generating key pairs that can be used to set up a trust
 relationship with remote users.

	 irbrc
	Configuration file for
 irb(1), the Interactive
 Ruby Interpreter.

	 kcpassword
	Stores an encrypted
 version of a user’s password for autologin.

	 kern_loader.conf
	Mach’s kernel server
 loader configuration file. Empty in the current version of Mac
 OS X.

	 krb5.keytab
	The Kerberos V5 keytab.
 Use ktutil(8) to manipulate
 this file.

	 localtime
	Symbolic link to your
 system’s time zone (e.g.,
 /usr/share/zoneinfo/US/Eastern).

	 locate.rc
	Configuration for
 updatedb(8).

	 mach_init.d/
	Mach bootstrap daemons.
 See Chapter 4.

	 mach_init_per_login_session.d/

	Per-session Mach
 bootstrap daemons. See Chapter 4.

	 mach_init_per_user.d/
	Per-user Mach bootstrap
 daemons. See Chapter 4.

	 mail.rc
	Global configuration file
 for /usr/bin/mail.

	 man.conf
	Configuration file for
 man(1).

	 manpaths
	Default paths to search
 for manpages.

	 manpaths.d/
	Contains files that hold
 additional manpage search paths.

	 master.passwd
	Shadow passwd file, consulted only in
 single-user mode. During normal system operation, Open Directory
 manages user information (see Chapter 5).

	 memberd.conf
	Configuration file for
 the group membership resolution daemon, memberd(8).

	 moduli
	System-wide prime numbers
 used for cryptographic applications such as ssh.

	 named.conf
	Configuration file for
 named, the DNS daemon. For
 more details, see named(8).

	 nanorc
	Configuration file for
 the nano text
 editor.

	 networks
	Network name
 database.

	 newsyslog.conf
	Configuration file for
 newsyslog(8).

	 notify.conf
	Configuration file for
 the Notification Center.

	 ntp.conf
	Specifies the Network
 Time Protocol (NTP) servers used to update the system
 time.

	 openldap/
	Contains configuration
 files for OpenLDAP, an implementation of the Lightweight
 Directory Access Protocol.

	 pam.d/
	Contains configuration
 files for Pluggable Authentication Modules (PAM).

	 passwd
	Password file. For more
 information, see Chapter 5.

	 paths
	Contains a list of
 default paths for building the PATH environment
 variable.

	 paths.d/
	Contains files that hold
 additional search paths.

	 periodic/
	Contains configuration
 files for the periodic
 utility, which runs cron
 jobs on a regular basis.

	 php.ini.default
	Default PHP
 initialization file.

	 podcastproducer/
	Contains support files
 for Podcast Producer. See podcast(1) for more information.

	 postfix/
	Contains postfix configuration
 files.

	 ppp/
	Contains configuration
 files for the Point-to-Point Protocol (PPP).

	 profile
	Global profile for the
 Bourne-again shell, bash.

	 protocols
	Network protocol
 database.

	 racoon/
	Contains configuration
 files for racoon, the IKE
 key management daemon.

	 rc.common
	Common settings for
 startup scripts.

	 rc.netboot
	Startup script for
 booting from the network using NetBoot.

	 resolv.conf
	DNS resolver
 configuration. Symlink to /var/run/resolv.conf.

	 rmtab
	Remote NFS mount
 table.

	 rpc
	RPC number-to-name
 mappings. Mac OS X 10.1 and earlier consulted this file only in
 single-user mode, but newer versions of Mac OS X use this file
 at other times.

	 rtadvd.conf
	Configuration file for
 the router advertisement daemon. For more details, see rtadvd(8).

	 services
	Internet service name
 database. Mac OS X 10.1 and earlier consulted this file only in
 single-user mode, but newer versions of Mac OS X use this file
 at other times. For more information, see Chapter 5.

	 shells
	List of
 shells.

	 smb.conf
	Samba configuration
 file.

	 smb.conf.template
	Template configuration
 file for Samba.

	 snmp/
	Contains configuration
 files for snmpd(8).

	 ssh_config
	Global configuration file
 for OpenSSH client programs.

	 ssh_host_dsa_key
	Private DSA host key for
 OpenSSH. This file, and the other ssh_host_* files, are created the
 first time you start Remote Login in the Sharing System
 Preferences pane.

	 ssh_host_dsa_key.pub
	Public DSA host key for
 OpenSSH.

	 ssh_host_key
	Private host key for
 OpenSSH when using SSH 1 compatibility.

	 ssh_host_key.pub
	Public host key for
 OpenSSH when using SSH 1 compatibility.

	 ssh_host_rsa_key
	Private RSA host key for
 OpenSSH.

	 ssh_host_rsa_key.pub
	Public RSA host key for
 OpenSSH.

	 sshd_config
	Configuration file for
 the OpenSSH sshd
 daemon.

	 sudoers
	Configuration file for
 the sudo command. Make sure
 you use the visudo command
 only to edit this file.

	 syslog.conf
	syslogd configuration
 file.

	 ttys
	Terminal initialization
 file.

	 xgrid/
	Configuration files for
 Xgrid.

	 xtab
	Lists current NFS
 exports.

	 zprofile
	Global profile for the Z
 shell, zsh(1).

The /dev Directory

The /dev directory contains files that represent devices attached to the
 system, including physical devices such as serial ports and
 pseudodevices such as a random number generator. Table 3-4 lists the contents of the
 /dev directory.
Table 3-4. The /dev directory
	File or
 directory
	Description

	 ath0
	Device representing the
 AirPort adapter.

	 autofs
	Used by autofsd(8).

	 autofs_control
	Used by autofsd(8).

	 autofs_nowait
	Used by autofsd(8).

	 bpf[0–3]
	Berkeley Packet Filter
 devices. See bpf(4).

	 console
	The system console. This
 is owned by whoever is currently logged in. If you write to it,
 the output ends up in /var/tmp/console.log, which you can
 view with the Console application (/Applications/Utilities).

	 cu.*
	Modem devices for
 compatibility with the Unix cu (call up) utility.

	 disk[0-n]
	Disk
 device.

	 disk[0-n]s[0-n]
	Disk partition. For
 example, /dev/disk0s1 is
 the first partition of /dev/disk0.

	 dtrace
	Device used by dtrace(1).

	 dtracehelper
	Device used by dtrace(1).

	 fbt
	Device used by dtrace(1).

	 fd/
	Devices that correspond
 to file descriptors. See the fd manpage for more
 details.

	 fsevents
	Undocumented.

	 klog
	Device used by syslogd to read kernel
 messages.

	 lockstat
	Used to gather kernel
 lock data for dtrace(1).

	 machtrace
	Device used by dtrace(1).

	 nsmb0
	Device file used for
 smbfs.

	 null
	Bit bucket. You can
 redirect anything here, and it disappears.

	 pmCPU
	CPU power management
 device.

	 profile
	Undocumented

	 ptmx
	Device used to manage
 pseudoterminals.

	 ptyp[0-f]
	Master ends of the first
 16 pseudoterminals.

	 pty[q-w][0-f]
	Master ends of the
 remaining pseudoterminals.

	 random
	Source of pseudorandom
 data. See random(4).

	 rdisk[0-n]
	Raw disk
 device.

	 rdisk[0-n]s[0-n]
	Raw disk
 partition.

	 sdt
	Undocumented.

	 stderr
	Symbolic link to
 /dev/fd/2.

	 stdin
	Symbolic link to
 /dev/fd/0.

	 stdout
	Symbolic link to
 /dev/fd/1.

	 systrace
	Used by sandbox(7).

	 tty
	Standard output stream of
 the current Terminal or remote login session.

	 tty.*
	Various modem and serial
 devices.

	 ttyp[0-f]
	Slave ends of the first
 16 pseudo-ttys.

	 tty[q-w][0-f]
	Slave ends of the
 remaining pseudo-ttys.

	 urandom
	Source of pseudorandom
 data, not guaranteed to be strong. See random(4).

	 vn[0–3]
	Pseudo disk
 devices.

	 zero
	Infinite supply of null
 characters. Often used with dd to create a file made up of null
 characters.

The /var Directory

The /var directory (really a symlink to /private/var) contains transient and volatile
 files, such as PID files (which tell you the process ID of a currently
 running daemon), log files, and many others. Table 3-5 lists the contents of the
 /var directory.
Table 3-5. The /var directory
	File or
 directory
	Description

	 agentx/
	Used by snmpd(8) to support the AgentX
 protocol.

	 amavis/
	Contains support files
 for amavisd(8).

	 at/
	Contains information
 about jobs scheduled with the at command.

	 audit/
	Undocumented.

	 backups/
	Contains backups of the
 NetInfo database.

	 db/
	Includes a grab bag of
 configuration and data files, including the locate database, the NetInfo
 database, and network interface information.

	 empty/
	Used as an unwritable
 chroot(8)
 environment.

	 folders/
	Caches used by various
 applications.

	 launchd/
	Contains launchd’s working
 files.

	 log/
	Contains a variety of log
 files, including syslog,
 mail, and web server logs.

	 mail/
	Contains inboxes for
 local users’ email.

	 msgs/
	Holds system-wide
 messages that were delivered using msgs -s.

	 named/
	Includes various files
 used for local DNS services.

	 Netboot/
	Contains various files
 used for NetBoot.

	 root/
	Serves as the root user’s home
 directory.

	 run/
	Holds PID files for
 running processes. Also contains working files used by programs
 such as sudo.

	 rwho/
	Contains information used
 by the rwho
 command.

	 samba/
	Contains Samba support
 files.

	 spool/
	Serves as a spool
 directory for mail, printer queues, and other queued
 resources.

	 tmp/
	Serves as a temporary
 file directory.

	 virusmails/
	Quarantine location used
 by amavisd(8).

	 vm/
	Contains your swap
 files.

	 xgrid/
	Holds working files used
 by Xgrid.

	 yp/
	Contains files used by
 Network Information System (NIS).

The /System/Library Directory

Table 3-6 lists
 the directories (and one file) stored under the /System/Library directory. You should not
 modify the contents of these directories or add new files to them.
 Instead, use their counterparts in the /Library folder. For example, to install a
 new font, drag it into /Library/Fonts, not /System/Library/Fonts.
Table 3-6. The /System/Library directory
	File or
 directory
	Description

	 Automator/
	Contains Automator
 actions and supporting files.

	 BridgeSupport/
	Holds XML files that
 contain API symbols for frameworks and libraries that don’t
 support runtime introspection.

	 Caches/
	Contains caches used by
 various parts of the operating system.

	 CFMSupport/
	Holds shared libraries
 used by Carbon applications.

	 ColorPickers/
	Stores localized
 resources for Mac OS X color pickers.

	 Colors/
	Contains the names and
 values of colors used in color picker controls.

	 ColorSync/
	Contains ColorSync
 profiles.

	 Components/
	Contains application
 building blocks (components), such as AppleScript and color
 pickers. Components are not applications themselves and are
 generally shared between applications.

	 Compositions/
	Contains the Quartz
 Composer compositions that ship with Mac OS X.

	 Contextual Menu Items/

	Contains plug-ins for the
 Finder’s contextual menu (accessed via Control- or
 right-clicking).

	 CoreServices/
	Contains system
 applications, such as SystemStarter, BootX, the Finder, and the login
 window.

	 DirectoryServices/
	Holds support files for
 Directory Services (see Chapter 5).

	 Displays/
	Contains ColorSync
 information for external monitors.

	 DTDs/
	Contains document type
 definitions for XML documents used by the system, such as
 property lists.

	 Extensions/
	Holds Darwin kernel
 extensions.

	 Extensions.mkext
	Contains the kernel
 extension cache, which is created at boot by /etc/rc.

	 Filesystems/
	Contains drivers and
 utilities for various filesystems (MS-DOS, AppleShare, UFS,
 etc.).

	 Filters/
	Contains Quartz filters
 that are used in the Print dialog’s ColorSync
 section.

	 Find/
	Stores support files for
 Sherlock’s content indexing.

	 Fonts/
	Contains core Mac OS X
 fonts.

	 Frameworks/
	Holds a collection of
 reusable application frameworks, including shared libraries,
 headers, and documentation.

	 Graphics/
	Holds Quartz Composer
 patches and plug-ins.

	 Image Capture/
	Contains device support
 files for the Image Capture application.

	 Input Methods/
	Stores input methods for
 various languages.

	 Java/
	Contains Java .class and .jar files.

	 KerberosPlugins/
	Stores Kerberos
 plug-ins.

	 Keyboard Layouts/
	Contains bundles that
 support internationalized keyboard layouts.

	 Keychains/
	Contains system-wide
 keychain files.

	 LaunchAgents/
	Contains configuration
 files for launchd items
 that are started at login (see Chapter 4).

	 LaunchDaemons/
	Contains configuration
 files for launchd items
 that are run even when no user is logged in (see Chapter 4).

	 LoginPlugins/
	Contains helper
 applications that are launched as you log in.

	 Modem Scripts/
	Contains modem
 configuration scripts.

	 MonitorPanels/
	Stores panels used by
 System Preferences→Displays.

	 OpenSSL/
	Holds OpenSSL
 configuration and support files.

	 Perl/
	Holds Perl
 Libraries.

	 PodcastProducer/
	Contains support files
 for Podcast Producer.

	 PreferencePanes/
	Contains all the
 preference panes for the Preferences application.

	 Printers/
	Contains printer support
 files.

	 PrivateFrameworks/
	Holds private frameworks
 meant to support Mac OS X. These frameworks are not meant for
 programmers’ use.

	 QuickLook/
	Contains system-supplied
 QuickLook generators.

	 QuickTime/
	Holds QuickTime support
 files.

	 QuickTimeJava/
	Stores support files for
 the QuickTime/Java bridge.

	 Screen Savers/
	Contains screensavers
 that you can select from System Preferences→Desktop & Screen
 Saver.

	 ScreenReader/
	Contains Braille drivers
 for the screen reader.

	 ScriptingAdditions/
	Holds AppleScript
 plug-ins and libraries.

	 ScriptingDefinitions/
	Contains a scripting
 definition file that is common to all applications. Scripting
 definition files represent information about the scriptability
 of applications.

	 Security/
	Stores support files for
 various authentication methods.

	 Services/
	Contains services that
 are made available through the Services menu.

	 Sounds/
	Contains sounds that are
 available in System Preferences→Sound.

	 Speech/
	Holds speech recognition
 and generation support files.

	 Spotlight/
	Contains metadata
 importers for Spotlight (see Chapter 2).

	 StartupItems/
	Contains startup scripts,
 as described in Chapter 4.

	 SyncServices/
	Contains iSync
 conduits.

	 SystemConfiguration/
	Contains plug-ins used to
 monitor various system activities (for Apple use
 only).

	 SystemProfiler/
	Contains support files
 for System Profiler.

	 Tcl/
	Holds Tcl
 libraries.

	 TextEncodings/
	Contains localized text
 encodings.

	 User Template/
	Holds localized skeleton
 files for user directories. See Creating a user’s home directory” in Chapter 5.

	 UserEventPlugins/
	Undocumented.

	 WidgetResources/
	Contains support files
 for Dashboard.

The /Library Directory

Table 3-7 lists the
 contents of the /Library directory.
 The /Library
 directory contains counterparts to many directories found in /System/Library (Table 3-6). You can use the
 /Library counterparts for
 system-wide customization. If you find a directory of the same name in
 your home Library directory
 (~/Library),
 you can use that for user-level customization. For example, you can
 install fonts for a particular user by moving them into ~/Library/Fonts.
Table 3-7 lists only
 the directories found in /Library
 that are not also found in /System/Library (with the exception of
 Java and Perl, which bear additional
 discussion).
Table 3-7. The /Library directory
	File or
 directory
	Description

	 Address Book
 Plug-Ins/
	Contains plug-ins for the
 Address Book application.

	 Application
 Support/
	Contains support files
 for locally installed applications.

	 Audio/
	Contains audio plug-ins
 and sounds.

	 Automator/
	Stores Automator
 actions.

	 ColorSync/
	Contains user-installed
 ColorSync profiles and scripts.

	 Components/
	Holds QuickTime
 components.

	 Desktop Pictures/
	Contains desktop pictures
 used by System Preferences→Desktop & Screen
 Saver.

	 Developer/
	Contains various
 development support files.

	 Dictionaries/
	Contains various
 dictionaries.

	 Documentation/
	Provides documentation
 for locally installed applications.

	 Graphics/
	Undocumented.

	 Internet
 Plug-Ins/
	Contains locally
 installed browser plug-ins.

	 iTunes/
	Contains iTunes
 plug-ins.

	 Java/
	Contains locally
 installed Java classes (you can drop .jar files into /Library/Java/Extensions), as
 well as a suitable directory to use as your $JAVA_HOME (/Library/Java/Home).

	 Logs/
	Holds logs for services
 such as Apple File Services, the Crash Reporter, and Directory
 Services.

	 Mail/
	Holds support files for
 Mail.app.

	 PDF Services/
	Contains various PDF
 workflows.

	 Perl/
	Contains locally
 installed Perl modules (MakeMaker’s INSTALLSITELIB).

	 Preferences/
	Holds global
 preferences.

	 Python/
	Contains locally
 installed Python modules.

	 Receipts/
	Holds the receipts left
 in the form of .pkg
 directories after you install applications with the Mac OS X
 installer. The .pkg
 directory contains a bill of materials file (.bom), which you can read with the
 lsbom command. Bills of
 materials for core Mac OS X packages are contained in Receipts/boms/.

	 Ruby/
	Contains Gems and other
 support files for Ruby.

	 Scripts/
	Contains a variety of
 AppleScripts installed with Mac OS X.

	 User Pictures/
	Contains user pictures
 that are used in the login panel.

	 WebServer/
	Contains the Apache CGI
 and document root directories.

	 Widgets/
	Contains Dashboard
 widgets.

Chapter 4. Startup

The most striking difference between Mac OS X and other flavors of
 Unix is in how Mac OS X handles the boot process. Gone are the /etc/inittab and /etc/init.d from traditional Unix systems.
 In their place is a BSD-like startup sequence sandwiched between a Mach[2] foundation and the Aqua user interface.
This chapter describes Mac OS X Leopard’s startup sequence, beginning
 with the boot loader and progressing to full multiuser mode, at which time
 the system is ready to accept logins from normal users. The chapter also
 covers custom startup items, network interface configuration, and Mac OS X’s
 default system maintenance jobs.
Booting Mac OS X

When the computer is powered up, the firmware—Open
 Firmware on PowerPC Macs and
 Extensible Firmware Interface on Intel Macs—is in complete control. After the firmware
 initializes the hardware, it hands off control to the boot loader,
 BootX (Power PC) or boot.efi (Intel), which bootstraps the kernel.
 After a trip into Mach, the control bubbles up into the Berkeley Software
 Distribution (BSD) subsystem, and from there into the Aqua user interface.
By default, Mac OS X boots graphically. If you’d like to see console
 messages as you boot, hold down ⌘-V (the “V” stands for “verbose”)
 as you start the computer. If you’d like to always boot in
 verbose mode, you can specify a flag in the boot arguments that are stored
 in your system’s firmware. First, use the command nvram
 boot-args to make sure there aren’t any flags already set (if
 there are, and you didn’t set them, you probably should not change this
 setting). Set your boot arguments to -v with this command:
$ sudo nvram boot-args="-v"
The next time you boot your Mac, it will boot in verbose mode. To
 turn off this setting, use this command:
$ sudo nvram boot-args=
To boot in single-user mode, hold down ⌘-S as you start the computer.
 In single-user mode your filesystem is mounted as read-only, which limits what you
 can do. Although you can enable write access to your filesystem via the
 mount –uw / command,
 this is not usually recommended. Single-user mode should generally be used
 only to repair a system that has been damaged. Unlike with other Unix
 systems, we do not suggest that you use single-user mode to perform
 fsck repairs manually. Instead,
 restart your Mac and boot from the Mac OS X install disc (insert the disc
 and hold down the C key as your Mac starts up), and then run the Disk
 Utility (Installer→Open Disk Utility) to repair a problem disk
 volume.
The Boot Loader

The BootX and boot.efi boot loaders are located in
 /System/Library/CoreServices.
 They draw the Apple logo on the screen and proceed to set up the kernel
 environment. The boot loader first looks for an up-to-date version of
 the kernel that’s been prelinked to all required kernel extensions (drivers, also known as kexts). If it doesn’t find one, the boot
 loader loads all the kernel extensions that are cached in the
 mkext cache. If this cache does not exist, the boot
 loader loads only those extensions in /System/Library/Extensions that have the
 OSBundleRequired
 key in their ExtensionName.kext/Info.plist files. Example 4-1 is an excerpt from
 the /System/Library/Extensions/System.kext/Info.plist
 file.
Example 4-1. A portion of a kernel extension’s Info.plist file
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <!-- multiple keys and strings omitted -->
 </dict>
</plist>

After the required drivers are loaded, the boot loader hands off
 control to the kernel (/mach_kernel).

Initialization

The kernel first initializes all the data structures needed to
 support Mach and BSD. Next, the kernel initializes the I/O Kit, which
 connects the kernel with the set of extensions that correspond to the
 machine’s hardware configuration. The kernel then finds and mounts the
 root filesystem. Finally, it launches the first process on the system,
 launchd, which is responsible for
 bootstrapping the system as well as launching daemons on behalf of the
 system or users.
Note
Mac OS X Panther (10.3) and earlier does things differently. The
 first process the kernel loaded was mach_init, which started Mach message
 handling. mach_init then launched
 the BSD init process. In keeping
 with Unix conventions, init was
 process ID (PID) 1, even though it was started second. mach_init was given PID 2, and its parent
 PID was set to 1 (init’s PID).
 Beginning with Mac OS X Tiger (10.4), launchd replaces both of these
 processes.

By default, launchd starts up
 SystemStarter, which is used to start programs that aren’t launched on
 demand: SystemStarter looks in the /System/Library/StartupItems and then the
 /Library/StartupItems directories
 to find items to start (see the SystemStarter”
 section later in this chapter). Although Mac OS X no longer uses any
 /etc/rc* scripts to start the
 system, SystemStarter will run any commands in an /etc/rc.local file and an /etc/rc.shutdown.local file at system startup
 and shutdown, respectively.
After that, launchd starts
 loginwindow, which authenticates
 users and sets up their user sessions. From this point on, all remaining
 services are launched on demand through launchd.

In previous versions of Mac OS X, the /etc/hostconfig file was used to enable or
 disable services such as file sharing and the web server. As of Mac OS
 X 10.5, settings such as AFPSERVER
 are present but apparently unused, and at the top of the file is a
 comment reading, “This file is going away.” The type of preferences
 previously found in hostconfig is
 now contained within the
 launchd .plist files themselves.
 For example, when you turn off Apple Filing Protocol (AFP) sharing in
 System Preferences, the following is added to the com.apple.AppleFileServer.plist (located in
 /System/Library/LaunchDaemons)
 file:
<key>Disabled</key>
<true/>
When you turn AFP back on, Mac OS X removes the Disabled entry.

launchd

Mac OS X Tiger introduced the latest and greatest startup scheme,
 launchd. It has launch-on-demand
 capabilities and also supports on-demand launching via Mach ports (as
 does the mach_init.d scheme).
 launchd additionally offers the
 ability to launch on demand based on filesystem and Unix domain socket
 events.
launchd manages two types of
 services: launch daemons (services that can run even when no user is
 logged in, such as sshd) and launch
 agents (services that run on behalf of a logged-in user; for example,
 when you launch an X11-based application). Launch daemons cannot connect
 to the window server and thus cannot display a GUI. Launch agents,
 however, can connect to the window server and can present a GUI.
 Further, since a launch agent runs on behalf of a user, the agent can
 access files in that user’s home directory. For example, the OpenSSH
 server is managed as a launch daemon (see ssh.plist in /System/Library/LaunchDaemons); Spotlight’s
 menu and results window are managed as a launch agent (see com.apple.Spotlight.plist in
 /System/Library/LaunchAgents).
The property list (.plist)
 files for system-installed launch daemons are located in
 /System/Library/LaunchDaemons.
 Locally installed daemons (including ones you create yourself) must be
 installed into /Library/LaunchDaemons. Similarly,
 system-installed launch agents go into
 /System/Library/LaunchAgents
 and locally installed ones go into /Library/LaunchAgents. You can install
 user-specific launch agents in ~/Library/LaunchAgents.
Note
For an example of a launch daemon property list, see Launching with launchd,” later in this chapter.

You can control launch daemons with the launchctl utility. To enable a daemon that’s disabled (that is, one with a
 Disabled key in its property list
 file), use launchctl load -w
 followed by the path to the property list. For example, the following
 command would enable the telnet server (the daemon itself is executed as
 defined in the telnet.plist
 file):
$ sudo launchctl load -w /System/Library/LaunchDaemons/telnet.plist
You can stop and disable this daemon with unload -w:
$ sudo launchctl unload -w /System/Library/LaunchDaemons/telnet.plist
For more information, see the launchctl manpage and Apple Technical Note
 2083, “Daemons and Agents” (http://developer.apple.com/technotes/tn2005/tn2083.html),
 which has an in-depth explanation of launchd and other facilities for managing
 background processes.
Note
Peter Borg’s Lingon (http://lingon.sourceforge.net) is an open source
 graphical tool for creating and editing launchd configuration files.

SystemStarter

SystemStarter examines /System/Library/StartupItems and /Library/StartupItems for applications that
 should be started at boot time. /Library/StartupItems contains items for
 locally installed applications. /System/Library/StartupItems contains items
 for the system. You should not modify these or add your own items
 here.
Because many of SystemStarter’s responsibilities are now handled
 by launchd, the number of startup
 items has dramatically decreased since Mac OS X 10.3. However, some
 third-party applications continue to add startup items here rather than
 using the preferred launchd
 facility.

Mach Bootstrap Services

Mac OS X Panther introduced Mach bootstrap
 services, which are services that a process can launch using Mach
 messaging (a messaging facility supported by the Mac OS X kernel).
 Services can be loaded at two points: at system startup and at user
 login, which includes local and remote (such as SSH) logins. System
 startup scripts go into one of the /etc/mach_init*.d directories. Bootstrap
 service daemons are identified to the system by using the ServiceName key in their .plist files. The operating system can load a
 bootstrap service on demand if the OnDemand option is set to true (this is the default); it will either
 launch the service or wake it if it is sleeping (when a bootstrap
 service goes unused for a period of time, it can sleep).
As of Mac OS X 10.5, few services are started in this fashion;
 most of the operating system has moved over to launchd.

[2] Mach is a microkernel operating system developed at Carnegie
 Mellon University. The Mac OS X kernel, xnu, is a hybrid of Mach and BSD.

Creating Programs that Run Automatically

You have two choices for automatically starting applications:
 you can start them when a user logs in, or start them when the system
 boots up. On most Unix systems, startup applications reside in either the
 /etc/rc.local script or the /etc/init.d directory. Under Mac OS 9, you
 could add a startup item by putting its alias in System Folder/Startup Items. Mac OS X has a
 different approach, described in the following sections.
Login Preferences

To start an application each time you log in, use the Login
 Items tab of the System Preferences Accounts panel. This is a good
 choice for user applications, such as Stickies or an instant messenger
 program. These preferences are saved in ~/Library/Preferences/loginwindow.plist.
 There is also a global (or system-wide) counterpart to this file,
 located at
 /Library/Preferences/loginwindow.plist.
 Some third-party applications will stash startup items in the global
 file, so check there if you can’t otherwise track down the source of a
 mysterious startup item.
Note
The global loginwindow.plist file is owned by
 root. To edit it, change its
 permissions using the Finder (Control-click or right-click, select Get
 Info, and click the lock to authenticate) or the command line. Then,
 double-click it to edit it in the Property List Editor, save it, and
 change the permissions back to their original values.

SystemStarter

If you compile and install a daemon, you’ll probably want it to
 start at boot time. In most cases, you can start a daemon using launchd. But in some cases, you may want to
 use the (now deprecated) approach used in Mac OS X 10.3 and earlier:
 SystemStarter, introduced in the Initialization”
 section of this chapter. This is because some of the Unix programs that
 you are likely to find in the wild (or write yourself) do things the
 old-school Unix way, which will annoy launchd. For example, the launchd.plist(5) manpage specifically warns
 against using launchd with
 applications that call daemon (a
 Unix utility that spawns a program that runs without a user) or act like
 it (by spawning a subprogram and exiting, for example).
What’s more, launchd would
 prefer that you don’t do any of the following:
	Set up the user ID or group ID.

	Set up the working directory.

	Invoke chroot(2) or
 setsid(2).

	Close “stray” file descriptors.

	Change stdio(3) to
 /dev/null.

	Set up resource limits with setrusage(2).

	Set up priorities with setpriority(2).

	Ignore the SIGTERM
 signal.

Warning
Although launch daemons do not have a facility for invoking an
 explicit shutdown script, they will be killed by launchd when you shut down/reboot the
 system or explicitly stop them. Many applications, including database
 servers such as MySQL, know what to do when they are killed; in the
 case of MySQL, it shuts down cleanly, logging that fact to the system
 log with the message “Normal shutdown.”
If you are setting up a daemon that cannot abide by the
 launchd restrictions, or one that
 need its hand held by a shutdown script, you should create a startup
 item, as described in this section. Otherwise, you should use
 launchd (see the upcoming section
 Launching with launchd”).

It’s possible to modify many Unix daemons to behave themselves
 under launchd. If you peruse the
 Darwin source code at http://www.opensource.apple.com/darwinsource/, you’ll
 find launchd-specific patches for
 many of the Unix daemons, such as OpenSSH and cron. For example, Apple’s source code for
 cron.c contains this little snippet
 to make everything launchd-safe:
#ifdef __APPLE__
/* Don't daemonize when run by launchd */
 if (getppid() != 1 && daemon(1, 0) == −1) {
#else
 if (daemon(1, 0) == −1) {
#endif
As time goes on, you’ll probably find that popular open source
 packages will incorporate Apple’s patches into their official code
 releases.
Consider the MySQL database server. To start it up, you use a program
 called mysqld_safe, which in turn
 starts the MySQL database server. However, to shut it down, you issue
 the command mysqladmin shutdown. If
 you use launchd to manage starting
 up and shutting down MySQL, it will kill the MySQL server in a
 less-than-graceful manner (fortunately, MySQL knows how to handle this,
 but some other systems may not be as flexible). If, on the other hand,
 you use a startup item, you can define how the process gets shut
 down.
A startup item is controlled by three things: a folder (such as
 /Library/StartupItems/MyItem),
 a shell script with the same name as the directory (such as MyItem), and a property list named StartupParameters.plist. The shell script and
 the property list must appear at the top level of the startup item’s
 folder. You can also create a Resources directory to hold localized
 resources, but this is not mandatory.
To set up a MySQL startup item, create the directory /Library/StartupItems/MySQL as root. Then, create two files in that
 directory: the startup script MySQL
 and the property list StartupParameters.plist. The MySQL file must be an executable because it
 is a shell script:
$ sudo mkdir /Library/StartupItems/MySQL
$ sudo touch /Library/StartupItems/MySQL/MySQL
$ sudo touch /Library/StartupItems/MySQL/StartupParameters.plist
$ sudo chmod +x /Library/StartupItems/MySQL/MySQL
After you put the right information into these two files (as
 directed in the following sections), MySQL will be launched at each
 boot. Use your favorite text-only editor to edit these files and put the
 information into them. Because the files are owned by root, you will have to authenticate to use
 them. Smultron and TextMate are two editors that will allow you to
 authenticate in order to edit root’s files; if you prefer to use vi from the Terminal, you can run it under
 sudo, as in sudo vi
 /Library/StartupItems/MySQL/MySQL.
The startup script

The startup script should be a shell script with StartService(),
 StopService(),
 and RestartService() functions. The
 contents of /Library/StartupItems/MySQL/MySQL are
 shown in Example 4-2. The function call
 at the bottom of the script invokes the RunService() function from /etc/rc.common (this
 is a file that is part of Mac OS X), which in turn invokes StartService(), StopService(), or RestartService(), depending on whether the
 script was invoked with an argument of start, stop, or restart.
Example 4-2. A MySQL startup script
#!/bin/sh

Source common setup, including hostconfig.
#
. /etc/rc.common

StartService()
{
 # Don't start unless MySQL is enabled in /etc/hostconfig
 if ["${MYSQL:=-NO-}" = "-YES-"]; then
 ConsoleMessage "Starting MySQL"
 /usr/local/mysql/bin/mysqld_safe --user=mysql --skip-networking &
 fi
}

StopService()
{
 ConsoleMessage "Stopping MySQL"
 # If you've set a root password within mysql, you may
 # need to add --password=password on the next line.
 /usr/local/mysql/bin/mysqladmin shutdown
}

RestartService()
{
 # Don't restart unless MySQL is enabled in /etc/hostconfig
 if ["${MYSQL:=-NO-}" = "-YES-"]; then
 ConsoleMessage "Restarting MySQL"
 StopService
 StartService
 else
 StopService
 fi
}

RunService "$1"

Because it consults the settings of the $MYSQL environment variable, the startup
 script won’t do anything unless you’ve enabled MySQL in the /etc/hostconfig file.
 To do this, edit /etc/hostconfig
 in a text editor, and add this line:
MYSQL=-YES-
Note
Mac OS X does not recognize any special connections between
 hostconfig entries and startup
 scripts. Instead, the startup script sources the /etc/rc.common file, which in turn
 sources hostconfig. The
 directives in hostconfig are
 merely environment variables, and the startup script checks the
 values of the variables that control its behavior (in this case,
 $MYSQL).

The property list

The property list (StartupParameters.plist) contains attributes that describe the item and determine
 its place in the startup sequence. It can be in XML or NeXT format.
 The NeXT format uses NeXTSTEP-style property lists, as
 shown in Example 4-3.
Example 4-3. The MySQL startup parameters as a NeXT property list
{
 Description = "MySQL";
 Provides = ("MySQL");
 Requires = ("Network");
 OrderPreference = "Late";
}

The XML format adheres to the PropertyList.dtd Document Type Definition
 (DTD). You can use your favorite text editor or the Property List Editor (/Developer/Applications/Utilities) to
 create your own XML property list, as shown in Example 4-4.
Example 4-4. The MySQL startup parameters as an XML property list
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist
 SYSTEM "file://localhost/System/Library/DTDs/PropertyList.dtd">
<plist version="0.9">
 <dict>
 <key>Description</key>
 <string>MySQL</string>
 <key>Provides</key>
 <array>
 <string>MySQL</string>
 </array>
 <key>Requires</key>
 <array>
 <string>Network</string>
 </array>
 <key>OrderPreference</key>
 <string>Late</string>
 </dict>
</plist>

The following list describes the various keys you can use in a
 startup parameters property list:
	Description
	This is a phrase that describes the item.

	Provides
	This is an array of services that the item provides (e.g.,
 Apache provides “Web Server”). These services should be globally
 unique. In the event that SystemStarter finds two items that
 provide the same service, it starts the first one it
 finds.

	Requires
	This is an array of services on which the item depends. It
 should correspond to another item’s Provides attribute. If a required
 service cannot be started, the system won’t start the
 item.

	Uses
	This is similar to Requires, but it is a weaker
 association. If SystemStarter can find a matching service, it
 will start it. If it can’t, the dependent item will still
 start.

	OrderPreference
	The Requires and
 Uses attributes imply a
 particular order, in that dependent items will be started after
 the services on which they depend. You can specify First, Early, None (the default), Late, or Last here. SystemStarter does its best
 to satisfy this preference, but dependency orders
 prevail.

You can now manually start, restart, and stop MySQL by
 invoking SystemStarter from the command line:
$ sudo SystemStarter start MySQL
$ sudo SystemStarter restart MySQL
$ sudo SystemStarter stop MySQL

Launching with launchd

Creating a launchd startup
 item (a launch agent or launch daemon) is more declarative than
 procedural. Instead of writing scripts that directly control your
 daemon, you create an XML .plist
 file with as much information as you can possibly provide; this tells
 Mac OS X how it should handle starting the server.
You can use a launch daemon to start up MySQL, in fact. You lose
 the ability to specify that mysqladmin
 shutdown be run when you are terminating MySQL, but MySQL can
 shut down gracefully even when launchd kills it outright. Here’s a modified
 version of the MySQL startup script that ships with the Mac OS X Leopard server. Save it in
 /Library/LaunchDaemons/org.mysql.mysqld.plist:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Label</key>
 <string>org.mysql.mysqld</string>
 <key>OnDemand</key>
 <false/>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/mysql/bin/mysqld</string>
 <string>--user=mysql</string>
 <string>--skip-networking</string>
 </array>
 <key>ServiceIPC</key>
 <false/>
 </dict>
</plist>
The first key/string pair defines the label that identifies this
 daemon (org.mysql.mysqld). This can
 be used with some launchctl(1)
 commands. The second pair (OnDemand:
 false) indicates that mysqld is not an on-demand daemon: it should be started as soon as
 possible and kept running until it is unloaded (either explicitly or at
 system shutdown). The ProgramArguments key simply specifies the
 command line used to launch the program, and ServiceIPC: false indicates that mysqld is unable to communicate with
 launchd using interprocess
 communication. After you create this file, you can load it and enable it
 with this command:
$ sudo launchctl load -w /Library/LaunchDaemons/org.mysql.mysqld.plist
Since this is not an OnDemand
 daemon, it’s started immediately. To unload it (and shut it down),
 use:
$ sudo launchctl unload -w /Library/LaunchDaemons/org.mysql.mysqld.plist
Note
Note that we launch mysqld
 here, rather than starting MySQL with mysqld_safe, as we did with the startup
 item. This is because upon shutdown, launchd will try to kill the program it
 started; however, it won’t be able to kill mysqld_safe, because it stays around until
 mysqld dies. In other words,
 mysqladmin shutdown knows exactly
 what to kill, but launchd
 doesn’t.

For more information on launching with launchd, see the launchd.plist(5) manpage.

Periodic Jobs

Like other flavors of Unix, Mac OS X supports cron to schedule tasks for periodic execution.
 Each user’s cron jobs are controlled
 by configuration files that you can edit with crontab -e. (To list the contents of the file,
 use crontab -l.) Beginning with Mac
 OS X Tiger, the global crontab
 (/etc/crontab) has been replaced with
 three launch daemons. The original crontab looked like this:
15 3 * * * root periodic daily
30 4 * * 6 root periodic weekly
30 5 1 * * root periodic monthly
But now, each line has been replaced by a file in
 /System/Library/LaunchDaemons
 (com.apple.periodic-daily.plist,
 com.apple.periodic-weekly.plist, and
 com.apple.periodic-monthly.plist)
 that uses the StartCalendar key to
 specify when it is to be run. For example, here is the com.apple.periodic-daily.plist file:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Label</key>
 <string>com.apple.periodic-daily</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/sbin/periodic</string>
 <string>daily</string>
 </array>
 <key>LowPriorityIO</key>
 <true/>
 <key>Nice</key>
 <integer>1</integer>
 <key>StartCalendarInterval</key>
 <dict>
 <key>Hour</key>
 <integer>3</integer>
 <key>Minute</key>
 <integer>15</integer>
 </dict>
 </dict>
</plist>
Note
These .plists launch the
 periodic jobs in the wee hours of the morning, but launchd does not skip jobs even if your
 computer is shut off: the next time the computer wakes up or boots up,
 the missed jobs will be run.

These three launch daemons run the scripts contained in
 subdirectories of the /etc/periodic
 directory: /etc/periodic/daily,
 /etc/periodic/weekly, and
 /etc/periodic/monthly. Each of
 these directories contains one or more scripts:
/etc/periodic/daily/100.clean-logs
/etc/periodic/daily/110.clean-tmps
/etc/periodic/daily/130.clean-msgs
/etc/periodic/daily/430.status-rwho
/etc/periodic/daily/500.daily
/etc/periodic/monthly/200.accounting
/etc/periodic/monthly/500.monthly
/etc/periodic/monthly/999.local
/etc/periodic/weekly/310.locate
/etc/periodic/weekly/320.whatis
/etc/periodic/weekly/999.local
You should not modify these files, because they may be replaced by
 future system updates. Instead, create an /etc/daily.local, /etc/weekly.local, or /etc/monthly.local file to hold your
 site-specific cron jobs. The
 cron jobs are simply shell scripts
 that contain commands to be run as root. The local cron jobs are invoked at the end of the
 500.daily, 999.weekly, and 999.monthly scripts found in the /etc/periodic subdirectory. Within a directory,
 the files with lower numbers in their names execute before scripts with
 higher numbers.

Chapter 5. Directory Services

A directory service manages information about users and resources such as printers and
 servers. It can manage this information for anything from a single machine
 to an entire corporate network. The Directory Services architecture in Mac
 OS X is called Open Directory. Open
 Directory includes flat files (such as /etc/hosts), LDAPv3, other services available
 through third-party plug-ins, and even its own XML-based data
 store.
This chapter describes how to perform common configuration tasks, such
 as adding a user or host on a standalone Mac. If your system administrator
 has configured your Macintosh to consult an external directory server, some
 of these instructions may not work. If that’s the case, you should ask your
 system administrator to make the changes you need.
Understanding Directory Services

Coming from Unix or Linux, you’re probably used to modifying files
 such as /etc/passwd and /etc/group to add and edit users and groups. On
 Mac OS X, however, if you need to do something simple such as adding a
 user, you can’t just add the new user to /etc/passwd and be done with it. Instead,
 you’ll need to work with Mac OS X’s Directory Services.
In Mac OS X 10.1.x and earlier, the system was
 configured to consult the NetInfo database for all directory information.
 To make changes to the directory, you had to use the NetInfo Manager (or
 NetInfo’s command-line utilities).
As of Mac OS X 10.2 (Jaguar), NetInfo functions started to become
 more of a legacy protocol and were reduced to handling the local directory
 database for machines that did not participate in a network-wide
 directory, such as Active Directory or OpenLDAP. NetInfo was still present
 in Mac OS X 10.3 and 10.4, but it has been eliminated in 10.5. By default,
 Mac OS X is now configured to consult a collection of XML property list
 files that contain directory data and are stored in /var/db/dslocal.
To work with Mac OS X’s Directory Services from within Unix scripts
 and applications, you must first understand the overall architecture,
 which is known as Open Directory. Directory Services is the part of Mac OS
 X (and the open source Darwin operating system) that implements this
 architecture. Figure 5-1 shows
 the relationship of Directory Services to the rest of the operating
 system. The server processes, the user’s Desktop, and applications act as
 clients to Directory Services, which delegates requests to specific
 directory service plug-ins (see the next section for descriptions of these
 plug-ins).
[image: The Directory Services architecture]

Figure 5-1. The Directory Services architecture

Configuring Directory Services

To configure Directory Services, use the Directory Utility application (/Applications/Utilities), shown in Figure 5-2. You can enable or
 disable various directory service plug-ins, or change their
 configuration.
[image: The Directory Utility application shows the available plug-ins]

Figure 5-2. The Directory Utility application shows the available
 plug-ins

Directory Utility supports the following plug-ins (click the
 Services icon at the top of the Directory Utility window to see them;
 you’ll need to click the lock icon at the bottom of the window and provide
 your password to make changes):
	Active Directory
	This plug-in enables Mac OS X to consult an Active Directory domain on a server running Windows
 2000 or Windows 2003.

	BSD Flat File and NIS
	This plug-in handles the Network Information Service (NIS) and the flat files
 located in the /etc directory,
 such as hosts and passwd. Although this option is on by
 default, /etc/passwd and
 /etc/group are not consulted by
 default. To enable them, double-click on the “BSD Flat File and NIS”
 entry (or highlight it and click the pencil/edit button), check the
 box next to “Use User and Group records in BSD local mode” in the
 resulting dialog box, and click OK (you can also set NIS options in
 this dialog box).

	LDAPv3
	This plug-in supports the same version of LDAP used by
 Microsoft’s Active Directory and Novell Directory Services (NDS). In
 addition to the client components, Mac OS X includes slapd, a standalone LDAP daemon from the
 OpenLDAP (http://www.openldap.org)
 project.

	Local
	This plug-in supports the local Directory Services
 database that is stored in /var/db/dslocal as a collection of XML
 property list files.

All of the plug-ins on the Services tab except for Active Directory
 are enabled by default.
Click the Search Policy icon to see where Directory Services looks
 for user authentication and contact information. If you go to the
 Authentication tab (Figure 5-3), you’ll see that its
 Search pop up is set to Automatic by default. You can set the Search pop
 up to any of the following:
	Automatic
	This is the default option, which searches the local directory
 and (if enabled as described in the previous section) BSD flat
 files.

	Local directory
	This option searches only the local directory.

	Custom path
	This option allows you to modify the defaults and to add
 directory domains.

[image: The Directory Utility Authentication options]

Figure 5-3. The Directory Utility Authentication options

The Contact tab is set up identically to the Authentication tab and
 is used by programs that search Directory Services for contact information
 (office locations, phone numbers, full names, etc.), such as the Directory
 application in /Applications/Utilities or Address Book.app.

Managing Directory Services Data

Mac OS X 10.5 (Leopard) has made it easier to add and edit Directory Services data,
 especially users and groups. Previous versions of Mac OS X did not offer
 many options for creating and editing groups and users, but in Leopard you
 can use System Preferences→Accounts to work with this data. To add a user
 or group in System Preferences, click the lock icon to authenticate
 yourself, and then press the + button. The drop-down menu labeled “New”
 lets you create a user or group. You can edit the advanced options of a
 user who is not currently logged in by Control/right-clicking on the
 user’s name in the list of users and choosing Advanced Options. There, you
 can set the user ID, group ID, short name, shell, home directory,
 Universally Unique Identifier (UUID), and aliases.
Note
If you want to do things the traditional Unix way, Mac OS X
 includes chsh, chfn, and chpass in version 10.3 and beyond.

You can also manipulate Directory Services data from the command
 line. Table 5-1 lists the available
 Directory Services utilities. For more information, see the manpage for each.
Table 5-1. Directory Services tools
	Tool
	Description

	 dirt(1)
	Testing tool for Directory
 Services.

	 dscacheutil(1)
	Utility for working with
 the Directory Services cache. Replaces many of the functions
 handled by lookupd in
 previous versions of Mac OS X.

	 dscl(1)
	Command-line interface to
 Directory Services.

	 dsconfigad(8)
	Configuration tool for the
 Active Directory plug-in.

	 dsconfigldap(1)
	Configuration tool for the
 LDAPv3 plug-in.

	 dseditgroup(8)
	Tool for working with group
 records.

	 dsenableroot(8)
	Utility to disable or
 enable the root
 account.

	 dsexport(1)
	Exports data from Directory
 Services.

	 dsimport(1)
	Imports data into Directory
 Services.

	 dsmemberutil(1)
	Utility for working with
 Directory Services’ membership APIs.

	 dsperfmonitor(1)
	Tool for monitoring the
 performance of Directory Services plug-ins.

Managing Users and Passwords from the Terminal

The Directory Services equivalent of the passwd file resides under the /Users portion of the directory. Although Mac
 OS X includes /etc/passwd and
 /etc/master.passwd files,
 they are consulted only while the system is in single-user
 mode, or if the system has been reconfigured to use BSD Flat Files (see
 Configuring Directory Services,” earlier in this
 chapter).
You can list all users with the dscacheutil utility:
$ dscacheutil -q user
name: _amavisd
password: *
uid: 83
gid: 83
dir: /var/virusmails
shell: /usr/bin/false
gecos: AMaViS Daemon

name: _appowner
password: *
uid: 87
gid: 87
dir: /var/empty
shell: /usr/bin/false
gecos: Application Owner

name: _appserver
password: *
uid: 79
gid: 79
dir: /var/empty
shell: /usr/bin/false
gecos: Application Server
[...]
Creating a user

To create a user with dscl, you’ll
 need to create an entry under /Users and set the uid, gid, shell, realname, and home properties.
The following commands will create a new user, rothman:
$ sudo dscl . create /Users/rothman uid 701
$ sudo dscl . create /Users/rothman gid 701
$ sudo dscl . create /Users/rothman shell /bin/bash
$ sudo dscl . create /Users/rothman home /Users/rothman
$ sudo dscl . create /Users/rothman realname "Ernest Rothman"
$ sudo dscl . create /Groups/rothman gid 701
$ sudo dscl . create /Groups/rothman passwd *
$ sudo passwd rothman
Changing password for rothman.
New password: ********
Retype new password: ********
After you create the user, you should create his home directory,
 as shown next.

Creating a user’s home directory

One thing that dscl
 can’t do for you is create the user’s home directory.
 Mac OS X keeps a skeleton directory under the /System/Library/User Template directory. If
 you look in this directory, you’ll see localized versions of a user’s
 home directory. To copy the localized English version of the home
 directory, use a command like this:
$ sudo cp -R "/System/Library/User Template/English.lproj" /Users/rothman
Then, use chown to
 recursively set the ownership of the home directory and all its
 contents (make sure you set the group to a group of which the user is
 a member):
$ sudo chown -R rothman:rothman /Users/rothman
This change makes the new user the owner of his home directory
 and all its contents.

Granting administrative privileges

To give someone administrative privileges, add that user to the
 admin group (/Groups/admin). This gives the user the
 ability to use sudo and to run
 applications (such as software installers) that require administrative
 privileges, such as:
$ sudo dscl . merge /Groups/admin users rothman

Modifying a user

You can change a user’s properties by using the create command (even if the property
 already exists). For example, to change rothman’s shell to zsh, use:
$ sudo dscl . create /Users/rothman shell /bin/zsh

Deleting a user

To delete a user, use dscl’s
 delete command. Since delete recursively deletes everything under
 the specified directory, use this command with caution:
$ sudo dscl . delete /Users/rothman
If you want to also delete the user’s home directory, you’ll
 have to do it manually.
Note
Be sure to delete the group you created for the user as well
 (“rothman” in this example), as shown in the next section.

Managing Groups

Directory Services stores information about groups in the /Groups directory. You can explore it with
 the dscl utility (the “.” specifies the local directory):
$ dscl .
Entering interactive mode... (type "help" for commands)
 > cd /Groups/
/Groups > ls
_amavisd
_appowner
_appserveradm
_appserverusr
[...]
You can also use dscacheutil with the
 argument -q group, which displays
 all the groups:
$ dscacheutil -q group
name: _amavisd
password: *
gid: 83

name: _appowner
password: *
gid: 87

name: _appserveradm
password: *
gid: 81

name: _appserverusr
password: *
gid: 79
[...]
Creating a group

To create a group with dscl, you’ll need to create a directory
 under /Groups and set the
 gid and passwd properties. An asterisk (*)
 specifies no password; be sure to quote it so that the shell does not
 attempt to expand it. The following commands create a group named
 writers as GID 5005 with no
 password and no members:
$ sudo dscl . create /Groups/writers gid 5005
$ sudo dscl . create /Groups/writers passwd '*'

Adding users to a group

You can add users to a group by appending values to the
 users property with dscl’s merge command at the command line (or by
 using the merge command
 interactively; start dscl in
 interactive mode with sudo dscl
 .):
$ sudo dscl . merge /Groups/writers users bjepson rothman
If the users property does
 not exist, dscl creates it. If
 the users are already part of the group, they are not added to the
 list (contrast this with the -append command, which can result in the
 same user being added more than once if the command is invoked
 multiple times).

Deleting a group

To delete a group, use dscl’s delete command. Be careful with this
 command, since it deletes everything in and below the specified
 NetInfo directory:
$ sudo dscl . delete /Groups/writers

Managing Hostnames and IP Addresses

Mac OS X consults both the /etc/hosts file and the /machines
 portion of the local directory. For example, the following entry in
 /etc/hosts would map the hostname
 xyzzy to 192.168.0.1:
192.168.0.1 xyzzy
Creating a host

To add a new host, create an entry under /Hosts and specify an IP address. This
 example adds the host xyzzy:
$ sudo dscl . -create /Hosts/xyzzy ip_address 192.168.254.7
If you add an entry that already exists, it will be
 overwritten.
The local directory takes precedence over the /etc/hosts file, so if you enter the same
 hostname with different IP addresses in both places, Mac OS X uses the
 one in the local directory. (In this case, it would map host xyzzy to 192.168.254.7, overriding the
 value of 192.168.0.1 set in /etc/hosts.)

Flat Files and Their Directory Services Counterparts

Directory Services manages information for several flat files in earlier
 releases of Mac OS X, including /etc/printcap, /etc/mail/aliases, /etc/protocols, and /etc/services.
Although you can edit these flat files directly as you would on any
 other Unix system, you can also use Directory Services to manage this
 information. Table 5-2
 lists each flat file, the corresponding portion of the directory, and
 important properties associated with each entry. Properties marked with
 “(list)” can take multiple values using the dscl
 merge command (for an example, see Adding users to a group,” earlier in this chapter). The “Flat
 files or local database?” column in Table 5-2 indicates whether Directory Services consults the flat file, the
 local database, or both. Recall that you can use Directory Utility to
 modify the way information is looked up on your Macintosh.
Table 5-2. Flat files and their NetInfo counterparts
	Flat file
	NetInfo directory
	Important properties
	Flat files or local
 database?

	 /etc/fstab
	 /Mounts
	name, dir, type, opts (list), passno, freq
	Local
 database

	 /etc/group
	 /Groups
	name, passwd, gid, users (list)
	Local
 database

	 /etc/hosts
	 /Hosts
	ip_address, name (list)
	Both; entries in the local
 directory take precedence

	 /etc/mail/aliases
	 /Aliases
	name, members (list)
	Flat files

	 /etc/networks
	 /Networks
	name (list), address
	Flat files

	 /etc/passwd, /etc/master.passwd
	 /Users
	name, passwd, uid, gid, realname, home, shell
	Local
 database

	 /etc/printcap
	 /Printers
	name, and various printcap properties (see the printcap(5) manpage)
	Flat files

	 /etc/protocols
	 /Protocols
	name (list), number
	Flat files

	 /etc/rpc
	 /Rpcs
	name (list), number
	Flat files

	 /etc/services
	 /Services
	name (list), port, protocol (list)
	Flat files

Programming with Directory Services

As a programmer, you frequently need to deal with directory
 information, whether you realize it or not. Your application uses
 Directory Services each time it looks up a host entry or authenticates a
 password. The Open Directory architecture unifies what used to be a
 collection of assorted flat files in /etc.
Working with Passwords

One traditional route to user and password information is
 through the getpw* family of
 functions. In the interest of thwarting dictionary attacks against
 password files, many operating systems have stopped returning encrypted
 passwords through those APIs. Many Unix and Linux systems simply return an x when you invoke a function like getpwnam(). However, those systems can return
 an encrypted password through functions like getspnam(), which consult shadow password entries and can generally be
 invoked by the root user only.
 Example 5-1 shows the
 typical usage of such an API, where the user enters her plain-text
 password, and the program encrypts it and then compares it against the
 encrypted password stored in the system.
Example 5-1. Using getpwnam() to retrieve an encrypted password
/*
 * getpw* no longer returns an encrypted password.
 *
 * Compile with: gcc checkpass.c -o checkpass
 * Run with: ./checkpass
 */

#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 const char *user = NULL;
 struct passwd *pwd;

 /* Set the username if it was supplied on the command
 * line. Bail out if we don't end up with a username.
 */
 if (argc == 2)
 user = argv[1];
 if(!user)
 {
 fprintf(stderr, "Usage: checkpass <username>\n");
 exit(1);
 }

 /* Fetch the password entry. */
 if (pwd = getpwnam(user))
 {
 char *password = (char *) getpass("Enter your password: ");

 /* Encrypt the password using the encrypted password as salt.
 * See crypt(3) for complete details.
 */
 char *crypted = (char *) crypt(password, pwd->pw_passwd);

 /* Are the two encrypted passwords identical? */
 if (strcmp(pwd->pw_passwd, crypted) == 0)
 printf("Success.\n");
 else
 {
 printf("Bad password: %s != %s\n", pwd->pw_passwd, crypted);
 return 1;
 }
 }
 else
 {
 fprintf(stderr, "Could not find password for %s.\n", user);
 return 1;
 }
 return 0;

}

Beginning with Mac OS X 10.3 (Panther), your code no longer has a
 chance to look at an encrypted password. There are no functions such as
 getspnam(), and
 if you invoke a function like getpwnam(), you’ll get one or more asterisks
 as the result. For example:
$ gcc checkpass.c -o checkpass
$./checkpass bjepson
Enter your password:
Bad password: ******** != **yRnqib5QSRI
Note
There are some circumstances where you can obtain an encrypted
 password, but this is not the default behavior of Mac OS X. See the
 getpwent(3) manpage for complete
 details.

Instead of retrieving and comparing encrypted passwords, you
 should go through the Linux-PAM (Pluggable Authentication Modules for Linux)
 APIs. Since Linux-PAM is included with (or available for) many flavors
 of Unix, you can use it to write portable code. Example 5-2 shows a simple
 program that uses Linux-PAM to prompt a user for his password.
Example 5-2. Using Linux-PAM to authenticate a user
/*
 * Use Linux-PAM to check passwords.
 *
 * Compile with: gcc pam_example.c -o pam_example -lpam
 * Run with: ./pam_example <username>
 */
#include <stdio.h>
#include <pam/pam_appl.h>
#include <pam/pam_misc.h>

int main(int argc, char *argv[])
{

 int retval;
 static struct pam_conv pam_conv;
 pam_conv.conv = misc_conv;
 pam_handle_t *pamh = NULL;
 const char *user = NULL;

 /* Set the username if it was supplied on the command
 * line. Bail out if we don't end up with a username.
 */
 if (argc == 2)
 user = argv[1];
 if(!user)
 {
 fprintf(stderr, "Usage: pam_example <username>\n");
 exit(1);
 }

 /* Initialize Linux-PAM. */
 retval = pam_start(“pam_example”, user, &pam_conv, &pamh);
 if (retval != PAM_SUCCESS)
 {
 fprintf(stderr, "Could not start pam: %s\n",
 pam_strerror(pamh, retval));
 exit(1);
 }

 /* Try to authenticate the user. This could cause Linux-PAM
 * to prompt the user for a password.
 */
 retval = pam_authenticate(pamh, 0);
 if (retval == PAM_SUCCESS)
 printf("Success.\n");
 else
 fprintf(stderr, "Failure: %s\n", pam_strerror(pamh, retval));

 /* Shut down Linux-PAM. Return with an error if
 * something goes wrong.
 */
 return pam_end(pamh, retval) == PAM_SUCCESS ? 0 : 1;
}

For this to work, you must create a file called pam_example in /etc/pam.d with the following contents
 (the filename must match the first argument to pam_start(), which is shown in bold in Example 5-2):
auth required pam_securityserver.so
account required pam_permit.so
password required pam_deny.so
Be careful when making any changes in the /etc/pam.d directory. If you change one of
 the files that is consulted for system login, you may lock yourself out
 of the system. For more information on Linux-PAM, see the pam(8) manpage.
Once you’ve compiled this program and created the pam_example file in /etc/pam.d, you can test it:
$ gcc pam_example.c -o pam_example -lpam
$./pam_example bjepson
Password: ********
Success.

Chapter 6. Printing

Mac OS X offers a rich and flexible set of tools for administering and
 using a wide variety of printers. Common Unix tools—such as lpr, lpq,
 and lprm—are here as well, along with a
 few new ones just for Mac OS X.
This chapter starts with a basic discussion of how to use the
 AddPrinter utility, a GUI tool for configuring local and network printers.
 Then we’ll move on to discuss the Mac OS X implementation of the Unix
 printing tools. In particular, we will discuss the Common Unix Printing
 System (CUPS).
AddPrinter

If you’re using a popular USB printer under Mac OS X, it is
 likely that all you’ll need to do is connect it to the USB port and choose
 the printer in the Print dialog when you want to print a document.
 However, there are some circumstances where it’s not so simple:
	Your USB printer might not automatically show up as an available
 printer in the Print dialog.

	You might want to share your printer with other computers on
 your LAN.

	You might want to use a network printer such as one listed in
 Open Directory, an AppleTalk printer, or a printer for which all you
 have is an IP address.

In Leopard, the utility for setting up a new printer is called
 AddPrinter. (In pre-Leopard releases of Mac OS X, it was called the
 Printer Setup Utility and was located in the /Applications/Utilities folder.) In most cases,
 AddPrinter is launched to add a new printer in Mac OS X in one of two
 indirect ways:
	Using System Preferences
	Open System Preferences, choose Print & Fax, click the
 + sign, and click Add when the AddPrinter utility appears. To share
 your printers with other computers, open System Preferences, choose
 Print & Fax→Sharing, select the printers you want to share, and
 click “Share these printers with other computers.”

	Adding a printer automatically
	Attempting to print a document from virtually any application
 for the first time (before any printers are defined) will display
 the printer selection dialog shown in Figure 6-1, informing you that there is no
 installed printer and providing an Add Printer option in the
 drop-down list. Selecting the Add Printer option opens the Printer
 Browser, shown in Figure 6-2.

[image: Adding a printer]

Figure 6-1. Adding a printer

[image: AddPrinter’s Printer Browser]

Figure 6-2. AddPrinter’s Printer Browser

You can also launch AddPrinter directly, either by double-clicking
 it in the Finder in the /System/Library/CoreServices folder or from the
 Terminal with the command:
$ open –a AddPrinter
Whichever way you end up launching AddPrinter, once launched, it
 automatically searches for printers that are directly connected (usually
 via USB) and for Bonjour-enabled printers on your network. If either a
 Bonjour-enabled printer or a locally attached printer is found, you can
 easily add this printer, and you’ll be ready to use it immediately. If you
 have a USB printer connected directly to your Mac, it will most likely
 show up as your default printer automatically. Other options in the
 AddPrinter window include:
	Fax
	Set up a fax machine, connected either via a modem or via
 Bluetooth

	IP
	Add an IP printer connected to your network

	Windows printer
	Add a printer shared by a Windows system on your
 network

	Bluetooth
	Add a printer that’s available via Bluetooth

	AppleTalk
	Add a network printer using an AppleTalk connection

	More Printers
	Set up third-party printer types that are installed on your
 system

However you add a printer, Mac OS X tries to identify the printer
 type and attempts to select a PostScript Printer Description (PPD) file
 automatically. (Although the first P in PPD stands for PostScript, CUPS
 has extended the PPD file format to include non-PostScript
 printers.)
The PPD file provides the operating system with specific information
 about your printer, including available fonts, paper sizes, installable
 options, and other features. The printer’s driver uses the PPD file. If an
 appropriate PPD file for your printer is not included with Mac OS X, one
 may be available from the printer’s manufacturer or on the CD that came
 with the printer. If Mac OS X does not find it automatically, you can try
 to find it in the list.
Adding an IP Printer

If you have a printer on your network that is not
 Bonjour-enabled, you’ll need to have some information about it on hand,
 including:
	The printer’s IP address or hostname

	The manufacturer and model of the printer

	Any installed options (such as a duplexer)

Note
If you don’t know the exact model of the printer, you may still
 be able to set it up, albeit with reduced functionality. For example,
 if all you know is that you’ve got some kind of HP DeskJet, you can
 configure the printer as a generic DeskJet by selecting ESP→HP New
 DeskJet Series CUPS from the Printer Model options when you add the
 printer. However, specifying the exact model may cause Mac OS X to
 enable a fuller set of printing features, including options such as
 duplex printing (a generic version of the driver generally includes
 only the minimum set of features needed to print to a broad range of
 models).

To set up an IP printer, click the IP Printer icon in the Printer
 Browser window and select the protocol, as shown in Figure 6-3.
[image: Selecting the LPD protocol in the AddPrinter utility’s Printer Browser]

Figure 6-3. Selecting the LPD protocol in the AddPrinter utility’s Printer
 Browser

You need to select a protocol from the following choices:
	Internet Printing Protocol – IPP

	Line Printer Daemon – LPD

	HP Jetdirect – Socket

For example, suppose you have a Konica Minolta Magicolor 2450 on
 your LAN and that its IP address is 192.168.0.77. In this case, you
 would select “Line Printer Daemon – LPD” as the Protocol, enter
 192.168.0.77 as the Address, specify a Queue name if required (otherwise
 it is called “default”) and a Name and Location for the printer, and
 select Konica Minolta Magicolor in the Print Using box, if that model is
 available. In this case, the model could not be found in this dialog
 box, as shown in Figure 6-4.
[image: Adding a printer]

Figure 6-4. Adding a printer

If you cannot find your printer in the “Print Using” list, you
 should make sure that you’ve updated your Mac OS X installation via
 Software Update (either from the menu bar or through System
 Preferences→Software Update). Apple provides drivers for most of the popular printers, and you may find
 that yours has been added. (If your driver has not been installed with
 Mac OS X, the most likely explanations are that your printer is either a
 very old model or a very new model.) If your Mac OS X installation is
 up-to-date and your printer model’s driver is still not installed, you
 can check the printer manufacturer’s website to determine if the
 appropriate printer driver is available for Mac OS X. If not, in most
 cases you should still be able to use the printer by selecting “Generic
 Postscript Printer” in the “Print Using” list. In the case of the Konica
 Minolta Magicolor 2450 printer, a driver was available on the
 manufacturer’s website. Once the driver is installed, the printer should
 turn up in the “Print Using” list, as shown in Figure 6-5.
[image: Finding your printer’s driver]

Figure 6-5. Finding your printer’s driver

After clicking the Add button, you will be prompted to enter
 printer-specific information such as printer installable options, as
 shown in Figure 6-6.
[image: Specifying printer model-specific installable options]

Figure 6-6. Specifying printer model-specific installable options

Once you’ve added a printer, the printer will show up in the Print
 & Fax preference pane, as shown in Figure 6-7.
[image: The Print & Fax preference pane]

Figure 6-7. The Print & Fax preference pane

Setting up an LPD printer in this manner allows you not only to
 print documents by selecting Print from the File menus of GUI-based
 applications, but also to manipulate the print queue from the Terminal
 using the CUPS lp, lpq, lprm, lpstat, and cancel shell commands. (See Printing-Related Shell Commands,” later in this chapter,
 for a more complete listing of command-line utilities.)

Creating a Desktop Icon for a Printer

You can use the Print & Fax preference pane to place an icon
 for your printer on the Desktop. (You can actually place the icon in any folder in which
 you have write permission, but we’ll assume you’re using the Desktop.)
 Using your mouse, drag your printer’s icon from the left subwindow of
 the Print & Fax preference pane to the Desktop. Two printer icons
 will be created by this action: one will be an application in ~/Library/Printers, while the other (the one
 on the Desktop) will be an alias to the printer icon application in
 ~/Library/Printers. You can just
 leave this icon on your Desktop, or you can place it in the left section
 of the Dock with the application icons, or in the lower section of the
 Finder’s Places sidebar. In each case, you’ll be able to print a
 document by dragging its icon to the printer’s icon.
Note
Double-clicking a Desktop printer icon opens a window that shows
 you the status of the printer and any items in the print queue. This
 comes in handy for times when you need to quickly cancel a print job
 or start/stop the print queue to service a printer.

Modifying a Printer’s Settings

Once your printer has been added, you can change some of its
 settings (location, printer model, and any installable options) by
 selecting System Preferences→Print & Fax→Options & Supplies.
 Before clicking the Options & Supplies tab, make sure that you’ve
 selected the correct printer in the left subwindow of the Print &
 Fax preference pane, in case more than one printer has been added to
 your installation. Alternatively, if you’ve created a printer icon on
 your Desktop, you can open the Options & Supplies window by double-clicking the icon and then clicking
 on Info in the printer window’s title bar. Under Options & Supplies,
 you can also check on the supply levels of the toner in your
 printer.
You can change the driver by selecting System Preferences→Print
 & Fax→Open Print Queue, clicking the Info tab, and then clicking on
 the Driver tab.

Monitoring Printer Status and Troubleshooting

If you select System Preferences→Print & Fax→Open Print
 Queue, you’ll be able to check on the status of the print queue, as
 shown in Figure 6-8.
[image: Monitoring the print queue]

Figure 6-8. Monitoring the print queue

From the Printer option in the menu bar, you can select from the
 following options:
	Make Default

	Supply Levels

	Print Test Page

	Network Diagnostics

	Log & History

	Pause Printer

	Show Printer List

Printer Sharing

Printers with network adapters are not necessarily the only printers
 available on your LAN. You can share a printer that’s connected to your
 computer with other computers. For example, you can share your USB (or
 network) printer with all the computers on your LAN in the Print & Fax
 preference pane. To do so, highlight the printer that you’d like to share
 and select “Share this printer.”
Note
You may need to click the lock in the lower-left corner to
 authenticate yourself as an administrative user before you make changes
 to the system preferences.

The Sharing preference pane will reflect this change, as shown in
 Figure 6-9.
[image: Sharing preferences]

Figure 6-9. Sharing preferences

If you’ve activated the firewall, enabling Printer Sharing in the Sharing preference
 pane opens up incoming ports 631 (Internet Printing Protocol) and 515
 (lpd) for printing. Selecting System
 Preferences→Security→Firewall will also reveal that Printer Sharing has
 been enabled, as shown in Figure 6-10.
[image: Printer sharing revealed in the Security preference pane]

Figure 6-10. Printer sharing revealed in the Security preference pane

Note
To verify which ports are open in the firewall, you can launch the
 Network Utility in /Applications/Utilities and perform a port
 scan on localhost.

