

 [image: Second Edition.]

 High Performance MySQL, 2nd Edition

Baron Schwartz

Peter Zaitsev

Vadim Tkachenko

Jeremy D. Zawodny

Arjen Lentz

Derek J. Balling

Editor
Andy Oram

Copyright © 2008 Peter Zaitsev,Vadim Tkachenko,Arjen Lentz,Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Arjen Lentz, Baron Schwartz

O'Reilly books may be purchased for educational, business, or
 sales promotional use. Online editions are also available for most
 titles (http://safari.oreilly.com). For
 more information, contact our corporate/institutional sales department:
 (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly
 logo are registered trademarks of O'Reilly Media, Inc. High
 Performance MySQL, the image of a sparrow hawk, and related
 trade dress are trademarks of O'Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O'Reilly Media, Inc. was aware of
 a trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Foreword

I have known Peter, Vadim, and Arjen a long time and have witnessed
 their long history of both using MySQL for their own projects and tuning
 it for a lot of different high-profile customers. On his side, Baron has
 written client software that enhances the usability of MySQL.
The authors' backgrounds are clearly reflected in their complete
 reworking in this second edition of High Performance MySQL:
 Optimizations, Replication, Backups, and More. It's not just a
 book that tells you how to optimize your work to use MySQL better than
 ever before. The authors have done considerable extra work, carrying out
 and publishing benchmark results to prove their points. This will give
 you, the reader, a lot of valuable insight into MySQL's inner workings
 that you can't easily find in any other book. In turn, that will allow you
 to avoid a lot of mistakes in the future that can lead to suboptimal
 performance.
I recommend this book both to new users of MySQL who have played
 with the server a little and now are ready to write their first real
 applications, and to experienced users who already have well-tuned
 MySQL-based applications but need to get "a little more" out of
 them.
—Michael Widenius
March 2008

Preface

We had several goals in mind for this book. Many of them were
 derived from thinking about that mythical perfect MySQL book that none of
 us had read but that we kept looking for on bookstore shelves. Others came
 from a lot of experience helping other users put MySQL to work in their
 environments.
We wanted a book that wasn't just a SQL primer. We wanted a book
 with a title that didn't start or end in some arbitrary time frame (" … in
 Thirty Days," "Seven Days To a Better … ") and didn't talk down to the
 reader. Most of all, we wanted a book that would help you take your skills
 to the next level and build fast, reliable systems with MySQL—one that
 would answer questions like "How can I set up a cluster of MySQL servers
 capable of handling millions upon millions of queries and ensure that
 things keep running even if a couple of the servers die?"
We decided to write a book that focused not just on the needs of the
 MySQL application developer but also on the rigorous demands of the MySQL
 administrator, who needs to keep the system up and running no matter what
 the programmers or users may throw at the server. Having said that, we
 assume that you are already relatively experienced with MySQL and,
 ideally, have read an introductory book on it. We also assume some
 experience with general system administration, networking, and Unix-like
 operating systems.
This revised and expanded second edition includes deeper coverage of
 all the topics in the first edition and many new topics as well. This is
 partly a response to the changes that have taken place since the book was
 first published: MySQL is a much larger and more complex piece of software
 now. Just as importantly, its popularity has exploded. The MySQL community
 has grown much larger, and big corporations are now adopting MySQL for
 their mission-critical applications. Since the first edition, MySQL has
 become recognized as ready for the enterprise. [1] People are also using it more and more in applications that
 are exposed to the Internet, where downtime and other problems cannot be
 concealed or tolerated.
As a result, this second edition has a slightly different focus than
 the first edition. We emphasize reliability and correctness just as much
 as performance, in part because we have used MySQL ourselves for
 applications where significant amounts of money are riding on the database
 server. We also have deep experience in web applications, where MySQL has
 become very popular. The second edition speaks to the expanded world of
 MySQL, which didn't exist in the same way when the first edition was
 written.
How This Book Is Organized

We fit a lot of complicated topics into this book. Here, we
 explain how we put them together in an order that makes them easier to
 learn.
A Broad Overview

Chapter 1, MySQL
 Architecture, is dedicated to the basics—things you'll need
 to be familiar with before you dig in deeply. You need to understand
 how MySQL is organized before you'll be able to use it effectively.
 This chapter explains MySQL's architecture and key facts about its
 storage engines. It helps you get up to speed if you aren't familiar
 with some of the fundamentals of a relational database, including
 transactions. This chapter will also be useful if this book is your
 introduction to MySQL but you're already familiar with another
 database, such as Oracle.

Building a Solid Foundation

The next four chapters cover material you'll find yourself
 referencing over and over as you use MySQL.
Chapter 2,
 Finding Bottlenecks: Benchmarking and Profiling,
 discusses the basics of benchmarking and profiling—that is,
 determining what sort of workload your server can handle, how fast it
 can perform certain tasks, and so on. You'll want to benchmark your
 application both before and after any major change, so you can judge
 how effective your changes are. What seems to be a positive change may
 turn out to be a negative one under real-world stress, and you'll
 never know what's really causing poor performance unless you measure
 it accurately.
In Chapter 3,
 Schema Optimization and Indexing, we cover the
 various nuances of data types, table design, and indexes. A
 well-designed schema helps MySQL perform much better, and many of the
 things we discuss in later chapters hinge on how well your application
 puts MySQL's indexes to work. A firm understanding of indexes and how
 to use them well is essential for using MySQL effectively, so you'll
 probably find yourself returning to this chapter repeatedly.
Chapter 4,
 Query Performance Optimization, explains how
 MySQL executes queries and how you can take advantage of its query
 optimizer's strengths. Having a firm grasp of how the query optimizer
 works will do wonders for your queries and will help you understand
 indexes better. (Indexing and query optimization are sort of a
 chicken-and-egg problem; reading Chapter 3 again after you read
 Chapter 4 might be useful.)
 This chapter also presents specific examples of virtually all common
 classes of queries, illustrating where MySQL does a good job and how
 to transform queries into forms that take advantage of its
 strengths.
Up to this point, we've covered the basic topics that apply to
 any database: tables, indexes, data, and queries. Chapter 5, Advanced MySQL
 Features, goes beyond the basics and shows you how MySQL's
 advanced features work. We examine the query cache, stored procedures,
 triggers, character sets, and more. MySQL's implementation of these
 features is different from other databases, and a good understanding
 of them can open up new opportunities for performance gains that you
 might not have thought about otherwise.

Tuning Your Application

The next two chapters discuss how to make changes to improve
 your MySQL-based application's performance.
In Chapter 6,
 Optimizing Server Settings, we discuss how you
 can tune MySQL to make the most of your hardware and to work as well
 as possible for your specific application. Chapter 7,
 Operating System and Hardware Optimization,
 explains how to get the most out of your operating system and
 hardware. We also suggest hardware configurations that may provide
 better performance for larger-scale applications.

Scaling Upward After Making Changes

One server isn't always enough. In Chapter 8, Replication, we discuss
 replication—that is, getting your data copied automatically to
 multiple servers. When combined with the scaling, load-balancing, and
 high availability lessons in Chapter 9, Scaling and High
 Availability, this will provide you with the groundwork for
 scaling your applications as large as you need them to be.
An application that runs on a large-scale MySQL backend often
 provides significant opportunities for optimization in the application
 itself. There are better and worse ways to design large applications.
 While this isn't the primary focus of the book, we don't want you to
 spend all your time concentrating on MySQL. Chapter 10,
 Application-Level Optimization, will help you
 discover the low-hanging fruit in your overall architecture,
 especially if it's a web application.

Making Your Application Reliable

The best-designed, most scalable architecture in the world is no
 good if it can't survive power outages, malicious attacks, application
 bugs or programmer mistakes, and other disasters.
In Chapter 11, Backup and
 Recovery, we discuss various backup and recovery strategies
 for your MySQL databases. These strategies will help minimize your
 downtime in the event of inevitable hardware failure and ensure that
 your data survives such catastrophes.
Chapter 12, Security,
 provides you with a firm grasp of some of the security issues involved
 in running a MySQL server. More importantly, we offer many suggestions
 to allow you to prevent outside parties from harming the servers
 you've spent all this time trying to configure and optimize. We
 explain some of the rarely explored areas of database security,
 showing both the benefits and performance impacts of various
 practices. Usually, in terms of performance, it pays to keep security
 policies simple.

Miscellaneous Useful Topics

In the last few chapters and the book's appendixes, we delve
 into several topics that either don't "fit" in any of the earlier
 chapters or are referenced often enough in multiple chapters that they
 deserve a bit of special attention.
Chapter 13, MySQL Server
 Status shows you how to inspect your MySQL server. Knowing
 how to get status information from the server is important; knowing
 what that information means is even more important. We cover SHOW INNODB STATUS in particular detail,
 because it provides deep insight into the operations of the InnoDB
 transactional storage engine.
Chapter 14, Tools
 for High Performance covers tools you can use to manage
 MySQL more efficiently. These include monitoring and analysis tools,
 tools that help you write queries, and so on. This chapter covers the
 Maatkit tools Baron created, which can enhance MySQL's functionality
 and make your life as a database administrator easier. It also
 demonstrates a program called innotop, which
 Baron wrote as an easy-to-use interface to what your MySQL server is
 presently doing. It functions much like the Unix
 top command and can be invaluable at all phases
 of the tuning process to monitor what's happening inside MySQL and its
 storage engines.
Appendix A,
 Transferring Large Files, shows you how to copy
 very large files from place to place efficiently—a must if you are
 going to manage large volumes of data. Appendix B, Using EXPLAIN, shows
 you how to really use and understand the all-important EXPLAIN command. Appendix C, Using Sphinx with
 MySQL, is an introduction to Sphinx, a high-performance
 full-text indexing system that can complement MySQL's own abilities.
 And finally, Appendix D, Debugging
 Locks, shows you how to decipher what's going on when
 queries are requesting locks that interfere with each other.

[1] We think this phrase is mostly marketing fluff, but it seems to
 convey a sense of importance to a lot of people.

Software Versions and Availability

MySQL is a moving target. In the years since Jeremy wrote the
 outline for the first edition of this book, numerous releases of MySQL
 have appeared. MySQL 4.1 and 5.0 were available only as alpha versions
 when the first edition went to press, but these versions have now been
 in production for years, and they are the backbone of many of today's
 large online applications. As we completed this second edition, MySQL
 5.1 and 6.0 were the bleeding edge instead. (MySQL 5.1 is a release
 candidate, and 6.0 is alpha.)
We didn't rely on one single version of MySQL for this book.
 Instead, we drew on our extensive collective knowledge of MySQL in the
 real world. The core of the book is focused on MySQL 5.0, because that's
 what we consider the "current" version. Most of our examples assume
 you're running some reasonably mature version of MySQL 5.0, such as
 MySQL 5.0.40 or newer. We have made an effort to note features or
 functionalities that may not exist in older releases or that may exist
 only in the upcoming 5.1 series. However, the definitive reference for
 mapping features to specific versions is the MySQL documentation itself.
 We expect that you'll find yourself visiting the annotated online
 documentation (http://dev.mysql.com/doc/) from
 time to time as you read this book.
Another great aspect of MySQL is that it runs on all of today's
 popular platforms: Mac OS X, Windows, GNU/Linux, Solaris, FreeBSD, you
 name it! However, we are biased toward GNU/Linux [2] and other Unix-like operating systems. Windows users are
 likely to encounter some differences. For example, file paths are
 completely different. We also refer to standard Unix command-line
 utilities; we assume you know the corresponding commands in Windows.
 [3]
Perl is the other rough spot when dealing with MySQL on Windows.
 MySQL comes with several useful utilities that are written in Perl, and
 certain chapters in this book present example Perl scripts that form the
 basis of more complex tools you'll build. Maatkit is also written in
 Perl. However, Perl isn't included with Windows. In order to use these
 scripts, you'll need to download a Windows version of Perl from
 ActiveState and install the necessary add-on modules (DBI and DBD::mysql) for MySQL access.

[2] To avoid confusion, we refer to Linux when we are writing
 about the kernel, and GNU/Linux when we are writing about the whole
 operating system infrastructure that supports applications.

[3] You can get Windows-compatible versions of Unix utilities at
 http://unxutils.sourceforge.net or http://gnuwin32.sourceforge.net.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Used for new terms, URLs, email addresses, usernames,
 hostnames, filenames, file extensions, pathnames, directories, and
 Unix commands and utilities.

	Constant width
	Indicates elements of code, configuration options, database
 and table names, variables and their values, functions, modules,
 the contents of files, or the output from commands.

	Constant width
 bold
	Shows commands or other text that should be typed literally
 by the user. Also used for emphasis in command output.

	Constant width italic
	Shows text that should be replaced with user-supplied
 values.

Tip
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You
 don't need to contact us for permission unless you're reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book doesn't require permission.
 Selling or distributing a CD-ROM of examples from O'Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code doesn't require permission.
 Incorporating a significant amount of example code from this book into
 your product's documentation does require
 permission.
Examples are maintained on the site http://www.highperfmysql.com and will be updated there
 from time to time. We cannot commit, however, to updating and testing
 the code for every minor release of MySQL.
We appreciate, but don't require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 "High Performance MySQL: Optimization, Backups, Replication,
 and More, Second Edition, by Baron Schwartz et al. Copyright
 2008 O'Reilly Media, Inc., 9780596101718."
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O'Reilly Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596101718/

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O'Reilly Network, see our web site at:
	http://www.oreilly.com

You can also get in touch with the authors directly. Baron's
 weblog is at http://www.xaprb.com.
Peter and Vadim maintain two weblogs, the well-established and
 popular http://www.mysqlperformanceblog.com and
 the more recent http://www.webscalingblog.com. You
 can find the web site for their company, Percona, at http://www.percona.com.
Arjen's company, OpenQuery, has a web site at http://openquery.com.au. Arjen also maintains a weblog at
 http://arjen-lentz.livejournal.com and a personal
 site at http://lentz.com.au.

Acknowledgments for the Second Edition

Sphinx developer Andrew Aksyonoff wrote Appendix C, Using Sphinx with
 MySQL We'd like to thank him first for his in-depth
 discussion.
We have received invaluable help from many people while writing
 this book. It's impossible to list everyone who gave us help—we really
 owe thanks to the entire MySQL community and everyone at MySQL AB.
 However, here's a list of people who contributed directly, with
 apologies if we've missed anyone: Tobias Asplund, Igor Babaev, Pascal
 Borghino, Roland Bouman, Ronald Bradford, Mark Callaghan, Jeremy Cole,
 Britt Crawford and the HiveDB Project, Vasil Dimov, Harrison Fisk,
 Florian Haas, Dmitri Joukovski and Zmanda (thanks for the diagram
 explaining LVM snapshots), Alan Kasindorf, Sheeri Kritzer Cabral, Marko
 Makela, Giuseppe Maxia, Paul McCullagh, B. Keith Murphy, Dhiren Patel,
 Sergey Petrunia, Alexander Rubin, Paul Tuckfield, Heikki Tuuri, and
 Michael "Monty" Widenius.
A special thanks to Andy Oram and Isabel Kunkle, our editor and
 assistant editor at O'Reilly, and to Rachel Wheeler, the copyeditor.
 Thanks also to the rest of the O'Reilly staff.
From Baron

I would like to thank my wife Lynn Rainville and our dog Carbon.
 If you've written a book, I'm sure you know how grateful I am to them.
 I also owe a huge debt of gratitude to Alan Rimm-Kaufman and my
 colleagues at the Rimm-Kaufman Group for their support and
 encouragement during this project. Thanks to Peter, Vadim, and Arjen
 for giving me the opportunity to make this dream come true. And thanks
 to Jeremy and Derek for breaking the trail for us.

From Peter

I've been doing MySQL performance and scaling presentations,
 training, and consulting for years, and I've always wanted to reach a
 wider audience, so I was very excited when Andy Oram approached me to
 work on this book. I have not written a book before, so I wasn't
 prepared for how much time and effort it required. We first started
 talking about updating the first edition to cover recent versions of
 MySQL, but we wanted to add so much material that we ended up
 rewriting most of the book.
This book is truly a team effort. Because I was very busy
 bootstrapping Percona, Vadim's and my consulting company, and because
 English is not my first language, we all had different roles. I
 provided the outline and technical content, then I reviewed the
 material, revising and extending it as we wrote. When Arjen (the
 former head of the MySQL documentation team) joined the project, we
 began to fill out the outline. Things really started to roll once we
 brought in Baron, who can write high-quality book content at insane
 speeds. Vadim was a great help with in-depth MySQL source code checks
 and when we needed to back our claims with benchmarks and other
 research.
As we worked on the book, we found more and more areas we wanted
 to explore in more detail. Many of the book's topics, such as
 replication, query optimization, InnoDB, architecture, and design
 could easily fill their own books, so we had to stop somewhere and
 leave some material for a possible future edition or for our blogs,
 presentations, and articles.
We got great help from our reviewers, who are the top MySQL
 experts in the world, from both inside and outside of MySQL AB. These
 include MySQL's founder, Michael Widenius; InnoDB's founder, Heikki
 Tuuri; Igor Babaev, the head of the MySQL optimizer team; and many
 others.
I would also like to thank my wife, Katya Zaytseva, and my
 children, Ivan and Nadezhda, for allowing me to spend time on the book
 that should have been Family Time. I'm also grateful to Percona's
 employees for handling things when I disappeared to work on the book,
 and of course to Andy Oram and O'Reilly for making things
 happen.

From Vadim

I would like to thank Peter, who I am excited to have worked
 with on this book and look forward to working with on other projects;
 Baron, who was instrumental in getting this book done; and Arjen, who
 was a lot of fun to work with. Thanks also to our editor Andy Oram,
 who had enough patience to work with us; the MySQL team that created
 great software; and our clients who provide me the opportunities to
 fine tune my MySQL understanding. And finally a special thank you to
 my wife, Valerie, and our sons, Myroslav and Timur, who always support
 me and help me to move forward.

From Arjen

I would like to thank Andy for his wisdom, guidance, and
 patience. Thanks to Baron for hopping on the second edition train
 while it was already in motion, and to Peter and Vadim for solid
 background information and benchmarks. Thanks also to Jeremy and Derek
 for the foundation with the first edition; as you wrote in my copy,
 Derek: "Keep 'em honest, that's all I ask."
Also thanks to all my former colleagues (and present friends) at
 MySQL AB, where I acquired most of what I know about the topic; and in
 this context a special mention for Monty, whom I continue to regard as
 the proud parent of MySQL, even though his company now lives on as
 part of Sun Microsystems. I would also like to thank everyone else in
 the global MySQL community.
And last but not least, thanks to my daughter Phoebe, who at
 this stage in her young life does not care about this thing called
 "MySQL," nor indeed has she any idea which of The Wiggles it might
 refer to! For some, ignorance is truly bliss, and they provide us with
 a refreshing perspective on what is really important in life; for the
 rest of you, may you find this book a useful addition on your
 reference bookshelf. And don't forget your life.

Acknowledgments for the First Edition

A book like this doesn't come into being without help from
 literally dozens of people. Without their assistance, the book you hold
 in your hands would probably still be a bunch of sticky notes on the
 sides of our monitors. This is the part of the book where we get to say
 whatever we like about the folks who helped us out, and we don't have to
 worry about music playing in the background telling us to shut up and go
 away, as you might see on TV during an awards show.
We couldn't have completed this project without the constant
 prodding, begging, pleading, and support from our editor, Andy Oram. If
 there is one person most responsible for the book in your hands, it's
 Andy. We really do appreciate the weekly nag sessions.
Andy isn't alone, though. At O'Reilly there are a bunch of other
 folks who had some part in getting those sticky notes converted to a
 cohesive book that you'd be willing to read, so we also have to thank
 the production, illustration, and marketing folks for helping to pull
 this book together. And, of course, thanks to Tim O'Reilly for his
 continued commitment to producing some of the industry's finest
 documentation for popular open source software.
Finally, we'd both like to give a big thanks to the folks who
 agreed to look over the various drafts of the book and tell us all the
 things we were doing wrong: our reviewers. They spent part of their 2003
 holiday break looking over roughly formatted versions of this text, full
 of typos, misleading statements, and outright mathematical errors. In no
 particular order, thanks to Brian "Krow" Aker, Mark "JDBC" Matthews,
 Jeremy "the other Jeremy" Cole, Mike "VBMySQL.com" Hillyer, Raymond "Rainman"
 De Roo, Jeffrey "Regex Master" Friedl, Jason DeHaan, Dan Nelson, Steve
 "Unix Wiz" Friedl, and, last but not least, Kasia "Unix Girl"
 Trapszo.
From Jeremy

I would again like to thank Andy for agreeing to take on this
 project and for continually beating on us for more chapter material.
 Derek's help was essential for getting the last 20–30% of the book
 completed so that we wouldn't miss yet another target date. Thanks for
 agreeing to come on board late in the process and deal with my
 sporadic bursts of productivity, and for handling the XML grunt work,
 Chapter 10, Appendix C, and all the other stuff I threw
 your way.
I also need to thank my parents for getting me that first
 Commodore 64 computer so many years ago. They not only tolerated the
 first 10 years of what seems to be a lifelong obsession with
 electronics and computer technology, but quickly became supporters of
 my never-ending quest to learn and do more.
Next, I'd like to thank a group of people I've had the distinct
 pleasure of working with while spreading MySQL religion at Yahoo!
 during the last few years. Jeffrey Friedl and Ray Goldberger provided
 encouragement and feedback from the earliest stages of this
 undertaking. Along with them, Steve Morris, James Harvey, and Sergey
 Kolychev put up with my seemingly constant experimentation on the
 Yahoo! Finance MySQL servers, even when it interrupted their important
 work. Thanks also to the countless other Yahoo!s who have helped me
 find interesting MySQL problems and solutions. And, most importantly,
 thanks for having the trust and faith in me needed to put MySQL into
 some of the most important and visible parts of Yahoo!'s
 business.
Adam Goodman, the publisher and owner of Linux
 Magazine, helped me ease into the world of writing for a
 technical audience by publishing my first feature-length MySQL
 articles back in 2001. Since then, he's taught me more than he
 realizes about editing and publishing and has encouraged me to
 continue on this road with my own monthly column in the magazine.
 Thanks, Adam.
Thanks to Monty and David for sharing MySQL with the world.
 Speaking of MySQL AB, thanks to all the other great folks there who
 have encouraged me in writing this: Kerry, Larry, Joe, Marten, Brian,
 Paul, Jeremy, Mark, Harrison, Matt, and the rest of the team there.
 You guys rock.
Finally, thanks to all my weblog readers for encouraging me to
 write informally about MySQL and other technical topics on a daily
 basis. And, last but not least, thanks to the Goon Squad.

From Derek

Like Jeremy, I've got to thank my family, for much the same
 reasons. I want to thank my parents for their constant goading that I
 should write a book, even if this isn't anywhere near what they had in
 mind. My grandparents helped me learn two valuable lessons, the
 meaning of the dollar and how much I would fall in love with
 computers, as they loaned me the money to buy my first Commodore
 VIC-20.
I can't thank Jeremy enough for inviting me to join him on the
 whirlwind book-writing roller coaster. It's been a great experience
 and I look forward to working with him again in the future.
A special thanks goes out to Raymond De Roo, Brian Wohlgemuth,
 David Calafrancesco, Tera Doty, Jay Rubin, Bill Catlan, Anthony Howe,
 Mark O'Neal, George Montgomery, George Barber, and the myriad other
 people who patiently listened to me gripe about things, let me bounce
 ideas off them to see whether an outsider could understand what I was
 trying to say, or just managed to bring a smile to my face when I
 needed it most. Without you, this book might still have been written,
 but I almost certainly would have gone crazy in the process.

Chapter 1. MySQL Architecture

MySQL's architecture is very different from that of other database
 servers, and makes it useful for a wide range of purposes. MySQL is not
 perfect, but it is flexible enough to work well in very demanding
 environments, such as web applications. At the same time, MySQL can power
 embedded applications, data warehouses, content indexing and delivery
 software, highly available redundant systems, online transaction
 processing (OLTP), and much more.
To get the most from MySQL, you need to understand its design so
 that you can work with it, not against it. MySQL is flexible in many ways.
 For example, you can configure it to run well on a wide range of hardware,
 and it supports a variety of data types. However, MySQL's most unusual and
 important feature is its storage-engine architecture, whose design
 separates query processing and other server tasks from data storage and
 retrieval. In MySQL 5.1, you can even load storage engines as runtime
 plug-ins. This separation of concerns lets you choose, on a per-table
 basis, how your data is stored and what performance, features, and other
 characteristics you want.
This chapter provides a high-level overview of the MySQL server
 architecture, the major differences between the storage engines, and why
 those differences are important. We've tried to explain MySQL by
 simplifying the details and showing examples. This discussion will be
 useful for those new to database servers as well as readers who are
 experts with other database servers.
MySQL's Logical Architecture

A good mental picture of how MySQL's components work together will
 help you understand the server. Figure 1-1 shows a logical
 view of MySQL's architecture.
The topmost layer contains the services that aren't unique to
 MySQL. They're services most network-based client/server tools or
 servers need: connection handling, authentication, security, and so
 forth.
[image: A logical view of the MySQL server architecture]

Figure 1-1. A logical view of the MySQL server architecture

The second layer is where things get interesting. Much of MySQL's brains are here, including the code for query
 parsing, analysis, optimization, caching, and all the built-in functions
 (e.g., dates, times, math, and encryption). Any functionality provided
 across storage engines lives at this level: stored procedures,
 triggers, and views, for example.
The third layer contains the storage engines. They are responsible
 for storing and retrieving all data stored "in" MySQL. Like the various
 filesystems available for GNU/Linux, each storage engine has its own
 benefits and drawbacks. The server communicates with them through the
 storage engine API. This interface hides
 differences between storage engines and makes them largely transparent
 at the query layer. The API contains a couple of dozen low-level
 functions that perform operations such as "begin a transaction" or
 "fetch the row that has this primary key." The storage engines don't
 parse SQL[4] or communicate with each other; they simply respond to
 requests from the server.
Connection Management and Security

Each client connection gets its own thread within the server
 process. The connection's queries execute within that single thread,
 which in turn resides on one core or CPU. The server caches threads,
 so they don't need to be created and destroyed for each new
 connection.[5]
When clients (applications) connect to the MySQL server, the
 server needs to authenticate them. Authentication is based on username, originating host,
 and password. X.509 certificates can also be used across an Secure
 Sockets Layer (SSL) connection. Once a client has connected, the
 server verifies whether the client has privileges for each query it
 issues (e.g., whether the client is allowed to issue a SELECT statement that accesses the Country table in the world database). We cover these topics in
 detail in Chapter 12.

Optimization and Execution

MySQL parses queries to create an internal structure (the parse
 tree), and then applies a variety of optimizations. These may include rewriting the query,
 determining the order in which it will read tables, choosing which
 indexes to use, and so on. You can pass hints to the optimizer through special keywords in the query,
 affecting its decision-making process. You can also ask the server to
 explain various aspects of optimization. This lets you know what
 decisions the server is making and gives you a reference point for
 reworking queries, schemas, and settings to make everything run as
 efficiently as possible. We discuss the optimizer in much more detail
 in Chapter 4.
The optimizer does not really care what storage engine a
 particular table uses, but the storage engine does affect how the
 server optimizes the query. The optimizer asks the storage engine
 about some of its capabilities and the cost of certain operations, and
 for statistics on the table data. For instance, some storage engines
 support index types that can be helpful to certain queries. You can
 read more about indexing and schema optimization in Chapter 3.
Before even parsing the query, though, the server consults the
 query cache, which can store only SELECT statements, along with their result
 sets. If anyone issues a query that's identical to one already in the
 cache, the server doesn't need to parse, optimize, or execute the
 query at all—it can simply pass back the stored result set! We discuss
 the query cache at length in "The MySQL Query Cache" on The MySQL Query Cache.

[4] One exception is InnoDB, which does parse foreign key
 definitions, because the MySQL server doesn't yet implement them
 itself.

[5] MySQL AB plans to separate connections from threads in a future version of the
 server.

Concurrency Control

Anytime more than one query needs to change data at the same time,
 the problem of concurrency control arises. For our purposes in this
 chapter, MySQL has to do this at two levels: the server level and the
 storage engine level. Concurrency control is a big topic to which a
 large body of theoretical literature is devoted, but this book isn't
 about theory or even about MySQL internals. Thus, we will just give you
 a simplified overview of how MySQL deals with concurrent readers and
 writers, so you have the context you need for the rest of this
 chapter.
We'll use an email box on a Unix system as an example. The classic
 mbox file format is very simple. All the messages
 in an mbox mailbox are concatenated together, one
 after another. This makes it very easy to read and parse mail messages.
 It also makes mail delivery easy: just append a new message to the end
 of the file.
But what happens when two processes try to deliver messages at the
 same time to the same mailbox? Clearly that could corrupt the mailbox,
 leaving two interleaved messages at the end of the mailbox file.
 Well-behaved mail delivery systems use locking to prevent corruption. If
 a client attempts a second delivery while the mailbox is locked, it must
 wait to acquire the lock itself before delivering its message.
This scheme works reasonably well in practice, but it gives no
 support for concurrency. Because only a single process can change the
 mailbox at any given time, this approach becomes problematic with a
 high-volume mailbox.
Read/Write Locks

Reading from the mailbox isn't as troublesome. There's nothing
 wrong with multiple clients reading the same mailbox simultaneously;
 because they aren't making changes, nothing is likely to go wrong. But
 what happens if someone tries to delete message number 25 while
 programs are reading the mailbox? It depends, but a reader could come
 away with a corrupted or inconsistent view of the mailbox. So, to be
 safe, even reading from a mailbox requires special care.
If you think of the mailbox as a database table and each mail
 message as a row, it's easy to see that the problem is the same in
 this context. In many ways, a mailbox is really just a simple database
 table. Modifying rows in a database table is very similar to removing
 or changing the content of messages in a mailbox file.
The solution to this classic problem of concurrency control is
 rather simple. Systems that deal with concurrent read/write access
 typically implement a locking system that consists of two lock types.
 These locks are usually known as shared locks and
 exclusive locks, or read
 locks and write locks.
Without worrying about the actual locking technology, we can
 describe the concept as follows. Read locks on a resource are shared, or mutually
 nonblocking: many clients may read from a resource at the same time
 and not interfere with each other. Write locks, on the other hand, are
 exclusive—i.e., they block both read locks and other write
 locks—because the only safe policy is to have a single client writing
 to the resource at given time and to prevent all reads when a client
 is writing.
In the database world, locking happens all the time: MySQL has
 to prevent one client from reading a piece of data while another is
 changing it. It performs this lock management internally in a way that
 is transparent much of the time.

Lock Granularity

One way to improve the concurrency of a shared resource is to be more selective
 about what you lock. Rather than locking the entire resource, lock
 only the part that contains the data you need to change. Better yet,
 lock only the exact piece of data you plan to change. Minimizing the
 amount of data that you lock at any one time lets changes to a given
 resource occur simultaneously, as long as they don't conflict with
 each other.
The problem is locks consume resources. Every lock
 operation—getting a lock, checking to see whether a lock is free,
 releasing a lock, and so on—has overhead. If the system spends too
 much time managing locks instead of storing and retrieving data,
 performance can suffer.
A locking strategy is a compromise between lock overhead and
 data safety, and that compromise affects performance. Most commercial
 database servers don't give you much choice: you get what is known as
 row-level locking in your tables, with a variety of often complex ways
 to give good performance with many locks.
MySQL, on the other hand, does offer choices. Its storage
 engines can implement their own locking policies and lock
 granularities. Lock management is a very important decision in storage
 engine design; fixing the granularity at a certain level can give better
 performance for certain uses, yet make that engine less suited for
 other purposes. Because MySQL offers multiple storage engines, it
 doesn't require a single general-purpose solution. Let's have a look
 at the two most important lock strategies.
Table locks

The most basic locking strategy available in MySQL, and the
 one with the lowest overhead, is table locks. A
 table lock is analogous to the mailbox locks described earlier: it
 locks the entire table. When a client wishes to write to a table
 (insert, delete, update, etc.), it acquires a write lock. This keeps
 all other read and write operations at bay. When nobody is writing,
 readers can obtain read locks, which don't conflict with other read
 locks.
Table locks have variations for good performance in specific
 situations. For example, READ
 LOCAL table locks allow some types of concurrent write
 operations. Write locks also have a higher priority than read locks,
 so a request for a write lock will advance to the front of the lock
 queue even if readers are already in the queue (write locks can
 advance past read locks in the queue, but read locks cannot advance
 past write locks).
Although storage engines can manage their own locks, MySQL
 itself also uses a variety of locks that are effectively table-level for various
 purposes. For instance, the server uses a table-level lock for
 statements such as ALTER TABLE,
 regardless of the storage engine.

Row locks

The locking style that offers the greatest concurrency (and carries the greatest overhead) is the
 use of row locks. Row-level locking, as this
 strategy is commonly known, is available in the InnoDB and Falcon
 storage engines, among others. Row locks are implemented in the storage engine, not
 the server (refer back to the logical architecture diagram if you
 need to). The server is completely unaware of locks implemented in
 the storage engines, and, as you'll see later in this chapter and
 throughout the book, the storage engines all implement locking in
 their own ways.

Transactions

You can't examine the more advanced features of a database system
 for very long before transactions enter the mix. A
 transaction is a group of SQL queries that are treated
 atomically, as a single unit of work. If the
 database engine can apply the entire group of queries to a database, it
 does so, but if any of them can't be done because of a crash or other
 reason, none of them is applied. It's all or nothing.
Little of this section is specific to MySQL. If you're already
 familiar with ACID transactions, feel free to skip ahead to
 "Transactions in MySQL" on Transaction Logging.
A banking application is the classic example of why transactions
 are necessary. Imagine a bank's database with two tables: checking and savings. To move $200 from Jane's checking
 account to her savings account, you need to perform at least three
 steps:
	Make sure her checking account balance is greater than
 $200.

	Subtract $200 from her checking account balance.

	Add $200 to her savings account balance.

The entire operation should be wrapped in a transaction so that if
 any one of the steps fails, any completed steps can be rolled
 back.
You start a transaction with the START
 TRANSACTION statement and then either make its changes
 permanent with COMMIT or discard the
 changes with ROLLBACK. So, the SQL
 for our sample transaction might look like this:
1 START TRANSACTION;
2 SELECT balance FROM checking WHERE customer_id = 10233276;
3 UPDATE checking SET balance = balance - 200.00 WHERE customer_id = 10233276;
4 UPDATE savings SET balance = balance + 200.00 WHERE customer_id = 10233276;
5 COMMIT;
But transactions alone aren't the whole story. What happens if the
 database server crashes while performing line 4? Who knows? The customer
 probably just lost $200. And what if another process comes along between
 lines 3 and 4 and removes the entire checking account balance? The bank
 has given the customer a $200 credit without even knowing it.
Transactions aren't enough unless the system passes the
 ACID test. ACID stands for Atomicity, Consistency, Isolation, and Durability. These are tightly related criteria that a
 well-behaved transaction processing system must meet:
	Atomicity
	A transaction must function as a single indivisible unit of
 work so that the entire transaction is either applied or rolled
 back. When transactions are atomic, there is no such thing as a
 partially completed transaction: it's all or nothing.

	Consistency
	The database should always move from one consistent state to
 the next. In our example, consistency ensures that a crash between
 lines 3 and 4 doesn't result in $200 disappearing from the
 checking account. Because the transaction is never committed, none
 of the transaction's changes is ever reflected in the
 database.

	Isolation
	The results of a transaction are usually invisible to other
 transactions until the transaction is complete. This ensures that
 if a bank account summary runs after line 3 but before line 4 in
 our example, it will still see the $200 in the checking account.
 When we discuss isolation levels, you'll understand why we said
 usually invisible.

	Durability
	Once committed, a transaction's changes are permanent. This
 means the changes must be recorded such that data won't be lost in
 a system crash. Durability is a slightly fuzzy concept, however,
 because there are actually many levels. Some durability strategies
 provide a stronger safety guarantee than others, and nothing is
 ever 100% durable. We discuss what durability
 really means in MySQL in later chapters,
 especially in "InnoDB I/O Tuning" on InnoDB I/O Tuning.

ACID transactions ensure that banks don't lose your money. It is
 generally extremely difficult or impossible to do this with application
 logic. An ACID-compliant database server has to do all sorts of
 complicated things you might not realize to provide ACID
 guarantees.
Just as with increased lock granularity, the downside of this
 extra security is that the database server has to do more work. A
 database server with ACID transactions also generally requires more CPU
 power, memory, and disk space than one without them. As we've said
 several times, this is where MySQL's storage engine architecture works
 to your advantage. You can decide whether your application needs
 transactions. If you don't really need them, you might be able to get
 higher performance with a nontransactional storage engine for some kinds
 of queries. You might be able to use LOCK
 TABLES to give the level of protection you need without
 transactions. It's all up to you.
Isolation Levels

Isolation is more complex than it looks. The SQL standard
 defines four isolation levels, with specific rules for which changes
 are and aren't visible inside and outside a transaction. Lower
 isolation levels typically allow higher concurrency and
 have lower overhead.
Tip
Each storage engine implements isolation levels slightly
 differently, and they don't necessarily match what you might expect
 if you're used to another database product (thus, we won't go into
 exhaustive detail in this section). You should read the manuals for
 whichever storage engine you decide to use.

Let's take a quick look at the four isolation levels:
	READ UNCOMMITTED
	In the READ UNCOMMITTED
 isolation level, transactions can view the results of uncommitted
 transactions. At this level, many problems can occur unless you
 really, really know what you are doing and have a good reason
 for doing it. This level is rarely used in practice, because its
 performance isn't much better than the other levels, which have
 many advantages. Reading uncommitted data is also known as a
 dirty read.

	READ COMMITTED
	The default isolation level for most database systems (but
 not MySQL!) is READ
 COMMITTED. It satisfies the simple definition of
 isolation used earlier: a transaction will see only those
 changes made by transactions that were already committed when it
 began, and its changes won't be visible to others until it has
 committed. This level still allows what's known as a
 nonrepeatable read. This means you can run
 the same statement twice and see different data.

	REPEATABLE READ
	REPEATABLE READ solves
 the problems that READ
 UNCOMMITTED allows. It guarantees that any rows a
 transaction reads will "look the same" in subsequent reads
 within the same transaction, but in theory it still allows
 another tricky problem: phantom reads.
 Simply put, a phantom read can happen when you select some range
 of rows, another transaction inserts a new row into the range,
 and then you select the same range again; you will then see the
 new "phantom" row. InnoDB and Falcon solve the phantom read
 problem with multiversion concurrency control, which we explain
 later in this chapter.
REPEATABLE READ is
 MySQL's default transaction isolation level. The InnoDB and
 Falcon storage engines respect this setting, which you'll learn
 how to change in Chapter 6.
 Some other storage engines do too, but the choice is up to the
 engine.

	SERIALIZABLE
	The highest level of isolation, SERIALIZABLE, solves the phantom read
 problem by forcing transactions to be ordered so that they can't
 possibly conflict. In a nutshell, SERIALIZABLE places a lock on every
 row it reads. At this level, a lot of timeouts and lock
 contention may occur. We've rarely seen people use this
 isolation level, but your application's needs may force you to
 accept the decreased concurrency in favor of the data stability
 that results.

Table 1-1 summarizes the
 various isolation levels and the drawbacks associated with each
 one.
Table 1-1. ANSI SQL isolation levels
	Isolation level
	Dirty reads possible
	Nonrepeatable reads possible
	Phantom reads possible
	Locking reads

	READ
 UNCOMMITTED
	Yes
	Yes
	Yes
	No

	READ
 COMMITTED
	No
	Yes
	Yes
	No

	REPEATABLE
 READ
	No
	No
	Yes
	No

	SERIALIZABLE
	No
	No
	No
	Yes

Deadlocks

A deadlock is when two or more transactions
 are mutually holding and requesting locks on the same resources,
 creating a cycle of dependencies. Deadlocks occur when transactions try to lock resources
 in a different order. They can happen whenever multiple transactions
 lock the same resources. For example, consider these two transactions
 running against the StockPrice
 table:
	Transaction #1
	START TRANSACTION;
UPDATE StockPrice SET close = 45.50 WHERE stock_id = 4 and date = '2002-05-01';
UPDATE StockPrice SET close = 19.80 WHERE stock_id = 3 and date = '2002-05-02';
COMMIT;

	Transaction #2
	START TRANSACTION;
UPDATE StockPrice SET high = 20.12 WHERE stock_id = 3 and date = '2002-05-02';
UPDATE StockPrice SET high = 47.20 WHERE stock_id = 4 and date = '2002-05-01';
COMMIT;

If you're unlucky, each transaction will execute its first query
 and update a row of data, locking it in the process. Each transaction
 will then attempt to update its second row, only to find that it is
 already locked. The two transactions will wait forever for each other
 to complete, unless something intervenes to break the deadlock.
To combat this problem, database systems implement various forms
 of deadlock detection and timeouts. The more sophisticated systems,
 such as the InnoDB storage engine, will notice circular dependencies
 and return an error instantly. This is actually a very good
 thing—otherwise, deadlocks would manifest themselves as very slow
 queries. Others will give up after the query exceeds a lock wait
 timeout, which is not so good. The way InnoDB currently handles
 deadlocks is to roll back the transaction that has the fewest exclusive row locks (an
 approximate metric for which will be the easiest to roll back).
Lock behavior and order are storage engine-specific, so some
 storage engines might deadlock on a certain sequence of
 statements even though others won't. Deadlocks have a dual nature:
 some are unavoidable because of true data conflicts, and some are
 caused by how a storage engine works.
Deadlocks cannot be broken without rolling back one of the
 transactions, either partially or wholly. They are a
 fact of life in transactional systems, and your applications should be
 designed to handle them. Many applications can simply retry their
 transactions from the beginning.

Transaction Logging

Transaction logging helps make transactions more efficient.
 Instead of updating the tables on disk each time a change occurs, the
 storage engine can change its in-memory copy of the data. This is very
 fast. The storage engine can then write a record of the change to the
 transaction log, which is on disk and therefore durable. This is also
 a relatively fast operation, because appending log events involves
 sequential I/O in one small area of the disk instead of random I/O in
 many places. Then, at some later time, a process can update the table
 on disk. Thus, most storage engines that use this technique (known as
 write-ahead logging) end up writing the changes
 to disk twice.[6]
If there's a crash after the update is written to the
 transaction log but before the changes are made to the data itself,
 the storage engine can still recover the changes upon restart. The
 recovery method varies between storage engines.

Transactions in MySQL

MySQL AB provides three transactional storage engines: InnoDB,
 NDB Cluster, and Falcon. Several third-party engines are also
 available; the best-known engines right now are solidDB and PBXT. We
 discuss some specific properties of each engine in the next
 section.
AUTOCOMMIT

MySQL operates in AUTOCOMMIT mode by default. This means
 that unless you've explicitly begun a transaction, it automatically
 executes each query in a separate transaction. You can enable or
 disable AUTOCOMMIT for the
 current connection by setting a variable:
mysql> SHOW VARIABLES LIKE 'AUTOCOMMIT';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> SET AUTOCOMMIT = 1;
The values 1 and ON are equivalent, as are 0 and OFF. When you run with AUTOCOMMIT=0,
 you are always in a transaction, until you issue a COMMIT or ROLLBACK. MySQL then starts a new
 transaction immediately. Changing the value of AUTOCOMMIT has no effect on
 nontransactional tables, such as MyISAM or Memory tables, which
 essentially always operate in AUTOCOMMIT mode.
Certain commands, when issued during an open transaction,
 cause MySQL to commit the transaction before they execute. These are
 typically Data Definition Language (DDL) commands that make significant changes, such as
 ALTER TABLE, but LOCK TABLES and some other statements also
 have this effect. Check your version's documentation for the full
 list of commands that automatically commit a transaction.
MySQL lets you set the isolation level using the SET TRANSACTION ISOLATION LEVEL command,
 which takes effect when the next transaction starts. You can set the
 isolation level for the whole server in the configuration file (see
 Chapter 6), or just for your
 session:
mysql> SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;
MySQL recognizes all four ANSI standard isolation levels, and InnoDB supports all of them.
 Other storage engines have varying support for the different
 isolation levels.

Mixing storage engines in transactions

MySQL doesn't manage transactions at the server level.
 Instead, the underlying storage engines implement transactions
 themselves. This means you can't reliably mix different engines in a
 single transaction. MySQL AB is working on adding a higher-level
 transaction management service to the server, which will make it
 safe to mix and match transactional tables in a transaction. Until
 then, be careful.
If you mix transactional and nontransactional tables (for
 instance, InnoDB and MyISAM tables) in a transaction, the
 transaction will work properly if all goes well.
However, if a rollback is required, the changes to the
 nontransactional table can't be undone. This leaves the database in
 an inconsistent state from which it may be difficult to recover and
 renders the entire point of transactions moot. This is why it is really important
 to pick the right storage engine for each table.
MySQL will not usually warn you or raise errors if you do
 transactional operations on a nontransactional table. Sometimes
 rolling back a transaction will generate the warning "Some
 nontransactional changed tables couldn't be rolled back," but most
 of the time, you'll have no indication you're working with
 nontransactional tables.

Implicit and explicit locking

InnoDB uses a two-phase locking protocol. It can acquire locks
 at any time during a transaction, but it does not release them until
 a COMMIT or ROLLBACK. It releases all the locks at the
 same time. The locking mechanisms described earlier are all
 implicit. InnoDB handles locks automatically,
 according to your isolation level.
However, InnoDB also supports explicit locking, which the SQL standard does not
 mention at all:
	SELECT … LOCK IN SHARE
 MODE

	SELECT … FOR
 UPDATE

MySQL also supports the LOCK
 TABLES and UNLOCK
 TABLES commands, which are implemented in the server, not
 in the storage engines. These have their uses, but they are not a
 substitute for transactions. If you need transactions, use a
 transactional storage engine.
We often see applications that have been converted from MyISAM
 to InnoDB but are still using LOCK
 TABLES. This is no longer necessary because of row-level
 locking, and it can cause severe performance problems.
Warning
The interaction between LOCK
 TABLES and transactions is complex, and there are
 unexpected behaviors in some server versions. Therefore, we
 recommend that you never use LOCK
 TABLES unless you are in a transaction and AUTOCOMMIT is disabled, no matter what
 storage engine you are using.

[6] The PBXT storage engine cleverly avoids some write-ahead
 logging.

Multiversion Concurrency Control

Most of MySQL's transactional storage engines, such as InnoDB,
 Falcon, and PBXT, don't use a simple row-locking mechanism. Instead,
 they use row-level locking in conjunction with a technique for increasing
 concurrency known as multiversion concurrency
 control (MVCC). MVCC is not unique to MySQL: Oracle, PostgreSQL, and some
 other database systems use it too.
You can think of MVCC as a twist on row-level locking; it avoids the need
 for locking at all in many cases and can have much lower overhead.
 Depending on how it is implemented, it can allow nonlocking reads, while
 locking only the necessary rows during write operations.
MVCC works by keeping a snapshot of the data as it existed
 at some point in time. This means transactions can see a consistent view
 of the data, no matter how long they run. It also means different
 transactions can see different data in the same tables at the same time!
 If you've never experienced this before, it may be confusing, but it
 will become easier to understand with familiarity.
Each storage engine implements MVCC differently. Some of the
 variations include optimistic and
 pessimistic concurrency control. We'll illustrate
 one way MVCC works by explaining a simplified version of InnoDB's
 behavior.
InnoDB implements MVCC by storing with each row two additional,
 hidden values that record when the row was created and when it was
 expired (or deleted). Rather than storing the actual times at which
 these events occurred, the row stores the system version number at the
 time each event occurred. This is a number that increments each time a
 transaction begins. Each transaction keeps its own record of the current
 system version, as of the time it began. Each query has to check each
 row's version numbers against the transaction's version. Let's see how
 this applies to particular operations when the transaction isolation
 level is set to REPEATABLE
 READ:
	SELECT
	InnoDB must examine each row to ensure that it meets two
 criteria:
	InnoDB must find a version of the row that is at least
 as old as the transaction (i.e., its version must be less than
 or equal to the transaction's version). This ensures that
 either the row existed before the transaction began, or the
 transaction created or altered the row.

	The row's deletion version must be undefined or greater
 than the transaction's version. This ensures that the row
 wasn't deleted before the transaction began.

Rows that pass both tests may be returned as the query's
 result.

	INSERT
	InnoDB records the current system version number with the
 new row.

	DELETE
	InnoDB records the current system version number as the
 row's deletion ID.

	UPDATE
	InnoDB writes a new copy of the row, using the system
 version number for the new row's version. It also writes the
 system version number as the old row's deletion version.

The result of all this extra record keeping is that most read queries
 never acquire locks. They simply read data as fast as they can, making
 sure to select only rows that meet the criteria. The drawbacks are that the
 storage engine has to store more data with each row, do
 more work when examining rows, and handle some additional housekeeping
 operations.
MVCC works only with the REPEATABLE READ and READ COMMITTED isolation levels. READ
 UNCOMMITTED isn't MVCC-compatible because queries don't read the row version
 that's appropriate for their transaction version; they read the newest
 version, no matter what. SERIALIZABLE
 isn't MVCC-compatible because reads lock every row they return.
Table 1-2
 summarizes the various locking models and concurrency levels in MySQL.
Table 1-2. Locking models and concurrency in MySQL using the default
 isolation level
	Locking strategy
	Concurrency
	Overhead
	Engines

	Table level
	Lowest
	Lowest
	MyISAM, Merge, Memory

	Row level
	High
	High
	NDB Cluster

	Row level with MVCC
	Highest
	Highest
	InnoDB, Falcon, PBXT, solidDB

MySQL's Storage Engines

This section gives an overview of MySQL's storage engines. We
 won't go into great detail here, because we discuss storage engines and
 their particular behaviors throughout the book. Even this book, though,
 isn't a complete source of documentation; you should read the MySQL
 manuals for the storage engines you decide to use. MySQL also has forums
 dedicated to each storage engine, often with links to additional
 information and interesting ways to use them.
If you just want to compare the engines at a high level, you can
 skip ahead to Table 1-3.
MySQL stores each database (also called a
 schema) as a subdirectory of its data directory in
 the underlying filesystem. When you create a table, MySQL stores the
 table definition in a .frm file with the same name
 as the table. Thus, when you create a table named MyTable, MySQL stores the table definition in
 MyTable.frm. Because MySQL uses the filesystem to
 store database names and table definitions, case sensitivity depends on
 the platform. On a Windows MySQL instance, table and database names are
 case insensitive; on Unix-like systems, they are case sensitive. Each
 storage engine stores the table's data and indexes differently, but the
 server itself handles the table definition.
To determine what storage engine a particular table uses, use the
 SHOW TABLE STATUS command. For
 example, to examine the user table in
 the mysql database, execute the
 following:
mysql> SHOW TABLE STATUS LIKE 'user' \G
*************************** 1. row ***************************
 Name: user
 Engine: MyISAM
 Row_format: Dynamic
 Rows: 6
 Avg_row_length: 59
 Data_length: 356
Max_data_length: 4294967295
 Index_length: 2048
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2002-01-24 18:07:17
 Update_time: 2002-01-24 21:56:29
 Check_time: NULL
 Collation: utf8_bin
 Checksum: NULL
 Create_options:
 Comment: Users and global privileges
1 row in set (0.00 sec)
The output shows that this is a MyISAM table. You might also
 notice a lot of other information and statistics in the output. Let's
 briefly look at what each line means:
	Name
	The table's name.

	Engine
	The table's storage engine. In old versions of MySQL, this
 column was named Type, not
 Engine.

	Row_format
	The row format. For a MyISAM table, this can be Dynamic, Fixed, or Compressed. Dynamic rows vary in length
 because they contain variable-length fields such as VARCHAR or BLOB. Fixed rows, which are always the
 same size, are made up of fields that don't vary in length, such
 as CHAR and INTEGER. Compressed rows exist only in
 compressed tables; see "Compressed MyISAM tables" on Compressed MyISAM tables.

	Rows
	The number of rows in the table. For nontransactional
 tables, this number is always accurate. For transactional tables,
 it is usually an estimate.

	Avg_row_length
	How many bytes the average row contains.

	Data_length
	How much data (in bytes) the entire table contains.

	Max_data_length
	The maximum amount of data this table can hold. See
 "Storage" on The MyISAM Engine for more
 details.

	Index_length
	How much disk space the index data consumes.

	Data_free
	For a MyISAM table, the amount of space that is allocated
 but currently unused. This space holds previously deleted rows and
 can be reclaimed by future INSERT statements.

	Auto_increment
	The next AUTO_INCREMENT
 value.

	Create_time
	When the table was first created.

	Update_time
	When data in the table last changed.

	Check_time
	When the table was last checked using CHECK TABLE or
 myisamchk.

	Collation
	The default character set and collation for character
 columns in this table. See "Character Sets and Collations" on
 Character Sets and Collations for more on these
 features.

	Checksum
	A live checksum of the entire table's contents if
 enabled.

	Create_options
	Any other options that were specified when the table was
 created.

	Comment
	This field contains a variety of extra information. For a
 MyISAM table, it contains the comments, if any, that were set when
 the table was created. If the table uses the InnoDB storage
 engine, the amount of free space in the InnoDB tablespace appears
 here. If the table is a view, the comment contains the text
 "VIEW."

The MyISAM Engine

As MySQL's default storage engine, MyISAM provides a good
 compromise between performance and useful features, such as full-text
 indexing, compression, and spatial (GIS) functions. MyISAM doesn't
 support transactions or row-level locks.
Storage

MyISAM typically stores each table in two files: a data file
 and an index file. The two files bear .MYD and
 .MYI extensions, respectively. The MyISAM
 format is platform-neutral, meaning you can copy the data and index
 files from an Intel-based server to a PowerPC or Sun SPARC without
 any trouble.
MyISAM tables can contain either dynamic or static
 (fixed-length) rows. MySQL decides which format to use based on the
 table definition. The number of rows a MyISAM table can hold is
 limited primarily by the available disk space on your database
 server and the largest file your operating system will let you
 create.
MyISAM tables created in MySQL 5.0 with variable-length rows
 are configured by default to handle 256 TB of data, using 6-byte
 pointers to the data records. Earlier MySQL versions defaulted to
 4-byte pointers, for up to 4 GB of data. All MySQL versions can
 handle a pointer size of up to 8 bytes. To change the pointer size
 on a MyISAM table (either up or down), you must specify values for
 the MAX_ROWS and AVG_ROW_LENGTH options that represent
 ballpark figures for the amount of space you need:
CREATE TABLE mytable (
 a INTEGER NOT NULL PRIMARY KEY,
 b CHAR(18) NOT NULL
) MAX_ROWS = 1000000000 AVG_ROW_LENGTH = 32;
In this example, we've told MySQL to be prepared to store at
 least 32 GB of data in the table. To find out what MySQL decided to
 do, simply ask for the table status:
mysql> SHOW TABLE STATUS LIKE 'mytable' \G
*************************** 1. row ***************************
 Name: mytable
 Engine: MyISAM
 Row_format: Fixed
 Rows: 0
 Avg_row_length: 0
 Data_length: 0
Max_data_length: 98784247807
 Index_length: 1024
 Data_free: 0
 Auto_increment: NULL
 Create_time: 2002-02-24 17:36:57
 Update_time: 2002-02-24 17:36:57
 Check_time: NULL
 Create_options: max_rows=1000000000 avg_row_length=32
 Comment:
1 row in set (0.05 sec)
As you can see, MySQL remembers the create options exactly as
 specified. And it chose a representation capable of holding 91 GB of
 data! You can change the pointer size later with the ALTER TABLE statement, but that will cause
 the entire table and all of its indexes to be rewritten, which may
 take a long time.

MyISAM features

As one of the oldest storage engines included in MySQL, MyISAM
 has many features that have been developed over years of use to fill
 niche needs:
	Locking and concurrency
	MyISAM locks entire tables, not rows. Readers
 obtain shared (read) locks on all tables they need to read.
 Writers obtain exclusive (write) locks. However, you can
 insert new rows into the table while select queries are
 running against it (concurrent inserts). This is a very
 important and useful feature.

	Automatic repair
	MySQL supports automatic checking and repairing of
 MyISAM tables. See "MyISAM I/O Tuning" on Tuning MySQL's I/O Behavior for more
 information.

	Manual repair
	You can use the CHECK TABLE
 mytable and REPAIR TABLE
 mytable commands to check a table for errors and
 repair them. You can also use the
 myisamchk command-line tool to check and
 repair tables when the server is offline.

	Index features
	You can create indexes on the first 500 characters of BLOB and TEXT columns in MyISAM tables. MyISAM supports full-text
 indexes, which index individual words for complex search
 operations. For more information on indexing, see Chapter 3.

	Delayed key writes
	MyISAM tables marked with the DELAY_KEY_WRITE create option don't
 write changed index data to disk at the end of a query.
 Instead, MyISAM buffers the changes in the in-memory key
 buffer. It flushes index blocks to disk when it prunes the
 buffer or closes the table. This can boost performance on
 heavily used tables that change frequently. However, after a
 server or system crash, the indexes will definitely be
 corrupted and will need repair. You should handle this with a
 script that runs myisamchk before
 restarting the server, or by using the automatic recovery
 options. (Even if you don't use DELAY_KEY_WRITE, these safeguards
 can still be an excellent idea.) You can configure delayed key writes globally, as well as for
 individual tables.

Compressed MyISAM tables

Some tables—for example, in CD-ROM- or DVD-ROM-based
 applications and some embedded environments—never change once
 they're created and filled with data. These might be well suited to
 compressed MyISAM tables.
You can compress (or "pack") tables with the
 myisampack utility. You can't modify compressed tables (although you can uncompress,
 modify, and recompress tables if you need to), but they generally
 use less space on disk. As a result, they offer faster performance,
 because their smaller size requires fewer disk seeks to find
 records. Compressed MyISAM tables can have indexes, but they're
 read-only.
The overhead of decompressing the data to read it is
 insignificant for most applications on modern hardware, where the
 real gain is in reducing disk I/O. The rows are compressed
 individually, so MySQL doesn't need to unpack an
 entire table (or even a page) just to fetch a single row.

The MyISAM Merge Engine

The Merge engine is a variation of MyISAM. A Merge table is the
 combination of several identical MyISAM tables into one virtual table.
 This is particularly useful when you use MySQL in logging and data
 warehousing applications. See "Merge Tables and Partitioning" on Merge Tables and Partitioning for a detailed discussion
 of Merge tables.

The InnoDB Engine

InnoDB was designed for transaction
 processing—specifically, processing of many short-lived transactions
 that usually complete rather than being rolled back. It remains the
 most popular storage engine for transactional storage. Its performance
 and automatic crash recovery make it popular for nontransactional
 storage needs, too.
InnoDB stores its data in a series of one or more data
 files that are collectively known as a
 tablespace. A tablespace is essentially a black
 box that InnoDB manages all by itself. In MySQL 4.1 and newer
 versions, InnoDB can store each table's data and indexes in separate
 files. InnoDB can also use raw disk partitions for building its
 tablespace. See "The InnoDB tablespace" on The InnoDB tablespace for more information.
InnoDB uses MVCC to achieve high concurrency, and it implements all four SQL standard
 isolation levels. It defaults to the REPEATABLE READ isolation level, and it has
 a next-key locking strategy that prevents phantom
 reads in this isolation level: rather than locking only the rows you've touched in a query, InnoDB
 locks gaps in the index structure as well, preventing phantoms from
 being inserted.
InnoDB tables are built on a clustered
 index, which we will cover in detail in Chapter 3. InnoDB's index
 structures are very different from those of most other MySQL storage
 engines. As a result, it provides very fast primary key lookups.
 However, secondary indexes (indexes that aren't
 the primary key) contain the primary key columns, so if your primary
 key is large, other indexes will also be large. You should strive for
 a small primary key if you'll have many indexes on a table. InnoDB
 doesn't compress its indexes.
At the time of this writing, InnoDB can't build indexes by
 sorting, which MyISAM can do. Thus, InnoDB loads data and creates
 indexes more slowly than MyISAM. Any operation that changes an InnoDB
 table's structure will rebuild the entire table, including all the
 indexes.
InnoDB was designed when most servers had slow disks, a single
 CPU, and limited memory. Today, as multicore servers with huge amounts of memory and fast disks are becoming
 less expensive, InnoDB is experiencing some scalability issues.
InnoDB's developers are addressing these issues, but at the time
 of this writing, several of them remain problematic. See "InnoDB
 Concurrency Tuning" on InnoDB Concurrency Tuning
 for more information about achieving high concurrency with
 InnoDB.
Besides its high-concurrency capabilities, InnoDB's next most
 popular feature is foreign key constraints, which the MySQL server itself
 doesn't yet provide. InnoDB also provides extremely fast lookups for
 queries that use a primary key.
InnoDB has a variety of internal optimizations. These include
 predictive read-ahead for prefetching data from disk, an adaptive hash
 index that automatically builds hash indexes in memory for very fast lookups, and an insert buffer to
 speed inserts. We cover these extensively later in this book.
InnoDB's behavior is very intricate, and we highly recommend
 reading the "InnoDB Transaction Model and Locking" section of the
 MySQL manual if you're using InnoDB. There are many surprises and
 exceptions you should be aware of before building an application with
 InnoDB.

The Memory Engine

Memory tables (formerly called HEAP tables) are useful when you need fast
 access to data that either never changes or doesn't need to persist
 after a restart. Memory tables are generally about an order of
 magnitude faster than MyISAM tables. All of their data is stored in
 memory, so queries don't have to wait for disk I/O. The table
 structure of a Memory table persists across a server restart, but no
 data survives.
Here are some good uses for Memory tables:
	For "lookup" or "mapping" tables, such as a table that maps
 postal codes to state names

	For caching the results of periodically aggregated
 data

	For intermediate results when analyzing data

Memory tables support HASH
 indexes, which are very fast for lookup queries. See "Hash indexes" on
 Hash indexes for more information on HASH indexes.
Although Memory tables are very fast, they often don't work well
 as a general-purpose replacement for disk-based tables. They use
 table-level locking, which gives low write concurrency, and they do
 not support TEXT or BLOB column types. They also support only
 fixed-size rows, so they really store VARCHARs as CHARs, which can waste memory.
MySQL uses the Memory engine internally while processing queries
 that require a temporary table to hold intermediate results. If the
 intermediate result becomes too large for a Memory table, or has
 TEXT or BLOB columns, MySQL will convert it to a
 MyISAM table on disk. We say more about this in later chapters.
Tip
People often confuse Memory tables with temporary tables, which are ephemeral tables
 created with CREATE TEMPORARY
 TABLE. Temporary tables can use any storage engine; they are not the same thing as tables
 that use the Memory storage engine. Temporary tables are visible
 only to a single connection and disappear entirely when the
 connection closes.

The Archive Engine

The Archive engine supports only INSERT and SELECT queries, and it does not support
 indexes until MySQL 5.1. It causes much less disk I/O than MyISAM,
 because it buffers data writes and compresses each row with
 zlib as it's inserted. Also, each SELECT query requires a full table scan.
 Archive tables are thus ideal for logging and data acquisition, where
 analysis tends to scan an entire table, or where you want fast
 INSERT queries on a replication
 master. Replication slaves can use a different storage engine for the
 same table, which means the table on the slave can have indexes for
 faster performance on analysis. (See Chapter 8
 for more about replication.)
Archive supports row-level locking and a special buffer system
 for high-concurrency inserts. It gives consistent reads by stopping a
 SELECT after it has retrieved the
 number of rows that existed in the table when the query began. It also
 makes bulk inserts invisible until they're complete. These features
 emulate some aspects of transactional and MVCC behaviors, but Archive
 is not a transactional storage engine. It is simply a storage engine
 that's optimized for high-speed inserting and compressed
 storage.

The CSV Engine

The CSV engine can treat comma-separated values (CSV) files as
 tables, but it does not support indexes on them. This engine lets you
 copy files in and out of the database while the server is running. If
 you export a CSV file from a spreadsheet and save it in the MySQL
 server's data directory, the server can read it immediately.
 Similarly, if you write data to a CSV table, an external program can
 read it right away. CSV tables are especially useful as a data
 interchange format and for certain kinds of logging.

The Federated Engine

The Federated engine does not store data locally. Each Federated
 table refers to a table on a remote MySQL server, so it actually
 connects to a remote server for all operations. It is sometimes used
 to enable "hacks" such as tricks with replication.
There are many oddities and limitations in the current
 implementation of this engine. Because of the way the Federated engine
 works, we think it is most useful for single-row lookups by primary
 key, or for INSERT queries you want
 to affect a remote server. It does not perform well for aggregate
 queries, joins, or other basic operations.

The Blackhole Engine

The Blackhole engine has no storage mechanism at all. It
 discards every INSERT instead of
 storing it. However, the server writes queries against Blackhole
 tables to its logs as usual, so they can be replicated to slaves or
 simply kept in the log. That makes the Blackhole engine useful for
 fancy replication setups and audit logging.

The NDB Cluster Engine

MySQL AB acquired the NDB Cluster engine from Sony Ericsson in
 2003. It was originally designed for high speed (real-time performance
 requirements), with redundancy and load-balancing capabilities.
 Although it logged to disk, it kept all its data in memory and was
 optimized for primary key lookups. MySQL has since added other
 indexing methods and many optimizations, and MySQL 5.1 allows some
 columns to be stored on disk.
The NDB architecture is unique: an NDB cluster is completely
 unlike, for example, an Oracle cluster. NDB's infrastructure is based
 on a shared-nothing concept. There is no storage area network or other
 big centralized storage solution, which some other types of clusters
 rely on. An NDB database consists of data nodes, management nodes, and
 SQL nodes (MySQL instances). Each data node holds a segment
 ("fragment") of the cluster's data. The fragments are duplicated, so
 the system has multiple copies of the same data on different nodes.
 One physical server is usually dedicated to each node for redundancy
 and high availability. In this sense, NDB is similar to RAID at the
 server level.
The management nodes are used to retrieve the centralized
 configuration, and for monitoring and control of the cluster nodes.
 All data nodes communicate with each other, and all MySQL servers
 connect to all data nodes. Low network latency is critically important
 for NDB Cluster.
A word of warning: NDB Cluster is very "cool" technology and
 definitely worth some exploration to satisfy your curiosity, but many
 technical people tend to look for excuses to use it and attempt to
 apply it to needs for which it's not suitable. In our experience, even
 after studying it carefully, many people don't really learn what this
 engine is useful for and how it works until they've installed it and
 used it for a while. This commonly results in much wasted time,
 because it is simply not designed as a general-purpose storage
 engine.
One common shock is that NDB currently performs joins at the
 MySQL server level, not in the storage engine layer. Because all data
 for NDB must be retrieved over the network, complex joins are
 extremely slow. On the other hand, single-table lookups can be very
 fast, because multiple data nodes each provide part of the result.
 This is just one of many aspects you'll have to consider and
 understand thoroughly when looking at NDB Cluster for a particular
 application.
NDB Cluster is so large and complex that we won't discuss it
 further in this book. You should seek out a book dedicated to the
 topic if you are interested in it. We will say, however, that it's
 generally not what you think it is, and for most traditional
 applications, it is not the answer.

The Falcon Engine

Jim Starkey, a database pioneer whose earlier inventions
 include Interbase, MVCC, and the BLOB column type, designed the Falcon
 engine. MySQL AB acquired the Falcon technology in 2006, and Jim
 currently works for MySQL AB.
Falcon is designed for today's hardware—specifically, for
 servers with multiple 64-bit processors and plenty of memory—but it
 can also operate in more modest environments. Falcon uses MVCC and
 tries to keep running transactions entirely in memory. This makes
 rollbacks and recovery operations extremely fast.
Falcon is unfinished at the time of this writing (for example,
 it doesn't yet synchronize its commits with the binary log), so we
 can't write about it with much authority. Even the initial benchmarks
 we've done with it will probably be outdated when it's ready for
 general use. It appears to have good potential for many online
 applications, but we'll know more about it as time passes.

The solidDB Engine

The solidDB engine, developed by Solid Information Technology (http://www.soliddb.com), is a transactional engine that
 uses MVCC. It supports both pessimistic and optimistic concurrency
 control, which no other engine currently does. solidDB for MySQL
 includes full foreign key support. It is similar to InnoDB in many
 ways, such as its use of clustered indexes. solidDB for MySQL includes
 an online backup capability at no charge.
The solidDB for MySQL product is a complete package that
 consists of the solidDB storage engine, the MyISAM storage engine, and
 MySQL server. The "glue" between the solidDB storage engine and the
 MySQL server was introduced in late 2006. However, the underlying
 technology and code have matured over the company's 15-year history.
 Solid certifies and supports the entire product. It is licensed under
 the GPL and offered commercially under a dual-licensing model that is
 identical to the MySQL server's.

The PBXT (Primebase XT) Engine

The PBXT engine, developed by Paul McCullagh of SNAP Innovation GmbH in Hamburg, Germany (http://www.primebase.com), is a transactional storage
 engine with a unique design. One of its distinguishing characteristics
 is how it uses its transaction logs and data files to avoid
 write-ahead logging, which reduces much of the overhead of transaction
 commits. This architecture gives PBXT the potential to deal with very
 high write concurrency, and tests have already shown that it can be
 faster than InnoDB for certain operations. PBXT uses MVCC and supports
 foreign key constraints, but it does not use clustered
 indexes.
PBXT is a fairly new engine, and it will need to prove itself
 further in production environments. For example, its implementation of
 truly durable transactions was completed only recently, while we were
 writing this book.
As an extension to PBXT, SNAP Innovation is working on a
 scalable "blob streaming" infrastructure (http://www.blobstreaming.org). It is designed to store
 and retrieve large chunks of binary data efficiently.

The Maria Storage Engine

Maria is a new storage engine being developed by some of MySQL's
 top engineers, including Michael Widenius, who created MySQL. The initial 1.0 release
 includes only some of its planned features.
The goal is to use Maria as a replacement for MyISAM, which is
 currently MySQL's default storage engine, and which the server uses
 internally for tasks such as privilege tables and temporary tables
 created while executing queries. Here are some highlights from the
 roadmap:
	The option of either transactional or nontransactional
 storage, on a per-table basis

	Crash recovery, even when a table is running in
 nontransactional mode

	Row-level locking and MVCC

	Better BLOB
 handling

Other Storage Engines

Various third parties offer other (sometimes proprietary)
 engines, and there are a myriad of special-purpose and experimental
 engines out there (for example, an engine for querying web services).
 Some of these engines are developed informally, perhaps by just one or
 two engineers. This is because it's relatively easy to create a
 storage engine for MySQL. However, most such engines aren't widely
 publicized, in part because of their limited applicability. We'll
 leave you to explore these offerings on your own.

Selecting the Right Engine

When designing MySQL-based applications, you should decide which
 storage engine to use for storing your data. If you don't think about
 this during the design phase, you will likely face complications later
 in the process. You might find that the default engine doesn't provide
 a feature you need, such as transactions, or maybe the mix of read and
 write queries your application generates will require more granular
 locking than MyISAM's table locks.
Because you can choose storage engines on a table-by-table basis, you'll need a
 clear idea of how each table will be used and the data it will store.
 It also helps to have a good understanding of the application as a
 whole and its potential for growth. Armed with this information, you
 can begin to make good choices about which storage engines can do the
 job.
Tip
It's not necessarily a good idea to use different storage
 engines for different tables. If you can get away with it, it will
 usually make your life a lot easier if you choose one storage engine
 for all your tables.

Considerations

Although many factors can affect your decision about which
 storage engine(s) to use, it usually boils down to a few primary
 considerations. Here are the main elements you should take into
 account:
	Transactions
	If your application requires transactions, InnoDB is the
 most stable, well-integrated, proven choice at the time of this
 writing. However, we expect to see the up-and-coming
 transactional engines become strong contenders as time
 passes.
MyISAM is a good choice if a task doesn't require
 transactions and issues primarily either SELECT or INSERT queries. Sometimes specific
 components of an application (such as logging) fall into this
 category.

	Concurrency
	How best to satisfy your concurrency requirements depends
 on your workload. If you just need to insert and read
 concurrently, believe it or not, MyISAM is a fine choice! If you
 need to allow a mixture of operations to run concurrently
 without interfering with each other, one of the engines with
 row-level locking should work well.

	Backups
	The need to perform regular backups may also influence
 your table choices. If your server can be shut down at regular
 intervals for backups, the storage engines are equally easy to
 deal with. However, if you need to perform online backups in one
 form or another, the choices become less clear. Chapter 11 deals with this topic in more
 detail.
Also bear in mind that using multiple storage engines
 increases the complexity of backups and server tuning.

	Crash recovery
	If you have a lot of data, you should seriously consider
 how long it will take to recover from a crash. MyISAM tables
 generally become corrupt more easily and take much longer to
 recover than InnoDB tables, for example. In fact, this is one of the most
 important reasons why a lot of people use InnoDB when they don't
 need transactions.

	Special features
	Finally, you sometimes find that an application relies on
 particular features or optimizations that only some of MySQL's
 storage engines provide. For example, a lot of
 applications rely on clustered index optimizations. At the
 moment, that limits you to InnoDB and solidDB. On the other
 hand, only MyISAM supports full-text search inside MySQL. If a
 storage engine meets one or more critical requirements, but not
 others, you need to either compromise or find a clever design
 solution. You can often get what you need from a storage engine
 that seemingly doesn't support your requirements.

You don't need to decide right now. There's a lot of material on
 each storage engine's strengths and weaknesses in the rest of the
 book, and lots of architecture and design tips as well. In general,
 there are probably more options than you realize yet, and it might
 help to come back to this question after reading more.

Practical Examples

These issues may seem rather abstract without some sort of
 real-world context, so let's consider some common database
 applications. We'll look at a variety of tables and determine which
 engine best matches with each table's needs. We give a summary of the
 options in the next section.
Logging

Suppose you want to use MySQL to log a record of every
 telephone call from a central telephone switch in real time. Or
 maybe you've installed mod_log_sql for Apache,
 so you can log all visits to your web site directly in a table. In
 such an application, speed is probably the most important goal; you
 don't want the database to be the bottleneck. The MyISAM and Archive
 storage engines would work very well because they have very low
 overhead and can insert thousands of records per second. The PBXT
 storage engine is also likely to be particularly suitable for
 logging purposes.
Things will get interesting, however, if you decide it's time
 to start running reports to summarize the data you've logged.
 Depending on the queries you use, there's a good chance that
 gathering data for the report will significantly slow the process of
 inserting records. What can you do?
One solution is to use MySQL's built-in replication feature to
 clone the data onto a second (slave) server, and then run your time-
 and CPU-intensive queries against the data on the slave. This leaves
 the master free to insert records and lets you run any query you
 want on the slave without worrying about how it might affect the
 real-time logging.
You can also run queries at times of low load, but don't rely
 on this strategy continuing to work as your application
 grows.
Another option is to use a Merge table. Rather than always
 logging to the same table, adjust the application to log to a table
 that contains the year and name or number of the month in its name,
 such as web_logs_2008_01 or
 web_logs_2008_jan. Then define a
 Merge table that contains the data you'd like to summarize and use
 it in your queries. If you need to summarize data daily or weekly,
 the same strategy works; you just need to create tables with more
 specific names, such as web_logs_2008_01_01. While you're busy
 running queries against tables that are no longer being written to,
 your application can log records to its current table
 uninterrupted.

Read-only or read-mostly tables

Tables that contain data used to construct a catalog or
 listing of some sort (jobs, auctions, real estate, etc.) are usually
 read from far more often than they are written to. This makes them
 good candidates for MyISAM—if you don't mind what happens when MyISAM
 crashes. Don't underestimate how important this is; a lot of users
 don't really understand how risky it is to use a storage engine that
 doesn't even try very hard to get their data written to
 disk.
Tip
It's an excellent idea to run a realistic load simulation on
 a test server and then literally pull the power plug. The
 firsthand experience of recovering from a crash is priceless. It
 saves nasty surprises later.

Don't just believe the common "MyISAM is faster than InnoDB"
 folk wisdom. It is not categorically true. We
 can name dozens of situations where InnoDB leaves MyISAM in the
 dust, especially for applications where clustered indexes are useful
 or where the data fits in memory. As you read the rest of this book,
 you'll get a sense of which factors influence a storage engine's
 performance (data size, number of I/O operations required, primary
 keys versus secondary indexes, etc.), and which of them matter to
 your application.

Order processing

When you deal with any sort of order processing, transactions
 are all but required. Half-completed orders aren't going to endear
 customers to your service. Another important consideration is
 whether the engine needs to support foreign key constraints. At the
 time of this writing, InnoDB is likely to be your best bet for
 order-processing applications, though any of the transactional
 storage engines is a candidate.

Stock quotes

If you're collecting stock quotes for your own analysis, MyISAM works great, with the
 usual caveats. However, if you're running a high-traffic web service
 that has a real-time quote feed and thousands of users, a query
 should never have to wait. Many clients could be trying to read and
 write to the table simultaneously, so row-level locking or a design
 that minimizes updates is the way to go.

Bulletin boards and threaded discussion forums

Threaded discussions are an interesting problem for
 MySQL users. There are hundreds of freely available PHP and
 Perl-based systems that provide threaded discussions. Many of them
 aren't written with database efficiency in mind, so they tend to run
 a lot of queries for each request they serve. Some were written to
 be database independent, so their queries do not take advantage of
 the features of any one database system. They also tend to update
 counters and compile usage statistics about the various discussions.
 Many of the systems also use a few monolithic tables to store all
 their data. As a result, a few central tables become the focus of
 heavy read and write activity, and the locks required to enforce
 consistency become a substantial source of contention.
Despite their design shortcomings, most of the systems work
 well for small and medium loads. However, if a web site grows large
 enough and generates significant traffic, it may become very slow.
 The obvious solution is to switch to a different storage engine that
 can handle the heavy read/write volume, but users who attempt this
 are sometimes surprised to find that the systems run even more
 slowly than they did before!
What these users don't realize is that the system is using a
 particular query, normally something like this:
mysql> SELECT COUNT(*) FROM table;
The problem is that not all engines can run that query
 quickly: MyISAM can, but other engines may not. There are similar
 examples for every engine. Chapter 2 will help you
 keep such a situation from catching you by surprise and show you how
 to find and fix the problems if it does.

CD-ROM applications

If you ever need to distribute a CD-ROM- or DVD-ROM-based
 application that uses MySQL data files, consider using MyISAM or
 compressed MyISAM tables, which can easily be isolated and copied to
 other media. Compressed MyISAM tables use far less space than
 uncompressed ones, but they are read-only. This can be problematic
 in certain applications, but because the data is going to be on
 read-only media anyway, there's little reason not to use compressed
 tables for this particular task.

Storage Engine Summary

Table 1-3 summarizes the
 transaction- and locking-related traits of MySQL's most popular storage engines. The MySQL version column shows the
 minimum MySQL version you'll need to use the engine, though for some
 engines and MySQL versions you may have to compile your own server.
 The word "All" in this column indicates all versions since MySQL
 3.23.
Table 1-3. MySQL storage engine summary
	Storage engine
	MySQL version
	Transactions
	Lock granularity
	Key applications
	Counter-indications

	MyISAM
	All
	No
	Table with concurrent inserts
	SELECT,
 INSERT, bulk loading
	Mixed read/write workload

	MyISAM Merge
	All
	No
	Table with concurrent inserts
	Segmented archiving, data
 warehousing
	Many global lookups

	Memory (HEAP)
	All
	No
	Table
	Intermediate calculations, static lookup
 data
	Large datasets, persistent storage

	InnoDB
	All
	Yes
	Row-level with MVCC
	Transactional processing
	None

	Falcon
	6.0
	Yes
	Row-level with MVCC
	Transactional processing
	None

	Archive
	4.1
	No
	Row-level
	Logging, aggregate analysis
	Random access needs, updates,
 deletes

	CSV
	4.1
	No
	Table
	Logging, bulk loading of external
 data
	Random access needs, indexing

	Blackhole
	4.1
	N/A
	N/A
	Logged or replicated archiving
	Any but the intended use

	Federated
	5.0
	N/A
	N/A
	Distributed data sources
	Any but the intended use

	NDB Cluster
	5.0
	Yes
	Row-level
	High availability
	Most typical uses

	PBXT
	5.0
	Yes
	Row-level with MVCC
	Transactional processing, logging
	Need for clustered indexes

	solidDB
	5.0
	Yes
	Row-level with MVCC
	Transactional processing
	None

	Maria (planned)
	6.x
	Yes
	Row-level with MVCC
	MyISAM replacement
	None

Table Conversions

There are several ways to convert a table from one storage engine to another, each
 with advantages and disadvantages. In the following
 sections, we cover three of the most common ways.
ALTER TABLE

The easiest way to move a table from one engine to another is
 with an ALTER TABLE statement.
 The following command converts mytable to Falcon:
mysql> ALTER TABLE mytable ENGINE = Falcon;
This syntax works for all storage engines, but there's a
 catch: it can take a lot of time. MySQL will perform a row-by-row
 copy of your old table into a new table. During that time, you'll
 probably be using all of the server's disk I/O capacity, and the
 original table will be read-locked while the conversion runs. So,
 take care before trying this technique on a busy table. Instead, you
 can use one of the methods discussed next, which involve making a
 copy of the table first.
When you convert from one storage engine to another, any
 storage engine-specific features are lost. For example, if you
 convert an InnoDB table to MyISAM and back again, you will lose any
 foreign keys originally defined on the InnoDB table.

Dump and import

To gain more control over the conversion process, you might
 choose to first dump the table to a text file using the
 mysqldump utility. Once you've dumped the
 table, you can simply edit the dump file to adjust the CREATE TABLE statement it contains. Be
 sure to change the table name as well as its type, because you can't
 have two tables with the same name in the same database even if they
 are of different types—and mysqldump defaults
 to writing a DROP TABLE command
 before the CREATE TABLE, so you
 might lose your data if you are not careful!
See Chapter 11 for more advice on
 dumping and reloading data efficiently.

CREATE and SELECT

The third conversion technique is a compromise between the
 first mechanism's speed and the safety of the second. Rather than
 dumping the entire table or converting it all at once, create the new table and
 use MySQL's INSERT … SELECT
 syntax to populate it, as follows:
mysql> CREATE TABLE innodb_table LIKE myisam_table;
mysql> ALTER TABLE innodb_table ENGINE=InnoDB;
mysql> INSERT INTO innodb_table SELECT * FROM myisam_table;
That works well if you don't have much data, but if you do,
 it's often more efficient to populate the table incrementally,
 committing the transaction between each chunk so the undo logs don't
 grow huge. Assuming that id is
 the primary key, run this query repeatedly (using larger values of
 x and y each time) until you've copied all the
 data to the new table:
mysql> START TRANSACTION;
mysql> INSERT INTO innodb_table SELECT * FROM myisam_table
 -> WHERE id BETWEEN x AND y;
mysql> COMMIT;
After doing so, you'll be left with the original table, which
 you can drop when you're done with it, and the new table, which is
 now fully populated. Be careful to lock the original table if needed
 to prevent getting an inconsistent copy of the data!

Chapter 2. Finding Bottlenecks: Benchmarking and Profiling

At some point, you're bound to need more performance from MySQL. But
 what should you try to improve? A particular query? Your schema? Your
 hardware? The only way to know is to measure what your system is doing,
 and test its performance under various conditions. That's why we put this
 chapter early in the book.
The best strategy is to find and strengthen the weakest link in your
 application's chain of components. This is especially useful if you don't
 know what prevents better performance—or what will prevent better
 performance in the future.
Benchmarking and profiling
 are two essential practices for finding bottlenecks. They are related, but
 they're not the same. A benchmark measures your system's performance. This
 can help determine a system's capacity, show you which changes matter and
 which don't, or show how your application performs with different
 data.
In contrast, profiling helps you find where your application spends
 the most time or consumes the most resources. In other words, benchmarking
 answers the question "How well does this perform?" and profiling answers
 the question "Why does it perform the way it does?"
We've arranged this chapter in two parts, the first about
 benchmarking and the second about profiling. We begin with a discussion of
 reasons and strategies for benchmarking, then move on to specific
 benchmarking tactics. We show you how to plan and design benchmarks,
 design for accurate results, run benchmarks, and analyze the results. We
 end the first part with a look at benchmarking tools and examples of how
 to use several of them.
The rest of the chapter shows how to profile both applications and
 MySQL. We show detailed examples of real-life profiling code we've used in
 production to help analyze application performance. We also show you how
 to log MySQL's queries, analyze the logs, and use MySQL's status counters
 and other tools to see what MySQL and your queries are doing.
Why Benchmark?

Many medium to large MySQL deployments have staff dedicated to
 benchmarking. However, every developer and DBA should be familiar with
 basic benchmarking principles and practices, because they're broadly
 useful. Here are some things benchmarks can help you do:
	Measure how your application currently performs. If you don't
 know how fast it currently runs, you can't be sure any changes you
 make are helpful. You can also use historical benchmark results to
 diagnose problems you didn't foresee.

	Validate your system's scalability. You can use a benchmark to
 simulate a much higher load than your production systems handle,
 such as a thousand-fold increase in the number of users.

	Plan for growth. Benchmarks help you estimate how much
 hardware, network capacity, and other resources you'll need for your
 projected future load. This can help reduce risk during upgrades or
 major application changes.

	Test your application's ability to tolerate a changing
 environment. For example, you can find out how your application
 performs during a sporadic peak in concurrency or with a different
 configuration of servers, or you can see how it handles a different
 data distribution.

	Test different hardware, software, and operating system
 configurations. Is RAID 5 or RAID 10 better for your system? How
 does random write performance change when you switch from ATA disks
 to SAN storage? Does the 2.4 Linux kernel scale better than the 2.6
 series? Does a MySQL upgrade help performance? What about using a
 different storage engine for your data? You can answer these
 questions with special benchmarks.

You can also use benchmarks for other purposes, such as to create
 a unit test suite for your application, but we focus only on
 performance-related aspects here.

Benchmarking Strategies

There are two primary benchmarking strategies: you can benchmark
 the application as a whole, or isolate MySQL. These two strategies are
 known as full-stack and
 single-component benchmarking, respectively. There
 are several reasons to measure the application as a whole instead of
 just MySQL:
	You're testing the entire application, including the web
 server, the application code, and the database. This is useful
 because you don't care about MySQL's performance in particular; you
 care about the whole application.

	MySQL is not always the application bottleneck, and a
 full-stack benchmark can reveal this.

	Only by testing the full application can you see how each
 part's cache behaves.

	Benchmarks are good only to the extent that they reflect your
 actual application's behavior, which is hard to do when you're
 testing only part of it.

On the other hand, application benchmarks can be hard to create
 and even harder to set up correctly. If you design the benchmark badly,
 you can end up making bad decisions, because the results don't reflect
 reality.
Sometimes, however, you don't really want to know about the entire
 application. You may just need a MySQL benchmark, at least initially.
 Such a benchmark is useful if:
	You want to compare different schemas or queries.

	You want to benchmark a specific problem you see in the
 application.

	You want to avoid a long benchmark in favor of a shorter one
 that gives you a faster "cycle time" for making and measuring
 changes.

It's also useful to benchmark MySQL when you can repeat your
 application's queries against a real dataset. The data itself and the
 dataset's size both need to be realistic. If possible, use a snapshot of
 actual production data.
Unfortunately, setting up a realistic benchmark can be complicated
 and time-consuming, and if you can get a copy of the production dataset,
 count yourself lucky. Of course, this might be impossible—for example,
 you might be developing a new application that has few users and little
 data. If you want to know how it'll perform when it grows very large,
 you'll have no option but to simulate the larger application's data and
 workload.
What to Measure

You need to identify your goals before you start benchmarking—indeed, before you even design your
 benchmarks. Your goals will determine the tools and techniques you'll
 use to get accurate, meaningful results. Frame your goals as a
 questions, such as "Is this CPU better than that one?" or "Do the new
 indexes work better than the current ones?"
It might not be obvious, but you sometimes need different
 approaches to measure different things. For example, latency and
 throughput might require different benchmarks.
Consider some of the following measurements and how they fit
 your performance goals:
	Transactions per time unit
	This is one of the all-time classics for benchmarking
 database applications. Standardized benchmarks such as
 TPC-C (see http://www.tpc.org) are widely quoted, and many
 database vendors work very hard to do well on them. These
 benchmarks measure online transaction processing (OLTP)
 performance and are most suitable for interactive
 multiuser applications. The usual unit of measurement is transactions per
 second.
The term throughput usually means the
 same thing as transactions (or another unit of work) per time
 unit.

	Response time or latency
	This measures the total time a task requires. Depending on
 your application, you might need to measure time in
 milliseconds, seconds, or minutes. From this you can derive
 average, minimum, and maximum response times.
Maximum response time is rarely a useful metric, because
 the longer the benchmark runs, the longer the maximum response
 time is likely to be. It's also not at all repeatable, as it's
 likely to vary widely between runs. For this reason, many people
 use percentile response times instead. For
 example, if the 95th percentile response time is 5 milliseconds,
 you know that the task finishes in less than 5 milliseconds 95%
 of the time.
It's usually helpful to graph the results of these
 benchmarks, either as lines (for example, the average and 95th
 percentile) or as a scatter plot so you can see how the results
 are distributed. These graphs help show how the benchmarks will
 behave in the long run.
Suppose your system does a checkpoint for one minute every
 hour. During the checkpoint, the system stalls and no
 transactions complete. The 95th percentile response time will
 not show the spikes, so the results will hide the problem.
 However, a graph will show periodic spikes in the response time.
 Figure 2-1
 illustrates this.
Figure 2-1 shows the
 number of transactions per minute (NOTPM). This line shows
 significant spikes, which the overall average (the dotted line)
 doesn't show at all. The first spike is because the server's
 caches are cold. The other spikes show when the server spends
 time intensively flushing dirty pages to the disk. Without the
 graph, these aberrations are hard to see.

	Scalability
	Scalability measurements are useful for systems
 that need to maintain performance under a changing workload.
"Performance under a changing workload" is a fairly
 abstract concept. Performance is typically measured by a metric
 such as throughput or response time, and the workload may vary
 along with changes in database size, number of concurrent
 connections, or hardware.
Scalability measurements are good for capacity
 planning, because they can show weaknesses in your application
 that other benchmark strategies won't show. For example, if you
 design your system to perform well on a response-time benchmark
 with a single connection (a poor benchmark strategy), your
 application might perform badly when there's any degree of
 concurrency. A benchmark that looks for consistent response
 times under an increasing number of connections would show this
 design flaw.
[image: Results from a 30-minute dbt2 benchmark run]

Figure 2-1. Results from a 30-minute dbt2 benchmark run

Some activities, such as batch jobs to create summary
 tables from granular data, just need fast response times,
 period. It's fine to benchmark them for pure response time, but remember to think
 about how they'll interact with other activities. Batch jobs can
 cause interactive queries to suffer, and vice versa.

	Concurrency
	Concurrency is an important but frequently misused and
 misunderstood metric. For example, it's popular to say how many
 users are browsing a web site at the same time. However, HTTP is
 stateless and most users are simply reading what's displayed in
 their browsers, so this doesn't translate into concurrency on
 the web server. Likewise, concurrency on the web server doesn't
 necessarily translate to the database server; the only thing it
 directly relates to is how much data your session storage
 mechanism must be able to handle. A more accurate measurement of
 concurrency on the web server is how many requests per second
 the users generate at the peak time.
You can measure concurrency at different places in the
 application, too. The higher concurrency on the web server may
 cause higher concurrency at the database level, but the language
 and toolset will influence this. For example, Java with a
 connection pool will probably cause a lower number of concurrent
 connections to the MySQL server than PHP with persistent
 connections.
More important still is the number of connections that are
 running queries at a given time. A well-designed application
 might have hundreds of connections open to the MySQL server, but
 only a fraction of these should be running queries at the same
 time. Thus, a web site with "50,000 users at a time" might
 require only 10 or 15 simultaneously running queries on the
 MySQL server!
In other words, what you should really care about
 benchmarking is the working concurrency, or
 the number of threads or connections doing work simultaneously.
 Measure whether performance drops much when the concurrency
 increases; if it does, your application probably can't handle
 spikes in load.
You need to either make sure that performance doesn't drop
 badly, or design the application so it doesn't create high
 concurrency in the parts of the application that can't handle
 it. You generally want to limit concurrency at the MySQL server,
 with designs such as application queuing. See Chapter 10 for more on this
 topic.
Concurrency is completely different from response time and
 scalability: it's not a result, but rather
 a property of how you set up the benchmark.
 Instead of measuring the concurrency your application achieves,
 you measure the application's performance at various levels of
 concurrency.

In the final analysis, you should benchmark whatever is
 important to your users. Benchmarks measure performance, but
 "performance" means different things to different people. Gather some
 requirements (formally or informally) about how the system should
 scale, what acceptable response times are, what kind of concurrency
 you expect, and so on. Then try to design your benchmarks to account
 for all the requirements, without getting tunnel vision and focusing
 on some things to the exclusion of others.

Benchmarking Tactics

With the general behind us, let's move on to the specifics of how
 to design and execute benchmarks. Before we discuss how to do benchmarks
 well, though, let's look at some common mistakes that can lead to unusable or inaccurate
 results:
	Using a subset of the real data size, such as using only one
 gigabyte of data when the application will need to handle hundreds
 of gigabytes, or using the current dataset when you plan for the
 application to grow much larger.

	Using incorrectly distributed data, such as uniformly
 distributed data when the real system's data will have "hot spots."
 (Randomly generated data is often unrealistically distributed.)

	Using unrealistically distributed parameters, such as
 pretending that all user profiles are equally likely to be
 viewed.

	Using a single-user scenario for a multiuser
 application.

	Benchmarking a distributed application on a single
 server.

	Failing to match real user behavior, such as "think time" on a
 web page. Real users request a page and then read it; they don't
 click on links one after another without pausing.

	Running identical queries in a loop. Real queries aren't
 identical, so they cause cache misses. Identical queries will be
 fully or partially cached at some level.

	Failing to check for errors. If a benchmark's results don't make
 sense—e.g., if a slow operation suddenly completes very
 quickly—check for errors. You might just be benchmarking how quickly
 MySQL can detect a syntax error in the SQL query! Always check error
 logs after benchmarks, as a matter of principle.

	Ignoring how the system performs when it's not warmed
 up, such as right after a restart. Sometimes you need
 to know how long it'll take your server to reach capacity after a
 restart, so you'll want to look specifically at the warm-up period.
 Conversely, if you intend to study normal performance, you'll need
 to be aware that if you benchmark just after a restart many caches
 will be cold, and the benchmark results won't reflect the results
 you'll get under load when the caches are warmed up.

	Using default server settings. See Chapter 6 for more on optimizing
 server settings.

Merely avoiding these mistakes will take you a long way toward
 improving the quality of your results.
All other things being equal, you should typically strive to make
 the tests as realistic as you can. Sometimes, though, it makes sense to
 use a slightly unrealistic benchmark. For example, say your application
 is on a different host from the database server. It would be more
 realistic to run the benchmarks in the same configuration, but doing so
 would add more variables, such as how fast and how heavily loaded the
 network is. Benchmarking on a single node is usually easier, and, in
 some cases, it's accurate enough. You'll have to use your judgment as to
 when this is appropriate.
Designing and Planning a Benchmark

The first step in planning a benchmark is to identify the
 problem and the goal. Next, decide whether to use a standard benchmark or design your own.
If you use a standard benchmark, be sure to choose one that
 matches your needs. For example, don't use TPC to benchmark an
 e-commerce system. In TPC's own words, TPC "illustrates decision
 support systems that examine large volumes of data." Therefore, it's
 not an appropriate benchmark for an OLTP system.
Designing your own benchmark is a complicated and iterative
 process. To get started, take a snapshot of your production data set.
 Make sure you can restore this data set for subsequent runs.
Next, you need queries to run against the data. You can make a unit
 test suite into a rudimentary benchmark just by running it many times,
 but that's unlikely to match how you really use the database. A better
 approach is to log all queries on your production system during a
 representative time frame, such as an hour during peak load or an
 entire day. If you log queries during a small time frame, you may need
 to choose several time frames. This will let you cover all system
 activities, such as weekly reporting queries or batch jobs you
 schedule during off-peak times.[7]
You can log queries at different levels. For example, you can
 log the HTTP requests on a web server if you need a full-stack
 benchmark. You can also enable MySQL's query log, but if you replay a
 query log, be sure to recreate the separate threads instead of just
 replaying each query linearly. It's also important to create a
 separate thread for each connection in the log, instead of shuffling
 queries among threads. The query log shows which connection ran each
 query.
Even if you don't build your own benchmark, you should write
 down your benchmarking plan. You're going to run the benchmark many
 times over, and you need to be able to reproduce it exactly. Plan for
 the future, too. You may not be the one who runs the benchmark the
 next time around, and even if you are, you may not remember exactly
 how you ran it the first time. Your plan should include the test data,
 the steps taken to set up the system, and the warm-up plan.
Design some method of documenting parameters and results, and document each
 run carefully. Your documentation method might be as simple as a
 spreadsheet or notebook, or as complex as a custom-designed database
 (keep in mind that you'll probably want to write some scripts to help
 analyze the results, so the easier it is to process the results
 without opening spreadsheets and text files, the better).
You may find it useful to make a benchmark directory with
 subdirectories for each run's results. You can then place the results,
 configuration files, and notes for each run in the appropriate
 subdirectory. If your benchmark lets you measure more than you think
 you're interested in, record the extra data anyway. It's much better
 to have unneeded data than to miss important data, and you might find
 the extra data useful in the future. Try to record as much additional
 information as you can during the benchmarks, such as CPU usage, disk
 I/O, and network traffic statistics; counters from SHOW GLOBAL STATUS; and so on.

Getting Accurate Results

The best way to get accurate results is to design your benchmark
 to answer the question you want to answer. Have you chosen the right
 benchmark? Are you capturing the data you need to answer the question?
 Are you benchmarking by the wrong criteria? For example, are you
 running a CPU-bound benchmark to predict the performance of an
 application you know will be I/O-bound?
Next, make sure your benchmark results will be repeatable. Try
 to ensure that the system is in the same state at the beginning
 of each run. If the benchmark is important, you should
 reboot between runs. If you need to benchmark on a warmed-up server,
 which is the norm, you should also make sure that your warm-up is long
 enough and that it's repeatable. If the warm-up consists of random queries, for example, your benchmark results
 will not be repeatable.
If the benchmark changes data or schema, reset it with a fresh
 snapshot between runs. Inserting into a table with a thousand rows
 will not give the same results as inserting into a table with a
 million rows! The data fragmentation and layout on disk can also make
 your results nonrepeatable. One way to make sure the physical layout
 is close to the same is to do a quick format and file copy of a
 partition.
Watch out for external load, profiling and monitoring systems,
 verbose logging, periodic jobs, and other factors that can skew your
 results. A typical surprise is a cron job that
 starts in the middle of a benchmark run, or a Patrol Read cycle or
 scheduled consistency check on your RAID card. Make sure all the
 resources the benchmark needs are dedicated to it while it runs. If
 something else is consuming network capacity, or if the benchmark runs
 on a SAN that's shared with other servers, your results might not be
 accurate.
Try to change as few parameters as possible each time you run a benchmark.
 This is called "isolating the variable" in science. If you must change
 several things at once, you risk missing something. Parameters can
 also be dependent on one another, so sometimes you can't change them
 independently. Sometimes you may not even know they are related, which
 adds to the complexity.[8]
It generally helps to change the benchmark parameters
 iteratively, rather than making dramatic changes between runs. For
 example, use techniques such as divide-and-conquer (halving the
 differences between runs) to hone in on a good value for a server
 setting.
We see a lot of benchmarks that try to predict performance after
 a migration, such as migrating from Oracle to MySQL. These are often
 troublesome, because MySQL performs well on completely different types
 of queries than Oracle. If you want to know how well an application
 built on Oracle will run after migrating it to MySQL, you usually need
 to redesign the schema and queries for MySQL. (In some cases, such as
 when you're building a cross-platform application, you might want to
 know how the same queries will run on both platforms, but that's
 unusual.)
You can't get meaningful results from the default MySQL
 configuration settings either, because they're tuned for tiny
 applications that consume very little memory.
Finally, if you get a strange result, don't simply dismiss it as
 a bad data point. Investigate and try to find out what happened. You
 might find a valuable result, a huge problem, or a flaw in your
 benchmark design.

Running the Benchmark and Analyzing Results

Once you've prepared everything, you're ready to run the
 benchmark and begin gathering and analyzing data.
It's usually a good idea to automate the benchmark runs. Doing
 so will improve your results and their accuracy, because it will
 prevent you from forgetting steps or accidentally doing things
 differently on different runs. It will also help you document how to
 run the benchmark.
Any automation method will do; for example, a Makefile or a set
 of custom scripts. Choose whatever scripting language makes sense for
 you: shell, PHP, Perl, etc. Try to automate as much of the process as
 you can, including loading the data, warming up the system, running
 the benchmark, and recording the results.
Tip
When you have it set up correctly, benchmarking can be a
 one-step process. If you're just running a one-off benchmark to
 check something quickly, you might not want to automate it.

You'll usually run a benchmark several times. Exactly how many
 runs you need depends on your scoring methodology and how important
 the results are. If you need greater certainty, you need to run the
 benchmark more times. Common practices are to look for the best
 result, average all the results, or just run the benchmark five times
 and average the three best results. You can be as precise as you want.
 You may want to apply statistical methods to your results, find the
 confidence interval, and so on, but you often don't need that level of
 certainty.[9] If it answers your question to your satisfaction, you
 can simply run the benchmark several times and see how much the
 results vary. If they vary widely, either run the benchmark more times
 or run it longer, which usually reduces variance.
Once you have your results, you need to analyze them—that is,
 turn the numbers into knowledge. The goal is to answer the
 question that frames the benchmark. Ideally, you'd like to be able to
 make a statement such as "Upgrading to four CPUs increases throughput
 by 50% with the same latency" or "The indexes made the queries
 faster."
How you "crunch the numbers" depends on how you collect the
 results. You should probably write scripts to analyze the results, not
 only to help reduce the amount of work required, but for the same
 reasons you should automate the benchmark itself: repeatability and
 documentation.

[7] All this is provided that you want a perfect benchmark,
 of course. Real life usually gets in the way.

[8] Sometimes, this doesn't really matter. For example, if
 you're thinking about migrating from a Solaris system on SPARC
 hardware to GNU/Linux on x86, there's no point in benchmarking
 Solaris on x86 as an intermediate step!

[9] If you really need scientific, rigorous results, you should
 read a good book on how to design and execute controlled tests, as
 the subject is much larger than we can cover here.

Benchmarking Tools

You don't have to roll your own benchmarking system, and in fact
 you shouldn't unless there's a good reason why you can't use one of the
 available ones. There are a wide variety of tools ready for you to use. We show you some of them in
 the following sections.
Full-Stack Tools

Recall that there are two types of benchmarks: full-stack and single-component. Not surprisingly, there are tools to
 benchmark full applications, and there are tools to stress-test MySQL
 and other components in isolation. Testing the full stack is usually a
 better way to get a clear picture of your system's performance.
 Existing full-stack tools include:
	ab
	ab is a well-known Apache HTTP server
 benchmarking tool. It shows how many requests per second your
 HTTP server is capable of serving. If you are benchmarking a web
 application, this translates to how many requests per second the
 entire application can satisfy. It's a very simple tool, but its
 usefulness is also limited because it just hammers one URL as
 fast as it can. More information on ab is
 available at http://httpd.apache.org/docs/2.0/programs/ab.html.

	http_load
	This tool is similar in concept to
 ab; it is also designed to load a web
 server, but it's more flexible. You can create an input file
 with many different URLs, and http_load
 will choose from among them at random. You can also instruct it
 to issue requests at a timed rate, instead of just running them
 as fast as it can. See http://www.acme.com/software/http_load/ for more
 information.

	JMeter
	JMeter is a Java application that can load another
 application and measure its performance. It was designed for
 testing web applications, but you can also use it to test FTP
 servers and issue queries to a database via JDBC.
JMeter is much more complex than ab
 and http_load. For example, it has features
 that let you simulate real users more flexibly, by controlling
 such parameters as ramp-up time. It has a graphical user
 interface with built-in result graphing, and it offers the
 ability to record and replay results offline. For more
 information, see http://jakarta.apache.org/jmeter/.

Single-Component Tools

Here are some useful tools to test the performance of MySQL and
 the system on which it runs. We show example benchmarks with some of
 these tools in the next section:
	mysqlslap
	mysqlslap (http://dev.mysql.com/doc/refman/5.1/en/mysqlslap.html)
 simulates load on the server and reports timing information. It is part of the MySQL 5.1 server
 distribution, but it should be possible to run it against MySQL
 4.1 and newer servers. You can specify how many concurrent
 connections it should use, and you can give it either a SQL
 statement on the command line or a file containing SQL
 statements to run. If you don't give it statements, it can also
 autogenerate SELECT
 statements by examining the server's schema.

	sysbench
	sysbench (http://sysbench.sourceforge.net) is a
 multithreaded system benchmarking tool. Its goal is to get a
 sense of system performance, in terms of the factors important
 for running a database server. For example, you can measure the
 performance of file I/O, the OS scheduler, memory allocation and
 transfer speed, POSIX threads, and the database server itself.
 sysbench supports scripting in the Lua
 language (http://www.lua.org), which makes
 it very flexible for testing a variety of scenarios.

	Database Test Suite
	The Database Test Suite, designed by The Open-Source
 Development Labs (OSDL) and hosted on SourceForge at http://sourceforge.net/projects/osdldbt/, is a
 test kit for running benchmarks similar to some
 industry-standard benchmarks, such as those published by the
 Transaction Processing Performance Council (TPC). In particular,
 the dbt2 test tool is a free (but
 uncertified) implementation of the TPC-C OLTP test. It supports
 InnoDB and Falcon; at the time of this writing, the status of
 other transactional MySQL storage engines is unknown.