Once you’ve shared your printer, other Macs on your subnet should
 automatically see it in their Print dialog boxes. Users on your local
 network but not on your subnet will be able to connect to the printer
 using the IP address or hostname of your Mac.
In addition to sharing your printer with Mac users, you can share it
 with Linux, Unix, and Windows users. If a Unix or Linux computer is on the
 same subnet as the computer sharing its printer and has CUPS installed, it
 will see the shared printer. If not, you will need to provide the IP
 address of the computer sharing the printer (see Printing from Remote Systems,” later in this chapter).
Note
It is also easy to print from your Mac to a printer that is shared
 by a Windows computer. If your computer is on the same subnet as the
 Windows machine, click the Windows icon at the top of the Printer
 Browser window and select the workgroup and then the computer, and you
 should see the printer listed. Highlight the printer and click Add.
 Subsequently, this printer will be available in your Print
 dialogs.

After you’ve activated Printer Sharing, you may want to add some
 information about the physical location of the printer. As noted earlier,
 you can do this on the Options & Supplies tab of the Print & Fax
 preference pane: select System Preferences→Print & Fax→Options &
 Supplies→General and enter your printer’s information in the Location
 field. For example, if the marketing group is sharing a printer, you might
 type “Marketing” in the Location field.
Note
If you have trouble getting a printer to work correctly, check out
 the Printer Setup Repair shareware utility (http://www.fixamac.net/software/index.html). Though at
 the time of this writing a version for Leopard is not available, the
 developer’s website reports that the Leopard version is “coming soon.”
 This utility has been available for Mac OS X since 10.1 and seems to be
 popular (as judged from its ratings on http://www.versiontracker.com and http://www.macupdate.com).

The Common Unix Printing System (CUPS)

The Common Unix Printing System, a core component of Mac OS X, is
 free, open source software that provides a portable and extensible
 printing system for the Unix-based Internet Printing Protocol
 (IPP/1.1).
Note
Extensive documentation and source code is available for CUPS
 online (http://www.cups.org). As noted in the
 online documentation, the goal of CUPS is “to provide a complete, modern
 printing system for Unix that can be used to support new printers,
 devices, and protocols while providing compatibility with existing Unix
 applications.”

CUPS provides System V- and Berkeley-compatible command-line
 interfaces and a web-based interface to extensive documentation and status
 monitoring and printer administration tools. You can access the web-based
 administration interface by pointing your web browser to port 631 on the
 your local machine (http://127.0.0.1:631 or http://localhost:631). (To access CUPS from a remote
 machine, enable Printer Sharing [System Preferences→Sharing], and use your
 machine’s IP address instead of 127.0.0.1.) The main page of the web-based
 administrative interface is shown in Figure 6-11.
[image: CUPS’s web-based interface]

Figure 6-11. CUPS’s web-based interface

The CUPS web interface provides some functionality not available
 directly through the System Preferences and AddPrinter GUIs. For example,
 you can use the web interface to configure CUPS to use Kerberos
 authentication, move print jobs, allow/deny specified users access to
 selected printers, and manage classes. The CUPS web interface also
 provides extensive documentation on its use (http://localhost:631/help/).
Printing from Remote Systems

CUPS is available on a wide variety of Unix-based systems and
 makes both the administration and use of shared printers easy. For
 example, a shared USB printer connected to your Mac is immediately
 visible to a Solaris-based SUN workstation running CUPS, provided the
 Solaris machine is on the same subnet (if not, remote users can connect
 to the printer by supplying your Mac’s IP address or
 hostname).
GNOME and KDE, the most popular desktop environments for Linux, have utilities that make it easy to connect to
 a printer you’ve shared from your Mac. Before you proceed, you should
 find out the queue name of your printer, as described in the following
 steps:
	Select System Preferences→Print & Fax.

	Select your printer and click the Options & Supplies
 button. (The General tab will be selected by default.)

	Figure 6-12
 shows the settings for an HP LaserJet P1505 connected to the USB
 port. The queue name for this printer is “HP_LaserJet_P1505.”

[image: Inspecting the properties of an HP LaserJet P1505]

Figure 6-12. Inspecting the properties of an HP LaserJet P1505

GNOME

To connect to your Mac’s printer from GNOME:
	Launch the GNOME printer configuration tool. This may appear
 in a menu (on Ubuntu Linux, select
 System→Administration→Printing), or you can run the command
 system-config-printer. The
 Printer configuration tool appears as shown in Figure 6-13.

[image: GNOME printer configuration]

Figure 6-13. GNOME printer configuration

	Select “Show printers shared by other systems” and click
 Apply.

	Quit the Printer configuration tool and relaunch it. The
 shared printers on your network should now appear under a Remote
 Printers heading, as shown in Figure 6-14. Note that
 GNOME has automatically detected the correct printer
 driver.

[image: Examining a remote printer under GNOME]

Figure 6-14. Examining a remote printer under GNOME

KDE

To connect to your Mac’s printer using KDE, launch the KDE
 Control Panel (in OpenSUSE, for example, click the Start menu and
 select Configure Desktop) and choose Peripherals→Printers. You may
 find that your printer is already detected. Depending on whether your
 Linux system can resolve your Mac’s hostname properly, this printer
 may work as-is.
Note
Right-click on the printer, select Printer IPP Report, and
 browse the results. If you see “Unknown host” and/or “Unable to
 lookup host” in the printer-state-message attribute, it
 probably won’t work out of the box.

If the printer is not detected automatically, you can follow
 these steps to add it manually:
	Click Add→Add Printer/Class.

	The Add Printer Wizard appears. Click Next to start the
 wizard.

	The Backend Selection screen will appear. Choose Remote CUPS
 Server (IPP/HTTP) and click Next.

	The next screen asks for user identification. Leave this set
 to the default (Anonymous) and click Next.

	Specify your Mac’s IP address and CUPS port (normally 631),
 as shown in Figure 6-15. Click
 Next.

	You’ll see a list of shared printers on your Mac, as shown
 in Figure 6-16.
 Choose one, and click Next.

	The next screen asks you to select the printer manufacturer
 and model. Click Next when you’re done.

	The Driver Selection screen appears. This displays all the
 detected drivers for your printer. Choose the correct one, and
 click Next.

	At this point, you’re prompted to test the printer. When we
 tried this, it didn’t work, but it wasn’t a showstopper. If it
 doesn’t work for you, click Next anyway and keep on moving through
 the wizard.

	There are a few more screens: Banner Selection, Printer
 Quota Settings, and Users Access Settings. Leave the defaults and
 click Next for each one.

	The next screen asks for the printer name, location, and
 description. Specify something that you think is useful, and then
 click Next.

	The final screen shows you a summary of the selected
 settings. Review them, clicking Back if necessary to change
 anything, and click Finish when you are ready.

	After the printer is installed, you can right-click on it in
 the Printing Manager and select Test Printer to send it a test
 page.

[image: Setting the host and port]

Figure 6-15. Setting the host and port

[image: Choosing the shared printer on your Mac]

Figure 6-16. Choosing the shared printer on your Mac

Manual printer configuration (Linux and Unix)

You can also configure a CUPS client manually. To add your Mac
 OS X printer as the default printer, edit /etc/cups/printers.conf on the Linux (or
 other Unix) machine, and add the following entry, replacing OfficeJet-D135, 192.168.254.150, and officejet_d_series with the appropriate
 values:
<DefaultPrinter OfficeJet-D135>
Info OfficeJet-D135
DeviceURI http://192.168.254.150:631/printers/officejet_d_series
State Idle
Accepting Yes
JobSheets none none
QuotaPeriod 0
PageLimit 0
KLimit 0
</Printer>
If you don’t want the printer to be the default printer, change
 DefaultPrinter
 to Printer. After you’ve added the
 entry, stop and restart CUPS on the Linux (or other Unix) machine to
 load the new printer configuration.

Printing from Linux

After you get your Mac’s printer to appear in the list of
 available printers, you don’t need to do any further configuration. To
 print from an application such as Firefox, simply select the Print
 option from the application’s main menu. Your Mac’s printer will
 appear by name, as shown in Figure 6-17.
[image: Printing to your Macintosh’s shared printer from Ubuntu Linux]

Figure 6-17. Printing to your Macintosh’s shared printer from Ubuntu
 Linux

Printing-Related Shell Commands

As noted earlier, Mac OS X provides the printing-related
 command-line utilities that most Unix users will find familiar:
 lp, lpr, lpq, lprm, and lpstat. Table 6-1 provides a more
 extensive list of printing-related commands available in Mac OS X. For
 more detailed descriptions of each utility listed in Table 6-1, see the
 appropriate manpage.
Table 6-1. Printing-related command-line utilities
	Command
	Description

	 cups-calibrate
	Used to calibrate color
 output of printers

	 cups-config
	Used to obtain the CUPS
 API, compiler, directory, and link information

	 cups-genppdconfig.5.1
	Interface to generate
 Gutenprint PPD files, used by CUPS

	 cups-genppdupdate.5.1
	Updates Gutenprint PPD
 files

	 cupsaddsmb
	Exports printers to Samba
 for Windows clients

	 cupsctl
	Used to set or obtain
 configuration values in the /private/etc/cupsd.conf
 file

	cupsdisable/cupsenable
	Used to stop/start
 printers and classes

	 cupsfilter
	Used as a frontend to
 CUPS filters to convert files to various formats (the default
 format is PDF)

	 cupstestdsc
	Tests the conformance of
 PostScript files to the Adobe PostScript Language Structuring
 Conventions Specification V. 3.0

	 cupstestppd
	Tests the conformance of
 PostScript files to the Adobe PostScript Description file format
 V. 4.3

	 lp
	Used to submit and alter
 print jobs

	 lpadmin
	Configures CUPS printer
 and class queues

	 lpq
	Used to display the
 printer queue

	 lpr
	Used to send a file to a
 printer

	 lprm
	Used to remove (or
 cancel) a print job

	 lpstat
	Displays the CUPS status
 of jobs, classes, and printers

Open Source Printer Drivers

A couple of open source projects offer printer drivers for many
 printer models. One of these, Gutenprint, is included with recent versions
 of Mac OS X. The other, HPIJS, is available as a separate
 download.
Gutenprint

Gutenprint (http://gimp-print.sourceforge.net), formerly known as Gimp-Print, is a package of printer
 drivers that is bundled with Mac OS X. The Gutenprint drivers support
 printers from Epson, Canon, Lexmark, HP, and other manufacturers. In
 many cases, drivers for these printers are not available from the
 printer manufacturers themselves. Even if drivers are available, the
 Gutenprint drivers are often of better quality than those offered by the
 manufacturers.
Note
If you are using a version of Mac OS X prior to 10.3 (Panther),
 you’ll need to download the drivers from the Gutenprint website
 (http://gimp-print.sourceforge.net/MacOSX.php3).

The HP InkJet Server (HPIJS) Project

The Hewlett-Packard InkJet Server (HPIJS) Project is a collection of drivers from Hewlett-Packard that has been
 released as open source software. Although HPIJS was originally released
 for Linux, it has been ported to Mac OS X (http://www.linux-foundation.org/en/OpenPrinting/MacOSX/hpijs).
 HPIJS supports over 600 Hewlett-Packard printer models.
If you find both a Gutenprint driver and an HPIJS driver for your
 printer, we suggest that you try both and compare the quality.

Chapter 7. The X Window System and VNC

Although the X in “Mac OS X” is not the same X as in “the X Window
 System,” you can get them to play nicely together.
Most Unix systems use the X Window System as their default GUI. (We’ll
 refer to the X Window System as X11 instead of
 X, to avoid confusion with Mac OS X.) X11 includes
 development tools and libraries for creating graphical applications for
 Unix-based systems. Mac OS X does not use X11 as its GUI; it relies instead
 on the Quartz Compositor, which manages all onscreen activity, including the
 windowing environment. However, Apple’s own implementation of X11 for Mac OS
 X, based on the X.Org Foundation’s open source X11 (http://www.x.org), is bundled with Mac OS X. (In Mac OS X
 10.4 Tiger, X11 was not installed by default, although it was available as
 an optional installation on the Mac OS X install media.) Apple also provides
 an X11 software development kit (the X11 SDK) that is installed along with
 the Xcode tools (it is a component of the Unix Development Support package,
 which is selected by default during the Xcode installation).
This chapter highlights some of the key features of Apple’s X11
 distribution and explains how to use X11 in both the rootless and
 full-screen modes. You’ll also learn how to connect to other X Window
 systems using Virtual Network Computing (VNC), as well as how to remotely
 control the Mac OS X desktop from remote X11 systems.
About Apple’s X11
As noted earlier, Apple’s X11 distribution is based on the open
 source X.Org Foundation codebase, X11R7.x. (Pre-Leopard Mac OS X releases
 based their X11 implementations on the open source XFree86 codebase.)
 Apple’s X11 package has been optimized for Mac OS X and offers the
 following features:
	The X11R7.2 window server

	Support for the RandR (Resize and Rotate) extension

	Strong integration with the Mac OS X environment

	A Quartz window manager that provides Aqua window decorations,
 the ability to minimize windows to the Dock, and pasteboard
 integration

	The ability to use other window managers

	Compatibility with Exposé

	Compatibility with Spaces

	launchd integration

	Support for rootless and full-screen modes

	A customizable Application menu, which allows you to add
 applications for easy launching and to map keyboard shortcuts

	A customizable Dock menu, which allows you to add applications
 for easy launching, to map keyboard shortcuts, and to list all open
 windows

	Finder integration, which supports autodetection of X11 binaries
 and double-clicking to launch X11 binaries, starting the X server if
 it is not already running

	Preference settings for the system color map, key equivalents,
 system alerts, keyboard mappings, and multibutton mouse
 emulation

	Hardware acceleration support for OpenGL (GLX) and Direct CG
 (AIPI)

At the time of this writing, however, Apple’s X11 package is
 somewhat buggy; some features, such as full-screen mode, simply do not
 work at all. The best way to stay ahead of the shortcomings is to use
 Apple’s bleeding-edge version, which is available for free download at
 http://trac.macosforge.org/projects/xquartz/.
MacOSXHints maintains an excellent FAQ on X11 and Leopard at http://forums.macosxhints.com/showthread.php?t=80171.

Installing X11

Apple’s X11 for Mac OS X is installed by default in Mac OS X 10.5
 Leopard (if you so desire, you can customize your installation and
 deselect it). It’s also available in Tiger but is not selected by default,
 so Tiger users will need to perform a customized installation of Mac OS X
 or install the package from the original installation discs.
Once you’ve installed X11, you’ll find an application named X11 in
 the /Applications/Utilities folder. If you’re
 going to build X11-based applications, you’ll also need to install the
 Xcode tools; this installation includes the X11SDK package by default. To install the Xcode
 tools, insert the Mac OS X Install DVD, open the Optional Installs folder, then open the
 Xcode Tools folder. Find XcodeTools.mpkg and double-click it to begin
 the installation process.
If you opted out of installing the X11 SDK when you installed the
 Xcode tools, you can install it now by inserting the Mac OS X Install DVD,
 opening the Xcode Tools folder, then
 opening the Packages folder. There,
 you will find the X11SDK.pkg
 installer. Double-click it to begin the installation of X11SDK. Instructions for building X11
 applications are included in Chapter 10;
 this chapter focuses on using X11.
Note
Though double-clicking the X11 application in the /Applications/Utilities
 folder starts X11 and opens an xterm window, it is generally unnecessary to
 do that to start X11-based applications. X11 is launched automatically
 whenever is it’s needed, thanks to its launchd support.

Running X11

To launch the X server, just start any X11-based application.
 For example, you can just enter the command xterm & in a Terminal window; an xterm window (which
 looks similar to a Mac OS X Terminal window) will open, sporting Aqua-like
 buttons for closing, minimizing, and maximizing the window. X11 windows
 minimize to the Dock, just like other Aqua windows. Figure 7-1 shows a Terminal
 window and an xterm window
 side-by-side.
[image: A Terminal window and an xterm window sporting the Aqua look]

Figure 7-1. A Terminal window and an xterm window sporting the Aqua
 look

Note
Avoid setting the DISPLAY
 environment variable; it’s set automatically by launchd, even before you launch any X11-based
 applications.

If you’re using the default configuration, you’ll notice three
 obvious differences from a Terminal window. In particular:
	The xterm window has a
 title bar that reads simply “xterm.”

	The xterm window does not
 have vertical or horizontal scrollbars.

	The xterm window does not
 support tabs.

A less obvious difference between a Terminal window and an X11
 xterm window is that
 Control-clicking in an xterm window
 does not invoke the same contextual menu that it does in a Terminal window.
 Control-clicking, Control-Option-clicking, and Control-⌘-clicking in an
 xterm window instead invokes the
 xterm-specific contextual menus shown
 in Figures 7-2, 7-3, and 7-4. (If you have a one-button mouse,
 you’ll need to enable “Emulate three button mouse” under
 X11→Preferences→Input for this to work.)
Note
Mac OS X emulates right-mouse-button clicks with Control-clicks.
 In X11, you can configure key combinations that simulate clicking the
 buttons on two- and three-button mice.
With “Emulate three button mouse” enabled, Option-clicking
 simulates clicking the middle mouse button, and ⌘-clicking simulates
 clicking the right mouse button. You can use X11→Preferences to enable
 or disable this option, but you cannot change which key combinations are
 used (although you can use xmodmap
 as you would under any other X11 system to remap pointer
 buttons).

[image: Control-clicking (or Control-left-clicking) in an xterm window]

Figure 7-2. Control-clicking (or Control-left-clicking) in an xterm
 window

[image: Control-Option-clicking (or Control-middle-clicking) in an xterm window]

Figure 7-3. Control-Option-clicking (or Control-middle-clicking) in an xterm
 window

[image: Control-⌘-clicking (or Control-right-clicking) in an xterm window]

Figure 7-4. Control-⌘-clicking (or Control-right-clicking) in an xterm
 window

If you have a three-button mouse, Control-clicking with the right
 mouse button does the same thing as
 Control-⌘-clicking, Control-clicking with the middle button does the same thing as
 Control-Option-clicking, and Control-clicking with the left button does
 the same as Control-clicking with a single-button mouse.
Note
You can use MacPorts or Fink to install an xterm replacement such as rxvt or eterm. See Chapter 12 for more
 information on Fink and Chapter 13 for more information
 on MacPorts.

Customizing X11

You can customize a number of things in X11. For example, you can
 customize your xterm window, set X11
 application preferences, customize the X11 application and Dock menus, and
 specify which window manager to use.
Dot-Files, Desktops, and Window Managers

To customize X11, you can create an .xinitrc script in your home directory. A sample .xinitrc script is provided in /usr/X11/lib/X11/xinit/xinitrc.
Using the script as a starting
 point, you can specify which X11-based applications to start when X11 is
 launched, including which window manager you’d like to use as your
 default. The default window manager for X11 is Quartz (quartz-wm). The tab window manager (twm) is also bundled with X11, but many other
 window managers are available, along with additional desktop
 environments (DTEs), through Fink and MacPorts (see Chapters 12 and 13, respectively). If you’re going to
 use your own .xinitrc file and want
 to use the Quartz window manager, make sure you start it by putting this
 command in the file:
exec quartz-wm
Once you’ve installed X11, you’ll probably want to install
 additional X11 applications and window managers, and perhaps other DTEs.
 (Even if you are using Apple’s window manager, you can still run most
 binaries from a different DTE, such as GNOME or KDE, without using that
 DTE as your desktop.) One of the easiest ways to install additional
 window managers is to use MacPorts. Table 7-1
 lists some of the window managers and desktops offered by MacPorts. If
 you’d prefer, you can just as easily install additional window managers
 with Fink.
Table 7-1. Window managers available for MacPorts
	Window
 manager/desktop
	MacPorts package
 name

	aewm
	 aewm

	AfterStep
	 afterstep

	awesome
	 awesome

	Blackbox
	 blackbox

	Enlightenment
	 enlightenment

	evilwm
	 evilwm

	fluxbox
	 fluxbox

	FVWM
	fvwm, fvwm2

	GNOME
	 gnome

	IceWM
	 icewm

	Ion
	 ion3

	KDE
	 kde

	Metacity
	 metacity

	MWM
	 openmotif

	Openbox
	 openbox

	Oroborus
	 oroborus

	ratpoison
	 ratpoison

	Sawfish
	 sawfish

	vtwm
	 vtwm

	Window
 Maker
	 windowmaker

	Window Manager
 Improved
	 wmii

	Xfce
	 xfce

Fink has entire sections devoted to GNOME and KDE (http://pdb.finkproject.org/pdb/), where you will find
 extensive sets of libraries, utilities, and plug-ins. Also included in
 the GNOME section are GTK+, glib,
 and Glade. Installing GNOME and KDE may be especially useful if you want
 to develop software for these desktops.
Fink installs everything in its /sw directory, and MacPorts installs
 everything in /opt/local. If you’ve
 installed Fink or MacPorts according to its instructions, the
 installation location is automatically added to your command path.
 Otherwise, you may need to specify the full path in your .xinitrc.
You can customize the xterm
 window in Apple’s X11 in the same way you would customize xterm on any other system running X11. You
 can, for example, set resources in an .Xdefaults file in your home directory or use
 escape sequences to set the title bar text (see Customizing the Terminal on the Fly” in Chapter 1).

X11 Preferences, Applications Menu, and Dock Menu

You can also customize your X11 environment by setting X11’s
 preferences via the X11→Preferences window (⌘-,) and adding programs to
 its Application menu. X11’s Preferences are organized into three
 categories: Input, Output, and Security.
Input

The following options are used for controlling how X11
 interacts with input devices:
	Emulate three-button mouse
	Determines whether Option-clicking and ⌘-clicking mimic
 clicking the middle and right buttons on a three-button
 mouse.

	Follow system keyboard layout
	Allows input menu changes to overwrite the current X11
 keymap.

	Enable keyboard shortcuts under X11
	Enables menu bar key equivalents, which may interfere with
 X11 applications that use the Meta modifier. This option is
 checked by default.

Output

The following options are used for configuring X11’s look
 and feel:
	Colors
	This pop-up menu offers the following options:
	From Display

	256 Colors

	Thousands

	Millions

By default, the Colors pop up is set to “From Display.” If
 you change this setting to something else, you will need to
 relaunch X11 for the change to take effect.

	Full-screen mode
	This option controls whether X11 runs in rootless (the
 default) or full-screen mode. See the sidebar Full-Screen X11” for details on these modes.
Full-Screen X11
X11 can be run in two modes, full
 screen or rootless (the
 default). Both of these modes run side-by-side with Aqua,
 although full-screen mode hides the Finder and Mac OS X’s
 desktop. (To hide X11 and return to the Finder, press
 Option-⌘-A.)
In rootless mode, X11 applications appear in their own
 windows on your Mac OS X desktop. In full-screen mode, X11
 takes over the entire screen. This mode is suitable for
 running an X11 desktop environment such as GNOME, KDE, or
 Xfce. If you want to run X11 in full-screen mode, you’ll
 have to enable this option in X11’s Preferences by selecting the
 “Full-screen mode” checkbox on the Output tab. (At the time of
 this writing, however, full-screen mode doesn’t work in
 Leopard.)

	Use system alert sounds
	Determines whether X11’s beeps use the system alert sound, as specified in the Sound
 Effects preference pane (System Preferences→Sound→Sound
 Effects). If this option is left unchecked, X11 windows use the
 standard Unix system beep to sound an alert.

Security

The following options are used for configuring X11’s
 security:
	Authenticate connections
	When this option is checked (the default), Xauthority
 access-control keys are created when X11 is launched.

	Allow connections from network clients
	When this option is checked (the default), connections
 from remote applications are allowed. If it’s unchecked, such
 connections are not allowed. (If this option is checked, be sure
 to also enable “Authenticate connections” to ensure
 security.)

Customizing X11’s Applications menu

X11’s Applications menu can be used to quickly launch X11
 applications, so you don’t have to enter their command paths. You can
 add other X11 applications to this menu and assign them keyboard
 shortcuts by selecting Applications→Customize to bring up the X11
 Application Menu dialog window, shown in Figure 7-5.
[image: X11 Application Menu customization window]

Figure 7-5. X11 Application Menu customization window

You can also open the X11 Application Menu window by
 Control-clicking X11’s Dock icon while X11 is running and selecting
 Applications→Customize from the contextual menu. When you
 Control-click on X11’s Dock icon, you’ll see that the applications
 shown in Figure 7-5
 are listed there as well. X11’s contextual menu allows you to quickly
 launch other X11 applications and to switch between windows of
 currently running X11 applications.

X11-Based Applications and Libraries

You can use MacPorts (or Fink) to install many X11-based
 applications, such as the GNU Image Manipulation Program (GIMP), xfig/transfig, ImageMagick, nedit, and many others. Since MacPorts
 understands dependencies, installing some of these applications will cause
 MacPorts to first install several other packages. For example, since the
 text editor nedit depends on Motif
 libraries, MacPorts will first install openmotif. (This also gives you the Motif
 window manager, mwm.) Similarly, when
 you install GIMP via MacPorts, you will also install the packages for many
 GNOME libraries, GTK+, and glib. Fink
 can be used in a similar manner.
You can also use Fink or MacPorts to install libraries directly. For
 example, the following command can be used to install the X11-based Qt
 libraries with Fink:
$ sudo fink install qt
An Aqua version of Qt for Mac OS X is available from Trolltech (http://www.trolltech.com). You can use MacPorts to install
 it with the following command:
$ sudo port install qt4-mac
However, Qt applications won’t automatically use the library.
 Instead, you’ll need to recompile and link the applications against the
 Aqua version of Qt, which may not always be a trivial task.
KDE and GNOME are both available for Mac OS X. MacPorts and Fink
 generally stay close to the most recent releases of GNOME. At the time of this writing, KDE3 has been ported and a
 port of KDE4 is, according to the “KDE on Mac OS X” website, close to reaching a stable stage. To keep abreast of
 developments pertaining to KDE on Mac OS X, see http://techbase.kde.org/index.php?title=Projects/KDE_on_Mac_OS_X
 and http://www.racoonfink.com/archives/cat_kde.html.
X11 and the Rest of Mac OS X

X11-based applications rely on a different graphics system from Mac
 OS X, and even when running X11 in rootless mode, you would not
 necessarily expect to see GUI interactions run smoothly between these two graphics systems. But
 actually, there are several such interactions that run very well.
As one example, it is possible to open X11-based applications from
 the Terminal application. If you’re running a pre-Leopard release of Mac OS X, you
 can use the open command to launch
 an X11-based application from the Terminal as follows:
$ open-x11 /usr/X11/bin/xeyes
Beginning with Leopard, it’s even easier than that, thanks to the
 launchd support in Leopard’s
 X11:
$ /usr/X11/bin/xeyes &
In Leopard, the X11 application is started automatically, whenever
 it’s needed.
You can also copy and paste between X11 and Mac OS X applications. For
 example, to copy from an xterm window, select
 some text with your mouse and use the standard Macintosh keyboard
 shortcut to copy, ⌘-C. This places the selected text onto the clipboard.
 To paste the contents of the clipboard into a Mac OS X application (such
 as the Terminal), simply press ⌘-V.
To copy from a Mac OS X application, again highlight some text and
 press ⌘-C. You can paste the
 copied text into an xterm window by
 pressing the middle button of a three-button mouse or, if you’ve enabled
 the “Emulate three button mouse” option in X11’s Preferences, by
 Option-clicking in the X11 application.

TKAqua

Though Tcl/Tk is included with Mac OS X, an Aqua-fied version of
 the scripting language, TKAqua, is available from http://tcltkaqua.sourceforge.net. Included in that
 distribution is a double-clickable Wish Shell, which is an application bundle.

Connecting to Other X Window Systems

You can connect from Mac OS X to other X Window systems using
 ssh with X11 forwarding. If you use
 OpenSSH (which is included with Mac OS X), you must use the -X (or -Y)
 option to request X11 forwarding. When used with the ssh command, the -2 option specifies the SSH version 2 protocol,
 as opposed to the older version 1 protocol. For example:
$ ssh −2 -X remotemachine -l username
This command can be entered either in an xterm window or in the Terminal. Beginning with
 Leopard, X11 does not have to be running when you enter this command. When
 the connection is made, X11 will be launched automatically. If you enter
 in the remote X11-based shell a command that launches an X11-based graphical application, that
 application will run on your Mac’s Desktop. For example, suppose that in a
 Mac OS X Terminal window, you log into a Sun workstation running Solaris
 via SSH (as described earlier), and then in the Solaris shell running in
 the Terminal, you enter this command:
$ xclock &
This command will display the xclock application right on your Mac OS X Desktop. In pre-Leopard releases of
 Mac OS X, you had to launch the X11 application prior to making the X11
 forwarding-enabled SSH connection.
It is also possible to create a double-clickable application that
 connects to a remote machine via SSH 2, with X11 forwarding enabled. You can use the following script for this
 purpose:
#!/bin/sh
/usr/X11/bin/xterm -e ssh −2 -X remotemachine -l username
If you’ve installed the commercial version of SSH from http://www.ssh.com, the equivalent of the preceding script
 is as follows:
#!/bin/sh
/usr/X11/bin/xterm -e ssh2 remotemachine -l username
Note
The X11 forwarding flag is +x
 with the commercial SSH, but it is enabled by default, so you do not
 need to include it in the command.

Using Apple’s X11, you can add an item to the Applications menu to
 accomplish the same task. You can do this in at least two ways: for
 example, you can add the shell script to the X11 Applications menu, or you
 can add the ssh command itself to the
 menu. If you’re going to add the script to the menu, start by saving the
 script to whatever you’d like to call the application. For instance, if
 you wanted to connect to a remote machine named mrchops with a username of eer, you might name the application sshmrchops.sh and save it as ~/bin/sshmrchops.sh. Once you’ve saved the
 script, select Applications→Customize in X11 and click the Add button, as
 shown in Figure 7-6.
[image: Adding items to the X11 Applications menu]

Figure 7-6. Adding items to the X11 Applications menu

Figure 7-6 also
 shows the sshmrchops.sh script added
 under the name sshmrchops.sh, while
 the ssh command itself was added
 under the name sshmrchops. That’s it!
 Now you’re ready to launch the connection to the remote machine via the
 menu bar and the Dock. Once you’ve connected to a machine running X11, you
 can start X11-based applications on the remote machine and display them on
 your Mac OS X machine.
You can also do the reverse (ssh to your Mac and run X11 applications on the
 Mac, but display them on the local machine), but first be sure to edit
 /etc/sshd_config and change this
 line:
#X11Forwarding no
to this:
X11Forwarding yes
Note
You’ll also need to stop and restart Remote Login using System
 Preferences→Sharing for this change to take effect.

OSX2X

These days, it’s fairly common to find a Mac sitting next to a
 Linux or Unix system running an X11-based desktop. In such situations,
 it would be convenient to be able to use only one keyboard and mouse to
 control all of your Mac OS X and X11-based desktops, saving valuable
 desktop space. Enter Michael Dales’s free BSD-licensed application osx2x (http://homepage.mac.com/mdales/osx2x/).
To use this handy little application, log into your Linux/Unix box
 running an X11 server, and enter this command:
$ xhost + mymachost
Then, double-click the osx2x
 application to launch it, and when the main window appears, click New
 Connection. In the drop-down window that opens, supply the hostname or
 IP address of the Unix box running the X11 desktop in the Hostname
 field, followed by either :0 or
 :0.0 (without any spaces), as in
 myhost:0.0. Next, select the Edge Position (East,
 West, North, or South) and the Connection Type. This will generally be
 X11, but if you are connecting your Mac to a machine running a VNC
 server, as described in the next section (for example, another Mac),
 select VNC as the Connection Type rather than X11 and enter the VNC
 server password. You can switch back and forth between the Mac and the
 remote machine with ⌘-T, or you can enable edge detection and choose the
 position of your X11 system relative to your Mac. For example, if your
 Mac is to the right of your destination X11 machine, select West, as
 illustrated in Figure 7-7.
[image: Controlling a neighboring X11 desktop with osx2x]

Figure 7-7. Controlling a neighboring X11 desktop with osx2x

In addition to using one keyboard and mouse to control up to four
 systems, you can use osx2x to copy
 text from an X11 clipboard using ⌘-C and paste on the Mac OS X side
 using ⌘-V.

Virtual Network Computing (VNC)

One of the attractive features of Mac OS X is the ease with
 which you can integrate a Mac OS X system into a Unix environment
 consisting of multiple Unix workstations with X11-based GUIs. In the
 previous section, for example, we explained how to log into a remote Unix
 machine, launch an X11 application, and display the application on your
 Mac. The reverse process is also possible: you can log into a remote Mac
 OS X machine from another computer, launch an application on the remote
 Mac OS X machine, and have the application display on your local machine.
 The local machine, meanwhile, can be running the X Window System,
 Microsoft Windows, or any another platform supported by VNC.
VNC consists of two components:
	A VNC server, which must be installed on the remote
 machine

	A VNC viewer, which is used on the local machine to view and
 control applications running on the remote machine

The VNC connection is made through a TCP/IP connection.
In addition to being on different machines, the VNC server and
 viewer may be installed on different operating systems. This allows you,
 for example, to connect from Solaris to Mac OS X. In other words, using
 VNC you can launch and run both X11 and Aqua applications on Mac OS X but
 view and control them from your Solaris box.
Standard X11 Unix versions of VNC, which may be installed on Mac OS X via MacPorts or Fink,
 translate X11 calls into the VNC protocol. All you need on the client
 machine is a VNC viewer. Two attractive Mac-friendly alternatives to the
 strictly X11-based VNC server are the freeware Vine Server (http://www.redstonesoftware.com/products/vine_server/) and
 Apple’s AppleVNCServer, which is bundled with Mac OS X. Mac OS X 10.5+ also comes
 bundled with a VNC viewer, Screen
 Sharing, which is located in
 /System/Library/CoreServices.
 You can drag the Screen Sharing icon to the Dock for easy access.
Note
Vine Server may be an attractive alternative to AppleVNCServer for
 many users because it supports multiple VNC servers running on a single
 computer, each on a different port (making it possible for multiple
 users to connect to a single Mac at the same time). In such a scenario,
 fast user switching must be enabled, and each user must be logged in. To
 see more details, select Help→Vine Server from the application’s menu
 bar and navigate to the Multiple Desktop Servers section described in
 Chapter 1.

Rather than interacting with your display, the standard Unix version
 of the VNC server intercepts and translates the X11 network protocol. (In
 fact, the Unix version of the server is based on the X.Org source code.)
 Applications that run under the Unix server are not displayed on the
 server’s screen (unless you set the DISPLAY environment variable to :0.0, in which case the applications will be
 displayed only on the remote server, not on your VNC client). Instead, the
 applications are displayed on an invisible X11 server that relays its
 virtual display to the VNC viewer on the client machine.
Vine Server and AppleVNCServer work in a similar manner, except they
 support the Mac OS X Aqua desktop instead of X11. With either Vine or AppleVNCServer running on your Mac OS X
 system, you can use a VNC client on another system—for example, a Unix
 system—to display and control your Mac OS X Aqua desktop. You can even
 tunnel these VNC connections (both X11 and Aqua) through SSH.
Launching VNC

If you want to share your Mac OS X desktop with another system,
 start the AppleVNCServer VNC server on your Mac by enabling Screen
 Sharing (select System Preferences→Sharing and select Screen Sharing).
 Then, while Screen Sharing is selected, click the Computer Settings
 button to set a password for VNC viewers to control the screen of your
 Mac, as shown in Figure 7-8. (More information
 on configuring these settings can be found in Chapter 15.)
[image: Allowing VNC control of your Mac in the Sharing System Preferences pane]

Figure 7-8. Allowing VNC control of your Mac in the Sharing System
 Preferences pane

The AppleVNCServer will listen for incoming connections on port
 5900, and the firewall will be adjusted automatically to allow the
 screen sharing, as shown in Figure 7-9.
[image: Firewall setting in System Preferences to allow (VNC) screen sharing]

Figure 7-9. Firewall setting in System Preferences to allow (VNC) screen
 sharing

You can also run a VNC server that allows users to log into an
 X11-based desktop. If you have installed another VNC server (for
 example, TightVNC, described in the next section) on your Mac OS X
 system via MacPorts—or on any Unix system, for that matter—you can start
 the VNC server by issuing the following command:
$ vncserver
If you don’t have physical access to the system on which you want
 to run the VNC server, you can log into it remotely and then enter this
 command before logging out:
$ nohup vncserver
vncserver starts the VNC
 server, and nohup makes sure that
 it continues to run after you log out.
In either case, the first time you start vncserver, you’ll need to supply a password,
 which you’ll need anyway when connecting from a remote machine. (This
 password can be changed using the command vncpasswd.) You can run several servers;
 each server is identified by its hostname with a :number appended. For example, if you start
 the VNC server twice on a machine named abbott, the first server will be identified
 as abbott:1 and the second as
 abbott:2. You’ll need to supply the
 numerical identifier when you connect from a client machine.
By default the VNC server runs twm, so when you connect, you will see an X11
 desktop instead of Mac OS X’s desktop. You can specify a different
 window manager in ~/.vnc/xstartup.
 To terminate the VNC server, use the following command syntax:
$ vncserver -kill :display
For example, to terminate abbott:1, you would issue the following
 command while logged into abbott as
 the user who started the VNC server:
$ vncserver -kill :1
Warning
If you’re going to run an alternative VNC server, such as
 TightVNC, you should either disable the built-in Mac OS X
 AppleVNCServer or run the alternative server using a port number other
 than 5900.

VNC and SSH

In general, VNC passwords and network traffic are sent over
 the wire as plain text. However, you can use SSH with VNC to encrypt
 this traffic.
There is a derivative of VNC called TightVNC (http://www.tightvnc.com) that is optimized for
 bandwidth conservation. (If you’ve installed MacPorts, you can install
 TightVNC with the command sudo port install
 tightvnc.) Although TightVNC also offers encryption of
 passwords, in the TightVNC website’s FAQ, the developers recommend
 tunneling your VNC connection through SSH for better security.
Note
If you use AppleVNCServer on a remote Mac running Leopard, and
 Screen Sharing on a local Mac also running Leopard, you can select
 to encrypt all data in the Screen Sharing VNC viewer by selecting
 Preferences→Encrypt all Network Data, or you can elect to “encrypt
 password and keystrokes only.” These options work only when you use
 AppleVNCServer and Screen Sharing, with Leopard on both sides of the
 communication. If you use Apple’s commercial Apple Remote Desktop
 (ARD) 3 (http://www.apple.com/remotedesktop/),
 the encryption of all data can be enabled even if you connect to a
 VNC server on Solaris or Linux, provided that the VNC server side is
 running sshd.

To illustrate how to tunnel your VNC connection through SSH,
 let’s consider an example using a computer running Linux named
 briansLinux at IP 192.168.254.9
 and a PowerBook named alchops
 running Mac OS X Leopard. In the following example, the VNC server is
 running on the Linux machine and the Screen Sharing VNC viewer is
 running on the Mac OS X machine. To display and control the remote
 Linux GNOME desktop on your local Mac OS X system, do the
 following:
	Log into the Linux machine, briansLinux, via SSH if you need to log
 in remotely.

	On briansLinux, enter
 the following command to start the VNC server on display :1:
$ nohup vncserver :1

	In your ~/.vnc
 directory, edit the xstartup
 file so gnome-session starts
 when you connect to the VNC server with a VNC viewer. In
 particular, your xstartup
 file should look like this:
#!/bin/sh
xrdb $HOME/.Xresources
xterm -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &
exec /usr/bin/gnome-session

	Log out from the Linux box, briansLinux.

	From a Terminal (or xterm) window on your Mac OS X machine,
 log into briansLinux via
 ssh:
$ ssh -L 5902:127.0.0.1:5901 192.168.254.9
You could add the -N
 option to the preceding command, if you just want to establish an
 SSH tunnel to briansLinux
 without opening a login shell window. Any references to display :2 on your Mac will connect to
 the Linux machine’s display
 :1 through an SSH tunnel (display :1 uses port 5901; display :2 uses 5902). You may need to
 add the -l option to this
 command if your username on the Linux machine is different from
 the one you’re using on your Mac OS X machine. For example, say
 your username on briansLinux
 is brian, but on alchops it’s eer. In this case, you would need to
 issue the following command instead of the preceding one:
$ ssh -L 5902:127.0.0.1:5901 192.168.254.9 -l brian
Additionally, you may need to open ports through any
 firewalls you have running on the Linux machine. Open ports
 5900–5904 for VNC and port
 22 for ssh.

	On your Mac, you can either start X11 or run vncviewer from the command line:
$ vncviewer localhost:2
You can also run an Aqua VNC client such as Leopard’s built-in Screen Sharing, JollysFastVNC (http://www.jinx.de/JollysFastVNC.html), or Chicken
 of the VNC (http://sourceforge.net/projects/cotvnc/). For
 example, to run Screen Sharing, click on a Finder window to make
 it the frontmost window, select Go→Connect to Server, enter
 vnc://localhost:5902 in the
 Server Address field in the “Connect to Server” window that
 appears, and then enter the VNC server password when prompted for
 it. Alternatively, you can enter vnc://localhost:5902 as the URL in your
 web browser. Figure 7-10 shows a Screen
 Sharing VNC connection to a Linux GNOME desktop.

[image: Screen Sharing VNC viewer displaying a remote Linux machine’s GNOME desktop]

Figure 7-10. Screen Sharing VNC viewer displaying a remote Linux machine’s
 GNOME desktop

Connecting to the Mac OS X VNC Server

Before you connect to a Mac OS X machine via VNC, you’ll need to
 make sure that it’s running a VNC sever. As noted earlier, you have at
 least three options for VNC servers on Mac OS X: the built-in
 AppleVNCServer, Vine Server, and an X11-based VNC server.
X11-based VNC servers

Establishing an SSH-tunneled VNC connection from the Aqua desktop on
 a Mac to another Mac’s X11 desktop is no different from connecting a
 Mac to any other X11 desktop. Figure 7-11 shows a Screen
 Sharing client on Leopard displaying a full-screen X11-based
 KDE desktop running on a remote Mac OS X machine through
 a VNC connection, which was tunneled through SSH. The remote Mac is
 running TightVNC’s server and the X11-based KDE window manager, both
 installed with MacPorts.
[image: Screen Sharing VNC viewer displaying a remote Mac’s KDE desktop]

Figure 7-11. Screen Sharing VNC viewer displaying a remote Mac’s KDE
 desktop

Aqua-based VNC servers

The easiest way to run an Aqua-based VNC server in Mac OS X is to enable the
 built-in AppleVNCServer via System Preferences, as noted earlier. If
 you’re running Leopard both on your local and remote Macs, thanks to
 Bonjour (Apple’s implementation of Zeroconf/Rendezvous)
 the remote Mac will show up in the Shared section of the Finder
 sidebar, as shown in Figure 7-12. (In fact, any
 computers on the network that broadcast their open VNC connectivity
 via Zeroconf will show up there.)
[image: Finder window showing Bonjour-broadcast Mac running a VNC server]

Figure 7-12. Finder window showing Bonjour-broadcast Mac running a VNC
 server

To connect to the remote Mac OS X machine, simply select it from
 the Shared list in the Finder sidebar, then click the Share Screen
 button in the upper-right part of the Finder window to launch the
 Screen Sharing VNC viewer on your local Mac. The VNC session will be
 fully encrypted if you’ve selected “Encrypt all data” in the Screen
 Sharing Preferences pane.
If, on the other hand, you prefer to use one of the other
 Mac OS X VNC viewers—for example, JollysFastVNC or
 Chicken of the VNC—you’ll need to tunnel the connection through SSH to
 establish a secure VNC connection. The SSH tunneling works with the
 Screen Sharing application, too. Additional Mac OS X viewers can be
 found on Version Tracker or MacUpdate (http://www.versiontracker.com/macosx/ or http://www.macupdate.com) by searching for “VNC,” while
 VNC and TightVNC provide viewers for Unix systems. Each VNC viewer can
 be used to display and control the Mac OS X client machines, and can
 do so through SSH tunnels.
To illustrate this process, let’s do the reverse of what we did
 in our last example; let’s make an SSH-secured connection from a
 Solaris machine to a Mac OS X machine running the VNC
 server. Let’s assume that the name of the Solaris machine is mrchops and the Mac OS X machine has a
 hostname of alchops:
	On alchops, start the
 built-in AppleVNCServer (which, as noted earlier, listens for VNC
 connections on port 5900).

	On the Solaris machine, mrchops, enter:
$ ssh -L 5902:localhost:5900 alchops

	Then, in another xterm
 window on mrchops,
 enter:
$ vncviewer -depth 24 -truecolor localhost:2

You can control the Mac OS X desktop from the SUN Solaris
 machine, but the image quality of the Mac OS X desktop may be poor
 unless you invoke the vncviewer
 with the options -depth 24
 -truecolor. The resulting VNC connection is shown in Figure 7-13.
[image: Mac OS X desktop displayed and controlled on a Solaris GNOME desktop]

Figure 7-13. Mac OS X desktop displayed and controlled on a Solaris GNOME
 desktop

Vine Server, also known as OSXvnc-server, is an alternative Aqua-based
 VNC server freely provided by Redstone Software. To install Vine
 Server, download the Vine.dmg
 file from the Redstone Software website (http://www.redstonesoftware.com/products/vine_server/),
 locate and double-click the downloaded .dmg file in the Finder to mount the disk
 image, and drag the Vine Server icon to a convenient location, such as
 the /Applications folder. (The
 disk image also contains a commercial VNC viewer, Vine Viewer, which
 you do not have to install for Vine Server to work.)
To launch Vine Server, double-click its icon in the Finder. When
 you launch it for the first time, you’ll be prompted to configure the
 Firewall to either allow or deny Vine Server permission to accept
 incoming connections. If you click the Allow button, the firewall will
 be adjusted to allow such incoming connections both for the GUI VNC
 Vine Server and the command-line OSXvnc-server. If you click the Deny
 button, the firewall will be adjusted to deny incoming connections to
 those VNC server applications. Either way, you can change the firewall
 setting later, either by selecting System Preferences→Security in the
 Apple menu bar and clicking on the Firewall tab, or by selecting
 Help→Configure Firewall in Vine Server’s menu bar, which opens the
 Security System Preferences pane, and then clicking on the Firewall
 tab. You can select the port that Vine Server uses to listen for VNC
 connections by selecting Vine Server→Preferences in the menu bar and
 clicking on the Connection tab. This is also where you can set the VNC
 password, as shown in Figure 7-14.
[image: Vine Server connection preferences]

Figure 7-14. Vine Server connection preferences

The command-line capability of Vine Server can be quite useful.
 For example, suppose you want to establish a VNC connection to a
 remote Mac on which no VNC server is running. In that case, you can
 log into the remote Mac via SSH (assuming Remote Login has been
 enabled on the remote Mac) and start the VNC server at the command
 line. For a list of command-line options, enter this command:
$ /Applications/Vine\ Server.app/Contents/MacOS/OSXvnc-server –help
Vine Server has several configuration options in its Preferences
 window. If you click the Device tab, you can select “Allow machine to
 sleep,” “Allow display dimming,” “Allow screen saver to start,” and
 “Swap Mouse Buttons 2 and 3.” You can also configure various keyboard
 settings on this tab.
On the Sharing preference pane, you can select “Disable remote
 control of keyboard and mouse,” “Disable rich clipboard support (Vine
 Viewer Only),” “Advertise server via Bonjour,” “Always allow multiple
 VNC connections,” “Let viewers request exclusive access,” and “Allow
 only one VNC connection at a time” (with the option to keep the
 existing viewer if a new viewer tries to connect).
In Vine Server’s Startup preference pane, you can enable the
 options “Start server when Vine Server application is launched,” “Stop
 server on a fast user switch,” and “Restart server if it stops
 unexpectedly.” Clicking the System Server button in Vine Server’s
 Startup preference pane opens the System Server window, in which you
 can configure OSXvnc-server to
 start automatically when the machine boots. To do that, click the
 Start System Server button and authenticate yourself as an
 administrative user. In the System Server window, you can also set
 various connection preferences, such as the display name and number
 and the VNC password for the VNC server that will run automatically
 when the system boots. Configuring OSXvnc-server to start automatically when
 the system boots places com.redstonesoftware.VineServer.plist in
 /Library/LaunchAgents. Subsequently,
 the OSXvnc-server application
 will start automatically when you boot up your Mac. If you decide
 later to disable this option, launch Vine Server, open its Startup
 preference pane, and click the System Server button; then, when the
 System Server window appears, click the Stop System Server button.
 After you authenticate yourself as an administrative user, the
 com.redstonesoftware.VineServer.plist item
 in /Library/LaunchAgents will be
 deleted and OSXvnc-server will no
 longer start automatically when the system boots.
Finally, you can enter various command-line arguments and select
 the remote framebuffer (RFB) protocol in Vine Server’s Advanced
 preference pane.
Warning
You can run both Vine Server and AppleVNCServer on the same
 system, but since AppleVNCServer listens for clients on port 5900,
 you should avoid using this port for Vine Server. This rule applies
 for any alternate VNC server you might choose to run on your
 Mac.

VNC clients and servers are available for Windows machines, so Windows clients can connect to Mac
 OS X and other Unix VNC servers, and Mac OS X clients can connect to
 and control Windows VNC servers. Such VNC connections can also be
 tunneled through SSH (see http://www.realvnc.com). As an alternative to VNC, you
 can use Microsoft’s free Remote Desktop Client (RDC, available at http://www.microsoft.com/mac/downloads.mspx) to
 remotely control a Windows desktop from a Mac OS X machine. An open
 source X11-based remote desktop client for Windows named rdesktop (http://www.rdesktop.org) is also available and can be
 installed with Fink or MacPorts.

Screen Sharing with iChat

We conclude this chapter by noting that, beginning with Leopard,
 Apple’s instant messaging client (iChat) supports screen sharing via VNC
 connections. When you select in your iChat buddy list a buddy who has
 enabled Screen Sharing, you can click on the Screen Sharing icon at the bottom of
 the iChat buddy list window (shown in Figure 7-15) to either share
 your screen with that buddy or request to share that buddy’s
 screen.
[image: The Start Screen Sharing icon in iChat]

Figure 7-15. The Start Screen Sharing icon in iChat

Alternatively, you may select either of those screen-sharing
 options from iChat’s menu bar, under Buddies. When you start Screen
 Sharing with a particular buddy via iChat, an audio chat is
 automatically initiated with that buddy.

Restarting VNC Connections

In case your VNC connection gets locked up while you’re connecting
 to your Mac from a remote computer, you can set things up so that your
 VNC server will restart automatically. Just log into an administrator
 account remotely via ssh, and enter
 the following command:
$ sudo \
 /System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/\
 Resources/kickstart -restart -agent
See Chapter 15 for more details
 on Screen Sharing and Mac OS X’s built-in VNC capabilities.

Chapter 8. Third-Party Tools and Applications

Although Mac OS X ships with an impressive number of
 applications—including Mail, Safari, the Address Book, iCal, iSync,
 Automator, and the Xcode tools, just to name a few—many third-party freeware
 and shareware applications are available to further enrich the Mac OS X
 experience. This chapter provides an overview of a few applications that we
 feel will appeal to Unix aficionados.
Frontends for SSH and SFTP

OpenSSH is a free version of the SSH suite of network connectivity
 tools that provides encrypted replacements for telnet, ftp, rlogin, rcp, and more. As noted earlier in the
 book, OpenSSH is bundled with Mac OS X. The SSH tools are fully
 functional from the command line, but several GUIs are available to make
 SSH-based file transfers easier. One such frontend that may be familiar to some Unix/Linux
 users is Brian Masney’s GTK+/glib-based gftp (http://www.gftp.org). If you’re a gftp fan, you can install it on Mac OS X using MacPorts. (Despite its
 name, gftp supports SFTP, a secure file transfer protocol that piggybacks on top of
 SSH.)
A cross-platform GUI SFTP application that will be familiar to most
 Microsoft Windows users is Filezilla (http://www.filezilla-project.org). Though it was designed
 for Windows, Filezilla has been ported to Linux and Mac OS X. Its
 capabilities are similar to those of some of the other GUIs we’ll look at
 here, such as Cyberduck and Fugu.
The GUI SFTP application that will be most familiar to old-time Mac
 users is Fetch (http://www.fetchsoftworks.com).
 Fetch is also similar in capabilities to the other applications
 discussed here. Though it is shareware, it’s free for educational
 users.
Cyberduck

Cyberduck, shown in Figure 8-1, is graphical user
 interface to ftp and sftp. It’s available from http://cyberduck.ch.
[image: An sftp connection via Cyberduck]

Figure 8-1. An sftp connection via Cyberduck

Cyberduck has many useful features, including (but not limited to)
 support for all of the following:
	FTP and SFTP

	Dragging and dropping files on its interface to
 upload/download files

	Showing/hiding hidden files (i.e., files whose names begin
 with .)

	Directory upload

	Permissions, owner, and group modification

	Directory histories

	Moving, creating, and deleting remote files

	Keychain

	Bookmarks list for frequently visited hosts

	Bonjour

Fugu

Fugu (http://rsug.itd.umich.edu/software/fugu/) is a graphical
 interface to OpenSSH, developed and provided as freeware by the
 University of Michigan’s Research Systems Unix Group. Fugu is shown in
 Figure 8-2. It has many
 useful features, including:
	Support for SFTP and SCP

	Support for SSH command-line options

	Ability to create SSH tunnels

	Ability to drag and drop files to upload/download

	External editor support

	Image previews

	Permissions, owner, and group modification

	Keychain support

	Bonjour support

[image: Dragging files to a remote computer in Fugu]

Figure 8-2. Dragging files to a remote computer in Fugu

SSH Agent

SSH Agent (http://www.phil.uu.nl/~xges/ssh/)
 is a GUI frontend to OpenSSH utilities provided with Mac OS X. You can use it to, among other things, start ssh-agents, generate identities, add
 identities to agents, and establish secure tunnels. Figure 8-3 illustrates using
 SSH Agent to set up an SSH tunnel in order to make a secure connection
 to a VNC server.
[image: Setting up an SSH tunnel to a VNC server with SSH Agent]

Figure 8-3. Setting up an SSH tunnel to a VNC server with SSH Agent

Note
Starting with Mac OS X Leopard, Apple has integrated the OpenSSH
 ssh-agent into the operating
 system. If you have created an SSH key on the local machine using
 ssh-keygen and have configured your account on a
 remote server to use your public key, Mac OS X will allow you to use
 that key. The first time you attempt to connect to a host using public
 key authentication, you’ll see a Mac OS X keychain access dialog
 asking for permission to use the key. Because your permission lasts
 across your entire login, you don’t need to set up an ssh-agent process to manage this
 key.
For more information on ssh-agent(1), see the manpage. To see how
 Mac OS X handles launching ssh-agent for you, check out the launch
 agent in /System/Library/LaunchAgents/org.openbsd.ssh-agent.plist.
 See Chapter 4 for more information on launch
 agents and launch daemons.

Mounting SSH Servers As Network Volumes

Linux users may be familiar with the versatile FUSE (http://fuse.sourceforge.net) mechanism for implementing
 filesystems in user space, which we introduced in Chapter 3. Google’s MacFUSE (http://code.google.com/p/macfuse/) brings FUSE to Mac OS X
 10.4 and above. Filesystems that are known to work with MacFUSE include
 sshfs, ntfs-3g, ftpfs, wdfs (WebDAV), cryptofs, encfs, bindfs, unionfs, and beaglefs. MacFUSE includes an Objective-C
 framework (/Library/Frameworks/MacFUSE.framework) for
 filesystem development. We won’t discuss filesystem development here, but
 we will discuss how to install MacFUSE and the sshfs filesystem, as well as how to use MacFUSE/sshfs.
The easiest way to install MacFUSE is to download the appropriate
 disk image (.dmg) file containing the
 MacFUSE Core package installer file from http://code.google.com/p/macfuse/. At the time of this
 writing, two versions are available: one for Mac OS X 10.4 and the other
 for Mac OS X 10.5. Once you’ve downloaded the .dmg file, double-click it to mount the disk
 image. Then, double-click the
 .pkg installer file that’s revealed
 to install MacFUSE. If you decide to uninstall MacFUSE, you can run the
 included uninstall script. Use this command on Mac OS X 10.4:
$ sudo /System/Library/Filesystems/fusefs.fs/Support/\
 uninstall-macfuse-core.sh
or this command on Mac OS X 10.5:
$ sudo /Library/Filesystems/fusefs.fs/Support/uninstall-macfuse-core.sh
Alternatively, you can install MacFUSE from source via MacPorts (see
 Chapter 13 for information on MacPorts).
After you’ve installed MacFUSE, you can install sshfs by downloading it from the MacFUSE
 website, mounting the downloaded disk image, and dragging the sshfs.app application to /Applications in the Finder. (Alternatively, as
 with MacFUSE itself, you can install sshfs from source via MacPorts. You’ll need to
 install sshfs first to get the
 command-line tool, and then you’ll be able to install sshfs-gui to get the double-clickable sshfs.app application.)
The sshfs.app application
 available from the MacFUSE website also includes a command-line sshfs tool, sshfs-static (and sshfs-static-10.5). If you’ve installed sshfs.app in /Applications, the command-line sshfs utility will have the absolute pathname
 /Applications/sshfs.app/Contents/Resources/sshfs-static-10.5.
You’ll be able to run it by double-clicking its icon in the Finder,
 selecting File→Connect to SSH Server in the menu bar (or pressing ⌘-O),
 and entering the server name and your remote username in the dialog window
 that pops up. If the connection goes through, you’ll be prompted for your
 remote password on the remote SSH server. Once the password is
 authenticated, you’ll be able to open a Finder window showing the contents
 of the remote SSH server by selecting Go→Go to Folder in the Finder menu
 bar and entering the mount point of the sshfs filesystem (for example, /Volumes/192.168.0.12). The remote filesystem
 will also show up in the output of a df command, as shown in Figure 8-4.
[image: df command output revealing mounted sshfs filesystem]

Figure 8-4. df command output revealing mounted sshfs filesystem

You can unmount the sshfs
 filesystem via the umount command.
 For example:
$ umount /Volumes/192.168.0.12
Assuming that you’ve either installed sshfs with MacPorts or installed it manually
 and adjusted your $PATH accordingly,
 the following sequence of commands illustrates how to mount a remote SSH
 server called alchops.local on a
 user-defined mount point ~/alchops:
$ cd
$ mkdir alchops
$ sshfs eer@alchops.local: alchops
After executing those commands, the df command reveals the sshfs filesystem mounted on ~/alchops and the sshfs filesystem appears on the Desktop, as
 shown in Figure 8-5.
[image: A remote SSH filesystem on the Desktop]

Figure 8-5. A remote SSH filesystem on the Desktop

You can unmount the sshfs
 filesystem either via the usual umount command or by Control/right-clicking the
 SSH filesystem icon on the Desktop and selecting Eject in the contextual
 menu.

TeX

TeX was developed by computer scientist Donald Knuth as a special
 programming language used to typeset mathematical and scientific
 publications. LaTeX, developed by
 Leslie Lamport and subsequently further developed by Frank Mittelbach
 (among others), is essentially a rather large set of macros built on top
 of TeX.
The TeX Users Group (TUG) website, http://www.tug.org, contains an enormous amount of
 information on TeX-related projects and resources. The most comprehensive,
 and perhaps most popular, cross-platform distribution of TeX is TeX Live
 (http://www.tug.org/texlive). MacTeX (http://www.tug.org/mactex/), an easy-to-install TeX system
 for Mac OS X, is based on TeX Live. In addition to installing a
 comprehensive TeX system, MacTeX also installs several Mac-specific
 TeX-related tools.
Note
The MacTeX website (http://www.esm.psu.edu/mac-tex/), maintained by Gary L.
 Gray and Joseph C. Slater, is devoted to tracking TeX developments for
 the Mac platform. This site is a must-visit if you’re interested in
 using TeX on Mac OS X.

You can install TeX Live via MacPorts, but at the time of this
 writing Fink provides only teTeX (http://www.tug.org/tetex), a TeX distribution for
 Unix-compatible systems that is no longer being actively developed (it has
 been superseded by TeX Live). For more on Fink and MacPorts see Chapter 12 and Chapter 13, respectively.
In this section, we’ll discuss how to install MacTeX and then
 briefly describe TeXShop, a graphical frontend to LaTeX. (TeXShop is
 actually more than a frontend; it provides a unified LaTeX environment,
 complete with editors and other tools.) We’ll round out this section with
 an interesting TeX-related application, LaTeXiT, which allows you to
 easily use your LaTeX installation to add mathematical typesetting
 capabilities to applications such as Mail, iChat, and Keynote.
Installing MacTeX

To install MacTeX, first download the disk image containing the
 MacTeX package installer from http://mirror.ctan.org/systems/mac/mactex/MacTeX.dmg.
 Double-click the .dmg file to mount
 the virtual disk, and then double-click the MacTeX-2007.mpkg file in the virtual disk to
 install MacTeX. The installer installs the full version of TeX Live,
 including various TeX-related command-line utilities in /usr/local/texlive and Ghostscript,
 ImageMagick, and PNG Library in appropriate subdirectories of /usr/local. The MacTeX installer also
 installs several Mac-specific utilities in /Applications/TeX, including TeXShop (http://www.uoregon.edu/~koch/texshop/), BibDesk (http://bibdesk.sourceforge.net), Excalibur (http://excalibur.sourceforge.net), and LaTeXiT (http://ktd.club.fr/programmation/latexit_en.php). You may
 want to visit the websites of those utilities to ensure that you have
 the most up-to-date versions.
Note
The MacTeX installer installs Gerben Wierda’s i-Installer in
 /Applications/Utilities. According to
 the MacTeX website, the i-Installer utility cannot be used to update
 your MacTeX installation, but it can be used to maintain and update
 Ghostscript, ImageMagick, and Font Utilities, which the MacTeX
 installer installs from Gerben Wierda’s TeX distribution. At the time
 of this writing, when you run the i-Installer utility, a pop-up
 message warning that i-Installer is “not supported” appears. The
 advice on the TeXShop website is to ignore that warning; it means only
 that you should not expect email support and that i-Installer comes
 with no guarantees.

The MacTeX installer also installs a new System Preferences pane,
 shown in Figure 8-6, in
 which you can select your preferred TeX engine if you have more than one
 TeX distribution installed on your system. This is useful, for example,
 if you install a new version of MacTeX (which, in 2008, will show up in
 the preference pane as TeXLive-2008) but want to revert to the older
 version. You can select your preferred distribution from those available
 in the preference pane.
[image: TeX Distribution System Preferences pane]

Figure 8-6. TeX Distribution System Preferences pane

The MacTeX installer additionally installs various configuration
 files in /Library/TeX; adds a symbolic link,
 /usr/texbin, to /Library/TeX/Distributions; and adds
 /usr/texbin and /Library/TeX/Distributions/.DefaultTeX/Contents/Man
 to the PATH and MANPATH environment variables, respectively. Local system modifications—for example,
 addition of new LaTeX packages (i.e., *.sty files)—can be made to /usr/local/texlive/texmf-local. Changes
 can also be made on a per-user basis by modifying ~/Library/texmf in accordance with TeX
 conventions. If you subsequently
 upgrade your LaTeX installation with i-Installer, these local
 modifications are not affected. The MacTeX search order for files
 is:
	~/Library/texmf

	/usr/local/texlive/texmf-local

	/Library/TeX/Root/texmf

If you need to change the paper size of your TeX documents, you
 can do so with the texconfig-sys
 command (see its manpage for details).
Once the installation and configuration of MacTeX is complete, you
 can run latex (or pdflatex) from the command line. However,
 even the most hardcore command-line fanatics may find the available
 Aqua-based interfaces enticing.

TeXShop

As noted earlier, TeXShop is installed automatically in /Applications/TeX when you install MacTeX. If
 a newer version of TeXShop becomes available, you can easily replace the
 one that was installed by MacTeX: just download the TeXShop.dmg file from the TeXShop website
 (http://darkwing.uoregon.edu/~koch/texshop/texshop.html),
 mount the disk image by double-clicking on it, and then drag the TeXShop
 application to your /Applications/TeX folder to replace the older
 version.
TeXShop includes a specialized editor with syntax highlighting,
 LaTeX macros accessible from a toolbar menu, and a previewer. The LaTeX
 macros can be used to insert LaTeX code into your documents.
By default, TeXShop uses pdftex and pdflatex (part of the standard MacTeX
 distribution) to produce output in PDF instead of the more traditionally
 used Device Independent (DVI) format. Figure 8-7
 shows TeXShop’s previewer.
[image: TeXShop’s built-in previewer]

Figure 8-7. TeXShop’s built-in previewer

Among its many useful features, TeXShop supports AppleScript and
 is highly configurable. For example, you can configure the LaTeX Panel,
 autocompletion, the keyboard menu shortcuts, and the Macro menu. These
 user-level configurations are written to .plist files stored in ~/Library/TeXShop: completion.plist, autocompletion.plist, KeyEquivalents.plist, and Macros.plist. If you add your own templates
 to the ~/Library/TeXShop/Templates
 folder, they’ll show up in the TeXShop editor’s Templates drop-down
 menu. Figure 8-8 shows
 TeXShop’s Macro Editor, which can be opened from the Macros toolbar
 (Macros→Open Macro Editor).
[image: TeXShop’s Macro Editor]

Figure 8-8. TeXShop’s Macro Editor

Select Window→LaTeX Panel to open the LaTeX Panel, shown in Figure 8-9.
[image: TeXShop’s LaTeX Panel]

Figure 8-9. TeXShop’s LaTeX Panel

Similarly, to open the Matrix Panel, shown in Figure 8-10, select Window→Matrix
 Panel.
[image: TeXShop’s Matrix Panel]

Figure 8-10. TeXShop’s Matrix Panel

The LaTeX and Matrix Panels make it simple to insert LaTeX code,
 so you won’t have to embark on an Internet search for how to code
 various things in LaTeX. They can also save you quite a bit of
 typing.
TeXShop (together with the MacTeX-installed TeX Live distribution)
 provides a highly customizable, complete, and unified TeX environment
 that is nicely integrated for Mac OS X.
An open source X11-based WYSIWYM (What You See Is What You Mean)
 document processor, LyX (http://www.lyx.org), uses
 your TeX system as a rendering engine and runs on most Unix/Linux
 systems, Windows OS/2, and Mac OS X. There are essentially two versions
 of LyX: one built on xforms and
 another on Qt. Thanks to Qt/Mac
 (http://trolltech.com/developer/downloads/qt/mac/), an
 Aqua-native port of LyX named LyX/Mac (http://wiki.lyx.org/Mac/) is available as a
 self-installing binary. To run LyX/Mac, however, you must first install
 a TeX distribution such as MacTeX.
Note
Two alternatives to TeXShop that are worth considering are
 iTeXMac (http://itexmac.sourceforge.net) and the
 cross-platform Texmaker (http://www.xm1math.net/texmaker/). Both of these
 applications are free and have capabilities similar to
 TeXShop’s.

LaTeXiT

Though you can use LaTeX to generate complete documents, you can
 also use it just to generate equations within other documents. For
 example, suppose you need to use Microsoft Word (or OpenOffice.org) to
 create a document, but you don’t get along with the equation editor that
 comes bundled with the product. If you’re comfortable with LaTeX, you’ll
 be happy to know about LaTeXiT, which works by creating small image
 files of equations from user-supplied LaTeX code. Once created, the
 image files can simply be dragged and dropped onto the appropriate
 locations in the given Office document. For example, to create an image
 file for inclusion in a Word document, you can enter the LaTeX code in
 the lower part of LaTeXiT window, click on the appropriate button
 (Eqnarray, Display, Inline, or Text), and then drag the resulting image
 from the top part of the LaTeXiT window to the appropriate location in
 the Word document.
As noted earlier, LaTeXiT is installed automatically with MacTeX,
 but you can install it easily enough manually by downloading the
 LaTeXiT_1.15.0.dmg file,
 double-clicking it in the Finder, and dragging and dropping the
 LaTeXiT application file into your
 /Applications/TeX folder. LaTeXiT
 uses your existing LaTeX installation, so you may need to configure
 LaTeXiT’s LaTeX search path by selecting LaTeXiT→Preferences→Composition
 and entering the correct path to pdflatex. If you’ve installed MacTeX, it is
 unlikely that you will have to change the default path
 selections.
To illustrate how LaTeXiT works, observe that this
 equation:
[image: LaTeXiT]

was created with LaTeXiT by clicking on the Inline button, as
 shown in Figure 8-11.
[image: Generating mathematical image files with LaTeXiT]

Figure 8-11. Generating mathematical image files with LaTeXiT

The following equation, on the other hand, was generated with the
 Display option:
[image: Generating mathematical image files with LaTeXiT]

Though the default image format is PDF, you can alternatively use
 LaTeXiT to produce PDFs with outlined fonts, as well as EPS, TIFF, PNG,
 and JPEG images. You can set several preferences in LaTeXiT, including
 the font size, text color, and background color of the typeset
 equations. LaTeXiT also comes with several palettes, which can save you
 a Google search or a trip to your bookshelf for your LaTeX manual. Figure 8-12 shows the LaTeX
 palette.
[image: LaTeXiT’s LaTeX palette]

Figure 8-12. LaTeXiT’s LaTeX palette

One useful feature of Mac OS X is its Services menu and the many
 options programmers offer there. For example, Apple’s Mail application
 allows you to select text in an email message and then select
 Mail→Services→Speech→Start Speaking Text to activate Mac OS X’s speech
 synthesis component, which jumps into action and speaks the selected
 text back to you. LaTeXiT provides a Services menu selection to typeset
 LaTeX strings within other applications. To use LaTeXiT Services to
 typeset LaTeX within an application, highlight a LaTeX string in the
 application window and select from the application menu bar
 Services→LaTeXiT→Typeset LaTeX Maths. When it typesets the LaTeX code,
 LaTeXiT replaces it with an image file. Figure 8-13 shows an iChat
 message with an equation rendered by LaTeXiT.
[image: An iChat message with an equation rendered by LaTeXiT]

Figure 8-13. An iChat message with an equation rendered by LaTeXiT

At the time of this writing, the LaTeXiT Service works with the
 TextEdit application but does not work with Mac OS X Mail. Nevertheless,
 even if the LaTeXiT Service menu bar option does not work with a given
 application, you can still drag and drop the small image file produced
 in the LaTeXiT main window into the other application document.

R with an Aqua GUI

The open source statistical computing package R is similar to Bell Laboratories’s S statistical package. R
 runs on a variety of platforms, including most X11-based systems and
 Windows. Although an X11-based version of R can be installed with Fink or
 MacPorts, another port of R that supports both X11 and Quartz on Mac OS X,
 R.app, has been developed by Stefano
 M. Iacus and others associated with the R-Core/R-Foundation. A binary
 distribution of R for Mac OS X, among other systems, is distributed
 through the Comprehensive R Network (CRAN; http://cran.r-project.org).
The installer places an application named R in your /Applications folder. It also places R, a symbolic link to /Library/Frameworks/R.framework/Resources/bin/R,
 in /usr/bin. Double-clicking the R
 icon opens an Aqua-based console window in which you can enter R commands, as shown in Figure 8-14.
[image: R’s Aqua-based console]

Figure 8-14. R’s Aqua-based console

Figure 8-15 shows an R
 graphics window containing a histogram.
[image: R’s Quartz graphics window]

Figure 8-15. R’s Quartz graphics window

One of the features of R unique to its Mac OS X port is that it is
 AppleScriptable. Example 8-1 shows
 an AppleScript that instructs R to store some values in a variable x and display a histogram corresponding to those
 values.
Example 8-1. AppleScript to interact with R
try
 tell application "R"
 activate
 with timeout of 1000 seconds
 cmd "x = c(77, 79, 90, 69, 75, 73, 71, 69, 84)"
 cmd "hist(x)"
 cmd "hist(x,probability=TRUE)"
 cmd "rug(jitter(x))"
 end timeout
 end tell
end try

You can use X11 graphics with R from the R console or from a Terminal
 (or xterm) window. To use X11
 graphics from the R console, you must first enter X11() in the R console to start the X11 window
 server and open an X11-graphics
 device window. You can switch back to a Quartz-based graphics device by
 entering quartz() in the R console. If,
 on the other hand, you start R from a Terminal window, X11 will be the
 default graphics device, and thanks to Mac OS X’s launchd support, an X11 graphics device window
 will open automatically when you enter a graphics command in R. Figure 8-16 shows the same
 histogram shown in Figure 8-15, but this time it’s
 displayed in an X11 window.
[image: R’s graphics window, X11 style]

Figure 8-16. R’s graphics window, X11 style

Note
This example was tested with Release R-2.7.0, which is the latest
 release available at the time of this writing. Be sure to consult the
 CRAN website for up-to-date information.

Open Source Replacements for Microsoft Office

OpenOffice.org (http://www.openoffice.org) is
 well known as a powerful and free alternative to the Microsoft Office productivity suite. OpenOffice.org includes
 the word processor Writer, the spreadsheet Calc, the presentation tool
 Impress, and the drawing tool Draw. OpenOffice.org also includes a set of
 database tools and a mathematical equation editor. Aside from providing a
 powerful set of productivity tools,
 OpenOffice.org can import and export to Microsoft Office documents,
 including those in .docx (Office
 2007) format.
Note
Though WYSIWYG (What You See Is What You Get) applications like
 those in the Microsoft Office and OpenOffice.org suites provide equation
 editors for including mathematical equations in documents, they fall
 short of the capabilities of the typesetting language and associated
 macros provided by TeX distributions.

At the time of this writing, OpenOffice.org provides a binary for
 the X11-based Mac OS X port of OpenOffice.org 2.4 at http://download.openoffice.org/index.html, while a binary
 for a beta release of the Aqua-based port of the upcoming OpenOffice.org
 3.0 is available at http://porting.openoffice.org/mac/download/aqua.html. The
 X11-based port is based on the latest official point-release of
 OpenOffice.org, and it looks the same on Mac OS X as it does on other
 X11-based platforms.
Additionally, the NeoOffice group (http://www.neooffice.org) provides a Carbon- and Java-based Mac OS X version of
 OpenOffice.org called NeoOffice. Though NeoOffice is usually based on a
 slightly older OpenOffice.org codebase (at the time of this writing,
 Release 2.2.x versus Release 2.4), it has better integration with Mac OS X
 and runs natively on the Mac as a Java application. Among other things,
 NeoOffice uses Mac OS X fonts, native printer drivers, and Mac OS X’s menu
 bar, unlike the X11 version of OpenOffice.org. If you have the space on
 your hard drive, you can install both the X11-based OpenOffice.org and
 NeoOffice on the same system, but our experience has been better with
 NeoOffice. Figure 8-17 shows a Calc spreadsheet document in NeoOffice.
[image: A NeoOffice Calc document]

Figure 8-17. A NeoOffice Calc document

Video

Mac OS X ships with QuickTime Player, an application that supports several video formats,
 including MPEG and MPEG4. You can extend the variety of formats supported
 by QuickTime by downloading and installing the collection of video codecs
 from the Perian project (http://www.perian.org).
 Perian is a plug-in for QuickTime that supports over two dozen video
 formats, including DivX and Xvid.
Since QuickTime is unavailable for Unix- and Linux-based systems
 (other than Mac OS X), most Unix and Linux users are familiar
 with X11-based open source alternatives. In Mac OS X, you can
 install any of several X11-based open source applications for viewing
 video formats by using the MacPorts package manager (see Chapter 13). These applications will run under Apple’s X11
 environment. Also, some open source video applications have been ported to
 Mac OS X using Aqua, rather than relying on X11.
Open Source Video Players

MPlayer (http://www.mplayerhq.hu), an
 audio/video player popular among Linux/Unix users, can be installed to
 run on Mac OS X. This application is one of the many packages that the
 MacPorts project has ported to Mac OS X; it’s also available as MPlayer
 OS X, a Mac OS X binary distribution with an Aqua GUI, at the MPlayer
 website.
Once you’ve downloaded and mounted the disk image, drag the
 MPlayer OS X application to your /Applications folder, and then unmount and
 trash the disk image if you don’t plan to install it anywhere else. That
 completes the installation.
To play videos with MPlayer OS X (shown in Figure 8-18), you can drag and drop a video file onto the
 MPlayer OS X icon in the Finder, or select a video from the MPlayer OS X
 menu bar by using File→Open.
[image: MPlayer OS X]

Figure 8-18. MPlayer OS X

Another popular open source, cross-platform multimedia player that
 has been ported to Mac OS X and sports an Aqua-native GUI is VLC (shown in Figure 8-19). VLC is distributed by the VideoLAN project
 (http://www.videolan.org) and supports a wide
 variety of video and audio formats. To play a video using VLC, either
 select File→Open from the menu bar or drag and drop the video file onto
 the VLC icon in the Finder.
[image: VLC]

Figure 8-19. VLC

These alternatives (MPlayer and VLC) support some formats that
 Apple’s QuickTime Player does not. If you find that QuickTime does not
 support a particular file, you may want to try it with VLC or MPlayer OS
 X.

Image Editing

The GNU Image Manipulation Program, or GIMP (http://www.gimp.org), is one of the best-known open source
 image manipulation programs. You can get GIMP for Mac OS X from MacPorts
 (see Chapter 13), and you can use it to create drawings,
 touch up photographs, convert images, and do much more.
You can even use GIMP as iPhoto’s default image editor. To do this,
 you first need to install Gimp.app,
 an application frontend for the X11 version of GIMP. You can either
 download it from http://gimp-app.sourceforge.net/ or
 install it using MacPorts.
Next, go to iPhoto’s Preferences window (iPhoto→Preferences or ⌘-,)
 and follow these steps:
	In the Click section under General, select “in application” from
 the “Edit photo” drop-down menu. If you have already chosen an
 application (such as Adobe Photoshop), click that “in application
 name” (e.g., “in Adobe Photoshop CS2”), and you’ll be prompted to
 select an application. If not, just click the Select button.

	Navigate to the /Applications folder and choose Gimp as the application.

	Close the Preferences window (⌘-W).

You’ll be able to use GIMP as your image-editing tool immediately by
 double-clicking on an image file. If you later return to iPhoto’s
 Preferences and set the “Edit photo” option back to one of the options
 that opens images for editing in iPhoto, you’ll still be able to use GIMP
 for that purpose by right-clicking or Control-clicking an image and
 selecting “edit in external editor” from the contextual menu. Figure 8-20 shows an iPhoto image
 being edited in GIMP.
[image: Using GIMP as iPhoto’s default editor]

Figure 8-20. Using GIMP as iPhoto’s default editor

A modified version of GIMP, CinePaint (http://cinepaint.sourceforge.net), was designed to meet the
 needs of film professionals. (It has been used in the Harry Potter
 movies, Scooby Doo, and other films.) CinePaint was
 originally known as Film GIMP, and an earlier version was available
 through Fink at the time of this writing. Check out the CinePaint website
 for the latest version.

3D Modeling

Blender (http://www.blender.org) is a popular
 cross-platform, open source, integrated 3D graphics package for modeling, animation, rendering,
 post-production, real-time interactive 3D
 modeling, and game creation and playback. A complete list of features can
 be found on Blender’s website. In addition to source code, binaries are
 available for a variety of platforms, including Mac OS X.
To install Blender on Mac OS X, download the appropriate disk image
 from Blender’s site and, after it has mounted, copy Blender to your
 /Applications folder. To run Blender,
 double-click its icon.
As you can see in Figure 8-21,
 the look and feel of Blender on Mac OS X is different from that of most
 standard Aqua applications. The reason is that OpenGL is used to draw Blender’s interface.
[image: Blender running on Mac OS X]

Figure 8-21. Blender running on Mac OS X

Since Blender makes extensive use of OpenGL, you’ll find that
 drawing images in large windows can be slow if your Mac’s graphics card
 does not have sufficient memory or horsepower. In this case, you can
 switch to fewer screen colors in System Preferences→Displays, then click
 on the Display button and choose the Thousands option as the number of
 colors to display onscreen.
Although Blender is designed for use with a three-button mouse, the
 standard single-button Apple mouse can also be used in combination with
 various keystrokes:
	The left button of a three-button mouse is used to activate
 screen menus and buttons in the GUI, to resize subwindows, and to set
 the 3D cursor. The same effect can be achieved with the single button
 of a standard one-button Apple mouse.

	The middle button of a three-button mouse is used to move,
 rotate, and zoom the 3D views. To access this functionality with a
 one-button mouse, simultaneously press the Shift-Control-Option keys
 and click the mouse button.

	The right button of a three-button mouse is used to select 3D
 objects. The right-mouse-button effect can be achieved by
 ⌘-clicking.

There are more Mac OS X-specific details to be aware of when using
 Blender. For example, on other platforms, the F12 key is used to render an
 image in Blender; however, on Mac OS X, you must press either Control-F12
 or Option-F12 to render an image. This is because the F12 key is used on a
 Mac to activate the Dashboard.

Chapter 9. Dual-Boot and Beyond

With the arrival of Intel-based Macs came the ability to easily run multiple operating
 systems. PowerPC-based Macs had this ability to a limited extent, but
 the switch to widely supported Intel hardware gave Mac users access to more
 operating systems that they could install on their Macs. Not only that, but
 the performance of virtual machines on Macs suddenly increased by orders of
 magnitude, because users were no longer dependent on software that emulated
 an Intel CPU on a PowerPC: they could take advantage of the ability to
 virtualize key components of the underlying hardware. You have a couple of
 choices for running multiple operating systems on the Mac:
	Running on the bare metal
	If you want to run an alternative operating system on your Mac, many choices are
 available. Linux and NetBSD will run on just about any kind of Mac,
 all the way back to the 68k-based Macintoshes, and Intel-based Macs
 can run nearly any operating system that can run on a stock
 Intel-based PC. However, if you want to be able to boot into another
 operating system on your Mac, you’ll need to repartition your drive.
 We’ll talk about this in the Linux on Mac Hardware”
 section later in this chapter; much of what you read in that section
 will apply to other operating systems as well.

	Running on Mac OS X
	When it comes to running Windows, Linux, or other operating
 systems under Mac OS X, you have several options. VMware Fusion
 and Parallels Desktop are two of the best known, but there are also two open
 source applications that can serve your needs very well: Sun’s
 VirtualBox and Fabrice Bellard’s QEMU (which also can run on PowerPC
 Macs, as described in the next paragraph).
Even for older PowerPC Macs, a good selection of emulators run on Mac OS X. With Microsoft’s Virtual PC (no longer available for sale, but you may be
 able to find a used copy), you can run x86-based operating systems.
 Amit Singh’s legendary “Many Systems on a PowerBook” article (http://www.kernelthread.com/mac/vpc/) documents dozens
 of operating systems that run under Virtual PC. In addition to Virtual
 PC, there are two open source x86 emulators of note: Bochs, a portable
 (but very slow) x86 emulator; and QEMU, a highly tuned x86 emulator
 that comes close to Virtual PC in speed. We’ll discuss Virtual PC and
 QEMU in the Emulators on Mac OS X” section later in
 this chapter.

Of course, all of these operating systems wouldn’t be very useful if
 they didn’t talk to the outside world. Whether you’re running an alternative
 operating system on the bare hardware or under an emulator, getting the
 network up and running can sometimes be tricky. We’ll cover the essential
 configuration steps in detail later in this chapter.
Virtualization Versus Emulation
There are two classes of products that let you run one operating
 system within another. An emulator (such as Virtual PC, Bochs, or
 DOSBox) translates every CPU instruction that a program needs to execute,
 turning it into the equivalent instruction or instructions used by the
 target CPU. A virtualizer (such as VMware Fusion,
 Parallels, or VirtualBox) does something very different: it lets the
 program run directly on the CPU without translation. (QEMU can run either
 as an emulator or a virtualizer.)
As a result, virtualizers such as Parallels and VMware can run Intel-based operating systems very fast,
 but unlike QEMU and the other emulators, they can’t run Intel-based
 operating systems on PowerPC CPUs. Apple’s Rosetta technology is an emulator that goes the other way: it
 emulates a PowerPC CPU on an Intel CPU.
Even virtualizers rely in part on emulation, using a large disk
 image that contains the virtualized operating system’s files to emulate a
 hard disk.

Why Bother?

All this discussion of how to run another operating system on your
 Mac raises the question of why you’d even do it in the first place. Here
 are a few reasons:
	Portability
	First and foremost, dual-booting and virtualization give you
 portability. Wherever you travel with your Mac, why not bring a
 dozen Linux distributions and flavors of Windows around with you?
 It’s easier than carrying several computers.

	Software testing
	There are a lot of flavors of Linux, so if you’re developing
 an application that has to run on Linux, you’ll need to do extensive
 testing. You could set up a multiboot
 configuration with all the flavors of Linux, but working with
 virtual machines is much easier and requires less time spent
 juggling partition configurations. With virtualizers, you can even
 run all these systems at once (albeit incurring something of a
 performance hit).
Further, with virtualizers and emulators you can suspend an
 operating system and resume it later, so if you have some testing to
 do, you can get in and out quickly.

	Browser testing
	Nothing beats virtual machines for browser testing. You can
 develop your web application (or site) on your Mac and, in very
 little time, fire up several emulated operating systems and test it
 in a wide array of browsers on Windows, Linux, and Mac OS X.
Note
If browser testing is all you need, check out Browser Pool
 at http://www.browserpool.de.
 You can get inexpensive (or free, if you don’t mind waiting in
 line) access to browsers on Linux, Mac OS X, and Windows operating
 systems for testing your websites.

	Freeze and thaw
	When you set up an operating system with an emulator, the
 system’s hard disk is just a file on your Mac’s filesystem. If you
 keep this to around 4 GB, you can burn a snapshot of the operating
 system to a DVD for a very quick restore. This is ideal in testing
 scenarios where you frequently need to test your software on a clean
 install or standardized software configuration.

	Running Windows applications
	There are plenty of applications that either don’t run on the Mac at
 all (this is often a problem with games and specialized apps) or
 don’t run exactly the way you’d like them to. For example, although
 recent versions of Microsoft Office for Macintosh have made great
 improvements in compatibility, we ran into some problems ourselves
 during the creation of this book: some documents that were edited in
 Microsoft Office 2008 for the Mac crashed Microsoft Office 2003 for
 Windows. So, if you need to run a certain Windows application, you
 may need to dual boot or run Windows under emulation.

	Fun
	Got an old MS-DOS game you want to play on your Mac? Nothing
 beats an emulator for running these old games (see Figure 9-1), except maybe
 an old Tandy home computer. Furthermore, there’s plenty to be said
 for running an old operating system just for the fun of it.
Note
Your best bet for MS-DOS emulation is DOSBox (http://www.dosbox.com), which has one feature that
 sets it apart from other emulators: it lets you mount parts of the
 host filesystem as DOS drives. So, you can download that old
 MS-DOS game, unzip it into ~/Games, and mount ~/Games as your
 D: drive in DOSBox. Figure 9-1 shows a real
 classic running under DOSBox.

[image: A little Sopwith, anyone?]

Figure 9-1. A little Sopwith, anyone?

Linux on Mac Hardware

In theory, nearly any operating system that can run on a modern
 Intel-based personal computer can also be made to run on a Macintosh:
 simply boot your Mac from the boot disc, run the installer, and you’re
 done. If you’re only interested in running one operating system on your
 Mac, that’s pretty much all you have to do (at first, anyhow; later in
 this section we’ll get into the details of configuring hardware support).
 But if you want to keep Mac OS X on your computer and dual-boot between
 Mac OS X and some other operating system, you’ll need to do some prep
 work.
Partitioning for Linux

If you can plan ahead, partitioning for Linux is a piece of
 cake. That is, if you are installing Mac OS X from scratch, you may as
 well partition your drive beforehand (to do this, launch Disk Utility
 during installation) and leave some space for Linux.
If you aren’t installing Mac OS X from scratch, you can take
 advantage of diskutil(8)’s ability
 to resize volumes. Before you do this, you should use Carbon Copy Cloner (http://www.bombich.com/software/ccc.html) or SuperDuper!
 (http://www.shirt-pocket.com/SuperDuper/) to make
 a bootable backup of your Mac’s hard drive (although you can
 restore from a Time Machine backup, it’s quicker and easier to work with
 a bootable clone of your hard drive).
Note
If you don’t want to repartition, you can install Linux on a
 separate drive. Given that storage is cheap, it shouldn’t be hard for
 you to put a second drive in your Mac, assuming you’re running a Mac
 Pro. 13" MacBook users can also swap drives easily, which is another
 way you can switch between Linux and Mac OS X without having to modify
 your partitions. See http://manuals.info.apple.com/en/MacBook_13inch_HardDrive_DIY.pdf
 for a guide to installing a new drive in the MacBook. It takes only a
 few minutes to swap drives on the MacBook.

To resize your Mac OS X partition and set aside some space for a
 Linux install, first check the current partition system with diskutil list:
$ diskutil list
/dev/disk0
 #: TYPE NAME SIZE IDENTIFIER
 0: GUID_partition_scheme *186.3 Gi disk0
 1: EFI 200.0 Mi disk0s1
 2: Apple_HFS Macbook HD 186.0 Gi disk0s2
You’ll notice that three items are listed for
 disk0. The first represents the partitioning scheme of the entire disk (GUID
 partitioning, the default and preferred partitioning scheme for Mac OS
 X). The second, disk0s1, is the Extensible Firmware Interface (EFI), which is included to
 comply with the EFI specification. The third,
 disk0s2, is the main Mac OS X partition; when you
 resize the disk, this is the partition you need to resize.
The first step is to determine how much space you have to play
 with. Use diskutil resizeVolume
 partition limits to figure this out:
$ diskutil resizeVolume disk0s2 limits
For device disk0s2 Macbook HD:
 Current size: 199705673728 bytes
 Minimum size: 11756769280 bytes
 Maximum size: 199705673728 bytes
Next, do the math on the partition sizes. In this example, we’ll
 shrink disk0s2 to 80 GB (85,899,345,920 bytes) and
 set aside everything else for Linux (maximum size – new size =
 everything else). Use B to specify bytes when you resize the
 volume:
$ diskutil resizeVolume disk0s2 85899345920B MS-DOS Untitled 113806327808B
Started resizing on disk disk0s2 Macbook HD
Verifying
Resizing Volume
Adjusting Partitions
Formatting new partitions
Formatting disk0s3 as MS-DOS (FAT) with name Untitled
[+ 0%..10%..20%..30%..40%..50%..60%..70%..80%..90%..100%]
Finished resizing on disk disk0
/dev/disk0
 #: TYPE NAME SIZE IDENTIFIER
 0: GUID_partition_scheme *186.3 Gi disk0
 1: EFI 200.0 Mi disk0s1
 2: Apple_HFS Macbook HD 79.9 Gi disk0s2
 3: Microsoft Basic Data UNTITLED 106.1 Gi disk0s3
When you’re done resizing, you’ll have an MS-DOS-formatted (also
 known as FAT32) partition that you can delete once the Linux installer is
 up and running, as described in the next section.

Installation and Configuration

You’ve got some free space to play around with now, so installing
 Linux is mostly straightforward. Here’s how you’d install Ubuntu 8.04 on
 a Mac after setting up the partitions:
	Install rEFIt (http://refit.sourceforge.net). rEFIt is a boot loader for Macintoshes that will let you choose
 between Linux and Mac OS X at each boot.

	Shut down the Mac and power it up while you hold down the
 Alt/Option key. When the boot menu appears, insert the Ubuntu
 installation CD (using the Live CD installer on the desktop edition
 of Ubuntu).

	Oddly enough, the Ubuntu installation CD will appear as a CD
 called “Windows.” Select this CD and click the arrow to boot from
 it.

	After the Ubuntu desktop appears, double-click on the
 installer icon. Make your way through the following installer
 screens, accepting the defaults or changing them as needed:
	Welcome

	Where Are You?

	Keyboard Layout

	When you come to the Prepare Disk Space screen, choose Manual
 and click Forward. The Prepare Partitions screen will appear.

	On the Prepare Partitions screen, highlight the FAT32
 partition (this is the MS-DOS partition you created earlier) as
 shown in Figure 9-2,
 and click Delete Partition. Be sure to leave the first and second
 partitions (sda1 and sda2 in this example) untouched, or you will
 lose your data.

	Next, highlight the free space you just liberated and create
 two partitions: a swap partition equal to your amount of RAM at the
 end of the free space, and an ext3 partition at the beginning of the
 free space. Be sure to specify / as the mount point for the ext3 partition. Figure 9-3 shows the configuration.

	Click Forward and proceed through the rest of the Ubuntu
 installation. You’ll be prompted to supply a username and specify
 the name of the computer, and then you’ll be given a chance to
 review the settings. Don’t click Install just yet.

	Click the Advanced button and specify /dev/sda (or whichever disk you created
 the Linux partition on) as the location of the boot loader. Click
 OK.

	Click Install.

[image: Deleting the FAT32 (MS-DOS) partition you created earlier]

Figure 9-2. Deleting the FAT32 (MS-DOS) partition you created
 earlier

[image: Partition settings]

Figure 9-3. Partition settings

After installation is complete, reboot as directed by the
 installer. The rEFIt menu will appear, letting you choose between Mac OS
 X and Ubuntu. Don’t choose either just yet; instead, start the Partition
 Tool and accept its recommendation to sync the partition tables. After
 it’s finished, shut down your Mac, restart, and choose Mac OS X or
 Ubuntu.
Depending on the model and vintage of your Mac, some things may
 work right out of the box, but you may have to install updated versions
 of some drivers and software packages. As cruel fate would have it,
 AirPort networking is one piece of hardware that often needs updated
 drivers, so things will go most smoothly if you can arrange for a wired
 network connection over Ethernet during your initial configuration. If
 you can’t arrange for this, you can use another computer to download
 files and transfer them to your Mac using a USB memory device.
The best way to get help configuring your Mac with a particular
 Linux distribution is to visit the wiki, forums, or support pages for
 that distribution. For example, the Ubuntu community documentation
 (https://help.ubuntu.com/community/) includes
 guides for specific Mac models such as the MacBook (https://help.ubuntu.com/community/MacBook/).

Linux on Older Macs

Linux will also run on Apple hardware based on the Motorola 68020
 (and higher), as well as PowerPC-based Macs.
Note
You can learn how to get Linux running on that old Centris
 you’re using as a doorstop at the Linux/mac68k Project website (http://www.linux-m68k.org), or the Debian on Motorola
 680x0 pages (http://www.debian.org/ports/m68k/).
There are several distributions of Linux you can choose for your
 PowerPC Macintosh. Speaking of an old Centris, if you want to see
 something really wild, how about a 25 MHz Centris running Linux
 running PearPC running Mac OS X Panther? See all the gory details at
 http://www.appletalk.com.au/articles/68kpanther/.

If you’re going to run Linux on your pre-Intel Mac, you’ll need to
 know which distribution will work with your hardware. This list should
 give you an idea of what’s available for your Linux hacking
 needs:
	Fedora
	Fedora (http://fedoraproject.org) is
 widely used on a large variety of platforms and
 forms the basis of several other Linux distributions, including
 Red Hat Enterprise Linux, the One Laptop per Child XO (http://www.laptop.org), and Yellow Dog Linux.
 Fedora is actively developed and brings with it a large number of
 up-to-date packages. Fedora will run on PowerPC-based Macs, but
 you may need to tweak some configuration files. For example, on
 some old Macs you may need to modify the /etc/xorg.conf file or borrow the
 /etc/xorg.conf automatically
 generated by an installation of Yellow Dog Linux to get the X
 server to start.

	Yellow Dog Linux
	Based on Red Hat’s Fedora Core, Yellow Dog Linux (http://www.yellowdoglinux.com) is one of the most
 popular Mac-based Linux distributions; it runs on Macintoshes
 based on the G3 (with built-in USB), G4, and G5. If your Mac can
 run Mac OS X, it will probably run YDL.

	Gentoo Linux
	Gentoo Linux (http://www.gentoo.org)
 is a hacker’s dream. Although you can install it using prebuilt
 binaries, the preferred method is to bootstrap a minimal system
 and compile the bulk of it by source. Gentoo will run on the
 PowerPC chipset, as well as pre-G3, G3, G4, and G5 Macs.

	Debian GNU/Linux
	Debian (http://www.debian.org/ports/powerpc/) runs on a lot
 of different hardware, including PowerPC (from pre-G3 all the way
 up to G5) Macs. Debian is known for its wide selection of
 packages, hacker-friendly configuration, and bleeding-edge
 releases that are hard to resist even when you know
 better.

	Ubuntu
	If you like Debian, there’s a very good chance that you’ll
 adore Ubuntu (https://wiki.ubuntu.com/PowerPCDownloads/). This
 Debian-based distro is an excellent desktop Linux, but it’s not
 dumbed-down. Ubuntu detects and configures your oddball hardware
 and launches X11 with a very pretty face, but it still lets you
 take control.

Although Linux is generally compatible with PowerPC-based
 Macintosh hardware, there are a few areas that you’ll need to watch out for:
 hardware on newer Macs, AirPort Extreme, Bluetooth, and power
 management. For more details, check the documentation for the Linux
 distribution you’ve chosen. For example, Ubuntu maintains a PowerPC FAQ
 at https://wiki.ubuntu.com/PowerPCFAQ/.
Linux installs a boot loader (such as Yaboot, available at http://yaboot.ozlabs.org), which is used to boot the
 Linux distribution, much in the same way Mac OS X boots with help from
 BootX (see Chapter 4). If the boot loader is
 installed on the Linux partition, you’ll see it only if your Linux
 partition remains selected as your Startup Disk. If you switch the
 Startup Disk settings (System Preferences→Startup Disk), you can easily
 boot into Linux by holding down the Option key when you boot your Mac.
 Choose the disk with the Linux penguin (Tux) logo to boot into
 Linux.

Mac-on-Linux

Mac-on-Linux (http://mac-on-linux.sourceforge.net) is a hardware
 virtualizer that provides a virtual machine environment that is
 Mac-compatible enough for you to run Linux, Mac OS (7.5.2 through
 9.2.2), and Mac OS X (10.1 through 10.3.3 as of this writing).
 Mac-on-Linux emulates the bits that it needs to, but when the operating
 system running in the virtual machine accesses the hardware of the
 virtual environment, Mac-on-Linux virtualizes the call and passes it
 right on down to the real hardware.

Emulators on Mac OS X

Emulation has been a hot area for the past few years. It’s emerged as
 a way to defeat obsolescence, by letting you run software for obsolete
 computers. Have a favorite Atari 800 game but your old Atari won’t
 boot? You can download the emulator, point it at the disk image
 containing that old game, and start playing. Repeat as necessary for Apple
 II, Commodore 64, Atari VCS, and more.
Copyrights and Vintage Games
If your favorite old games aren’t shareware or in the public
 domain, you may need to poke around various corners of the world,
 including yard sales, thrift stores, eBay, or your own attic, to find
 copies of them.
There are a several sites with information about vintage games and
 computer emulators for the Mac, including:
	http://emulation.victoly.com

	http://www.zophar.net/mac/mac.phtml

	http://www.macemu.com

	http://www.emaculation.com

	http://www.bannister.org/software

Given the speeds of today’s Macs, it’s not surprising that you can
 easily emulate a 1 MHz computer from the old days. What’s fantastic is how
 you can emulate most current x86 operating systems at near-full speed on
 the most recent Intel Macs.
Getting a Linux Installation Disk Image

Once you’ve picked which virtualization or emulation package
 you want, you can set up a virtual machine using either a Linux
 installation disk or an ISO disk image. For example, to install Ubuntu (used in the following
 examples), visit http://www.ubuntu.com/getubuntu/download/ and download
 the desktop edition for a “Standard personal computer.” For Ubuntu Linux
 8.04, this will leave you with a file called ubuntu-8.04-desktop-i386.iso. There’s no need
 to burn this file to a CD; simply keep it around for when you start the
 installation.
Do This After Installing Ubuntu
After you install Ubuntu in a virtual machine, you’ll want to
 run a couple of commands to prepare for installing any software, such
 as VMware’s Tools, that needs to compile kernel modules.
Open a terminal (Application→Accessories→Terminal), then type
 the following commands to upgrade Ubuntu and install the C compiler
 (this will require a working network connection and a virtualized
 network connection, which most virtualizers and emulators enable by
 default):
$ sudo apt-get update
$ sudo apt-get dist-upgrade
$ sudo apt-get install build-essential
Other Linux operating systems will have similar
 procedures.

Parallels

Parallels is a recent entry into the virtualization market. After
 Microsoft decided not to release an Intel version of Virtual PC,
 Parallels filled the gap with Parallels Desktop for Mac.
To get started with Parallels, buy a copy of the package from an
 online vendor or a retail store, install it, and set up a Linux
 operating system. You can also download a trial version of Parallels
 from http://www.parallels.com/en/products/desktop/.
Here’s how to set up Ubuntu Linux on Parallels Desktop:
	Click New or choose File→New. The OS Installation Assistant
 appears.

	Select Typical and click Next.

	Set the OS Type to Linux and the OS Version to Ubuntu Linux,
 then click Next.

	Give the virtual machine a name, and click More Options if you
 want to choose a specific location. Be sure to put it on a disk
 where you have plenty of free space. Click Next.

	Pick your performance options. You can choose to make the
 virtual machine faster or to make Mac OS X faster.

	Now you’re prompted to insert the Ubuntu disk. Choose the
 Ubuntu ISO that you downloaded (as instructed in the preceding
 section). Click Finish.

To install Parallels Tools, select Actions→Install Parallels Tools
 from the Parallels menu. Follow the instructions provided to get the
 tools running.

VMware Fusion

VMware Fusion was one of the first virtualization products to
 appear on the market. It gained popularity as a way to run Linux on
 Windows, Windows on Linux, and various other interesting
 combinations.
Shortly after Parallels appeared on the market, VMware introduced
 the Macintosh version of its software. It matches Parallels well on a
 feature-by-feature basis and has better support for Linux guest
 operating systems (in particular, VMware lets you copy and paste between
 Mac OS X and Linux guest operating systems, whereas as of this writing,
 Parallels does not).
To get started with VMware Fusion, buy a copy of it from an online
 vendor or a retail store, install it, and set up a Linux operating
 system. You can also download a trial version of VMware from http://www.vmware.com/mac.
Here’s how to set up Ubuntu Linux 8 under VMware Fusion:
	Choose File→New. The New Virtual Machine Assistant
 appears.

	Click Continue. On the next screen, choose Linux as your
 operating system, specify Ubuntu, and click Continue.

	Now you’ll be asked to choose a location for the virtual
 machine. Pick a disk with plenty of free space, and click
 Continue.

	Choose the size of your virtual hard disk; 8 GB is a good size
 for Ubuntu. If you are storing this virtual machine on a hard drive
 that’s formatted with the FAT32 filesystem, click “Advanced disk
 options” and choose “Split disk into 2GB files.”

	On the next screen, click “Use operating system installation
 disk image file,” select None→Other, and choose the Ubuntu ISO that
 you downloaded (see Getting a Linux Installation Disk Image,” earlier in
 this chapter). Click Finish to boot Ubuntu and install it as you
 would on a normal computer.

After you’ve installed Ubuntu, log into it and set up the VMware
 Tools to get faster graphics, a more responsive mouse, and copy/paste
 integration:
	Choose Virtual Machine→Install VMware Tools from the VMware
 menu (not the menu inside the virtual machine). A window appears on
 your desktop with two files: a tar.gz file and an RPM. These contain the
 VMware tools that you need to install.

	Double-click the tar.gz
 file and click the Extract button in the window that appears.
 Extract the file to somewhere in your home directory.

	Select Application→Accessories→Terminal inside Ubuntu to
 launch a Linux terminal.

	Next, change directories to wherever you extracted the VMware
 tools and run the installer:
$ cd vmware-tools-distrib
$ sudo ./vmware-install.pl
When it’s finished, you may want to reboot the virtual machine
 to verify that all the settings have taken effect.

Virtual PC

Microsoft’s Virtual PC has been letting Mac users run Windows and DOS
 on their Macs for years. You can also run dozens of other operating systems, including Linux, Darwin, and
 Net/Free/OpenBSD (some are easier to install than others). Virtual PC
 does not run on Intel Macs.
Virtual PC 7 is no longer available for sale, although you may be
 able to find used copies on eBay, Amazon, and other locations.
Once you’ve got Virtual PC up and running, you can install an
 operating system. You can install from an ISO image, a CD-ROM, or a DVD.
 For example, here’s how to install Ubuntu Linux from an ISO image:
	Select File→New. You’ll be prompted to select a setup
 method.

	Select Install Your Own Operating System, and then click
 Begin.

	You’re prompted to choose an operating system and hard disk
 format. One of the choices that you’ll notice is missing is the size
 of the drive. Virtual PC defaults to a 15 GB drive, but it doesn’t
 use up all the space at once. Instead, the size of the drive grows
 as you add files to it. Select Linux for the operating system and
 Unformatted for the hard disk format, and click Continue.

	Now you need to choose a filename and a location for the
 virtual machine.

Note
The file that gets created is actually a bundle, so if you
 locate it in the Finder, Control/right-click on it and select Show
 Package Contents from the contextual menu, you’ll see all sorts of
 files, including configuration data, the hard disk image, and any
 saved states.

	Next, Virtual PC prompts you to start the PC. Click Start PC
 to begin. When the Virtual PC starts up, the first thing you’ll see
 is an annoying help document and an error message in the virtual
 machine.

	You now need to “capture” the CD-ROM and reboot the virtual
 machine. Select Drives→Capture CD Image and choose the CD-ROM ISO
 image you obtained (see Getting a Linux Installation Disk Image” earlier in
 this chapter). If you want to capture a CD-ROM that’s sitting in
 your optical drive, you can select Drives→Capture Disk.

After you’ve captured the drive, select PC→Reset to reboot the PC.
 You’ll be launched into the installer for Ubuntu.

VirtualBox

VirtualBox is a virtualization application that was purchased by Sun
 Microsystems and released as open source software. Two versions are
 available: the VirtualBox Open Source Edition, which is available as
 source code, and the binary release, which includes some components that
 are not open source. After you install VirtualBox, you can install an
 operating system from a disk image, DVD, or CD-ROM. Here’s how you’d
 install Ubuntu Linux from an ISO disk image:
	Click New in the VirtualBox main window. The Create New
 Virtual Machine Wizard appears. Click Next.

	Give the installation a name, such as Ubuntu 8.04, and specify
 the OS type as Ubuntu. Click Next.

	Specify the amount of memory you want to give the virtual
 machine. 256 MB is a reasonable minimum. Click Next.

	Now you’re prompted to specify the hard disk image. Click New,
 and the Create New Virtual Disk Wizard appears. Click Next,
 then:
	Choose the disk type (dynamically expanding or fixed-size)
 and click Next.

	Specify the filename and size, then click Next.

	Click Finish to return to the Create New Virtual Machine
 Wizard.

	The wizard automatically selects the disk you specified. Click
 Next.

	Review your choices, then click Finish.

Now you’ll see a summary of your virtual machine in the main
 window, as shown in Figure 9-4. Click CD/DVD-ROM,
 and then click Mount CD/DVD Drive. Specify ISO Image File and choose the
 Ubuntu install image you downloaded earlier (see Getting a Linux Installation Disk Image”). Click OK, then
 click Start to launch the virtual machine and boot from the installation
 disk.
[image: Find the CD/DVD-ROM options and set them here]

Figure 9-4. Find the CD/DVD-ROM options and set them here

QEMU

QEMU (http://www.bellard.org/qemu/) is
 a state-of-the-art open source emulator and virtualizer.
 Like Bochs (http://bochs.sourceforge.net), QEMU
 can emulate an x86 CPU. However, QEMU is significantly faster than Bochs
 and can also emulate a number of other CPUs, including SPARC and
 PowerPC. Q (http://www.kju-app.org) is a Mac OS X
 version of QEMU that comes with a nice user interface for working with
 virtual machines.
To get started with QEMU, download the latest version of Q, or
 download the source code to QEMU. The easiest way to get up and running
 is to download and install a prebuilt virtual machine image for QEMU
 from the Free Operating Systems Zoo (http://www.oszoo.org/wiki/index.php/Main_Page).
 However, you can also start with an installation image, as
 described in the instructions for the other software described in this
 section.
Here’s how to get up and running with a prebuilt virtual machine
 image for Ubuntu 7.10:
	Unzip the Ubuntu image from Free OS Zoo. You’ll end up with a
 file such as ubuntu_gutsy_7.10_x86.img.

	Start up Q. The Q Control window appears.

	Press the + button at the top, name the virtual machine
 “Ubuntu,” and select Q Standard Guest as the operating system. Click
 Create PC. A window appears that lets you set several options in
 four categories: General, Hardware, Network, and Advanced.

	Click Hardware, and then click the pop-up menu next to Hard
 Disk. Select Choose Diskimage and navigate to where you extracted
 the Ubuntu image. Select this image and click Open.

	Set any other options as you’d like, and click Create PC. The
 Ubuntu virtual machine appears in the list on the Q Control.
 Double-click it to run it.

Part II. Building Applications

Although Apple’s C compiler is based on the GNU Compiler Collection
 (GCC), there are important differences between compiling and linking on
 Mac OS X and on other platforms. This part of the book describes these
 differences.
Chapters in this part of the book include:
	Chapter 10, Compiling Source Code
	Chapter 11, Libraries, Headers, and Frameworks

Chapter 10. Compiling Source Code

The Xcode tools that ship with Mac OS X provide a development environment for building
 applications using Cocoa, Carbon, Java, and even AppleScript. (For details
 about obtaining these tools, see the Xcode Tools” section
 in the Preface.) The Xcode tools include utilities that
 should be familiar to any Unix developer who works with command-line
 compilers. They also include all sorts of other goodies, including an
 advanced Integrated Development Environment (IDE), but coverage of those
 tools is beyond the scope and intent of this book.
Note
To learn more about the Xcode tools, go to http://developer.apple.com/referencelibrary/DeveloperTools/index.html.

A variety of compilers can be used with Mac OS X. The C compiler that
 comes with Xcode is based on the Free Software Foundation’s (FSF’s) GNU
 Compiler Collection, or GCC. Apple’s modifications to GCC include an Objective-C compiler,
 as well as various modifications to deal with the Darwin operating system.
 The development environment in Mac OS X includes:
	AppleScript
	This is an English-like language used to script events in
 applications and in the operating system. AppleScript is installed as
 part of the Mac OS X operating system and does not require Xcode. To
 write AppleScripts, use the Script Editor (/Applications/AppleScript).

	AppleScript Studio
	This is a high-level development environment based on
 AppleScript that allows you to build GUI applications by hooking
 AppleScript into the Cocoa framework. If you plan to build AppleScript
 Studio applications, you will need to use the Xcode IDE instead of the
 Script Editor.

	Compiler tools
	These include the Mac OS X Mach-O GNU-based assemblers, Mach-O
 static link editor, Mach-O dynamic link editor, and Mach-O object file
 tools (such as nm, otool, and otool64).

	Compilers
	These compilers are based on GCC and provide support for C,
 C++, Objective-C, Objective-C++,
 Objective-C 2.0, and assembly. Apple’s enhancements to GCC for Leopard
 include support for the Intel x86 and G5 (also known as the PowerPC
 970) processors, as well as the ability to generate optimized code to
 run on Intel x86, G5, and G4 systems. Though 64-bit support in Tiger
 is limited to the Unix level, Leopard adds 64-bit support to the Mac
 OS X application level.

	Dashcode
	Located in /Developer/Applications, Dashcode is an IDE
 for developing JavaScript-based widgets such as those used in
 Dashboard.

	Debugger
	The Apple debugger is based on GNU’s gdb. In Leopard, DTrace is also
 available.

	Documentation
	Extensive documentation for Xcode, found in /Developer/Documentation/DocSets, can be
 viewed with Xcode’s document viewer. These documents are also
 available online from the Apple Developer Connection (ADC) website,
 http://developer.apple.com.
Note
You can access the documentation for GCC after you’ve
 installed Xcode by running the Xcode application in /Developer/Applications and
 selecting Help→Documentation from the menu bar.

	Header Doc 8
	This is a set of command-line tools for including structured
 comments in source code and header files, which are later used to
 create HTML and XML output. A set of manpage-generation tools is also
 included. Header Doc’s two main Perl scripts are headerdoc2html and gatherheaderdoc. Kyle Hammond’s Cocoa
 frontend to Header Doc is available at http://www.cpinternet.com/~snowmint/CocoaProgramming.html.
 See Developer Tools Reference Library→Tools→Darwin→HeaderDoc User
 Guide in the Xcode document viewer for details.

	Instruments
	Located in /Developer/Applications, Instruments is a
 timeline-based GUI performance visualization tool for Cocoa and Carbon
 applications built on top of the open source DTrace utility.

	Interface Builder
	Located in /Developer/Applications, Interface Builder
 is a GUI editor for Cocoa and Carbon applications.

	Miscellaneous tools
	These include traditional development tools, such as make (both GNU
 make, which is the default, and
 BSD make) and GNU libtool, graphical and command-line
 performance tools, Xcode for WebObjects, parsing tools (such as lex,
 flex, yacc, and bison), standard Unix source code
 management tools (such as CVS and
 RCS), and an extensive set of
 Java development tools. There’s also a frontend to GCC, distcc, which uses Bonjour to distribute
 builds of C, C++, Objective-C, or Objective-C++ code across computers
 on a network.

	Xcode
	Located in /Developer/Applications, Xcode is an IDE
 for Mac OS X that supports Cocoa and Carbon programming with C, C++,
 Objective-C, and Java.

We won’t address the complete Mac OS X development suite in this
 chapter. Instead, we’ll focus on the command-line development tools and how
 they differ from the implementations of such tools on other Unix
 platforms.
Note
Java programmers will find that the Mac OS X command-line Java tools
 behave as they do under Unix and Linux. Another resource for Java
 developers is Will Iverson’s Mac OS X for Java Geeks
 (O’Reilly).
Perl programmers coming from previous Macintosh systems will find
 that Mac OS X does not use MacPerl (http://www.macperl.com), but instead uses the standard Unix
 build of the core Perl distribution (http://www.perl.org). For additional information on using
 Perl under Mac OS X, see Chapter 17.

Compiler Differences

GCC is supported on a wide range of platforms, and it is the default
 compiler on Mac OS X. There are, however, some important differences
 between the version of GCC that ships with Mac OS X and compilers found on
 other Unix systems.
One difference that experienced GCC users may notice, particularly
 if they have extensive experience with mathematical and scientific
 programming, is that the Xcode Tools do not include FORTRAN. However, MacPorts (http://www.macports.org) includes g95, the GNU FORTRAN 95
 compiler that is based on GCC. (For information on using MacPorts, see
 Chapter 13.) Additionally, the open source FORTRAN 95
 Gfortran project is available for Mac OS X. Though not provided with the
 GCC distribution included with Leopard, the gfortran compiler is part of GCC. (See http://gcc.gnu.org/wiki/HomePage for details.)
Note
Mac OS X’s C compiler contains a number of Mac-specific features
 that have not been folded into the main GCC distribution. (It is up to
 the Free Software Foundation [FSF] to accept and merge Apple’s patches.)
 For information on how Apple’s compiler differs from the GNU version,
 see the README.Apple file in the
 gcc4 subdirectory of the Darwin CVS
 archive.

As of this writing, Apple’s cc compiler is based
 on GCC 4.0.1. Though not installed with Xcode by default, GCC 3.3 is
 available as part of the optional installation of Mac OS X 10.3.9 Support
 (you would install Mac OS X 10.3.9 Support only if you wanted to build
 applications for the target Mac OS X 10.3.9 PPC systems). By default,
 invoking cc or gcc invokes GCC 4.0; both /usr/bin/cc and /usr/bin/gcc are symbolic links to /usr/bin/gcc-4.0.
Note
The Mac OS X Compiler Release Notes
 (/Developer/ADC Reference
 Library/Documentation/releasenotes) should be consulted for
 details on the most currently known problems, issues, and
 features.

Perhaps the most important improvement in GCC 4.0.x is the
 incorporation of Tree Single Static Assignment (SSA) optimization rather than Register Transfer Language (RTL),
 used in older versions of GCC. SSA was available in some earlier versions,
 but it was experimental and had to be switched on by the special compiler
 flag -fssa. The incorporation of Tree SSA has enabled optimizations in
 the following areas:
	Scalar replacement of aggregates

	Constant propagation

	Value range propagation

	Partial redundancy elimination

	Load and store motion

	Strength reduction

	Dead store elimination

	Dead and unreachable code elimination

	Auto-vectorization to take advantage of the Velocity
 Engine

	Loop interchange

	Tail recursion by accumulation

See http://gcc.gnu.org/projects/tree-ssa/ for
 more details on Tree SSA.
Additional improvements in GCC 4.0.x include a more efficient C++
 parser and a dynamic C++ standard library, libstdc++ (in pre-Tiger releases of Mac OS X
 you could only statically link libstdc++). Support has also been added for
 128-bit long double floating-point types and 64-bit computing.

Compiling Unix Source Code

Many of the differences between Mac OS X and other versions of
 Unix become apparent when you try to build Unix-based software on Mac OS
 X. Most open source Unix software uses GNU autoconf or a similar facility, which generates
 a configure script that performs a
 number of tests of the system—especially of the installed Xcode tools—and
 finishes by constructing one or more makefiles. After the configure script has done its job, you run the
 make command to first compile and
 then, if all goes well, install the resulting binaries.
Note
Most tarballs include a configure script, so you do not need to
 generate it yourself. However, if you retrieve autoconf-managed source code from a CVS archive,
 you may have to run autoconf.sh
 manually to generate the configure
 file.

In most cases, it’s pretty easy to compile a Unix application on Mac
 OS X, provided the required dependencies are present. After unpacking the
 tarball and changing to the top-level source code directory, just issue
 the following three commands to compile the application:
$./configure
$ make
$ make install
Note
Mac OS X web browsers are configured to unpack compressed
 archives. If you click on a link to a tarball, you may find that it gets
 downloaded to your Desktop and extracted there. If you’d prefer to
 manage the download and extraction process yourself, Control-click (or
 right-click) on the link so you can specify a download location.

The following sections deal with issues involved in successfully
 performing these steps. Determining how to improvise within that
 three-step procedure reveals some of the differences between Mac OS X and
 other Unix systems.
The First Line of Defense

Most Unix software applications and libraries are built from a set
 of files called source code. To distribute
 software, it is common in the Unix world to package source code in the
 form of a tarball, which is a single compressed file usually in the form of
 foo.tar.gz or foo.tar.bz2. (Tarballs are discussed in more
 detail in Chapter 14.)
 Most tarballs include the following files in the top-level directory:
	README
	This document is an introduction to the application and
 source code. It often contains copyright information, notes about
 bug fixes or improvements made to different versions, and pointers
 to websites, FAQs, and mailing lists.

	INSTALL
	This document contains step-by-step installation
 instructions.

	PORT or PORTING
	If present, one of these documents will include tips for
 porting the application to another Unix platform.

These files contain useful information that may help you get the
 application running on Mac OS X.

Host Type

One of the first difficulties you may encounter when running a
 configure script is that the script
 aborts with an error message stating that the host system cannot be
 determined.
Strictly speaking, the host
 type refers to the system on which the software will run, and
 the build type refers to the system on which the software is built. It is
 possible to build software on one system to run on another system, but
 doing so requires a cross-compiler, and dealing with cross-compiler
 issues is beyond the scope of this chapter. Thus, for our discussion,
 the host type and the build (and target) types will be the same:
 i386-apple-darwinVERSION,
 where the VERSION denotes the particular
 version of Darwin. (A configure
 script detects Mac OS X by the host/build type named Darwin, since Darwin is the actual operating system underlying Mac OS X. This
 can be verified by issuing the uname
 -v command, which tells you that you’re running a Darwin
 kernel, the kernel version, and when it was last built.)
Many configure scripts are
 designed to determine the host system, since the resulting makefiles
 differ depending on the type of system for which the
 software is built. The configure
 script is designed to be used with two files related to the host type,
 usually residing in the same directory as the configure script. These files are config.guess, which is used to help guess the
 host type, and config.sub, which is
 used to validate the host type and to put it into a canonical form
 (e.g., CPUTYPE-MANUFACTURER-OS, as
 in i386-apple-darwin9.2.0 or powerpc-apple-darwin9.2.2).
Although Mac OS X and Darwin have been around for a while now, you
 may still run across source code distributions that contain older
 config.* files that don’t work with
 Mac OS X. You can find out whether these files support Darwin by running
 the ./configure script: if the
 script complains about an unknown host type, you know that you have a
 set of config.* files that don’t
 support Darwin.
To remedy that problem, you can replace the config.guess and config.sub files with the Apple-supplied,
 like-named versions residing in
 /usr/share/automake-1.10.
 These replacement files originate from the FSF and include the code
 necessary to configure a source tree for Mac OS X. To copy these files
 into the source directory, which contains the configure script, simply issue the following
 commands from within the source directory:
$ cp /usr/share/automake-1.10/config.sub .
$ cp /usr/share/automake-1.10/config.guess .
Macros

You can use a number of predefined macros to detect Apple
 systems and Mac OS X in particular. For example, __APPLE__ is a macro that is defined on
 every Apple gcc-based Mac OS X
 system, and __MACH__ is one of
 several macros specific to Mac OS X. Table 10-1 lists the predefined macros available
 on Mac OS X. To determine all of the predefined macros enabled on your
 system, run the command cpp -dM <
 /dev/null.
Table 10-1. Mac OS X C macros
	Macro
	Defined

	 __OBJC__
	When the compiler is
 compiling Objective-C .m
 files or Objective-C++ .M
 files. (To override the file extension, use -ObjC or -ObjC++.)

	 __ASSEMBLER__
	When the compiler is
 compiling .s
 files.

	 __NATURAL_ALIGNMENT__

	When compiling for
 systems that use natural alignment, such as powerpc.

	 __STRICT_BSD__
	If, and only if, the
 -bsd flag is specified as
 an argument to the compiler.

	 __MACH__
	When compiling for
 systems that support Mach system calls.

	 __APPLE__
	When compiling for any
 Apple system. Defined on Mac OS X systems running Apple’s
 variant of the GNU C compiler and third-party
 compilers.

	 __APPLE_CC__
	When compiling for any
 Apple system. Integer value that corresponds to the (Apple)
 version of the compiler.

	 __MMX__
	When Intel PentiumMMX
 instruction set support has been enabled with the -maltivec
 flag.

	 __VEC__
	When AltiVec support
 has been enabled with the -mmx flag.

	 __APPLE_VEC__
	When AltiVec support
 has been enabled with the -mpim-altivec flag.

	 __LP64__
	On 64-bit systems such
 as the G5 and Intel x86 CPUs. This macro can be used to
 conditionally compile 64-bit code.

Note
Do not rely on the presence of the __APPLE__ macro to determine which
 compiler features or libraries are supported. Instead, we suggest
 using a package such as GNU autoconf to tell you which features the
 target operating system supports. This approach makes it more likely
 that your applications will compile out of the box (or with minimal
 effort) on operating systems to which you don’t have access.

Supported Languages

When using the cc command,
 which supports more than one language, the language is
 determined either by the filename suffix or by explicitly specifying the
 language using the -x option. Table 10-2 lists some of the more
 commonly used filename suffixes and -x arguments supported by Apple’s version of
 GCC.
Table 10-2. File suffixes recognized by cc
	File
 suffix
	Language
	-x
 argument

	 .c
	C source code to be
 preprocessed and compiled
	 C

	.C, .cc, .cxx, .cpp
	C++ source code to be
 preprocessed and compiled
	 c++

	 .h
	C header that should be
 neither compiled nor linked
	 c-header

	 .i
	C source code that should
 be compiled but not preprocessed
	 cpp-output

	 .ii
	Objective-C++ or C++
 source code that should be compiled but not
 preprocessed
	 c++-cpp-output

	 .m
	Objective-C source
 code
	 objective-c

	.M, .mm
	Mixed Objective-C++ and
 Objective-C source code
	 objective-c++

	 .s
	Assembler source code
 that should be assembled but not preprocessed
	 Assembler

	 .S
	Assembler source code to
 be preprocessed and assembled
	 assembler-with-cpp

Although (by default) the HFS+ filesystem is case-insensitive, the
 cc compile driver distinguishes
 between uppercase and lowercase in command-line arguments. For example,
 cc foo.C invokes cc’s C++ compiler because the file extension
 is an uppercase C, which denotes a C++ source file. (To cc, it’s just a command-line argument.) So,
 even though HFS+ will find the same file whether you type cc foo.c or cc
 foo.C, what you enter on the command line makes all the
 difference in the world, particularly to cc.

Preprocessing

When you invoke cc without
 options, it initiates a sequence of four basic operations, or stages:
 preprocessing, compilation, assembly, and linking. In a multifile
 program, the first three stages are performed on each individual source
 code file, creating an object code file for each source code file. The
 final linking stage combines all the object codes that were created by
 the first three stages, along with the user-specified object code that
 may have been compiled earlier, into a single executable image
 file.

Frameworks

In Mac OS X, a framework is a type of bundle that is named with a .framework extension.
 Before discussing frameworks, let’s first briefly explore the notion of
 a bundle. A bundle is an important software packaging model in Mac OS X
 consisting of a directory that stores resources related to a given
 software package, or resources used by many software packages. Bundles,
 for example, can contain image files, headers, shared libraries, and
 executables. In addition to frameworks, at least two other types of
 bundles are used in Mac OS X: applications (named with the .app extension) and loadable bundles,
 including plug-ins (which are usually named with the
 .bundle extension). Here’s a
 comparison of the three types:
	An application bundle
 contains everything an application needs to run: executables,
 images, etc. You can actually see these contents in the Finder if
 you Control/right-click on an application’s icon and select Show
 Package Contents.

	A framework bundle
 contains a dynamic shared library along with its resources,
 including header files, images, and documentation.

	A loadable bundle
 contains executables and associated resources, which are loaded into
 running applications; these include plug-ins and kernel
 extensions.

The top-level folder for application and loadable bundles is named
 Contents and
 contains the entire bundle. Take, for example, Safari. If you
 Control/right-click on the Safari application in the Finder and select
 Show Package Contents, the Contents
 folder will be revealed in the Finder. To see what’s in the Contents folder, press ⌘-3 to switch the
 Finder to column view, and then press the C key on your keyboard (this
 highlights the Contents folder).
 You will see the typical contents of an application bundle,
 including:
	The required XML property list file, Info.plist, which contains information
 about the bundle’s configuration

	A folder named MacOS,
 which contains the executable

	A folder named Resources,
 which contains, among other resources, image files

	Files named CodeResources, version.plist, and PkgInfo

Applications can also contain application-specific frameworks,
 which are not used by any other application or plug-in.
Framework structure

Frameworks are critical in Mac OS X. Cocoa, the toolkit for user interface development, consists of
 the Foundation and Application Kit (or AppKit) frameworks for
 Objective-C and Java. Frameworks use a versioned
 bundle structure, which allows multiple versions of the same information
 (for example, framework code and header files). Frameworks are
 structured in one of the following ways:
	Symbolic links are used to point to the latest version. This
 allows for multiple versions of the framework to be
 present.

	In the Framework bundle structure, the top-level folder is
 named Resources. The actual Resources folder need not be located at
 the top level of the bundle; it may be located deeper inside of
 the bundle. In this case, a symbolic link pointing to the
 Resources folder is located
 at the top level.

In either case, an Info.plist file describing the framework’s
 configuration must be included in the Resources folder. (Chapter 11 discusses how to
 create frameworks and loadable bundles. This chapter only describes
 how to use the frameworks.)
Before discussing how to use frameworks, let’s look at the
 different kinds of frameworks. A private
 framework is one that resides in a directory named PrivateFrameworks and whose implementation
 details are not exposed. Specifically, private frameworks reside in
 one of the following locations:
	~/Library/PrivateFrameworks

	/Library/PrivateFrameworks

	/System/Library/PrivateFrameworks

An application-specific
 framework can be placed within the given application’s package.
 For example, consider the private framework
 iTunesAccess.framework,
 which is located in /System/Library/PrivateFrameworks. This
 private framework consists of a directory named iTunesAccess.framework/, which, aside from
 symbolic links and subdirectories, contains the iTunesAccess
 executable and files named Info.plist and version.plist. No implementation details
 are revealed.
A public framework,
 on the other hand, is one whose API can be ascertained,
 for example, by viewing its header files. Public frameworks reside in
 appropriate directories named Frameworks/. For example, the OpenGL
 framework resides in /System/Library/Frameworks. This public
 framework consists of the directory /System/Library/Frameworks/OpenGL.framework,
 which contains (among other things) a subdirectory named Headers. Implementation details can be
 ascertained by examining the header files.
Precisely where a public framework resides depends on its
 purpose. When you build an application, you can program the path of
 the framework. Later, when the application is run, the dynamic link
 editor looks for the framework in the path that was programmed into
 the application. If the framework is not found there, the following
 locations are searched in the order shown here:
	~/Library/Frameworks
	This is the location for frameworks used by an individual
 user.

	/Library/Frameworks
	Third-party applications that are intended for use by all
 users on a system should have their frameworks installed in this
 directory.

	/Network/Library/Frameworks
	Third-party applications that are intended for use by all
 users across a local area network (LAN) should have their
 frameworks installed in this directory.

	/System/Library/Frameworks
	This is the location for frameworks provided by Apple
 (e.g., the AppKit) whose shared libraries are to be used by all
 applications on the system.

There are three types of frameworks in /System/Library/Frameworks:
	Simple public frameworks
	Apple defines a simple
 framework as one that is neither a subframework nor
 an umbrella framework and has placed in this category only those
 frameworks that have been used in older versions of Mac OS X.
 One such example is AppKit, which is located in
 /System/Library/Frameworks/AppKit.framework
 and can be examined in the Finder.

	Subframeworks
	A subframework is public but has a restriction in that you cannot
 link directly against it: subframeworks reside in umbrella
 frameworks, and to use a subframework you must link against the
 umbrella framework in which it resides. A subframework’s API is
 exposed, however, through its header files.

	Umbrella frameworks
	An umbrella framework can contain other umbrella frameworks
 and subframeworks. The exact composition of an umbrella’s
 subframeworks is an implementation detail that is subject to
 change over time, but the developer need not be concerned with
 such changes since it is only necessary to link against the
 umbrella framework and include the umbrella framework’s header
 file. One advantage of this approach is that not only can
 definitions be moved from the header file of one framework to
 that of another, but, in the case of umbrella frameworks, the
 definition of a function can even be moved to another framework
 if that framework is included in the umbrella framework.

To better understand the difference between simple and umbrella
 frameworks, compare the composition of the simple framework
 /System/Library/Frameworks/AppKit.framework
 with the umbrella framework /System/Library/Frameworks/CoreServices.framework.
 The umbrella framework contains several other frameworks: namely,
 AE, CarbonCore, CFNetwork, DictionaryServices, LaunchServices, Metadata, OSServices, and SearchKit. The simple framework does not
 contain any other subframeworks, and neither is it a subframework contained within an
 umbrella framework.

Including a framework in your application

When including application-specific frameworks, you must let
 the preprocessor know where to search for framework header files.
 You can do this with the -F option, which is also accepted by
 the linker (this is similar to the -I option, which lets you specify
 directories to search for .h
 files). A command of this form:
$ cc -F directoryname myprog.c
instructs the preprocessor to search the directory
 directoryname for framework header files.
 The search begins in directoryname and
 then, if necessary, continues in the standard framework directories in
 the order listed earlier. For example, this command:
$ cc -F dir1 -F dir2 -no-cpp-precomp myprog.c
results in the linker first searching dir1, followed by dir2, followed by the standard framework
 directories (/Local/Library/Frameworks and /System/Library/Frameworks).
To include a framework object header, use #include in the following format:
#include <framework/filename.h>
Here, framework is the name of the
 framework without the extension, and
 filename.h is the source for the header file. If
 your code is in Objective-C, the #import preprocessor directive may be used
 in place of #include. The only
 difference beyond that is that #import makes sure the same file is not
 included more than once.
The -F flag is needed only
 when building application-specific frameworks, but the -framework flag is always needed to link
 against a framework. Specifically, inclusion of this flag results in a
 search for the specified framework named when linking. Example 10-1 shows “Hello, World” in
 Objective-C. Notice that it includes the AppKit framework.
Example 10-1. Saying hello from Objective-C
#include <Appkit/AppKit.h>

int main(int argc, const char *argv[])
{
 NSLog(@"Hello, World\n");
 return 0;
}

Save Example 10-1 as
 hello.m. To compile it, use
 -framework to pass in the
 framework name:
$ cc -framework AppKit -o hello hello.m
The -framework flag is
 accepted only by the linker and is used to name a framework.

Compiler Flags

The gcc manpage provides
 an extensive list of compiler flags. In particular, it describes many
 flags specific to the PowerPC, Intel x86, and Darwin processors. Table 10-3 describes a few common
 GCC compiler flags that are specific to Mac OS X. These flags should be used when porting Unix-based
 software to Mac OS X. We’ve also included a few flags that enable
 various Tree-SSA-based optimizations. These are the flags that begin with -ftree. Compiler flags of particular interest
 in Mac OS X are related to the peculiarities of building shared code—for
 example, the compiler flag -dynamiclib is used to build Mach-O dynamic
 library (.dylib) files. For more
 details, see Chapter 11.
Table 10-3. Selected Mac OS X GCC compiler flags
	Flag
	Effect

	 -no-cpp-precomp
	Turns off the Mac OS X
 preprocessor in favor of the GNU preprocessor.

	-ObjC, -ObjC++
	Specifies objective-c and objective-c++, respectively. Also
 passes the -ObjC flag to ld.

	 -faltivec
	Enables AltiVec language
 extension (PowerPC only). Provided for compatibility with
 earlier versions of GCC.

	 -maltivec
	Enables AltiVec language
 extension (PowerPC only).

	 -mpim-altivec
	Enables AltiVec language
 extension as defined in the Motorola AltiVec Technology
 Programming Interface Manual, or PIM (PowerPC only). This option
 is similar in effect to -maltivec, but there are some
 differences. For example, -mpim-altivec disables inlining of
 functions containing AltiVec instructions as well as inline
 vectorization of memset and memcopy.

	 -mabi-altivec
	Adds AltiVec ABI
 extensions to the current ABI (PowerPC only).

	 -mnoabi-altivec
	Disables AltiVec ABI
 extensions for the current ABI (PowerPC only).

	 -mnopim-altivec
	Disables the effect of
 -mpim-altivec (PowerPC
 only).

	 -mno-altivec-long-deprecated

	Disables the warning
 about the deprecated long
 keyword in AltiVec data types (PowerPC only).

	 -mnoaltivec
	Disables AltiVec language
 extension (PowerPC only).

	 -arch ppc970 -arch pp64

	Compiles for the PowerPC
 970 (a.k.a. G5) processor, and assembles only 64-bit
 instructions.

	 -arch x86_64
	Compiles for the x86
 processor, and assembles only 64-bit
 instructions.

	 -m64
	Assembles only 64-bit
 instructions.

	 -m32
	Assembles only 32-bit
 instructions.

	 -arch i386
	Compiles for the i386
 processor, and assembles only 32-bit
 instructions.

	 -mcpu=970 -mcpu=G5
	Enables the use of
 G5-specific instructions (PowerPC only).

	 -force_cpusubtype_ALL
	Forces a runtime check to
 determine which CPU is present and allows code to run on the G4
 or G5, regardless of which CPU was used to compile the code.
 Exercise caution if you use this compiler flag and G5-specific
 features at the same time.

	 -mpowerpc64
	When used in combination
 with -mcpu=970, -mtune=970, and -force_cpusubtype_ALL, enables
 the G5’s support for native 64-bit long-long.

	 -mpowerpc-gpopt
	Uses the hardware-based
 floating-point square function on the G5. (Use with -mcpu=970,
 -mtune=970, and -mpowerpc64.)

	 -ftree-pre
	Enables partial
 redundancy elimination on trees.

	 -ftree-fre
	Enables full redundancy
 elimination on trees.

	 -ftree-ccp
	Enables sparse
 conditional constant propagation on trees.

	 -ftree-ch
	Enables loop header
 copying on trees. This is enabled by default with -O, but not with -Os.

	 -ftree-dce
 -ftree-dominator-opts
	Enables dead code
 elimination on trees.

	 -ftree-elim-checks
	Eliminates checks based
 on scalar evolution information.

	 -ftree-loop-optimize
	Enables loop optimization
 on trees.

	 -ftree-loop-linear
	Enables linear loop
 transformations on trees to improve cache performance and allow
 additional loop optimizations.

	 -ftree-lim
	Enables loop invariant
 motion on trees.

	 -ftree-sra
	Enables scalar
 replacements of aggregates.

	 -ftree-copyrename
	Enables copy renaming on
 trees.

	 -ftree-ter
	Enables temporary
 expression replacement during SSA to normal
 phase.

	 -ftree-lrs
	Enables live range
 splitting during SSA to normal phase.

	 -ftree-vectorize
	Enables loop
 vectorization on trees. This enables -fstrict-aliasing, by
 default.

	 -fstrict-aliasing
	Applies the strictest
 aliasing rules.

	 -fasm-blocks
	Allows blocks and
 functions of assembly code in C or C+ source
 code.

	 -fconstant-cfstrings
	Enables automatic
 creation of a Core Foundation-type constant. (See the gcc manpage for
 details.)

	 -fpascal-strings
	Allows the use of
 Pascal-style strings.

	 -fweak-coalesced
	Causes the linker to
 ignore weakly coalesced definitions in favor of one ordinary
 definition.

	 -findirect-virtual-calls

	Uses the vtable to call
 virtual functions, rather than making direct
 calls.

	 -fapple-kext
	Makes kernel extensions
 loadable by Darwin kernels. Use in combination with -fno-exceptions
 and -static.

	 -fcoalesce-templates
	Coalesces instantiated
 templates.

	 -fobjc-exceptions
	Supports structured
 exception handling in Objective-C. (See the gcc manpage for more
 details.)

	 -fzero-link
	Instructs dyld to load the object file at
 runtime.

	 -Wpragma-once
	Causes a warning about
 #pragma use only once, if
 necessary.

	 -Wextra-tokens
	Causes a warning if
 preprocessor directives end with extra tokens.

	 -Wnewline-eof
	Causes a warning if a
 file ends without a newline character.

	 -Wno-altivec-long-deprecated

	Disables warnings about
 the keyword “long” being used in an AltiVec data type
 declaration.

	 -Wmost
	Same effect as -Wall -Wno-parentheses (that is,
 suppress warnings if parentheses are omitted in certain
 contexts).

	 -Wno-long-double
	Disables warnings about
 the long-double type being used.

	 -fast
	Optimizes for G5 by
 default, or for PPC7450 if used in conjunction with the flag
 -mcpu=7450. To build shared
 libraries with -fast,
 include the -fPIC
 flag.

	 -static
	Inhibits linking with
 shared libraries, provided that all of your libraries have also
 been compiled with -static.

	 -shared
	Not supported on Mac OS
 X.

	 -dynamiclibs
	Used to build Mach-O
 dylibs (see Chapter 11).