	MySQL Benchmark Suite
 (sql-bench)
	MySQL distributes its own benchmark suite with the MySQL
 server, and you can use it to benchmark several different
 database servers. It is single-threaded and measures how quickly
 the server executes queries. The results show which types of
 operations the server performs well.
The main benefit of this benchmark suite is that it
 contains a lot of predefined tests that are easy to use, so it
 makes it easy to compare different storage engines or
 configurations. It's useful as a high-level benchmark, to
 compare the overall performance of two servers. You can also run
 a subset of its tests (for example, just testing UPDATE performance). The tests are
 mostly CPU-bound, but there are short periods that demand a lot
 of disk I/O.
The biggest disadvantages of this tool are that it's
 single-user, it uses a very small dataset, you can't test your
 site-specific data, and its results may vary between runs.
 Because it's single-threaded and completely serial, it will not
 help you assess the benefits of multiple CPUs, but it can help
 you compare single-CPU servers.
Perl and DBD drivers are required for the database server you wish to benchmark.
 Documentation is available at http://dev.mysql.com/doc/en/mysql-benchmarks.html/.

	Super Smack
	Super Smack (http://vegan.net/tony/supersmack/) is a
 benchmarking, stress-testing, and load-generating tool for MySQL
 and PostgreSQL. It is a complex, powerful tool that lets you
 simulate multiple users, load test data into the database, and
 populate tables with randomly generated data. Benchmarks are
 contained in "smack" files, which use a simple language to
 define clients, tables, queries, and so on.

ora: MySQL's BENCHMARK() Function
MySQL has a handy BENCHMARK() function that you can use to
 test execution speeds for certain types of operations. You use it by
 specifying a number of times to execute and an expression to
 execute. The expression can be any scalar expression, such as a
 scalar subquery or a function. This is convenient for testing the
 relative speed of some operations, such as seeing whether MD5() is faster than SHA1():
mysql> SET @input := 'hello world';
mysql> SELECT BENCHMARK(1000000, MD5(@input));
+---------------------------------+
| BENCHMARK(1000000, MD5(@input)) |
+---------------------------------+
| 0 |
+---------------------------------+
1 row in set (2.78 sec)
mysql> SELECT BENCHMARK(1000000, SHA1(@input));
+----------------------------------+
| BENCHMARK(1000000, SHA1(@input)) |
+----------------------------------+
| 0 |
+----------------------------------+
1 row in set (3.50 sec)
The return value is always 0; you time the execution by looking at
 how long the client application reported the query took. In this
 case, it looks like MD5() is
 faster. However, using BENCHMARK() correctly is tricky unless you
 know what it's really doing. It simply measures how fast the server
 can execute the expression; it does not give any indication of the
 parsing and optimization overhead. And unless the expression
 includes a user variable, as in our example, the second and
 subsequent times the server executes the expression might be cache
 hits.[10]
Although it's handy, we don't use BENCHMARK() for real benchmarks. It's too
 hard to figure out what it really measures, and it's too narrowly
 focused on a small part of the overall execution process.

[10] One of the authors made this mistake and found that 10,000
 executions of a certain expression ran just as fast as 1
 execution. It was a cache hit. In general, this type of behavior
 should always make you suspect either a cache hit or an
 error.

Benchmarking Examples

In this section, we show you some examples of actual benchmarks with tools we mentioned in
 the preceding sections. We can't cover each tool exhaustively, but these
 examples should help you decide which benchmarks might be useful for
 your purposes and get you started using them.
http_load

Let's start with a simple example of how to use
 http_load, and use the following URLs, which we
 saved to a file called urls.txt:
http://www.mysqlperformanceblog.com/
http://www.mysqlperformanceblog.com/page/2/
http://www.mysqlperformanceblog.com/mysql-patches/
http://www.mysqlperformanceblog.com/mysql-performance-presentations/
http://www.mysqlperformanceblog.com/2006/09/06/slow-query-log-analyzes-tools/
The simplest way to use http_load is to
 simply fetch the URLs in a loop. The program fetches them as fast as
 it can:
$ http_load -parallel 1 -seconds 10 urls.txt
19 fetches, 1 max parallel, 837929 bytes, in 10.0003 seconds
44101.5 mean bytes/connection
1.89995 fetches/sec, 83790.7 bytes/sec
msecs/connect: 41.6647 mean, 56.156 max, 38.21 min
msecs/first-response: 320.207 mean, 508.958 max, 179.308 min
HTTP response codes:
 code 200 - 19
The results are pretty self-explanatory; they simply show
 statistics about the requests. A slightly more complex usage scenario
 is to fetch the URLs as fast as possible in a loop, but emulate five
 concurrent users:
$ http_load -parallel 5 -seconds 10 urls.txt
94 fetches, 5 max parallel, 4.75565e+06 bytes, in 10.0005 seconds
50592 mean bytes/connection
9.39953 fetches/sec, 475541 bytes/sec
msecs/connect: 65.1983 mean, 169.991 max, 38.189 min
msecs/first-response: 245.014 mean, 993.059 max, 99.646 min
HTTP response codes:
 code 200 - 94
Alternatively, instead of fetching as fast as possible, we can
 emulate the load for a predicted rate of requests (such as five per
 second):
$ http_load -rate 5 -seconds 10 urls.txt
48 fetches, 4 max parallel, 2.50104e+06 bytes, in 10 seconds
52105 mean bytes/connection
4.8 fetches/sec, 250104 bytes/sec
msecs/connect: 42.5931 mean, 60.462 max, 38.117 min
msecs/first-response: 246.811 mean, 546.203 max, 108.363 min
HTTP response codes:
 code 200 - 48
Finally, we emulate even more load, with an incoming rate
 of 20 requests per second. Notice how the connect and
 response times increase with the higher load:
$ http_load -rate 20 -seconds 10 urls.txt
111 fetches, 89 max parallel, 5.91142e+06 bytes, in 10.0001 seconds
53256.1 mean bytes/connection
11.0998 fetches/sec, 591134 bytes/sec
msecs/connect: 100.384 mean, 211.885 max, 38.214 min
msecs/first-response: 2163.51 mean, 7862.77 max, 933.708 min
HTTP response codes:
 code 200 -- 111

sysbench

The sysbench tool can run a variety of
 benchmarks, which it refers to as "tests." It was designed to test not
 only database performance, but also how well a system is likely to
 perform as a database server. We start with some tests that aren't
 MySQL-specific and measure performance for subsystems that will
 determine the system's overall limits. Then we show you how to measure
 database performance.
The sysbench CPU benchmark

The most obvious subsystem test is the CPU benchmark, which
 uses 64-bit integers to calculate prime numbers up to a specified
 maximum. We run this on two servers, both running GNU/Linux, and
 compare the results. Here's the first server's hardware:
[server1 ~]$ cat /proc/cpuinfo
...
model name : AMD Opteron(tm) Processor 246
stepping : 1
cpu MHz : 1992.857
cache size : 1024 KB
And here's how to run the benchmark:
[server1 ~]$ sysbench --test=cpu --cpu-max-prime=20000 run
sysbench v0.4.8: multi-threaded system evaluation benchmark
...
Test execution summary:
 total time: 121.7404s
The second server has a different CPU:
[server2 ~]$ cat /proc/cpuinfo
...
model name : Intel(R) Xeon(R) CPU 5130 @ 2.00GHz
stepping : 6
cpu MHz : 1995.005
Here's its benchmark result:
[server1 ~]$ sysbench --test=cpu --cpu-max-prime=20000 run
sysbench v0.4.8: multi-threaded system evaluation benchmark
...
Test execution summary:
 total time: 61.8596s
The result simply indicates the total time required to
 calculate the primes, which is very easy to compare. In this case,
 the second server ran the benchmark about twice as fast as the first
 server.

The sysbench file I/O benchmark

The fileio benchmark
 measures how your system performs under different kinds of I/O loads. It is very helpful for comparing hard
 drives, RAID cards, and RAID modes, and for tweaking the I/O
 subsystem.
The first stage in running this test is to prepare some files
 for the benchmark. You should generate much more data than will fit
 in memory. If the data fits in memory, the operating system will
 cache most of it, and the results will not accurately represent an
 I/O-bound workload. We begin by creating a dataset:
$ sysbench --test=fileio --file-total-size=150G prepare
The second step is to run the benchmark. Several options are
 available to test different types of I/O performance:
	seqwr
	Sequential write

	seqrewr
	Sequential rewrite

	seqrd
	Sequential read

	rndrd
	Random read

	rndwr
	Random write

	rndrw
	Combined random read/write

The following command runs the random read/write access file
 I/O benchmark:
$ sysbench --test=fileio --file-total-size=150G --file-test-mode=rndrw
--init-rng=on --max-time=300 --max-requests=0 run
Here are the results:
sysbench v0.4.8: multi-threaded system evaluation benchmark

Running the test with following options:
Number of threads: 1
Initializing random number generator from timer.

Extra file open flags: 0
128 files, 1.1719Gb each
150Gb total file size
Block size 16Kb
Number of random requests for random IO: 10000
Read/Write ratio for combined random IO test: 1.50
Periodic FSYNC enabled, calling fsync() each 100 requests.
Calling fsync() at the end of test, Enabled.
Using synchronous I/O mode
Doing random r/w test
Threads started!
Time limit exceeded, exiting...
Done.

Operations performed: 40260 Read, 26840 Write, 85785 Other = 152885 Total
Read 629.06Mb Written 419.38Mb Total transferred 1.0239Gb (3.4948Mb/sec)
 223.67 Requests/sec executed

Test execution summary:
 total time: 300.0004s
 total number of events: 67100
 total time taken by event execution: 254.4601
 per-request statistics:
 min: 0.0000s
 avg: 0.0038s
 max: 0.5628s
 approx. 95 percentile: 0.0099s

Threads fairness:
 events (avg/stddev): 67100.0000/0.00
 execution time (avg/stddev): 254.4601/0.00
There's a lot of information in the output. The most
 interesting numbers for tuning the I/O subsystem are the number of
 requests per second and the total throughput. In this case, the
 results are 223.67 requests/sec and 3.4948 MB/sec, respectively.
 These values provide a good indication of disk performance.
When you're finished, you can run a cleanup to delete the
 files sysbench created for the
 benchmarks:
$ sysbench --test=fileio --file-total-size=150G cleanup

The sysbench OLTP benchmark

The OLTP benchmark emulates a transaction-processing workload.
 We show an example with a table that has a million rows. The first
 step is to prepare a table for the test:
$ sysbench --test=oltp --oltp-table-size=1000000 --mysql-db=test --mysql-user=root
prepare
sysbench v0.4.8: multi-threaded system evaluation benchmark

No DB drivers specified, using mysql
Creating table 'sbtest'...
Creating 1000000 records in table 'sbtest'...
That's all you need to do to prepare the test data. Next, we
 run the benchmark in read-only mode for 60 seconds, with 8
 concurrent threads:
$ sysbench --test=oltp --oltp-table-size=1000000 --mysql-db=test --mysql-user=root --
max-time=60 --oltp-read-only=on --max-requests=0 --num-threads=8 run
sysbench v0.4.8: multi-threaded system evaluation benchmark

No DB drivers specified, using mysql
WARNING: Preparing of "BEGIN" is unsupported, using emulation
(last message repeated 7 times)
Running the test with following options:
Number of threads: 8

Doing OLTP test.
Running mixed OLTP test
Doing read-only test
Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct
cases)
Using "BEGIN" for starting transactions
Using auto_inc on the id column
Threads started!
Time limit exceeded, exiting...
(last message repeated 7 times)
Done.

OLTP test statistics:
 queries performed:
 read: 179606
 write: 0
 other: 25658
 total: 205264
 transactions: 12829 (213.07 per sec.)
 deadlocks: 0 (0.00 per sec.)
 read/write requests: 179606 (2982.92 per sec.)
 other operations: 25658 (426.13 per sec.)

Test execution summary:
 total time: 60.2114s
 total number of events: 12829
 total time taken by event execution: 480.2086

 per-request statistics:
 min: 0.0030s
 avg: 0.0374s
 max: 1.9106s
 approx. 95 percentile: 0.1163s

Threads fairness:
 events (avg/stddev): 1603.6250/70.66
 execution time (avg/stddev): 60.0261/0.06
As before, there's quite a bit of information in the results. The most interesting
 parts are:
	The transaction count

	The rate of transactions per second

	The per-request statistics (minimal, average, maximal, and
 95th percentile time)

	The thread-fairness statistics, which show how fair the
 simulated workload was

Other sysbench features

The sysbench tool can run several other
 system benchmarks that don't measure a database server's performance
 directly:
	memory
	Exercises sequential memory reads or writes.

	threads
	Benchmarks the thread scheduler's performance. This is
 especially useful to test the scheduler's behavior under high
 load.

	mutex
	Measures mutex performance by emulating a situation
 where all threads run concurrently most of the time, acquiring
 mutex locks only briefly. (A mutex is a data structure that
 guarantees mutually exclusive access to some resource,
 preventing concurrent access from causing problems.)

	seqwr
	Measures sequential write performance. This is very
 important for testing a system's practical performance limits.
 It can show how well your RAID controller's cache performs and
 alert you if the results are unusual. For example, if you have
 no battery-backed write cache but your disk achieves 3,000
 requests per second, something is wrong, and your data is not
 safe.

In addition to the benchmark-specific mode parameter
 (--test), sysbench accepts some other common
 parameters, such as --num-threads,
 --max-requests, and --max-time. See
 the documentation for more information on these.

dbt2 TPC-C on the Database Test Suite

The Database Test Suite's dbt2 tool is
 a free implementation of the TPC-C test. TPC-C is a specification published by the
 TPC organization that emulates a complex online transaction-processing
 load. It reports its results in transactions per minute (tpmC), along
 with the cost of each transaction (Price/tpmC). The results depend
 greatly on the hardware, so the published TPC-C results contain
 detailed specifications of the servers used in the
 benchmark.
Tip
The dbt2 test is not really TPC-C. It's
 not certified by TPC, and its results aren't directly comparable
 with TPC-C results.

Let's look at a sample of how to set up and run a dbt2
 benchmark. We used version 0.37 of dbt2, which is
 the most recent version we were able to use with MySQL (newer versions
 contain fixes that MySQL does not fully support). The following are
 the steps we took:
	Prepare data.
The following command creates data for 10 warehouses in the
 specified directory. The warehouses use a total of about 700 MB of
 space. The amount of space required will change in proportion to
 the number of warehouses, so you can change the
 -w parameter to create a dataset with the
 size you need.
src/datagen -w 10 -d /mnt/data/dbt2-w10
warehouses = 10
districts = 10
customers = 3000
items = 100000
orders = 3000
stock = 100000
new_orders = 900

Output directory of data files: /mnt/data/dbt2-w10

Generating data files for 10 warehouse(s)...
Generating item table data...
Finished item table data...
Generating warehouse table data...
Finished warehouse table data...
Generating stock table data...

	Load data into the MySQL database.
The following command creates a database named dbt2w10 and loads it with the data we
 generated in the previous step (-d is the
 database name and -f is the directory with
 the generated data):
scripts/mysql/mysql_load_db.sh -d dbt2w10 -f /mnt/data/dbt2-w10 -s /var/lib/
mysql/mysql.sock

	Run the benchmark.
The final step is to execute the following command from the
 scripts directory:
run_mysql.sh -c 10 -w 10 -t 300 -n dbt2w10 -u root -o /var/lib/mysql/mysql.sock
-e
**
* DBT2 test for MySQL started *
* *
* Results can be found in output/9 directory *
**
* *
* Test consists of 4 stages: *
* *
* 1. Start of client to create pool of databases connections *
* 2. Start of driver to emulate terminals and transactions generation *
* 3. Test *
* 4. Processing of results *
* *
**

DATABASE NAME: dbt2w10
DATABASE USER: root
DATABASE SOCKET: /var/lib/mysql/mysql.sock
DATABASE CONNECTIONS: 10
TERMINAL THREADS: 100
SCALE FACTOR(WARHOUSES): 10
TERMINALS PER WAREHOUSE: 10
DURATION OF TEST(in sec): 300
SLEEPY in (msec) 300
ZERO DELAYS MODE: 1

Stage 1. Starting up client...
Delay for each thread - 300 msec. Will sleep for 4 sec to start 10 database
connections
CLIENT_PID = 12962

Stage 2. Starting up driver...
Delay for each thread - 300 msec. Will sleep for 34 sec to start 100 terminal
threads
All threads has spawned successfuly.

Stage 3. Starting of the test. Duration of the test 300 sec

Stage 4. Processing of results...
Shutdown clients. Send TERM signal to 12962.
 Response Time (s)
 Transaction % Average : 90th % Total Rollbacks %
------------ ----- ----------------- ------ --------- -----
 Delivery 3.53 2.224 : 3.059 1603 0 0.00
 New Order 41.24 0.659 : 1.175 18742 172 0.92
Order Status 3.86 0.684 : 1.228 1756 0 0.00
 Payment 39.23 0.644 : 1.161 17827 0 0.00
 Stock Level 3.59 0.652 : 1.147 1630 0 0.00

3396.95 new-order transactions per minute (NOTPM)
5.5 minute duration
0 total unknown errors
31 second(s) ramping up

The most important result is this line near the end:
3396.95 new-order transactions per minute (NOTPM)
This shows how many transactions per minute the system can
 process; more is better. (The term "new-order" is not a special term
 for a type of transaction; it simply means the test simulated
 someone placing a new order on the imaginary e-commerce web
 site.)
You can change a few parameters to create different
 benchmarks:
	-c The number of connections to the
 database. You can change this to emulate different
 levels of concurrency and see how the system scales.
	-e This enables zero-delay mode, which
 means there will be no delay between queries. This stress-tests the
 database, but it can be unrealistic, as real users need some "think
 time" before generating new queries.
	-t The total duration of the benchmark.
 Choose this time carefully, or the results will be meaningless. Too
 short a time for benchmarking an I/O-bound workload will give
 incorrect results, because the system will not have enough time to
 warm the caches and start to work normally. On the other hand, if
 you want to benchmark a CPU-bound workload, you shouldn't make the
 time too long, or the dataset may grow significantly and become I/O
 bound.

This benchmark's results can provide information on more than
 just performance. For example, if you see too many rollbacks, you'll
 know something is likely to be wrong.

MySQL Benchmark Suite

The MySQL Benchmark Suite consists of a set of Perl benchmarks,
 so you'll need Perl to run them. You'll find the benchmarks in the
 sql-bench/ subdirectory in your MySQL
 installation. On Debian GNU/Linux systems, for example, they're in
 /usr/share/mysql/sql-bench/.
Before getting started, read the included
 README file, which explains how to use the suite
 and documents the command-line arguments. To run all the tests, use
 commands like the following:
$ cd /usr/share/mysql/sql-bench/
sql-bench$./run-all-tests --server=mysql --user=root --log --fast
Test finished. You can find the result in:
output/RUN-mysql_fast-Linux_2.4.18_686_smp_i686
The benchmarks can take quite a while to run—perhaps over an
 hour, depending on your hardware and configuration. If you give the
 --log command-line option, you can monitor
 progress while they're running. Each test logs its results in a
 subdirectory named output. Each file contains a
 series of timings for the operations in each benchmark. Here's a
 sample, slightly reformatted for printing:
sql-bench$ tail -5 output/select-mysql_fast-Linux_2.4.18_686_smp_i686
Time for count_distinct_group_on_key (1000:6000):
 34 wallclock secs (0.20 usr 0.08 sys + 0.00 cusr 0.00 csys = 0.28 CPU)
Time for count_distinct_group_on_key_parts (1000:100000):
 34 wallclock secs (0.57 usr 0.27 sys + 0.00 cusr 0.00 csys = 0.84 CPU)
Time for count_distinct_group (1000:100000):
 34 wallclock secs (0.59 usr 0.20 sys + 0.00 cusr 0.00 csys = 0.79 CPU)
Time for count_distinct_big (100:1000000):
 8 wallclock secs (4.22 usr 2.20 sys + 0.00 cusr 0.00 csys = 6.42 CPU)
Total time:
 868 wallclock secs (33.24 usr 9.55 sys + 0.00 cusr 0.00 csys = 42.79 CPU)
As an example, the count_distinct_group_on_key (1000:6000) test
 took 34 wall-clock seconds to execute. That's the total amount
 of time the client took to run the test. The other
 values (usr, sys, cursr, csys) that
 added up to 0.28 seconds constitute the overhead for this test. That's
 how much of the time was spent running the benchmark client code,
 rather than waiting for the MySQL server's response. This means that
 the figure we care about—how much time was tied up by things outside
 the client's control—was 33.72 seconds.
Rather than running the whole suite, you can run the tests
 individually. For example, you may decide to focus on the insert test.
 This gives you more detail than the summary created by the full test
 suite:
sql-bench$./test-insert
Testing server 'MySQL 4.0.13 log' at 2003-05-18 11:02:39

Testing the speed of inserting data into 1 table and do some selects on it.
The tests are done with a table that has 100000 rows.

Generating random keys
Creating tables
Inserting 100000 rows in order
Inserting 100000 rows in reverse order
Inserting 100000 rows in random order
Time for insert (300000):
 42 wallclock secs (7.91 usr 5.03 sys + 0.00 cusr 0.00 csys = 12.94 CPU)
Testing insert of duplicates
Time for insert_duplicates (100000):
 16 wallclock secs (2.28 usr 1.89 sys + 0.00 cusr 0.00 csys = 4.17 CPU)

Profiling

Profiling shows you how much each part of a system contributes to
 the total cost of producing a result. The simplest cost metric is time,
 but profiling can also measure the number of function calls, I/O
 operations, database queries, and so forth. The goal is to understand
 why a system performs the way it does.
Profiling an Application

Just like with benchmarking, you can profile at the application level or on a single component, such as the
 MySQL server. Application-level profiling usually yields better insight into how to
 optimize the application and provides more accurate results, because
 the results include the work done by the whole application. For example, if you're interested in optimizing the
 application's MySQL queries, you might be tempted to just run and
 analyze the queries. However, if you do this, you'll miss a lot of
 important information about the queries, such as insights into the
 work the application has to do when reading results into memory and
 processing them.[11]
Because web applications are such a common use case for MySQL,
 we use a PHP web site as our example. You'll typically need to profile
 the application globally to see how the system is loaded, but you'll
 probably also want to isolate some subsystems of interest, such as the
 search function. Any expensive subsystem is a good candidate for
 profiling in isolation.
When we need to optimize how a PHP web site uses MySQL, we
 prefer to gather statistics at the granularity of objects (or modules)
 in the PHP code. The goal is to measure how much of each page's
 response time is consumed by database operations. Database access is
 often, but not always, the bottleneck in applications. Bottlenecks can
 also be caused by any of the following:
	External resources, such as calls to web services or search
 engines

	Operations that require processing large amounts of data in
 the application, such as parsing big XML files

	Expensive operations in tight loops, such as abusing regular
 expressions

	Badly optimized algorithms, such as naïve search algorithms
 to find items in lists

Before looking at MySQL queries, you should figure out the
 actual source of your performance problems. Application profiling can
 help you find the bottlenecks, and it's an important step in
 monitoring and improving overall performance.
How and what to measure

Time is an appropriate profiling metric for most applications,
 because the end user cares most about time. In web applications, we
 like to have a debug mode that makes each page display its queries
 along with their times and number of rows. We can then run EXPLAIN on slow queries (you'll find more
 information about EXPLAIN in
 later chapters). For deeper analysis, we combine this data with
 metrics from the MySQL server.
We recommend that you include profiling code in every new
 project you start. It might be hard to inject profiling code into an
 existing application, but it's easy to include it in new
 applications. Many libraries contain features that make it easy. For
 example, Java's JDBC and PHP's mysqli database
 access libraries have built-in features for profiling database
 access.
Profiling code is also invaluable for tracking down odd
 problems that appear only in production and can't be reproduced in
 development.
Your profiling code should gather and log at least the
 following:
	Total execution time, or "wall-clock time" (in web
 applications, this is the total page render time)

	Each query executed, and its execution time

	Each connection opened to the MySQL server

	Every call to an external resource, such as web services,
 memcached, and externally invoked
 scripts

	Potentially expensive function calls, such as XML
 parsing

	User and system CPU time

This information will help you monitor performance much more
 easily. It will give you insight into aspects of performance you
 might not capture otherwise, such as:
	Overall performance problems

	Sporadically increased response times

	System bottlenecks, which might not be MySQL

	Execution time of "invisible" users, such as search engine
 spiders

A PHP profiling example

To give you an idea of how easy and unobtrusive profiling a
 PHP web application can be, let's look at some code samples. The
 first example shows how to instrument the application, log the
 queries and other profiling data in a MySQL log table, and analyze
 the results.
To reduce the impact of logging, we capture all the logging
 information in memory, then write it to a single row when the page
 finishes executing. This is a better approach than logging every
 query individually, because logging every query doubles the number
 of queries you need to send to the MySQL server. Logging each bit of
 profiling data separately would actually make it harder to analyze
 bottlenecks, as you rarely have that much granularity to identify
 and troubleshoot problems in the application.
We start with the code you'll need to capture the profiling
 information. Here's a simplified example of a basic PHP 5 logging class,
 class.Timer.php, which uses built-in functions
 such as getrusage() to determine
 the script's resource usage:
ora: Will Profiling Slow Your Servers?
Yes. Profiling and routine monitoring add overhead. The
 important questions are how much overhead they add and whether the
 extra work is worth the benefit.
Many people who design and build high-performance applications believe that you should measure
 everything you can and just accept the cost of measurement as a part of your application's work.
 Even if you don't agree, it's a great idea to build in at least
 some lightweight profiling that you can enable
 permanently. It's no fun to hit a performance bottleneck you never
 saw coming, just because you didn't build your systems to capture
 day-to-day changes in their performance. Likewise, when you find a
 problem, historical data is invaluable. You can also use the
 profiling data to help you plan hardware purchases, allocate
 resources, and predict load for peak times or seasons.
What do we mean by "lightweight" profiling? Timing all SQL queries, plus
 the total script execution time, is certainly cheap. And you don't
 have to do it for every page view. If you have a decent amount of
 traffic, you can just profile a random sample by enabling
 profiling in your application's setup file:
<?php
$profiling_enabled = rand(0, 100) > 99;
?>
Profiling just 1% of your page views should help you find
 the worst problems.
Be sure to account for the cost of logging, profiling, and
 measuring when you're running benchmarks, because it can skew your
 benchmark results.

 1 <?php
 2 /*
 3 * Class Timer, implementation of time logging in PHP
 4 */
 5
 6 class Timer {
 7 private $aTIMES = array();
 8
 9 function startTime($point)
10 {
11 $dat = getrusage();
12
13 $this->aTIMES[$point]['start'] = microtime(TRUE);
14 $this->aTIMES[$point]['start_utime'] =
15 $dat["ru_utime.tv_sec"]*1e6+$dat["ru_utime.tv_usec"];
16 $this->aTIMES[$point]['start_stime'] =
17 $dat["ru_stime.tv_sec"]*1e6+$dat["ru_stime.tv_usec"];

18 }
19
20 function stopTime($point, $comment='')
21 {
22 $dat = getrusage();
23 $this->aTIMES[$point]['end'] = microtime(TRUE);
24 $this->aTIMES[$point]['end_utime'] =
25 $dat["ru_utime.tv_sec"] * 1e6 + $dat["ru_utime.tv_usec"];
26 $this->aTIMES[$point]['end_stime'] =
27 $dat["ru_stime.tv_sec"] * 1e6 + $dat["ru_stime.tv_usec"];
28
29 $this->aTIMES[$point]['comment'] .= $comment;
30
31 $this->aTIMES[$point]['sum'] +=
32 $this->aTIMES[$point]['end'] - $this->aTIMES[$point]['start'];
33 $this->aTIMES[$point]['sum_utime'] +=
34 ($this->aTIMES[$point]['end_utime'] -
35 $this->aTIMES[$point]['start_utime']) / 1e6;
36 $this->aTIMES[$point]['sum_stime'] +=
37 ($this->aTIMES[$point]['end_stime'] -
38 $this->aTIMES[$point]['start_stime']) / 1e6;
39 }
40
41 function logdata() {
42
43 $query_logger = DBQueryLog::getInstance('DBQueryLog');
44 $data['utime'] = $this->aTIMES['Page']['sum_utime'];
45 $data['wtime'] = $this->aTIMES['Page']['sum'];
46 $data['stime'] = $this->aTIMES['Page']['sum_stime'];
47 $data['mysql_time'] = $this->aTIMES['MySQL']['sum'];
48 $data['mysql_count_queries'] = $this->aTIMES['MySQL']['cnt'];
49 $data['mysql_queries'] = $this->aTIMES['MySQL']['comment'];
50 $data['sphinx_time'] = $this->aTIMES['Sphinx']['sum'];
51
52 $query_logger->log ProfilingData($data);
53
54 }
55
56 // This helper function implements the Singleton pattern
57 function getInstance() {
58 static $instance;
59
60 if(!isset($instance)) {
61 $instance = new Timer();
62 }
63
64 return($instance);
65 }
66 }
67 ?>
It's easy to use the Timer
 class in your application. You just need to wrap a timer around
 potentially expensive (or otherwise interesting) calls. For
 example, here's how to wrap a timer around every MySQL
 query. PHP's new mysqli interface
 lets you extend the basic mysqli
 class and redeclare the query
 method:
68 <?php
69 class mysqlx extends mysqli {
70 function query($query, $resultmode) {
71 $timer = Timer::getInstance();
72 $timer->startTime('MySQL');
73 $res = parent::query($query, $resultmode);
74 $timer->stopTime('MySQL', "Query: $query\n");
75 return $res;
76 }
77 }
78 ?>
This technique requires very few code changes. You can simply
 change mysqli to mysqlx globally, and your whole application will begin logging all queries. You can
 use this approach to measure access to any external resource, such
 as queries to the Sphinx full-text search engine:
$timer->startTime('Sphinx');
$this->sphinxres = $this->sphinx_client->Query ($query, "index");
$timer->stopTime('Sphinx', "Query: $query\n");
Next, let's see how to log the data you're gathering. This is
 an example of when it's wise to use the MyISAM or Archive
 storage engine. Either of these is a good candidate for storing
 logs. We use INSERT DELAYED when
 adding rows to the logs, so the INSERT will be executed as a background
 thread on the database server. This means the query will return
 instantly, so it won't perceptibly affect the application's response
 time. (Even if we don't use INSERT
 DELAYED, inserts will be concurrent unless we explicitly
 disable them, so external SELECT
 queries won't block the logging.) Finally, we hand-roll a date-based
 partitioning scheme by creating a new log table each day.
Here's a CREATE TABLE
 statement for our logging table:
CREATE TABLE logs.performance_log_template (
 ip INT UNSIGNED NOT NULL,
 page VARCHAR(255) NOT NULL,
 utime FLOAT NOT NULL,
 wtime FLOAT NOT NULL,
 mysql_time FLOAT NOT NULL,
 sphinx_time FLOAT NOT NULL,
 mysql_count_queries INT UNSIGNED NOT NULL,
 mysql_queries TEXT NOT NULL,
 stime FLOAT NOT NULL,
 logged TIMESTAMP NOT NULL
 default CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,
 user_agent VARCHAR(255) NOT NULL,
 referer VARCHAR(255) NOT NULL
) ENGINE=ARCHIVE;
We never actually insert any data into this table; it's just a
 template for the CREATE TABLE
 LIKE statements we use to create the table for each day's
 data.
We explain more about this in Chapter 3, but for now, we'll
 just note that it's a good idea to use the smallest data type that
 can hold the desired data. We're using an unsigned integer to store
 the IP address. We're also using a 255-character column to store the
 page and the referrer. These values can be longer than 255
 characters, but the first 255 are usually enough for our
 needs.
The final piece of the puzzle is logging the results when the page
 finishes executing. Here's the PHP code needed to log the
 data:
79 <?php
80 // Start of the page execution
81 $timer = Timer::getInstance();
82 $timer->startTime('Page');
83 // ... other code ...
84 // End of the page execution
85 $timer->stopTime('Page');
86 $timer->logdata();
87 ?>
The Timer class uses the
 DBQueryLog helper class, which is
 responsible for logging to the database and creating a new log table
 every day. Here's the code:
 88 <?php
 89 /*
 90 * Class DBQueryLog logs profiling data into the database
 91 */
 92 class DBQueryLog {
 93
 94 // constructor, etc, etc...
 95
 96 /*
 97 * Logs the data, creating the log table if it doesn't exist. Note
 98 * that it's cheaper to assume the table exists, and catch the error
 99 * if it doesn't, than to check for its existence with every query.
100 */
101 function logProfilingData($data) {
102 $table_name = "logs.performance_log_" . @date("ymd");
103
104 $query = "INSERT DELAYED INTO $table_name (ip, page, utime,
105 wtime, stime, mysql_time, sphinx_time, mysql_count_queries,
106 mysql_queries, user_agent, referer) VALUES (.. data ..)";
107
108 $res = $this->mysqlx->query($query);
109 // Handle "table not found" error - create new table for each new day
110 if ((!$res) && ($this->mysqlx->errno == 1146)) { // 1146 is table not found
111 $res = $this->mysqlx->query(
112 "CREATE TABLE $table_name LIKE logs.performance_log_template");
113 $res = $this->mysqlx->query($query);
114 }
115 }

116 }
117 ?>
Once we've logged some data, we can analyze the logs. The
 beauty of using MySQL for logging is that you get the flexibility of
 SQL for analysis, so you can easily write queries to get any report
 you want from the logs. For instance, to find a few pages whose
 execution time was more than 10 seconds on the first day of February
 2007:
mysql> SELECT page, wtime, mysql_time
 -> FROM performance_log_070201 WHERE wtime > 10 LIMIT 7;
+---+---------+------------+
| page | wtime | mysql_time |
+---+---------+------------+
/page1.php	50.9295	0.000309
/page1.php	32.0893	0.000305
/page1.php	40.4209	0.000302
/page3.php	11.5834	0.000306
/login.php	28.5507	28.5257
/access.php	13.0308	13.0064
/page4.php	32.0687	0.000333
+---+---------+------------+
(We'd normally select more data in such a query, but we've
 shortened it here for the purpose of illustration.)
If you compare the wtime
 (wall-clock time) and the query time, you'll see that MySQL query
 execution time was responsible for the slow response time in only
 two of the seven pages. Because we're storing the queries with the
 profiling data, we can retrieve them for
 examination:
mysql> SELECT mysql_queries
 -> FROM performance_log_070201 WHERE mysql_time > 10 LIMIT 1\G
*************************** 1. row ***************************
mysql_queries:
Query: SELECT id, chunk_id FROM domain WHERE domain = 'domain.com'
Time: 0.00022602081298828
Query: SELECT server.id sid, ip, user, password, domain_map.id as chunk_id FROM
server JOIN domain_map ON (server.id = domain_map.master_id) WHERE domain_map.id = 24
Time: 0.00020599365234375
Query: SELECT id, chunk_id, base_url,title FROM site WHERE id = 13832
Time: 0.00017690658569336
Query: SELECT server.id sid, ip, user, password, site_map.id as chunk_id FROM server
JOIN site_map ON (server.id = site_map.master_id) WHERE site_map.id = 64
Time: 0.0001990795135498
Query: SELECT from_site_id, url_from, count(*) cnt FROM link24.link_in24 FORCE INDEX
(domain_message) WHERE domain_id=435377 AND message_day IN (...) GROUP BY from_site_
id ORDER BY cnt desc LIMIT 10
Time: 6.3193740844727
Query: SELECT revert_domain, domain_id, count(*) cnt FROM art64.link_out64 WHERE
from_site_id=13832 AND message_day IN (...) GROUP BY domain_id ORDER BY cnt desc
LIMIT 10
Time: 21.3649559021
This reveals two problematic queries, with execution times of
 6.3 and 21.3 seconds, that need to be optimized.
Logging all queries in this manner is expensive, so we usually
 either log only a fraction of the pages or enable logging only in
 debug mode.
How can you tell whether there's a bottleneck in a part of the
 system that you're not profiling? The easiest way is to look at the "lost
 time." In general, the wall-clock time (wtime) is the sum of the user time, system
 time, SQL query time, and every other time you can measure, plus the
 "lost time" you can't measure. There's some overlap, such as the CPU
 time needed for the PHP code to process the SQL queries, but this is
 usually insignificant. Figure 2-2 is a
 hypothetical illustration of how wall-clock time might be divided
 up.
[image: Lost time is the difference between wall-clock time and time for which you can account]

Figure 2-2. Lost time is the difference between wall-clock time and
 time for which you can account

Ideally, the "lost time" should be as small as possible. If
 you subtract everything you've measured from the wtime and you still have a lot left over,
 something you're not measuring is adding time to your script's
 execution. This may be the time needed to generate the page, or
 there may be a wait somewhere.[12]
There are two kinds of waits: waiting in the queue for CPU
 time, and waiting for resources. A process waits in the queue when
 it is ready to run, but all the CPUs are busy. It's not usually
 possible to figure out how much time a process spends waiting in the
 CPU queue, but that's generally not the problem. More likely, you're
 making some external resource call and not profiling it.
If your profiling is complete enough, you should be able to
 find bottlenecks easily. It's pretty straightforward: if your
 script's execution time is mostly CPU time, you probably need to
 look at optimizing your PHP code. Sometimes some measurements mask
 others, though. For example, you might have high CPU usage because you
 have a bug that makes your caching system inefficient and forces
 your application to do too many SQL queries.
As this example demonstrates, profiling at the application level is the most flexible and useful
 technique. If possible, it's a good idea to insert profiling into
 any application you need to troubleshoot for performance
 bottlenecks.
As a final note, we should mention that we've shown only basic
 application profiling techniques here. Our goal for this section
 is to show you how to figure out whether MySQL is the problem. You might also want to profile
 your application's code itself. For example, if you decide you need to optimize your PHP
 code because it's using too much CPU time, you can use tools such as
 xdebug, Valgrind, and
 cachegrind to profile CPU usage.
Some languages have built-in support for profiling. For example, you can profile Ruby code with
 the -r command-line option, and Perl as
 follows:
$ perl -d:DProf <script file>
$ dprofpp tmon.out
A quick web search for "profiling <language>"
 is a good place to start.

MySQL Profiling

We go into much more detail about MySQL profiling, because it's
 less dependent on your specific application. Application profiling and
 server profiling are sometimes both necessary. Although application
 profiling can give you a more complete picture of the entire system's
 performance, profiling MySQL can provide a lot of information that
 isn't available when you look at the application as a whole. For
 example, profiling your PHP code won't show you how many rows MySQL
 examined to execute queries.
As with application profiling, the goal is to find out where
 MySQL spends most of its time. We won't go into profiling MySQL's
 source code; although that's useful sometimes for customized MySQL
 installations, it's a topic for another book. Instead, we show you
 some techniques you can use to capture and analyze information about
 the different kinds of work MySQL does to execute queries.
You can work at whatever level of granularity suits your
 purposes: you can profile the server as a whole or examine individual
 queries or batches of queries. The kinds of information you can glean
 include:
	Which data MySQL accesses most

	What kinds of queries MySQL executes most

	What states MySQL threads spend the most time in

	What subsystems MySQL uses most to execute a query

	What kinds of data accesses MySQL does during a query

	How much of various kinds of activities, such as index
 scans, MySQL does

We start at the broadest level—profiling the whole server—and
 work toward more detail.
Logging queries

MySQL has two kinds of query logs: the general log and
 the slow log. They both log queries, but at
 opposite ends of the query execution process. The general log writes
 out every query as the server receives it, so it contains queries
 that may not even be executed due to errors. The general log
 captures all queries, as well as some non-query events such as
 connecting and disconnecting. You can enable it with a single
 configuration directive:
log = <file_name>
By design, the general log does not contain execution times or
 any other information that's available only after a query finishes.
 In contrast, the slow log contains only queries that have executed.
 In particular, it logs queries that take more than a specified
 amount of time to execute. Both logs can be helpful for profiling, but the slow log is the primary tool for
 catching problematic queries. We usually recommend enabling
 it.
The following configuration sample will enable the log,
 capture all queries that take more than two seconds to execute, and
 log queries that don't use any indexes. It will also log slow
 administrative statements, such as OPTIMIZE
 TABLE:
log-slow-queries = <file_name>
long_query_time = 2
log-queries-not-using-indexes
log-slow-admin-statements
You should customize this sample and place it in your
 my.cnf server configuration file. For more on
 server configuration, see Chapter 6.
The default value for long_query_time is 10 seconds. This is too
 long for most setups, so we usually use two seconds. However, even
 one second is too long for many uses. We show you how to get
 finer-grained logging in the next section.
In MySQL 5.1, the global slow_query_log and slow_query_log_file system variables
 provide runtime control over the slow query log, but in MySQL 5.0, you can't turn the
 slow query log on or off without restarting the MySQL server. The
 usual workaround for MySQL 5.0 is the long_query_time variable, which you can
 change dynamically. The following command doesn't really disable
 slow query logging, but it has practically the same effect (if any
 of your queries takes longer than 10,000 seconds to execute, you
 should optimize it anyway!):
mysql> SET GLOBAL long_query_time = 10000;
A related configuration variable, log_queries_not_using_indexes, makes the
 server log to the slow log any queries that don't use indexes, no
 matter how quickly they execute. Although enabling the slow log
 normally adds only a small amount of logging overhead relative to
 the time it takes a "slow" query to execute, queries that don't use
 indexes can be frequent and very fast (for example, scans of very
 small tables). Thus, logging them can cause the server to slow down,
 and even use a lot of disk space for the log.
Unfortunately, you can't enable or disable logging of these
 queries with a dynamically settable variable in MySQL 5.0. You have to edit the configuration file,
 then restart MySQL. One way to reduce the burden without a restart
 is to make the log file a symbolic link to
 /dev/null when you want to disable it (in fact,
 you can use this trick for any log file). You just need to run
 FLUSH LOGS after making the
 change to ensure that MySQL closes its current log file descriptor
 and reopens the log to /dev/null.
In contrast to MySQL 5.0, MySQL 5.1 lets you change logging at
 runtime and lets you log to tables you can query with SQL. This is a great improvement.

Finer control over logging

The slow query log in MySQL 5.0 and earlier has a few
 limitations that make it useless for some purposes. One problem is
 that its granularity is only in seconds, and the minimum value for
 long_query_time in MySQL 5.0 is
 one second. For most interactive applications, this is way too long.
 If you're developing a high-performance web application, you
 probably want the whole page to be generated in
 much less than a second, and the page will probably issue many
 queries while it's being generated. In this context, a query that
 takes 150 milliseconds to execute would probably be considered a
 very slow query indeed.
Another problem is that you cannot log all queries the server
 executes into the slow log (in particular, the slave thread's
 queries aren't logged). The general log does log all queries, but it
 logs them before they're even parsed, so it doesn't contain
 information such as the execution time, lock time, and number of
 rows examined. Only the slow log contains that kind of information
 about a query.
Finally, if you enable the log_queries_not_using_indexes option, your
 slow log may be flooded with entries for fast, efficient queries
 that happen to do full table scans. For example, if you generate a
 drop-down list of states from SELECT * FROM
 STATES, that query will be logged because it's a full
 table scan.
When profiling for the purpose of performance optimization,
 you're looking for queries that cause the most work for the MySQL
 server. This doesn't always mean slow queries, so the notion of
 logging "slow" queries might not be useful. As an example, a
 10-millisecond query that runs 1,000 times per second will load the
 server more than a 10-second query that runs once every second. To
 identify such a problem, you'd need to log every query and analyze
 the results.
It's usually a good idea to look both at slow queries (even if
 they're not executed often) and at the queries that, in total, cause
 the most work for the server. This will help you find different
 types of problems, such as queries that cause a poor user
 experience.
We've developed a patch to the MySQL server, based on work by Georg
 Richter, that lets you specify slow query times in
 microseconds instead of seconds. It also lets you log
 all queries to the slow log, by setting
 long_query_time=0. The patch is
 available from http://www.mysqlperformanceblog.com/mysql-patches/. Its major drawback is that to use it you may need to
 compile MySQL yourself, because the patch isn't included in the
 official MySQL distribution in versions prior to MySQL 5.1.
At the time of this writing, the version of the patch included
 with MySQL 5.1 changes only the time granularity. A new version of
 the patch, which is not yet included in any official MySQL
 distribution, adds quite a bit more useful functionality. It
 includes the query's connection ID, as well as information about
 the query cache, join type, temporary tables, and sorting. It also
 adds InnoDB statistics, such as information on I/O behavior and lock
 waits.
The new patch lets you log queries executed by the slave SQL
 thread, which is very important if you're having trouble with
 replication slaves that are lagging (see "Excessive Replication Lag"
 on Excessive Replication Lag for more on how to
 help slaves keep up). It also lets you selectively log only some
 sessions. This is usually enough for profiling purposes, and we think it's a good
 practice.
This patch is relatively new, so you should use it with
 caution if you apply it yourself. We think it's pretty safe, but it
 hasn't been battle-tested as much as the rest of the MySQL server.
 If you're worried about the patched server's stability, you don't
 have to run the patched version all the time; you can just start it
 for a few hours to log some queries, and then go back to the
 unpatched version.
When profiling, it's a good idea to log all queries with
 long_query_time=0. If much of
 your load comes from very simple queries, you'll want to know that.
 Logging all these queries will impact performance a bit, and it will
 require lots of disk space—another reason you might not want to log
 every query all the time. Fortunately, you can change long_query_time without restarting the
 server, so it's easy to get a sample of all the queries for a little
 while, then revert to logging only very slow queries.

How to read the slow query log

Here's an example from a slow query log:
1 # Time: 030303 0:51:27
2 # User@Host: root[root] @ localhost []
3 # Query_time: 25 Lock_time: 0 Rows_sent: 3949 Rows_examined: 378036
4 SELECT ...
Line 1 shows when the query was logged, and line 2 shows who
 executed it. Line 3 shows how many seconds it took to execute, how
 long it waited for table locks at the MySQL server level (not at the
 storage engine level), how many rows the query returned, and how
 many rows it examined. These lines are all commented out, so they
 won't execute if you feed the log into a MySQL client. The last line
 is the query.
Here's a sample from a MySQL 5.1 server:
1 # Time: 070518 9:47:00
2 # User@Host: root[root] @ localhost []
3 # Query_time: 0.000652 Lock_time: 0.000109 Rows_sent: 1 Rows_examined: 1
4 SELECT ...
The information is mostly the same, except the times in line 3
 are high precision. A newer version of the patch adds even more
 information:
 1 # Time: 071031 20:03:16
 2 # User@Host: root[root] @ localhost []
 3 # Thread_id: 4
 4 # Query_time: 0.503016 Lock_time: 0.000048 Rows_sent: 56 Rows_examined: 1113
 5 # QC_Hit: No Full_scan: No Full_join: No Tmp_table: Yes Disk_tmp_table: No
 6 # Filesort: Yes Disk_filesort: No Merge_passes: 0
 7 # InnoDB_IO_r_ops: 19 InnoDB_IO_r_bytes: 311296 InnoDB_IO_r_wait: 0.382176
 8 # InnoDB_rec_lock_wait: 0.000000 InnoDB_queue_wait: 0.067538
 9 # InnoDB_pages_distinct: 20
10 SELECT ...
Line 5 shows whether the query was served from the query
 cache, whether it did a full scan of a table, whether it did a join
 without indexes, whether it used a temporary table, and if so
 whether the temporary table was created on disk. Line 6 shows
 whether the query did a filesort and, if so, whether it was on disk
 and how many sort merge passes it performed.
Lines 7, 8, and 9 will appear if the query used InnoDB. Line 7
 shows how many page read operations InnoDB scheduled during the
 query, along with the corresponding value in bytes. The last value
 on line 7 is how long it took InnoDB to read data from disk. Line 8
 shows how long the query waited for row locks and how long it spent
 waiting to enter the InnoDB kernel.[13]
Line 9 shows approximately how many unique InnoDB pages the
 query accessed. The larger this grows, the less accurate it is
 likely to be. One use for this information is to estimate the
 query's working set in pages, which is how the InnoDB buffer pool
 caches data. It can also show you how helpful your clustered indexes
 really are. If the query's rows are clustered well, they'll fit in
 fewer pages. See "Clustered Indexes" on Clustered Indexes for more on this topic.
Using the slow query log to troubleshoot slow queries is not
 always straightforward. Although the log contains a lot of useful
 information, one very important bit of information is missing: an
 idea of why a query was slow. Sometimes it's
 obvious. If the log says 12,000,000 rows were examined and 1,200,000
 were sent to the client, you know why it was slow to execute—it was
 a big query! However, it's rarely that clear.
Be careful not to read too much into the slow query log. If
 you see the same query in the log many times, there's a good chance
 that it's slow and needs optimization. But just because a query
 appears in the log doesn't mean it's a bad query, or even
 necessarily a slow one. You may find a slow query, run it yourself,
 and find that it executes in a fraction of a second. Appearing in
 the log simply means the query took a long time
 then; it doesn't mean it will take a long time
 now or in the future. There are many reasons why a query can be slow
 sometimes and fast at other times:
	A table may have been locked, causing the query to wait. The Lock_time indicates how long the query
 waited for locks to be released.

	The data or indexes may not have been cached in memory
 yet. This is common when MySQL is first started or hasn't been well
 tuned.

	A nightly backup process may have been running, making all
 disk I/O slower.

	The server may have been running other queries at the same
 time, slowing down this query.

As a result, you should view the slow query log as only a partial record of what's
 happened. You can use it to generate a list of possible suspects,
 but you need to investigate each of them in more depth.
The slow query log patches are specifically designed to try to
 help you understand why a query is slow. In particular, if you're
 using InnoDB, the InnoDB statistics can help a lot: you can see if
 the query was waiting for I/O from the disk, whether it had to spend
 a lot of time waiting in the InnoDB queue, and so on.

Log analysis tools

Now that you've logged some queries, it's time to analyze the
 results. The general strategy is to find the queries that impact the
 server most, check their execution plans with EXPLAIN, and tune as necessary. Repeat the
 analysis after tuning, because your changes might affect other
 queries. It's common for indexes to help SELECT queries but slow down INSERT and UPDATE queries, for example.
You should generally look for the following three things in
 the logs:
	Long queries
	Routine batch jobs will generate long queries, but your
 normal queries shouldn't take very long.

	High-impact queries
	Find the queries that constitute most of the server's
 execution time. Recall that short queries that are executed
 often may take up a lot of time.

	New queries
	Find queries that weren't in the top 100 yesterday but
 are today. These might be new queries, or they might be
 queries that used to run quickly and are suffering because of
 different indexing or another change.

If your slow query log is fairly small this is easy to do
 manually, but if you're logging all queries (as we suggested), you
 really need tools to help you. Here are some of the more common
 tools for this purpose:
	mysqldumpslow
	MySQL provides mysqldumpslow with
 the MySQL server. It's a Perl script that can summarize the
 slow query log and show you how many times each query appears
 in the log. That way, you won't waste time trying to optimize
 a 30-second slow query that runs once a day when there are many
 other shorter slow queries that run thousands of time per
 day.
The advantage of mysqldumpslow is
 that it's already installed; the disadvantage is that it's a
 little less flexible than some of the other tools. It is also
 poorly documented, and it doesn't understand logs from servers
 that are patched with the microsecond slow-log
 patch.

	mysql_slow_log_filter
	This tool, available from http://www.mysqlperformanceblog.com/files/utils/mysql_slow_log_filter,
 does understand the microsecond log format. You can use it to
 extract queries that are longer than a given threshold or that
 examine more than a given number of rows. It's great for
 "tailing" your log file if you're running the microsecond
 patch, which can make your log grow too quickly to follow
 without filtering. You can run it with high thresholds for a
 while, optimize until the worst offenders are gone, then
 change the parameters to catch more queries and continue
 tuning.
Here's a command that will show queries that either run
 longer than half a second or examine more than 1,000
 rows:
$ tail -f mysql-slow.log | mysql_slow_log_filter -T 0.5 -R 1000

	mysql_slow_log_parser
	This is another tool, available from http://www.mysqlperformanceblog.com/files/utils/mysql_slow_log_parser,
 that can aggregate the microsecond slow log. In addition to
 aggregating and reporting, it shows minimum and maximum values
 for execution time and number of rows analyzed, prints the
 "canonicalized" query, and prints a real sample you can
 EXPLAIN. Here's a sample of
 its output:
3579 Queries
Total time: 3.348823, Average time: 0.000935686784017883
Taking 0.000269 to 0.130820 seconds to complete
Rows analyzed 1 - 1
SELECT id FROM forum WHERE id=XXX;
SELECT id FROM forum WHERE id=12345;

	mysqlsla
	The MySQL Statement Log Analyzer, available from
 http://hackmysql.com/mysqlsla, can
 analyze not only the slow log but also the general log and
 "raw" logs containing delimited SQL statements. Like
 mysql_slow_log_parser, it can
 canonicalize and summarize; it can also EXPLAIN queries (it rewrites many
 non-SELECT statements for
 EXPLAIN) and generate
 sophisticated reports.

You can use the slow log statistics to predict how much you'll
 be able to reduce the server's resource consumption. Suppose you
 sample queries for an hour (3,600 seconds) and find that the total
 combined execution time for all the queries in the log is 10,000
 seconds (the total time is greater than the wall-clock time because
 the queries execute in parallel). If log analysis shows you that the
 worst query accounts for 3,000 seconds of execution time, you'll
 know that this query is responsible for 30% of the load. Now you
 know how much you can reduce the server's resource consumption by
 optimizing this query.

Profiling a MySQL Server

One of the best ways to profile a server—that is, to see what it
 spends most of its time doing—is with SHOW
 STATUS. SHOW STATUS returns a lot of status information, and
 we mention only a few of the variables in its output here.
Tip
SHOW STATUS has some tricky
 behaviors that can give bad results in MySQL 5.0 and newer. Refer to Chapter 13 for more details on SHOW STATUS's behavior and
 pitfalls.

To see how your server is performing in near real time,
 periodically sample SHOW STATUS and
 compare the result with the previous sample. You can do this with the
 following command:
mysqladmin extended -r -i 10
Some of the variables are not strictly increasing counters, so
 you may see odd output such as a negative number of Threads_running. This is nothing to worry
 about; it just means the counter has decreased since the last
 sample.
Because the output is extensive, it might help to pass the
 results through grep to filter out variables you
 don't want to watch. Alternatively, you can use
 innotop or another of the tools mentioned in
 Chapter 14 to inspect its results.
 Some of the more useful variables to monitor are:
	Bytes_received
 and Bytes_sent
	The traffic to and from the server

	Com_*
	The commands the server is executing

	Created_*
	Temporary tables and files created during query
 execution

	Handler_*
	Storage engine operations

	Select_*
	Various types of join execution plans

	Sort_*
	Several types of sort information

You can use this approach to monitor MySQL's internal
 operations, such as number of key accesses, key reads from disk for
 MyISAM, rate of data access, data reads from disk for InnoDB, and so
 on. This can help you determine where the real or potential
 bottlenecks are in your system, without ever looking at a single
 query. You can also use tools that analyze SHOW STATUS, such as
 mysqlreport, to get a snapshot of the server's
 overall health.
We won't go into detail on the meaning of the status variables
 here, but we explain them when we use them in examples, so don't worry
 if you don't know what all of them mean.
Another good way to profile a MySQL server is with SHOW
 PROCESSLIST. This enables you not only to see what kinds of
 queries are executing, but also to see the state of your
 connections. Some things, such as a high number of connections in the
 Locked state, are obvious clues to
 bottlenecks. As with SHOW STATUS,
 the output from SHOW PROCESSLIST is
 so verbose that it's usually more convenient to use a tool such as
 innotop than to inspect it manually.

Profiling Queries with SHOW STATUS

The combination of FLUSH
 STATUS and SHOW SESSION
 STATUS is very helpful to see what happens while MySQL
 executes a query or batch of queries. This is a great way to optimize
 queries.
Let's look at an example of how to interpret what a query does.
 First, run FLUSH STATUS to reset
 your session status variables to zero, so you can see how much work
 MySQL does to execute the query:
mysql> FLUSH STATUS;
Next, run the query. We add SQL_NO_CACHE, so MySQL doesn't serve the
 query from the query cache:
mysql> SELECT SQL_NO_CACHE film_actor.actor_id, COUNT(*)
 -> FROM sakila.film_actor
 -> INNER JOIN sakila.actor USING(actor_id)
 -> GROUP BY film_actor.actor_id
 -> ORDER BY COUNT(*) DESC;

...
200 rows in set (0.18 sec)
The query returned 200 rows, but what did it really do? SHOW STATUS can give some insight. First,
 let's see what kind of query plan the server chose:
mysql> SHOW SESSION STATUS LIKE 'Select%';
+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
Select_full_join	0
Select_full_range_join	0
Select_range	0
Select_range_check	0
Select_scan	2
+------------------------+-------+
It looks like MySQL did a full table scan (actually, it looks like it
 did two, but that's an artifact of SHOW
 STATUS; we come back to that later). If the query had
 involved more than one table, several variables might have been
 greater than zero. For example, if MySQL had used a range scan to find
 matching rows in a subsequent table, Select_full_range_join would also have had a
 value. We can get even more insight by looking at the low-level
 storage engine operations the query performed:
mysql> SHOW SESSION STATUS LIKE 'Handler%';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
Handler_commit	0
Handler_delete	0
Handler_discover	0
Handler_prepare	0
Handler_read_first	1
Handler_read_key	5665
Handler_read_next	5662
Handler_read_prev	0
Handler_read_rnd	200
Handler_read_rnd_next	207
Handler_rollback	0
Handler_savepoint	0
Handler_savepoint_rollback	0
Handler_update	5262
Handler_write	219
+----------------------------+-------+
The high values of the "read" operations indicate that MySQL had
 to scan more than one table to satisfy this query. Normally, if MySQL
 read only one table with a full table scan, we'd see high values for
 Handler_read_rnd_next and Handler_read_rnd would be zero.
In this case, the multiple nonzero values indicate that MySQL
 must have used a temporary table to satisfy the different GROUP BY and ORDER
 BY clauses. That's why there are nonzero values for Handler_write and Handler_update: MySQL presumably wrote to
 the temporary table, scanned it to sort it, and then scanned it again
 to output the results in sorted order. Let's see what MySQL did to
 order the results:
mysql> SHOW SESSION STATUS LIKE 'Sort%';
+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
Sort_merge_passes	0
Sort_range	0
Sort_rows	200
Sort_scan	1
+-------------------+-------+
As we guessed, MySQL sorted the rows by scanning a temporary table
 containing every row in the output. If the value were higher than 200
 rows, we'd suspect that it sorted at some other point during the query
 execution. We can also see how many temporary tables MySQL created for
 the query:
mysql> SHOW SESSION STATUS LIKE 'Created%';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
Created_tmp_disk_tables	0
Created_tmp_files	0
Created_tmp_tables	5
+-------------------------+-------+
It's nice to see that the query didn't need to use the disk for
 the temporary tables, because that's very slow. But this is a little
 puzzling; surely MySQL didn't create five temporary tables just for
 this one query?
In fact, the query needs only one temporary table. This is the
 same artifact we noticed before. What's happening? We're running the
 example on MySQL 5.0.45, and in MySQL 5.0 SHOW STATUS actually selects data from the
 INFORMATION_SCHEMA tables, which
 introduces a "cost of observation." [14] This is skewing the results a little, as you can see by
 running SHOW STATUS again:
mysql> SHOW SESSION STATUS LIKE 'Created%';
+-------------------------+-------+
| Variable_name | Value |
+-------------------------+-------+
Created_tmp_disk_tables	0
Created_tmp_files	0
Created_tmp_tables	6
+-------------------------+-------+
Note that the value has incremented again. The Handler and other variables are similarly
 affected. Your results will vary, depending on your MySQL
 version.
You can use this same process—FLUSH
 STATUS, run the query, and run SHOW
 STATUS—in MySQL 4.1 and older versions as well. You just
 need an idle server, because older versions have only global counters,
 which can be changed by other processes.
The best way to compensate for the "cost of observation" caused
 by running SHOW STATUS is to
 calculate the cost by running it twice and subtracting the second
 result from the first. You can then subtract this from SHOW STATUS to get the true cost of the
 query. To get accurate results, you need to know the scope of the
 variables, so you know which have a cost of observation; some are
 per-session and some are global. You can automate this complicated
 process with mk-query-profiler.
You can integrate this type of automatic profiling in your application's database connection
 code. When profiling is enabled, the connection code can
 automatically flush the status before each query and log the
 differences afterward. Alternatively, you can profile per-page instead
 of per-query. Either strategy is useful to show you how much work
 MySQL did during the queries.

SHOW PROFILE

SHOW PROFILE is a patch
 Jeremy Cole contributed to the Community version of MySQL, as
 of MySQL 5.0.37.[15] Profiling is disabled by default but can be enabled at
 the session level. Enabling it makes the MySQL server collect information about the resources the
 server uses to execute a query. To start collecting statistics, set
 the profiling variable to 1:
mysql> SET profiling = 1;
Now let's run a query:
mysql> SELECT COUNT(DISTINCT actor.first_name) AS cnt_name, COUNT(*) AS cnt
 -> FROM sakila.film_actor
 -> INNER JOIN sakila.actor USING(actor_id)
 -> GROUP BY sakila.film_actor.film_id
 -> ORDER BY cnt_name DESC;
...
997 rows in set (0.03 sec)
This query's profiling data was stored in the session. To see
 queries that have been profiled, use SHOW
 PROFILES:
mysql> SHOW PROFILES\G
*************************** 1. row ***************************
Query_ID: 1
Duration: 0.02596900
 Query: SELECT COUNT(DISTINCT actor.first_name) AS cnt_name,...
You can retrieve the stored profiling data with the SHOW PROFILE statement. When you run it
 without an argument, it shows status values and durations for the most
 recent statement:
mysql> SHOW PROFILE;
+------------------------+-----------+
| Status | Duration |
+------------------------+-----------+
(initialization)	0.000005
Opening tables	0.000033
System lock	0.000037
Table lock	0.000024
init	0.000079
optimizing	0.000024
statistics	0.000079
preparing	0.00003
Creating tmp table	0.000124
executing	0.000008
Copying to tmp table	0.010048
Creating sort index	0.004769
Copying to group table	0.0084880
Sorting result	0.001136
Sending data	0.000925
end	0.00001
removing tmp table	0.00004
end	0.000005
removing tmp table	0.00001
end	0.000011
query end	0.00001
freeing items	0.000025
removing tmp table	0.00001
freeing items	0.000016
closing tables	0.000017
logging slow query	0.000006
+------------------------+-----------+
Each row represents a change of state for the process and
 indicates how long it stayed in that state. The Status column corresponds to the State column in the output of SHOW FULL PROCESSLIST. The values come from
 the thd->proc_info variable, so
 you're looking at values that come directly from MySQL's internals. These are documented in the MySQL
 manual, though most of them are intuitively named and shouldn't be
 hard to understand.
You can specify a query to profile by giving its Query_ID from the output of SHOW PROFILES, and you can specify
 additional columns of output. For example, to see user and system CPU
 usage times for the preceding query, use the following command:
mysql> SHOW PROFILE CPU FOR QUERY 1;
SHOW PROFILE gives a lot of
 insight into the work the server does to execute a query, and it can
 help you understand what your queries really spend their time doing.
 Some of the limitations are its unimplemented features, the inability
 to see and profile another connection's queries, and the overhead
 caused by profiling.

Other Ways to Profile MySQL

We've shown you just enough detail in this chapter to illustrate
 how to use MySQL's internal status information to see what's happening
 inside the server. You can do some profiling with several of MySQL's
 other status outputs as well. Other useful commands include SHOW INNODB STATUS and SHOW MUTEX STATUS. We go into these and
 other commands in much more detail in Chapter 13.

When You Can't Add Profiling Code

Sometimes you can't add profiling code or patch the server, or even change the server's
 configuration. However, there's usually a way to do at least some type of profiling. Try these
 ideas:
	Customize your web server logs, so they record the wall-clock time
 and CPU time each request uses.

	Use packet sniffers to catch and time queries (including
 network latency) as they cross the network. Freely available
 sniffers include mysqlsniffer (http://hackmysql.com/mysqlsniffer) and
 tcpdump; see http://forge.mysql.com/snippets/view.php?id=15 for an example of how to use
 tcpdump.

	Use a proxy, such as MySQL Proxy, to capture and time queries.

[11] If you're investigating a bottleneck, you might be able to
 take shortcuts and figure out where it is by examining some basic
 system statistics. If the web servers are idle and the MySQL
 server is at 100% CPU usage, you might not need to profile the
 whole application, especially if it's a crisis. You can look into
 the whole application after you fix the crisis.

[12] Assuming the web server buffers the result, so your
 script's execution ends and you don't measure the time it takes
 to send the result to the client.

[13] See "InnoDB Concurrency Tuning" on InnoDB Concurrency Tuning for more information on
 the InnoDB kernel.

[14] The "cost of observation" problem is fixed in MySQL 5.1 for
 SHOW SESSION STATUS.

[15] At the time of this writing, SHOW
 PROFILE is not yet included in the Enterprise versions
 of MySQL, even those newer than 5.0.37.

Operating System Profiling

It's often useful to peek into operating system statistics and try
 to find out what the operating system and hardware are doing. This can
 help not only when profiling an application, but also when troubleshooting.
This section is admittedly biased toward Unix-like operating
 systems, because that's what we work with most often. However, you can
 use the same techniques on other operating systems, as long as they
 provide the statistics.
The tools we use most frequently are vmstat, iostat,
 mpstat, and strace. Each of these shows
 a slightly different perspective on some combination of process, CPU,
 memory, and I/O activity. These tools are available on most Unix-like
 operating systems. We show examples of how to use them throughout this
 book, especially at the end of Chapter 7.
Warning
Be careful with strace on GNU/Linux on
 production servers. It seems to have issues with multithreaded
 processes sometimes, and we've crashed servers with
 it.

Troubleshooting MySQL Connections and Processes

One set of tools we don't discuss elsewhere in detail is tools
 for discovering network activity and doing basic troubleshooting. As
 an example of how to do this, we show how you can track a MySQL
 connection back to its origin on another server.
Begin with the output of SHOW
 PROCESSLIST in MySQL, and note the Host column in one of the processes. We use
 the following example:
*************************** 21. row ***************************
 Id: 91296
 User: web
 Host: sargon.cluster3:37636
 db: main
Command: Sleep
 Time: 10
 State:
 Info: NULL
The Host column shows where
 the connection originated and, just as importantly, the TCP port from
 which it came. You can use that information to find out which process opened the connection. If you
 have root access to sargon, you can use netstat
 and the port number to find out which process opened the
 connection:
root@sargon# netstat -ntp | grep :37636
tcp 0 0 192.168.0.12:37636 192.168.0.21:3306 ESTABLISHED 16072/apache2
The process number and name are in the last field of output:
 process 16072 started this connection, and it came from Apache. Once
 you know the process ID you can branch out to discover many other
 things about it, such as which other network connections the process owns:
root@sargon# netstat -ntp | grep 16072/apache2
tcp 0 0 192.168.0.12:37636 192.168.0.21:3306 ESTABLISHED 16072/apache2
tcp 0 0 192.168.0.12:37635 192.168.0.21:3306 ESTABLISHED 16072/apache2
tcp 0 0 192.168.0.12:57917 192.168.0.3:389 ESTABLISHED 16072/apache2
It looks like that Apache worker process has two MySQL
 connections (port 3306) open, and something to port 389 on another
 machine as well. What is port 389? There's no guarantee, but many
 programs do use standardized port numbers, such as MySQL's default
 port of 3306. A list is often in /etc/services,
 so let's see what that says:
root@sargon# grep 389 /etc/services
ldap 389/tcp # Lightweight Directory Access Protocol
ldap 389/udp
We happen to know this server uses LDAP authentication, so LDAP
 makes sense. Let's see what else we can find out about process 16072.
 It's pretty easy to see what the process is doing with
 ps. The fancy pattern to
 grep we use here is so you can see the first line
 of output, which shows column headings:
root@sargon# ps -eaf | grep 'UID\|16072'
UID PID PPID C STIME TTY TIME CMD
apache 16072 22165 0 09:20 ? 00:00:00 /usr/sbin/apache2 -D DEFAULT_VHOST...
You can potentially use this information to find other problems.
 Don't be surprised, for example, to find that a service such as LDAP
 or NFS is causing problems for Apache and manifesting as slow
 page-generation times.
You can also list a process's open files using the
 lsof command. This is great for finding out all
 sorts of information, because everything is a file in Unix. We won't
 show the output here because it's very verbose, but you can run
 lsof | grep 16072 to find the process's open
 files. You can also use lsof to find network
 connections when netstat isn't available. For
 example, the following command uses lsof to show
 approximately the same information we found with
 netstat. We've reformatted the output slightly
 for printing:
root@sargon# lsof -i -P | grep 16072
apache2 16072 apache 3u IPv4 25899404 TCP *:80 (LISTEN)
apache2 16072 apache 15u IPv4 33841089 TCP sargon.cluster3:37636->
 hammurabi.cluster3:3306 (ESTABLISHED)
apache2 16072 apache 27u IPv4 33818434 TCP sargon.cluster3:57917->
 romulus.cluster3:389 (ESTABLISHED)
apache2 16072 apache 29u IPv4 33841087 TCP sargon.cluster3:37635->
 hammurabi.cluster3:3306 (ESTABLISHED)
On GNU/Linux, the /proc filesystem is
 another invaluable troubleshooting aid. Each process has its own directory under /proc, and you can
 see lots of information about it, such as its current working
 directory, memory usage, and much more.
Apache actually has a feature similar to the Unix
 ps command: the
 /server-status/ URL. For example, if your
 intranet runs Apache at http://intranet/, you
 can point your web browser to http://intranet/server-status/ to see what Apache is
 doing. This can be a helpful way to find out what URL a process is
 serving. The page has a legend that explains its output.

Advanced Profiling and Troubleshooting

If you need to dig deeper into a process to find out what it's
 doing—for example, why it's in uninterruptible sleep status—you can
 use strace -p and/or gdb -p.
 These commands can show system calls and backtraces, which can give
 more information about what the process was doing when it got stuck.
 Lots of things could make a process get stuck, such as NFS locking
 services that crash, a call to a remote web service that's not
 responding, and so on.
You can also profile systems or parts of systems in more detail
 to find out what they're doing. If you really need high performance
 and you start having problems, you might even find yourself profiling
 MySQL's internals. Although this might not seem to be your job (it's
 the MySQL developer team's job, right?), it can help you isolate the
 part of a system that's causing trouble. You may not be able or
 willing to fix it, but at least you can design your application to
 avoid a weakness.
Here are some tools you might find useful:
	OProfile
	OProfile (http://oprofile.sourceforge.net) is a system
 profiler for Linux. It consists of a kernel driver and a daemon
 for collecting sample data, and several tools to help you
 analyze the profiling data you collected. It profiles all code,
 including interrupt handlers, the kernel, kernel modules,
 applications, and shared libraries. If an application is
 compiled with debug symbols, OProfile can annotate the source,
 but this is not necessary; you can profile a system without
 recompiling anything. It has relatively low overhead, normally
 in the range of a few percent.

	gprof
	gprof is the GNU profiler, which can
 produce execution profiles of programs compiled with the
 -pg option. It calculates the amount of
 time spent in each routine. gprof can
 produce reports on function call frequency and durations, a call
 graph, and annotated source listings.

	Other tools
	There are many other tools, including specialized and/or
 proprietary programs. These include Intel VTune, the Sun
 Performance Analyzer (part of Sun Studio), and DTrace on Solaris
 and other systems.

Chapter 3. Schema Optimization and Indexing

Optimizing a poorly designed or badly indexed schema can improve
 performance by orders of magnitude. If you require high performance, you
 must design your schema and indexes for the specific queries you will run.
 You should also estimate your performance requirements for different kinds
 of queries, because changes to one query or one part of the schema can
 have consequences elsewhere. Optimization often involves tradeoffs. For
 example, adding indexes to speed up retrieval will slow updates. Likewise,
 a denormalized schema can speed up some types of queries but slow down
 others. Adding counter and summary tables is a great way to optimize
 queries, but they may be expensive to maintain.
Sometimes you may need to go beyond the role of a developer and
 question the business requirements handed to you. People who aren't
 experts in database systems often write business requirements without
 understanding their performance impacts. If you explain that a small
 feature will double the server hardware requirements, they may decide they
 can live without it.
Schema optimization and indexing require a big-picture approach as
 well as attention to details. You need to understand the whole system to
 understand how each piece will affect others. This chapter begins with a
 discussion of data types, then covers indexing strategies and
 normalization. It finishes with some notes on storage engines.
You will probably need to review this chapter after reading the
 chapter on query optimization. Many of the topics discussed
 here—especially indexing—can't be considered in isolation. You have to be
 familiar with query optimization and server tuning to make good decisions
 about indexes.
Choosing Optimal Data Types

MySQL supports a large variety of data types, and choosing the
 correct type to store your data is crucial to getting good performance.
 The following simple guidelines can help you make better choices, no
 matter what type of data you are storing:
	Smaller is usually better.
	In general, try to use the smallest data type that can
 correctly store and represent your data. Smaller data types are
 usually faster, because they use less space on the disk, in
 memory, and in the CPU cache. They also generally require fewer
 CPU cycles to process.
Make sure you don't underestimate the range of values you
 need to store, though, because increasing the data type range in
 multiple places in your schema can be a painful and time-consuming
 operation. If you're in doubt as to which is the best data type to
 use, choose the smallest one that you don't think you'll exceed.
 (If the system is not very busy or doesn't store much data, or if
 you're at an early phase in the design process, you can change it
 easily later.)

	Simple is good.
	Fewer CPU cycles are typically required to process
 operations on simpler data types. For example, integers are
 cheaper to compare than characters, because character sets and
 collations (sorting rules) make character comparisons complicated.
 Here are two examples: you should store dates and times in MySQL's
 built-in types instead of as strings, and you should use integers
 for IP addresses. We discuss these topics further later.

	Avoid NULL if
 possible.
	You should define fields as NOT
 NULL whenever you can. A lot of tables include
 nullable columns even when the application does not
 need to store NULL (the absence
 of a value), merely because it's the default. You should be
 careful to specify columns as NOT
 NULL unless you intend to store NULL in them.
It's harder for MySQL to optimize queries that refer to
 nullable columns, because they make indexes, index
 statistics, and value comparisons more complicated. A nullable column uses more storage space and requires
 special processing inside MySQL. When a nullable column is
 indexed, it requires an extra byte per entry and can even cause a
 fixed-size index (such as an index on a single integer
 column) to be converted to a variable-sized one in MyISAM.
Even when you do need to store a "no value" fact in a table,
 you might not need to use NULL.
 Consider using zero, a special value, or an empty string
 instead.
The performance improvement from changing NULL columns to NOT NULL is usually small, so don't make
 finding and changing them on an existing schema a priority unless
 you know they are causing problems. However, if you're planning to
 index columns, avoid making them nullable if possible.

The first step in deciding what data type to use for a given
 column is to determine what general class of types is appropriate:
 numeric, string, temporal, and so on. This is usually pretty
 straightforward, but we mention some special cases where the choice is
 unintuitive.
The next step is to choose the specific type. Many of MySQL's data types
 can store the same kind of data but vary in the range of values they can
 store, the precision they permit, or the physical space (on disk and in
 memory) they require. Some data types also have special behaviors or
 properties.
For example, a DATETIME and a
 TIMESTAMP column can store the same
 kind of data: date and time, to a precision of one second. However,
 TIMESTAMP uses only half as much
 storage space, is time zone–aware, and has special autoupdating
 capabilities. On the other hand, it has a much smaller range of
 allowable values, and sometimes its special capabilities can be a
 handicap.
We discuss base data types here. MySQL supports many aliases for
 compatibility, such as INTEGER, BOOL,
 and NUMERIC. These are only aliases.
 They can be confusing, but they don't affect performance.
Whole Numbers

There are two kinds of numbers: whole numbers and real numbers (numbers with a
 fractional part). If you're storing whole numbers, use one of the integer types: TINYINT,
 SMALLINT, MEDIUMINT, INT, or BIGINT. These require 8, 16, 24, 32, and 64
 bits of storage space, respectively. They can store values from
 –2(N–1) to
 2(N–1)–1, where
 N is the number of bits of storage space
 they use.
Integer types can optionally have the UNSIGNED attribute, which disallows negative
 values and approximately doubles the upper limit of positive values
 you can store. For example, a TINYINT
 UNSIGNED can store values ranging from 0 to 255 instead of
 from –128 to 127.
Signed and unsigned types use the same amount of storage space
 and have the same performance, so use whatever's best for your data
 range.
Your choice determines how MySQL stores the
 data, in memory and on disk. However, integer
 computations generally use 64-bit BIGINT integers, even on 32-bit
 architectures. (The exceptions are some aggregate functions, which use
 DECIMAL or DOUBLE to perform computations.)
MySQL lets you specify a "width" for integer types, such as
 INT(11). This is meaningless for
 most applications: it does not restrict the legal range of values, but
 simply specifies the number of characters MySQL's interactive tools
 (such as the commandline client) will reserve for display purposes.
 For storage and computational purposes, INT(1) is identical to INT(20).
Tip
The Falcon storage engine is different from other storage
 engines MySQL AB provides in that it stores integers in its own
 internal format. The user has no control over the actual size of the
 stored data. Third-party storage engines, such as Brighthouse, also
 have their own storage formats and compression schemes.

Real Numbers

Real numbers are numbers that have a fractional part.
 However, they aren't just for fractional numbers; you can also use
 DECIMAL to store integers that are
 so large they don't fit in BIGINT.
 MySQL supports both exact and inexact types.
The FLOAT and DOUBLE types support approximate
 calculations with standard floating-point math. If you need to know
 exactly how floating-point results are calculated, you will need to
 research your platform's floating-point implementation.
The DECIMAL type is for
 storing exact fractional numbers. In MySQL 5.0 and newer, the DECIMAL type supports exact math. MySQL 4.1
 and earlier used floating-point math to perform computations on
 DECIMAL values, which could give
 strange results because of loss of precision. In these versions of
 MySQL, DECIMAL was only a "storage
 type."
The server itself performs DECIMAL math in MySQL 5.0 and newer, because
 CPUs don't support the computations directly. Floating-point math is
 somewhat faster, because the CPU performs the computations
 natively.
Both floating-point and DECIMAL types let you specify a precision.
 For a DECIMAL column, you can
 specify the maximum allowed digits before and after the decimal point.
 This influences the column's space consumption. MySQL 5.0 and newer
 pack the digits into a binary string (nine digits per four bytes). For
 example, DECIMAL(18, 9) will store
 nine digits from each side of the decimal point, using nine bytes in
 total: four for the digits before the decimal point, one for the
 decimal point itself, and four for the digits after the decimal
 point.
A DECIMAL number in MySQL 5.0
 and newer can have up to 65 digits. Earlier MySQL versions had a limit
 of 254 digits and stored the values as unpacked strings (one byte per
 digit). However, these versions of MySQL couldn't actually use such
 large numbers in computations, because DECIMAL was just a storage format; DECIMAL numbers were converted to DOUBLEs for computational purposes,
You can specify a floating-point column's desired precision in a
 couple of ways, which can cause MySQL to silently choose a different
 data type or to round values when you store them. These precision
 specifiers are nonstandard, so we suggest that you specify the type
 you want but not the precision.
Floating-point types typically use less space than DECIMAL to store the same range of values. A
 FLOAT column uses four bytes of
 storage. DOUBLE consumes eight
 bytes and has greater precision and a larger range of values. As with
 integers, you're choosing only the storage type; MySQL uses DOUBLE for its internal calculations on
 floating-point types.
Because of the additional space requirements and computational
 cost, you should use DECIMAL only
 when you need exact results for fractional numbers—for example, when
 storing financial data.

String Types

MySQL supports quite a few string data types, with many variations on each. These data
 types changed greatly in versions 4.1 and 5.0, which makes them even
 more complicated. Since MySQL 4.1, each string column can have its own
 character set and set of sorting rules for that character set, or
 collation (see Chapter 5 for more on these topics). This
 can impact performance greatly.
VARCHAR and CHAR types

The two major string types are VARCHAR and CHAR, which store character values.
 Unfortunately, it's hard to explain exactly how these values are
 stored on disk and in memory, because the implementations are
 storage engine-dependent (for example, Falcon uses its own storage
 formats for almost every data type). We assume you are using InnoDB
 and/or MyISAM. If not, you should read the documentation for your
 storage engine.
Let's take a look at how VARCHAR and CHAR values are typically stored on disk.
 Be aware that a storage engine may store a CHAR or VARCHAR value differently in memory from
 how it stores that value on disk, and that the server may translate
 the value into yet another storage format when it retrieves it from
 the storage engine. Here's a general comparison of the two
 types:
	VARCHAR
	VARCHAR stores
 variable-length character strings and is the most common string data type.
 It can require less storage space than fixed-length types,
 because it uses only as much space as it needs (i.e., less
 space is used to store shorter values). The exception is a
 MyISAM table created with ROW_FORMAT=FIXED, which uses a fixed
 amount of space on disk for each row and can thus waste
 space.
VARCHAR uses 1 or 2
 extra bytes to record the value's length: 1 byte if the
 column's maximum length is 255 bytes or less, and 2 bytes if
 it's more. Assuming the latin1 character set, a VARCHAR(10) will use up to 11 bytes
 of storage space. A VARCHAR(1000) can use up to 1002
 bytes, because it needs 2 bytes to store length
 information.
VARCHAR helps
 performance because it saves space. However, because the rows
 are variable-length, they can grow when you update them, which
 can cause extra work. If a row grows and no longer fits in its
 original location, the behavior is storage engine-dependent.
 For example, MyISAM may fragment the row, and InnoDB may need
 to split the page to fit the row into it. Other storage
 engines may never update data in place at all.
It's usually worth using VARCHAR when the maximum column
 length is much larger than the average length; when updates to
 the field are rare, so fragmentation is not a problem; and
 when you're using a complex character set such as UTF-8, where
 each character uses a variable number of bytes of
 storage.
In version 5.0 and newer, MySQL preserves trailing
 spaces when you store and retrieve values. In versions 4.1 and
 older, MySQL strips trailing spaces.

	CHAR
	CHAR is fixed-length:
 MySQL always allocates enough space for the specified number
 of characters. When storing a CHAR value, MySQL removes any
 trailing spaces. (This was also true of VARCHAR in MySQL 4.1 and older
 versions—CHAR and VARCHAR were logically identical and
 differed only in storage format.) Values are padded with spaces as needed for
 comparisons.
CHAR is useful if you
 want to store very short strings, or if all the values are nearly the
 same length. For example, CHAR is a good choice for MD5 values for user passwords, which
 are always the same length. CHAR is also better than VARCHAR for data that's changed frequently, because a
 fixed-length row is not prone to fragmentation. For very short
 columns, CHAR is also more
 efficient than VARCHAR; a
 CHAR(1) designed to hold
 only Y and N values will use only one byte in a
 single-byte character set, [16] but a VARCHAR(1) would use two bytes
 because of the length byte.

This behavior can be a little confusing, so we illustrate with
 an example. First, we create a table with a single CHAR(10) column and store some values in
 it:
mysql> CREATE TABLE char_test(char_col CHAR(10));
mysql> INSERT INTO char_test(char_col) VALUES
 -> ('string1'), (' string2'), ('string3 ');
When we retrieve the values, the trailing spaces have been
 stripped away:
mysql> SELECT CONCAT("'", char_col, "'") FROM char_test;
+----------------------------+
| CONCAT("'", char_col, "'") |
+----------------------------+
| 'string1' |
| ' string2' |
| 'string3' |
+----------------------------+
If we store the same values into a VARCHAR(10) column, we get the following
 result upon retrieval:
mysql> SELECT CONCAT("'", varchar_col, "'") FROM varchar_test;
+-------------------------------+
| CONCAT("'", varchar_col, "'") |
+-------------------------------+
| 'string1' |
| ' string2' |
| 'string3 ' |
+-------------------------------+
How data is stored is up to the storage engines, and not all
 storage engines handle fixed-length and variable-length data the
 same way. The Memory storage engine uses fixed-size rows, so it has to allocate the maximum possible
 space for each value even when it's a variable-length field. On the
 other hand, Falcon uses variable-length columns even for
 fixed-length CHAR fields.
 However, the padding and trimming behavior is consistent across
 storage engines, because the MySQL server itself handles
 that.
The sibling types for CHAR
 and VARCHAR are BINARY and VARBINARY, which store binary strings. Binary strings are very similar to conventional strings, but
 they store bytes instead of characters. Padding is also different:
 MySQL pads BINARY values with
 \0 (the zero byte) instead of
 spaces and doesn't strip the pad value on retrieval. [17]
These types are useful when you need to store binary data and
 want MySQL to compare the values as bytes instead of characters. The
 advantage of byte-wise comparisons is more than just a matter of
 case insensitivity. MySQL literally compares BINARY strings one byte at a time,
 according to the numeric value of each byte. As a result, binary
 comparisons can be much simpler than character comparisons, so they
 are faster.
ora: Generosity Can Be Unwise
Storing the value 'hello'
 requires the same amount of space in a VARCHAR(5) and a VARCHAR(200) column. Is there any
 advantage to using the shorter column?
As it turns out, there is a big advantage. The larger column
 can use much more memory, because MySQL often allocates fixed-size
 chunks of memory to hold values internally. This is especially bad
 for sorting or operations that use in-memory temporary tables. The
 same thing happens with filesorts that use on-disk temporary
 tables.
The best strategy is to allocate only as much space as you
 really need.

BLOB and TEXT types

BLOB and TEXT are string data types designed to store large amounts of data as
 either binary or character strings, respectively.
In fact, they are each families of data types: the character
 types are TINYTEXT, SMALLTEXT, TEXT,
 MEDIUMTEXT, and LONGTEXT, and the binary types are
 TINYBLOB, SMALLBLOB, BLOB,
 MEDIUMBLOB, and LONGBLOB.
 BLOB is a synonym for SMALLBLOB, and TEXT is a synonym for SMALLTEXT.
Unlike with all other data types, MySQL handles each BLOB and TEXT value as an object with its own
 identity. Storage engines often store them specially; InnoDB may use
 a separate "external" storage area for them when they're large. Each
 value requires from one to four bytes of storage space in the row
 and enough space in external storage to actually hold the
 value.
The only difference between the BLOB and TEXT families is that BLOB types store binary data with no
 collation or character set, but TEXT types have a character set and
 collation.
MySQL sorts BLOB and
 TEXT columns differently from
 other types: instead of sorting the full length of the string, it
 sorts only the first max_sort_length bytes of such columns. If
 you need to sort by only the first few characters, you can either
 decrease the max_sort_length
 server variable or use ORDER BY
 SUBSTRING(column,
 length).
MySQL can't index the full length of these data types and
 can't use the indexes for sorting. (You'll find more on these topics
 later in the chapter.)
ora: How to Avoid On-Disk Temporary Tables
Because the Memory storage engine doesn't support the
 BLOB and TEXT types, queries that use BLOB or TEXT columns and need an implicit
 temporary table will have to use on-disk MyISAM temporary tables,
 even for only a few rows. This can result in a serious performance
 overhead. Even if you configure MySQL to store temporary tables on
 a RAM disk, many expensive operating system calls will be
 required. (The Maria storage engine should alleviate this problem
 by caching everything in memory, not just the indexes.)
The best solution is to avoid using the BLOB and TEXT types unless you really need them.
 If you can't avoid them, you may be able to use the ORDER BY SUBSTRING(column,
 length) trick to convert the values to character
 strings, which will permit in-memory temporary
 tables. Just be sure that you're using a short enough substring
 that the temporary table doesn't grow larger than max_heap_table_size or tmp_table_size, or MySQL will convert
 the table to an on-disk MyISAM table.
If the Extra column of
 EXPLAIN contains "Using
 temporary," the query uses an implicit temporary table.

Using ENUM instead of a string type

Sometimes you can use an ENUM column instead of conventional string
 types. An ENUM column can store
 up to 65,535 distinct string values. MySQL stores them very
 compactly, packed into one or two bytes depending on the number of
 values in the list. It stores each value internally as an integer
 representing its position in the field definition list, and it keeps
 the "lookup table" that defines the number-to-string correspondence
 in the table's .frm file. Here's an
 example:
mysql> CREATE TABLE enum_test(
 -> e ENUM('fish', 'apple', 'dog') NOT NULL
 ->);
mysql> INSERT INTO enum_test(e) VALUES('fish'), ('dog'), ('apple');
The three rows actually store integers, not strings. You can see the dual nature of the values by
 retrieving them in a numeric context:
mysql> SELECT e + 0 FROM enum_test;
+-------+
| e + 0 |
+-------+
| 1 |
| 3 |
| 2 |
+-------+
This duality can be terribly confusing if you specify numbers
 for your ENUM constants, as in
 ENUM('1', '2', '3'). We suggest
 you don't do this.
Another surprise is that an ENUM field sorts by the internal integer
 values, not by the strings themselves:
mysql> SELECT e FROM enum_test ORDER BY e;
+-------+
| e |
+-------+
| fish |
| apple |
| dog |
+-------+
You can work around this by specifying ENUM members in the order in which you
 want them to sort. You can also use FIELD() to specify a sort order explicitly
 in your queries, but this prevents MySQL from using the index for
 sorting:
mysql> SELECT e FROM enum_test ORDER BY FIELD(e, 'apple', 'dog', 'fish');
+-------+
| e |
+-------+
| apple |
| dog |
| fish |
+-------+
The biggest downside of ENUM is that the list of strings is fixed,
 and adding or removing strings requires the use of ALTER TABLE. Thus, it might not be a good
 idea to use ENUM as a string
 data type when the list of allowed string values is
 likely to change in the future. MySQL uses ENUM in its own privilege tables to store
 Y and N values.
Because MySQL stores each value as an integer and has to do a
 lookup to convert it to its string representation, ENUM columns have some overhead. This is
 usually offset by their smaller size, but not always. In particular,
 it can be slower to join a CHAR
 or VARCHAR column to an ENUM column than to another CHAR or VARCHAR column.
To illustrate, we benchmarked how quickly MySQL performs such
 a join on a table in one of our applications. The table has a fairly
 wide primary key:
CREATE TABLE webservicecalls (
 day date NOT NULL,
 account smallint NOT NULL,
 service varchar(10) NOT NULL,
 method varchar(50) NOT NULL,
 calls int NOT NULL,
 items int NOT NULL,
 time float NOT NULL,
 cost decimal(9,5) NOT NULL,
 updated datetime,
 PRIMARY KEY (day, account, service, method)
) ENGINE=InnoDB;
The table contains about 110,000 rows and is only about 10 MB,
 so it fits entirely in memory. The service column contains 5 distinct values
 with an average length of 4 characters, and the method column contains 71 values with an
 average length of 20 characters.
We made a copy of this table and converted the service and method columns to ENUM, as follows:
CREATE TABLE webservicecalls_enum (
 ... omitted ...
 service ENUM(...values omitted...) NOT NULL,
 method ENUM(...values omitted...) NOT NULL,
 ... omitted ...
) ENGINE=InnoDB;
We then measured the performance of joining the tables by the
 primary key columns. Here is the query we used:
mysql> SELECT SQL_NO_CACHE COUNT(*)
 -> FROM webservicecalls
 -> JOIN webservicecalls USING(day, account, service, method);
We varied this query to join the VARCHAR and ENUM columns in different combinations.
 Table 3-1 shows
 the results.
Table 3-1. Speed of joining VARCHAR and ENUM columns
	Test
	Queries per second

	VARCHAR
 joined to VARCHAR
	2.6

	VARCHAR
 joined to ENUM
	1.7

	ENUM joined
 to VARCHAR
	1.8

	ENUM joined
 to ENUM
	3.5

The join is faster after converting the columns to ENUM, but joining the ENUM columns to VARCHAR columns is slower. In this case,
 it looks like a good idea to convert these columns, as long as they
 don't have to be joined to VARCHAR columns.
However, there's another benefit to converting the columns:
 according to the Data_length
 column from SHOW TABLE STATUS,
 converting these two columns to ENUM made the table about 1/3 smaller. In
 some cases, this might be beneficial even if the ENUM columns have to be joined to VARCHAR columns. Also, the primary key
 itself is only about half the size after the conversion. Because
 this is an InnoDB table, if there are any other indexes on this
 table, reducing the primary key size will make them much smaller
 too. We explain this later in the chapter.

Date and Time Types

MySQL has many types for various kinds of date and time values, such as YEAR and DATE. The finest granularity of time MySQL
 can store is one second. However, it can do temporal
 computations with microsecond granularity, and we
 show you how to work around the storage limitations.
Most of the temporal types have no alternatives, so there is no
 question of which one is the best choice. The only question is what to
 do when you need to store both the date and the time. MySQL offers two
 very similar data types for this purpose: DATETIME and TIMESTAMP. For many applications, either
 will work, but in some cases, one works better than the other. Let's
 take a look:
	DATETIME
	This type can hold a large range of values, from the year
 1001 to the year 9999, with a precision of one second. It stores
 the date and time packed into an integer in
 YYYYMMDDHHMMSS format, independent of time zone. This uses eight
 bytes of storage space.
By default, MySQL displays DATETIME values in a sortable,
 unambiguous format, such as 2008-01-16 22:37:08. This is the
 ANSI standard way to represent dates and times.

	TIMESTAMP
	As its name implies, the TIMESTAMP type stores the number of
 seconds elapsed since midnight, January 1, 1970 (Greenwich Mean
 Time)—the same as a Unix timestamp. TIMESTAMP uses only four bytes of
 storage, so it has a much smaller range than DATETIME: from the year 1970 to
 partway through the year 2038. MySQL provides the FROM_UNIXTIME() and UNIX_TIMESTAMP() functions to convert
 a Unix timestamp to a date, and vice versa.
Newer MySQL versions format TIMESTAMP values just like DATETIME values, but older MySQL
 versions display them without any punctuation between the parts.
 This is only a display formatting difference; the TIMESTAMP storage format is the same
 in all MySQL versions.
The value a TIMESTAMP
 displays also depends on the time zone. The MySQL server,
 operating system, and client connections all have time zone
 settings.
Thus, a TIMESTAMP that
 stores the value 0 actually
 displays as 1969-12-31 19:00:00 in Eastern Standard Time, which
 has a five-hour offset from GMT.
TIMESTAMP also has
 special properties that DATETIME doesn't have. By default,
 MySQL will set the first TIMESTAMP column to the current time
 when you insert a row without specifying a value for the column.
 [18] MySQL also updates the first TIMESTAMP column's value by default
 when you update the row, unless you assign a value explicitly in
 the UPDATE statement. You can
 configure the insertion and update behaviors for any TIMESTAMP column. Finally, TIMESTAMP columns are NOT NULL by default, which is
 different from every other data type.

Special behavior aside, in general if you can use TIMESTAMP you should, as it is more
 space-efficient than DATETIME.
 Sometimes people store Unix timestamps as integer values, but this
 usually doesn't gain you anything. As that format is often less
 convenient to deal with, we do not recommend doing this.
What if you need to store a date and time value with subsecond
 resolution? MySQL currently does not have an appropriate data type for
 this, but you can use your own storage format: you can use the
 BIGINT data type and store the
 value as a timestamp in microseconds, or you can use a DOUBLE and store the fractional part of the
 second after the decimal point. Both approaches will work well.

Bit-Packed Data Types

MySQL has a few storage types that use individual bits within a
 value to store data compactly. All of these types are technically
 string types, regardless of the underlying storage format and
 manipulations:
	BIT
	Before MySQL 5.0, BIT
 is just a synonym for TINYINT. But in MySQL 5.0 and newer,
 it's a completely different data type with special
 characteristics. We discuss the new behavior here.
You can use a BIT
 column to store one or many true/false values in a single
 column. BIT(1) defines a
 field that contains a single bit, BIT(2) stores two bits, and so on; the
 maximum length of a BIT
 column is 64 bits.
BIT behavior varies
 between storage engines. MyISAM packs the columns together for
 storage purposes, so 17 individual BIT columns require only 17 bits to
 store (assuming none of the columns permits NULL). MyISAM rounds that to three
 bytes for storage. Other storage engines, such as Memory and
 InnoDB, store each column as the smallest integer type large
 enough to contain the bits, so you don't save any storage
 space.
MySQL treats BIT as a
 string type, not a numeric type. When you retrieve a BIT(1) value, the result is a string
 but the contents are the binary value 0 or 1, not the ASCII
 value "0" or "1". However, if you retrieve the value in a
 numeric context, the result is the number to which the bit
 string converts. Keep this in mind if you need to compare the
 result to another value. For example, if you store the value
 b'00111001' (which is the
 binary equivalent of 57) into a BIT(8) column and retrieve it, you
 will get the string containing the character code 57. This
 happens to be the ASCII character code for "9". But in a numeric
 context, you'll get the value 57:
mysql> CREATE TABLE bittest(a bit(8));
mysql> INSERT INTO bittest VALUES(b'00111001');
mysql> SELECT a, a + 0 FROM bittest;
+------+-------+
| a | a + 0 |
+------+-------+
| 9 | 57 |
+------+-------+
This can be very confusing, so we recommend that you use
 BIT with caution. For most
 applications, we think it is a better idea to avoid this
 type.
If you want to store a true/false value in a single bit of
 storage space, another option is to create a nullable CHAR(0) column. This column is capable
 of storing either the absence of a value (NULL) or a zero-length value (the
 empty string).

	SET
	If you need to store many true/false values, consider
 combining many columns into one with MySQL's native SET data type, which MySQL represents internally as a
 packed set of bits. It uses storage efficiently, and MySQL has
 functions such as FIND_IN_SET() and FIELD() that make it easy to use in
 queries. The major drawback is the cost of changing the column's
 definition: this requires an ALTER
 TABLE, which is very expensive on large tables (but
 see the workaround later in this chapter). In general, you also
 can't use indexes for lookups on SET columns.

	Bitwise operations on integer
 columns
	An alternative to SET
 is to use an integer as a packed set of bits. For example, you
 can pack eight bits in a TINYINT and manipulate them with
 bitwise operators. You can make this easier by defining named
 constants for each bit in your application code.
The major advantage of this approach over SET is that you can change the
 "enumeration" the field represents without an ALTER TABLE. The drawback is that your
 queries are harder to write and understand (what does it mean
 when bit 5 is set?). Some people are comfortable with bitwise
 manipulations and some aren't, so whether you'll want to try
 this technique is largely a matter of taste.

An example application for packed bits is an access control list (ACL) that
 stores permissions. Each bit or SET
 element represents a value such as CAN_READ,
 CAN_WRITE, or CAN_DELETE.
 If you use a SET column, you'll let
 MySQL store the bit-to-value mapping in the column definition; if you
 use an integer column, you'll store the mapping in your application
 code. Here's what the queries would look like with a SET column:
mysql> CREATE TABLE acl (
 -> perms SET('CAN_READ', 'CAN_WRITE', 'CAN_DELETE') NOT NULL
 ->);
mysql> INSERT INTO acl(perms) VALUES ('CAN_READ,CAN_DELETE');
mysql> SELECT perms FROM acl WHERE FIND_IN_SET('CAN_READ', perms);
+---------------------+
| perms |
+---------------------+
| CAN_READ,CAN_DELETE |
+---------------------+
If you used an integer, you could write that example as
 follows:
mysql> SET @CAN_READ := 1 << 0,
 -> @CAN_WRITE := 1 << 1,
 -> @CAN_DELETE := 1 << 2;
mysql> CREATE TABLE acl (
 -> perms TINYINT UNSIGNED NOT NULL DEFAULT 0
 ->);
mysql> INSERT INTO acl(perms) VALUES(@CAN_READ + @CAN_DELETE);
mysql> SELECT perms FROM acl WHERE perms & @CAN_READ;
+-------+
| perms |
+-------+
| 5 |
+-------+
We've used variables to define the values, but you can use
 constants in your code instead.

Choosing Identifiers

Choosing a good data type for an identifier column is very
 important. You're more likely to compare these columns to other values
 (for example, in joins) and to use them for lookups than other
 columns. You're also likely to use them in other tables as foreign
 keys, so when you choose a data type for an identifier column, you're
 probably choosing the type in related tables as well. (As we
 demonstrated earlier in this chapter, it's a good idea to use the same
 data types in related tables, because you're likely to
 use them for joins.)
When choosing a type for an identifier column, you need to
 consider not only the storage type, but also how MySQL performs
 computations and comparisons on that type. For example, MySQL stores
 ENUM and SET types internally as integers but
 converts them to strings when doing comparisons in a string
 context.
Once you choose a type, make sure you use the same type in all
 related tables. The types should match exactly, including properties
 such as UNSIGNED.[19] Mixing different data types can cause performance
 problems, and even if it doesn't, implicit type conversions during
 comparisons can create hard-to-find errors. These may even crop up
 much later, after you've forgotten that you're comparing different
 data types.
Choose the smallest size that can hold your required range of
 values, and leave room for future growth if necessary. For example, if
 you have a state_id column that
 stores U.S state names, you don't need thousands or millions of
 values, so don't use an INT. A
 TINYINT should be sufficient and is
 three bytes smaller. If you use this value as a foreign key in other
 tables, three bytes can make a big difference.
	Integer types
	Integers are usually the best choice for identifiers, because they're fast and they
 work with AUTO_INCREMENT.

	ENUM
 and SET
	The ENUM and SET types are generally a poor choice
 for identifiers, though they can be good for static "definition
 tables" that contain status or "type" values. ENUM and SET columns are appropriate for
 holding information such as an order's status, a product's type,
 or a person's gender.
As an example, if you use an ENUM field to define a product's type,
 you might want a lookup table primary keyed on an identical
 ENUM field. (You could add
 columns to the lookup table for descriptive text, to generate a
 glossary, or to provide meaningful labels in a pull-down menu on
 a web site.) In this case, you'll want to use the ENUM as an identifier, but for most
 purposes you should avoid doing so.

	String types
	Avoid string types for identifiers if possible, as they
 take up a lot of space and are generally slower than integer
 types. Be especially cautious when using string identifiers with
 MyISAM tables. MyISAM uses packed indexes for strings by
 default, which may make lookups much slower. In our tests, we've
 noted up to six times slower performance with packed indexes on
 MyISAM.
You should also be very careful with completely "random"
 strings, such as those produced by MD5(), SHA1(), or UUID(). Each new value you generate
 with them will be distributed in arbitrary ways over a large
 space, which can slow INSERT
 and some types of SELECT
 queries:[20]
	They slow INSERT
 queries because the inserted value has to go in a random
 location in indexes. This causes page splits, random disk
 accesses, and clustered index fragmentation for clustered
 storage engines.

	They slow SELECT
 queries because logically adjacent rows will be widely
 dispersed on disk and in memory.

	Random values cause caches to perform poorly for all types of queries
 because they defeat locality of reference, which is how
 caching works. If the entire data set is equally "hot,"
 there is no advantage to having any particular part of the
 data cached in memory, and if the working set does not fit
 in memory, the cache will have a lot of flushes and
 misses.

If you do store UUID values, you should remove the dashes or,
 even better, convert the UUID values to 16-byte numbers with UNHEX() and store them in a BINARY(16) column. You can retrieve the
 values in hexadecimal format with the HEX() function.
Values generated by UUID()
 have different characteristics from those generated by a cryptographic
 hash function such as SHA1(): the
 UUID values are unevenly distributed and are somewhat sequential.
 They're still not as good as a monotonically increasing integer,
 though.
ora: Beware of Autogenerated Schemas
We've covered the most important data type considerations
 (some with serious and others with more minor performance
 implications), but we haven't yet told you about the evils of
 autogenerated schemas.
Badly written schema migration programs and programs that
 autogenerate schemas can cause severe performance problems. Some
 programs use large VARCHAR fields
 for everything, or use different data types for
 columns that will be compared in joins. Be sure to double-check a
 schema if it was created for you automatically.
Object-relational mapping (ORM) systems (and the
 "frameworks" that use them) are another frequent performance
 nightmare. Some of these systems let you store any type of data in
 any type of backend data store, which usually means they aren't
 designed to use the strengths of any of the data stores. Sometimes
 they store each property of each object in a separate row, even
 using timestamp-based versioning, so there are multiple versions of
 each property!
This design may appeal to developers, because it lets them
 work in an object-oriented fashion without needing to think about
 how the data is stored. However, applications that "hide complexity
 from developers" usually don't scale well. We suggest you think
 carefully before trading performance for developer productivity, and
 always test on a realistically large dataset, so you don't discover
 performance problems too late.

Special Types of Data

Some kinds of data don't correspond directly to the available
 built-in types. A timestamp with subsecond resolution is one example;
 we showed you some options for storing such data earlier in the
 chapter.
Another example is an IP address. People often use VARCHAR(15) columns to store IP addresses. However, an IP address is really an
 unsigned 32-bit integer, not a string. The dotted-quad notation is
 just a way of writing it out so that humans can read it more easily.
 You should store IP addresses as unsigned integers. MySQL provides the
 INET_ATON() and INET_NTOA() functions to convert between the
 two representations. Future versions of MySQL may provide a native
 data type for IP addresses.

[16] Remember that the length is specified in characters,
 not bytes. A multibyte character set can require more than
 one byte to store each character.

[17] Be careful with the BINARY type if the value must remain
 unchanged after retrieval. MySQL will pad it to the required
 length with \0s.

[18] The rules for TIMESTAMP behavior are complex and
 have changed in various MySQL versions, so you should verify
 that you are getting the behavior you want. It's usually a
 good idea to examine the output of SHOW CREATE TABLE after making
 changes to TIMESTAMP
 columns.

[19] If you're using the InnoDB storage engine, you may not be
 able to create foreign keys unless the data types match exactly.
 The resulting error message, "ERROR 1005 (HY000): Can't create
 table," can be confusing depending on the context, and questions
 about it come up often on MySQL mailing lists. (Oddly, you can
 create foreign keys between VARCHAR columns of different
 lengths.)

[20] On the other hand, for some very large tables with
 many writers, such pseudorandom values can actually help
 eliminate "hot spots."

Indexing Basics

Indexes are data structures that help MySQL
 retrieve data efficiently. They are critical for good performance, but
 people often forget about them or misunderstand them, so indexing is a
 leading cause of real-world performance problems. That's why we put this
 material early in the book—even earlier than our discussion of query
 optimization.
Indexes (also called "keys" in MySQL) become more important as
 your data gets larger. Small, lightly loaded databases often perform
 well even without proper indexes, but as the dataset grows, performance
 can drop very quickly.
The easiest way to understand how an index works in MySQL is to
 think about the index in a book. To find out where a particular topic is
 discussed in a book, you look in the index, and it tells you the page
 number(s) where that term appears.
MySQL uses indexes in a similar way. It searches the index's data
 structure for a value. When it finds a match, it can find the row that
 contains the match. Suppose you run the following query:
mysql> SELECT first_name FROM sakila.actor WHERE actor_id = 5;
There's an index on the actor_id column, so MySQL will use the index
 to find rows whose actor_id is
 5. In other words, it performs a
 lookup on the values in the index and returns any rows containing the
 specified value.
An index contains values from a specified column or columns in a
 table. If you index more than one column, the column order is very
 important, because MySQL can only search efficiently on a leftmost
 prefix of the index. Creating an index on two columns is not the same as
 creating two separate single-column indexes, as you'll see.
Types of Indexes

There are many types of indexes, each designed to perform well
 for different purposes. Indexes are implemented in the storage engine
 layer, not the server layer. Thus, they are not standardized: indexing
 works slightly differently in each engine, and not all engines support
 all types of indexes. Even when multiple engines support the same
 index type, they may implement it differently under the hood.
That said, let's look at the index types MySQL currently
 supports, their benefits, and their drawbacks.
B-Tree indexes

When people talk about an index without mentioning a type,
 they're probably referring to a B-Tree index,
 which typically uses a B-Tree data structure to store its data.
 [21] Most of MySQL's storage engines support this index
 type. The Archive engine is the exception: it didn't support indexes
 at all until MySQL 5.1, when it started to allow a single indexed
 AUTO_INCREMENT column.
We use the term "B-Tree" for these indexes because that's what
 MySQL uses in CREATE TABLE and
 other statements. However, storage engines may use different storage
 structures internally. For example, the NDB Cluster storage engine
 uses a T-Tree data structure for these indexes, even though
 they're labeled BTREE.
Storage engines store B-Tree indexes in various ways on disk,
 which can affect performance. For instance, MyISAM uses a prefix
 compression technique that makes indexes smaller, while InnoDB
 leaves indexes uncompressed because it can't use compressed indexes
 for some of its optimizations. Also, MyISAM indexes refer to the
 indexed rows by the physical positions of the rows as stored, but
 InnoDB refers to them by their primary key values. Each variation
 has benefits and drawbacks.
The general idea of a B-Tree is that all the values are stored
 in order, and each leaf page is the same distance from the root.
 Figure 3-1 shows an
 abstract representation of a B-Tree index, which corresponds roughly
 to how InnoDB's indexes work (InnoDB uses a B+Tree structure).
 MyISAM uses a different structure, but the principles are
 similar.
A B-Tree index speeds up data access because the storage
 engine doesn't have to scan the whole table to find the desired
 data. Instead, it starts at the root node (not shown in this
 figure). The slots in the root node hold pointers to child nodes,
 and the storage engine follows these pointers. It finds the right
 pointer by looking at the values in the node pages, which define the
 upper and lower bounds of the values in the child nodes. Eventually,
 the storage engine either determines that the desired value doesn't
 exist or successfully reaches a leaf page.
[image: An index built on a B-Tree (technically, a B+Tree) structure]

Figure 3-1. An index built on a B-Tree (technically, a B+Tree)
 structure

Leaf pages are special, because they have pointers to the
 indexed data instead of pointers to other pages. (Different storage
 engines have different types of "pointers" to the data.) Our
 illustration shows only one node page and its leaf pages, but there
 may be many levels of node pages between the root and the leaves.
 The tree's depth depends on how big the table is.
Because B-Trees store the indexed columns in order, they're
 useful for searching for ranges of data. For instance, descending
 the tree for an index on a text field passes through values in
 alphabetical order, so looking for "everyone whose name begins with
 I through K" is efficient.
Suppose you have the following table:
CREATE TABLE People (
 last_name varchar(50) not null,
 first_name varchar(50) not null,
 dob date not null,
 gender enum('m', 'f') not null,
 key(last_name, first_name, dob)
);
The index will contain the values from the last_name, first_name, and dob columns for every row in the table.
 Figure 3-2
 illustrates how the index arranges the data it stores.
[image: Sample entries from a B-Tree (technically, a B+Tree) index]

Figure 3-2. Sample entries from a B-Tree (technically, a B+Tree)
 index

Notice that the index sorts the values according to the order
 of the columns given in the index in the CREATE TABLE statement. Look at the last
 two entries: there are two people with the same name but different
 birth dates, and they're sorted by birth date.
Types of queries that can use a B-Tree
 index. B-Tree indexes work well for lookups by the full key
 value, a key range, or a key prefix. They are useful only if the
 lookup uses a leftmost prefix of the index.[22] The index we showed in the previous section will be
 useful for the following kinds of queries:
	Match the full value
	A match on the full key value specifies values for all
 columns in the index. For example, this index can help you
 find a person named Cuba Allen who was born on
 1960-01-01.

	Match a leftmost prefix
	This index can help you find all people with the last
 name Allen. This uses only the first column in the
 index.

	Match a column prefix
	You can match on the first part of a column's value.
 This index can help you find all people whose last names begin
 with J. This uses only the first column in the index.

	Match a range of values
	This index can help you find people whose last names are
 between Allen and Barrymore. This also uses only the first
 column.

	Match one part exactly and match a range on
 another part
	This index can help you find everyone whose last name is
 Allen and whose first name starts with the letter K (Kim,
 Karl, etc.). This is an exact match on last_name and a range query on
 first_name.

	Index-only queries
	B-Tree indexes can normally support index-only
 queries, which are queries that access only the index, not the
 row storage. We discuss this optimization in "Covering
 Indexes" on Covering Indexes.

Because the tree's nodes are sorted, they can be used for both
 lookups (finding values) and ORDER
 BY queries (finding values in sorted order). In general,
 if a B-Tree can help you find a row in a particular way, it can help
 you sort rows by the same criteria. So, our index will be helpful
 for ORDER BY clauses that match
 all the types of lookups we just listed.
Here are some limitations of B-Tree indexes:
	They are not useful if the lookup does not start from the
 leftmost side of the indexed columns. For example, this index
 won't help you find all people named Bill or all people born on
 a certain date, because those columns are not leftmost in the
 index. Likewise, you can't use the index to find people whose
 last name ends with a particular
 letter.

	You can't skip columns in the index. That is, you won't be
 able to find all people whose last name is Smith and who were
 born on a particular date. If you don't specify a value for the
 first_name column, MySQL can
 use only the first column of the index.

	The storage engine can't optimize accesses with any
 columns to the right of the first range condition. For example,
 if your query is WHERE
 last_name="Smith" AND first_name LIKE 'J%' AND
 dob='1976-12-23', the index access will use only the
 first two columns in the index, because the LIKE is a range condition (the server
 can use the rest of the columns for other purposes, though). For
 a column that has a limited number of values, you can often work
 around this by specifying equality conditions instead of range
 conditions. We show detailed examples of this in the indexing
 case study later in this chapter.

Now you know why we said the column order is extremely
 important: these limitations are all related to column ordering. For
 high-performance applications, you might need to create indexes with
 the same columns in different orders to satisfy your queries.
Some of these limitations are not inherent to B-Tree indexes, but are a result of how the MySQL
 query optimizer and storage engines use indexes. Some of them may be
 removed in the future.

Hash indexes

A hash index is built on a hash table and
 is useful only for exact lookups that use every column in the
 index.[23] For each row, the storage engine computes a
 hash code of the indexed columns, which is a
 small value that will probably differ from the hash codes computed
 for other rows with different key values. It stores the hash codes
 in the index and stores a pointer to each row in a hash
 table.
In MySQL, only the Memory storage engine supports explicit
 hash indexes. They are the default index type for
 Memory tables, though Memory tables can have B-Tree indexes too. The Memory engine supports
 nonunique hash indexes, which is unusual in the database world.
 If multiple values have the same hash code, the index will store
 their row pointers in the same hash table entry, using a linked
 list.
Here's an example. Suppose we have the following table:
CREATE TABLE testhash (
 fname VARCHAR(50) NOT NULL,
 lname VARCHAR(50) NOT NULL,
 KEY USING HASH(fname)
) ENGINE=MEMORY;
containing this data:
mysql> SELECT * FROM testhash;
+--------+-----------+
| fname | lname |
+--------+-----------+
Arjen	Lentz
Baron	Schwartz
Peter	Zaitsev
Vadim	Tkachenko
+--------+-----------+
Now suppose the index uses an imaginary hash function called
 f(), which returns the following
 values (these are just examples, not real values):
f('Arjen') = 2323
f('Baron') = 7437
f('Peter') = 8784
f('Vadim') = 2458
The index's data structure will look like this:
	Slot
	Value

	2323
	Pointer to row 1

	2458
	Pointer to row 4

	7437
	Pointer to row 2

	8784
	Pointer to row 3

Notice that the slots are ordered, but the rows are not. Now,
 when we execute this query:
mysql> SELECT lname FROM testhash WHERE fname='Peter';
MySQL will calculate the hash of 'Peter' and use that to look up the
 pointer in the index. Because f('Peter') = 8784, MySQL will look in the
 index for 8784 and find the pointer to row 3. The final step is to
 compare the value in row 3 to 'Peter', to make sure it's the right
 row.
Because the indexes themselves store only short hash values,
 hash indexes are very compact. The hash value's length
 doesn't depend on the type of the columns you index—a hash index on
 a TINYINT will be the same size
 as a hash index on a large character column.
As a result, lookups are usually lightning-fast. However,
 hash indexes have some limitations:
	Because the index contains only hash codes and row
 pointers rather than the values themselves, MySQL can't use the
 values in the index to avoid reading the rows. Fortunately,
 accessing the in-memory rows is very fast, so this doesn't
 usually degrade performance.

	MySQL can't use hash indexes for sorting because they
 don't store rows in sorted order.

	Hash indexes don't support partial key matching, because
 they compute the hash from the entire indexed value. That is, if
 you have an index on (A,B)
 and your query's WHERE clause
 refers only to A, the index
 won't help.

	Hash indexes support only equality comparisons that use
 the =, IN(), and <=>
 operators (note that <> and <=> are not the same
 operator). They can't speed up range queries, such as WHERE price > 100.

	Accessing data in a hash index is very quick, unless there
 are many collisions (multiple values with the same hash). When
 there are collisions, the storage engine must follow each row
 pointer in the linked list and compare their values to the
 lookup value to find the right row(s).

	Some index maintenance operations can be slow if there are
 many hash collisions. For example, if you create a hash index on
 a column with a very low selectivity (many hash collisions) and
 then delete a row from the table, finding the pointer from the
 index to that row might be expensive. The storage engine will
 have to examine each row in that hash key's linked list to find and remove the
 reference to the one row you deleted.

These limitations make hash indexes useful only in special cases. However,
 when they match the application's needs, they can improve
 performance dramatically. An example is in data-warehousing
 applications where a classic "star" schema requires many joins to
 lookup tables. Hash indexes are exactly what a lookup table
 requires.
In addition to the Memory storage engine's explicit hash
 indexes, the NDB Cluster storage engine supports unique hash
 indexes. Their functionality is specific to the NDB Cluster storage
 engine, which we don't cover in this book.
The InnoDB storage engine has a special feature called
 adaptive hash indexes. When InnoDB notices that
 some index values are being accessed very frequently, it builds a
 hash index for them in memory on top of B-Tree indexes. This gives
 its B-Tree indexes some properties of hash indexes, such as very
 fast hashed lookups. This process is completely automatic, and you
 can't control or configure it.
Building your own hash indexes.
 If your storage engine doesn't support hash indexes, you can emulate
 them yourself in a manner similar to that InnoDB uses. This will
 give you access to some of the desirable properties of hash indexes,
 such as a very small index size for very long keys.
The idea is simple: create a pseudohash index on top of a
 standard B-Tree index. It will not be exactly the same thing as a
 real hash index, because it will still use the B-Tree index for
 lookups. However, it will use the keys' hash values for lookups,
 instead of the keys themselves. All you need to do is specify the
 hash function manually in the query's WHERE clause.
An example of when this approach works well is for URL
 lookups. URLs generally cause B-Tree indexes to become huge, because
 they're very long. You'd normally query a table of URLs like
 this:
mysql> SELECT id FROM url WHERE url="http://www.mysql.com";
But if you remove the index on the url column and add an indexed url_crc column to the table, you can use a
 query like this:
mysql> SELECT id FROM url WHERE url="http://www.mysql.com"
 -> AND url_crc=CRC32("http://www.mysql.com");
This works well because the MySQL query optimizer notices
 there's a small, highly selective index on the url_crc column and does an index lookup
 for entries with that value (1560514994, in this case). Even if
 several rows have the same url_crc value, it's very easy to find
 these rows with a fast integer comparison and then examine them to
 find the one that matches the full URL exactly. The alternative is
 to index the full URL as a string, which is much slower.
One drawback to this approach is the need to maintain the
 hash values. You can do this manually or, in MySQL 5.0
 and newer, you can use triggers. The following example shows how
 triggers can help maintain the url_crc column when you insert and update
 values. First, we create the table:
CREATE TABLE pseudohash (
 id int unsigned NOT NULL auto_increment,
 url varchar(255) NOT NULL,
 url_crc int unsigned NOT NULL DEFAULT 0,
 PRIMARY KEY(id)
);
Now we create the triggers. We change the statement delimiter
 temporarily, so we can use a semicolon as a delimiter for the
 trigger:
DELIMITER |

CREATE TRIGGER pseudohash_crc_ins BEFORE INSERT ON pseudohash FOR EACH ROW BEGIN
SET NEW.url_crc=crc32(NEW.url);
END;
|

CREATE TRIGGER pseudohash_crc_upd BEFORE UPDATE ON pseudohash FOR EACH ROW BEGIN
SET NEW.url_crc=crc32(NEW.url);
END;
|

DELIMITER ;
All that remains is to verify that the trigger maintains the
 hash:
mysql> INSERT INTO pseudohash (url) VALUES ('http://www.mysql.com');
mysql> SELECT * FROM pseudohash;
+----+----------------------+------------+
| id | url | url_crc |
+----+----------------------+------------+
| 1 | http://www.mysql.com | 1560514994 |
+----+----------------------+------------+
mysql> UPDATE pseudohash SET url='http://www.mysql.com/' WHERE id=1;
mysql> SELECT * FROM pseudohash;
+----+---------------------- +------------+
| id | url | url_crc |
+----+---------------------- +------------+
| 1 | http://www.mysql.com/ | 1558250469 |
+----+---------------------- +------------+
If you use this approach, you should not use SHA1() or MD5() hash functions. These return very long strings, which
 waste a lot of space and result in slower comparisons. They are
 cryptographically strong functions designed to virtually eliminate
 collisions, which is not your goal here. Simple hash functions can
 offer acceptable collision rates with better performance.
If your table has many rows and CRC32() gives too many collisions, implement your own 64-bit hash function. Make sure you use a function that
 returns an integer, not a string. One way to implement a 64-bit hash
 function is to use just part of the value returned by MD5(). This is probably less efficient
 than writing your own routine as a user-defined function (see
 "User-Defined Functions" on User-Defined Functions), but it'll do in a
 pinch:
mysql> SELECT CONV(RIGHT(MD5('http://www.mysql.com/'), 16), 16, 10) AS HASH64;
+---------------------+
| HASH64 |
+---------------------+
| 9761173720318281581 |
+---------------------+
Maatkit (http://maatkit.sourceforge.net)
 includes a UDF that implements a Fowler/Noll/Vo 64-bit hash, which is very fast.
Handling hash collisions. When you search for a value by
 its hash, you must also include the literal value in your WHERE clause:
mysql> SELECT id FROM url WHERE url_crc=CRC32("http://www.mysql.com")
 -> AND url="http://www.mysql.com";
The following query will not work
 correctly, because if another URL has the CRC32() value 1560514994, the query will
 return both rows:
mysql> SELECT id FROM url WHERE url_crc=CRC32("http://www.mysql.com");
The probability of a hash collision grows much faster than you
 might think, due to the so-called Birthday Paradox. CRC32() returns a 32-bit integer value, so
 the probability of a collision reaches 1% with as few as 93,000
 values. To illustrate this, we loaded all the words in
 /usr/share/dict/words into a table along with
 their CRC32() values, resulting
 in 98,569 rows. There is already one collision in this set of data!
 The collision makes the following query return more than one
 row:
mysql> SELECT word, crc FROM words WHERE crc = CRC32('gnu');
+---------+------------+
| word | crc |
+---------+------------+
| codding | 1774765869 |
| gnu | 1774765869 |
+---------+------------+
The correct query is as follows:
mysql> SELECT word, crc FROM words WHERE crc = CRC32('gnu') AND word = 'gnu';
+------+------------+
| word | crc |
+------+------------+
| gnu | 1774765869 |
+------+------------+
To avoid problems with collisions, you must specify both
 conditions in the WHERE clause.
 If collisions aren't a problem—for example, because you're doing
 statistical queries and you don't need exact results—you can
 simplify, and gain some efficiency, by using only the CRC32() value in the WHERE clause.

Spatial (R-Tree) indexes

MyISAM supports spatial indexes, which you can use with geospatial types such
 as GEOMETRY. Unlike B-Tree
 indexes, spatial indexes don't require your WHERE clauses to operate on a leftmost
 prefix of the index. They index the data by all dimensions at the
 same time. As a result, lookups can use any combination of
 dimensions efficiently. However, you must use the MySQL GIS
 functions, such as MBRCONTAINS(),
 for this to work.

Full-text indexes

FULLTEXT is a special type
 of index for MyISAM tables. It finds keywords in the text instead of
 comparing values directly to the values in the index. Full-text
 searching is completely different from other types of matching. It
 has many subtleties, such as stopwords, stemming and plurals, and
 Boolean searching. It is much more analogous to what a search engine
 does than to simple WHERE
 parameter matching.
Having a full-text index on a column does not eliminate the
 value of a B-Tree index on the same column. Full-text indexes are
 for MATCH AGAINST operations, not
 ordinary WHERE clause
 operations.
We discuss full-text indexing in more detail in "Full-Text
 Searching" on Full-Text Searching.

[21] Many storage engines actually use a B+Tree index, in which
 each leaf node contains a link to the next for fast range
 traversals through nodes. Refer to computer science literature
 for a detailed explanation of B-Tree indexes.

[22] This is MySQL-specific, and even version-specific. Other
 databases can use nonleading index parts, though it's usually
 more efficient to use a complete prefix. MySQL may offer this
 option in the future; we show workarounds later in the
 chapter.

[23] See the computer science literature for more on hash
 tables.

Indexing Strategies for High Performance

Creating the correct indexes and using them properly is essential
 to good query performance. We've introduced the different types of
 indexes and explored their strengths and weaknesses. Now let's see how
 to really tap into the power of indexes.
There are many ways to choose and use indexes effectively, because
 there are many special-case optimizations and specialized behaviors.
 Determining what to use when and evaluating the performance implications
 of your choices are skills you'll learn over time. The following
 sections will help you understand how to use indexes effectively, but
 don't forget to benchmark!
Isolate the Column

MySQL generally can't use indexes on columns unless the columns
 are isolated in the query. "Isolating" the column means it should not be part of an
 expression or be inside a function in the query.
For example, here's a query that can't use the index on actor_id:
mysql> SELECT actor_id FROM sakila.actor WHERE actor_id + 1 = 5;
A human can easily see that the WHERE clause is equivalent to actor_id = 4, but MySQL can't solve the
 equation for actor_id. It's up to
 you to do this. You should get in the habit of simplifying your
 WHERE criteria, so the indexed
 column is alone on one side of the comparison operator.
Here's another example of a common mistake:
mysql> SELECT ... WHERE TO_DAYS(CURRENT_DATE) - TO_DAYS(date_col) <= 10;
This query will find all rows where the date_col value is newer than 10 days ago,
 but it won't use indexes because of the TO_DAYS() function. Here's a better way to
 write this query:
mysql> SELECT ... WHERE date_col >= DATE_SUB(CURRENT_DATE, INTERVAL 10 DAY);
This query will have no trouble using an index, but you can
 still improve it in another way. The reference to CURRENT_DATE will prevent the query cache
 from caching the results. You can replace CURRENT_DATE with a literal to fix that
 problem:
mysql> SELECT ... WHERE date_col >= DATE_SUB('2008-01-17', INTERVAL 10 DAY);
See Chapter 5 for details on
 the query cache.

Prefix Indexes and Index Selectivity

Sometimes you need to index very long character columns, which
 makes your indexes large and slow. One strategy is to simulate a hash
 index, as we showed earlier in this chapter. But sometimes that isn't
 good enough. What can you do?
You can often save space and get good performance by indexing
 the first few characters instead of the whole value. This makes your
 indexes use less space, but it also makes them less
 selective. Index selectivity is the ratio of the
 number of distinct indexed values (the
 cardinality) to the total number of rows in the
 table (#T), and ranges from
 1/#T to 1. A highly selective index is good
 because it lets MySQL filter out more rows when it looks for matches.
 A unique index has a selectivity of 1, which is as good as it gets.
A prefix of the column is often selective enough to give good
 performance. If you're indexing BLOB or TEXT columns, or very long VARCHAR columns, you
 must define prefix indexes, because MySQL disallows indexing their
 full length.
The trick is to choose a prefix that's long enough to give good
 selectivity, but short enough to save space. The prefix should be long
 enough to make the index nearly as useful as it would be if you'd
 indexed the whole column. In other words, you'd like the prefix's
 cardinality to be close to the full column's cardinality.
To determine a good prefix length, find the most frequent values and compare
 that list to a list of the most frequent prefixes. There's no good table to
 demonstrate this in the Sakila sample database, so we derive one from
 the city table, just so we have
 enough data to work with:
CREATE TABLE sakila.city_demo(city VARCHAR(50) NOT NULL);
INSERT INTO sakila.city_demo(city) SELECT city FROM sakila.city;
-- Repeat the next statement five times:
INSERT INTO sakila.city_demo(city) SELECT city FROM sakila.city_demo;
-- Now randomize the distribution (inefficiently but conveniently):
UPDATE sakila.city_demo
 SET city = (SELECT city FROM sakila.city ORDER BY RAND() LIMIT 1);
Now we have an example dataset. The results are not
 realistically distributed, and we used RAND(), so your results will vary, but that
 doesn't matter for this exercise. First, we find the most frequently
 occurring cities:
mysql> SELECT COUNT(*) AS cnt, city
 -> FROM sakila.city_demo GROUP BY city ORDER BY cnt DESC LIMIT 10;
+-----+----------------+
| cnt | city |
+-----+----------------+
65	London
49	Hiroshima
48	Teboksary
48	Pak Kret
48	Yaound
47	Tel Aviv-Jaffa
47	Shimoga
45	Cabuyao
45	Callao
45	Bislig
+-----+----------------+
Notice that there are roughly 45 to 65 occurrences of each
 value. Now we find the most frequently occurring city name
 prefixes, beginning with three-letter
 prefixes:
mysql> SELECT COUNT(*) AS cnt, LEFT(city, 3) AS pref
 -> FROM sakila.city_demo GROUP BY pref ORDER BY cnt DESC LIMIT 10;
+-----+------+
| cnt | pref |
+-----+------+
483	San
195	Cha
177	Tan
167	Sou
163	al-
163	Sal
146	Shi
136	Hal
130	Val
129	Bat
+-----+------+
There are many more occurrences of each prefix, so there are many fewer unique prefixes than
 unique full-length city names. The idea is to increase the prefix
 length until the prefix becomes nearly as selective as the full length
 of the column. A little experimentation shows that 7 is a good
 value:
mysql> SELECT COUNT(*) AS cnt, LEFT(city, 7) AS pref
 -> FROM sakila.city_demo GROUP BY pref ORDER BY cnt DESC LIMIT 10;
+-----+---------+
| cnt | pref |
+-----+---------+
70	Santiag
68	San Fel
65	London
61	Valle d
49	Hiroshi
48	Teboksa
48	Pak Kre
48	Yaound
47	Tel Avi
47	Shimoga
+-----+---------+
Another way to calculate a good prefix length is by computing
 the full column's selectivity and trying to make the prefix's
 selectivity close to that value. Here's how to find the full column's
 selectivity:
mysql> SELECT COUNT(DISTINCT city)/COUNT(*) FROM sakila.city_demo;
+-------------------------------+
| COUNT(DISTINCT city)/COUNT(*) |
+-------------------------------+
| 0.0312 |
+-------------------------------+
The prefix will be about as good, on average, if we target a
 selectivity near .031. It's possible to evaluate many different
 lengths in one query, which is useful on very large tables. Here's how
 to find the selectivity of several prefix lengths in one
 query:
mysql> SELECT COUNT(DISTINCT LEFT(city, 3))/COUNT(*) AS sel3,
 -> COUNT(DISTINCT LEFT(city, 4))/COUNT(*) AS sel4,
 -> COUNT(DISTINCT LEFT(city, 5))/COUNT(*) AS sel5,
 -> COUNT(DISTINCT LEFT(city, 6))/COUNT(*) AS sel6,
 -> COUNT(DISTINCT LEFT(city, 7))/COUNT(*) AS sel7
 -> FROM sakila.city_demo;
+--------+--------+--------+--------+--------+
| sel3 | sel4 | sel5 | sel6 | sel7 |
+--------+--------+--------+--------+--------+
| 0.0239 | 0.0293 | 0.0305 | 0.0309 | 0.0310 |
+--------+--------+--------+--------+--------+
This query shows that increasing the prefix length results in
 successively smaller improvements as it approaches seven
 characters.
It's not a good idea to look only at average selectivity. You also need to think about
 worst-case selectivity. The average selectivity
 might make you think a four- or five-character prefix is good enough,
 but if your data is very uneven, that could be a trap. If you look at
 the number of occurrences of the most common city name prefixes using
 a value of 4, you'll see the unevenness clearly:
mysql> SELECT COUNT(*) AS cnt, LEFT(city, 4) AS pref
 -> FROM sakila.city_demo GROUP BY pref ORDER BY cnt DESC LIMIT 5;
+-----+------+
| cnt | pref |
+-----+------+
205	San
200	Sant
135	Sout
104	Chan
91	Toul
+-----+------+
With four characters, the most frequent prefixes occur quite a
 bit more often than the most frequent full-length values. That is, the
 selectivity on those values is lower than the average selectivity. If
 you have a more realistic dataset than this randomly generated sample,
 you're likely to see this effect even more. For example, building a
 four-character prefix index on real-world city names will give
 terrible selectivity on cities that begin with "San" and "New," of
 which there are many.
Now that we've found a good value for our sample data, here's
 how to create a prefix index on the column:
mysql> ALTER TABLE sakila.city_demo ADD KEY (city(7));
Prefix indexes can be a great way to make indexes
 smaller and faster, but they have downsides too: MySQL cannot use
 prefix indexes for ORDER
 BY or GROUP BY queries,
 nor can it use them as covering indexes.
Tip
Sometimes suffix indexes make sense (e.g., for finding all
 email addresses from a certain domain). MySQL does not support
 reversed indexes natively, but you can store a reversed string and
 index a prefix of it. You can maintain the index with triggers; see
 "Building your own hash indexes" on Hash indexes,
 earlier in this chapter.

Clustered Indexes

Clustered indexes [24] aren't a separate type of index. Rather, they're an
 approach to data storage. The exact details vary between
 implementations, but InnoDB's clustered indexes actually store a B-Tree index and the
 rows together in the same structure.
When a table has a clustered index, its rows are actually stored
 in the index's leaf pages. The term "clustered" refers to the fact
 that rows with adjacent key values are stored close to each other.
 [25] You can have only one clustered index per table, because
 you can't store the rows in two places at once. (However,
 covering indexes let you emulate multiple
 clustered indexes; more on this later.)
Because storage engines are responsible for implementing
 indexes, not all storage engines support clustered indexes. At present, solidDB and InnoDB are the only ones that do. We focus on InnoDB in
 this section, but the principles we discuss are likely to be at least
 partially true for any storage engine that supports clustered indexes now or in the future.
Figure 3-3 shows how records
 are laid out in a clustered index. Notice that the leaf pages contain
 full rows but the node pages contain only the indexed columns. In this
 case, the indexed column contains integer values.
[image: Clustered index data layout]

Figure 3-3. Clustered index data layout

Some database servers let you choose which index to cluster, but
 none of MySQL's storage engines does at the time of this writing.
 InnoDB clusters the data by the primary key. That means that the
 "indexed column" in Figure 3-3 is
 the primary key column.
If you don't define a primary key, InnoDB will try to use a
 unique nonnullable index instead. If there's no such index, InnoDB
 will define a hidden primary key for you and then cluster on that.
 [26] InnoDB clusters records together only within a page.
 Pages with adjacent key values may be distant from each other.
A clustering primary key can help performance, but it can also
 cause serious performance problems. Thus, you should think carefully
 about clustering, especially when you change a table's storage engine
 from InnoDB to something else or vice versa.
Clustering data has some very important advantages:
	You can keep related data close together. For example, when
 implementing a mailbox, you can cluster by user_id, so you can retrieve all of a
 single user's messages by fetching only a few pages from disk. If
 you didn't use clustering, each message might require its own disk
 I/O.

	Data access is fast. A clustered index holds both the index
 and the data together in one B-Tree, so retrieving rows from a
 clustered index is normally faster than a comparable lookup in a
 nonclustered index.

	Queries that use covering indexes can use the primary key
 values contained at the leaf node.

These benefits can boost performance tremendously if you design
 your tables and queries to take advantage of them. However, clustered indexes also have disadvantages:
	Clustering gives the largest improvement for I/O-bound
 workloads. If the data fits in memory the order in which it's
 accessed doesn't really matter, so clustering doesn't give much
 benefit.

	Insert speeds depend heavily on insertion order. Inserting
 rows in primary key order is the fastest way to load data into an
 InnoDB table. It may be a good idea to reorganize the table with
 OPTIMIZE TABLE after loading a
 lot of data if you didn't load the rows in primary key
 order.

	Updating the clustered index columns is expensive, because
 it forces InnoDB to move each updated row to a new
 location.

	Tables built upon clustered indexes are subject to page
 splits when new rows are inserted, or when a row's
 primary key is updated such that the row must be moved. A page
 split happens when a row's key value dictates that the row must be
 placed into a page that is full of data. The storage engine must
 split the page into two to accommodate the row. Page splits can
 cause a table to use more space on disk.

	Clustered tables can be slower for full table scans,
 especially if rows are less densely packed or stored
 nonsequentially because of page splits.

	Secondary (nonclustered) indexes can be larger than you might expect, because
 their leaf nodes contain the primary key columns of the referenced
 rows.

	Secondary index accesses require two index lookups instead
 of one.

The last point can be a bit confusing. Why would a secondary
 index require two index lookups? The answer lies in the nature of the
 "row pointers" the secondary index stores. Remember, a leaf node
 doesn't store a pointer to the referenced row's physical location;
 rather, it stores the row's primary key values.
That means that to find a row from a secondary index, the
 storage engine first finds the leaf node in the secondary index and
 then uses the primary key values stored there to navigate the primary
 key and find the row. That's double work: two B-Tree navigations
 instead of one. (In InnoDB, the adaptive hash index can help reduce this
 penalty.)
Comparison of InnoDB and MyISAM data layout

The differences between clustered and nonclustered data
 layouts, and the corresponding differences between primary and
 secondary indexes, can be confusing and surprising. Let's see how
 InnoDB and MyISAM lay out the following table:
CREATE TABLE layout_test (
 col1 int NOT NULL,
 col2 int NOT NULL,
 PRIMARY KEY(col1),
 KEY(col2)
);
Suppose the table is populated with primary key values 1 to
 10,000, inserted in random order and then optimized with OPTIMIZE TABLE. In other words, the data
 is arranged optimally on disk, but the rows may be in a random
 order. The values for col2 are
 randomly assigned between 1 and 100, so there are lots of
 duplicates.
MyISAM's data layout. MyISAM's
 data layout is simpler, so we illustrate that first. MyISAM stores
 the rows on disk in the order in which they were inserted, as shown
 in Figure 3-4.
We've shown the row numbers, beginning at 0, beside the rows.
 Because the rows are fixed-size, MyISAM can find any row by seeking
 the required number of bytes from the beginning of the table.
 (MyISAM doesn't always use "row numbers," as we've shown; it uses
 different strategies depending on whether the rows are fixed-size or
 variable-size.)
This layout makes it easy to build an index. We illustrate
 with a series of diagrams, abstracting away physical details such as
 pages and showing only "nodes" in the index. Each leaf node in the
 index can simply contain the row number. Figure 3-5 illustrates
 the table's primary key.
[image: MyISAM data layout for the layout_test table]

Figure 3-4. MyISAM data layout for the layout_test table

[image: MyISAM primary key layout for the layout_test table]

Figure 3-5. MyISAM primary key layout for the layout_test table

We've glossed over some of the details, such as how many
 internal B-Tree nodes descend from the one before, but that's not
 important to understanding the basic data layout of a nonclustered storage engine.
What about the index on col2? Is there anything special about it?
 As it turns out, no—it's just an index like any other. Figure 3-6 illustrates
 the col2 index.
[image: MyISAM col2 index layout for the layout_test table]

Figure 3-6. MyISAM col2 index layout for the layout_test table

In fact, in MyISAM, there is no structural difference between
 a primary key and any other index. A primary key is simply a unique,
 nonnullable index named PRIMARY.
InnoDB's data layout. InnoDB stores the same
 data very differently because of its clustered organization. InnoDB
 stores the table as shown in Figure 3-7.
[image: InnoDB primary key layout for the layout_test table]

Figure 3-7. InnoDB primary key layout for the layout_test table

At first glance, that might not look very different from Figure 3-5. But look
 again, and notice that this illustration shows the whole
 table, not just the index. Because the clustered index
 "is" the table in InnoDB, there's no separate row storage as there
 is for MyISAM.
Each leaf node in the clustered index contains the primary key
 value, the transaction ID and rollback pointer InnoDB uses for
 transactional and MVCC purposes, and the rest of the columns (in
 this case, col2). If the primary
 key is on a column prefix, InnoDB includes the full column value
 with the rest of the columns.
Also in contrast to MyISAM, secondary indexes are very different from clustered indexes in InnoDB. Instead of storing "row
 pointers," InnoDB's secondary index leaf nodes contain the primary
 key values, which serve as the "pointers" to the rows. This strategy
 reduces the work needed to maintain secondary indexes when rows move
 or when there's a data page split. Using the row's primary key
 values as the pointer makes the index larger, but it means InnoDB
 can move a row without updating pointers to it.
Figure 3-8
 illustrates the col2 index for
 the example table. Each leaf node contains the indexed columns (in
 this case just col2), followed by
 the primary key values (col1).
[image: InnoDB secondary index layout for the layout_test table]

Figure 3-8. InnoDB secondary index layout for the layout_test
 table

These diagrams have illustrated the B-Tree leaf nodes, but we
 intentionally omitted details about the non-leaf nodes. InnoDB's non-leaf B-Tree nodes each contain the
 indexed column(s), plus a pointer to the next deeper node (which may
 be either another non-leaf node or a leaf node). This applies to all
 indexes, clustered and secondary.
Figure 3-9 is
 an abstract diagram of how InnoDB and MyISAM arrange the table. This
 illustration makes it easier to see how differently InnoDB and
 MyISAM store data and indexes.
If you don't understand why and how clustered and nonclustered
 storage are different, and why it's so important, don't worry. It
 will become clearer as you learn more, especially in the rest of
 this chapter and in the next chapter. These concepts are
 complicated, and they take a while to understand fully.

Inserting rows in primary key order with InnoDB

If you're using InnoDB and don't need any particular
 clustering, it can be a good idea to define a surrogate
 key, which is a primary key whose value is not derived
 from your application's data. The easiest way to do this is usually
 with an AUTO_INCREMENT column.
 This will ensure that rows are inserted in sequential order and will
 offer better performance for joins using primary keys.
It is best to avoid random (nonsequential) clustered keys. For
 example, using UUID values is a poor choice from a performance
 standpoint: it makes clustered index insertion random, which is a
 worst-case scenario, and does not give you any helpful data
 clustering.
To demonstrate, we benchmarked two cases. The first is
 inserting into a userinfo table with an integer ID, defined
 as follows:
CREATE TABLE userinfo (
 id int unsigned NOT NULL AUTO_INCREMENT,
 name varchar(64) NOT NULL DEFAULT '',
 email varchar(64) NOT NULL DEFAULT '',
 password varchar(64) NOT NULL DEFAULT '',
 dob date DEFAULT NULL,
 address varchar(255) NOT NULL DEFAULT '',
 city varchar(64) NOT NULL DEFAULT '',
 state_id tinyint unsigned NOT NULL DEFAULT '0',
 zip varchar(8) NOT NULL DEFAULT '',
 country_id smallint unsigned NOT NULL DEFAULT '0',
 gender ('M','F') NOT NULL DEFAULT 'M',
 account_type varchar(32) NOT NULL DEFAULT '',
 verified tinyint NOT NULL DEFAULT '0',
 allow_mail tinyint unsigned NOT NULL DEFAULT '0',
 parrent_account int unsigned NOT NULL DEFAULT '0',
 closest_airport varchar(3) NOT NULL DEFAULT '',
 PRIMARY KEY (id),
 UNIQUE KEY email (email),
 KEY country_id (country_id),
 KEY state_id (state_id),
 KEY state_id_2 (state_id,city,address)
) ENGINE=InnoDB
[image: Clustered and nonclustered tables side-by-side]

Figure 3-9. Clustered and nonclustered tables side-by-side

Notice the autoincrementing integer primary key.
The second case is a table named userinfo_uuid. It is identical to the
 userinfo table, except that its
 primary key is a UUID instead of an integer:
CREATE TABLE userinfo_uuid (
 uuid varchar(36) NOT NULL,
 ...
We benchmarked both table designs. First, we inserted a
 million records into both tables on a server with enough memory to
 hold the indexes. Next, we inserted three million rows into the same
 tables, which made the indexes bigger than the server's memory.
 Table 3-2 compares
 the benchmark results.
Table 3-2. Benchmark results for inserting rows into InnoDB
 tables
	Table
	Rows
	Time (sec)
	Index size (MB)

	userinfo
	1,000,000
	137
	342

	userinfo_uuid
	1,000,000
	180
	544

	userinfo
	3,000,000
	1233
	1036

	userinfo_uuid
	3,000,000
	4525
	1707

Notice that not only does it take longer to insert the rows
 with the UUID primary key, but the resulting indexes are quite a bit
 bigger. Some of that is due to the larger primary key, but some of
 it is undoubtedly due to page splits and resultant fragmentation as
 well.
To see why this is so, let's see what happened in the index
 when we inserted data into the first table. Figure 3-10 shows inserts
 filling a page and then continuing on a second page.
[image: Inserting sequential index values into a clustered index]

Figure 3-10. Inserting sequential index values into a clustered
 index

As Figure 3-10
 illustrates, InnoDB stores each record immediately after the one
 before, because the primary key values are sequential. When the page
 reaches its maximum fill factor (InnoDB's initial fill factor is
 only 15/16 full, to leave room for modifications later), the next
 record goes into a new page. Once the data has been loaded in this
 sequential fashion, the pages are packed nearly full with in-order
 records, which is highly desirable.
Contrast that with what happened when we inserted the data
 into the second table with the UUID clustered index, as shown in Figure 3-11.
[image: Inserting nonsequential values into a clustered index]

Figure 3-11. Inserting nonsequential values into a clustered
 index

Because each new row doesn't necessarily have a larger primary
 key value than the previous one, InnoDB cannot always place the new row at the end of
 the index. It has to find the appropriate place for the row—on
 average, somewhere near the middle of the existing data—and make
 room for it. This causes a lot of extra work and results in a
 suboptimal data layout. Here's a summary of the drawbacks:
	The destination page might have been flushed to disk and
 removed from the caches, in which case, InnoDB will have to find
 it and read it from the disk before it can insert the new row.
 This causes a lot of random I/O.

	InnoDB sometimes has to split pages to make room for new
 rows. This requires moving around a lot of data.

	Pages become sparsely and irregularly filled because of
 splitting, so the final data is fragmented.

After loading such random values into a clustered index, you
 should probably do an OPTIMIZE
 TABLE to rebuild the table and fill the pages
 optimally.
The moral of the story is that you should strive to insert
 data in primary key order when using InnoDB, and you should
 try to use a clustering key that will give a monotonically
 increasing value for each new row.
ora: When Primary Key Order Is Worse
For high-concurrency workloads, inserting in primary key order can actually create a single point
 of contention in InnoDB, as it is currently implemented. This "hot
 spot" is the upper end of the primary key. Because all inserts
 take place there, concurrent inserts may fight over next-key locks
 and/or AUTO_INCREMENT locks
 (either or both can be a hot spot). If you experience this
 problem, you may be able to redesign your table or application, or
 tune InnoDB to perform better for this specific workload. See
 Chapter 6 for more on InnoDB
 tuning.

Covering Indexes

Indexes are a way to find rows efficiently, but MySQL can also
 use an index to retrieve a column's data, so it doesn't have to read
 the row at all. After all, the index's leaf nodes contain the values
 they index; why read the row when reading the index can give you the
 data you want? An index that contains (or "covers") all the data
 needed to satisfy a query is called a covering
 index.
Covering indexes can be a very powerful tool and can
 dramatically improve performance. Consider the benefits of reading
 only the index instead of the data:
	Index entries are usually much smaller than the full row
 size, so MySQL can access significantly less data if it reads only
 the index. This is very important for cached workloads, where much
 of the response time comes from copying the data. It is also
 helpful for I/O-bound workloads, because the indexes are smaller
 than the data and fit in memory better. (This is especially true
 for MyISAM, which can pack indexes to make them even
 smaller.)

	Indexes are sorted by their index values (at least within
 the page), so I/O-bound range accesses will need to do less I/O
 compared to fetching each row from a random disk location. For
 some storage engines, such as MyISAM, you can even OPTIMIZE the table to get fully sorted
 indexes, which will let simple range queries use completely
 sequential index accesses.

	Most storage engines cache indexes better than data. (Falcon
 is a notable exception.) Some storage engines, such as MyISAM,
 cache only the index in MySQL's memory. Because the operating
 system caches the data for MyISAM, accessing it typically requires
 a system call. This may cause a huge performance impact,
 especially for cached workloads where the system call is the most
 expensive part of data access.

	Covering indexes are especially helpful for InnoDB
 tables, because of InnoDB's clustered indexes. InnoDB's secondary
 indexes hold the row's primary key values at their leaf nodes.
 Thus, a secondary index that covers a query avoids another index
 lookup in the primary key.

In all of these scenarios, it is typically much less expensive
 to satisfy a query from an index instead of looking up the
 rows.
A covering index can't be just any kind of index. The index must
 store the values from the columns it contains. Hash, spatial, and
 full-text indexes don't store these values, so MySQL can use only
 B-Tree indexes to cover queries. And again, different storage engines
 implement covering indexes differently, and not all storage
 engines support them (at the time of this writing, the Memory and
 Falcon storage engines don't).
When you issue a query that is covered by an index (an
 index-covered query), you'll see "Using index" in
 the Extra column in EXPLAIN. [27] For example, the sakila.inventory table has a multicolumn
 index on (store_id, film_id). MySQL
 can use this index for a query that accesses only those two columns,
 such as the following:
mysql> EXPLAIN SELECT store_id, film_id FROM sakila.inventory\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: inventory
 type: index
possible_keys: NULL
 key: idx_store_id_film_id
 key_len: 3
 ref: NULL
 rows: 4673
 Extra: Using index
Index-covered queries have subtleties that can disable
 this optimization. The MySQL query optimizer decides before executing
 a query whether an index covers it. Suppose the index covers a
 WHERE condition, but not the entire
 query. If the condition evaluates as false, MySQL 5.1 and earlier will
 fetch the row anyway, even though it doesn't need it and will filter
 it out.
Let's see why this can happen, and how to rewrite the query to
 work around the problem. We begin with the following query:
mysql> EXPLAIN SELECT * FROM products WHERE actor='SEAN CARREY'
 -> AND title like '%APOLLO%'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: products
 type: ref
possible_keys: ACTOR,IX_PROD_ACTOR
 key: ACTOR
 key_len: 52
 ref: const
 rows: 10
 Extra: Using where
The index can't cover this query for two reasons:
	No index covers the query, because we selected all columns
 from the table and no index covers all columns. There's still a
 shortcut MySQL could theoretically use, though: the WHERE clause mentions only columns the
 index covers, so MySQL could use the index to find the actor and
 check whether the title matches, and only then read the full
 row.

	MySQL can't perform the LIKE operation in the index. This is a
 limitation of the low-level storage engine API, which allows only
 simple comparisons in index operations. MySQL can perform
 prefix-match LIKE patterns in
 the index because it can convert them to simple comparisons, but
 the leading wildcard in the query makes it impossible for the
 storage engine to evaluate the match. Thus, the MySQL server
 itself will have to fetch and match on the row's values, not the
 index's values.

There's a way to work around both problems with a combination of
 clever indexing and query rewriting. We can extend the index to cover
 (artist, title, prod_id)) and
 rewrite the query as follows:
mysql> EXPLAIN SELECT *
 -> FROM products
 -> JOIN (
 -> SELECT prod_id
 -> FROM products
 -> WHERE actor='SEAN CARREY' AND title LIKE '%APOLLO%'
 ->) AS t1 ON (t1.prod_id=products.prod_id)\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: <derived2>
 ...omitted...
*************************** 2. row ***************************
 id: 1
 select_type: PRIMARY
 table: products
 ...omitted...
*************************** 3. row ***************************
 id: 2
 select_type: DERIVED
 table: products
 type: ref
possible_keys: ACTOR,ACTOR_2,IX_PROD_ACTOR
 key: ACTOR_2
 key_len: 52
 ref:
 rows: 11
 Extra: Using where; Using index
Now MySQL uses the covering index in the first stage of the query, when it
 finds matching rows in the subquery in the FROM clause. It doesn't use the index to
 cover the whole query, but it's better than nothing.
The effectiveness of this optimization depends on how many rows
 the WHERE clause finds. Suppose the
 products table contains a million
 rows. Let's see how these two queries perform on three different
 datasets, each of which contains a million rows:
	In the first, 30,000 products have Sean Carrey as the actor,
 and 20,000 of those contain Apollo in the title.

	In the second, 30,000 products have Sean Carrey as the
 actor, and 40 of those contain Apollo in the title.

	In the third, 50 products have Sean Carrey as the actor, and
 10 of those contain Apollo in the title.

We used these three datasets to benchmark the two variations on
 the query and got the results shown in Table 3-3.
Table 3-3. Benchmark results for index-covered queries versus
 non-index-covered queries
	Dataset
	Original query
	Optimized query

	Example 1
	5 queries per sec
	5 queries per sec

	Example 2
	7 queries per sec
	35 queries per sec

	Example 3
	2400 queries per sec
	2000 queries per sec

Here's how to interpret these results:
	In example 1 the query returns a big result set, so we can't
 see the optimization's effect. Most of the time is spent reading
 and sending data.

	Example 2, where the second condition filter leaves only a
 small set of results after index filtering, shows how effective
 the proposed optimization is: performance is five times better on
 our data. The efficiency comes from needing to read only 40 full
 rows, instead of 30,000 as in the first query.

	Example 3 shows the case when the subquery is inefficient.
 The set of results left after index filtering is so small that the
 subquery is more expensive than reading all the data from the
 table.

This optimization is sometimes an effective way to help avoid
 reading unnecessary rows in MySQL 5.1 and earlier. MySQL 6.0 may avoid
 this extra work itself, so you might be able to simplify your queries
 when you upgrade.
In most storage engines, an index can cover only queries that
 access columns that are part of the index. However, InnoDB can
 actually take this optimization a little bit further. Recall that
 InnoDB's secondary indexes hold primary key values at their leaf nodes.
 This means InnoDB's secondary indexes effectively have "extra columns"
 that InnoDB can use to cover queries.
For example, the sakila.actor
 table uses InnoDB and has an index on last_name, so the index can cover queries
 that retrieve the primary key column actor_id, even though that column isn't
 technically part of the index:
mysql> EXPLAIN SELECT actor_id, last_name
 -> FROM sakila.actor WHERE last_name = 'HOPPER'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: ref
possible_keys: idx_actor_last_name
 key: idx_actor_last_name
 key_len: 137
 ref: const
 rows: 2
 Extra: Using where; Using index

Using Index Scans for Sorts

MySQL has two ways to produce ordered results: it can use a
 filesort, or it can scan an index in order. [28] You can tell when MySQL plans to scan an index by
 looking for "index" in the type
 column in EXPLAIN. (Don't confuse
 this with "Using index" in the Extra column.)
Scanning the index itself is fast, because it simply
 requires moving from one index entry to the next. However, if MySQL
 isn't using the index to cover the query, it will have to look up each
 row it finds in the index. This is basically random I/O, so reading
 data in index order is usually much slower than a sequential table
 scan, especially for I/O-bound workloads.
MySQL can use the same index for both sorting and finding rows.
 If possible, it's a good idea to design your indexes so that they're
 useful for both tasks at once.
Ordering the results by the index works only when the index's
 order is exactly the same as the ORDER
 BY clause and all columns are sorted in the same direction
 (ascending or descending). If the query joins multiple tables, it
 works only when all columns in the ORDER
 BY clause refer to the first table. The ORDER BY clause also has the same limitation
 as lookup queries: it needs to form a leftmost prefix of the index. In
 all other cases, MySQL uses a filesort.
One case where the ORDER BY
 clause doesn't have to specify a leftmost prefix of the index is if
 there are constants for the leading columns. If the WHERE clause or a JOIN clause specifies constants for these
 columns, they can "fill the gaps" in the index.
For example, the rental table
 in the standard Sakila sample database has an index on (rental_date, inventory_id,
 customer_id):
CREATE TABLE rental (
 ...
 PRIMARY KEY (rental_id),
 UNIQUE KEY rental_date (rental_date,inventory_id,customer_id),
 KEY idx_fk_inventory_id (inventory_id),
 KEY idx_fk_customer_id (customer_id),
 KEY idx_fk_staff_id (staff_id),
 ...
);
MySQL uses the rental_date
 index to order the following query, as you can see from
 the lack of a filesort in EXPLAIN:
mysql> EXPLAIN SELECT rental_id, staff_id FROM sakila.rental
 -> WHERE rental_date = '2005-05-25'
 -> ORDER BY inventory_id, customer_id\G
*************************** 1. row ***************************
 type: ref
possible_keys: rental_date
 key: rental_date
 rows: 1
 Extra: Using where
This works, even though the ORDER
 BY clause isn't itself a leftmost prefix of the index,
 because we specified an equality condition for the first column in the
 index.
Here are some more queries that can use the index for sorting.
 This one works because the query provides a constant for the first
 column of the index and specifies an ORDER
 BY on the second column. Taken together, those two form a
 leftmost prefix on the index:
... WHERE rental_date = '2005-05-25' ORDER BY inventory_id DESC;
The following query also works, because the two columns in the
 ORDER BY are a leftmost prefix of
 the index:
... WHERE rental_date > '2005-05-25' ORDER BY rental_date, inventory_id;
Here are some queries that cannot use the
 index for sorting:
	This query uses two different sort directions, but the
 index's columns are all sorted ascending:
... WHERE rental_date = '2005-05-25' ORDER BY inventory_id DESC, customer_id ASC;

	Here, the ORDER BY refers
 to a column that isn't in the index:
... WHERE rental_date = '2005-05-25' ORDER BY inventory_id, staff_id;

	Here, the WHERE and the
 ORDER BY don't form a leftmost
 prefix of the index:
... WHERE rental_date = '2005-05-25' ORDER BY customer_id;

	This query has a range condition on the first column, so
 MySQL doesn't use the rest of the index:
... WHERE rental_date > '2005-05-25' ORDER BY inventory_id, customer_id;

	Here there's a multiple equality on the inventory_id column. For the purposes of
 sorting, this is basically the same as a range:
... WHERE rental_date = '2005-05-25' AND inventory_id IN(1,2) ORDER BY customer_
id;

	Here's an example where MySQL could theoretically use an
 index to order a join, but doesn't because the
 optimizer places the film_actor
 table second in the join (Chapter 4 shows ways to change
 the join order):
mysql> EXPLAIN SELECT actor_id, title FROM sakila.film_actor
 -> INNER JOIN sakila.film USING(film_id) ORDER BY actor_id\G
+------------+--+
| table | Extra |
+------------+--+
| film | Using index; Using temporary; Using filesort |
| film_actor | Using index |
+------------+--+

One of the most important uses for ordering by an index is a
 query that has both an ORDER BY and
 a LIMIT clause. We explore this in
 more detail later.

Packed (Prefix-Compressed) Indexes

MyISAM uses prefix compression to reduce index size, allowing
 more of the index to fit in memory and dramatically improving
 performance in some cases. It packs string values by default, but you
 can even tell it to compress integer values.
MyISAM packs each index block by storing the block's first value
 fully, then storing each additional value in the block by recording
 the number of bytes that have the same prefix, plus the actual data of
 the suffix that differs. For example, if the first value is "perform"
 and the second is "performance," the second value will be stored
 analogously to "7,ance". MyISAM can also prefix-compress adjacent row
 pointers.
Compressed blocks use less space, but they make certain
 operations slower. Because each value's compression prefix depends on
 the value before it, MyISAM can't do binary searches to find a desired
 item in the block and must scan the block from the beginning.
 Sequential forward scans perform well, but reverse scans—such as
 ORDER BY DESC—don't work as well.
 Any operation that requires finding a single row in the middle of the
 block will require scanning, on average, half the block.
Our benchmarks have shown that packed keys make index lookups on
 MyISAM tables perform several times more slowly for a CPU-bound
 workload, because of the scans required for random lookups. Reverse
 scans of packed keys are even slower. The tradeoff is one of CPU and
 memory resources versus disk resources. Packed indexes can be about one-tenth the size on disk,
 and if you have an I/O-bound workload they can more than offset the
 cost for certain queries.
You can control how a table's indexes are packed with the
 PACK_KEYS option to CREATE TABLE.

Redundant and Duplicate Indexes

MySQL allows you to create multiple indexes on the same column;
 it does not "notice" and protect you from your mistake. MySQL has to
 maintain each duplicate index separately, and the query optimizer will
 consider each of them when it optimizes queries. This can cause a
 serious performance impact.
Duplicate indexes are indexes of the same type, created
 on the same set of columns in the same order. You should try to avoid
 creating them, and you should remove them if you find them.
Sometimes you can create duplicate indexes without knowing it. For example, look
 at the following code:
CREATE TABLE test (
 ID INT NOT NULL PRIMARY KEY,
 UNIQUE(ID),
 INDEX(ID)
);
An inexperienced user might think this identifies the column's
 role as a primary key, adds a UNIQUE constraint, and adds an index for
 queries to use. In fact, MySQL implements UNIQUE constraints and PRIMARY KEY constraints with indexes, so
 this actually creates three indexes on the same column! There is
 typically no reason to do this, unless you want to have different
 types of indexes on the same column to satisfy different kinds of
 queries. [29]
Redundant indexes are a bit different from duplicated
 indexes. If there is an index on (A,
 B), another index on (A)
 would be redundant because it is a prefix of the first index. That is,
 the index on (A, B) can also be
 used as an index on (A) alone.
 (This type of redundancy applies only to B-Tree indexes.) However, an
 index on (B, A) would not be
 redundant, and neither would an index on (B), because B is not a leftmost prefix of (A, B). Furthermore, indexes of different
 types (such as hash or full-text indexes) are not redundant to B-Tree
 indexes, no matter what columns they cover.
Redundant indexes usually appear when people add indexes
 to a table. For example, someone might add an index on (A, B) instead of extending an existing
 index on (A) to cover (A, B).
In most cases you don't want redundant indexes, and to avoid them you should extend
 existing indexes rather than add new ones. Still, there are times when
 you'll need redundant indexes for performance reasons. Extending an
 existing index may make it much larger and reduce performance for some
 queries.
For example, if you have an index on an integer column and you
 extend it with a long VARCHAR
 column, it may become significantly slower. This is especially true if
 your queries use the index as a covering index, or if it's a MyISAM
 table and you perform a lot of range scans on it (because of MyISAM's
 prefix compression).
Consider the userinfo table,
 which we described in "Inserting rows in primary key order with
 InnoDB" on Inserting rows in primary key order with InnoDB. This table
 contains 1,000,000 rows, and for each state_id there are about 20,000 records.
 There is an index on state_id,
 which is useful for the following query. We refer to this query as
 Q1:
mysql> SELECT count(*) FROM userinfo WHERE state_id=5;
A simple benchmark shows an execution rate of almost 115 queries
 per second (QPS) for this query. We also have a related query that
 retrieves several columns instead of just counting rows. This is
 Q2:
mysql> SELECT state_id, city, address FROM userinfo WHERE state_id=5;
For this query, the result is less than 10 QPS. [30] The simple solution to improve its performance is to
 extend the index to (state_id, city,
 address), so the index will cover the query:
mysql> ALTER TABLE userinfo DROP KEY state_id,
 -> ADD KEY state_id_2 (state_id, city, address);
After extending the index, Q2 runs faster, but Q1 runs more
 slowly. If we really care about making both queries fast, we should
 leave both indexes, even though the single-column index is
 redundant. Table 3-4 shows detailed
 results for both queries and indexing strategies, with MyISAM and
 InnoDB storage engines. Note that InnoDB's performance doesn't degrade
 as much for Q1 with only the state_id_2 index, because InnoDB doesn't use
 key compression.
Table 3-4. Benchmark results in QPS for SELECT queries with various
 index strategies
	 	state_id only
	state_id_2 only
	Both state_id and state_id_2

	MyISAM,
 Q1
	114.96
	25.40
	112.19

	MyISAM,
 Q2
	9.97
	16.34
	16.37

	InnoDB,
 Q1
	108.55
	100.33
	107.97

	InnoDB,
 Q2
	12.12
	28.04
	28.06

The drawback of having two indexes is the maintenance cost.
 Table 3-5 shows how
 long it takes to insert a million rows into the table.
Table 3-5. Speed of inserting a million rows with various index
 strategies
	 	state_id only
	Both state_id and state_id_2

	InnoDB, enough memory for
 both indexes
	80 seconds
	136 seconds

	MyISAM, enough memory for
 only one index
	72 seconds
	470 seconds

As you can see, inserting new rows into the table with more
 indexes is dramatically slower. This is true in general:
 adding new indexes may have a large performance impact for INSERT, UPDATE, and DELETE operations, especially if a new index
 causes you to hit memory limits.

Indexes and Locking

Indexes play a very important role for InnoDB, because they let
 queries lock fewer rows. This is an important consideration, because
 in MySQL 5.0 InnoDB never unlocks a row until the transaction
 commits.
If your queries never touch rows they don't need, they'll lock
 fewer rows, and that's better for performance for two reasons. First,
 even though InnoDB's row locks are very efficient and use very little
 memory, there's still some overhead involved in row locking. Secondly,
 locking more rows than needed increases lock contention and reduces
 concurrency.
InnoDB locks rows only when it accesses them, and an index can
 reduce the number of rows InnoDB accesses and therefore locks.
 However, this works only if InnoDB can filter out the undesired rows
 at the storage engine level. If the index doesn't
 permit InnoDB to do that, the MySQL server will have to apply a
 WHERE clause after InnoDB retrieves
 the rows and returns them to the server level. At this point, it's too
 late to avoid locking the rows: InnoDB will already have locked them,
 and the server won't be able to unlock them.
This is easier to see with an example. We use the Sakila sample
 database again:
mysql> SET AUTOCOMMIT=0;
mysql> BEGIN;
mysql> SELECT actor_id FROM sakila.actor WHERE actor_id < 5
 -> AND actor_id <> 1 FOR UPDATE;
+----------+
| actor_id |
+----------+
| 2 |
| 3 |
| 4 |
+----------+
This query returns only rows 2 through 4, but it actually gets
 exclusive locks on rows 1 through 4. InnoDB
 locked row 1 because the plan MySQL chose for this query was an index
 range access:
mysql> EXPLAIN SELECT actor_id FROM sakila.actor
 -> WHERE actor_id < 5 AND actor_id <> 1 FOR UPDATE;
+----+-------------+-------+-------+---------+--------------------------+
| id | select_type | table | type | key | Extra |
+----+-------------+-------+-------+---------+--------------------------+
| 1 | SIMPLE | actor | range | PRIMARY | Using where; Using index |
+----+-------------+-------+-------+---------+--------------------------+
In other words, the low-level storage engine operation was
 "begin at the start of the index and fetch all rows until actor_id < 5 is false." The server didn't
 tell InnoDB about the WHERE
 condition that eliminated row 1. Note the presence of "Using where" in
 the Extra column in EXPLAIN. This indicates that the MySQL
 server is applying a WHERE filter
 after the storage engine returns the rows.
ora: Summary of Indexing Strategies
Now that you've learned more about indexing, perhaps you're
 wondering where to get started with your own tables. The most
 important thing to do is examine the queries you're going to run
 most often, but you should also think about less-frequent
 operations, such as inserting and updating data. Try to avoid the
 common mistake of creating indexes without knowing which queries will use them,
 and consider whether all your indexes together will form an optimal
 configuration.
Sometimes you can just look at your queries, and see which
 indexes they need, add them, and you're done. But sometimes you'll
 have enough different kinds of queries that you can't add perfect
 indexes for them all, and you'll need to compromise. To find the
 best balance, you should benchmark and profile.
The first thing to look at is response time. Consider adding
 an index for any query that's taking too long. Then examine the
 queries that cause the most load (see Chapter 2 for more on
 how to measure this), and add indexes to support them. If your
 system is approaching a memory, CPU, or disk bottleneck, take that
 into account. For example, if you do a lot of long aggregate queries
 to generate summaries, your disks might benefit from covering
 indexes that support GROUP BY
 queries.
Where possible, try to extend existing indexes rather than
 adding new ones. It is usually more efficient to maintain one
 multicolumn index than several single-column indexes. If you don't
 yet know your query distribution, strive to make your indexes as
 selective as you can, because highly selective indexes are usually
 more beneficial.

Here's a second query that proves row 1 is locked, even though
 it didn't appear in the results from the first query. Leaving the
 first connection open, start a second connection and execute the
 following:
mysql> SET AUTOCOMMIT=0;
mysql> BEGIN;
mysql> SELECT actor_id FROM sakila.actor WHERE actor_id = 1 FOR UPDATE;
The query will hang, waiting for the first transaction to
 release the lock on row 1. This behavior is necessary for
 statement-based replication (discussed in Chapter 8) to work correctly.
As this example shows, InnoDB can lock rows it doesn't really
 need even when it uses an index. The problem is even worse when it
 can't use an index to find and lock the rows: if there's no index for
 the query, MySQL will do a full table scan and lock every row, whether
 it "needs" it or not. [31]
Here's a little-known detail about InnoDB, indexes, and locking: InnoDB can place shared (read) locks on
 secondary indexes, but exclusive (write) locks require access to the
 primary key. That eliminates the possibility of using a covering index
 and can make SELECT FOR UPDATE much
 slower than LOCK IN SHARE MODE or a
 nonlocking query.

[24] Oracle users will be familiar with the term "index-organized
 table," which means the same thing.

[25] This isn't always true, as you'll see in a moment.

[26] The solidDB storage engine does this too.

[27] It's easy to confuse "Using index" in the Extra column with "index" in the
 type column. However, they are
 completely different. The type
 column has nothing to do with covering indexes; it shows the query's access type,
 or how the query will find rows.

[28] MySQL has two filesort algorithms; you can read more about
 them in "Sort optimizations" on Sort optimizations.

[29] An index is not necessarily a duplicate if it's a different
 type of index; there are often good reasons to have KEY(col) and FULLTEXT KEY(col).

[30] We've used an in-memory example here. When the table is
 bigger and the workload becomes I/O-bound, the difference between
 the numbers will be much larger.

[31] This is supposed to be fixed in MySQL 5.1 with row-based
 binary logging and the READ
 COMMITTED transaction isolation level, but it applies to
 all MySQL versions we tested, up to and including 5.1.22.

An Indexing Case Study

The easiest way to understand indexing concepts is with an
 illustration, so we've prepared a case study in indexing.
Suppose we need to design an online dating site with user profiles
 that have many different columns, such as the user's country,
 state/region, city, sex, age, eye color, and so on. The site must
 support searching the profiles by various combinations of these
 properties. It must also let the user sort and limit results by the last
 time the profile's owner was online, ratings from other members, etc.
 How do we design indexes for such complex requirements?
Oddly enough, the first thing to decide is whether we have to use
 index-based sorting, or whether filesorting is acceptable. Index-based
 sorting restricts how the indexes and queries need to be built. For
 example, we can't use an index for a WHERE clause such as WHERE age BETWEEN 18 AND 25 if the same query
 uses an index to sort users by the ratings other users have given them.
 If MySQL uses an index for a range criterion in a query, it cannot also
 use another index (or a suffix of the same index) for ordering. Assuming
 this will be one of the most common WHERE clauses, we'll take for granted that
 many queries will need a filesort.
Supporting Many Kinds of Filtering

Now we need to look at which columns have many distinct values
 and which columns appear in WHERE
 clauses most often. Indexes on columns with many distinct values will
 be very selective. This is generally a good thing, because it lets
 MySQL filter out undesired rows more efficiently.
The country column may or may
 not be selective, but it'll probably be in most queries anyway. The
 sex column is certainly not
 selective, but it'll probably be in every query. With this in mind, we
 create a series of indexes for many different combinations of columns,
 prefixed with (sex,country).
The traditional wisdom is that it's useless to index columns
 with very low selectivity. So why would we place a nonselective column
 at the beginning of every index? Are we out of our minds?
We have two reasons for doing this. The first reason is that, as
 stated earlier, almost every query will use sex. We might even design the site such that
 users can choose to search for only one sex at a time. But more
 importantly, there's not much downside to adding the column, because
 we have a trick up our sleeves.
Here's the trick: even if a query that doesn't restrict the
 results by sex is issued, we can ensure that the index is usable
 anyway by adding AND sex IN('m',
 'f') to the WHERE clause.
 This won't actually filter out any rows, so it's functionally the same
 as not including the sex column in
 the WHERE clause at all. However,
 we need to include this column, because it'll let
 MySQL use a larger prefix of the index. This trick is useful in
 situations like this one, but if the column had many distinct values,
 it wouldn't work well because the IN() list would get too large.
This case illustrates a general principle: keep all options on
 the table. When you're designing indexes, don't just think about the
 kinds of indexes you need for existing queries, but consider
 optimizing the queries, too. If you see the need for an index but you
 think some queries might suffer because of it, ask yourself whether
 you can change the queries. You should optimize queries and indexes
 together to find the best compromise; you don't have to design the
 perfect indexing scheme in a vacuum.
Next, we think about what other combinations of WHERE conditions we're likely to see and
 consider which of those combinations would be slow without proper
 indexes. An index on (sex, country,
 age) is an obvious choice, and we'll probably also need
 indexes on (sex, country, region,
 age) and (sex, country, region,
 city, age).
That's getting to be a lot of indexes. If we want to reuse
 indexes and it won't generate too many combinations of conditions, we
 can use the IN() trick, and scrap
 the (sex, country, age) and
 (sex, country, region, age)
 indexes. If they're not specified in the search form, we can ensure
 the index prefix has equality constraints by specifying a list of all
 countries, or all regions for the country. (Combined lists of all
 countries, all regions, and all sexes would probably be too
 large.)
These indexes will satisfy the most frequently specified search
 queries, but how can we design indexes for less common options, such
 as has_pictures, eye_color,
 hair_color, and education? If these columns are not very
 selective and are not used a lot, we can simply skip them and let
 MySQL scan a few extra rows. Alternatively, we can add them before the
 age column and use the IN() technique described earlier to handle
 the case where they are not specified.
You may have noticed that we're keeping the age column at the end of the index. What makes this column so special, and why
 should it be at the end of the index? We're trying to make sure that
 MySQL uses as many columns of the index as possible, because it uses
 only the leftmost prefix, up to and including the first condition that
 specifies a range of values. All the other columns we've mentioned can
 use equality conditions in the WHERE clause, but age is almost certain to be a range (e.g.,
 age BETWEEN 18 AND 25).
We could convert this to an IN() list, such as age IN(18, 19, 20, 21, 22, 23, 24, 25), but
 this won't always be possible for this type of query. The general
 principle we're trying to illustrate is to keep the range criterion at
 the end of the index, so the optimizer will use as much of the index
 as possible.
We've said that you can add more and more columns to the index
 and use IN() lists to cover cases
 where those columns aren't part of the WHERE clause, but you can overdo this and
 get into trouble. Using more than a few such lists explodes the number
 of combinations the optimizer has to evaluate, and this can ultimately
 reduce query speed. Consider the following WHERE clause:
WHERE eye_color IN('brown','blue','hazel')
 AND hair_color IN('black','red','blonde','brown')
 AND sex IN('M','F')
The optimizer will convert this into 4*3*2 = 24 combinations,
 and the WHERE clause will then have
 to check for each of them. Twenty-four is not an extreme number of
 combinations, but be careful if that number approaches thousands.
 Older MySQL versions had more problems with large numbers of IN() combinations: query optimization could
 take longer than execution and consume a lot of memory. Newer MySQL
 versions stop evaluating combinations if the number of combinations
 gets too large, but this limits how well MySQL can use the
 index.

Avoiding Multiple Range Conditions

Let's assume we have a last_online column and we want to be able to
 show the users who were online during the previous week:
WHERE eye_color IN('brown','blue','hazel')
 AND hair_color IN('black','red','blonde','brown')
 AND sex IN('M','F')
 AND last_online > DATE_SUB('2008-01-17', INTERVAL 7 DAY)
 AND age BETWEEN 18 AND 25
ora: What Is a Range Condition?
EXPLAIN's output can
 sometimes make it hard to tell whether MySQL is really looking for a
 range of values, or for a list of values. EXPLAIN uses the same term, "range," to
 indicate both. For example, MySQL calls the following a "range" query, as
 you can see in the type
 column:
mysql> EXPLAIN SELECT actor_id FROM sakila.actor
 -> WHERE actor_id > 45\G
************************* 1. row *************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: range
But what about this one?
mysql> EXPLAIN SELECT actor_id FROM sakila.actor
 -> WHERE actor_id IN(1, 4, 99)\G
************************* 1. row *************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: range
There's no way to tell the difference by looking at EXPLAIN, but we draw a distinction between
 ranges of values and multiple equality conditions. The second query
 is a multiple equality condition, in our terminology.
We're not just being picky: these two kinds of index accesses
 perform differently. The range condition makes MySQL ignore any further columns
 in the index, but the multiple equality condition doesn't have that
 limitation.

There's a problem with this query: it has two range conditions. MySQL can use either the last_online criterion or the age criterion, but not both.
If the last_online
 restriction appears without the age
 restriction, or if last_online is
 more selective than age, we may
 wish to add another set of indexes with last_online at the end. But what if we can't
 convert the age to an IN() list, and we really need the speed
 boost of restricting by last_online
 and age simultaneously? At the
 moment there's no way to do this directly, but we can convert one of
 the ranges to an equality comparison. To do this, we add a precomputed
 active column, which we'll maintain
 with a periodic job. We'll set the column to 1 when the user logs in, and the job will
 set it back to 0 if the user
 doesn't log in for seven consecutive days.
This approach lets MySQL use indexes such as (active, sex, country, age). The column may
 not be absolutely accurate, but this kind of query might not require a
 high degree of accuracy. If we do need accuracy, we can leave the
 last_online condition in the
 WHERE clause, but not
 index it. This technique is similar to the one we used to
 simulate HASH indexes for URL
 lookups earlier in this chapter. The condition won't use any index,
 but because it's unlikely to throw away many of the rows that an index would find an index wouldn't
 really be beneficial anyway. Put another way, the lack of an index
 won't hurt the query noticeably.
By now, you can probably see the pattern: if a user wants to see
 both active and inactive results, we can add an IN() list. We've added a lot of these lists,
 but the alternative is to create separate indexes that can satisfy
 every combination of columns on which we need to filter. We'd have to
 use at least the following indexes: (active,
 sex, country, age), (active, country, age), (sex, country,
 age), and (country, age).
 Although such indexes might be more optimal for each specific query,
 the overhead of maintaining them all, combined with all the extra
 space they'd require, would likely make this a poor strategy
 overall.
This is a case where optimizer changes can really affect the
 optimal indexing strategy. If a future version of MySQL can do a true
 loose index scan, it should be able to use multiple range conditions
 on a single index, so we won't need the IN() lists for the kinds of queries we're
 considering here.

Optimizing Sorts

The last issue we want to cover in this case study is sorting. Sorting small result sets with filesorts is fast, but
 what if millions of rows match a query? For example, what if only sex is specified in the WHERE clause?
We can add special indexes for sorting these low-selectivity
 cases. For example, an index on (sex,
 rating) can be used for the following query:
mysql> SELECT <cols> FROM profiles WHERE sex='M' ORDER BY rating LIMIT 10;
This query has both ORDER BY
 and LIMIT clauses, and it would be
 very slow without the index.
Even with the index, the query can be slow if the user interface
 is paginated and someone requests a page that's not near the
 beginning. This case creates a bad combination of ORDER BY and LIMIT with an offset:
mysql> SELECT <cols> FROM profiles WHERE sex='M' ORDER BY rating LIMIT 100000, 10;
Such queries can be a serious problem no matter how they're
 indexed, because the high offset requires them to spend most of their
 time scanning a lot of data that they will then throw away.
 Denormalizing, precomputing, and caching are likely to be the only
 strategies that work for queries like this one. An even better
 strategy is to limit the number of pages you let the user view. This
 is unlikely to impact the user's experience, because no one really
 cares about the 10,000th page of search results.
Another good strategy for optimizing such queries is to use a
 covering index to retrieve just the primary key columns of the rows
 you'll eventually retrieve. You can then join this back to the table
 to retrieve all desired columns. This helps minimize the amount of
 work MySQL must do gathering data that it will only throw away. Here's
 an example that requires an index on (sex, rating) to work efficiently:
mysql> SELECT <cols> FROM profiles INNER JOIN (
 -> SELECT <primary key cols> FROM profiles
 -> WHERE x.sex='M' ORDER BY rating LIMIT 100000, 10
 ->) AS x USING(<primary key cols>);

Index and Table Maintenance

Once you've created tables with proper data types and added
 indexes, your work isn't over: you still need to maintain your tables
 and indexes to make sure they perform well. The three main goals of
 table maintenance are finding and fixing corruption, maintaining accurate index statistics, and
 reducing fragmentation.
Finding and Repairing Table Corruption

The worst thing that can happen to a table is corruption. With
 the MyISAM storage engine, this often happens due to crashes. However,
 all storage engines can experience index corruption due to hardware problems or internal
 bugs in MySQL or the operating system.
Corrupted indexes can cause queries to return incorrect results,
 raise duplicate-key errors when there is no duplicated value, or even
 cause lockups and crashes. If you experience odd behavior—such as an
 error that you think shouldn't be happening—run CHECK TABLE to see if the table is corrupt.
 (Note that some storage engines don't support this command, and others
 support multiple options to specify how thoroughly they check the
 table.) CHECK TABLE usually catches
 most table and index errors.
You can fix corrupt tables with the REPAIR TABLE command, but again, not all
 storage engines support this. In these cases you can do a "no-op"
 ALTER, such as altering a table to
 use the same storage engine it currently uses. Here's an example for
 an InnoDB table:
mysql> ALTER TABLE innodb_tbl ENGINE=INNODB;
Alternatively, you can either use an offline engine-specific
 repair utility, such as myisamchk, or dump the
 data and reload it. However, if the corruption is in the system area,
 or in the table's "row data" area instead of the index, you may be
 unable to use any of these options. In this case, you may need to
 restore the table from your backups or attempt to recover data from
 the corrupted files (see Chapter 11).

Updating Index Statistics

The MySQL query optimizer uses two API calls to ask the storage
 engines how index values are distributed when deciding how to use
 indexes. The first is the records_in_range() call, which accepts range
 end points and returns the (possibly estimated) number of records in
 that range. The second is info(),
 which can return various types of data, including index cardinality
 (how many records there are for each key value).
When the storage engine doesn't provide the optimizer with
 accurate information about the number of rows a query will examine,
 the optimizer uses the index statistics, which you can regenerate by running ANALYZE TABLE, to estimate the number of
 rows. MySQL's optimizer is cost-based, and the main cost metric is how
 much data the query will access. If the statistics were never
 generated, or if they are out of date, the optimizer can make bad
 decisions. The solution is to run ANALYZE
 TABLE.
Each storage engine implements index statistics differently, so the frequency with
 which you'll need to run ANALYZE
 TABLE differs, as does the cost of running the
 statement:
	The Memory storage engine does not store index statistics at
 all.

	MyISAM stores statistics on disk, and ANALYZE TABLE performs a full index scan
 to compute cardinality. The entire table is locked during this
 process.

	InnoDB does not store statistics on disk, but rather
 estimates them with random index dives the first time a table is
 opened. ANALYZE TABLE uses
 random dives for InnoDB, so InnoDB statistics are less accurate,
 but they may not need manual updates unless you keep your server
 running for a very long time. Also, ANALYZE TABLE is nonblocking and
 relatively inexpensive in InnoDB, so you can update the statistics
 online without affecting the server much.

You can examine the cardinality of your indexes with the
 SHOW INDEX FROM command. For
 example:
mysql> SHOW INDEX FROM sakila.actor\G
*************************** 1. row ***************************
 Table: actor
 Non_unique: 0
 Key_name: PRIMARY
Seq_in_index: 1
 Column_name: actor_id
 Collation: A
 Cardinality: 200
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
*************************** 2. row ***************************
 Table: actor
 Non_unique: 1
 Key_name: idx_actor_last_name
Seq_in_index: 1
 Column_name: last_name
 Collation: A
 Cardinality: 200
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
This command gives quite a lot of index information, which the
 MySQL manual explains in detail. We do want to call your attention to
 the Cardinality column, though.
 This shows how many distinct values the storage engine estimates are
 in the index. You can also get this data from the INFORMATION_SCHEMA.STATISTICS table in MySQL
 5.0 and newer, which can be quite handy. For example, you can write
 queries against the INFORMATION_SCHEMA tables to find indexes
 with very low selectivity.

Reducing Index and Data Fragmentation

B-Tree indexes can become fragmented, which reduces performance.
 Fragmented indexes may be poorly filled and/or nonsequential on
 disk.
By design B-Tree indexes require random disk accesses to "dive"
 to the leaf pages, so random access is the rule, not the exception.
 However, the leaf pages can still perform better if they are
 physically sequential and tightly packed. If they are not, we say they
 are fragmented, and range scans or full index scans can be many times
 slower. This is especially true for index-covered queries.
The table's data storage can also become fragmented. However,
 data storage fragmentation is more complex than index fragmentation. There are two types of data fragmentation:
	Row fragmentation
	This type of fragmentation occurs when the row is stored
 in multiple pieces in multiple locations. Row fragmentation
 reduces performance even if the query needs only a single row
 from the index.

	Intra-row fragmentation
	This kind of fragmentation occurs when logically
 sequential pages or rows are not stored sequentially on disk. It
 affects operations such as full table scans and clustered index
 range scans, which normally benefit from a sequential data
 layout on disk.

MyISAM tables may suffer from both types of fragmentation, but
 InnoDB never fragments short rows.
To defragment data, you can either run OPTIMIZE TABLE or dump and reload the
 data.
These approaches work for most storage engines. For some, such
 as MyISAM, they also defragment indexes by rebuilding them with a sort
 algorithm, which creates the indexes in sorted order. There is
 currently no way to defragment InnoDB indexes, as InnoDB can't build
 indexes by sorting in MySQL 5.0. [32] Even dropping and recreating InnoDB indexes may result
 in fragmented indexes, depending on the data.
For storage engines that don't support OPTIMIZE TABLE, you can rebuild the table
 with a no-op ALTER TABLE. Just
 alter the table to have the same engine it currently uses:
mysql> ALTER TABLE <table> ENGINE=<engine>;

[32] The InnoDB developers are working on this problem at the
 time of this writing.

Normalization and Denormalization

There are usually many ways to represent any given data, ranging
 from fully normalized to fully denormalized and anything in between. In
 a normalized database, each fact is represented once and only once.
 Conversely, in a denormalized database, information is duplicated, or
 stored in multiple places.
If you're not familiar with normalization, you should study it. There are many good
 books on the topic and resources online; here, we just give a brief
 introduction to the aspects you need to know for this chapter. Let's
 start with the classic example of employees, departments, and department
 heads:
	EMPLOYEE
	DEPARTMENT
	HEAD

	Jones
	Accounting
	Jones

	Smith
	Engineering
	Smith

	Brown
	Accounting
	Jones

	Green
	Engineering
	Smith

The problem with this schema is that abnormalities can occur while
 the data is being modified. Say Brown takes over as the head of the
 Accounting department. We need to update multiple rows to reflect this
 change, and while those updates are being made the data is in an
 inconsistent state. If the "Jones" row says the head of the department
 is something different from the "Brown" row, there's no way to know
 which is right. It's like the old saying, "A person with two watches
 never knows what time it is." Furthermore, we can't represent a
 department without employees—if we delete all employees in the
 Accounting department, we lose all records about the department itself.
 To avoid these problems, we need to normalize the table by separating
 the employee and department entities. This process results in the
 following two tables for employees:
	EMPLOYEE_NAME
	DEPARTMENT

	Jones
	Accounting

	Smith
	Engineering

	Brown
	Accounting

	Green
	Engineering

and departments:
	DEPARTMENT
	HEAD

	Accounting
	Jones

	Engineering
	Smith

These tables are now in second normal form, which is good enough
 for many purposes. However, second normal form is only one of many
 possible normal forms.
Tip
We're using the last name as the primary key here for purposes
 of illustration, because it's the "natural identifier" of the data. In
 practice, however, we wouldn't do that. It's not guaranteed to be
 unique, and it's usually a bad idea to use a long string for a primary
 key.

Pros and Cons of a Normalized Schema

People who ask for help with performance issues are frequently
 advised to normalize their schemas, especially if the workload is
 write-heavy. This is often good advice. It works well for the
 following reasons:
	Normalized updates are usually faster than denormalized
 updates.

	When the data is well normalized, there's little or no
 duplicated data, so there's less data to change.

	Normalized tables are usually smaller, so they fit better in
 memory and perform better.

	The lack of redundant data means there's less need for
 DISTINCT or GROUP BY queries when retrieving lists
 of values. Consider the preceding example: it's impossible to get
 a distinct list of departments from the denormalized schema
 without DISTINCT or GROUP BY, but if DEPARTMENT is a separate table, it's a
 trivial query.

The drawbacks of a normalized schema usually have to do with
 retrieval. Any nontrivial query on a well-normalized schema will
 probably require at least one join, and perhaps several. This is not
 only expensive, but it can make some indexing strategies impossible.
 For example, normalizing may place columns in different tables that
 would benefit from belonging to the same index.

Pros and Cons of a Denormalized Schema

A denormalized schema works well because everything is in the
 same table, which avoids joins.
If you don't need to join tables, the worst case for most
 queries—even the ones that don't use indexes—is a full table scan.
 This can be much faster than a join when the data doesn't fit in
 memory, because it avoids random I/O.
A single table can also allow more efficient indexing
 strategies. Suppose you have a web site where users post their
 messages, and some users are premium users. Now say you want to view
 the last 10 messages from premium users. If you've normalized the
 schema and indexed the publishing dates of the messages, the query
 might look like this:
mysql> SELECT message_text, user_name
 -> FROM message
 -> INNER JOIN user ON message.user_id=user.id
 -> WHERE user.account_type='premium'
 -> ORDER BY message.published DESC LIMIT 10;
To execute this query efficiently, MySQL will need to scan the
 published index on the message table. For each row it finds, it
 will need to probe into the user
 table and check whether the user is a premium user. This is
 inefficient if only a small fraction of users have premium
 accounts.
The other possible query plan is to start with the user table, select all premium users, get
 all messages for them, and do a filesort. This will probably be even
 worse.
The problem is the join, which is keeping you from sorting and
 filtering simultaneously with a single index. If you denormalize the
 data by combining the tables and add an index on (account_type, published), you can write the
 query without a join. This will be very efficient:
mysql> SELECT message_text,user_name
 -> FROM user_messages
 -> WHERE account_type='premium'
 -> ORDER BY published DESC
 -> LIMIT 10;

A Mixture of Normalized and Denormalized

Given that both normalized and denormalized schemas have
 benefits and drawbacks, how can you choose the best design?
The truth is, fully normalized and fully denormalized schemas
 are like laboratory rats: they usually have little to do with the real
 world. In the real world, you often need to mix the approaches,
 possibly using a partially normalized schema, cache tables, and other
 techniques.
The most common way to denormalize data is to duplicate, or
 cache, selected columns from one table in another table. In MySQL 5.0
 and newer, you can use triggers to update the cached values, which
 makes the implementation easier.
In our web site example, for instance, instead of denormalizing
 fully you can store account_type in
 both the user and message tables. This avoids the insert and
 delete problems that come with full denormalization, because you never lose information
 about the user, even when there are no messages. It won't make the
 user_message table much larger, but
 it will let you select the data efficiently.
However, it's now more expensive to update a user's account
 type, because you have to change it in both tables. To see whether
 that's a problem, you must consider how frequently you'll have to make
 such changes and how long they will take, compared to how often you'll
 run the SELECT query.
Another good reason to move some data from the parent table to
 the child table is for sorting. For example, it would be extremely
 expensive to sort messages by the author's name on a normalized
 schema, but you can perform such a sort very efficiently if you cache
 the author_name in the message table and index it.
It can also be useful to cache derived values. If you need to
 display how many messages each user has posted (as many forums do),
 either you can run an expensive subquery to count the data every time
 you display it, or you can have a num_messages column in the user table that you update whenever a user
 posts a new message.

Cache and Summary Tables

Sometimes the best way to improve performance is to keep
 redundant data in the same table as the data from which was derived.
 However, sometimes you'll need to build completely separate summary or
 cache tables, specially tuned for your retrieval needs.
 This approach works best if you can tolerate slightly stale data, but
 sometimes you really don't have a choice (for instance, when you need
 to avoid complex and expensive real-time updates).
The terms "cache table" and "summary table" don't have
 standardized meanings. We use the term "cache tables" to refer to tables that contain data that
 can be easily, if more slowly, retrieved from the schema (i.e., data
 that is logically redundant). When we say "summary tables," we mean tables that hold aggregated
 data from GROUP BY queries (i.e.,
 data that is not logically redundant). Some people also use the term
 "roll-up tables" for these tables, because the data has been "rolled
 up."
Staying with the web site example, suppose you need to count the
 number of messages posted during the previous 24 hours. It would be
 impossible to maintain an accurate real-time counter on a busy site.
 Instead, you could generate a summary table every hour. You can often
 do this with a single query, and it's more efficient than maintaining
 counters in real time. The drawback is that the counts are not 100%
 accurate.
If you need to get an accurate count of messages posted during
 the previous 24-hour period (with no staleness), there is another
 option. Begin with a per-hour summary table. You can then count the
 exact number of messages posted in a given 24-hour period by adding
 the number of messages in the 23 whole hours contained in that period,
 the partial hour at the beginning of the period, and the partial hour
 at the end of the period. Suppose your summary table is called
 msg_per_hr and is defined as
 follows:
CREATE TABLE msg_per_hr (
 hr DATETIME NOT NULL,
 cnt INT UNSIGNED NOT NULL,
 PRIMARY KEY(hr)
);
You can find the number of messages posted in the previous 24
 hours by adding the results of the following three queries: [33]
mysql> SELECT SUM(cnt) FROM msg_per_hr
 -> WHERE hr BETWEEN
 -> CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 23 HOUR
 -> AND CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 1 HOUR;
mysql> SELECT COUNT(*) FROM message
 -> WHERE posted >= NOW() - INTERVAL 24 HOUR
 -> AND posted < CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 23 HOUR;
mysql> SELECT COUNT(*) FROM message
 -> WHERE posted >= CONCAT(LEFT(NOW(), 14), '00:00');
Either approach—an inexact count or an exact count with small
 range queries to fill in the gaps—is more efficient than counting all
 the rows in the message table. This
 is the key reason for creating summary tables. These statistics are expensive to
 compute in real time, because they require scanning a lot of data, or
 queries that will only run efficiently with special indexes that you
 don't want to add because of the impact they will have on updates.
 Computing the most active users or the most frequent "tags" are
 typical examples of such operations.
Cache tables, in turn, are useful for optimizing search
 and retrieval queries. These queries often require a particular table
 and index structure that is different from the one you would use for
 general online transaction processing (OLTP) operations.
For example, you might need many different index combinations to
 speed up various types of queries. These conflicting requirements
 sometimes demand that you create a cache table that contains only some
 of the columns from the main table. A useful technique is to use a
 different storage engine for the cache table. If the main table uses
 InnoDB, for example, by using MyISAM for the cache table you'll gain a
 smaller index footprint and the ability to do full-text search
 queries. Sometimes you might even want to take the table completely
 out of MySQL and into a specialized system that can search more
 efficiently, such as the Lucene or Sphinx search engines.
When using cache and summary tables, you have to decide whether to maintain
 their data in real time or with periodic rebuilds. Which is better
 will depend on your application, but a periodic rebuild not only can
 save resources but also can result in a more efficient table that's
 not fragmented and has fully sorted indexes.
When you rebuild summary and cache tables, you'll often need their data to remain
 available during the operation. You can achieve this by using a
 "shadow table," which is a table you build "behind" the real table.
 When you're done building it, you can swap the tables with an atomic
 rename. For example, if you need to rebuild my_summary, you can create my_summary_new, fill it with data, and swap
 it with the real table:
mysql> DROP TABLE IF EXISTS my_summary_new, my_summary_old;
mysql> CREATE TABLE my_summary_new LIKE my_summary;
-- populate my_summary_new as desired
mysql> RENAME TABLE my_summary TO my_summary_old, my_summary_new TO my_summary;
If you rename the original my_summary table my_summary_old before assigning the name
 my_summary to the newly rebuilt
 table, as we've done here, you can keep the old version until you're
 ready to overwrite it at the next rebuild. It's handy to have it for a
 quick rollback if the new table has a problem.
Counter tables

An application that keeps counts in a table can run into
 concurrency problems when updating the counters. Such tables are
 very common in web applications. You can use them to cache the
 number of friends a user has, the number of downloads of a file, and
 so on. It's often a good idea to build a separate table for the
 counters, to keep it small and fast. Using a separate table can help
 you avoid query cache invalidations and lets you use some of the
 more advanced techniques we show in this section.
To keep things as simple as possible, suppose you have a
 counter table with a single row that just counts hits on your web
 site:
mysql> CREATE TABLE hit_counter (
 -> cnt int unsigned not null
 ->) ENGINE=InnoDB;
Each hit on the web site updates the counter:
mysql> UPDATE hit_counter SET cnt = cnt + 1;
The problem is that this single row is effectively a global
 "mutex" for any transaction that updates the counter. It will
 serialize those transactions. You can get higher concurrency by
 keeping more than one row and updating a random row. This requires
 the following change to the table:
mysql> CREATE TABLE hit_counter (
 -> slot tinyint unsigned not null primary key,
 -> cnt int unsigned not null
 ->) ENGINE=InnoDB;
Prepopulate the table by adding 100 rows to it. Now the query
 can just choose a random slot and update it:
mysql> UPDATE hit_counter SET cnt = cnt + 1 WHERE slot = RAND() * 100;
To retrieve statistics, just use aggregate queries:
mysql> SELECT SUM(cnt) FROM hit_counter;
A common requirement is to start new counters every so often
 (for example, once a day). If you need to do this, you can change
 the schema slightly:
mysql> CREATE TABLE daily_hit_counter (
 -> day date not null,
 -> slot tinyint unsigned not null,
 -> cnt int unsigned not null,
 -> primary key(day, slot)
 ->) ENGINE=InnoDB;
You don't want to pregenerate rows for this scenario. Instead,
 you can use ON DUPLICATE KEY
 UPDATE:
mysql> INSERT INTO daily_hit_counter(day, slot, cnt)
 -> VALUES(CURRENT_DATE, RAND() * 100, 1)
 -> ON DUPLICATE KEY UPDATE cnt = cnt + 1;
If you want to reduce the number of rows to keep the table
 smaller, you can write a periodic job that merges all the results
 into slot 0 and deletes every other slot:
mysql> UPDATE daily_hit_counter as c
 -> INNER JOIN (
 -> SELECT day, SUM(cnt) AS cnt, MIN(slot) AS mslot
 -> FROM daily_hit_counter
 -> GROUP BY day
 ->) AS x USING(day)
 -> SET c.cnt = IF(c.slot = x.mslot, x.cnt, 0),
 -> c.slot = IF(c.slot = x.mslot, 0, c.slot);
mysql> DELETE FROM daily_hit_counter WHERE slot <> 0 AND cnt = 0;
ora: Faster Reads, Slower Writes
You'll often need extra indexes, redundant fields, or even
 cache and summary tables to speed up read queries. These add
 work to write queries and maintenance jobs, but this is still a
 technique you'll see a lot when you design for high performance:
 you amortize the cost of the slower writes by speeding up reads
 significantly.
However, this isn't the only price you pay for faster read
 queries. You also increase development complexity for both read and write
 operations.

[33] We're using LEFT(NOW(),
 14) to round the current date and time to the nearest
 hour.

Speeding Up ALTER TABLE

MySQL's ALTER TABLE performance
 can become a problem with very large tables. MySQL performs most
 alterations by making an empty table with the desired new structure,
 inserting all the data from the old table into the new one, and deleting
 the old table. This can take a very long time, especially if you're
 short on memory and the table is large and has lots of indexes. Many people have experience with ALTER TABLE operations that have taken hours
 or days to complete.
MySQL AB is working on improving this. Some of the upcoming improvements include
 support for "online" operations that won't lock the table for the whole
 operation. The InnoDB developers are also working on support for
 building indexes by sorting. MyISAM already supports this technique,
 which makes building indexes much faster and results in a compact index
 layout. (InnoDB currently builds its indexes one row at a time in
 primary key order, which means the index trees aren't built in optimal
 order and are fragmented.)
Not all ALTER TABLE operations
 cause table rebuilds. For example, you can change or drop a column's
 default value in two ways (one fast, and one slow). Say you want to
 change a film's default rental duration from 3 to 5 days. Here's the
 expensive way:
mysql> ALTER TABLE sakila.film
 -> MODIFY COLUMN rental_duration TINYINT(3) NOT NULL DEFAULT 5;
Profiling that statement with SHOW
 STATUS shows that it does 1,000 handler reads and 1,000
 inserts. In other words, it copied the table to a new table, even though
 the column's type, size, and nullability didn't change.
In theory, MySQL could have skipped building a new table. The
 default value for the column is actually stored in the table's
 .frm file, so you should be able to change it
 without touching the table itself. MySQL doesn't yet use this
 optimization; however, any MODIFY
 COLUMN will cause a table rebuild.
You can change a column's default with ALTER COLUMN, [34] though:
mysql> ALTER TABLE sakila.film
 -> ALTER COLUMN rental_duration SET DEFAULT 5;
This statement modifies the .frm file and
 leaves the table alone. As a result, it is very fast.
Modifying Only the .frm File

We've seen that modifying a table's .frm
 file is fast and that MySQL sometimes rebuilds a table when it doesn't
 have to. If you're willing to take some risks, you can convince MySQL
 to do several other types of modifications without rebuilding the table.
Warning
The technique we're about to demonstrate is unsupported,
 undocumented, and may not work. Use it at your own risk. We advise
 you to back up your data first!

You can potentially do the following types of operations without
 a table rebuild:
	Remove (but not add) a column's AUTO_INCREMENT attribute.

	Add, remove, or change ENUM and SET constants. If you remove a constant
 and some rows contain that value, queries will return the value as
 the empty string.

The basic technique is to create a .frm
 file for the desired table structure and copy it into the place of the
 existing table's .frm file, as follows:
	Create an empty table with exactly the same
 layout, except for the desired modification (such as
 added ENUM constants).

	Execute FLUSH TABLES WITH READ
 LOCK. This will close all tables in use and prevent any
 tables from being opened.

	Swap the .frm files.

	Execute UNLOCK TABLES to
 release the read lock.

As an example, we add a constant to the rating column in sakila.film. The current column looks like
 this:
mysql> SHOW COLUMNS FROM sakila.film LIKE 'rating';
+--------+------------------------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+------------------------------------+------+-----+---------+-------+
| rating | enum('G','PG','PG-13','R','NC-17') | YES | | G | |
+--------+------------------------------------+------+-----+---------+-------+
We add a PG-14 rating for parents who are just a little bit more
 cautious about films:
mysql> CREATE TABLE sakila.film_new LIKE sakila.film;
mysql> ALTER TABLE sakila.film_new
 -> MODIFY COLUMN rating ENUM('G','PG','PG-13','R','NC-17', 'PG-14')
 -> DEFAULT 'G';
mysql> FLUSH TABLES WITH READ LOCK;
Notice that we're adding the new value at the end of
 the list of constants. If we placed it in the middle, after
 PG-13, we'd change the meaning of the existing data: existing R values
 would become PG-14, NC-17 would become R, and so on.
Now we swap the .frm files from the
 operating system's command prompt:
root:/var/lib/mysql/sakila# mv film.frm film_tmp.frm
root:/var/lib/mysql/sakila# mv film_new.frm film.frm
root:/var/lib/mysql/sakila# mv film_tmp.frm film_new.frm
Back in the MySQL prompt, we can now unlock the table and see
 that the changes took effect:
mysql> UNLOCK TABLES;
mysql> SHOW COLUMNS FROM sakila.film LIKE 'rating'\G
*************************** 1. row ***************************
Field: rating
 Type: enum('G','PG','PG-13','R','NC-17','PG-14')
The only thing left to do is drop the table we created to help
 with the operation:
mysql> DROP TABLE sakila.film_new;

Building MyISAM Indexes Quickly

The usual trick for loading MyISAM tables efficiently is to
 disable keys, load the data, and reenable the keys:
mysql> ALTER TABLE test.load_data DISABLE KEYS;
-- load the data
mysql> ALTER TABLE test.load_data ENABLE KEYS;
This works because it lets MyISAM delay building the keys until
 all the data is loaded, at which point, it can build the indexes by
 sorting. This is much faster and results in a defragmented, compact
 index tree. [35]
Unfortunately, it doesn't work for unique indexes, because
 DISABLE KEYS applies only to
 nonunique indexes. MyISAM builds unique indexes in memory and checks
 the uniqueness as it loads each row. Loading becomes extremely slow as
 soon as the index's size exceeds the available memory.
As with the ALTER TABLE hacks
 in the previous section, you can speed up this process if you're
 willing to do a little more work and assume some risk. This can be
 useful for loading data from backups, for example, when you already
 know all the data is valid and there's no need for uniqueness
 checks.
Warning
Again, this is an undocumented, unsupported technique. Use it
 at your own risk, and back up your data first.

Here are the steps you'll need to take:
	Create a table of the desired structure, but without any
 indexes.

	Load the data into the table to build the
 .MYD file.

	Create another empty table with the desired structure, this
 time including the indexes. This will create the
 .frm and .MYI files you
 need.

	Flush the tables with a read lock.

	Rename the second table's .frm and
 .MYI files, so MySQL uses them for the first
 table.

	Release the read lock.

	Use REPAIR TABLE to build
 the table's indexes. This will build all indexes by sorting,
 including the unique indexes.

This procedure can be much faster for very large tables.

[34] ALTER TABLE lets you modify
 columns with ALTER COLUMN, MODIFY
 COLUMN, and CHANGE
 COLUMN. All three do different things.

[35] MyISAM will also build indexes by sorting when you use
 LOAD DATA INFILE and the table
 is empty.

Notes on Storage Engines

We close this chapter with some storage engine-specific schema
 design choices you should keep in mind. We're not trying to write an
 exhaustive list; our goal is just to present some key factors that are
 relevant to schema design.
The MyISAM Storage Engine

	Table locks
	MyISAM tables have table-level locks. Be careful
 this doesn't become a bottleneck.

	No automated data recovery
	If the MySQL server crashes or power goes down,
 you should check and possibly repair your MyISAM tables before
 using them. If you have large tables, this could take
 hours.

	No transactions
	MyISAM tables don't support transactions. In fact,
 MyISAM doesn't even guarantee that a single statement will
 complete; if there's an error halfway through a multirow
 UPDATE, for example, some
 of the rows will be updated and some won't.

	Only indexes are cached in
 memory
	MyISAM caches only the index inside the MySQL process, in
 the key buffer. The operating system caches the table's data, so
 in MySQL 5.0 an expensive operating system call is required to
 retrieve it.

	Compact storage
	Rows are stored jam-packed one after another, so
 you get a small disk footprint and fast full table scans for
 on-disk data.

The Memory Storage Engine

	Table locks
	Like MyISAM tables, Memory tables have table locks. This isn't usually a problem though,
 because queries on Memory tables are normally fast.

	No dynamic rows
	Memory tables don't support dynamic (i.e.,
 variable-length) rows, so they don't support BLOB and TEXT fields at all. Even a VARCHAR(5000) turns into a CHAR(5000)—a huge memory waste if most
 values are small.

	Hash indexes are the default index
 type
	Unlike for other storage engines, the default
 index type is hash if you don't specify it explicitly.

	No index statistics
	Memory tables don't support index statistics, so
 you may get bad execution plans for some complex queries.

	Content is lost on restart
	Memory tables don't persist any data to disk, so the data is lost when the server
 restarts, even though the tables' definitions remain.

The InnoDB Storage Engine

	Transactional
	InnoDB supports transactions and four transaction
 isolation levels.

	Foreign keys
	As of MySQL 5.0, InnoDB is the only stock storage
 engine that supports foreign keys. Other storage engines will accept
 them in CREATE TABLE
 statements, but won't enforce them. Some third-party engines,
 such as solidDB for MySQL and PBXT, support them at the storage
 engine level too; MySQL AB plans to add support at the server
 level in the future.

	Row-level locks
	Locks are set at the row level, with no escalation and
 nonblocking selects—standard selects don't set any locks at all,
 which gives very good concurrency.

	Multiversioning
	InnoDB uses multiversion concurrency control, so by
 default your selects may read stale data. In fact, its
 MVCC architecture adds a lot of complexity and
 possibly unexpected behaviors. You should read the InnoDB manual
 thoroughly if you use InnoDB.

	Clustering by primary key
	All InnoDB tables are clustered by the primary key, which you can use to
 your advantage in schema design.

	All indexes contain the primary key
 columns
	Indexes refer to the rows by the primary key, so if you
 don't keep your primary key short, the indexes will grow very
 large.

	Optimized caching
	InnoDB caches both data and memory in the buffer pool. It
 also automatically builds hash indexes to speed up row
 retrieval.

	Unpacked indexes
	Indexes are not packed with prefix compression, so they
 can be much larger than for MyISAM tables.

	Slow data load
	As of MySQL 5.0, InnoDB does not specially optimize data
 load operations. It builds indexes a row at a time, instead of
 building them by sorting. This may result in significantly
 slower data loads.

	Blocking AUTO_INCREMENT
	In versions earlier than MySQL 5.1, InnoDB uses a
 table-level lock to generate each new AUTO_INCREMENT value.

	No cached COUNT(*)
 value
	Unlike MyISAM or Memory tables, InnoDB tables don't store
 the number of rows in the table, which means COUNT(*) queries without a WHERE clause can't be optimized away
 and require full table or index scans. See"Optimizing COUNT()
 Queries" on Optimizing Specific Types of Queries for more on
 this topic.

Chapter 4. Query Performance Optimization

In the previous chapter, we explained how to optimize a schema,
 which is one of the necessary conditions for high performance. But working
 with the schema isn't enough—you also need to design your queries well. If
 your queries are bad, even the best-designed schema will not perform
 well.
Query optimization, index optimization, and schema optimization go
 hand in hand. As you gain experience writing queries in MySQL, you will
 come to understand how to design schemas to support efficient queries.
 Similarly, what you learn about optimal schema design will influence the
 kinds of queries you write. This process takes time, so we encourage you
 to refer back to this chapter and the previous one as you learn
 more.
This chapter begins with general query design considerations—the
 things you should consider first when a query isn't performing well. We
 then dig much deeper into query optimization and server internals. We show
 you how to find out how MySQL executes a particular query, and you'll
 learn how to change the query execution plan. Finally, we look at some
 places MySQL doesn't optimize queries well and explore query optimization
 patterns that help MySQL execute queries more efficiently.
Our goal is to help you understand deeply how MySQL really executes
 queries, so you can reason about what is efficient or inefficient, exploit
 MySQL's strengths, and avoid its weaknesses.
Slow Query Basics: Optimize Data Access

The most basic reason a query doesn't perform well is because it's
 working with too much data. Some queries just have to sift through a lot
 of data and can't be helped. That's unusual, though; most bad queries
 can be changed to access less data. We've found it useful to analyze a
 poorly performing query in two steps:
	Find out whether your application is
 retrieving more data than you need. That usually means it's accessing
 too many rows, but it might also be accessing too many
 columns.

	Find out whether the MySQL server is
 analyzing more rows than it needs.

Are You Asking the Database for Data You Don't Need?