	 -mdynamic-no-pic
	Ensures that compiled
 code will not itself be relocatable, but will have external
 references that are relocatable.

	 -mlong-branch
	Ensures that calls that
 use a 32-bit destination address are compiled.

	 -all_load
	Ensures that all members
 of static archive libraries will be loaded. (See the ld manpage for more
 information.)

	 -arch_errors_fatal
	Causes files that have
 the wrong architecture to result in fatal errors.

	 -bind_at_load
	Binds all undefined
 references when the file is loaded.

	 -bundle
	Results in Mach-O bundle
 format. (See the ld manpage
 for more information.)

	 -bundle_loader executable
	Specifies the
 executable that will load the output
 file being linked. (See the ld manpage for more
 information.)

	 -fnon-lvalue-assign
	Allows casts and
 conditionals to be used as lvalues. Although this is on by
 default in Apple’s GCC 4.0, a deprecation warning will be issued
 whenever an lvalue cast or lvalue conditional is encountered, as
 such lvalues will not be allowed in future versions of Apple’s
 GCC.

	 -fno-non-lvalue-assign

	Disallows lvalue casts
 and lvalue conditionals.

	 -msoft-float
	Enables software
 floating-point emulation rather than using the floating-point
 register set. This emulation is not performed on Mac OS X,
 because the required libraries are not included. On Mac OS X
 this flag prevents floating-point registers from copying data
 from one memory location to another.

	 -mmacosx-version-min=
 version
	Sets the earliest version
 of Mac OS X on which the resulting executable will
 run.

	 -Os
	Optimizes for size and
 enables -O2 optimizations
 for speed. On PowerPC, this disables string instructions. To
 enable string instructions, use -mstring.

	 -Oz
	Optimizes for code size
 without consideration for speed.

Architectural Issues

There are a few architectural issues to be aware of when developing software
 on or porting software to Mac OS X. In particular, the most common issues
 developers run into have to do with vectorization, pointer size,
 endianness, inline assembly code, and multiple
 architectures.
Universal Binaries for Multiple Architectures

At the time of this writing, Mac OS X is supported on two families of
 CPUs, each supporting two architectures: for the PowerPC
 family you can create binaries for ppc and ppc64 architectures, whereas the Intel x86 supports i386 and x86_64 architectures.
 Fortunately, Apple has introduced something called a universal
 binary, which is a binary that contains object code for
 multiple architectures.
You can create a four-way universal binary that will run on each
 of the four architectures just mentioned with the use of -arch flags:
$ gcc –o hello –arch i386 –arch x86_64 –arch ppc –arch ppc64 hello.c
$ file hello
hello: Mach-O universal binary with 4 architectures
hello (for architecture ppc7400): Mach-O executable ppc
hello (for architecture i386): Mach-O executable i386
hello (for architecture ppc64): Mach-O 64-bit executable ppc64
hello (for architecture x86_64): Mach-O 64-bit executable x86_64
You can then run the resulting executable hello on any of the four architectures. If
 you run it on a 64-bit-capable CPU—for example, a PowerPC G5 or an Intel
 Core 2 duo—the code will run in 64-bit mode. On the other hand, if you
 run it on a 32-bit-only system—for example, a G4-based system—hello will run in 32-bit mode.
Though universal binaries have the flexibility to run on multiple
 architectures, their file sizes are greater than those of their
 single-architecture counterparts. For example, the file size of the
 hello binary is 53,576 bytes when
 created as a four-way universal binary; 28,972 bytes when created as a
 two-way (ppc and i386) universal
 binary; 8,508 bytes when created as a single-architecture ppc binary; and 12,588 bytes when created as
 a single-architecture i386 binary.

AltiVec

The Velocity Engine, Apple’s name for the Motorola 128-bit
 AltiVec vector processor that allows up to 16 operations in a single clock cycle,
 is supported on both G4 and G5 processors by the Mac OS X GCC
 implementation. The Velocity Engine executes operations concurrently
 with existing integer and floating-point units, which can result in
 significant performance gains, especially for highly parallel
 operations. The compiler flag -maltivec can be specified to compile code engineered to use the
 AltiVec instruction set. Inclusion of this command-line option to
 cc defines the preprocessor symbol
 __VEC__. (See Table 10-3 earlier in this
 chapter for more AltiVec-related compiler flags.)

64-Bit Computing

On a 32-bit system, such as Mac OS X running on the PowerPC
 G4 or Intel Core duo, C pointers are 32 bits (4 bytes). On a 64-bit system, such
 as Mac OS X running on the G5, Quad-Core Intel Xeon, or Intel Core 2
 duo, they are 64 bits (8 bytes), provided they are compiled with the
 -m64 compiler flag. As long as your code does not rely on any assumptions
 about pointer size, it should be 64-bit clean. For example, on a 32-bit
 system the following program prints “4”, and on a 64-bit system it
 prints “8”:
#include <stdio.h>
int main()
{
 printf("%d\n", sizeof(void *));
 return 0;
}
Some 64-bit operating systems, such as Solaris 8 on Ultra hardware (sun4u) and Mac OS X Leopard
 on Intel Core 2 duo hardware, have a 64-bit kernel space
 but support both 32- and 64-bit-mode applications, depending on how they
 are compiled. On G5, Quad-Core Intel Xeon, and Intel Core 2 duo systems,
 the pointer size is 64 bits, and other data types are mapped onto the
 64-bit data type. For example, single-precision floats, which are
 32-bit, are converted to double-precision floats when they are loaded
 into registers. In the registers, single-precision instructions operate
 on these single-precision floats stored as doubles, performing the
 required operations on the data. The results, however, are rounded to
 single-precision 32-bit values. Apple has provided technical
 documentation containing information and advice on optimizing code to
 take advantage of the 64-bit architectures that run Mac OS X Leopard.
 The 64-Bit Transition Guide can be found at http://developer.apple.com/documentation/Darwin/Conceptual/64bitPorting/64bitPorting.pdf.
Note
Additional information can be found at http://developer.apple.com/hardware/. These documents
 describe in detail the issues involved in tuning code for the G5. We
 note only a few issues here.

Mac OS X Leopard running on G5 and Intel x86 Core 2 hardware
 allows applications to access a 64-bit address space. Since both Tiger
 and Leopard support 64-bit arithmetic instructions even if your code is
 compiled in 32-bit mode, your code will not necessarily run more
 efficiently when compiled in 64-bit mode. It should be noted that even
 on a G4 system, 32-bit applications have a 128-bit long-double data type
 and a 64-bit long-long data type.
Whether or not you should compile your code in 64-bit mode depends
 on how important performance is to your application, as well as whether
 or not 64-bit mode will improve it. The 64-Bit Transition Guide
 referenced earlier has detailed guidelines on the circumstances that
 warrant 64-bit binaries. Here, we’ll just mention that you’ll likely see
 some performance improvement when you transition your 32-bit application
 to 64-bit on Intel-based Macs. The main reason is that 64-bit
 applications on x86_64 architecture use more CPU registers, resulting in
 faster memory traffic relative to 32-bit compiled versions of the same
 code. Nevertheless, there are some potential performance inhibitors in
 64-bit mode, both on G5 and 64-bit Intel systems. A thorough discussion
 of the potential benefits and pitfalls of 64-bit computing is beyond the
 scope of this book. Ultimately, you’ll need to benchmark your code to
 determine if there’s a benefit to running a 64-bit version.
To compile 64-bit code using GCC, you can simply use the -m64 compilation flag, but the resulting executable will run only in 64-bit mode
 on the host architecture. For example, if you compile using -m64 on a G5 system, the resulting binary
 will run on the ppc64 architecture
 only. To allow your code to run in 64-bit mode on 64-bit-capable systems
 and 32-bit mode on 32-bit-only systems, use the -arch compiler flags. The -arch ppc
 compiler flag together with -arch
 ppc64 produces a “fat” binary: that is, one that can be run
 on either 32-bit or 64-bit PowerPC systems. Similarly, the -arch i386 compiler flag together with
 -arch x86_64 produces a fat binary
 that can be run on either 32-bit or 64-bit Intel systems. When a fat
 binary is run on a 64-bit system, it runs as a 64-bit executable. On the
 other hand, when the same fat binary is run on a 32-bit system, it runs
 as a 32-bit executable. Specifying the -arch
 ppc or -arch i386
 compiler flag alone produces a 32-bit executable; since this is the
 default, it is unnecessary to specify these flags alone. To create a
 universal binary that will run in 64-bit mode on 64-bit-capable systems
 and 32-bit mode on non-64-bit systems, use the combination -arch x86_64 -arch ppc64 -arch i386 -arch
 ppc.
The -Wconversion compiler
 flag may also be useful when converting 32-bit code to 64-bit
 code. The __LP64__, __ppc__, __i386__, and __x86_64__ macros can be used to conditionally
 compile 64-bit code. At the time of this writing, you can build 64-bit
 applications in C, and C++ can be compiled in 64-bit mode.
Following is a list of things to bear in mind when engaging in
 64-bit computing on Mac OS X:
	Mac OS X follows the LP64 64-bit data model, also used by Sun
 and SGI: ints are 32-bit, whereas longs, long-longs, and pointers
 are 64-bit.

	In 64-bit code, ints cannot hold pointers.

	Use of a cast between a 64-bit type and a 32-bit type can
 destroy data.

	In Tiger, only non-GUI applications can be compiled as 64-bit.
 You can, however, use a 32-bit GUI to launch and control a 64-bit
 application. In Leopard, you can compile both GUI and non-GUI
 applications as 64-bit.

	Compiling an application as 64-bit produces a 64-bit version
 of the Mach-O binary format, used in Mac OS X. You can determine if
 a program was compiled as 64-bit, 32-bit, or flat using the
 file command.

	64-bit applications may use only 64-bit frameworks, and 32-bit
 applications may use only 32-bit frameworks.

Endianness

CPU architectures are designed to treat the bytes of words in memory as
 being arranged in big- or little-endian order: big-endian ordering
 has the most significant byte in the lowest address,
 whereas little-endian ordering has the most significant byte at the highest byte
 address.
In general, Intel architectures are little-endian, whereas most
 Unix/RISC machines, including PowerPC-based Macs, are big-endian.
Note
The PowerPC is actually bi-endian, meaning that it can run as
 either big- or little-endian. In practice, bi-endian CPUs run
 exclusively as big- or little-endian.

Inline Assembly

As far as inline assembly code is concerned, if you have any, it will have to be rewritten.
 Heaven help you if you have to port a whole Just-in-Time (JIT) compiler!
 For information on the assembler and PowerPC machine languages, see the Mac OS X Assembler Guide (http://developer.apple.com/documentation/DeveloperTools/Reference/Assembler/Assembler.pdf).

X11-Based Applications and Libraries

Fink and MacPorts (covered in Chapters 12 and 13, respectively) can be used to install many X11-based applications, such as
 the GNU Image Manipulation Program (GIMP), xfig/transfig, ImageMagick, nedit, and more. Since Fink understands dependencies, installing some of
 these applications causes Fink to first install several other packages.
 For example, since the text editor nedit depends on Motif libraries, Fink will
 first install lesstif. (This also
 gives you the Motif window manager, mwm.) Similarly, when you install GIMP via
 Fink, you will also install the packages for GNOME, GTK+, and glib.
You can also use Fink to install libraries directly. For example,
 this command installs the X11-based Qt libraries:
$ fink install qt
MacPorts can be used in a similar manner.
Building X11-Based Applications and Libraries

If you cannot find binaries for X11-based applications, or you
 simply prefer to build the applications yourself, many tools are
 available to help you do so. When you install the Xcode tools,
 make sure you install the optional X11SDK, which contains development tools and
 header files for building X11-based applications. If you didn’t install
 X11SDK when you first installed
 Xcode, you can still install it from the Xcode
 Tools folder on the Mac OS X Install DVD.
The process of building software usually begins with generating
 one or more makefiles customized to your system. For X11 applications,
 there are two popular methods for generating makefiles:
	One method is to use a configure script, as described earlier in
 this chapter.

	The other popular method involves using the xmkmf script, which is a frontend to the imake utility. xmkmf invokes
 imake, which creates the
 makefile for you. To do this, imake looks for a template file called
 Imakefile.

With imake-driven source
 releases, you’ll find Imakefile in
 the top-level source directory after you download and unpack a source
 tarball. After reading the README
 or INSTALL files, examine the
 Imakefile to see if you need to
 change anything. The next step is usually to issue this command:
$ xmkmf -a
When invoked with the -a
 option, xmkmf reads imake-related files in /usr/X11R6/lib/X11/config and performs the
 following tasks recursively, beginning in the top-level directory and
 then continuing in the subdirectories, if there are any:
$ make Makefiles
$ make includes
$ make depend
The next steps are usually make, make
 test (or make check),
 and make install.
To illustrate this method of building software, consider the
 following example in which we download and build an X11-based
 game:
	Download the source tarball:
$ ftp ftp://ftp.x.org/contrib/games/xtic1.12.tar.gz

	Unpack the source tarball:
$ gnutar xvfz xtic1.12.tar.gz

	Change to the top-level directory:
$ cd xtic1.12/

	Generate the makefile:
$ xmkmf -a

	Build everything (some X11 apps use make World):
$ make

	Have fun:
$./src/xtic

AquaTerm

The X Window System is useful to Unix developers and users, since many
 Unix-based software packages depend on X11 libraries. An interesting
 project that sometimes eliminates the need for the X Window System is
 the BSD-licensed AquaTerm
 application, developed by Per Persson (http://aquaterm.sourceforge.net). AquaTerm is a Cocoa
 application that can display vector graphics in an X11-like fashion. It does not
 replace X11, but it is useful for applications that generate plots and
 graphs.
The output graphics formats that AquaTerm supports are PDF and
 EPS. Applications communicate with AquaTerm through an adapter that acts
 as an intermediary between your old application’s API and AquaTerm’s
 API.
At the time of this writing, AquaTerm has adapters for gnuplot and PGPLOT, as well as example adapters in C,
 FORTRAN, and Objective-C. For example, assuming that you have installed
 both X11SDK and AquaTerm, you can build gnuplot (http://www.gnuplot.info) so that graphics can be
 displayed in either an AquaTerm window or under X11.
See AquaTerm’s website for extensive documentation, including the
 latest program developments, examples, mailing lists, and other helpful
 resources.

Chapter 11. Libraries, Headers, and Frameworks

In the previous chapter, we gave an overview of the development tools
 that ship with Mac OS X and emphasized the compilation phase of building
 executable code. In this chapter, we’ll discuss the linking phase of
 building Unix-based software under Mac OS X: in particular, header files and
 libraries.
Header Files

There are two types of header files in Mac OS X:
	Ordinary header files
	These header files are inserted into source code by a
 preprocessor prior to compilation. Ordinary header files have an
 .h extension.

	Precompiled header files
	These header files have an .h.gch extension.

Header files serve four functions:
	They contain C declarations.

	They contain macro definitions.

	They provide for conditional compilation.

	They provide line control when combining multiple source files
 into a single file that is subsequently compiled.

Unix developers will find the ordinary header files familiar, since
 they follow the BSD convention. The C preprocessor directive #include
 includes a header file in a C source file. There are essentially three
 forms of this syntax:
	#include
 <headername.h>
	This form is used when the header file is located in the
 directory /usr/include.

	#include
 <directory/headername.h>
	This form is used when the header file is located in the
 directory /usr/include/
 directory, where
 directory is a subdirectory of /usr/include.

	#include
 "headername.h"
	This form is used when the header file is located in a user or
 nonstandard directory. The file should be either in the same
 directory as the source file you are compiling or in a directory
 specified by cc’s -Idirectory
 switch.

You can also use #include
 followed by a macro, provided that when expanded the macro is in one of
 the aforementioned forms.
As noted in the previous chapter, frameworks are common in Mac OS X
 when you step outside of the BSD portions of the operating system.
 To include a framework header file in Objective-C code, use
 the following format:
#import <frameworkname/headerfilename.h>
where frameworkname is the name of the
 framework without the extension and
 headerfilename is the name of the header file.
 For example, the include/import declaration for a Cocoa application would
 look like this:
#import <Cocoa/Cocoa.h>
Note that you must use #include
 rather than #import when including a
 framework in Carbon code.
When preprocessing header files or any preprocessor directives, the
 following three actions are always taken:
	Any comment is replaced by a single space.

	Any backslash line continuation escape symbol is removed, and
 the line following it is joined with the current line. For
 example:
#def\
ine \
NMAX 2000
is processed as:
#define NMAX 2000

	Any predefined macro name is replaced with its expression. In Mac OS X, there
 are standard ANSI C predefined macros as well as several predefined macros specific to Mac OS
 X. For example, __APPLE_CC__ is
 replaced by an integer that represents the compiler’s version
 number.

Keep the following rules in mind:
	The preprocessor does not recognize comments or macros placed
 between the < and > symbols in an #include directive.

	Comments placed within string constants are regarded as part of
 those string constants and are not recognized as C comments.

	If ANSI trigraph preprocessing is enabled with cc
 -trigraphs, you must not use a backslash continuation
 escape symbol within a trigraph sequence, or the trigraph will not be
 interpreted correctly. ANSI trigraphs are three-character sequences
 that represent characters that may not be available on older
 terminals. For example, ??<
 translates to {. ANSI trigraphs are
 a rare occurrence these days.

Precompiled Header Files

Mac OS X’s Xcode tools support and provide extensive documentation
 on building and using precompiled header files. This section highlights
 a few of the issues that may be of interest to Unix developers new to
 Mac OS X when it comes to working with precompiled headers.
Precompiled header files are binary files that have been generated
 from ordinary C header files and preprocessed and parsed using cc. When such a precompiled header is created, both macros
 and declarations present in the corresponding ordinary header file are
 sorted, resulting in a faster compile time and a reduced symbol table
 size, and consequently faster lookup. Precompiled header files are given
 an .h.gch extension and are
 produced from ordinary header files that end with an .h extension. There is no risk that a
 precompiled header file will get out of sync with the .h file, because the compiler checks the
 timestamp of the actual header file.
When using precompiled header files, you should not refer to the
 .h.gch version of the name, but
 rather to the .h version in the
 #include directive. If a precompiled
 version of the header file is available, it is used automatically;
 otherwise, the real header file (.h) is used. So, to include foo.h.gch, specify foo.h. The fact that cc is using a precompiled header is totally
 hidden from you.
You can create precompiled header files by using either the
 cc -precomp or cc -x c-header -c
 compile driver flags. For example, the following command illustrates this process in its simplest,
 context-independent form:
$ cc -precomp header.h
The following command has the same effect:
$ cc -x c-header -c header.h
In either case, the resulting precompiled header is named
 header.h.gch. If there is context
 dependence (for example, some conditional compilation), the -Dsymbol flag is used.
 In this case, the command to build a precompiled header file (with the
 FOO symbol defined) is:
$ cc -precomp -DFOO header.h -o header.h.gch
The -x switch supplies the
 language (see Supported Languages” in Chapter 10):
$ gcc -x c c-header header.h
Then, you can compile main.c
 as usual:
$ gcc -o main main.c
Example 11-1 shows header.h, and Example 11-2 shows main.c.
Example 11-1. The header .h file
/* header.h: a trivial header file. */

#define x 100

Example 11-2. The main .c application
/* main.c: a simple program that includes header.h. */

#include "header.h"
#include <stdio.h>

int main()
{
 printf("%d\n", x);
 return 0;
}

Here are a few issues to keep in mind when you use a precompiled
 header file:
	You can include only one precompiled header file in any given
 compilation.

	Although you can place preprocessor directives before it, no C
 tokens can be placed before the #include of the precompiled header. For
 example, if you switch the positions of the two #include directives in Example 11-2, the compiler will ignore the
 precompiled header (header.h.gch).

	The language of the precompiled header must match the language
 of the source in which it is included.

	The version of gcc that
 produced the precompiled header and the version of gcc being used in the compilation in
 which the precompiled header is being included must be the same. So,
 for example, you can’t include a procompiled header that was
 produced by GCC 3.3 in code being compiled with GCC 4.0.1.

For more details on building and using precompiled header files,
 read the documentation available at http://developer.apple.com/documentation/DeveloperTools/gcc-4.0.1/gcc/Precompiled-Headers.html.
Warning
Persistent Front End (PFE) precompilation (needed for C++ and
 Objective-C++ in pre-Tiger versions of Mac OS X) and cpp-precomp are not supported in Tiger or
 later releases of Mac OS X.

malloc.h

malloc.h is a header file associated with memory allocation. Software
 designed for older Unix systems may expect to find this header file in
 /usr/include; however, malloc.h is not present in this directory.
 The set of malloc() function
 prototypes is actually found in stdlib.h, so for portability, your programs
 should include stdlib.h instead of
 malloc.h. (This is the norm;
 systems that require malloc.h are
 the rare exception these days.) GNU autoconf will
 detect systems that require malloc.h and define the HAVE_MALLOC_H macro. If you do not use GNU
 autoconf, you will need to detect
 this case on your own and set the macro accordingly. You can handle such
 cases with this code:
#include <stdlib.h>
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
For a list of libraries that come with Mac OS X, see the Interesting and Important Libraries” section later in this
 chapter.

poll.h

In pre-Tiger versions of Mac OS X (a BSD platform), one issue when
 porting software from a System V platform was the lack of the poll() system call function, which provides a
 mechanism for I/O multiplexing. Mac OS X 10.3 (Panther) provided this
 function through emulation, making use of its BSD analog, select(). Beginning with Mac OS X 10.4
 (Tiger), poll() has been provided as
 a native function. The associated header file, /usr/include/poll.h, is included with Mac OS
 X 10.3 and higher.

wchar.h and iconv.h

Another issue in porting Unix software to pre-Panther versions of
 Mac OS X was the relatively weak support for wide (i.e., more than 8 bits) character data types (e.g.,
 Unicode). Releases of Mac OS X beginning with Panther provide better
 support for wide character data types by including the GNU libiconv, which provides the iconv() function to convert between various
 text encodings. Additionally, the wchar_t type is supported in Mac OS X 10.3
 and higher. The header files iconv.h and wchar.h are also included. Alternatively, you
 can use the APIs available in the Core Foundation String Services, which
 are described in CFString.h.

dlfcn.h

The dlfcn.h header file,
 associated with dl functions such as
 dlopen(), is included with Mac OS X
 10.4 and higher. The dl functions
 themselves are actually included
 in libSystem.

alloc.h

alloc.h is another header
 file associated with memory allocation. Although this header
 file is not included with Mac OS X, its functionality is provided by
 stdlib.h. If your code makes a
 specific request to include alloc.h, you have several choices. One option
 is to remove the #include
 <alloc.h> statement in your source code. This may be
 cumbersome, however, if your #include
 statement appears in many files. Another alternative is to create your
 own version of alloc.h. A sample
 alloc.h is provided in the ADC’s
 Technical Note TN2071 (http://developer.apple.com/technotes/tn2002/tn2071.html).

lcyrpt.h and values.h

Although lcrypt.h is
 not included with Mac OS X, its functionality is provided
 by unistd.h, in which various symbolic constants are defined.
 Similarly, values.h—another header file found on
 many Unix systems—is not included with Mac OS X. Its functionality,
 however, is provided by limits.h,
 which specifies parameters such as the largest and
 smallest integers, largest and smallest unsigned integers, largest and
 smallest floating-point numbers, and so on.

The System Library: libSystem

In Darwin, much is built into the system library, /usr/lib/libSystem.dylib. In particular, the
 following libraries are included in libSystem:
	libc
	The standard C library. This library contains the functions
 used by C programmers on all platforms.

	libinfo
	The Directory Services library.

	libkvm
	The kernel virtual memory library. (Present as a symbolic link
 in Mac OS X 10.4, but not in 10.5.)

	libm
	The math library, which contains arithmetic functions.

	libpoll
	The poll library.

	libpthread
	The POSIX threads library, which allows multiple tasks to run
 concurrently within a single program.

	librpcsvc
	The RPC services library.

	librproc
	The libproc library, used
 to obtain process information.

	libdbm
	Database routines.

	libdl
	The dynamic loader library.

Symbolic links are provided as placeholders for these libraries. For
 example, libm.dylib and libpthread.dylib are symbolic links in
 /usr/lib that point to libSystem.dylib. Thus,
 while it won’t do any harm, supplying flags such as -lm and -lpthread to the linker is technically
 unnecessary. (The -lm option links to
 the math library, whereas -lpthread
 links to the POSIX threads library; since libSystem provides these functions, you don’t
 need to use these options.) That said, you should still include these
 flags to ensure your application is portable to other systems.
Warning
In Mac OS X 10.1 and earlier versions, the curses screen library (a set of functions for
 controlling a terminal display) was part of libSystem.dylib. In Mac OS X 10.2 and higher,
 the ncurses library (/usr/lib/libncurses.5.4.dylib) is used in
 place of curses. However, you may
 still encounter source code releases that look for curses in libSystem.dylib, which results in linking
 errors. You can work around this problem by adding -lcurses to the linker arguments. This is
 portable to earlier versions of Mac OS X as well, since /usr/lib/libcurses.dylib is a symlink to
 libncurses in versions 10.2 through
 10.5 and to libSystem in earlier
 versions.

Interestingly enough, in Max OS X 10.4 and earlier, there is no
 symbolic link for libutil, whose
 functionality is also provided by libSystem. In Mac OS 10.5 libutil is a symbolic link to libutil1.0 and has evidently been moved out of
 libSystem in Leopard. (libutil is a library that provides functions
 related to login, logout, terminal assignment, and logging.) So, if a link
 fails because of -lutil, try taking
 it out to see if that solves the problem.
libstdc++
In Apple’s implementation of GCC prior to GCC 4.0, libstdc++ was included only as a static library (libstdc++.a). In contrast, only the dynamic
 version of this library, (libstdc++.dyld), is included in Mac OS X
 10.3.9 and higher. As a consequence, any C++ application compiled with GCC 4.0.x won’t run on
 releases of Mac OS X earlier than 10.3.9.

Shared Libraries Versus Loadable Modules

The Executable and Linking Format (ELF), developed by the Unix
 System Laboratories, is common in the Unix world. On ELF systems, no
 distinction is made between shared libraries and loadable modules; shared
 code can be used as a library for dynamic loading. ELF is the default
 binary format on Linux, Solaris 2.x,
 and SVR4. Since these systems cover a large share of the Unix base, most
 Unix developers have experience on ELF systems. Thus, it may come as a
 surprise to experienced Unix developers that shared libraries and loadable
 modules are not the same on Mac OS X. This is because Mac OS X uses a
 different binary format: the Mach object format, known as
 Mach-O.
Mach-O was initially designed as a replacement for the standard BSD
 a.out format to contain statically
 linked executables, but dynamically linked code capability was
 subsequently added. Mach-O is more flexible than the older BSD a.out format. Mach-O shared libraries have the
 file type MH_DYLIB and the .dylib (dynamic library) suffix and can be
 linked to with static linker flags. So, if you have a shared library named
 libcool.dylib, you can link to this
 library by specifying the -lcool
 flag. Although shared libraries cannot be loaded dynamically as modules,
 they can be loaded through the dyld
 API (see the manpage for dyld, the
 dynamic link editor). It is important to point out that in releases of Mac
 OS X prior to Leopard, shared libraries cannot be unloaded. In Leopard,
 shared libraries can be unloaded using dlopen() and dlclose().
Loadable modules, called bundles in Mac OS X, have the file type
 MH_BUNDLE. To maintain consistency across platforms, most Unix-based
 software ports usually produce bundles with a .so extension. Although Apple recommends giving bundles a .bundle extension, it isn’t mandatory.
You need to use special flags with cc when compiling
 a shared library or a bundle on Darwin. One difference between Darwin and
 many other Unix systems is that no
 position-independent code (PIC) flag
 is needed, because it is the default for Darwin. Also, since the linker
 does not allow common symbols, the compiler flag -fno-common is required for both shared
 libraries and bundles. (A common symbol is one that is defined multiple times. You
 should instead define a symbol once and use C’s extern keyword to declare it in places where it
 is needed.)
Loading a Bundle
You cannot link directly against a bundle. Instead, bundles must be dynamically loaded and unloaded
 by the dyld APIs. /usr/lib/libdl.dylib is provided as a
 symbolic link to libSystem.dylib.
In Panther, dlopen(), dlclose(), dlsym(), dlerror() functions were provided as
 interfaces to the dynamic linker using the native dyld, NSModule(), and NSObjectFileImage() functions. This made
 porting common Unix source code relatively painless.
In Tiger and Leopard, the dlopen(), dlclose(), dlsym(), and dlerror() functions are natively part of
 dyld, providing both improved
 performance and better standards compliance.

To build a shared library, use cc’s -dynamiclib option. Use the -bundle option to build a loadable module or
 bundle.
Building a Shared Library

Suppose you want to create a shared library containing one or more
 C functions, such as the one shown in Example 11-3.
Example 11-3. A simple C program
/*
 * answer.c: The answer to life, the universe, and everything.
 */
int get_answer()
{
 return 42;
}

If you compile the program containing the function into a shared
 library, you can test it with the program shown in Example 11-4.
Example 11-4. Compiling answer.c into a shared library
/*
 * deep_thought.c: Obtain the answer to life, the universe,
 * and everything, and act startled when you actually hear it.
 */
#include <stdio.h>
int main()
{
 int the_answer;
 the_answer = get_answer();
 printf("The answer is... %d\n", the_answer);

 fprintf(stderr, "%d??!!\n", the_answer);
 return 0;
}

The makefile shown in Example 11-5 compiles and links
 the library and then compiles, links, and executes the test
 program.
Example 11-5. Sample makefile for creating and testing a shared
 library
Makefile: Create and test a shared library.
#
Usage: make test
#
CC = cc
LD = cc
CFLAGS = -O -fno-common
OBJS = answer.o

all: deep_thought

Create the shared library.
#
answer.o: answer.c
 $(CC) $(CFLAGS) -c answer.c

libanswer.dylib: answer.o
 $(LD) -dynamiclib -install_name libanswer.dylib \
 -o libanswer.dylib answer.o

Test the shared library with the deep_thought program.
#
deep_thought.o: deep_thought.c
 $(CC) $(CFLAGS) -c deep_thought.c

deep_thought: deep_thought.o libanswer.dylib
 $(LD) -o deep_thought deep_thought.o -L. -lanswer

test: all
 ./deep_thought

clean:
 rm -f *.o core deep_thought libanswer.dylib

This makefile makes use of the ld flag -install_name, which is the Mach-O analog of
 -soname, used for building shared
 libraries on ELF systems. The -install_name flag is used to specify
 where the executable linked against it should look for the library. The
 -install_name in the makefile shown
 in Example 11-5 specifies
 that the deep_thought executable is
 to look for the library libanswer.dylib in the same directory as the
 executable itself. The command otool can be used to verify this:
$ otool -L deep_thought
deep_thought:
 libanswer.dylib (compatibility version 0.0.0, current version 0.0.0)
 /usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version
 1.0.0)
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version
 111.0.0)
In Tiger, the -install_name
 flag is often used with @execution_path to specify the relative
 pathname of the library (i.e., the pathname of the library relative to
 the executable). For example, suppose we change the makefile in Example 11-5 by adding an
 install target:
install: libanswer.dylib
 cp libanswer.dylib ../lib/.
and then add install to the
 all target’s dependency list and
 change the libanswer target to the
 following:
libanswer.dylib: answer.o
 $(LD) -dynamiclib -install_name @execution_path/../lib/\
 libanswer.dylib -o libanswer.dylib answer.o
Then the deep_thought
 executable built using this makefile looks for the libanswer.dylib in
 ../lib. The output from otool shows this change:
$ otool -L deep_thought
deep_thought:
 @execution_path/../lib/libanswer.dylib (compatibility version 0.0.0,
 current version 0.0.0)
 /usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current
 version 1.0.0)
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current
 version 111.0.0)
This is often done in Tiger when building a private framework associated with an application, since
 private frameworks are located within the application’s contents. Things
 are a bit different in Leopard.
In Leopard, the first step is to create a dynamic library with a
 .dylib extension with an -install_name that begins with @rpath. The second step is to use the linker
 flag -rpath to specify a list of
 directories that should be searched at runtime. The directory pathnames
 can be absolute or relative. Relative pathnames are relative to the
 executable and begin with @loader_path. The makefile shown in Example 11-6 compiles and links the
 library and then compiles, links, and executes the test program.
Example 11-6. Sample makefile for creating and testing a shared
 library
Makefile: Create and test a shared library.
#
Usage: make test
#
CC = cc
LD = cc
CFLAGS = -O -fno-common

all: install deep_thought

Create the shared library.
#
answer.o: answer.c
 $(CC) $(CFLAGS) -c answer.c

libanswer.dylib: answer.o
 $(LD) -dynamiclib -o libanswer.dylib answer.o \
 -install_name @rpath/libanswer.dylib

Test the shared library with the deep_thought program.
#
deep_thought.o: deep_thought.c
 $(CC) $(CFLAGS) -c deep_thought.c

deep_thought: deep_thought.o libanswer.dylib
 $(LD) -o deep_thought deep_thought.o ../lib/libanswer.dylib \
 -Wl,-rpath -Wl,@loader_path/../lib

test: all
 ./deep_thought

install: libanswer.dylib
 cp libanswer.dylib ../lib/.

clean:
 rm -f *.o core deep_thought libanswer.dylib ../lib/libanswer.dylib

Dynamically Loading Libraries

You can turn answer.o
 into a bundle, which can be dynamically loaded using the following
 command:
$ cc -bundle -o libanswer.bundle answer.o
You don’t need to specify the bundle at link time; instead, use
 the dyld functions NSCreateObjectFileImageFromFile() and NSLinkModule() to load the library. Then, you can use NSLookupSymbolInModule() and NSAddressOfSymbol() to
 access the symbols that the library exports. Example 11-7 loads libanswer.bundle and
 invokes the get_answer() function. It
 is similar to Example 11-4, but many lines
 (shown in bold) have been added.
Example 11-7. Dynamically loading a bundle and invoking a function
/*
 * deep_thought_dyld.c: Obtain the answer to life, the universe,
 * and everything, and act startled when you actually hear it.
 */
#include <stdio.h>
#import <mach-o/dyld.h>

int main()
{
 int the_answer;
 int rc; // Success or failure result value
 NSObjectFileImage img; // Represents the bundle’s object file
 NSModule handle; // Handle to the loaded bundle
 NSSymbol sym; // Represents a symbol in the bundle

 int (*get_answer) (void); // Function pointer for get_answer

 /* Get an object file for the bundle. */
 rc = NSCreateObjectFileImageFromFile(“libanswer.bundle”, &img);
 if (rc != NSObjectFileImageSuccess) {
 fprintf(stderr, “Could not load libanswer.bundle.\n”);
 exit(-1); }

 /* Get a handle for the bundle. */
 handle = NSLinkModule(img, “libanswer.bundle”, FALSE);

 /* Look up the get_answer function. */
 sym = NSLookupSymbolInModule(handle, “_get_answer”);
 if (sym == NULL)
 {
 fprintf(stderr, “Could not find symbol: _get_answer.\n”);
 exit(-2);
 }

 /* Get the address of the function. */
 get_answer = NSAddressOfSymbol(sym);

 /* Invoke the function and display the answer. */
 the_answer = get_answer();
 printf("The answer is... %d\n", the_answer);

 fprintf(stderr, "%d!\n", the_answer);
 return 0;
}

For more information on these functions, see the NSObjectFileImage, NSModule, and NSSymbol manpages. To compile the code in
 Example 11-7, use the
 following command:
$ cc -O -fno-common -o deep_thought_dyld deep_thought_dyld.c

Two-Level Namespaces

In Mac OS X 10.0, the dynamic linker merged symbols into a single
 (flat) namespace. So, if you linked against two different libraries that
 both defined the same function, the dynamic linker complained because
 the same symbol was defined in both places. This approach prevented
 collisions that were known at compile time. However, a lack of conflict
 at compile time does not guarantee that a future version of the library
 won’t introduce a conflict.
Suppose you linked your application against version 1 of libfoo and version 1 of libbar. At the time you compiled your
 application, libfoo defined a
 function called logerror(), and
 libbar did not. But when version 2
 of libbar came out, it included a
 function called logerror() too. Since
 the conflict was not known at compile time, your application doesn’t
 expect libbar to contain this
 function. If your application happens to load libbar before libfoo, it will call libbar’s logerror() method, which is not what you
 want.
To deal with this problem, Mac OS X 10.1 introduced
 two-level namespaces, which the compiler uses by
 default. (No changes to two-level namespaces have been introduced in Mac
 OS X Releases 10.2 through 10.5.) With this feature, you can link
 against Version 1 of libfoo and
 libbar, and the linker will create
 an application that knows logerror()
 lives in libfoo. So, even if a
 future version of libbar includes a
 logerror() function, your application
 will know which logerror() it should
 use.
If you want to build an application using a flat namespace, use
 the -flat_namespace linker flag. See the
 ld manpage for more details.

Library Versions

Library version numbering is one area where Mac OS X differs from
 other Unix variants. In particular, the dynamic linker, dyld, checks both major and minor version numbers. Also, the
 manner in which library names carry the version numbers is different. On
 ELF systems, shared libraries are named with an extension similar to the
 following:
libname.so.major_version_no.minor_version_no
Typically, a symbolic link is created in the library named libname.so, which points to the most current
 version of the library. For example, on an ELF system such as Solaris, libMagick.so.10.0.7 is the name of an actual
 library. If this is the latest installed version of the library, you can
 find symbolic links that point to this library in the same directory.
 These symbolic links are typically created during the installation
 process.
In this example, both libMagick.so and libMagick.so.10 are symbolic links that point
 to libMagick.so.10.0.7. Older
 versions of the library, such as libMagick.so.10.0.3, may also be present,
 but the symbolic links will always point to the latest version because
 they are updated whenever a newer version is installed. This works because
 when you create a shared library, you need to specify the name of the
 library to be used when a program calls the library at runtime.
Note
In general, you should keep older versions of libraries around,
 just in case an application depends on them. If you are certain there
 are no dependencies, you can safely remove an older version.

On Mac OS X, the libMagick
 library is named libMagick.10.0.7.dylib, and the symbolic links
 libMagick.dylib and libMagick.10.dylib point to it. Older versions,
 such as libMagick.10.0.3.dylib, may
 also be found in the same directory. One difference that is immediately
 apparent on Mac OS X systems is that the version numbers are placed
 between the library name and the .dylib extension, rather than at the end of the
 filename as on other Unix systems (e.g., libMagick.so.10.0.7).
Another difference on Darwin is that the absolute pathname is
 specified when the library is installed. Thus, ldconfig is not used in Darwin, since paths to
 linked dynamic shared libraries are included in the executables. On an ELF
 system, you typically use ldconfig or
 set the LD_LIBRARY_PATH variable. In
 Darwin, you use DYLD_LIBRARY_PATH
 instead of LD_LIBRARY_PATH (see the
 dyld manpage for more
 details).
You can link against a particular version of a library by including
 the appropriate option for cc, such
 as -lMagick.10.0.7. Minor version
 checking is another way that the Mach-O format differs from ELF. To
 illustrate this, let’s revisit Example 11-4 from earlier in this
 chapter.
Suppose that the library shown in Example 11-4 is continually
 improved: minor bugs are fixed, minor expanded capabilities are added, and
 (in time) major new features are introduced. In each of these cases,
 you’ll need to rename the library to reflect the latest version. Assume
 that the last version of the library is named libanswer.1.2.5.dylib. The major version number
 is 1, the minor revision is 2, and the bug-fix (i.e., fully compatible)
 revision number is 5. Example 11-8
 illustrates how to update this library to release libanswer.1.2.6.dylib,
 which is fully compatible with Release 1.2.5 but contains some bug
 fixes.
In the makefile shown earlier in Example 11-5, replace the
 following lines:
libanswer.dylib: answer.o
 $(LD) -dynamiclib -install_name libanswer.dylib \
 -o libanswer.dylib answer.o
with the code shown in Example 11-8.
Example 11-8. Versioning the answer library
libanswer.dylib: answer.o
 $(LD) -dynamiclib -install_name libanswer.1.dylib \
 -compatibility_version 1.2 -current_version 1.2.6 \
 -o libanswer.1.2.6.dylib answer.o
 rm -f libanswer.1.dylib libanswer.1.2.dylib libanswer.dylib
 ln -s libanswer.1.2.6.dylib libanswer.1.2.dylib
 ln -s libanswer.1.2.6.dylib libanswer.1.dylib
 ln -s libanswer.1.2.6.dylib libanswer.dylib

Symbolic links are established to point to the actual library: one
 link reflects the major revision, one reflects the minor revision, and one
 simply reflects the name of the library.
The compatibility version number checks that the library used by an
 executable is compatible with the library that was linked when the
 executable was created.

Creating and Linking Static Libraries

The creation of static libraries in Mac OS X is much the same as in
 other Unix variants, with one exception: after installing the libraries in
 their destination directories, you must use ranlib to recatalog the newly installed archive
 libraries (i.e., the lib*.a
 files).
Another issue involving static libraries on Mac OS X is the order in
 which things are listed when libraries are linked. The Darwin link editor loads object files and libraries in
 the exact order given in the cc
 command. For example, suppose you’ve created a static archive library
 named libmtr.a. Consider the
 following attempt to link to this library:
$ cc -L. -lmtr -o testlibmtr testlibmtr.o
 /usr/bin/ld: Undefined symbols:
 _cot
 _csc
 _sec
To avoid this problem, you would need to rewrite the command as
 follows:
$ cc -o testlibmtr testlibmtr.o -L. -lmtr
The key idea here is that the linker resolves symbols from left to
 right. In the first case, the library is placed first. When it is
 examined, no undefined symbols are encountered, so the library is ignored
 (there’s nothing to be done with it). The object code from your program is
 then processed, but any references to functions in the library that was
 just ignored are unresolved, so the link fails. In contrast, the second
 attempt is successful because the object files are placed before the
 library. For the link editor to realize that it needs to look for
 undefined symbols (which are defined in the library), it must encounter
 the object files before the static library.

Creating Frameworks

In Chapter 10, we briefly discussed
 frameworks and how to use them. In this section, we’ll show you how to
 create frameworks.
A shared library can be packaged, along with its associated
 resources, as a framework. To create a framework you must build and
 install a shared library in a framework directory. As an example, let’s
 package the libanswer.dylib shared
 library as a versioned framework, using the name ans. That is, the framework will be a directory
 named ans.framework, which will
 contain the shared library file named ans. Three basic steps are required to build a
 versioned framework:
	Create the framework directory hierarchy. If this is the first
 version of the framework on the system, the bottom-level directory
 will be A. This is where the
 shared library will be installed:
$ mkdir -p ans.framework/Versions/A
If you subsequently install a later version of the shared
 library, you will install it in directory B at the same level of the directory
 hierarchy as A.

	Build the shared library in the framework Versions directory:
$ cc -dynamiclib -o ans.framework/Versions/A/ans answer.o

	Create symbolic links:
$ ln -s ans.framework/Versions/A ans.framework/Versions/Current
$ ln -s ans.framework/Versions/A/ans ans.framework/ans
For the first installation of the shared library (i.e., in
 A), Current should point to A, as shown here. When a later version of
 the library is subsequently installed in B, you’ll need to change the Current symbolic link to point to B; however, the older version in A can stay on the system in case some
 application needs that version. Since the symbolic link ans.framework/ans also
 points the most recent version of the shared library, it will also
 need to be updated when the framework is updated.

Performance Tools and Debugging Tools

The developer tools that ship with Mac OS X include an impressive
 array of debugging and tuning tools. These tools are extensively documented at the websites
 http://developer.apple.com/performance/ and http://developer.apple.com/documentation/MacOSX/Conceptual/OSX_Technology_Overview/Tools/chapter_952_section_2.html.
 Those sites include more complete list of tools and offer examples to
 demonstrate their use. The following short list is intended to give you an
 idea of what is available:
	Activity Monitor
	A GUI application, located in /Applications/Utilities, that displays
 information on memory and CPU usage for running processes. This
 application is similar to the command-line utility top, which is also included with Tiger
 and later.

	atos
	Converts to and from symbol names and the numeric addresses of
 symbols in running programs.

	BigTop
	A GUI application, similar to both top and vm_stat, that displays information on
 memory, CPU, network, and disk usage for running processes.

	c2ph
	Displays information on C structures in object files.

	DTrace
	An open source command-line monitoring utility, developed by
 Sun Microsystems.

	fs_usage
	Displays information on filesystem activity.

	gdb
	The GNU debugger.

	gprof
	Profiles execution of programs by reporting information such
 as execution times and the number of calls for individual
 functions.

	heap
	Analyzes memory usage.

	Instruments
	A timeline-based performance visualization application to
 monitor CPU usage, disk I/O, memory usage, garbage collection, and
 events (Mac OS X 10.5 only). Instruments is built on top of the open
 source DTrace utility.

	kdump
	Displays kernel race data (no longer available in Mac OS X
 10.5).

	leaks
	Lists the addresses and sizes of unreferenced malloc buffers.

	MallocDebug
	Analyzes memory usage.

	malloc_history
	Lists the malloc
 allocation history of a given process.

	nm
	Displays a symbol table for object files.

	ObjectAlloc
	Analyzes memory allocation and deallocation. (Replaced by
 Instruments template ObjectAlloc.tracetemplate in Mac OS X
 10.5.)

	OpenGL Profiler
	Profiles OpenGL-based applications.

	OpenGL Shader Builder
	A debugger for OpenGL-based applications.

	otool
	A command-line utility used to display information associated
 with object files or libraries. Earlier, we used it with the
 -L option, which displays the
 names and version numbers of the shared libraries used by the given
 object file. For more details, see the otool manpage.

	pagestuff
	Displays information about the logical pages of a Mach-O
 executable file.

	Pixie
	A magnifying-glass tool for checking graphics.

	pstruct
	Same as c2ph.

	QuartzDebug
	A debugging tool related to the Quartz graphics system.

	sample
	A command-line tool used to profile a process over a time
 interval.

	Sampler
	Performs a statistical analysis of where an application spends
 its time by providing information such as how often allocation
 routines, system calls, or other functions are called. (Replaced by
 Instruments template Sampler.tracetemplate in Mac OS X
 10.5.)

	sc_usage
	Displays information on system calls and page faults.

	Shark
	Provides instruction-level profiling of the execution time of
 a program, using statistical sampling. Advice on optimization is
 also provided. (A command-line version, /usr/bin/shark, is also provided.)

	Spin Control
	Monitors programs that become unresponsive and cause the
 spinning cursor.

	Thread Viewer
	Profiles individual threads in multithreaded
 applications.

	top
	Reports dynamically updated statistics on memory and CPU usage
 for running processes.

	vmmap
	Displays a virtual memory map in a process, including the
 attributes of memory regions such as starting addresses, sizes, and
 permissions.

CHUD Tools

In addition to the tools listed in the previous section, a set of
 performance and optimization tools bundled as the Computer Hardware Understanding Development Tools (CHUD
 Tools) package is available as an optional installation with Xcode. You
 can also download the latest version from http://developer.apple.com/tools/download/.
CHUD tools are used to configure and display the performance monitor
 counters provided on Apple systems. These performance monitors record
 events such as cache misses, page faults, and other performance issues.
 The list provides information on a few of the tools provided with the CHUD
 collection (for more details, see http://developer.apple.com/referencelibrary/DeveloperTools/idxPerformance-date.html):
	acid
	A command-line tool used to analyze traces provided by
 amber.

	amber
	A command-line tool for instruction-level traces of execution
 threads.

	PMC Index
	Monitors performance counter events.

	Reggie SE
	Analyzes and modifies CPU and PCI configuration
 registers.

	Saturn
	Provides exact (as opposed to statistical) profiling at the
 function level. For example, Saturn reports how many times a given
 function is called. Results are represented in graphical
 format.

	SpindownHD
	Monitors power state of hard drives.

	simg4
	A command-line tool that simulates the G4 (7400/7410)
 processor. You can use this cycle-accurate simulator to run through
 a trace file generated by amber.

	simg4_plus
	A command-line tool that simulates the G4 (7450) processor.
 You can use this cycle-accurate simulator to run through a trace
 file generated by amber.

	simg5
	A command-line tool that simulates the G5 processor. You can
 use this cycle-accurate simulator to run through a trace file
 generated by amber.

A CHUD framework
 (/System/Library/PrivateFrameworks/CHUD.framework)
 that enables you to write your own performance tools (among other things)
 is also provided.

Interesting and Important Libraries

Table 11-1 lists some
 significant libraries included with Mac OS X, and Table 11-2 lists some significant
 libraries that do not come with Mac OS X but that may be available through
 Fink (see Chapter 12) or MacPorts (see Chapter 13). You can get a more complete list of the libraries
 included with Mac OS X by listing the contents of the /usr/lib and /usr/X11/lib directories:
$ ls –l /usr/lib /usr/X11/lib
Table 11-1. Important Mac OS X libraries
	Library
	Description
	Headers

	 libalias
	Packet aliasing library for
 masquerading and network address translation (NAT)
	Not included in Mac OS X;
 see the network_cmds module
 in the Darwin CVS
 archive

	 libatlas
	Automatically tuned linear
 algebra library (this is a symbolic link to libBLAS in the Accelerate framework)
	Not included in Mac OS
 X

	 libdtrace_dyld
	DTrace
 library
	 dtrace.h

	 libBSDPClient
	BSDP client
 library
	Not included in Mac OS
 X

	 libBSDPServer
	BSDP server
 library
	Not included in Mac OS
 X

	 libl.a
	lex runtime library
	Not applicable; lexical
 analyzers that you generate with lex have all the necessary
 definitions

	 libMallocDebug
	Library for the MallocDebug utility
 (/Developer/Applications)
	Not applicable; you don’t
 need to do anything special with your code to use this
 utility

	 libSaturn
	Library for the Saturn utility
 (/Developer/Applications)
	 Saturn.h

	 libamber
	Library for the amber utility
	 amber.h

	 libbsm
	Basic security
 library
	 /usr/include/bsm/libbsm.h

	 libedit
	Replacement for readline library (libreadline is provided as a symbolic
 link to libedit)
	 histedit.h

	 libxslt
	XSLT C library, based on
 the libxml2 XML C parser
 developed for the GNOME project
	 /usr/include/libxslt/xslt.h

	 libexslt
	Provides extensions to XSLT
 functions
	 /usr/include/libexslt/exslt.h

	 libfl.a
	Font library
	Not included in Mac OS
 X

	 libform
	Forms
 library
	 form.h

	 libncurses
 (libcurses is available for backward
 compatibility)
	ncurses (new curses) screen library, a set of
 functions for controlling a terminal’s display
 screen
	/usr/include/ncurses.h (curses.h is available for backward compatibility)

	 libicucore
	International Components
 for Unicode library
	Not included in Mac OS
 X

	libiodbc, libiodbcinst
	Intrinsic Open Database
 Connectivity library
	iodbcext.h, iodbcinst.h, iodbcunix.h

	 libipsec
	IPsec
 library
	 /usr/include/netinet6/ipsec.h

	 liblber
	lber library
	 lber.h

	 libltdl
	GNU ltdl, a system-independent dlopen wrapper for GNU libtool
	 ltdl.h

	 libmenu
	Menus
 library
	 menu.h

	 libmx
	Math library with support
 for long double and complex APIs
	 math.h

	 libobjc
	Library for the GNU
 Objective-C compiler
	 /usr/include/objc/*

	 libpcap
	Packet-capture
 library
	 /usr/include/pcap*

	 libneon
	HTTP/WebDAV client library
 with a C API (installed with Leopard, but not
 Tiger)
	Not included in Mac OS
 X

	 libmpi
	Message-passing interface
 library
	 mpi.h

	libssl and libcrypto
	Open source toolkit
 implementing the Secure Sockets Layer (SSL) versions 2 and 3 and
 Transport Layer Security (TLS) version 1 protocols and a
 full-strength, general-purpose cryptography library
	 /usr/include/openssl/*

	 libsvn*
	Subversion-related
 libraries
	 /usr/include/subversion-1*

	 liby.a
	yacc runtime library
	Not applicable; parsers
 that you generate with yacc
 have all the necessary definitions

	 libz
	General-purpose
 data-compression library (Zlib)
	 zlib.h

	 libbz2
	File-compression library
 (bzip2)
	 bzlib.h

	 libxar
	Extensible Archive format
 library
	 xar.h

	 libpoll
	System V poll(2) poll library (symbolic link to
 libSystem.dylib)
	 poll.h

	 libiconv
	Character set conversion
 library
	 iconv.h

	 libcharset
	Character set determination
 library
	 libcharset.h

	 libcups
	Common Unix Printing System
 (CUPS) library
	 /usr/include/cups*

	 libcurl
	Library for curl, a command-line tool for file
 transfer
	 /usr/include/curl/*

	 libgutenprint
	Library for Gutenprint
 (formerly known as Gimp-Print)
	Not
 available

	 libpam
	Interface library for the
 Pluggable Authentication Modules (PAM)
	 /usr/include/pam/*

	 libpanel
	Panel stack extension for
 curses
	 panel.h

	 libxml2
	XML parsing library,
 version 2
	 /usr/include/libxml2/*

	 libruby
	Library for the interpreted
 object-oriented scripting language Ruby
	 /usr/lib/ruby/1.8/universal-darwin9.0
 /*

	 libtcl
	Tcl scripting language
 library
	 tcl.h

	 libtk
	Library for Tk, the
 graphical companion to Tcl
	 tk.h

	 libwrap
	Library for TCP wrappers,
 which monitors and filters incoming requests for TCP-based
 services
	 tcpd.h

	 freetype2
	TrueType font rendering
 library, version 2
	 /usr/X11/include/freetype2/*

	 libexpat
	C library for parsing XML
 (installed with Leopard but not Tiger)
	 expat.h

	 libdbm
	Database management
 library
	 ndbm.h

Table 11-2. Libraries not included with Mac OS X
	MacPorts or Fink
 package
	Description
	Home page

	 aalib
	ASCII art library
	 http://aa-project.sourceforge.net/aalib/

	 db3
	Berkeley DB embedded
 database library, version 3
	 http://www.sleepycat.com

	 db4
	Berkeley DB embedded
 database library, version 4
	 http://www.sleepycat.com

	 fnlib
	Font rendering library for
 X11
	 http://www.enlightenment.org

	 gc
	General-purpose garbage
 collection library
	 http://www.hpl.hp.com/personal/Hans_ Boehm/gc/

	 gd2
	Graphics generation
 library
	 http://www.boutell.com/gd/

	 gdal
	Translator library for
 raster geospatial data formats
	 http://www.remotesensing.org/gdal/

	 gdbm
	GNU dbm library
	 http://www.gnu.org

	 giflib
	GIF image format handling
 library, LZW-enabled
 version
	 http://prtr-13.ucsc.edu/~badger/software/libungif/

	 glib
	Low-level library that
 supports GTK+ and GNOME
	 http://www.gtk.org

	 gmp
	GNU multiple-precision
 arithmetic library
	 http://www.swox.com/gmp/

	 gnome-libs
	GNOME
 libraries
	 http://www.gnome.org

	 gtk
	Library for GTK+, the GIMP
 widget toolkit used by GNOME
	 http://www.gtk.org

	 hermes
	Optimized pixel format
 conversion library
	 http://www.canlib.org/hermes/

	 imlib2
	General image handling
 library
	 http://www.enlightenment.org/pages/imlib2.html

	 libdnet
	Networking
 library
	 http://libdnet.sourceforge.net

	 libdv
	Software decoder for
 DV-format video
	 http://www.sourceforge.net/projects/libdv/

	 libfame
	Fast-assembly MPEG encoding
 library
	 http://fame.sourceforge.net

	 libghttp
	HTTP client
 library
	 http://www.gnome.org

	 libjpeg
	JPEG image format handling
 library
	 http://www.ijg.org

	 libmpeg2
	GIMP MPEG
 library
	 http://libmpeg2.sourceforge.net

	 libmusicbrainz
	Client library for the
 MusicBrainz CD Index
	 http://www.musicbrainz.org

	 libnasl
	Nessus Attack Scripting
 Language library
	 http://www.nessus.org

	 libnessus
	Library package for Nessus
 without SSL support
	 http://www.nessus.org

	 libole2
	Library for the OLE2
 compound file format
	 http://www.gnome.org

	 libproplist
	Routines for string list
 handling
	 http://www.windowmaker.org

	 libshout
	Library for streaming to
 icecast
	 http://developer.icecast.org/libshout/

	 libsigc++
	Callback system for widget
 libraries
	 http://developer.icecast.org/libshout/

	 libstroke
	Stroke translation library
 (translates mouse strokes to program commands)
	 http://www.etla.net/libstroke/

	 libtiff
	TIFF image format
 library
	 http://www.libtiff.org

	 libungif
	GIF image format handling
 library (LZW-free version)
	 http://prtr-13.ucsc.edu/~badger/software/ libungif/index.shtml

	 libwww
	General-purpose Web API
 written in C for Unix and Windows
	 http://www.w3c.org/Library/Distribution.html

	 libxml
	XML parsing
 library
	 http://www.gnome.org

	 libxml++
	C++ interface to the
 libxml2 XML parsing
 library
	 http://sourceforge.net/projects/libxmlplusplus/

	 jakarta-log4j
	Library that helps the
 programmer output log statements to a variety of output
 targets
	 http://jakarta.apache.org/log4j/

	 lzo 1 & 2
	Real-time data compression
 library
	 http://www.oberhumer.com/opensource/lzo/

	 netpbm
	Graphics manipulation
 programs and libraries
	 http://netpbm.sourceforge.net

	 pcre
	Perl Compatible Regular
 Expressions library
	 http://www.pcre.org

	 pdflib
	Library for generating
 PDFs
	 http://www.pdflib.com/products/pdflib-family/pdflib/

	 pil
	Python Imaging Library;
 adds image-processing
 capabilities to Python
	 http://www.pythonware/products/pil/

	 pilot-link
	Palm
 libraries
	 http://www.pilot-link.org

	 popt
	Library for parsing
 command-line options
	 http://www.gnu.org/directory/popt.html

	 pth
	Portable library that
 provides scheduling
	 http://www.gnu.org/software/pth/pth.html

	 readline
	Terminal input library
 (provided in Leopard as a symbolic link to libedit)
	 http://cnswww.cns.cwru.edu/~chet/readline/ rltop.html

	 slang
	Embeddable extension
 language and console I/O library
	 http://space.mit.edu/~davis/slang/

The list of available libraries is ever-growing, thanks to an influx
 of open source ports from FreeBSD and Linux. One of the best ways to keep
 on top of the latest ports is to install Fink or MacPorts (see Chapters
 12 and 13, respectively),
 either of which will let you either install precompiled versions of
 libraries and applications or install them from source.

Numerical Libraries

Mac OS X ships with an impressive array of resources used for
 numerical computing. It supports 64-bit computing on both PowerPC G5 and
 Intel-based systems, including 64-bit pointers for passing large arrays
 and the optimized and extended mathematical libraries libm and libmx. It also ships with the Accelerate framework, located at
 /System/Library/Frameworks/Accelerate.framework,
 which includes many numerical libraries that have been optimized for
 high-performance computing, as well as several subframeworks. The
 Accelerate framework’s libraries have been optimized to take advantage of
 the PowerPC as well as Intel-based CPUs. If you are interested in
 optimizing your code for Mac OS X, good places to start are the websites
 http://developer.apple.com/hardwaredrivers/ve/sse.html and
 http://developer.apple.com/documentation/Performance/Conceptual/Accelerate_sse_migration/Accelerate_sse_migration.pdf.
You will find the following in the Accelerate framework:
	vecLib
	A subframework of the Accelerate framework that includes BLAS (cblas
 and vBLAS), LAPACK, vBasicOps, vBigNum, vDSP, vecLib, vectorOps,
 vForce, and vfp. It is located at
 /System/Library/Frameworks/vecLib.framework.

	BLAS
	A complete and optimized set (levels 1, 2, and 3) of the basic
 linear algebra subprograms. (See http://www.netlib.org/blas/faq.html.)

	LAPACK
	A linear algebra package written on top of the BLAS library.
 (See http://www.netlib.org/lapack/index.html.)
 LAPACK is designed to run efficiently, having most of the actual
 computations performed by optimized BLAS routines.

	vDSP
	A collection of digital signal processing functions. (See
 http://developer.apple.com/hardware/ve/downloads/vDSP.sit.hqx.)

	vBasicOps
	A set of basic arithmetic operations.
(See
 /System/Library/Frameworks/vecLib.framework/Versions/Current/Headers/vBasicOps.h.)

	vBigNum
	A set of basic arithmetic operations for manipulating large
 (128-bit) integers.
(See
 /System/Library/Frameworks/vecLib.framework/Versions/Current/Headers/vBigNum.h.)

	vectorOps
	A set of BLAS vector and matrix functions, optimized for
 AltiVec.
(See
 /System/Library/Frameworks/vecLib.framework/Versions/Current/Headers/vectorOps.h.)

	vForce
	A set of highly optimized elementary functions on many
 operands.
(See
 /System/Library/Frameworks/vecLib.framework/Versions/Current/Headers/vForce.h.)

	vfp
	A set of MathLib-style numerical functions, optimized for
 AltiVec.
(See
 /System/Library/Frameworks/vecLib.framework/Versions/Current/Headers/vfp.h.)

	vImage
	A subframework of the Accelerate framework that contains a set
 of highly optimized image-processing filters.
(See
 /System/Library/Frameworks/vImage.framework/Versions/Current/Headers/vImage.h.)

To compile code using a subframework of Accelerate, you must include
 the header file with the following line of code:
#include <Accelerate/Accelerate.h>
For example, you can compile a program named prog.c that makes use of the vecLib framework
 as follows:
$ gcc -framework Accelerate prog.c

Part III. Working with Packages

There are a good number of packaging options for software you
 compile, as well as software you obtain from third parties. This part of
 the book covers software packaging on Mac OS X.
Chapters in this part of the book include:
	Chapter 12, Fink
	Chapter 13, MacPorts
	Chapter 14, Creating and Distributing Installable Software

Chapter 12. Fink

Fink is essentially a port of the Debian Advanced Package Tool
 (APT) with some frontends and its own centralized collection site, which
 stores the packaged binaries, source code, and patches you need to build
 software on Mac OS X. The Fink package manager allows you to install a
 package (a ported Unix software application or library) and lets you choose
 whether to install it from source or a binary package file. Consistent with
 Debian, binary package files are in the dpkg format with a .deb extension and are managed with the ported
 Debian tools dpkg and apt-get.
Fink also provides tools that create a .deb package from source. It maintains a database
 of installed software that identifies packages by a combination of name,
 version number, and revision number. Moreover, Fink understands
 dependencies, uses rsync to propagate
 software updates, supports uninstallation, and makes it easy to see
 available and installed packages. You can use Fink to install over a
 thousand freely available Unix packages that will run on Mac OS X. Fink also
 recognizes and supports Apple’s X11 implementation, based on the X.Org X
 Window System, for running X11 applications.
Fink installs itself and all of its packages (with the exception of
 X11) in a directory named /sw, thus
 completely separating itself from the main /usr system directory. If problems occur with
 Fink-installed packages, you can simply delete the entire /sw directory tree without affecting your
 system.
Installing Fink

Before installing Fink, you must install the Xcode tools. As discussed in Chapter 10,
 these can be installed from the Mac OS X Install DVD or downloaded from
 the Apple Developer Connection web site at http://developer.apple.com/tools/xcode/. Alternatively, on
 a new Mac, the Xcode tools installer is located in /Applications/Installers/Developer Tools/.
 You’ll also need X11 and the X11 SDK. The latter is included with Xcode;
 X11 is installed by default in Leopard but is an optional installation in
 previous versions of Mac OS X.
You can install Fink from binary, from a source tarball, or from
 source in CVS.
Installing Fink from a Disk Image

The binary installation involves the following steps:
	Download the binary installer disk image (a .dmg file) from http://fink.sourceforge.net/download/.
Binary installers are available for both the PowerPC and Intel
 architectures. Be sure to download the one that matches your
 hardware.

	The disk image should mount automatically and show up in the
 Finder’s sidebar. If the disk image does not mount after it has
 downloaded, locate and double-click the .dmg file to mount it.

	Open the mounted disk image and double-click the Fink
 installer package inside. At the time of this writing, the name of
 the installer package is Fink
 0.8.1-Intel-Installer.pkg for Intel (and Fink 0.8.1-Intel-Installer.pkg for
 PowerPC), though it was not yet available for Leopard.

	Follow the instructions on the screen.

	As Fink installs, it will launch the Terminal application and
 check to see whether you have a .profile file in your home directory. If
 you don’t, Fink asks you if you want it to create one. At the
 prompt, type Y and hit Return; Fink will create this file and add
 the . /sw/bin/init.sh line to it.
 After creating the .profile
 file, Fink automatically logs you out of the Terminal session; you
 may need to close the Terminal window by typing ⌘-W.

After Fink has completed its installation, unmount the disk image
 and drag the .dmg file to the
 Trash.
Note
The disk image also includes FinkCommander, a graphical frontend
 to using Fink. For more information, see the FinkCommander” section later in this chapter.

Installing Fink from Source

To install the latest release of Fink from source, perform the
 following steps:
	Open http://www.finkproject.org/download/srcdist.php in
 your web browser. After you select the link for the tarball, you
 must choose a mirror site from which to download it. If your web
 browser downloads this file to your Desktop, move it to a working
 directory, such as ~/tmp:
$ mv ~/Desktop/ fink-0.28.1.tar.gz ~/tmp/

Warning
Do not use StuffIt to unpack the tarball, as some versions of
 StuffIt may corrupt some files; instead, unpack the tarball from the
 command line. If your browser automatically turned StuffIt loose on
 the tarball, you may be left with a .tar file and a directory. If this is the
 case, you will have to mv the
 fink-0.28.1.tar instead of the
 .gz file.

	Extract the archive:
$ tar xvzf fink-0.28.1.tar.gz

	Change into the top-level directory and run the bootstrap script:
$ cd fink-0.28.1
$./bootstrap

	Follow the instructions on the screen.

Installing Fink from CVS

You can also install the latest version of Fink via CVS:
	Change to a temporary directory (one that doesn’t contain a
 subdirectory named fink), and
 log into the Fink CVS server:
$ cd ~/tmp
$ cvs -d :pserver:anonymous@cvs.sourceforge.net:/cvsroot/fink login
When prompted for a password press, press Return to enter an
 empty password.

	Download the package descriptions:
$ cvs -d :pserver:anonymous@cvs.sourceforge.net:/cvsroot/fink co fink

	Change to the fink
 subdirectory and run the bootstrap script to install and configure
 Fink:
$ cd fink
$./bootstrap

	Follow the instructions on the screen.

Note
You must install Fink with superuser privileges and run it with
 superuser privileges whenever you use it to install, uninstall, or
 update packages. Whether you install and configure Fink from a
 downloaded tarball or from CVS, the bootstrap script will prompt you to
 configure Fink to be run with sudo, su, or root. If you choose the default, sudo, you won’t have to invoke fink explicitly with sudo. Instead, you’ll automatically be
 prompted for your administrative password.

Post-Installation Setup

When you install Fink, it should configure your shell initialization files to source either /sw/bin/init.sh (sh, bash, and similar shells), as
 follows:
. /sw/bin/init.sh
or /sw/bin/init.csh
 (csh or tcsh), as shown here:
source /sw/bin/init.csh
If for some reason it doesn’t, or if you need to configure Fink
 for another user, open a Terminal window and run the script /sw/bin/pathsetup.sh. When that’s finished,
 close the Terminal window and open a new one to begin using Fink.
You can update Fink later by entering these commands:
$ fink selfupdate
$ fink update-all
The first command updates Fink itself, including the list and
 descriptions of available packages, while the second command updates any
 installed packages. The first time you run selfupdate, Fink will prompt you to choose
 whether to use rsync (faster, less
 bandwidth) or CVS, or to “Stick to point releases”:
$ fink selfupdate
sudo /sw/bin/fink selfupdate
Password: ********
fink needs you to choose a SelfUpdateMethod.

(1) cvs
(2) Stick to point releases
(3) rsync

Choose an update method [3] 3
“Stick to point releases” means that you’ll stay away from the
 bleeding edge: Fink will be more stable, but you may not get the latest
 and greatest versions of applications. The third option, rsync, is the default option. You can change
 the selfupdate method to CVS
 by using the command fink
 selfupdate-cvs, and you can switch back to using rsync with fink
 selfupdate-rsync. At the time of this writing, you can only
 select the second option, “Stick to point releases,” when you run
 fink selfupdate for the first time.
 That is, Fink does not support switching to selfupdate-point (i.e., option 2) from any
 other selfupdate method.