Some queries ask for more data than they need and then throw
 some of it away. This demands extra work of the MySQL server, adds
 network overhead, [36] and consumes memory and CPU resources on the application
 server.
Here are a few typical mistakes:
	Fetching more rows than needed
	One common mistake is assuming that MySQL provides results
 on demand, rather than calculating and returning the full result
 set. We often see this in applications designed by people
 familiar with other database systems. These developers are used
 to techniques such as issuing a SELECT statement that returns many
 rows, then fetching the first N rows,
 and closing the result set (e.g., fetching the 100 most recent
 articles for a news site when they only need to show 10 of them
 on the front page). They think MySQL will provide them with
 these 10 rows and stop executing the query, but what MySQL
 really does is generate the complete result set. The client
 library then fetches all the data and discards most of it. The
 best solution is to add a LIMIT clause to the query.

	Fetching all columns from a multitable
 join
	If you want to retrieve all actors who appear in
 Academy Dinosaur, don't write the query
 this way:
mysql> SELECT * FROM sakila.actor
 -> INNER JOIN sakila.film_actor USING(actor_id)
 -> INNER JOIN sakila.film USING(film_id)
 -> WHERE sakila.film.title = 'Academy Dinosaur';
That returns all columns from all three tables. Instead,
 write the query as follows:
mysql> SELECT sakila.actor.* FROM sakila.actor...;

	Fetching all columns
	You should always be suspicious when you see SELECT *. Do you really need all
 columns? Probably not. Retrieving all columns can prevent
 optimizations such as covering indexes, as well as adding I/O,
 memory, and CPU overhead for the server.
Some DBAs ban SELECT *
 universally because of this fact, and to reduce the risk of
 problems when someone alters the table's column list.
Of course, asking for more data than you really need is not always bad. In
 many cases we've investigated, people tell us the wasteful
 approach simplifies development, as it lets the developer use
 the same bit of code in more than one place. That's a reasonable
 consideration, as long as you know what it costs in terms of
 performance. It may also be useful to retrieve more data than
 you actually need if you use some type of caching in your
 application, or if you have another benefit in mind. Fetching
 and caching full objects may be preferable to running many
 separate queries that retrieve only parts of the object.

Is MySQL Examining Too Much Data?

Once you're sure your queries retrieve only
 the data you need, you can look for queries that
 examine too much data while generating results.
 In MySQL, the simplest query cost metrics are:
	Execution time

	Number of rows examined

	Number of rows returned

None of these metrics is a perfect way to measure query cost,
 but they reflect roughly how much data MySQL must access internally to
 execute a query and translate approximately into how fast the query
 runs. All three metrics are logged in the slow query log, so looking
 at the slow query log is one of the best ways to find queries that
 examine too much data.
Execution time

As discussed in Chapter 2, the standard
 slow query logging feature in MySQL 5.0 and earlier has serious
 limitations, including lack of support for fine-grained logging.
 Fortunately, there are patches that let you log and measure slow
 queries with microsecond resolution. These are included in the MySQL
 5.1 server, but you can also patch earlier versions if needed.
 Beware of placing too much emphasis on query execution time. It's
 nice to look at because it's an objective metric, but it's not
 consistent under varying load conditions. Other factors—such as
 storage engine locks (table locks and row locks), high concurrency,
 and hardware—can also have a considerable impact on query execution
 times. This metric is useful for finding queries that impact the
 application's response time the most or load the server the most,
 but it does not tell you whether the actual execution time is
 reasonable for a query of a given complexity. (Execution time can
 also be both a symptom and a cause of problems, and it's not always
 obvious which is the case.)

Rows examined and rows returned

It's useful to think about the number of rows examined when
 analyzing queries, because you can see how efficiently
 the queries are finding the data you need.
However, like execution time, it's not a perfect metric for
 finding bad queries. Not all row accesses are equal. Shorter rows
 are faster to access, and fetching rows from memory is much faster
 than reading them from disk.
Ideally, the number of rows examined would be the same as the number
 returned, but in practice this is rarely possible. For example, when
 constructing rows with joins, multiple rows must be accessed to
 generate each row in the result set. The ratio of rows examined to
 rows returned is usually small—say, between 1:1 and 10:1—but
 sometimes it can be orders of magnitude larger.

Rows examined and access types

When you're thinking about the cost of a query, consider the
 cost of finding a single row in a table. MySQL can use several
 access methods to find and return a row. Some require
 examining many rows, but others may be able to generate the result
 without examining any.
The access method(s) appear in the type column in EXPLAIN's output. The access types range
 from a full table scan to index scans, range scans, unique index
 lookups, and constants. Each of these is faster than the one before
 it, because it requires reading less data. You don't need to memorize the access types, but
 you should understand the general concepts of scanning a table,
 scanning an index, range accesses, and single-value accesses.
If you aren't getting a good access type, the best way to
 solve the problem is usually by adding an appropriate index. We
 discussed indexing at length in the previous chapter; now you can
 see why indexes are so important to query optimization. Indexes let
 MySQL find rows with a more efficient access type that examines less
 data.
For example, let's look at a simple query on the Sakila sample
 database:
mysql> SELECT * FROM sakila.film_actor WHERE film_id = 1;
This query will return 10 rows, and EXPLAIN shows that MySQL uses the ref access type on the idx_fk_film_id index to execute the
 query:
mysql> EXPLAIN SELECT * FROM sakila.film_actor WHERE film_id = 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: const
 rows: 10
 Extra:
EXPLAIN shows that MySQL
 estimated it needed to access only 10 rows. In other words, the query
 optimizer knew the chosen access type could satisfy the query
 efficiently. What would happen if there were no suitable index for
 the query? MySQL would have to use a less optimal access type, as we
 can see if we drop the index and run the query again:
mysql> ALTER TABLE sakila.film_actor DROP FOREIGN KEY fk_film_actor_film;
mysql> ALTER TABLE sakila.film_actor DROP KEY idx_fk_film_id;
mysql> EXPLAIN SELECT * FROM sakila.film_actor WHERE film_id = 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 5073
 Extra: Using where
Predictably, the access type has changed to a full table scan
 (ALL), and MySQL now estimates
 it'll have to examine 5,073 rows to satisfy the query. The "Using
 where" in the Extra column shows
 that the MySQL server is using the WHERE clause to discard rows after the
 storage engine reads them.
In general, MySQL can apply a WHERE clause in three ways, from best to
 worst:
	Apply the conditions to the index lookup operation to
 eliminate nonmatching rows. This happens at the storage engine
 layer.

	Use a covering index ("Using index" in the Extra column) to avoid row accesses,
 and filter out nonmatching rows after retrieving each result
 from the index. This happens at the server layer, but it doesn't
 require reading rows from the table.

	Retrieve rows from the table, then filter nonmatching rows
 ("Using where" in the Extra
 column). This happens at the server layer and requires the
 server to read rows from the table before it can filter
 them.

This example illustrates how important it is to have good
 indexes. Good indexes help your queries get a good access type and
 examine only the rows they need. However, adding an index doesn't
 always mean that MySQL will access and return the same number of
 rows. For example, here's a query that uses the COUNT() aggregate function: [37]
mysql> SELECT actor_id, COUNT(*) FROM sakila.film_actor GROUP BY actor_id;
This query returns only 200 rows, but it needs to read
 thousands of rows to build the result set. An index can't reduce the
 number of rows examined for a query like this one.
Unfortunately, MySQL does not tell you how many of the
 rows it accessed were used to build the result set; it
 tells you only the total number of rows it accessed. Many of these
 rows could be eliminated by a WHERE clause and end up not contributing
 to the result set. In the previous example, after removing the index
 on sakila.film_actor, the query
 accessed every row in the table and the WHERE clause discarded all but 10 of them.
 Only the remaining 10 rows were used to build the result set.
 Understanding how many rows the server accesses and how many it
 really uses requires reasoning about the query.
If you find that a huge number of rows were examined to
 produce relatively few rows in the result, you can try some more
 sophisticated fixes:
	Use covering indexes, which store data so that the storage engine doesn't have to
 retrieve the complete rows. (We discussed these in the previous
 chapter.)

	Change the schema. An example is using summary tables
 (discussed in the previous chapter).

	Rewrite a complicated query so the MySQL optimizer is able
 to execute it optimally. (We discuss this later in this
 chapter.)

[36] Network overhead is worst if the application is on a
 different host from the server, but transferring data between
 MySQL and the application isn't free even if they're on the same
 server.

[37] See "Optimizing COUNT() Queries" on Optimizing Specific Types of Queries for more on
 this topic.

Ways to Restructure Queries

As you optimize problematic queries, your goal should be to find
 alternative ways to get the result you want—but that doesn't necessarily
 mean getting the same result set back from MySQL. You can sometimes
 transform queries into equivalent forms and get better performance. However,
 you should also think about rewriting the query to retrieve different
 results, if that provides an efficiency benefit. You may be able to
 ultimately do the same work by changing the application code as well as
 the query. In this section, we explain techniques that can help you
 restructure a wide range of queries and show you when to use each
 technique.
Complex Queries Versus Many Queries

One important query design question is whether it's preferable
 to break up a complex query into several simpler queries. The
 traditional approach to database design emphasizes doing as much work
 as possible with as few queries as possible. This approach was
 historically better because of the cost of network communication and
 the overhead of the query parsing and optimization stages.
However, this advice doesn't apply as much to MySQL, because it
 was designed to handle connecting and disconnecting very efficiently
 and to respond to small and simple queries very quickly. Modern
 networks are also significantly faster than they used to be, reducing
 network latency. MySQL can run more than 50,000 simple queries per
 second on commodity server hardware and over 2,000 queries per second
 from a single correspondent on a Gigabit network, so running multiple
 queries isn't necessarily such a bad thing.
Connection response is still slow compared to the number of
 rows MySQL can traverse per second internally, though,
 which is counted in millions per second for in-memory data. All else
 being equal, it's still a good idea to use as few queries as possible, but sometimes you can make a query
 more efficient by decomposing it and executing a few simple queries
 instead of one complex one. Don't be afraid to do this; weigh the
 costs, and go with the strategy that causes less work. We show some
 examples of this technique a little later in the chapter.
That said, using too many queries is a common mistake in
 application design. For example, some applications perform 10
 single-row queries to retrieve data from a table when they could use a
 single 10-row query. We've even seen applications that retrieve each
 column individually, querying each row many times!

Chopping Up a Query

Another way to slice up a query is to divide and conquer,
 keeping it essentially the same but running it in smaller "chunks"
 that affect fewer rows each time.
Purging old data is a great example. Periodic purge jobs may
 need to remove quite a bit of data, and doing this in one massive
 query could lock a lot of rows for a long time, fill up transaction
 logs, hog resources, and block small queries that shouldn't be
 interrupted. Chopping up the DELETE
 statement and using medium-size queries can improve performance
 considerably, and reduce replication lag when a query is replicated.
 For example, instead of running this monolithic query:
mysql> DELETE FROM messages WHERE created < DATE_SUB(NOW(),INTERVAL 3 MONTH);
you could do something like the following pseudocode:
rows_affected = 0
do {
 rows_affected = do_query(
 "DELETE FROM messages WHERE created < DATE_SUB(NOW(),INTERVAL 3 MONTH)
 LIMIT 10000")
} while rows_affected > 0
Deleting 10,000 rows at a time is typically a large enough task
 to make each query efficient, and a short enough task to minimize the
 impact on the server [38] (transactional storage engines may benefit from smaller
 transactions). It may also be a good idea to add some sleep time
 between the DELETE statements to
 spread the load over time and reduce the amount of time locks are
 held.

Join Decomposition

Many high-performance web sites use join
 decomposition. You can decompose a join by running multiple
 single-table queries instead of a multitable join, and then performing
 the join in the application. For example, instead of this single
 query:
mysql> SELECT * FROM tag
 -> JOIN tag_post ON tag_post.tag_id=tag.id
 -> JOIN post ON tag_post.post_id=post.id
 -> WHERE tag.tag='mysql';
You might run these queries:
mysql> SELECT * FROM tag WHERE tag='mysql';
mysql> SELECT * FROM tag_post WHERE tag_id=1234;
mysql> SELECT * FROM post WHERE post.id in (123,456,567,9098,8904);
This looks wasteful at first glance, because you've increased
 the number of queries without getting anything in return. However,
 such restructuring can actually give significant performance
 advantages:
	Caching can be more efficient. Many applications cache
 "objects" that map directly to tables. In this example, if the
 object with the tag mysql is
 already cached, the application can skip the first query. If you
 find posts with an id of 123, 567, or 9098 in the cache, you can
 remove them from the IN() list.
 The query cache might also benefit from this strategy. If only one
 of the tables changes frequently, decomposing a join can reduce
 the number of cache invalidations.

	For MyISAM tables, performing one query per table uses table
 locks more efficiently: the queries will lock the tables
 individually and relatively briefly, instead of locking them all
 for a longer time.

	Doing joins in the application makes it easier to scale
 the database by placing tables on different servers.

	The queries themselves can be more efficient. In this
 example, using an IN() list
 instead of a join lets MySQL sort row IDs and retrieve rows more
 optimally than might be possible with a join. We explain this in
 more detail later.

	You can reduce redundant row accesses. Doing a join in the
 application means you retrieve each row only once, whereas a join
 in the query is essentially a denormalization that might
 repeatedly access the same data. For the same reason, such
 restructuring might also reduce the total network
 traffic and memory usage.

	To some extent, you can view this technique as manually
 implementing a hash join instead of the nested loops algorithm
 MySQL uses to execute a join. A hash join may be more efficient.
 (We discuss MySQL's join strategy later in this chapter.)

ora: Summary: When Application Joins May Be More Efficient
Doing joins in the application may be more efficient
 when:
	You cache and reuse a lot of data from earlier queries

	You use multiple MyISAM tables

	You distribute data across multiple servers

	You replace joins with IN() lists on large tables

	A join refers to the same table multiple times

[38] Maatkit's mk-archiver tool makes these
 types of jobs easy.

Query Execution Basics

If you need to get high performance from your MySQL server, one of
 the best ways to invest your time is in learning how MySQL optimizes and
 executes queries. Once you understand this, much of query optimization
 is simply a matter of reasoning from principles, and query optimization
 becomes a very logical process.
Tip
This discussion assumes you've read Chapter 1, which provides a foundation for
 understanding the MySQL query execution engine.

Figure 4-1 shows how MySQL
 generally executes queries.
Follow along with the illustration to see what happens when you
 send MySQL a query:
	The client sends the SQL statement to the server.

	The server checks the query cache. If there's a hit, it
 returns the stored result from the cache; otherwise, it passes the
 SQL statement to the next step.

	The server parses, preprocesses, and optimizes the SQL into a
 query execution plan.

	The query execution engine executes the plan by making calls
 to the storage engine API.

	The server sends the result to the client.

Each of these steps has some extra complexity, which we discuss in
 the following sections. We also explain which states the query will be
 in during each step. The query optimization process is particularly
 complex and important to understand.
[image: Execution path of a query]

Figure 4-1. Execution path of a query

The MySQL Client/Server Protocol

Though you don't need to understand the inner details of MySQL's
 client/server protocol, you do need to understand how it
 works at a high level. The protocol is half-duplex, which means that
 at any given time the MySQL server can be either sending or receiving
 messages, but not both. It also means there is no way to cut a message
 short.
This protocol makes MySQL communication simple and fast, but it
 limits it in some ways too. For one thing, it means there's no flow
 control; once one side sends a message, the other side must fetch the
 entire message before responding. It's like a game of tossing a ball
 back and forth: only one side has the ball at any instant, and you
 can't toss the ball (send a message) unless you have it.
The client sends a query to the server as a single packet of
 data. This is why the max_allowed_packet configuration variable is
 important if you have large queries. [39] Once the client sends the query, it doesn't have the
 ball anymore; it can only wait for results.
In contrast, the response from the server usually consists of
 many packets of data. When the server responds, the client has to
 receive the entire result set. It cannot simply
 fetch a few rows and then ask the server not to bother sending the
 rest. If the client needs only the first few rows that are returned,
 it either has to wait for all of the server's packets to arrive and
 then discard the ones it doesn't need, or disconnect ungracefully.
 Neither is a good idea, which is why appropriate LIMIT clauses are so important.
Here's another way to think about this: when a client fetches
 rows from the server, it thinks it's pulling
 them. But the truth is, the MySQL server is
 pushing the rows as it generates them. The client
 is only receiving the pushed rows; there is no way for it to tell the
 server to stop sending rows. The client is "drinking from the fire
 hose," so to speak. (Yes, that's a technical term.)
Most libraries that connect to MySQL let you either fetch the
 whole result set and buffer it in memory, or fetch each row as you
 need it. The default behavior is generally to fetch the whole result
 and buffer it in memory. This is important because until all the rows
 have been fetched, the MySQL server will not release the locks and
 other resources required by the query. The query will be in the
 "Sending data" state (explained in "Query states" on Query states). When the client library fetches the
 results all at once, it reduces the amount of work the server needs to
 do: the server can finish and clean up the query as quickly as
 possible.
Most client libraries let you treat the result set as though
 you're fetching it from the server, although in fact you're just
 fetching it from the buffer in the library's memory. This works fine
 most of the time, but it's not a good idea for huge result sets that
 might take a long time to fetch and use a lot of memory. You can use
 less memory, and start working on the result sooner, if you instruct
 the library not to buffer the result. The downside is that the locks
 and other resources on the server will remain open while your
 application is interacting with the library. [40]
Let's look at an example using PHP. First, here's how you'll
 usually query MySQL from PHP:
<?php
$link = mysql_connect('localhost', 'user', 'p4ssword');
$result = mysql_query('SELECT * FROM HUGE_TABLE', $link);
while ($row = mysql_fetch_array($result)) {
 // Do something with result
}
?>
The code seems to indicate that you fetch rows only when you
 need them, in the while loop.
 However, the code actually fetches the entire result into a buffer
 with the mysql_query() function
 call. The while loop simply
 iterates through the buffer. In contrast, the following code doesn't
 buffer the results, because it uses mysql_unbuffered_query() instead of mysql_query():
<?php
$link = mysql_connect('localhost', 'user', 'p4ssword');
$result = mysql_unbuffered_query('SELECT * FROM HUGE_TABLE', $link);
while ($row = mysql_fetch_array($result)) {
 // Do something with result
}
?>
Programming languages have different ways to override buffering.
 For example, the Perl DBD::mysql
 driver requires you to specify the C client library's mysql_use_result attribute (the default is
 mysql_buffer_result). Here's an
 example:
#!/usr/bin/perl
use DBI;
my $dbh = DBI->connect('DBI:mysql:;host=localhost', 'user', 'p4ssword');
my $sth = $dbh->prepare('SELECT * FROM HUGE_TABLE', { mysql_use_result => 1 });
$sth->execute();
while (my $row = $sth->fetchrow_array()) {
 # Do something with result
}
Notice that the call to prepare() specified to "use" the result
 instead of "buffering" it. You can also specify this when connecting,
 which will make every statement unbuffered:
my $dbh = DBI->connect('DBI:mysql:;mysql_use_result=1', 'user', 'p4ssword');
Query states

Each MySQL connection, or thread, has a
 state that shows what it is doing at any given time. There are
 several ways to view these states, but the easiest is to use the SHOW FULL PROCESSLIST command (the states
 appear in the Command column). As
 a query progresses through its lifecycle, its state changes many
 times, and there are dozens of states. The MySQL manual is the
 authoritative source of information for all the states, but we list
 a few here and explain what they mean:
	Sleep
	The thread is waiting for a new query from the
 client.

	Query
	The thread is either executing the query or sending the
 result back to the client.

	Locked
	The thread is waiting for a table lock to be granted at
 the server level. Locks that are implemented by the storage
 engine, such as InnoDB's row locks, do not cause the thread to
 enter the Locked
 state.

	Analyzing
 and statistics
	The thread is checking storage engine statistics and
 optimizing the query.

	Copying to tmp table [on
 disk]
	The thread is processing the query and copying results
 to a temporary table, probably for a GROUP BY, for a filesort, or to
 satisfy a UNION. If the
 state ends with "on disk," MySQL is converting an in-memory
 table to an on-disk table.

	Sorting result
	The thread is sorting a result set.

	Sending data
	This can mean several things: the thread might be
 sending data between stages of the query, generating the
 result set, or returning the result set to the
 client.
It's helpful to at least know the basic states, so you
 can get a sense of "who has the ball" for the query. On very
 busy servers, you might see an unusual or normally brief
 state, such as statistics,
 begin to take a significant amount of time. This usually
 indicates that something is wrong.

The Query Cache

Before even parsing a query, MySQL checks for it in the
 query cache, if the cache is enabled. This operation is
 a case sensitive hash lookup. If the query differs from a similar
 query in the cache by even a single byte, it won't match, and the
 query processing will go to the next stage.
If MySQL does find a match in the query cache, it must check
 privileges before returning the cached query. This is possible without
 parsing the query, because MySQL stores table information with the
 cached query. If the privileges are OK, MySQL retrieves the stored
 result from the query cache and sends it to the client, bypassing
 every other stage in query execution. The query is never parsed,
 optimized, or executed.
You can learn more about the query cache in Chapter 5.

The Query Optimization Process

The next step in the query lifecycle turns a SQL query into an
 execution plan for the query execution engine. It has several
 sub-steps: parsing, preprocessing, and optimization. Errors (for
 example, syntax errors) can be raised at any point in the process.
 We're not trying to document the MySQL internals here, so we're going
 to take some liberties, such as describing steps separately even
 though they're often combined wholly or partially for efficiency. Our
 goal is simply to help you understand how MySQL executes queries so
 that you can write better ones.
The parser and the preprocessor

To begin, MySQL's parser breaks the query
 into tokens and builds a "parse tree" from them. The parser uses
 MySQL's SQL grammar to interpret and validate the query. For
 instance, it ensures that the tokens in the query are valid and in
 the proper order, and it checks for mistakes such as quoted strings
 that aren't terminated.
The preprocessor then checks the
 resulting parse tree for additional semantics that the parser can't
 resolve. For example, it checks that tables and columns exist, and
 it resolves names and aliases to ensure that column references
 aren't ambiguous.
Next, the preprocessor checks privileges. This is normally
 very fast unless your server has large numbers of privileges. (See Chapter 12 for
 more on privileges and security.)

The query optimizer

The parse tree is now valid and ready for the
 optimizer to turn it into a query execution
 plan. A query can often be executed many different ways and produce
 the same result. The optimizer's job is to find the best
 option.
MySQL uses a cost-based optimizer, which means it tries to
 predict the cost of various execution plans and choose the least
 expensive. The unit of cost is a single random four-kilobyte data
 page read. You can see how expensive the optimizer estimated a query
 to be by running the query, then inspecting the Last_query_cost session variable:
mysql> SELECT SQL_NO_CACHE COUNT(*) FROM sakila.film_actor;
+----------+
| count(*) |
+----------+
| 5462 |
+----------+
mysql> SHOW STATUS LIKE 'last_query_cost';
+-----------------+-------------+
| Variable_name | Value |
+-----------------+-------------+
| Last_query_cost | 1040.599000 |
+-----------------+-------------+
This result means that the optimizer estimated it would need
 to do about 1,040 random data page reads to execute the query. It
 bases the estimate on statistics: the number of pages per table or
 index, the cardinality (number of distinct
 values) of indexes, the length of rows and keys, and key
 distribution. The optimizer does not include the effects of any type
 of caching in its estimates—it assumes every read will result in a
 disk I/O operation.
The optimizer may not always choose the best plan, for many
 reasons:
	The statistics could be wrong. The server relies on
 storage engines to provide statistics, and they can range from
 exactly correct to wildly inaccurate. For example, the InnoDB
 storage engine doesn't maintain accurate statistics about the
 number of rows in a table, because of its MVCC
 architecture.

	The cost metric is not exactly equivalent to the true cost
 of running the query, so even when the statistics are accurate,
 the query may be more or less expensive than MySQL's
 approximation. A plan that reads more pages might actually be
 cheaper in some cases, such as when the reads are sequential so
 the disk I/O is faster, or when the pages are already cached in
 memory.

	MySQL's idea of optimal might not match yours. You
 probably want the fastest execution time, but MySQL doesn't
 really understand "fast"; it understands "cost," and as we've
 seen, determining cost is not an exact science.

	MySQL doesn't consider other queries that are running
 concurrently, which can affect how quickly the query
 runs.

	MySQL doesn't always do cost-based optimization. Sometimes
 it just follows the rules, such as "if there's a full-text
 MATCH() clause, use a
 FULLTEXT index if one
 exists." It will do this even when it would be faster to use a
 different index and a non-FULLTEXT query with a WHERE clause.

	The optimizer doesn't take into account the cost of
 operations not under its control, such as executing stored
 functions or user-defined functions.

	As we'll see later, the optimizer can't always estimate
 every possible execution plan, so it may miss an optimal
 plan.

MySQL's query optimizer is a highly complex piece of software,
 and it uses many optimizations to transform the query into an
 execution plan. There are two basic types of optimizations, which we
 call static and dynamic. Static
 optimizations can be performed simply by inspecting the
 parse tree. For example, the optimizer can transform the WHERE clause into an equivalent form by
 applying algebraic rules. Static optimizations are independent of values, such
 as the value of a constant in a WHERE clause. They can be performed once
 and will always be valid, even when the query is reexecuted with
 different values. You can think of these as "compile-time
 optimizations."
In contrast, dynamic optimizations are
 based on context and can depend on many factors, such as which value
 is in a WHERE clause or how many
 rows are in an index. They must be reevaluated each time the query
 is executed. You can think of these as "runtime
 optimizations."
The difference is important in executing prepared statements
 or stored procedures. MySQL can do static optimizations once, but it
 must reevaluate dynamic optimizations every time it executes a query.
 MySQL sometimes even reoptimizes the query as it executes it.
 [41]
Here are some types of optimizations MySQL knows how to do:
	Reordering joins
	Tables don't always have to be joined in the order you
 specify in the query. Determining the best join order is an
 important optimization; we explain it in depth in "The join
 optimizer" on The join optimizer.

	Converting OUTER JOINs to
 INNER
 JOINs
	An OUTER JOIN doesn't
 necessarily have to be executed as an OUTER JOIN. Some factors, such as
 the WHERE clause and table
 schema, can actually cause an OUTER
 JOIN to be equivalent to an INNER JOIN. MySQL can recognize this
 and rewrite the join, which makes it eligible for
 reordering.

	Applying algebraic equivalence
 rules
	MySQL applies algebraic transformations to simplify and
 canonicalize expressions. It can also fold and reduce
 constants, eliminating impossible constraints and constant
 conditions. For example, the term (5=5 AND a>5) will reduce to just
 a>5. Similarly, (a<b AND b=c) AND a=5 becomes
 b>5 AND b=c AND a=5. These rules are
 very useful for writing conditional queries, which we discuss
 later in the chapter.

	COUNT(), MIN(), and
 MAX()
 optimizations
	Indexes and column nullability can often help MySQL
 optimize away these expressions. For example, to find the
 minimum value of a column that's leftmost in a B-Tree index,
 MySQL can just request the first row in the index. It can even
 do this in the query optimization stage, and treat the value
 as a constant for the rest of the query. Similarly, to find
 the maximum value in a B-Tree index, the server reads the last
 row. If the server uses this optimization, you'll see "Select
 tables optimized away" in the EXPLAIN plan. This literally means
 the optimizer has removed the table from the query plan and
 replaced it with a constant.
Likewise, COUNT(*)
 queries without a WHERE
 clause can often be optimized away on some storage engines
 (such as MyISAM, which keeps an exact count of rows in the
 table at all times). See "Optimizing COUNT() Queries" on Optimizing Specific Types of Queries for
 details.

	Evaluating and reducing constant
 expressions
	When MySQL detects that an expression can be reduced to
 a constant, it will do so during optimization. For example, a
 user-defined variable can be converted to a constant if it's
 not changed in the query. Arithmetic expressions are another
 example.
Perhaps surprisingly, even something you might consider
 to be a query can be reduced to a constant during the
 optimization phase. One example is a MIN() on an index. This can even be
 extended to a constant lookup on a primary key or unique
 index. If a WHERE clause
 applies a constant condition to such an index, the optimizer
 knows MySQL can look up the value at the beginning of the
 query. It will then treat the value as a constant in the rest
 of the query. Here's an example:
mysql> EXPLAIN SELECT film.film_id, film_actor.actor_id
 -> FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id)
 -> WHERE film.film_id = 1;
+----+-------------+------------+-------+----------------+-------+------+
| id | select_type | table | type | key | ref | rows |
+----+-------------+------------+-------+----------------+-------+------+
| 1 | SIMPLE | film | const | PRIMARY | const | 1 |
| 1 | SIMPLE | film_actor | ref | idx_fk_film_id | const | 10 |
+----+-------------+------------+-------+----------------+-------+------+

MySQL executes this query in two steps, which correspond to
 the two rows in the output. The first step is to find the desired
 row in the film table. MySQL's
 optimizer knows there is only one row, because there's
 a primary key on the film_id
 column, and it has already consulted the index during the query
 optimization stage to see how many rows it will find. Because the
 query optimizer has a known quantity (the value in the WHERE clause) to use in the lookup, this
 table's ref type is const.
In the second step, MySQL treats the film_id column from the row found in the
 first step as a known quantity. It can do this because the optimizer
 knows that by the time the query reaches the second step, it will
 know all the values from the first step. Notice that the film_actor table's ref type is const, just as the film table's was.
Another way you'll see constant conditions applied is by
 propagating a value's constant-ness from one place to another if
 there is a WHERE, USING, or ON clause that restricts them to being
 equal. In this example, the optimizer knows that the USING clause forces film_id to
 have the same value everywhere in the query—it must be equal to the
 constant value given in the WHERE
 clause.
	Covering indexes
	MySQL can sometimes use an index to avoid reading row
 data, when the index contains all the columns the query needs.
 We discussed covering indexes at length in Chapter 3.

	Subquery optimization
	MySQL can convert some types of subqueries into more efficient alternative
 forms, reducing them to index lookups instead of separate
 queries.

	Early termination
	MySQL can stop processing a query (or a step in a query)
 as soon as it fulfills the query or step. The obvious case is
 a LIMIT clause, but there
 are several other kinds of early termination. For instance, if
 MySQL detects an impossible condition, it can abort the entire
 query. You can see this in the following example:
mysql> EXPLAIN SELECT film.film_id FROM sakila.film WHERE film_id = -1;
+----+...+---+
| id |...| Extra |
+----+...+---+
| 1 |...| Impossible WHERE noticed after reading const tables |
+----+...+---+
This query stopped during the optimization step, but
 MySQL can also terminate execution sooner in some cases. The
 server can use this optimization when the query execution
 engine recognizes the need to retrieve distinct values, or to
 stop when a value doesn't exist. For example, the following
 query finds all movies without any actors: [42]
mysql> SELECT film.film_id
 -> FROM sakila.film
 -> LEFT OUTER JOIN sakila.film_actor USING(film_id)
 -> WHERE film_actor.film_id IS NULL;
This query works by eliminating any films that have
 actors. Each film might have many actors, but as soon as it
 finds one actor, it stops processing the current film and
 moves to the next one because it knows the WHERE clause prohibits outputting
 that film. A similar "Distinct/not-exists" optimization can
 apply to certain kinds of DISTINCT,
 NOT EXISTS(), and LEFT
 JOIN queries.

	Equality propagation
	MySQL recognizes when a query holds two columns as
 equal—for example, in a JOIN condition—and propagates
 WHERE clauses across
 equivalent columns. For instance, in the following
 query:
mysql> SELECT film.film_id
 -> FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id)
 -> WHERE film.film_id > 500;
MySQL knows that the WHERE clause applies not only to the
 film table but to the
 film_actor table as well,
 because the USING clause
 forces the two columns to match.
If you're used to another database server that can't do
 this, you may have been advised to "help the optimizer" by manually specifying the WHERE clause for both tables, like
 this:
... WHERE film.film_id > 500 AND film_actor.film_id > 500
This is unnecessary in MySQL. It just makes your queries
 harder to maintain.

	IN() list
 comparisons
	In many database servers, IN() is just a synonym for multiple
 OR clauses, because the two
 are logically equivalent. Not so in MySQL, which sorts the
 values in the IN() list and
 uses a fast binary search to see whether a value is in the
 list. This is O(log n) in the size of the
 list, whereas an equivalent series of OR clauses is
 O(n) in the size of the list (i.e., much
 slower for large lists).

The preceding list is woefully incomplete, as MySQL performs
 more optimizations than we could fit into this entire
 chapter, but it should give you an idea of the optimizer's
 complexity and intelligence. If there's one thing you should take
 away from this discussion, it's don't try to outsmart the
 optimizer. You may end up just defeating it, or making
 your queries more complicated and harder to maintain for zero
 benefit. In general, you should let the optimizer do its
 work.
Of course, as smart as the optimizer is, there are times when
 it doesn't give the best result. Sometimes you may know something
 about the data that the optimizer doesn't, such as a fact that's
 guaranteed to be true because of application logic. Also, sometimes
 the optimizer doesn't have the necessary functionality, such as hash
 indexes; at other times, as mentioned earlier, its cost estimates
 may prefer a query plan that turns out to be more expensive than an
 alternative.
If you know the optimizer isn't giving a good result, and you
 know why, you can help it. Some of the options are to add a hint to
 the query, rewrite the query, redesign your schema, or add
 indexes.

Table and index statistics

Recall the various layers in the MySQL server architecture,
 which we illustrated in Figure 1-1. The server
 layer, which contains the query optimizer, doesn't store statistics
 on data and indexes. That's a job for the storage engines, because
 each storage engine might keep different kinds of statistics (or
 keep them in a different way). Some engines, such as Archive, don't
 keep statistics at all!
Because the server doesn't store statistics, the MySQL query
 optimizer has to ask the engines for statistics on the tables in a
 query. The engines may provide the optimizer with statistics such as
 the number of pages per table or index, the cardinality of tables
 and indexes, the length of rows and keys, and key distribution
 information. The optimizer can use this information to help it
 decide on the best execution plan. We see how these statistics
 influence the optimizer's choices in later sections.

MySQL's join execution strategy

MySQL uses the term "join" more broadly than you might be used
 to. In sum, it considers every query a join—not just every query
 that matches rows from two tables, but every query, period
 (including subqueries, and even a SELECT against a single table).
 Consequently, it's very important to understand how MySQL executes
 joins.
Consider the example of a UNION query. MySQL executes a UNION as a series of single queries whose
 results are spooled into a temporary table, then read out again.
 Each of the individual queries is a join, in MySQL terminology—and
 so is the act of reading from the resulting temporary table.
At the moment, MySQL's join execution strategy is simple: it
 treats every join as a nested-loop join. This means MySQL runs a
 loop to find a row from a table, then runs a nested loop to find a
 matching row in the next table. It continues until it has found a
 matching row in each table in the join. It then builds and returns a
 row from the columns named in the SELECT list. It tries to build the next
 row by looking for more matching rows in the last table. If it
 doesn't find any, it backtracks one table and looks for more rows there. It keeps backtracking until it
 finds another row in some table, at which point, it looks for a
 matching row in the next table, and so on. [43]
This process of finding rows, probing into the next table, and
 then backtracking can be written as nested loops in the execution
 plan—hence the name "nested-loop join." As an example, consider this simple
 query:
mysql> SELECT tbl1.col1, tbl2.col2
 -> FROM tbl1 INNER JOIN tbl2 USING(col3)
 -> WHERE tbl1.col1 IN(5,6);
Assuming MySQL decides to join the tables in the order shown
 in the query, the following pseudocode shows how MySQL might execute
 the query:
outer_iter = iterator over tbl1 where col1 IN(5,6)
outer_row = outer_iter.next
while outer_row
 inner_iter = iterator over tbl2 where col3 = outer_row.col3
 inner_row = inner_iter.next
 while inner_row
 output [outer_row.col1, inner_row.col2]
 inner_row = inner_iter.next
 end
 outer_row = outer_iter.next
end
This query execution plan applies as easily to a single-table
 query as it does to a many-table query, which is why even a
 single-table query can be considered a join—the single-table join is
 the basic operation from which more complex joins are composed. It
 can support OUTER JOINs, too. For
 example, let's change the example query as follows:
mysql> SELECT tbl1.col1, tbl2.col2
 -> FROM tbl1 LEFT OUTER JOIN tbl2 USING(col3)
 -> WHERE tbl1.col1 IN(5,6);
Here's the corresponding pseudocode, with the changed parts in
 bold:
outer_iter = iterator over tbl1 where col1 IN(5,6)
outer_row = outer_iter.next
while outer_row
 inner_iter = iterator over tbl2 where col3 = outer_row.col3
 inner_row = inner_iter.next
 if inner_row
 while inner_row
 output [outer_row.col1, inner_row.col2]
 inner_row = inner_iter.next
 end
 else
 output [outer_row.col1, NULL]
 end
 outer_row = outer_iter.next
end
Another way to visualize a query execution plan is to use what the optimizer folks call a "swim-lane diagram." Figure 4-2 contains a
 swim-lane diagram of our initial INNER
 JOIN query. Read it from left to right and top to
 bottom.
[image: Swim-lane diagram illustrating retrieving rows using a join]

Figure 4-2. Swim-lane diagram illustrating retrieving rows using a
 join

MySQL executes every kind of query in essentially the same
 way. For example, it handles a subquery in the FROM clause by executing it first, putting
 the results into a temporary table, [44] and then treating that table just like an ordinary
 table (hence the name "derived table"). MySQL executes UNION queries with temporary tables too,
 and it rewrites all RIGHT OUTER
 JOIN queries to equivalent LEFT
 OUTER JOIN. In short, MySQL coerces every kind of query
 into this execution plan.
It's not possible to execute every legal SQL query this way,
 however. For example, a FULL OUTER
 JOIN can't be executed with nested loops and backtracking
 as soon as a table with no matching rows is found, because it might
 begin with a table that has no matching rows. This explains why
 MySQL doesn't support FULL OUTER
 JOIN. Still other queries can be executed with nested
 loops, but perform very badly as a result. We look at some of those
 later.

The execution plan

MySQL doesn't generate byte-code to execute a query, as many
 other database products do. Instead, the query execution plan is
 actually a tree of instructions that the query execution engine
 follows to produce the query results. The final plan contains enough
 information to reconstruct the original query. If you
 execute EXPLAIN EXTENDED on a
 query, followed by SHOW WARNINGS,
 you'll see the reconstructed query. [45]
Any multitable query can conceptually be represented as a
 tree. For example, it might be possible to execute a four-table
 join as shown in Figure 4-3.
[image: One way to join multiple tables]

Figure 4-3. One way to join multiple tables

This is what computer scientists call a balanced
 tree. This is not how MySQL executes the query, though.
 As we described in the previous section, MySQL always begins with
 one table and finds matching rows in the next table. Thus, MySQL's
 query execution plans always take the form of a left-deep
 tree, as in Figure 4-4.
[image: How MySQL joins multiple tables]

Figure 4-4. How MySQL joins multiple tables

The join optimizer

The most important part of the MySQL query optimizer is the
 join optimizer, which decides the best order of
 execution for multitable queries. It is often possible to join the
 tables in several different orders and get the same results. The
 join optimizer estimates the cost for various plans and tries to
 choose the least expensive one that gives the same result.
Here's a query whose tables can be joined in different orders without changing the
 results:
mysql> SELECT film.film_id, film.title, film.release_year, actor.actor_id,
 -> actor.first_name, actor.last_name
 -> FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id)
 -> INNER JOIN sakila.actor USING(actor_id);
You can probably think of a few different query plans.
 For example, MySQL could begin with the film table, use the index on film_id in the film_actor table to find actor_id values, and then look up rows in
 the actor table's primary key.
 This should be efficient, right? Now let's use EXPLAIN to see how MySQL wants to execute
 the query:
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 200
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: PRIMARY,idx_fk_film_id
 key: PRIMARY
 key_len: 2
 ref: sakila.actor.actor_id
 rows: 1
 Extra: Using index
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.film_actor.film_id
 rows: 1
 Extra:
This is quite a different plan from the one suggested in the
 previous paragraph. MySQL wants to start with the actor, table (we know this because it's
 listed first in the EXPLAIN
 output) and go in the reverse order. Is this really more efficient?
 Let's find out. The STRAIGHT_JOIN
 keyword forces the join to proceed in the order specified in
 the query. Here's the EXPLAIN
 output for the revised query:
mysql> EXPLAIN SELECT STRAIGHT_JOIN film.film_id...\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 951
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: PRIMARY,idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: sakila.film.film_id
 rows: 1
 Extra: Using index
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.film_actor.actor_id
 rows: 1
 Extra:
This shows why MySQL wants to reverse the join order: doing so will enable it to examine fewer
 rows in the first table. [46] In both cases, it will be able to perform fast indexed
 lookups in the second and third tables. The difference is how many
 of these indexed lookups it will have to do:
	Placing film first will
 require about 951 probes into film_actor and actor, one for each row in the first
 table.

	If the server scans the actor table first, it will have to do
 only 200 index lookups into later tables.

In other words, the reversed join order will require less
 backtracking and rereading. To double-check the optimizer's choice, we executed the two query versions
 and looked at the Last_query_cost
 variable for each. The reordered query had an estimated cost of 241,
 while the estimated cost of forcing the join order was 1,154.
This is a simple example of how MySQL's join optimizer can reorder queries to make them less
 expensive to execute. Reordering joins is usually a very effective
 optimization. There are times when it won't result in an optimal
 plan, and for those times you can use STRAIGHT_JOIN and write the query in the
 order you think is best—but such times are rare. In most cases, the
 join optimizer will outperform a human.
The join optimizer tries to produce a query execution plan
 tree with the lowest achievable cost. When possible, it examines all
 potential combinations of subtrees, beginning with all one-table
 plans.
Unfortunately, a join over n tables will
 have n-factorial combinations of join orders to
 examine. This is called the search space of all
 possible query plans, and it grows very quickly—a 10-table join can
 be executed up to 3,628,800 different ways! When the search space
 grows too large, it can take far too long to optimize the query, so
 the server stops doing a full analysis. Instead, it resorts to shortcuts such as "greedy" searches when
 the number of tables exceeds the optimizer_search_depth limit.
MySQL has many heuristics, accumulated through years of
 research and experimentation, that it uses to speed up the
 optimization stage. This can be beneficial, but it can also mean
 that MySQL may (on rare occasions) miss an optimal plan and choose a
 less optimal one because it's trying not to examine every possible
 query plan.
Sometimes queries can't be reordered, and the join optimizer
 can use this fact to reduce the search space by eliminating choices.
 A LEFT JOIN is a good example, as
 are correlated subqueries (more about subqueries later). This is
 because the results for one table depend on data retrieved from
 another table. These dependencies help the join optimizer reduce the
 search space by eliminating choices.

Sort optimizations

Sorting results can be a costly operation, so you can often
 improve performance by avoiding sorts or by performing them on fewer
 rows.
We showed you how to use indexes for sorting in Chapter 3. When MySQL can't use
 an index to produce a sorted result, it must sort the rows itself.
 It can do this in memory or on disk, but it always calls this
 process a filesort, even if it doesn't actually
 use a file.
If the values to be sorted will fit into the sort buffer,
 MySQL can perform the sort entirely in memory with a
 quicksort. If MySQL can't do the sort in
 memory, it performs it on disk by sorting the values in chunks. It
 uses a quicksort to sort each chunk and then merges the sorted chunk
 into the results.
There are two filesort algorithms:
	Two passes (old)
	Reads row pointers and ORDER
 BY columns, sorts them, and then scans the sorted
 list and rereads the rows for output.
The two-pass algorithm can be quite expensive, because
 it reads the rows from the table twice, and the second read
 causes a lot of random I/O. This is especially expensive
 for MyISAM, which uses a system call to fetch
 each row (because MyISAM relies on the operating system's
 cache to hold the data). On the other hand, it stores a
 minimal amount of data during the sort, so if the rows to be sorted are completely
 in memory, it can be cheaper to store less data and reread the
 rows to generate the final result.

	Single pass (new)
	Reads all the columns needed for the query, sorts them
 by the ORDER BY columns,
 and then scans the sorted list and outputs the specified
 columns.
This algorithm is available only in MySQL 4.1 and newer.
 It can be much more efficient, especially on large I/O-bound
 datasets, because it avoids reading the rows from the table
 twice and trades random I/O for more sequential I/O. However,
 it has the potential to use a lot more space, because it holds
 all desired columns from each row, not just the columns needed
 to sort the rows. This means fewer tuples will fit into the
 sort buffer, and the filesort will have to perform more sort
 merge passes.

MySQL may use much more temporary storage space for a filesort
 than you'd expect, because it allocates a fixed-size record for each
 tuple it will sort. These records are large enough to hold the
 largest possible tuple, including the full length of each VARCHAR column. Also, if you're using
 UTF-8, MySQL allocates three bytes for each character. As a result,
 we've seen cases where poorly optimized schemas caused the temporary
 space used for sorting to be many times larger than the entire
 table's size on disk.
When sorting a join, MySQL may perform the filesort at two
 stages during the query execution. If the ORDER BY clause refers only to columns
 from the first table in the join order, MySQL can filesort this
 table and then proceed with the join. If this happens, EXPLAIN shows "Using filesort" in the
 Extra column. Otherwise, MySQL
 must store the query's results into a temporary table and then
 filesort the temporary table after the join finishes. In this case,
 EXPLAIN shows "Using temporary;
 Using filesort" in the Extra
 column. If there's a LIMIT, it is
 applied after the filesort, so the temporary table and the filesort
 can be very large.
See "Optimizing for Filesorts" on Optimizing for Filesorts for more on how to tune the
 server for filesorts and how to influence which algorithm the server
 uses.

The Query Execution Engine

The parsing and optimizing stage outputs a query execution plan, which MySQL's query execution engine
 uses to process the query. The plan is a data structure; it is not
 executable byte-code, which is how many other databases execute
 queries.
In contrast to the optimization stage, the execution stage is usually not all that complex: MySQL
 simply follows the instructions given in the query execution plan.
 Many of the operations in the plan invoke methods implemented by the
 storage engine interface, also known as the handler
 API. Each table in the query is represented by an instance
 of a handler. If a table appears three times in the query, for
 example, the server creates three handler instances. Though we glossed
 over this before, MySQL actually creates the handler instances early
 in the optimization stage. The optimizer uses them to get information about the tables,
 such as their column names and index statistics.
The storage engine interface has lots of functionality, but it
 needs only a dozen or so "building-block" operations to execute most
 queries. For example, there's an operation to read the first row in an
 index, and one to read the next row in an index. This is enough for a
 query that does an index scan. This simplistic execution method makes
 MySQL's storage engine architecture possible, but it also imposes some
 of the optimizer limitations we've discussed.
Tip
Not everything is a handler operation. For example, the server
 manages table locks. The handler may implement its own lower-level
 locking, as InnoDB does with row-level locks, but this does not
 replace the server's own locking implementation. As explained in
 Chapter 1, anything that all storage
 engines share is implemented in the server, such as date and time
 functions, views, and triggers.

To execute the query, the server just repeats the instructions
 until there are no more rows to examine.

Returning Results to the Client

The final step in executing a query is to reply to the client.
 Even queries that don't return a result set still reply to the client
 connection with information about the query, such as how many rows it
 affected.
If the query is cacheable, MySQL will also place the results
 into the query cache at this stage.
The server generates and sends results incrementally. Think back
 to the single-sweep multijoin method we mentioned earlier. As soon as
 MySQL processes the last table and generates one row successfully, it
 can and should send that row to the client.
This has two benefits: it lets the server avoid holding the row
 in memory, and it means the client starts getting the results as soon
 as possible. [47]

[39] If the query is too large, the server will refuse to receive
 any more data and throw an error.

[40] You can work around this with SQL_BUFFER_RESULT, which we see a bit
 later.

[41] For example, the range check query plan reevaluates
 indexes for each row in a JOIN. You can see this query plan by
 looking for "range checked for each record" in the Extra column in EXPLAIN. This query plan also
 increments the Select_full_range_join server
 variable.

[42] We agree, a movie without actors is strange, but the
 Sakila sample database lists no actors for "SLACKER
 LIAISONS," which it describes as "A Fast-Paced Tale of a
 Shark And a Student who must Meet a Crocodile in Ancient
 China."

[43] As we show later, MySQL's query execution isn't quite this simple; there are many
 optimizations that complicate it.

[44] There are no indexes on the temporary table, which is
 something you should keep in mind when writing complex joins
 against subqueries in the FROM clause. This applies to UNION queries, too.

[45] The server generates the output from the execution plan.
 It thus has the same semantics as the original query, but not
 necessarily the same text.

[46] Strictly speaking, MySQL doesn't try to reduce the number
 of rows it reads. Instead, it tries to optimize for fewer page reads. But a row count can often
 give you a rough idea of the query cost.

[47] You can influence this behavior if needed—for example, with
 the SQL_BUFFER_RESULT hint. See
 the "Query Optimizer Hints" on Optimizing UNION, later in this chapter.

Limitations of the MySQL Query Optimizer

MySQL's "everything is a nested-loop join" approach to query
 execution isn't ideal for optimizing every kind of query. Fortunately,
 there are only a limited number of cases where the MySQL query
 optimizer does a poor job, and it's usually possible to
 rewrite such queries more efficiently.
Tip
The information in this section applies to the MySQL server
 versions to which we have access at the time of this writing—that is,
 up to MySQL 5.1. Some of these limitations will probably be eased or removed entirely
 in future versions, and some have already been fixed in versions not
 yet released as GA (generally available). In particular, there are a
 number of subquery optimizations in the MySQL 6 source code, and more
 are in progress.

Correlated Subqueries

MySQL sometimes optimizes subqueries very badly. The worst offenders are IN() subqueries in the WHERE clause. As an example, let's find all
 films in the Sakila sample database's sakila.film table whose casts include the
 actress Penelope Guiness (actor_id=1). This feels natural to write
 with a subquery, as follows:
mysql> SELECT * FROM sakila.film
 -> WHERE film_id IN(
 -> SELECT film_id FROM sakila.film_actor WHERE actor_id = 1);
It's tempting to think that MySQL will execute this query from
 the inside out, by finding a list of actor_id values and substituting them into
 the IN() list. We said an IN() list is generally very fast, so you
 might expect the query to be optimized to something like this:
-- SELECT GROUP_CONCAT(film_id) FROM sakila.film_actor WHERE actor_id = 1;
-- Result: 1,23,25,106,140,166,277,361,438,499,506,509,605,635,749,832,939,970,980
SELECT * FROM sakila.film
WHERE film_id
IN(1,23,25,106,140,166,277,361,438,499,506,509,605,635,749,832,939,970,980);
Unfortunately, exactly the opposite happens. MySQL tries to
 "help" the subquery by pushing a correlation into it from the outer
 table, which it thinks will let the subquery find rows more
 efficiently. It rewrites the query as follows:
SELECT * FROM sakila.film
WHERE EXISTS (
 SELECT * FROM sakila.film_actor WHERE actor_id = 1
 AND film_actor.film_id = film.film_id);
Now the subquery requires the film_id from the outer film table and can't be executed first.
 EXPLAIN shows the result as
 DEPENDENT SUBQUERY (you can use
 EXPLAIN EXTENDED to see exactly how
 the query is rewritten):
mysql> EXPLAIN SELECT * FROM sakila.film ...;
+----+--------------------+------------+--------+------------------------+
| id | select_type | table | type | possible_keys |
+----+--------------------+------------+--------+------------------------+
| 1 | PRIMARY | film | ALL | NULL |
| 2 | DEPENDENT SUBQUERY | film_actor | eq_ref | PRIMARY,idx_fk_film_id |
+----+--------------------+------------+--------+------------------------+
According to the EXPLAIN
 output, MySQL will table-scan the film table and execute the subquery
 for each row it finds. This won't cause a noticeable
 performance hit on small tables, but if the outer table is very large,
 the performance will be extremely bad. Fortunately, it's easy to
 rewrite such a query as a JOIN:
mysql> SELECT film.* FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id)
 -> WHERE actor_id = 1;
Another good optimization is to manually generate the IN() list by executing the subquery as a
 separate query with GROUP_CONCAT().
 Sometimes this can be faster than a JOIN.
MySQL has been criticized thoroughly for this particular type
 of subquery execution plan. Although it definitely needs
 to be fixed, the criticism often confuses two different issues:
 execution order and caching. Executing the query from the inside out
 is one way to optimize it; caching the inner query's result is
 another. Rewriting the query yourself lets you take control over both
 aspects. Future versions of MySQL should be able to optimize this type
 of query much better, although this is no easy task. There are very
 bad worst cases for any execution plan, including the inside-out
 execution plan that some people think would be simple to
 optimize.
When a correlated subquery is good

MySQL doesn't always optimize correlated subqueries badly. If you hear advice to
 always avoid them, don't listen! Instead, benchmark and make your
 own decision. Sometimes a correlated subquery is a perfectly
 reasonable, or even optimal, way to get a result. Let's look at an
 example:
mysql> EXPLAIN SELECT film_id, language_id FROM sakila.film
 -> WHERE NOT EXISTS(
 -> SELECT * FROM sakila.film_actor
 -> WHERE film_actor.film_id = film.film_id
 ->)\G
 *************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: film
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 951
 Extra: Using where
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: film_actor
 type: ref
possible_keys: idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: film.film_id
 rows: 2
 Extra: Using where; Using index
The standard advice for this query is to write it as a LEFT OUTER JOIN instead of using a subquery. In theory, MySQL's execution plan
 will be essentially the same either way. Let's see:
mysql> EXPLAIN SELECT film.film_id, film.language_id
 -> FROM sakila.film
 -> LEFT OUTER JOIN sakila.film_actor USING(film_id)
 -> WHERE film_actor.film_id IS NULL\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 951
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: idx_fk_film_id
 key: idx_fk_film_id
 key_len: 2
 ref: sakila.film.film_id
 rows: 2
 Extra: Using where; Using index; Not exists
The plans are nearly identical, but there are some
 differences:
	The SELECT type against
 film_actor is DEPENDENT SUBQUERY in one query and
 SIMPLE in the other. This
 difference simply reflects the syntax, because the first query
 uses a subquery and the second doesn't. It doesn't make much
 difference in terms of handler operations.

	The second query doesn't say "Using where" in the Extra column for the film table. That doesn't matter,
 though: the second query's USING clause is the same thing as a
 WHERE clause anyway.

	The second query says "Not exists" in the film_actor table's Extra column. This is an example
 of the early-termination algorithm we mentioned
 earlier in this chapter. It means MySQL is using a not-exists
 optimization to avoid reading more than one row in the film_actor table's idx_fk_film_id index. This is
 equivalent to a NOT EXISTS() correlated subquery, because it stops processing
 the current row as soon as it finds a match.

So, in theory, MySQL will execute the queries almost
 identically. In reality, benchmarking is the only way to tell which
 approach is really faster. We benchmarked both queries on our
 standard setup. The results are shown in Table 4-1.
Table 4-1. NOT EXISTS versus LEFT OUTER JOIN
	Query
	Result in queries per second
 (QPS)

	NOT EXISTS
 subquery
	360 QPS

	LEFT OUTER
 JOIN
	425 QPS

Our benchmark found that the subquery is quite a bit
 slower!
However, this isn't always the case. Sometimes a subquery can
 be faster. For example, it can work well when you just want to
 see rows from one table that match rows in another table. Although
 that sounds like it describes a join perfectly, it's not always the
 same thing. The following join, which is designed to find every film
 that has an actor, will return duplicates because some films have
 multiple actors:
mysql> SELECT film.film_id FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id);
We need to use DISTINCT or
 GROUP BY to eliminate the
 duplicates:
mysql> SELECT DISTINCT film.film_id FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id);
But what are we really trying to express with this query, and
 is it obvious from the SQL? The EXISTS operator expresses the logical
 concept of "has a match" without producing duplicated rows and
 avoids a GROUP BY or DISTINCT operation, which might require a
 temporary table. Here's the query written as a subquery instead of a
 join:
mysql> SELECT film_id FROM sakila.film
 -> WHERE EXISTS(SELECT * FROM sakila.film_actor
 -> WHERE film.film_id = film_actor.film_id);
Again, we benchmarked to see which strategy was faster. The
 results are shown in Table 4-2.
Table 4-2. EXISTS versus INNER JOIN
	Query
	Result in queries per second
 (QPS)

	INNER
 JOIN
	185 QPS

	EXISTS
 subquery
	325 QPS

In this example, the subquery performs much faster than the join.
We showed this lengthy example to illustrate two points: you
 should not heed categorical advice about subqueries, and you should use benchmarks to prove
 your assumptions about query plans and execution speed.

UNION limitations

MySQL sometimes can't "push down" conditions from the outside
 of a UNION to the inside, where
 they could be used to limit results or enable additional
 optimizations.
If you think any of the individual queries inside a UNION would benefit from a LIMIT, or if you know they'll be subject
 to an ORDER BY clause once
 combined with other queries, you need to put those clauses inside
 each part of the UNION. For
 example, if you UNION together
 two huge tables and LIMIT the
 result to the first 20 rows, MySQL will store both huge tables into
 a temporary table and then retrieve just 20 rows from it. You can
 avoid this by placing LIMIT 20 on
 each query inside the UNION.

Index merge optimizations

Index merge algorithms, introduced in MySQL 5.0, let
 MySQL use more than one index per table in a query. Earlier versions
 of MySQL could use only a single index, so when no single index was
 good enough to help with all the restrictions in the WHERE clause, MySQL often chose a table
 scan. For example, the film_actor
 table has an index on film_id and
 an index on actor_id, but neither
 is a good choice for both WHERE
 conditions in this query:
mysql> SELECT film_id, actor_id FROM sakila.film_actor
 -> WHERE actor_id = 1 OR film_id = 1;
In older MySQL versions, that query would produce a table scan
 unless you wrote it as the UNION
 of two queries:
mysql> SELECT film_id, actor_id FROM sakila.film_actor WHERE actor_id = 1
 -> UNION ALL
 -> SELECT film_id, actor_id FROM sakila.film_actor WHERE film_id = 1
 -> AND actor_id <> 1;
In MySQL 5.0 and newer, however, the query can use both
 indexes, scanning them simultaneously and merging the results. There
 are three variations on the algorithm: union for OR conditions, intersection for AND conditions, and unions of
 intersections for combinations of the two. The following query uses
 a union of two index scans, as you can see by examining the Extra column:
mysql> EXPLAIN SELECT film_id, actor_id FROM sakila.film_actor
 -> WHERE actor_id = 1 OR film_id = 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: index_merge
possible_keys: PRIMARY,idx_fk_film_id
 key: PRIMARY,idx_fk_film_id
 key_len: 2,2
 ref: NULL
 rows: 29
 Extra: Using union(PRIMARY,idx_fk_film_id); Using where
MySQL can use this technique on complex WHERE clauses, so you may see nested
 operations in the Extra column
 for some queries. This often works very well, but sometimes the algorithm's
 buffering, sorting, and merging operations use lots of CPU and
 memory resources. This is especially true if not all of the indexes
 are very selective, so the parallel scans return lots of rows to the
 merge operation. Recall that the optimizer doesn't account for this cost—it optimizes
 just the number of random page reads. This can make it "underprice"
 the query, which might in fact run more slowly than a plain table
 scan. The intensive memory and CPU usage also tends to impact
 concurrent queries, but you won't see this effect when you run the
 query in isolation. This is another reason to design realistic
 benchmarks.
If your queries run more slowly because of this optimizer
 limitation, you can work around it by disabling some indexes with
 IGNORE INDEX, or just fall back
 to the old UNION tactic.

Equality propagation

Equality propagation can have unexpected costs sometimes. For
 example, consider a huge IN()
 list on a column the optimizer knows will be equal to some columns
 on other tables, due to a WHERE,
 ON, or USING clause
 that sets the columns equal to each other.
The optimizer will "share" the list by copying it to the
 corresponding columns in all related tables. This is normally
 helpful, because it gives the query optimizer and execution engine
 more options for where to actually execute the IN() check. But when the list is very
 large, it can result in slower optimization and execution. There's
 no built-in workaround for this problem at the time of this
 writing—you'll have to change the source code if it's a problem for
 you. (It's not a problem for most people.)

Parallel execution

MySQL can't execute a single query in parallel on many CPUs.
 This is a feature offered by some other database servers, but not
 MySQL. We mention it so that you won't spend a lot of time trying to
 figure out how to get parallel query execution on MySQL!

Hash joins

MySQL can't do true hash joins at the time of this
 writing—everything is a nested-loop join. However, you can emulate
 hash joins using hash indexes. If you aren't using the Memory
 storage engine, you'll have to emulate the hash indexes, too. We
 showed you how to do this in "Building your own hash indexes" on
 Hash indexes.

Loose index scans

MySQL has historically been unable to do loose index scans, which scan noncontiguous ranges
 of an index. MySQL's index scans generally require a
 defined start point and a defined end point in the index, even if
 only a few noncontiguous rows in the middle are really desired
 for the query. MySQL will scan the entire range of
 rows within these end points.
An example will help clarify this. Suppose we have a table
 with an index on columns (a, b),
 and we want to run the following query:
mysql> SELECT ... FROM tbl WHERE b BETWEEN 2 AND 3;
Because the index begins with column a, but the query's WHERE clause doesn't specify column
 a, MySQL will do a table scan and
 eliminate the nonmatching rows with a WHERE clause, as shown in Figure 4-5.
[image: MySQL scans the entire table to find rows]

Figure 4-5. MySQL scans the entire table to find rows

It's easy to see that there's a faster way to execute this
 query. The index's structure (but not MySQL's storage engine API)
 lets you seek to the beginning of each range of values, scan until
 the end of the range, and then backtrack and jump ahead to the start
 of the next range. Figure 4-6 shows what
 that strategy would look like if MySQL were able to do it.
Notice the absence of a WHERE clause, which isn't needed because
 the index alone lets us skip over the unwanted rows. (Again, MySQL
 can't do this yet.)
[image: A loose index scan, which MySQL cannot currently do, would be more efficient]

Figure 4-6. A loose index scan, which MySQL cannot currently do, would
 be more efficient

This is admittedly a simplistic example, and we could easily
 optimize the query we've shown by adding a different index. However,
 there are many cases where adding another index can't solve the
 problem. One example is a query that has a range condition on the
 index's first column and an equality condition on the second
 column.
Beginning in MySQL 5.0, loose index scans are possible in
 certain limited circumstances, such as queries that find maximum and
 minimum values in a grouped query:
mysql> EXPLAIN SELECT actor_id, MAX(film_id)
 -> FROM sakila.film_actor
 -> GROUP BY actor_id\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: range
possible_keys: NULL
 key: PRIMARY
 key_len: 2
 ref: NULL
 rows: 396
 Extra: Using index for group-by
The "Using index for group-by" information in this EXPLAIN plan indicates a loose index scan.
 This is a good optimization for this special purpose, but it is not
 a general-purpose loose index scan. It might be better termed a
 "loose index probe."
Until MySQL supports general-purpose loose index scans, the
 workaround is to supply a constant or list of constants for the leading columns of the index. We
 showed several examples of how to get good performance with these types of queries in our indexing case study
 in the previous chapter.

MIN() and MAX()

MySQL doesn't optimize certain MIN() and MAX() queries very well. Here's an
 example:
mysql> SELECT MIN(actor_id) FROM sakila.actor WHERE first_name = 'PENELOPE';
Because there's no index on first_name, this query performs a table
 scan. If MySQL scans the primary key, it can theoretically stop
 after reading the first matching row, because the primary key is
 strictly ascending and any subsequent row will have a greater
 actor_id. However, in this case,
 MySQL will scan the whole table, which you can verify by profiling
 the query. The workaround is to remove the MIN() and rewrite the query with a LIMIT, as
 follows:
mysql> SELECT actor_id FROM sakila.actor USE INDEX(PRIMARY)
 -> WHERE first_name = 'PENELOPE' LIMIT 1;
This general strategy often works well when MySQL would
 otherwise choose to scan more rows than necessary. If you're a
 purist, you might object that this query is missing the point of
 SQL. We're supposed to be able to tell the server
 what we want and it's supposed to figure out
 how to get that data, whereas, in this case,
 we're telling MySQL how to execute the query
 and, as a result, it's not clear from the query that
 what we're looking for is a minimal value.
 True, but sometimes you have to compromise your principles to get
 high performance.

SELECT and UPDATE on the same table

MySQL doesn't let you SELECT from a table while simultaneously
 running an UPDATE on it. This
 isn't really an optimizer limitation, but knowing how MySQL executes
 queries can help you work around it. Here's an example of a query
 that's disallowed, even though it is standard SQL. The query updates
 each row with the number of similar rows in the table:
mysql> UPDATE tbl AS outer_tbl
 -> SET cnt = (
 -> SELECT count(*) FROM tbl AS inner_tbl
 -> WHERE inner_tbl.type = outer_tbl.type
 ->);
ERROR 1093 (HY000): You can't specify target table 'outer_tbl' for update in FROM
clause
To work around this limitation, you can use a derived table,
 because MySQL materializes it as a temporary table. This effectively
 executes two queries: one SELECT
 inside the subquery, and one multitable UPDATE with the joined results of the
 table and the subquery. The subquery opens and closes the table
 before the outer UPDATE opens the
 table, so the query will now succeed:
mysql> UPDATE tbl
 -> INNER JOIN(
 -> SELECT type, count(*) AS cnt
 -> FROM tbl
 -> GROUP BY type
 ->) AS der USING(type)
 -> SET tbl.cnt = der.cnt;

Optimizing Specific Types of Queries

In this section, we give advice on how to optimize certain kinds
 of queries. We've covered most of these topics in detail elsewhere in
 the book, but we wanted to make a list of common optimization problems
 that you can refer to easily.
Most of the advice in this section is version-dependent, and it
 may not hold for future versions of MySQL. There's no reason why the
 server won't be able to do some or all of these optimizations itself someday.
Optimizing COUNT() Queries

The COUNT() aggregate
 function and how to optimize queries that use it is probably one of
 the top 10 most misunderstood topics in MySQL. You can do a web search
 and find more misinformation on this topic than we care to think
 about.
Before we get into optimization, it's important that you
 understand what COUNT() really
 does.
What COUNT() does

COUNT() is a special
 function that works in two very different ways: it counts
 values and rows. A value
 is a non-NULL expression
 (NULL is the absence of a value).
 If you specify a column name or other expression inside the
 parentheses, COUNT() counts how
 many times that expression has a value. This is confusing for many
 people, in part because values and NULL are confusing. If you need to learn
 how this works in SQL, we suggest a good book on SQL fundamentals.
 (The Internet is not necessarily a good source of accurate
 information on this topic, either.)
The other form of COUNT()
 simply counts the number of rows in the result. This is what MySQL
 does when it knows the expression inside the parentheses can never
 be NULL. The most obvious example
 is COUNT(*), which is a special
 form of COUNT() that does not
 expand the * wildcard into the full list of columns in the table, as
 you might expect; instead, it ignores columns altogether and counts
 rows.
One of the most common mistakes we see is specifying column
 names inside the parentheses when you want to count rows. When you
 want to know the number of rows in the result, you should
 always use COUNT(*). This communicates your intention
 clearly and avoids poor performance.

Myths about MyISAM

A common misconception is that MyISAM is extremely fast for
 COUNT() queries. It is fast, but
 only for a very special case: COUNT(*) without a WHERE clause, which merely counts the
 number of rows in the entire table. MySQL can optimize this away
 because the storage engine always knows how many rows are in the
 table. If MySQL knows col can
 never be NULL, it can also
 optimize a COUNT(col) expression
 by converting it to COUNT(*)
 internally.
MyISAM does not have any magical speed optimizations for counting rows when the query has a
 WHERE clause, or for the more
 general case of counting values instead of rows. It may be faster
 than other storage engines for a given query, or it may not be. That
 depends on a lot of factors.

Simple optimizations

You can sometimes use MyISAM's COUNT(*) optimization to your advantage
 when you want to count all but a very small number of rows that are
 well indexed. The following example uses the standard World database
 to show how you can efficiently find the number of cities whose
 ID is greater than 5. You might write this query as
 follows:
mysql> SELECT COUNT(*) FROM world.City WHERE ID > 5;
If you profile this query with SHOW
 STATUS, you'll see that it scans 4,079 rows. If you negate
 the conditions and subtract the number of cities whose IDs are less than or equal to 5 from the total number of cities, you can
 reduce that to five rows:
mysql> SELECT (SELECT COUNT(*) FROM world.City) - COUNT(*)
 -> FROM world.City WHERE ID <= 5;
This version reads fewer rows because the subquery is turned
 into a constant during the query optimization phase, as you can see
 with EXPLAIN:
+----+-------------+-------+...+------+------------------------------+
| id | select_type | table |...| rows | Extra |
+----+-------------+-------+...+------+------------------------------+
| 1 | PRIMARY | City |...| 6 | Using where; Using index |
| 2 | SUBQUERY | NULL |...| NULL | Select tables optimized away |
+----+-------------+-------+...+------+------------------------------+
A frequent question on mailing lists and IRC channels is how
 to retrieve counts for several different values in the same column
 with just one query, to reduce the number of queries required. For
 example, say you want to create a single query that counts how many
 items have each of several colors. You can't use an OR (e.g., SELECT
 COUNT(color = 'blue' OR color = 'red') FROM items;),
 because that won't separate the different counts for the different
 colors. And you can't put the colors in the WHERE clause (e.g., SELECT COUNT(*) FROM items WHERE color = 'blue' AND
 color = 'red';), because the colors are mutually
 exclusive. Here is a query that solves this problem:
mysql> SELECT SUM(IF(color = 'blue', 1, 0)) AS blue,
SUM(IF(color = 'red', 1, 0))
-> AS red FROM items;
And here is another that's equivalent, but instead of using
 SUM() uses COUNT() and ensures that the expressions
 won't have values when the criteria are false:
mysql> SELECT COUNT(color = 'blue' OR NULL) AS blue, COUNT(color = 'red' OR NULL)
 -> AS red FROM items;

More complex optimizations

In general, COUNT() queries
 are hard to optimize because they usually need to count a lot of
 rows (i.e., access a lot of data). Your only other option for
 optimizing within MySQL itself is to use a covering index, which we
 discussed in Chapter 3. If
 that doesn't help enough, you need to make changes to your
 application architecture. Consider summary tables (also covered in
 Chapter 3), and possibly
 an external caching system such as memcached.
 You'll probably find yourself faced with the familiar dilemma,
 "fast, accurate, and simple: pick any two."

Optimizing JOIN Queries

This topic is actually spread throughout most of the book, but
 we mention a few highlights:
	Make sure there are indexes on the columns in the ON or USING clauses. See "Indexing Basics" on
 Indexing Basics for more about indexing.
 Consider the join order when adding indexes. If you're joining
 tables A and B on column c and the query optimizer decides to
 join the tables in the order B,
 A, you don't need to index the column on table B. Unused indexes are extra overhead. In
 general, you need to add indexes only on the second table in the
 join order, unless they're needed for some other reason.

	Try to ensure that any GROUP BY or ORDER
 BY expression refers only to columns from a single
 table, so MySQL can try to use an index for that operation.

	Be careful when upgrading MySQL, because the join syntax,
 operator precedence, and other behaviors have changed at various
 times. What used to be a normal join can sometimes become a cross
 product, a different kind of join that returns different results,
 or even invalid syntax.

Optimizing Subqueries

The most important advice we can give on subqueries is that you
 should usually prefer a join where possible, at least in current
 versions of MySQL. We covered this topic extensively earlier in this
 chapter.
Subqueries are the subject of intense work by the optimizer
 team, and upcoming versions of MySQL may have more subquery optimizations. It remains to be seen which of the
 optimizations we've seen will end up in released code, and how much
 difference they'll make. Our point here is that "prefer a join" is not
 future-proof advice. The server is getting smarter all the time, and
 the cases where you have to tell it how to do something instead of
 what results to return are becoming fewer.

Optimizing GROUP BY and DISTINCT

MySQL optimizes these two kinds of queries similarly in many
 cases, and in fact converts between them as needed internally during
 the optimization process. Both types of queries benefit from indexes,
 as usual, and that's the single most important way to optimize
 them.
MySQL has two kinds of GROUP
 BY strategies when it can't use an
 index: it can use a temporary table or a filesort to perform the
 grouping. Either one can be more efficient for any given query. You
 can force the optimizer to choose one method or the other with the
 SQL_BIG_RESULT and SQL_SMALL_RESULT optimizer hints.
If you need to group a join by a value that comes from a lookup
 table, it's usually more efficient to group by the lookup table's
 identifier than by the value. For example, the following query isn't
 as efficient as it could be:
mysql> SELECT actor.first_name, actor.last_name, COUNT(*)
 -> FROM sakila.film_actor
 -> INNER JOIN sakila.actor USING(actor_id)
 -> GROUP BY actor.first_name, actor.last_name;
The query is more efficiently written as follows:
mysql> SELECT actor.first_name, actor.last_name, COUNT(*)
 -> FROM sakila.film_actor
 -> INNER JOIN sakila.actor USING(actor_id)
 -> GROUP BY film_actor.actor_id;
Grouping by actor.actor_id
 could be more efficient than grouping by film_actor.actor_id. You should profile
 and/or benchmark on your specific data to see.
This query takes advantage of the fact that the actor's first
 and last name are dependent on the actor_id, so it will return the same
 results, but it's not always the case that you can blithely select
 nongrouped columns and get the same result. You may even have the
 server's SQL_MODE configured to
 disallow it. You can use MIN() or
 MAX() to work around this when you
 know the values within the group are distinct because they depend on the grouped-by column,
 or if you don't care which value you get:
mysql> SELECT MIN(actor.first_name), MAX(actor.last_name), ...;
Purists will argue that you're grouping by the wrong thing, and
 they're right. A spurious MIN() or
 MAX() is a sign that the query
 isn't structured correctly. However, sometimes your only concern will
 be making MySQL execute the query as quickly as possible. The purists
 will be satisfied with the following way of writing the query:
mysql> SELECT actor.first_name, actor.last_name, c.cnt
 -> FROM sakila.actor
 -> INNER JOIN (
 -> SELECT actor_id, COUNT(*) AS cnt
 -> FROM sakila.film_actor
 -> GROUP BY actor_id
 ->) AS c USING(actor_id) ;
But sometimes the cost of creating and filling the temporary
 table required for the subquery is high compared to the cost of fudging
 pure relational theory a little bit. Remember, the temporary table
 created by the subquery has no indexes.
It's generally a bad idea to select nongrouped columns in a
 grouped query, because the results will be nondeterministic and could
 easily change if you change an index or the optimizer decides to use a
 different strategy. Most such queries we see are accidents (because
 the server doesn't complain), or are the result of laziness rather
 than being designed that way for optimization purposes. It's better to
 be explicit. In fact, we suggest that you set the server's SQL_MODE configuration variable to include
 ONLY_FULL_GROUP_BY so it produces
 an error instead of letting you write a bad query.
MySQL automatically orders grouped queries by the columns in the
 GROUP BY clause, unless you specify
 an ORDER BY clause explicitly. If
 you don't care about the order and you see this causing a filesort,
 you can use ORDER BY NULL to skip
 the automatic sort. You can also add an optional DESC or ASC keyword right after the GROUP BY clause to order the results in the
 desired direction by the clause's columns.
Optimizing GROUP BY WITH ROLLUP

A variation on grouped queries is to ask MySQL to do
 superaggregation within the results. You can do this with a WITH ROLLUP clause, but it might not be as
 well optimized as you need. Check the execution method with EXPLAIN, paying attention to whether the
 grouping is done via filesort or temporary table; try removing the
 WITH ROLLUP and seeing if you get the same
 group method. You may be able to force the grouping method with the
 hints we mentioned earlier in this section.
Sometimes it's more efficient to do superaggregation in your
 application, even if it means fetching many more rows from the
 server. You can also nest a subquery in the FROM clause or use a temporary table to
 hold intermediate results.
The best approach may be to move the WITH ROLLUP functionality into your application
 code.

Optimizing LIMIT and OFFSET

Queries with LIMITs and
 OFFSETs are common in systems that
 do pagination, nearly always in conjunction with an ORDER BY clause. It's helpful to have an
 index that supports the ordering; otherwise, the server has to do a
 lot of filesorts.
A frequent problem is having a high value for the offset. If your query looks like LIMIT 10000, 20, it is generating 10,020
 rows and throwing away the first 10,000 of them, which is very
 expensive. Assuming all pages are accessed with equal frequency, such
 queries scan half the table on average. To optimize them, you can
 either limit how many pages are permitted in a pagination view, or try
 to make the high offsets more efficient.
One simple technique to improve efficiency is to do the offset
 on a covering index, rather than the full rows. You can then join the
 result to the full row and retrieve the additional columns you need.
 This can be much more efficient. Consider the following query:
mysql> SELECT film_id, description FROM sakila.film ORDER BY title LIMIT 50, 5;
If the table is very large, this query is better written as
 follows:
mysql> SELECT film.film_id, film.description
 -> FROM sakila.film
 -> INNER JOIN (
 -> SELECT film_id FROM sakila.film
 -> ORDER BY title LIMIT 50, 5
 ->) AS lim USING(film_id);
This works because it lets the server examine as little data as
 possible in an index without accessing rows, and then, once the
 desired rows are found, join them against the full table to retrieve
 the other columns from the row. A similar technique applies to joins
 with LIMIT clauses.
Sometimes you can also convert the limit to a positional query,
 which the server can execute as an index range scan. For example, if
 you precalculate and index a position column, you can rewrite the
 query as follows:
mysql> SELECT film_id, description FROM sakila.film
 -> WHERE position BETWEEN 50 AND 54 ORDER BY position;
Ranked data poses a similar problem, but usually mixes GROUP BY into the fray. You'll almost
 certainly need to precompute and store ranks.
If you really need to optimize pagination systems, you should
 probably use precomputed summaries. As an alternative, you can join
 against redundant tables that contain only the primary key and the
 columns you need for the ORDER BY.
 You can also use Sphinx; see Appendix C for more information.

Optimizing SQL_CALC_FOUND_ROWS

Another common technique for paginated displays is to add the
 SQL_CALC_FOUND_ROWS hint to a query with a LIMIT, so you'll know how many rows would
 have been returned without the LIMIT. It may seem that there's some kind of
 "magic" happening here, whereby the server predicts how many rows it
 would have found. But unfortunately, the server doesn't really do
 that; it can't count rows it doesn't actually find. This option just
 tells the server to generate and throw away the rest of the result
 set, instead of stopping when it reaches the desired number of rows.
 That's very expensive.
A better design is to convert the pager to a "next" link.
 Assuming there are 20 results per page, the query should then use a
 LIMIT of 21 rows and display only
 20. If the 21st row exists in the results, there's a next page, and
 you can render the "next" link.
Another possibility is to fetch and cache many more rows than
 you need—say, 1,000—and then retrieve them from the cache for
 successive pages. This strategy lets your application know how large
 the full result set is. If it's fewer than 1,000 rows, the application
 knows how many page links to render; if it's more, the application can
 just display "more than 1,000 results found." Both strategies are much
 more efficient than repeatedly generating an entire result and
 discarding most of it.
Even when you can't use these tactics, using a separate COUNT(*) query to find the number of rows
 can be much faster than SQL_CALC_FOUND_ROWS, if it can use a
 covering index.

Optimizing UNION

MySQL always executes UNION
 queries by creating a temporary table and filling it with the UNION results. MySQL can't apply as many
 optimizations to UNION queries as you might be used to. You
 might have to help the optimizer by manually "pushing down" WHERE, LIMIT, ORDER BY, and other conditions
 (i.e., copying them, as appropriate, from the outer query into each
 SELECT in the UNION).
It's important to always use UNION ALL, unless you need the server to
 eliminate duplicate rows. If you omit the ALL keyword, MySQL adds the distinct option to the temporary table,
 which uses the full row to determine uniqueness. This is quite
 expensive. Be aware that the ALL
 keyword doesn't eliminate the temporary table, though. MySQL always
 places results into a temporary table and then reads them out again,
 even when it's not really necessary (for example, when the results
 could be returned directly to the client).

Query Optimizer Hints

MySQL has a few optimizer hints you can use to control the query plan if you're not
 happy with the one MySQL's optimizer chooses. The following list
 identifies these hints and indicates when it's a good idea to use them.
 You place the appropriate hint in the query whose plan you want to
 modify, and it is effective for only that query. Check the MySQL manual
 for the exact syntax of each hint. Some of them are version-dependent.
 The options are:
	HIGH_PRIORITY
 and LOW_PRIORITY
	These hints tell MySQL how to prioritize the statement
 relative to other statements that are trying to access the same
 tables.
HIGH_PRIORITY tells MySQL
 to schedule a SELECT statement
 before other statements that may be waiting for locks, so they can
 modify data. In effect, it makes the SELECT go to the front of the queue
 instead of waiting its turn. You can also apply this modifier to
 INSERT, where it simply cancels
 the effect of a global LOW_PRIORITY server setting.
LOW_PRIORITY is the
 reverse: it makes the statement wait at the very end of the queue
 if there are any other statements that want to access the
 tables—even if the other statements are issued after it. It's
 rather like an overly polite person holding the door at a
 restaurant: as long as there's anyone else waiting, it will starve
 itself! You can apply this hint to SELECT, INSERT, UPDATE, REPLACE, and
 DELETE statements.
These hints are effective on storage engines with
 table-level locking, but you should never need them on InnoDB or
 other engines with fine-grained locking and concurrency control.
 Be careful when using them on MyISAM, because they can disable
 concurrent inserts and greatly reduce performance.
The HIGH_PRIORITY and
 LOW_PRIORITY hints are a
 frequent source of confusion. They do not allocate more or fewer
 resources to queries to make them "work harder" or "not work as
 hard"; they simply affect how the server queues statements that
 are waiting for access to a table.

	DELAYED
	This hint is for use with INSERT and REPLACE. It lets the statement to which
 it is applied return immediately and places the inserted rows into
 a buffer, which will be inserted in bulk when the table is free.
 This is most useful for logging and similar applications where you
 want to insert a lot of rows without making the client wait, and
 without causing I/O for each statement. There are many
 limitations; for example, delayed inserts are not implemented in
 all storage engines, and LAST_INSERT_ID() doesn't work with
 them.

	STRAIGHT_JOIN
	This hint can appear either just after the SELECT keyword in a SELECT statement, or in any statement
 between two joined tables. The first usage forces all tables in
 the query to be joined in the order in which they're listed in the
 statement. The second usage forces a join order on the two tables
 between which the hint appears.
The STRAIGHT_JOIN hint is
 useful when MySQL doesn't choose a good join order, or when the
 optimizer takes a long time to decide on a join order. In the
 latter case, the thread will spend a lot of time in "Statistics"
 state, and adding this hint will reduce the search space for the
 optimizer.
You can use EXPLAIN to
 see what order the optimizer would choose, then rewrite the query
 in that order and add STRAIGHT_JOIN. This is a good idea as
 long as you don't think the fixed order will result in bad
 performance for some WHERE
 clauses. You should be careful to revisit such queries after
 upgrading MySQL, however, because new optimizations may appear
 that will be defeated by STRAIGHT_JOIN.

	SQL_SMALL_RESULT
 and SQL_BIG_RESULT
	These hints are for SELECT statements. They tell the
 optimizer how and when to use temporary tables and sort in
 GROUP BY or DISTINCT queries. SQL_SMALL_RESULT tells the optimizer
 that the result set will be small and can be put into indexed
 temporary tables to avoid sorting for the grouping, whereas
 SQL_BIG_RESULT indicates that
 the result will be large and that it will be better to use
 temporary tables on disk with sorting.

	SQL_BUFFER_RESULT
	This hint tells the optimizer to put the results into a
 temporary table and release table locks as soon as possible. This
 is different from the client-side buffering we described in "The
 MySQL Client/Server Protocol" on Query Execution Basics. Server-side buffering can be
 useful when you don't use buffering on the client, as it lets you
 avoid consuming a lot of memory on the client and still release
 locks quickly. The tradeoff is that the server's memory is used
 instead of the client's.

	SQL_CACHE
 and SQL_NO_CACHE
	These hints instruct the server that the query either is or
 is not a candidate for caching in the query cache. See the next
 chapter for details on how to use them.

	SQL_CALC_FOUND_ROWS
	This hint tells MySQL to calculate a full result set when
 there's a LIMIT clause, even
 though it returns only LIMIT
 rows. You can retrieve the total number of rows it found via
 FOUND_ROWS() (but see
 "Optimizing SQL_CALC_FOUND_ROWS" on Optimizing UNION for reasons why you shouldn't use
 this hint).

	FOR UPDATE
 and LOCK IN SHARE
 MODE
	These hints control locking for SELECT statements, but only for storage
 engines that have row-level locks. They enable you to place locks
 on the matched rows, which can be useful when you want to lock
 rows you know you are going to update later, or when you want to
 avoid lock escalation and just acquire exclusive locks as soon as
 possible.
These hints are not needed for INSERT … SELECT queries, which place
 read locks on the source rows by default in MySQL 5.0. (You can
 disable this behavior, but it's not a good idea—we explain why in
 Chapters Chapter 8 and Chapter 11.) MySQL 5.1 may lift this
 restriction under certain conditions.
At the time of this writing, only InnoDB supports these
 hints, and it's too early to say whether other storage engines
 with row-level locks will support them in the future. When using
 these hints with InnoDB, be aware that they may disable some
 optimizations, such as covering indexes. InnoDB can't lock rows
 exclusively without accessing the primary key, which is where the
 row versioning information is stored.

	USE INDEX, IGNORE INDEX,
 and FORCE
 INDEX
	These hints tell the optimizer which indexes to use or
 ignore for finding rows in a table (for example, when deciding on
 a join order). In MySQL 5.0 and earlier, they don't influence
 which indexes the server uses for sorting and grouping; in MySQL
 5.1 the syntax can take an optional FOR
 ORDER BY or FOR GROUP
 BY clause.
FORCE INDEX is the same
 as USE INDEX, but it tells the
 optimizer that a table scan is extremely expensive compared to the
 index, even if the index is not very useful. You can use these
 hints when you don't think the optimizer is choosing the right
 index, or when you want to take advantage of an index for some
 reason, such as implicit ordering without an ORDER BY. We gave an example of this in
 "Optimizing LIMIT and OFFSET" on Optimizing SQL_CALC_FOUND_ROWS, where we showed how
 to get a minimum value efficiently with LIMIT.

In MySQL 5.0 and newer, there are also some system variables that influence the optimizer:
	optimizer_search_depth
	This variable tells the optimizer how exhaustively to
 examine partial plans. If your queries are taking a very long time
 in the "Statistics" state, you might try lowering this
 value.

	optimizer_prune_level
	This variable, which is enabled by default, lets the
 optimizer skip certain plans based on the number of rows
 examined.

Both options control optimizer shortcuts. These shortcuts are
 valuable for good performance on complex queries, but they can cause the
 server to miss optimal plans for the sake of efficiency. That's why it
 sometimes makes sense to change them.

User-Defined Variables

It's easy to forget about MySQL's user-defined variables, but they can be a powerful
 technique for writing efficient queries. They work especially well for
 queries that benefit from a mixture of procedural and relational logic.
 Purely relational queries treat everything as unordered sets that the
 server somehow manipulates all at once. MySQL takes a more pragmatic
 approach. This can be a weakness, but it can be a strength if you know
 how to exploit it, and user-defined variables can help.
User-defined variables are temporary containers for values, which
 persist as long as your connection to the server lives. You define them
 by simply assigning to them with a SET or SELECT statement: [48]
mysql> SET @one := 1;
mysql> SET @min_actor := (SELECT MIN(actor_id) FROM sakila.actor);
mysql> SET @last_week := CURRENT_DATE-INTERVAL 1 WEEK;
You can then use the variables in most places an expression can
 go:
mysql> SELECT ... WHERE col <= @last_week;
Before we get into the strengths of user-defined variables, let's
 take a look at some of their peculiarities and disadvantages and see
 what things you can't use them for:
	They prevent query caching.

	You can't use them where a literal or identifier is needed,
 such as for a table or column name, or in the LIMIT clause.

	They are connection-specific, so you can't use them for
 interconnection communication.

	If you're using connection pooling or persistent connections,
 they can cause seemingly isolated parts of your code to
 interact.

	They are case sensitive in MySQL versions prior to 5.0, so
 beware of compatibility issues.

	You can't explicitly declare these variables' types, and the
 point at which types are decided for undefined variables differs
 across MySQL versions. The best thing to do is initially assign a
 value of 0 for variables you want
 to use for integers, 0.0 for
 floating-point numbers, or '' (the empty string) for strings. A
 variable's type changes when it is assigned to; MySQL's user-defined
 variable typing is dynamic.

	The optimizer might optimize away these variables in some
 situations, preventing them from doing what you want.

	Order of assignment, and indeed even the time of assignment,
 can be nondeterministic and depend on the query plan the optimizer
 chose. The results can be very confusing, as you'll see
 later.

	The := assignment operator
 has lower precedence than any other operator, so you have to be
 careful to parenthesize explicitly.

	Undefined variables do not generate a syntax error, so it's easy
 to make mistakes without knowing it.

One of the most important features of variables is that you can assign a value to a variable and
 use the resulting value at the same time. In other words, an assignment
 is an L-value. Here's an example that
 simultaneously calculates and outputs a "row number" for a query:
mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum := @rownum + 1 AS rownum
 -> FROM sakila.actor LIMIT 3;
+----------+--------+
| actor_id | rownum |
+----------+--------+
1	1
2	2
3	3
+----------+--------+
This example isn't terribly interesting, because it just shows
 that we can duplicate the table's primary key. Still, it has its
 uses—one of which is ranking. Let's write a query that returns the 10
 actors who have played in the most movies, with a rank column that gives
 actors the same rank if they're tied. We start with a query that finds
 the actors and the number of movies:
mysql> SELECT actor_id, COUNT(*) as cnt
 -> FROM sakila.film_actor
 -> GROUP BY actor_id
 -> ORDER BY cnt DESC
 -> LIMIT 10;
+----------+-----+
| actor_id | cnt |
+----------+-----+
107	42
102	41
198	40
181	39
23	37
81	36
106	35
60	35
13	35
158	35
+----------+-----+
Now let's add the rank, which should be the same for all the
 actors who played in 35 movies. We use three variables to do this: one to keep track of the current
 rank, one to keep track of the previous actor's movie count, and one to
 keep track of the current actor's movie count. We change the rank when
 the movie count changes. Here's a first try:
mysql> SET @curr_cnt := 0, @prev_cnt := 0, @rank := 0;
mysql> SELECT actor_id,
 -> @curr_cnt := COUNT(*) AS cnt,
 -> @rank := IF(@prev_cnt <> @curr_cnt, @rank + 1, @rank) AS rank,
 -> @prev_cnt := @curr_cnt AS dummy
 -> FROM sakila.film_actor
 -> GROUP BY actor_id
 -> ORDER BY cnt DESC
 -> LIMIT 10;
+----------+-----+------+-------+
| actor_id | cnt | rank | dummy |
+----------+-----+------+-------+
| 107 | 42 | 0 | 0 |
| 102 | 41 | 0 | 0 |
...
Oops—the rank and count never got updated from zero. Why did this
 happen?
It's impossible to give a one-size-fits-all answer. The problem
 could be as simple as a misspelled variable name (in this example it's
 not), or something more involved. In this case, EXPLAIN shows there's a temporary table and
 filesort, so the variables are being evaluated at a different time from
 when we expected.
This is the type of inscrutable behavior you'll often experience
 with MySQL's user-defined variables. Debugging such problems can be
 tough, but it can really pay off. Ranking in SQL normally requires
 quadratic algorithms, such as counting the distinct number of actors who
 played in a greater number of movies. A user-defined variable solution
 can be a linear algorithm—quite an improvement.
An easy solution in this case is to add another level of temporary
 tables to the query, using a subquery in the FROM clause:
mysql> SET @curr_cnt := 0, @prev_cnt := 0, @rank := 0;
 -> SELECT actor_id,
 -> @curr_cnt := cnt AS cnt,
 -> @rank := IF(@prev_cnt <> @curr_cnt, @rank + 1, @rank) AS rank,
 -> @prev_cnt := @curr_cnt AS dummy
 -> FROM (
 -> SELECT actor_id, COUNT(*) AS cnt
 -> FROM sakila.film_actor
 -> GROUP BY actor_id
 -> ORDER BY cnt DESC
 -> LIMIT 10
 ->) as der;
+----------+-----+------+-------+
| actor_id | cnt | rank | dummy |
+----------+-----+------+-------+
107	42	1	42
102	41	2	41
198	40	3	40
181	39	4	39
23	37	5	37
81	36	6	36
106	35	7	35
60	35	7	35
13	35	7	35
158	35	7	35
+----------+-----+------+-------+
Most problems with user variables come from assigning to them and reading them at
 different stages in the query. For example, it doesn't work predictably
 to assign them in the SELECT
 statement and read from them in the WHERE clause. The following query might look
 like it will just return one row, but it doesn't:
mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum := @rownum + 1 AS cnt
 -> FROM sakila.actor
 -> WHERE @rownum <= 1;
+----------+------+
| actor_id | cnt |
+----------+------+
| 1 | 1 |
| 2 | 2 |
+----------+------+
This happens because the WHERE
 and SELECT are different stages in
 the query execution process. This is even more obvious when you add
 another stage to execution with an ORDER
 BY:
mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum := @rownum + 1 AS cnt
 -> FROM sakila.actor
 -> WHERE @rownum <= 1
 -> ORDER BY first_name;
This query returns every row in the table, because the ORDER BY added a filesort and the WHERE is evaluated before the filesort. The
 solution to this problem is to assign and read in the
 same stage of query execution:
mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum AS rownum
 -> FROM sakila.actor
 -> WHERE (@rownum := @rownum + 1) <= 1;
+----------+--------+
| actor_id | rownum |
+----------+--------+
| 1 | 1 |
+----------+--------+
Pop quiz: what will happen if you add the ORDER BY back to this query? Try it and see.
 If you didn't get the results you expected, why not? What about the
 following query, where the ORDER BY
 changes the variable's value and the WHERE clause evaluates it?
mysql> SET @rownum := 0;
mysql> SELECT actor_id, first_name, @rownum AS rownum
 -> FROM sakila.actor
 -> WHERE @rownum <= 1
 -> ORDER BY first_name, LEAST(0, @rownum := @rownum + 1);
The answer to most unexpected user-defined variable behavior can
 be found by running EXPLAIN and
 looking for "Using where," "Using temporary," or "Using filesort" in the
 Extra column.
The last example introduced another useful hack: we placed the
 assignment in the LEAST() function,
 so its value is effectively masked and won't skew the results of the
 ORDER BY (as we've written it, the
 LEAST() function will always return
 0). This trick is very helpful when
 you want to do variable assignments solely for their side effects: it
 lets you hide the return value and avoid extra columns, such as the
 dummy column we showed in a previous
 example. The GREATEST(), LENGTH(), ISNULL(),
 NULLIF(), COALESCE(), and IF() functions are also useful for this
 purpose, alone and in combination, because they have special behaviors.
 For instance, COALESCE() stops
 evaluating its arguments as soon as one has a defined value.
You can put variable assignments in all types of statements, not
 just SELECT statements. In fact, this
 is one of the best uses for user-defined variables. For example, you can rewrite
 expensive queries, such as rank calculations with subqueries, as cheap
 once-through UPDATE
 statements.
It can be a little tricky to get the desired behavior, though.
 Sometimes the optimizer decides to consider the variables compile-time constants and refuses to perform
 assignments. Placing the assignments inside a function like LEAST() will usually help. Another tip is to
 check whether your variable has a defined value before executing the
 containing statement. Sometimes you want it to, but other times you
 don't.
With a little experimentation, you can do all sorts of interesting
 things with user-defined variables. Here are some ideas:
	Calculate running totals and averages

	Emulate FIRST() and
 LAST() functions for grouped
 queries

	Do math on extremely large numbers

	Reduce an entire table to a single MD5 hash value

	"Unwrap" a sampled value that wraps when it increases beyond a
 certain boundary

	Emulate read/write cursors

Be Careful with MySQL Upgrades

As we've said, trying to outsmart the MySQL optimizer usually is
 not a good idea. It generally creates more work and increases
 maintenance costs for very little benefit. This is especially relevant
 when you upgrade MySQL, because optimizer hints used in your queries
 might prevent new optimizer strategies from being used.
The way the MySQL optimizer uses indexes is a moving target. New
 MySQL versions change how existing indexes can be used, and you should
 adjust your indexing practices as these new versions become available.
 For example, we've mentioned that MySQL 4.0 and older could use only
 one index per table per query, but MySQL 5.0 and newer can use index
 merge strategies.
Besides the big changes MySQL occasionally makes to the query
 optimizer, each incremental release typically includes many tiny
 changes. These changes usually affect small things, such as the
 conditions under which an index is excluded from consideration, and
 let MySQL optimize more special cases.
Although all this sounds good in theory, in practice some
 queries perform worse after an upgrade. If you've
 used a certain version for a long time, you have likely tuned certain
 queries just for that version, whether you know it or not. These
 optimizations may no longer apply in newer versions, or may degrade
 performance.
If you care about high performance you should have a benchmark
 suite that represents your particular workload, which you can run
 against the new version on a development server before you upgrade the
 production servers. Also, before upgrading, you should read the
 release notes and the list of known bugs in the new version. The MySQL
 manual includes a user-friendly list of known serious bugs.
Most MySQL upgrades bring better performance overall; we don't
 mean to imply otherwise. However, you should still be careful.

[48] In some contexts you can assign with a plain = sign, but we
 think it's better to avoid ambiguity and always use :=.

Chapter 5. Advanced MySQL Features

MySQL 5.0 and 5.1 introduced many features, such as stored
 procedures, views, and triggers, that are familiar to users with a
 background in other database servers. The addition of these features
 attracted many new users to MySQL. However, their performance implications
 did not really become clear until people began to use them widely.
This chapter covers these recent additions and other advanced
 topics, including some features that were available in MySQL 4.1 and even
 earlier. We focus on performance, but we also show you how to get the most
 from these advanced features.
The MySQL Query Cache

Many database products can cache query execution plans, so the
 server can skip the SQL parsing and optimization stages for repeated
 queries. MySQL can do this in some circumstances, but it also has a
 different type of cache (known as the query cache)
 that stores complete result sets for SELECT statements. This section focuses on
 that cache.
The MySQL query cache holds the exact bits that a completed query
 returned to the client. When a query cache hit occurs, the server can
 simply return the stored results immediately, skipping the parsing,
 optimization, and execution steps.
The query cache keeps track of which tables a query uses, and if
 any of those tables changes, it invalidates the cache entry. This coarse
 invalidation policy may seem inefficient—because the changes made to the
 tables might not affect the results stored in the cache—but it's a
 simple approach with low overhead, which is important on a busy
 system.
The query cache is designed to be completely transparent to the
 application. The application does not need to know whether MySQL
 returned data from the cache or actually executed the query. The result
 should be the same either way. In other words, the query cache doesn't change semantics; the server appears
 to behave the same way with it enabled or disabled. [49]
How MySQL Checks for a Cache Hit

The way MySQL checks for a cache hit is simple and quite fast:
 the cache is a lookup table. The lookup key is a hash of the query
 text itself, the current database, the client protocol version, and a
 handful of other things that might affect the actual bytes in the
 query's result.
MySQL does not parse, "normalize," or parameterize a statement
 when it checks for a cache hit; it uses the statement and other bits
 of data exactly as the client sends them. Any difference in character
 case, spacing, or comments—any difference at all—will prevent a query
 from matching a previously cached version. This is something to keep
 in mind while writing queries. Using consistent formatting and style is a good habit anyway,
 but in this case it can even make your system faster.
Another caching consideration is that the query cache will not
 store a result unless the query that generated it was deterministic.
 Thus, any query that contains a nondeterministic function, such as NOW() or CURRENT_DATE(), will not be cached.
 Similarly, functions such as CURRENT_USER() or CONNECTION_ID() may vary when executed by
 different users, thereby preventing a cache hit. In fact, the query
 cache does not work for queries that refer to user-defined functions,
 stored functions, user variables, temporary tables, tables in the
 mysql database, or any table that
 has a column-level privilege. (For a list of everything that makes a
 query uncacheable, see the MySQL manual.)
We often hear statements such as "MySQL doesn't check the cache
 if the query contains a nondeterministic function." This is incorrect. MySQL
 cannot know whether a query contains a nondeterministic function
 unless it parses the query, and the cache lookup happens
 before parsing. The server performs a case
 insensitive check to verify that the query begins with the letters
 SEL, but that's all.
However, it is correct to say "The server will find no results
 in the cache if the query contains a function such as NOW()," because even if the server executed
 the same query earlier, it will not have cached the results. MySQL
 marks a query as uncacheable as soon as it notices a construct that
 forbids caching, and the results generated by such a query are not
 stored.
A useful technique to enable the caching of queries that refer
 to the current date is to include the date as a literal value, instead
 of using a function. For example:
... DATE_SUB(CURRENT_DATE, INTERVAL 1 DAY) -- Not cacheable!
... DATE_SUB('2007-07-14', INTERVAL 1 DAY) -- Cacheable
Because the query cache works at the level of a complete SELECT statement when the server first
 receives it from the client connection, identical queries made inside
 a subquery or view cannot use the query cache, and neither can queries in stored
 procedures. Prepared statements also cannot use the query cache in versions prior to MySQL 5.1.
MySQL's query cache can improve performance, but there are a few issues you should be
 aware of when using it. First, enabling the query cache adds some
 overhead for both reads and writes:
	Read queries must check the cache before beginning.

	If the query is cacheable and isn't in the cache yet,
 there's some overhead due to storing the result after generating
 it.

	Finally, there's overhead for write queries, which must
 invalidate the cache entries for queries that use tables they
 change.

This overhead is relatively minimal, so the query cache can
 still be a net gain. However, as we explain later, the extra overhead
 can add up.
For InnoDB users, another problem is that transactions limit the query cache's usefulness. When a
 statement inside a transaction modifies a table, the server
 invalidates any cached queries that refer to the table, even though
 InnoDB's multiversioning might hide the transaction's changes from
 other statements. The table is also globally uncacheable until the
 transaction commits, so no further queries against that table—whether
 inside or outside the transaction—can be cached until the transaction
 commits. Long-running transactions can, therefore, increase the number
 of query cache misses.
Invalidation can also become a problem with a large query cache.
 If there are many queries in the cache, the invalidation can take a
 long time and cause the entire system to stall while it works. This is
 because there's a single global lock on the query cache, which will
 block all queries that need to access it. Accessing happens both when
 checking for a hit and when checking whether there are any queries to
 invalidate.

How the Cache Uses Memory

MySQL stores the query cache completely in memory, so you need
 to understand how it uses memory before you can tune it correctly. The
 cache stores more than just query results in its memory. It's a lot
 like a filesystem in some ways: it keeps structures that help it
 figure out which memory in its pool is free, mappings between tables
 and query results, query text, and the query results.
Aside from some basic housekeeping structures, which require
 about 40 KB, the query cache's memory pool is available to be used in
 variable-sized blocks. Every block knows what
 type it is, how large it is, and how much data it contains, and it
 holds pointers to the next and previous logical and physical blocks.
 Blocks can be of several types: they can store cache results, lists of
 tables used by a query, query text, and so on. However, the different
 types of blocks are treated in much the same way, so there's no need
 to distinguish among them for purposes of tuning the query cache.
When the server starts, it initializes the memory for the query cache. The memory pool is initially a single free
 block. This block is as large as the entire amount of memory the cache
 is configured to use, minus the housekeeping structures.
When the server caches a query's results, it allocates a block
 to store those results. This block must be a minimum of query_cache_min_res_unit bytes, though it
 may be larger if the server knows it is storing a larger result.
 Unfortunately, the server cannot allocate a block of precisely the
 right size, because it makes its initial allocation before the result
 set is complete. The server does not build the entire result set in
 memory and then send it—it's much more efficient to send each row as
 it's generated. Consequently, when it begins caching the result set,
 the server has no way of knowing how large it will eventually
 be.
Allocating blocks is a relatively slow process, because it
 requires the server to look at its lists of free blocks to find one
 that's big enough. Therefore, the server tries to minimize the number
 of allocations it makes. When it needs to cache a result set, it
 allocates a block of at least the minimum size and begins placing the
 results in that block. If the block becomes full while there is still
 data left to store, the server allocates a new block—again of at least
 the minimum size—and continues storing the data in that block. When
 the result is finished, if there is space left in the last block the
 server trims it to size and merges the leftover space into the
 adjacent free block. Figure 5-1 illustrates this
 process. [50]
When we say the server "allocates a block," we don't mean it is
 asking the operating system to allocate memory with malloc() or a similar call. It does that
 only once, when it creates the query cache. What we mean is that the
 server is examining its list of blocks and either choosing the best
 place to put a new block or, if necessary, removing the oldest cached
 query to make room. In other words, the MySQL server manages its own
 memory; it does not rely on the operating system to do it.
So far, this is all pretty straightforward. However, the picture
 can become quite a bit more complicated than it appeared in Figure 5-1. Let's suppose
 the average result is quite small, and the server is sending results
 to two client connections simultaneously. Trimming the results can
 leave a free block that's smaller than query_cache_min_res_unit and cannot be used
 for storing future cache results. The block allocation might end up
 looking something like Figure 5-2.
[image: How the query cache allocates blocks to store a result]

Figure 5-1. How the query cache allocates blocks to store a
 result

[image: Fragmentation caused by storing results in the query cache]

Figure 5-2. Fragmentation caused by storing results in the query
 cache

Trimming the first result to size left a gap between the two
 results—a block too small to use for storing a different query result.
 The appearance of such gaps is called
 fragmentation, and it's a classic problem in
 memory and filesystem allocation. Fragmentation can
 happen for a number of reasons, including cache invalidations, which
 can leave blocks that are too small to reuse later.

When the Query Cache Is Helpful

Caching queries isn't automatically more efficient than not
 caching them. Caching takes work, and the query cache results in a net gain only if the savings are
 greater than the overhead. This will depend on your server's
 workload.
In theory, you can tell whether the cache is helpful by
 comparing the amount of work the server has to do with the cache enabled and
 disabled. With the cache disabled, each read query has to execute and
 return its results, and each write query has to execute. With the
 cache enabled, each read query has to first check the cache and then
 either return the stored result or, if there isn't one, execute,
 generate the result, store it, and return it. Each write query has to
 execute and then check whether there are any cached queries that must
 be invalidated.
Although this may sound straightforward, it's not—it's hard to
 accurately calculate or predict the query cache's benefit. External
 factors must also be taken into account. For example, the query cache
 can reduce the amount of time required to come up with a query's
 result, but not the time it takes to send the result to the client
 program, which may be the dominating factor.
The type of query that benefits most from caching is one whose
 result is expensive to generate but doesn't take up much space in the
 cache, so it's cheap to store, return to the client, and invalidate.
 Aggregate queries, such as small COUNT() results from large tables, fit into
 this category. However, many other types of queries might be worth
 caching too.
One of the easiest ways to tell if you are benefiting from the
 query cache is to examine the query cache hit rate. This is the number of queries that are served
 from the cache instead of being executed by the server. When the
 server receives a SELECT statement,
 it increments either the Qcache_hits or the Com_select status variable, depending on
 whether the query was cached. Thus, the query cache hit rate is given
 by the formula Qcache_hits /
 (Qcache_hits+Com_select).
What's a good cache hit rate? It depends. Even a 30% hit rate
 can be very helpful, because the work saved by not executing queries
 is typically much more (per query) than the overhead of invalidating
 entries and storing results in the cache. It is also important to know
 which queries are cached. If the cache hits represent the most
 expensive queries, even a low hit rate can save work for the
 server.
Any SELECT query that MySQL
 doesn't serve from the cache is a cache miss. A
 cache miss can occur for any of the following reasons:
	The query is not cacheable, either because it contains a
 nondeterministic construct (such as CURRENT_DATE) or because its result set
 is too large to store. Both types of uncacheable queries increment
 the Qcache_not_cached status
 variable.

	The server has never seen the query before, so it never had
 a chance to cache its result.

	The query's result was previously cached, but the server
 removed it. This can happen because there wasn't enough memory to
 keep it, because someone instructed the server to remove it, or
 because it was invalidated (more on invalidations in a
 moment).

If your server has a lot of cache misses but very few uncacheable queries, one of
 the following must be true:
	The query cache is not warmed up yet. That is, the server
 hasn't had a chance to fill the cache with result sets.

	The server is seeing queries it hasn't seen before. If you
 don't have a lot of repeated queries, this can happen even after
 the cache is warmed up.

	There are a lot of cache invalidations.

Cache invalidations can happen because of fragmentation,
 insufficient memory, or data modifications. If you have allocated
 enough memory to the cache and tuned the query_cache_min_res_unit value properly,
 most cache invalidations should be due to data modifications. You can
 see how many queries have modified data by examining the Com_* status variables (Com_update, Com_delete, and so forth), and
 you can see how many queries have been invalidated due to low memory
 by checking the Qcache_lowmem_prunes status variable.
It's a good idea to consider the overhead of invalidation
 separately from the hit rate. As an extreme example, suppose you have
 one table that gets all the reads and has a 100% query cache hit rate,
 and another table that gets only updates. If you simply calculate the
 hit rate from the status variables, you will see a 100% hit rate.
 However, the query cache can still be inefficient, because it will
 slow down the update queries. All update queries will have to check
 whether any of the queries in the query cache need to be invalidated
 as a result of their modifications, but since the answer will always
 be "no," this is wasted work. You may not spot a problem such as this
 unless you check the number of uncacheable queries as well as the hit
 rate.
A server that handles a balanced blend of writes and cacheable
 reads on the same tables also may not benefit much from the query
 cache. The writes will constantly invalidate cached results, while at
 the same time the cacheable reads will constantly insert new results
 into the cache. These will be beneficial only if they are subsequently
 served from the cache.
If a cached result is invalidated before the server receives the
 same SELECT statement again,
 storing it was a waste of time and memory. Examine the relative sizes
 of Com_select and Qcache_inserts to see whether this is
 happening. If nearly every SELECT
 is a cache miss (thus incrementing Com_select) and subsequently stores its
 result into the cache, Qcache_inserts will be nearly as large as
 Com_select. Thus, you'd like
 Qcache_inserts to be much smaller
 than Com_select, at least when the
 cache is properly warmed up.
Every application has a finite potential cache
 size, even if there are no write queries. The potential
 cache size is the amount of memory required to store every possible cacheable query
 the application will ever issue. In theory, this is an extremely large
 number for most applications. In practice, many applications have a
 much smaller usable cache size than you might expect, because of the
 number of invalidations. Even if you make the query cache very large,
 it will never fill up more than the potential cache size.
You should monitor how much of the query cache your server
 actually uses. If it doesn't use as much memory as you've given it,
 make it smaller, and if memory restrictions are causing excessive
 invalidations, make it bigger. Don't worry about the cache size too
 much, though; giving it a little more or a little less memory than you
 think it'll really use won't impact performance that much. It's only a
 problem when there's a lot of wasted memory or so many cache
 invalidations that caching is a net loss.
You also have to balance the query cache with the other server
 caches, such as the InnoDB buffer pool or MyISAM key cache. It's not
 possible to just give a ratio or a simple formula for this, because
 the right balance depends on the application.

How to Tune and Maintain the Query Cache

Once you understand how the query cache works, it's easy to
 tune. It has only a few "moving parts":
	query_cache_type
	Whether the query cache is enabled. Possible values are
 OFF, ON, or DEMAND, where the latter means that
 only queries containing the SQL_CACHE modifier are eligible for
 caching. This is both a session-level and a global variable.
 (See Chapter 6 for details
 on session and global variables.)

	query_cache_size
	The total memory to allocate to the query cache, in bytes.
 This must be a multiple of 1,024 bytes, so MySQL may use a
 slightly different value than the one you specify.

	query_cache_min_res_unit
	The minimum size when allocating a block. We explained
 this setting in "How the Cache Uses Memory" on How the Cache Uses Memory; it's discussed further
 in the next section.

	query_cache_limit
	The largest result set that MySQL will cache. Queries whose
 results are larger than this setting will not be cached.
 Remember that the server caches results as it generates them, so
 it doesn't know in advance when a result will be too large to
 cache. If the result exceeds the specified limit, MySQL will
 increment the Qcache_not_cached status variable and
 discard the results cached so far. If you know this happens a
 lot, you can add the SQL_NO_CACHE hint to queries you don't
 want to incur this overhead.

	query_cache_wlock_invalidate
	Whether to serve cached results that refer to tables other
 connections have locked. The default value is OFF, which makes the query cache
 change the server's semantics because it lets you read cached
 data from a table another connection has locked, which you
 wouldn't normally be able to do. Changing it to ON will keep you from reading this
 data, but it might increase lock waits. This really doesn't
 matter for most applications, so the default is generally
 fine.

In principle, tuning the cache is pretty simple, but understanding the
 effects of your changes is more complicated. In the following
 sections, we show you how to reason about the query cache, so you can
 make good decisions.
Reducing fragmentation

There's no way to avoid all fragmentation, but choosing your
 query_cache_min_res_unit value
 carefully can help you avoid wasting a lot of memory in the query
 cache. The trick is to balance the size of each new block against
 the number of allocations the server has to do while storing
 results. If you make this value too small, the server will waste
 less memory, but it will have to allocate blocks more frequently, which is more work for the
 server. If you make it too large, you'll get too much fragmentation.
 The tradeoff is wasting memory versus using more CPU cycles during
 allocation.
The best setting varies with the size of your typical query
 result. You can see the average size of the queries in the cache by
 dividing the memory used (approximately query_cache_size — Qcache_free_memory) by
 the Qcache_queries_in_cache
 status variable. If you have a mixture of large and small results,
 you might not be able to choose a size that avoids fragmentation
 while also avoiding too many allocations. However, you may have
 reason to believe that it's not beneficial to cache the larger
 results (this is frequently true). You can keep large results from
 being cached by lowering the query_cache_limit variable, which can
 sometimes help achieve a better balance between fragmentation and
 the overhead of storing results in the cache.
You can detect query cache fragmentation by examining the
 Qcache_free_blocks status
 variable, which shows you how many blocks in the query cache are of
 type FREE. In the final
 configuration shown in Figure 5-2, there are two
 free blocks. The worst possible fragmentation is when there's a
 slightly-too-small free block between every pair of blocks used to
 store data, so every other block is a free block. Thus, if Qcache_free_blocks approaches Qcache_total_blocks / 2, your query cache
 is severely fragmented. If the Qcache_lowmem_prunes status variable is
 increasing and you have a lot of free blocks, fragmentation is
 causing queries to be deleted from the cache prematurely.
You can defragment the query cache with FLUSH QUERY
 CACHE. This command compacts the query cache by moving all
 blocks "upward" and removing the free space between them, leaving a single
 free block at the bottom. It blocks access to the query cache while
 it runs, which pretty much locks the whole server, but it's usually
 fast unless your cache is very large. Contrary to its name, it does
 not remove queries from the cache. That's what RESET QUERY CACHE does.

Improving query cache usage

If your query cache isn't fragmented but you're still not
 getting a good hit rate, you might have given it too little memory.
 If the server can't find any free blocks that are large enough to
 use for a new block, it must "prune" some queries from the
 cache.
When the server prunes cache entries, it increments the
 Qcache_lowmem_prunes status
 variable. If this value increases rapidly, there are two possible
 causes:
	If there are many free blocks, fragmentation is the likely
 culprit (see the previous section).

	If there are few free blocks, it might mean that your
 workload can use a larger cache size than you're giving it. You
 can see the amount of unused memory in the cache by examining
 Qcache_free_memory.

If there are many free blocks, fragmentation is low, there are
 few prunes due to low memory, and the hit rate is
 still low, your workload probably won't benefit
 much from the query cache. Something is keeping it from being used.
 If you have a lot of updates, that's probably the culprit; it's also
 possible that your queries are not cacheable.
If you've measured the cache hit ratio and you're still not
 sure whether the server is benefiting from the query cache, you can
 disable it and monitor performance, then reenable it and see how
 performance changes. To disable the query cache, set query_cache_size to 0. (Changing query_cache_type globally won't affect
 connections that are already open, and it won't return the memory to
 the server.) You can also benchmark, but it's sometimes tricky to
 get a realistic combination of cached queries, uncached queries, and
 updates.
Figure 5-3
 shows a flowchart with a basic example of the process you can use to
 analyze and tune your server's query cache.

InnoDB and the Query Cache

InnoDB interacts with the query cache in a more complex way than
 other storage engines, because of its implementation of MVCC. In MySQL
 4.0, the query cache is disabled entirely within transactions, but in MySQL 4.1 and newer, InnoDB
 indicates to the server, on a per-table basis, whether a transaction
 can access the query cache. It controls access to the query cache for
 both reads (retrieving results from the cache) and writes (saving
 results to the cache).
[image: How to analyze and tune the query cache]

Figure 5-3. How to analyze and tune the query cache

The factors that determine access are the transaction ID and
 whether there are any locks on the table. Each table in InnoDB's
 in-memory data dictionary has an associated transaction ID counter.
 Transactions whose IDs are less than the counter value are forbidden
 to read from or write to the query cache for queries that involve that
 table. Any locks on a table also make queries that access it
 uncacheable. For example, if a transaction performs a SELECT FOR UPDATE query on a table, no other
 transactions will be able to read from or write to the query cache for
 queries involving that table until the locks are released
When a transaction commits, InnoDB updates the counters for the
 tables upon which the transaction has locks. A lock is a rough
 heuristic for determining whether the transaction has modified a
 table; it is possible for a transaction to lock rows in a table and
 not update them, but it is not possible for it to modify the table's
 contents without acquiring any locks. InnoDB sets each table's counter
 to the system's transaction ID, which is the maximum transaction ID in
 existence.
This has the following consequences:
	The table's counter is an absolute lower bound on which
 transactions can use the query cache. If the system's transaction
 ID is 5 and a transaction acquires locks on rows in a table and
 then commits, transactions 1 through 4 can never read from or
 write to the query cache for queries involving that table
 again.

	The table's counter is updated not to the transaction ID of
 the transaction that locked rows in it, but to the system's
 transaction ID. As a result, transactions that lock rows in tables
 may find themselves blocked from reading from or writing to the
 query cache for queries involving that table in the future.

Query cache storage, retrieval, and invalidation are handled at
 the server level, and InnoDB cannot bypass or delay this. However,
 InnoDB can tell the server explicitly to invalidate queries that
 involve specific tables. This is necessary when a foreign key
 constraint, such as ON DELETE
 CASCADE, alters the contents of a table that isn't mentioned
 in a query.
In principle, InnoDB's MVCC architecture could let queries be
 served from the cache when modifications to a table don't affect the
 consistent read view other transactions see. However, implementing
 this would be complex. InnoDB's algorithm takes some shortcuts for
 simplicity, at the cost of locking transactions out of the query cache
 when this might not really be necessary.

General Query Cache Optimizations

Many schema, query, and application design decisions affect the
 query cache. In addition to what we discussed in the previous
 sections, here are some points to keep in mind:
	Having multiple smaller tables instead of one huge one can
 help the query cache. This design effectively makes the
 invalidation strategy work at a finer level of granularity. Don't
 let this unduly influence your schema design, though, as other
 factors can easily outweigh the benefit.

	It's more efficient to batch writes than to do them singly,
 because this method invalidates cached cache entries only
 once.

	We've noticed that the server can stall for a long time
 while invalidating entries in or pruning a very large query cache. This is the case
 at least up to MySQL 5.1. The easy solution is to not make
 query_cache_size too big; about
 256 MB should be more than enough.

	You cannot control the query cache on a per-database or
 per-table basis, but you can include or exclude individual
 queries with the SQL_CACHE and SQL_NO_CACHE modifiers in the SELECT statement. You can also enable or
 disable the query cache on a per-connection basis by setting the
 session-level query_cache_type
 server variable to the appropriate value.

	For a write-heavy application, disabling the query cache completely may improve
 performance. Doing so eliminates the overhead of caching queries
 that would be invalidated soon anyway. Remember to set query_cache_size to 0 when you disable it, so it doesn't
 consume any memory.

If you want to avoid the query cache for most queries, but you
 know that some will benefit significantly from caching, you can set
 the global query_cache_type to
 DEMAND and then add the SQL_CACHE hint to those queries you want to
 cache. Although this requires you to do more work, it gives you very
 fine-grained control over the cache. Conversely, if you want to cache
 most queries and exclude just a few, you can add SQL_NO_CACHE to them.

Alternatives to the Query Cache

The MySQL query cache works on the principle that the fastest
 query is the one you don't have to execute, but you still have to
 issue the query, and the server still needs to do a little bit of
 work. What if you really didn't have to talk to the database server at
 all for particular queries? Client-side caching can help ease the
 workload on your MySQL server even more. We explain caching more in
 Chapter 10.

[49] The query cache actually does change semantics in one subtle
 way: by default, a query can still be served from the cache when one
 of the tables to which it refers is locked with LOCK TABLES. You can disable this with the
 query_cache_wlock_invalidate
 variable.

[50] We've simplified the diagrams in this section for the
 purposes of illustration. The server really allocates query cache
 blocks in a more complicated fashion than we've shown here. If
 you're interested in how it works, the comments at the top of
 sql/sql_cache.cc in the server's source code
 explain it very clearly.

Storing Code Inside MySQL

MySQL lets you store code inside the server in the form of
 triggers, stored procedures, and stored functions. In MySQL 5.1, you can
 also store code in periodic jobs called events.
 Stored procedures and stored functions are collectively known as "stored
 routines."
All four types of stored code use a special extended SQL
 language that contains procedural structures such as loops
 and conditionals. [51] The biggest difference between the types of stored code is
 the context in which they operate—that is, their inputs and outputs.
 Stored procedures and stored functions can accept parameters and return
 results, but triggers and events do not.
In principle, stored code is a good way to share and reuse code. Giuseppe Maxia and others have created a
 library of useful general-purpose stored routines at
 http://mysql-sr-lib.sourceforge.net. However, it's
 hard to reuse stored routines from other database systems, because most
 have their own language (the exception is DB2, which has a fairly
 similar language based on the same standard). [52]
We focus more on the performance implications of stored code than on how to write it. O'Reilly's
 MySQL Stored Procedure Programming (by Guy
 Harrison and Steven Feuerstein) may be useful if you plan to write stored
 procedures in MySQL.
It's easy to find both advocates and opponents of stored code.
 Without taking sides, we list some of the pros and cons of using it in
 MySQL. First, the advantages:
	It runs where the data is, so you can save bandwidth and
 reduce latency by running tasks on the database server.

	It's a form of code reuse. It can help centralize business rules,
 which can enforce consistent behavior and provide more safety and
 peace of mind.

	It can ease release policies and maintenance.

	It can provide some security advantages and a way to control
 privileges more finely. A common example is a stored procedure for
 funds transfer at a bank: the procedure transfers the money within a
 transaction and logs the entire operation for auditing. You can let
 applications call the stored procedure without granting access to
 the underlying tables.

	The server caches stored procedure execution plans, which
 lowers the overhead of repeated calls.

	Because it's stored in the server and can be deployed, backed
 up, and maintained with the server, stored code is well suited for
 maintenance jobs. It doesn't have any external dependencies, such as
 Perl libraries or other software that you might not want to place on
 the server.

	It enables division of labor between application programmers
 and database programmers. It can be preferable for a database expert
 to write the stored procedures, as not every application programmer
 is good at writing efficient SQL queries.

Disadvantages include the following:
	MySQL doesn't provide good developing and debugging tools, so
 it's harder to write stored code in MySQL than it is in some other
 database servers.

	The language is slow and primitive compared to application
 languages. The number of functions you can use is limited, and it's
 hard to do complex string manipulations and write intricate
 logic.

	Stored code can actually add complexity to deploying
 your application. Instead of just application code and database
 schema changes, you'll need to deploy code that's stored inside the
 server, too.

	Because stored routines are stored with the database, they can
 create a security vulnerability. Having nonstandard cryptographic
 functions inside a stored routine, for example, will not protect
 your data if the database is compromised. If the cryptographic
 function were in the code, the attacker would have to compromise
 both the code and the database.

	Storing routines moves the load to the database server, which
 is typically harder to scale and more expensive than application or
 web servers.

	MySQL doesn't give you much control over the resources stored
 code can allocate, so a mistake can bring down the server.

	MySQL's implementation of stored code is pretty limited—execution plan caches
 are per-connection, cursors are materialized as temporary tables,
 and so on. (We mention the limitations of various features as we
 describe them.)

	It's hard to profile code with stored procedures in MySQL. It's difficult to analyze the
 slow query log when it just shows CALL
 XYZ('A'), because you have to go and find that procedure
 and look at the statements inside it.

	Stored code is a way to hide complexity, which simplifies
 development but is often very bad for performance.

When you're thinking about using stored code, you should ask
 yourself where you want your business logic to live: in application
 code, or in the database? Both approaches are popular. You just need to
 be aware that you're placing logic into the database when you use stored
 code.
Stored Procedures and Functions

MySQL's architecture and query optimizer place some limits on
 how you can use stored routines and how efficient they can be. The
 following restrictions apply at the time of this writing:
	The optimizer doesn't use the DETERMINISTIC modifier in stored functions to optimize away multiple calls
 within a single query.

	The optimizer cannot currently estimate how much it will
 cost to execute a stored function.

	Each connection has its own stored procedure execution plan
 cache. If many connections call the same procedure, they'll waste
 resources caching the same execution plan over and over. (If you
 use connection pooling or persistent connections, the execution
 plan cache can have a longer useful life.)

	Stored routines and replication are a tricky combination.
 You may not want to replicate the call to the routine. Instead,
 you may want to replicate the exact changes made to your dataset.
 Row-based replication, introduced in MySQL 5.1, helps alleviate
 this problem. If binary logging is enabled in MySQL 5.0, the
 server will insist that you either define all stored procedures as
 DETERMINISTIC or enable the
 elaborately named server option log_bin_trust_function_creators.

We usually prefer to keep stored routines small and simple. We
 like to perform complex logic outside the database in a procedural
 language, which is more expressive and versatile. It can also give you
 access to more computational resources and potentially to different
 forms of caching.
However, stored procedures can be much faster for certain types
 of operations—especially small queries. If a query is small enough,
 the overhead of parsing and network communication becomes a
 significant fraction of the overall work required to execute it. To
 illustrate this, we created a simple stored procedure that inserts a
 specified number of rows into a table. Here's the procedure's
 code:
 1 DROP PROCEDURE IF EXISTS insert_many_rows;
 2
 3 delimiter //
 4
 5 CREATE PROCEDURE insert_many_rows (IN loops INT)
 6 BEGIN
 7 DECLARE v1 INT;
 8 SET v1=loops;
 9 WHILE v1 > 0 DO
10 INSERT INTO test_table values(NULL,0,
11 'qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt',
12 'qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt');
13 SET v1 = v1 - 1;
14 END WHILE;
15 END;
16 //
17
18 delimiter ;
We then benchmarked how quickly this stored procedure could
 insert a million rows into a table, as compared to inserting one row
 at a time via a client application. The table structure and hardware
 we used doesn't really matter—what is important is the relative speed
 of the different approaches. Just for fun, we also measured how long
 the same queries took to execute when we connected through a MySQL
 Proxy. To keep things simple, we ran the entire benchmark on a single
 server, including the client application and the MySQL Proxy instance.
 Table 5-1 shows the
 results.
Table 5-1. Total time to insert one million rows one at a time
	Method
	Total time

	Stored procedure
	101 sec

	Client application
	279 sec

	Client application with MySQL
 Proxy
	307 sec

The stored procedure is much faster, mostly because it avoids
 the overhead of network communication, parsing, optimizing, and so
 on.
We show a typical stored procedure for maintenance jobs in the
 "The SQL Interface to Prepared Statements" on The SQL Interface to Prepared Statements.

Triggers

Triggers let you execute code when there's an INSERT, UPDATE, or DELETE statement. You can direct MySQL to
 execute them before and/or after the triggering statement executes.
 They cannot return values, but they can read and/or change the data
 that the triggering statement changes. Thus, you can use triggers to
 enforce constraints or business logic that you'd otherwise need to
 write in client code. A good example is emulating foreign keys on a
 storage engine that doesn't support them, such as MyISAM.
Triggers can simplify application logic and improve performance,
 because they save round-trips between the client and the server. They
 can also be helpful for automatically updating denormalized and
 summary tables. For example, the Sakila sample database uses them to
 maintain the film_text
 table.
MySQL's trigger implementation is not very complete at the time
 of this writing. If you're used to relying on triggers extensively in
 another database product, you shouldn't assume they will work the same
 way in MySQL. In particular:
	You can have only one trigger per table for each event (in
 other words, you can't have two triggers that fire AFTER INSERT).

	MySQL supports only row-level triggers—that is, triggers
 always operate FOR EACH ROW
 rather than for the statement as a whole. This is a much less
 efficient way to process large datasets.

The following universal cautions about triggers apply in MySQL,
 too:
	They can obscure what your server is really doing, because a
 simple statement can make the server perform a lot of "invisible"
 work. For example, if a trigger updates a related table, it can
 double the number of rows a statement affects.

	Triggers can be hard to debug, and it's often difficult to
 analyze performance bottlenecks when triggers are involved.

	Triggers can cause nonobvious deadlocks and lock waits. If a
 trigger fails the original query will fail, and if you're not
 aware the trigger exists, it can be hard to decipher the error
 code.

In terms of performance, the most severe limitation in MySQL's
 trigger implementation is the FOR EACH
 ROW design. This sometimes makes it impractical to use
 triggers for maintaining summary and cache tables, because they might
 be too slow. The main reason to use triggers instead of a periodic
 bulk update is that they keep your data consistent at all
 times.
Triggers also may not guarantee atomicity. For example,
 a trigger that updates a MyISAM table cannot be rolled back if there's
 an error in the statement that fires it. It is possible for a trigger
 to cause an error, too. Suppose you attach an AFTER UPDATE trigger to a MyISAM table and
 use it to update another MyISAM table. If the trigger has an error
 that causes the second table's update to fail, the first table's
 update will not be rolled back.
Triggers on InnoDB tables all operate within the same
 transaction, so the actions they take will be atomic, together with
 the statement that fired them. However, if you're using a trigger with
 InnoDB to check another table's data when validating a constraint, be
 careful about MVCC, as you can get incorrect results if you're not
 careful. For example, suppose you want to emulate foreign keys, but
 you don't want to use InnoDB's foreign keys. You can write a BEFORE INSERT trigger that verifies the
 existence of a matching record in another table, but if you don't
 use SELECT FOR UPDATE in the
 trigger when reading from the other table, concurrent updates to that
 table can cause incorrect results.
We don't mean to scare you away from triggers. On the contrary,
 they can be very useful, particularly for constraints, system
 maintenance tasks, and keeping denormalized data in sync.
You can also use triggers to log changes to rows. This can be
 handy for custom-built replication setups where you want to disconnect
 systems, make data changes, and then merge the changes back together.
 A simple example is a group of users who take laptops onto a job site.
 Their changes need to be synchronized to a master database, and then
 the master data needs to be copied back to the individual laptops.
 Accomplishing this requires two-way synchronization. Triggers are a
 good way to build such systems. Each laptop can use triggers to log
 every data modification to tables that indicate which rows have been
 changed. The custom synchronization tool can then apply these changes
 to the master database. Finally, ordinary MySQL replication can sync
 the laptops with the master, which will have the changes from all the
 laptops.
Sometimes you can even work around the FOR EACH ROW limitation. Roland Bouman found
 that ROW_COUNT() always reports
 1 inside a trigger, except for the
 first row of a BEFORE trigger. You
 can use this to prevent a trigger's code from executing for every row
 affected and run it only once per statement. It's not the same as a
 per-statement trigger, but it is a useful technique for emulating a
 per-statement BEFORE trigger in
 some cases. This behavior may actually be a bug that will get fixed at
 some point, so you should use it with care and verify that it still
 works when you upgrade your server. Here's a sample of how to use this
 hack:
CREATE TRIGGER fake_statement_trigger
BEFORE INSERT ON sometable
FOR EACH ROW
BEGIN
 DECLARE v_row_count INT DEFAULT ROW_COUNT();
 IF v_row_count <> 1 THEN
 -- Your code here
 END IF;
END;

Events

Events are a new form of stored code in MySQL 5.1. They are akin to
 cron jobs but are completely internal to the
 MySQL server. You can create events that execute SQL code once at a
 specific time, or frequently at a specified interval. The usual
 practice is to wrap the complex SQL in a stored procedure, so the
 event merely needs to perform a CALL.
Events run in a separate event scheduler thread, because they
 have nothing to do with connections. They accept no inputs and return
 no values—there's no connection for them to get inputs from or return
 values to. You can see the commands they execute in the server log, if
 it's enabled, but it can be hard to tell that those commands were
 executed from an event. You can also look in the INFORMATION_SCHEMA.EVENTS table to see an
 event's status, such as the last time it was executed.
Similar considerations to those that apply to stored procedures
 apply to events: you are giving the server additional work to do. The
 event overhead itself is minimal, but the SQL it calls can have a
 potentially serious impact on performance. Good uses for events
 include periodic maintenance tasks, rebuilding cache and summary
 tables to emulate materialized views, or saving status values for
 monitoring and diagnostics.
The following example creates an event that will run a stored
 procedure for a specific database, once a week: [53]
CREATE EVENT optimize_somedb ON SCHEDULE EVERY 1 WEEK
DO
CALL optimize_tables('somedb');
You can specify whether events should be replicated to slave
 servers. In some cases this is appropriate, whereas in others it's
 not. Take the previous example, for instance: you probably want to run
 the OPTIMIZE TABLE operation on all
 slaves, but keep in mind that it could impact overall server
 performance (with table locks, for instance) if all slaves were to
 execute this operation at the same time.
Finally, if a periodic event can take a long time to complete,
 it might be possible for the event to fire again while its earlier
 execution is still running. MySQL doesn't protect against this, so
 you'll have to write your own mutual exclusivity code. You can use
 GET_LOCK() to make sure that only
 one event runs at a time:
CREATE EVENT optimize_somedb ON SCHEDULE EVERY 1 WEEK
DO
BEGIN
 DECLARE CONTINUE HANLDER FOR SQLEXCEPTION
 BEGIN END;
 IF GET_LOCK('somedb', 0) THEN
 DO CALL optimize_tables('somedb');
 END IF;
 DO RELEASE_LOCK('somedb');
END
The "dummy" continue handler ensures that the event will release
 the lock, even if the stored procedure throws an exception.
Although events are dissociated from connections, they are still
 associated with threads. There's a main event scheduler thread, which
 you must enable in your server's configuration file or with a SET command:
mysql> SET GLOBAL event_scheduler := 1;
When enabled, this thread creates a new thread to execute each
 event. Within the event's code, a call to CONNECTION_ID() will return a unique value,
 as usual—even though there is no "connection" per se. (The return
 value of CONNECTION_ID() is
 really just the thread ID.) You can watch the server's error log for
 information about event execution.

Preserving Comments in Stored Code

Stored procedures, stored functions, triggers, and events can
 all have significant amounts of code, and it's useful to add comments.
 But the comments may not be stored inside the server, because the
 command-line client can strip them out. (This "feature" of the
 command-line client can be a nuisance, but c'est la
 vie.)
A useful trick for preserving comments in your stored code is to use version-specific
 comments, which the server sees as potentially executable code (i.e.,
 code to be executed only if the server's version number is that high
 or higher). The server and client programs know these aren't ordinary
 comments, so they won't discard them. To prevent the "code" from being
 executed, you can just use a very high version number, such as 99999.
 For example, let's add some documentation to our trigger example to
 demystify what it does:
CREATE TRIGGER fake_statement_trigger
BEFORE INSERT ON sometable
FOR EACH ROW
BEGIN
 DECLARE v_row_count INT DEFAULT ROW_COUNT();
 /*!99999
 ROW_COUNT() is 1 except for the first row, so this executes
 only once per statement.
 */
 IF v_row_count <> 1 THEN
 -- Your code here
 END IF;
END;

[51] The language is a subset of SQL/PSM, the Persistent Stored
 Modules part of the SQL standard. It is defined in ISO/IEC
 9075-4:2003 (E).

[52] There are also some porting utilities, such as the
 tsql2mysql project (http://sourceforge.net/projects/tsql2mysql) for
 porting from Microsoft SQL Server.

[53] We'll show you how to create this stored procedure
 later.

Cursors

MySQL currently provides read-only, forward-only server-side
 cursors that you can use only from within a MySQL stored procedure. They
 let you iterate over query results row by row and fetch each row into
 variables for further processing. A stored procedure can have multiple
 cursors open at once, and you can "nest" cursors in loops.
MySQL may provide updatable cursors in the future, but they're not
 in any current release. Cursors are read-only because they iterate over
 temporary tables rather than the tables where the data
 originated.
MySQL's cursor design holds some snares for the unwary. Because
 they're implemented with temporary tables, they can give developers a
 false sense of efficiency. The most important thing to know is that
 a cursor executes the entire query when you open
 it. Consider the following procedure:
1 CREATE PROCEDURE bad_cursor()
2 BEGIN
3 DECLARE film_id INT;
4 DECLARE f CURSOR FOR SELECT film_id FROM sakila.film;
5 OPEN f;
6 FETCH f INTO film_id;
7 CLOSE f;
8 END
This example shows that you can close a cursor before iterating
 through all of its results. A developer used to Oracle or Microsoft SQL
 Server might see nothing wrong with this procedure, but in MySQL it
 causes a lot of unnecessary work. Profiling this procedure with SHOW STATUS shows that it does 1,000 index
 reads and 1,000 inserts. That's because there are 1,000 rows in sakila.film. All 1,000 reads and writes occur
 when line 5 executes, before line 6 executes.
The moral of the story is that if you close a cursor that fetches
 data from a large result set early, you won't actually save work. If you
 need only a few rows, use LIMIT.
Cursors can cause MySQL to perform extra I/O operations too, and
 they can be very slow. Because in-memory temporary tables do not support
 the BLOB and TEXT types, MySQL has to create an on-disk
 temporary table for cursors over results that include these types. Even
 when that's not the case, if the temporary table is larger than tmp_table_size, MySQL will create it on
 disk.
MySQL doesn't support client-side cursors, but the client API has
 functions that emulate client-side cursors by fetching the entire result
 into memory. This is really no different from putting the result in an
 array in your application and manipulating it there. See "The MySQL
 Client/Server Protocol" on Query Execution Basics for
 more on the performance implications of fetching the entire result into client-side
 memory.

Prepared Statements

MySQL 4.1 and newer support server-side prepared
 statements that use an enhanced binary client/server protocol
 to send data efficiently between the client and server. You can access
 the prepared statement functionality through a programming library that
 supports the new protocol, such as the MySQL C API. The MySQL
 Connector/J and MySQL Connector/NET libraries provide the same
 capability to Java and .NET, respectively. There's also a SQL interface
 to prepared statements, which we discuss later.
When you create a prepared statement, the client library sends the
 server a prototype of the actual query you want to use. The server
 parses and processes this "skeleton" query, stores a structure
 representing the partially optimized query, and returns a
 statement handle to the client. The client library
 can execute the query repeatedly by specifying the statement
 handle.
Prepared statements can have parameters, which are question-mark
 placeholders for values that you can specify when you execute them. For
 example, you might prepare the following query:
mysql> INSERT INTO tbl(col1, col2, col3) VALUES (?, ?, ?) ;
You could then execute this query by sending the statement handle
 to the server, with values for each of the question-mark placeholders.
 You can repeat this as many times as desired. Exactly how you send the
 statement handle to the server will depend on your programming language.
 One way is to use the MySQL connectors for Java and .NET. Many client
 libraries that link to the MySQL C libraries also provide some interface
 to the binary protocol; you should read the documentation for your
 chosen MySQL API.
Using prepared statements can be more efficient than executing a
 query repeatedly, for several reasons:
	The server has to parse the query only once, which saves some
 parsing and other work.

	The server has to perform some query optimization steps only
 once, as it caches a partial query execution plan.

	Sending parameters via the binary protocol is more efficient
 than sending them as ASCII text. For example, a DATE value can be sent in just 3 bytes,
 instead of the 10 bytes required in ASCII. The biggest savings are
 for BLOB and TEXT values, which can be sent to the
 server in chunks rather than as a single huge piece of data. The
 binary protocol therefore helps save memory on the client, as well
 as reducing network traffic and the overhead of converting between
 the data's native storage format and the non-binary protocol's
 format.

	Only the parameters—not the entire query text—need to be sent
 for each execution, which reduces network traffic.

	MySQL stores the parameters directly into buffers on the
 server, which eliminates the need for the server to copy values
 around in memory.

Prepared statements can also help with security. There is no need
 to escape or quote values in the application, which is more convenient
 and reduces vulnerability to SQL injection or other attacks. (You should
 never trust user input, even when you're using prepared
 statements.)
You can use the binary protocol only with
 prepared statements. Issuing queries through the normal mysql_query() API function will
 not use the binary protocol. Many client libraries
 let you "prepare" statements with question-mark placeholders and then
 specify the values for each execution, but these libraries are often
 only emulating the prepare-execute cycle in client-side code and are
 actually sending each query to the server with mysql_query().
Prepared Statement Optimization

MySQL caches partial query execution plans for prepared
 statements, but some optimizations depend on the actual values that
 are bound to each parameter and therefore can't be precomputed and
 cached. The optimizations can be separated into three types, based on
 when they must be performed. The following list applies at the time of
 this writing, but it may change in the future:
	At preparation time
	The server parses the query text, eliminates negations,
 and rewrites subqueries.

	At first execution
	The server simplifies nested joins and converts OUTER JOIN to INNER JOIN where possible.

	At every execution
	The server does the following:
	Prunes partitions

	Eliminates COUNT(),
 MIN(), and MAX() where possible

	Removes constant subexpressions

	Detects constant tables

	Propagates equalities

	Analyzes and optimizes ref,
 range, and index_merge access methods

	Optimizes the join order

See Chapter 4 for more
 information on these optimizations.

The SQL Interface to Prepared Statements

A SQL interface to prepared statements is available in MySQL 4.1
 and newer. Here's an example of how to use a prepared statement
 through SQL:
mysql> SET @sql := 'SELECT actor_id, first_name, last_name
 -> FROM sakila.actor WHERE first_name = ?';
mysql> PREPARE stmt_fetch_actor FROM @sql;
mysql> SET @actor_name := 'Penelope';
mysql> EXECUTE stmt_fetch_actor USING @actor_name;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
1	PENELOPE	GUINESS
54	PENELOPE	PINKETT
104	PENELOPE	CRONYN
120	PENELOPE	MONROE
+----------+------------+-----------+
mysql> DEALLOCATE PREPARE stmt_fetch_actor;
When the server receives these statements, it translates them
 into the same operations that would have been invoked by the client
 library. This means that you don't have to use the special binary
 protocol to create and execute prepared statements.
As you can see, the syntax is a little awkward compared to just
 typing the SELECT statement
 directly. So what's the advantage of using a prepared statement this
 way?
The main use case is for stored procedures. In MySQL 5.0, you can use prepared
 statements in stored procedures, and the syntax is similar to the SQL
 interface. This means you can build and execute "dynamic SQL" in
 stored procedures by concatenating strings, which makes
 stored procedures much more flexible. For example, here's a sample
 stored procedure that can call OPTIMIZE
 TABLE on each table in a specified database:
DROP PROCEDURE IF EXISTS optimize_tables;
DELIMITER //
CREATE PROCEDURE optimize_tables(db_name VARCHAR(64))
BEGIN
 DECLARE t VARCHAR(64);
 DECLARE done INT DEFAULT 0;
 DECLARE c CURSOR FOR
 SELECT table_name FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = db_name AND TABLE_TYPE = 'BASE TABLE';
 DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;
 OPEN c;
 tables_loop: LOOP
 FETCH c INTO t;
 IF done THEN
 LEAVE tables_loop;
 END IF;
 SET @stmt_text := CONCAT("OPTIMIZE TABLE ", db_name, ".", t);
 PREPARE stmt FROM @stmt_text;
 EXECUTE stmt;
 DEALLOCATE PREPARE stmt;
 END LOOP;
 CLOSE c;
END//
DELIMITER ;
You can use this stored procedure as follows:
mysql> CALL optimize_tables('sakila');
Another way to write the loop in the procedure is as
 follows:
REPEAT
 FETCH c INTO t;
 IF NOT done THEN
 SET @stmt_text := CONCAT("OPTIMIZE TABLE ", db_name, ".", t);
 PREPARE stmt FROM @stmt_text;
 EXECUTE stmt;
 DEALLOCATE PREPARE stmt;
 END IF;
UNTIL done END REPEAT;
There is an important difference between the two loop
 constructs: REPEAT checks the loop
 condition twice for each loop. This probably won't cause a big
 performance problem in this example because we're merely checking an
 integer's value, but with more complex checks it could be
 costly.
Concatenating strings to refer to tables and databases is a good
 use for the SQL interface to prepared statements, because it lets you
 write statements that won't work with parameters. You can't
 parameterize database and table names because they are identifiers.
 Another scenario is dynamically setting a LIMIT clause, which you can't specify with a
 parameter either.
The SQL interface is useful for testing a prepared statement by
 hand, but it's otherwise not all that useful outside of stored
 procedures. Because the interface is through SQL, it doesn't use the
 binary protocol, and it doesn't really reduce network traffic because
 you have to issue extra queries to set the variables when there are
 parameters. You can benefit from using this interface in special
 cases, such as when preparing an enormous string of SQL that you'll
 execute many times without parameters. However, you should benchmark
 if you think using the SQL interface for prepared statements will save
 work.

Limitations of Prepared Statements

Prepared statements have a few limitations and caveats:
	Prepared statements are local to a connection, so another
 connection cannot use the same handle. For the same reason, a
 client that disconnects and reconnects loses the statements.
 (Connection pooling or persistent connections can alleviate this
 problem.)

	Prepared statements cannot use the MySQL query cache in
 MySQL versions prior to 5.1.

	It's not always more efficient to use prepared statements.
 If you use a prepared statement only once, you may spend more time
 preparing it than you would just executing it as normal SQL.
 Preparing a statement also requires an extra round-trip to the
 server.

	You cannot currently use a prepared statement inside a
 stored function (but you can use prepared statements inside stored
 procedures).

	You can accidentally "leak" a prepared statement by
 forgetting to deallocate it. This can consume a lot of resources on the server. Also, because there is a
 single global limit on the number of prepared statements, a
 mistake such as this can interfere with other connections' use of
 prepared statements.

User-Defined Functions

MySQL has supported user-defined functions
 (UDFs) for a long time. Unlike stored functions, which are written in
 SQL, you can write UDFs in any programming language that supports C
 calling conventions.
UDFs must be compiled and then dynamically linked with the server,
 making them platform-specific and giving you a lot of power. UDFs can be
 very fast and can access a large range of functionality in the operating
 system and available libraries. SQL stored functions are good for simple
 operations, such as calculating the great-circle distance between two
 points on the globe, but if you want to send network packets, you need a
 UDF. Also, while you can't currently build aggregate functions in SQL,
 you can do this easily with a UDF.
With great power comes great responsibility. A mistake in your UDF
 can crash your whole server, corrupt the server's memory and/or your
 data, and generally wreak all the havoc that any misbehaving C code can
 potentially cause.
Tip
Unlike stored functions written in SQL, UDFs cannot currently read and
 write tables—at least, not in the same transactional context as the
 statement that calls them. This means they're more helpful for pure
 computation, or interaction with the outside world. MySQL is gaining
 more and more possibilities for interaction with resources outside of
 the server. The functions Brian Aker and Patrick Galbraith have created to communicate with
 memcached (http://tangent.org/586/Memcached_Functions_for_MySQL.html)
 are a good example of how this can be done with UDFs.

If you use UDFs, check carefully for changes between MySQL
 versions when you upgrade, because they may need to be recompiled or
 even changed to work correctly with the new MySQL server. Also make sure
 your UDFs are absolutely thread-safe, because they execute within the
 MySQL server process, which is a pure multithreaded environment.
There are good libraries of prebuilt UDFs for MySQL, and many good
 examples of how to implement your own. The biggest repository of UDFs is
 at http://www.mysqludf.org.
The following is the code for the NOW_USEC() UDF we'll use to measure
 replication speed (see "How Fast Is Replication?" on How Fast Is Replication?):
#include <my_global.h>
#include <my_sys.h>
#include <mysql.h>

#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

extern "C" {
 my_bool now_usec_init(UDF_INIT *initid, UDF_ARGS *args, char *message);
 char *now_usec(
 UDF_INIT *initid,
 UDF_ARGS *args,
 char *result,
 unsigned long *length,
 char *is_null,
 char *error);
}

my_bool now_usec_init(UDF_INIT *initid, UDF_ARGS *args, char *message) {
 return 0;
}

char *now_usec(UDF_INIT *initid, UDF_ARGS *args, char *result,
 unsigned long *length, char *is_null, char *error) {

 struct timeval tv;
 struct tm* ptm;
 char time_string[20]; /* e.g. "2006-04-27 17:10:52" */
 char *usec_time_string = result;
 time_t t;

 /* Obtain the time of day, and convert it to a tm struct. */
 gettimeofday (&tv, NULL);
 t = (time_t)tv.tv_sec;
 ptm = localtime (&t);

 /* Format the date and time, down to a single second. */
 strftime (time_string, sizeof (time_string), "%Y-%m-%d %H:%M:%S", ptm);

 /* Print the formatted time, in seconds, followed by a decimal point
 * and the microseconds. */
 sprintf(usec_time_string, "%s.%06ld\n", time_string, tv.tv_usec);

 *length = 26;

 return(usec_time_string);
}

Views

Views are a popular database feature that were added in MySQL 5.0.
 A view in MySQL is a table that doesn't store any
 data itself. Instead, the data "in" the table is derived from a SQL
 query.
This book does not explain how to create or use views; you can
 read the appropriate section of the MySQL manual for that and find
 descriptions of uses for views in other documentation. MySQL treats a
 view exactly like a table for many purposes, and views and tables share
 the same namespace in MySQL; however, MySQL doesn't treat them
 identically. For example, you can't have triggers on views, and you
 can't drop a view with the DROP TABLE
 command.
It's important to understand the internal implementation
 of views and how they interact with the query optimizer,
 or you may not get good performance from them. We use the world sample database to demonstrate how views
 work:
mysql> CREATE VIEW Oceania AS
 -> SELECT * FROM Country WHERE Continent = 'Oceania'
 -> WITH CHECK OPTION;
The easiest way for the server to implement a view is to execute
 its SELECT statement and place the
 result into a temporary table. It can then refer to the temporary table
 where the view's name appears in the query. To see how this would work,
 consider the following query:
mysql> SELECT Code, Name FROM Oceania WHERE Name = 'Australia';
Here's how the server might execute it. The temporary table's name
 is for demonstration purposes only:
mysql> CREATE TEMPORARY TABLE TMP_Oceania_123 AS
 -> SELECT * FROM Country WHERE Continent = 'Oceania';
mysql> SELECT Code, Name FROM TMP_Oceania_123 WHERE Name = 'Australia';
There are obvious performance and query optimization problems with
 this approach. A better way to implement views is to rewrite a query
 that refers to the view, merging the view's SQL with the query's SQL.
 The following example shows how the query might look after MySQL has
 merged it into the view definition:
mysql> SELECT Code, Name FROM Country
 -> WHERE Continent = 'Oceania' AND Name = 'Australia';
MySQL can use both methods. It calls the two algorithms MERGE and TEMPTABLE, [54] and it tries to use the MERGE algorithm when possible. MySQL can even
 merge nested view definitions when a view is based upon another view.
 You can see the results of the query rewrite with EXPLAIN EXTENDED, followed by SHOW WARNINGS.
If a view uses the TEMPTABLE
 algorithm, EXPLAIN will usually show
 it as a DERIVED table. Figure 5-4 illustrates the two
 implementations.
[image: Two implementations of views]

Figure 5-4. Two implementations of views

MySQL uses TEMPTABLE when the
 view definition contains GROUP BY,
 DISTINCT, aggregate functions, UNION, subqueries, or any other construct that
 doesn't preserve a one-to-one relationship between the rows in the
 underlying base tables and the rows returned from the view. This is not
 a complete list, and it might change in the future. If you want to know
 whether a view will use MERGE or
 TEMPTABLE, you should EXPLAIN a trivial SELECT query against the view:
mysql> EXPLAIN SELECT * FROM <view_name>;
+----+-------------+
| id | select_type |
+----+-------------+
| 1 | PRIMARY |
| 2 | DERIVED |
+----+-------------+
The presence of a DERIVED
 select type indicates that the view will use the TEMPTABLE algorithm.
Updatable Views

An updatable view lets you update the
 underlying base tables via the view. As long as certain conditions
 hold, you can UPDATE, DELETE, and
 even INSERT into a view as you
 would with a normal table. For example, the following is a valid
 operation:
mysql> UPDATE Oceania SET Population = Population * 1.1 WHERE Name = 'Australia';
A view is not updatable if it contains GROUP BY, UNION, an aggregate function, or
 any of a few other exceptions. A query that changes data may contain a
 join, but the columns to be changed must all be in a single table. Any
 view that uses the TEMPTABLE
 algorithm is not updatable.
The CHECK OPTION clause,
 which we included when we created the view in the previous section,
 ensures that any rows changed through the view continue to match the
 view's WHERE clause after the
 change. So, we can't change the Continent column, nor can we insert a row
 that has a different Continent.
 Either would cause the server to report an error:
mysql> UPDATE Oceania SET Continent = 'Atlantis';
ERROR 1369 (HY000): CHECK OPTION failed 'world.Oceania'
Some database products allow INSTEAD
 OF triggers on views so you can define exactly what happens
 when a statement tries to modify a view's data, but MySQL does not
 support triggers on views. Some of MySQL's limitations on updatable
 views may be lifted in the future, enabling some interesting and
 useful applications. One possibility would be to build merge tables
 over tables with different storage engines. This could be a very
 useful and high-performance way to use views.

Performance Implications of Views

Most people don't think of using views to improve performance, but they can actually enhance performance
 in MySQL. You can also use them to aid other performance improvements.
 For example, refactoring a schema in stages with views can let some
 code continue working while you change the tables it accesses.
Some applications use one table per user, generally to implement
 a form of row-level security. A view similar to the one we showed
 earlier could offer similar security within a single table, and having
 fewer open tables would boost performance. Many open source projects
 that are used in mass hosting environments accumulate millions of
 tables and can benefit from this approach. Here's an example for a
 hypothetical blog-hosting database server:
CREATE VIEW blog_posts_for_user_1234 AS
 SELECT * FROM blog_posts WHERE user_id = 1234
 WITH CHECK OPTION;
You can also use views to implement column privileges without
 the overhead of actually creating those privileges, which can be
 significant. Column privileges prevent queries against the table from
 being cached in the query cache, too. A view can restrict access to
 the desired columns without causing these problems:
CREATE VIEW public.employeeinfo AS
 SELECT firstname, lastname -- but not socialsecuritynumber
 FROM private.employeeinfo;
GRANT SELECT ON public.* TO public_user;
You can also sometimes use pseudotemporary views to good effect.
 You can't actually create a truly temporary view that persists only
 for your current connection, but you can create a view under a special
 name, perhaps in a database reserved for it, that you know you can
 drop later. You can then use the view in the FROM clause, much the same way you'd use a
 subquery in the FROM clause. The
 two approaches are theoretically the same, but MySQL has a different
 codebase for views, so you may get better performance from the
 temporary view. Here's an example:
-- Assuming 1234 is the result of CONNECTION_ID()
CREATE VIEW temp.cost_per_day_1234 AS
 SELECT DATE(ts) AS day, sum(cost) AS cost
 FROM logs.cost
 GROUP BY day;

SELECT c.day, c.cost, s.sales
FROM temp.cost_per_day_1234 AS c
 INNER JOIN sales.sales_per_day AS s USING(day);

DROP VIEW temp.cost_per_day_1234;
Note that we've used the connection ID as a unique suffix to
 avoid name clashes. This approach can make it easier to clean up in
 case the application crashes and doesn't drop the temporary view. See
 "Missing Temporary Tables" on Missing Temporary Tables for more about this
 technique.
Views that use the TEMPTABLE
 algorithm can perform very badly (although they may still perform
 better than an equivalent query that doesn't use
 a view). MySQL executes them as a recursive step in optimizing the
 outer query, before the outer query is even fully optimized, so they
 don't get a lot of the optimizations you might be used to from other
 database products. The query that builds the temporary table doesn't
 get WHERE conditions pushed down
 from the outer query, and the temporary table does not have any
 indexes. Here's an example, again using the temp.cost_per_day_1234 view:
mysql> SELECT c.day, c.cost, s.sales
 -> FROM temp.cost_per_day_1234 AS c
 -> INNER JOIN sales.sales_per_day AS s USING(day)
 -> WHERE day BETWEEN '2007-01-01' AND '2007-01-31';
What really happens in this query is that the server executes
 the view and places the result into a temporary table, then joins the
 sales_per_day table against this
 temporary table. The BETWEEN
 restriction in the WHERE clause is
 not "pushed into" the view, so the view will create a result set for
 all dates in the table, not just the one month desired. The temporary
 table also lacks any indexes. In this example, this isn't a problem:
 the server will place the temporary table first in the join order, so
 the join can use the index on the sales_per_day table. However, if we were
 joining two such views against each other, the join would not be
 optimized with any indexes.
You should always benchmark, or at least profile in detail, if
 you're trying to use views to improve performance. Even MERGE views add overhead, and it's hard to
 predict how a view will impact performance. If performance matters,
 never guess—always measure.
Views introduce some issues that aren't MySQL-specific. Views
 may trick developers into thinking they're simple, when in fact
 they're very complicated under the hood. A developer who doesn't
 understand the underlying complexity might think nothing of repeatedly
 querying what looks like a table but is in fact an expensive view.
 We've seen cases where an apparently simple query produced hundreds of
 lines of EXPLAIN output because one
 or more of the "tables" it referenced was actually a view that
 referred to many other tables and views.

Limitations of Views

MySQL does not support the materialized views that you may be used to if you've
 worked with other database servers. (A materialized
 view generally stores its results in an invisible table
 behind the scenes, with periodic updates to refresh the invisible
 table from the source data.) MySQL also doesn't support indexed views.
 You can simulate materialized and/or indexed views by building cache
 and summary tables, however, and in MySQL 5.1, you can use events to
 schedule these tasks.
MySQL's implementation of views also has a few annoyances. The
 biggest is that MySQL doesn't preserve your original view SQL, so if
 you ever try to edit a view by executing SHOW
 CREATE VIEW and changing the resulting SQL, you're in for a
 nasty surprise. The query will be expanded to the fully canonicalized
 and quoted internal format, without the benefit of formatting,
 comments, and indenting.
If you need to edit a view and you've lost the pretty-printed
 query you originally used to create it, you can find it in the last
 line of the view's .frm file. If you have the
 FILE privilege and the
 .frm file is readable by all users, you can even
 load the file's contents through SQL with the LOAD_FILE() function. A little string
 manipulation can retrieve your original code intact, thanks again to
 Roland Bouman's creativity:
mysql> SELECT
 -> REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(
 -> REPLACE(REPLACE(REPLACE(REPLACE(REPLACE(
 -> SUBSTRING_INDEX(LOAD_FILE('/var/lib/mysql/world/Oceania.frm'),
 -> '\nsource=', -1),
 -> '_','_'), '\\%','\%'), '\\\\','\\'), '\\Z','\Z'), '\\t','\t'),
 -> '\\r','\r'), '\\n','\n'), '\\b','\b'), '\\\"','\"'), '\\\'','\''),
 -> '\\0','\0')
 -> AS source;

+---+
| source |
+---+
| SELECT * FROM Country WHERE continent = 'Oceania'
 WITH CHECK OPTION
|
+---+

[54] That's "temp table," not "can be tempted."

Character Sets and Collations

A character set is a mapping from binary
 encodings to a defined set of symbols; you can think of it as how to
 represent a particular alphabet in bits. A
 collation is a set of sorting rules for a character
 set. In MySQL 4.1 and later, every character-based value can have a
 character set and a collation. [55] MySQL's support for character sets and collations is
 world-class, but it can add complexity, and in some cases it has a
 performance cost.
This section explains the settings and functionality you'll need
 for most situations. If you need to know the more esoteric details, you
 should consult the MySQL manual.
How MySQL Uses Character Sets

Character sets can have several collations, and each character
 set has a default collation. Collations belong to a particular
 character set and cannot be used with any other. You use a character
 set and a collation together, so we'll refer to them collectively as a
 character set from now on.
MySQL has a variety of options that control character sets. The options and the character sets are
 easy to confuse, so keep this distinction in mind: only
 character-based values can truly "have" a character set. Everything
 else is just a setting that specifies which character set to use for
 comparisons and other operations. A character-based value can be the
 value stored in a column, a literal in a query, the result of an
 expression, a user variable, and so on.
MySQL's settings can be divided into two classes: defaults for creating objects, and settings that control
 how the server and the client communicate.
Defaults for creating objects

MySQL has a default character set and collation for the
 server, for each database, and for each table. These form a
 hierarchy of defaults that influences the character set that's used
 when you create a column. That, in turn, tells the server what
 character set to use for values you store in the column.
At each level in the hierarchy, you can either specify a
 character set explicitly or let the server use the applicable
 default:
	When you create a database, it inherits from the
 server-wide character_set_server setting.

	When you create a table, it inherits from the
 database.

	When you create a column, it inherits from the
 table.

Remember, columns are the only place MySQL stores values, so
 the higher levels in the hierarchy are only defaults. A table's
 default character set doesn't affect values stored in the tables; it
 just tells MySQL which character set to use when you create a column
 without specifying a character set explicitly.

Settings for client/server communication

When the server and the client communicate with each other,
 they may send data back and forth in different character sets. The
 server will translate as needed:
	The server assumes the client is sending statements in the
 character set specified by character_set_client.

	After the server receives a statement from the client, it
 translates it into the character set specified by character_set_connection. It also uses
 this setting to determine how to convert numbers into
 strings.

	When the server returns results or error messages back to
 the client, it translates them into character_set_result.

Figure 5-5
 illustrates this process.
[image: Client and server character sets]

Figure 5-5. Client and server character sets

You can use the SET NAMES statement
 and/or the SET CHARACTER SET
 statement to change these three settings as needed. However, note
 that this command affects only the server's
 settings. The client program and the client API also need
 to be set correctly to avoid communication problems with the
 server.
Suppose you open a client connection with latin1 (the default
 character set, unless you've used mysql_options() to change it) and then use
 SET NAMES utf8 to tell the server
 to assume the client is sending data in UTF-8. You've created a
 character set mismatch, which can cause errors and even security
 problems. You should set the client's character set and use mysql_real_escape_string() when escaping
 values. In PHP, you can change the client's character set with
 mysql_set_charset().

How MySQL compares values

When MySQL compares two values with different character sets, it must convert them to the same
 character set for the comparison. If the character sets aren't compatible,
 this can cause an error, such as "ERROR 1267 (HY000): Illegal mix of
 collations." In this case, you'll generally need to
 use the CONVERT() function
 explicitly to force one of the values into a character set that's
 compatible with the other. MySQL 5.0 and newer often do this
 conversion implicitly, so this error is more common in MySQL
 4.1.
MySQL also assigns a coercibility to
 values. This determines the priority of a value's character set and
 influences which value MySQL will convert implicitly. You can use
 the CHARSET(), COLLATION(), and
 COERCIBILITY() functions to help
 debug errors related to character sets and collations.
You can use introducers and
 collate clauses to specify the character set
 and/or collation for literal values in your SQL statements. For
 example:
mysql> SELECT _utf8 'hello world' COLLATE utf8_bin;
+--------------------------------------+
| _utf8 'hello world' COLLATE utf8_bin |
+--------------------------------------+
| hello world |
+--------------------------------------+

Special-case behaviors

MySQL's character set behavior holds a few surprises. Here are
 some things you should watch out for:
	The magical character_set_database
 setting
	The character_set_database setting
 defaults to the default database's setting. As you change your
 default database, it will change too. If you connect to the
 server without a default database, it defaults to character_set_server.

	LOAD DATA INFILE
	LOAD DATA INFILE
 interprets incoming data according to the current setting of
 character_set_database.
 Some versions of MySQL accept an optional CHARACTER SET clause in the LOAD DATA INFILE statement, but you
 shouldn't rely on this. We've found that the best way to get
 reliable results is to USE
 the desired database, execute SET
 NAMES to select a character set, and only then load
 the data. MySQL interprets all the loaded data as having the
 same character set, regardless of the character sets specified for the destination
 columns.

	SELECT INTO
 OUTFILE
	MySQL writes all data from SELECT INTO OUTFILE without
 converting it. There is currently no way to specify a
 character set for the data without wrapping each column in a
 CONVERT()
 function.

	Embedded escape sequences
	MySQL interprets escape sequences in statements according to
 character_set_client, even
 when there's an introducer or collate clause. This is because
 the parser interprets the escape sequences in literal values. The parser
 is not collation-aware—as far as it is concerned, an
 introducer isn't an instruction, it's just a token.

Choosing a Character Set and Collation

MySQL 4.1 and later support a large range of character sets and
 collations, including support for multibyte characters
 with the UTF-8 encoding of the Unicode character set (MySQL supports a
 three-byte subset of full UTF-8 that can store most characters in most
 languages). You can see the supported character sets with the SHOW CHARACTER SET and SHOW COLLATION commands.
ora: Keep It Simple
A mixture of character sets in your database can be a real mess. Incompatible
 character sets tend to be terribly confusing. They may even work
 fine until certain characters appear in your data, at which point,
 you'll start getting problems in all sorts of operations (such as
 joins between tables). You can solve the errors only by using
 ALTER TABLE to convert columns to
 compatible character sets, or casting values to the desired
 character set with introducers and collate clauses in your SQL
 statements.
For sanity's sake, it's best to choose sensible defaults on
 the server level, and perhaps on the database level. Then you can
 deal with special exceptions on a case-by-case basis, probably at
 the column level.

The most common choices for collations are whether letters
 should sort in a case sensitive or case insensitive manner, or
 according to the encoding's binary value. The collation names
 generally end with _cs, _ci, or
 _bin, so you can tell which is
 which easily.
When you specify a character set explicitly, you don't have to
 name both a character set and a collation. If you omit one or both,
 MySQL fills in the missing pieces from the applicable default. Table 5-2 shows how MySQL
 decides which character set and collation to use.
Table 5-2. How MySQL determines character set and collation
 defaults
	If you specify
	Resulting character set
	Resulting collation

	Both character set and collation
	As specified
	As specified

	Character set only
	As specified
	Character set's default collation

	Collation only
	Character set to which collation
 belongs
	As specified

	Neither
	Applicable default
	Applicable default

The following commands show how to create a database, table, and
 column with explicitly specified character sets and collations:
CREATE DATABASE d CHARSET latin1;
CREATE TABLE d.t(
 col1 CHAR(1),
 col2 CHAR(1) CHARSET utf8,
 col3 CHAR(1) COLLATE latin1_bin
) DEFAULT CHARSET=cp1251;
The resulting table's columns have the following
 collations:
mysql> SHOW FULL COLUMNS FROM d.t;
+------+---------+-------------------+
| Field | Type | Collation |

+------+---------+-------------------+
col1	char(1)	cp1251_general_ci
col2	char(1)	utf8_general_ci
col3	char(1)	latin1_bin
+------+---------+------------------+

How Character Sets and Collations Affect Queries

Some character sets may require more CPU operations, consume
 more memory and storage space, or even defeat indexing. Therefore, you
 should choose character sets and collations carefully.
Converting between character sets or collations can add overhead
 for some operations. For example, the sakila.film table has an index on the
 title column, which can speed up
 ORDER BY queries:
mysql> EXPLAIN SELECT title, release_year FROM sakila.film ORDER BY title\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: index
possible_keys: NULL
 key: idx_title
 key_len: 767
 ref: NULL
 rows: 953
 Extra:
However, the server can use the index for sorting only if it's
 sorted by the same collation as the one the query specifies. The index
 is sorted by the column's collation, which in this case is utf8_general_ci. If you want the results
 ordered by another collation, the server will have to do a
 filesort:
mysql> EXPLAIN SELECT title, release_year
 -> FROM sakila.film ORDER BY title COLLATE utf8_bin\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 953
 Extra: Using filesort
In addition to accommodating your connection's default
 character set and any preferences you specify explicitly
 in queries, MySQL has to convert character sets so that it can compare them when they're
 not the same. For example, if you join two tables on character columns
 that don't have the same character set, MySQL has to convert one
 of them. This conversion can make it impossible to use
 an index, because it is just like a function enclosing the
 column.
The UTF-8 multibyte character set stores each character in a
 varying number of bytes (between one and three). MySQL uses fixed-size
 buffers internally for many string operations, so it must allocate
 enough space to accommodate the maximum possible length. For example,
 a CHAR(10) encoded with UTF-8
 requires 30 bytes to store, even if the actual string contains no
 so-called wide characters. Variable-length fields (VARCHAR, TEXT) do not suffer from this on
 disk, but in-memory temporary tables used for processing and sorting
 queries will always allocate the maximum length needed.
In multibyte character sets a character is no longer the same as
 a byte. Consequently, MySQL has separate LENGTH() and CHAR_LENGTH() functions, which don't return
 the same results on multibyte characters. When you're working with
 multibyte character sets, be sure to use the CHAR_LENGTH() function when you want to
 count characters (e.g., when you're doing SUBSTRING() operations). The same caution
 holds for multibyte characters in application languages.
Another possible surprise is index limitations. If you index a UTF-8 column, MySQL
 has to assume each character can take up to three bytes, so the usual
 length restrictions are suddenly shortened by a factor of
 three:
mysql> CREATE TABLE big_string(str VARCHAR(500), KEY(str)) DEFAULT CHARSET=utf8;
Query OK, 0 rows affected, 1 warning (0.06 sec)
mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1071 | Specified key was too long; max key length is 999 bytes |
+---------+------+---+
Notice that MySQL shortened the index to a 333-character prefix
 automatically:
mysql> SHOW CREATE TABLE big_string\G
*************************** 1. row ***************************
 Table: big_string
Create Table: CREATE TABLE `big_string` (
 `str` varchar(500) default NULL,
 KEY `str` (`str`(333))
) ENGINE=MyISAM DEFAULT CHARSET=utf8
If you didn't notice the warning and check the table definition,
 you might not have spotted that the index was created on only a prefix
 of the column. This will have side effects such as disabling covering indexes.
Some people recommend that you just use UTF-8 globally to "make
 your life simpler." However, this is not necessarily a good idea if
 you care about performance. Many applications don't need to use UTF-8 at all, and depending on your
 data, UTF-8 can use much more storage space on disk.
When deciding on a character set, it's important to consider the
 kind of data you will store. For example, if you store mostly English
 text UTF-8 will add practically no storage penalty, because most
 characters in the English language fit in one byte in UTF-8. On the
 other hand, you may see a big difference if you store non-Latin
 languages such as Russian or Arabic. An application that needs to
 store only Arabic could use the cp1256 character set, which can represent
 all Arabic characters in one byte. But if the application needs to
 store many different languages and you choose UTF-8 instead, the very
 same Arabic characters will use more space. Likewise, if you convert a
 column from a national character set to UTF-8, you can increase the
 required storage space dramatically. If you're using InnoDB, you might
 increase the data size to the point that the values don't fit on the
 page and require external storage, which can cause a lot of wasted
 storage space and fragmentation. See "Optimizing for BLOB and TEXT
 Workloads" on Optimizing for BLOB and TEXT Workloads for more on this
 topic.
Sometimes you don't need to use a character set at all.
 Character sets are mostly useful for case insensitive
 comparison, sorting, and string operations that need to be
 character-aware, such as SUBSTRING(). If you don't need the database
 server to be aware of characters, you can store anything you want in
 BINARY columns, including UTF-8
 data. If you do this, you can also add a column that tells you what
 character set you used to encode the data. Although this is an
 approach some people have used for a long time, it does require you to
 be more careful. It can cause hard-to-catch mistakes, such as errors
 with SUBSTRING() and LENGTH(), if you forget that a byte is not
 necessarily a character. We recommend you avoid this practice if
 possible.

[55] MySQL 4.0 and earlier used a global setting for the entire
 server, and you could choose from among several 8-bit character
 sets.

Full-Text Searching

Most of the queries you'll write will probably have WHERE clauses that compare values for
 equality, filter out ranges of rows, and so on. However, you may also
 need to perform keyword searches, which are based on relevance instead
 of comparing values to each other. Full-text search systems are designed
 for this purpose.
Full-text searches require a special query syntax. They can work
 with or without indexes, but indexes can speed up the matching. The
 indexes used for full-text searches have a special structure to help
 find documents that contain the desired keywords.
You may not know it, but you're already familiar with at least one
 type of full-text search system: Internet search engines. Although they
 operate at a massive scale and don't usually have a relational database
 for a backend, the principles are similar.
In MySQL, only the MyISAM storage engine supports full-text indexing. It lets you search character-based
 content (CHAR, VARCHAR, and TEXT columns), and it supports both natural-language and Boolean searching. The full-text
 search implementation has a number of restrictions and limitations
 [56] and is quite complicated, but it's still widely used
 because it's included with the server and is adequate for many
 applications. In this section, we take a general look at how to use it
 and how to design for performance with full-text searching.
A MyISAM full-text index operates on a full-text
 collection, which is made up of one or more character columns
 from a single table. In effect, MySQL builds the index by concatenating
 the columns in the collection and indexing them as one long string of
 text.
A MyISAM full-text index is a special type of B-Tree index with
 two levels. The first level holds keywords. Then, for each keyword, the
 second level holds a list of associated document
 pointers that point to full-text collections that contain
 that keyword. The index doesn't contain every word in the collection. It
 prunes it as follows:
	A list of stopwords weeds out "noise"
 words by preventing them from being indexed. The stopword list is
 based on common English usage by default, but you can use the
 ft_stopword_file option to
 replace it with a list from an external file.

	The index ignores words unless they're longer than ft_min_word_len characters and shorter
 than ft_max_word_len
 characters.

Full-text indexes don't store information about which column in
 the collection a keyword occurs in, so if you need to search on
 different combinations of columns, you will need to create several
 indexes.
This also means you can't instruct a MATCH AGAINST clause to regard words from a
 particular column as more important than words from other columns. This
 is a common requirement when building search engines for web sites. For
 example, you might want search results to appear first when the keywords
 appear in an item's title. If you need this, you'll have to write more
 complicated queries. (We show an example later.)
Natural-Language Full-Text Searches

A natural-language search query determines each document's
 relevance to the query. Relevance is based on the number of matched
 words and the frequency with which they occur in the document. Words
 that are less common in the entire index make a match more relevant.
 In contrast, extremely common words aren't worth searching for at all.
 A natural-language full-text search excludes words that exist in more than
 50% of the rows in the table, even if they're not in the stopword
 list. [57]
The syntax of a full-text search is a little different from
 other types of queries. You tell MySQL to do full-text matching with
 MATCH AGAINST in the WHERE clause. Let's look at an example. In
 the standard Sakila sample database, the film_text table has a full-text index on the
 title and description columns:
mysql> SHOW INDEX FROM sakila.film_text;
+-----------+-----------------------+-------------+------------+
| Table | Key_name | Column_name | Index_type |
+-----------+-----------------------+-------------+------------+
| ...
| film_text | idx_title_description | title | FULLTEXT |
| film_text | idx_title_description | description | FULLTEXT |
+-----------+-----------------------+-------------+------------+
Here's an example natural-language full-text search query:
mysql> SELECT film_id, title, RIGHT(description, 25),
 -> MATCH(title, description) AGAINST('factory casualties') AS relevance
 -> FROM sakila.film_text
 -> WHERE MATCH(title, description) AGAINST('factory casualties');
+---------+-----------------------+---------------------------+-----------------+
| film_id | title | RIGHT(description, 25) | relevance |
+---------+-----------------------+---------------------------+-----------------+
831	SPIRITED CASUALTIES	a Car in A Baloon Factory	8.4692449569702
126	CASUALTIES ENCINO	Face a Boy in A Monastery	5.2615661621094
193	CROSSROADS CASUALTIES	a Composer in The Outback	5.2072987556458
369	GOODFELLAS SALUTE	d Cow in A Baloon Factory	3.1522686481476
451	IGBY MAKER	a Dog in A Baloon Factory	3.1522686481476
MySQL performed the full-text search by breaking the search
 string into words and matching each of them against the title and description fields, which are combined in
 the full-text collection upon which the index is built. Notice that
 only one of the results contains both words, and that the three
 results that contain "casualties" (there are only three in the entire
 table) are listed first. That's because the index sorts the results by
 decreasing relevance.
Tip
Unlike normal queries, the full-text search results are
 automatically ordered by relevance. MySQL cannot use an index for
 sorting when you perform a full-text search. Therefore, you
 shouldn't specify an ORDER BY
 clause if you want to avoid a filesort.

The MATCH() function actually
 returns the relevance as a floating-point number, as you can see from
 our example. You can use this to filter by relevance or to present the
 relevance in a user interface. There is no extra overhead from
 specifying the MATCH() function
 twice; MySQL recognizes they are the same and does the operation only
 once. However, if you put the MATCH() function in an ORDER BY clause, MySQL will use a filesort
 to order the results.
You have to specify the columns in the MATCH() clause exactly as they're specified
 in a full-text index, or MySQL can't use the index. This is
 because the index doesn't record in which column a keyword
 appeared.
This also means you can't use a full-text search to specify that
 a keyword should appear in a particular column of the index, as we
 mentioned previously. However, there's a workaround: you can do custom
 sorting with several full-text indexes on different combinations of
 columns to compute the desired ranking. Suppose we want the title
 column to be more important. We can add another index on this column,
 as follows:
mysql> ALTER TABLE film_text ADD FULLTEXT KEY(title) ;
Now we can make the title twice as important for purposes of
 ranking:
mysql> SELECT film_id, RIGHT(description, 25),
 -> ROUND(MATCH(title, description) AGAINST('factory casualties'), 3)
 -> AS full_rel,
 -> ROUND(MATCH(title) AGAINST('factory casualties'), 3) AS title_rel
 -> FROM sakila.film_text
 -> WHERE MATCH(title, description) AGAINST('factory casualties')
 -> ORDER BY (2 * MATCH(title) AGAINST('factory casualties'))
 -> + MATCH(title, description) AGAINST('factory casualties') DESC;
+---------+---------------------------+----------+-----------+
| film_id | RIGHT(description, 25) | full_rel | title_rel |
+---------+-------------- ------------+----------+-----------+
831	a Car in A Baloon Factory	8.469	5.676
126	Face a Boy in A Monastery	5.262	5.676
299	jack in The Sahara Desert	3.056	6.751
193	a Composer in The Outback	5.207	5.676
369	d Cow in A Baloon Factory	3.152	0.000
451	a Dog in A Baloon Factory	3.152	0.000
595	a Cat in A Baloon Factory	3.152	0.000
649	nizer in A Baloon Factory	3.152	0.000
However, this is usually an inefficient approach because it
 causes filesorts.

Boolean Full-Text Searches

In Boolean searches, the query itself specifies the
 relative relevance of each word in a match. Boolean searches use the
 stopword list to filter out noise words, but the requirement that
 words be longer than ft_min_word_len characters and shorter than
 ft_max_word_len characters is
 disabled. The results are unsorted.
When constructing a Boolean search query, you can use prefixes
 to modify the relative ranking of each keyword in the search string.
 The most commonly used modifiers are shown in Table 5-3.
Table 5-3. Common modifiers for Boolean full-text searches
	Example
	Meaning

	dinosaur
	Rows containing "dinosaur" rank
 higher.

	~dinosaur
	Rows containing "dinosaur" rank
 lower.

	+dinosaur
	Rows must contain
 "dinosaur".

	-dinosaur
	Rows must not contain
 "dinosaur".

	dino*
	Rows containing words that begin with "dino" rank
 higher.

You can also use other operators, such as parentheses for
 grouping. You can construct complex searches in this way.
As an example, let's again search the sakila.film_text table for films that
 contain both "factory" and "casualties." A natural-language search
 returns results that match either or both of these terms, as we saw
 before. If we use a Boolean search, however, we can insist that both
 must appear:
mysql> SELECT film_id, title, RIGHT(description, 25)
 -> FROM sakila.film_text
 -> WHERE MATCH(title, description)
 -> AGAINST('+factory +casualties' IN BOOLEAN MODE);
+---------+---------------------+---------------------------+
| film_id | title | RIGHT(description, 25) |
+---------+---------------------+---------------------------+
| 831 | SPIRITED CASUALTIES | a Car in A Baloon Factory |
+---------+---------------------+---------------------------+
You can also do a phrase search by quoting
 multiple words, which requires them to appear exactly as
 specified:
mysql> SELECT film_id, title, RIGHT(description, 25)
 -> FROM sakila.film_text
 -> WHERE MATCH(title, description)
 -> AGAINST('"spirited casualties"' IN BOOLEAN MODE);
+---------+---------------------+---------------------------+
| film_id | title | RIGHT(description, 25) |
+---------+---------------------+---------------------------+
| 831 | SPIRITED CASUALTIES | a Car in A Baloon Factory |
+---------+---------------------+---------------------------+
Phrase searches tend to be quite slow. The full-text index alone can't answer a query like this
 one, because it doesn't record where words are located relative to
 each other in the original full-text collection. Consequently, the
 server actually has to look inside the rows to do a phrase
 search.
To execute such a search, the server will find all documents
 that contain both "spirited" and "casualties." It will then fetch the
 rows from which the documents were built, and check for the exact
 phrase in the collection. Because it uses the full-text index to find
 the initial list of documents that match, you might think this will be
 very fast—much faster than an equivalent LIKE operation. In fact, it
 is very fast, as long as the words in the phrase
 aren't common and not many results are returned from the full-text
 index to the Boolean matcher. If the words in the phrase
 are common, LIKE can actually be much faster, because it
 fetches rows sequentially instead of in quasirandom index order, and it doesn't need to
 read a full-text index.
A Boolean full-text search doesn't actually require a full-text
 index to work. It will use a full-text index if there is one, but if
 there isn't, it will just scan the entire table. You can even use a
 Boolean full-text search on columns from multiple tables, such as the
 results of a join. In all of these cases, though, it will be
 slow.

Full-Text Changes in MySQL 5.1 and Beyond

MySQL 5.1 introduced quite a few changes related to full-text searching. These include performance
 improvements and the ability to build pluggable parsers that can
 enhance the built-in capabilities. For example, plug-ins can change
 the way indexing works. They can split text into words more flexibly
 than the defaults (you can specify that "C++" is a single word, for
 example), do preprocessing, index different content types (such as
 PDF), or do custom word stemming. The plug-ins can also influence the
 way searches work—for example, by stemming search terms.
InnoDB developers are currently working on support for full-text
 indexing, but we don't know when it will be available.

Full-Text Tradeoffs and Workarounds

MySQL's implementation of full-text searching has several design limitations. These can be contraindications for specific
 purposes, but there are also many ways to work around them.
For example, there is only one form of relevance ranking in
 MySQL's full-text indexing: frequency. The index doesn't record the
 indexed word's position in the string, so proximity doesn't contribute
 to relevance. Although that's fine for many purposes—especially for
 small amounts of data—it might not be what you need, and MySQL's
 full-text indexing doesn't give you the flexibility to choose a
 different ranking algorithm. (It doesn't even store the data you'd
 need for proximity-based ranking.)
Size is another issue. MySQL's full-text indexing performs well
 when the index fits in memory, but if the index is not in memory, it
 can be very slow, especially when the fields are large. When you're
 using phrase searches, the data and indexes must both fit in memory
 for good performance. Compared to other index types, it can be very
 expensive to insert, update, or delete rows in a full-text
 index:
	Modifying a piece of text with 100 words requires not 1 but up to 100
 index operations.

	The field length doesn't usually affect other index types
 much, but with full-text indexing, text with 3 words and text with
 10,000 words will have performance profiles that differ by orders of magnitude.

	Full-text search indexes are also much more prone to
 fragmentation, and you may find you need to use OPTIMIZE TABLE more frequently.

Full-text indexes affect how the server optimizes queries, too.
 Index choice, WHERE clauses, and
 ORDER BY all work differently from
 how you might expect:
	If there's a full-text index and the query has a MATCH AGAINST clause that can use it,
 MySQL will use the full-text index to process the query. It will
 not compare the full-text index to the other indexes that might be
 used for the query. Some of these other indexes might actually be
 better for the query, but MySQL will not consider them.

	The full-text search index can perform only full-text
 matches. Any other criteria in the query, such as WHERE clauses, must be applied after
 MySQL reads the row from the table. This is different from the
 behavior of other types of indexes, which can be used to check
 several parts of a WHERE clause
 at once.

	Full-text indexes don't store the actual text they index.
 Thus, you can never use a full-text index as a covering
 index.

	Full-text indexes cannot be used for any type of sorting,
 other than sorting by relevance in natural-language mode. If you
 need to sort by something other than relevance, MySQL will use a
 filesort.

Let's see how these constraints affect queries. Suppose you have
 a million documents, with an ordinary index on the document's author
 and a full-text index on the content. You want to do a full-text
 search on the document content, but only for author 123. You might
 write the query as follows:
... WHERE MATCH(content) AGAINST ('High Performance MySQL')
 AND author = 123;
However, this query will be very inefficient. MySQL will search
 all one million documents first, because it prefers the full-text
 index. It will then apply the WHERE
 clause to restrict the results to the given author, but this filtering
 operation won't be able to use the index on the author.
One workaround is to include the author IDs in the full-text
 index. You can choose a prefix that's very unlikely to appear in the
 text, then append the author's ID to it, and include this "word" in a
 filters column that's maintained
 separately (perhaps by a trigger).
You can then extend the full-text index to include the filters column and rewrite the query as
 follows:
... WHERE MATCH(content, filters)
 AGAINST ('High Performance MySQL +author_id_123' IN BOOLEAN MODE);
This may be more efficient if the author ID is very selective,
 because MySQL will be able to narrow the list of documents very quickly by searching the full-text
 index for "author_id_123." If it's not selective, though, the
 performance might be worse. Be careful with this approach.
Sometimes you can use full-text indexes for bounding-box
 searches. For instance, if you want to restrict searches to a range
 of coordinates (for geographically constrained
 searches), you can encode the coordinates into the full-text
 collection. Suppose the coordinates for a given row are X=123 and
 Y=456. You can interleave the coordinates with the most significant
 digits first, as in XY142536, and place them in a column that is
 included in the full-text index. Now if you want to limit searches to,
 for example, a rectangle bounded by X between 100 and 199 and Y
 between 400 and 499, you can add "+XY14*" to the search query. This
 can be much faster than filtering with a WHERE clause.
A technique that sometimes works well with full-text indexes,
 especially for paginated displays, is to select a list of primary keys
 by a full-text query and cache the results. When the application is
 ready to render some results, it can issue another query that fetches
 the desired rows by their IDs. This second query can include more
 complicated criteria or joins that need to use other indexes to work
 well.
Even though only MyISAM supports full-text indexes, if you need
 to use InnoDB or another storage engine instead, don't worry: you can
 have your cake and eat it too. A common method is to replicate your
 tables to a slave whose tables use the MyISAM storage engine, then use
 the slave to serve full-text queries. If you don't want to serve some
 queries from a different server, you can partition a table vertically
 by breaking it into two, keeping textual columns separate from the
 rest of the data.
You can also duplicate some columns into a table that's
 full-text indexed. You can see this strategy in action in the sakila.film_text table, which is maintained
 with triggers. Yet another alternative is to use an external full-text
 engine, such as Lucene or Sphinx. You can read more about Sphinx in
 Appendix C.
GROUP BY queries with
 full-text searches can be performance killers, again because the
 full-text query typically finds a lot of matches; these cause random
 disk I/O, followed by a temporary table or filesort for the grouping.
 Because such queries are often just looking for the top items per
 group, a good optimization is to sample the results instead of trying
 for complete accuracy. For example, select the first 1,000 rows into a
 temporary table, then return the top result per group from
 that.

Full-Text Tuning and Optimization

Regular maintenance of your full-text indexes is one of the most
 important things you can do to enhance performance. The double-B-Tree
 structure of full-text indexes, combined with the large number of
 keywords in typical documents, means they suffer from fragmentation
 much more than normal indexes. Use OPTIMIZE
 TABLE frequently to defragment the indexes. If your server
 is I/O-bound, it may be much faster to just drop and recreate the full-text indexes periodically.
A server that must perform well for full-text searches needs key
 buffers that are large enough to hold the full-text indexes, because
 they work much better when they're in memory. You can use dedicated
 key buffers to make sure other indexes don't flush your full-text
 indexes from the key buffer. See "The MyISAM Key Cache" on The MyISAM Key Cache for more details on MyISAM key
 buffers.
It's also important to provide a good stopword list. The
 defaults will work well for English prose, but they may not be good
 for other languages or for specialized texts, such as technical
 documents. For example, if you're indexing a document about MySQL, you
 might want "mysql" to be a stopword, because it's too common to be
 helpful.
You can often improve performance by skipping short words. The
 length is configurable with the ft_min_word_len parameter. Increasing the
 default value will skip more words, making your index smaller and
 faster, but less accurate. Also bear in mind that for special
 purposes, you might need very short words. For example, a full-text
 search of consumer electronics products for the query "cd player" is
 likely to produce lots of irrelevant results unless short words are
 allowed in the index. A user searching for "cd player" won't want to
 see MP3 and DVD players in the results, but if the minimum word length
 is the default four characters, the search will actually be for just
 "player," so all types of players will be returned.
The stopword list and the minimum word length can improve search
 speeds by keeping some words out of the index, but the search quality
 can suffer as a result. The right balance is application-dependent. If
 you need good performance and good quality results, you'll have to
 customize both parameters for your application. It's a good idea to
 build in some logging and then investigate common searches, uncommon
 searches, searches that don't return results, and searches that return
 a lot of results. You can gain insight about your users and your
 searchable content this way, and then use that insight to improve
 performance and the quality of your search results.
Tip
Be aware that if you change the minimum word length, you'll
 have to rebuild the index with OPTIMIZE
 TABLE for the change to take effect. A related parameter
 is ft_max_word_len, which is
 mainly a safeguard to avoid indexing very long keywords.

If you're importing a lot of data into a server and you want full-text indexing on some columns, disable
 the full-text indexes before the import with DISABLE KEYS and enable them afterward with
 ENABLE KEYS. This is usually much
 faster because of the high cost of updating the index for each row
 inserted, and you'll get a defragmented index as a bonus.
For large datasets, you might need to manually partition the
 data across many nodes and search them in parallel. This is a
 difficult task, and you might be better off using an external
 full-text search engine, such as Lucene or Sphinx. Our experience
 shows they can have orders of magnitude better performance.

[56] You may find that MySQL's full-text limitations make it
 impractical or impossible to use for your application. We discuss
 using Sphinx as an external full-text search engine in Appendix C.

[57] A common mistake during testing is to put a few rows of
 sample data into a full-text search index, only to find that no
 queries match. The problem is that every word appears in more than
 half the rows.

Foreign Key Constraints

InnoDB is currently the main storage engine that supports
 foreign keys in MySQL, limiting your choice of storage
 engines if you require them. [58] MySQL AB has promised that the server itself will someday
 provide storage engine-independent foreign keys, but at present it looks
 like InnoDB will be the main engine with foreign key support for some
 time to come. We therefore focus on foreign keys in InnoDB.
Foreign keys aren't free. They typically require the server to do
 a lookup in another table every time you change some data. Although
 InnoDB requires an index to make this operation faster, this doesn't
 eliminate the impact of these checks. It can even result in a very large
 index with virtually zero selectivity. For example, suppose you have a
 status column in a huge table and you
 want to constrain the status to valid values, but there are only three
 such values. The extra index required can add significantly to the
 table's total size—even if the column itself is small, and especially if
 the primary key is large—and is useless for anything but the foreign key
 checks.
Still, foreign keys can actually improve performance in some
 cases. If you must guarantee that two related tables have consistent
 data, it can be more efficient to let the server perform this check than
 to do it in your application. Foreign keys are also useful for cascading
 deletes or updates, although they do operate row by row, so they're
 slower than multitable deletes or batch operations.
Foreign keys cause your query to "reach into" other tables, which
 means acquiring locks. If you insert a row into a child table, for
 example, the foreign key constraint will cause InnoDB to check for a
 corresponding value in the parent. It must also lock the row in the
 parent, to ensure it doesn't get deleted before the transaction
 completes. This can cause unexpected lock waits and even deadlocks on
 tables you're not touching directly. Such problems can be very
 unintuitive and frustrating to debug.
You can sometimes use triggers instead of foreign keys. Foreign keys tend to outperform triggers
 for tasks such as cascading updates, but a foreign key that's just used
 as a constraint, as in our status
 example, can be more efficiently rewritten as a trigger with an explicit
 list of allowable values. (You can also just use an ENUM data type.)
Instead of using foreign keys as constraints, it's often a good
 idea to constrain the values in the application.

[58] PBXT supports them, too.

Merge Tables and Partitioning

Merge tables and partitioning are related concepts, and the
 difference can be confusing. Merge tables are a
 MySQL feature that combines multiple MyISAM tables into a single
 "virtual table," much like a view that does a UNION over the tables. You create a merge
 table with the Merge storage engine. A merge table is not really a table
 per se; it's more like a container for similarly
 defined tables.
In contrast, partitioned tables appear to be
 normal tables with special sets of instructions that tell MySQL where to
 physically store the rows. The dirty little secret is that the storage
 code for partitioned tables is a lot like the code for merge tables! In
 fact, at a low level, each partition is just a separate table with its
 own separate indexes, and the partitioned table is a wrapper around a
 collection of Handler objects. A
 partitioned table looks and acts like a single table, but under the hood
 it's a bunch of separate tables. However, there's no way to access the
 underlying tables directly, which you can do with merge
 tables.
Partitioning is a new feature in MySQL 5.1, but merge tables have
 been around a long time. Both features share some of the same benefits.
 They enable you to do the following:
	Separate static and changing data

	Use the physical proximity of related data to optimize
 queries

	Design your tables so queries access less data

	Maintain very large data volumes more easily (this is one area
 where merge tables have some advantages over partitioned
 tables)

Because MySQL's implementations of partitioning and merge tables
 have a lot in common, they share some limitations, too. For example,
 there are practical limits on how many underlying tables or partitions
 you can have in a single merge or partitioned table. In most cases, a
 few hundred is the point at which you're likely to begin seeing
 inefficiencies. We mention each system's limitations as we explore them
 in more detail.
Merge Tables

You can think of merge tables as an older, more limited version
 of partitioning if you wish, but they are useful in their own right
 and even provide some features you can't get with partitions.
The merge table is really just a container that holds the real
 tables. You specify which tables to include with a special UNION syntax to CREATE TABLE. Here's an example that
 demonstrates many aspects of merge tables:
mysql> CREATE TABLE t1(a INT NOT NULL PRIMARY KEY)ENGINE=MyISAM;
mysql> CREATE TABLE t2(a INT NOT NULL PRIMARY KEY)ENGINE=MyISAM;
mysql> INSERT INTO t1(a) VALUES(1),(2);
mysql> INSERT INTO t2(a) VALUES(1),(2);
mysql> CREATE TABLE mrg(a INT NOT NULL PRIMARY KEY)
 -> ENGINE=MERGE UNION=(t1, t2) INSERT_METHOD=LAST;
mysql> SELECT a FROM mrg;
+------+
| a |
+------+
| 1 |
| 1 |
| 2 |
| 2 |
+------+
Notice that the underlying tables have exactly the same number
 and types of columns, and that all indexes that exist on the merge
 table also exist on the underlying tables. These are requirements when
 creating a merge table. Notice also that there's a primary key on the
 sole column of each table, yet the resulting merge table has duplicate
 rows. This is one of the limitations of merge tables: each table
 inside the merge behaves normally, but the merge table doesn't enforce
 constraints over the entire set of tables.
The INSERT_METHOD=LAST
 instruction to the table tells MySQL to send all INSERT statements to the last table in the
 merge. Specifying FIRST or LAST is the only control you have over where
 rows inserted into the merge table are placed (you can still insert
 into the underlying tables directly, though). Partitioned tables give
 more control over where data is stored.
The results of an INSERT are
 visible in both the merge table and the underlying table:
mysql> INSERT INTO mrg(a) VALUES(3);
mysql> SELECT a FROM t2;
+---+
| a |
+---+
| 1 |
| 2 |
| 3 |
+---+
Merge tables have some other interesting features and
 limitations, such as what happens when you drop a merge table or one
 of its underlying tables. Dropping a merge table leaves its "child"
 tables untouched, but dropping one of the child tables has a different
 effect, which is operating system-specific. On GNU/Linux, for example,
 the underlying table's file descriptor stays open and the table
 continues to exist, but only via the merge table:
mysql> DROP TABLE t1, t2;
mysql> SELECT a FROM mrg;
+------+
| a |
+------+
| 1 |
| 1 |
| 2 |
| 2 |
| 3 |
+------+
A variety of other limitations and special behaviors exist.
 We'll let you read the manual for the details, but we'll just note
 that REPLACE doesn't work at all on
 a merge table, and AUTO_INCREMENT
 won't work as you might expect.
Merge table performance impacts

The way MySQL implements merge tables has some important
 performance implications. As with any other MySQL feature, this
 makes them better suited for some uses than others. Here are some
 aspects of merge tables you should keep in mind:
	A merge table requires more open file descriptors than a
 non-merge table containing the same data. Even though a merge
 table looks like a single table, it actually opens the
 underlying tables separately. As a result, a single table cache
 entry can create many file descriptors. Therefore, even if you
 have configured the table cache to protect your server against
 exceeding the operating system's per-process file-descriptor
 limits, merge tables can cause you to exceed that limit
 anyway.

	The CREATE statement
 that creates a merge table doesn't check that the underlying
 tables are compatible. If the underlying tables are defined
 slightly differently, MySQL may create a merge table that it
 can't use later. Also, if you alter one of the underlying tables
 after creating a valid merge table, it will stop working and
 you'll see this error: "ERROR 1168 (HY000): Unable to open
 underlying table which is differently defined or of non-MyISAM
 type or doesn't exist."

	Queries that access a merge table access every underlying
 table. This can make single-row key lookups relatively slow,
 compared to a lookup in a single table. Therefore, it's a good
 idea to limit the number of underlying tables in a merge table,
 especially if it is the second or later table in a join. The
 less data you access with each operation, the more important the
 cost of accessing each table becomes, relative to the entire
 operation. Here are a few things to keep in mind when planning
 how to use merge tables:
— Range lookups are less affected by the overhead of
 accessing all the underlying tables than individual item
 lookups.
— Table scans are just as fast on merge tables as they are
 on normal tables.
— Unique key and primary key lookups stop as soon as they
 succeed. In this case, the server accesses the underlying
 merge tables one at a time until the lookup finds
 a value, and then it accesses no further tables.
— The underlying tables are read in the order specified in
 the CREATE TABLE statement.
 If you frequently need data in a specific order, you can exploit
 this to make the merge-sorting operation faster.

Merge table strengths

Merge tables excel for data that naturally has an active and
 an inactive part. The classic example is logging. Logs are
 append-only, so you can use a scheme such as a table per day. Each
 day you can create a new underlying table and alter the merge table
 to include it. You can also remove the preceding day's table from
 the merge table, convert it to compressed MyISAM, and then add it
 back.
That's not the only use for merge tables, though. They're used
 frequently in data warehousing applications, because another
 strength is the way they help manage huge volumes of data. It's
 practically impossible to manage a single table with terabytes of
 data, but the task is much easier if it's just a merged collection
 of 50 GB tables.
When you're managing extremely large databases, you don't just
 have to think about ordinary operations; you have to plan for crash
 and recovery scenarios, too. Keeping tables small is a very good
 idea, if you can do it. It's much faster to check and repair a
 collection of small tables than one huge one, especially if the huge
 table doesn't fit in memory. You can also parallelize checking and
 repairing when you have multiple tables.
Another concern in data warehousing is how to purge old data.
 Using DELETE to remove rows from
 a huge table is inefficient at best and disastrous at worst, but
 it's very simple to alter a merge table's definition and use
 DROP TABLE to get rid of old
 data. You can automate this easily.
Merge tables aren't just useful for logging and for huge
 datasets. They're also very handy for creating on-the-fly tables as
 needed. Creating and dropping merge tables is cheap, so you can use
 them as you'd use views with UNION
 ALL; however, the overhead is lower because the server
 doesn't spool the results into a temporary table before sending them
 to the client. This makes them very useful for reporting and data
 warehousing needs. For example, you can create a nightly job that
 merges yesterday's data with data from 8 days ago, 15 days ago, and
 so on for week-over-week reporting queries. This will enable your
 regular reporting queries to run without modification and
 automatically access the appropriate data. You can even create
 temporary merge tables—something you cannot do with views.
Because merge tables don't hide the underlying MyISAM tables,
 they offer some features that partitions don't:
	A MyISAM table can be a member of many merge tables.

	You can copy underlying tables between servers by copying
 the .frm, .MYI, and
 .MYD files.

	You can add more tables to a merge collection easily; just
 create a new table and alter the merge definition.

	You can create temporary merge tables that include only
 the data you want, such as data from a specific time period,
 which you can't do with partitions.

	You can remove a table from the merge if you want to back
 it up, restore it, alter it, repair it, or perform other
 operations on it. You can then add it back when you're
 done.

	You can use myisampack to compress
 some or all of the underlying tables.

In contrast, a partitioned table's partitions are hidden by
 the MySQL server and are accessible only through the partitioned
 table.

Partitioned Tables

MySQL's partitioning implementation looks much like its merge
 table implementation under the hood. However, it is tightly integrated
 into the server, and it has one crucial difference from merge tables:
 any given row of data is eligible to be stored in one and only one of
 the partitions. The table's definition specifies which rows map to
 which partitions, based on a partitioning
 function, which we explain more later. This means primary
 keys and unique keys work as expected over the whole table, and the
 MySQL query optimizer can optimize queries against partitioned tables
 more intelligently than with merge tables.
Here are some important benefits of partitioned tables:
	You can specify that certain rows are stored together in one
 partition, which can reduce the amount of data the server has to
 examine and make queries faster. For example, if you partition by
 date range and then query on a date range that accesses only one
 partition, the server will read only that partition.

	Partitioned data is easier to maintain than non-partitioned
 data, and it's easier to discard old data by dropping an entire
 partition.

	Partitioned data can be distributed physically, enabling the
 server to use multiple hard drives more efficiently.

MySQL's implementation of partitioning is still in flux, and
 it's too complicated to explore in full detail here. We want to
 concentrate on its performance implications, so we recommend that for
 the basics you turn to the MySQL manual, which has a lot of material
 on partitioning. You should read the entire partitioning chapter, and
 look at the sections on CREATE TABLE, SHOW
 CREATE TABLE, ALTER TABLE, the INFORMATION_SCHEMA.PARTITIONS table, and
 EXPLAIN. Partitioning has made the
 CREATE TABLE and ALTER TABLE commands much more
 complex.
Like a merge table, a partitioned table actually consists of a
 collection of separate tables (the partitions) with separate indexes
 on the storage engine level. This means that a partitioned table's
 memory and file descriptor requirements are similar to those of a
 merge table. However, the partitions cannot be accessed independently
 from the table, and each partition can belong to only one
 table.
As stated earlier, MySQL uses a partitioning function to decide
 which rows are stored in which partitions. The function must return a
 nonconstant, deterministic integer. There are several kinds of
 partitioning. Range partitioning sets up a range
 of values for each partition, then assigns rows to partitions on the
 basis of the ranges into which they fall. MySQL also supports
 key, hash, and list
 partitioning methods. Each type has its strengths and weaknesses, and
 there are limitations to some of the types, especially when dealing with primary
 keys.
Why partitioning works

The key to designing partitioned tables in MySQL is to think of
 partitioning as a coarse-grained type of indexing. Suppose you have
 a table with a billion rows of historical per-day, per-item sales
 data, and each row is fairly large—say, 500 bytes. You insert new
 rows, but you never update existing rows, and you mostly run queries
 that examine ranges of dates. The main problem with running queries
 against this table is that it's huge: it will be nearly half a
 terabyte without any indexes at all, unless you compress the
 data.
One approach to speeding up the per-day queries could be to
 add a primary key on (day,
 itemno) and use InnoDB. This will group each day's data
 together physically, so the range queries will have to examine less
 data. Alternatively, you could use MyISAM and insert the rows in the
 desired order, so an index scan won't cause a lot of random
 I/O.
Another option would be to omit the primary key and partition
 the data by day. Each query that accesses ranges of days will have
 to scan entire partitions, but that could be much better than doing
 index lookups in such a huge table. The partitioning is a little
 like an index: it tells MySQL approximately where to find a given
 row, if you know the day. However, it uses virtually no disk space
 or memory, precisely because the partitioning doesn't point exactly
 to the row (as an index does).
Don't be tempted to try to add a primary key
 and partition the table, though—you might
 actually decrease performance, especially if you run queries that
 need to access all partitions. When considering partitioning, you
 should benchmark carefully, because partitioned tables don't always
 improve performance.

Partitioning examples

We give two brief examples where partitioning is helpful. First, let's
 see how to design a partitioned table to store date-based data.
 Suppose you have aggregated performance statistics for orders and
 sales by product. Because you frequently run queries on ranges of
 dates, you place the order date first in the primary key and use the
 InnoDB storage engine to cluster the data by date. You can now
 "cluster" the data at a higher level by partitioning ranges of
 dates. Here's the basic table definition, without any partitioning
 specification:
CREATE TABLE sales_by_day (
 day DATE NOT NULL,
 product INT NOT NULL,
 sales DECIMAL(10, 2) NOT NULL,
 returns DECIMAL(10, 2) NOT NULL,
 PRIMARY KEY(day, product)
) ENGINE=InnoDB;
Partitioning by year is a common way to deal with date-based
 data, as is partitioning by day. The YEAR() and TO_DAYS() functions work well as partition
 functions for these cases. In general, a good function for range
 partitioning will have a linear relationship to the values by which
 you want to partition, and these functions match that description.
 Let's partition by year:
mysql> ALTER TABLE sales_by_day
 -> PARTITION BY RANGE(YEAR(day)) (
 -> PARTITION p_2006 VALUES LESS THAN (2007),
 -> PARTITION p_2007 VALUES LESS THAN (2008),
 -> PARTITION p_2008 VALUES LESS THAN (2009),
 -> PARTITION p_catchall VALUES LESS THAN MAXVALUE);
Now when we insert rows they'll be stored in the appropriate
 partition, depending on the value of the day column:
mysql> INSERT INTO sales_by_day(day, product, sales, returns) VALUES
 -> ('2007-01-15', 19, 50.00, 52.00),
 -> ('2008-09-23', 11, 41.00, 42.00);
We use this data in an example a bit later. Before we move on,
 though, we'd like to point out that there's an important limitation
 here: adding more years later will require altering the table, which
 will be expensive if the table is big (and we assume it will be, or
 we wouldn't be using partitions). It might be a good idea to just go
 ahead and define more years than you think you'll need. Even if you
 don't use them for a long time, including them up front should not
 affect performance.
Another common use for partitioned tables is simply to distribute the rows in
 a large table. For example, suppose you run a large number of
 queries against a huge table. If you want different physical disks
 to serve the data while multiple queries are running against the
 table, you might want MySQL to distribute the rows across the disks.
 In this case, you don't care about keeping related data close
 together; you just want to distribute the data evenly without having
 to think about it. The following will make MySQL distribute the rows
 by the modulus of the primary key. This is a fine way to spread data
 uniformly among the partitions:
mysql> ALTER TABLE mydb.very_big_table
 -> PARTITION BY KEY(<primary key columns>) (
 -> PARTITION p0 DATA DIRECTORY='/data/mydb/big_table_p0/',
 -> PARTITION p1 DATA DIRECTORY='/data/mydb/big_table_p1/');
You can achieve the same goal in a different way with a RAID
 controller. This can sometimes be better: because it is implemented
 in hardware, it hides the details of how it works, so it doesn't
 introduce more complexity into your schema and queries. It also may
 provide better, more uniform performance if your only goal is to
 distribute your data physically.

Partitioned table limitations

Partitioned tables are not a "silver bullet" solution.
 Here are some of the limitations in the current
 implementation:
	At present, all partitions have to use the same storage
 engine. For example, you cannot compress only some partitions
 the way you can compress some underlying tables in a merge
 table.

	Every unique index on a partitioned table must contain the
 columns referred to by the partition function. As a result, many
 instructional examples avoid using a primary key. Although it's
 common for data warehouses to contain tables without primary
 keys or unique indexes, this is less common in OLTP systems.
 Consequently, your choices of how to partition your data might
 be more limited than you'd think at first.

	Although MySQL may be able to avoid accessing all of the
 partitions in a partitioned table during a query, it still locks
 all the partitions.

	There are quite a few limitations on the functions and
 expressions you can use in a partitioning function.

	Some storage engines don't work with partitioning.

	Foreign keys don't work.

	You can't use LOAD INDEX INTO
 CACHE.

There are many other limitations as well (at least at the time
 of this writing, when MySQL 5.1 is not yet generally available).
 Partitioned tables actually provide less flexibility than merge
 tables in some ways. For example, if you want to add an index to a
 partitioned table, you can't do it a bit at a time; the ALTER will lock and rebuild the entire
 table. Merge tables give you more possibilities, such as adding the
 index one underlying table at a time. Similarly, you can't back up
 or restore just one partition at a time, which you can do with the
 underlying tables in a merge table.
Whether a table will benefit from partitioning depends on many
 factors, and you'll need to benchmark your own application to
 determine whether it is a good solution for you.

Optimizing queries against partitioned tables

Partitioning introduces new ways to optimize queries (and
 corresponding pitfalls). The optimizer can use the partitioning
 function to prune partitions, or remove them
 from a query entirely. It does this by deducing that the desired
 rows can be found only in certain partitions. Pruning therefore lets
 queries access much less data than they'd otherwise need to (in the
 best case).
It's very important to specify the partitioned key in the
 WHERE clause, even if it's
 otherwise redundant, so the optimizer can prune unneeded partitions.
 If you don't do this, the query execution engine will have to access
 all partitions in the table, just as it does with merge tables, and
 this can be extremely slow on large tables.
You can use EXPLAIN
 PARTITIONS to see whether the optimizer is pruning
 partitions. Let's return to the sample data from before:
mysql> EXPLAIN PARTITIONS SELECT * FROM sales_by_day\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: sales_by_day
 partitions: p_2006,p_2007,p_2008
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 3
 Extra:
As you can see, the query will access all partitions. Look at
 the difference when we add a constraint to the WHERE clause:
mysql> EXPLAIN PARTITIONS SELECT * FROM sales_by_day WHERE day > '2007-01-01'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: sales_by_day
 partitions: p_2007,p_2008
The optimizer is quite smart about determining how to prune.
 It can even convert ranges into lists of discrete values and prune on each item in the list.
 However, it's not all-knowing. For example, the following WHERE clause is theoretically prunable,
 but MySQL can't prune it:
mysql> EXPLAIN PARTITIONS SELECT * FROM sales_by_day WHERE YEAR(day) = 2007\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: sales_by_day
 partitions: p_2006,p_2007,p_2008
At present, MySQL can prune only on comparisons to the
 partitioning function's columns. It cannot prune on the result of an
 expression, even if the expression is the same as the partitioning
 function. You can convert the query into an equivalent form,
 though:
mysql> EXPLAIN PARTITIONS SELECT * FROM sales_by_day
 -> WHERE day BETWEEN '2007-01-01' AND '2007-12-31'\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: sales_by_day
 partitions: p_2007
Because the WHERE clause
 now refers directly to the partitioning column, not to an
 expression, the optimizer can do some very beneficial
 pruning.
The optimizer is smart enough to prune partitions during query
 processing, too. For example, if a partitioned table is the second table in a join, and
 the join condition is the partitioned key, MySQL will search for
 matching rows only in the relevant partition(s). This is an
 important difference from merge tables, which will always query all
 underlying tables in this scenario.