Using Fink

Once you’ve installed Fink, you can see what packages are available
 by entering the command fink list.
 You can install a package from source with the following command:
$ fink install package
The fink command is used from
 the command line to maintain, install, and uninstall packages from source.
 Table 12-1 lists some examples of its
 usage.
Table 12-1. Various fink commands
	Command
	Description

	 fink apropos
 foo
	Lists packages matching the
 search keyword, foo.

	 fink build
 foo
	Downloads and builds the
 package foo. No installation is
 performed.

	 fink cleanup
	Deletes obsolete and
 temporary files.

	 fink configure
	Reruns the configuration
 process.

	 fink describe
 foo
	Describes the package
 foo.

	 fink fetch
 foo
	Downloads the package
 foo, but doesn’t install
 it.

	 fink fetch-all
	Downloads source files for
 all available packages.

	 fink fetch-missing
	Like fetch-all, but fetches only source code
 that’s not already present.

	 fink index
	Forces a rebuild of the
 package cache.

	 fink install
 foo
	Downloads source, then
 builds and installs the package
 foo.

	 fink list
	Lists available packages,
 placing an “i” next to installed packages. This command takes many
 options: for example, fink list
 -i lists only installed packages. Execute fink list --help for a complete set of
 options.

	 fink plugins
	Lists available plug-ins
 for fink.

	 fink purge
 foo
	Same as remove, but also removes all
 configuration files. Use apt-get
 remove instead.

	 fink rebuild
 foo
	Downloads and rebuilds the
 package foo. Installation is
 performed.

	 fink reinstall
 foo
	Reinstalls the package
 foo using dpkg.

	 fink remove
 foo
	Deletes the package
 foo.

	 fink scanpackages
	Updates the apt-get database.

	 fink selfupdate
	Updates Fink along with the
 package list. Uses the latest officially released Fink source. Do
 this first unless you’re updating via CVS.

	 fink selfupdate-cvs
	Updates Fink along with the
 package list using CVS.

	 fink selfupdate-rsync
	Updates Fink along with the
 package list using rsync.

	 fink show-deps
 foo
	Reveals both compile-time
 and runtime dependencies of the package
 foo.

	 fink update
 foo
	Updates the package
 foo.

	 fink update-all
	Updates all installed
 packages.

	 fink validate
 foo
	Runs various checks on
 .info and .deb files associated with the package
 foo.

FinkCommander

The FinkCommander application provides a free graphical user
 interface for Fink’s commands. FinkCommander is distributed with Fink on the Fink
 installer disk image, but you can also download it directly from the
 FinkCommander site (http://finkcommander.sourceforge.net).
Note
At the time of this writing, FinkCommander had not been updated
 since 2005, but it still works as advertised. Phynchronicity, a newer
 GUI for Fink, is available from http://www.codebykevin.com/phynchronicity.html. Unlike
 the free FinkCommander, Phynchronicity is shareware. You can run a
 30-day demo of Phynchronicity to try it out before purchasing it for
 $24.95.

To install FinkCommander, simply drag and drop the application from
 the disk image into your /Applications folder (or /Applications/Utilities, depending on what your
 preferences are).
You can use FinkCommander’s search field, located in the upper-right
 corner of the main window, to find packages you are interested in. By
 default, the menu to the left of the search field is set to search package
 names. However, by clicking and holding down the (left) mouse button in
 the search field, you can set it to something else (Description, Category,
 Binary, Stable, Unstable, Local, Status, or Maintainer) before you search.
 Figure 12-1 shows the main
 window of FinkCommander with a search in progress for packages whose
 category includes “sci”.
[image: Searching for packages with FinkCommander]

Figure 12-1. Searching for packages with FinkCommander

To install a package with FinkCommander, select it in the main
 window and select Binary→Install for a binary package, or Source→Install
 to install that package from source. You can remove a package by selecting
 it in the list and clicking Source→Remove or Binary→Remove.
FinkCommander also lets you run its commands in a Terminal window so
 you can interact directly with Fink. Use Source→Run in
 Terminal→Command or Binary→Run in
 Terminal→Command to run the selected command in
 a new Terminal window, as shown in Figure 12-2.
[image: Running the install command in a Terminal window]

Figure 12-2. Running the install command in a Terminal window

Installing Binaries Using Command-Line Utilities

You can download and install binaries via dselect (shown in
 Figure 12-3), a
 console-based frontend to dpkg, which is installed as part of Fink (dselect and dpkg are just two of the utilities that Fink
 borrows from Debian GNU/Linux). To use dselect, you must have superuser (or
 administrator) privileges, so you’ll need to run sudo dselect in the Terminal.
[image: The dselect program’s main menu]

Figure 12-3. The dselect program’s main menu

Once dselect has started, you
 can use the following options to maintain, install, and uninstall
 packages:
	[A]ccess
	Allows you to choose the access method to use.

	[U]pdate
	Downloads the list of available packages from the Fink site.
 This option is equivalent to running apt-get update. Table 12-2 lists the apt-get and dpkg command-line options.
Note
You must run [U]pdate
 at least once after installing Fink.

	[S]elect
	Displays the package listing, which you can use to select and
 deselect the packages you want on your system.

	[I]nstall
	Installs, upgrades, and configures selected packages. Also
 removes deselected packages.

	[C]onfig
	Configures any packages that are unconfigured. Not actually
 needed, since [I]nstall does this after you’ve installed a
 package.

	[R]emove
	Removes unwanted software. Not actually needed, since
 [I]nstall will do this.

	[Q]uit
	Quits dselect.

Table 12-2. Some apt-get and dpkg commands
	Command
	Description

	 apt-get update
	Updates the list of
 available packages. Do this first.

	 apt-get upgrade
	Installs the newest
 versions of all installed packages.

	 apt-get install
 foo
	Downloads and installs the
 package foo.

	 apt-get remove
 foo
	Deletes the package
 foo.

	 dpkg --list
	Lists all installed
 packages.

	 dpkg --listfiles
 foo
	Lists all the files from
 the package foo.

	 dpkg --install
 foo
	Installs the package
 foo.

	 dpkg --remove
 foo
	Deletes the package
 foo. Leaves configuration
 files.

	 dpkg --purge
 foo
	Deletes the package
 foo and its configuration
 files.

	 dpkg -S
 /path/to/file
	Tells you which package
 owns a file.

Mixing Binary and Source Installations
Using Fink, you can mix binary and source installations. That is, you can install some packages from their
 precompiled .deb files and install
 others from source. If you do this, you must first use apt-get to update the available binaries and
 then use fink selfupdate followed
 by fink update-all to update
 packages installed from source.

Chapter 13. MacPorts

The MacPorts project (http://www.macports.org),
 formerly known as DarwinPorts, is a package management system that is
 similar to Fink and the FreeBSD ports collection (http://www.freebsd.org) and is hosted by Apple, Inc. Written
 primarily in Tcl (which is bundled with Mac OS X), MacPorts automates the
 installation of open source Unix- and Aqua-based software on Mac OS
 X.
MacPorts provides a way to both install and remove packages, called
 ports, from its collection, as well as a way to track package
 dependencies. This means that if you attempt to install package A, and
 package A depends on package B, MacPorts finds and installs package B first
 and then goes back and installs package A. Similarly, if you attempt to
 uninstall package B but you have installed another package that depends on
 package B, MacPorts warns you about this dependency and gives you the option
 to remove other packages that depend on the one you’re attempting to
 remove.
MacPorts installs Unix-based packages in /opt/local by default, ensuring that your Mac OS
 X-installed system files in /usr won’t
 be affected. You can also use MacPorts to build from source several
 Aqua-based applications, which MacPorts installs in /Applications/MacPorts. Additionally, required
 libraries are installed in /Library/Tcl/macports1.0. If problems occur with
 MacPorts-installed packages, you can delete the entire /opt/local directory tree without affecting your
 system. In that case, you should also delete the /Library/Tcl/macports1.0 and /Applications/MacPorts directories, as well as
 /Library/LaunchDaemons/org.macports.*
 and /Library/Receipts/MacPorts*.pkg, to
 completely remove MacPorts.
Note
Unlike Fink and some earlier versions of DarwinPorts, MacPorts does
 not divide ports into stable and unstable ports. On the other hand, you
 can install either the stable point release of the MacPorts base itself or
 a prerelease development version of MacPorts via the MacPorts anonymous
 subversion repository.

When you install a package with MacPorts, it is installed both in the
 /opt/local (or whichever directory you
 choose to install MacPorts in) and
 /opt/local/var/macports/software
 directories, via /usr/bin/install. For
 example, if you use MacPorts to install rxvt, it will be installed in /opt/local/var/macports/software, and a hard link
 will be created in /opt/local so that
 any user whose $PATH includes /opt/local/bin will be able to use the
 MacPorts-installed rxvt.
As an alternative to installation via /usr/bin/install, you can use MacPorts to produce
 a .pkg (or .mpkg, to include dependencies) package that can
 be subsequently installed on a Mac OS X system via the Mac OS X Installer.
 You can also use MacPorts to create an Internet-enabled disk image (.dmg) containing a package installer, or to
 create packages in the Red Hat Package Manager (RPM) format. Packages
 produced by MacPorts in both the .pkg
 and .dmg formats can be installed on
 any Mac OS X systems, even if MacPorts has not been installed on those
 systems.
Installing MacPorts

You’ll find detailed documentation, written by Michael A. Maibaum,
 on the installation and use of MacPorts on the MacPorts website. Although
 you should check the MacPorts site for the most up-to-date information,
 we’ll provide a brief description of its installation and usage
 here.
Before installing MacPorts, you must install the Xcode
 tools. As noted in Chapter 7,
 these can be installed from the Mac OS X Install DVD or downloaded from
 the Apple Developer Connection website at http://developer.apple.com/tools/xcode/; alternatively, on
 a new Mac, the Xcode tools installer is located in /Applications/Installers/Developer Tools/.
 You’ll also need X11, which is installed by default in Leopard but is an
 optional installation in earlier versions of Mac OS X, as well as the X11
 SDK, which is included with Xcode. Installation of MacPorts is built
 around rsync, which is also installed
 with Mac OS X by default.
Possible Conflicts Between MacPorts and Fink
MacPorts and Fink can coexist on the same system, but if you’ve already
 installed Fink (say, in its default location, /sw), there is a chance that the configuration phase (described later) will
 identify the Fink-installed version of the required software. For
 example, if you’ve installed Tcl/Tk with Fink, MacPorts may use the
 version of Tcl in /sw, rather than
 the Mac OS X-bundled Tcl in /usr/bin. If this happens and you later
 decide to remove Fink, you’ll mess up your MacPorts installation.
To avoid this potential problem, you should temporarily remove
 /sw/bin from your path when
 installing MacPorts (or, if you’ve added it to your .bashrc file, comment out the line . /sw/bin/init.sh).

To install MacPorts, you must be logged in as an administrative
 user. You can install the latest point release of MacPorts either from
 source or using a binary installer. To install MacPorts using the binary
 installer, download the .dmg file
 from the MacPorts website to your Desktop, double-click this file to mount
 the disk image, and double-click the .mpkg installer in the disk image. Then
 authenticate yourself as an administrative user and follow the directions
 in the Installer window to install MacPorts.
If you want to install MacPorts in a directory other than the
 default /opt/local, you’ll need to install it from
 source. To install MacPorts from source, log into Mac OS X as an administrative user and download the
 source tarball from the MacPorts website into your home directory. Both
 .tar.gz and .tar.bz2 formats are available for
 download.
For example, to download and unpack MacPorts-1.6.0.tar.gz, enter the following
 commands:
$ cd
$ curl –O \
 http://snv.macports.org/repository/downloads/MacPorts-1.6.0/\
 MacPorts-1.6.0.tar.gz
$ tar xzvf MacPorts-1.6.0.tar.gz
If, on the other hand, you’ve downloaded MacPorts-1.6.0.tar.bz2 instead of the .gz file, change the last command to the
 following:
$ tar xjvf MacPorts-1.6.0.tar.bz2
After entering the preceding commands, you’ll be ready to build and
 install MacPorts on your system:
	Change to the ~/MacPorts-1.6.0/ directory:
$ cd MacPorts-1.6.0

	Perform the configure,
 make, and make install sequence:
$./configure
$ make
$ sudo make install
These commands build and install necessary files in /opt/local, /Library/Tcl/macports1.0, and /Library/Receipts.

If you want to customize your installation, you should enter the ./configure --help command
 to see what configure options are available before proceeding with the
 configure, make, and make
 install sequence. For example, if you want to install MacPorts
 in a directory other than /opt/local
 (e.g., if you want to install it on an external hard drive or a
 large-capacity USB flash drive), you can run configure with the --prefix option and specify the
 location.
Once you’ve installed MacPorts, you can safely delete the ~/MacPorts-1.6.0 directory.
Installing MacPorts from SVN

To download the latest developer release of MacPorts, perform the
 following steps:
	Change to your home directory, and download and unpack the
 latest MacPorts developer source and package descriptions from the
 MacPorts Subversion (SVN) repository into the ~/trunk directory:
$ cd
$ svn checkout http://snv.macports.org/repository/macports/\
 trunk macports-trunk
You’re now ready to build and install MacPorts on your
 system.

	Change to the ~/trunk/base directory, which contains
 the MacPorts infrastructure:
$ cd macports-trunk/base

	Perform the configure,
 make, and make install sequence:
$./configure
$ make
$ sudo make install
These commands build and install necessary files in /opt/local, /Library/Tcl/macports1.0, and /Library/Receipts. Once you’ve installed
 MacPorts, you can safely delete the ~/macports-trunk directory, but you
 should keep it if you want to continue working with the latest
 developer releases of MacPorts.

The MacPorts installation creates macports.conf, sources.conf, and variants.conf files in the /opt/local/etc/macports/ directory. These
 files specify various configuration parameters. For example), among
 others, macports.conf contains the
 prefix parameter, which is set to
 /opt/local by default. If you want
 MacPorts to install software in a directory other than /opt/local, you can edit the file macports.conf and change the value of
 prefix from /opt/local to the directory in which you want
 packages installed. The sources.conf configuration file contains the
 location of the ports directory,
 which is set to rsync://rsync.macports.org/release/ports/,
 by default. If you’d like to set up a local ports repository, you can
 enter the appropriate line in the sources.conf file (this file contains
 sufficient documentation on how to add a local ports repository).
Note
The /opt/local/var/macports/sources/rsync.macports.org/ports
 directory is where MacPorts stores local copies of the ported software
 descriptions and related Portfiles, which are Tcl scripts needed to build and install the
 ported software. Though it may be tempting to think of the
 /opt/local/var/macports/sources/rsync.macports.org/ports
 directory as a local ports
 repository, it is not; rather, it’s where the ported software
 descriptions and related Portfiles are updated, when you update your
 installation of MacPorts.

Since MacPorts software is installed in /opt/local, you should add /opt/local/bin and /opt/local/sbin to your $PATH. Additionally, you may want to add /opt/local/share/man to your $MANPATH. Once you have performed those steps, you’ll be ready to
 use MacPorts.

Using MacPorts

Once MacPorts has been installed, you can see what packages are
 available with the port list
 command. Since the list is quite long, you may want to pipe that command
 through the more command.
You can also use the port
 command to search for specific packages. For example, the command
 port search tightvnc returns a
 listing for the tightvnc package,
 whereas the command port search kde
 lists all available packages that contain the string kde. The port command may also be used to determine
 which variants of a given package are available. For example, the output
 from the port variants gnuplot
 command lists the universal,
 darwin, no_x11, and wxwidgets variants of gnuplot.
You can install a package from source with the command sudo port install
 package. (The port command must be used with sudo whenever the directory /opt/local or /Applications/MacPorts is modified.) This
 command actually performs several steps prior to installing the package on
 your system, including checking dependencies, downloading the necessary
 source code (including source of dependencies), verifying checksums,
 configuring packages, building and installing any other required packages,
 and building the requested package in an intermediate work directory within the /opt/local/var/macports/build directory. For example, if you install
 tightvnc using MacPorts, it is built
 in /opt/local/var/macports/build/_opt_local_var_macports_sources_rsync.macports.org_release_ports_x11_tightvnc.
 After the package is built, it is installed temporarily in the destroot subdirectory of the work directory.
In the last stages of the sequence of events set into motion by the
 sudo port install
 package command, the requested package is
 installed into an “image repository” directory and “activated.” Activation
 of a port creates hard links to the files in the image repository
 directory. For example, if you install rvxt using the sudo port install
 rxvt command, rxvt and all
 its related files are installed into the image repository /opt/local/var/macports/software/rxvt/2.7.10_1/opt/local/bin
 and then activated through the creation of hard links in the ${prefix} directory /opt/local/bin.
The image repository can be revealed with the port location rxvt command. You can
 subsequently deactivate rxvt by
 issuing the command sudo port deactivate rxvt, which deletes the hard
 links in /opt/local/bin while leaving
 the rxvt installation in the image
 repository intact. You can later reactivate rxvt with the sudo
 port activate rxvt command. The chief advantage of this
 approach, called Port Images, is that it allows you
 to install multiple versions of a package without having to uninstall one
 to make room for another. Instead, you can simply deactivate one version
 and activate another version.
Note
The Port Images approach is particularly helpful when you want to
 test a new version of some software, because it means you won’t need to
 uninstall and then reinstall the older version if you’re not happy with
 the new version.

As mentioned earlier, MacPorts automatically checks package
 dependencies and installs any other required packages. Similarly, if you
 deactivate a package, you are warned if the package you are deactivating
 is needed by another installed package.
To uninstall a particular port, use the port uninstall command. For example, to
 uninstall foo, enter the
 command:
$ sudo port uninstall foo
To update a particular port, you can enter the following
 command:
$ sudo port upgrade foo
If a new version of foo is
 available, this command will deactivate the currently installed foo port and install and activate the newer
 version. This command will also update all of foo’s dependencies. If you want to remove the
 older version of foo at the same
 time, you should enter the following command:
$ sudo port -u upgrade foo
You can update all installed ports with this command:
$ sudo port upgrade installed
Creating and Installing Packages in .pkg Format

Using MacPorts, you can create a .pkg package installer using the port command with the pkg option.
 For example, to create a .pkg
 installer for aterm, enter the
 command:
$ sudo port pkg aterm
This downloads the source for aterm, builds the application, and creates a
 double-clickable package installer named aterm-1.0.0.pkg. This package is saved in
 /opt/local/var/macports/build/_opt_local_var_macports_sources_rsync.macports.org_release_ports_x11_aterm/work.
It’s worth noting that this command only creates the package; it
 does not install the package. To install it (in /opt/local), double-click aterm-1.0.0.pkg in the Finder, authenticate
 yourself as an administrative user, and install the package on your
 system as you would with any other package. When you install a package
 in this manner, the MacPorts database won’t list it among its installed
 packages (that is, if you issue the port
 installed command, this package won’t show up in the list). If you enter the
 command port clean aterm, the
 installer aterm-1.0.0.pkg will be
 deleted.

Creating and Installing Packages in RPM Format

If you are planning to create packages in RPM format, the first thing you should do is install rpm (via the sudo
 port install rpm command). Once you have installed rpm, you can create RPM packages using the
 port command with the rpm option. For example, to create an RPM for
 foo, enter the following command:
$ sudo port rpm foo
This command creates the RPM file in ${prefix}/src/macports/RPMS/${arch}. You can
 safely use the sudo port clean foo
 command after the RPM is created, since the port clean command won’t remove the .rpm installer.
Before installing RPM packages, however, you need to create
 /etc/mnttab, which is the file that
 keeps track of which RPM packages have been installed. This can be done
 with this command:
$ touch /etc/mnttab
A summary of the use of the port
 command is provided in Table 13-1.
Table 13-1. Various port commands
	Command
	Description

	 port search
 foo
	Lists packages matching
 the search keyword,
 foo.

	 sudo port install
 foo
	Downloads, builds, and
 installs the package
 foo.

	 port destroot
 foo
	Downloads, builds, and
 installs the package foo into an
 intermediate destination root, called a “destroot.” This is
 useful for developing and testing new ports.

	 sudo port uninstall
 foo
	Deletes the package
 foo.

	 port installed
	Lists all the installed
 packages.

	 port clean
 foo
	Deletes intermediate
 files after installation of the package
 foo.

	 port contents
 foo
	Lists all files installed
 with the package foo.

	 port deps
 foo
	Lists dependencies of the
 package foo.

	 port variants
 foo
	Lists variants of the
 package foo.

	 port pkg
 foo
	Builds the .pkg package installer for
 foo. Does not install
 foo.

	 port list
	Lists available
 packages.

	 port dmg
 foo
	Builds an
 Internet-enabled disk image containing a Mac OS X .pkg package installer for
 foo. Does not install
 foo.

	 port rpm
 foo
	Builds an RPM package for
 foo. Does not install
 foo.

	 sudo port activate
 foo
	Activates
 foo. If multiple versions of
 foo are installed, use port activate foo version.

	 sudo port deactivate
 foo
	Activates
 foo. If multiple versions of
 foo are installed, use port activate foo version.

	 port location
 foo
	Displays the location of
 the image directory in which foo is
 installed.

	 port outdated
 foo
	Determines if your
 installed port foo is
 outdated.

	 port outdated
	Lists all of your
 outdated ports.

	 sudo port upgrade
 foo
	Updates
 foo along with its dependencies,
 while deactivating the currently installed
 foo. Use the -u option if you want the outdated
 foo uninstalled.

	 sudo port upgrade
 outdated
	Updates all outdated
 ports with their dependencies, deactivating the currently
 installed outdated ports. Use the -u option if you want the outdated
 ports uninstalled.

	 sudo port selfupdate
	Updates the MacPorts
 installation, including the infrastructure and the
 Portfiles.

MacPorts Maintenance

How you update your MacPorts installation is dependent on how
 you installed it. If you’ve installed a point release of MacPorts, all you
 need to do is enter the following command:
$ sudo port selfupdate
This command will update your ports tree to the latest revision on
 the MacPorts rsync server and will
 download and rebuild your current MacPorts base if a new point release is
 available. If, on the other hand, you’re working with SVN development
 releases of MacPorts and you’ve maintained your ~/macports-trunk directory, you can update
 your MacPorts installation in two steps: the first step is to update the
 MacPorts infrastructure, and the second step is to update your collection
 of Portfiles, which contain instructions for building ports.
To update your MacPorts infrastructure, change to the ~/macports-trunk directory and enter the following
 commands:
$ cd ~/macports-trunk
$ svn update
$ cd base
$ make clean
$./configure
$ make
$ sudo make install
To update only your Portfiles, enter the command:
$ sudo port sync

Connecting to the MacPorts SVN Repository

If you’d like to browse the MacPorts subversion repository, you have
 three options:
	Point your web browser to the Trac source code browser at http://trac.macports.org /browser/.

	Point your web browser directly to the Subversion repository at
 http://svn.macosforge.org/repository/macports/.

	Point your WebDav client to directly to the Subversion
 repository. For example, using the Mac OS X Finder, select Go→Connect
 to Server (or press ⌘-K) and enter the address http://svn.macosforge.org/repository/macports/, as
 shown in Figure 13-1.

[image: Connecting to the MacPorts SVN repository in the Finder]

Figure 13-1. Connecting to the MacPorts SVN repository in the Finder

MacPort GUIs

Here are three GUI frontends to MacPorts that can help you maintain
 your MacPorts installation:
	Pallet is included with the MacPorts distribution, so after
 you’ve installed MacPorts, you should be able to install pallet with the following command:
$ sudo port install pallet
At the time of this writing, however, pallet fails to build.

	Porticus (http://porticus.alittledrop.com)
 is a freeware application that is, at the time of this writing, under
 development by Richard Laing.

	PortAuthority (http://www.codebykevin.com/portauthority.html),
 formerly freeware, is a $20 shareware application developed by Kevin
 Walzer.

You’ll need to have a working installation of MacPorts in order to
 use any of the GUI frontends. Though we weren’t able to take Pallet for a
 whirl, we tried out Porticus and PortAuthority.
Porticus

Porticus makes use of RBSplitView (http://www.brockerhoff.net/src/rbs.html), Sparkle (http://sparkle.artworkapp.com/), CTGradient (http://blog.oofn.net/2006/01/15/gradients-in-cocoa/),
 DBPrefsWindowController (http://www.mere-mortal-software.com/blog/details.php?d=2007-03-11),
 and Growl (http://www.growl.info) to provide an
 easy-to-use GUI for maintaining your existing MacPorts installation. To
 install Porticus, download the .dmg
 file from the Porticus website, mount the disk image, and drag the
 Porticus icon to a convenient location, such as the /Applications folder. To run the Porticus
 application, double-click its icon in the Finder, and authenticate
 yourself as an administrative user. When launched, Porticus gathers
 information on your MacPorts installation and then, depending on what
 you’ve selected in the left part of the Porticus window, lists either
 your installed ports, your outdated ports, or all ports. Figure 13-2 shows a list of
 installed ports, with one of them, gnuplot, selected to reveal its
 details.
[image: The Porticus freeware GUI frontend to MacPorts]

Figure 13-2. The Porticus freeware GUI frontend to MacPorts

You can use Porticus to update outdated ports, install new ports,
 activate and deactivate ports, uninstall ports, and update your MacPorts
 installation. At the time of this writing, one important thing that
 Porticus does not do is check for dependencies when uninstalling ports.
 That feature, however, is planned for a future release. Once that
 feature has been added and its other quirks have been ironed out, this
 free GUI frontend to MacPorts may very well be worth a place in your
 /Applications folder.

PortAuthority

Though PortAuthority is not free, it has several years’ head start on the other GUI
 frontends to MacPorts, and it can be used to perform most common tasks
 associated with maintaining your MacPorts installation. To install
 PortAuthority, download the PortAuthority.dmg disk image from its
 website. If the disk image does not mount automatically, locate and
 double-click the downloaded PortAuthority.dmg file to mount it. Then drag
 the PortAuthority icon to a convenient location, such as the /Applications folder. Finally, double-click
 its icon in the Finder to launch the PortAuthority application. If you
 haven’t purchased a license for PortAuthority, you can try it out for 30
 days without charge. As advised on the PortAuthority website, you should
 try it out first before purchasing it, because no refunds are
 available.
With PortAuthority, you can perform most common MacPorts
 maintenance and usage tasks. For example, you can update your MacPorts
 installation, your collection of Portfiles, and all of your installed
 ports, as well as installing new ports and selectively uninstalling
 installed ports. Nevertheless, PortAuthority has its limitations, too.
 For example, PortAuthority has no menu option to deactivate ports
 without uninstalling them. Overall, in both functionality and design,
 PortAuthority is similar to Porticus (and FinkCommander, for that
 matter). Figure 13-3
 shows the PortAuthority revealing information on an installed gnuplot port.
[image: The PortAuthority shareware GUI frontend to MacPorts]

Figure 13-3. The PortAuthority shareware GUI frontend to MacPorts

Warning
Though MacPorts is quite easy to use, it has some potential gotchas. At the
 top of our MacPorts gotcha list: be careful to update all of your
 installed ports with the sudo port upgrade
 installed command rather than sudo port upgrade all. The latter will
 install all available ports, in addition to updating your installed
 ports. Next on our list: make sure you update your installed ports
 before installing a new port. Though MacPorts checks dependencies and
 will attempt to install required dependency software, the installation
 of a new port can sometimes fail if you have outdated dependencies
 installed. For example, sudo port install
 gimp will fail because of dependency problems if your
 installed gtk and glib are outdated.

Chapter 14. Creating and Distributing Installable Software

In Chapters 12
 and 13, we
 discussed installing packages with Fink and MacPorts, respectively. This
 chapter shows you how to create packages using tools provided with Mac OS X,
 as well as with Fink and MacPorts.
The following options for distributing software are supported on Mac
 OS X by default:
	gnutar and gzip
	The Unix tape archive tool gnutar is used to bundle the directories and resources for
 distribution. (The tar command is
 provided as a hard link to gnutar.) GNU Zip (gzip) is used to compress the tar archives to make file sizes as small as
 possible. Using these tools is generally the simplest way to copy a
 collection of files from one machine to another.
Note
Mac OS X supports archiving files and directories in the
 .zip format directly from the Finder by Control/right-clicking on
 a file or directory and selecting “Compress” from the contextual
 menu.

	Disk Utility
	One of the easiest ways to distribute an application is to use
 the Disk Utility (/Applications/Utilities) to create a disk
 image. You can use Disk Utility to create a double-clickable
 archive that mounts as a disk image on the user’s computer. From
 there, the user can choose to mount the disk image each time the
 application is run, copy the application to the hard drive (usually to
 /Applications), or burn the image
 to a CD. Disk Utility has a command-line counterpart, hdiutil, which we’ll cover in the later
 section Creating a Disk Image from the Command Line.”

	PackageMaker
	PackageMaker (/Developer/Applications/Utilities) can be
 used to create packages (.pkg
 files), which are bundles consisting of all the items that the
 Mac OS X Installer (/Applications/Utilities) needs to perform
 an installation. PackageMaker can also create metapackages (.mpkg files), which can be used to install multiple packages at the
 same time, and distributions, which specify entire customized
 installation processes involving one or more packages.
In Leopard, support has been added for “flat” packages, which are single-file packages in the
 xar(1) format. When such a
 package is installed, a .bom
 file is installed in /Library/Receipts/boms and the package
 database file in /Library/Receipts/db is updated. When an
 older-style package is installed, a “receipt” for the package is
 placed in the /Library/Receipts
 folder. These receipts are named with a .pkg extension and appear in the Finder as
 packages, even though they are not.
These .bom and .pkg files maintain a record of which
 packages have been installed on your system. This is how, for example,
 System Update knows not to install a package (or knows to update a
 package) that you’ve already installed.
In Mac OS X 10.5 (Leopard) and above, you can use the
 command-line utility pkgutil to
 read and manipulate package receipts and flat packages. To list all installed packages that are in the package
 database, use pkgutil --pkgs. You
 can also use pkgutil to list all
 files that were installed by a package. (See the pkgutil manpage for details.) You can list
 and extract the contents of flat packages using the xar command. (See the xar manpage for details.)

Each of these approaches is discussed separately in the following
 sections.
Using GNU tar

The gnutar and gzip command-line utilities can be used to
 create .tar.gz or .tgz tarballs. These tarballs preserve paths,
 permissions, symbolic links, compression, and authentication details.
 Tools to uncompress the tarball are available for many
 platforms.
The automated creation of such a tarball can be worked into the same
 makefile that is used to build the
 software. Preservation of resource forks is tricky, but possible, with
 this method. For example, the following command (where foo/ is a directory) preserves Macintosh
 resource forks:
$ tar -pczf foo.tgz foo/
If you don’t want resource forks preserved, prior to executing the preceding
 tar command, set the environment
 variable with the command export COPYFILE_DISABLE=true. (In releases
 of Mac OS X prior to Leopard, you would enter export
 COPY_EXTENDED_ATTRIBUTES_DISABLE=true.)
Every good tarball creates a single top-level directory that
 contains everything else. You should not create tarballs that dump their
 contents into the current directory. To install software packaged this
 way, use the following command:
$ tar -pxzf foo.tgz
This simply unpacks the tarball into the file and directory
 structure that existed prior to packaging. Basically, it reverses the
 packing step. This method can be used to simply write files to the
 appropriate places on the system, such as /usr/local/bin, /usr/local/lib, /usr/local/man, /usr/local/include, and so on.
Warning
When creating packages, you should keep your package contents out
 of directories such as /etc,
 /usr/bin, /usr/lib, /usr/include, or any top-level directory
 reserved for the operating system, since you have no way of knowing what
 a future software update or Mac OS X upgrade will include. For example,
 the MacPorts project stays out of Mac OS X’s way by keeping most of its
 files in /opt/local, while the Fink
 project uses /sw. We suggest that
 you use /usr/local for the packages
 that you compile.

This packaging method can also be arranged so that the unpacking is
 done first in a temporary directory. The user can then run an install
 script that relocates the package contents to their final destination.
 This approach is usually preferred, since the install script can be
 designed to do some basic checking of dependencies, the existence of
 destination directories, the recataloging of libraries, etc. You can also
 include an uninstall script with your distribution.
The disadvantages of the tarball method of distributing software
 are:
	There is no built-in mechanism for keeping track of which files
 go where.

	There is no built-in method for uninstalling the
 software.

	It is difficult to list what software is installed and how the
 installed files depend on each other or on other libraries.

	There is no checking of dependencies and prerequisite software
 prior to the installation.

These tasks could be built into install and uninstall scripts, as
 we’ve already mentioned, but there is no inherently uniform, consistent,
 and coherent method for accomplishing such tasks when installing multiple
 software packages using tar
 files.

Creating Disk Images

Many applications in Mac OS X do not require special installers.
 Often, an application can be installed by simply dragging
 its folder or icon to a convenient location in the directory structure
 (usually the /Applications folder).
 Applications that are distributed this way are typically packaged as
 disk images. A disk image is a file
 that, when double-clicked, creates a virtual volume that is mounted as shown in Figure 14-1.
[image: A disk image and its mounted volume]

Figure 14-1. A disk image and its mounted volume

Inside Applications
An application, represented in the Finder by its icon, is actually
 a folder with the extension .app,
 which is typically hidden from the user. This folder contains all of the application’s
 resources.
To view the contents of an application bundle, Control/right-click
 on the application icon and select Show Package Contents from the
 contextual menu; this opens the application’s Contents folder in the Finder.

Disk images can be created either with Disk Utility (found in
 /Applications/Utilities) or via the
 command line (using the hdiutil
 command). There are several types of disk images. In this section
 we’ll briefly discuss how to create Apple disk images, which end with a
 .dmg extension and are commonly used
 to distribute software packages for Mac OS X.
The Unix command df reveals a disk image as a mounted volume that appears in the
 /Volumes directory. When you are done
 with the mounted volume, unmount it
 by clicking on the volume (in Figure 14-1, the mounted volume is
 named MacPorts-1.6.0) to select it
 and choosing File→Eject (⌘-E). Alternatively, you can Control/right-click
 and select Eject Disk from the contextual menu, drag the mounted volume to
 the Trash, or unmount it using either of the following commands:
$ hdiutil unmount /Volumes/MacPorts-1.6.0
$ umount /Volumes/SampleVol/
Creating a Disk Image with Disk Utility

To create a disk image using Disk Utility, perform the following steps:
	Launch Disk Utility (/Applications/Utilities).

	Either select File→New→Blank Disk Image or click the New Image
 icon in the toolbar. Either way, as shown in Figure 14-2, Disk Utility
 prompts you for a name, location, volume name, volume size (the
 maximum size is limited by available disk space, but in Leopard the
 minimum size is 10 MB), volume format (Mac OS Extended Journaled,
 Mac OS Extended, Mac OS Extended Case-sensitive, Mac OS Extended
 Case-sensitive and Journaled, Mac OS Standard, or MS-DOS FAT),
 encryption options (128-bit AES or 256-bit AES), partitions (hard
 disk; CD/DVD; no partition map; or single partition selected from
 Apple, master boot record, GUID, CD/DVD, or CD/DVD with ISO data),
 and image format (read/write disk image, sparse disk image, or
 sparse bundle disk image). If you choose to enable encryption, Disk
 Utility will prompt you for a passphrase.

[image: Creating a new blank image with Disk Utility]

Figure 14-2. Creating a new blank image with Disk Utility

	Make your selections, naming the new image “MyDiskImage” and
 choosing the Desktop as the location. Then click the Create button.
 The new image will be created as MyDiskImage.dmg and mounted as SampleVol, or whatever you entered for
 the volume name when you created the disk image. You can change this
 volume name in the Finder, if you’d like.

	Double-click on the disk icon to open the empty volume in a
 Finder window, as shown in Figure 14-3.

[image: A mounted blank disk image, ready to be loaded up with files]

Figure 14-3. A mounted blank disk image, ready to be loaded up with
 files

	Select File→New Finder Window (or press ⌘-N) to open a new
 Finder window where you can select the files you want to place in
 the disk image, as shown in Figure 14-4.

[image: Copying a file to the disk image]

Figure 14-4. Copying a file to the disk image

	To copy the files to the mounted volume, select the items and
 then drag them into the empty SampleVol window.

	Once you’ve placed the files into the disk image, eject this
 disk (press ⌘-E, click the
 Eject icon next to the SampleVol in the left column of the
 Finder, or drag SampleVol to
 the Trash).

	Return to the Disk Utility application, highlight MyDiskImage.dmg in the left column, and
 either select Images→Convert or click the Convert icon in the
 toolbar, as shown in Figure 14-5.

[image: Choosing the image to convert in Disk Utility]

Figure 14-5. Choosing the image to convert in Disk Utility

	In the Convert Image window, enter either a new name or the
 same name in the Save As field, and then select “read-only” from the
 Image Format pull-down menu. (You can also compress the disk image
 from this menu, as shown in Figure 14-6.)

[image: Converting an image in Disk Utility]

Figure 14-6. Converting an image in Disk Utility

	Click the Save button. If you’ve given the disk image the same
 filename as the original image you created, an alert window will
 appear, asking you to confirm whether you want to replace the older
 file with the new one. Click Replace to finish the process, then
 quit Disk Utility with ⌘-Q.

Creating a Disk Image from the Command Line

Here is the procedure for creating a disk image at the command
 line:
	Change (cd) to the
 directory where you want to create the disk image:
$ cd ~/Documents

	Create the disk image using hdiutil, specifying the size (10 MB in
 this example) and the volume name and filename:
$ hdiutil create -megabytes 10 -fs HFS+ -volname SampleVol Sample.dmg

	Mount the image as a volume. Since you named it SampleVol when you issued the hdiutil create command, it will be
 mounted as SampleVol and will
 be available in /Volumes/SampleVol:
$ hdiutil mount Sample.dmg

	Use the Finder or command-line tools to write to the volume
 SampleVol.

	When you are done writing to the volume, you can eject it with
 hdiutil
 unmount:
$ hdiutil unmount /Volumes/SampleVol/

	Copy the disk image to a compressed, read-only image named
 Ready4Dist.dmg:
$ hdiutil convert -format UDZO Sample.dmg -o Ready4Dist.dmg
Note
The UDZO format option
 is used to create a UDIF zlib-compressed image. Other formats
 can be chosen instead: for example, UDIF bzip2 is available for Mac OS X 10.4+
 and can be selected with the UDBZ format option. For a complete list
 of format options, see the manpage for hdiutil.

Whenever you want to mount this volume again, double-click the
 file Ready4Dist.dmg in the Finder.
 Note that the writable disk image Sample.dmg is not destroyed in this
 process.

Distributing Your Image

Once you’ve created a disk image, you can share it with the world.
 Put the image up on a web server or FTP server for others to enjoy,
 share it on your iDisk, or burn it to a CD using Disk Utility (either
 select Images→Burn or press ⌘-B).
Internet-enabled disk images

An Internet-enabled disk image is a read-only disk image
 that cleans up after itself, leaving only the software and no
 by-products of the download. If you distribute your software as an
 Internet-enabled disk image, the user just needs to perform these
 steps:
	Download the .dmg file
 to the Desktop (i.e., ~/Desktop) using a web browser.

	When the download completes, the following sequence of
 events happens automatically:
	The .dmg file is
 mounted.

	Its contents are copied to the user’s default download
 folder (e.g., ~/Desktop).

	The disk image is unmounted.

	The internet-enable
 flag of the .dmg file is
 set to no.

	The .dmg file is
 moved to the Trash.

	Locate the software and move it to its appropriate location
 (e.g., /Applications).

The disk image is mounted in a hidden location until its
 contents are copied to the user’s default download folder, which is
 typically the ~/Downloads folder.
 If the disk image contains a single file, only this file is copied. On
 the other hand, if the disk image contains more than one file, a new
 folder is created in the download folder bearing the root name of the
 .dmg file. Files contained in the disk image are then copied to
 this folder. For example, if the Internet-enabled disk image
 containing multiple files is named Sample.dmg, a folder named Sample will be created in the download
 folder and the files contained in the disk image will be copied to the
 Sample folder.
In this scheme, the user does not deal directly with the
 .dmg file (other than initiating
 the download). This is in contrast to the situation before
 Internet-enabled disk images were supported, in which the user had to
 manually unmount the disk image and drag it to the Trash.
To create an Internet-enabled disk image, first create a
 read-only .dmg-format disk image,
 as described earlier (neither read/write disk images nor the older
 .img/.smi formats can be Internet-enabled), and
 then set the internet-enable flag
 with the hdiutil command:
$ hdiutil internet-enable -yes Ready4Dist.dmg
If you want to disable the internet-enable flag, enter this
 command:
$ hdiutil internet-enable -no Ready4Dist.dmg
If you are not sure whether a disk image has its internet-enable flag set, the following
 command reveals this information:
$ hdiutil internet-enable -query Ready4Dist.dmg
As noted earlier, Internet-enabled disk images are moved to the
 Trash after they are downloaded and acted upon by Mac OS X. Although
 their internet-enable flags are
 set to no during the process, you
 can still rescue .dmg files from
 the Trash in case you want to reinstall the software later.

Using PackageMaker

Apple’s native tool for packaging and distributing software is
 PackageMaker, which can create two types of packages: product packages and
 component packages. A product package consists of an entire product and
 contains one or more component packages. A component package consists of
 one component, which is typically part of a product package. Packages
 created with PackageMaker have a .pkg
 extension. When a user double-clicks on a package, the Installer
 application (/Applications/Utilities)
 is invoked and the installation process begins. The package itself is a
 bundle that contains all of the items Installer needs.
You can also use PackageMaker to create metapackages for installing multiple packages. Metapackages contain
 metainformation, files, and libraries associated with a given application.
 Packages can also contain multiple versions of an application: for
 example, both Mac OS X 10.4 and 10.5 versions.
PackageMaker documentation is available in Help Viewer, which is
 accessible from PackageMaker’s Help option in the menu bar. In this
 chapter, we’ll give only a brief description of how to create a package
 with PackageMaker.
Setting Up the Directory

To demonstrate how to create a package, we’ll create a short C
 program and a manpage for it. Example 14-1 shows hellow.c, and Example 14-2 shows its manpage, hellow.1.
Example 14-1. The Hello, World sample program
/*
 * hellow.c - Prints a friendly greeting.
 */

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

Example 14-2. The manpage for hellow.c
.\" Copyright (c) 2005, O'Reilly Media, Inc.
.\"
.Dd April 15, 2002
.Dt HELLOW 1
.Os Mac OS X
.Sh NAME
.Nm hellow
.Nd Greeting generator
.Sh DESCRIPTION
This command prints a friendly greeting.

PackageMaker expects you to set up the files using a directory
 structure that mirrors your intended installation. So, if you plan to
 install hellow into /usr/bin and hellow.1 into /usr/share/man/man1, you must create the
 appropriate subdirectories under your working directory. However, you
 can use a makefile to create and populate those subdirectories, so to
 begin with, your hellow directory
 may look like this:
$ find hellow
hellow
hellow/hellow.1
hellow/hellow.c
hellow/Makefile
Suppose that your hellow
 project resides in ~/src/hellow. To
 keep things organized, you can create a subdirectory called stage that contains the installation
 directory. In that case, you’d place the hellow binary in ~/src/hellow/stage/bin and the hellow.1 manpage in ~/src/hellow/stage/share/man/man1. The
 makefile shown in Example 14-3 compiles
 hellow.c, creates the stage directory and its subdirectories, and
 copies the distribution files into those directories when you run the
 command make prep.
Example 14-3. Makefile for hellow
hellow:
 cc -o hellow hellow.c

prep: hellow
 mkdir -p -m 755 stage/bin
 mkdir -p -m 755 stage/share/man/man1
 cp hellow stage/bin/
 cp hellow.1 stage/share/man/man1/

To get started, you need only hellow.c, hellow.1, and Makefile. When you run the command make prep, it compiles the program and copies
 the files to the appropriate locations in the stage directory. After you’ve run make prep, the hellow directory will look like this:
$ find hellow
hellow
hellow/hellow
hellow/hellow.1
hellow/hellow.c
hellow/Makefile
hellow/stage
hellow/stage/bin
hellow/stage/bin/hellow
hellow/stage/share
hellow/stage/share/man
hellow/stage/share/man/man1
hellow/stage/share/man/man1/hellow.1
The next step is to launch PackageMaker and bundle the
 application.

Creating the Package

When you run PackageMaker, you must enter values in the Organization and Minimum Target
 (the lowest version of Mac OS X that the package can be installed on)
 fields, as shown in Figure 14-7. Both of these are
 used to create the initial configuration of your installer.
[image: PackageMaker’s initial configuration window]

Figure 14-7. PackageMaker’s initial configuration window

For the minimum target, you can select from Mac OS X v10.5
 Leopard, Mac OS X v10.4 Tiger, or Mac OS X v10.3 Panther.
The next step is to locate the components to be installed in the
 package and add them to the left part of the PackageMaker Project
 window, under Contents. You can do this by either dragging the contents
 from the Finder or selecting
 Projects→Add Contents. In this example, you’ll drag the ~/src/hellow/stage directory to the Contents
 pane in the Project window. With the contents selected, as shown in
 Figure 14-8, you must
 then configure the package in the Configuration pane of the Project
 window:
	Specify a destination (i.e., the location where the package
 will be installed). In our example, we selected /usr/local.

	Check the “Allow a custom location” box if you want to allow
 the user installing the package to install the package somewhere
 other than in the specified destination.

	Indicate the package version number.

	Specify a restart action (select from None, Logout, Restart,
 or Shutdown).

	Check the “Require admin authentication” box, if
 necessary.

[image: Setting configuration values in the Configuration pane]

Figure 14-8. Setting configuration values in the Configuration pane

Next, in the Contents pane of the Project window, you’ll need to
 adjust the ownership and permissions of each file to be installed. It is
 important to bear in mind that the Installer will use the ownership and
 permissions that you set here when it installs the package on another
 system. For this example, set the owner to root and the group to admin, as shown in Figure 14-9.
[image: Setting ownership and permissions in the Contents pane]

Figure 14-9. Setting ownership and permissions in the Contents pane

Typically, the next step would be to move to the Components pane
 and specify whether each component is relocatable (that is, can be moved
 after it is installed) and
 downgradable (that is, if the component can be replaced with an earlier
 version). Then you would go to the Scripts pane to enter a scripts
 directory and indicate which scripts must be run before (pre-install)
 and after (post-install) the installation of the component. Apple
 advises package developers to consider pre- and post-install actions on
 the package, rather than on individual components, if possible.
After you’ve configured the installation options for the
 components, you must configure the installation options for the package
 as a whole. To configure installation options for the entire package,
 click the Package icon at the top of the left part of the Project
 window. Then set the package options in the configuration pane, as shown
 in Figure 14-10.
[image: Configuring package options]

Figure 14-10. Configuring package options

Here are the steps you must perform:
	Enter a title.

	In the User Sees drop-down list, select from “Easy and Custom
 Install,” “Easy Install Only,” and “Custom Install Only.” The custom
 install options are useful for enabling users to select only those
 optional components of a package that they wish to install.

	Select the Install Destination option from the checkboxes
 “Volume selected by user,” “System volume,” and “User home
 directory.” Specify “System
 volume” if the package must be installed on the boot volume. If, on
 the other hand, it makes no difference which volume houses the
 package, you can provide the user with the choice to install on
 nonsystem volumes. Similarly, you can give the user the option to
 install the package in his or her home directory. This means it can
 be installed on a per-user rather than a system-wide basis.

	Select a certificate to be used to sign the package.

	Enter a description of the package.

Clicking the Edit Interface button at the bottom of the
 Configuration pane opens the Interface Editor, shown in Figure 14-11. You can use the
 Interface Editor to customize the following interface properties that
 the user will see when installing your package: background image,
 introduction or welcome message, Read Me, license, and concluding
 message.
[image: Package installer Interface Editor]

Figure 14-11. Package installer Interface Editor

The next step is to set any prerequisites for the package
 installation, such as the minimum amount of hard drive space and/or
 memory that must be available. This is done in the Requirements pane of
 the Project window, shown in Figure 14-12.
[image: Requirements pane]

Figure 14-12. Requirements pane

To add a requirement, click the plus sign (+) at the bottom of the
 right part of the Project window. You can then select from several
 available options, as shown in Figure 14-13.
[image: Adding a requirement]

Figure 14-13. Adding a requirement

Finally, in the Actions pane (shown in Figure 14-14), you can configure
 the package installer to perform
 pre- and post-install actions by clicking on the appropriate Edit
 button.
[image: Actions pane for specifying pre- and post-install actions]

Figure 14-14. Actions pane for specifying pre- and post-install
 actions

The available pre- and post-install actions are shown in the
 Actions box on the left in Figure 14-15.
[image: Adding pre-install (or post-install) actions]

Figure 14-15. Adding pre-install (or post-install) actions

After you have filled in the package settings, you’ll be ready to
 build the project. To create the .pkg package installer file, click the Build
 icon in the title bar or select Project→Build from the menu bar.
 Alternatively, you can click the Build and Run icon in the title bar (or
 select Project→Build and Run from the menu bar) to create the .pkg file and install the package. If all
 goes well, the .pkg file will be
 created wherever you elected to save it, and you’ll be presented with a
 window (shown in Figure 14-16) in
 which you can choose to open the .pkg file in the Installer, view it in the
 Finder, or return to editing to adjust the package’s installation
 options.
[image: Build Succeeded!]

Figure 14-16. Build Succeeded!

When you quit PackageMaker, you’ll be prompted to save the
 PackageMaker session with its currently filled-in values as a .pmdoc document. If you save the session and
 subsequently double-click your .pmdoc document, PackageMaker will open with
 the values that were saved in the .pmdoc file.
Note
An alternative to PackageMaker is Stéphane Sudre’s Iceberg, available at http://s.sudre.free.fr/Software/Iceberg.html.

The process we’ve just described creates a package installer file
 named HelloWorld.pkg. To install the package
 on a Mac OS X system, double-click it in the Finder to launch the Mac OS
 X Installer application. In releases of Mac OS X earlier than Leopard,
 such .pkg installers were actually
 created as directories, which could be navigated in the Unix shell with
 cd and whose contents could be
 listed with ls. (Alternatively, you
 could Control/right-click on such a .pkg installer and select Show Package
 Contents in the contextual menu.) Beginning with Leopard, .pkg installers are created as single (flat)
 files in the xar archive format.
 You can view the contents of .pkg
 installers created in Leopard with the xar command:
$ xar –tf HelloWorld.pkg
stage.pkg
stage.pkg/PackageInfo
stage.pkg/Bom
stage.pkg/Payload
After you’ve installed the package, it will show up in the list
 produced by the pkgutil --pkgs
 command as com.oreilly.hellow.helloworld.stage.pkg, and
 you’ll be able to see all the files that were installed with the
 pkgutil command:
$ pkgutil --files com.oreilly.hellow.helloworld.stage.pkg
usr/local/.
usr/local/bin
usr/local/bin/hellow
usr/local/share
usr/local/share/man
usr/local/share/man/man1
usr/local/share/man/man1/hellow.1

Creating Fink Packages

You can create your own Fink package—which, in this context, is
 a ported Unix software application or library that can be installed on a
 user’s computer via the Fink package management system—by identifying a
 source archive and creating an .info
 file in your /sw/fink/dists/local/main/finkinfo
 directory.
Creating and Publishing the Tarball

To illustrate how to create a Fink package, let’s again use the hellow-1.0 program (see Using PackageMaker,” earlier in this chapter). In this
 case, you can use the makefile shown in Example 14-4, which is a little simpler than the
 one used in Example 14-3.
Example 14-4. Makefile for hellow
all:
 cc -o hellow hellow.c
Before you proceed, create a tarball named hellow-1.0.tar.gz with the following
 contents, and move it to the /Users/Shared/hellow/src directory:
hellow-1.0/
hellow-1.0/hellow.1
hellow-1.0/hellow.c
hellow-1.0/Makefile

The curl utility can download
 this file using the following URL: file:///Users/Shared/hellow/src/hellow-1.0.tar.gz.
 (You can host your own files on a public web server or FTP server, or,
 as in this example, on the local filesystem with a file:URL.)

Creating the .info File

Next, create an .info file
 to tell Fink where to download the package from and how to
 install it. Fink uses this information to download, extract, and compile
 the source code, and then to generate and install a Debian package (a
 .deb file). This file must be in
 /sw/fink/dists/local/main/finkinfo,
 so you’ll need superuser privileges to create it (use the sudo utility to temporarily gain these
 privileges). Example 14-5 shows /sw/fink/dists/local/main/finkinfo/hellow-1.0.info.
Example 14-5. The hellow-1.0 info file
Package: hellow
Version: 1.0
Revision: 1
Source: file:///Users/Shared/hellow/src/%n-%v.tar.gz
Source-MD5: 4ca04528f976641d458f65591da7985c
CompileScript: make
InstallScript: mkdir -p %i/bin
 cp %n %i/bin
 mkdir -p %i/share/man/man1
 cp %n.1 %i/share/man/man1/%n.1
Description: Hello, World program
DescDetail: <<
Prints a friendly greeting to you and your friends.
<<
License: Public Domain
Maintainer: Brian Jepson <bjepson@oreilly.com>

The hellow-1.0.info file
 includes several entries, described in the following list (see the Fink
 Packaging Manual at http://fink.sourceforge.net/doc/packaging/ for more
 details):
	Package
	The name of the package.

	Version
	The package version number.

	Revision
	The package revision number.

	Source
	The URL of the source distribution. You can use percent
 expansion in the name. (In this example, %n is the name of the package and
 %v is the package version; see
 the Fink Packaging Manual for more percent expansions.)

	Source-MD5
	The MD5 checksum for the file. You must calculate this using
 the md5sum command (/sw/bin/md5sum) that comes with Fink.
 Unless your files are identical to the ones we used, your checksum
 will be different from what’s shown in Example 14-5.

	CompileScript
	The command (or commands) needed to compile the source
 package. The command(s) may span multiple lines but must begin
 after the colon.

	InstallScript
	The command (or commands) that install the compiled package.
 The command(s) may span multiple lines but must begin after the
 colon.

	Description
	A short description of the package.

	DescDetail
	A longer description of the package, enclosed in double
 angle brackets (<<).

	License
	The license used by the package. See the Fink Packaging
 Manual for information on available licenses.

	Maintainer
	The name and email address of the maintainer.

Installing the Package

To install hellow, use
 the command sudo fink install
 hellow. This command downloads the source to a working
 directory and then extracts, compiles, and packages it, generating the
 file
 /sw/fink/dists/local/main/binary-darwin-powerpc/hellow_1.0-1_darwin-powerpc.deb.
Warning
If /sw/etc/fink.conf
 contains the entry MirrorOrder: MasterFirst (the default),
 it will try to find the .tar.gz
 file on the server designated as Mirror-master. Since it is unlikely that
 hellow-1.0.tar.gz is hosted on that
 server, it will fail, and you’ll be presented with several options,
 including “Retry using original source URL,” which means download the
 file from the location specified in hellow-1.0.info. You could avoid this by
 changing the MirrorOrder to
 MasterLast, but we do not recommend
 changing the default behavior of Fink because it could have
 unpredictable results down the road.

After Fink creates this file, it installs it using dpkg. After you’ve installed hellow, you can view its
 manpage and run the hellow
 command:
$ man hellow

HELLOW(1) BSD General Commands Manual HELLOW(1)

NAME
 hellow - Greeting generator

DESCRIPTION
 This command prints a friendly greeting.

Mac OS April 29, 2005 Mac OS
$ hellow
Hello, world!
This example illustrates only a portion of Fink’s capabilities.
 For example, Fink can also be used to download and apply patches to a
 source distribution. For more information on Fink and detailed
 instructions on how to build a .deb
 package and contribute it to the Fink distribution, see the Fink
 Packaging Manual (http://fink.sourceforge.net/doc/packaging/index.php).

Creating MacPorts Packages

As readily as you can create Fink packages, you can also create
 your own MacPorts packages (i.e., ports). Like Fink packages, MacPorts
 packages are not to be confused with packages created with PackageManager:
 they are simply ported Unix (or Aqua) software applications or libraries
 ready to be installed on a user’s computer via the MacPorts package
 management system. To create a port in MacPorts, you must first identify a
 source archive and create a Portfile file in the appropriate
 subdirectory of the dports directory.
 For example, the Portfile for a game named foo would be placed in ~/darwinports/dports/games/foo, assuming that
 the MacPorts infrastructure has been installed in ~/darwinports. A Portfile
 is actually a Tcl script that is similar in purpose to an .info file in Fink. The remainder of this
 chapter is devoted to illustrating the process of creating a MacPorts
 package.
Creating and Publishing the Tarball

The initial procedure for creating a package in MacPorts is
 similar to creating a package in Fink. To illustrate how to create a
 MacPorts package, we’ll use the same program, hellow-1.0, that we used to illustrate how to
 create a Fink package in the preceding section. As in Fink, start by
 creating a tarball named hellow-1.0.tar.gz with the following
 contents:
hellow-1.0/
hellow-1.0/hellow.1
hellow-1.0/hellow.c
hellow-1.0/Makefile
Then, move this file to the /Users/Shared/hellow/src directory. The
 curl utility will now be able to
 download it using the following URL: file:///Users/Shared/hellow/srcs/hellow-1.0.tar.gz.
 (As noted in our discussion of Fink, you can also host your own files on
 a public web server or FTP server. Hosting the tarball on your local
 system, however, is useful for testing your port.)

Creating the Portfile

Once the tarball has been placed in file:///Users/Shared/hellow/src/ you’ll need
 to establish a local ports repository, which can reside in your own user
 directory (for example, in /Users/mug4/MacPorts/ports). Then, edit the
 sources.conf
 file in ${prefix}/etc/macports.
 Locate the following line:
rsync://rsync.macports.org/release/ports
and add a line below it to point to the local repository:
file://Users/mug4/MacPorts/ports
Next, you’ll need to create a file named Portfile in /Users/mug4/MacPorts/ports/games/hellow. The
 Portfile lists the attributes of the package needed by MacPorts: for
 example, the name, version, maintainer(s), where to download the package
 from, and how to install it. MacPorts uses this information to download,
 extract, and compile the source code. Information on patchfiles, special
 configure or compilation flags, and
 installation or post-installation configuration instructions may also be
 included in a Portfile. Example 14-6 shows
 a Portfile for the hellow port. (Be
 sure to replace the MD5 checksum shown here with the actual checksum of
 the hellow-1.0.tar.gz file; you can
 generate this with the md5
 utility.)
Example 14-6. The hellow-1.0 Portfile
$ID: $
PortSystem 1.0
name hellow
version 1.0
categories games
maintainers myemail@mac.com
description "hello program"
long_description "Classic hello program. Prints: Hello,\
 World."
master_sites file:///Users/Shared/hellow/src
homepage file:///Users/Shared/hellow
distname ${portname}-${portversion}
platforms darwin
checksums md5 4ca04528f976641d458f65591da7985c
configure {}

set instprog "/usr/bin/install -m 755"
set instman "/usr/bin/install -m 644"
destroot {
 system "${instprog} -d ${destroot}${prefix}/bin"
 system "${instprog} -d ${destroot}${prefix}/share/man/man1"
 system "${instprog} ${worksrcpath}/hellow ${destroot}${prefix}/bin"
 system "${instprog} ${worksrcpath}/*.1 ${destroot}${prefix}/share/man/man1" }

The Portfile file includes
 several items, described in the following list (the list includes a few
 additional items that weren’t needed in our simple example):
	# $ID: $
	A commented-out RCS ID tag. All Portfiles begin with this
 string.

	Portsystem 1.0
	The Portsystem version declaration.

	name
	The package name.

	categories
	Used for organization of packages into categories (mail
 clients, editors, games, etc.).

	maintainers
	The email addresses of the folks maintaining the
 port.

	description
	A short description of the package.

	long_description
	A more detailed description of the package.

	master_sites
	The URL of the software’s source distribution.

	homepage
	The URL of the software’s website.

	distname
	The name of the distribution (e.g., hellow-1.0).

	platform
	The platform on which the port is to be built.

	checksums
	A required command that verifies the MD5 checksum.

	extract.suffix
	Used if the source file does not have the default suffix
 .tar.gz.

	distfile
	The combination of name, version, and extract.suffix. The default is
 ${name}-${version}.tar.gz. This
 option can be used to override the default if the name of the
 source file on the server is not in the default form.

	depends_lib
	Used to specify additional libraries or binaries required by
 the port.

	patchfiles
	A list of patch files needed for the package to compile or
 run. Patch files are placed in a files/ subdirectory of the directory
 that contains the Portfile.

	configure{}
	The brackets are left empty if there is no autoconf
 configure script to run, as
 in this simple example. If there is a configure script, DarwinPorts passes it
 the argument -prefix=${prefix}. After the configure{} line in the sample
 Portfile, there are installation instructions to ensure that the
 program and its manpage get installed into the correct
 directory.

The variables instprog and
 instman are used to specify exactly which commands are to be used to
 install the binary and manpage, respectively. The destroot key is included to specify exactly
 what the system should do when the destroot option is used with the port command.
Note
For more details on Portfile contents, see Michael A. Maibaum’s
 MacPorts User Guide (http://guide.macports.org),
 the sample Portfile at
 /opt/local/var/macports/sources/rsync.macports.org/release/base/doc/exampleport,
 and the portfile(7)
 manpage.

Once the Portfile has been created, you’ll need to change to the
 top-level local ports repository and enter the portindex command:
$ cd /Users/mug4/MacPorts/ports
$ portindex
Creating software index in /Users/mug4/MacPorts/ports
Adding port games/hellow

Total number of ports parsed: 1
Ports successfully parsed: 1
Ports failed: 0

Building and Installing a Port

Once the Portfile is ready, you can build the port. This involves a sequence of port commands, each invoked with the
 -v (verbose) and -d (debug) options. To begin this process,
 you must change to the directory that contains the hellow-related Portfile and verify the MD5
 checksum of the tarball:
$ cd /Users/mug4/MacPorts/ports/games/hellow
$ sudo port -d -v checksum
Since no explicit port name was provided in the preceding command,
 MacPorts obtains (from any Portfile in the current directory) the
 information that is needed to download and verify the MD5, SHA1, and
 RMD160 checksums of the source file. The source tarball file hellow-1.0.tar.gz is downloaded into
 /opt/local/var/macports/distfiles/hellow, and
 a work/ directory is created in
 /opt/local/var/macports/build/_Users_mug4_MacPorts_ports_games_hellow.
Next, extract the source with the following command:
$ sudo port -d -v extract
This command unpacks hellow-1.0.tar.gz, creating the
 /opt/local/var/macports/build/_Users_mug4_MacPorts_ports_games_hellow/work/hellow-1.0
 directory. Once the source code has been unpacked, you can build the
 package with the following command:
$ sudo port -d -v build
If the build goes well, you can test the installation by first
 installing the port in the destroot
 directory:
$ sudo port -d -v destroot
This produces a large number of warning messages, but in the end
 (if all goes well) both the binary hellow and the manpage hellow.1 will be installed in the ~/darwinports/dports/games/hellow/work/destroot/opt/local
 directory. After you’ve tested the binary and manpage in this destroot directory, you can install the
 hellow port system-wide—that is, in
 /opt/local. To do this, enter the
 following command:
$ sudo port -d -v install
This command installs the hellow port in
 /opt/local/var/macports/software/hellow/1.0_0/opt/local
 and activates it by creating hard links to the installed files in
 /opt/local. It also removes the
 work directory, /opt/local/var/macports/build/_Users_mug4_MacPorts_ports_games_hellow/.
 You can check that hellow has been
 installed properly by entering the port
 installed command, and by trying to run hellow and viewing its manpage. You can
 uninstall hellow as you would
 uninstall any other port, with the following command:
$ sudo port uninstall hellow
As with Fink, this example illustrates only a small portion of
 MacPorts’s capabilities. For more information, see the sources noted
 earlier, which contain detailed instructions on how to build a port and
 contribute it to the MacPorts distribution.

Part IV. Serving and System Management

This part of the book talks about using Mac OS X as a server, as
 well as system administration.
Chapters in this part of the book include:
	Chapter 15, Using Mac OS X As a Server
	Chapter 16, System Management Tools
	Chapter 17, Other Programming Languages: Perl, Python, Ruby, and Java

Chapter 15. Using Mac OS X As a Server

Although most people think of Mac OS X as a client system only, you
 can also run Mac OS X as a server. If you need Apple’s advanced server
 administration tools, you can purchase Mac OS X Server (http://www.apple.com/server/macosx/), but if you’re
 comfortable with the command line, the client version can easily be
 configured to run as a server. The services that power the Sharing System
 Preferences pane are based on the same servers that provide the foundation
 for everything from private networks to the Internet:
	OpenSSH for remote login

	Samba for Windows file sharing

	Apache for web publishing

However, the System Preferences are limited in what they will let you
 do. While the tools available to configure the Sharing preferences received
 a nice upgrade in Leopard, to unleash the full power of Mac OS X as a
 server, you’ll need to install your own administrative tools or edit the
 configuration files by hand. Once you’ve unleashed the server lurking inside
 your Mac, there are many services you can set up. Here are some of the
 possibilities:
	Secure mail server
	If your email provider isn’t reliable, or doesn’t support the
 way you want to access your email, you can forward all your email to
 your personal server and retrieve it from there—whether you’re in your
 home office or on the road.

	SSH server
	When you’re on the road, there might be some things you want to
 access back at the home office. Or perhaps you want to help a family
 member troubleshoot a computer problem while you’re away. At the same
 time, you don’t want to leave your local network wide open for
 malicious attacks from outside. Your SSH server can be configured to
 allow you to connect to your local network securely, while keeping out
 unwanted pests.

	VNC/Remote Desktop/X11
	One step up from a VPN or SSH connection is a remote connection
 that lets you completely take over the desktop of a computer in your
 home. This takes remote access and troubleshooting to the next
 level.

Built-in Services: The Sharing Preference Pane

Mac OS X includes many built-in services that are based on common open source
 servers such as Samba, Apache, and OpenSSH. In earlier versions of Mac OS
 X, there wasn’t much configuration you could do through the Sharing preference pane (System Preferences→Sharing), other
 than enabling and disabling the individual services.
Leopard introduced dramatic changes to this preference pane. Gone
 are the separate Personal File Sharing, Windows File Sharing, and FTP
 Access options; these have been replaced by a single File Sharing option.
 The Apple Remote Desktop option has been renamed Remote Management, and
 it’s joined by a new option called Screen Sharing that provides similar
 functionality. This section describes each of these services and what you
 can do under the hood to customize them to your liking.
Note
Something to realize when you use the Sharing preference pane is
 that checking (or unchecking) the checkbox next to a service name
 enables (or disables) that service, but highlighting the line containing
 the service name is what makes that service “active” in the preference
 pane. So, use the checkboxes to enable and disable the services, but
 select the line containing the service name to configure service
 options. In the sample figures that follow, we show each service
 highlighted with its checkbox checked.

File Sharing

With the advent of Leopard, the separate options on the Sharing
 preference pane for Personal File Sharing, Windows File Sharing, and FTP
 Access have been replaced by a single option that is simply called
 File Sharing (Figure 15-1).
[image: File Sharing option on Sharing preference pane]

Figure 15-1. File Sharing option on Sharing preference pane

In pre-Leopard environments:
	Enabling the Personal File Sharing option started the Apple
 Filing Protocol (AFP) service, which corresponds to the AFPSERVER entry in /etc/hostconfig (see
 Chapter 4 for more information on /etc/hostconfig). When this option was
 enabled, your Mac shared your home directory and any mounted volumes
 (including external drives) with the connected machine.

	Enabling the Windows File Sharing option started the Samba
 service, removing the
 Disabled key in both /System/Library/LaunchDaemons/nmbd.plist
 (the NetBIOS name server for resolving Windows server names) and
 /System/Library/LaunchDaemons/smbd.plist
 (the server that handles Windows file sharing).

	Enabling the FTP Access option started the File Transfer Protocol (FTP) service, removing the
 Disabled key in /System/Library/LaunchDaemons/ftp.plist
 as launchd enabled the FTP
 server.

In Leopard, the single File Sharing option controls access to AFP,
 SMB, and FTP shares, but it offers more control over access
 than was available with Tiger. You can list specific directories as
 share points and control access to them at a
 granular level, specifying read-only or read and write permissions on a
 per-user or per-group basis. By default, the list of shared folders
 contains all of your users’ Public
 folders (~user/Public) and those
 folders are readable by everyone
 (including the guest account) and writable by the owner, as shown in the
 Users list on the righthand side of the pane.
You can add share points to this list by clicking the “+” button
 under the list of Shared Folders, which opens up a file browser dialog
 allowing you to choose other folders or disks. (If desired, you can
 remove any share point, including any user’s Public folder, by clicking the “−”
 button.)
When you create a new share point this way, the permissions
 default to read/write access for administrators and read-only access for
 everyone else. You can customize these permissions to your liking,
 adding new users by clicking the “+” button (a dialog appears listing
 known users on your Mac as well as entries in your address book),
 removing unwanted users by clicking the “−” button, and altering the
 level of access given to any of these users (“Read & Write,” “Read
 Only,” “Write Only,” or “No Access”).
Warning
Certain user entries (“System Administrator” and “Everyone”)
 cannot be removed, but you can modify their access levels. For
 example, you can set access for “Everyone” (meaning anyone not
 explicitly named in the list) and Unknown Users (remote users who
 don’t match up to users on your computer) to “No Access.”
If you want to restrict access only to specific users, you must
 take the steps just outlined; otherwise, everyone
 will have read access!

Clicking the Options button gives you access to even finer
 controls, as shown in Figure 15-2: you can selectively
 enable or disable access to a share via AFP (enabled by default), SMB,
 and FTP.
[image: Advanced options for File Sharing]

Figure 15-2. Advanced options for File Sharing

Warning
Prior to Leopard, a third-party preference pane called SharePoints from Hornware (http://www.hornware.com/sharepoints/) was the only
 mechanism available for exercising control over AFP and SMB shares,
 apart from manually editing the Samba configuration file. If you have
 been using SharePoints, and you upgrade to Leopard, you will need to
 switch to using the File Sharing option in the Sharing preference pane
 to configure your shares.