Distributed (XA) Transactions

Whereas storage engine transactions give ACID properties inside
 the storage engine, a distributed (XA) transaction is a higher-level
 transaction that can extend some ACID properties outside the storage
 engine—and even outside the database—with a two-phase commit. MySQL 5.0
 and newer have partial support for XA transactions.
An XA transaction requires a transaction coordinator, which asks
 all participants to prepare to commit (phase one). When the coordinator
 receives a "ready" from all participants, it tells them all to go ahead
 and commit. This is phase two. MySQL can act as a participant in XA
 transactions, but not as a coordinator.
There are actually two kinds of XA transactions in MySQL. The
 MySQL server can participate in an externally managed distributed
 transaction, but it also uses XA internally to coordinate storage
 engines and binary logging.
Internal XA Transactions

The reason for MySQL's internal use of XA transactions is the architectural separation
 between the server and the storage engines. Storage engines are
 completely independent from and unaware of each other, so any
 cross-engine transaction is distributed by nature and requires a third
 party to coordinate it. That third party is the MySQL server. Were it
 not for XA transactions, for example, a cross-engine transaction
 commit would require sequentially asking each engine involved to
 commit. That would introduce the possibility of a crash after one
 engine had committed but before another did, which would break the
 rules of transactions (recall that transactions are supposed to be
 all-or-nothing operations).
If you consider the binary log to be a "storage engine" for log
 events, you can see why XA transactions are necessary even when only a
 single transactional engine is involved. Synchronizing a storage
 engine commit with "committing" an event to the binary log is a
 distributed transaction, because the server—not the storage
 engine—handles the binary log.
XA currently creates a performance dilemma. It has broken
 InnoDB's support for group commit (a technique
 that can commit several transactions with a single I/O operation)
 since MySQL 5.0, so it causes many more fsync() calls than it should. It also causes
 each transaction to require a binary log sync if binary logs are
 enabled and requires two log flushes per commit instead of one. In
 other words, if you want the binary log to be safely synchronized with
 your transactions, each transaction will require a total of at least
 three fsync() calls. The only way
 to prevent this is to disable the binary log and set innodb_support_xa to 0.
These settings are incompatible with replication. Replication
 requires binary logging and XA support, and in addition—to be as safe
 as possible—you need sync_binlog
 set to 1, so the storage engine and
 the binary log are synchronized. (The XA support is worthless
 otherwise, because the binary log might not be "committed" to disk.)
 This is one of the reasons we strongly recommend using a RAID
 controller with a battery-backed write cache: the cache can speed up
 the extra fsync() calls and restore
 performance.
The next chapter goes into more detail on how to configure
 transaction logging and binary logging.

External XA Transactions

MySQL can participate in, but not manage, external distributed
 transactions. It doesn't support the full XA specification. For
 example, the XA specification allows connections to be joined in a
 single transaction, but that's not possible in MySQL at this
 time.
External XA transactions are even more expensive than internal
 ones, due to the added latency and the greater likelihood of a
 participant failing. Using XA over a WAN, or even over the Internet,
 is a common trap because of unpredictable network performance. It's
 generally best to avoid XA transactions when there's an unpredictable
 component, such as a slow network or a user who might not click the
 "Save" button for a long time. Anything that delays the commit has a
 heavy cost, because it's causing delays on not just one system, but
 potentially on many.
You can design high-performance distributed transactions in
 other ways, though. For instance, you can insert and queue data
 locally, then distribute it atomically in a much smaller, faster
 transaction. You can also use MySQL replication to ship data from one
 place to another. We've found that some applications that use
 distributed transactions really don't need to use them at all.
That said, XA transactions can be a useful way to synchronize
 data between servers. This method works well when you can't use
 replication for some reason, or when the updates are not
 performance-critical.

Chapter 6. Optimizing Server Settings

People often ask, "What's the optimal configuration file for my
 server with 16 GB of RAM and 100 GB of data?" The truth is,
 there's no such file. Servers need very different configurations depending
 on hardware, data size, the types of queries they will run, and the
 system's requirements—response time, transactional durability and
 consistency, and so on.
The default configuration is designed not to use a lot of
 resources, because MySQL is intended to be very versatile, and it does not
 assume it is the only thing running on the server on which it is
 installed. By default, this configuration uses just enough resources to
 start MySQL and run simple queries with a little bit of data. You'll
 certainly need to customize it if you have more than a few megabytes of
 data. You can start with one of the sample configuration files included
 with the MySQL server distribution and tweak it as needed.
You shouldn't expect large performance gains from every configuration change. Depending
 on your workload, you can usually improve performance two- or threefold by
 choosing appropriate values for a handful of configuration settings
 (exactly which options make this difference depends on a variety of
 factors). After that, the improvements are incremental. You might notice a
 particular query that runs slowly and make it better by tweaking a setting
 or two, but you won't usually make your server perform an order of
 magnitude better. To get that kind of benefit, you'll generally have to
 examine your schema, queries, and application architecture.
This chapter begins by showing you how MySQL's configuration options
 work and how you can change them. We move from that to a discussion of how
 MySQL uses memory and how to optimize its memory usage. Then we cover I/O
 and disk storage at a similar level of detail. We follow that with a
 section on workload-based tuning, which will help you customize MySQL to
 perform best for your workload. Finally, we provide some notes on tuning
 variables dynamically for specific queries that need customized
 settings.
Tip
A note on terminology: because many of MySQL's command-line
 options correspond to server variables, we sometimes use the terms
 option and variable
 interchangeably.

Configuration Basics

This section presents an overview of how to configure MySQL
 successfully. First we explain how MySQL configuration actually works,
 then we mention some best practices. MySQL is generally pretty forgiving
 about its configuration, but following these suggestions might save you
 a lot of work and time.
The first thing you need to know is where MySQL gets configuration
 information: from command-line arguments and settings in its
 configuration file. On Unix-like systems, the configuration file is
 typically located at /etc/my.cnf or
 /etc/mysql/my.cnf. If you use your operating
 system's startup scripts, this is typically the only place you'll
 specify configuration settings. If you start MySQL manually, as you
 might do when you're running a test installation, you can also specify
 settings on the command line.
Tip
Most variables have the same names as their corresponding
 command-line options, but there are a few exceptions. For example,
 --memlock sets the locked_in_memory variable.

Any settings you decide to use permanently should go into the
 global configuration file, instead of being specified at the command
 line. Otherwise, you risk accidentally starting the server without them.
 It's also a good idea to keep all of your configuration files in a single place so that you can inspect them
 easily.
Be sure you know where your server's configuration file is
 located! We've seen people try unsuccessfully to tune a server with a
 file it doesn't read, such as /etc/my.cnf on Debian
 GNU/Linux servers, which look in /etc/mysql/my.cnf
 for their configuration. Sometimes there are files in several places,
 perhaps because a previous system administrator was confused as well. If
 you don't know which files your server reads, you can ask it:
$ which mysqld
/usr/sbin/mysqld
$ /usr/sbin/mysqld --verbose --help | grep -A 1 'Default options'
Default options are read from the following files in the given order:
/etc/mysql/my.cnf ~/.my.cnf /usr/etc/my.cnf
This applies to typical installations, where there's a single
 server on a host. You can design more complicated configurations, but
 there's no standard way to do this. The MySQL server distribution
 includes a program called mysqlmanager, which can
 run multiple instances from a single configuration with separate
 sections. (This is a replacement for the older
 mysqld_multi script.) However, many operating
 system distributions don't include or use this program in their startup
 scripts. In fact, many don't use the MySQL-provided startup script at
 all.
The configuration file is divided into sections, each of which
 begins with a line that contains the section name in square brackets. A
 MySQL program will generally read the section that has the same name as
 that program, and many client programs also read the client section, which gives you a place to put
 common settings. The server usually reads the mysqld section. Be sure you place your
 settings in the correct section in the file, or they will have no
 effect.
Syntax, Scope, and Dynamism

Configuration settings are written in all lowercase, with words
 separated by underscores or dashes. The following are equivalent, and
 you might see both forms in command lines and configuration files:
/usr/sbin/mysqld --auto-increment-offset=5
/usr/sbin/mysqld --auto_increment_offset=5
We suggest that you pick a style and use it consistently. This
 makes it a lot easier to search for settings in your files.
Configuration settings can have several scopes. Some settings
 are server-wide (global scope); others are different for each
 connection (session scope); and others are per-object. Many
 session-scoped variables have global equivalents, which you can think
 of as defaults. If you change the session-scoped variable, it affects
 only the connection from which you changed it, and the changes are
 lost when the connection closes. Here are some examples of the variety
 of behaviors of which you should be aware:
	The query_cache_size
 variable is globally scoped.

	The sort_buffer_size
 variable has a global default, but you can set it per-session as
 well.

	The join_buffer_size
 variable has a global default and can be set per-session, but a
 single query that joins several tables can allocate one join
 buffer per join, so there might be several
 join buffers per query.

In addition to setting variables in the configuration files, you
 can also change many (but not all) of them while the server is
 running. MySQL refers to these as dynamic
 configuration variables. The following statements show different ways
 to change the session and global values of sort_buffer_size dynamically:
SET sort_buffer_size = <value>;
SET GLOBAL sort_buffer_size = <value>;
SET @@sort_buffer_size := <value>;
SET @@session.sort_buffer_size := <value>;
SET @@global.sort_buffer_size := <value>;
If you set variables dynamically, be aware that those settings
 will be lost when MySQL shuts down. If you want to keep the settings,
 you'll have to update your configuration file as well.
If you set a variable's global value while the server is
 running, the values for the current session and any other existing sessions
 are not affected. This is because the session values are initialized
 from the global value when the connections are created. You should
 inspect the output of SHOW GLOBAL
 VARIABLES after each change to make sure it's had the
 desired effect.
Variables use different kinds of units, and you have to know the correct unit for each
 variable. For example, the table_cache variable specifies the number of
 tables that can be cached, not the size of the table cache in bytes.
 The key_buffer_size is specified in
 bytes, whereas still other variables may be specified in number of
 pages or other units, such as percentages.
Many variables can be specified with a suffix, such as 1M for one megabyte. However, this works
 only in the configuration file or as a command-line argument. When you
 use the SQL SET command, you must
 use the literal value 1048576, or
 an expression such as 1024 * 1024.
 You can't use expressions in configuration files.
There is also a special value you can assign to variables with
 the SET command: the keyword
 DEFAULT. Assigning this value to a
 session-scoped variable sets that variable to the corresponding
 globally scoped variable's value; assigning it to a globally scoped
 variable sets the variable to the compiled-in default (not the value
 specified in the configuration file). This is useful for resetting
 session-scoped variables back to the values they had when you opened
 the connection. We advise you not to use it for global variables,
 because it probably won't do what you want—that is, it doesn't set the
 values back to what they were when you started the server.

Side Effects of Setting Variables

Setting variables dynamically can have unexpected side effects,
 such as flushing dirty blocks from buffers. Be careful which settings
 you change online, as this can cause the server to do a lot of
 work.
Sometimes you can infer a variable's behavior from its name. For
 example, max_heap_table_size does
 what it sounds like: it specifies the maximum
 size to which implicit in-memory temporary tables are allowed to grow.
 However, the naming conventions aren't completely consistent, so you
 can't always guess what a variable will do by looking at its
 name.
Let's take a look at some important variables and the effects of
 changing them dynamically:
	key_buffer_size
	Setting this variable allocates the designated amount
 of space for the key buffer (or key cache) all at
 once. However, the operating system doesn't actually commit
 memory to it until it is used. Setting the key buffer size to one gigabyte, for example, doesn't mean
 you've instantly caused the server to actually commit a gigabyte
 of memory to it. (We discuss how to watch the server's memory
 usage in the next chapter.)
MySQL lets you create multiple key caches, as we explain later in this chapter.
 If you set this variable to 0
 for a nondefault key cache, MySQL moves any indexes from the
 specified cache to the default cache and deletes the specified
 cache when nothing is using it anymore. Setting this variable
 for a nonexistent cache creates it.
Setting the variable to a nonzero value for an existing
 cache will flush the specified cache's memory. This is
 technically an online operation, but it blocks all operations
 that try to access the cache until the flush is finished.

	table_cache_size
	Setting this variable has no immediate effect—the effect
 is delayed until the next time a thread opens a table. When this
 happens, MySQL checks the variable's value. If the value is
 larger than the number of tables in the cache, the thread can
 insert the newly opened table into the cache. If the value is
 smaller than the number of tables in the cache, MySQL deletes
 unused tables from the cache.

	thread_cache_size
	Setting this variable has no immediate effect—the effect
 is delayed until the next time a connection is closed. At that
 time, MySQL checks whether there is space in the cache to store
 the thread. If so, it caches the thread for future reuse by
 another connection. If not, it kills the thread instead of
 caching it. In this case, the number of threads in the cache,
 and hence the amount of memory the thread cache uses, does not immediately decrease;
 it decreases only when a new connection removes a thread from
 the cache to use it. (MySQL adds threads to the cache only when
 connections close and removes them from the cache only when new
 connections are created.)

	query_cache_size
	MySQL allocates and initializes the specified amount of
 memory for the query cache all at once when the server starts.
 If you update this variable (even if you set it to its current
 value), MySQL immediately deletes all cached queries, resizes
 the cache to the specified size, and reinitializes the cache's
 memory.

	read_buffer_size
	MySQL doesn't allocate any memory for this buffer until a
 query needs it, but then it immediately allocates the entire
 chunk of memory specified here.

	read_rnd_buffer_size
	MySQL doesn't allocate any memory for this buffer until a
 query needs it, and then it allocates only as much memory as
 needed. (The name max_read_rnd_buffer_size would
 describe this variable more accurately.)

	sort_buffer_size
	MySQL doesn't allocate any memory for this buffer until a
 query needs to do a sort. However, when there's a sort, MySQL
 allocates the entire chunk of memory immediately, whether the full size is
 required or not.

We explain what these variables do in more detail elsewhere. Our
 goal here is simply to show you what behavior to expect when you
 change these important variables.

Getting Started

Be careful when setting variables. More is not always better,
 and if you set the values too high, you can easily cause problems: you
 may run out of memory, causing your server to swap, or run out of
 address space.
We suggest that you develop a benchmark suite before you begin tuning your server (we discussed
 benchmarking in Chapter 2). For the
 purposes of optimizing your server's configuration, you need a
 benchmark suite that represents your overall workload and includes
 edge cases such as very large and complex queries. If you have
 identified a particular problem spot—such as a single query that runs
 slowly—you can also try to optimize for that case, but you risk
 impacting other queries negatively without knowing it.
You should always have a monitoring system in place to measure
 whether a change improves or hurts your server's overall performance
 in real life. Benchmarks aren't enough, because they're not
 comprehensive. If you don't measure your server's overall performance,
 you might actually hurt performance without knowing it. We've seen
 many cases where someone changed a server's configuration and thought
 it improved performance, when in fact the server's performance
 worsened overall because of a different workload at a different time
 of day or day of the week. We discuss some monitoring systems in Chapter 14.
The best way to proceed is to change one or two variables, a
 little at a time, and run the benchmarks after each change. Sometimes
 the results will surprise you; you might increase a variable a little
 and see an improvement, then increase it a little more and see a sharp
 drop in performance. If performance suffers after a change, you might
 be asking for too much of some resource, such as too much memory for a
 buffer that's frequently allocated and deallocated. You might also
 have created a mismatch between MySQL and your operating system or
 hardware. For example, we've found that the optimal sort_buffer_size may be affected by how the
 CPU cache works, and the read_buffer_size needs to be matched to how
 the server's read-ahead and general I/O subsystem is configured.
 Larger is not always better. Some variables are also dependent on others, which is
 something you learn with experience and by understanding the system's
 architecture. For example, the best innodb_log_file_size depends on your
 innodb_buffer_pool_size.
If you take notes, perhaps with comments in the configuration
 file, you might save yourself (and your successors) a lot of work. An
 even better idea is to place your configuration file under version
 control. This is a good practice anyway, as it lets you undo changes.
 To reduce the complexity of managing many configuration files, simply
 create a symbolic link from the configuration file to a central
 version control repository. You can read more about this in a good
 book about system administration.
Before you start tuning your configuration, you should tune your
 queries and your schema, addressing at least the obvious optimizations
 such as adding indexes. If you get deep into tweaking configuration
 and then change your queries or schema, you might need to retune the
 configuration. Keep in mind that tuning is an ongoing, iterative
 process. Unless your hardware, workload, and data are completely
 static, chances are you'll need to revisit your configuration later.
 This means you don't need to tune every last ounce of performance out
 of your server; in fact, the return for such an investment of time
 will probably be very small. We suggest that you tune your
 configuration until it's "good enough," then leave it alone unless you
 have reason to believe you're forgoing a significant performance
 improvement. You might also want to revisit it when you change your
 queries or schema.
We generally develop sample configuration files for various
 purposes and use them as our own defaults, especially if we manage
 many similar servers in an installation. But, as we warned at the
 beginning of this chapter, we don't have a one-size-fits-all "best
 configuration file" for, say, a four-CPU server with 16 GB of memory
 and 12 hard drives. You really do need to develop your own
 configurations, because even a good starting point will vary widely
 depending on how you're using the server.

General Tuning

You can look at configuration as a two-step process: use some
 basic facts about your installation to create a sensible starting point,
 then modify that based on the details of your workload.
You should probably use one of the samples MySQL provides as a
 starting point. Consider your server hardware to help you choose. How
 many hard drives and CPUs do you have, and how much memory? The samples
 have helpful names such as my-huge.cnf,
 my-large.cnf, and my-small.cnf, so which
 one to start with should be pretty obvious. However, the sample files apply only if you're using just MyISAM
 tables. If you're using another storage engine, you'll need to create
 your own configuration.
Tuning Memory Usage

Configuring MySQL to use memory correctly is vital to good
 performance. You'll almost certainly need to customize
 MySQL's memory usage for your needs. You can think of MySQL's memory
 consumption as falling into two categories: the memory you can
 control, and the memory you can't. You can't control how much memory
 MySQL uses merely to run the server, parse queries, and manage its internals, but you
 have a lot of control over how much memory it uses for specific
 purposes. Making good use of the memory you can control is not hard,
 but it does require you to know what you're configuring.
You can approach memory tuning in steps:
	Determine the absolute upper limit of memory MySQL can
 possibly use.

	Determine how much memory MySQL will use for per-connection
 needs, such as sort buffers and temporary tables.

	Determine how much memory the operating system needs to run
 well. Include memory for other programs that run on the same
 machine, such as periodic jobs.

	Assuming that it makes sense to do so, use the rest of the
 memory for MySQL's caches, such as the InnoDB buffer pool.

We go over each of these steps in the following sections, and
 then we take a more detailed look at the various MySQL caches'
 requirements.
How much memory can MySQL use?

There is a hard upper limit on the amount of memory that can possibly be available to
 MySQL on any given system. The starting point is the amount of
 physically installed memory. If your server doesn't have it, MySQL
 can't use it.
You also need to think about operating system or architecture
 limits, such as restrictions 32-bit operating systems place on how
 much memory a given process can address. Because MySQL runs in a
 single process with multiple threads, the amount of memory it can
 use overall may be severely limited by such restrictions—for
 example, 32-bit Linux kernels limit the amount of memory any one
 process can address to a value that is typically between 2.5 and 2.7
 GB. Running out of address space is very dangerous and can cause
 MySQL to crash.
There are many other operating system-specific parameters and
 oddities that must be taken into account, including not just the
 per-process limits, but also stack sizes and other settings. The
 system's glibc libraries can also impose limits
 per single allocation. For example, you might not be able to set
 innodb_buffer_pool larger than 2
 GB if that's all your glibc libraries support
 in a single allocation.
Even on 64-bit servers, some limitations still apply. For
 example, many of the buffers we discuss, such as the key buffer, are
 limited to 4 GB on a 64-bit server. Some of these restrictions are
 lifted in MySQL 5.1, and there will probably be more changes in the
 future because MySQL AB is actively working to make MySQL take
 advantage of more powerful hardware. The MySQL manual documents each
 variable's maximum values.

Per-connection memory needs

MySQL needs a small amount of memory just to hold a connection (thread) open. It
 also requires a certain base amount of memory to execute any given
 query. You'll need to set aside enough memory for MySQL to execute
 queries during peak load times. Otherwise, your queries will be
 starved for memory, and they will run poorly or
 fail.
It's useful to know how much memory MySQL will consume during
 peak usage, but some usage patterns can unexpectedly consume a lot
 of memory, which makes this hard to predict. Prepared statements are
 one example, because you can have many of them open at once. Another
 example is the InnoDB table cache (more about this later).
You don't need to assume a worst-case scenario when trying to
 predict peak memory consumption. For example, if you configure MySQL
 to allow a maximum of 100 connections, it theoretically might be
 possible to simultaneously run large queries on all 100 connections,
 but in reality this probably won't happen. For example, if you set
 myisam_sort_buffer_size to
 256M, your worst-case usage is at
 least 25 GB, but this level of consumption is highly unlikely to
 actually occur.
Rather than calculating worst cases, a better approach is to
 watch your server under a real workload and see how much memory
 it uses, which you can see watching the process's virtual memory
 size. In many Unix-like systems, this is reported in the VIRT column in top,
 or VSZ in
 ps. The next chapter has more information on
 how to monitor memory usage.

Reserving memory for the operating system

Just as with queries, you need to reserve enough memory for
 the operating system to do its work. The best indication that the
 operating system has enough memory is that it's not actively
 swapping (paging) virtual memory to disk. (See "Swapping" on Swapping for more on this topic.)
You should not need to reserve more than a gigabyte or two for
 the operating system, even for machines with a lot of memory. Add in
 some extra for safety, and add in some more if you'll be running
 periodic memory-intensive jobs on the machine (such as backups).
 Don't add any memory for the operating system's caches, because they
 can be very large. The operating system will generally use any
 leftover memory for these caches, and we consider them separately
 from the operating system's own needs in the following
 sections.

Allocating memory for caches

If the server is dedicated to MySQL, any memory you don't
 reserve for the operating system or for query processing is
 available for caches.
MySQL needs more memory for caches than anything else. It uses caches to avoid
 disk access, which is orders of magnitude slower than accessing data
 in memory. The operating system may cache some data on MySQL's
 behalf (especially for MyISAM), but MySQL needs lots of memory for
 itself too.
The following are the most important caches to consider for
 the majority of installations:
	The operating system caches for MyISAM data

	MyISAM key caches

	The InnoDB buffer pool

	The query cache

There are other caches, but they generally don't use much
 memory. We discussed the query cache in detail in the previous
 chapter, so the following sections concentrate on the caches MyISAM
 and InnoDB need to work well.
It is much easier to tune a server if you're using only one storage engine. If
 you're using only MyISAM tables, you can disable InnoDB completely,
 and if you're using only InnoDB, you need to allocate only minimal
 resources for MyISAM (MySQL uses MyISAM tables internally for some
 operations). But if you're using a mixture of storage engines, it
 can be very hard to figure out the right balance between them. The
 best approach we've found is to make an educated guess and then
 benchmark.

The MyISAM Key Cache

The MyISAM key caches are also referred to as key
 buffers; there is one by default, but you can create more.
 Unlike InnoDB and some other storage engines, MyISAM itself caches
 only indexes, not data (it lets the operating system cache the data).
 If you use mostly MyISAM, you should allocate a lot of memory to the
 key caches.
Tip
Much of the advice in this section assumes you're using only
 MyISAM tables. If you're using a mixture of MyISAM and another
 engine, such as InnoDB, you will have to consider the needs of both
 storage engines.

The most important option is the key_buffer_size, which you should try
 setting to between 25% and 50% of the amount of memory you reserved
 for caches. The remainder will be available for the operating system
 caches, which the operating system will usually fill with data from
 MyISAM's .MYD files. MySQL 5.0 has a hard upper
 limit of 4 GB for this variable, no matter what architecture you're
 running. MySQL 5.1 allows larger sizes. Check the current
 documentation for your version of the server.
By default MyISAM caches all indexes in the default key buffer, but you can create multiple named key
 buffers. This lets you keep more than 4 GB of indexes in memory at once. To create key buffers named key_buffer_1 and key_buffer_2, each sized at 1 GB, place the
 following in the configuration file:
key_buffer_1.key_buffer_size = 1G
key_buffer_2.key_buffer_size = 1G
Now there are three key buffers: the two explicitly created by
 those lines and the default buffer. You can use the CACHE INDEX command to map tables to caches.
 You can tell MySQL to use key_buffer_1 for the indexes from tables
 t1 and t2 with the following SQL
 statement:
mysql> CACHE INDEX t1, t2 IN key_buffer_1;
Now when MySQL reads blocks from the indexes on these tables, it
 will cache the blocks in the specified buffer. You can also preload
 the tables' indexes into the cache with the LOAD INDEX command:
mysql> LOAD INDEX INTO CACHE t1, t2;
You can place this SQL into a file that's executed when MySQL
 starts up. The filename must be specified in the init_file option, and the file can include
 multiple SQL commands, each on a single line (no comments are
 allowed). Any indexes you don't explicitly map to a key buffer will be
 assigned to the default buffer the first time MySQL needs to access
 the .MYI file.
You can monitor the performance and usage of the key buffers
 with information from SHOW STATUS
 and SHOW VARIABLES. You can
 calculate the hit ratio and the percentage of the buffer in use with
 these equations:
	Cache hit ratio
	100 - ((Key_reads * 100) / Key_read_requests)

	Percentage of buffer in use
	100 - ((Key_blocks_unused * key_cache_block_size) * 100 / key_buffer_size)

Tip
In Chapter 14, we examine
 some tools, such as innotop, that can make
 performance monitoring more convenient.

It's good to know the cache hit rate, but this number can be
 misleading. For example, the difference between 99% and 99.9% looks
 small, but it really represents a tenfold increase. The cache hit rate
 is also application-dependent: some applications might work fine at
 95%, whereas others might be I/O-bound at 99.9%. You might even be
 able to get a 99.99% hit rate with properly sized caches.
The number of cache misses per second is
 generally much more empirically useful. Suppose you have a single hard
 drive that can do 100 random reads per second. Five misses per second
 will not cause your workload to be I/O-bound, but 80 per second will
 likely cause problems. You can use the following equation to calculate
 this value:
Key_reads / Uptime
Calculate the number of misses incrementally over intervals of
 10 to 100 seconds, so you can get an idea of the current performance.
 The following command will show the incremental values every 10
 seconds:
$ mysqladmin extended-status -r -i 10 | grep Key_reads
When you're deciding how much memory to allocate to the key caches, it might help to know how much space your
 MyISAM indexes are actually using on disk. You don't need to make the
 key buffers larger than the data they will cache. If you have a Unix-like system, you can find out
 the size of the files storing the indexes with a command like the
 following:
$ du -sch `find /path/to/mysql/data/directory/ -name "*.MYI"`
Remember that MyISAM uses the operating system cache for the
 data files, which are often larger than the indexes. Therefore, it
 often makes sense to leave more memory for the operating system cache
 than for the key caches. Finally, even if you don't have any MyISAM
 tables, bear in mind that you still need to set key_buffer_size to a small amount of memory,
 such as 32M. The MySQL server
 sometimes uses MyISAM tables for internal purposes, such as temporary
 tables for GROUP BY queries.
The MyISAM key block size

The key block size is important (especially for
 write-intensive workloads) because of the way it causes MyISAM, the
 operating system cache, and the filesystem to interact. If the key
 block size is too small, you may encounter read-around
 writes, which are writes that the operating system cannot
 perform without first reading some data from the disk. Here's how a
 read-around write happens, assuming the operating system's page size
 is 4 KB (typically true on the x86 architecture) and the key block
 size is 1 KB:
	MyISAM requests a 1 KB key block from disk.

	The operating system reads 4 KB of data from the disk and
 caches it, then passes the desired 1 KB of data to
 MyISAM.

	The operating system discards the cached data in favor of
 some other data.

	MyISAM modifies the 1 KB key block and asks the operating
 system to write it back to disk.

	The operating system reads the same 4 KB of data from the
 disk into the operating system cache, modifies the 1 KB that
 MyISAM changed, and writes the entire 4 KB back to disk.

The read-around write happened in step 5, when MyISAM asked
 the operating system to write only part of a 4 KB page. If MyISAM's
 block size had matched the operating system's, the disk read in step
 5 could have been avoided. [59]
Unfortunately, in MySQL 5.0 and earlier, there's no way to
 configure the key block size. However, in MySQL 5.1 and later, you
 can avoid read-around writes by making MyISAM's key block size the
 same as the operating system's. The myisam_block_size variable controls the
 key block size. You can also specify the size for each key with the
 KEY_BLOCK_SIZE option in a
 CREATE TABLE or CREATE INDEX statement, but because all
 keys are stored in the same file, you really need all of them to
 have blocks as large as or larger than the operating system's to
 avoid alignment issues that could still cause read-around writes.
 (For example, if one key has 1 KB blocks and another has 4 KB
 blocks, the 4 KB block boundaries might not match the operating
 system's page boundaries.)

The InnoDB Buffer Pool

If you use mostly InnoDB tables, the InnoDB buffer pool probably needs more memory than anything else. Unlike the MyISAM key cache,
 the InnoDB buffer pool doesn't just cache indexes: it also holds row
 data, the adaptive hash index (see "Hash indexes" on Hash indexes), the insert buffer, locks, and other
 internal structures. InnoDB also uses the buffer pool to help it delay
 writes, so it can merge many writes together and perform them
 sequentially. In short, InnoDB relies heavily on
 the buffer pool, and you should be sure to allocate enough memory to
 it. The MySQL manual suggests using up to 80% of the machine's
 physical memory for the buffer pool on a dedicated server; in reality,
 you can use more than that if the machine has a lot of memory. As with
 the MyISAM key buffers, you can use variables from SHOW commands or tools such as
 innotop to monitor your InnoDB buffer pool's
 memory usage and performance.
There's no equivalent of LOAD INDEX
 INTO CACHE for InnoDB tables. However, if you're trying to
 warm up a server and get it ready to handle a heavy load, you can
 issue queries that perform full table scans or full index
 scans.
In most cases, you should make the InnoDB buffer pool as large
 as your available memory allows. However, in rare circumstances, very
 large buffer pools (say, 50 GB) can cause long stalls. For example, a
 large buffer pool may become slow during checkpoints or insert buffer
 merge operations, and concurrency can drop as a result of locking. If
 you experience these problems, you may have to reduce the buffer pool
 size.
You can change the innodb_max_dirty_pages_pct variable to
 instruct InnoDB to keep more or fewer dirty (modified) pages in the
 buffer pool. If you allow a lot of dirty pages, InnoDB can take a long
 time to shut down, because it writes the dirty pages to the data files
 upon shutdown. You can force it to shut down quickly, but then it just
 has to do more recovery when it restarts, so you can't actually speed
 up the shutdown and restart cycle time. If you know in advance when
 you need to shut down, you can set the variable to a lower value, wait
 for the flush thread to clean up the buffer pool, and then shut down
 once the number of dirty pages becomes small. You can monitor the
 number of dirty pages by watching the Innodb_buffer_pool_pages_dirty server status
 variable or using innotop to monitor SHOW INNODB STATUS.
Lowering the value of the innodb_max_dirty_pages_pct variable doesn't
 actually guarantee that InnoDB will keep fewer dirty pages in the
 buffer pool. Instead, it controls the threshold at which InnoDB stops
 being "lazy." InnoDB's default behavior is to flush dirty pages with a
 background thread, merging writes together and performing them
 sequentially for efficiency. This behavior is called "lazy" because it
 lets InnoDB delay flushing dirty pages in the buffer pool, unless it
 needs to use the space for some other data. When the percentage of
 dirty pages exceeds the threshold, InnoDB will flush pages as quickly
 as it can to try to keep the dirty page count lower. The variable's
 default value is 90, so by default
 InnoDB will flush lazily until the buffer pool is 90% full of dirty
 pages.
You can tweak the threshold for your workload if you wish to
 spread out the writes a bit more. For example, lowering it to 50 will generally cause InnoDB to do more
 write operations, because it will flush pages sooner and therefore be
 unable to batch the writes as well. However, if your workload has a
 lot of write spikes, using a lower value may help InnoDB absorb the
 spikes better: it will have more "spare" memory to hold dirty pages, so it won't have to wait for
 other dirty pages to be flushed to disk.

The Thread Cache

The thread cache holds threads that aren't currently associated
 with a connection but are ready to serve new connections. When there's
 a thread in the cache and a new connection is created, MySQL removes
 the thread from the cache and gives it to the new connection. When the
 connection is closed, MySQL places the thread back into the cache, if
 there's room. If isn't room, MySQL destroys the thread. As long as
 MySQL has a free thread in the cache, it can respond very rapidly to
 connect requests, because it doesn't have to create a new thread for
 each connection.
The thread_cache_size
 variable specifies the number of threads MySQL can keep in the cache.
 You probably won't need to tune this value, unless your server gets
 many connection requests. To check whether the thread cache is large enough, watch the Threads_created status variable. We
 generally try to keep the thread cache large enough that we see fewer
 than 10 new threads created each second, but it's often pretty easy to
 get this number lower than 1 per second.
A good approach is to watch the Threads_connected variable and try to set
 thread_cache_size large enough to
 handle the typical fluctuation in your workload. For example, if
 Threads_connected usually stays
 between 100 and 200, you can set the cache size to 100. If it stays
 between 500 and 700, a thread cache of 200 should be large enough.
 Think of it this way: at 700 connections, there are probably no
 threads in the cache; at 500 connections, there are 200 cached threads
 ready to be used if the load increases to 700 again.
Making the thread cache very large is probably not necessary for
 most uses, but keeping it small doesn't save much memory, so there's little benefit in doing so. Each
 thread that's in the thread cache or sleeping typically uses around
 256 KB of memory. This is very little compared to the amount of memory
 a thread can use when a connection is actively processing a query. In
 general, you should keep your thread cache large enough that Threads_created doesn't increase very often.
 If this is a very large number, however (e.g., many thousand threads),
 you might want to set it lower because some operating systems don't
 handle very large numbers of threads well, even when most of them are
 sleeping.

The Table Cache

The table cache is similar in concept to the thread cache,
 but it stores objects that represent tables. Each object in the cache
 contains the associated table's parsed .frm file,
 plus other data. Exactly what else is in the object depends on the
 table's storage engine. For example, for MyISAM, it holds the table
 data and/or index file descriptors. For merge tables it may hold many
 file descriptors, because merge tables can have many underlying
 tables.
The table cache can help you reuse resources. For instance, when
 a query requests access to a MyISAM table, MySQL might be able to give
 it a file descriptor from the cached object instead of opening the
 file. The table cache can also help avoid some of the I/O required for
 marking a MyISAM table as "in use" in the index headers. [60]
The table cache's design is a little MyISAM-centric—this is one
 of the areas where the separation between the server and the storage
 engines is not completely clean, for historical reasons. The table
 cache is a little less important for InnoDB, because InnoDB doesn't
 rely on it for as many purposes (such as holding file descriptors; it
 has its own version of a table cache for this purpose). However, even
 InnoDB benefits from caching the parsed .frm
 files.
In MySQL 5.1, the table cache is separated into two parts: a cache of open
 tables and a table definition cache (configured via the table_open_cache and table_definition_cache variables). Thus, the
 table definitions (the parsed .frm files) are
 separated from the other resources, such as file descriptors. Opened
 tables are still per-thread, per-table-used, but the table definitions
 are global and can be shared among all connections efficiently. You
 can generally set table_definition_cache high enough to cache
 all your table definitions. Unless you have tens of thousands of
 tables, this is likely to be the easiest approach.
If the Opened_tables status
 variable is large or increasing, the table cache isn't large enough,
 and you should increase the table_cache system variable (or table_open_cache, in MySQL 5.1). The only
 real downside to making the table cache very large is that it might
 cause longer shutdown times when your server has a lot of MyISAM
 tables, because the key blocks have to be flushed and the tables have
 to be marked as no longer open. It can also make FLUSH TABLES WITH READ LOCK take a long time
 to complete, for the same reason.
If you get errors indicating that MySQL can't open any more
 files (use the perror utility to check what the
 error number means), you might also need to increase the number of
 files MySQL is allowed to keep open. You can do this with the open_files_limit server variable in your
 my.cnf file.
The thread and table caches don't really use much memory, and
 they are beneficial because they conserve resources. Although creating
 a new thread and opening a new file aren't really expensive compared
 to other things MySQL might do, the overhead can add up quickly under
 a high-concurrency workload. Caching threads and tables can improve
 efficiency.

The InnoDB Data Dictionary

InnoDB has its own per-table cache, variously called a
 table definition cache or data
 dictionary, which you cannot configure. When InnoDB opens a
 table, it adds a corresponding object to the data dictionary. Each table can take up 4 KB or more of
 memory (although much less space is required in MySQL 5.1). Tables are
 not removed from the data dictionary when they are closed.
The main performance issue—besides memory requirements—is opening and computing statistics
 for the tables, which is expensive because it requires a lot of I/O.
 In contrast to MyISAM, InnoDB doesn't store statistics in the tables
 permanently; it recomputes them each time it starts. This operation is
 serialized by a global mutex in current versions of MySQL, so it can't
 be done in parallel. If you have a lot of tables, your server can take
 hours to start and fully warm up, during which time it might not be
 doing much other than waiting for one I/O operation after another. We
 mention this to make sure you know about it, even though there's
 nothing you can do to change it. It's normally a problem only when you
 have many (thousands or tens of thousands) large tables, which cause
 the process to be I/O-bound.
If you use InnoDB's innodb_file_per_table option (described
 later in "Configuring the tablespace" on The InnoDB tablespace), there's also a separate limit on
 the number of .ibd files InnoDB can keep open at
 any time. This is handled by the InnoDB storage engine, not the MySQL
 server, and is controlled by innodb_open_files. InnoDB doesn't open files
 the same way MyISAM does: whereas MyISAM uses the table cache to hold file descriptors for open tables, in InnoDB there is no direct
 relationship between open tables and open files. InnoDB uses a single,
 global file descriptor for each .ibd file. If you
 can afford it, it's best to set innodb_open_files large enough that the
 server can keep all .ibd files open
 simultaneously.

[59] Theoretically, if you could ensure that the original 4 KB
 of data was still in the operating system's cache, the read wouldn't be needed. However, you
 have no control over which blocks the operating system decides
 to keep in its cache. You can find out which blocks are in the
 cache with the fincore tool, available at
 http://net.doit.wisc.edu/~plonka/fincore/.

[60] The concept of an "opened table" can be a little confusing.
 MySQL counts a table as opened many times when different queries
 are accessing it simultaneously, or even when a single query
 refers to the same table more than once, as in a subquery or a
 self-join. MyISAM's index files contain a counter that MyISAM
 increments when the table is opened and decrements when it is
 closed. This lets MyISAM see when the table wasn't closed cleanly:
 if it opens a table for the first time and the counter is not
 zero, the table wasn't closed cleanly.

Tuning MySQL's I/O Behavior

A few configuration options affect how MySQL synchronizes data to
 disk and performs recovery. These can affect performance dramatically,
 because they involve expensive I/O operations. They also represent a
 tradeoff between performance and data safety. In general, it's expensive
 to ensure that your data is written to disk immediately and
 consistently. If you're willing to risk the danger that a disk write
 won't really make it to permanent storage, you can increase concurrency
 and/or reduce I/O waits, but you'll have to decide for yourself how much
 risk you can tolerate.
MyISAM I/O Tuning

Let's begin by considering how MyISAM performs I/O for its
 indexes. MyISAM normally flushes index changes to disk after every
 write. If you're going to make many modifications to a table, however,
 it may be faster to batch these writes together.
One way to do this is with LOCK
 TABLES, which defers writes until you unlock the tables.
 This can be a valuable technique for improving performance, as it lets
 you control exactly which writes are deferred and when the writes are
 flushed to disk. You can defer writes for precisely the statements you
 want.
You can also defer index writes by using the delay_key_write variable. If you do this,
 modified key buffer blocks are not flushed until the table is closed.
 [61] The possible settings are as follows:
	OFF
	MyISAM flushes modified blocks in the key buffer (key
 cache) to disk after every write, unless the table is locked
 with LOCK TABLES

	ON
	Delayed key writes are enabled, but only for tables
 created with the DELAY_KEY_WRITE option.

	ALL
	All MyISAM tables use delayed key writes.

Delaying key writes can be helpful in some cases, but it doesn't
 usually create a big performance boost. It's most useful with smaller
 data sizes, when the key cache's read hit ratio is good but the write
 hit ratio is bad. It also has quite a few drawbacks:
	If the server crashes and the blocks haven't been flushed to
 disk, the index will be corrupt.

	If many writes are delayed, it'll take longer for MySQL to
 close a table, because it will have to wait for the buffers to be
 flushed to disk. This can cause long table cache locks in MySQL
 5.0.

	FLUSH TABLES can take a
 long time, for the reason just mentioned. This in turn can
 increase the time it takes to run FLUSH
 TABLES WITH READ LOCK for an LVM snapshot or other
 backup operation.

	Unflushed dirty blocks in the key buffer might not leave any
 room in the buffer for new blocks to be read from disk. Therefore,
 queries might stall while waiting for MyISAM to free up some space in the key
 buffer.

In addition to tuning MyISAM's index I/O, you can configure how MyISAM tries to recover
 from corruption. The myisam_recover option controls how MyISAM
 looks for and repairs errors. You have to set this option in the
 configuration file or at the command line. You can view, but not
 change, the option's value with this SQL statement (this is not a
 typo—the system variable has a different name from the corresponding
 command-line option):
mysql> SHOW VARIABLES LIKE 'myisam_recover_options';
Enabling this option instructs MySQL to check MyISAM tables for
 corruption when it opens them, and to repair them if problems are
 found. You can set the following values:
	DEFAULT (or no
 setting)
	MySQL will try to repair any table that is marked as
 having crashed or not marked as having been closed cleanly. The
 default setting performs no other actions upon recovery. In
 contrast to how most variables work, this DEFAULT value is not an instruction to
 reset the variable to its compiled-in value; it essentially
 means "no setting."

	BACKUP
	Makes MySQL write a backup of the data file into a
 .BAK file, which you can examine
 afterward.

	FORCE
	Makes recovery continue even if more than one row will be
 lost from the .MYD file.

	QUICK
	Skips recovery unless there are delete blocks. These are
 blocks of deleted rows that are still occupying space and can be
 reused for future INSERT statements. This can be useful
 because MyISAM recovery can take a very long time on large
 tables.

You can use multiple settings, separated by commas. For example,
 BACKUP, FORCE will force recovery
 and create a backup.
We recommend that you enable this option, especially if you have
 just a few small MyISAM tables. Running a server with corrupted MyISAM
 tables is dangerous, as they can sometimes cause more data corruption
 and even server crashes. However, if you have large tables, automatic
 recovery might be impractical: it causes the server to check and
 repair all MyISAM tables when they're opened, which is inefficient.
 During this time, MySQL tends to block connections from performing any
 work. If you have a lot of MyISAM tables, it might be a good idea to
 use a less intrusive process that runs CHECK
 TABLES and REPAIR TABLES
 after startup. Either way, it is very important to check and repair
 the tables.
Enabling memory-mapped access to data files is another useful
 MyISAM tuning option. Memory mapping lets MyISAM access the
 .MYD files directly via the operating system's
 page cache, avoiding costly system calls. In MySQL 5.1 and newer, you
 can enable memory mapping with the myisam_use_mmap option. Older versions of
 MySQL use memory mapping for compressed MyISAM tables only.

InnoDB I/O Tuning

InnoDB is more complex than MyISAM. As a result, you can control
 not only how it recovers, but also how it opens and flushes its data,
 which greatly affects recovery and overall performance. InnoDB's
 recovery process is automatic and always runs when InnoDB starts,
 though you can influence what actions it takes. For more on this, see
 Chapter 11.
Leaving aside recovery and assuming nothing ever crashes or goes
 wrong, there's still a lot to configure for InnoDB. It has a complex chain of buffers and files
 designed to increase performance and guarantee ACID properties, and
 each piece of the chain is configurable. Figure 6-1 illustrates these files and
 buffers.
A few of the most important things to change for normal usage
 are the InnoDB log file size, how InnoDB flushes its log buffer, and
 how InnoDB performs I/O.
The InnoDB transaction log

InnoDB uses its log to reduce the cost of committing
 transactions. Instead of flushing the buffer pool to
 disk after each transaction commits, it logs the transactions. The
 changes transactions make to data and indexes often map to random
 locations in the tablespace, so flushing these changes to disk would
 require random I/O. As a rule, random I/O is much more expensive
 than sequential I/O because of the time it takes to seek to the
 correct location on disk and wait for the desired part of the disk
 to rotate under the head.
[image: InnoDB's buffers and files]

Figure 6-1. InnoDB's buffers and files

InnoDB uses its log to convert this random disk I/O into sequential I/O. Once the log is safely on
 disk, the transactions are permanent, even though the changes
 haven't been written to the data files yet. If something bad happens
 (such as a power failure), InnoDB can replay the log and recover the
 committed transactions.
Of course, InnoDB does ultimately have to write the changes to
 the data files, because the log has a fixed size. It writes to the
 log in a circular fashion: when it reaches the end of the log, it
 wraps around to the beginning. It can't overwrite a log record if
 the changes contained there haven't been applied to the data files,
 because this would erase the only permanent record of the committed
 transaction.
InnoDB uses a background thread to flush the changes to the
 data files intelligently. This thread can group writes together and
 make the data writes sequential, for improved efficiency. In effect, the transaction log converts random data file I/O into
 mostly sequential log file and data file I/O. Moving flushes into
 the background makes queries complete more quickly and helps cushion
 the I/O system from spikes in the query load.
The overall log file size is controlled by innodb_log_file_size and innodb_log_files_in_group, and it's very
 important for write performance. The total size is the sum of
 each file's size. By default there are two 5 MB files, for a total
 of 10 MB. This is not enough for a high-performance workload. The
 upper limit for the total log size is 4 GB, but typical sizes for
 extremely write-intensive workloads are only in the hundreds of
 megabytes (perhaps 256 MB total). The following sections explain how
 to find a good size for your workload.
InnoDB uses multiple files as a single circular log. You
 usually don't need to change the default number of logs, just the
 size of each log file. To change the log file size,
 shut down MySQL cleanly, move the old logs away, reconfigure, and
 restart. Be sure MySQL shuts down cleanly, or the log files will
 actually have entries that need to be applied to the data files!
 Watch the MySQL error log when you restart the server. After you've
 restarted successfully, you can delete the old log files.
Log file size and the log
 buffer. To determine the ideal size for your log files,
 you'll have to weigh the overhead of routine data changes against
 the recovery time required in the event of a crash. If the log is
 too small, InnoDB will have to do more checkpoints, causing more log
 writes. In extreme cases, write queries might stall and have to wait
 for changes to be applied to the data files before there is room to
 write into the log. On the other hand, if the log is too large,
 InnoDB might have to do a lot of work when it recovers. This can
 greatly increase recovery time.
Your data size and access patterns will influence the recovery
 time, too. Suppose you have a terabyte of data and 16 GB of buffer
 pool, and your total log size is 128 MB. If you have a lot of dirty
 pages (i.e., pages whose changes have not yet been flushed to the
 data files) in the buffer pool and they are uniformly spread across
 your terabyte of data, recovery after a crash might take a long
 time. InnoDB will have to scan through the log, examine the data
 files, and apply changes to the data files as needed. That's a lot
 of reading and writing! On the other hand, if the changes are
 localized—say, if only a few gigabytes of data are updated
 frequently—recovery might be fast, even when your data and log files
 are huge. Recovery time also depends on the size of a typical modification, which is related to
 your average row length. Short rows let more modifications fit in
 the log, so InnoDB might need to replay more modifications on
 recovery.
When InnoDB changes any data, it writes a record of the change
 into its log buffer, which it keeps in memory.
 InnoDB flushes the buffer to the log files on disk when the buffer
 gets full, when a transaction commits, or once per second—whichever
 comes first. Increasing the buffer size, which is 1 MB by default,
 can help reduce I/O if you have large transactions. The variable that controls the buffer
 size is called innodb_log_buffer_size.
You shouldn't need to make the buffer very large. The
 recommended range is 1 to 8 MB, and this should be more than enough
 unless you write a lot of huge BLOB records. The log entries are very
 compact compared to InnoDB's normal data. They are not page-based,
 so they don't waste space storing whole pages at a time. InnoDB also
 makes log entries as short as possible. They are sometimes even
 stored as the function number and parameters of a C function!
You can monitor InnoDB's log and log buffer I/O performance by inspecting the LOG section of the output of SHOW INNODB STATUS, and by watching the
 Innodb_os_log_written status
 variable to see how much data InnoDB writes to the log files. A good
 rule of thumb is to watch it over intervals of 10 to 100 seconds and
 note the peak value. You can use this to judge whether your log
 buffer is sized right. For example, if you see a peak of 100 KB
 written to the log per second, a 1 MB log buffer is probably
 plenty.
You can also use this metric to decide on a good size for your
 log files. If the peak is 100 KB per second, a 256 MB log file is
 enough to store at least 2,560 seconds of log entries, which is
 likely to be enough. See "SHOW INNODB STATUS" on SHOW INNODB STATUS for more on how to monitor and
 interpret the log and buffer status.
How InnoDB flushes the log
 buffer. When InnoDB flushes the log buffer to the log files
 on disk, it locks the buffer with a mutex, flushes it up to the
 desired point, and then moves any remaining entries to the front of
 the buffer. It is possible that more than one transaction will be
 ready to flush its log entries when the mutex is released. InnoDB
 has a group commit feature that can commit all of them to the log in
 a single I/O operation, but this is broken in MySQL 5.0 when the
 binary log is enabled.
The log buffer must be flushed to durable
 storage to ensure that committed transactions are fully durable. If
 you care more about performance than durability, you can change
 innodb_flush_log_at_trx_commit to
 control where and how often the log buffer is flushed. Possible
 settings are as follows:
	0 Write the log buffer
 to the log file and flush the log file every second, but
 do nothing at transaction commit.

	1 Write the log buffer
 to the log file and flush it to durable storage every time a
 transaction commits. This is the default (and safest) setting;
 it guarantees that you won't lose any committed transactions,
 unless the disk or operating system "fakes" the flush
 operation.

	2 Write the log buffer
 to the log file at every commit, but don't flush it. InnoDB
 schedules a flush once every second. The most important
 difference from the 0 setting
 (and what makes 2 the
 preferable setting) is that 2
 won't lose any transactions if the MySQL process crashes. If the
 entire server crashes or loses power, however, you can still
 lose transactions.

It's important to know the difference between
 writing the log buffer to the log file and flushing the log to durable
 storage. In most operating systems, writing the buffer to the log
 simply moves the data from InnoDB's memory buffer to the operating
 system's cache, which is also in memory. It doesn't actually write
 the data to durable storage. Thus, settings 0 and 2
 usually result in at most one second of lost
 data if there's a crash or a power outage, because the data might
 exist only in the operating system's cache. We say "usually" because
 InnoDB tries to flush the log file to disk about once per second no
 matter what, but it is possible to lose more than a second of
 transactions in some cases, such as when a flush gets
 stalled.
In contrast, flushing the log to durable storage means InnoDB
 asks the operating system to actually flush the data out of the
 cache and ensure it is written to the disk.
 This is a blocking I/O call that doesn't complete until the data is
 completely written. Because writing data to a disk is slow, this can
 dramatically reduce the number of transactions InnoDB can commit per
 second when innodb_flush_log_at_trx_commit is set to
 1. Today's high-speed drives
 [62] can perform only a couple of hundred real disk
 transactions per second, simply because of the limitations of drive
 rotation speed and seek time.
Sometimes the hard disk controller or operating system fakes a
 flush by putting the data into yet another
 cache, such as the hard disk's own cache. This is faster but very
 dangerous, because the data might still be lost if the drive loses
 power. This is even worse than setting innodb_flush_log_at_trx_commit to
 something other than 1, because
 it can cause data corruption, not just lost transactions.
Setting innodb_flush_log_at_trx_commit to anything
 other than 1 can cause you to
 lose transactions. However, you might find the other settings useful
 if you don't care about durability (the D in ACID). Maybe you just
 want some of InnoDB's other features, such as clustered indexes,
 resistance to data corruption, and row-level locking. This is not
 uncommon when using InnoDB to replace MyISAM solely for performance
 reasons.
The best configuration for high-performance transactional
 needs is to leave innodb_flush_log_at_trx_commit set to
 1 and place the log files on a
 RAID volume with a battery-backed write cache. This is both safe and
 very fast. See "RAID Performance Optimization" on Choosing Hardware for a Slave for more about
 RAID.

How InnoDB opens and flushes log and data files

The innodb_flush_method
 option lets you configure how InnoDB actually interacts with the
 filesystem. Despite its name, it can affect how InnoDB reads data,
 not just how it writes it. The Windows and non-Windows values for
 this option are mutually exclusive: you can use async_unbuffered, unbuffered, and normal only on Windows, and you cannot use any other values on Windows. The
 default value is unbuffered on
 Windows and fdatasync on all
 other systems. (If SHOW GLOBAL
 VARIABLES shows the variable with an empty value, that means it's set to the
 default.)
Warning
Changing how InnoDB performs I/O operations can change performance greatly.
 Benchmark carefully!

Here are the possible values:
	fdatasync
	The default value on non-Windows systems: InnoDB uses
 fsync() to flush both data
 and log files.
InnoDB generally uses fsync() instead of fdatasync(), even though this value
 seems to indicate the contrary. fdatasync() is like fsync(), except it flushes only the
 file's data, not its metadata (last modified time, etc.).
 Therefore, fsync() can
 cause more I/O. However, the InnoDB developers are very
 conservative, and they found that fdatasync() caused corruption in
 some cases. InnoDB determines which methods can be used
 safely; some options are set at compile time and some are
 discovered at runtime. It uses the fastest safe method it
 can.
The disadvantage of using fsync() is that the operating system
 buffers at least some of the data in its own cache. In theory,
 this is wasteful double buffering, because InnoDB manages its
 own buffers more intelligently than the operating system can.
 However, the ultimate effect is very system- and
 filesystem-dependent. The double buffering might not be a bad
 thing if it lets the filesystem do smarter I/O scheduling and
 batching. Some filesystems and operating systems can
 accumulate writes and execute them together, reorder them for
 efficiency, or write to multiple devices in parallel. They
 might also do read-ahead optimizations, such as instructing
 the disk to preread the next sequential block if several have
 been requested in sequence.
Sometimes these optimizations help, and sometimes they
 don't. You can read your system's manpage for fsync(2) if you're curious about
 exactly what your version of fsync() does.
innodb_file_per_table
 causes each file to be fsync()ed separately, which means
 writes to multiple tables can't be combined into a single I/O
 operation. This may require InnoDB to perform a higher total
 number of fsync()
 operations.

	O_DIRECT
	InnoDB uses the O_DIRECT flag, or directio(), depending on the system,
 on the data files. This option does not affect the log files
 and is not necessarily available on all Unix-like operating
 systems. At least GNU/Linux, FreeBSD, and Solaris (late 5.0
 and newer) support it. Unlike the O_DSYNC flag, it affects both reads
 and writes.
This setting still uses fsync() to flush the files to disk,
 but it instructs the operating system not to cache the data
 and not to use read-ahead. This disables the
 operating system's caches completely and makes all reads and
 writes go directly to the storage device, avoiding double
 buffering.
On most systems, this is implemented with a call to fcntl() to set the O_DIRECT flag on the file
 descriptor, so you can read the fcntl(2) manpage for your system's details. On Solaris, this
 option uses directio().
If your RAID card does read-ahead, this setting will not
 disable that. It disables only the operating system's and/or
 filesystem's read-ahead capabilities.
You generally won't want to disable your RAID card's
 write cache if you use O_DIRECT, because that's typically
 the only thing that keeps performance good. Using O_DIRECT when there is no buffer
 between InnoDB and the actual storage device, such as when you
 have no write cache on your RAID card, can cause performance
 to degrade greatly.
This setting can cause the server's warm-up time to
 increase significantly, especially if the operating system's
 cache is very large. It can also make a small buffer pool
 (e.g., a buffer pool of the default size) much slower than
 buffered I/O would. This is because the operating system
 won't "help out" by keeping more of the data in its own cache.
 If the desired data isn't in the buffer pool, InnoDB will have
 to read it directly from disk.
This setting does not impose any extra penalty on the
 use of innodb_file_per_table.

	O_DSYNC
	This option sets the O_SYNC flag on the open() call for the log files. It makes all writes synchronous—in
 other words, writes do not return until the data is written to
 disk. This option does not affect the data files.
The difference between the O_SYNC flag and the O_DIRECT flag is that O_SYNC doesn't disable caching at
 the operating system level. Therefore, it doesn't avoid double
 buffering, and it doesn't make writes go directly to disk.
 With O_SYNC, writes modify
 the data in the cache, and then it is sent to the disk.
While synchronous writes with O_SYNC may sound very similar to
 what fsync() does, the two
 can be implemented very differently on both the operating
 system and hardware levels. When the O_SYNC flag is used, the operating
 system might pass a "use synchronous I/O" flag down to the
 hardware level, telling the device not to use caches. On the
 other hand, fsync() tells
 the operating system to flush modified buffers to the device,
 followed by an instruction for the device to flush its own
 caches, if applicable, so it is certain that the data has been
 recorded on the physical media. Another difference is that
 with O_SYNC, every write() or pwrite() operation syncs data to
 disk before it finishes, blocking the calling process. In
 contrast, writing without the O_SYNC flag and then calling
 fsync() allows writes to
 accumulate in the cache (which makes each write fast), and
 then flushes them all at once.
Again, despite its name, this option sets the O_SYNC flag, not the O_DSYNC flag, because the InnoDB
 developers found bugs with O_DSYNC.
 O_SYNC and O_DSYNC
 are simila to fysnc() and
 fdatasync(): O_SYNC syncs
 both data and metadata, whereas O_DSYNC syncs data only.

	async_unbuffered
	This is the default value on Windows. This option causes
 InnoDB to use unbuffered I/O for most writes; the exception is that it uses
 buffered I/O to the log files when innodb_flush_log_at_trx_commit is
 set to 2.
This setting causes InnoDB to use the operating system's
 native asynchronous (overlapped) I/O for both reads and writes
 on Windows 2000, XP, and newer. On older Windows versions,
 InnoDB uses its own asynchronous I/O, which is implemented
 with threads.

	unbuffered
	Windows-only. This option is similar to async_unbuffered but does not use
 native asynchronous I/O.

	normal
	Windows-only. This option causes InnoDB not to use
 native asynchronous I/O or unbuffered I/O.

	nosync
 and littlesync
	For development use only. These options are undocumented
 and unsafe for production; they should
 not be used.

If your RAID controller has a battery-backed write cache, we
 recommend that you use O_DIRECT.
 If not, either the default or O_DIRECT will probably be the best choice,
 depending on your application.
You can configure the number of I/O threads on Windows, but
 not on any other platform. Setting innodb_file_io_threads to a value higher
 than 4 will cause InnoDB to
 create more read and write threads for data I/O. There will be only
 one insert buffer thread and one log thread, so, for example, the
 value 8 means there will be one
 insert buffer thread, one log thread, three read threads, and three
 write threads.

The InnoDB tablespace

InnoDB keeps its data in a tablespace,
 which is essentially a virtual filesystem spanning one or many files
 on disk. InnoDB uses the tablespace for many purposes, not just for
 storing tables and indexes. It keeps its undo log (old row
 versions), insert buffer, doublewrite buffer (described in an
 upcoming section), and other internal structures in the
 tablespace.
Configuring the tablespace. You
 specify the tablespace files with the innodb_data_file_path configuration
 option. The files are all contained in the directory given by
 innodb_data_home_dir. Here's an
 example:
innodb_data_home_dir = /var/lib/mysql/
innodb_data_file_path = ibdata1:1G;ibdata2:1G;ibdata3:1G
That creates a 3 GB tablespace in three files. Sometimes people wonder
 whether they can use multiple files to spread load across drives,
 like this:
innodb_data_file_path = /disk1/ibdata1:1G;/disk2/ibdata2:1G;...
While that does indeed place the files in different
 directories, which represent different drives in this example,
 InnoDB concatenates the files end-to-end. Thus, you usually don't
 gain much this way. InnoDB will fill the first file, then the second
 when the first is full, and so on; the load isn't really spread in
 the fashion you need for higher performance. A RAID controller is a smarter
 way to spread load.
To allow the tablespace to grow if it runs out of space, you can
 make the last file autoextend as follows:
...ibdata3:1G:autoextend
The default behavior is to create a single 10 MB autoextending
 file. If you make the file autoextend, it's a good idea to place an
 upper limit on the tablespace's size to keep it from growing very
 large, because once it grows, it doesn't shrink. For example, the
 following example limits the autoextending file to 2 GB:
...ibdata3:1G:autoextend:max:2G
Managing a single tablespace can be a hassle, especially if it
 autoextends and you want to reclaim the space (for this reason, we
 recommend disabling the autoextend feature). The only way to reclaim
 space is to dump your data, shut down MySQL, delete all the files,
 change the configuration, restart, let InnoDB create new empty
 files, and restore your data. InnoDB is completely unforgiving about
 its tablespace—you cannot simply remove files or change their sizes.
 It will refuse to start if you corrupt its tablespace. It is
 likewise very strict about its log files. If you're used to casually
 moving files around with MyISAM, take heed!
The innodb_file_per_table
 option lets you configure InnoDB to use one file per table in MySQL
 4.1 and later. It stores the data in the database directory as
 tablename.ibd files. This makes it easier to
 reclaim space when you drop a table, and it can be useful for
 spreading tables across multiple disks. However, placing the data in
 multiple files can actually result in more wasted space overall,
 because it trades internal fragmentation in the single InnoDB
 tablespace for wasted space in the .ibd files.
 This is more of an issue for very small tables, because InnoDB's
 page size is 16 KB. Even if your table has only 1 KB of data, it
 will still require at least 16 KB on disk.
Even if you enable the innodb_file_per_table option, you'll still
 need the main tablespace for the undo logs and other system data.
 (It will be smaller if you're not storing all the data in it, but
 it's still a good idea to disable autoextend, because you can't
 shrink the file without reloading all your data.) Also, you still
 won't be able to move, back up, or restore tables by simply copying
 the files. It's possible to do, but it requires some extra steps,
 and you can't copy tables between servers at all. See "Restoring Raw
 Files" on Limiting Access to MySQL for more on this topic.
Some people like to use innodb_file_per_table just because of the
 extra manageability and visibility it gives you. For example, it's
 much faster to find a table's size by examining a single file than
 it is to use SHOW TABLE STATUS,
 which has to lock and scan the buffer pool to determine how many
 pages are allocated to a table.
We should also note that you don't actually have to store your
 InnoDB files in a traditional filesystem. Like many traditional
 database servers, InnoDB offers the option of using a raw
 device—i.e., an unformatted partition—for its storage. However,
 today's filesystems can handle sufficiently large files that you
 shouldn't need to use this option. Using raw devices may improve
 performance by a few percentage points, but we don't think this
 small increase justifies the disadvantages of not being able to
 manipulate the data as files. When you store your data on a raw
 partition, you can't use mv, cp, or any other
 tools on it. We also think snapshot capabilities, such as those
 provided by GNU/Linux's Logical Volume Manager (LVM), are a huge
 boon. You can place a raw device on a logical volume, but this
 defeats the point—it's not really raw. Ultimately, the tiny
 performance gains you get from using raw devices aren't worth the
 extra hassle.
Old row versions and the tablespace. InnoDB's tablespace can grow very large in a write-heavy
 environment. If transactions stay open for a long time (even if
 they're not doing any work) and they're using the default REPEATABLE READ transaction isolation
 level, InnoDB won't be able to remove old row versions, because the
 uncommitted transactions will still need to be able to see them.
 InnoDB stores the old versions in the tablespace, so it continues to
 grow as more data is updated. Sometimes the problem isn't
 uncommitted transactions, but just the workload: the purge process
 is only a single thread, and it might not be able to keep up with
 the number of old row versions that need to be purged.
In either case, the output of SHOW
 INNODB STATUS can help you pinpoint the problem. Look at
 the first and second lines of the TRANSACTIONS section, which show the
 current transaction number and the point to which the purge has
 completed. If the difference is large, you may have a lot of
 unpurged transactions. Here's an example:

TRANSACTIONS

Trx id counter 0 80157601
Purge done for trx's n:o <0 80154573 undo n:o <0 0
The transaction identifier is a 64-bit number composed of two
 32-bit numbers, so you might have to do a little math to compute the
 difference. In this case it's easy, because the high bits are just
 zeros: there are 80157601 – 80154573 = 3028 potentially unpurged
 transactions (innotop can do this math for
 you). We said "potentially" because a large difference doesn't
 necessarily mean there are a lot of unpurged rows. Only transactions
 that change data will create old row versions, and there may be many
 transactions that haven't changed any data (conversely, a single
 transaction could have changed many rows).
If you have a lot of unpurged transactions and your tablespace is growing because of it, you can force
 MySQL to slow down enough for InnoDB's purge thread to keep up. This may not
 sound attractive, but there's no alternative. Otherwise, InnoDB will
 keep writing data and filling up your disk until the disk runs out
 of space or the tablespace reaches the limits you've defined.
To throttle the writes, set the innodb_max_purge_lag variable to a value
 other than 0. This value
 indicates the maximum number of transactions that can be waiting to
 be purged before InnoDB starts to delay further queries that update
 data. You'll have to know your workload to decide on a good value.
 As an example, if your average transaction affects 1 KB of rows and
 you can tolerate 100 MB of unpurged rows in your tablespace, you
 could set the value to 100000.
Bear in mind that unpurged row versions impact all queries,
 because they effectively make your tables and indexes larger. If the
 purge thread simply can't keep up, performance can decrease
 dramatically. Setting the innodb_max_purge_lag variable will slow
 down performance too, but it's the lesser of the two evils.

The doublewrite buffer

InnoDB uses a doublewrite buffer to avoid
 data corruption in case of partial page writes. A partial page write
 occurs when a disk write doesn't complete fully, and only a portion
 of a 16 KB page is written to disk. There are a variety of reasons
 (crashes, bugs, and so on) that a page might be partially written to
 disk. The doublewrite buffer guards against data corruption if this
 happens.
The doublewrite buffer is a special reserved area of the
 tablespace, large enough to hold 100 pages in a contiguous block. It
 is essentially a backup copy of recently written pages. When InnoDB
 flushes pages from the buffer pool to the disk, it writes (and
 flushes) them first to the doublewrite buffer, then to the main data
 area where they really belong. This ensures that every page write is
 atomic and durable.
Doesn't this mean that every page is written twice? Yes, it
 does, but because InnoDB writes several pages to the doublewrite
 buffer sequentially and only then calls fsync() to sync them to disk the
 performance impact is relatively small—generally a few percentage
 points. More importantly, this strategy allows the log files to be
 much more efficient. Because the doublewrite buffer gives InnoDB a
 very strong guarantee that the data pages are not corrupt, InnoDB's
 log records don't have to contain full pages; they are more like
 binary deltas to pages.
If there's a partial page write to the doublewrite buffer
 itself, the original page will still be on disk in its real
 location. When InnoDB recovers, it will use the original page
 instead of the corrupted copy in the doublewrite buffer. However, if
 the doublewrite buffer succeeds and the write to the page's real
 location fails, InnoDB will use the copy in the doublewrite buffer
 during recovery. InnoDB knows when a page is corrupt because each
 page has a checksum at the end; the checksum is the last thing to be
 written, so if the page's contents don't match the checksum, the
 page is corrupt. Upon recovery, therefore, InnoDB just reads each
 page in the doublewrite buffer and verifies the checksums. If a
 page's checksum is incorrect, it reads the page from its original
 location.
In some cases, the doublewrite buffer really isn't
 necessary—for example, you might want to disable it on slaves. Also,
 some filesystems (such as ZFS) do the same thing themselves, so it
 is redundant for InnoDB to do it. You can disable the doublewrite
 buffer by setting innodb_doublewrite to 0.

Other I/O tuning options

The sync_binlog option
 controls how MySQL flushes the binary log to disk. Its default value is 0, which means MySQL does no flushing, and it's up to the operating system to
 decide when to flush its cache to durable storage. If the value is
 greater than 0, it specifies how
 many binary log writes happen between flushes to disk (each write is
 a single statement if autocommit
 is set, and otherwise a transaction). It's rare to set this option
 to anything other than 0 or
 1.
If you don't set sync_binlog to 1, it's likely that a crash will cause
 your binary log to be out of sync with your transactional data. This
 can easily break replication and make point-in-time recovery
 impossible. However, the safety provided by setting this option to
 1 comes at high price.
 Synchronizing the binary log and the transaction log requires MySQL
 to flush two files in two distinct locations. This might require a
 disk seek, which is relatively slow.
Warning
If you're using binary logging and InnoDB in MySQL 5.0 or
 later, and especially if you're upgrading from an earlier version,
 you should be very careful about the new XA transaction support.
 It is designed to synchronize transaction commits between storage
 engines and the binary log, but it also disables InnoDB's group
 commit. This can reduce performance dramatically by requiring many
 more fsync() calls when
 committing transactions. You can ease the problem by disabling the
 binary log and disabling InnoDB's XA support
 with innodb_support_xa=0. If
 you have a battery-backed RAID cache, each fsync() call will be fast, so it might
 not be an issue.

As with the InnoDB log file, placing the binary log on a RAID
 volume with a battery-backed write cache can give a huge performance
 boost.
A non-performance-related note on the binary logs: if
 you want to use the expire_logs_days option to remove old
 binary logs automatically, don't remove them with
 rm. The server will get confused and refuse to
 remove them automatically, and PURGE MASTER
 LOGS will stop working. The solution, should you find
 yourself entangled in this situation, is to manually resync the
 hostname-bin.index file with the list of files
 that still exist on disk.
We cover RAID in more depth in Chapter 7, but it's
 worth repeating here that good-quality RAID controllers, with
 battery-backed write caches set to use the write-back policy, can
 handle thousands of writes per second and still
 give you durable storage. The data gets written to a fast cache with
 a battery, so it will survive even if the system loses power. When
 the power comes back, the RAID controller will write the data from
 the cache to the disk before making the disk available for use.
 Thus, a good RAID controller with a large enough battery-backed
 write cache can improve performance dramatically and is a very good
 investment.

[61] The table can be closed for several reasons. For example,
 the server might close the table because there's not enough room
 in the table cache, or someone might execute FLUSH TABLES.

[62] We're talking about spindle-based disk drives with
 rotating platters, not solid-state hard drives, which have
 completely different performance characteristics.

Tuning MySQL Concurrency

When you're running MySQL in a high-concurrency workload, you may
 run into bottlenecks you wouldn't otherwise experience. The following
 sections explain how to detect these problems when they happen, and how
 to get the best performance possible under these workloads for MyISAM
 and InnoDB.
MyISAM Concurrency Tuning

Simultaneous reading and writing has to be controlled carefully
 so that readers don't see inconsistent results. MyISAM allows
 concurrent inserts and reads under some conditions, and it lets you
 "schedule" some operations to try to block as little as
 possible.
Before we look at MyISAM's concurrency settings, it's important
 to understand how MyISAM deletes and inserts rows. Delete operations
 don't rearrange the entire table; they just mark rows as deleted,
 leaving "holes" in the table. MyISAM prefers to fill the holes if it
 can, reusing the spaces for inserted rows. If there are no holes, it
 appends new rows to the end of the table.
Even though MyISAM has table-level locks, it can append new rows
 concurrently with reads. It does this by stopping the reads at the
 last row that existed when they began. This avoids inconsistent
 reads.
However, it is much more difficult to provide consistent reads
 when something is changing the middle of the table. MVCC is the most
 popular way to solve this problem: it lets readers read old versions
 of data while writers create new versions. MyISAM doesn't support
 MVCC, so it doesn't support concurrent inserts unless they go at the
 end of the table.
You can configure MyISAM's concurrent insert behavior with the
 concurrent_insert variable, which
 can have the following values:
	0 MyISAM allows no
 concurrent inserts; every insert locks the table
 exclusively.

	1 This is the default
 value. MyISAM allows concurrent inserts, as long as there are no
 holes in the table.

	2 This value is available
 in MySQL 5.0 and newer. It forces concurrent inserts to append to
 the end of the table, even when there are holes. If there are no
 threads reading from the table, MySQL will place the new rows in
 the holes. The table can become more fragmented than usual with
 this setting, so you may need to optimize your tables more
 frequently, depending on your workload.

You can also configure MySQL to delay some operations to a later
 time, when they can be combined for greater efficiency. For instance,
 you can delay index writes with the delay_key_write variable, which we mentioned
 earlier in this chapter. This involves the familiar tradeoff: write
 the index right away (safe but expensive), or wait and hope the power
 doesn't fail before the write happens (faster, but likely to cause
 massive index corruption in the event of a crash because the index
 file will be very out-of-date). You can also give INSERT, REPLACE, DELETE, and UPDATE queries lower priority than SELECT queries with the low_priority_updates option. This is
 equivalent to globally applying the LOW_PRIORITY modifier to UPDATE queries. See "Query Optimizer Hints"
 on Optimizing UNION for more on this.
Finally, even though InnoDB's scalability issues are more often
 talked about, MyISAM has also had problems with mutexes for a long
 time. In MySQL 4.0 and earlier, a global mutex protected any I/O to
 the key buffer, which caused scalability problems with multiple CPUs
 and multiple disks. MySQL 4.1's key buffer code is improved and
 doesn't have this problem anymore, but it still holds a mutex on each
 key buffer. This is an issue when a thread copies key blocks from the
 key buffer into its local storage, rather than reading from the disk.
 The disk bottleneck is gone, but there's still a bottleneck when
 accessing data in the key buffer. You can sometimes work around this
 problem with multiple key buffers, but this approach isn't always
 successful. For example, there's no way to solve the problem when it
 involves only a single index. As a result, concurrent SELECT queries can perform significantly
 worse on multi-CPU machines than on a single-CPU machine, even when
 these are the only queries running.

InnoDB Concurrency Tuning

InnoDB is designed for high concurrency, but it's not perfect.
 The InnoDB architecture still shows its roots in limited memory,
 single-CPU, single-disk systems. Some aspects of InnoDB's performance
 degrade badly in high-concurrency situations, and your only recourse
 is to limit concurrency. You can often see whether InnoDB is having
 concurrency issues by inspecting the SEMAPHORES section of the SHOW INNODB STATUS output. See "SEMAPHORES"
 on SEMAPHORES for more information.
InnoDB has its own "thread scheduler" that controls how threads
 enter its kernel to access data, and what they can do once they're
 inside the kernel. The most basic way to limit concurrency is with the innodb_thread_concurrency variable, which
 limits how many threads can be in the kernel at once. A value of
 0 means there is no limit on the
 number of threads. If you are having InnoDB concurrency problems, this
 variable is the most important one to configure.
It's impossible to name a good value for any given architecture
 and workload. In theory, the following formula gives a good
 value:
concurrency = Number of CPUs * Number of Disks * 2
But in practice, it can be better to use a much smaller value.
 You will have to experiment and benchmark to find the best value for
 your system.
If more than the allowed number of threads are already in the
 kernel, a thread can't enter the kernel. InnoDB uses a two-phase
 process to try to let threads enter as efficiently as possible. The
 two-phase policy reduces the overhead of context switches caused by
 the operating system scheduler. The thread first sleeps for innodb_thread_sleep_delay microseconds, and
 then tries again. If it still can't enter, it goes into a queue of
 waiting threads and yields to the operating system.
The default sleep time in the first phase is 10,000
 microseconds. Changing this value can help in high-concurrency
 environments, when the CPU is underused with a lot of threads in the
 "sleeping before entering queue" status. The default value can also be
 much too large if you have a lot of small queries, because it adds 10
 milliseconds to query latency.
Once a thread is inside the kernel, it has a certain number of
 "tickets" that let it back into the kernel for "free," without any
 concurrency checks. This limits how much work it can do before it has
 to get back in line with other waiting threads. The innodb_concurrency_tickets option controls
 the number of tickets. It rarely needs to be changed unless you have a
 lot of extremely long-running queries. Tickets are granted per-query,
 not per-transaction. Once a query finishes, its unused tickets are
 discarded.
In addition to the bottlenecks in the buffer pool and other
 structures, there's another concurrency bottleneck at the commit
 stage, which is largely I/O-bound because of flush operations. The
 innodb_commit_concurrency variable
 governs how many threads can commit at the same time. Configuring this
 option may help if there's a lot of thread thrashing even when
 innodb_thread_concurrency is set to
 a low value.
The InnoDB team is working on solving these issues, and there
 were major improvements in MySQL 5.0.30 and 5.0.32.

Workload-Based Tuning

The ultimate goal of tuning your server is to customize it for your specific
 workload. This requires intimate knowledge of the number, type, and
 frequency of all kinds of server activities—not just queries, but other
 activities too, such as connecting to the server and flushing tables.
 You also need to know how to monitor and interpret the status and
 activity of MySQL and the operating system; see Chapters Chapter 7 and Chapter 14 for more on these
 topics.
The first thing you should do, if you haven't done it already, is
 become familiar with your server. Know what kinds of queries run on it.
 Monitor it with innotop or other tools. It's
 helpful to know not only what your server is doing overall, but what
 each MySQL query spends a lot of time doing. One way to glean this
 knowledge is by aggregating the output of SHOW
 PROCESSLIST by the Command
 column with a script (innotop has this ability
 built in), or just by inspecting it visually. Look for threads that
 spend a lot of time in a particular state.
If there's a time when your server is running at full capacity,
 try to look at the process list then, because that's the best way to see
 what kinds of queries suffer most. For example, are there a lot of
 queries copying results to temporary tables, or sorting results? If so,
 you know you need to look at the configuration settings for temporary
 tables and sort buffers. (You'll probably also need to optimize the
 queries themselves.)
We usually recommend using the patches we've developed for the
 MySQL logs, which can give you a great deal of information on what each
 query does and let you analyze your workload in much more detail. These
 patches are included in recent official MySQL server distributions, so
 they may already be in your server. See "Finer control over logging" on
 Finer control over logging for more details.
Optimizing for BLOB and TEXT Workloads

BLOB and TEXT columns are a special type of workload
 for MySQL. (We refer to all of the BLOB and TEXT types as BLOB for simplicity, because they belong to
 the same class of data types.) There are several restrictions on
 BLOB values that make the server
 treat them differently from other types. One of the most important
 considerations is that the server cannot use in-memory temporary
 tables for BLOB values. Thus, if a
 query involving BLOB values
 requires a temporary table—no matter how small—it will go to disk
 immediately. This is very inefficient, especially for otherwise small
 and fast queries. The temporary table could be most of the query's
 cost.
There are two ways to ease this penalty: convert the values to
 VARCHAR with the SUBSTRING() function (see "String Types" on
 VARCHAR and CHAR types for more on this), or make
 temporary tables faster.
The best way to make temporary tables faster is to place them on
 a memory-based filesystem (tmpfs on
 GNU/Linux). This removes some overhead, although it's still much
 slower than using in-memory tables. Using a memory-based filesystem is
 helpful because the operating system tries to avoid writing data to
 disk. [63] Normal filesystems are cached in memory too, but the
 operating system might flush normal filesystem data every few seconds.
 A tmpfs filesystem never gets
 flushed. The tmpfs filesystem is
 also designed for low overhead and simplicity. For example, there's no
 need for the filesystem to make any provisions for recovery. That
 makes it faster.
The server setting that controls where temporary tables are
 placed is tmpdir. Monitor how full
 the filesystem gets to ensure you have enough space for temporary
 tables. If necessary, you can even specify several temporary table
 locations, which MySQL will use in a round-robin fashion.
If your BLOB columns are very
 large and you use InnoDB, you might also want to increase InnoDB's log
 buffer size. We wrote more about this earlier in this
 chapter.
For long variable-length columns (e.g., BLOB, TEXT, and long character columns),
 InnoDB stores a 768-byte prefix in-page with the rest of the row.
 [64] If the column's value is longer than this prefix length,
 InnoDB may allocate external storage space outside the row to store
 the rest of the value. It allocates this space in whole 16 KB pages,
 just like all other InnoDB pages, and each column gets its own page
 (columns do not share external storage space). InnoDB allocates
 external storage space to a column a page at a time until 32 pages are
 used; then it allocates 64 pages at a time.
Note that we said InnoDB may allocate
 external storage. If the total length of the row, including the full
 value of the long column, is shorter than InnoDB's maximum row length
 (a little less than 8 KB), InnoDB will not allocate external storage
 even if the long column's value exceeds the prefix length.
Finally, when InnoDB updates a long column that is placed in
 external storage, it doesn't update it in place. Instead, it writes
 the new value to a new location in external storage and deletes the
 old value.
All of this has the following consequences:
	Long columns can waste a lot of space in InnoDB. For
 example, if you store a column value that is one byte too long to
 fit in the row, it will use an entire page to store the remaining
 byte, wasting most of the page. Likewise, if you have a value that
 is slightly more than 32 pages long, it may actually use 96 pages
 on disk.

	External storage disables the adaptive hash index, which
 needs to compare the full length of columns to verify that it
 found the right data. (The hash helps InnoDB find "guesses" very
 quickly, but it must check that its "guess" is correct.) Because
 the adaptive hash index is completely in-memory and is built
 directly "on top of" frequently accessed pages in the buffer pool, it
 doesn't work with external storage.

	Long values can make queries with a WHERE clause that doesn't use an index
 run slowly. MySQL reads all columns before it applies the WHERE clause, so it might ask InnoDB to
 read a lot of external storage, then check the WHERE clause and throw away all the data
 it read. It's never a good idea to select columns you don't need,
 but this is a special case where it's even more important to avoid
 doing so. If you find your queries are suffering from this
 limitation, you can try to use covering indexes to help. See
 "Covering Indexes" on Covering Indexes for more
 information.

	If you have many long columns in a single table, it might be
 better to combine the data they store into a single column,
 perhaps as an XML document. That lets all the values share
 external storage, rather than using their own pages.

	You can sometimes gain significant space and performance
 benefits by storing long columns in a BLOB and compressing them with COMPRESS(), or compressing them in the
 application before sending them to MySQL.

Optimizing for Filesorts

MySQL has two variables that can help you control how it
 performs filesorts.
Recall from "Sort optimizations" on Sort optimizations that MySQL has two filesort
 algorithms. It uses the two-pass algorithm if the total size of all
 the columns needed for the query, plus the ORDER BY columns, exceeds max_length_for_sort_data bytes. It also
 uses this algorithm when any of the required columns—even those not
 used for the ORDER BY—is a
 BLOB or TEXT column. (You can use SUBSTRING() to convert such columns to
 types that can work with the single-pass algorithm.)
You can influence MySQL's choice of algorithm by changing the
 value of the max_length_for_sort_data variable. Because
 the single-pass algorithm creates a fixed-size buffer for each row
 it will sort, the maximum length of VARCHAR columns is what counts toward
 max_length_for_sort_data, not the
 actual size of the stored data. This is one of the reasons why we
 recommend you make these columns only as large as necessary.
When MySQL has to sort on BLOB or TEXT columns, it uses only a prefix and
 ignores the remainder of the values. This is because it has to
 allocate a fixed-size structure to hold the values and copy the
 prefix from external storage into that structure. You can specify
 how large this prefix should be with the max_sort_length variable.
Unfortunately, MySQL doesn't really give you any visibility
 into which sort algorithm it uses. If you increase the max_length_for_sort_data variable and your
 disk usage goes up, your CPU usage goes down, and the Sort_merge_passes status variable begins
 to grow more quickly than it did before the change, you've probably
 forced more sorts to use the single-pass algorithm.
For more on the BLOB and
 TEXT types, see "String Types" on
 VARCHAR and CHAR types.

Inspecting MySQL Server Status Variables

One of the most productive ways to tune MySQL for your workload
 is to examine the output from SHOW GLOBAL
 STATUS to see which settings might need changing. If you are
 just getting started tuning a server and you're familiar with
 mysqlreport, running it and examining the
 easy-to-read report it generates can save you a lot of time. This
 report will help you locate potential trouble spots, and you can then
 inspect the relevant variables more carefully with SHOW GLOBAL STATUS. If you see something
 that looks like it could be improved, you can tune it. Then take a
 look at the incremental output of mysqladmin extended -r
 -i60 to see the effects of your changes. For the best
 results, look both at absolute values and at how the values change
 over time.
There's a more detailed list of the variables you can inspect
 with SHOW GLOBAL STATUS in Chapter 13. The following list shows only the
 variables that are most productive to examine:
	Aborted_clients
	If this variable's value increases over time, are you
 closing your connections gracefully? If not, check your network
 performance, and examine the max_allowed_packet configuration
 variable. Queries that exceed max_allowed_packet will abort
 ungracefully.

	Aborted_connects
	This should be very close to zero; if it's not, you may
 have network problems. A few aborted connects are normal. For
 example, they may occur when someone tries to connect from the
 wrong host, uses the wrong username or password, or specifies an
 invalid database.

	Binlog_cache_disk_use
 and Binlog_cache_use
	If the ratio of Binlog_cache_disk_use to Binlog_cache_use is large, increase
 the binlog_cache_size. You
 want most transactions to fit into the binary log cache, but
 it's OK if one occasionally spills onto disk.
Reducing binary log cache misses isn't an exact science.
 The best approach is to increase the binlog_cache_size setting and see
 whether the cache miss rate decreases. Once you get it down to a
 certain point, you may not benefit from making the cache size
 larger. Suppose you have one miss per second, and you increase
 the size and it goes to one per minute. That's good enough—you
 are unlikely to get it down much lower, and even if you do,
 there's very little benefit, so save the memory for something
 else instead.

	Bytes_received
 and Bytes_sent
	These values can help you determine whether a problem with
 the server is because of too much traffic to or from the server.
 [65] They may also point out a problem elsewhere in
 your code, such as a query that is fetching more data than it
 needs. (See "The MySQL Client/Server Protocol" on Query Execution Basics for more on this
 topic.)

	Com_*
	You should check that you're not getting higher than
 expected values for unusual variables such as Com_rollback. A quick way to check for
 reasonable values here is innotop's Command
 Summary mode (see Chapter 14
 for more on innotop).

	Connections
	This variable represents the number of connection attempts
 (not the number of current connections, which is Threads_connected). If its value
 increases rapidly—i.e., to hundreds per second—you may need to
 look into connection pooling or tuning the operating system's networking stack
 (see the next chapter for more on network
 configuration).

	Created_tmp_disk_tables
	If this value is high, one of two things could be wrong:
 your queries might create temporary tables while selecting
 BLOB or TEXT columns, or your tmp_table_size and/or max_heap_table_size might not be large
 enough.

	Created_tmp_tables
	The only way to deal with a high value for this variable
 is by optimizing your queries. See Chapters Chapter 3 and Chapter 4 for tips on
 optimization.

	Handler_read_rnd_next
	Handler_read_rnd_next /
 Handler_read_rnd gives you the approximate average
 size of a full table scan. If it's large, you may need to
 optimize your schema, indexing, or queries.

	Key_blocks_used
	If Key_blocks_used *
 key_cache_block_size is much smaller than key_buffer_size on a warmed-up server,
 your key_buffer_size is
 larger than you need and you're wasting memory.

	Key_reads
	Watch how many reads per second you see, and match the
 value against your I/O system to see how closely you're
 approaching your I/O limits. See Chapter 7 for more
 information.

	Max_used_connections
	If this value is the same as max_connections, either max_connections is set too low or you
 had a peak in demand that exceeded your server's configured
 limits. Don't automatically assume you should increase max_connections, though! It's there as
 an emergency limit to keep your server from being swamped under
 too much load. If you see a spike in demand, you should check to
 make sure that your application isn't misbehaving, your server
 is tuned correctly, and your schema is well designed. It's
 better to fix the application than to simply increase the
 server's max_connections
 limit.

	Open_files
	Be careful that this doesn't approach the value of
 open_files_limit. If it does,
 you should probably increase the limit.

	Open_tables
 and Opened_tables
	Check this value against your table_cache value. If you see many
 Opened_tables per second,
 your table_cache value might
 not be large enough. Explicit temporary tables can also cause a
 growing number of opened tables even when the table cache isn't
 fully used, though, so it might be nothing to worry
 about.

	Qcache_*
	See "The MySQL Query Cache" on The MySQL Query Cache for more on the query
 cache.

	Select_full_join
	Full joins are joins without indexes, which are a real
 performance killer. It's best to eliminate these; even one per
 minute can be too much. You should optimize your queries and
 indexes if you have joins without indexes.

	Select_full_range_join
	If this number is high, you run many queries that use a
 range lookup strategy to join tables. These can be slow and are
 a good place to optimize.

	Select_range_check
	This variable tracks query plans that reexamine key
 selections for each row in a join, which has high overhead. If
 the value is high or increasing, you have some queries that
 can't find good indexes to use.

	Slow_launch_threads
	A large value for this status variable means that
 something is delaying new threads upon connection. This is a
 clue that something is wrong with your server, but it doesn't
 really indicate what. It usually means there's a system
 overload, causing the operating system not to schedule any CPU
 time for newly created threads.

	Sort_merge_passes
	A high value for this variable means you might need to
 increase the sort_buffer_size, perhaps just for
 certain queries. Check your queries and find out which ones are
 causing filesorts. You might be able to optimize them.

	Table_locks_waited
	This variable tells you how many tables were locked and
 caused lock waits on the server level (waits for storage engine
 locks, such as InnoDB's row-level locks, do not increment this
 variable). If this value is high and increasing, you may have a
 serious concurrency bottleneck. You might consider using InnoDB
 or another storage engine that uses row-level locking,
 partitioning large tables manually or with MySQL's built-in
 partitioning in MySQL 5.1 and later, optimizing your queries,
 enabling concurrent inserts, or tuning lock settings.
MySQL doesn't tell you how long the waits were. At the
 time of this writing, perhaps the best way to find out is with
 the microsecond-resolution slow query log. See "MySQL Profiling"
 on MySQL Profiling for more on this.

	Threads_created
	If this value is large or increasing, you probably need to
 increase the thread_cache_size variable. Check
 Threads_cached to see how
 many threads are in the cache already.

[63] Data can still go to disk if the operating system swaps
 it.

[64] This is long enough to create a 255-character index on a
 column, even if it's utf8,
 which might require up to3 bytes per character.

[65] Even if your network has enough capacity, don't rule
 it out as a performance bottleneck. Network latency can
 contribute to slow performance.

Tuning Per-Connection Settings

You should not raise the value of a
 per-connection setting globally unless you know it's the right thing to
 do. Some buffers are allocated all at once, even if they're not needed,
 so a large global setting can be a huge waste. Instead, you can raise
 the value when a query needs it.
The most common example of a variable that you should probably
 keep small and raise only for certain queries is sort_buffer_size, which controls how large the
 sort buffer should be for filesorts. It is allocated to its full size
 even for very small sorts, so if you make it much larger than the
 average sort requires, you'll be wasting memory and adding allocation
 cost.
When you find a query that needs a larger sort buffer to perform
 well, you can raise the sort_buffer_size value just before the query
 and then restore it to DEFAULT
 afterward. Here's an example of how to do this:
SET @@session.sort_buffer_size := <value>;
-- Execute the query...
SET @@session.sort_buffer_size := DEFAULT;
Wrapper functions can be handy for this type of code. Other
 variables you might set on a per-connection basis are read_buffer_size, read_rnd_buffer_size,
 tmp_table_size, and myisam_sort_buffer_size (if you're repairing
 tables).
If you need to save and restore a possibly customized value, you
 can do something like the following:
SET @saved_<unique_variable_name> := @@session.sort_buffer_size;
SET @@session.sort_buffer_size := <value>;
-- Execute the query...
SET @@session.sort_buffer_size := @saved_<unique_variable_name>;

Chapter 7. Operating System and Hardware Optimization

Your MySQL server can perform only as well as its weakest link, and
 the operating system and hardware on which it runs are often limiting
 factors. The disk size, the available memory and CPU resources, the
 network, and the components that link them all limit the system's ultimate
 capacity.
In the earlier chapters, we concentrated on optimizing the MySQL
 server and your application. This kind of tuning is crucial, but you also
 need to consider your hardware and configure the operating system
 appropriately. For example, if your workload is I/O-bound, one approach is
 to design your application to minimize MySQL's I/O workload. However, it's
 often smarter to upgrade the I/O subsystem, install more memory, or
 reconfigure existing disks.
Hardware changes very rapidly, so we won't compare different
 products or mention particular components in this chapter. Instead, our
 goal is to give you a set of guidelines and approaches for solving
 hardware and operating system bottlenecks.
We begin by looking at what limits MySQL's performance. The most
 common problems are CPU, memory, and I/O bottlenecks, but they may not be
 what they appear at first glance. We explore how to choose CPUs for MySQL
 servers, and then we consider how to balance memory and disk resources. We
 examine different types of I/O (random versus sequential, reads versus
 writes) and explain how to understand your working set. That knowledge
 will help you choose an effective memory-to-disk ratio. We move from there
 to tips for choosing disks for MySQL servers, and we follow that section
 with the all-important topic of RAID optimization. We finish our
 discussion of storage with a look at external storage options (such as
 SANs) and some advice on how and when to use multiple disk volumes for
 MySQL data and logs.
From storage, we move on to network performance and how to choose an
 operating system and filesystem. Then we examine the threading support
 MySQL needs to work well, and how to avoid swapping. We close the chapter
 with examples of operating system status output.
What Limits MySQL's Performance?

Many different hardware components can affect MySQL's performance, but the two most frequent bottlenecks we see
 are CPU saturation and I/O saturation. CPU saturation happens when MySQL works
 with data that either fits in memory or can be read from disk as fast as
 needed. Examples are intensive cryptographic operations and joins
 without indexes that end up being cross-products.
I/O saturation, on the other hand, generally happens when you need
 to work with much more data than you can fit in memory. If your
 application is distributed across a network, or if you have a huge
 number of queries and/or low latency requirements, the
 bottleneck may shift to the network instead.
Look beyond the obvious when you think you've found a bottleneck.
 A weakness in one area often puts pressure on another subsystem, which
 then appears to be the problem. For example, if you don't have enough
 memory, MySQL might have to flush caches to make room for data it
 needs—and then, an instant later, read back the data it just flushed
 (this is true for both read and write operations). The memory scarcity
 can thus appear to be a lack of I/O capacity. Similarly, a saturated
 memory bus can appear to be a CPU problem. In fact, when we say that an
 application has a "CPU bottleneck" or is "CPU-bound," what we really
 mean is that there is a computational bottleneck. We delve into this
 issue next.

How to Select CPUs for MySQL

You should consider whether your workload is CPU-bound when
 upgrading current hardware or purchasing new hardware.
You can identify a CPU-bound workload by checking the CPU
 utilization, but instead of looking only at how heavily your CPUs are
 loaded overall, try to look at the balance of CPU usage and I/O for your
 most important queries, and notice whether the CPUs are loaded evenly.
 You can use tools such as mpstat, iostat, and
 vmstat (see the end of this chapter for examples)
 to figure out what limits your server's performance.
Which Is Better: Fast CPUs or Many CPUs?

When you have a CPU-bound workload, MySQL generally benefits
 most from faster CPUs (as opposed to more
 CPUs).
This isn't always true, because it depends on the workload and
 the number of CPUs. However, MySQL's current architecture has
 scaling issues with multiple CPUs, and MySQL cannot run a single query
 in parallel across many CPUs. As a result, the CPU speed limits the response time for each individual
 CPU-bound query.
Broadly speaking, there are two types of performance you might desire:
	Low latency (fast response time)
	To achieve this you need fast CPUs, because each query will use only a single
 CPU.

	High throughput
	If you can run many queries at the same time, you may
 benefit from multiple CPUs to service the queries. However,
 whether this works in practice depends on many factors. Because
 MySQL scales poorly on multiple CPUs, it's often better to use fewer fast CPUs
 instead.

If you have multiple CPUs and you're not running queries
 concurrently, MySQL can still use the extra CPUs for background tasks
 such as purging InnoDB buffers, network operations, and so on.
 However, these jobs are usually minor compared to executing queries.
 If you have a dual-CPU system running a single CPU-bound query
 constantly, the second CPU will probably be idle around 90% of the time.
MySQL replication (discussed in the next chapter) also works
 best with fast CPUs, not many CPUs. If your workload is CPU-bound, a
 parallel workload on the master can easily serialize into a workload
 the slave can't keep up with, even if the slave is more powerful than
 the master. That said, the I/O subsystem, not the CPU, is usually the
 bottleneck on a slave.
If you have a CPU-bound workload, another way to approach the
 question of whether you need fast CPUs or many CPUs is to
 consider what your queries are really doing. At the hardware level, a
 query can either be executing or waiting. The most common causes of
 waiting are waiting in the run queue (when the process is runnable,
 but all the CPUs are busy), waiting for latches or locks, and waiting
 for the disk or network. What do you expect your queries to be waiting
 for? If they'll be waiting in the run queue or waiting for latches or
 locks, you generally need faster CPUs. (There might be exceptions,
 such as a query waiting for the InnoDB log buffer mutex, which doesn't
 become free until the I/O completes—this might indicate that you
 actually need more I/O capacity.)
That said, MySQL can use many CPUs effectively on some
 workloads. For example, suppose you have many connections querying
 distinct tables (and thus not contending for table locks, which can be
 a problem with MyISAM and Memory tables), and the server's total
 throughput is more important than any individual query's response
 time. Throughput can be very high in this scenario because the threads
 can all run concurrently without contending with each other. Again,
 this may work better in theory than in practice: InnoDB has scaling
 issues regardless of whether queries are reading from distinct tables
 or not, and MyISAM has global locks on each key buffer. Full table
 scans on MyISAM tables are an example of queries that can run
 concurrently without interfering.
MySQL advertises the Falcon storage engine as being designed to
 take advantage of servers with at least eight CPUs, so in the future
 MySQL might be able to use many CPUs more effectively than it does
 now. However, only time and experience will reveal Falcon's true
 scalability.

CPU Architecture

Sixty-four-bit architectures are much more prevalent today than
 they were just a few years ago. MySQL works well on 64-bit
 architectures, though some of its internals are not yet 64-bit capable. For
 example, in MySQL 5.0 each MyISAM key buffer is limited to 4 GB, the
 size addressable by a 32-bit integer. (You can create multiple key
 buffers to work around this, though.)
It's a good idea to choose a 64-bit architecture for all new
 hardware you purchase. If you don't use a 64-bit CPU and 64-bit
 operating system, you won't be able to use a lot of memory efficiently: even though some 32-bit systems
 can support large amounts of memory, they can't use it as efficiently as a 64-bit
 system, and MySQL won't be able to use it well.

Scaling to Many CPUs and Cores

One place where multiple CPUs can be quite helpful is an online
 transaction processing system. These systems generally do many small
 operations, which can run on multiple CPUs because they're coming from
 multiple connections. In this environment, concurrency can become a
 bottleneck. Most web applications fall into this category.
Online transaction proccessing (OLTP) servers generally use
 InnoDB, which has some unresolved concurrency issues with many CPUs.
 However, it's not just InnoDB that can become a bottleneck. Any shared
 resource is a potential point of contention. InnoDB gets a lot of
 attention because it's the most common storage engine for
 high-concurrency environments, but MyISAM is no better when you really
 stress it, even when you're not changing any data. Many of the
 concurrency bottlenecks, such as InnoDB's row-level locks and MyISAM's
 table locks, can't be optimized away internally—there's no solution
 except to do the work as fast as possible, so the locks can be granted
 to whatever is waiting for them. It doesn't matter how many CPUs you
 have if a single lock is causing them all to wait. Thus, even some
 high-concurrency workloads benefit from faster CPUs.
There are actually two types of concurrency problems in
 databases, and you need different approaches to solve them:
	Logical concurrency issues
	Contention for resources that are visible to the
 application, such as table or row locks. These problems usually
 require tactics such as changing your application, using a
 different storage engine, changing the server configuration, or
 using different locking hints or transaction isolation
 levels.

	Internal concurrency issues
	Contention for resources such as semaphores, access to
 pages in the InnoDB buffer pool, and so on. You can try to work
 around these problems by changing server settings, changing your
 operating system, or using different hardware, but you might
 just have to live with them. In some cases, using a different
 storage engine or a patch to a storage engine can help ease
 these problems.

The number of CPUs MySQL can use effectively and how it
 scales under increasing load—its "scaling pattern"—depend on both the
 workload and the system architecture. By "system architecture," we
 mean the operating system and hardware, not the application that uses
 MySQL. The CPU architecture (RISC, CISC, depth of pipeline, etc.), CPU model, and operating system all
 affect MySQL's scaling pattern. This is why benchmarking is so
 important: some systems may continue to perform very well under
 increasing concurrency, while others perform much worse.
Some systems can even give lower total performance with more
 processors. This is quite common; we know of many people who have tried to upgrade from four-core
 systems to eight-core systems, only to be forced to revert to
 four-core systems (or bind the MySQL process to only four of the eight
 cores) because of lower performance. You'll have to benchmark and see
 how your system does with your workload.
Some MySQL scalability bottlenecks are in the server, whereas
 others are in the storage engine layer. How the storage engine is
 designed is crucial, and you can sometimes switch to a different
 storage engine and get more from multiple CPUs.
The processor-speed wars we saw around the turn of the century
 have subsided to some extent, and CPU vendors are now focusing more on
 multicore CPUs and variations such as multithreading. The future of
 CPU design may well be hundreds of processor cores; quad-core CPUs are
 common today. Internal architectures vary so widely across vendors
 that it's impossible to generalize about the interaction between
 threads, CPUs, and cores. How the memory and bus are designed is also
 very important. In the final analysis, whether it's better to have
 multiple cores or multiple physical CPUs is also
 architecture-specific.

Balancing Memory and Disk Resources

The biggest reason to have a lot of memory isn't so you can hold a
 lot of data in memory: it's ultimately so you can avoid disk I/O, which
 is orders of magnitude slower than accessing data in memory. The trick
 is to balance the memory and disk size, speed, cost, and other qualities
 so you get good performance for your workload. Before we look at how to
 do that, let's go back to the basics for a moment.
Computers contain a pyramid of smaller, faster, more expensive
 caches, one upon the other, as depicted in Figure 7-1.
[image: The cache hierarchy]

Figure 7-1. The cache hierarchy

Every level in this cache hierarchy is best used to cache "hot"
 data, so it can be accessed more quickly, usually using heuristics such
 as "recently used data is likely to be used again soon" and "data that's
 near recently used data is likely to be used soon." These heuristics
 work because of spatial and temporal locality of
 reference.
From the programmer's point of view, CPU registers and caches are
 transparent and architecture-specific. It is the compiler's and CPU's
 job to manage these. However, programmers are very conscious of the
 difference between main memory and the hard disk, and programs usually
 treat these very differently. [66]
This is especially true of database servers, whose behavior often
 goes against the predictions made by the heuristics we just mentioned. A
 well-designed database cache (such as the InnoDB buffer pool) is usually
 more efficient than an operating system's cache, which is tuned for
 general-purpose tasks. The database cache has much more knowledge about
 its data needs, and it has special-purpose logic that helps meet those
 needs. Also, a system call is not required to access the data in the
 database cache.
These special-purpose cache requirements are why you'll have to
 balance your cache hierarchy to suit the particular access patterns of a
 database server. Because the registers and on-chip caches are not
 user-configurable, memory and the hard disk are the only things you can
 change.
Random Versus Sequential I/O

Database servers use both sequential and random I/O, and random I/O benefits the most from
 caching. You can convince yourself of this by thinking about a typical
 mixed workload, with some balance of single-row lookups and multirow
 range scans. The typical pattern is for the "hot" data to be randomly
 distributed; caching this data will therefore help avoid expensive
 disk seeks. In contrast, sequential reads generally go through the
 data only once, so it's useless to cache it unless it fits completely
 in memory.
Another reason sequential reads don't benefit much from caching is because they
 are faster than random reads. There are two reasons for this:
	Sequential I/O is faster than random
 I/O.
	Sequential operations are performed faster than random
 operations, both in memory and on disk. Suppose your disks can
 do 100 random I/O operations per second and can read 50 MB per
 second sequentially (that's roughly what a consumer-grade disk
 can achieve today). If you have 100-byte rows, that's 100 rows
 per second randomly, versus 500,000 rows per second
 sequentially—a difference of 5,000 times, or several orders of
 magnitude. Thus, the random I/O benefits more from caching in
 this scenario.
Accessing in-memory rows sequentially is also faster than
 accessing in-memory rows randomly. Today's memory chips can
 typically access about 250,000 100-byte rows per second
 randomly, and 5 million per second sequentially. Note that
 random accesses are some 2,500 times faster in memory than on
 disk, while sequential accesses are only 10 times faster in
 memory.

	Storage engines can perform sequential reads
 faster than random reads.
	A random read generally means that the storage engine must
 perform index operations. (There are exceptions to this rule,
 but it's true for InnoDB and MyISAM.) That usually requires
 navigating a B-Tree data structure and comparing values to other
 values. In contrast, sequential reads generally require
 traversing a simpler data structure, such as a linked list.
 That's a lot less work, so again, sequential reads are
 faster.

You can save work by caching sequential reads, but you can save
 much more work by caching random reads instead. In other words,
 adding memory is the best solution for random-read I/O
 problems if you can afford it.

Caching, Reads, and Writes

If you have enough memory, you can insulate the disk from read
 requests completely. If all your data fits in memory, every read will
 be a cache hit once the server's caches are warmed up. There will still be
 logical reads, but no physical
 reads. Writes are a different matter, though. A write can
 be performed in memory just as a read can, but sooner or later it has
 to be written to the disk so it's permanent. In other words, a cache
 can delay writes, but caching cannot eliminate writes as it can
 reads.
In fact, in addition to allowing writes to be delayed, caching
 can permit them to be grouped together in two important ways:
	Many writes, one flush
	A single piece of data can be changed many times in memory
 without all of the new values being written to
 disk. When the data is eventually flushed to disk, all the
 modifications that happened since the last physical write are
 made permanent. For example, many statements could update an
 in-memory counter. If the counter is incremented 100 times and
 then written to disk, 100 modifications have been grouped into
 one write.

	I/O merging
	Many different pieces of data can be modified in memory,
 and the modifications can be collected together, so the physical
 writes can be performed as a single disk operation.

This is why many transactional systems use a
 write-ahead logging strategy. Write-ahead logging
 lets them make changes to the pages in memory without flushing the changes to disk, which usually
 involves random I/O and is very slow. Instead, they write a record of
 the changes to a sequential log file, which is much faster. A
 background thread can flush the modified pages to disk later; when it
 does, it can optimize the writes.
Writes benefit greatly from buffering, because it converts
 random I/O into more sequential I/O. Asynchronous (buffered) writes
 are typically handled by the operating system and are batched so they
 can be flushed to disk more optimally. Synchronous (unbuffered) writes
 have to be written to disk before they finish. That's why they benefit
 from buffering in a RAID controller's battery-backed write-back cache
 (we discuss RAID a bit later).

What's Your Working Set?

Every application has a "working set" of data—that is, the data
 that it really needs to do its work. A lot of databases also have
 plenty of data that's not in the working set. You can imagine the
 database as a desk with filing drawers. The working set consists of
 the papers you need to have on the desktop to get your work done. The
 desktop is main memory in this analogy, while the filing drawers are
 the hard disks.
Just as you don't need to have every piece
 of paper on the desktop to get your work done, you don't need the
 whole database to fit in memory for optimal performance—just the
 working set.
The working set's size varies greatly depending on the
 application. For some applications the working set may be 1% of the
 total data size, while for others it could be close to 100%. When the
 working set doesn't fit in memory, the database server will have to
 shuffle data between the disk and memory to get its work done. This is
 why a memory shortage may look like an I/O problem. Sometimes there's
 no way you can fit your entire working set in memory, and sometimes
 you don't actually want to (for example, if your application needs a
 lot of sequential I/O). Your application architecture can change a lot
 depending on whether you can fit the working set in memory.
In the final analysis, "working set" is an ambiguous term. For
 example, you might need to access only 1% of your data every hour, but
 over a 24-hour period that might mean 20% of your data. What's the
 working set in this situation? It might be more helpful to think of
 the working set in terms of how much data you need to have cached, so
 your workload is mostly CPU-bound. If you can't cache enough data,
 your working set doesn't fit in memory.
The working set and the cache unit

The working set contains both data and indexes, and you should
 count it in cache units. A cache unit is the
 smallest unit of data that the storage engine works with.
The size of the cache unit varies between storage engines, and
 therefore so does the size of the working set. For example, InnoDB
 always works in pages of 16 KB. If you do a single-row lookup and
 InnoDB has to go to disk to get it, it'll read the entire page
 containing that row into the buffer pool and cache it there. This
 can be wasteful. Suppose you have 100-byte rows that you access
 randomly. InnoDB will use a lot of extra memory in the buffer pool
 for these rows, because it will have to read and cache a complete 16
 KB page for each row. Because the working set includes indexes too,
 InnoDB will also read and cache the parts of the index tree it
 needed to find the row. InnoDB's index pages are also 16 KB in size,
 which means it may have to store a total of 32 KB (or more,
 depending on how deep the index tree is) to access a single 100-byte
 row. The cache unit is, therefore, another reason why well-chosen
 clustered indexes are so important in InnoDB. Clustered indexes not
 only let you optimize disk accesses, they also help you keep related
 data on the same pages, so you can fit more of your working set in
 your cache.
In contrast, the Falcon storage engine's cache unit is a row,
 not a page. Thus, Falcon may be more efficient at caching small,
 randomly accessed, widely scattered rows. To continue the desk
 metaphor, InnoDB requires you to take an entire file folder
 (database page) out of a drawer every time you need one of the
 sheets of paper in it. Without clustered indexes (or with poorly
 chosen clustered indexes), that would be very inefficient indeed.
 Falcon, on the other hand, lets you take any sheet of paper out of a
 file folder and put it on your desk, without requiring you to move
 the whole folder.
Both approaches have benefits and drawbacks. For example,
 InnoDB keeps the entire 16 KB page in memory, so if you need to
 access another row from the same page in the future, it's already
 there. Falcon has both a row cache and a page cache, which give a
 combination of benefits: the page cache reduces disk accesses, while
 the row cache uses memory efficiently. However, dual caches are
 inherently wasteful because they cause some data to be stored twice
 in memory. This is known as double
 buffering.
In theory, both strategies can be much more efficient for
 specific workloads, and much less efficient for others. As always,
 your choice will depend on what you need the storage engine to do
 best.

Finding an Effective Memory-to-Disk Ratio

A good memory-to-disk ratio is best discovered by
 experimentation and/or benchmarking. If you can fit everything into
 memory, you're done—there's no need to think about it further. But
 most of the time you can't, so you have to benchmark
 with a subset of your data and see what happens. What
 you're aiming for is an acceptable cache miss
 rate. A cache miss is when your queries request some data
 that's not cached in main memory, and the server has to get it from
 disk.
The cache miss rate really governs how much of your CPU is used,
 so the best way to assess your cache miss rate is to look at your CPU
 usage. For example, if your CPU is used 90% of the time and waiting
 for I/O 10% of the time, your cache miss rate is good.
Let's consider how your working set influences your cache miss
 rate. It's important to realize that your working set isn't just a
 number: it's actually a statistical distribution, and your cache miss
 rate is nonlinear with regard to the distribution. For example, if you
 have 10 GB of memory and you're getting a 10% cache miss rate, you
 might think you just need to add 11% more memory [67] to get the cache miss rate to zero. But in reality,
 inefficiencies such as the size of the cache unit might mean you'd
 theoretically need 50 GB of memory just to get a 1% miss rate. And
 even with a perfect cache unit match, the theoretical prediction can
 be wrong: factors such as data access patterns can complicate things
 even more. A 1% cache miss rate might require 500 GB of memory!
It's easy to get sidetracked focusing on optimizing something
 that might not give you much benefit. For example, a 10% miss rate may
 already result in 80% CPU usage, which is pretty good. Suppose you add
 memory and are able to get the cache miss rate down to 5%. As a gross
 oversimplification, you'll be delivering approximately another 6% data
 to the CPUs. Making another gross oversimplification, we could say
 that you've increased your CPU usage to 84.8%. However, this isn't a
 very big win, considering how much memory you might have purchased to
 get that result. And in reality, because of the differences between
 the speed of memory and disk accesses, what the CPU is really doing
 with the data, and many other factors, lowering the cache miss rate by
 5% might not change your CPU usage much at all.
This is why we said you should strive for an
 acceptable cache miss rate, not a zero cache miss
 rate. There's no single number you should target, because what's
 considered "acceptable" will depend on your application and your
 workload. Some applications might do very well with a 1% cache miss
 rate, while others really need a rate as low as 0.01% to perform well.
 (A "good cache miss rate," like a "working set," is a fuzzy concept,
 and the fact that there are many ways to count the miss rate further
 complicates matters.)
The best memory-to-disk ratio also depends on other components in
 your system. Suppose you have a system with 16 GB of memory, 20 GB of data, and lots of unused disk space.
 The system is performing nicely at 80% CPU usage. If you wish to place
 twice as much data on this system and maintain the same level of
 performance, you might think you can just double the number of CPUs
 and the amount of memory. However, even if every component in the
 system scaled perfectly with the increased load (an unrealistic
 assumption), this probably wouldn't work. The system with 20 GB of
 data is likely to be using more than 50% of some component's
 capacity—for example, it might already be performing 80% of its
 maximum number of I/O operations per second. It won't be able to
 handle twice as much load. Thus, the best memory-to-disk ratio depends
 on the system's weakest component.

Choosing Hard Disks

If you can't fit enough data in memory—for example, if you
 estimate you would need 500 GB of memory to fully load your CPUs with
 your current I/O system—you should consider a more powerful I/O
 subsystem, sometimes even at the expense of memory. And you should
 design your application to handle I/O wait.
This might seem counterintuitive. After all, we just said that
 more memory can ease the pressure on your I/O subsystem and reduce I/O
 waits. Why would you want to beef up the I/O subsystem if adding
 memory could solve the problem? The answer lies in the balance between
 the factors involved, such as the number of reads versus writes, the
 size of each I/O operation, and how many such operations happen every
 second. For example, if you need fast log writes, you can't shield the
 disk from these writes by increasing the amount of available memory.
 In this case, it might be a better idea to invest in a
 high-performance I/O system with a battery-backed write cache.
As a brief refresher, reading data from a conventional hard disk
 is a three-step process:
	Move the read head to the right position on the disk's
 surface.

	Wait for the disk to rotate, so the desired data is under
 the read head.

	Wait for the disk to rotate all the desired data past the
 read head.

How quickly the disk can perform these operations can be
 condensed to two numbers: access time (steps 1
 and 2 combined) and transfer speed. These two
 numbers also determine latency and
 throughput. Whether you need fast access times or
 fast transfer speeds—or a mixture of the two—depends on the kinds of
 queries you're running. In terms of total time needed to complete a
 disk read, small random lookups are dominated by steps 1 and 2, while
 big sequential reads are dominated by step 3.
Several other factors can also influence the choice of disks and
 which are important will depend on your application. Let's imagine
 you're choosing disks for an online application such as a popular news
 site, which does a lot of small, random reads. You might consider the
 following factors:
	Storage capacity
	This is rarely an issue for online applications, as
 today's disks are usually more than big enough. If they're not,
 combining smaller disks with RAID is standard practice. [68]

	Transfer speed
	Modern disks can usually transfer data very quickly, as we
 saw earlier. Exactly how quickly depends mostly on the
 spindle rotation speed and how densely the data is
 stored on the disk's surface, plus the limitations of the
 interface with the host system (many modern disks can read data
 faster than the interface can transfer it). Regardless, transfer
 speed is usually not a limiting factor for online applications,
 because they generally do a lot of small, random
 lookups.

	Access time
	This is usually the dominating factor in how fast your
 random lookups will perform, so you should look for fast access
 time.

	Spindle rotation speed
	Common rotation speeds today are 7,200 RPM, 10,000 RPM,
 and 15,000 RPM. The rotation speed contributes quite a bit to
 the speed of both random lookups and sequential scans.

	Physical size
	All other things being equal, the physical size of the
 disk makes a difference too: the smaller the disk is, the less
 time it takes to move the read head. Server-grade 2.5-inch disks
 are often faster than their larger cousins. They also use less
 power, and you can usually fit more of them into the
 chassis.

Disk technology changes often, so this advice may become
 outdated rather quickly. For example, solid-state drives are a hot
 topic at the time of this writing. They perform quite differently from
 spindle-based drives. However, they're still very expensive and are
 not yet used widely. We know of some projects that are using them
 successfully, but we don't have enough hands-on experience to give
 particular advice about them.
Just as with CPUs, how MySQL scales to multiple disks depends on
 the storage engine and the workload. InnoDB typically scales
 well to between 10 and 20 hard drives. However, MyISAM's table locks
 limit its write scalability, so a write-heavy workload on MyISAM
 probably won't benefit much from having many drives. Operating-system
 buffering and parallel background writes help somewhat, but MyISAM's
 write scalability is inherently more limited than InnoDB's.
As with CPUs, more disks is not always better. Some applications
 that demand low latency need faster drives, not more drives. For
 example, replication usually performs better with faster drives,
 because updates on a slave are single-threaded. To determine whether
 your workload can benefit from more drives, look at
 iostat to see how the drives are loaded. A large
 number of outstanding requests indicates your workload might be
 able to use more drives efficiently. We included some
 iostat examples at the end of this chapter.

[66] However, programs may rely on the operating system to cache in
 memory a lot of data that's conceptually "on disk." This is what
 MyISAM does, for example.

[67] The right number is 11%, not 10%. A 10% miss rate is a 90%
 hit rate, so you need to divide 10 GB by 90%, which is 11.111
 GB.

[68] Interestingly, some people deliberately buy
 larger-capacity disks, then use only 20–30% of their capacity. This increases the data
 locality and decreases the seek time, which can sometimes
 justify the higher price.

Choosing Hardware for a Slave

Choosing hardware for a replication slave is generally similar to
 choosing hardware for a master, though there are some differences. If
 you're planning to use a replication slave for failover, it usually
 needs to be at least as powerful as the master. And regardless of
 whether the slave is acting as a standby to replace the master, it must
 be powerful enough to perform all the writes that occur on the master,
 with the extra handicap that it must perform them
 serially. (There's more information about this in the next
 chapter.)
The main consideration for a slave's hardware is cost: do you need
 to spend as much on your slave's hardware as you do on the master? Can
 you configure the slave differently, so you can get more performance
 from it?
It depends. If the slave is a standby, you probably want the
 master and slave to have the same hardware and configuration. But if
 you're using replication solely as a cheap way to get more overall read
 capacity from your system, you can take a variety of shortcuts on a
 slave. You may want to use a different storage engine on the slave, for
 example, and some people use cheaper hardware or use RAID (Redundant Arrays of Inexpensive Disks) 0 instead
 of RAID 5 or RAID 10. You can also disable some
 consistency and durability guarantees to let the slave do less work. See
 "Tuning MySQL's I/O Behavior" on Tuning MySQL's I/O Behavior for more on this.
These measures can be cost-efficient on a large scale, but they
 might just make things more complex on a small scale.

RAID Performance Optimization

Storage engines often keep their data and/or indexes in single
 large files, which means RAID is usually the most feasible option for
 storing a lot of data. [69] RAID can help with redundancy, storage size, caching, and
 speed. But as with the other optimizations we've been looking at, there
 are many variations on RAID configurations, and it's important to choose
 one that's appropriate for your needs.
We won't cover every RAID level here, or go into the specifics of exactly how the different RAID levels store data. Good material on this topic is widely
 available in books and online. [70] Instead, we focus on how RAID configurations satisfy a
 database server's needs. The most important RAID levels are:
	RAID 0
	RAID 0 is the cheapest and highest-performance RAID
 configuration, at least when you measure cost and performance
 simplistically (if you include data recovery, for example, it
 starts to look more expensive). Because it offers no redundancy,
 we recommend RAID 0 only for servers you don't care about, such as
 slaves or servers that are "disposable" for some reason. The
 typical scenario is a slave server that can easily be cloned from
 another slave.
Again, note that RAID 0 does not provide any
 redundancy, even though "redundant" is the first letter
 in the RAID acronym. In fact, the probability of a RAID 0 array
 failing is actually higher than the
 probability of any single disk failing, not lower!

	RAID 1
	RAID 1 offers good read performance for many scenarios, and
 it duplicates your data across disks, so there's good redundancy.
 RAID 1 is a little bit faster than RAID 0 for reads. It's good for
 servers that handle logging and similar workloads, because
 sequential writes rarely need many underlying disks to perform
 well (as opposed to random writes, which can benefit from
 parallelization). It is also a typical choice for low-end servers
 that need redundancy but have only two hard drives.
RAID 0 and RAID 1 are very simple, and they can often be
 implemented well in software. Most operating systems will let you
 create software RAID 0 and RAID 1 volumes easily.

	RAID 5
	RAID 5 is a little scary, but it's the inevitable choice for
 some applications because of price constraints and/or constraints
 on the number of disks that can physically fit in the server. It
 spreads the data across many disks, with distributed parity blocks
 so that if any one disk fails the data can be rebuilt from the
 parity blocks. In terms of cost per unit of storage, it's the most
 economical redundant configuration, because you lose only one
 disk's worth of storage space across the entire array.
Random writes are expensive in RAID 5, because they require
 two writes and two RAID operations for the parity blocks. Writes
 can perform a little better if they are sequential, or if there
 are many physical disks. On the other hand, both random and
 sequential reads perform decently. RAID 5 is an acceptable choice
 for data volumes, or data and logs, for many workloads.

The biggest performance cost with RAID 5 occurs if a disk fails, because the data has to be
 reconstructed by reading all the other disks. This affects performance
 severely. If you're trying to keep the server online during the rebuild,
 don't expect either the rebuild or the array's performance to be good.
 Other performance costs include limited scalability because of the
 parity blocks—RAID 5 doesn't scale well past 10 disks or so—and caching
 issues. Good RAID 5 performance depends heavily on the RAID controller's
 cache, which can conflict with the database server's needs. We discuss
 caching a bit later.
One of the mitigating factors for RAID 5 is that it's so popular.
 As a result, RAID controllers are often highly optimized for RAID 5, and
 despite the theoretical limits, smart controllers that use caches well
 can sometimes perform nearly as well as RAID 10 controllers for some
 workloads. This may actually reflect that the RAID 10 controllers are
 less highly optimized, but regardless of the reason, this is what we've
 seen.
	RAID 10
	RAID 10 is a very good choice for data storage, if you can
 afford it. It consists of mirrored pairs that are striped, so it
 scales both reads and writes well. It is fast and easy to rebuild,
 in comparison to RAID 5. It can also be implemented in software
 fairly well.
The performance loss when one hard drive goes out can still
 be significant, because that stripe can become a bottleneck.
 Performance can degrade by up to 50%, depending on the workload.
 One thing to watch out for is RAID controllers that use a
 "concatenated mirror" implementation for RAID 10. This is
 suboptimal because of the absence of striping: your most
 frequently accessed data might be placed on only one pair of
 spindles, instead of being spread across many, so you'll get poor
 performance.

	RAID 50
	RAID 50 consists of RAID 5 arrays that are striped, and it can be a
 good compromise between the economy of RAID 5 and the performance
 of RAID 10, if you have many disks. This is mainly useful for very
 large datasets, such as data warehouses or extremely large OLTP
 systems.

Table 7-1 summarizes various
 RAID configurations.
Table 7-1. Comparison of RAID levels
	Level
	Synopsis
	Redundancy
	Disks required
	Faster reads
	Faster writes

	RAID 0
	Cheap, fast, dangerous
	No
	N
	Yes
	Yes

	RAID 1
	Fast reads, simple, safe
	Yes
	2 (usually)
	Yes
	No

	RAID 5
	A compromise between safety, speed, and
 cost
	Yes
	N + 1
	Yes
	Depends

	RAID 10
	Expensive, fast, safe
	Yes
	2N
	Yes
	Yes

	RAID 50
	For very large data stores
	Yes
	2(N + 1)
	Yes
	Yes

RAID Failure, Recovery, and Monitoring

RAID configurations (with the exception of RAID 0) offer redundancy. This is important, but it's easy to
 underestimate the likelihood of concurrent disk failures. You
 shouldn't think of RAID as a strong guarantee of data
 safety.
RAID doesn't eliminate—or even reduce—the need for backups. When
 there is a problem, the recovery time will depend on your controller,
 the RAID level, the array size, the disk speed, and whether you need
 to keep the server online while you rebuild the array.
There is a chance of disks failing at exactly the same time. For
 example, a power spike or overheating can easily kill two or more
 disks. What's more common, however, is two disk failures happening
 close together. Many such issues can go unnoticed. A common case is
 corruption on the physical media holding data that's seldom accessed.
 This might go undetected for months, until either you try to read the
 data, or another drive fails and the RAID controller tries to use the
 corrupted data to rebuild the array. The larger the hard drive is, the
 more likely this is.
That's why it's important to monitor your RAID arrays. Most
 controllers offer some software to report on the array's status, and
 you need to keep track of this because you might otherwise be totally
 ignorant of a drive failure. You might miss your opportunity to
 recover the data and discover the problem only when a second drive
 fails, when it's too late.
You can mitigate this risk by actively checking your arrays for
 consistency at regular intervals. Background Patrol Read, a feature of some controllers
 that checks for damaged media and fixes it while all the drives are
 online, can also help avert such problems. As with recovery, extremely
 large arrays can be slow to check, so make sure you plan accordingly
 when you create large arrays.
You can also add a hot spare drive, which is unused and
 configured as a standby for the controller to automatically use for
 recovery. This is a good idea if you depend on every server. It's
 expensive with servers that have only a few hard drives, because the
 cost of having an idle disk is proportionately higher, but if you have
 many disks, it's almost foolish not to have a hot spare. Remember that
 the probability of a drive failure increases rapidly with more
 disks.

Balancing Hardware RAID and Software RAID

The interaction between the operating system, the filesystem,
 and the number of drives the operating system sees can be complicated.
 Bugs or limitations—or just misconfigurations—can reduce performance
 well below what is theoretically possible.
If you have 10 hard disks, ideally they should be able to serve
 10 requests in parallel, but sometimes the filesystem, the operating
 system, or the RAID controller will serialize requests. One possible
 solution to this problem is to try different RAID configurations. For
 example, if you have 10 disks and want to use mirroring for redundancy
 and performance, you could configure them in several ways:
	Configure a single RAID 10 volume consisting of five
 mirrored pairs. The operating system will see a single large disk
 volume, and the RAID controller will hide the 10 underlying
 disks.

	Configure five RAID 1 mirrored pairs in the RAID controller,
 and let the operating system address five volumes instead of
 one.

	Configure five RAID 1 mirrored pairs in the RAID controller,
 and then use software RAID 0 to make the five volumes appear as
 one logical volume, effectively implementing RAID 10 partially in
 hardware and partially in software.

Which option is best? It depends on how all the components in
 your system interact. The configurations might perform identically, or
 they might not.
We've noticed serialization in various configurations. One
 example we saw (on an obsolete GNU/Linux distribution) was with the
 combination of the ext3 filesystem and InnoDB with innodb_flush_method=O_DIRECT. This appeared
 to cause inode-level locking in the filesystem, so only one I/O
 request could be sent to a file at once. In this case, serialization
 was per-file, and the bug was fixed in a later software
 version.
In another case, requests to each device
 were serialized with a 10-disk RAID 10 volume, the ReiserFS
 filesystem, and InnoDB with innodb_file_per_table enabled. Switching to
 software RAID 0 on top of hardware RAID 1 gave five times more
 throughput, because the storage system began to behave like five
 spindles instead of one. This situation was also caused by a bug that
 has since been fixed, but it's a good illustration of the sort of
 thing that can happen.
Serialization can happen on any layer in the software or
 hardware stack. If you see this problem occurring, you might try
 changing the filesystem, upgrading your kernel, exposing more devices
 to the operating system, or using a different mixture of software or
 hardware RAID. You should also use iostat to
 check your device's concurrency and make sure it really is doing
 concurrent I/O (see "How to Read iostat Output" on How to Read iostat Output for more on that).
Finally, don't forget to benchmark! This will help you verify
 that you're getting the performance you expect. For example, if one
 hard drive can do 200 random reads per second, a RAID 10 volume with 8 hard drives should do close to
 1,600 random reads per second. If you're observing a much lower
 number, such as 500 random reads per second, you should research the
 problem. Make sure your benchmarks exercise the I/O subsystem in the
 same way MySQL will—for example, use the O_DIRECT flag and test I/O performance to a
 single file if you're using InnoDB without innodb_file_per_table enabled. SysBench is a
 great tool for this. (See Chapter 2 for more on
 benchmarking.)

RAID Configuration and Caching

You can usually configure the RAID controller itself by entering
 its setup utility during the machine's boot sequence. While most
 controllers offer a lot of options, the two we focus on are the
 chunk size for striped arrays, and the
 on-controller cache (also known as the
 RAID cache; we use the terms
 interchangeably).
The RAID stripe chunk size

The optimal stripe chunk size is workload- and
 hardware-specific. In theory, it's good to have a large chunk size
 for random I/O, because it means more reads can be satisfied from a
 single drive.
To see why this is so, consider the size of a typical random
 I/O operation for your workload. If the chunk size is at least that
 large, and the data doesn't span the border between chunks, only a
 single drive needs to participate in the read. But if the chunk size
 is smaller than the amount of data to be read, there's no way to get
 around involving more than one drive in the read.
So much for theory. In practice, many RAID controllers don't
 work well with large chunks. For example, the controller might use
 the chunk size as the cache unit in its cache, which could be
 wasteful. The controller might also match the chunk size, cache
 size, and read-unit size (the amount of data it reads in a single
 operation). If the read unit is too large, its cache might be less
 effective, and it might end up reading a lot more data than it
 really needs, even for tiny requests.
Also, in practice it's hard to know whether any given piece of
 data will span multiple drives. Even if the chunk size is 16 KB,
 which matches InnoDB's page size, you can't be certain all of the
 reads will be aligned on 16 KB boundaries. The filesystem may
 fragment the file, and it will typically align the fragments on the
 filesystem block size, which is often 4 KB. Some filesystems might
 be smarter, but you shouldn't count on it.

The RAID cache

The RAID cache is a (relatively) small amount of memory that is physically installed on the RAID
 controller. It can be used to buffer data as it travels between the
 disks and the host system. Here are some of the reasons a RAID card
 might use the cache:
	Caching reads
	After the controller reads some data from the disks and
 sends it to the host system, it can store the data; this will
 enable it to satisfy future requests for the same data without
 having to go to disk again.
This is usually a very poor use of the RAID cache. Why? Because the operating system
 and the database server have their own, much larger, caches.
 If there's a cache hit in one of these caches, the data in the
 RAID cache won't be used. Conversely, if there's a miss in one
 of the higher-level caches, the chance that there'll be a hit
 in the RAID cache is vanishingly small. Because the RAID cache
 is so much smaller, it will almost certainly have been flushed
 and filled with other data too. Either way you look at it,
 it's a waste of memory to cache reads in the RAID
 cache.

	Caching read-ahead data
	If the RAID controller notices sequential requests for
 data, it might decide to do a read-ahead read—that is, to
 prefetch data it predicts will be needed soon. It has to have
 somewhere to put the data until it's requested, though. It can
 use the RAID cache for this. The performance impact of this
 can vary widely, and you should check to ensure it's actually
 helping. Read-ahead operations might not help if the database
 server is doing its own smart read-ahead (as InnoDB does), and
 it might interfere with the all-important buffering of
 synchronous writes.

	Caching writes
	The RAID controller can buffer writes in its cache and
 schedule them for a later time. The advantage to doing this is
 twofold: first, it can return "success" to the host system
 much more quickly than it would be able to if it had to
 actually perform the writes on the physical disks, and second,
 it can accumulate writes and do them more efficiently.

	Internal operations
	Some RAID operations are very complex—especially RAID 5
 writes, which have to calculate parity bits that can be used
 to rebuild data in the event of a failure. The controller
 needs to use some memory for this type of internal
 operation.
This is one reason why RAID 5 can perform poorly on some
 controllers: it needs to read a lot of data into the cache for
 good performance. Some controllers can't balance caching
 writes with caching for the RAID 5 parity operations.

In general, the RAID controller's memory is a scarce resource that you
 should try to use wisely. Using it for reads is usually a waste, but
 using it for writes is an important way to speed up your I/O
 performance. Many controllers let you choose how to allocate the
 memory. For example, you can choose how much of it to use for caching writes and how much for
 reads. For RAID 0, RAID 1, and RAID 10, you should probably allocate
 100% of the controller's memory for caching writes. For RAID 5, you
 should reserve some of the controller's memory for its internal
 operations. This is generally good advice, but it doesn't always
 apply—different RAID cards require different configurations.
When you're using the RAID cache for write caching, many
 controllers let you configure how long it's acceptable to delay the
 writes (1 second, 5 seconds, and so on). A longer delay means more
 writes can be grouped together and flushed to the disks optimally.
 The downside is that your writes will be more "bursty." That's not a
 bad thing, unless your application happens to make a bunch of write
 requests just as the controller's cache fills up, when it's about to
 be flushed to disk. If there's not enough room for your
 application's write requests, it'll have to wait. Keeping the delay
 shorter means you'll have more write operations and they'll be less
 efficient, but it smoothes out the spikiness and helps keep more of
 the cache free to handle bursts from the application. (We're
 simplifying here—controllers often have complex, vendor-specific
 balancing algorithms, so we're just trying to cover the basic
 principles.)
The write cache is very helpful for synchronous writes, such
 as issuing fsync() calls on the
 transaction logs and creating binary logs with sync_binlog enabled, but you shouldn't
 enable it unless your controller has a battery backup unit (BBU). Doing so is likely to
 corrupt your database, and even your transactional filesystem, in
 the event of power loss. If you have a BBU, however, enabling the write cache can increase
 performance by a factor of 20 or more for workloads that do a lot of
 log flushes, such as flushing the transaction log when a transaction
 commits.
A final consideration is that many hard drives have write
 caches of their own, which can "fake" fsync() operations by lying to the
 controller that the data has been written to physical media. Hard
 drives that are attached directly (as opposed to being attached to a
 RAID controller) can sometimes let their caches be managed by the
 operating system, but this doesn't always work either. These caches
 are typically flushed for an fsync() and bypassed for synchronous I/O,
 but again, the hard drive can lie. You should either ensure that
 these caches are flushed on fsync() or disable them, because they are
 not battery-backed. Hard drives that aren't managed properly by the
 operating system or RAID firmware have caused many instances of data
 loss.
For this and other reasons, it's always a good idea to do
 genuine crash testing (literally pulling the power plug out of
 the wall) when you install new hardware. This is often the only way
 to find subtle misconfigurations or sneaky hard drive behaviors. A
 handy script that can help you with this can be found at http://brad.livejournal.com/2116715.html.
If you really need to rely on your RAID controller's BBU, make sure you leave the power
 cord unplugged for a realistic amount of time when you test the BBU. Some units don't last
 as long without power as they're supposed to. Here again, one bad
 link can render your whole chain of storage components
 useless.

[69] Partitioning (see Chapter 5)
 is another good practice, because it usually splits the file into
 many files, which you can place on different devices. However, even
 compared to partitioning, RAID is a simple solution for very large
 data volumes. It doesn't require you to balance the load manually or
 intervene when the load distribution changes, and it gives
 redundancy, which you won't get by assigning partitions to different
 disks.

[70] Two good learning resources are the Wikipedia article on RAID
 (http://en.wikipedia.org/wiki/RAID) and the
 AC&NC tutorial at http://www.acnc.com/04_00.html.

Storage Area Networks and Network-Attached Storage

Storage area networks (SANs) and network-attached storage (NAS) are two related,
 but very different, ways to attach external file storage devices to a
 server. A SAN exposes a block-level interface that a server sees as
 being directly attached, while a NAS device exposes a file-based
 protocol such as NFS or SMB. A SAN is usually connected to the server
 via the Fibre Channel Protocol (FCP) or iSCSI, while a NAS device is
 connected via a standard network connection.
Storage Area Networks

The benefits of using a SAN include more flexible storage
 management and the ability to scale storage. Many SAN solutions also
 have special features such as a snapshot capability and support for
 integrated continuous backups. They permit a server to access a very
 large number of hard drives—often 50 or more—and typically have very
 large, intelligent caches to buffer writes. The block-level interface
 they export appears to the server as logical unit numbers (LUNs), or virtual volumes. Many
 SANs also allow multiple nodes to be "clustered" to get better
 performance.
Although SANs work well when you have a lot of concurrent
 requests and need high throughput, you should not expect magic. A SAN
 is still ultimately a collection of hard drives that can do only a
 limited number of I/O operations per second, and because a SAN is
 external to the server and does its own processing, it adds latency to
 each I/O request. The extra latency makes SANs less efficient when you
 need very high performance for synchronous I/O, so keeping your
 transaction logs on a SAN is usually not as good as using a directly
 attached RAID controller.
In general, directly attached storage is faster than the
 LUNs on a SAN with the same number of similar hard
 drives. Sharing hard drives across LUNs also complicates performance
 analysis, because the LUNs affect each other in ways that are hard to
 measure. When you place the hard drives on separate LUNs, the effect
 is less noticeable, but sometimes you can still see it—for example, if
 you're using iSCSI, you may see contention on the network segment. The
 software inside the SAN has its limitations, too, and that can make
 the actual performance somewhat different from the theoretical or
 expected performance.
SANs have one big disadvantage: their cost is typically much
 higher than the cost of comparable directly attached storage
 (especially internal storage).
Most web applications don't use SANs, but they're very popular
 for so-called enterprise applications. There are several reasons for
 this:
	Enterprise applications are usually less constrained by
 budget, while many web applications can't afford "luxury items"
 such as SANs.

	Enterprises often run many applications, or many instances
 of a single application, and have unpredictable growth
 requirements. A SAN gives you the ability to buy a lot of storage,
 share it, and grow it on demand.

	A SAN's large buffers can help absorb write spikes and
 provide fast access to "hot" data, and SANs typically balance load
 across a very large number of hard drives. All this is usually
 required for clustered applications that are vertically scaled,
 but it doesn't help web applications much. Web applications
 usually don't have periods of low activity followed by huge write
 spikes; most of them are writing a lot of data almost constantly,
 so buffering writes isn't helpful. Read buffering isn't needed
 either, because databases tend to have their own (large, smart)
 caches. And the most common and successful strategy for building a
 very large web application is to use application partitioning
 (sharding), so web applications are already balancing the load
 across a large number of hard drives.

Network-Attached Storage

A NAS device is essentially a stripped-down file server
 appliance, typically with a web interface instead of a physical mouse,
 monitor, and keyboard. It's an economical and hassle-free way to
 provide a lot of storage space and is generally built upon a RAID
 array for redundancy.
However, NAS devices are not very fast, because they're mounted
 over the network. They also have a long history of problems with
 synchronous I/O support and locking, so we don't recommend them for
 general database storage. You can use them in special cases that
 aren't susceptible to their weaknesses, though, such as for shared
 read-only MyISAM tables.

Using Multiple Disk Volumes

Sooner or later, the question of where to place files will come up. MySQL creates a variety of
 files:
	Data and index files

	Transaction log files

	Binary log files

	General log files (e.g., for the error log, query log, and
 slow query log)

	Temporary files and tables

MySQL doesn't have many features for complex tablespace
 management. By default, it simply places all files for each database (schema) into a single directory. You have a few
 options to control where the data goes. For example, you can specify an
 index location for MyISAM tables, and you can use MySQL 5.1's
 partitioned tables.
If you're using InnoDB's default configuration, all data and
 indexes go in a single set of files, and only the table definition files are placed
 in the database directory. As a result, most people place all data and
 indexes on a single volume.
Sometimes, however, using multiple volumes can help you manage a heavy I/O load. For
 example, a batch job that writes data to a massive table can benefit
 from being on a separate volume, so it doesn't starve other queries for
 I/O. Ideally, you should analyze the I/O access to the different parts
 of your data, so you can place the data appropriately, but this is hard
 to do unless you already have the data on different volumes.
You've probably heard the standard advice to place your
 transaction logs and data files on different volumes, so the sequential
 I/O of the logs doesn't interfere with the random I/O of the data. But
 unless you have many hard drives (20 or so), you should think carefully
 before doing this.
The real advantage of separating the log and data files is the reduced
 likelihood of losing both your data and your log files in the event of a
 crash. Separating them is good practice if you don't have a
 battery-backed write cache on your RAID controller. But if you have a
 battery backup unit, a separate volume isn't needed as
 often as you might think. Performance is rarely a determining factor.
 This is because even though there are lots of writes to transaction
 logs, most of them are small. As a result, the RAID cache will usually
 merge the requests together, and you'll typically get just a couple of
 sequential physical write requests per second. This won't really
 interfere with the random I/O to your data files. The general logs,
 which have sequential asynchronous writes and low load, can also share a
 volume with the data comfortably.
There's another way to look at it, though, which a lot of people
 don't consider. Does placing logs on separate volumes improve
 performance? Typically, yes—but is it worth it? The answer is frequently
 no.
Here's why: it's expensive to dedicate hard
 drives to transaction logs. Suppose you have six hard drives. The
 obvious choices are to place all six into one RAID volume, or split them
 into four for the data and two for the transaction logs. If you do this,
 though, you've reduced the number of drives available for the data files
 by a third, which is a significant decrease; also, you're dedicating two
 drives to a possibly trivial workload (assuming that your RAID
 controller has a battery-backed write cache).
On the other hand, if you have many hard drives, dedicating some
 to the transaction logs is proportionately less expensive and can be
 beneficial. If you have a total of 30 hard drives, for example, you can ensure that the log writes are as
 fast as possible by dedicating 2 drives (configured as a RAID 1 volume)
 to the logs. For extra performance, you might also dedicate some write
 cache space for this RAID volume in the RAID controller.
Cost effectiveness isn't the only consideration. Another reason
 why you may want to keep InnoDB data and transaction logs on the same
 volume is that this strategy lets you use LVM snapshots for lock-free
 backups. Some filesystems allow consistent multivolume snapshots, and
 for those filesystems it might not be a big deal, but it's something to
 keep in mind for ext3.
If you have enabled sync_binlog, binary logs are similar to
 transaction logs in terms of performance. However, it's actually a
 good idea to store binary logs on a different
 volume from your data—it's safer to have them stored separately, so they
 can survive even if the data is lost. That way, you can use them for
 point-in-time recovery. This consideration doesn't apply to the InnoDB
 transaction logs, because they're useless without the data files; you
 can't apply transaction logs to last night's backup. (This distinction
 between transaction logs and binary logs might seem artificial to DBAs
 used to other databases, where they are one and the same.)
The only other common scenario for separating out files is the
 temporary directory, which MySQL uses for filesorts and on-disk temporary tables. If these won't be too big to fit,
 it's probably best to put them in a temporary memory-only filesystem
 such as tmpfs. This will be the
 fastest choice. If that isn't feasible on your system, put them on the
 same device as the operating system.
A typical disk layout is to have the operating system, swap
 partition, and binary logs on a RAID 1 volume, and a separate RAID 5 or
 RAID 10 volume that holds everything else.

Network Configuration

Just as latency and throughput are limiting factors for a hard
 drive, latency and bandwidth (which really means the same thing as
 throughput) are limiting factors for a network connection. The biggest
 problem for most applications is latency; a typical application does a
 lot of small network transfers, and the slight delay for each transfer
 adds up.
A network that's not operating correctly is a major performance
 bottleneck, too. Packet loss is a common problem. Even 1% loss is enough to
 cause significant performance degradation, because various layers in the
 protocol stack will try to fix the problems with strategies such as
 waiting a while and then resending packets, which adds extra time.
 Another common problem is broken or slow Domain Name System (DNS)
 resolution.
DNS is enough of an Achilles heel that enabling skip_name_resolve is a good idea for
 production servers. Broken or slow DNS resolution is a problem for lots
 of applications, but it's particularly severe for MySQL.
 When MySQL receives a connection request, it does both a forward and a
 reverse DNS lookup. There are lots of reasons that this could go wrong. When it does, it will
 cause connections to be denied, slow down the process of connecting to
 the server, and generally wreak havoc, up to and including denial of
 service attacks. If you enable the skip_name_resolve option, MySQL won't do any
 DNS lookups at all. However, this also means that your user accounts
 must have only IP addresses, "localhost," or IP address wildcards in the
 host column. Any user account that
 has a hostname in the host column
 will not be able to log in.
You need to design your network for good performance, rather than
 just accepting whatever you get by default. To begin, analyze how many
 hops are between the nodes, and map the physical network layout. For
 instance, suppose you have 10 web servers connected to a "Web" switch
 via Gigabit Ethernet (1 GigE), and this switch is connected to the
 "Database" switch via 1 GigE as well. If you don't take the time to
 trace the connections, you might never realize that your total bandwidth
 from all database servers to all web servers is limited to a gigabit!
 Each hop adds latency, too.
It's a good idea to monitor network performance and errors on all
 network ports. Monitor every port on servers, on routers, and on
 switches. The Multi Router Traffic Grapher, or MRTG (http://oss.oetiker.ch/mrtg/),
 is the tried-and-true solution for device monitoring. Other common tools for monitoring network
 performance (as opposed to devices) are Smokeping (http://oss.oetiker.ch/smokeping/) and Cacti (http://www.cacti.net).
Physical separation matters a lot in networking. Inter-city
 networks will have much worse latency than your data center's LAN, even
 if the bandwidth is technically the same. If the nodes are really widely
 separated, the speed of light actually matters. For example, if you have
 data centers on the west and east coasts of the U.S., they'll be
 separated by about 3,000 miles. The speed of light is 186,000 mps, so a
 one-way trip cannot be any faster than 16 ms, and a round-trip takes at
 least 32 ms. The physical distance is not the only performance
 consideration, either: there are devices in between as well. Repeaters,
 routers, and switches all degrade performance somewhat. Again, the more
 widely separated the network nodes are, the more unpredictable and
 unreliable the links will be.
It's a good idea to try to avoid real-time cross-data center
 operations as much as possible. [71] If it's not possible, you should make sure your
 application handles network failures gracefully. For example, you don't
 want your web servers to fork too many Apache processes because they are
 all stalled trying to connect to a remote data center over a link that
 has significant packet loss.
At the local level, use at least 1 GigE if you're not already. You
 might need to use a 10 GigE connection for the backbone between
 switches. If you need more bandwidth than that, you can use network
 trunking: connecting multiple network interface cards (NICs) to get more
 bandwidth. Trunking is essentially parallelization of networking, and it can be very helpful as part of a
 high-availability strategy.
When you need very high throughput, you might be able to improve
 performance by tuning your operating system's networking configuration. If you don't have many connections but you
 have large queries or result sets, you can increase the TCP buffer size.
 How you do this varies from system to system, but in most GNU/Linux systems you can change the values in
 /etc/sysctl.conf and execute sysctl
 -p, or use the /proc filesystem by
 echoing new values into the files found at
 /proc/sys/net/. You can find good tutorials on this
 topic online with a search for "TCP tuning guide."
It's usually more important, though, to adjust your settings to
 deal efficiently with a lot of connections and small queries. One of the
 more common tweaks is to change your local port range. Here's a system
 that is configured to default values:
[root@caw2 ~]# cat /proc/sys/net/ipv4/ip_local_port_range
32768 61000
Sometimes you might need to change these values to a larger range.
 For example:
[root@caw2 ~]# echo 1024 65535 > /proc/sys/net/ipv4/ip_local_port_range
You can allow more connections to queue up as follows:
[root@caw2 ~]# echo 4096 > /proc/sys/net/ipv4/tcp_max_syn_backlog
For database servers that are used only locally, you can shorten
 the timeout that comes after closing a socket in the event that the peer
 is broken and doesn't close its side of the connection. The default is
 one minute on most systems, which is rather long:
[root@caw2 ~]# echo <value> > /proc/sys/net/ipv4/tcp_fin_timeout
Most of the time these settings can be left at their defaults.
 You'll typically need to change them only when something unusual is
 happening, such as extremely poor network performance or very large
 numbers of connections. An Internet search for "TCP variables" will turn
 up lots of good reading about these and many more variables.

[71] Replication doesn't count as a real-time cross-data center
 operation. It's not real-time, and it's often a good idea to
 replicate your data to a remote location for safety. We cover this
 more in the next chapter.

Choosing an Operating System

GNU/Linux is the most common operating system for high-performance MySQL installations
 today, but MySQL will run on many operating systems.
Solaris is the leader on SPARC hardware, and it's
 frequently used in applications that demand high reliability. Solaris
 has a reputation for being slightly more difficult to work with than
 GNU/Linux in some ways, but it's a solid, high-performance operating
 system with many advanced features. In particular, Solaris 10 is gaining
 popularity. It has its own filesystem (ZFS), a lot of advanced
 troubleshooting tools (such as DTrace), good threading performance, and
 a virtualization technology called Solaris Zones that helps with
 resource management. Sun also provides good MySQL support.
FreeBSD is another option. It has historically had a
 number of problems with MySQL, mostly related to threading support, but
 newer versions are much better. Today, it's not uncommon to see MySQL
 deployed at a large scale on FreeBSD.
Windows is typically used for development and when MySQL
 is used with desktop applications. There are enterprise MySQL
 deployments on Windows, but Unix-like operating systems are more
 commonly used for these purposes. While we don't want to start any
 debates about operating systems, we will point out that there are no
 problems using a heterogeneous environment with MySQL. It's perfectly
 reasonable to run your MySQL server on a Unix-like operating system and
 run Windows on your web servers, connecting them via the high-quality
 ADO.NET connector (which is freely available from MySQL). It's just as
 easy to connect from Unix to a MySQL server hosted on Windows as it is
 to connect to another Unix server.
When you choose an operating system, make sure you install the
 64-bit version if you're using a 64-bit architecture. It sounds silly,
 but we often see 32-bit operating systems mistakenly installed on 64-bit
 processors. The processors will often run them without complaint, but
 all the ordinary 32-bit limitations (such as addressable memory size
 restrictions) will prevent the 64-bit chips from being used to their
 full advantage.
When it comes to GNU/Linux distributions, personal preference is often the
 deciding factor. We think the best policy is to use a distribution
 explicitly designed for server applications, as opposed to a desktop
 distribution. Consider the distribution's lifecycle, release and update
 policies, and check whether vendor support is available. Red Hat
 Enterprise Linux is a good-quality, stable distribution; CentOS is a
 popular (and free) binary-compatible alternative; and Ubuntu is also
 gaining popularity.

Choosing a Filesystem

Your filesystem choices are pretty dependent on your operating
 system. In many systems, such as Windows, you really have only one or
 two choices. GNU/Linux, on the other hand, supports many
 filesystems.
Many people want to know which filesystems will give the best
 performance for MySQL on GNU/Linux, or, even more specifically, which of
 the choices is best for InnoDB and which for MyISAM. The benchmarks
 actually show that most of them are very close in most respects, but
 looking to the filesystem for performance is really a distraction. The
 filesystem's performance is very workload-specific, and no
 filesystem is a magic bullet. Most of the time, a given filesystem won't
 perform significantly better or worse than any other filesystem. The
 exception is if you run into some filesystem limit, such as how it deals
 with concurrency, working with many files, fragmentation, and so
 on.
It's more important to consider crash recovery time and whether
 you'll run into specific limits, such as slow performance on directories
 with many files (a notorious problem with ext2 and ext3, though ext3 is getting better these days). The
 filesystem you choose is very important in ensuring your data's safety,
 so we strongly recommend you don't experiment on production
 systems.
When possible, it's best to use a journaling filesystem, such as
 ext3, ReiserFS, XFS, ZFS, or JFS. If you don't, a filesystem check after a crash can
 take a long time. If the system is not very important, nonjournaling
 filesystems may perform better than transactional ones. For example,
 ext2 may perform better than ext3, or you can use
 tunefs to disable the journaling feature on ext3.
 Mount time is also a factor for some filesystems. ReiserFS, for
 instance, can take a long time to mount and perform journal recovery on
 multiterabyte partitions.
If you use ext3, you have three options for how the data is
 journaled, which you can place in the /etc/fstab
 mount options:
	data=writeback
	This option means only metadata writes are journaled. Writes
 to the metadata are not synchronized with the data writes. This is
 the fastest configuration, and it's usually
 safe to use with InnoDB because it has its own transaction log.
 The exception is that a crash at just the right time could cause
 corruption in a .frm file.
Here's an example of how this configuration could cause
 problems. Say a program decides to extend a file to make it
 larger. The metadata (the file's size) will be logged and written
 before the data is actually written to the (now larger) file. The
 result is that the file's tail—the newly extended area—contains
 garbage.

	data=ordered
	This option also journals only the metadata, but it provides
 some consistency by writing the data before the metadata so that
 they stay consistent. It's only slightly slower than the writeback option, and it's much safer
 when there's a crash.
In this configuration, if we suppose again that a program
 wants to extend a file, the file's metadata won't reflect the
 file's new size until the data that resides in the newly extended
 area has been written.

	data=journal
	This option provides atomic journaled behavior, writing the
 data to the journal before it's written to the final location. It
 is usually unnecessary and has much higher overhead than the other
 two options. However, in some cases, it can improve performance
 because the journaling lets the filesystem delay the writes to the data's final
 location.

Regardless of the filesystem, there are some specific options that
 it's best to disable, because they don't provide any benefit and can add
 quite a bit of overhead. The most famous is recording access time, which
 requires a write even when you're reading a file. To disable this
 option, add the noatime mount option
 to your /etc/fstab; this can sometimes boost
 performance by as much as 5–10%, depending on the workload and the
 filesystem (although, it may not make much difference in other cases).
 Here's a sample /etc/fstab line for the ext3 options we mentioned:
/dev/sda2 /usr/lib/mysql ext3 noatime,data=writeback 0 1
You can also tune the filesystem's read-ahead behavior, because it
 might be redundant. For example, InnoDB does its own read-ahead
 prediction. Disabling or limiting read-ahead is especially beneficial on
 Solaris's UFS. Using O_DIRECT
 automatically disables read-ahead.
Some filesystems don't support features you might need. For
 example, support for direct I/O may be important if you're using the
 O_DIRECT flush method for InnoDB (see
 "How InnoDB opens and flushes log and data files" on How InnoDB opens and flushes log and data files for more on this).
 Also, some filesystems handle a large number of underlying drives better
 than others; XFS is often much better at this than ext3, for instance.
 Finally, if you plan to use LVM snapshots for initializing slaves or
 taking backups, you should verify that your chosen filesystem and LVM
 version work well together.
Table 7-2 summarizes
 the characteristics of some common filesystems.
Table 7-2. Common filesystem characteristics
	Filesystem
	Operating system
	Journaling
	Large directories

	ext2
	GNU/Linux
	No
	No

	ext3
	GNU/Linux
	Optional
	Optional/partial

	HFS Plus
	Mac OS
	Optional
	Yes

	JFS
	GNU/Linux
	Yes
	No

	NTFS
	Windows
	Yes
	Yes

	ReiserFS
	GNU/Linux
	Yes
	Yes

	UFS (Solaris)
	Solaris
	Yes
	Tunable

	UFS (FreeBSD)
	FreeBSD
	No
	Optional/partial

	UFS2
	FreeBSD
	No
	Optional/partial

	XFS
	GNU/Linux
	Yes
	Yes

	ZFS
	Solaris, FreeBSD
	Yes
	Yes

Threading

As of version 5.0, MySQL uses one thread per connection, plus
 housekeeping threads, special-purpose threads, and any threads the
 storage engine creates. Therefore, MySQL requires efficient support for
 a large number of threads. It really needs support for kernel-level
 threads, as opposed to userland threads, so it can use multiple CPUs
 efficiently. It also needs efficient synchronization primitives, such as
 mutexes. The operating system's threading libraries must provide all of
 these.
GNU/Linux offers two thread libraries: LinuxThreads and the newer Native POSIX Threads Library (NPTL). LinuxThreads is still
 used in some cases, but most modern distributions have made the switch
 to NPTL, and many don't ship LinuxThreads at all anymore.
 NPTL is usually lighter and more efficient, and it doesn't suffer from a
 lot of the problems LinuxThreads had. It has had some performance bugs,
 but most of the kinks have been worked out by now.
FreeBSD also ships a number of threading libraries. Historically,
 it had weak support for threading, but it has gotten a lot better, and
 in some tests it even outperforms GNU/Linux on SMP systems. In FreeBSD 6
 and newer, the recommended threading library is
 libthr; earlier versions should use
 linuxthreads, which is a FreeBSD port of
 GNU/Linux's LinuxThreads.
Solaris has very good support for threads.

Swapping

Swapping occurs when the operating system writes some
 virtual memory to disk because it doesn't have enough physical memory to
 hold it. [72] Swapping is transparent to processes running on the
 operating system. Only the operating system knows whether a particular
 virtual memory address is in physical memory or on disk.
Swapping is very bad for MySQL's performance. It defeats the
 purpose of caching in memory, and it results in
 lower efficiency than using too little memory for
 the caches. MySQL and its storage engines have many algorithms that
 treat in-memory data differently from data on disk, as they assume that
 in-memory data is cheap to access. Because swapping is invisible to user
 processes, MySQL (or the storage engine) won't know when data it thinks
 is in memory is actually moved onto the disk.
The result can be very poor performance. For example, if the
 storage engine thinks the data is still in memory, it might decide it's
 OK to lock a global mutex (such as the InnoDB buffer pool mutex) for a
 "short" memory operation. If this operation actually causes disk I/O, it
 can stall everything until the I/O completes. This means swapping is
 much worse than simply doing I/O as needed.
On GNU/Linux, you can monitor swapping with
 vmstat (we show some examples in the next section).
 You need to look at the swap I/O activity, reported in the si and so
 columns, rather than the swap usage, which is reported in the swpd column. The swpd column can show processes that have been
 loaded but aren't being used, which are not really problematic. We like
 the si and so column values to be 0, and they should definitely be less than 10
 blocks per second.
In extreme cases, too much swapping can cause the operating system
 to run out of swap space. If this happens, the resulting lack of virtual
 memory will usually crash MySQL. But even if it doesn't run out of swap
 space, very active swapping can cause the entire operating system to
 become unresponsive, to the point that you can't even log in and kill
 the MySQL process.
You can solve most swapping problems by configuring your MySQL
 buffers correctly, but sometimes the operating system's virtual memory
 system decides to swap MySQL anyway. This usually happens when the
 operating system sees a lot of I/O from MySQL, so it tries to increase
 the file cache to hold more data. If there's not enough memory,
 something must be swapped out, and that something might be MySQL itself.
 Some older Linux kernel versions also have counterproductive priorities
 that swap things when they shouldn't, but this has been alleviated in
 more recent kernels.
Some people advocate disabling the swap file entirely. While this
 sometimes works in extreme cases where the kernel just refuses to
 behave, it can degrade the operating system's performance. (It shouldn't
 in theory, but in practice it can.) It's also dangerous, because
 disabling swapping places an inflexible limit on virtual memory. If
 MySQL has a temporary spike in memory requirements, or if there are
 memory-hungry processes running on the same machine (nightly batch jobs,
 for example), MySQL can run out of memory, crash, or be killed by the
 operating system.
Operating systems usually allow some control over virtual memory
 and I/O. We mention a few ways to control them on GNU/Linux. The most
 basic is to change the value of
 /proc/sys/vm/swappiness to a low value, such as 0
 or 1. This tells the kernel not to swap unless the need for virtual
 memory is extreme. For example, here's how to check the current value
 and set it to something else:
$ cat /proc/sys/vm/swappiness
60
$ echo 0 > /proc/sys/vm/swappiness
Another option is to change how the storage engines read and write
 data. For example, using innodb_flush_method=O_DIRECT relieves I/O
 pressure. Direct I/O is not cached, so the operating system doesn't see
 it as a reason to increase the size of the file cache. This parameter
 works only for InnoDB, although Falcon has support for direct I/O too.
 You can also use large pages, which are not swappable. This works for
 MyISAM and InnoDB.
Another option is to use MySQL's memlock configuration option, which locks
 MySQL in memory. This will avoid swapping, but it can be dangerous: if
 there's not enough lockable memory left, MySQL can crash when it tries
 to allocate more memory. Problems can also be caused if too much memory
 is locked and there's not enough left for the operating
 system.
Many of the tricks are specific to a kernel version, so be
 careful, especially when you upgrade. In some workloads, it's hard to
 make the operating system behave sensibly, and your only recourse might
 be to lower the buffer sizes to suboptimal values.

[72] Swapping is sometimes called paging.
 Technically, they are different things, but people often use them as
 synonyms.

Operating System Status

Your operating system probably provides tools to help you find out
 what the operating system and hardware are doing. We show you examples
 of how to use two widely available tools, iostat
 and vmstat. [73] If your system doesn't provide either of these tools,
 chances are it will provide something similar. Thus, our goal isn't to
 make you an expert at using iostat or
 vmstat, but simply to show you what to look for
 when you're trying to diagnose problems with tools such as
 these.
In addition to these tools, your operating system may provide
 others, such as mpstat or sar.
 If you're interested in other parts of your system, such as the network,
 you may want to instead use tools such as ifconfig
 (which shows how many network errors have occurred, among other things)
 or netstat.
By default, vmstat and
 iostat produce just one report showing the average
 values of various counters since the server was started, which is not
 very useful. However, you can give both tools an interval argument. This
 makes them generate incremental reports showing what the server is doing
 right now, which is much more relevant for tuning. (The first line shows
 the statistics since the system was started; you can just ignore this
 line.)
How to Read vmstat Output

Let's look at an example of vmstat first.
 To make it print out a new report every five seconds, use the
 following command:
$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 0 2632 25728 23176 740244 0 0 527 521 11 3 10 1 86 3
 0 0 2632 27808 23180 738248 0 0 2 430 222 66 2 0 97 0
You can stop vmstat with Ctrl-C. The output
 you see may vary depending on your operating system, so you may need
 to read the manual page to figure it out.
As stated earlier, even though we asked for incremental output,
 the first line of values shows the averages since the server was
 booted. The second line shows what's happening right now, and
 subsequent lines will show what's happening at five-second intervals.
 The columns are grouped by headers:
	procs
	The r column shows how
 many processes are waiting for CPU time. The b column shows how many are in
 uninterruptible sleep, which generally means they're waiting for
 I/O (disk, network, user input, and so on).

	memory
	The swpd column shows
 how many blocks are swapped out to disk (paged). The remaining
 three columns show how many blocks are free (unused), how many
 are being used for buffers, and how many are being used for the
 operating system's cache.

	swap
	These columns show swap activity: how many blocks per
 second the operating system is swapping in (from disk) and out
 (to disk). They are much more important to monitor than the
 swpd column.
We like to see si and
 so at 0 most of the time, and
 we definitely don't like to see more than 10 blocks per second.
 Bursts are also bad.

	io
	These columns show how many blocks per second are read in
 from (bi) and written out to
 (bo) block devices. This
 usually reflects disk I/O.

	system
	These columns show the number of interrupts per second
 (in) and the number of
 context switches per second (cs).

	cpu
	These columns show the percentages of total CPU time spent
 running user (non-kernel) code, running system (kernel) code,
 idle, and waiting for I/O. A possible fifth column (st) shows the percent "stolen" from a
 virtual machine if you're using virtualization. This refers to
 the time during which something was runnable on the virtual
 machine, but the hypervisor chose to run something else instead.
 If the virtual machine doesn't want to run anything and the
 hypervisor runs something else, that doesn't count as stolen
 time.

The vmstat output is system-dependent, so
 you should read your system's vmstat(8) manpage if yours looks different
 from the sample we've shown. One important note: the memory, swap, and
 I/O statistics are in blocks, not in bytes. In Linux, blocks are
 usually 1,024 bytes.

How to Read iostat Output

Now let's move on to iostat. [74] By default, it shows some of the same CPU usage
 information as vmstat. We're usually interested
 in just the I/O statistics, though, so we use the following command to
 show only extended device statistics:
$ iostat -dx 5
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 1.6 2.8 2.5 1.8 138.8 36.9 40.7 0.1 23.2 6.0 2.6
As with vmstat, the first report shows
 averages since the server was booted (we generally omit it to save
 space), and the subsequent reports show incremental averages. There's
 one line per device.
There are various options that show or hide columns. The columns
 we've shown are the following:
	rrqm/s
 and wrqm/s
	The number of merged read and write requests queued per
 second. "Merged" means the operating system took multiple
 logical requests and grouped them into a single request to the
 actual device.

	r/s
 and w/s
	The number of read and write requests sent to the device
 per second.

	rsec/s
 and wsec/s
	The number of sectors read and written per second. Some
 systems also output rkB/s and
 wkB/s, the number of
 kilobytes read and written per second. We omit those for
 brevity.

	avgrq-sz
	The request size in sectors.

	avgqu-sz
	The number of requests waiting in the device's
 queue.

	await
	The number of milliseconds required to respond to
 requests, including queue time and service time. Unfortunately,
 iostat doesn't show separate service time
 statistics for read and write requests, which are so different
 that they really shouldn't be averaged together. However, you
 can probably chalk up high I/O waits to reads, because writes
 can often be buffered but reads usually have to be served
 directly from the spindles.

	svctm
	The number of milliseconds spent servicing requests, from
 beginning to end, including queue time and the time the device
 actually takes to fulfill the request.

	%util
	The percentage of CPU time during which requests were issued.
 This really shows the device utilization, as the name implies,
 because when the value approaches 100%, the device is
 saturated.

You can use the output to deduce some facts about a machine's
 I/O subsystem. One important metric is the number of requests served
 concurrently. Because the reads and writes are per second and the
 service time's unit is thousandths of a second, the dimensions in the
 following formula cancel out to show the number of concurrent
 requests the device is serving: [75]
concurrency = (r/s + w/s) * (svctm/1000)
Here's a sample of iostat output:
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 105 311 298 820 3236 9052 10 127 113 9 96
Plugging the numbers into the concurrency formula gives a
 concurrency of about 9.6. [76] This means that on average, the device was serving 9.6
 requests at a time during the sampling interval. The sample is from a
 10-disk RAID 10 volume, so the operating system is parallelizing
 requests to this device quite well. On the other hand, here's a device
 that appears to be serializing requests instead:
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdc 81 0 280 0 3164 0 11 2 7 3 99
The concurrency formula shows that this device is handling just
 one request per second. Both devices are close to fully utilized, but
 they're giving very different performances. If your device is busy
 nearly all the time, as these samples show, you should check the
 concurrency and note whether it is close to the number of physical
 spindles included in the device. A lower number can indicate
 problems.

A CPU-Bound Machine

The vmstat output for a CPU-bound server usually shows a high value in the
 us column, which reports time spent
 running non-kernel code. In most cases, there will also be several
 processes queued up for CPU time (reported in the r column). Here's a sample:
$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
10 2 740880 19256 46068 13719952 0 0 2788 11047 1423 14508 89 4 4 3
11 0 740880 19692 46144 13702944 0 0 2907 14073 1504 23045 90 5 2 3
 7 1 740880 20460 46264 13683852 0 0 3554 15567 1513 24182 88 5 3 3
10 2 740880 22292 46324 13670396 0 0 2640 16351 1520 17436 88 4 4 3
Notice that there are also lots of context switches (the cs column). A context switch is when the
 operating system stops one process from running and replaces it with
 another.
If we take a look at the iostat output
 for the same machine (again omitting the first sample,
 which shows averages since boot), you can see that disk utilization is
 less than 50%:
$ iostat -dx 5
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 3859 54 458 2063 34546 71 3 6 1 47
dm-0 0 0 54 4316 2063 34532 8 18 4 0 47

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 2898 52 363 1767 26090 67 3 7 1 45
dm-0 0 0 52 3261 1767 26090 8 15 5 0 45
This machine is not I/O-bound, but it's still doing a fair amount of I/O,
 which is not unusual for a database server. On the other hand, a
 typical web server will consume a lot of CPU resources but do very
 little I/O, so a web server's output will not usually look like this
 sample.

An I/O-Bound Machine

In an I/O-bound workload, the CPUs spend a lot of time waiting
 for I/O requests to complete. That means vmstat
 will show many processes in uninterruptible sleep (the b column), and a high value in the wa column. Here's an example:
$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 5 7 740632 22684 43212 13466436 0 0 6738 17222 1738 16648 19 3 15 63
 5 7 740632 22748 43396 13465436 0 0 6150 17025 1731 16713 18 4 21 58
 1 8 740632 22380 43416 13464192 0 0 4582 21820 1693 15211 16 4 24 56
 5 6 740632 22116 43512 13463484 0 0 5955 21158 1732 16187 17 4 23 56
This machine's iostat output shows that the
 disks are completely saturated:
$ iostat -dx 5
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 5396 202 626 7319 48187 66 12 14 1 101
dm-0 0 0 202 6016 7319 48130 8 57 9 0 101

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sda 0 5810 184 665 6441 51825 68 11 13 1 102
dm-0 0 0 183 6477 6441 51817 8 54 7 0 102
The %util value can be
 greater than 100% because of rounding errors.
What does it mean for a machine to be I/O-bound? If there's enough buffer
 capacity to serve write requests, it generally—but not always—means
 the disks can't keep up with read requests, even
 if the machine is doing a lot of writes. That may seem counterintuitive until you
 think about the nature of reads and writes:
	Write requests can be either buffered or synchronous. They
 can be buffered at any of the levels we've discussed elsewhere in
 this book: the operating system, the RAID controller, and so
 on.

	Read requests are synchronous by nature. It's possible
 for a program to predict that it'll need some data
 and issue an asynchronous prefetch
 (read-ahead) request for it. However, it's more common for
 programs to discover they need data before they can continue
 working. That forces the request to be synchronous: the program
 must block until the request completes.

Think of it this way: you can issue a write request that goes
 into a buffer somewhere and completes at a later time. You can even
 issue many of these per second. If the buffer is working correctly and
 has enough space, each request can complete very quickly, and the
 actual writes to the physical disk can be batched and reordered for
 efficiency.
However, there's no way to do that with a read—no matter how few
 or how small the requests are, it's impossible for the disk to respond
 with "Here's your data, I'll do the read later." That's why reads are
 usually responsible for I/O wait.

A Swapping Machine

A machine that's swapping may or may not show a high value in
 the swpd column. However, you'll
 see high values in the si and
 so columns, which you don't want.
 Here's what the vmstat output looks like on a
 machine that's swapping heavily:
$ vmstat 5
procs -----------memory------------- ---swap---- -----io---- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 10 3794292 24436 27076 14412764 19853 9781 57874 9833 4084 8339 6 14 58 22
 4 11 3797936 21268 27068 14519324 15913 30870 40513 30924 3600 7191 6 11 36 47
 0 37 3847364 20764 27112 14547112 171 38815 22358 39146 2417 4640 6 8 9 77

An Idle Machine

For the sake of completeness, here's the
 vmstat output on an idle machine. Notice that
 there are no runnable or blocked processes, and the idle column shows that the CPUs are 100%
 idle. This sample comes from a machine running Red Hat Enterprise
 Linux 5, and it shows the st
 column, which is time "stolen" from a virtual machine:
$ vmstat 5
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 0 0 108 492556 6768 360092 0 0 345 209 2 65 2 0 97 1 0
 0 0 108 492556 6772 360088 0 0 0 14 357 19 0 0 100 0 0
 0 0 108 492556 6776 360084 0 0 0 6 355 16 0 0 100 0 0

[73] We've shown vmstat and
 iostat here because they're widely available ,
 and at least vmstat is usually installed by
 default on many Unix-like operating systems. However, each of these
 tools has its limitations, such as confusing units of measurement,
 sampling at intervals that don't correspond to when the operating
 system updates the statistics, and the inability to see all of the
 metrics at once. If these tools don't meet your needs, you might be
 interested in dstat (http://dag.wieers.com/home-made/dstat/) or
 collectl (http://collectl.sourceforge.net/).

[74] The iostat examples we've shown in this
 book were slightly reformatted for printing. We've reduced the
 number of decimal places in the values to avoid line
 wrapping.

[75] Another way to calculate concurrency is by the average queue
 size, service time, and average wait: (avuqu_sz * svctm) / await.

[76] If you do the math, you'll get about 10, because we've
 rounded the iostat output for formatting
 purposes. Trust us, it's really 9.6.

Chapter 8. Replication

MySQL's built-in replication capability is the foundation for building large,
 high-performance applications on top of MySQL. Replication lets you
 configure one or more servers as slaves, or replicas, of another server.
 This is not just useful for high-performance applications—it is also handy
 for many other tasks, such as sharing data with a remote office, keeping a
 "hot spare," or keeping a server with a copy of the data for testing or
 training purposes.
In this chapter, we examine all aspects of replication. We begin
 with an overview of how it works, then look at basic server setup,
 designing more advanced replication configurations, and managing and
 optimizing your replicated servers. Although we generally focus a lot on
 performance in this book, we are equally concerned with correctness and
 reliability when it comes to replication, so we show you how to make
 replication work well. We also look at some of the upcoming changes and
 improvements in MySQL replication, such as some interesting patches
 created by Google.
Replication Overview

The basic problem replication solves is keeping one server's data
 synchronized with another's. Many slaves can connect to a single master,
 and a slave can, in turn, act as a master. You can arrange masters and
 slaves in many different topologies. You can replicate the entire
 server, replicate only certain databases, or even choose which tables
 you want to replicate.
MySQL supports two kinds of replication: statement-based replication and row-based replication. Statement-based (or "logical") replication has been
 available since MySQL 3.23, and it's what most people are using in
 production today. Row-based replication is new in MySQL 5.1. Both kinds work
 by recording changes in the master's binary log [77] and replaying the log on the slave, and both are
 asynchronous— that is, the slave's copy of the data
 isn't guaranteed to be up-to-date at any given instant. [78] There are no guarantees how large the latency on the slave
 might be. Large queries can make the slave fall seconds, minutes, or
 even hours behind the master.
MySQL's replication is mostly backward compatible. That is, a
 newer server can usually be a slave of an older server without trouble.
 However, older versions of the server are often unable to serve as slaves
 of newer versions: they may not understand new features or SQL syntax
 the newer server uses, and there may be differences in the file formats
 replication uses. For example, you can't replicate from a MySQL 5.0
 master to a MySQL 4.0 slave. It's a good idea to test your replication
 setup before upgrading from one major version to another, such as from
 4.1 to 5.0, or 5.0 to 5.1.
Replication generally doesn't add much overhead on the master. It
 requires binary logging to be enabled on the master, which can have
 significant overhead, but you need that for proper backups anyway. Aside
 from binary logging, each attached slave also adds a little load (mostly
 network I/O) on the master during normal operation.
Replication is relatively good for scaling reads, which you can direct to a slave, but it's
 not a good way to scale writes unless you design it right. Attaching
 many slaves to a master simply causes the writes to be done many times,
 once on each slave. The entire system is limited to the number of writes
 the weakest part can perform.
Replication is also wasteful with more than a few slaves, because
 it essentially duplicates a lot of data needlessly. For example, a
 single master with 10 slaves has 11 copies of the same data and
 duplicates most of the same data in 11 different caches. This is
 analogous to 11-way RAID 1 at the server level. This is not an
 economical use of hardware, yet it's surprisingly common to see this
 type of replication setup. We discuss ways to alleviate this problem
 throughout the chapter.
Problems Solved by Replication

Here are some of the more common uses for replication:
	Data distribution
	MySQL's replication is usually not very
 bandwidth-intensive, [79] and you can stop and start it at will. Thus, it's
 useful for maintaining a copy of your data in a geographically
 distant location, such as a different data center. The distant
 slave can even work with a connection that's intermittent
 (intentionally or otherwise). However, if you want your slaves
 to have very low replication lag, you'll need a stable,
 low-latency link.

	Load balancing
	MySQL replication can help you distribute read queries
 across several servers, which works very well for read-intensive applications. You can do basic
 load balancing with a few simple code changes. On a small scale,
 you can use simplistic approaches such as hardcoded hostnames or
 round-robin DNS (which points a single hostname to multiple IP
 addresses). You can also take more sophisticated approaches.
 Standard load-balancing solutions, such as network
 load-balancing products, can work well for distributing load
 among MySQL servers. The Linux Virtual Server (LVS) project also
 works well. We cover load balancing in Chapter 9.

	Backups
	Replication is a valuable technique for helping
 with backups. However, a slave is neither a backup nor a
 substitute for backups.

	High availability and failover
	Replication can help avoid making MySQL a single point of
 failure in your application. A good failover system involving
 replicated slaves can help reduce downtime significantly. We
 also cover failover in Chapter 9.

	Testing MySQL upgrades
	It's common practice to set up a slave server with an
 upgraded MySQL version and use it to ensure that your queries
 work as expected, before upgrading every instance.

How Replication Works

Before we get into the details of setting up replication, let's
 look at how MySQL actually replicates data. At a high level,
 replication is a simple three-part process:
	The master records changes to its data in its binary log.
 (These records are called binary log
 events.)

	The slave copies the master's binary log events to its relay log.

	The slave replays the events in the relay log, applying the
 changes to its own data.

That's just the overview—each of those steps is quite complex.
 Figure 8-1 illustrates replication
 in more detail.
The first part of the process is binary logging on the master
 (we show you how to set this up a bit later). Just before each
 transaction that updates data completes on the master, the master
 records the changes in its binary log. MySQL writes transactions
 serially in the binary log, even if the statements in the transactions
 were interleaved during execution. After writing the events to the
 binary log, the master tells the storage engine(s) to commit the
 transactions.
[image: How MySQL replication works]

Figure 8-1. How MySQL replication works

The next step is for the slave to copy the master's binary log to its own hard drive, into the so-called
 relay log. To begin, it starts a worker thread,
 called the I/O slave thread. The I/O thread opens
 an ordinary client connection to the master, then starts a special
 binlog dump process (there is no corresponding
 SQL command). The binlog dump process reads events from the master's
 binary log. It doesn't poll for events. If it catches up to the
 master, it goes to sleep and waits for the master to signal it when
 there are new events. The I/O thread writes the events to the slave's
 relay log.
Warning
Prior to MySQL 4.0, replication worked quite differently in many ways. For
 example, MySQL's first replication functionality didn't use a relay
 log, so replication used only two threads, not three. Most people
 are running more recent versions of the server, so we won't mention
 any further details about very old versions of MySQL in this
 chapter.

The SQL slave thread handles the last part
 of the process. This thread reads and replays events from the relay
 log, thus updating the slave's data to match the master's. As long as
 this thread keeps up with the I/O thread, the relay log usually stays
 in the operating system's cache, so relay logs have very low overhead.
 The events the SQL thread executes can optionally go into the slave's
 own binary log, which is useful for scenarios we mention later in this
 chapter.
Figure 8-1 showed only the
 two replication threads that run on the slave, but there's also a
 thread on the master: like any connection to a MySQL server, the
 connection that the slave opens to the master starts a thread on the
 master.
This replication architecture decouples the processes of
 fetching and replaying events on the slave, which allows them to be
 asynchronous. That is, the I/O thread can work independently of the
 SQL thread. It also places constraints on the replication process, the
 most important of which is that replication is serialized on
 the slave. This means updates that might have run in
 parallel (in different threads) on the master cannot be parallelized
 on the slave. As we'll see later, this is a performance bottleneck for many workloads.

[77] If you're new to the binary log, you can find more information
 in Chapter 6, the rest of this
 chapter, and Chapter 11.

[78] See "Synchronous MySQL replication" on Synchronous MySQL replication for more on this.

[79] Although, as we'll see later, the row-based
 replication introduced in MySQL 5.1 may use much more
 bandwidth than the more traditional statement-based
 replication.

Setting Up Replication

Setting up replication is a fairly simple process in MySQL, but
 there are many variations on the basic steps, depending on the scenario.
 The most basic scenario is a freshly installed master and slave. At a
 high level, the process is as follows:
	Set up replication accounts on each server.

	Configure the master and slave.

	Instruct the slave to connect to and replicate from the
 master.

This assumes that many default settings will suffice, which is
 true if you've just installed the master and slave and they have the
 same data (the default mysql
 database). We show you how to do each step in turn, assuming your
 servers are called server1 (IP
 address 192.168.0.1) and server2 (IP
 address 192.168.0.2). We then explain how to initialize a slave from a
 server that's already up and running and explore the recommended
 replication configuration.
Creating Replication Accounts

MySQL has a few special privileges that let the replication
 processes run. The slave I/O thread, which runs on the replication
 slave server, makes a TCP/IP connection to the master. This means you
 must create a user account on the master and give it the proper
 privileges, so the I/O thread can connect as that user and read the
 master's binary log. Here's how to create that user account, which
 we'll call repl:
mysql> GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*
 -> TO repl@'192.168.0.%' IDENTIFIED BY 'p4ssword';
We create this user account on both the master and the slave.
 Note that we restricted the user to the local network, because the
 replication account is insecure. (See Chapter 12 for
 more information on security.)
Tip
The replication user actually needs only the REPLICATION SLAVE privilege on the master
 and doesn't really need the REPLICATION
 CLIENT privilege on either server. So why did we grant
 these privileges on both servers? There are two reasons:

	The account you use to monitor and manage replication will
 need the REPLICATION CLIENT
 privilege, and it's easier to use the same account for both purposes (rather than create a separate
 user account for this purpose).

	If you set up the account on the master and then clone the
 slave from it, the slave will be set up correctly to act as a
 master, in case you want the slave and master to switch
 roles.

Configuring the Master and Slave

The next step is to enable a few settings on the master, which we assume is named
 server1. You need to enable binary
 logging and specify a server ID. Enter (or verify the presence of) the
 following lines in the master's my.cnf
 file:
log_bin = mysql-bin
server_id = 10
The exact values are up to you. We're taking the simplest route
 here, but you can do something more elaborate.
You must explicitly specify a unique server ID. We chose to use
 10 instead of 1, because 1 is the default value a server will
 typically choose when no value is specified. (This is
 version-dependent; some MySQL versions just won't work at all.)
 Therefore, using 1 can easily cause
 confusion and conflicts with servers that have no explicit server IDs.
 A common practice is to use the final octet of the server's IP
 address, assuming it doesn't change and is unique (i.e., the servers
 belong to only one subnet).
If binary logging wasn't already specified in the master's
 configuration file, you'll need to restart MySQL. To
 verify that the binary log file is created on the master, run SHOW MASTER STATUS and check that you get
 output similar to the following (MySQL will append some digits to the
 filename, so you won't see a file with the exact name you
 specified):
mysql> SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000001 | 98 | | |
+------------------+----------+--------------+------------------+
1 row in set (0.00 sec)
The slave requires a configuration in its
 my.cnf file similar to the master, and you'll
 also need to restart MySQL on the slave:
log_bin = mysql-bin
server_id = 2
relay_log = mysql-relay-bin
log_slave_updates = 1
read_only = 1
Several of these options are not technically necessary, and for
 some we're just making defaults explicit. In reality, only the
 server_id parameter is required on
 a slave, but we enabled log_bin
 too, and we gave the binary log file an explicit name. By default it
 is named after the server's hostname, but that can cause problems if
 the hostname changes. Also, we want every server's logs to be named
 the same thing to enable easy slave-to-master promotions. Thus, just
 as we created the same replication user account on both the master and
 the slave, we are using the same settings for the master and slave.
We also added two other optional configuration parameters:
 relay_log (to specify the location
 and name of the relay log) and log_slave_updates (to make the slave log the
 replicated events to its own binary log). The latter option causes
 extra work for the slaves, but as you'll see later, we have good
 reasons for adding these optional settings on every slave.
Some people enable just the binary log and not log_slave_updates, so they can see whether
 anything, such as a misconfigured application, is modifying data on
 the slave. If possible, it's better to use the read_only configuration setting, which
 prevents anything but specially privileged threads from changing data.
 (Don't grant your users more privileges than they need!) However,
 read_only is often not practical,
 especially for applications that need to be able to create tables on
 slaves.
Warning
Don't place replication configuration options such as master_host and master_port into the slave's
 my.cnf file. This is an old, deprecated way to
 configure a slave. It can cause problems and has no benefits.

Starting the Slave

The next step is to tell the slave how to connect to the master
 and begin replaying its binary logs. You should not use the
 my.cnf file for this; instead, use the CHANGE MASTER TO statement. This statement
 replaces the corresponding my.cnf settings
 completely. It also lets you point the slave at a different master in
 the future, without stopping the server. Here's the basic statement
 you'll need to run on the slave to start replication:
mysql> CHANGE MASTER TO MASTER_HOST='server1',
 -> MASTER_USER='repl',
 -> MASTER_PASSWORD='p4ssword',
 -> MASTER_LOG_FILE='mysql-bin.000001',
 -> MASTER_LOG_POS=0;
The MASTER_LOG_POS parameter
 is set to 0 because this is the
 beginning of the log. After you run this, you should be able to
 inspect the output of SHOW SLAVE
 STATUS and see that the slave's settings are correct:
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State:
 Master_Host: server1
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000001
 Read_Master_Log_Pos: 4
 Relay_Log_File: mysql-relay-bin.000001
 Relay_Log_Pos: 4
 Relay_Master_Log_File: mysql-bin.000001
 Slave_IO_Running: No
 Slave_SQL_Running: No
 ...omitted...
 Seconds_Behind_Master: NULL
The Slave_IO_State,
 Slave_IO_Running, and Slave_SQL_Running columns show that the
 slave processes are not running. Astute readers will also notice that
 the log position is 4 instead of 0. That's because 0 isn't really a
 log position; it just means "at the start of the log file." MySQL
 knows that the first event is really at position 4. [80]
To start replication, run the following command:
mysql> START SLAVE;
This command should produce no errors or output. Now inspect
 SHOW SLAVE STATUS again:
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: server1
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000001
 Read_Master_Log_Pos: 164
 Relay_Log_File: mysql-relay-bin.000001
 Relay_Log_Pos: 164
 Relay_Master_Log_File: mysql-bin.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 ...omitted...
 Seconds_Behind_Master: 0
Notice that the slave I/O and SQL threads are both running, and
 Seconds_Behind_Master is no longer
 NULL (we examine what Seconds_Behind_Master means later). The I/O
 thread is waiting for an event from the master, which means it has
 fetched all of the master's binary logs. The log positions have
 incremented, which means some events have been fetched and executed
 (your results will vary). If you make a change on the master, you
 should see the various file and position settings increment on the slave. You should also see the
 changes in the databases on the slave!
You will also be able to see the replication threads in the
 process list on both the master and the slave. On the master, you
 should see a connection created by the slave's I/O thread:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 55
 User: repl
 Host: slave1.webcluster_1:54813
 db: NULL
Command: Binlog Dump
 Time: 610237
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL
On the slave, you should see two threads. One is the I/O thread,
 and the other is the SQL thread:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 611116
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 2
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 33
 State: Has read all relay log; waiting for the slave I/O thread to update it
 Info: NULL
The sample output we've shown comes from servers that have been
 running for a long time, which is why the I/O thread's Time column on the master and slave has a
 large value. The SQL thread has been idle for 33 seconds on the slave,
 which means no events have been replayed for 33 seconds.
These processes will always run under the "system user" user
 account, but the other column values may vary. For example, when the
 SQL thread is replaying an event on the slave, the Info column will show the query it is
 executing.
Tip
If you just want to experiment with MySQL replication,
 Giuseppe Maxia's MySQL Sandbox script (http://sourceforge.net/projects/mysql-sandbox/) can
 quickly start a throwaway installation from a freshly downloaded
 MySQL tarball. It takes just a few keystrokes and about 15 seconds
 to get a running master and two running slaves:
$./set_replication.pl ~/mysql-5.0.45-linux-x86_64-glibc23.
tar.gz

Initializing a Slave from Another Server

The previous setup instructions assumed that you started the master
 and slave with the default initial data after a fresh installation, so
 you implicitly had the same data on both servers and you knew the
 master's binary log coordinates. This is not typically the case.
 You'll usually have a master that has been up and running for some
 time, and you'll want to synchronize a freshly installed slave with
 the master, even though it doesn't have the master's data.
There are several ways to initialize, or "clone," a slave from
 another server. These include copying data from the master, cloning a
 slave from another slave, and starting a slave from a recent backup. You need three
 things to synchronize a slave with a master:
	A snapshot of the master's data at some point in
 time.

	The master's current log file, and the byte offset within
 that log at the exact point in time you took the snapshot. We
 refer to these two values as the log file
 coordinates, because together they identify a binary
 log position. You can find the master's log file coordinates with
 the SHOW MASTER STATUS
 command.

	The master's binary log files from that time to the
 present.

Here are some ways to clone a slave from another server:
	With a cold copy
	One of the most basic ways to start a slave is to shut
 down the master-to-be and copy its files to the slave (see Appendix A for more on how to copy
 files efficiently). You can then start the master again, which
 begins a new binary log, and use CHANGE
 MASTER TO to start the slave at the beginning of that
 binary log. The disadvantage of this technique is obvious: you
 need to shut down the master while you make the copy.

	With a warm copy
	If you use only MyISAM tables, you can use
 mysqlhotcopy to copy files while the server
 is still running. See Chapter 11 for
 details.

	Using mysqldump
	If you use only InnoDB tables, you can use the following
 command to dump everything from the master, load it all into the
 slave, and change the slave's coordinates to the
 corresponding position in the master's binary log:
$ mysqldump --single-transaction --all-databases --master-data=1
--host=server1 | mysql --host=server2
The --single-transaction option
 causes the dump to read the data as it existed at the beginning
 of the transaction. This option may work with other
 transactional storage engines as well, but we haven't tested it.
 If you're not using transactional tables, you can use the
 --lock-all-tables option to get a
 consistent dump of all tables.

	With an LVM snapshot or backup
	As long as you know the corresponding binary log
 coordinates, you can use an LVM snapshot from the master or a
 backup to initialize the slave (if you use a backup, this method
 requires that you've kept all of the master's binary logs since
 the time of the backup). Just restore the backup or snapshot
 onto the slave, then use the appropriate binary log coordinates
 in CHANGE MASTER TO. There's
 more detail about this in Chapter 11.
InnoDB Hot Backup, also covered in Chapter 11, is a good way to initialize a
 slave if you use only InnoDB tables.

	From another slave
	You can use any of the snapshot or copy techniques just
 mentioned to clone one slave from another. However, if you use
 mysqldump, the
 --master-data option doesn't work.
Also, instead of using SHOW
 MASTER STATUS to get the master's binary log
 coordinates, you'll need to use SHOW
 SLAVE STATUS to find the position at which the slave
 was executing on the master when you snapshotted it.
The biggest disadvantage of cloning one slave from another
 is that if your slave has become out of sync with the master,
 you'll be cloning bad data.

Warning
Don't use LOAD DATA FROM
 MASTER or LOAD TABLE FROM
 MASTER! They are obsolete, slow, and very dangerous. They
 also work only with MyISAM.

No matter what technique you choose, get comfortable with it,
 and document or script it. You will probably be doing it more than
 once, and you need to be able to do it in a pinch if something goes
 wrong.

Recommended Replication Configuration

There are many replication parameters, and most of them have at least some effect on data
 safety and performance. We explain later which rules to break and
 when. In this section, we show a recommended, "safe" replication configuration that
 minimizes the opportunities for problems.
The most important setting for binary logging on the master is sync_binlog:
sync_binlog=1
This makes MySQL synchronize the binary log's contents to disk
 each time it commits a transaction, so you don't lose log events if
 there's a crash. If you disable this option, the server will do a
 little less work, but binary log entries could be corrupted or missing
 after a server crash. On a slave that doesn't need to act as a master,
 this option creates unnecessary overhead. It applies only to the
 binary log, not to the relay log.
We also recommend using InnoDB if you can't tolerate corrupt
 tables after a crash. MyISAM is fine if table corruption isn't a big
 deal, but MyISAM tables are likely to be in an inconsistent state
 after a slave server crashes. Chances are good that a statement will
 have been incompletely applied to one or more tables, and the data
 will be inconsistent even after you've repaired the tables.
If you use InnoDB, we strongly recommend setting the following
 options on the master:
innodb_flush_logs_at_trx_commit=1 # Flush every log write
innodb_support_xa=1 # MySQL 5.0 and newer only
innodb_safe_binlog # MySQL 4.1 only, roughly equivalent to
 # innodb_support_xa
These are the default settings in MySQL 5.0. On the slave, we
 recommend enabling the following configuration options:
skip_slave_start
read_only
The skip_slave_start option
 will prevent the slave from starting automatically after a crash,
 which can give you a chance to repair a server if it has problems. If
 the slave starts automatically after a crash and is in an inconsistent
 state, it might cause so much additional corruption that you'll have
 to throw away its data and start fresh. Even if you've enabled all the
 options we suggested, a slave can easily break after a crash, because
 the relay logs and master.info file aren't
 crash-safe. They're not even flushed to disk, and there's no
 configuration option to control that behavior. (The Google patches we
 discuss later address this problem.)
The read_only option prevents
 most users from changing non-temporary tables. The exceptions are the
 slave SQL thread and threads with the SUPER privilege. This is one reason you
 should try to avoid giving your normal accounts the SUPER privilege (more on privileges in Chapter 12).
If a slave server is very far behind its master, the slave I/O
 thread can write many relay logs. The slave SQL thread will remove
 them as soon as it finishes replaying them (you can change this with
 the relay_log_purge option), but if
 it is running far behind, the I/O thread could actually fill up the
 disk. The solution to this problem is the relay_log_space_limit configuration
 variable. If the total size of all the relay logs grows larger than
 this variable's size, the I/O thread will stop and wait for the SQL
 thread to free up some more disk space.
Although this sounds nice, it can actually be a hidden problem.
 If the slave hasn't fetched all the relay logs from the master, those
 logs may be lost forever if the master crashes. Unless you're worried
 about disk space, it's probably a good idea to let the slave use as
 much space as it needs for relay logs. That's why we haven't included
 the relay_log_space_limit
 setting in our recommended configuration.

[80] Actually, as you can see in the earlier output from SHOW MASTER STATUS, it's really at
 position 98. The master and slave will work that out together once
 the slave connects to the master, which hasn't yet
 happened.

Replication Under the Hood

Now that we've explained some replication basics, let's dive
 deeper into it. Let's take a look at how replication really works, see
 what strengths and weaknesses it has as a result, and examine some more
 advanced replication configuration options.
Statement-Based Replication

MySQL 5.0 and earlier support only statement-based
 replication (also called logical
 replication). This is unusual in the database world.
 Statement-based replication works by recording the query that changed
 the data on the master. When the slave reads the event from the relay
 log and executes it, it is reexecuting the actual SQL query that the
 master executed. This arrangement has both benefits and
 drawbacks.
The most obvious benefit is that it's fairly simple to
 implement. Simply logging and replaying any statement that changes
 data will, in theory, keep the slave in sync with the master. Another
 benefit of statement-based replication is that the binary log events
 tend to be reasonably compact. So, relatively speaking,
 statement-based replication doesn't use a lot of bandwidth—a query
 that updates gigabytes of data might use only a few dozen bytes in the
 binary log. Also, the mysqlbinlog tool, which we
 mention throughout the chapter, is most convenient to use with
 statement-based logging.
In practice, however, statement-based replication is not as
 simple as it might seem, because many changes on the master can depend
 on factors besides just the query text. For example, the statements
 will execute at slightly—or possibly greatly—different times on the
 master and slave. As a result, MySQL's binary log format includes more
 than just the query text; it also transmits several bits of metadata,
 such as the current timestamp. Even so, there are some statements that
 MySQL can't replicate correctly, such as queries that use the CURRENT_USER() function. Stored routines and
 triggers are also problematic with statement-based replication.
Another issue with statement-based replication is that the
 modifications must be serializable. This requires a great deal of
 special-case code, configuration settings, and extra server features,
 including InnoDB's next-key locks and autoincrementing lock behavior.
 Not all storage engines work with statement-based replication,
 although those provided with the official MySQL server distribution up
 to and including MySQL 5.1 do.
You can find a complete list of statement-based replication's
 disadvantages in the MySQL manual's chapter on replication.

Row-Based Replication

MySQL 5.1 added support for row-based
 replication, which records the actual data changes in the
 binary log and is similar to how most other database products
 implement replication. This scheme has several advantages and
 drawbacks of its own. The biggest advantages are that MySQL can
 replicate every statement correctly, and some statements can be
 replicated much more efficiently. The main drawbacks are that the
 binary log can become much larger and that there's less visibility
 into what statements updated the data, so you can't use the binary log
 for auditing with mysqlbinlog.
Tip
Row-based logging is not backward compatible. The
 mysqlbinlog utility distributed with MySQL 5.1
 can read binary logs that contain events logged in row-based format
 (they are not human-readable, but the MySQL server can interpret
 them). However, versions of mysqlbinlog from
 earlier MySQL distributions will fail to recognize such log events
 and will exit with an error upon encountering them.

MySQL can replicate some changes more efficiently using
 row-based replication, because the slave doesn't have to replay the
 queries that changed the rows on the master. Replaying some queries
 can be very expensive. For example, here's a query that summarizes
 data from a very large table into a smaller table:
mysql> INSERT INTO summary_table(col1, col2, sum_col3)
 -> SELECT col1, col2, sum(col3)
 -> FROM enormous_table
 -> GROUP BY col1, col2;
Imagine that there are only three unique combinations of
 col1 and col2 in the enormous_table table. This query will scan
 many rows in the source table but will result in only three rows in
 the destination table. Replicating this event as a statement will make
 the slave repeat all that work just to generate a few rows, but
 replicating it with row-based replication will be trivially cheap on
 the slave. In this case, row-based replication is much more
 efficient.
On the other hand, the following event is much cheaper to
 replicate with statement-based replication:
mysql> UPDATE enormous_table SET col1 = 0;
Using row-based replication for this query would be very
 expensive because it changes every row: every row would have to be
 written to the binary log, making the binary log event extremely
 large. This would place more load on the master both during logging
 and replication, and the slower logging might reduce
 concurrency.
Because neither format is perfect for every situation, MySQL 5.1
 switches between statement-based and row-based replication
 dynamically. By default, it uses statement-based replication, but when
 it detects an event that cannot be replicated correctly with a
 statement, it switches to row-based replication. You can also control
 the format as needed by setting the binlog_format session variable.
It's harder to do point-in-time recovery with a binary log that
 has events in row-based format, but not impossible. A log server can
 be helpful—more on that later.
In theory, row-based replication solves several problems we
 mention later. But in practice, most people we know who are using
 MySQL 5.1 in production are still using statement-based replication.
 Thus, it's still too early to say anything conclusive about row-based
 replication.

Replication Files

Let's take a look at some of the files replication uses. You
 already know about the binary log and the relay log, but there are
 several other files too. Where MySQL places them depends mostly on
 your configuration settings. Different MySQL versions place them in
 different directories by default. You can probably find them either in
 the data directory or in the directory that contains the server's
 .pid file (possibly
 /var/run/mysqld/ on Unix-like systems). Here they
 are:
	mysql-bin.index
	A server that has binary logging enabled will also have a
 file named the same as the binary logs, but with a
 .index suffix. This file keeps track of the
 binary log files that exist on disk. It is not an index in the
 sense of a table's index; rather, each line in the file contains
 the filename of a binary log file.
You might be tempted to think that this file is redundant
 and can be deleted (after all, MySQL could just look at the disk
 to find its files), but don't. MySQL relies on this index file,
 and it will not recognize a binary log file unless it's
 mentioned here.

	mysql-relay-bin.index
	This file serves the same purpose for the relay logs as
 the binary log index file does for the binary logs.

	master.info
	This file contains the information a slave server needs to
 connect to its master. The format is plain text (one value per
 line) and varies between MySQL versions. Don't delete it, or
 your slave will not know how to connect to its master after it
 restarts. This file contains the replication user's password, in
 plain text, so you may want to restrict its
 permissions.

	relay-log.info
	This file contains the slave's current binary log and
 relay log coordinates (i.e., the slave's position on the
 master). Don't delete this either, or the slave will forget
 where it was replicating from after a restart and might try to
 replay statements it has already executed.

These files are a rather crude way of recording MySQL's
 replication and logging state. Unfortunately, they are not written
 synchronously, so if your server loses power and the files haven't yet
 been flushed to disk, they can be inaccurate when the server
 restarts.
By default, the binary logs are named after the server's
 hostname with a numeric suffix, but it's a good idea to name them
 explicitly in my.cnf, as in the following
 example:
log_bin # Don't do this, or files will be named after the hostname
log_bin = mysql-bin # This is safe
This matters because replication might break if the server's
 hostname changes. We also suggest you don't name the log files after
 the hostname—in other words, don't just make the defaults explicit.
 Instead, choose a name for your binary logs and use it universally.
 This will make it much easier to move a server's files to another
 machine and to automate failover.
You should also name the relay logs (which are likewise named
 after the server's hostname by default) and the corresponding
 .index files explicitly. Here are our suggested
 my.cnf settings for all of these options:
log_bin = mysql-bin
log_bin_index = mysql-bin.index
relay_log = mysql-relay-bin
relay_log_index = mysql-relay-bin.index
The .index files actually inherit their
 names from the log files, but it doesn't hurt to name them
 explicitly.
The .index files also interact with another
 setting, expire_logs_days, which
 specifies how MySQL should purge expired binary logs. If the
 mysql-bin.index files mention files that don't
 exist on disk, automatic purging will not work; in fact, even the
 PURGE MASTER LOGS statement won't
 work. The solution to this problem is generally to use the MySQL
 server to manage the binary logs, so it doesn't get
 confused.
You need to implement some log purging strategy explicitly,
 either with expire_logs_days or
 another means, or MySQL will fill up the disk with binary logs. You
 should consider your backup policy when you do this. See "The Binary
 Log Format" on Purging Old Binary Logs Safely for
 more on the binary log.

Sending Replication Events to Other Slaves

The log_slave_updates option
 lets you use a slave as a master of other slaves. It instructs MySQL to write
 the events the slave SQL thread executes into its own binary log,
 which its own slaves can then retrieve and execute. Figure 8-2 illustrates
 this.
[image: Passing on a replication event to further slaves]

Figure 8-2. Passing on a replication event to further slaves

In this scenario, a change on the master causes an event to be
 written to its binary log. The first slave then fetches and executes
 the event. At this point, the event's life would normally be over, but
 because log_slave_updates is
 enabled, the slave writes it to its binary log instead. Now the second
 slave can retrieve the event into its own relay log and execute it.
 This configuration means that changes on the original master can
 propagate to slaves that are not attached to it directly. We prefer
 setting log_slave_updates by
 default because it lets you connect a slave without having to restart
 the server.
When the first slave writes a binary log event from the master
 into its own binary log, that event will almost certainly be at a
 different position in the log from its position on the master—that is,
 it could be in a different log file or at a different numerical
 position within the log file. This means you can't assume all servers
 that are at the same logical point in replication will have the same
 log coordinates. As we'll see later, this makes it quite complicated
 to do some tasks, such as changing slaves to a different master or
 promoting a slave to be the master.
Unless you've taken care to give each server a unique server ID,
 configuring a slave in this manner can cause subtle errors and may
 even cause replication to complain and stop. One of the more common
 questions about replication configuration is why one needs to specify
 the server ID. Shouldn't MySQL be able to replicate statements without
 knowing where they originated? Why does MySQL care whether the server
 ID is globally unique? The answer to this question lies in how MySQL
 prevents an infinite loop in replication. When the slave SQL thread
 reads the relay log, it discards any event whose server ID matches its
 own. This breaks infinite loops in replication. Preventing infinite
 loops is important for some of the more useful replication topologies,
 such as master-master replication.
Tip
If you're having trouble getting replication set up, the
 server ID is one of the things you should check. It's not enough to
 just inspect the @@server_id
 variable. It has a default value, but replication won't work unless
 it's explicitly set, either in my.cnf or via a
 SET command. If you use a
 SET command, be sure you update
 the configuration file too, or your settings won't survive a server restart.

Replication Filters

Replication filtering options let you replicate just part of a
 server's data. There are two kinds of replication filters: those that
 filter events out of the binary log on the master, and those that
 filter events coming from the relay log on the slave. Figure 8-3 illustrates the two
 types.
[image: Replication filtering options]

Figure 8-3. Replication filtering options

The options that control binary log filtering are binlog_do_db and binlog_ignore_db. You usually do
 not want to enable these, as we explain in a
 moment.
On the slave, the replicate_*
 options filter events as the slave SQL thread reads them from the
 relay log. You can replicate or ignore one or more databases, rewrite
 one database to another database, and replicate or ignore tables based
 on LIKE pattern matching
 syntax.
The most important thing to understand about these options is
 that the *_do_db and *_ignore_db options, both on the master and
 on the slave, do not work as you might expect. You might think they
 filter on the object's database name, but they actually filter
 on the current default database. That is, if you
 execute the following statements on the master:
mysql> USE test;
mysql> DELETE FROM sakila.film;
the *_do_db and *_ignore_db parameters will filter the
 DELETE statement on test, not on sakila. This is not usually what you want,
 and it can cause the wrong statements to be replicated or ignored. The
 *_do_db and *_ignore_db parameters have uses, but
 they're limited and rare, and you should be very careful with them. If
 you use these parameters, it's very easy to for replication to get out
 of sync.
Warning
The binlog_do_db and
 binlog_ignore_db options don't
 just have the potential to break replication; they also make it
 impossible to do point-in-time recovery from a backup. For most
 situations, you should never use them. We show some safe ways to
 filter replication with Blackhole tables later in the
 chapter.

Stopping GRANT and REVOKE statements from replicating to slaves
 is a common use for replication filters. [81] The usual problem is that an administrator uses GRANT to give a user some write privilege on
 the master, and then finds it has propagated to the slave, where the
 user shouldn't be allowed to change any data. The following
 replication options on the slave will prevent this:
replicate_ignore_table=mysql.columns_priv
replicate_ignore_table=mysql.db
replicate_ignore_table=mysql.host
replicate_ignore_table=mysql.procs_priv
replicate_ignore_table=mysql.tables_priv
replicate_ignore_table=mysql.user
You may see advice to simply filter out all tables in the
 mysql database, with a rule such as
 the following:
replicate_wild_ignore_table=mysql.%
This will certainly prevent GRANT statements from replicating, but it
 will prevent events and routines from replicating too. Such unforeseen
 consequences are the reason we said you need to be careful with
 filters. It might be a better idea to prevent specific statements from
 being replicated, usually with SET
 SQL_LOG_BIN=0, though that practice has its own hazards. In
 general, you should use replication filters very carefully, and only
 if you really need them, because they make it so easy to break
 statement-based replication. (Row-based replication might solve some
 of these problems, but it's not fully proven yet.)
The filtering options are well documented in the MySQL manual,
 so we won't repeat the details here.

[81] A better way to limit privileges on slaves is to use
 read_only and keep the
 privileges the same on the master and the slaves.

Replication Topologies

You can set up MySQL replication for almost any configuration of
 masters and slaves, with the limitation that a given MySQL slave
 instance can have only one master. Many complex topologies are possible,
 but even the simple ones can be very flexible. A single topology can
 have many different uses. Keep this in mind as you read through our
 descriptions, because we describe only simple uses. The variety of ways
 you can use replication could easily fill its own book.
We've already seen how to set up a master with a single slave. In
 this section, we look at some other common topologies and discuss their
 strengths and limitations. As we go, remember these basic rules:
	A MySQL slave instance can have only one master.

	Every slave must have a unique server ID.

	A master can have many slaves (or, correspondingly, a slave
 can have many siblings).

	A slave can propagate changes from its master, and be the
 master of other slaves, if you enable log_slave_updates.

Master and Multiple Slaves

Aside from the basic two-server master-slave setup we've already
 mentioned, this is the simplest replication topology. In fact, it's
 just as simple as the basic setup, because the slaves don't interact
 with each other at all; they each connect only to the master. Figure 8-4 shows this
 arrangement.
[image: A master with multiple slaves]

Figure 8-4. A master with multiple slaves

This configuration is most useful when you have few writes and
 many reads. You can spread reads across any number of slave servers,
 up to the point where the slaves put too much load on the master or
 network bandwidth from the master to the slaves becomes a problem. You
 can set up many slaves at once, or add slaves as you need them, using
 the same steps we showed earlier in this chapter.
Although this is a very simple topology, it is flexible enough
 to fill many needs. Here are just a few ideas:
	Use different slaves for different roles (for example, add
 different indexes or use different storage engines).

	Set up one of the slaves as a standby master, with no
 traffic other than replication.

	Put one of the slaves in a remote data center for disaster
 recovery.

	Time-delay one or more of the slaves for disaster
 recovery.

	Use one of the slaves for backups, for training, or as a
 development or staging server.

One of the reasons this topology is popular is that it avoids
 many of the complexities that come with other configurations. Here's
 an example: it's easy to compare one slave to another in terms of
 binary log positions on the master, because they'll all be the same.
 In other words, if you stop all the slaves at the same logical point
 in replication, they'll all be reading from the same physical position
 in the master's logs. This is a nice property that simplifies many
 administrative tasks, such as promoting a slave to be the
 master.
This property holds only among "sibling" slaves. It's more
 complicated to compare log positions between servers that aren't in a
 direct master-slave or sibling relationship. Many of the topologies we
 mention later, such as tree replication or distribution masters, make
 it harder to figure out where in the logical sequence of events a
 slave is really replicating.

Master-Master in Active-Active Mode

Master-master replication (also known as dual-master or
 bidirectional replication) involves two servers, each configured as
 both a master and a slave of the other—in other words, a pair of
 co-masters. Figure 8-5 shows the
 setup.
[image: Master-master replication]

Figure 8-5. Master-master replication

ora: MySQL Does Not Support Multimaster Replication
We use the term multimaster replication
 very specifically to describe a slave with more than one master.
 Regardless of what you may have been told, MySQL (unlike some other
 database servers) does not support the configuration illustrated in
 Figure 8-6 at
 present. However, we show you some ways to emulate multimaster replication later in this
 chapter.
Unfortunately, many people use this term casually to describe
 any setup where there is more than one master in the entire
 replication topology, such as the "tree" topology we show later in
 this chapter. Other people use it to describe what we call
 master-master replication, where the servers are
 mutually master and slave.
These terminology problems cause a lot of confusion and even
 arguments, so we think it's best to be careful with names. Just
 imagine how hard it will be to communicate if MySQL adds support for
 a slave with two masters! What term will you use to describe that if
 you haven't reserved "multimaster replication" for the
 purpose?

[image: MySQL does not support multimaster replication]

Figure 8-6. MySQL does not support multimaster replication

Master-master replication in active-active mode has uses, but
 they're generally special-purpose. One possible use is for
 geographically separated offices, where each office needs its own
 locally writable copy of data.
The biggest problem with such a configuration is how to handle
 conflicting changes. The list of possible problems caused by having
 two writable co-masters is very long. Problems usually show up when a
 query changes the same row simultaneously on both servers or inserts
 into a table with an AUTO_INCREMENT
 column at the same time on both servers.
MySQL 5.0 added some replication features that make this type of
 replication setup slightly safer: the auto_increment_increment and auto_increment_offset settings. These
 settings let servers autogenerate nonconflicting values for INSERT queries. However, allowing writes to
 both masters is still dangerous. Updates that happen in a different
 order on the two machines can still cause the data to become out of
 sync silently. For example, imagine you have a single-column,
 single-row table containing the value 1. Now suppose these two statements execute
 simultaneously:
	On the first co-master:
mysql> UPDATE tbl SET col=col + 1;

	On the second:
mysql> UPDATE tbl SET col=col * 2;

The result? One server has the value 4, and the other has the value 3. And yet, there are no replication errors
 at all.
Data getting out of sync is only the beginning. What if normal
 replication stops with an error, but applications keep writing to both
 servers? You can't just clone one of the servers from the other,
 because both of them will have changes that you need to copy to the
 other. Solving this problem is likely to be very hard.
If you set up a master-master active-active configuration carefully,
 perhaps with well-partitioned data and privileges, you can avoid some
 of these problems. [82] However, it's hard to do well, and there's usually a
 better way to achieve what you need.
In general, allowing writes on both servers can cause more
 trouble than it's worth. However, an active-passive configuration is
 very useful indeed, as you'll see in the next section.