Manual Samba configuration

You can still exercise manual control over SMB shares in the classic fashion—by editing /etc/smb.conf. For example, you could share your /Applications directory by adding this
 entry:
[Applications]
path = /Applications
read only = yes
At a more sophisticated level, you could create an entry that
 shares a folder more selectively, and limit which files are
 displayed:
[Shared]
path = /Users//Shared
valid users = @admin
writable = yes
public = no
browsable = no
veto files = /.DS_Store/._*/
delete veto files = yes
This shares the content of the /Users/Shared directory only with users in
 the admin group, allowing them
 both read and write access. The share is marked as
 not “public,” meaning that only authorized users
 can see its contents, and not “browsable,”
 meaning that it will be hidden from remote users who are just browsing
 the network searching for Windows file shares. It also hides files
 named .DS_Store and files whose
 names begin with ._ (these are
 “dot” files that Mac OS X creates within a folder whenever it is
 viewed from the Finder). Read the Samba documentation and the manpage
 for smb.conf to learn more about
 the available configuration options.
Use the command sudo killall -HUP smbd
 nmbd to restart Samba so that it uses your updated
 configuration file, without closing any existing connections.
 (Stopping and restarting File Sharing would terminate active
 connections for both AFP and SMB. Although Windows clients will
 usually reconnect to shared resources without complaining, they will
 get an error if a file transfer is in progress when you interrupt the
 connection.)

Manual FTP configuration

The capabilities of the FTP server that comes with Mac OS X are limited. We
 suggest that you bypass it and install PureFTPd via Fink or MacPorts. (Fink users may need to use the
 unstable repositories. For more information, see Chapter 12.)
To install PureFTPd, issue the command sudo fink install pure-ftpd or sudo port install pureftpd and follow the
 prompts (if any).
To switch Mac OS X over to PureFTPd, follow these steps:
	Make sure that File Sharing is disabled in System
 Preferences→Sharing.

	Back up your existing /System/Library/LaunchDaemons/ftp.plist
 file (be sure to add <key>Disabled</key><true/>
 if you decide to back it up to a file in the /System/Library/LaunchDaemons
 directory; otherwise, launchd
 may activate both FTP servers and you will end up with the
 applications having competing access to the port). Replace its
 contents with the following (if you are using Fink, change the
 program location to /sw/sbin/pure-ftpd):
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Disabled</key>
 <true/>
 <key>Label</key>
 <string>org.pureftpd.ftpd</string>
 <key>Program</key>
 <string>/opt/local/sbin/pure-ftpd</string>
 <key>ProgramArguments</key>
 <array>
 <string>pure-ftpd</string>
 <string>-A</string>
 <string>-lpuredb:/opt/local/etc/pureftpd.pdb</string>
 </array>
 <key>Sockets</key>
 <dict>
 <key>Listeners</key>
 <dict>
 <key>Bonjour</key>
 <true/>
 <key>SockServiceName</key>
 <string>ftp</string>
 </dict>
 </dict>
 <key>inetdCompatibility</key>
 <dict>
 <key>Wait</key>
 <false/>
 </dict>
 </dict>
</plist>

	You’ll now need to add users to the PureFTPd password file,
 /sw/etc/pureftpd.passwd. To
 create a user, use pure-pw.
 Specify an FTP username as well as the UID (-u), GID (-g), and home directory (-d) of a real user to map that FTP user
 to. You’ll be prompted for a password (we suggest you use
 something different from your login password):
$ sudo pure-pw useradd bjepson -u 501 -g 501 -d /Users/bjepson/ftpfiles
Password: ********
Enter it again: ********
This way, the insecure FTP password can be different from
 the login password.
Note
Make sure you create the directory specified with the
 -d option and that it is
 owned by the username you specified. Here, we’ve used a
 subdirectory of the user’s home directory. Used in conjunction
 with the -A argument (which
 chroots the FTP sessions so
 that the referenced directory appears to be the root directory
 of the accessible filesystem), this is an acceptable compromise
 given the insecurity of FTP, which passes usernames and
 passwords in clear text.

After you set the user’s password, you must create the
 password database (pureftpd.pdb) with pure-pw mkdb.

	Next, use System Preferences→Sharing to restart File
 Sharing, then click Options and enable FTP sharing.

Now, when you log in as a remote user, you’re trapped in the
 ftpfiles subdirectory. As far as you’re
 concerned, it’s the root of the filesystem. Thus, even if an attacker
 obtains your FTP password, the damage he can do is limited. For
 example:
$ ftp bjepson@BCJ.local
Trying ::1...
Connected to BCJ.local.
220---------- Welcome to Pure-FTPd ----------
220-Local time is now 16:05. Server port: 21.
220 You will be disconnected after 15 minutes of inactivity.
331 User bjepson OK. Password required
Password: ********
230-User bjepson has group access to: 501
230 OK. Current directory is /
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls
229 Extended Passive mode OK (|||8195|)
150 Accepted data connection
226-Options: -l
226 0 matches total
ftp> cd /
250 OK. Current directory is /
ftp> ls
229 Extended Passive mode OK (|||61258|)
150 Accepted data connection
226-Options: -l
226 0 matches total
Note
FTP logins and data transfers are not encrypted, so FTP is
 inherently insecure. Where possible and where necessary, FTP service
 should be replaced with the more secure SFTP, which is
 essentially FTP over SSH. This does not require additional server
 software (SFTP is bundled with OpenSSH) or additional configuration
 (users authorized to connect through SSH simply do so and request
 that remote SFTP processes be started for their connections). SSHFS,
 the MacFUSE-based filesystem described in Chapter 8, is another viable
 replacement for vanilla FTP.

Web Sharing

The Apache web server is activated when you enable Web Sharing (formerly called
 Personal Web Sharing) in the Sharing preference pane, as shown in Figure 15-3 (it is disabled by
 default). Apache’s main configuration file is /etc/apache2/httpd.conf, and the local path
 to the primary website is stored in /Library/WebServer/Documents. Individual
 users’ sites’ configuration files can be found in /etc/apache2/users, although the sites
 themselves are stored under the users’ home directories. Apache keeps
 its log files in /var/log/apache2.
[image: Web Sharing option on Sharing preference pane]

Figure 15-3. Web Sharing option on Sharing preference pane

The Apache server that comes with Mac OS X 10.5 (Leopard) is based
 on Apache 2.2 and includes several optional modules, which you can
 enable or disable by uncommenting/commenting the corresponding LoadModule directives in /etc/apache2/httpd.conf. These modules are
 described in the following sections.
After you’ve made any changes to these modules, you should test
 the changes to the configuration with the command sudo apachectl configtest and then have
 Apache reload its configuration files with sudo apachectl graceful.
Note
You can browse the source code for Apple’s version of Apache, as
 well as the optional modules, by visiting http://www.opensource.apple.com/darwinsource/.

dav_module (mod_dav)

This is the WebDAV (Web-based Distributed Authoring and Versioning)
 module, which lets you export a website as a filesystem (this is how
 Apple’s iDisk is exported, for example).
If you enable this module by uncommenting the associated
 LoadModule directive, as described
 earlier, you can turn on WebDAV sharing by including the directive
 DAV on within a <Directory> or <Location> element in httpd.conf or one of the user configuration
 files in /etc/httpd/users. You
 will also need to specify the lockfile that mod_dav will use. For example, you can
 enable WebDAV for your web server root by changing httpd.conf, as shown here in bold:
DAVLockDB /tmp/DAVLock
<Directory />
 Options FollowSymLinks
 DAV on
 AllowOverride None
</Directory>
After you make this change and restart Apache, you’ll be able to
 mount your computer’s website by opening the Finder, selecting
 Go→Connect to Server, and specifying http://localhost in the Server Address field.
See http://www.webdav.org/mod_dav/install.html for complete
 information on configuring this module.

ssl_module (mod_ssl)

This module allows you to serve documents securely using
 the HTTPS (TLS/SSL) protocol. To properly configure HTTPS,
 you need to obtain a server certificate signed by a Certificate
 Authority (CA). However, after you’ve enabled mod_ssl in httpd.conf, you can whip up something for
 testing pretty quickly using the following steps:
	Create and change to a working directory for creating and
 signing your certificates:
$ mkdir ~/tmp
$ cd ~/tmp

	Create a new CA. This is an untrusted CA, so you’ll be able to sign
 things, but browsers won’t trust you implicitly (meaning that
 visitors will see a warning that there is a certificate for your
 site that does not come from a known trusted authority):
$ /System/Library/OpenSSL/misc/CA.sh -newca
CA certificate filename (or enter to create)

Making CA certificate ...
Generating a 1024 bit RSA private key
.......................................++++++
..++++++
writing new private key to './demoCA/private/./cakey.pem'
Enter PEM pass phrase: ********
Verifying - Enter PEM pass phrase: ********

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: US
State or Province Name (full name) [Some-State]: Rhode Island
Locality Name (eg, city) []: Providence
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Gold and Appel Transfers
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []: Hagbard Celine
Email Address []: hagbard@jepstone.net

	Next, create a certificate request. This generates an unsigned certificate that you’ll
 have to sign as the CA you just created:
$ /System/Library/OpenSSL/misc/CA.sh -newreq
Generating a 1024 bit RSA private key
................++++++
..++++++
writing new private key to 'newreq.pem'
Enter PEM pass phrase: ********
Verifying - Enter PEM pass phrase: ********

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank.
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: US
State or Province Name (full name) [Some-State]: Rhode Island
Locality Name (eg, city) []: Kingston
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Jepstone
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []: Brian Jepson
Email Address []: bjepson@jepstone.net

Please enter the following 'extra' attributes
to be sent with your certificate request.
A challenge password []:
An optional company name []:
Request (and private key) is in newreq.pem

	Now you must sign the key. The passphrase you must enter in this step should be
 the passphrase you used when you created the CA:
$ /System/Library/OpenSSL/misc/CA.sh -sign
Using configuration from /System/Library/OpenSSL/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem: ********
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 1 (0x1)
 Validity
 Not Before: Nov 11 19:34:22 2003 GMT
 Not After : Nov 10 19:34:22 2004 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Rhode Island
 localityName = Kingston
 organizationName = Jepstone
 commonName = Brian Jepson
 emailAddress = bjepson@jepstone.net
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 1C:AA:2E:32:15:28:83:4B:F4:54:F1:97:87:12:11:45:7C:33:47:96
 X509v3 Authority Key Identifier:
 keyid:DC:C0:D7:A5:69:CA:EE:2B:1C:FA:1C:7A:8A:B2:90:F1:EE:
 1E:49:0C
 DirName:/C=US/ST=Rhode Island/L=Providence/O=Gold and Appel
 Transfers/CN=Hagbard Celine/emailAddress=hagbard@jepstone.
 net
 serial:00

Certificate is to be certified until Nov 10 19:34:22 2004 GMT (365 days)
Sign the certificate? [y/n]: y

1 out of 1 certificate requests certified, commit? [y/n] y
[... output truncated ...]
Signed certificate is in newcert.pem

At this point, you have two files for use: the signed
 certificate (~/tmp/newcert.pem) and the request
 file, which also contains the server’s private key (~/tmp/newreq.pem). The
 private key is protected by the passphrase you supplied when you generated the request. To
 configure your server for HTTPS support:
	Convert the server key so that it doesn’t require a
 passphrase to unlock it (you’ll need to supply the passphrase you
 used when you generated the request):
$ sudo openssl rsa -in newkey.pem -out serverkey.pem
Enter pass phrase for newkey.pem: ********
writing RSA key********
This removes the protection of the passphrase, but it’s fine
 for testing. If you don’t do this, you’ll need to supply a
 passphrase each time Apache starts up (see http://www.modssl.org/docs/2.8/ssl_reference.html
 for documentation on the SSLPassPhraseDialog, which allows you to
 send the passphrase to Apache in a variety of ways).

	Copy these files to a location on your filesystem that’s
 outside of the web server’s document tree:
$ mkdir /Library/WebServer/SSL
$ cp ~/tmp/serverkey.pem /Library/WebServer/SSL/
$ cp ~/tmp/newcert.pem /Library/WebServer/SSL/

	If it’s not already enabled, enable the LoadModule directive for mod_ssl, and add the following lines to
 httpd.conf:
<IfModule ssl_module>
 SSLCertificateFile /Library/WebServer/SSL/newcert.pem
 SSLCertificateKeyFile /Library/WebServer/SSL/serverkey.pem
 SSLEngine on
 Listen 443
</IfModule>

	Stop and restart the web server (it is not enough to use
 apachectl
 graceful when you install a new certificate):
$ sudo apachectl stop
$ sudo apachectl start

Now try visiting https://localhost in a
 web browser. You should get a warning that an unknown authority signed
 the server certificate. It’s OK to continue past this point.
For more information about configuring mod_ssl for Mac OS X, see “Using mod_ssl on
 Mac OS X” at http://developer.apple.com/internet/serverside/modssl.html.
 The mod_ssl FAQ at http://www.modssl.org/docs/2.8/ssl_faq.html#cert-real
 includes information on getting a server certificate that’s been
 signed by a trusted CA.

php4_module (mod_php4)

This module lets you serve PHP 4 documents from your
 Macintosh. After you enable this module and restart Apache, you’ll be
 able to install PHP scripts ending with .php into your document directories. As an
 example, save the following script as hello.php in /Library/WebServer/Documents:
<html>
<head><title>PHP Demo</title></head>
<body>
<?
 foreach (array("#FF0000", "#00FF00", "#0000FF") as $color) {
 echo "Hello, World
";
 }
?>
</body>
</html>
Next, open http://localhost/hello.php (use
 https:// if you still have SSL enabled from the
 previous section) in a web browser. The phrase “Hello, World” should
 appear in three different colors. If it does not, consult /var/log/httpd/error_log for messages that
 might help you diagnose what went wrong.

bonjour_module (mod_bonjour)

This module is enabled by default. However, mod_bonjour does not automatically
 advertise all user sites; it advertises only those user sites whose
 index.html
 pages have been modified from the default.
If you are using PHP for the index document (~/Sites/index.php), Apache may not register
 your site as changed and thus won’t advertise it over Bonjour. For
 mod_bonjour to notice that such a
 file has changed, you must restart Apache (sudo apachectl restart) after modifying the
 page for the first time.
If you want to override the default mod_bonjour settings and advertise all user
 sites on your server, add the following configuration for mod_bonjour to httpd.conf:
<IfModule bonjour_module>
 RegisterUserSite all-users
</IfModule>
You can also enable Bonjour advertising of the primary site by
 specifying the RegisterDefaultSite
 directive. Sites that are advertised on Bonjour appear automatically
 in Safari’s Bonjour bookmark list
 (Safari→Preferences→Bookmarks→Include Bonjour).

Remote Login

When you enable Remote Login, the OpenSSH server is activated, allowing authorized users to connect
 securely to your Macintosh over SSH. This option removes the Disabled key in /System/Library/LaunchDaemons/ssh.plist. In
 Leopard, the Sharing preference pane allows you to specify which users
 are allowed to connect using SSH (Figure 15-4).
[image: Remote Login option on Sharing preference pane]

Figure 15-4. Remote Login option on Sharing preference pane

You can also manually configure the OpenSSH server by editing /etc/sshd_config. For example, you can
 configure OpenSSH to allow remote users to request X11 forwarding by
 uncommenting this line:
#X11Forwarding yes
so it looks like this:
X11Forwarding yes
Other options worth examining in this file are:
	PermitRootLogin
	For security reasons, this should always be explicitly set
 to “no”.

	AllowUsers
	To restrict SSH access to only certain users, set this
 option to the list of users who should have access.

	PasswordAuthentication
	Assuming you have public key authentication enabled and have set up public and private keys for
 all your users both on the server and on their remote machines,
 you may want to disable password authentication on your SSH
 server. Unlike password authentication, public key authentication
 does not cause sensitive information (e.g., passwords) to be
 transmitted during the authentication process, making it
 inherently more secure.

	Port
	Normally SSH runs on TCP port 22, but if you’re vigilant
 about your system’s security, or if your ISP blocks port 22 for
 some reason, changing this setting will add an extra layer of
 protection. (Note that if you choose to do this, all SSH
 connections to your Mac must specify the custom port
 number.)

Changes you make to /etc/sshd_config will take effect the next
 time a user logs in via SSH and do not require that you restart the
 daemon (it’s all handled by launchd, which we covered in Chapter 4).

Screen Sharing and Remote Management

Before Leopard, there was only one option in the Sharing preference
 pane that enabled remote control of your Macintosh: Apple
 Remote Desktop (ARD). Enabling this option started the ARD service, which
 corresponded to the ARDAGENT entry in /etc/hostconfig; this allowed someone with an
 ARD client (or, for that matter, any VNC client) and the proper
 credentials (i.e., a password if using a VNC or a username and password
 if using ARD) to connect to your Macintosh and, depending on your
 settings, potentially take control of the screen, observe it, run
 reports against it, or even send shell commands to the system.
Leopard replaced this option with two new options, Screen Sharing
 and Remote Management. Both seem to perform the same function: allowing
 remote users to connect to and exercise control over your Mac.
Note
The Sharing preference pane will allow you to enable either
 Screen Sharing or Remote Management, but not both.

What’s the difference? The Remote Management option (shown in
 Figure 15-5) can lay some
 claim to being the direct descendant of the old Apple Remote Desktop
 service. It’s intended specifically for use with ARD clients on remote
 machines, providing more fine-grained control over what connecting users
 can do (see Figure 15-6).
 If you are interested in using Remote Desktop to control the system,
 this is the option you will want to use.
[image: Remote Management option on Sharing preference pane]

Figure 15-5. Remote Management option on Sharing preference pane

[image: Advanced options for Remote Management]

Figure 15-6. Advanced options for Remote Management

Screen Sharing, on the other hand, is geared toward more casual
 personal usage, particularly through iChat and the new “Back to My Mac”
 feature. As you can see on the Screen Sharing pane (Figure 15-7), its controls are
 limited to declaring which users should have access to this
 feature.
[image: Screen Sharing option on Sharing preference pane]

Figure 15-7. Screen Sharing option on Sharing preference pane

Other systems on the network will automatically register a system
 with Screen Sharing enabled in their Finder sidebars, and you will be
 able to use the Share Screen button from within any Finder window to
 control target systems (except, of
 course, your own). By default, for security purposes the Screen Sharing
 feature is Kerberized.
Both Screen Sharing and Remote Management also allow access via
 standard VNC clients to other users not explicitly listed on the
 respective service panes, provided they know the VNC password. This is
 an option that must be enabled explicitly by clicking the “Computer
 Settings” button under either Screen Sharing or Remote Management and
 checking the “VNC viewers may control screen with password” checkbox,
 supplying the password of your choice. Figure 15-8 shows the Computer
 Settings dialog for Screen Sharing; the Remote Management version of
 this dialog presents additional options.
[image: Computer Settings dialog for Screen Sharing]

Figure 15-8. Computer Settings dialog for Screen Sharing

Another option available in the Computer Settings dialog is
 “Anyone may request permission to control screen.” Checking this box
 causes a dialog box to be displayed on your Macintosh whenever someone
 attempts to connect to it via a remote VNC client. When this dialog
 appears, you can accept or refuse the request to connect.
Leopard also introduced a built-in VNC client for Mac OS X, the Screen Sharing
 application (found at /System/Library/CoreServices/Screen
 Sharing.app). It can be invoked in a number of different
 ways, including directly from Finder windows that display remote systems
 available for Screen Sharing connections, and through iChat. It can also
 be invoked by entering a URL containing the vnc:// protocol either in Safari, using the
 Finder’s Go→Connect to Server menu option, or in an open command entered via the Terminal
 application:
$ open vnc://192.168.2.235
The built-in client provides a number of features not available in
 most VNC clients, including window scaling (useful if the Mac you’re
 connecting to has a screen size equal to or larger than your own), an
 image quality slider that lets you improve speed on slow network
 connections by accepting lower-quality screen rendering, and the ability
 to exchange clipboard contents between local and remote systems.
Note
Information on more advanced uses of VNC can be found in Chapter 7.

A great usage of this functionality is for management of
 headless servers: that is, servers that lack the
 standard array of input devices (namely, a keyboard, a mouse, and a
 monitor). The only way to manage such a server is via some sort of
 remote connection. While you could certainly connect via SSH to get a
 command-line shell on the remote machine, having access to another
 system via its GUI interface provides a great deal more power.
Warning
It should be noted that Quartz Extreme requires that you have a
 real monitor attached to your Mac. Thus, systems with dedicated
 video-capture devices will not operate on a headless server.

The Mac Mini is an ideal candidate for use as a headless server:
 it is compact, has a small footprint, and comes without a keyboard,
 mouse, or monitor, as if begging to be used for this purpose. Initial
 setup of the Mac Mini does require that those input devices be at least
 temporarily connected, but once setup is complete you can disconnect
 them. From that point on, assuming you have enabled Remote Login (for
 SSH connections), Screen Sharing or Remote Management (for VNC access),
 and File Sharing, the Mini can run in headless mode as a file server,
 web server, and so on.
Warning
One thing to be aware of when connecting to another Mac that is
 running as a server is that presumably you don’t want to shut down the
 server when you disconnect (i.e., you want to leave the server
 running), but you probably do want to log yourself out. The problem is
 that the key sequence ⌘-Shift-Q (the keyboard shortcut for Log Out) is
 not intercepted by the Screen Sharing client program: it is recognized
 by your local system, so instead of logging out of the remote system,
 you would accidentally log yourself out of your own Mac. Use the Log
 Out option directly from the menu bar on the remote Mac to ensure that
 you disconnect properly.
Additionally, bear in mind that if your target system is an
 Apple Xserve and the lock is in the locked position, you will not have
 a keyboard or mouse available when you control the system.

Printer Sharing

When you turn on Printer Sharing (Figure 15-9), the cups-lpd server is enabled. This option toggles the Disabled key in
 /System/Library/LaunchDaemons/printer.plist.
 For more information, see Printer Sharing” in Chapter 6.
[image: Printer Sharing option on Sharing preference pane]

Figure 15-9. Printer Sharing option on Sharing preference pane

Internet Sharing

Prior to Leopard, the Internet Sharing option was found in a separate “tab”
 within the Sharing pane (System Preferences→Sharing→Internet). In
 Leopard, however, Internet Sharing is simply another option in the list
 of sharing services (Figure 15-10).
[image: Internet Sharing option on Sharing preference pane]

Figure 15-10. Internet Sharing option on Sharing preference pane

Warning
There are no longer separate “tabs” on the Sharing preference
 pane. In Tiger there were three “tabs” on the Sharing System
 Preferences pane: Sharing (which is analogous to what exists in this
 pane today), Firewall (now found at System Preferences→Security), and
 Internet (which corresponds to Internet Sharing—now simply a checkbox
 item in the services list). Firewall options will be covered later in
 this chapter.

When you turn on Internet Sharing (System
 Preferences→Sharing→Internet Sharing), Mac OS X executes /usr/libexec/InternetSharing, which does
 quite a bit under the hood: it uses ifconfig to configure the network interfaces,
 ipfw and natd to handle port redirection, bootpd to offer the DHCP service to client
 machines, and named to handle DNS
 lookups.
ifconfig

ifconfig configures network
 interfaces. If you’re sharing a connection over a port, such as the
 first Ethernet port (en0 on most
 systems), it probably has a self-assigned (APIPA) IP address. Internet
 Sharing sets this to the first host on whatever subnet it is using
 (the default is 192.168.2.1).

ipfw/natd

ipfw is the firewall
 control program, and natd is the
 Network Address Translation (NAT) daemon. Mac OS X adds a firewall
 rule with a high priority (00010), which diverts any traffic coming
 into port 8668 on en1 (the
 AirPort adapter on many systems):
$ sudo ipfw add 00010 divert 8668 ip from any to any via en1
It also sets the net.inet.ip.forwarding sysctl to 1, which
 enables IP forwarding.
The Network Address Translation Daemon (natd) listens on this port. Internet Sharing starts it with
 this command, where IP_ADDRESS is the IP
 address you want to share, INTERFACE is the
 network interface (both the IP address and the interface here
 correspond to the “Share your connection from” settings in the
 Internet Sharing preference pane), and
 INTERFACE2 is the interface to which you’re
 sharing the connection:
$ /usr/sbin/natd -alias_address IP_ADDRESS -interface INTERFACE \
 -use_sockets -same_ports -unregistered_only -dynamic -clamp_mss \
 -enable_natportmap -natportmap_interface INTERFACE2
So, if your AirPort adapter (en1) was assigned the IP address
 192.168.254.150, and you shared that connection to another computer
 plugged into your Ethernet port (en0), natd would be invoked like so:
$ /usr/sbin/natd -alias_address 192.168.254.150 -interface en1 \
 -use_sockets -same_ports -unregistered_only -dynamic -clamp_mss \
 -enable_natportmap -natportmap_interface en0

bootpd

bootpd is a combined BOOTP
 and DHCP server. You can find the bootpd configuration in /etc/bootpd.plist.
To allocate addresses in a different subnet, you’d need to
 change each occurrence of 192.168.2 to a private subnet that conforms
 to the rules in RFC 1918 (ftp://ftp.rfc-editor.org/in-notes/rfc1918.txt) and load
 those into Directory Services. Then you’d need to start bootpd with this command:
$ sudo /usr/libexec/bootpd -P

named

named is the BIND (Berkeley
 Internet Name Domain) server, which provides DNS services to client machines. When you
 start Internet Sharing, a configuration file is created for named in /etc/com.apple.named.conf.proxy, and
 named runs with that as its
 configuration file. Here is a trimmed-down version (comments and
 whitespace removed) of that file:
controls { };
options {
 directory "/var/named";
 listen-on { 192.168.2.1; };
 forward first;
 forwarders { 192.168.254.1; };
};
zone "." IN {
 type hint;
 file "named.ca";
};
zone "localhost" IN {
 type master;
 file "localhost.zone";
 allow-update { none; };
};
zone "0.0.127.in-addr.arpa" IN {
 type master;
 file "named.local";
 allow-update { none; };
};
acl can_query {any;};
Note
For more information, see the respective manpages for these
 commands, as well as the Advanced Networking section of the
 FreeBSD Handbook (http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/).

Xgrid Sharing

The Xgrid service supports the sharing of processing power among
 multiple Macs in a local network. Apple’s Logic Pro audio application
 supports Xgrid as a means of pooling the power of multiple processors to
 perform the CPU-intensive tasks of synthesizing, mixing, and recording
 music.

DVD/CD Sharing

This service was added to Mac OS X in Leopard primarily to
 support the MacBook Air, which lacks an optical drive of its own.
 Enabling this feature on your desktop Mac (or a non-Air laptop that has
 an optical drive) will allow a MacBook Air to make use of the remote
 CD/DVD drive as if that optical drive were locally attached.

The Email Server

Apple has given up on the aging and clunky sendmail, and is instead using Postfix, which
 is much easier to configure. (Postfix does include a sendmail-compatibility wrapper in /usr/sbin/sendmail.) The following sections
 describe how to configure Postfix.
Configuring Postfix to Send Email

By default, Mac OS X runs a program called master that monitors the outgoing mail queue,
 and runs Postfix on the queue as needed. The Postfix daemon is
 controlled by the launchd script
 /System/Library/LaunchDaemons/org.postfix.master.plist.
If you want to use Postfix on a standalone server, you must
 configure two settings in /etc/postfix/main.cf. The first is the
 hostname (myhostname). This should be
 a real hostname, something that can be found in a reverse DNS lookup
 against your IP address. The second is your origin (myorigin), which is the domain name from which
 email you send appears to originate. This can be the same as your
 hostname (this is probably the case for small sites), but if it isn’t,
 be sure to specify the correct hostname. For example, here are the
 settings for a computer named ip192-168-0-1.ri.ri.cox.net with all email
 originating from that machine appearing to come from username@cox.net:
myhostname = ip192-168-0-1.ri.ri.cox.net
myorigin = cox.net
If you don’t have a permanent domain name for your Mac OS X
 server, we suggest configuring Postfix to use a relay
 host (most likely your ISP’s SMTP server). To configure Postfix to use a relay, add an entry for
 relayhost in /etc/postfix/main.cf. For example, we use the
 following setting:
relayhost = smtp-server.oreilly.com
Warning
If your ISP’s network is configured to block outgoing SMTP to
 all but its own SMTP server, using your ISP’s SMTP server as a relay
 host may be the only way you can configure Postfix to deliver
 mail.

Along the same lines, you should configure Postfix to masquerade
 as the appropriate host using the myorigin setting in /etc/postfix/main.cf. In the case of the
 previous example, the origin is oreilly.com (as in
 bjepson@oreilly.com):
myorigin = oreilly.com

Configuring Postfix to Receive Email

To enable Postfix to act as a legitimate email destination (that
 is, to allow mail for username@yourhost to go directly to your
 Macintosh), you must create a startup script that runs the commands
 postfix start upon startup and
 postfix stop
 upon shutdown. For more details, see Creating Programs that Run Automatically” in Chapter 4.
To receive email at your host, you need a Mail Exchange (MX)
 record pointing to your machine. The MX record is a DNS entry that identifies the mail
 servers for a particular domain. If your ISP provides you with a static
 IP address and supports the use of hostnames (this is typically a given
 if your Mac is co-located),
 contact a representative about setting up the appropriate MX record. If
 you have residential (or low-end business) broadband, it’s very likely
 that your ISP does not support this, and what’s more, it probably blocks
 access to port 25 within its network as a security precaution.
If your system can support the use of port 25, you must change the
 setting for inet_interfaces in
 /etc/postfix/main.cf. By default,
 it listens only on 127.0.0.1 (localhost), so you must add the IP address on
 which you want it to listen. For example, we’ve set up a server behind a
 firewall but configured the firewall to forward port 25 to the server
 (see Serving from Behind a Firewall,” later in this
 chapter). The private network address of the server is 192.168.254.104,
 and because traffic on port 25 is going from the outside world to the
 private network, we must configure inet_interfaces to listen on the
 192.168.254.104 interface as well as localhost:
inet_interfaces = localhost 192.168.254.104
After you make this change, stop and restart Postfix with postfix stop and
 postfix start (it may not be enough
 to use the command postfix
 reload).

The Mac OS X Firewall

Leopard introduced a number of changes to the firewall built into
 every Mac. Prior to Leopard, Mac OS X used FreeBSD’s ipfw2 (IP Firewall, version 2) facility to
 control how incoming and outgoing packets were routed through the system.
 In Leopard, ipfw is still in place as
 the underlying network firewall service, but Apple
 has also introduced its own homegrown application
 firewall. The application firewall uses application signing to grant
 each application access to specific ports, rather than simply opening a
 port and allowing any incoming traffic to pass through it. The Firewall
 preference pane, which has moved from its position as a tab on the Sharing
 System Preferences pane to being a tab on the Security System Preferences
 pane (Figure 15-11), now
 serves to configure this Apple application firewall, rather than ipfw.
[image: The Firewall tab of the Security preference pane]

Figure 15-11. The Firewall tab of the Security preference pane

Figure 15-11 shows how
 the application firewall can be configured through the Security preference
 pane. Notice that you can select from three general modes of
 operation:
	Allow all incoming connections
	Use this mode only if you are very, very trusting, or if your
 computer is sufficiently protected by an external firewall.

	Allow only essential services
	This mode lets Apple make the decision about which services
 are “essential,” enabling them to get through the firewall.

	Set access for specific services and applications
	This mode lets you decide which applications and services are
 essential to you, by selectively choosing which applications to
 allow through the firewall and which ones to block.

When using the “Set access for specific services and applications”
 option, the list of allowed connections automatically includes whichever
 services have been enabled in the Sharing preference pane. (This is not
 unreasonable, since you did explicitly enable these services. If you want
 them to be removed from this list, go back to the Sharing pane and turn
 them off.) Individual applications can be added and removed using the “+”
 and “−” buttons, telling the firewall to allow or block connections
 initiated by or directed at those applications.
Clicking the Advanced button brings up a dialog (shown in Figure 15-12) that offers two additional
 options: Enable Firewall Logging and Enable Stealth Mode. Checking these
 boxes has essentially the same effect as performing the steps described in
 the following section to configure these options manually.
[image: Advanced firewall preferences]

Figure 15-12. Advanced firewall preferences

Manually Configuring ipfw

The ipfw firewall is a
 rule-based filtering system. The default rule, which can be overridden
 via the ipfw utility, allows all
 traffic from any location to come into your computer (65535 is the
 priority level of the rule, the lowest priority possible):
65535 allow ip from any to any
To define this rule yourself, you’d issue the following
 command:
$ ipfw add 65535 allow ip from any to any
When you enable the firewall (System
 Preferences→Security→Firewall), Mac OS X uses its own application
 firewall to control access. If an ipfw rule blocks access to a particular
 service, the Mac OS X firewall will never even see the connection
 attempt. For more information, see http://support.apple.com/kb/HT1810.
Enabling firewall logging

Enabling firewall logging in the advanced settings causes Mac OS
 X to do the equivalent of:
$ sudo sysctl -w net.inet.ip.fw.verbose=2

Enabling stealth mode

This option renders your server somewhat invisible, by
 setting the following sysctls to
 1:
net.inet.tcp.blackhole
net.inet.udp.blackhole
net.inet.tcp.log_in_vain
net.inet.udp.log_in_vain
This sets both the blackhole
 (don’t reply at all to connections; act as if there’s not even a
 server there) and log_in_vain (log
 all those rejections in /var/log/ipfw.log) options for UDP and TCP
 traffic. It also sets the following firewall rule to deny ICMP echo
 requests:
33300 deny icmp from any to me in icmptypes 8

Adding your own rules

You can add your own packet filter rules by clicking the New button on the
 Firewall tab and filling in the rule information. You can also add
 your own firewall rules using the ipfw utility.
For example, you could add a custom firewall rule such as this
 one, which permits Telnet connections from only one host
 (192.168.254.150):
$ sudo ipfw add 02075 allow tcp from 192.168.254.150 to any dst-port 23 in
You can get things back to normal by deleting the rule:
$ sudo ipfw delete 02075

Free Database Servers on Mac OS X

There are some great binary distributions for open source databases such as MySQL and PostgreSQL, both of which build
 out of the box on Mac OS X. This section describes how to install these
 databases from source and get them set up so you can start playing with
 them. You can also install MySQL or PostgreSQL via MacPorts or
 Fink.
SQLite
SQLite is a public domain embeddable database that’s implemented
 as a C library. In Mac OS X, it’s also one of several backends used by
 the Core Data framework, which uses XML and binary formats for storing
 persistent data.
You can find documentation, source code, and other SQLite
 resources at http://www.sqlite.org. However, Mac
 OS X Tiger and later ship with SQLite3 preinstalled. You’ll find the
 header file and library in the usual places (/usr/include/sqlite3.h and /usr/lib/libsqlite3.dylib) and the
 command-line interface in /usr/bin/sqlite3. Interfaces are available
 for many programming languages as well.
To use SQLite, simply start sqlite3 with the name of a database file. If
 the file doesn’t exist, it will be created. You can use standard SQL
 statements to create, modify, and query data tables. There are also a
 number of non-SQL commands that start with a dot (.), such as the indispensable .help and .quit:
$ sqlite3 mydata.db
SQLite version 3.1.3
Enter ".help" for instructions
sqlite> CREATE TABLE foo (bar CHAR(10));
sqlite> INSERT INTO foo VALUES('Hello');
sqlite> INSERT INTO foo VALUES('World');
sqlite> SELECT * FROM foo;
Hello
World
sqlite> .quit
You can also issue SQL commands in one-liners from the shell
 prompt:
$ sqlite3 mydata.db 'SELECT * FROM foo;'
Hello
World

MySQL

To get the source distribution of MySQL, download the latest
 tarball from http://dev.mysql.com/downloads/.
Compiling MySQL

To compile MySQL from source:
	Extract the tarball:
$ cd ~/src
$ tar xvfz ~/Downloads/mysql-5.0.51b.tar.gz

	Change to the top-level directory that tar created and run the configure script. We suggest specifying
 a prefix of /usr/local/mysql
 so it stays out the way of any other binaries you have in
 /usr/local:
$ cd mysql-5.0.51b/
$./configure --prefix=/usr/local/mysql

	Type make to compile
 MySQL, and go get a few cups of coffee (compiling could take 15
 minutes or more).

Installing MySQL

If the compilation succeeded, you’re ready to install MySQL.
 If it didn’t succeed, you should first search the MySQL
 mailing list archives (http://lists.mysql.com)
 to see whether anyone has reported the same problem you experienced
 and whether a fix is available (if not, you should submit a bug
 report). If you’re having a lot of trouble here, you may want to
 install one of the binary packages.
The MySQL installation procedure is as follows:
	Run make install as
 root:
$ sudo make install

	Install the default configuration file and databases:
$ sudo cp support-files/my-medium.cnf /etc/my.cnf
$ cd /usr/local/mysql
$ sudo ./bin/mysql_install_db --user=mysql

	Set permissions on the MySQL directories:
$ sudo chown -R root /usr/local/mysql
$ sudo chown -R mysql /usr/local/mysql/var
$ sudo chgrp -R mysql /usr/local/mysql

	Now you’re ready to install a startup script for MySQL. (See
 Creating Programs that Run Automatically” in
 Chapter 4 for a sample MySQL startup script.)
 After you’ve created the startup script, start MySQL:
$ sudo launchctl start org.mysql.mysqld

Configuring MySQL

Next, you need to configure MySQL. At a minimum, set the root user’s password and create a user and
 a working database for that user. Before using MySQL, add the
 following line to your .bash_profile and start a new Terminal
 window to pick up the settings:
export PATH=$PATH:/usr/local/mysql/bin
To set the root password
 and create a new user:
	Use mysqladmin to set a
 password for the root user
 (qualified as root@localhost and just plain old
 root). When you enter the
 second line, there will be a root password in place, so you need to
 use -p. You’ll be prompted
 for the password you created in the first line:
$ mysqladmin -u root password 'password'
$ mysqladmin -u root -p -h localhost password 'password'
Enter password: ********

	Create a database for your user (you’ll be prompted for the
 mysql root user’s
 password):
$ mysqladmin -u root -p create dbname
Enter password: ********

	Log into the mysql
 shell as root, and grant full
 control over that database to your user, qualified both as
 user@localhost and as the
 username alone (the ->
 prompt indicates that you pressed return without completing the
 command, and the mysql shell
 is waiting for more input):
$ mysql -u root -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.0.51b-log Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> GRANT ALL PRIVILEGES ON dbname.* TO username@localhost
 -> IDENTIFIED BY 'password';
Query OK, 0 rows affected (0.08 sec)

mysql> GRANT ALL PRIVILEGES ON dbname.* TO username
 -> IDENTIFIED BY 'password';
Query OK, 0 rows affected (0.00 sec)

mysql> quit
Bye

Using MySQL

You should now be able to log into MySQL as the user defined in
 the previous section and do whatever you want within your
 database:
$ mysql -u username -p dbname
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.0.51b-log Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE TABLE foo (bar CHAR(10));
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO foo VALUES('Hello');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO foo VALUES('World');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM foo;
+-------+
| bar |
+-------+
| Hello |
| World |
+-------+
2 rows in set (0.00 sec)
mysql> quit
Bye

PostgreSQL

To get the source distribution of PostgreSQL, download the latest tarball from http://www.postgresql.org/download/. At the time of this
 writing, the latest release is 8.3.3, so we downloaded postgresql-8.3.3.tar.bz2.
Compiling PostgreSQL

To compile PostgreSQL from source:
	Extract the tarball:
$ cd ~/src
$ tar xvfj ~/Downloads/postgresql-8.3.3.tar.bz2

	Change to the top-level directory that tar created and run the configure script. We suggest specifying
 a prefix of /usr/local/pgsql
 so it stays out the way of any other binaries you have in
 /usr/local:
$ cd postgresql-8.3.3/
$./configure --prefix=/usr/local/pgsql

	Type make to compile
 PostgreSQL, and go take a walk around the block while you wait
 (compiling could take 15 minutes or more).

Installing PostgreSQL

If everything went OK, you’re ready to install. If it didn’t go
 OK, check the PostgreSQL mailing list archives (http://www.postgresql.org/community/lists/) to see
 whether anyone has reported the same problem you experienced and
 whether a fix is available (otherwise, you should submit a bug
 report). Here’s the installation procedure:
	Run make install as
 root:
$ sudo make install

	Create the postgres
 group and user (this is the PostgreSQL superuser). Be sure to
 choose an unused group ID and user ID:
$ sudo dscl . create /Users/postgres uid 1001
$ sudo dscl . create /Users/postgres gid 1001
$ sudo dscl . create /Users/postgres shell /bin/bash
$ sudo dscl . create /Users/postgres home /usr/local/pgsql
$ sudo dscl . create /Users/postgres realname "PostgreSQL"
$ sudo dscl . create /Users/postgres passwd *
$ sudo dscl . create /Groups/postgres gid 1001
$ sudo dscl . create /Groups/postgres passwd *

	Create the data
 subdirectory and make sure that the postgres user is the owner of that
 directory:
$ sudo mkdir /usr/local/pgsql/data
$ sudo chown postgres /usr/local/pgsql/data

	Use sudo to get a shell
 as the postgres user (supply
 your own password at this prompt):
$ sudo -u postgres -s
Password: ********
$

	Run the following commands to initialize the PostgreSQL
 installation:
$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

	You can now log out of the postgres user’s shell.

Adding the startup item

Now you’re ready to create a startup script for PostgreSQL (see Creating Programs that Run Automatically” in Chapter 4). We’ll use a SystemStarter-style startup
 item, because PostgreSQL requires that a script be run in order for it
 to shut down properly. First, create the script shown in Example 15-1, save it as
 /Library/StartupItems/PostgreSQL/PostgreSQL,
 and mark it as an executable.
Example 15-1. Startup script for PostgreSQL
#!/bin/sh

Source common setup
#
. /etc/rc.common

Set to -NO- to disable
#
PGSQL=-YES-

StartService()
{
 # Don't start unless PostgreSQL is enabled in /etc/hostconfig
 if ["${PGSQL:=-NO-}" = "-YES-"]; then
 ConsoleMessage "Starting PostgreSQL"
 sudo -u postgres /usr/local/pgsql/bin/pg_ctl \
 -D /usr/local/pgsql/data \
 -l /usr/local/pgsql/data/logfile start
 fi
}

StopService()
{
 ConsoleMessage "Stopping PostgreSQL"
 su postgres -c \
 "/usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data stop"
}

RestartService()
{
 # Don't restart unless PostgreSQL is enabled in /etc/hostconfig
 if ["${PGSQL:=-NO-}" = "-YES-"]; then
 ConsoleMessage "Restarting PostgreSQL"
 StopService
 StartService
 else
 StopService
 fi
}

RunService "$1"

Next, create the following file as
 /Library/StartupItems/PostgreSQL/StartupParameters.plist:
{
 Description = "PostgreSQL";
 Provides = ("PostgreSQL");
 Requires = ("Network");
 OrderPreference = "Late";
}
Now PostgreSQL will start automatically when you reboot the
 system. If you want, you can start PostgreSQL right away with this
 command:
$ sudo SystemStarter start PostgreSQL

Configuring PostgreSQL

Before you proceed, add the following line to your .bash_profile and start a new Terminal
 window to pick up the settings:
export PATH=$PATH:/usr/local/pgsql/bin
By default, PostgreSQL comes with weak permissions; any local
 user can connect to the database without authentication. Before making
 any changes, start a shell as the postgres user with sudo (you’ll stay in this shell until the
 end of this section):
$ sudo -u postgres -s
Password: ********
postgres$
Now you can start locking things down and set up a nonprivileged
 user:
	Set a password for the PostgreSQL superuser:
postgres$ psql -U postgres -c \
 "alter user postgres with password 'password' ;"

	Under the default permissions, any local user can
 impersonate another user. So even though you’ve set a password,
 it’s not doing any good! You should edit /usr/local/pgsql/data/pg_hba.conf to
 require MD5 passwords, give the postgres user control over all
 databases, and change the configuration so users have total
 control over databases whose names match their usernames. To do
 this, change pg_hba.conf to
 read:
TYPE DATABASE USER IP-ADDR IP-MASK METHOD
local all postgres md5
local sameuser all md5
host all postgres 127.0.0.1 255.255.255.255 md5
host sameuser all 127.0.0.1 255.255.255.255 md5
host all postgres ::1 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff md5
host sameuser all ::1 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff md5

	Once you’ve made this change, reload the configuration with
 pg_ctl (from here on in,
 you’ll be prompted for a password when you run psql as the postgres user):
postgres$ pg_ctl -D /usr/local/pgsql/data reload

	Now you’re ready to add a normal user. Use the psql command to create the user and a
 database. Because the username and database name are the same,
 that user will be granted access to the database:
postgres$ psql -U postgres -c "create database username ;"
Password for user postgres: ********
CREATE DATABASE
postgres$ psql -U postgres -c \
 "create user username with password 'password' ;"
Password for user postgres: ********
CREATE USER
To give more than one user access to a database, create a
 group with the same name as the database (create group
 databasename), and create users with
 the create user command.
 Then, add each user to the group with this command:
postgres$ psql -U postgres -c \
 "alter group databasename add user newuser ;"

Using PostgreSQL

After configuring PostgreSQL’s security and setting up an
 unprivileged user, you can log in as that user and play around with
 the database:
$ psql
Password: ********
Welcome to psql 8.3.3, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

username=> CREATE TABLE foo (bar CHAR(10));
CREATE TABLE
username=> INSERT INTO foo VALUES('Hello');
INSERT 0 1
username=> INSERT INTO foo VALUES('World');
INSERT 0 1
username=> SELECT * FROM foo;
 bar

 Hello
 World
(2 rows)
username-> \q
For more information on building and using PostgreSQL, see
 Practical PostgreSQL by John C. Worsley and
 Joshua D. Drake (O’Reilly). Practical PostgreSQL
 covers installing, using, administrating, and programming PostgreSQL.

Database Support in PHP and Perl

On Mac OS X, MySQL support is built into PHP. However, if you want
 PostgreSQL support, you must reinstall PHP from source.
You can install general database support in Perl by installing the
 DBI module with the cpan
 utility. After that, you can install the DBD::mysql module for MySQL-specific support
 and DBD::Pg for PostgreSQL-specific support. Because there are some steps
 to these installations that the cpan utility can’t handle, you should
 download the latest builds of these modules from http://www.cpan.org/modules/by-module/DBD/ and install
 them manually. Be sure to check the README files, since some aspects of the
 configuration may have changed.
The DBD::mysql module
 requires a database in which to perform its tests (you can
 use the database and username/password that you set up earlier in Configuring MySQL”). To install DBD::mysql, you must first generate the
 Makefile, compile the code, and
 test it, and then install the module if the test run is successful. For
 example:
$ perl Makefile.PL --testdb=dbname --testuser=username --testpassword=
password
$ make
$ make test
$ sudo make install
Like DBD::mysql, the
 DBD::Pg module needs a working
 directory in which to perform its tests. Again, you can use the
 database, username, and password that you set up earlier when
 configuring PostgreSQL.
To begin, generate the Makefile, compile the code, and set up
 environment variables that specify the database, username, and password.
 Then run the tests. If the tests run successfully, you can install
 DBD::Pg:
$ perl Makefile.PL
$ make
$ export DBI_DSN=dbi:Pg:dbname=username
$ export DBI_USER=username
$ export DBI_PASS=password
$ make test
$ sudo make install

The Outside World

If only other computers in your home network or your business’s
 local area network are connecting to your Mac, your work is done. However,
 if you want your Mac to be accessible to users outside your local network,
 there’s still a bit of work to do. Those outside users will need to know
 the IP address or DNS name associated with your Mac. And, assuming that
 your router/gateway is running a firewall, you will need to configure that
 firewall to allow only the appropriate kinds of connections, originating
 from only the appropriate places, and initiated by only the appropriate
 people.
If your intent is to use your Mac as a production server, you are
 probably either co-locating it at your hosting provider’s facility or bringing a dedicated line
 into your home or office. In that case, your ISP or hosting provider
 should be taking care of all the details: setting up Domain Name
 System (DNS) records, providing an IP address, and possibly
 physically hosting your computer in a rack somewhere.
Note
Most hosting providers will take care of setting up DNS entries so
 that you’re in the database. However, you will still be responsible for
 registering the name you want with a domain registrar.

If you’re running a Mac on a non-business-grade network, you can
 approximate the same setup, but there are two configuration issues you
 need to consider:
	DNS
	If you’re using a residential broadband service, or even the
 lower tiers of some business-class broadband services, your fully
 qualified domain name (FQDN) is probably something terrible like
 host130.93.41.216.conversent.net.
 If you go to your ISP and ask to be set up with a real name, chances
 are you will either be greeted with a blank stare or steered toward
 some service that costs hundreds of dollars a month.

	IP address
	Residential broadband and low-tier business class broadband users
 are likely to be assigned dynamic IP addresses. If you have this
 kind of service, your IP address could change as often as every
 couple of hours (or possibly every few days, weeks, or months). In
 some cases, your IP address may be effectively permanent, but
 without the guarantee that it will remain static, you never know
 when you’ll have to deal with the hassle. You could ask your ISP for
 a static IP address, but this may cost extra money, or you may have
 to move up to a higher tier of service.
Note
Some ISPs, such as Speakeasy, Inc. (http://www.speakeasy.net), offer commercial-class
 services for well under $100 a month. If you’re interested in
 running services out of your small office or home office (SOHO),
 check them out.

If you’re running a Mac as a server for personal use (for example,
 remote access via SSH), you can probably get away with plugging into a
 residential broadband connection and opening a hole in your firewall.
 However, if you want others to be able to access services such as a web
 browser, you’ll need to solve the DNS and IP address problems. A dynamic
 DNS service such as Dynamic Network Services (http://www.dyndns.org) can help with this.
Dynamic DNS

Dynamic Network Services, Inc. has been offering dynamic DNS
 services for many years and has long been a favorite of dial-up
 and SOHO broadband users who need permanent domain names even when their
 IP addresses are constantly changing. For this service to work, you must
 update the dyndns.org servers every
 time your IP address changes. The open source DNSUpdate utility (http://www.dnsupdate.org) can detect your public IP
 address and update the dyndns.org
 servers with that address, rather than your private address. You must
 select External as the interface type when you add a host to DNSUpdate
 in order for it to detect and register your public IP address, as shown
 in Figure 15-13.
[image: Configuring dynamic DNS with DNSUpdate]

Figure 15-13. Configuring dynamic DNS with DNSUpdate

That’s only half the battle, though; if your Mac resides behind a
 firewall router (such as the Apple AirPort Base Station), you’ll need to
 configure it to make your network services visible to the outside world.
 Otherwise, all incoming traffic will be stopped in its tracks at your
 firewall. In the next section, we discuss solutions to this
 problem.

Serving from Behind a Firewall

If you have a SOHO router (such as an Apple AirPort Base Station) between your
 Internet connection and your Mac, the router probably has a built-in
 firewall that protects your Mac from the outside world. Since most
 access points and routers have firewalls that block
 incoming network traffic, you’ll need to open a hole in the firewall for
 each service you want to use. The list that follows describes our
 recommendations for exposing a server to the outside world on a SOHO
 network:
	Use a wired connection
	If you have a wireless access point, such as an AirPort Base
 Station, that’s doing double-duty as your wired Ethernet
 router, we suggest plugging your Mac server into one of the LAN
 ports on your access point (or one of the LAN ports on an Ethernet
 switch that’s plugged into your access point’s LAN port).
Although Wi-Fi speeds typically exceed broadband speeds by
 quite a lot, actual speeds are often half that of the quoted speed
 of Wi-Fi networks, and bandwidth is shared among all computers on
 a given network. So, an 802.11b Wi-Fi network with a raw speed of
 11 Mbps is more likely to share 5 to 6 Mbps among its connected
 machines, and an 802.11g Wi-Fi (AirPort Extreme) network is more
 likely to have 20 to 25 Mbps available than the advertised 54 Mbps
 raw speed of the network. This is because Wi-Fi networks have a
 significant amount of overhead, are susceptible to interference
 from consumer electronics and microwave ovens, and can experience
 a sharp drop-off in speeds as the distance between the computer
 and the base station increases.

	Be aware of your ISP’s Terms of Service
	If your ISP does not permit you to run servers on your
 network, consider asking them whether it offers another tier
 of service that does. As an added bonus, those tiers of service
 often include one or more static IP addresses. On the downside,
 they tend to cost quite a bit more than the consumer offerings.
 ISPs that have restrictive policies in place will often also block
 certain ports. For example, the Cox cable Internet service that we
 use does not permit inbound or outbound connections on port 25
 (SMTP), or inbound connections on port 80 (HTTP). Since these
 restrictions were implemented when the Windows-based worms that
 used these ports were at their height, we believe the restrictions
 are there primarily to protect against such worms. Prior to that,
 the only reports we had of Cox actually enforcing its “no servers”
 rule was in cases where customers were using large amounts of
 bandwidth.
Note
Although we can’t prove that Mac OS X is inherently more
 secure than Microsoft systems, there are fewer exploits that
 affect it. If you are diligent about applying security updates,
 understand the risks and consequences of opening a service (such
 as a web or IMAP server) to the outside world, and are
 comfortable monitoring your network for intrusions, you can
 sleep a little easier while your servers hum away in the
 night.

	Consider nonstandard ports
	If your ISP’s Terms of Service do not explicitly prohibit
 running services, but your ISP is still blocking ports to protect
 against worms, you could choose to run the services on alternate
 ports that are not blocked. You can do this by either
 reconfiguring the server or using your router to handle the
 redirection.

	Open your ports
	One thing a firewall is really good at is keeping traffic
 out. However, if you want to run a server on your network, you
 need to selectively let traffic in. This is called port mapping, and it’s described in the
 next section.
Note
Non-Apple wireless access points may have similar
 functionality to the AirPort Base Station. Look in your access
 point’s documentation for information on port mapping (sometimes
 referred to as forwarding).

Port mapping with an AirPort Base Station

To configure an AirPort Base Station to direct traffic to a Mac that’s acting as a server,
 you should first make sure that the server has a static IP address on
 your local network. An AirPort Base Station will dynamically assign
 addresses in the range of 10.0.1.2 to 10.0.1.200 by default, but this
 range will be different if you’ve specified a different subnet and
 pool size. (In the AirPort Admin Utility, choose
 Internet→DHCP, and set the values as shown in Figure 15-14.)
[image: Setting the subnet and IP address pool size]

Figure 15-14. Setting the subnet and IP address pool size

You must choose your static IP address from outside your DHCP range (known as a
 pool), or you risk there being a conflicting
 computer with the same address. If you’re using the default AirPort
 configuration, for instance, 10.0.1.201 would be an acceptable choice,
 as it falls after the ending address of the default range. If you’re
 using the settings shown in Figure 16-2, anything over
 192.168.254.148 but below 192.168.254.254 would be OK (we’ll use
 192.168.254.201 in the next example). Once you have chosen your static
 IP address, configure your Macintosh server to use this address in
 System Preferences→Network. This ensures that your server always has
 the same IP address, and you can
 then configure your base station to reliably forward traffic to
 it.
To configure port mapping, open the AirPort Admin Utility
 (/Applications/Utilities), select
 your Base Station, and choose Advanced→Port Mapping. Figure 15-15 shows an AirPort
 Base Station configured to forward traffic coming in from the outside
 world on port 22 (SSH) to a machine inside the network with the
 private address 192.168.254.201 on port 22.
[image: Setting up a port mapping with the AirPort Admin Utility]

Figure 15-15. Setting up a port mapping with the AirPort Admin
 Utility

This means that people can connect via SSH to
 PUBLIC_IP_ADDRESS and be directed to the
 machine at 192.168.254.201 inside the firewall. You can find the value
 for PUBLIC_IP_ADDRESS by selecting the
 Airport→Summary from within the AirPort Admin Utility and looking at
 the IP address.

Chapter 16. System Management Tools

Mac OS X comes with many tools for tweaking and spying on various
 aspects of your system, including memory, kernel modules, and kernel state
 variables. Some of these tools come directly from BSD, while others are
 unique to Mac OS X. Most of the BSD-derived utilities have been filtered
 through Mach and NeXTSTEP on their way to Mac OS X.
For more details on any of these utilities, see their respective
 manpages.
Diagnostic Utilities

Mac OS X includes many diagnostic utilities, which you can use to
 monitor your system and investigate problems.
top

The top utility displays memory statistics and a list of running
 processes. It is divided into two regions: the top region contains
 memory statistics, and the bottom region contains details on each
 process.
You can specify the number of processes to show by supplying a
 numeric argument. By default, top
 refreshes its display every second and sorts the list of processes by
 process ID (PID) in descending order. You can set top to sort by CPU utilization with -u, and you can specify the refresh delay
 with the -s option. Figure 16-1 shows the output of top -u 16 (if you wanted to refresh the
 output every three seconds, you could run top
 -s3 -u 16).
[image: Sample output from top]

Figure 16-1. Sample output from top

Table 16-1 describes
 the values shown in the top region, and Table 16-2 describes the columns
 in the bottom region (process information).
Table 16-1. Memory information displayed by top
	Item number
	Item
	Description

	1
	 Processes
	Number of processes and
 threads. A running process is currently using CPU time, whereas
 a sleeping process is not.

	2
	 Load Avg.
	Average system load (the
 number of jobs vying for the CPU’s attention) over the last 1,
 5, and 15 minutes.

	3
	 CPU usage
	Breakdown of CPU usage,
 listing time spent in user
 mode, kernel (sys) mode, and
 idle time.

	4
	 SharedLibs
	Number of shared
 libraries in use, along with their memory
 utilization.

	5
	 MemRegions
	Number of Mach virtual
 memory regions in use, along with memory utilization
 details.

	6
	 PhysMem
	Physical memory
 utilization. Memory that is wired cannot be swapped to disk.
 active memory is memory
 that’s currently being used, inactive memory is memory that Mac OS
 X is keeping “on deck” for processes that need it, and free memory is memory that’s not being
 used at all.

	7
	 VM
	Virtual memory
 statistics, including the total amount of virtual memory
 allocated (the sum of the VSIZE in the process list), as well as
 paging activity (data paged in and out of physical
 memory).

Table 16-2. Process information displayed by top
	Item
 number
	Item
	Description

	8
	 PID
	Process ID

	9
	 COMMAND
	Program’s
 name

	10
	 %CPU
	Percentage of the CPU
 that this process is using

	11
	 TIME
	Total amount of CPU time
 this process has used

	12
	 #TH
	Number of threads in this
 process

	13
	 #PRTS
	Number of Mach
 ports

	14
	 #MREGS
	Number of memory
 registers

	15
	 RPRVT
	Resident private
 memory

	16
	 RSHRD
	Resident shared
 memory

	17
	 RSIZE
	Resident
 memory

	18
	 VSIZE
	Process’s total address
 space, including shared memory

The GUI-based Activity Monitor application, shown in Figure 16-2, provides much of
 the same functionality as top, plus
 additional capabilities (for example, it allows you to kill processes
 from within the application). The Activity Monitor is located in
 /Utilities.
[image: Activity Monitor, a GUI-based alternative to top]

Figure 16-2. Activity Monitor, a GUI-based alternative to top

fs_usage

The fs_usage utility
 shows a continuous display of filesystem-related system
 calls and page faults. You can use it to monitor filesystem
 activity at the system-call level, which can help you identify unusual
 or unexpected filesystem access. You must run fs_usage as root. By default, it ignores anything
 originating from fs_usage,
 Terminal, telnetd, sshd, rlogind, tcsh, csh, or sh.
Figure 16-3 shows
 the output of fs_usage monitoring
 the startup of a new bash shell and
 displaying the following columns:
	Timestamp

	System call

	Filename

	Elapsed time

	Name of process

[image: Monitoring filesystem operations with fs_usage]

Figure 16-3. Monitoring filesystem operations with fs_usage

lsof

The lsof utility shows information about open files, including regular
 files, directories, block special files, character special files,
 executing text references, libraries, streams, and network files. You
 can use the -F option with
 lsof to produce output that can be
 used by other programs or utilities such as Perl, Awk, and C programs.
 If you enter the lsof command
 without options, it will list all open files associated with all active
 processes, as shown in Figure 16-4. See
 the manpage for more details.
[image: Partial output from lsof]

Figure 16-4. Partial output from lsof

latency

latency measures the number of context switches and interrupts and reports
 on the resulting delays, updating the display once per second. Since
 this tool monitors the behavior of the kernel, it is likely that you
 will need it only to investigate suspected bugs in the kernel or kernel
 drivers. This utility must be run as root. Example 16-1 shows a portion of its
 output.
Example 16-1. Partial output from latency
Thu May 29 16:40:25 0:04:28
 SCHEDULER INTERRUPTS

 total_samples 241470 303806

 delays < 10 usecs 3 209332
 delays < 20 usecs 2722 10049
 delays < 30 usecs 7184 11609
 delays < 40 usecs 8516 7597
 delays < 50 usecs 12959 6283
 delays < 60 usecs 10902 2972
 delays < 70 usecs 7031 1123
 delays < 80 usecs 5632 716
 delays < 90 usecs 2770 16163
 delays < 100 usecs 1735 22647
 total < 100 usecs 59454 288491

The SCHEDULER column lists the
 number of context switches, and the INTERRUPTS column lists the number of
 interrupts.

sc_usage

The sc_usage utility
 samples system calls and page faults and displays them
 onscreen, updating the display once per second. You can use it to take a
 close look at the behavior of an application. You must run sc_usage as root or a user with superuser privileges.
 Specify a PID, a program name, or a program to execute (with the
 -E switch). For example, to monitor
 the Finder, use sudo sc_usage
 Finder. Figure 16-5
 shows the output of running sc_usage on the Finder. Table 16-3 explains sc_usage’s output.
[image: sc_usage monitoring the Finder]

Figure 16-5. sc_usage monitoring the Finder

Table 16-3. Information displayed by sc_usage
	Item number
	Row
	Description

	1
	 TYPE
	System call
 type

	2
	 NUMBER
	System call
 count

	3
	 CPU_TIME
	Processor time used by
 the system call

	4
	 WAIT_TIME
	Absolute time that the
 process spent waiting

	5
	 CURRENT_TYPE
	Current system call
 type

	6
	 LAST_PATHNAME_WAITED_FOR

	Last file or directory
 that resulted in a blocked I/O operation during a system
 call

	7
	 CUR_WAIT_TIME
	Cumulative time spent
 blocked

	8
	 THRD#
	Thread ID

	9
	 PRI
	Scheduling
 priority

vm_stat

The vm_stat utility displays virtual memory statistics. Unlike implementations
 on other Unix systems, on Mac OS X vm_stat does not default to continuous
 display; instead, it displays accumulated statistics.
To obtain a continuous display, specify an interval argument (in
 seconds), as in vm_stat 1. Figure 16-6 shows the output of
 vm_stat with no arguments.
[image: vm_stat displaying accumulated statistics]

Figure 16-6. vm_stat displaying accumulated statistics

Figure 16-7 shows
 the output of vm_stat 1. Table 16-4 describes the information
 that vm_stat displays (the item
 numbers correspond to the callouts in both figures).
[image: vm_stat’s continuous output]

Figure 16-7. vm_stat’s continuous output

Table 16-4. Information displayed by vm_stat
	Item number
	Accumulated
 mode
	Continuous mode
	Description

	1
	 Pages free
	 free
	Total free
 pages

	2
	 Pages active
	 active
	Total pages in use that
 can be paged out

	3
	 Pages inactive
	 inac
	Total inactive
 pages

	4
	 Pages wired down
	 wire
	Total pages wired into
 memory (cannot be paged out)

	5
	 Translation faults
	 faults
	Number of times vm_fault has been
 called

	6
	 Pages copy-on-write

	 copy
	Number of faults that
 resulted in a page being copied

	7
	 Pages zero filled
	 zerofill
	Number of pages that have
 been zero-filled

	8
	 Pages reactivated
	 reactive
	Number of pages
 reclassified from inactive to active

	9
	 Pageins
	 pageins
	Number of pages moved
 into physical memory

	10
	 Pageouts
	 pageout
	Number of pages moved out
 of physical memory

Kernel Utilities

Mac OS X includes various utilities that interact with the kernel.
 With these utilities, you can debug a running kernel, load and unload
 kernel modules or extensions, or set kernel variables.
ddb

The ddb utility can debug a running kernel. It is not included with the
 current version of Mac OS X, but if you want to use ddb, you can find its source code in the
 xnu (Darwin kernel) source code
 (http://www.opensource.apple.com/darwinsource/).

DTrace

Beginning with Leopard, ktrace is no longer available; it has been
 replaced by the more powerful utility, DTrace. Developed by Sun Microsystems, DTrace is a powerful open source utility that
 can be used to monitor running programs, including the kernel. DTrace is used to instrument programs
 dynamically, enabling runtime inspection of user-owned processes as well
 as the kernel; has zero overhead when not in use; and is scriptable
 using its own D programming language. You can interact with DTrace either via the command-line dtrace generic frontend to DTrace or via the GUI Instruments
 (/Developer/Applications/Instruments),
 a sophisticated graphical tool for gathering and analyzing
 DTrace data that is included with Xcode. You can
 see a list of DTrace-based
 utilities that ship with Leopard via the apropos dtrace command.
Note
In Tiger and earlier releases of Mac OS X, you can use ktrace to perform kernel tracing (tracing
 system calls and other operations) on a process. To launch a program
 and generate a kernel trace (ktrace.out, which is not human-readable),
 use ktrace
 command, as in ktrace emacs. Kernel tracing ends when you
 exit the process or disable tracing with ktrace -cp pid.
 You can get human-readable output from a ktrace file with kdump -f ktrace.out.

For more information on DTrace see http://www.sun.com/bigadmin/content/dtrace/, http://www.opensource.apple.com/darwinsource/10.5/dtrace-48/,
 and /usr/share/examples/DTTk.

Kernel Module Utilities

The following list describes utilities for manipulating
 kernel modules (for more information, see the kernel-related tutorials
 available at http://developer.apple.com/documentation/Darwin/Kernel-date.html):
	kextload
	Loads an extension bundle. Requires superuser
 privileges.

	kextunload
	Unloads an extension bundle. Requires superuser
 privileges.

	kextstat
	Displays the status of currently loaded kernel
 extensions.

Figure 16-8 shows some sample
 kextstat output, and Table 16-5 describes the
 output.
[image: Partial output of kextstat]

Figure 16-8. Partial output of kextstat

Table 16-5. Information displayed by kextstat
	Item number
	Column
	Description

	1
	 Index
	Index number of the
 loaded extension. Extensions are loaded in sequence; gaps in
 this sequence signify extensions that have been
 unloaded.

	2
	 Refs
	Number of references to
 this extension from other extensions.

	3
	 Address
	Kernel space address of
 the extension.

	4
	 Size
	Amount of kernel memory
 (in bytes) used by the extension.

	5
	 Wired
	Amount of wired kernel memory (in bytes) used
 by the extension.

	6
	 Name (Version)
	Name and version of the
 extension.

	7
	 <Linked Against>
	Index of kernel
 extensions to which this extension refers.

sysctl

sysctl is a standard BSD facility for configuring kernel state
 variables. Use sysctlname to
 display a variable name, as in sysctl
 kern.ostype. Use sysctl
 -a to display all variables. If you have superuser
 privileges, you can set a variable with sysctl
 -wname=value.
Table 16-6 lists
 many of the sysctl variables on Mac
 OS X. See the sysctl(3) manpage for
 a description of the sysctl system
 call and more detailed information on the kernel state variables.
Table 16-6. sysctl’s kernel state variables
	Name
	Type
	Writable
	Description

	 debug.*
	Various
	Yes
	Flags used to enable
 various debugging options.

	 hw.activecpu
	 Int
	No
	Number of CPUs currently
 active (may be affected by power management settings).

	 hw.availcpu
	 Int
	No
	Number of available
 CPUs.

	 hw.busfrequency
	 Int
	No
	Bus frequency in hertz.
 Divide by one million for a megahertz figure.

	 hw.busfrequency_max

	 Int
	No
	Maximum bus frequency in
 hertz.

	 hw.busfrequency_min

	 Int
	No
	Minimum bus frequency in
 hertz.

	 hw.byteorder
	 Int
	No
	Variable that returns
 4321 on the PowerPC
 platform and 1234 on the Intel platform, in each case showing
 the ordering of four bytes on the given platform.

	 hw.cacheconfig
	 Array
	No
	Reports how the logical
 processors share caches in the system. The first item reports
 the number of logical processors sharing RAM, the second reports
 the number of logical processors sharing a level-1 cache, and
 the third reports the number of processors sharing a level-2
 cache.

	 hw.cachelinesize
	 Int
	No
	Cache line size in
 bytes.

	 hw.cachesize
	 Array
	No
	Reports the size of
 various caches. The first item reports the size of RAM, the
 second reports the size of the level-1 cache, and the third
 reports the size of the level-2 cache.

	 hw.cpu64bit_capable
	 Int
	No
	Indicates whether the CPU
 is 64-bit-capable.

	 hw.cpufamily
	 Int
	No
	Integer corresponding to
 the CPU family: PowerPC G4=2009171118, PowerPC G5=3983988906,
 Intel Core Solo/Duo=1943433984, Intel Core 2
 Duo=1114597871.

	 hw.cpufrequency
	 Int
	No
	CPU frequency in hertz.
 Divide by one million for a megahertz figure.

	 hw.cpufrequency_max
	 Int
	No
	Maximum CPU frequency in
 hertz.

	 hw.cpufrequency_min
	 Int
	No
	Minimum CPU frequency in
 hertz.

	 hw.cpusubtype
	 Int
	No
	Mach-O subtype of the CPU
 (see /System/Library/Frameworks/Kernel.framework/Versions/A/Headers/mach/machine.h).

	 hw.cputype
	 Int
	No
	Mach-O type of the
 CPU.

	 hw.epoch
	 Int
	No
	Variable that indicates
 whether your hardware is “New World” or “Old World.” Old World
 Macintoshes (pre-G3) have a value of 0.

	 hw.l1dcachesize
	 Int
	No
	Level-1 data cache size
 in bytes.

	 hw.l1icachesize
	 Int
	No
	Level-1 instruction cache
 size in bytes.

	 hw.l2cachesize
	 Int
	No
	Level-2 cache size in
 bytes.

	 hw.l2settings
	 Int
	No
	Level-2 cache
 settings.

	 hw.l3cachesize
	 Int
	No
	Level-3 cache size in
 bytes.

	 hw.l3settings
	 Int
	No
	Level-3 cache
 settings.

	 hw.logicalcpu
	 Int
	No
	Number of logical
 CPUs.

	 hw.logicalcpu_max
	 Int
	No
	Maximum number of
 available logical CPUs.

	 hw.machine
	 String
	No
	Machine class (Power Macintosh or i386).

	 hw.memsize
	 Int
	No
	Memory
 size.

	 hw.model
	 String
	No
	Machine
 model.

	 hw.ncpu
	 Int
	No
	Number of
 CPUs.

	 hw.optional.altivec
	 Int
	No
	Indicates whether AltiVec
 is enabled.

	 hw.optional.datastreams

	 Int
	No
	Indicates whether the CPU
 supports PowerPC data
 stream instructions.

	 hw.optional.dcba
	 Int
	No
	Indicates whether the CPU
 supports the PowerPC DCBA
 instruction.

	 hw.optional.floatingpoint

	 Int
	No
	Indicates whether the CPU
 supports floating-point
 operations.

	 hw.optional.graphicsops

	 Int
	No
	Indicates whether the CPU
 supports graphics operations.

	 hw.optional.mmx
	 Int
	No
	Indicates whether the CPU
 supports the Intel MMX instruction set.

	 hw.optional.sse
	 Int
	No
	Indicates whether the CPU
 supports the Intel SSE instruction set.

	 hw.optional.sse2
	 Int
	No
	Indicates whether the CPU
 supports the Intel SSE2 instruction set.

	 hw.optional.sse3
	 Int
	No
	Indicates whether the CPU
 supports the Intel SSE3 instruction set.

	 hw.optional.sse4_1
	 Int
	No
	Indicates whether the CPU
 supports the Intel SSE4_1 instruction set.

	 hw.optional.sse4_2
	 Int
	No
	Indicates whether the CPU
 supports the Intel SSE4_2 instruction set.

	 hw.optional.stfiwx
	 Int
	No
	Indicates whether the CPU
 supports the PowerPC STFIWX instruction set.

	
 hw.optional.supplementalsse3
	 Int
	No
	Indicates whether the CPU
 supports the Intel Supplemental SSE3 instruction
 set.

	 hw.optional.x86_64
	 Int
	No
	Indicates whether the CPU
 supports the Intel 64-bit instruction set.

	 hw.packages
	 Int
	No
	Number of processor
 packages on the system (for example, a single dual-core CPU will
 report 1).

	 hw.pagesize
	 Int
	No
	Software page size in
 bytes.

	 hw.physicalcpu
	 Int
	No
	Number of physical
 CPUs.

	 hw.physicalcpu_max
	 Int
	No
	Maximum available
 physical CPUs.

	 hw.physmem
	 Int
	No
	Physical memory in
 bytes.

	 hw.tbfrequency
	 Int
	No
	Base frequency used by
 Mac OS X for its timing services.

	 hw.usermem
	 Int
	No
	Nonkernel
 memory.

	 hw.vectorunit
	 Int
	No
	Variable that indicates
 whether you are running on an AltiVec-enabled
 CPU.

	 kern.affinity_sets_enabled

	 Int
	Yes
	If set to zero, disables
 thread affinity hinting.

	 kern.affinity_sets_mapping

	 Int
	Yes
	Configures the cache
 distribution policy.

	 kern.aiomax
	 Int
	No
	Maximum AIO
 requests.

	 kern.aioprocmax
	 Int
	No
	Maximum AIO requests per
 process.

	 kern.aiothreads
	 Int
	No
	Maximum number of AIO
 worker threads.

	 kern.always_do_fullfsync

	 Int
	Yes
	Indicates whether
 fsync(2)s should be full fsyncs.

	 kern.argmax
	 Int
	No
	Maximum number of
 arguments supported by exec().

	 kern.bootargs
	 String
	Yes
	Kernel boot
 arguments.

	 kern.bootsignature
	 String
	N/A
	Unknown or
 undocumented.

	 kern.boottime
	 struct
 timeval

	No
	Time when the system was
 booted.

	 kern.clockrate
	 struct
 clockinfo

	No
	System clock
 timings.

	 kern.copyregionmax
	 Int
	N/A
	Unknown or
 undocumented.

	 kern.coredump
	 Int
	Yes
	Determines whether core
 dumps are enabled.

	 kern.corefile
	 String
	Yes
	Location of core dump
 files (%P is replaced with
 the process ID).

	 kern.delayterm
	 Int
	Unknown
	Unknown or
 undocumented.

	 kern.dummy
	N/A
	N/A
	Unused.

	
 kern.exec.archhandler.powerpc

	 String
	Yes
	Used on Intel Macs to
 determine which program to use for running Power PC applications.

	 kern.flush_cache_on_write

	 Int
	Yes
	Determines whether to
 always flush the drive cache on writes to uncached
 files.

	 kern.hibernatefile
	 String
	Yes
	Unknown or
 undocumented.

	 kern.hibernatemode
	 Int
	Yes
	Unknown or
 undocumented.

	 kern.himemorymode
	 Int
	No
	Unknown or
 undocumented

	 kern.hostid
	 Int
	Yes
	Host
 identifier.

	 kern.hostname
	 String
	Yes
	Hostname.

	 kern.ipc.*
	Various
	N/A
	Various IPC
 settings.

	 kern.job_control
	 Int
	No
	Variable that indicates
 whether job control is available.

	 kern.lctx.*
	Various
	Unknown
	Variables related to
 login contexts.

	 kern.low_pri_delay
	 Int
	Yes
	Set/reset throttle delay
 in milliseconds.

	 kern.low_pri_window
	 Int
	Yes
	Set/reset throttle window
 in milliseconds.

	 kern.lowpagemax
	 Int
	No
	Unknown or
 undocumented.

	 kern.maxfiles
	 Int
	Yes
	Maximum number of open
 files.

	 kern.maxfilesperproc
	 Int
	Yes
	Maximum number of open
 files per process.

	 kern.maxnbuf
	 Int
	Yes
	Maximum size of the
 filesystem buffer.

	 kern.maxproc
	 Int
	Yes
	Maximum number of
 simultaneous processes.

	 kern.maxprocperuid
	 Int
	Yes
	Maximum number of
 simultaneous processes per user.

	 kern.maxvnodes
	 Int
	Yes
	Maximum number of
 vnodes.

	 kern.msgbuf
	 Int
	No
	Size of the dmesg message buffer.

	 kern.nbuf
	 Int
	No
	Size of the filesystem
 buffer.

	 kern.netboot
	 Int
	No
	Variable that indicates
 whether the system booted via NetBoot.

	 kern.ngroups
	 Int
	No
	Maximum number of
 supplemental groups.

	 kern.nisdomainname
	 String
	Yes
	NIS domain
 name.

	 kern.nx
	 Int
	Yes
	Indicates whether
 no-execution protection is enabled.

	 kern.osrelease
	 String
	No
	Operating system release
 version.

	 kern.osrevision
	 Int
	No
	Operating system revision
 number.

	 kern.ostype
	 String
	No
	Operating system
 name.

	 kern.osversion
	 String
	No
	Operating system build
 number.

	 kern.posix.sem.max
	 Int
	Yes
	Maximum number of POSIX
 semaphores.

	 kern.posix1version
	 Int
	No
	Version of POSIX 1003.1
 with which the system attempts to comply.

	 kern.proc_low_pri_io
	 Int
	Yes
	Unknown or
 undocumented.

	 kern.procname
	 String
	Unknown
	Setup process program
 name.

	 kern.rage_vnode
	 Int
	Yes
	Unknown or
 undocumented.

	 kern.safeboot
	 Int
	No
	Indicates whether the
 system was booted in safe mode.

	 kern.saved_ids
	 Int
	No
	Set to 1 if saved set-group and set-user IDs
 are available.

	 kern.secure_kernel
	 Int
	No
	Unknown or
 undocumented.

	 kern.securelevel
	 Int
	Increment only
	System security
 level.

	 kern.shreg_private
	 Int
	No
	Indicates whether shared
 memory regions can be privatized.

	 kern.singleuser
	 Int
	No
	Indicates whether the
 system was booted in single-user mode.

	 kern.sleeptime
	 String
	No
	Amount of time for which
 the system slept last.

	
 kern.speculative_reads_disabled

	 Int
	Yes
	Indicates whether
 speculative reads are disabled.

	 kern.sugid_coredump
	 Int
	Yes
	Determines whether SUID
 and SGID files are allowed to dump core.

	 kern.sugid_scripts
	 Int
	Yes
	Determines whether to
 permit SUID and SGID scripts.

	 kern.sysv.*
	Various
	N/A
	System V semaphore
 settings.

	 kern.tfp.policy
	 Int
	Yes
	Policy for Mach’s Task
 for PID function.

	 kern.tty.ptmx_max
	 Int
	Yes
	Limits on cloned
 ptys (pseudoterminals).

	 kern.usrstack
	 Int
	No
	Address of
 USRSTACK.

	 kern.usrstack64
	 Int
	No
	Address of 64-bit
 USRSTACK.

	 kern.version
	 String
	No
	Kernel version
 string.

	 kern.waketime
	 String
	No
	Time at which the system
 last woke from sleep.

	 kern.wq_*
	Various
	N/A
	Settings used by
 pthread(3).

	 machdep.cpu.*
	Various
	N/A
	Assorted information
 about the CPU.

	 machdep.pmap.*
	Various
	N/A
	Physical address map
 management settings.

	 net.appletalk.routermix

	 Int
	Yes
	Unknown or
 undocumented.

	 net.ath*
	Various
	N/A
	Settings for
 Atheros-based AirPort adapters.

	 net.inet.*
	Various
	N/A
	IPv4
 settings.

	 net.inet6.*
	Various
	N/A
	IPv6
 settings.

	 net.key.*
	Various
	N/A
	IPSec key management
 settings.

	 net.link.ether.inet.*
	Various
	N/A
	Ethernet
 settings.

	 net.link.generic.*
	Various
	N/A
	Generic interface
 settings.

	 net.local.*
	Various
	N/A
	Various network
 settings.

	 net.pstimeout
	 String
	No
	Unknown or
 undocumented.

	 security.mac.*
	Various
	N/A
	Unknown or
 undocumented.

	 user.bc_base_max
	 Int
	No
	Maximum ibase/obase
 available in the bc
 calculator.

	 user.bc_dim_max
	 Int
	No
	Maximum array size
 available in the bc
 calculator.

	 user.bc_scale_max
	 Int
	No
	Maximum scale value
 available in the bc
 calculator.

	 user.bc_string_max
	 Int
	No
	Maximum string length
 available in the bc
 calculator.

	 user.coll_weights_max

	 Int
	No
	Maximum number of weights
 that can be used with LC_COLLATE in the locale definition
 file.

	 user.cs_path
	 String
	No
	Value for PATH that can find all the standard
 utilities.

	 user.expr_nest_max
	 Int
	No
	Maximum number of
 expressions you can nest within parentheses using expr.

	 user.line_max
	 Int
	No
	Maximum length in bytes
 of an input line used with a text-processing
 utility.

	 user.posix2_c_bind
	 Int
	No
	Variable that returns
 1 if the C development
 environment supports the POSIX C Language Bindings Option;
 otherwise, the result will be 0.

	 user.posix2_c_dev
	 Int
	No
	Variable that returns
 1 if the C development
 environment supports the POSIX C Language Development Utilities
 Option; otherwise, the result will be 0.

	 user.posix2_char_term
	 Int
	No
	Variable that returns
 1 if the system supports at
 least one terminal type specified in POSIX 1003.2; otherwise,
 the result will be 0.

	 user.posix2_fort_dev
	 Int
	No
	Variable that returns
 1 if the system supports the
 POSIX FORTRAN Development Utilities Option; otherwise, the
 result will be 0.

	 user.posix2_fort_run
	 Int
	No
	Variable that returns
 1 if the system supports the
 POSIX FORTRAN Runtime Utilities Option; otherwise, the result
 will be 0.

	 user.posix2_localedef
	 Int
	No
	Variable that returns
 1 if the system allows you to
 create locale; otherwise, the result will be 0.

	 user.posix2_sw_dev
	 Int
	No
	Variable that returns
 1 if the system supports the
 POSIX Software Development Utilities Option; otherwise, the
 result will be 0.

	 user.posix2_upe
	 Int
	No
	Variable that returns
 1 if the system supports the
 POSIX User Portable Utilities Option; otherwise, the result will
 be 0.

	 user.posix2_version
	 Int
	No
	Variable that returns the
 POSIX 1003.2 version with which the system attempts to
 comply.

	 user.re_dup_max
	 Int
	No
	Maximum repeated
 occurrences of a regular expression when using interval notation.

	 user.stream_max
	 Int
	No
	Maximum number of streams
 a process may have open.

	 user.tzname_max
	 Int
	No
	Maximum number of types
 supported for a time zone name.

	 vfs.*
	Various
	N/A
	Various VFS
 settings.

	 vm.*
	Various
	N/A
	Settings related to
 virtual memory.

	 vm.loadavg
	 String
	No
	Current load
 average.

	 vm.swapusage
	 String
	No
	Current swap file
 usage.

System Configuration Utilities

Although you can perform most system configuration tasks through the System Preferences program, the scutil and defaults commands let you poke around under the
 hood. You can get even further under the hood (perhaps further than most
 people will need or want to get) with the nvram command. These commands are described in
 the sections that follow.
scutil

Mac OS X stores network configuration data in a database called
 the dynamic store. You can get at this database
 using scutil, the system
 configuration utility. Before you can do anything else, you must connect to the
 configuration daemon (configd) with
 the open command:
Chez-Jepstone:~ bjepson$ sudo scutil
Password: ********
> open
To list the contents of the configuration database (a collection
 of keys), use the list command. The
 following shows abbreviated output from this command:
> list
 subKey [0] = Plugin:IPConfiguration
 subKey [1] = Plugin:InterfaceNamer
 subKey [2] = Setup:
 subKey [3] = Setup:/
 subKey [4] = Setup:/Network/BackToMyMac
 subKey [5] = Setup:/Network/Global/IPv4
 subKey [6] = Setup:/Network/HostNames
 subKey [7] = Setup:/Network/Interface/en1/AirPort
You can show the contents of a key with the show command. The contents of a key are stored as a dictionary
 (key/value pairs). For example, here are the default proxy settings for
 built-in Ethernet on Mac OS X (to verify that service shows a UserDefinedName of Ethernet, you should use show
 Setup:/Network/Service/130C954F-6B67-429B-94C7-29AE2A562D2C/Interface;
 you will probably need to replace 130C954F-6B67-429B-94C7-29AE2A562D2C with a
 value obtained from the list
 command shown earlier):
> show Setup:/Network/Service/130C954F-6B67-429B-94C7-29AE2A562D2C/Interface
<dictionary> {
 UserDefinedName : Ethernet
 Type : Ethernet
 Hardware : Ethernet
 DeviceName : en0
}
Here are the proxy settings for an adapter that’s been configured
 to use an HTTP proxy server:
> show Setup:/Network/Service/130C954F-6B67-429B-94C7-29AE2A562D2C/Proxies
<dictionary> {
 HTTPPort : 8080
 FTPPassive : 1
 HTTPEnable : 1
 HTTPProxy : 192.168.254.201
}
When you’re done, close the session with the close command, and exit scutil with quit.

defaults

When you customize your Mac using System Preferences, most of your
 changes and settings are stored in what’s known as the defaults system. Nearly everything that you do to make your Mac your own is
 stored as a property list (or plist). The property
 lists are, in turn, stored in ~/Library/Preferences.
Every time you change a setting, the associated property list
 value is updated. You can also alter the property lists by using either
 the Property List Editor application (/Developer/Applications/Utilities) or the
 defaults command in the Terminal.
 Regardless of which method you use, any changes you make to the property
 lists affect the current user.
Warning
Using the defaults command
 is not for the foolhardy. If you manage to mangle your settings, the
 easiest way to correct the problem is to go back to the Preferences
 pane for the application in question and reset your preferences. In
 some cases you can use defaults
 delete, which will cause your defaults to be reset when you
 next log in. Since the defaults
 command affects only the current user, another option is to create a
 user just for testing random defaults tips you pick up on the
 Internet.

Here are some examples of what you can do with the defaults command (for more information, see
 the manpage):
	View all of the user defaults on your system
	$ defaults domains
This command prints a listing of all the domains in the
 user’s defaults system. The list you’ll see is run together with
 spaces in between—not quite the prettiest way to view the
 information.

	View the settings for the Dock
	$ defaults read com.apple.dock
This command reads the settings from the com.apple.dock.plist file, found in
 ~/Library/Preferences.

	Change your Dock’s default location to the left side of the
 screen
	$ defaults write com.apple.dock orientation left
This command moves the Dock from the bottom to the left side
 of the screen. After changing this setting, you’ll need to log out
 from the system and then log back in to see the Dock in its new
 position.

nvram

The nvram utility modifies
 firmware variables, which control the boot-time behavior of your Macintosh.
 How you interact with nvram depends
 on whether you’re using a PowerPC-based Mac or an Intel-based Mac.
 PowerPC-based Macs use Open Firmware, developed by Sun Microsystems, as the interface with the
 computer’s firmware. Intel-based Macs, on the other hand, use the
 Extensible Firmware Interface (EFI), developed by Intel, as the
 interface to the computer’s firmware.
You can use nvram to modify
 Open Firmware variables on PowerPC-based Macs and to work with a small set of EFI settings on
 Intel-based Macs. To list all variables, use the nvram -p command.
To change a variable, you must run nvram as root or as a user with superuser privileges.
 To set a variable, use variable=value.
 For example, to configure Mac OS X to boot verbosely, use nvram boot-args=-v. (Booting into Mac OS 9 or
 earlier will reset this variable.) Table 16-7
 lists nvram variables. Some
 variables use the Open Firmware Device Tree notation (see the Technotes
 available at http://developer.apple.com/technotes/tn/tn1061.html).
Warning
Be careful when using the nvram utility, since incorrect settings can
 turn a Mac into an expensive doorstop. If you render your computer
 unbootable, you can reset the firmware by zapping the PRAM. To do
 this, hold down Option-⌘-P-R as you start the computer, and then
 release the keys when you hear a second startup chime. (If your two
 hands are busy holding down the other buttons and you have trouble
 reaching the power button, remember that you can press it with your
 nose.) On PowerPC-based Macs, you can boot into an Open Firmware shell
 by holding down Option-⌘-O-F as you start the computer. If you need to
 reset nvram, you can boot into
 the Open Firmware shell and enter reset-nvram and then reset-all at the prompt.

Table 16-7. nvram variables
	Variable
	Platform
	Description

	 aht-results
	Intel
	The results of the last
 Apple Hardware Test run.

	 auto-boot?
	PowerPC
	The automatic boot
 settings. If true (the
 default), Open Firmware will automatically boot an operating
 system. If false, the process
 will stop at the Open Firmware prompt. Be careful using this
 with Old World (unsupported) machines and third-party graphics
 adapters, since the display and keyboard may not be initialized
 until the operating system starts (in which case, you will not
 have access to Open Firmware).

	 boot-args
	PowerPC, Intel
	The arguments that are
 passed to the boot loader.

	 boot-command
	PowerPC
	The command that starts
 the boot process. The default is mac-boot, an Open Firmware command
 that examines the boot-device
 for a Mac OS startup.

	 boot-device
	PowerPC
	The device to boot from.
 The syntax is device:[partition],path:filename,
 and a common default is hd:,\\: tbxi. In that path, \\ is an abbreviation for /System/Library/CoreServices and
 tbxi is the file type of the
 BootX boot loader. (Run
 /Developer/Tools/GetFileInfo
 on BootX to see its
 type.)

	 boot-file
	PowerPC
	The name of the boot
 loader. (This is often blank, since boot-command and boot-device are usually all that are
 needed.)

	 boot-image
	PowerPC,
 Intel
	Contains information
 about where hibernation data is stored.

	 boot-screen
	PowerPC
	The image to display on
 the boot screen.

	 boot-script
	PowerPC
	Can contain an Open
 Firmware boot script.

	 boot-volume
	PowerPC
	Unknown or
 undocumented.

	 console-screen
	PowerPC
	Specifies the console
 output device, using an Open Firmware Device Tree
 name.

	 default-client-
 ip
	PowerPC
	An IP address for
 diskless booting.

	 default-gateway-
 ip
	PowerPC
	A gateway address for
 diskless booting.

	 default-mac- address?

	PowerPC
	Unknown or
 undocumented.

	 default-router- ip
	PowerPC
	A router address for
 diskless booting.

	 default-server- ip
	PowerPC
	An IP address for
 diskless booting.

	 default-subnet- mask
	PowerPC
	A default subnet mask for
 diskless booting.

	 diag-device
	PowerPC
	A private variable; not
 usable for security reasons.

	 diag-file
	PowerPC
	A private variable; not
 usable for security reasons.

	 diag-switch?
	PowerPC
	A private variable; not
 usable for security reasons.

	 efi-apple-payload0

	Intel
	Undocumented.

	 efi-apple-payload0-data

	Intel
	Undocumented.

	 efi-boot-device
	Intel
	The device used to boot
 the system.

	 efi-boot-device-data
	Intel
	Information about the
 device used to boot the system.

	 fcode-debug?
	PowerPC
	A variable that
 determines whether the Open Firmware Forth interpreter will
 display extra debugging information.

	 input-device
	PowerPC
	The input device to use
 for the Open Firmware console.

	 input-device-1
	PowerPC
	A secondary input device
 (so you can have a screen and a serial console at the same
 time). Use scca for the first
 serial port.

	 little-endian?
	PowerPC
	The CPU endianness. If
 true, initializes the PowerPC
 chip as little-endian. The default is false.

	 load-base
	PowerPC
	A private variable; not
 usable for security reasons.

	 mouse-device
	PowerPC
	The mouse device using an
 Open Firmware Device Tree name.

	 nvramrc
	PowerPC
	A sequence of commands to
 execute at boot time (if use-nvramc? is set to
 true).

	 oem-banner
	PowerPC
	A custom banner to
 display at boot time.

	 oem-banner?
	PowerPC
	The oem banner settings. Set to true to enable the oem banner. The default is false.

	 oem-logo
	PowerPC
	A 64-by-64-bit array
 containing a custom black-and-white logo to display at boot
 time. This should be specified in hex.

	 oem-logo?
	PowerPC
	The oem logo settings. Set to true to enable the oem logo. The default is false.

	 output-device
	PowerPC
	The device to use as the
 system console. The default is screen.

	 output-device-1
	PowerPC
	A secondary output device
 (so you can have everything go to both the screen and a serial
 console). Use scca for the
 first serial port.

	 pci-probe-mask
	PowerPC
	A private variable; not
 usable for security reasons.

	 platform-uuid
	Intel,
 PowerPC
	The machine’s
 UUID.

	 prev-lang:kbd
	Intel,
 PowerPC
	The keyboard
 type.

	 ram-size
	PowerPC
	The amount of RAM
 currently installed. For example, 256 MB is shown as 0x10000000.

	 real-base
	PowerPC
	The starting physical
 address that is available to Open Firmware.

	 real-mode?
	PowerPC
	The address translation
 settings. If true, Open
 Firmware will use real-mode address translation. Otherwise, it
 uses virtual-mode address translation.

	 real-size
	PowerPC
	The size of the physical
 address space available to Open Firmware.

	 screen-#columns
	PowerPC
	The number of columns for
 the system console.

	 screen-#rows
	PowerPC
	The number of rows for
 the system console.

	 scroll-lock
	PowerPC
	Set to true to prevent Open Firmware text
 from scrolling off the top of the screen.

	 selftest-#megs
	PowerPC
	The number of MB of RAM
 to test at boot time. The default is 0.

	 SystemAudioVolume
	Intel
	A representation of the
 system audio volume (not human-readable).

	 use-generic?
	PowerPC
	The device node naming
 settings. Specifies whether to use generic device node names
 such as “screen,” as opposed to Apple hardware code
 names.

	 use-nvramrc?
	PowerPC
	The command settings. If
 this is true, Open Firmware
 uses the commands in nvramrc at boot time.

	 virt-base
	PowerPC
	The starting virtual
 address that is available to Open Firmware.

	 virt-size
	PowerPC
	The size of the virtual
 address space available to Open Firmware.

Third-Party Applications

Although you can perform system administration tasks through the
 utilities supplied with Mac OS X, several third-party applications provide
 convenient frontends to these utilities:
	Cocktail
	Kristofer Szymanski’s Cocktail (http://www.maintain.se/cocktail/) is a shareware
 application that provides a GUI frontend to a wide range of system
 administration and interface configuration tasks.

	MacPilot
	MacPilot (http://www.koingosw.com/products/macpilot.php) is a
 shareware GUI that can be used to enable and disable various
 features in Mac OS X and to perform numerous maintenance
 functions.

	Onyx
	Onyx (http://www.titanium.free.fr/pgs/english.html) is a
 freeware GUI that can be used to enable and disable various features
 in Mac OS X and to perform numerous maintenance functions.

	rEFIt
	rEFIt (http://refit.sourceforge.net) is
 a freeware boot menu and maintenance utility for EFI-based computers,
 including Intel-based Macs. Among other things, it provides an
 EFI-based shell environment.

	TinkerTool System
	Marcel Bresink’s TinkerTool System (http://www.bresink.com/osx/TinkerToolSys.html) is a
 freeware application that can be used for various tasks, including running
 the periodic jobs mentioned earlier, managing log files, changing
 umasks, and tuning the network configuration.

	Xupport
	Laurent Muller’s Xupport (http://www.applicorn.com) is another multipurpose freeware application for system
 maintenance, backup, and Mac OS X customization.

Chapter 17. Other Programming Languages: Perl, Python, Ruby, and Java

This chapter covers some of the programming languages supported in Mac
 OS X: namely Perl, Python, Ruby, and Java.
As far as Perl and Python are concerned, Mac OS X is just another
 Unix. But Mac OS X versions of these packages have some niceties and some
 quirks that make things a little different from the developer’s perspective.
 In particular, many of Mac OS X’s non-Unix APIs, such as Carbon and Cocoa,
 are accessible through extension modules in both languages.
Warning
We suggest limiting your customization of the versions of Perl and
 Python that come with Mac OS X, since they are both fair game for
 modification during an upgrade or patch. You might unintentionally modify
 something that the system depends on, or end up with a partially broken
 installation the next time Software Update performs a big Mac OS X
 update.
It’s fine to install whatever modules you want, but if you choose to
 install customized or newer versions of either Perl or Python, install
 them in /usr/local so they don’t
 interfere with the ones in /usr.
 Check the documentation (INSTALL or
 README files)
 that came along with the source code for any information specific to Mac
 OS X, and for instructions for specifying an alternate installation
 prefix.

Java has been a part of Mac OS X from its very early days, but Ruby is
 a more recent addition, first bundled with Mac OS X 10.2 (Jaguar). Rails,
 the increasingly popular web application framework written in Ruby, makes
 its first appearance with the advent
 of Leopard.
Perl for Mac OS X Geeks

The following sections list a few of the Perl-related extras that
 come with Mac OS X. You can find these in /System/Library/Perl/Extras, which is among the
 paths that the bundled version of Perl searches for modules.
Mac::Carbon

This module comes by way of MacPerl (http://www.macperl.org), a distribution of Perl for Mac OS 9 and earlier. Mac::Carbon (which is included with Mac OS X)
 gives Perl programmers access to the Carbon APIs. Although its roots go deep into Mac OS 9, Carbon is a
 supported API on Mac OS X, and these modules work fine on Mac OS X. One
 of the many modules included with Mac::Carbon is MacPerl. Here’s an example that pops up a
 dialog box and asks a question:
#!/usr/bin/perl -w

use strict;
use MacPerl qw(:all);
my $die_in_the_vacuum_of_space = 0;
my $answer = MacPerl::Ask("Tell me how good you thought my poem was.");
if ($answer =~
 /counterpoint the surrealism of the underlying metaphor/i) {
 $die_in_the_vacuum_of_space = 1;
}
print $die_in_the_vacuum_of_space, "\n";
For more information, you can access the Mac::Carbon documentation with perldoc Mac::Carbon.

PerlObjCBridge.pm

This module gives you a way to call into the Objective-C runtime on Mac OS X. Given an Objective-C call
 of the form:
Type x = [Class method1:arg1 method2:arg2];
You can use the equivalent Perl code:
$x = Class->method1_method2_($arg1, $arg2);
You can also create an NSString
 and display it with the following script:
#!/usr/bin/perl -w

use strict;
use Foundation; # import Foundation objects

my $string = NSString->stringWithCString_("Hello, World");
print $string, "\n"; # prints NSCFString=SCALAR(0x858398)
print $string->cString() , "\n"; # prints Hello, World
You can read the documentation for this module with perldoc PerlObjCBridge.

Mac::Glue

This module lets you invoke Apple events from Perl. To use it
 with an application, you’ll need to create a layer of glue (code used to connect or interface components of
 different software) between this module and the application with the
 gluemac utility, which is installed
 along with Mac::Glue.
Warning
Before you use Mac::Glue,
 be sure to run (as root) both the
 gluedialect and gluescriptadds scripts in /usr/bin. These scripts create supporting
 files and OSA bindings for Mac::Glue.

For example, to create the glue for the Terminal application, do
 the following:
$ sudo /usr/bin/gluemac /Applications/Utilities/Terminal.app/
Password: ********
What is the glue name? [Terminal]:
Created and installed App glue for Terminal.app, v1.5 (Terminal)
This also creates documentation for the module. To read it, use
 perldoc
 Mac::Glue::glues::appname, as in
 perldoc
 Mac::Glue::glues::Terminal.
Here’s a short example that uses the Terminal glue to open a
 Telnet session to the Weather Underground website:
#!/usr/bin/perl -w

use strict;
use Mac::Glue;
my $terminal = new Mac::Glue 'Terminal';
$terminal->get_url("telnet://rainmaker.wunderground.com");
You can read the documentation for this module with perldoc Mac::Glue.

Python for Mac OS X Geeks

The following sections list a few of the Python extras that are
 available for or come with Mac OS X.
Carbon

As with Perl, you can access Carbon APIs from within Python. You can find a list of
 Carbon APIs with pydoc Carbon.
 Short-named modules (such as CF)
 are usually the APIs you’re interested in; the corresponding long-named
 modules (such as CoreFoundation)
 will be the constants you need for the APIs. You can read documentation
 for a specific module with pydoc
 Carbon.MODULE, as in pydoc Carbon.CF.
Python also includes a number of other modules (look in
 /System/Library/Frameworks/Python.framework/Versions/2.3/lib/python2.3/platmac),
 including EasyDialogs, which you can use to produce a Python version of the Perl
 example we showed earlier:
#!/usr/bin/pythonw

import EasyDialogs
import re

die_in_the_vacuum_of_space = 0
answer = \
 EasyDialogs.AskString("Tell me how good you thought my poem was.", "")
s = "counterpoint the surrealism of the underlying metaphor"
if re.compile(s).search(answer):
 die_in_the_vacuum_of_space = 1
print die_in_the_vacuum_of_space

Appscript

Appscript (http://appscript.sourceforge.net)
 is a bridge between Python and Apple events that lets you write Python scripts
 in a very AppleScript-esque fashion. For example, consider the following
 snippet of AppleScript:
tell app "Finder" to get name of every folder of home
Using Appscript, you could write this as the following Python
 script:
#!/usr/bin/pythonw

from appscript import *
print app('Finder').home.folders.name.get()

PyObjC

PyObjC (http://pyobjc.sourceforge.net) is a
 bridge between Python and Objective-C that includes access to Cocoa frameworks, support for
 Xcode, and extensive documentation and examples. To install PyObjC, you
 can either download an installer from its website, or grab the source
 code and run the command sudo python setup.py
 bdist_mpkg --open, which builds a metapackage and launches the Mac OS X
 installer on it.
Here’s a very simple example that creates an NSString and prints it out:
#!/usr/bin/python

from Foundation import *
import objc

string = NSString.stringWithString_(u"Hello, World")
print string # prints Hello, World
Once you’ve installed PyObjC, check out the documentation in
 /Developer/Python/PyObjC/Documentation and
 the examples in /Developer/Python/PyObjC/Examples.

Ruby and Rails for Mac OS X Geeks

Mac OS X has included Ruby in its distribution since Release 10.2
 (Jaguar), but the version supplied was insufficient for installing and
 using Rails, the popular framework for rapid development of web
 applications. It wasn’t too difficult to upgrade Ruby to facilitate
 installation of Rails, but there was still some pain involved.
Leopard comes with Ruby 1.8.6, which is the latest distribution of
 the Ruby language interpreter and its associated tools. It also includes
 Rails 1.2.6, which was supplanted early in 2008 by Rails 2.0. The Apple
 Developer Connection site provides instructions for upgrading both Rails and the
 support tools needed to download and install it (see http://developer.apple.com/tools/developonrailsleopard.html).
Note
The Macintosh seems to be the development environment of choice
 for people who work with Rails. The original Rails development team all
 use Macs, and TextMate (an
 extensible Macintosh-only text editor) has long been the preferred
 editor for Rails developers.

Ruby uses its own package management software, called RubyGems. Normally, you would simply use the gem command to retrieve and install Ruby
 modules (such as Rails) from the command line. However, first you need to
 bring both Ruby and Rails up to date, using the gem command:
$ sudo gem update --system
$ sudo gem install rails --include-dependencies
$ sudo gem update rake
$ sudo gem update mongrel
$ sudo gem update sqlite3-ruby
$ gem list
This sequence of commands tells gem to:
	Update itself to the latest version.

	Retrieve the latest version of Rails and install it along with
 any dependent modules.

	Update its versions of Rake (Ruby’s analog to make or Ant), Mongrel (a small web server written
 in Ruby that supports Rails applications), and SQLite3 (an extremely
 lightweight self-configuring database system for use in Rails
 application development).

	List all installed RubyGems packages.

A big selling point for Rails is its usage of automated scaffolding
 to create working web application skeletons that conform to the MVC
 (model-view-controller) paradigm. Simply entering rails
 application_name on the command line causes a
 project directory tree to be built, organized into folders that will
 ultimately contain log files, configuration files, unit tests, static
 resources, scripts, and Ruby code (organized into model, view, and
 controller components), as can be seen here:
$ mkdir -p Projects/rails
$ cd Projects/rails
$ rails example
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 ...
After performing this initial scaffolding, to confirm that
 everything is set up properly, you can start up the Mongrel web server that comes bundled with Rails. To do
 this, run the server startup script
 found in the script folder:
$ cd example
$./script/server
=> Booting Mongrel (use 'script/server webrick' to force WEBrick)
=> Rails application starting on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
** Starting Mongrel listening at 0.0.0.0:3000
** Starting Rails with development environment...
** Rails loaded.
** Loading any Rails specific GemPlugins
** Signals ready. TERM => stop. USR2 => restart. INT => stop (no
restart).
** Rails signals registered. HUP => reload (without restart). It
might not work well.
** Mongrel 1.1.4 available at 0.0.0.0:3000
** Use CTRL-C to stop.
The server runs on port 3000, so you can point your browser at
 http://localhost:3000/. You should see the page
 shown in Figure 17-1.
[image: The home page presented by a Rails application]

Figure 17-1. The home page presented by a Rails application

Note
If you want your Rails application to start up as your Mac is
 booting up, you can accomplish this using the services of launchd. An example of how this goal can be
 achieved for another application server, Tomcat, can be found at the end
 of the section on Java later in this chapter. Simply follow the
 instructions there, substituting appropriate program arguments and
 environment variables to execute the ~/Projects/rails/example/script/server script
 and an appropriate label and description.

Once you’ve confirmed that the server comes up, you can execute the
 ./script/generate command, which will
 generate skeletal Ruby classes for model, view, and controller functions.
 Good material on the subject of building your own Rails applications can
 be found at the aforementioned link on the Apple Developer Connection
 website (http://developer.apple.com/tools/developonrailsleopard.html)
 and at the Ruby on Rails wiki (http://wiki.rubyonrails.org).
Note
The Mongrel server provided with Rails is not a viable standalone
 production web server. For this reason, most installations frontend
 their Rails applications with the Apache web server. Starting with
 Apache 2.2 (which is the web server that comes with Leopard), you can
 use Apache’s
 mod_proxy_balancer module to
 configure automated routing of requests from Apache to your Rails
 applications. Information on how to do this can be found at http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
 and http://www.redhat.com/magazine/025nov06/features/ruby/,
 among other places.

Java for Mac OS X Geeks

The Java environment in Leopard can be found in the /System/Library/Frameworks/JavaVM.Framework
 folder. Leopard was introduced with Java SE 5.0 but now supports Java SE
 6.0 (http://www.apple.com/support/downloads/javaformacosx105update1.html).
 Check for software updates from Apple to make sure your Java environment
 is current.
Multiple versions of Java can be supported on the same machine, but
 only one can be the default version. The Java Preferences application
 (/Applications/Utilities/Java/J2SE 5.0/Java
 Preferences.app for Java SE 5.0) enables you to set that
 default. The separate versions can be found in the
 /System/Library/Frameworks/JavaVM.Framework/Versions
 folder. The default version is symlinked to CurrentJDK within this folder.
Warning
Downloading and installing the Java SE 6.0 package will add 1.6.0
 as a new version in the Java environment, but it will not automatically
 change the default version to 1.6.0. You can choose to refer to this new
 version manually in scripts that run Java programs, or you can use
 Java Preferences.app to set it as
 the new default.

Each installed version of Java has a Home folder. /System/Library/Frameworks/JavaVM.Framework/Home
 is a symlink to the Home folder of
 the current version
 (/System/Library/Frameworks/JavaVM.Framework/Versions/CurrentJDK/Home),
 and /Library/Java/Home is symlinked
 to /System/Library/Frameworks/JavaVM.Framework/Home.
 So, if you were wondering what value to use for your JAVA_HOME environment variable, that would be
 /Library/Java/Home, assuming you want
 the system default Java version. Alternatively, you could set JAVA_HOME to point to the Home folder of any of the available Java
 versions.
A lot more information on Java for Mac OS X can be obtained from the
 Apple Developer Connection site (starting with http://developer.apple.com/java/javaleopard.html) and from
 Bill Iverson’s book Mac OS X for Java Geeks
 (O’Reilly).
Java Enterprise Edition (Java EE)

The Java EE specification (formerly known as J2EE) defines a coordinated set of functional Java APIs for
 building sophisticated enterprise applications. Resting on top of the core Java
 Standard Edition (SE), it includes support for relational database
 access (JDBC), directory services (JNDI), messaging (JMS),
 transactionality (JTA), distributed processing (Enterprise JavaBeans),
 and of course, web applications (the Servlet API and Java Server Pages).
 Recent additions with the advent of Java EE 5 include the new Java
 Persistence API (JPA), which simplifies the mapping of Java entities to
 relational database tables, and Java Server Faces (JSF), which provides
 a UI-component-driven approach to web application design.
A number of options are available for Java EE servers that can be
 used with Mac OS X. Java’s “write once, run anywhere” philosophy means
 that if a Java runtime environment (JRE) is present on a computer, any
 Java program should be executable on it. This includes open source Java
 EE servers such as Tomcat, JBoss (which comes bundled with Leopard’s
 Server edition), and GlassFish. In this section, we will cover
 installation of Tomcat 6.0 in the Leopard environment.
Tomcat is a web application container, not a full-fledged Java EE
 server. This means that it implements the web application facets
 of the Java EE specification—namely, the Servlet API and JSP—but not the
 full Java EE specification. It does include support for JDBC
 DataSources, JNDI directory services, and Java Management Extensions
 (JMX).
Note
A common strategy is to frontend a Tomcat application server
 with the Apache web server, allowing Apache to serve static content
 and Tomcat to serve the dynamic content produced by Java EE web
 applications. Several mechanisms are available for doing this,
 including the use of Tomcat Connectors (mod_jk) and the simpler mod_proxy approach. More information on how to do this can be
 found at http://httpd.apache.org/docs/2.2/mod/mod_proxy.html,
 http://tomcat.apache.org/tomcat-6.0-doc/proxy-howto.html,
 and http://tomcat.apache.org/connectors-doc/webserver_howto/apache.html.

The steps for installing Tomcat on Mac OS X are straightforward;
 the steps for configuring it to run as a service that executes at system
 startup are just a little more complicated. Here they are (these
 instructions are derived in part from Eric Rank’s blog post at http://blog.lo-fi.net/2008/01/leopard-for-web-developer-running.html):
	First, download Tomcat 6.0 (the latest version at the time of
 this writing) from the Apache website (http://tomcat.apache.org/download-60.cgi). For Mac OS
 X, pick the tar.gz version of
 the “core” download.

	Unzip and unpack the downloaded archive into /usr/local, which will produce the new
 directory /usr/local/apache-tomcat-6.0.xx (the
 exact name of the archive and of the newly created directory will
 differ depending on which release of Tomcat is available when you
 download):
$ cd /usr/local
$ sudo tar xzvf ~/Downloads/apache-tomcat-6.0.xx.tar.gz

	Symlink this new directory to /usr/local/tomcat:
$ sudo ln –s /usr/local/apache-tomcat-6.0.xx /usr/local/tomcat

	Establish environment variable values for $JAVA_HOME and $CATALINA_HOME:
$ export JAVA_HOME=/Library/Java/Home
$ export CATALINA_HOME=/usr/local/tomcat

	Run the Tomcat startup script:
$ sudo /usr/local/tomcat/bin/catalina.sh run
(Supplying the run
 argument, as shown here, directs console output to your Terminal
 window; the start argument
 would direct it to a log file.)

	Open http://localhost:8080/ in your
 browser to see the default Tomcat home page.

	Stop Tomcat by typing Control-C in the Terminal window.

	Create an org.apache.tomcat.tomcat6.plist file
 containing options for running Tomcat using launchd:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Disabled</key>
 <false/>
 <key>EnvironmentVariables</key>
 <dict>
 <key>JAVA_HOME</key>
 <string>/Library/Java/Home</string>
 <key>CATALINA_HOME</key>
 <string>/usr/local/tomcat</string>
 </dict>
 <key>Label</key>
 <string>org.apache.tomcat.tomcat6</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/tomcat6/bin/catalina.sh</string>
 <string>start</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>ServiceDescription</key>
 <string>Tomcat 6 Server</string>
 </dict>
</plist>

	Copy this file into the /Library/LaunchDaemons folder:
$ sudo cp ~/org.apache.tomcat.tomcat6.plist /Library/LaunchDaemons

	Tell launchd about this
 new service by invoking launchctl:
$ sudo launchctl load /Library/LaunchDaemons/org.apache.tomcat.tomcat6.plist
Warning
To prevent the Tomcat server from showing up superfluously
 as one of the active applications, you can ⌘-Tab through on the
 Desktop, or include
 -Djava.awt.headless=true
 as an argument to the java
 command invoked by the startup script. This can be done simply by
 appending this string to the JAVA_OPTS shell variable in /usr/local/tomcat/bin/catalina.sh:
JAVA_OPTS="${JAVA_OPTS} -Djava.awt.headless=true"
You can also place this setting in the .plist file:
<key>EnvironmentVariables</key>
<dict>
 <key>JAVA_HOME</key>
 <string>/Library/Java/Home</string>
 <key>CATALINA_HOME</key>
 <string>/usr/local/tomcat</string>
 <key>JAVA_OPTS</key>
 <string>-Djava.awt.headless=true</string>
</dict>

Appendix A. Mac OS X GUI Primer

If you’re a Unix geek new to Mac OS X, some of the terminology may not
 be that obvious. Although you know what most things do, you probably haven’t
 connected them with their street names. This appendix first provides an
 overview of the Mac OS X desktop environment, and then continues with a more
 detailed account of how to make the most out of your limited desktop
 space.
Overview of the Aqua Desktop

Figure A-1 shows Mac OS X’s
 Desktop.
[image: The Mac OS X Desktop]

Figure A-1. The Mac OS X Desktop

The numbered items are explained in the following list:
	Legend has it that the Apple menu almost didn’t survive the
 transition from the classic Macintosh operating system into Mac OS X,
 but the cries of the faithful kept it there. This menu leads to
 information about your Mac and quick access to the Software Update
 utility, Dock Preferences, and System Preferences, as well as the
 ability to “force quit” running applications and view recently opened
 documents. Finally, at the bottom of the menu are options for putting
 the system to sleep, restarting, logging out, and shutting
 down.

	The menu bar is where the frontmost application’s menus appear.
 Unlike Windows and Linux desktops such as GNOME and KDE, whose menus
 are attached to individual windows, Mac OS X’s menu bar’s appearance
 and function changes based on which application is in the foreground.
 The active foreground application is listed as the second item in the
 menu bar, right after the Apple menu. Underneath that menu item, you
 will typically find options for the application’s preferences and for
 quitting the application, among other things. If your active
 application is the Finder, notice the options available under the
 Finder menu item.

	Some parts of the operating system, including Bluetooth
 networking, AirPort, VPN, and your battery options, install menu
 “extras” at the rightmost side of the menu bar. Use these to check the
 status of these items, and click on them for menus that let you adjust
 aspects of how each item operates. ⌘-drag to rearrange the ordering of
 your menu extras on the menu bar, or ⌘-drag an item off of the menu
 bar to consign it to oblivion. (To bring it back, you’ll need to poke
 around in System Preferences to find the appropriate option.) Notice
 that the username appears at the far right if you have more than one
 user on the system. If you’ve enabled Fast User Switching (System
 Preferences→Accounts→Login Options), you will be able to click on the
 username to log in as another user while keeping your session
 active.

	Also on the far right of the menu bar, Spotlight awaits your
 moment of need. For more information on Spotlight, see Chapter 2.

	By default, all mounted volumes appear on the Desktop, starting
 with your system’s main hard drive (named Macintosh HD by default). You can unmount a
 volume (other than your main hard drive) by dragging it to the Trash
 (located at the far right edge of the Dock), or you can hide all of
 them by selecting Finder→Preferences→General→“Show these items on the
 Desktop” and choosing which items you want or don’t want displayed on
 the Desktop. But don’t worry; if you choose to hide volumes from the
 Desktop, you will still be able to access and unmount them using the
 sidebar.

	The Finder is how you view the filesystem. Finder windows
 display the contents of folders, like Explorer windows on a Microsoft
 Windows system. On the left edge of a Finder window is the sidebar,
 which has changed significantly in Leopard. It now includes lists of
 mounted volumes (Devices), commonly used folders (Places), and other
 computers with shared resources, including VNC access (Shared). You
 can add your own favorite files and folders into the Places list by
 dragging and dropping them there.

	Finder windows have four view modes: icon view (⌘-1), list view
 ⌘-2), column view (⌘-3), and the new cover flow view (⌘-4). Use this
 widget to select which of the four views to use on a given window, or
 use the keyboard shortcuts to quickly switch views without using the
 mouse.

	All Finder windows have three buttons in the upper-left
 corner:
	The red button closes windows (⌘-W).

	The yellow button minimizes windows to the right side of the
 Dock (⌘-M).

	The green button zooms windows, expanding or reducing their
 size depending on their previous state.

The oblong grey button in the upper-right corner toggles the
 display of the sidebar on and off.

	The Dock contains shortcuts to the applications you need to use
 the most. The leftmost icon is always the Finder. You can rearrange
 the others as you see fit, and you can drag new items onto the Dock.
 To remove an icon from the Dock, simply drag it off toward the Desktop
 and the icon disappears in a puff of smoke. (To view an item opening
 in slow motion, you can hold down the Shift key while clicking on
 it.)

	Drag the Dock separator up and down to resize the Dock.
 Control-click (or right-click) on it to adjust the Dock’s options,
 such as where it sits on the Desktop, the magnification level, and
 auto-hiding.

	The right side of the Dock contains icons for open documents and
 for the Trash. Drag files to the Trash to delete them (⌘-Delete); drag
 volumes to the Trash to unmount or eject them, as in the case of
 optical or floppy disks (⌘-E); and Control-click (or right-click) the
 Trash when you want to empty it. You can add other documents or
 folders to the right side of the Dock separator by dragging them
 there.

	Clicking on the eye button here allows you to interact with
 Quick Look and Slideshow (accessed by clicking on the eye button while
 holding down the Option key). The gear menu allows you to perform many
 of the actions that would be available as contextual menu items for
 the folder you are viewing, such as creating a new folder, viewing
 additional file or folder information on the folder, and burning
 selected items to CD or DVD.

Note
The Finder’s application menu also contains an Empty Trash option,
 as well as a Secure Empty Trash option that, when selected, overwrites
 files in the Trash so many times that they’re practically impossible to
 recover.
There’s a predefined keyboard shortcut for Empty Trash
 (Shift-⌘-Delete), but not for Secure Empty Trash. If you find yourself
 using Secure Empty Trash enough, you can add a keyboard shortcut for it
 in System Preferences→Keyboard & Mouse→Keyboard Shortcuts.

Click the Dashboard icon in the Dock (or press F12) to bring up the
 Dashboard, an alternate universe that lurks under your Mac’s Desktop.
 Here, you’ll find a set of “widgets” that provide you with quick access to
 information such as the time and date, weather forecasts, and a
 calculator. The Dashboard is shown in Figure A-2.
[image: Mac OS X’s Dashboard]

Figure A-2. Mac OS X’s Dashboard

The numbered items are explained in the following list:
	The Calculator widget is one of four widgets visible on the
 screen right now. If you hover the mouse over a widget and a little
 i appears in the lower-right corner, you can
 click it to customize the settings for that widget.

	This disclosure button shows and hides the list of additional
 widgets. When this list is active, a circled x
 appears in the upper-left corner of each of your current widgets;
 click this x to remove the widget.

	Choose a widget from this list, and it immediately appears on
 the Dashboard.

	Clicking Manage Widgets will display the Widget Manager.

	You can use the Widget Manager to find more widgets available
 online (see http://www.apple.com/downloads/dashboard/); click this
 button to display Apple’s list of additional Dashboard widgets in your
 browser.

	If you’ve installed more widgets than can appear on the screen
 at once, click on the left and right arrows to see them. Bear in mind
 that although you can add as many available widgets as you’d like, if
 you select a large number of widgets to open when Dashboard is
 activated, it may take a while for all of them to load.

Dashboard lets you keep frequently required information at your
 fingertips without cluttering up your Desktop. If there’s a widget you
 want that doesn’t already exist, all you need is a little JavaScript and
 HTML skill to build it. For more information on how to create your own
 Dashboard widgets, see http://developer.apple.com/macosx/dashboard.html.

Making the Most of Your Desktop Space

The desktop-real-estate-saving features of Aqua are provided by
 options on the application menu (the leftmost menu that has the same name
 as the frontmost application), Exposé, and Spaces, described in the
 following sections.
The Application Menu

The ability to hide an
 application is particularly useful for applications that you want to
 keep open but don’t frequently need to interact with, such as the Vine
 VNC server. The Hide option, found in the application menu of most Mac
 OS X applications (for example, Word→Hide Word), can usually be invoked
 with the ⌘-H keyboard shortcut to hide the currently running application.
To unhide the application, simply click on its Dock icon or use
 the application switcher (⌘-Tab) to locate the application. Using the
 application switcher will always switch applications from left to right,
 unless you hold down the Shift key while switching (then it moves from
 right to left). Pressing the H, M, or Q keys when an application is
 highlighted in the application switcher will hide, move, or quit the
 application, respectively. The Hide Others menu selection (depending on
 the application, this is usually available with the keyboard shortcut
 Option-⌘-H) continues to show you the active application but hides all
 other open applications.
Finally, the Show All option in the application menu brings all
 running applications out of hiding.

Exposé

Exposé found its way into Mac OS X 10.3 (Panther) as a nifty hack
 by one of the Apple engineers. It was previewed and quickly added to Mac
 OS X’s code base as a must-have for the Panther release and has been
 retained in the subsequent releases. Exposé uses Quartz rendering to
 quickly give you access to all of the display windows for your open
 applications, or to scoot windows out of the way so you can quickly see
 what’s on your Desktop.
Exposé can be activated in four ways:
	Function keys

	Double-clicking its icon in the Finder (in /Applications)

	Hot corners (as defined in System Preferences→Exposé &
 Spaces→Exposé)

	Programming the buttons of a multibutton mouse (as defined in
 System Preferences→Exposé & Spaces→Exposé)

By default, F9 tiles all open windows (as shown in Figure A-3), F10 tiles all open windows of the
 current application, and F11 forces all open windows out of the way so
 you can see what’s on the Desktop. In each case, pressing the given
 function key a second time reverses the effect of pressing it the first
 time. For example, if you press F11 to hide all open windows, pressing
 F11 again will undo this action and return all open windows to the
 Desktop.
[image: An Exposé-tiled Desktop]

Figure A-3. An Exposé-tiled Desktop

Other tricks you can try with Exposé include the following:
	If you hold down the Shift key and press the F9, F10, or F11
 key, Exposé works in slow motion.

	If you’ve pressed F9 to separate all the open windows, you can
 use the arrow keys on your keyboard to highlight a particular
 window. The window is shaded light blue, and its filename is
 superimposed on the window.

	If you’ve pressed F10 to separate the windows for the current
 application, you can hit the Tab key to switch to another
 application and bring its windows—again, separated by Exposé—to the
 front. Shift-Tab cycles backward through the window stack, so if
 you’ve gone too far with the Tab key, you can press Shift-Tab to
 return to the application you need.

	If you’ve done the previous trick, combine that with the trick
 before it and use the arrow keys to highlight a window; pressing
 Return brings that window to the front of the stack.

	If you’ve used F11 to push the windows out of the way so you
 can see the Desktop, the window that previously had the focus is
 still active, even though it isn’t really visible (F9 and F10 take
 the focus away). For example, if you have a Terminal window open and
 you hit F11, try typing “ls” on the keyboard and pressing the Enter
 key, then hitting F11 again to bring the windows back; you should
 see the output of the ls
 command in the Terminal window.

Spaces

One desktop feature that has long been a staple of the Unix world
 is the virtual desktop. For example, if you’ve used GNOME or KDE, you
 are probably accustomed to having multiple workspaces in which to run
 various applications or open different sets of windows. Nearly all
 Unix/Linux desktop environments have this feature, and beginning with
 Leopard, Mac OS X is no exception: Mac OS X users can enjoy a multiple
 workspace feature too, through the Mac OS X Spaces application. The
 Exposé feature is still available, and Spaces adds features to the Mac
 OS X desktop rather than replacing them.
Before you can use Spaces, you’ll need to set it up. In the Spaces
 preference pane (System Preferences→Exposé & Spaces→Spaces), select
 Enable Spaces and, if you’d like, Show Spaces in Menu bar. Though the
 default number of virtual desktops (or “spaces”) is four, you can add
 more spaces in the Exposé & Spaces System Preferences pane, where
 you can also assign various applications to different spaces, as shown
 in Figure A-4.
[image: Setting up Spaces in the Exposé & Spaces System Preferences pane]

Figure A-4. Setting up Spaces in the Exposé & Spaces System Preferences
 pane

Any application can be assigned either to one specific space or to
 all spaces. By default, the F8 key is configured to activate Spaces. You
 can assign that task to another F-key and to a mouse button of a
 multibutton mouse. When you activate Spaces with the F8 key, you get a
 tiled view of all the spaces you’ve established in the Exposé &
 Spaces preference pane, as shown in Figure A-5.
[image: Tiled view of Spaces]

Figure A-5. Tiled view of Spaces

You can switch between adjacent spaces by holding down the Control
 key and pressing the arrow keys, and you can switch directly to a given
 space by pressing Control-number, where
 number is the number assigned to the given
 space in the Exposé & Spaces preference pane. Spaces and Exposé are
 designed to work together to allow the user to make the most out of
 limited desktop real estate. Figure A-6 shows a tiled view of Spaces,
 in which the individual spaces show tiled Exposé views.
[image: Tiled Spaces and tiled Exposé]

Figure A-6. Tiled Spaces and tiled Exposé

If you’re not satisfied with Spaces, a more fully featured
 commercial virtual desktop application may soon be available from
 CodeTek Studios, Inc. (http://www.codetek.com). At
 the time of this writing, Codetek VirtualDesktop is not available for
 Leopard.
Note
If you double-click the Spaces icon in the Finder (in /Applications), you’ll
 be prompted to set up Spaces in the Exposé & Spaces System
 Preferences pane.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	" " (quotation marks), file or directory names containing
 spaces, Working with File and Directory Names
	. (dot), files beginning with, Apple’s Hiding Places for File Metadata
	/ (root directory), The Root Directory, The Root Directory
		classic files, The Root Directory

	\ (backslash), escaping spaces in file or directory
 names, Working with File and Directory Names
	^G (BEL character), Customizing the Terminal on the Fly
	^[(ESC character), Customizing the Terminal on the Fly

A
	Accelerate framework, Numerical Libraries
	access points, firewalls, Serving from Behind a Firewall
	Active Directory, Configuring Directory Services
	Activity Monitor application, top
	AddPrinter utility, AddPrinter, Monitoring Printer Status and Troubleshooting, AddPrinter, AddPrinter, Adding an IP Printer, Creating a Desktop Icon for a Printer, Modifying a Printer’s Settings, Monitoring Printer Status and Troubleshooting
		adding IP printer, Adding an IP Printer
	creating Desktop printer icon, Creating a Desktop Icon for a Printer
	launching, AddPrinter
	modifying printer settings, Modifying a Printer’s Settings
	monitoring printer status and troubleshooting, Monitoring Printer Status and Troubleshooting
	options for adding a printer, AddPrinter

	administrative privileges, Granting administrative privileges
	administrative user, Using the Terminal
	AFP (Apple Filing Protocol), Sharing Files with Other Operating Systems, File Sharing
	afpfs-ng package, Sharing Files with Other Operating Systems
	AirPort Base Station, Serving from Behind a Firewall, Port mapping with an AirPort Base Station
		port mapping with, Port mapping with an AirPort Base Station
	serving as wired Ethernet router, Serving from Behind a Firewall

	AirPort networking, Installation and Configuration
	alloc.h header file, alloc.h
	AltiVec vector processor, AltiVec
	ANSI escape sequences, Terminal window
 manipulation, Customizing the Terminal on the Fly
	ANSI trigraphs, Header Files
	Apache web server, Web Sharing, Web Sharing, dav_module (mod_dav), ssl_module (mod_ssl), php4_module (mod_php4), bonjour_module (mod_bonjour)
		bonjour_module (mod_bonjour), bonjour_module (mod_bonjour)
	dav_module (mod_dav), dav_module (mod_dav)
	php4_module (mod_php4), php4_module (mod_php4)
	ssl_module (mod_ssl), ssl_module (mod_ssl)
	starting through Web Sharing preference pane, Web Sharing

	.app (as filename extension for folders
 containing applications), Using the Terminal, Creating Disk Images
	Apple Developer Connection, Ruby and Rails for Mac OS X Geeks, Java for Mac OS X Geeks
		Java for Mac OS X, Java for Mac OS X Geeks
	Ruby and Rails information, Ruby and Rails for Mac OS X Geeks

	Apple Remote Desktop (ARD), Screen Sharing and Remote Management
	AppleDouble format, Unix File System (UFS), Preserving Metadata
		files copied or moved to non-Mac system, Preserving Metadata

	AppleScript, Launching Terminal Windows, Launching Terminal Windows, R with an Aqua GUI, Compiling Source Code
		code execution with osascript, Launching Terminal Windows
	do script verb, Launching Terminal Windows
	interaction with R, R with an Aqua GUI

	AppleScript Studio, Compiling Source Code
	AppleVNCServer, Virtual Network Computing (VNC)
	application firewall, The Mac OS X Firewall
	application-specific frameworks, Framework structure, Including a framework in your application
		including in applications, Including a framework in your application

	applications, X11-Based Applications and Libraries, X11-Based Applications and Libraries, Building X11-Based Applications and Libraries, Creating Disk Images
		X11-based, X11-Based Applications and Libraries, X11-Based Applications and Libraries, Building X11-Based Applications and Libraries
		building, Building X11-Based Applications and Libraries

	Applications menu (X11), customizing, Customizing X11’s Applications menu
	Applications/Utilities/ folder, Using the Terminal
	Appscript module (Python), Appscript
	apt-get commands, listed, Installing Binaries Using Command-Line Utilities
	Aqua desktop, Virtual Network Computing (VNC), VNC and SSH, Aqua-based VNC servers, R with an Aqua GUI
		R console window, R with an Aqua GUI
	support by Vine Server and AppleVNCServer, Virtual Network Computing (VNC)
	VNC clients, VNC and SSH
	VNC servers based on, Aqua-based VNC servers

	AquaTerm, AquaTerm
	-arch compiler flags, Universal Binaries for Multiple Architectures, 64-Bit Computing
	architectural issues, software development on Mac OS
 X, Architectural Issues, Inline Assembly
	archiving files and directories with gnutar and
 gzip, Creating and Distributing Installable Software
	assembler, Inline Assembly
	attributes, Inspecting a File’s Attributes, Managing Spotlight, Apple’s Hiding Places for File Metadata
		extended file attributes, Apple’s Hiding Places for File Metadata
	inspecting with mdls, Inspecting a File’s Attributes
	supported by importers on system, listing, Managing Spotlight

	authentication, Configuring Directory Services, Working with Passwords, Remote Login
		Directory Utility options, Configuring Directory Services
	password versus public key, Remote Login
	using Linux-PAM, Working with Passwords

	Avahi, Working with Bonjour

B
	bash (Bourne Again SHell), Mac OS X Shells, Mac OS X Shells, Customizing the Terminal on the Fly
		--posix command-line option, Mac OS X Shells
	shell script setting Terminal window title, Customizing the Terminal on the Fly

	BEL character, Customizing the Terminal on the Fly
	big-endian ordering, Endianness
	binaries, universal, Universal Binaries for Multiple Architectures
	binary format (Mach-O), Shared Libraries Versus Loadable Modules
	BIND server (named), named
	Blender 3D graphics package, 3D Modeling
	Bluetooth devices, sending files to, The Services Menu
	.bom file extension, Creating and Distributing Installable Software
	Bonjour, Bonjour, Working with Bonjour, Aqua-based VNC servers
		Finder window displaying Bonjour-broadcast Mac running
 VNC server, Aqua-based VNC servers
	integrating with Linux or Unix systems, Working with Bonjour

	bonjour_module (mod_bonjour), bonjour_module (mod_bonjour)
	bookmarks, iTerm support for, Alternative Terminal Applications
	boot loaders, The Boot Loader, Installation and Configuration, Linux on Older Macs
		Linux, Linux on Older Macs
	rEFIt, Installation and Configuration

	bootable backup of Mac hard drive, creating, Partitioning for Linux
	booting Mac OS X, Booting Mac OS X, The Boot Loader, Initialization, launchd, SystemStarter, Mach Bootstrap Services
		boot loader, The Boot Loader
	initialization, Initialization
	launchd, launchd
	Mach bootstrap services, Mach Bootstrap Services
	SystemStarter, SystemStarter

	bootpd daemon, bootpd
	Bourne Again SHell, Mac OS X Shells (see bash)
	BSD Flat File and NIS plug-in, Configuring Directory Services
	build type, Host Type
	built-in services, Built-in Services: The Sharing Preference Pane, DVD/CD Sharing
	bundles, Using the Terminal, Frameworks, Shared Libraries Versus Loadable Modules, Shared Libraries Versus Loadable Modules, Dynamically Loading Libraries
		loading, Shared Libraries Versus Loadable Modules
	loading dynamically, Dynamically Loading Libraries
	MH_BUNDLE file type, Shared Libraries Versus Loadable Modules

C
	C pointers, 64-Bit Computing
	C++ applications compiled by GCC, The System Library: libSystem
	Calc spreadsheet document in NeoOffice, Open Source Replacements for Microsoft Office
	Carbon APIs, Mac::Carbon, Carbon
		accessing from Perl, Mac::Carbon
	accessing from Python, Carbon

	Carbon Copy Cloner, Partitioning for Linux
	cc compiler, Compiler Differences, Supported Languages, Precompiled Header Files, Shared Libraries Versus Loadable Modules, Shared Libraries Versus Loadable Modules
		building shared library or loadable module
 (bundle), Shared Libraries Versus Loadable Modules
	compiling shared library or bundle on Darwin, Shared Libraries Versus Loadable Modules
	creating precompiled header files, Precompiled Header Files
	supported languages, Supported Languages

	CD/DVD sharing, DVD/CD Sharing
	certificate authority (CA), creating, ssl_module (mod_ssl)
	certificate request, creating, ssl_module (mod_ssl)
	ChineseTextConverter service, The Services Menu
	chmod command, making shell script executable, Double-clickable shell scripts
	CHUD (Computer Hardware Understanding Development)
 tools, CHUD Tools
	CinePaint, Image Editing
	clients, VNC, VNC and SSH
	Cocktail, Third-Party Applications
	Cocoa, Framework structure
	command prompt, Inside the Terminal
	common symbols, Shared Libraries Versus Loadable Modules
	compiler flags, Compiler Differences, Compiler Flags, Universal Binaries for Multiple Architectures, AltiVec, 64-Bit Computing, 64-Bit Computing, Shared Libraries Versus Loadable Modules
		-arch flags, Universal Binaries for Multiple Architectures
	-fno-common, Shared Libraries Versus Loadable Modules
	-fssa, Compiler Differences
	GCC, specific to Mac OS X, Compiler Flags
	-m64, 64-Bit Computing
	-maltivec, AltiVec
	-Wconversion, 64-Bit Computing

	compiler tools, Compiling Source Code
	compilers, Compiling Source Code, Compiler Differences
		differences in Mac OS X and Unix versions of
 GCC, Compiler Differences
	in Mac OS X development
 environment, Compiling Source Code

	compiling, Compiling Source Code, Building a Shared Library, Compiling MySQL, Compiling PostgreSQL
		C program into shared library, Building a Shared Library
	MySQL from source, Compiling MySQL
	PostgreSQL from source, Compiling PostgreSQL
	source code, Compiling Source Code (see source code)

	Computer Settings dialog (Screen Sharing), Screen Sharing and Remote Management
	configd daemon, scutil
	configuration utilities (system), System Configuration Utilities, nvram, scutil, defaults, nvram
		defaults, defaults
	nvram, nvram
	scutil, scutil

	contact information for users, Configuring Directory Services
	contextual menus, The Contextual Menu, Alternative Terminal Applications, Running X11
		iTerm, Alternative Terminal Applications
	Terminal, The Contextual Menu
	xterm window, Running X11

	Control-clicking, xterm versus Terminal window, Running X11
	Control-V Control-G key sequence, Customizing the Terminal on the Fly
	Control-V Control-[key sequence, Customizing the Terminal on the Fly
	copying and pasting between X11 and Mac OS X
 applications, X11 and the Rest of Mac OS X
	CoreText, The Terminal and xterm Compared
	cp utility, Preserving Metadata
	cron utility, Periodic Jobs
	crontab file, replacement by launch daemons, Periodic Jobs
	CUPS (Common Unix Printing System), The Common Unix Printing System (CUPS), Printing-Related Shell Commands, The Common Unix Printing System (CUPS), Printing from Remote Systems, Printing from Linux, Printing-Related Shell Commands
		printing from remote systems, Printing from Remote Systems, Printing from Linux
	shell commands, printing-related, Printing-Related Shell Commands
	web-based interface, The Common Unix Printing System (CUPS)

	cups-lpd server, Printer Sharing
	curl, downloading files from command line, Working with File and Directory Names
	CVS, Installing Fink from CVS, Post-Installation Setup
		installing Fink from, Installing Fink from CVS
	updating Fink, Post-Installation Setup

	Cyberduck, Cyberduck

D
	daemons, SystemStarter, Launching with launchd
		on-demand, Launching with launchd
	starting automatically at boot time, SystemStarter

	Darwin project, Where to Go for More Information
	Darwin systems, Host Type
	Darwin systems, compiling shared libraries or bundles with
 cc, Shared Libraries Versus Loadable Modules
	Dashcode IDE, Compiling Source Code
	data forks, Apple’s Hiding Places for File Metadata
	database servers on Mac OS X, Free Database Servers on Mac OS X, Database Support in PHP and Perl, MySQL, Using MySQL, PostgreSQL, Using PostgreSQL, Database Support in PHP and Perl
		database support in PHP and Perl, Database Support in PHP and Perl
	MySQL, MySQL, Using MySQL
	PostgreSQL, PostgreSQL, Using PostgreSQL

	dav_module (mod_dav), dav_module (mod_dav)
	DBD::mysql module (Perl), Database Support in PHP and Perl
	DBD::Pg module (Perl), Database Support in PHP and Perl
	DBI module (Perl), Database Support in PHP and Perl
	ddb utility, ddb
	Debian GNU/Linux, Linux on Older Macs
	debugging tools, Compiling Source Code, Performance Tools and Debugging Tools, ddb
		Apple debugger, Compiling Source Code
	ddb, ddb

	defaults utility, defaults
	dependencies, package, MacPorts
	desktop environments, Printing from Remote Systems, Dot-Files, Desktops, and Window Managers
		(see also GNOME; KDE; X Window System)
	installing for X11, Dot-Files, Desktops, and Window Managers

	Desktop icon, creating for a printer, Creating a Desktop Icon for a Printer
	destroot option, port command, Creating the Portfile
	/dev directory, The /dev Directory
	development environment, Mac OS X, Compiling Source Code
	df command, Creating Disk Images
	DHCP, Internet Sharing, Port mapping with an AirPort Base Station
		bootpd, Internet Sharing
	setting subnet and IP address pool, Port mapping with an AirPort Base Station

	diagnostic utilities, Diagnostic Utilities, vm_stat, top, fs_usage, lsof, latency, sc_usage, vm_stat
		fs_usage, fs_usage
	latency, latency
	lsof, lsof
	sc_usage (system calls usage), sc_usage
	top, top
	vm_stat (virtual memory statistics), vm_stat

	digitally signed certificates, ssl_module (mod_ssl)
	directives, preprocessor, Header Files
	Directory Services, Directory Services, Working with Passwords, Configuring Directory Services, Managing Directory Services Data, Managing Directory Services Data, Managing Users and Passwords from the Terminal, Managing Groups, Flat Files and Their Directory Services Counterparts, Working with Passwords
		configuring, Configuring Directory Services
	managing data, Managing Directory Services Data
	managing groups, Managing Groups
	managing information for flat files, Flat Files and Their Directory Services Counterparts
	managing users and passwords from Terminal, Managing Users and Passwords from the Terminal
	utilities, listed, Managing Directory Services Data
	working with passwords, Working with Passwords

	Directory Utility, Configuring Directory Services, Configuring Directory Services, Configuring Directory Services
		authentication options, Configuring Directory Services
	plug-ins supported, Configuring Directory Services

	disk images, Working with Bonjour, Creating Disk Images, Creating a Disk Image with Disk Utility, Creating a Disk Image from the Command Line, Distributing Your Image
		creating, Creating Disk Images, Creating a Disk Image with Disk Utility
		using Disk Utility, Creating a Disk Image with Disk Utility

	creating from command line, Creating a Disk Image from the Command Line
	creating from Terminal using hdiutil, Working with Bonjour
	distributing, Distributing Your Image

	Disk Utility, The Services Menu, Creating and Distributing Installable Software, Creating a Disk Image with Disk Utility
		creating a disk image, Creating a Disk Image with Disk Utility

	disk volume repairs, Booting Mac OS X
	diskutil, Partitioning for Linux, Partitioning for Linux
		list command, checking partition system, Partitioning for Linux
	resizing volumes, Partitioning for Linux

	distribution of software, options supported by Mac OS
 X, Creating and Distributing Installable Software
	ditto utility, Preserving Metadata
	dlfcn.h header file, dlfcn.h
	.dmg files, Internet-enabled disk images
	DNS, named, The Outside World, Dynamic DNS
		dynamic, Dynamic DNS
	entries for Mac server, The Outside World
	named BIND server, named

	DNS Service Discovery (DNS-SD), Bonjour
	do script verb (AppleScript), Launching Terminal Windows
	Dock, adding shell scripts, Double-clickable shell scripts
	dot-files, Dot-Files, Desktops, and Window Managers
	dpkg utility, Installing Binaries Using Command-Line Utilities, Installing Binaries Using Command-Line Utilities
		listing of commands, Installing Binaries Using Command-Line Utilities

	dscacheutil, Managing Users and Passwords from the Terminal, Managing Groups
		displaying all groups, Managing Groups
	listing all users, Managing Users and Passwords from the Terminal

	dscl utility, Creating a user, Managing Groups
		exploring Groups directory, Managing Groups

	dselect utility, Installing Binaries Using Command-Line Utilities
	DTrace utility, DTrace
	dual booting, Dual-Boot and Beyond, Why Bother?, Linux on Mac Hardware, Linux on Older Macs, Emulators on Mac OS X, QEMU
		advantages of, Why Bother?
	choices for Macs, Dual-Boot and Beyond
	emulators on Mac OS X, Emulators on Mac OS X, QEMU
	Linux on Mac hardware, Linux on Mac Hardware, Linux on Older Macs

	DVD/CD sharing, DVD/CD Sharing
	dyld (dynamic linker), Dynamically Loading Libraries, Library Versions
		checking library version numbers, Library Versions
	functions, Dynamically Loading Libraries

	.dylib file extension, Building a Shared Library
	dynamic DNS services, Dynamic DNS

E
	EasyDialogs module (Python), Carbon
	EFI (Extensible Firmware Interface), Booting Mac OS X, Partitioning for Linux, nvram
		modifying settings, nvram

	ELF (Executable and Linking Format), Shared Libraries Versus Loadable Modules
	email server, The Email Server (see Postfix)
	emulation, Dual-Boot and Beyond, Dual-Boot and Beyond, Why Bother?
		(see also games (vintage))
	MS-DOS, Why Bother?
	versus virtualization, Dual-Boot and Beyond

	emulators on Mac OS X, Dual-Boot and Beyond, Emulators on Mac OS X, QEMU, Getting a Linux Installation Disk Image, Parallels, VMware Fusion, Virtual PC, VirtualBox, QEMU
		Linux installation disk image, obtaining, Getting a Linux Installation Disk Image
	Parallels, Parallels
	QEMU, QEMU
	Virtual PC, Virtual PC
	VirtualBox, VirtualBox
	VMware Fusion, VMware Fusion

	endianness, Endianness
	enterprise applications (Java EE), Java Enterprise Edition (Java EE)
	ESC character, Customizing the Terminal on the Fly
	escape sequences in shell scripts, Terminal
 customizations, Customizing the Terminal on the Fly
	escaping spaces in file or directory names, Working with File and Directory Names
	/etc/shells file, Mac OS X Shells, Using the Terminal, The /etc Directory, Periodic Jobs, Managing Hostnames and IP Addresses
	Executable and Linking Format (ELF), Shared Libraries Versus Loadable Modules
	executable shell scripts, Double-clickable shell scripts
	execution string, adding to .term file, Saving Terminal settings in Mac OS X 10.4 Tiger
	Extensible Firmware Interface, nvram
		(see also EFI)

F
	FAT-formatted memory card, moving files to, Preserving Metadata
	FAT32 filesystem, Sharing Files with Other Operating Systems
	FAT32 partitions, Partitioning for Linux
	Fedora Linux, Linux on Older Macs
	Fetch, Frontends for SSH and SFTP
	file and directory names, Working with File and Directory Names
		spaces in, Working with File and Directory Names

	file attributes, inspecting, Inspecting a File’s Attributes
	file metadata, Apple’s Hiding Places for File Metadata (see metadata)
	File Sharing option, File Sharing
	file transfers, SSH-based, Frontends for SSH and SFTP
	files and directories, Working with File and Directory Names, Changing Your Shell, Tab Completion, Changing Your Shell, The Services Menu, The open Command, Sharing Files with Other Operating Systems, Working with Bonjour, Troubleshooting, Files and Directories, The /Library Directory, The Root Directory, The /etc Directory, The /dev Directory, The /var Directory, The /System/Library Directory, The /Library Directory, lsof
		/dev directory, The /dev Directory
	/etc directory, The /etc Directory
	/Library directory, The /Library Directory
	monitoring open files with lsof utility, lsof
	opening files with open -a command, The open Command
	/ (root directory), The Root Directory
	sending files to Bluetooth devices, The Services Menu
	sharing files with other operating systems, Sharing Files with Other Operating Systems, Working with Bonjour, Troubleshooting
		troubleshooting, Troubleshooting
	using Bonjour, Working with Bonjour

	/System/Library directory, The /System/Library Directory
	/var directory, The /var Directory
	working with names, Working with File and Directory Names, Changing Your Shell, Tab Completion, Changing Your Shell
		changing your shell, Changing Your Shell
	using tab completion, Tab Completion

	Filesystem in Userspace, Sharing Files with Other Operating Systems (see FUSE)
	filesystem-related system calls, fs_usage
	filesystems, Files and Filesystems, Booting Mac OS X, Mounting SSH Servers As Network Volumes, Mounting SSH Servers As Network Volumes
		implementation in user space, using FUSE, Mounting SSH Servers As Network Volumes
	sshfs mounted on Mac OS X, Mounting SSH Servers As Network Volumes
	write access in single-user mode, Booting Mac OS X

	Filezilla, Frontends for SSH and SFTP
	Finder, The Services Menu, The open Command, The open Command, Apple’s Hiding Places for File Metadata, AddPrinter
		hidden files, Apple’s Hiding Places for File Metadata
	launching AddPrinter, AddPrinter
	open command, The open Command
	OpenTerminal, installing and using, The open Command
	Terminal, The Services Menu

	Fink, Where to Go for More Information, Dot-Files, Desktops, and Window Managers, X11-Based Applications and Libraries, Fink, Installing Binaries Using Command-Line Utilities, Installing Fink, Installing Fink from a Disk Image, Installing Fink from Source, Installing Fink from CVS, Post-Installation Setup, Post-Installation Setup, Using Fink, FinkCommander, Installing Binaries Using Command-Line Utilities, Installing MacPorts, Creating Fink Packages, Installing the Package, Creating and Publishing the Tarball, Creating the .info File, Installing the Package
		creating packages, Creating Fink Packages, Installing the Package, Creating and Publishing the Tarball, Creating the .info File, Installing the Package
		.info file, Creating the .info File
	installing the package, Installing the Package
	tarball, Creating and Publishing the Tarball

	fink commands, listed, Using Fink
	FinkCommander application, FinkCommander
	installing from a disk image, Installing Fink from a Disk Image
	installing from source, Installing Fink from Source
	installing via CVS, Installing Fink from CVS
	installing X11-based applications and libraries, X11-Based Applications and Libraries
	installing Xcode tools before Fink, Installing Fink
	mixing binary and source installations, Installing Binaries Using Command-Line Utilities
	possible conflicts with MacPorts, Installing MacPorts
	post-installation setup, Post-Installation Setup
	updating Fink and installed packages, Post-Installation Setup
	window managers and desktop environments, Dot-Files, Desktops, and Window Managers

	Firefox .webloc files, metadata and resource
 forks, Preserving Metadata
	firewalls, Printer Sharing, Launching VNC, ipfw/natd, The Mac OS X Firewall, Manually Configuring ipfw, Serving from Behind a Firewall
		built-in Mac OS X firewall, The Mac OS X Firewall, Manually Configuring ipfw
		configuring manually, Manually Configuring ipfw

	enabling printer sharing, Printer Sharing
	enabling VNC screen sharing, Launching VNC
	ipfw, ipfw/natd
	serving from behind, Serving from Behind a Firewall

	firmware, Booting Mac OS X
	firmware variables, modifying with nvram, nvram
	flat files, Configuring Directory Services, Flat Files and Their Directory Services Counterparts
		BSD Flat File and NIS plug-in, Configuring Directory Services
	Directory Services counterparts, Flat Files and Their Directory Services Counterparts

	flat namespaces, Two-Level Namespaces
	flat packages, Creating and Distributing Installable Software
	FORTRAN, Compiler Differences
	forwarding, X11, Connecting to Other X Window Systems
	frameworks, Frameworks, Framework structure, Including a framework in your application, Header Files, Creating Frameworks, CHUD Tools
		CHUD, CHUD Tools
	creating, Creating Frameworks
	header file, including in Objective-C code, Header Files
	including in an application, Including a framework in your application
	structure of, Framework structure

	Free Operating Systems Zoo, QEMU
	FreshMeat, Mac OS X section, Where to Go for More Information
	fs_usage utility, fs_usage
	FTP, Frontends for SSH and SFTP, File Sharing, Manual FTP configuration
		FTP applications, Frontends for SSH and SFTP
	manual configuration, Manual FTP configuration

	Fugu, Fugu
	full-screen mode (X11), Output
	FUSE (Filesystem in Userspace), Sharing Files with Other Operating Systems, Sharing Files with Other Operating Systems, Mounting SSH Servers As Network Volumes
		afpfs-ng package, Sharing Files with Other Operating Systems

G
	g95 (GNU FORTRAN 95) compiler, Compiler Differences
	games (vintage), running on Mac OS X, Emulators on Mac OS X
	GCC (GNU Compiler Collection), Compiling Source Code, Compiler Differences, Compiler Flags, 64-Bit Computing, The System Library: libSystem
		compiler flags, Compiler Flags
	compiling 64-bit code, 64-Bit Computing
	differences between Mac OS X and Unix versions, Compiler Differences
	libstdc++, The System Library: libSystem

	gem command, Ruby and Rails for Mac OS X Geeks
	Gentoo Linux, Linux on Older Macs
	GetFileInfo method, Apple’s Hiding Places for File Metadata
	getpwnam() function, Working with Passwords
	gfortran compiler, Compiler Differences
	gftp, Frontends for SSH and SFTP
	GIMP (GNU Image Manipulation Program), Image Editing
	glue, Mac::Glue
	GNOME desktop environment, GNOME, X11-Based Applications and Libraries, VNC and SSH
		connecting to printer shared from a Mac, GNOME
	on remote Linux machine, displayed
 by Screen Sharing VNC viewer, VNC and SSH
	versions, installed via MacPorts or Fink, X11-Based Applications and Libraries

	GNU autoconf, detection of systems requiring
 malloc.h, malloc.h
	GNU Image Manipulation Program (GIMP), Image Editing
	gnutar utility, Creating and Distributing Installable Software, Using GNU tar
		creating tarballs, Using GNU tar

	graphics package (3D), 3D Modeling
	groups, Managing Groups, Creating a group, Adding users to a group, Deleting a group
		adding users, Adding users to a group
	creating, Creating a group
	deleting, Deleting a group
	displaying information about, Managing Groups

	GUI interactions between X11 and Mac OS X, X11 and the Rest of Mac OS X
	GUID partitioning, Partitioning for Linux
	Gutenprint, Gutenprint
	gzip utility, Creating and Distributing Installable Software

H
	hdiutil command, Working with Bonjour, Creating Disk Images
		creating disk image from Terminal, Working with Bonjour

	Header Doc 8, Compiling Source Code
	header files, Header Files, lcyrpt.h and values.h, Precompiled Header Files, malloc.h, poll.h, wchar.h and iconv.h, dlfcn.h, alloc.h, lcyrpt.h and values.h
		alloc.h, alloc.h
	dlfcn.h, dlfcn.h
	icrypt.h and values.h, lcyrpt.h and values.h
	malloc.h, malloc.h
	poll.h, poll.h
	precompiled, Precompiled Header Files
	wchar.h and iconv.h, wchar.h and iconv.h

	header.h file, Precompiled Header Files
	HFS+ filesystem, Apple’s Hiding Places for File Metadata, Preserving Metadata, Files and Filesystems
		preserving metadata in older versions of Mac OS
 X, Preserving Metadata
	storage of file metadata, Apple’s Hiding Places for File Metadata

	hidden files, Apple’s Hiding Places for File Metadata
	home directory, creating for user, Creating a user’s home directory
	host type, Host Type
	hostconfig file, enabling MySQL, The startup script
	hosting providers, The Outside World
	hostnames, Managing Hostnames and IP Addresses, Configuring Postfix to Send Email
		configuring for Postfix, Configuring Postfix to Send Email
	managing, Managing Hostnames and IP Addresses

	HP InkJet Server (HPIJS) Project, The HP InkJet Server (HPIJS) Project
	HTTPS, ssl_module (mod_ssl), ssl_module (mod_ssl)
		configuring server for support, ssl_module (mod_ssl)

I
	iChat, screen sharing via VNC, Screen Sharing with iChat
	iconv.h header file, wchar.h and iconv.h
	ifconfig utility, Internet Sharing
	image-editing tools, Image Editing
	imake utility, Building X11-Based Applications and Libraries
	importers, Spotlight, Managing Spotlight
		installed on system, listing, Managing Spotlight
	Spotlight, Spotlight

	.info file, creating for Fink
 package, Creating the .info File
	initialization in Mac OS X startup, Initialization
	inline assembly code, Inline Assembly
	input devices, X11 interaction with, Input
	InputManager, The Terminal and xterm Compared
	installation disk image, getting for Linux, Getting a Linux Installation Disk Image
	instprog and instman variables (Portfile), Creating the Portfile
	Instruments, Compiling Source Code
	Intel-based Macs, Dual-Boot and Beyond, Universal Binaries for Multiple Architectures, nvram
		binaries, Universal Binaries for Multiple Architectures
	modifying EFI settings with nvram, nvram

	Interface Builder, Compiling Source Code
	Internet Sharing, Internet Sharing
	Internet-enabled disk images, MacPorts, Internet-enabled disk images
		creating and using for software
 distribution, Internet-enabled disk images
	creating with MacPorts, MacPorts

	IP addresses, Bonjour, Managing Hostnames and IP Addresses, The Outside World, Port mapping with an AirPort Base Station
		Mac server on non-business-grade network, The Outside World
	managing, Managing Hostnames and IP Addresses
	network computers, assigned using Bonjour, Bonjour
	static IP address for server on Mac OS X, Port mapping with an AirPort Base Station

	IP printer, adding, Adding an IP Printer
	ipfw (IP Firewall), ipfw/natd, The Mac OS X Firewall, Manually Configuring ipfw
		configuring manually, Manually Configuring ipfw

	iPhoto, using GIMP as default image editor, Image Editing
	ISP policies on running servers on your
 network, Serving from Behind a Firewall
	iTerm, Alternative Terminal Applications, Alternative Terminal Applications, Alternative Terminal Applications, Alternative Terminal Applications
		background images in windows, Alternative Terminal Applications
	contextual menu, Alternative Terminal Applications
	profiles and bookmarks, Alternative Terminal Applications

J
	Java, Java for Mac OS X Geeks, Java Enterprise Edition (Java EE)
		Java EE (Enterprise Edition), Java Enterprise Edition (Java EE)

K
	KDE desktop environment, KDE, X11-Based Applications and Libraries, X11-based VNC servers
		connecting to printer shared from a Mac, KDE
	remote Mac, displayed by Screen Sharing VNC
 viewer, X11-based VNC servers
	versions, installed via MacPorts or Fink, X11-Based Applications and Libraries

	kernel extensions, loading during boot, The Boot Loader
	kernel utilities, Kernel Utilities, sysctl, ddb, DTrace, Kernel Module Utilities, sysctl, sysctl
		ddb, ddb
	DTrace, DTrace
	sysctl, sysctl, sysctl
	utilities to manipulate kernel modules, Kernel Module Utilities

	kextload utility, Kernel Module Utilities
	kextstat utility, Kernel Module Utilities
	kextunload utility, Kernel Module Utilities
	keyboard, Input, OSX2X
		single, for multiple Mac OS X and X11
 desktops, OSX2X
	X11 system, customizing, Input

	ksh (Korn shell), Mac OS X Shells

L
	latency utility, latency
	LaTeX, TeX
	LaTeXiT, LaTeXiT
	launchctl utility, launchd
	launchd, launchd, Launching with launchd
		launching MySQL, Launching with launchd

	LDAPv3, Configuring Directory Services
	Leopard, The Contextual Menu, Saving Terminal settings in Mac OS X 10.5 Leopard, Alternative Terminal Applications, The open Command, 64-Bit Computing, 64-Bit Computing, Built-in Services: The Sharing Preference Pane
		64-bit computing, 64-Bit Computing, 64-Bit Computing
	changes to Sharing preference pane, Built-in Services: The Sharing Preference Pane
	launching X11 applications, The open Command
	saving Terminal settings, Saving Terminal settings in Mac OS X 10.5 Leopard
	Terminal application features, Alternative Terminal Applications
	Terminal contextual menu, The Contextual Menu

	libraries, X11-Based Applications and Libraries, X11-Based Applications and Libraries, Shared Libraries Versus Loadable Modules, Building a Shared Library, Building a Shared Library, Dynamically Loading Libraries, Library Versions, Creating and Linking Static Libraries, Interesting and Important Libraries, Interesting and Important Libraries, Numerical Libraries
		building a shared library, Building a Shared Library, Building a Shared Library
	important Mac OS X libraries, Interesting and Important Libraries
	loading dynamically, Dynamically Loading Libraries
	for numerical computing, Numerical Libraries
	shared, versus loadable modules, Shared Libraries Versus Loadable Modules
	significant libraries not included with Mac OS
 X, Interesting and Important Libraries
	static, creating and linking, Creating and Linking Static Libraries
	versions, Library Versions
	X11-based, X11-Based Applications and Libraries, X11-Based Applications and Libraries

	/Library directory, The /Library Directory
	libstdc++, The System Library: libSystem
	libSystem, The System Library: libSystem
	limits.h header file, lcyrpt.h and values.h
	linking static libraries, Creating and Linking Static Libraries
	Linux, Bonjour, Sharing Files with Other Operating Systems, GNOME, KDE, Manual printer configuration (Linux and Unix), Printing from Linux, Linux on Mac Hardware, Installation and Configuration, Linux on Older Macs
		avahi package (Bonjour services), Bonjour
	GNOME desktop environment, connecting to shared Mac
 printer, GNOME
	KDE desktop environment, connecting to shared Mac
 printer, KDE
	manual printer configuration, Manual printer configuration (Linux and Unix)
	printing to Mac shared printer, Printing from Linux
	running on Mac hardware, Linux on Mac Hardware, Installation and Configuration, Linux on Older Macs
		installing and configuring Ubuntu 8.04 on Mac, Installation and Configuration
	older Macs, Linux on Older Macs

	support for HFS+ filesystem, Sharing Files with Other Operating Systems

	Linux-PAM (Pluggable Authentication Modules for
 Linux), Working with Passwords
	little-endian ordering, Endianness
	loadable modules versus shared libraries, Shared Libraries Versus Loadable Modules
	LoadModule directive for mod_ssl, ssl_module (mod_ssl)
	Local plug-in (Directory Utility), Configuring Directory Services
	logging (firewall), enabling, Enabling firewall logging
	login preferences, Login Preferences
	look and feel, configuring for X11 system, Output
	LPD (Line Printer Daemon) protocol, Adding an IP Printer
	lsof utility, lsof

M
	Mac OS X, Where to Go for More Information, Where to Go for More Information, Dual-Boot and Beyond, Emulators on Mac OS X
		emulators on, Emulators on Mac OS X
	running different operating systems under, Dual-Boot and Beyond
	software releases, Where to Go for More Information
	VersionTracker, Where to Go for More Information

	Mac OS X 10.4, Saving Terminal settings in Mac OS X 10.4 Tiger (see Tiger)
	Mac OS X 10.5, Saving Terminal settings in Mac OS X 10.5 Leopard (see Leopard)
	Mac-on-Linux hardware virtualizer, Mac-on-Linux
	Mac::Carbon module (Perl), Mac::Carbon
	Mac::Glue module (Perl), Mac::Glue
	MacFUSE, Mounting SSH Servers As Network Volumes
	Mach, Startup
	Mach bootstrap services, Mach Bootstrap Services
	Mach-O, Shared Libraries Versus Loadable Modules
	MacOSXHints, Where to Go for More Information
	MacPerl, Mac::Carbon
	MacPilot, Third-Party Applications
	MacPorts, Where to Go for More Information, Dot-Files, Desktops, and Window Managers, X11-Based Applications and Libraries, X11-Based Applications and Libraries, MacPorts, PortAuthority, Installing MacPorts, Installing MacPorts, Installing MacPorts, Installing MacPorts, Installing MacPorts from SVN, Using MacPorts, Using MacPorts, Using MacPorts, Using MacPorts, Using MacPorts, Using MacPorts, Creating and Installing Packages in .pkg Format, Creating and Installing Packages in RPM Format, Creating and Installing Packages in RPM Format, MacPorts Maintenance, Connecting to the MacPorts SVN Repository, MacPort GUIs, Porticus, PortAuthority, PortAuthority, Creating MacPorts Packages, Building and Installing a Port, Creating and Publishing the Tarball, Creating the Portfile, Building and Installing a Port
		connecting to SVN repository, Connecting to the MacPorts SVN Repository
	creating and installing in RPM format, Creating and Installing Packages in RPM Format
	creating and installing packages in .pkg
 format, Creating and Installing Packages in .pkg Format
	creating packages (example), Creating MacPorts Packages, Building and Installing a Port, Creating and Publishing the Tarball, Creating the Portfile, Building and Installing a Port
		building and installing a port, Building and Installing a Port
	Portfile, Creating the Portfile
	tarball, Creating and Publishing the Tarball

	customizing installation, Installing MacPorts
	gotchas, PortAuthority
	GUI frontends, MacPort GUIs, Porticus, PortAuthority
		PortAuthority, PortAuthority
	Porticus, Porticus

	installing additional window managers, Dot-Files, Desktops, and Window Managers
	installing from source, Installing MacPorts
	installing from SVN, Installing MacPorts from SVN
	installing packages from source, Using MacPorts
	installing X11-based applications and libraries, X11-Based Applications and Libraries
	listing available packages with port list
 command, Using MacPorts
	possible conflicts with Fink, Installing MacPorts
	prerequisites for installation, Installing MacPorts
	revealing image repository with port location
 rxvt, Using MacPorts
	searching for specific packages with port search
 command, Using MacPorts
	summary of port commands, Creating and Installing Packages in RPM Format
	uninstalling a particular port with port
 uninstall, Using MacPorts
	updating installation, MacPorts Maintenance
	upgrading installed ports, Using MacPorts

	macros, Macros, Header Files, Header Files
		Mac OS X C macros, Macros
	preprocessing, Header Files

	MacTeX, installing, Installing MacTeX
	Mail Exchange (MX) record, Configuring Postfix to Receive Email
	Mail service, The Services Menu
	mailing lists, Apple-hosted for Darwin
 project, Where to Go for More Information
	main.c application, Precompiled Header Files
	Make New Sticky Note service, The Services Menu
	make utility, Compiling Source Code, Setting Up the Directory
		make prep command, Setting Up the Directory

	makefiles, Host Type, Building X11-Based Applications and Libraries, Building a Shared Library
		differences for different build types, Host Type
	example, creating and testing shared library, Building a Shared Library
	generating, Building X11-Based Applications and Libraries

	malloc.h header file, malloc.h
	-maltivec compiler flag, AltiVec
	MANPATH environment variable, Installing MacTeX, Installing MacPorts from SVN
		configuring for MacPorts, Installing MacPorts from SVN

	mathematical libraries, Numerical Libraries
	mdfind utility, Performing Spotlight Searches, Performing Spotlight Searches, Performing Spotlight Searches, Performing Spotlight Searches
		-live option, Performing Spotlight Searches
	-onlyin option, Performing Spotlight Searches
	queries using regular expressions, Performing Spotlight Searches

	mdimport command, Managing Spotlight
	MDItem.h header file, Performing Spotlight Searches
	mdls utility, Inspecting a File’s Attributes
	mdutil command, Managing Spotlight
	memory statistics and lists of running processes
 (top), top
	menus, Terminal contextual menu, The Contextual Menu
	messages, editing motd file, Using the Terminal
	metadata, Spotlight, Apple’s Hiding Places for File Metadata, Apple’s Hiding Places for File Metadata, Preserving Metadata
		file, stored by Spotlight, Spotlight
	HFS+ filesystem, Apple’s Hiding Places for File Metadata
	preserving, Preserving Metadata
	storage by Apple filesystem, Apple’s Hiding Places for File Metadata

	metapackages, Using PackageMaker
	MH_BUNDLE file type, Shared Libraries Versus Loadable Modules
	Microsoft, Aqua-based VNC servers, Dual-Boot and Beyond
		Remote Desktop Client (RDC), Aqua-based VNC servers
	Virtual PC, Dual-Boot and Beyond

	Microsoft Office, open source replacements for, Open Source Replacements for Microsoft Office
	Microsoft Word 2008, launching from Terminal, Working with File and Directory Names
	model-view-controller (MVC) paradigm, web
 applications, Ruby and Rails for Mac OS X Geeks
	modeling, 3D, 3D Modeling
	modules, loadable, versus shared libraries, Shared Libraries Versus Loadable Modules
	Mongrel web server (Rails), Ruby and Rails for Mac OS X Geeks
	motd file, Using the Terminal
	mount / command, Booting Mac OS X
	mounted volume (disk image), Creating Disk Images
	mouse, Input, OSX2X
		controlling Mac OS X and X11-based desktops with single
 mouse, OSX2X
	three-button mouse emulation on X11, Input

	mouse clicks, Terminal versus xterm window, Running X11
	.mpkg files, Creating and Distributing Installable Software
	MPlayer, Open Source Video Players
	MS-DOS, emulation of, Why Bother?
	MS-DOS-formatted partitions, Partitioning for Linux
	mv utility, Preserving Metadata
	MVC (model-view-controller) paradigm, web
 applications, Ruby and Rails for Mac OS X Geeks
	MX (Mail Exchange) record, Configuring Postfix to Receive Email
	MySQL, SystemStarter, The startup script, The startup script, Launching with launchd, MySQL, Using MySQL, Compiling MySQL, Installing MySQL, Configuring MySQL, Using MySQL
		compiling from source, Compiling MySQL
	configuring, Configuring MySQL
	database server, startup, SystemStarter
	enabling in /etc/hostconfig file, The startup script
	installing, Installing MySQL
	launching with launchd, Launching with launchd
	startup script, The startup script
	using (example), Using MySQL

N
	named (BIND server), named
	namespaces, two-level, Two-Level Namespaces
	natd daemon, ipfw/natd
	Nautilus file manager, Sharing Files with Other Operating Systems
	NeoOffice, Open Source Replacements for Microsoft Office
	Netatalk, Sharing Files with Other Operating Systems, Working with Bonjour
		AFP shares, advertising over Bonjour, Working with Bonjour

	Netinfo, Understanding Directory Services, Flat Files and Their Directory Services Counterparts
		flat file counterparts, Flat Files and Their Directory Services Counterparts

	Network Address Translation Daemon (natd), ipfw/natd
	Network File System (NFS), Sharing Files with Other Operating Systems
	network interfaces, configuration by ifconfig, ifconfig
	New Window menu option (Shell), Launching Terminal Windows
	NeXT property list, MySQL startup parameters, The property list
	NIS (Network Information Service), Configuring Directory Services
	nohup vncserver command, Launching VNC
	nonprivileged user, setting up for PostgreSQL, Configuring PostgreSQL
	NSF (Network File System), Sharing Files with Other Operating Systems
	nss-mdns, Working with Bonjour
	numerical libraries, Numerical Libraries
	nvram utility, Booting Mac OS X, nvram
		nvram boot-args command, Booting Mac OS X

O
	Objective-C, PerlObjCBridge.pm, PyObjC
		PerlObjCBridge.pm module, PerlObjCBridge.pm
	PyObjC module, PyObjC

	Office productivity suite, open source replacements
 for, Open Source Replacements for Microsoft Office
	on-demand daemons, Launching with launchd
	Onyx, Third-Party Applications
	open command, The open Command
	open files, monitoring, lsof
	Open Source mailing lists page (Apple), Where to Go for More Information
	Open URL service, The Services Menu
	OpenDirectory, Directory Services
	OpenFirmware, Booting Mac OS X, nvram
	OpenGL, 3D Modeling
	OpenOffice.org, Open Source Replacements for Microsoft Office
	OpenSSH, Frontends for SSH and SFTP, Fugu, SSH Agent
		Fugu graphical interface, Fugu
	SSH Agent GUI frontend, SSH Agent

	OpenSSH server, configuring manually, Remote Login
	OpenTerminal, The open Command
	operating systems, Sharing Files with Other Operating Systems, Dual-Boot and Beyond, Linux on Mac Hardware, Virtual PC, 64-Bit Computing
		64-bit, 64-Bit Computing
	alternative, running on Mac, Dual-Boot and Beyond
	Linux on Mac hardware, Linux on Mac Hardware
	running on Mac, using Virtual PC, Virtual PC
	sharing files, Sharing Files with Other Operating Systems

	optimization tools (CHUD), CHUD Tools
	osascript, Launching Terminal Windows, Double-clickable shell scripts, Customizing the Terminal on the Fly
		commands to set Terminal window
 characteristics, Double-clickable shell scripts
	Terminal window customization, Customizing the Terminal on the Fly

	osx2x, OSX2X
	otool command, Building a Shared Library

P
	package dependencies, MacPorts
	PackageMaker, Creating and Distributing Installable Software, Using PackageMaker, Creating the Package, Setting Up the Directory, Creating the Package
		creating the package (example), Creating the Package
	directory and file setup for example package, Setting Up the Directory

	packages (.pkg and RPM format), Creating and Installing Packages in .pkg Format
		creating and installing using MacPorts, Creating and Installing Packages in .pkg Format

	packet filter rules, adding to ipfw, Adding your own rules
	Pallet, MacPort GUIs
	PAM (Pluggable Authentication Modules), Working with Passwords
	Parallels, Dual-Boot and Beyond, Dual-Boot and Beyond, Parallels
	parsing tools, Compiling Source Code
	partitioning for Linux on Mac hardware, Partitioning for Linux
	partitioning schemes, Partitioning for Linux
	passphrases protecting private key, ssl_module (mod_ssl)
	passwords, Managing Users and Passwords from the Terminal, Creating a group, Working with Passwords, Working with Passwords
		group, Creating a group
	retrieving encrypted passwords, Working with Passwords
	user, Managing Users and Passwords from the Terminal
	user authentication with Linux-PAM, Working with Passwords

	PATH environment variable, Installing MacTeX, Installing MacPorts from SVN
		configuring for MacPorts, Installing MacPorts from SVN
	MacTeX, Installing MacTeX

	pdftex and pdflatex, TeXShop
	performance tools, Performance Tools and Debugging Tools, CHUD Tools
		CHUD, CHUD Tools

	periodic jobs, Periodic Jobs
	Perl, Database Support in PHP and Perl, Perl for Mac OS X Geeks, Mac::Carbon, Mac::Glue
		database support, Database Support in PHP and Perl
	Mac::Carbon module, Mac::Carbon
	Mac::Glue module, Mac::Glue

	PerlObjCBridge.pm module, PerlObjCBridge.pm
	PHP, php4_module (mod_php4), Database Support in PHP and Perl
		database support, Database Support in PHP and Perl
	php4_module (mod_php4), php4_module (mod_php4)

	.pkg files, Creating and Distributing Installable Software
	pkgutil, Creating and Distributing Installable Software
	.plist (property list) files, launchd, The property list, Periodic Jobs
		periodic jobs, Periodic Jobs
	StartupParameters.plist, The property list

	Pluggable Authentication Modules for Linux
 (Linux-PAM), Working with Passwords
	pointers, 64-Bit Computing
	poll.h header file, poll.h
	port commands, Creating and Installing Packages in .pkg Format, Creating and Installing Packages in .pkg Format, Creating and Installing Packages in RPM Format, Creating the Portfile
		creating .pkg package installer, Creating and Installing Packages in .pkg Format
	destroot option, Creating the Portfile
	port installed command, Creating and Installing Packages in .pkg Format
	summary of, Creating and Installing Packages in RPM Format

	port mapping with AirPort Base Station, Port mapping with an AirPort Base Station
	port number, SSH connections, Remote Login
	port redirection, Internet Sharing
	PortAuthority, PortAuthority
	Portfiles, Installing MacPorts from SVN, MacPorts Maintenance, Creating MacPorts Packages, Creating the Portfile, Creating the Portfile
		contents, listed, Creating the Portfile
	creating for MacPorts package (example), Creating the Portfile
	updating, MacPorts Maintenance

	Porticus, Porticus
	portindex command, Creating the Portfile
	porting system (MacPorts), Where to Go for More Information
	ports, MacPorts, Building and Installing a Port, Serving from Behind a Firewall
		building and installing, Building and Installing a Port
	running servers on your network, Serving from Behind a Firewall

	--posix option (bash), Mac OS X Shells
	Postfix, The Email Server, Configuring Postfix to Send Email, Configuring Postfix to Receive Email, Configuring Postfix to Receive Email
		configuring to receive email, Configuring Postfix to Receive Email
	configuring to send email, Configuring Postfix to Send Email
	stopping and starting, Configuring Postfix to Receive Email

	PostgreSQL, PostgreSQL, Using PostgreSQL, Compiling PostgreSQL, Installing PostgreSQL, Adding the startup item, Configuring PostgreSQL, Using PostgreSQL
		adding startup item, Adding the startup item
	compiling from source, Compiling PostgreSQL
	configuring, Configuring PostgreSQL
	installing, Installing PostgreSQL
	using (example), Using PostgreSQL

	PostScript Printer Description (PPD) files, AddPrinter
	PowerPC Macs, Dual-Boot and Beyond, Linux on Older Macs, Universal Binaries for Multiple Architectures, Inline Assembly, nvram
		binaries, Universal Binaries for Multiple Architectures
	Linux on, Linux on Older Macs
	machine languages and assembler, Inline Assembly
	modifying OpenFirmware settings, nvram

	precompiled header files, Precompiled Header Files, Precompiled Header Files
		points to keep in mind, Precompiled Header Files

	Preferences (Terminal), Preferences, Startup, Settings, Window groups
		Settings, Settings
	Startup, Startup
	Window Groups, Window groups

	preprocessing, Preprocessing, Header Files
		header files or preprocessor directives, Header Files

	printer drivers, Adding an IP Printer, Open Source Printer Drivers
		finding, Adding an IP Printer
	open source, Open Source Printer Drivers

	Printer Setup Repair utility, Printer Sharing
	Printer Sharing option, Printer Sharing
	printing, Printing, The HP InkJet Server (HPIJS) Project, AddPrinter, Monitoring Printer Status and Troubleshooting, Printer Sharing, The Common Unix Printing System (CUPS), Printing-Related Shell Commands, Open Source Printer Drivers
		AddPrinter utility, AddPrinter, Monitoring Printer Status and Troubleshooting
	CUPS (Common Unix Printing System), The Common Unix Printing System (CUPS), Printing-Related Shell Commands
	open source printer drivers, Open Source Printer Drivers
	sharing a printer, Printer Sharing

	private frameworks, Framework structure, Building a Shared Library
		associated with an application, building in Tiger and
 Leopard, Building a Shared Library

	processes, details on (top utility), top
	profiles (iTerm), Alternative Terminal Applications
	programming languages for Mac OS X, Supported Languages, Other Programming Languages: Perl, Python, Ruby, and Java, Java Enterprise Edition (Java EE), Perl for Mac OS X Geeks, Python for Mac OS X Geeks, Ruby and Rails for Mac OS X Geeks, Java for Mac OS X Geeks
		Java, Java for Mac OS X Geeks
	Perl, Perl for Mac OS X Geeks
	Python, Python for Mac OS X Geeks
	Ruby and Rails, Ruby and Rails for Mac OS X Geeks
	supported by cc command, Supported Languages

	Property List Editor, Saving Terminal settings in Mac OS X 10.4 Tiger, The property list
	public frameworks, Framework structure
	PureFTPd, Manual FTP configuration
	Python, Python for Mac OS X Geeks, Carbon, Appscript, PyObjC
		Appscript module, Appscript
	Carbon module, Carbon
	PyObjC module, PyObjC

Q
	Q (Mac OS X version of QEMU), QEMU
	QEMU (emulator and virtualizer), QEMU
	Qt libraries, installing, X11-Based Applications and Libraries
	Quartz window manager (X11), Dot-Files, Desktops, and Window Managers
	QuickTime Player, Video

R
	R (statistical computing package), R with an Aqua GUI
	Rails, Ruby and Rails for Mac OS X Geeks
	rEFIt (boot menu and maintenance toolkit), Installation and Configuration, Third-Party Applications
	relay host, configuring Postfix to use, Configuring Postfix to Send Email
	Remote Desktop Client (RDC), Aqua-based VNC servers
	Remote Login option (Sharing preference), Remote Login
	Remote Management option, Screen Sharing and Remote Management
	repairs, disk volume, Booting Mac OS X
	resource forks, Apple’s Hiding Places for File Metadata, Apple’s Hiding Places for File Metadata, Preserving Metadata, Using GNU tar
		preserving while copying directories, Preserving Metadata
	rsrc, appended to filenames, Apple’s Hiding Places for File Metadata
	in tarballs, Using GNU tar

	resources for further information, Unix for Mac OS
 X, Where to Go for More Information
	root directory (/), The Root Directory, The Root Directory
		classic files, The Root Directory

	root user, enabling, The Terminal and xterm Compared
	Rosetta, Dual-Boot and Beyond
	routers, firewalls, Serving from Behind a Firewall
	RPM packages, creating and installing with
 MacPorts, Creating and Installing Packages in RPM Format
	rsync utility, Preserving Metadata, Post-Installation Setup, Installing MacPorts
		installation of MacPorts, Installing MacPorts
	updating Fink, Post-Installation Setup

	Ruby and Rails, Ruby and Rails for Mac OS X Geeks
	RubyGems, Ruby and Rails for Mac OS X Geeks
	rules (custom), adding to ipfw, Adding your own rules
	rxvt utility, Using MacPorts

S
	Samba, Sharing Files with Other Operating Systems, Troubleshooting, The /etc Directory, File Sharing, Manual Samba configuration
		Linux server mounted as Samba share, Troubleshooting
	in pre-Leopard
 environments, File Sharing
	smb.conf file, The /etc Directory, Manual Samba configuration

	scheduling tasks for periodic execution, Periodic Jobs
	Screen Sharing option, Screen Sharing and Remote Management, Screen Sharing and Remote Management
		Computer Settings dialog, Screen Sharing and Remote Management

	Screen Sharing VNC viewer, Virtual Network Computing (VNC), VNC and SSH, X11-based VNC servers, Screen Sharing with iChat
		displaying remote Linux GNOME desktop, VNC and SSH
	displaying remote Mac KDE desktop, X11-based VNC servers
	using with iChat, Screen Sharing with iChat

	ScriptEditor service, The Services Menu
	scutil, scutil, scutil, scutil, scutil
		listing contents of configuration database, scutil
	proxy settings for adapter configured to use HTTP proxy
 server, scutil
	showing contents of a key, scutil

	sc_usage (system calls usage), sc_usage
	searches, The Services Menu (see Finder; Spotlight)
	Security preference pane, Firewall tab, The Mac OS X Firewall
	security, configuring for X11 systems, Security
	servers, Virtual Network Computing (VNC), Launching VNC, X11-based VNC servers, Restarting VNC Connections, Using Mac OS X As a Server, Port mapping with an AirPort Base Station, Built-in Services: The Sharing Preference Pane, DVD/CD Sharing, The Email Server, The Mac OS X Firewall, Free Database Servers on Mac OS X, Database Support in PHP and Perl, The Outside World, Port mapping with an AirPort Base Station, Ruby and Rails for Mac OS X Geeks, Java Enterprise Edition (Java EE)
		Mongrel web server (Rails), Ruby and Rails for Mac OS X Geeks
	open source Java EE servers, Java Enterprise Edition (Java EE)
	using Mac OS X as a server, Using Mac OS X As a Server, Port mapping with an AirPort Base Station, Built-in Services: The Sharing Preference Pane, DVD/CD Sharing, The Email Server, The Mac OS X Firewall, Free Database Servers on Mac OS X, Database Support in PHP and Perl, The Outside World, Port mapping with an AirPort Base Station
		built-in services, Sharing preference pane, Built-in Services: The Sharing Preference Pane, DVD/CD Sharing
	configuring for use outside local network, The Outside World, Port mapping with an AirPort Base Station
	email server (Postfix), The Email Server
	firewall, The Mac OS X Firewall
	free database servers, Free Database Servers on Mac OS X, Database Support in PHP and Perl

	VNC, Virtual Network Computing (VNC), Launching VNC, X11-based VNC servers, Restarting VNC Connections
		identifying, Launching VNC
	restarting connections automatically, Restarting VNC Connections
	X11-based, X11-based VNC servers

	Services menu (Terminal), The Services Menu
	SetFile method, Apple’s Hiding Places for File Metadata
	Settings preferences, Terminal, Settings
	SFTP, Manual FTP configuration
	SFTP applications, Frontends for SSH and SFTP
	sh (Bourne shell), Mac OS X Shells
	sharing a printer, Printer Sharing
	Sharing preference pane, Built-in Services: The Sharing Preference Pane, DVD/CD Sharing, File Sharing, Web Sharing, bonjour_module (mod_bonjour), Remote Login, Screen Sharing and Remote Management, Printer Sharing, Internet Sharing, Xgrid Sharing, DVD/CD Sharing
		DVD and CD sharing, DVD/CD Sharing
	File Sharing, File Sharing
	Internet Sharing option, Internet Sharing
	Printer Sharing option, Printer Sharing
	Remote Login, Remote Login
	Screen Sharing and Remote Management options, Screen Sharing and Remote Management
	Web Sharing option, Web Sharing, bonjour_module (mod_bonjour)
	Xgrid sharing, Xgrid Sharing

	shell commands, The open Command, Printing-Related Shell Commands
		open, The open Command
	printing-related, Printing-Related Shell Commands

	Shell menu, New Window, Launching Terminal Windows
	shell scripts, Double-clickable shell scripts, Double-clickable shell scripts, Double-clickable shell scripts, Customizing the Terminal on the Fly, The startup script
		adding to the Dock, Double-clickable shell scripts
	customizing icons, Double-clickable shell scripts
	double-clickable (executable), Double-clickable shell scripts
	startup script for MySQL, The startup script
	Terminal customizations, Customizing the Terminal on the Fly

	shells, Mac OS X Shells, Working with File and Directory Names, Changing Your Shell, Post-Installation Setup
		changing default shell, Changing Your Shell
	initialization files, configuring for Fink, Post-Installation Setup
	special characters, Working with File and Directory Names

	simple public frameworks, Framework structure
	single-user mode, Booting Mac OS X
	64-bit computing, 64-Bit Computing
	SMB (Samba) shares, File Sharing, Manual Samba configuration
		manual configuration, Manual Samba configuration

	.so file extension, Shared Libraries Versus Loadable Modules
	software (installable), creating and distributing, Creating and Distributing Installable Software, Building and Installing a Port, Using GNU tar, Creating Disk Images, Internet-enabled disk images, Using PackageMaker, Creating the Package, Creating Fink Packages, Installing the Package, Creating MacPorts Packages, Building and Installing a Port
		creating disk images, Creating Disk Images, Internet-enabled disk images
	creating MacPorts packages, Creating MacPorts Packages, Building and Installing a Port
	creating packages using Fink, Creating Fink Packages, Installing the Package
	using GNU tar, Using GNU tar
	using PackageMaker, Using PackageMaker, Creating the Package

	software releases for Mac OS X, Where to Go for More Information
	Solaris 8 on Ultra hardware (sun4u), 64-Bit Computing
	Solaris GNOME desktop displaying and controlling Mac OS X
 desktop, Aqua-based VNC servers
	source code, Compiling Source Code, AquaTerm, Compiling Unix Source Code, Compiler Flags, Architectural Issues, Inline Assembly
		compiling, Compiling Source Code, AquaTerm, Compiling Unix Source Code, Compiler Flags, Architectural Issues, Inline Assembly
		architectural issues for Mac OS X, Architectural Issues, Inline Assembly
	Unix source code on Mac OS X, Compiling Unix Source Code, Compiler Flags

	spaces in file and directory names, Working with File and Directory Names
	Speech service, The Services Menu
	Spotlight, The Services Menu, Spotlight, Managing Spotlight, Spotlight, Performing Spotlight Searches, Inspecting a File’s Attributes, Managing Spotlight, Managing Spotlight
		configuring and managing, Managing Spotlight
	importers for files and data, Spotlight
	inspecting file attributes, Inspecting a File’s Attributes
	performing searches, Performing Spotlight Searches
	rebuilding database, Managing Spotlight

	SQL commands, issuing from shell prompt, Free Database Servers on Mac OS X
	SQLite, Free Database Servers on Mac OS X
	SSH, Sharing Files with Other Operating Systems, Connecting to Other X Window Systems, VNC and SSH, Frontends for SSH and SFTP, Cyberduck, Fugu, SSH Agent, Mounting SSH Servers As Network Volumes, Remote Login
		connecting to X Window systems from Mac OS X, Connecting to Other X Window Systems
	frontends for SSH and SFTP, Frontends for SSH and SFTP, Cyberduck, Fugu, SSH Agent
		Cyberduck application, Cyberduck
	Fugu graphical interface to OpenSSH, Fugu
	SSH Agent, SSH Agent

	remote login via, Remote Login
	servers mounted as network volumes, Mounting SSH Servers As Network Volumes
	virtual filesystems (Nautilus), Sharing Files with Other Operating Systems
	VNC over, VNC and SSH

	sshfs filesystem, Sharing Files with Other Operating Systems, Mounting SSH Servers As Network Volumes
	ssl_module (mod_ssl), ssl_module (mod_ssl)
	startup, Startup, Startup, Periodic Jobs, Booting Mac OS X, The Boot Loader, Initialization, launchd, SystemStarter, Mach Bootstrap Services, Creating Programs that Run Automatically, Launching with launchd, Login Preferences, SystemStarter, The property list, Launching with launchd, Periodic Jobs
		automatically starting applications, Creating Programs that Run Automatically, Launching with launchd, Login Preferences, SystemStarter, The property list, Launching with launchd
		launching with launchd, Launching with launchd
	login preferences, Login Preferences
	SystemStarter, SystemStarter, The property list

	booting Mac OS X, Booting Mac OS X, The Boot Loader, Initialization, launchd, SystemStarter, Mach Bootstrap Services
		boot loader, The Boot Loader
	initialization, Initialization
	launchd, launchd
	Mach bootstrap services, Mach Bootstrap Services
	SystemStarter, SystemStarter

	periodic jobs, Periodic Jobs
	Startup preferences, Terminal, Startup

	startup parameters property lists, keys used in, The property list
	state variables (kernel), sysctl, sysctl
	statistical computing package (R), R with an Aqua GUI
	stealth mode, enabling for ipfw, Enabling stealth mode
	Stepwise, Where to Go for More Information
	sticky notes service, The Services Menu
	subframeworks, Framework structure, Numerical Libraries
		of Accelerate framework, Numerical Libraries

	sudo command, The Terminal and xterm Compared, Using the Terminal
		editing motd file, Using the Terminal

	Summarize service, The Services Menu
	SuperDuper!, Partitioning for Linux
	SVN, Installing MacPorts from SVN, Connecting to the MacPorts SVN Repository
		connecting to MacPorts SVN repository, Connecting to the MacPorts SVN Repository
	installing MacPorts from, Installing MacPorts from SVN

	symbolic links, The System Library: libSystem, Library Versions
		for libraries in libSystem, The System Library: libSystem
	pointing to current version of a library, Library Versions

	sysctl utility, sysctl, sysctl
	/System/Library directory, The /System/Library Directory
	system alert sounds, X11 system, Output
	system library (libSystem), The System Library: libSystem
	system management tools, System Management Tools, Third-Party Applications, Diagnostic Utilities, vm_stat, Kernel Utilities, sysctl, System Configuration Utilities, nvram, Third-Party Applications
		diagnostic utilities, Diagnostic Utilities, vm_stat
	kernel utilities, Kernel Utilities, sysctl
	system configuration utilities, System Configuration Utilities, nvram
	third-party applications, Third-Party Applications

	System Preferences, launching AddPrinter, AddPrinter
	SystemStarter, Initialization, SystemStarter, SystemStarter, The property list, SystemStarter, The property list
		daemons starting automatically at boot time, SystemStarter
	invoking from command line to start or stop
 MySQL, The property list

T
	tab completion, Tab Completion
	tabs, creating and arranging in Terminal window, Launching Terminal Windows
	tar command, Creating and Distributing Installable Software
	tarballs, The First Line of Defense, Using GNU tar, Using GNU tar, Using GNU tar, Creating and Publishing the Tarball, Creating and Publishing the Tarball
		created with GNU tar, Using GNU tar
	creating and publishing for Fink package, Creating and Publishing the Tarball
	creating and publishing for MacPorts package, Creating and Publishing the Tarball
	disadvantages for software distribution, Using GNU tar
	installing software packaged as, Using GNU tar

	tcsh (TENEX C shell), Mac OS X Shells
	.term files, Saving Terminal settings in Mac OS X 10.4 Tiger, Saving Terminal settings in Mac OS X 10.5 Leopard
		exporting Terminal settings to, Saving Terminal settings in Mac OS X 10.5 Leopard

	Terminal, Inside the Terminal, The open Command, Mac OS X Shells, The Terminal and xterm Compared, The Terminal and xterm Compared, Using the Terminal, Launching Terminal Windows, Launching Terminal Windows, Launching Terminal Windows, Launching Terminal Windows, Double-clickable shell scripts, The Contextual Menu, Customizing the Terminal, Preferences, Customizing the Terminal on the Fly, Exporting and Importing Terminal Settings, Changing Your Shell, The Services Menu, Bonjour, Alternative Terminal Applications, The open Command, Managing Users and Passwords from the Terminal, AddPrinter, Running X11, X11 and the Rest of Mac OS X, FinkCommander
		alternative applications, Alternative Terminal Applications
	Bonjour, Bonjour
	changing default shell, Changing Your Shell
	comparison with xterm, The Terminal and xterm Compared
	contextual menu, The Contextual Menu
	creating and arranging tabs in a window, Launching Terminal Windows
	customizing, Customizing the Terminal, Preferences, Customizing the Terminal on the Fly, Exporting and Importing Terminal Settings
		exporting and importing settings, Exporting and Importing Terminal Settings
	Preferences, Preferences
	using shell scripts, Customizing the Terminal on the Fly

	customizing startup options for windows, Launching Terminal Windows
	cycling between open windows, Launching Terminal Windows
	launching, Using the Terminal
	launching AddPrinter, AddPrinter
	launching windows, Launching Terminal Windows, Double-clickable shell scripts
		using executable shell scripts, Double-clickable shell scripts

	launching X11-based applications, X11 and the Rest of Mac OS X
	managing users and passwords from, Managing Users and Passwords from the Terminal
	open command, The open Command
	running FinkCommander commands, FinkCommander
	Services menu, The Services Menu
	shells, Mac OS X Shells
	xterm command, The Terminal and xterm Compared
	xterm window versus, Running X11

	.terminal files, Launching Terminal Windows, Saving Terminal settings in Mac OS X 10.5 Leopard, Saving Terminal settings in Mac OS X 10.5 Leopard
		exporting settings in, Saving Terminal settings in Mac OS X 10.5 Leopard
	importing without launching, Saving Terminal settings in Mac OS X 10.5 Leopard

	Terminator, Alternative Terminal Applications
	TeX, TeX, Installing MacTeX, TeXShop, LaTeXiT
		installing MacTeX, Installing MacTeX
	LaTeXiT, LaTeXiT
	TeXShop, TeXShop

	text and graphics rendering, The Terminal and xterm Compared
	TextEdit, The Services Menu, The open Command
		opening files in, The open Command

	third-party applications for system management, Third-Party Applications
	3D modeling, 3D Modeling
	Tiger, The Contextual Menu, Saving Terminal settings in Mac OS X 10.4 Tiger, 64-Bit Computing
		64-bit computing, 64-Bit Computing
	saving Terminal settings, Saving Terminal settings in Mac OS X 10.4 Tiger
	Terminal contextual menu, The Contextual Menu

	TightVNC, VNC and SSH
	TinkerTool System, Third-Party Applications
	tips, MacOSXHints, Where to Go for More Information
	TkAqua, TKAqua
	Tomcat server, Java Enterprise Edition (Java EE), Java Enterprise Edition (Java EE)
		configuring to run as service at startup, Java Enterprise Edition (Java EE)

	top utility, top
	Tree SSA (Single Static Assignment) optimizations, Compiler Differences, Compiler Flags
		compiler flags enabling, Compiler Flags

	trigraphs, Header Files
	two-level namespaces, Two-Level Namespaces

U
	Ubuntu Linux, Installation and Configuration, Installation and Configuration, Linux on Older Macs, Parallels, VMware Fusion, Virtual PC, VirtualBox, QEMU
		configuration of Mac to run Ubuntu 8.04, Installation and Configuration
	installing from ISO disk image onto
 VirtualBox, VirtualBox
	installing from ISO image onto Virtual PC, Virtual PC
	installing Ubuntu 8.04 on Mac, Installation and Configuration
	prebuilt virtual machine image for Ubuntu 7.10, using
 with QEMU, QEMU
	setting up on Parallels, Parallels
	setting up under VMware Fusion, VMware Fusion

	UFS (Unix File System), Unix File System (UFS)
	umbrella frameworks, Framework structure
	Unison file synchronizer, Preserving Metadata, Sharing Files with Other Operating Systems
		preservation of resource forks, Preserving Metadata

	unistd.h header file, lcyrpt.h and values.h
	universal binaries, Universal Binaries for Multiple Architectures
	Unix, Manual printer configuration (Linux and Unix), Compiling Unix Source Code, Compiler Flags
		compiling Unix source code on Mac OS X, Compiling Unix Source Code, Compiler Flags
	manual printer configuration, Manual printer configuration (Linux and Unix)

	Unix File System (UFS), Unix File System (UFS)
	URLs, Working with File and Directory Names, The Services Menu
		dragging and dropping from web browser with
 curl, Working with File and Directory Names
	Open URL service, The Services Menu

	users, Using the Terminal, Managing Users and Passwords from the Terminal, Creating a user, Creating a user’s home directory, Modifying a user, Deleting a user
		creating, Creating a user
	deleting, Deleting a user
	home directory, creating, Creating a user’s home directory
	listing all with dscacheutil, Managing Users and Passwords from the Terminal
	modifying, Modifying a user
	user as administrator, Using the Terminal

V
	V attribute, Apple’s Hiding Places for File Metadata
	values.h header file, lcyrpt.h and values.h
	/var directory, The /var Directory
	vecLib framework, Numerical Libraries
	vector graphics, displaying with AquaTerm, AquaTerm
	Velocity Engine, AltiVec
	verbose mode, booting in, Booting Mac OS X
	versioned bundle structure, Framework structure
	VersionTracker, Where to Go for More Information
	video, Video, Open Source Video Players
		open source players, Open Source Video Players

	viewers, VNC, Virtual Network Computing (VNC), Aqua-based VNC servers
		Mac OS X VNC viewers, Aqua-based VNC servers

	vim editor, launching, Double-clickable shell scripts
	Vine server, Virtual Network Computing (VNC), Aqua-based VNC servers
		downloading, installing, and running, Aqua-based VNC servers

	Virtual Network Computing, Virtual Network Computing (VNC) (see VNC)
	Virtual PC, Dual-Boot and Beyond, Virtual PC
	Virtual SSH filesystems (Nautilus), Sharing Files with Other Operating Systems
	VirtualBox, VirtualBox
	virtualizers, Dual-Boot and Beyond, Mac-on-Linux, Parallels, VMware Fusion
		Mac-on-Linux, Mac-on-Linux
	Parallels, Parallels
	VMware Fusion, VMware Fusion

	VLC (multimedia player), Open Source Video Players
	VMware Fusion, Dual-Boot and Beyond, VMware Fusion
	vm_stat (virtual memory statistics), vm_stat
	VNC (Virtual Network Computing), Virtual Network Computing (VNC), Restarting VNC Connections, Launching VNC, VNC and SSH, Connecting to the Mac OS X VNC Server, Screen Sharing with iChat, Restarting VNC Connections, SSH Agent, Screen Sharing and Remote Management
		built-in client, Screen Sharing application, Screen Sharing and Remote Management
	connecting to Mac OS X VNC server, Connecting to the Mac OS X VNC Server
	launching, Launching VNC
	restarting connections, Restarting VNC Connections
	screen sharing with iChat, Screen Sharing with iChat
	SSH tunnel to VNC server using SSH Agent, SSH Agent
	tunneling connection through SSH, VNC and SSH

	volumes, resizing with diskutil, Partitioning for Linux

W
	wchar.h header file, wchar.h and iconv.h
	-Wconversion compiler flag, 64-Bit Computing
	web applications, development with Ruby and Rails, Ruby and Rails for Mac OS X Geeks
	Web Sharing, Web Sharing, bonjour_module (mod_bonjour)
		(see also Apache web server)

	WebDAV (Web-based Distributed Authoring and Versioning)
 module, dav_module (mod_dav)
	website for this book, Comments and Questions
	Wi-Fi network speed, Serving from Behind a Firewall
	wide character data types, wchar.h and iconv.h
	window groups (Terminal), Window groups
	window managers, installing with MacPorts, Dot-Files, Desktops, and Window Managers
	Windows systems, Bonjour, Sharing Files with Other Operating Systems, Configuring Directory Services, Aqua-based VNC servers, Why Bother?
		Active Directory plug-in for Directory
 Utility, Configuring Directory Services
	Bonjour for Windows, Bonjour
	running Windows applications on Mac, Why Bother?
	Samba file and printer sharing solution, Sharing Files with Other Operating Systems
	VNC clients and servers, Aqua-based VNC servers

	wireless access points, Serving from Behind a Firewall

X
	X Window System, The Terminal and xterm Compared, The open Command, The X Window System and VNC, OSX2X, Installing X11, Running X11, Customizing X11, Customizing X11’s Applications menu, Dot-Files, Desktops, and Window Managers, X11 Preferences, Applications Menu, and Dock Menu, X11-Based Applications and Libraries, X11 and the Rest of Mac OS X, Connecting to Other X Window Systems, OSX2X, Virtual Network Computing (VNC), Connecting to the Mac OS X VNC Server, R with an Aqua GUI, Video, X11-Based Applications and Libraries, AquaTerm
		connecting Mac OS X to other X Window systems, Connecting to Other X Window Systems
	connecting to Mac OS X VNC server, Connecting to the Mac OS X VNC Server
	installing X11, Installing X11
	interactions between X11 and Mac OS X, X11 and the Rest of Mac OS X
	opening applications in X11 environment, The open Command
	osx2x application, OSX2X
	running X11, Running X11
	standard X11 Unix versions of VNC, Virtual Network Computing (VNC)
	using AquaTerm instead of X11 libraries, AquaTerm
	using X11 graphics with R, R with an Aqua GUI
	X11 customizations, Customizing X11, Customizing X11’s Applications menu, Dot-Files, Desktops, and Window Managers, X11 Preferences, Applications Menu, and Dock Menu
		dot-files, desktops, and window managers, Dot-Files, Desktops, and Window Managers
	preferences, Applications menu, and Dock menu, X11 Preferences, Applications Menu, and Dock Menu

	X11-based applications and libraries, X11-Based Applications and Libraries, X11-Based Applications and Libraries
	X11-based video applications, Video

	X11 forwarding, Remote Login
	xclock application, displaying on Mac OS X desktop, Connecting to Other X Window Systems
	Xcode tools, Compiling Source Code, Building X11-Based Applications and Libraries, Installing Fink, Installing MacPorts
		installing, Building X11-Based Applications and Libraries, Installing Fink
	installing before MacPorts, Installing MacPorts

	Xgrid sharing, Xgrid Sharing
	.xinitrc script, Dot-Files, Desktops, and Window Managers
	xmkmf script, Building X11-Based Applications and Libraries
	XML property lists (plist), Saving Terminal settings in Mac OS X 10.4 Tiger, Saving Terminal settings in Mac OS X 10.5 Leopard, The property list
		MySQL startup parameters, The property list

	XML schema, Managing Spotlight, Managing Spotlight
		for Spotlight-collected metadata, Managing Spotlight

	xterm, The Terminal and xterm Compared, Customizing the Terminal on the Fly
		comparison with Terminal, The Terminal and xterm Compared
	setting window title, Customizing the Terminal on the Fly

	xterm window, Running X11, X11 and the Rest of Mac OS X
		copying between Mac OS X applications and, X11 and the Rest of Mac OS X
	opening, Running X11

	Xupport, Third-Party Applications

Y
	Yellow Dog Linux, Linux on Older Macs

Z
	ZeroConf standard, Bonjour
	.zip files, Creating and Distributing Installable Software
	zsh (Z shell), Mac OS X Shells

About the Authors
Ernest E. Rothman is a Professor of Mathematical Sciences at Salve Regina University (SRU) in Newport, Rhode Island. Ernie holds a PhD in Applied Mathematics from Brown University and a BS in Mathematics from Brooklyn College, CUNY. Before accepting a full-time faculty position at SRU in 1993, he held the positions of Research Associate and Scientific Software Analyst at the Cornell Theory Center at Cornell University in Ithaca, New York. His professional interests are in scientific computing, applied mathematics and computational science education, and the Unix underpinnings of Mac OS X. Ernie lives in southern Rhode Island with his wife Kim and Newfoundland dog Joseph. You can keep abreast of his latest activities at http://homepage.mac.com/samchops.
Brian Jepson is a, programmer, author, and executive editor for MAKE's book series. He's also a volunteer system administrator and all-around geek for AS220, a non-profit arts center in Providence, Rhode Island. AS220 gives Rhode Island artists uncensored and unjuried forums for their work. These forums include galleries, performance space, and publications. Brian sees to it that technology, especially little blinky bits of technology, supports that mission.
Rich Rosen's career began at Bell Labs, where his work with relational databases, Unix, and the Internet prepared him well for the world of Web application development. He's been a Macintosh user for over twenty years, currently using a Mac Mini as his home server, an iMac as the centerpiece of his home recording studio, and a MacBook for live musical performance and writing. He is the co-author of Web Application Architecture: Principles, Protocols & Practices, a textbook on advanced Web application development. Rich currently works at Interactive Data Corporation writing software for the Fixed Income Systems group. He holds an M.S. in Computer Science from Stevens Institute of Technology, and he lives in New Jersey with his wife, Celia.

Colophon
The animal on the cover of Mac OS X for Unix
 Geeks, Fourth Edition, is a leopard (Panthera
 pardus). The leopard is the fifth largest of all the big cats,
 behind the lion, tiger, jaguar, and mountain lion. It weighs between 70 and
 200 pounds and has a body length of four to six feet and a tail length of
 three to four feet. Leopards are strongly built, with a large head and
 powerful jaws, so they are able to kill prey much larger than themselves.
 They are nimble and stealthy hunters.
Leopards stalk their quarry and attack with a fatal bite to the neck.
 They feed on a wide variety of animals, including wildebeest, monkeys,
 rodents, insects, fish, snakes, and birds. They often store their larger
 kills in trees to protect them from scavengers and other cats. Extremely
 agile climbers, leopards can haul prey up to three times their body weight
 into a tree.
Leopards are the most widespread feline in the world; they can be
 found in Africa, India, China, and Central Asia. They are highly adaptable
 and live in open savannah, jungles, forests, and mountains. Leopards are
 nocturnal and spend their days resting in trees, where their spotted coats
 provide good camouflage. Most leopards
 have a tawny base coat with a black rosette (spot) pattern. The shade of
 their base coat depends on their environment: lighter colored leopards tend
 to live in warm, dry areas and open plains, and darker colored leopards tend
 to live in dense forests, as the darker coat helps them stay hidden.
The cover image was drawn by Lorrie LeJeune. The cover font is Adobe
 ITC Garamond. The text font is Linotype Birka; the heading font is Adobe
 Myriad Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages207135.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207215.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207237.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207107.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207149.png

OEBPS/httpatomoreillycomsourceoreillyimages207065.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207041.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207179.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207035.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207157.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207197.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207101.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207219.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207093.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207259.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207251.png

OEBPS/httpatomoreillycomsourceoreillyimages207205.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207097.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207241.png

OEBPS/httpatomoreillycomsourceoreillyimages207127.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207199.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207209.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207147.png

OEBPS/httpatomoreillycomsourceoreillyimages207115.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207037.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207057.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207269.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207105.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207261.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207195.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207081.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207263.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207217.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207243.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207023.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207049.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207047.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207257.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207125.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207071.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207207.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207029.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207141.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207183.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207039.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207137.png

OEBPS/httpatomoreillycomsourceoreillyimages207073.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207221.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207153.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207239.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207055.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207077.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207109.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207201.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207161.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207111.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207211.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207059.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207235.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207069.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207173.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207031.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207027.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207143.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207013.png

OEBPS/httpatomoreillycomsourceoreillyimages207151.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207249.png

OEBPS/httpatomoreillycomsourceoreillyimages207169.png

OEBPS/httpatomoreillycomsourceoreillyimages207133.png

OEBPS/httpatomoreillycomsourceoreillyimages207185.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207155.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207225.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207089.png

OEBPS/httpatomoreillycomsourceoreillyimages207267.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207008.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207113.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207079.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207163.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207119.png

OEBPS/httpatomoreillycomsourceoreillyimages207181.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207129.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207175.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207171.png

OEBPS/httpatomoreillycomsourceoreillyimages207045.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207053.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207033.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207165.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207159.png

OEBPS/httpatomoreillycomsourceoreillyimages207229.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207103.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207099.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207123.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207019.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207253.png

OEBPS/httpatomoreillycomsourceoreillyimages207067.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207025.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207085.png

OEBPS/httpatomoreillycomsourceoreillyimages207189.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207117.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207265.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207121.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207145.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207191.png.jpg

OEBPS/oreilly_large.gif

OEBPS/httpatomoreillycomsourceoreillyimages207167.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207051.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207231.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207247.png

OEBPS/httpatomoreillycomsourceoreillyimages207095.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207187.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207255.png

OEBPS/httpatomoreillycomsourceoreillyimages207223.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207177.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207203.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207131.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207227.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207021.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207091.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207245.png

OEBPS/httpatomoreillycomsourceoreillyimages207233.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207063.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207043.png

OEBPS/httpatomoreillycomsourceoreillyimages207193.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207087.png

OEBPS/httpatomoreillycomsourceoreillyimages207213.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207017.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207139.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207083.png

OEBPS/httpatomoreillycomsourceoreillyimages207015.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207061.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages207075.png.jpg