Master-Master in Active-Passive Mode

There's a variation on master-master replication that avoids the
 pitfalls we just discussed and is, in fact, a very powerful way to
 design fault-tolerant and highly available systems. The main
 difference is that one of the servers is a read-only "passive" server,
 as shown in Figure 8-7.
[image: Master-master replication in active-passive mode]

Figure 8-7. Master-master replication in active-passive mode

This configuration lets you swap the active and passive server
 roles back and forth very easily, because the servers' configurations
 are symmetrical. This makes failover and failback easy. It also lets
 you perform maintenance, optimize tables, upgrade your operating
 system (or application, or hardware), and do other tasks without any
 downtime.
For example, running an ALTER
 TABLE statement locks the entire table, blocking reads and
 writes to it. This can take a long time and disrupt service. However,
 the master-master configuration lets you stop the slave threads on the
 active server, so it doesn't process any updates from the passive
 server, alter the table on the passive server, switch the roles, and
 restart the slave process on the formerly active server. [83] That server then reads its relay log and executes the
 same ALTER TABLE statement. Again,
 this may take a long time, but it doesn't matter because the server
 isn't serving any live queries.
The active-passive master-master topology lets you sidestep many
 other problems and limitations in MySQL. You can get help setting up
 and managing such a system with the MySQL Master-Master Replication
 Manager tool (http://code.google.com/p/mysql-master-master/). It
 automates many tricky tasks, such as recovering and resyncing
 replication, setting up new slaves, and so on.
Let's see how to configure a master-master pair. Perform these
 steps on both servers, so they end up with
 symmetrical configurations:
	Enable binary logging, choose unique server IDs, and add
 replication accounts.

	Enable logging slave updates. This is crucial for failover
 and failback, as we'll see later.

	Optionally configure the passive server to be read-only to
 prevent changes that might conflict with changes on the active
 server.

	Ensure that the servers have exactly the same data.

	Start each server's MySQL instance.

	Configure each server as a slave of the other, beginning
 with the newly created binary log.

Now let's trace what happens when there's a change to the active
 server. The change gets written to its binary log and flows through
 replication to the passive server's relay log. The passive server
 executes the query and writes the event to its own binary log, because
 you enabled log_slave_updates. The
 active server then retrieves the same change via replication into its
 own relay log, but it ignores it because the server ID in the event
 matches its own.
See "Changing Masters" on Changing Masters to
 learn how to switch roles.
Setting up an active-passive master-master topology is a little
 like creating a hot spare in some ways, except that you can use the
 "spare" to boost performance. You can use it for read queries,
 backups, "offline" maintenance, upgrades, and so on—things you can't
 do with a true hot spare. However, you cannot use it to gain better
 write performance than you can get with a single server (more about
 that later).
As we discuss more scenarios and uses for replication, we'll
 come back to this configuration. It is a very important and common
 replication topology.

Master-Master with Slaves

A related configuration is to add one or more slaves to each
 co-master, as shown in Figure 8-8.
[image: Master-master replication with slaves]

Figure 8-8. Master-master replication with slaves

The advantage of this configuration is extra redundancy. In a
 geographically distributed replication topology, it removes the single
 point of failure at each site. You can also offload read-intensive
 queries to the slaves, as usual.
If you're using a master-master topology locally for fast
 failover, this configuration is still useful. Promoting one of the
 slaves to replace a failed master is possible, although it's a little
 more complex. The same is true of moving one of the slaves to point to
 a different master. The added complexity is an important
 consideration.

Ring

The dual-master configuration is really just a special case
 [84] of the ring replication configuration, shown in Figure 8-9. A ring has three or more
 masters. Each server is a slave of the server before it in the ring,
 and a master of the server after it. This topology is also called
 circular replication.
Rings don't have some of the key benefits of a master-master
 setup, such as symmetrical configuration and easy failover. They also
 depend completely on every node in the ring being available, which
 greatly increases the probability of the entire system failing. And if
 you remove one of the nodes from the ring, any replication events that
 originated at that node can go into an infinite loop. They'll cycle
 forever through the topology, because the only server that will filter
 out an event based on its server ID is the server that created it. In
 general, rings are brittle and best avoided.
[image: A replication ring topology]

Figure 8-9. A replication ring topology

You can mitigate some of the risk of a ring replication setup by
 adding slaves to provide redundancy at each site, as shown in Figure 8-10. This merely
 protects against the risk of a server failing, though. A loss of power
 or any other problem that affects any connection between the sites
 will still break the entire ring.
[image: A replication ring with slaves at each site]

Figure 8-10. A replication ring with slaves at each site

Master, Distribution Master, and Slaves

We've mentioned that slaves can place quite a load on the master
 if there are enough of them. Each slave creates a new thread on the
 master, which executes the special binlog dump
 command. This command reads the data from the binary log and sends it
 to the slave. The work is repeated for each slave thread; they don't
 share the resources required for a binlog dump.
If there are many slaves and there's a particularly large binary
 log event, such as a huge LOAD DATA
 INFILE, the master's load can go up significantly. The master may
 even run out of memory and crash because of all the slaves requesting
 the same huge event at the same time. On the other hand, if the slaves
 are all requesting different binlog events that
 aren't in the filesystem cache anymore, that can cause a lot of disk
 seeks, which might also interfere with the master's
 performance.
For this reason, if you need many slaves, it's often a good idea
 to remove the load from the master and use a distribution
 master. A distribution master is a slave whose only purpose
 is to read and serve the binary logs from the master. Many slaves can
 connect to the distribution master, which insulates the original
 master from the load. To remove the work of actually executing the
 queries on the distribution master, you should change its tables to
 the Blackhole storage engine, as shown in Figure 8-11.
[image: A master, a distribution master, and many slaves]

Figure 8-11. A master, a distribution master, and many slaves

It's hard to say exactly how many slaves a master can handle
 before it needs a distribution master. As a very general rule of
 thumb, if your master is running near its full capacity, you might not
 want to put more than about 10 slaves on it. If there's very little
 write activity, or you're replicating only a fraction of the tables,
 the master can probably serve many more slaves. Additionally, you
 don't have to limit yourself to just one distribution master. You can
 use several if you need to replicate to a really large number of
 slaves, or you can even use a pyramid of distribution masters.
You can also use the distribution master for other purposes,
 such as applying filters and rewrite rules to the binary log events.
 This is much more efficient than repeating the logging, rewriting, and
 filtering on each slave.
If you use Blackhole tables on the distribution master, it will be able to serve more slaves than it
 could otherwise. The distribution master will execute the queries, but
 the queries will be extremely cheap, because the Blackhole tables will
 not have any data.
A common question is how to ensure that all tables on the
 distribution master use the Blackhole storage engine. What if someone
 creates a new table on the master and specifies a different storage
 engine? Indeed, the same issue arises whenever you want to use a
 different storage engine on a slave. The usual solution is to set the
 server's storage_engine
 option:
storage_engine = blackhole
This will affect only CREATE
 TABLE statements that don't specify a storage engine
 explicitly. If you have an existing application that you can't
 control, this topology might be fragile. You can disable InnoDB and
 make tables fall back to MyISAM with the skip_innodb option, but you can't disable
 the MyISAM or Memory engines.
The other major drawback is the difficulty of replacing the
 master with one of the (ultimate) slaves. It's hard to promote one of
 the slaves into its place, because the intermediate master ensures
 that they will almost always have different binary log coordinates
 than the original master does.

Tree or Pyramid

If you're replicating a master to a very large number of
 slaves—whether you're distributing data geographically or just trying
 to build in more read capacity—it can be more manageable to use a
 pyramid design, as illustrated in Figure 8-12.
[image: A pyramid replication topology]

Figure 8-12. A pyramid replication topology

The advantage of this design is that it eases the load on the
 master, just as the distribution master did in the previous section.
 The disadvantage is that any failure in an intermediate level will
 affect multiple servers, which wouldn't happen if the slaves were each
 attached to the master directly. Also, the more intermediate levels
 you have, the harder and more complicated it is to handle
 failures.

Custom Replication Solutions

MySQL replication is flexible enough that you can often design a
 custom solution for your application's needs. You'll typically use
 some combination of filtering, distribution, and replicating to
 different storage engines. You can also use "hacks," such as
 replicating to and from servers that use the Blackhole storage engine
 (as discussed in "Master, Distribution Master, and Slaves" on Master, Distribution Master, and Slaves). Your design can
 be as elaborate as you want. The biggest limitations are what you can
 monitor and administer reasonably and what resource constraints you
 have (network bandwidth, CPU power, etc.).
Selective replication

To take advantage of locality of reference and keep your
 working set in memory for reads, you can replicate a small amount of
 data to each of many slaves. If each slave has a fraction of the
 master's data and you direct reads to the slaves, you can make much
 better use of the memory on each slave. Each slave will also have
 only a fraction of the master's write load, so the master can become
 more powerful without making the slaves fall behind.
This scenario is similar in some respects to the horizontal
 data partitioning we talk more about in the next chapter, but it has
 the advantage that one server still hosts all
 the data—the master. This means you never have to look on more than
 one server for the data needed for a write query, and if you have
 read queries that need data that doesn't all exist on any single
 slave server, you have the option of doing those reads on the master
 instead. Even if you can't do all reads on the slaves, you should be
 able to move many of them off the master.
The simplest way to do this is to partition the data into
 different databases on the master, and then replicate each database
 to a different slave server. For example, if you want to replicate
 data for each department in your company to a different slave, you
 can create databases called sales,
 marketing, procurement, and so on. Each slave should then
 have a replicate_wild_do_table
 configuration option that limits its data to the given database.
 Here's the configuration option for the sales database:
replicate_wild_do_table = sales.%
Filtering with a distribution master is also useful. For
 example, if you want to replicate just part of a heavily loaded
 server across a slow or very expensive network, you can use a local
 distribution master with Blackhole tables and filtering rules. The
 distribution master can have replication filters that remove undesired entries from
 its logs. This can help avoid dangerous logging settings on the
 master, and it doesn't require you to transfer all the logs across
 the network to the remote slaves.

Separating functions

Many applications have a mixture of online transaction
 processing (OLTP) and online analytical processing (OLAP) queries. OLTP queries tend to be short and
 transactional. OLAP queries are usually large and slow and don't
 require absolutely up-to-date data. The two types of queries also
 place very different stresses on the server. Thus, they perform best
 on servers that are configured differently and perhaps even use
 different storage engines and hardware.
A common solution to this problem is to replicate the OLTP
 server's data to slaves specifically designed for the OLAP workload.
 These slaves can have different hardware, configurations, indexes,
 and/or storage engines. If you dedicate a slave to OLAP queries, you
 might also be able to tolerate more replication lag or otherwise
 degraded quality of service on that slave. That might mean you can
 use it for tasks that would result in unacceptable performance on a
 nondedicated slave, such as executing very long-running
 queries.
No special replication setup is required, although you might
 choose to omit some of the data from the master if you'll achieve
 significant savings by not having it on the slave. Remember,
 filtering out even a small amount of data with replication filters
 on the relay log might help reduce I/O and cache activity.

Data archiving

You can archive data on a slave server—that is, keep it on the
 slave but remove it from the master—by running delete queries on the
 master and ensuring that those queries don't execute on the slave.
 There are two common ways to do this: one is to selectively disable
 binary logging on the master, and the other is to use replicate_ignore_db rules on the
 slave.
The first method requires executing SET SQL_LOG_BIN=0 in the process that
 purges the data on the master, then purging the data. This has the
 advantage of not requiring any special replication configuration on
 the slave, and because the statements aren't even logged to the
 master's binary log, it's slightly more efficient there too. The
 main disadvantage is that you won't be able to use the binary log on
 the master for auditing or point-in-time recovery anymore, as it
 won't contain every modification made to the master's data. It also
 requires the SUPER
 privilege.
The second technique is to USE a certain database on the master
 before executing the statements that purge the data. For example,
 you can create a database named purge, and then specify replicate_ignore_db=purge in the slave's
 my.cnf file and restart the slave. The slave
 will ignore statements that USE
 this database. This approach doesn't have the first technique's
 weaknesses, but it has the (minor) drawback of making the slave
 fetch binary log events it doesn't need. There's also a potential
 for someone to mistakenly execute non-purge queries in the purge database, thus causing the slave not
 to replay events you want it to.
Maakit's mk-archiver tool supports both
 methods.
Tip
A third option is to use binlog_ignore_db to filter out
 replication events, but as we stated earlier, we
 consider this dangerous for most purposes.

Using slaves for full-text searches

Many applications require a combination of transactions and
 full-text searches. However, only MyISAM tables offer built-in
 full-text search capabilities, and MyISAM doesn't support
 transactions. A common workaround is to configure a slave for
 full-text searches by changing the storage engine for certain tables
 to MyISAM on the slave. You can then add full-text indexes and
 perform full-text search queries on the slave. This avoids potential
 replication problems with transactional and nontransactional storage
 engines in the same query on the master, and it relieves the master
 of the extra work of maintaining the full-text indexes.

Read-only slaves

Many organizations prefer slaves to be read-only, so
 unintended changes don't break replication. You can achieve this
 with the read_only configuration
 variable. It disables most writes: the exceptions are the slave
 processes, users who have the SUPER privilege, and temporary tables.
 This is perfect as long as you don't give the SUPER privilege to ordinary users, which
 you shouldn't do anyway.

Emulating multimaster replication

MySQL does not currently support multimaster replication (i.e., a slave with more than
 one master). However, you can emulate this topology by changing a
 slave to point at different masters in turn. For example, you can
 point the slave at master A and let it run for a while, then point
 it at master B for a while, and then switch it back to master A
 again. How well this will work depends on your data and how much
 work the two masters will cause the single slave to do. If your
 masters are relatively lightly loaded and their updates won't
 conflict at all, it might work very well.
You'll need to do a little work to keep track of the binary
 log coordinates for each master. You also might want to ensure that
 the slave's I/O thread doesn't fetch more data than you intend it to
 execute on each cycle; otherwise, you could increase the network
 traffic significantly by fetching and throwing away a lot of data on
 each cycle.
A ready-to-use script for this purpose is available at http://code.google.com/p/mysql-mmre/.
You can also emulate multimaster replication using
 master-master (or ring) replication and the Blackhole storage engine
 with a slave, as depicted in Figure 8-13.
[image: Emulating multimaster replication with dual masters and the Blackhole storage engine]

Figure 8-13. Emulating multimaster replication with dual masters and the
 Blackhole storage engine

In this configuration, the two masters each contain their own
 data. They each also contain the tables from the other master, but
 use the Blackhole storage engine to avoid actually storing the data
 in those tables. A slave is attached to one of the co-masters—it
 doesn't matter which one. This slave does not use the Blackhole
 storage engine at all, so it is effectively a slave of both
 masters.
In fact, it's not really necessary to use a master-master
 topology to achieve this. You can simply replicate from server1 to server2 to the slave. If server2 uses the Blackhole storage engine
 for tables replicated from server1, it will not contain any data from
 server1, as shown in Figure 8-14.
[image: Another way to emulate multimaster replication]

Figure 8-14. Another way to emulate multimaster replication

Either of these configurations can suffer from the usual
 problems, such as conflicting updates and CREATE TABLE statements that explicitly
 specify a storage engine.

Creating a log server

One of the things you can do with MySQL replication is create a "log server" with no data,
 whose only purpose is to make it easy to replay and/or filter binary
 log events. As you'll see later in this chapter, this is very useful
 for restarting replication after crashes. It's also useful for
 point-in-time recovery, which we discuss in Chapter 11.
Imagine you have a set of binary logs or relay logs—perhaps
 from a backup, perhaps from a server that crashed—and you want to
 replay the events in them. You could use
 mysqlbinlog to extract the events, but it's
 more convenient and efficient to just set up a MySQL instance
 without any data and let it think the binary logs are its own. You
 can use the MySQL Sandbox script available at http://sourceforge.net/projects/mysql-sandbox/ to
 create the log server if you'll need it only temporarily. The log
 server does not need any data because it won't
 be executing the logs—it will only be serving the logs to other
 servers. (It does need to have a replication user, however.)
Let's take a look at how this technique works (we show some
 applications for it later). Suppose the logs are called
 somelog-bin.000001,
 somelog-bin.000002, and so on. Place these
 files into your log server's binary log directory. We'll assume it's
 /var/log/mysql. Then, before you start the log
 server, edit its my.cnf file as follows:
log_bin = /var/log/mysql/somelog-bin
log_bin_index = /var/log/mysql/somelog-bin.index
The server doesn't automatically discover log files, so you'll
 also need to update the server's log index file. The following
 command will accomplish this on Unix-like systems: [85]
/bin/ls -1 /var/log/mysql/somelog-bin.[0-9]* > /var/log/mysql/somelog-bin.index
Make sure the user account under which MySQL runs can read and
 write the log index file. Now you can start your log server and
 verify that it sees the log files with SHOW
 MASTER LOGS.
Why is a log server better than using
 mysqlbinlog for recovery? For several
 reasons:
	It's faster because it eliminates the need to extract
 statements from the log and pipe them into
 mysql.

	You can see the progress easily.

	You can work with errors easily. For example, you can skip
 statements that fail to replicate.

	You can filter replication events easily.

	Sometimes mysqlbinlog might not be
 able to read the binary log, because of changes to the logging
 format.

[82] Some, but not all—we can play devil's advocate and show you
 flaws in just about any setup you can imagine.

[83] You can also disable binary logging temporarily with
 SET SQL_LOG_BIN=0, instead of
 stopping replication.Some commands, such as OPTIMIZE TABLE, also support a LOCAL or NO_WRITE_TO_BINLOG option that prevents
 logging.

[84] A slightly more sane special case, we might add.

[85] We use /bin/ls explicitly to avoid
 invoking common aliases that add terminal escape codes for
 coloring.

Replication and Capacity Planning

Writes are usually the replication bottleneck, and it's
 hard to scale writes with replication. You need to make sure you do the
 math right when you plan how much capacity slaves will add to your system overall. It's easy
 to make mistakes where replication is concerned.
For example, imagine your workload is 20% writes and 80% reads. To
 make the math easy, let's grossly oversimplify and assume the following
 are true:
	Read and write queries involve an identical amount of
 work.

	All servers are exactly equal and have a capacity of exactly
 1,000 queries per second.

	Slaves and masters have the same performance
 characteristics.

	You can move all read queries to the slaves.

If you currently have one server handling 1,000 queries per
 second, how many slaves will you need to add so that you can handle
 twice your current load and move all read queries to the slaves?
It might seem that you could add 2 slaves and split the 1,600
 reads between them. However, don't forget that your write workload has
 increased to 400 queries per second, and this cannot be divided between
 the master and slaves. Each slave must perform 400 writes per second.
 That means each slave is 40% busy with writes and can serve only 600
 reads per second. Thus, you'll need not two but
 three slaves to handle twice the traffic.
What if your traffic doubles again? There will be 800 writes per
 second, so the master will still be able to keep up. But the slaves will
 each be 80% busy with writes too, so you'll need 16 slaves to handle the
 3,200 reads per second. And if the traffic increases just a little more,
 it will be too much for the master.
This is far from linear scalability: you need 17 times as many
 servers to handle 4 times as many queries. This illustrates that you
 quickly reach a point of diminishing returns when adding slaves to a
 single master. And this is even with our unrealistic assumptions, which
 ignore, for example, the fact that single-threaded statement-based
 replication usually causes slaves to have lower capacity than the
 master. A real replication setup is likely to perform even worse than
 our theoretical one.
Why Replication Doesn't Help Scale Writes

The fundamental problem with the poor server-to-capacity ratio
 we just discussed is that you cannot distribute the writes equally
 among the machines, as you can with the reads. Another way to say this
 is that replication scales reads, but it doesn't scale writes.
You might wonder whether there's a way to add write capacity with replication. The answer is no—not even a
 little. Sharding (partitioning) your data is the only way you can
 scale writes, which we cover in the next chapter.
Some readers may have thought about using a master-master
 topology (see "Master-Master in Active-Active Mode" on Master-Master in Active-Active Mode) and writing to both
 masters. This configuration can handle slightly more writes as
 compared to a master-slave topology, because you can share the
 serialization penalty equally between the two servers. If you do 50%
 of the writes on each server, only the 50% that execute
 via replication from the other server must be serialized. In theory,
 that's better than doing 100% of the writes in parallel on one machine
 (the master) and 100% of the writes serially on the other machine (the
 slave).
This may seem attractive. However, such a configuration still
 can't handle as many writes as a single server. A server whose write
 workload is 50% serialized is slower than a single server that can do
 all its writes in parallel.
That's why this tactic does not scale writes. It's only a way to
 share the serialized-write disadvantage over two servers, so the
 "weakest link in the chain" isn't quite so weak. It provides only a
 relatively small improvement over an active-passive setup, adding a
 lot of risk for a small gain—and it generally won't benefit you
 anyway, as we explain in the next section.

Plan to Underutilize

Intentionally underutilizing your servers can be a smart and
 cost-effective way to build a large application, especially when you
 use replication. Servers that have spare capacity can tolerate surges
 better, have more power to handle slow queries and maintenance jobs
 (such as OPTIMIZE TABLE
 operations), and will be better able to keep up in replication.
Trying to reduce the replication penalty a little by writing to
 both nodes in a master-master topology is typically a false economy.
 You should usually load the master-master pair less than 50% with
 reads, because if you add more load, there won't be enough capacity if
 one of the servers fails. If both servers can handle the load by
 themselves, you probably won't need to worry much about the
 single-threaded replication penalty.
Building in excess capacity is also one of the best ways to
 achieve high availability, although there are other ways, such as
 running your application in "degraded" mode when there's a failure.
 The next chapter covers this in more detail.

Replication Administration and Maintenance

Setting up replication probably isn't something you'll do
 constantly, unless you have many servers. But once it's in place,
 monitoring and administering your replication topology
 will be a regular job, no matter how many servers you have.
You should try to automate this work as much as possible. You
 might not need to write your own tools for this purpose, though: in
 Chapter 14, we discuss several
 productivity tools for MySQL, many of which have built-in replication
 monitoring capabilities or plug-ins. Some of the more useful offerings
 include Nagios, MySQL Enterprise Monitor, and MonYOG.
Monitoring Replication

Replication increases the complexity of MySQL monitoring.
 Although replication actually happens on both the master and the
 slave, most of the work is done on the slave, and that is where the
 most common problems occur. Are all the slaves replicating? Has any
 slave had errors? How far behind is the slowest slave? MySQL provides
 most of the information you need to answer these questions, but
 automating the monitoring process and making replication robust is
 left up to you.
On the master, you can use the SHOW
 MASTER STATUS command to see the master's current binary log
 position and configuration (see "Configuring the Master and Slave" on
 Configuring the Master and Slave). You can also ask
 the master which binary logs exist on disk:
mysql> SHOW MASTER LOGS;
+------------------+-----------+
| Log_name | File_size |
+------------------+-----------+
mysql-bin.000220	425605
mysql-bin.000221	1134128
mysql-bin.000222	13653
mysql-bin.000223	13634
+------------------+-----------+
This information is useful in determining what parameters to
 give the PURGE MASTER LOGS command.
 You can also view replication events in the binary log with the
 SHOW BINLOG EVENTS command. For
 example, after running the previous command, we created a table on an
 otherwise unused server. Because we knew this was the only statement
 that changed any data, we knew the statement's offset in the binary
 log was 13634, so we were able to view it as follows:
mysql> SHOW BINLOG EVENTS IN 'mysql-bin.000223' FROM 13634\G
*************************** 1. row ***************************
 Log_name: mysql-bin.000223
 Pos: 13634
 Event_type: Query
 Server_id: 1
End_log_pos: 13723
 Info: use `test`; CREATE TABLE test.t(a int)

Measuring Slave Lag

One of the most common things you'll need to monitor is how far
 behind the master a slave is running. Although the Seconds_behind_master column in SHOW SLAVE STATUS theoretically shows the
 slave's lag, in fact it's not always accurate, for a variety of
 reasons:
	The slave calculates Seconds_behind_master by comparing the
 server's current timestamp to the timestamp recorded in the binary
 log event, so the slave can't even report its lag unless it is
 processing a query.

	The slave will usually report NULL if the slave processes aren't
 running.

	Some errors (for example, mismatched max_allowed_packet settings between the
 master and slave, or an unstable network) can break replication
 and/or stop the slave threads, but Seconds_behind_master will report
 0 rather than indicate an
 error.

	The slave sometimes can't calculate the lag even if the
 slave processes are running. If this happens,
 the slave might report either 0
 or NULL.

	A very long transaction can cause the reported lag to
 fluctuate. For example, if you have a transaction that updates
 data, stays open for an hour, and then commits, the update will go
 into the binary log an hour after it actually happened. When the
 slave processes the statement, it will temporarily report that it
 is an hour behind the master, and then it will jump back to zero
 seconds behind.

	If a distribution master is falling behind and has slaves of
 its own, the slaves will report that they are zero seconds behind
 if they are caught up with the distribution master, even if there
 is lag relative to the ultimate master.

The solution to these problems is to ignore Seconds_behind_master and measure slave lag with something you can observe and measure
 directly. One good solution is a heartbeat
 record, which is a timestamp that you update once per
 second on the master. To calculate the lag, you can simply subtract
 the heartbeat from the current timestamp on the slave. This method is
 immune to all the problems we just mentioned, and it has the added
 benefit of creating a handy timestamp that shows to what point in time
 the slave's data is current. The mk-heartbeat
 script, included in Maatkit, is one implementation of a replication
 heartbeat.
None of the lag metrics we just mentioned gives a sense of how
 long it will take for a slave to actually catch up to the master. This
 depends upon many factors, such as how powerful the slave is and how
 many write queries the master continues to process.

Determining Whether Slaves Are Consistent with the
 Master

In a perfect world, a slave would always be an exact copy of its
 master. But in the real world, errors in replication can cause the
 slave's data to "drift" out of sync with the master. Even if there are
 apparently no errors, slaves still get out of sync because of MySQL
 features that don't replicate correctly, bugs in MySQL, network
 corruption, crashes, ungraceful shutdowns, or other failures.
 [86]
Our experience is that this is the rule, not the exception,
 which means checking your slaves for consistency with their masters should probably be a
 routine task. This is especially important if you use replication for
 backups, because you don't want to take backups from a corrupted
 slave.
The first edition of this book had a sample script to compare
 the number of rows in the tables on the master and the slave. This can
 certainly reveal some differences, but row count isn't a very strong
 assurance of identical data. What you really need is an efficient
 method of comparing the tables' actual contents.
MySQL has no built-in method of determining whether one server
 has the same data as another server. It does provide some building
 blocks for checksumming tables and data, such as CHECKSUM TABLE. However, it's nontrivial to
 compare a slave to its master while replication is working.
Maatkit has a tool called mk-table-checksum
 that solves this and several other problems. The tool has several
 functions, including fast parallel comparisons of many servers at
 once, but its main feature is that it can verify that a slave's data
 is in sync with its master. It works by running INSERT … SELECT queries on the
 master.
These queries checksum the data and insert the results into a
 table. The statements flow through replication and execute again on
 the slave. You can then compare the results on the master to the
 results on the slave and see whether the data differs. Because this
 process works through replication, it gives consistent results without
 needing to lock tables on both servers simultaneously.
A typical way to use the tool is to run it on the master, with
 parameters similar to the following:
$ mk-table-checksum --replicate=test.checksum --chunksize 100000 --sleep-coef=2
<master_host>
This command checksums all tables, attempting to process them in
 chunks of approximately 100,000 rows, and inserts the results into the
 test.checksum table. It pauses
 between every chunk, sleeping twice as long as the last chunk took to
 checksum. This helps ensure that the queries don't block normal
 database operation.
Once the queries have replicated to the slaves, a simple query
 can check the slave for differences from the master.
 mk-table-checksum can discover the server's
 slaves, run the query on each slave, and output the results
 automatically. The following command will descend to a depth of 10 in
 the slave hierarchy, beginning at the same master server, and print
 out tables that differ from the master:
$ mk-table-checksum --replicate=test.checksum --replcheck 10 <master_host>
MySQL AB plans to implement a similar feature in the server
 itself at some point. This will probably be better than an external
 script, but at the time of this writing,
 mk-table-checksum is the only tool available for
 reliably and easily comparing a slave's data to its master's.

Resyncing a Slave from the Master

You'll probably have to deal with an out-of-sync slave more than
 once in your career. Perhaps you used the checksum technique and found
 differences; perhaps you know that the slave skipped a query or that
 someone changed the data on the slave.
The traditional advice for fixing an out-of-sync slave is to
 stop it and reclone it from the master. If an inconsistent slave is a
 critical problem, you should probably stop it and remove it from
 production as soon as you find it. You can then reclone the slave or
 restore it from a backup.
The drawback to this approach is the inconvenience factor,
 especially if you have a lot of data. If you can find out which data
 is different, you can probably do it more efficiently than by
 recloning the entire server. And if the inconsistency you discovered
 isn't critical, you may be able to leave it online and resync only the
 affected data.
The simplest fix is to dump and reload only the affected data
 with mysqldump. This can work very well if your
 data isn't changing while you do it. You can simply lock the table on
 the master, dump the table, wait for the slave to catch up to the
 master, and then import the table on the slave. (You need to wait for
 the slave to catch up, so you don't introduce more inconsistencies in
 other tables, such as those that might be updated in joins against the
 out-of-sync table.)
Although this works acceptably for many scenarios, it's often
 impossible to do on a busy server. It also has the disadvantage of
 changing the slave's data outside of replication. Changing a slave's
 data through replication (by making changes on the master) is usually
 the safest technique, because it avoids nasty race conditions and
 other surprises. If the table is very large or network bandwidth is
 limited, dumping and reloading is also prohibitively expensive. What
 if only every thousandth row in a million-row table is different?
 Dumping and reloading the whole table is wasteful in this case.
mk-table-sync is another tool from Maatkit
 that solves some of these problems. It can find and resolve
 differences between tables efficiently. It can also operate through
 replication, resynchronizing the slave by executing queries on the
 master, so there are no race conditions. It doesn't work in all
 scenarios, though: it requires that replication is running in order to
 sync a master and slave correctly, so it won't work when there's a
 replication error. mk-table-sync is designed to
 be efficient, but it still may be impractical for extremely large data
 sizes. Comparing a terabyte of data on the master and the slave
 inevitably causes extra work for both servers. Still, for those cases
 where it works, it can save you a great deal of time and
 effort.

Changing Masters

Sooner or later, you'll need to point a slave at a new master.
 Maybe you're rotating servers for an upgrade, maybe there was a
 failure and you need to promote a slave to be the master, or maybe
 you're just reallocating capacity. Regardless of the reason, you have
 to inform the slave about its new master.
When the process is planned, it's easy (or at least easier than
 it is in a crisis). You simply need to issue the CHANGE MASTER TO command on the slave, using
 the appropriate values. Most of the values are optional; you can
 specify just the ones you're changing. The slave will discard its
 current configuration and relay logs and begin replicating from the
 new master. It will also update the master.info
 file with the new parameters, so the change will persist across a
 slave restart.
The hardest part of this process is figuring out the desired
 position on the new master, so the slave begins at the same logical
 position at which it stopped on the old master.
Promoting a slave to a master is a little harder. There
 are two basic scenarios for replacing a master with one of its slaves.
 The first is when it's a planned promotion; the second is when it's
 unplanned.
Planned promotions

Promoting a slave to a master is conceptually simple. Briefly,
 here are the steps involved:
	Stop writes to the old master.

	Optionally let its slaves catch up in replication (this
 makes the subsequent steps simpler).

	Configure a slave to be the new master.

	Point slaves and write traffic to the new master, then
 enable writes on it.

The devil is in the details, however. Several scenarios are
 possible, depending on your replication topology. For example, the
 steps are slightly different in a master-master topology from a
 master-slave setup.
In more depth, here are the steps you'll probably need
 to take for most setups:
	Stop all writes on the current master. If possible, you
 might even want to force all client programs (not replication
 connections) to quit. It helps if you've built your client
 programs with a "do not run" flag you can set. If you use
 virtual IP addresses, you can simply shut off the virtual IP,
 and then kill all client connections to close their open
 transactions.

	Optionally stop all write activity on the master with
 FLUSH TABLES WITH READ LOCK.
 You can also set the master to be read-only with the read_only option. From this point on,
 you should forbid any writes to the soon-to-be-replaced master,
 because once it's no longer a master, writing to it means losing
 data!

	Choose one of the slaves to be the new master, and ensure
 it is completely caught up in replication (i.e., let it finish
 executing all the relay logs it fetched from the old
 master).

	Optionally verify that the new master contains the same
 data as the old master.

	Execute STOP SLAVE on
 the new master.

	Execute CHANGE MASTER TO
 MASTER_HOST='' followed by RESET SLAVE on the new master, to make
 it disconnect from the old master and discard the connection
 information in its master.info file. (This
 will not work correctly if connection information is specified
 in my.cnf, which is one reason we recommend
 you don't put it there.)

	Note the new master's binary log coordinates with SHOW MASTER STATUS.

	Make sure all other slaves are caught up.

	Shut down the old master.

	In MySQL 5.1 and newer, activate events on the new master
 if necessary.

	Let clients connect to the new master.

	Issue a CHANGE MASTER
 TO command on each slave, pointing it to the new
 master. Use the binary log coordinates you gathered from
 SHOW MASTER STATUS.

Tip
When you promote a slave to a master, be sure to remove from
 it any slave-specific databases, tables, and privileges. You also
 need to change any slave-specific configuration parameters, such
 as a relaxed innodb_flush_log_at_trx_commit option.
 Likewise, if you demote a master to a slave, be sure to
 reconfigure it as needed.
If you configure your masters and slaves identically, you
 won't need to change anything.

Unplanned promotions

If the master crashes and you have to promote a slave to
 replace it, the process might not be as easy. If there's only one
 slave, you just use the slave. But if there's more than one, you'll
 have to do a few extra steps to promote a slave to be the new
 master.
There's also the added problem of potentially lost replication
 events. It's possible that some updates that have happened on the
 master will not yet have been replicated to any of its slaves. It's even possible that a
 statement was executed and then rolled back on the master, but not
 rolled back on the slave—so the slave could actually be
 ahead of the master's logical replication
 position. [87] If you can recover the master's data at some point,
 you might be able to retrieve the lost statements and apply them
 manually.
In all of the following steps, be sure to use the Master_Log_File and Read_Master_Log_Pos values in your
 calculations. Here is the procedure to promote a slave in a
 master-and-slaves topology:
	Determine which slave has the most up-to-date data. Check
 the output of SHOW SLAVE
 STATUS on each slave and choose the one whose Master_Log_File/Read_Master_Log_Pos
 coordinates are newest.

	Let all slaves finish executing the relay logs they
 fetched from the old master before it crashed. If you change a
 slave's master before it's done executing the relay log, it will
 throw away the remaining log events and you won't know where it
 stopped.

	Perform steps 5–7 from the list in the preceding
 section.

	Compare every slave's Master_Log_File/Read_Master_Log_Pos
 coordinates to those of the new master.

	Perform steps 10–12 from the list in the preceding
 section.

We're assuming you have log_bin and log_slave_updates enabled on all your
 slaves, as we advised you to do in the beginning of this chapter.
 Enabling this logging lets you recover all slaves to a consistent
 point in time, which you can't reliably do otherwise.

Locating the desired log positions

If any slave isn't at the same position as the new master,
 you'll have to find the position in the new master's binary logs
 corresponding to the last event that slave replicated, and use it
 for CHANGE MASTER TO. You can use
 the mysqlbinlog tool to examine the last query
 the slave executed and find that same query in the new master's
 binary log. A little math can often help, too.
To illustrate this, let's assume that log events have
 increasing ID numbers and that the most up-to-date slave—the new
 master—had just retrieved event 100 when the old master crashed. Now
 let's assume that there are two more slaves, slave2 and slave3; slave2 had retrieved event 99, and
 slave3 had retrieved event 98. If
 you point both slaves at the new master's current binary log
 position, they will begin replicating event 101, so they'll be out
 of sync. However, as long as the new master's binary log was enabled
 with log_slave_updates, you can
 find events 99 and 100 in the new master's binary log, so you can
 bring the slaves back to a consistent state.
Because of server restarts, different configurations, log
 rotations, or FLUSH LOGS
 commands, the same events can exist at different byte offsets in
 different servers. Finding the events can be slow and tedious, but
 it's usually not hard. Just examine the last event executed on each
 slave by running mysqlbinlog on the slave's
 binary log or relay log. Then find the same query in the new
 master's binary log, also with mysqlbinlog; it
 will print the byte offset of the query, and you can use this offset
 in the CHANGE MASTER TO
 query.
You can make the process faster by subtracting the byte
 offsets at which the new master and the slave stopped, which tells
 you the difference in their byte positions. If you then subtract
 this value from the new master's current binary log position,
 chances are the desired query will be at that position. You just
 need to verify that it is, and you've found the position at which
 you need to start the slave.
Let's look at a concrete example. Suppose server1 is the master of server2 and server3, and it crashes. According to
 Master_Log_File/Read_Master_Log_Pos in
 SHOW SLAVE STATUS, server2 has
 managed to replicate all the events that were in server1's binary log, but server3 isn't as up-to-date. Figure 8-15 illustrates
 this scenario (the log events and byte offsets are for demonstration
 purposes only).
[image: When server1 crashed, server2 was caught up, but server3 was behind in replication]

Figure 8-15. When server1 crashed, server2 was caught up, but server3
 was behind in replication

As Figure 8-15
 illustrates, we can be sure that server2 has replicated all the events in
 the master's binary log because its Master_Log_File and Read_Master_Log_Pos match the last
 positions on server1. Therefore,
 we can promote server2 to be the
 new master, and make server3 a
 slave of it.
But what parameters should we use in the CHANGE MASTER TO command on server3? This is where we need to do a
 little math and investigation. server3 stopped at offset 1493, which is
 89 bytes behind offset 1582, the last command server2 executed. server2 is currently writing to position
 8167 in its binary log. 8167 – 89 = 8078, so in theory we need to
 point server3 at that offset in
 server2's logs. It's a good idea
 to investigate the log events around this position and verify that
 server2 really has the right
 events at that offset in its logs, though. It might have something
 else there because of a data update that happened only on server2, for example.
Assuming that the events are the same upon inspection, the
 following command will switch server3 to be a slave of server2:
server2> CHANGE MASTER TO MASTER_HOST="server2", MASTER_LOG_FILE="mysql-bin.000009",
MASTER_LOG_POS=8078;
What if server1 had
 actually finished executing and logging one more event, beyond
 offset 1582, when it crashed? Because server2 had read and executed only up to
 offset 1582, you might have lost one event forever. However, if the
 old master's disk isn't damaged, you can still recover the missing
 event from its binary log with mysqlbinlog or
 with a log server.
If you need to recover missing events from the old master, we
 recommend that you do so after you promote the
 new master, but before you let clients connect
 to it. This way, you won't have to execute the missing events on
 every slave; replication will take care of that for you. If the
 failed master is totally unavailable, however, you might have to
 wait and do this work later.
A variation on this procedure is to use a reliable way to
 store the master's binary log files, such as a SAN or a distributed
 replicated block device (DRBD). Even if the master has a complete
 failure, you'll still have its binary log files. You can set up a
 log server, point the slaves to it, and then let them all catch up
 to the point at which the master failed. This makes it trivial to
 promote one of the slaves to be a new master—it's essentially the
 same process we showed for a planned promotion. We discuss these
 storage options further in the next chapter.
Warning
When you promote a slave to master, don't change its server
 ID to match the old master's. If you do, you won't be able to use
 a log server to replay events from the old master. This is one of
 many reasons it's a good idea to treat server IDs as fixed.

Switching Roles in a Master-Master Configuration

One of the advantages of master-master replication is that you can switch the
 active and passive roles easily, because of the symmetrical
 configuration. In this section, we show you how to accomplish the
 switch.
When switching the roles in a master-master configuration, the
 most important thing is to ensure that only one of the co-masters is
 written to at any time. If writes from one master are interleaved with
 writes from the other, the writes can conflict. In other words, the
 passive server must not receive any binary log events from the active
 server after the roles are switched. You can guarantee this doesn't
 happen by ensuring that the passive server's slave thread is caught up
 to the active server before you make it writable.
The following steps switch the roles without danger of
 conflicting updates:
	Stop all writes on the active server.

	Execute SET @@global.read_only :=
 1 on the active server, and set the read_only option in its configuration
 file for safety in case of a restart. Remember, this won't stop
 users with the SUPER privilege
 from making changes. If you want to prevent changes from all
 users, use FLUSH TABLES WITH READ
 LOCK. If you don't do this, you must kill all client
 connections to make sure there are no long-running statements or
 uncommitted transactions.

	Execute SHOW MASTER
 STATUS on the active server and note the binary log
 coordinates.

	Execute SELECT
 MASTER_POS_WAIT() on the passive server with the active
 server's binary log coordinates. This command will block until the
 slave processes catch up to the active server.

	Execute SET @@global.read_only :=
 0 on the passive server, thus making it the active
 server.

	Reconfigure your applications to write to the newly active
 server.

Depending on your application's configuration, you may need to
 do other tasks as well, including changing the IP addresses on the two
 servers. We discuss this in the next chapter.

[86] If you're using a nontransactional storage engine, shutting
 down the server without first running STOP SLAVE is ungraceful.

[87] This is actually possible, even though MySQL doesn't log
 any events until the transaction commits. See "Mixing
 Transactional and Nontransactional Tables" on Mixing Transactional and Nontransactional Tables for the
 details.

Replication Problems and Solutions

Breaking MySQL's replication isn't hard. The simple implementation
 that makes it easy to set up also means there are many ways to stop,
 confuse, and otherwise disrupt it. This section shows common problems,
 how they manifest themselves, and how you can solve or even prevent
 them.
Errors Caused by Data Corruption or Loss

For a variety of reasons, MySQL replication is not very
 resilient to crashes, power outages, and corruption caused by disk,
 memory, or network errors. You'll almost certainly have to restart
 replication at some point due to one of these problems.
Most of the problems you'll have with replication after an
 unexpected shutdown stem from one of the servers not flushing
 something to disk. Here are the issues you may encounter in the event
 of an unexpected shutdown:
	Unexpected master shutdown
	If the master isn't configured with sync_binlog, it might not have flushed
 its last several binary log events to disk before crashing. The
 slave's I/O thread may, therefore, have been in the middle of
 reading from an event that never made it to disk. When the
 master restarts, the slave will reconnect and try to read that
 event again, but the master will respond by telling it that
 there's no such binlog offset. The binlog dump process is
 typically almost instantaneous, so this is not uncommon.
The solution to this problem is to instruct the slave to
 begin reading from the beginning of the next binary log.
 However, some log events will have been lost permanently, which
 could have been prevented by configuring the master with
 sync_binlog.
Even if you've configured sync_binlog, MyISAM data can still get corrupted when there's a crash,
 and so can InnoDB data if innodb_flush_logs_at_trx_commit is not
 set to 1.

	Unexpected slave shutdown
	When the slave restarts after an unplanned shutdown, it
 reads its master.info file to determine
 where it stopped replicating. Unfortunately, this file is not
 synchronized to disk, so the information it contains is likely
 to be wrong. The slave will probably try to reexecute a few
 binary log events. This could cause some unique index
 violations. Unless you can determine where the slave really
 stopped, which is unlikely, you'll have no choice but to skip
 the errors that result. The
 mk-slave-restart tool, part of Maatkit, can
 help you with this.
If you use all InnoDB tables, you can look at the MySQL
 error log after restarting the slave. The InnoDB recovery
 process prints the binary log coordinates up to the point where
 it recovered, and you can use them to determine where to point
 the slave on the master.

In addition to data losses resulting from MySQL being shut down
 uncleanly, it's not uncommon for binary logs or relay logs to be
 corrupted on disk. The following are some of the more common
 scenarios:
	Binary logs corrupted on the
 master
	If the binary log is corrupted on the master, you'll have
 no choice but to try to skip the corrupted portion. You can run
 FLUSH LOGS on the master, so
 it starts a new log file and point the slave at the beginning of
 the new log, or you can try to find the end of the bad region.
 Sometimes you can use SET GLOBAL
 SQL_SLAVE_SKIP_COUNTER = 1 to skip a single corrupt
 event. If there is more than one corrupt event, just repeat the
 process until they've all been skipped.

	Relay logs corrupted on the
 slave
	If the master's binary logs are intact, you can use
 CHANGE MASTER TO to discard and refetch the
 corrupt relay logs. Just point the slave at the same position
 from which it's currently replicating (Relay_Master_Log_File/Exec_Master_Log_Pos).
 This will cause it to throw away any relay logs on disk.

	Binary log out of sync with the InnoDB transaction
 log
	If the master crashes, InnoDB might record a transaction
 as committed even if it didn't get written to the binary log on
 disk. There's no way to recover the missing transaction, unless
 it's in a slave's relay log. You can prevent this with the
 sync_binlog parameter in
 MySQL 5.0, or the sync_binlog
 and safe_binlog parameters in
 MySQL 4.1.

When a binary log is corrupt, how much data you can recover depends on the type of corruption.
 There are several common types:
	Bytes changed, but the event is still valid
 SQL
	Unfortunately, MySQL cannot even detect this type of
 corruption. This is why it can be a good idea to routinely check
 that your slaves have the right data.

	Bytes changed and the event is invalid
 SQL
	You may be able to extract the event with
 mysqlbinlog and see garbled data, such as
 the following:
UPDATE tbl SET col?????????????????
Try to find the beginning of the next event, which you can
 find by adding the offset and length, and print it. You might be
 able to skip just this event.

	Bytes omitted and/or the event's length is
 wrong
	In this case, mysqlbinlog will
 sometimes exit with an error or crash because it can't read the
 event and can't find the beginning of the next event.

	Several events corrupted or were overwritten, or
 offsets have shifted and the next event starts at the wrong
 offset
	Again, mysqlbinlog will not be much
 use.

When the corruption is bad enough that
 mysqlbinlog can't read the log events, you'll
 have to resort to some hex editing or other tedious techniques to find
 the boundaries between log events. This usually isn't hard to do,
 because recognizable markers separate the events.
Here's an example. First, let's look at log event offsets for a
 sample log, as reported by mysqlbinlog:
$ mysqlbinlog mysql-bin.000113 | egrep '^# at '
at 4
at 98
at 185
at 277
at 369
at 447
A simple way to find offsets in the log is to compare the
 offsets to the output of the following strings
 command:
$ strings -n 2 -t d mysql-bin.000113
 1 binpC'G
 25 5.0.38-Ubuntu_0ubuntu1.1-log
 99 C'G
 146 std
 156 test
 161 create table test(a int)
 186 C'G
 233 std
 243 test
 248 insert into test(a) values(1)
 278 C'G
 325 std
 335 test
 340 insert into test(a) values(2)
 370 C'G
 417 std
 427 test
 432 drop table test
 448 D'G
 474 mysql-bin.000114
There's a pretty recognizable pattern that should allow you to
 locate the beginnings of events. Notice that the strings that end with
 'G are located one byte after the
 beginning of the log event. They are part of the fixed-length log
 event header.
The exact value will vary from server to server, so your results
 will vary depending on the server whose log you're examining. With a
 little sleuthing, you should be able to find the pattern in your
 binary log and determine the next intact log event's offset. You can
 then try to skip past the bad event(s) with the
 --start-position argument to
 mysqlbinlog, or use the MASTER_LOG_POS parameter to CHANGE MASTER TO.

Using Nontransactional Tables

If all goes well, statement-based replication usually works fine
 with nontransactional tables. However, if there's an error in
 an update to a nontransactional table, such as the statement being
 killed before it is complete, the master and slave will end up with
 different data.
For example, suppose you're updating a MyISAM table with 100
 rows. If the statement updates 50 of the rows and then someone kills
 it, what happens? Half of the rows will have been changed, but not the
 other half. Replication is bound to get out of sync as a result,
 because the statement will replay on the slave and change all 100
 rows. (MySQL will then notice that the statement caused an error on
 the master but not the slave, and replication will stop with an
 error.)
If you're using MyISAM tables, be sure to run STOP SLAVE before stopping the MySQL server,
 or the shutdown will kill any running queries (including any
 incomplete update statements). Transactional storage engines don't
 have this problem. If you're using transactional tables, the failed
 update will be rolled back on the master and not logged to the binary
 log.

Mixing Transactional and Nontransactional Tables

When you use a transactional storage engine, MySQL doesn't log
 the statements you execute to the binary log until the transactions
 commit. Thus, if a transaction is rolled back, MySQL won't log the
 statements, so they won't get replayed on the slave.
However, if you mix transactional and nontransactional tables
 and there's a rollback, MySQL will be able to roll back the changes to
 the transactional tables, but the nontransactional ones will be
 changed permanently. As long as there are no errors, such as an update
 being killed partway through execution, this is not a problem: instead
 of just not logging the statements, MySQL logs the statements and then
 logs a ROLLBACK statement to the
 binary log. The result is that the same statements execute on the
 slave, and all is well. It's a little less efficient, because the
 slave must do some work and then throw it away, but the slave will
 theoretically still be in sync with the master.
So far, so good. The problem is when the slave has a deadlock
 that didn't happen on the master. The tables that use a transactional
 storage engine will roll back on the slave, but the slave won't be
 able to roll back the nontransactional tables. As a result, the
 slave's data will be different from the master's.
The only way to prevent this problem is to avoid mixing transactional and nontransactional tables. If you
 do encounter the problem, the only way to fix it is to skip the error
 on the slave and resync the involved tables.
In principle, row-based replication should not suffer from this
 problem. Row-based replication logs changes to rows, not SQL
 statements. If a statement changes some rows in a MyISAM table and an
 InnoDB table and then deadlocks on the master and rolls back the
 InnoDB table, the changes to the MyISAM table should still be logged
 to the binary log and replayed on the slave. We tested simple cases
 and found this to work correctly; however, at the time of this
 writing, we have not had enough experience with row-based replication
 to say for sure whether it completely avoids problems that mixing
 transactional and nontransactional tables causes.

Nondeterministic Statements

Any statement that changes data in a nondeterministic way can
 cause a slave's data to become different from its master's. For
 example, an UPDATE with a LIMIT relies on the order in which the
 statement finds rows in the table. Unless the order is guaranteed to
 be the same on the master and the slave—for example, if the rows are
 ordered by primary key—the statement may change different rows on the
 two servers. Such problems can be subtle and difficult to notice, so
 some people make a policy of never using LIMIT with any statement that changes
 data.
Watch out for statements that involve INFORMATION_SCHEMA tables, too. These can
 easily differ between the master and the slave, so the results may
 vary as well. Finally, be aware that most server variables, such as
 @@server_id and @@hostname, will not replicate correctly
 before MySQL 5.1.
Row-based replication does not have these limitations.

Different Storage Engines on the Master and Slave

It's often handy to have different storage engines on a slave,
 as we've mentioned throughout this chapter. However, in some
 circumstances, statement-based replication may produce different
 results on a slave with different storage engines. For example,
 nondeterministic statements (such as the ones mentioned
 in the previous section) are more likely to cause problems if the
 storage engines differ on the slave.
If you find that your slave's data is falling out of sync with
 the master in specific tables, you should examine the storage engines
 used on both servers, as well as the queries that update those
 tables.

Data Changes on the Slave

Statement-based replication relies upon the slave having the
 same data as the master, so you should not make or allow any changes
 on the slave (using the read_only
 configuration variable accomplishes this nicely). Consider the
 following statement:
mysql> INSERT INTO table1 SELECT * FROM table2;
If table2 contains different
 data on the slave, table1 will end
 up with different data, too. In other words, data differences tend to
 propagate from table to table. This happens with all types of queries,
 not just INSERT … SELECT queries.
 There are two possible outcomes: you'll get an error such as a
 duplicate index violation on the slave, or you won't get any error at
 all. Getting an error is a blessing, because at least it alerts you
 that your data isn't the same on the slave. Invisibly different data
 can silently wreak all kinds of havoc.
The only solution to this problem is to resync the data from the
 master.

Nonunique Server IDs

This is one of the more elusive problems you might encounter
 with replication. If you accidentally configure two slaves with the
 same server ID, they might seem to work just fine if you're not
 watching closely. But if you watch their error logs, or watch the
 master with innotop, you'll notice something very
 odd.
On the master, you'll see only one of the two slaves connected
 at any time. (Usually, all slaves are connected and replicating all
 the time.) On the slave, you'll see frequent disconnect and reconnect
 error messages in the error log, but no mention of a misconfigured
 server ID.
Depending on the MySQL version, the slaves might replicate
 correctly but slowly, or they might not actually replicate
 correctly—any given slave might miss binary log events, or even repeat
 them, causing duplicate key errors (or silent data corruption). You
 can also crash or corrupt data on the master because of the increased
 load from the slaves fighting amongst themselves. And if slaves are
 fighting each other badly enough, the error logs can grow enormous in
 a very short time.
The only solution to this problem is to be careful when setting
 up your slaves. You may find it helpful to create a master list of
 slave-to-server-ID mappings so that you don't lose track of which ID
 belongs to each slave. [88] If your slaves live entirely within one network subnet,
 you can choose unique IDs by using the last octet of each machine's IP
 address.

Undefined Server IDs

If you don't define the server ID in the
 my.cnf file, MySQL will appear to set up
 replication with CHANGE MASTER TO,
 but will not let you start the slave:
mysql> START SLAVE;
ERROR 1200 (HY000): The server is not configured as slave; fix in config file or with
CHANGE MASTER TO
This error is especially confusing if you've just used CHANGE MASTER TO and verified your settings
 with SHOW SLAVE STATUS. You might
 get a value from SELECT
 @@server_id, but it's just a default. You have to set the
 value explicitly.

Dependencies on Nonreplicated Data

If you have databases or tables on the master that don't exist
 on the slave, it's quite easy to accidentally break replication.
 Suppose there's a scratch database
 on the master that doesn't exist on the slave. If any data updates on
 the master refer to a table in this database, replication will break
 when the slave tries to replay the updates.
There's no way around this problem. The only way to prevent it
 is to avoid creating tables on the master that don't exist on the
 slave.
How does such a table get created? There are many possible ways,
 and some are harder to prevent than others. For example, suppose you
 originally created a scratch
 database on the slave that didn't exist on the master, and then you
 switched the master and slave for some reason. When you did this, you
 might have forgotten to remove the scratch database and its privileges. Now
 someone might connect to the new master and run a query in that
 database, or a periodic job might discover the tables and run OPTIMIZE TABLE on each of them.
This is one of the things to keep in mind when promoting a slave
 to master, or when deciding how to configure slaves. Anything that
 makes slaves different from masters, or vice versa, is a potential
 future problem.
Row-based replication should solve some of these problems, but
 it's too soon to be sure.

Missing Temporary Tables

Temporary tables are handy for some uses, but
 unfortunately they're incompatible with statement-based replication.
 If a slave crashes, or if you shut it down, any temporary tables the
 slave thread was using disappear. When you restart the slave, any
 further statements that refer to the missing temporary tables will
 fail.
There's no safe way to use temporary tables on the master with
 statement-based replication. Many people love temporary tables dearly,
 so it can be hard to convince them of this, but it's true. No matter
 how briefly they exist, temporary tables potentially make it
 impossible to stop and start slaves and to recover from crashes. This
 is true even if you use them only within a single transaction. (It's
 slightly less problematic to use temporary tables on a slave, where
 they can be convenient, but if the slave is itself a master, the
 problem still exists.)
If replication stops because the slave can't find a temporary
 table after a restart, there are really only a couple of things to do.
 You can skip the errors that occur, or you can manually create a table
 that has the same name and structure as the now-vanished temporary
 table. Either way, your data will likely become different on the slave
 if any write queries refer to the temporary table.
It's not as hard as it seems to eliminate temporary tables. The
 two most useful properties of a temporary table are as follows:
	They're visible only to the connection that created them, so
 they don't conflict with other connections' temporary tables of
 the same name.

	They go away when the connection closes, so you don't have
 to remove them explicitly.

You can emulate these properties easily by reserving a database
 exclusively for pseudotemporary tables, where you'll create permanent
 tables instead. You just have to choose unique names for them.
 Fortunately, that's pretty easy to do: simply append the connection ID
 to the table name. For example, where you used to execute CREATE TEMPORARY TABLE top_users(…), now you
 can execute CREATE TABLE
 temp.top_users_1234(…), where 1234 is the value returned by CONNECTION_ID(). After your application is
 done with the pseudotemporary table, you can either drop it or let a
 cleanup process remove it instead. Having the connection ID in the
 table name makes it easy to determine which tables are not in use
 anymore—you can get a list of active connections from SHOW PROCESSLIST and compare it to the
 connection IDs in the table names. [89]
Using real tables instead of temporary tables has other
 benefits, too. For example, it makes it easier to debug your
 applications, because you can see the data the applications are
 manipulating from another connection. If you used a temporary table,
 you wouldn't be able to do that as easily.
Real tables do have some overhead temporary tables don't,
 however: it's slower to create them because the
 .frm files associated with these tables must be
 synced to disk. You can disable the sync_frm option to speed this up, but it's
 more dangerous.
If you do use temporary tables, you should ensure that the
 Slave_open_temp_tables status
 variable is 0 before shutting down
 a slave. If it's not 0, you're
 likely to have problems restarting the slave. The proper procedure is
 to run STOP SLAVE, examine the
 variable, and only then shut down the slave. If you examine the
 variable before stopping the slave processes, you're risking a race
 condition.

Not Replicating All Updates

If you misuse SET
 SQL_LOG_BIN=0 or don't understand the replication filtering
 rules, your slave might not execute some updates that have taken place
 on the master. Sometimes you want this for archiving purposes, but
 it's usually accidental and has bad consequences.
For example, suppose you have a replicate_do_db rule to replicate only the
 sakila database to one of your
 slaves. If you execute the following commands on the master, the
 slave's data will become different from the data on the master:
mysql> USE test;
mysql> UPDATE sakila.actor ...
Other types of statements can even cause replication to fail
 with an error because of nonreplicated dependencies.

Lock Contention Caused by InnoDB Locking Selects

InnoDB's SELECT
 statements are normally nonlocking, but in certain cases they do acquire locks.
 In particular, INSERT … SELECT
 locks all the rows it reads from the source table by default. MySQL
 needs the locks to ensure that the statement produces the same result
 on the slave when it executes there. In effect, the locks serialize
 the statement on the master, which matches how the slave will execute
 it.
You might encounter lock contention, blocking, and lock wait
 timeouts because of this design. One way to alleviate the problems is
 not to hold a transaction open longer than needed, so the locks cause
 less blocking. You can release the locks by committing the transaction
 as soon as possible on the master.
It can also help to keep your statements short, by breaking up
 large statements into several smaller ones. This is a very effective
 way to reduce lock contention, and even when it's hard to do, it's
 often worth it.
Another workaround is to replace INSERT
 … SELECT statements with a combination of SELECT INTO OUTFILE followed by LOAD DATA INFILE on the master. This is fast
 and doesn't require locking. It is admittedly a hack, but it's
 sometimes useful anyway. The biggest issues are choosing a unique name
 for the output file, which must not already exist, and cleaning up the
 output file when you're done with it. You can use the CONNECTION_ID() technique we discussed in
 "Missing Temporary Tables" on Missing Temporary Tables to ensure that the filename is
 unique, and you can use a periodic job (crontab
 on Unix, scheduled tasks on Windows) to purge unused output files
 after the connections that created them are finished with them.
You might be tempted to try to disable the locks instead of
 using these workarounds. There is a way to do so, but it's not a good
 idea for most scenarios, because it makes it possible for your slave
 to fall silently out of sync with the master. It also makes the binary
 log useless for recovering a server. If, however, you decide that the
 risks are worth the benefits, the configuration change that
 accomplishes this is as follows:
innodb_locks_unsafe_for_binlog = 1
This allows a statement's results to depend on data it doesn't
 lock. If a second statement modifies that data and then commits before
 the first statement, the two statements may not produce the same
 results when you replay the binary log. This is true both for
 replication and for point-in-time recovery.
To see how locking reads prevent chaos, imagine you have two
 tables: one without rows, and one whose single row has the value
 99. Two transactions update the
 data. Transaction 1 inserts the second table's contents into the first
 table, and transaction 2 updates the second (source) table, as
 depicted in Figure 8-16.
[image: Two transactions update data, with shared locks to serialize the updates]

Figure 8-16. Two transactions update data, with shared locks to serialize
 the updates

Step 2 in this sequence of events is very important. In it,
 transaction 2 tries to update the source table, which requires it to
 place an exclusive (write) lock on the rows it wants to update. An
 exclusive lock is incompatible with any other lock, including the
 shared lock transaction 1 has placed on that row, so transaction 2 is
 forced to wait until transaction 1 commits. The transactions are
 serialized in the binary log in the order they committed, so replaying
 these transactions in binary log (commit) order will give the same
 results.
On the other hand, if transaction 1 doesn't place a shared lock
 on the rows it reads for the INSERT, no such guarantee exists. Study
 Figure 8-17, which
 shows a possible sequence of events without the lock.
The absence of locks allows the transactions to be written to
 the binary log in an order that will produce different results when
 that log is replayed, as you can see in the illustration. MySQL logs
 transaction 2 first, so it will affect transaction 1's results on the
 slave. This didn't happen on the master. As a result, the slave will
 contain different data than the master.
We strongly suggest, for most situations, that you leave the
 innodb_locks_unsafe_for_binlog
 configuration variable set to 0.
[image: Two transactions update data, but without a shared lock to serialize the updates]

Figure 8-17. Two transactions update data, but without a shared lock to
 serialize the updates

Writing to Both Masters in Master-Master Replication

Writing to both masters is generally not a good idea. If
 you're trying to make it safe to write to both masters at the same
 time, some of the problems have solutions, but not all.
In MySQL 5.0, two server configuration variables help address
 the problem of conflicting AUTO_INCREMENT primary keys. The variables
 are auto_increment_increment and
 auto_increment_offset. You can use
 them to "stagger" the numbers the servers generate, so they interleave
 rather than collide.
However, this doesn't solve all the problems you'll have with
 two writable masters. It solves only the autoincrement problem, which
 is probably just a small subset of the conflicting writes you're
 likely to have. In fact, it actually adds several new problems:
	It makes it harder to move servers around in the replication
 topology.

	It wastes key space by potentially introducing gaps between
 numbers.

	It doesn't help unless all your tables have AUTO_INCREMENT primary keys, and it's
 not always a good idea to use AUTO_INCREMENT primary keys
 universally.

You can generate your own nonconflicting primary key values. One
 way is to create a multicolumn primary key and use the server ID for
 the first column. This works well, but it makes your primary keys
 larger, which has a compound effect on secondary keys in
 InnoDB.
You can also use a single-column primary key, and use the "high
 bits" of the integer to store the server ID. A simple left-shift (or
 multiplication) and addition can accomplish this. For example, if
 you're using the 8 most significant bits of an unsigned BIGINT (64-bit) column to hold the server
 ID, you can insert the value 11 on
 server 15 as follows:
mysql> INSERT INTO test(pk_col, ...) VALUES((15 << 56) + 11, ...);
If you convert the result to base 2 and pad it out to 64-bits
 wide, the effect is easier to see:
mysql> SELECT LPAD(CONV(pk_col, 10, 2), 64, '0') FROM test;
+--+
| LPAD(CONV(pk_col, 10, 2), 64, '0') |
+--+
| 00001111001011 |
+--+
The problem with this method is that you need an external way to
 generate key values, because AUTO_INCREMENT can't do it for you. Don't
 use @@server_id in place of the
 constant value 15 in the INSERT, because you'll get a different
 result on the slave.
You can also turn to pseudorandom values using a function such
 as MD5() or UUID(), but these can be bad for
 performance—they're big, and they're essentially random, which is bad
 for InnoDB in particular. (Don't use UUID() unless you generate the values in the
 application, because UUID() doesn't
 replicate correctly with statement-based replication.)
It's a hard problem to solve, and we usually recommend
 redesigning your application so that you have only one writable master
 instead.

Excessive Replication Lag

Replication lag is a frequent problem. No matter what, it's a
 good idea to design your applications to tolerate some lag on the
 slaves. If the system can't function with lagging slaves, replication
 may not be the correct architecture for your application. However,
 there are some steps you can take to help slaves keep up with the
 master.
The single-threaded nature of MySQL replication means it's
 relatively inefficient on the slave. Even a fast slave with lots of
 disks, CPUs, and memory can easily fall behind a master, because the
 slave's single thread usually uses only one CPU and disk efficiently.
 In fact, each slave typically needs to be at least as powerful as the
 master.
Locking on the slaves is also a problem. Other queries running on a
 slave might set locks that block the replication thread. Because
 replication is single-threaded, the replication thread won't be able
 to do other work while it waits.
Replication tends to fall behind in two ways: spikes of lag
 followed by catching up, or staying steadily behind. The former is
 usually caused by single queries that run for a long time, but the
 latter can crop up even when there are no long queries.
Unfortunately, at present the only way to tell how close your
 slave is to its capacity is to examine empirical evidence. If your
 load were perfectly uniform at all times, your slaves would perform
 nearly as well at 99% capacity as at 10% capacity, and when they
 reached 100% capacity, they'd abruptly begin to fall behind. In
 reality, the load is unlikely to be steady, so when a slave is close
 to its write capacity, you'll probably see increased replication lag
 during times of peak load.
This is a warning sign! It probably means you are dangerously
 close to pushing your slaves so hard that they can't catch up during
 the times of off-peak load. A crude gauge of how close you are to the
 ceiling is to deliberately stop a slave's SQL thread for a while, then
 restart it and see how long it takes to catch up again.
The patches Google has released (see "Synchronous MySQL
 replication" on Synchronous MySQL replication) also
 contain a SHOW USER STATISTICS
 command that can show the replication user's Busy_time. This is the percentage of the
 time the slave thread spent processing queries. This is another good
 way to track how much headroom the slave SQL thread has.
Logging queries on a slave and using a log analysis tool to see
 what's really slow is one of the best things to do when slaves can't
 keep up. Don't rely on your instincts about what's slow, and don't
 base your opinion on how queries perform on the master, because slaves
 and masters have very different performance profiles. The best way to
 do this analysis is to enable the slow query log on a slave for a
 while. The standard MySQL slow query log doesn't log slow queries the
 slave thread executes, so you can't see which queries are slow when
 they're replicated. The microsecond slow-log patch solves this issue.
 You can read more about the slow query log and that patch in "MySQL
 Profiling" on MySQL Profiling.
There's not much you can tweak or tune on a slave that can't
 keep up, aside from buying faster disks and CPUs. Most of the options
 involve disabling some things that cause extra work on the slave to
 try to reduce its load. One easy change is to configure InnoDB to
 flush changes to disk less frequently, so transactions commit more
 quickly. You can accomplish this by setting innodb_flush_log_at_trx_commit to 2. You can also disable binary logging on
 the slave, set innodb_locks_unsafe_for_binlog to 1, and set delay_key_write to ALL for MyISAM. These settings trade safety
 for speed, though. If you promote a slave to be a master, make sure to
 reset these settings to safe values.
Don't duplicate the expensive part of writes

Rearchitecting your application and/or optimizing your queries
 are often the best ways to help the slaves keep up. Try to minimize the amount of work
 that has to be duplicated through your system. Any write that's
 expensive on the master will be replayed on every slave. If you can
 move the work off the master onto a slave, only one of the slaves
 will have to do the work. You can then push the write results back
 up to the master, for example, with LOAD
 DATA INFILE.
Here's an example. Suppose you have a very large table that
 you summarize into a smaller table for frequent processing:
mysql> REPLACE INTO main_db.summary_table (col1, col2, ...)
 -> SELECT col1, sum(col2, ...)
 -> FROM main_db.enormous_table GROUP BY col1;
If you perform that operation on the master, every slave will
 have to repeat the enormous GROUP
 BY query. If you do enough of this, the slaves will not be
 able to keep up. Moving the number crunching to one of the slaves
 can help. On the slave, perhaps in a special database reserved for
 the purpose of avoiding conflicts with the data being replicated
 from the master, you can run the following:
mysql> REPLACE INTO summary_db.summary_table (col1, col2, ...)
 -> SELECT col1, sum(col2, ...)
 -> FROM main_db.enormous_table GROUP BY col1;
Now you can use SELECT INTO
 OUTFILE, followed by LOAD DATA
 INFILE on the master, to move the results back up to the
 master. Voilà—the duplicated work is reduced to a simple LOAD DATA INFILE. If you have
 N slaves, you have just saved
 N – 1 enormous GROUP BY queries.
The problem with this strategy is dealing with stale data.
 Sometimes it's hard to get consistent results by reading on the
 slave and writing on the master (a problem we address in detail in
 the next chapter). If it's hard to do the read on the slave, you can
 simplify and still save your slaves a lot of work. If you separate
 the REPLACE and SELECT parts of the query, you can fetch
 the results into your application and then insert them back into the
 master. First, perform the following query on the master:
mysql> SELECT col1, sum(col2, ...) FROM main_db.enormous_table GROUP BY col1;
You can then insert the results back into the summary table by
 repeating the following query for every row in the result
 set:
mysql> REPLACE INTO main_db.summary_table (col1, col2, ...) VALUES (?, ?, ...);
Again, you've spared the slaves from the large GROUP BY portion of the query; separating
 the SELECT from the REPLACE means that the SELECT part of the query isn't replayed on
 every slave.
This general strategy—saving the slaves from the expensive
 portion of a write—can help in many cases where you have queries
 whose results are expensive to calculate but cheap to handle once
 they've been calculated.

Do writes in parallel outside of replication

Another tactic for avoiding excessive lag on the slaves is to circumvent replication. Any writes you do
 on the master must be serialized on the slave, so it makes sense to
 think of "serialized writes" as a scarce resource. Do all your
 writes need to flow from the master to the slave? How can you
 reserve your slave's limited serialized write capacity for the
 writes that really need to be done via replication?
Thinking of it in this light may help you prioritize writes.
 In particular, if you can identify some writes that are easy to do
 outside of replication, you can parallelize writes that would
 otherwise claim precious write capacity on the slave.
One great example is data archiving, which we discussed
 earlier in this chapter. OLTP archiving queries are often simple
 single-row operations. If you're just moving unneeded rows from one
 table to another, there might be no reason these writes have to be
 replicated to slaves. Instead, you can disable binary logging for
 the archiving statements, and then run separate but identical
 archiving processes on the master and slaves.
It might sound crazy to copy the data to another server
 yourself instead of letting replication do it, but it can actually
 make sense for some applications. This is especially true if an
 application is the only source of updates to a certain set of
 tables. Replication bottlenecks often center around a small set of
 tables, and if you can handle just those tables outside of
 replication, you may be able to speed it up significantly.

Prime the cache for the slave thread

If you have the right kind of workload, you might benefit from
 parallelizing I/O on slaves by prefetching data into memory. This
 technique is not well known, but we know of some large applications
 that benefit from it.
The idea is to use a program that reads slightly ahead of the
 slave's SQL thread in the relay logs and executes the queries as
 SELECT statements. This causes
 the server to fetch some of the data from the disk into memory, so
 when the slave's SQL thread executes the statement from the relay
 log, it doesn't need to wait for data to be fetched from disk. In
 effect, the SELECT parallelizes
 I/O that the slave SQL thread must normally do serially. While one
 statement is changing data, the next statement's data is being
 fetched from disk into memory.
How far ahead of the slave SQL thread the program should stay
 may vary. You can try a few seconds, or an equivalent number of
 bytes in the relay log. If you get too far ahead, the data you're
 fetching into the caches will be flushed out again by the time the
 SQL thread needs it.
Let's look at an example of how to rewrite statements to take
 advantage of this approach. Consider the following query:
mysql> UPDATE sakila.film SET rental_duration=4 WHERE film_id=123;
The following SELECT
 retrieves the same row and columns:
mysql> SELECT rental_duration FROM sakila.film WHERE film_id=123;
This technique won't work unless you have the right workload
 characteristics and hardware configuration. The following conditions
 might indicate that it'll work:
	The slave SQL thread is I/O-bound, but the slave
 server isn't I/O-bound overall. A completely I/O-bound server
 won't benefit from prefetching, because it won't have any idle
 hard drives to do the fetching.

	The working set is much larger than memory (which is why
 the SQL thread spends a lot of time waiting for I/O). If your
 working set fits in memory, prefetching won't help, because your
 server will "warm up" after a while and I/O waits will be
 rare.

	The slave has a lot of disk drives. The people we know who
 use this tactic have eight or more drives per slave. It might
 work with fewer, but you'll need at least two to four
 drives.

	You use a storage engine with row-level locking, such as
 InnoDB. Attempting this on a MyISAM table will probably make the
 slave's SQL thread and the prefetch thread contend for table
 locks, slowing things down even more. (However, if you have many
 tables and the writes are distributed among them, in theory you
 might even be able to speed up replication on MyISAM tables
 using this technique.)

An example workload that benefits from prefetching is one with
 a lot of widely scattered single-row UPDATE statements, which are typically
 high-concurrency on the master. DELETE statements may also benefit.
 INSERT statements are less likely
 to benefit from this approach—especially when rows are inserted
 sequentially—because the end of the index will already be "hot" from
 previous inserts.
If a table has many indexes, it might not be possible to
 prefetch all the data the statement will modify. The UPDATE statement may modify every index,
 but the SELECT will typically
 read only the primary key and one secondary index, in the best case.
 The UPDATE will still need to
 fetch other indexes for modification. That decreases how effective
 this tactic can be on tables with many indexes.
You can use iostat to see whether you
 have free hard drives that could be servicing prefetch requests.
 Look at the queue size and service time (see the previous chapter
 for examples). A small queue shows that something at a higher level
 is serializing requests. A large queue shows a high load—the type
 you won't typically get from a slave SQL thread when you have many
 disks. If the service time is large, it means too many requests are
 being submitted to the disk at once.
This technique is not a silver bullet. There are many reasons
 why it might not work for you or might even cause more problems. You
 should attempt it only if you know your hardware and operating
 system well. We know some people for whom this approach increased
 replication speed by 300% to 400%, but we've tried it ourselves and
 found it doesn't always work. Getting the parameters right is
 important, but there isn't always a right combination of parameters.
 Sometimes filesystem and/or kernel behaviors can defeat parallel
 I/O, too. Your mileage will vary!
The mk-slave-prefetch tool, which is part
 of Maatkit, is one implementation of the ideas we've described in
 this section.

Oversized Packets from the Master

Another hard-to-trace problem in replication can occur when the
 master's max_allowed_packet size
 doesn't match the slave's. In this case, the master can log a packet
 the slave considers oversized, and when the slave retrieves that
 binary log event, it may suffer from a variety of problems. These
 include an endless loop of errors and retries, or corruption in the
 relay log.

Limited Replication Bandwidth

If you're replicating over limited bandwidth, you can enable the slave_compressed_protocol option on the
 slave (available in MySQL 4.0 and newer). When the slave connects to
 the master, it will request a compressed connection—the same
 compression any MySQL client connection can use. The compression
 engine used is zlib, and our tests show it can
 compress some textual data to roughly a third of its original size.
 The tradeoff is that extra CPU time is required to compress the data
 on the master and decompress it on the slave.
If you have a slow link with a master on one side and many
 slaves on the other side, you might want to colocate a distribution
 master with the slaves. That way only one server connects to the
 master over the slow link, reducing the bandwidth load on the link and
 the CPU load on the master.

No Disk Space

Replication can indeed fill up your disks with binary logs,
 relay logs, or temporary files, especially if you do a lot of LOAD DATA INFILE queries on the master and
 have log_slave_updates enabled on
 the slave. The more a slave falls behind, the more disk space it is likely to use for relay logs that have
 been retrieved from the master but not yet executed. You can prevent
 these errors by monitoring disk usage and setting the relay_log_space configuration
 variable.

Replication Limitations

MySQL replication can fail or get out of sync, with or without
 errors, just because of its inherent limitations. A fairly large list
 of SQL functions and programming practices simply won't replicate
 reliably (we've mentioned many of them in this chapter). It's hard to
 ensure that none of these finds a way into your production code,
 especially if your application or team is large. [90]
Another issue is bugs in the server. We don't want to sound
 negative, but most major versions of the MySQL server have
 historically had some bugs in replication, especially in the first
 releases of the major version. New features, such as stored
 procedures, have usually caused more problems.
For most users, this is not a reason to avoid new features. It's
 just a reason to test carefully, especially when you upgrade your
 application or MySQL. Monitoring is also important; you need to know
 when something causes a problem.
MySQL replication is complicated, and the more complicated your
 application is, the more careful you need to be. However, if you learn
 how to work with it, it works quite well.

[88] Perhaps you'd like to store it in a database table? We're
 only half joking…you can add a unique index on the ID
 column.

[89] mk-find—yet another tool in Maatkit—can
 remove pseudotemporary tables easily with the
 --pid and --sid
 options.

[90] Alas, MySQL doesn't have a forbid_operations_unsafe_for_replication
 option.

How Fast Is Replication?

A common question about replication is "How fast is it?" The short
 answer is that it's generally very fast, and it runs as quickly as MySQL
 can copy the events from the master and replay them. If you have a slow
 network and very large binary log events, the delay between binary
 logging and execution on the slave might be perceptible. If your queries
 take a long time to run and you have a fast network, you can generally
 expect the query time on the slave to contribute more to the time it
 takes to replicate an event.
A more complete answer requires measuring every step of the
 process and deciding which steps will take the most time in your
 application. Some readers may care only that there's usually very little
 delay between logging events on the master and copying them to the
 slave's relay log. For those who would like more details, we did a quick
 experiment.
We elaborated on the process described in the first edition of
 this book, and methods used by Giuseppe Maxia, [91] to measure replication speed with high precision. We built
 a nondeterministic UDF that returns the system time to microsecond
 precision (see "User-Defined Functions" on User-Defined Functions for the source code):
mysql> SELECT NOW_USEC()
+----------------------------+
| NOW_USEC() |
+----------------------------+
| 2007-10-23 10:41:10.743917 |
+----------------------------+
This lets us measure replication speed by inserting the value
 of NOW_USEC() into a
 table on the master, then comparing it to the value on the slave.
We measured the delay by setting up two instances of MySQL on the
 same server to avoid inaccuracies caused by the clock. We configured one
 instance as a slave of the other, then ran the following queries on the
 master instance:
mysql> CREATE TABLE test.lag_test(
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> now_usec VARCHAR(26) NOT NULL
 ->);
mysql> INSERT INTO test.lag_test(now_usec) VALUES(NOW_USEC());
We used a VARCHAR column
 because MySQL's built-in time types can't store times with subsecond
 resolution (although some of its time functions can do subsecond
 calculations). All that remained was to compare the difference between
 the slave and the master. A Federated table is an easy way to do this.
 On the slave, we ran:
mysql> CREATE TABLE test.master_val (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> now_usec VARCHAR(26) NOT NULL
 ->) ENGINE=FEDERATED
 -> CONNECTION='mysql://user:pass@127.0.0.1/test/lag_test';
A simple join and the TIMESTAMPDIFF() function show the microseconds
 of lag between the time the query executed on the master and the
 slave:
mysql> SELECT m.id, TIMESTAMPDIFF(FRAC_SECOND, m.now_usec, s.now_usec) AS usec_lag
 -> FROM test.lag_test as s
 -> INNER JOIN test.master_val AS m USING(id);
+----+----------+
| id | usec_lag |
+----+----------+
| 1 | 476 |
+----+----------+
We inserted 1,000 rows into the master with a Perl script, with a
 10-millisecond delay between row insertions to prevent the master and
 slave instances from fighting each other for CPU time. We then built a
 temporary table containing the lag of each event:
mysql> CREATE TABLE test.lag AS
 > SELECT TIMESTAMPDIFF(FRAC_SECOND, m.now_usec, s.now_usec) AS lag
 -> FROM test.master_val AS m
 -> INNER JOIN test.lag_test as s USING(id);
Next, we grouped the results by lag time to see what the most
 frequent lag times were:
mysql> SELECT ROUND(lag / 1000000.0, 4) * 1000 AS msec_lag, COUNT(*)
 -> FROM lag
 -> GROUP BY msec_lag
 -> ORDER BY msec_lag;
+----------+----------+
| msec_lag | COUNT(*) |
+----------+----------+
0.1000	392
0.2000	468
0.3000	75
0.4000	32
0.5000	15
0.6000	9
0.7000	2
1.3000	2
1.4000	1
1.8000	1
4.6000	1
6.6000	1
24.3000	1
+----------+----------+
The results show that most small queries take less than 0.3
 milliseconds to replicate, from execution time on the master to
 execution time on the slave.
The part of replication this doesn't measure
 is how soon an event arrives at the slave after being logged to the
 binary log on the master. It would be nice to know this, because the
 sooner the slave receives the log event, the better. If the slave has
 received the event, it can provide a copy if the master crashes.
Although our measurements don't show exactly how long this part of
 the process takes, in theory it should be extremely fast (i.e., bounded
 only by the network speed). The MySQL binlog dump process does
 not poll the master for events, which would be
 inefficient and slow. Instead, the master notifies the slave of events.
 Reading a binary log event from the master is a blocking network call
 that begins sending data practically instantaneously after the master
 logs the event. Thus, it's probably safe to say the event will reach the
 slave as quickly as the slave thread can wake up and the network can
 transfer the data.

[91] See http://datacharmer.blogspot.com/2006/04/measuring-replication-speed.html.

The Future of MySQL Replication

MySQL replication has a number of shortcomings that MySQL AB plans
 to address in the future. Third parties have already built some of the
 features and fixes. For example, Google has released a set of custom
 patches to the MySQL server that add semisynchronous replication
 capabilities and many other features (see "Synchronous MySQL
 replication" on Synchronous MySQL replication for
 more on this).
Another possible addition is support for multimaster
 replication—i.e., a single slave with more than one master. This is
 likely to be a difficult problem to solve and will probably require
 conflict detection and resolution capabilities. The row-based
 replication in MySQL 5.1 is a step in that direction. Row-based
 replication might also let multiple threads apply events on the slave in
 the future, relieving the single-threaded bottleneck.
There are plans to integrate the online backup API with
 replication and to allow a MySQL server to automatically configure
 itself as another server's slave.
Data consistency and correctness guarantees are lacking in MySQL
 at present. According to a poll on MySQL's web site, the single most
 requested feature is an online consistency check to show whether a slave
 has the same data as its master. MySQL AB has a worklog open on this
 task, with a basic description of how it'll be done. Many people have
 also requested enhancements to the binary log format to ensure
 corruption can be detected, and MySQL AB has acknowledged this as an
 important task.
These and many other improvements should make MySQL replication
 more powerful and reliable in the future. It's encouraging to look back
 over the last few years and see the changes that have been made during
 that time. However, it's worth noting that most of the features the
 first edition of this book predicted never appeared, even though some of
 them were partially implemented—for instance, failsafe replication is in
 the MySQL codebase, but it is an abandoned project.

Chapter 9. Scaling and High Availability

This chapter shows you how to build a MySQL architecture that can
 grow very large while remaining fast and reliable.
Most scaling problems don't give advance warning; they just appear
 suddenly one day. If you don't have a plan to scale your application,
 you'll probably have to work hard just to keep it responsive. Companies
 that can't scale their applications often fail completely. It's ironic,
 but true: too much success can kill your business.
You must also be able to ensure that your application stays up in
 all circumstances. Many things could interfere, but the most common
 problems will probably be ordinary hardware and software failures. Your
 application should treat these as routine and preferably handle them
 automatically.
The demands for scaling and high availability often go together. High availability isn't as
 important when the application is small, for several reasons: it usually
 runs on a single server, so a server failure is less likely; because it is
 small, downtime is less likely to cost a lot of money; and the smaller
 user base is more likely to tolerate downtime. But when you grow to 10
 times the number of servers, your probability of a server failing is 10
 times higher, and you probably have many more users with higher
 expectations.
You can make MySQL scale well if you choose the right architecture
 and implement it well. The same is true for guaranteeing high
 availability. In this chapter, we break these concepts apart as much as
 possible, so we can consider them separately. We begin with an overview of
 the terminology, then tackle scaling and high availability in two major
 parts (we also take a look at load balancing along the way). We begin each
 part with a section on requirements, because defining your primary
 business requirements as soon as possible is critical to running a large
 application successfully. Those requirements will have a great impact on
 the application's design and architecture. Then we move through a
 discussion of possible techniques and solutions, covering the advantages
 and drawbacks of each.
Terminology

The first step is to understand the concepts clearly. People often
 use terms such as "scalability" and "performance" as synonyms in casual conversation, but
 they're really very different. Here are our definitions of the key terms
 we use throughout this chapter:
	Performance
	The application's ability to meet a certain goal, such as a
 desired response time, level of throughput, or any of the other
 metrics we discussed in Chapter 2.

	Capacity
	The total load the application can handle. We talk more
 about what "load" means later in this section.

	Scalability
	The application's ability to maintain performance as it
 becomes larger by some metric (more servers, for example). When we
 write about performance in a broad sense, we mean capacity and
 scalability together.

	Availability
	The percentage of time the application is able to respond to
 requests. This is usually measured in "nines"; for example, "five
 nines" means the application is available 99.999% of the time,
 which translates to roughly five minutes of downtime per year.
 (This is very high availability for most applications.)

	Fault tolerance
	The application and overall system's ability to handle
 failures gracefully. Even a system designed for high availability
 can fail. When it does, a fault-tolerant application can continue
 to provide as much functionality as possible, rather than being
 entirely unavailable.

Scalability is the most difficult concept to explain clearly.
 Here's an analogy:
	Performance is how fast the car is.

	Capacity is how high the speed limit is, and how many lanes
 the highway has.

	Scalability is the degree to which you can add more cars and
 more highways, without slowing traffic.

	Availability is how often a highway or lane is
 drivable.

In this analogy, scalability depends on factors such as how well
 the interchanges are designed, how many cars have accidents or break
 down, and whether the cars change lanes a lot—but generally
 not on how powerful the car engines are.
In other words, scalability is the ability to add
 capacity as needed without reducing performance. The key
 phrase is "ability to add." Even if your MySQL architecture is scalable,
 your application might not be. If it's hard to add more capacity for any
 reason, your application isn't scalable.
Fault tolerance depends on the application's ability to
 function partially when a component fails. Being fault-tolerant is not
 the same thing as being self-healing, which refers to an application's
 ability to restore or maintain full functionality in the event of a
 failure. Fault tolerance is often an important component of scalability,
 because you have to plan for it in your application's design. If you
 don't design components so you can disable them easily and so they can
 handle the failure of other components, a problem might cause more of
 the application to fail than necessary. Fault tolerance also requires a
 clean separation between components, which is difficult to achieve
 unless you build it in from the start.
If scalability is the ability to add capacity, and capacity is how
 much load an application can handle, then scalability is also
 the ability to handle more and more load. "Load" is actually a
 complicated concept, because it depends on the application. Here are
 some common load metrics for a typical "social networking" site (an
 application that's a good example for many of the concepts we
 discuss):
	Quantity of data
	The sheer volume of data your application can accumulate is
 one of the most common scaling challenges. This is particularly an
 issue for many of today's web applications, which never delete any
 data. Social networking sites, for example, typically never delete
 old messages or comments.

	Number of users
	Even if each user has only a small amount of data, if you
 have a lot of users it adds up—and the data size can grow
 disproportionately faster than the number of users. Many users
 generally means more transactions too, and the number of
 transactions also might not be proportional to the number of
 users. Finally, many users can mean increasingly complex queries,
 especially if queries depend on the number of relationships among
 users. (The number of relationships is bounded by (N
 * (N–1)) / 2, where N is
 the number of users.)

	User activity
	Not all user activity is equal, and user activity is not
 constant. If your users suddenly become more active, for example,
 because of a new feature they like, your load can increase
 significantly. User activity isn't just a matter of the number of
 page views, either—the same number of page views can cause more
 work if part of the site that requires a lot of work to generate
 becomes more popular. Some users are much more active than others,
 too: they may have many more friends, messages, or photos than the
 average user.

	Size of related datasets
	If there are relationships among users, the application
 might need to run queries and computations on entire groups of
 related users. This is more complex than just working with
 individual users and their data. Social networking sites often
 face challenges due to popular groups or users who have many
 friends.

Scaling MySQL

Placing all of your application's data in a single MySQL instance
 simply is not an approach that will scale well. Sooner or later you'll
 hit performance bottlenecks caused by an increased load on the server.
 The traditional solution in many types of applications is to buy more
 powerful servers. This is what's known as "scaling vertically" or "scaling up." The opposite approach
 is to divide your work across many computers, which is usually called
 "scaling horizontally" or "scaling out." Most applications
 also have some data that's rarely or never needed and that can be purged
 or archived. We call this approach "scaling back," just to give it a
 name that matches the other strategies. Finally, some database products
 support scaling through federation, which allows
 you to access remote data as though it's local. MySQL's support for this
 is limited.
The dream scenario for scaling is a single logical database that
 can hold as much data, serve as many queries, and grow as large as you
 need it to. Many people's first thought is to create a "cluster" or
 "grid" that handles this seamlessly, so the application doesn't need to
 do any dirty work or know that the data really lives in many servers
 instead of just one. MySQL's NDB Cluster technology can support this to
 a degree, but it doesn't perform well for most web applications, and it
 has quite a few limitations. That's why most large applications built on
 MySQL are scaled in other ways. We discuss scaling by clustering at the
 end of this part of the chapter.
Planning for Scalability

The typical symptom of poor scalability is difficulty keeping up
 with increased load. This usually shows up as reduced performance in
 the form of slow queries, a shift in workload from CPU-bound to
 I/O-bound, contention among concurrent queries, and increasing
 latency. Common culprits are increased query complexity, or a portion
 of the data or index that used to fit into memory but no longer does.
 You may see a change in certain types of queries and not others. For
 example, long or complex queries often show the strain before smaller
 queries.
If your application is scalable, you can simply plug in more
 servers to handle the load, and the performance problems will
 disappear. If it's not scalable, you may find yourself concentrating
 on the performance problems, trying to tune servers, and so forth.
 This is focusing on symptoms, not the root cause. You can avoid this
 by planning for scalability.
The hardest part of scalability planning is estimating how much
 load you'll need to handle. You don't need to get it exactly right,
 but you need to be within an order of magnitude. If you overestimate,
 you'll waste resources on development, but if you underestimate,
 you'll be unprepared for the load.
You also need to estimate your schedule approximately right—that
 is, you need to know where the "horizon" is. For some applications, a
 simple prototype could work fine for a few months, giving you a chance
 to raise capital and build a more scalable architecture. For other
 applications, you might need your current architecture to provide
 enough capacity for two years.
Here are some questions you can ask yourself to help plan for
 scalability:
	How complete is your application's functionality? A lot of
 the scaling solutions we suggest can make it harder to implement
 certain features. If you haven't yet implemented some of your
 application's core features, it might be hard to see how you can
 build them in a scaled application. Likewise, it could be hard to
 decide on a scaling solution before you've seen how these features
 will really work.

	What is your expected peak load? Your application should
 work even at peak load. What would happen if your site makes the
 front page of Yahoo! News or Slashdot? Even if your application
 isn't a popular web site, you can still have peak loads. For
 example, if you're an online retailer, the holiday season is a
 time of peak load—especially the infamous online shopping days
 such as the few weeks before Christmas. In the U.S., the weekend
 before Mother's Day is often a peak time for online
 florists.

	If you rely on every part of your system to handle the load,
 what would happen if part of it fails? For example, if you rely on
 replication slaves to distribute the read load, can you still keep
 up if one of them fails? Do you need to disable some functionality
 to do so? You can build in some spare capacity to help alleviate
 these concerns.

Buying Time Before Scaling

In a perfect world, it would be nice to be able to plan ahead,
 have enough developers, never run into budget limitations, and so on.
 In the real world, things are usually more complicated, and you'll
 need to make some compromises as you scale an application. In
 particular, you might need to put off big application changes for a
 while. Before we get deep into the details of scaling MySQL, here are
 some things you might be able to do now, before you make major scaling
 efforts:
	Optimize performance
	You can often get significant performance improvements
 from relatively simple changes, such as indexing tables
 correctly or using a different storage engine. If you're facing
 performance limitations now, one of the first things you should
 do is enable and analyze the slow query log, and then see which
 queries you can optimize. See "Logging queries" on MySQL Profiling for more on this topic.
There is a point of diminishing returns. After you've fixed most of
 the major problems, it gets harder and harder to improve
 performance through query optimizations. Each new optimization
 makes less of a difference and requires more effort, and they
 often make your application much more complicated.

	Buy more powerful hardware
	Upgrading your servers, or adding more of them,
 can sometimes work well. Especially for an application that's
 early in its lifecycle, it's often a good idea to buy a few more
 servers. The alternative might be to try to keep the application
 running on a single server. Although a beautiful, elegant design
 might make this possible, if it would take three people a month
 to build that design, you might find it more practical just to
 buy some more servers. This is especially true if time is
 critical and developers are scarce.

Buying more hardware works well if your application is either
 small or designed so it can use more hardware well. This is common for
 new applications, which are usually very small or reasonably well
 designed. For larger, older applications, buying more hardware might
 not work, or might be too expensive. For example, going from 1 to 3
 servers isn't a big deal, but going from 100 to 300 is a different
 story—it's very expensive. At that point, it's worth a lot of time and
 effort to get as much performance as possible out of your existing
 systems.

Scaling Up

Scaling up can work for a while, but if your application grows
 very large, it won't work.
The first reason is money. Regardless of what software you're
 running on the server, at some point, scaling up will become a bad
 financial decision. There's a certain range of hardware that offers
 the best price-to-performance ratio. Outside that range, the hardware
 tends to become more proprietary and unusual, and correspondingly more
 expensive. This means there's a practical limit on how far up you can
 afford to scale.
Economics aside, MySQL itself doesn't tend to scale vertically
 very well, because it's hard to get it to use many CPUs and disks
 effectively. Exactly how much hardware you can use effectively is very
 specific to your workload, the type of hardware you're using, and your
 operating system. As a rough guide, we think around 8 CPUs and 14
 disks is the limit with current versions of MySQL. [92] Many people have problems with less hardware than
 that.
Even if your master server can use many CPUs effectively,
 there's little chance that you'll be able to build a slave server
 that's powerful enough to keep up. A heavily loaded master can easily
 do more work than a slave server with the same hardware can handle,
 because the slave's replication thread can't use multiple CPUs and disks
 efficiently.
Furthermore, you can't scale up indefinitely, because even the
 most powerful computers have limits. Single-server applications
 usually run into read limits first, especially if they run complicated
 read queries. Such queries are single-threaded inside MySQL, so
 they'll use only one CPU, and money can't buy them much more
 performance. The fastest server-grade CPUs you can buy
 are only a couple of times faster than commodity CPUs. Adding many
 CPUs or CPU cores won't help the slow queries run faster. The server
 will also begin to run into memory limits as your data becomes too
 large to cache effectively. This will usually show up as heavy disk
 usage, and disks are one of the slowest parts of modern
 computers.
Application scalability is often a problem, too.
 Application-specific design choices, or limitations caused by the
 workload, can limit how much hardware you can use effectively.
For these reasons, we recommend that you don't plan to scale up,
 or at least not indefinitely. If you know your application will grow
 very large, it's fine to buy a more powerful server for the short term
 while you work on another solution. However, in general, you'll
 ultimately have to scale out, which brings us to our next
 topic.

Scaling Out

The simplest and most common way to scale out is to distribute
 your data across several servers with replication, and then use the
 slaves for read queries. This technique can work well for a read-heavy
 application. It has drawbacks, such as cache duplication, but even
 that might not be a severe problem if the data size is limited. We
 wrote quite a bit about these issues in the previous chapter, and we
 return to them later in this one.
The other common way to scale out is to
 partition your workload across multiple "nodes."
 Exactly how you partition the workload is an intricate decision.
 Recall our "dream system" that automatically scales invisibly and
 infinitely—this is not what people typically build with MySQL. Most
 large MySQL applications don't automate the partitioning, at least not completely. In this section,
 we take a look at some of the possibilities for partitioning and explore their strengths and
 drawbacks.
A node is the functional unit in your MySQL
 architecture. If you're not planning for redundancy and high
 availability, a node might be one server. If you're designing a
 redundant system with failover, a node is generally one of the
 following:
	A master-master replication topology, with an active server
 and a passive replication slave

	A master and many slaves

	An active server that uses a distributed replicated block
 device (DRBD) for a standby

	A SAN-based "cluster"

In most cases, all servers within a node should have the same
 data. We like the master-master replication architecture for
 two-server active-passive nodes. See "Master-Master in Active-Passive
 Mode" on Master-Master in Active-Passive Mode for
 more on this topology.
Functional partitioning

Functional partitioning, or division of duties, means dedicating
 different nodes to different tasks. We've mentioned some similar
 approaches before; for example, we wrote about how to design
 different servers for OLTP and OLAP workloads in the previous
 chapter. Functional partitioning usually takes that strategy even further
 by dedicating individual servers or nodes to different applications,
 so each contains only the data its particular application
 needs.
We're using the word "application" a bit broadly here. We
 don't mean a single computer program, but a set of related programs
 that's easily separated from other, unrelated programs. For example,
 if you have a web site with distinct sections that don't need to
 share data, you can partition by functional area on the web site.
 It's common to see portals that tie the different areas together;
 from the portal, you can browse to the news section of the site, the
 forums, the support area and knowledge base, and so on. The data for
 each of these functional areas could be on a dedicated MySQL server.
 Figure 9-1 depicts
 this arrangement.
[image: A portal and nodes dedicated to functional areas]

Figure 9-1. A portal and nodes dedicated to functional areas

If the application is huge, each functional area can also have
 its own dedicated web server, but that's less common.
Another possible functional partitioning approach is to split
 a single application's data by determining sets of tables that you
 never join to each other. If it becomes necessary, you can usually
 perform a few such joins either in the application or with Federated
 tables if they're not performance-critical. There are a few
 variations on this approach, but they have the common property that
 each type of data can be found on only a single node. This is not a
 common way to partition data, because it's very difficult to do
 effectively and it doesn't offer any advantages over other
 methods.
In the final analysis, you still can't scale functional
 partitioning indefinitely, because each functional area must scale
 vertically if it is tied to a single MySQL node. One of the
 applications or functional areas is likely to eventually grow too
 large, forcing you to find a different strategy. And if you take
 functional partitioning too far, it can be harder to change to a
 more scalable design later.

Data sharding

Data sharding [93] is the most common and successful approach for scaling
 today's very large MySQL applications. You shard the data by
 splitting it into smaller pieces, or shards, and storing them on
 different nodes.
Sharding works well when combined with some type of functional
 partitioning. Most sharded systems also have some "global" data that
 isn't sharded at all (say, lists of cities). This global data is
 usually stored on a single node, often behind a cache such as
 memcached.
In fact, most applications shard only the data that needs
 it—typically, the parts of the dataset that will grow very large.
 Suppose you're building a blogging service. If you expect 10 million
 users, you might not need to shard the user registration information
 because you might be able to fit all of the users (or the active
 subset of them) entirely in memory. If you expect 500 million users,
 on the other hand, you should probably shard this data. The
 user-generated content, such as posts and comments, will almost
 certainly require sharding in either case, because these records are
 much larger and there are many more of them.
Large applications might have several various logical datasets
 that you can shard differently. You can store them on different sets
 of servers, but you don't have to. You can also shard the same data
 multiple ways, depending on how you access it. We show an example of
 this approach later.
Sharding is dramatically different from the way most
 applications are designed initially, and it can be difficult to
 change an application from a monolithic data store to a sharded architecture. That's why it's
 much easier to build an application with a sharded data store from
 the start if you anticipate that it will eventually need one.
Most applications that don't build in sharding from the
 beginning go through stages as they get larger. For example, you can
 use replication to scale read queries on your blogging service until
 it doesn't work any more. Then you can split the service into three
 parts: users, posts, and comments. You can place these on different
 servers (functional partitioning) and perform the joins in the
 application. Figure 9-2 shows the
 evolution from a single server to functional partitioning.
[image: From a single instance to a functionally partitioned data store]

Figure 9-2. From a single instance to a functionally partitioned data
 store

Finally, you can shard the posts and comments by the user ID,
 and keep the user information on a single node. If you keep a
 master-slave configuration for the global node and use master-master
 pairs for the sharded nodes, the final data store might look like
 Figure 9-3.
[image: A data store with one global node and six master-master nodes]

Figure 9-3. A data store with one global node and six master-master
 nodes

If you know in advance that you'll need to scale very large,
 and you know the limitations of functional partitioning, you might choose to skip the steps in
 the middle and go straight from a single node to a sharded
 data store.
Sharded applications often have a database abstraction library
 that eases the communication between the application and the sharded
 data store. Such libraries usually don't hide the sharding
 completely, because the application usually knows something about a
 query that the data store doesn't.
Too much abstraction can cause inefficiencies, such as
 querying all nodes for data that lives on a single node. This is one
 reason MySQL's NDB Cluster storage engine often performs poorly for
 web applications: it hides the fact that it must query many nodes
 and makes it look as though there's just a single server.
A sharded data store may feel like an elegant solution, but
 it's hard to build. So why choose this architecture? The answer is
 simple: if you want to scale your write capacity, you must
 partition your data. You cannot scale write capacity if you have
 only a single master, no matter how many slaves you have. Sharding,
 for all its drawbacks, is our preferred solution to this
 problem.
A completely automated, high-performance, transparent way to
 partition data and make it look like it lives on a single server
 would be wonderful, but it doesn't exist yet. In the future, MySQL's
 NDB Cluster storage engine might be fast and robust enough to work
 well for this purpose.

Choosing a partitioning key

The most important challenge with sharding is finding and
 retrieving data. How you find data depends on how you shard it.
 There are many ways to do this, and some are better than
 others.
The goal is to make your most important and frequent queries
 touch as few shards as possible. The most important part of that
 process is choosing a partitioning key (or
 keys) for your data. The partitioning key determines which rows
 should go onto each shard. If you know an object's partitioning key,
 you can answer two questions:
	Where should I store this data?

	Where can I find the data I need to fetch?

We'll show you a variety of ways to choose and use a
 partitioning key later. For now, let's look at an example. Suppose
 we do as MySQL's NDB Cluster does, and use a hash of each table's
 primary key to partition the data across all the shards. This is a
 very simple approach, but it doesn't scale well because it
 frequently requires you to check all shards for the data you want.
 For example, if you want user 3's blog posts, where can you find
 them? They are probably scattered evenly across all shards, because
 they're partitioned by the primary key, not by the user.
Cross-shard queries are worse than single-shard queries, but
 as long as you don't touch too many shards, they might not be too
 bad. The worst case is when you have no idea where the desired data
 is stored, and you need to scan every shard to find it.
A good partitioning key is usually the ID of a very important
 entity in the database. These IDs identify the unit of
 sharding. For example, if you partition your data by a
 user ID or a client ID, the unit of sharding is the user or
 client.
A good way to start is to diagram your data model with an
 entity-relationship diagram, or an equivalent tool that shows all
 the entities and their relationships. Try to lay out the diagram so
 that the related entities are close together. You can often inspect
 such a diagram visually and find candidates for partitioning keys that you'd otherwise miss. Don't
 just look at the diagram, though; consider your application's
 queries as well. Even if two entities are related in some way, if
 you seldom or never join on the relationship, you can break the
 relationship to implement the sharding.
Some data models are easier to shard than others, depending on
 the degree of connectivity in the entity-relationship graph. Figure 9-4 depicts an
 easily sharded data model on the left, and one that's difficult to
 shard on the right.
[image: Two data models, one easy to shard and the other difficult Thanks to the HiveDB project and Britt Crawford for contributing these elegant diagrams.]

Figure 9-4. Two data models, one easy to shard and the other difficult
 [94]

The data model on the left is easy to shard because it has
 many connected subgraphs consisting mostly of nodes with just one
 connection, and you can "cut" the connections between the subgraphs
 relatively easily. The model on the right is hard to shard, because
 there are no such subgraphs. Most data models look more like the
 lefthand diagram than the righthand one.
Multiple partitioning keys. Complicated data models
 make data sharding more difficult. Many applications have
 more than one partitioning key, especially if there are two or more
 important "dimensions" in the data. In other words, the application
 might need to see an efficient, coherent view of the data from
 different angles. This means you might need to store at least some
 data twice within the system.
For example, you might need to shard your blogging
 application's data by both the user ID and the post ID, because
 these are two common ways the application looks at the data. Think
 of it this way: you frequently want to see all posts for a user, and
 all comments for a post. But sharding by user doesn't help you find
 comments for a post, and sharding by post doesn't help you find
 posts for a user. If you need both types of queries to touch only a
 single shard, you'll have to shard both ways.
Just because you need multiple partitioning keys doesn't mean you'll need to design
 two completely redundant data stores. Let's look at another example:
 a social networking book club web site, where the site's users can
 comment on books. The web site can display all comments for a book,
 as well as books a user has read and commented on.
You might build one sharded data store for the user data and
 another for the book data. Comments have both a user ID and a post
 ID, so they cross the boundaries between shards. Instead of
 completely duplicating comments, you can store the comments with the
 user data. Then you can store just a comment's headline and ID with
 the book data. This might be enough to render
 most views of a book's comments without
 accessing both data stores, and if you need to display the complete
 comment text, you can retrieve it from the user data store.

Querying across shards

Most sharded applications have at least some queries that need
 to aggregate or join data from multiple shards. For example, if the
 book club site shows the most popular or active users, it must by
 definition access every shard. Making such queries work well is the
 most difficult part of implementing data sharding, because what the
 application sees as a single query needs to be split up and executed
 in parallel as many queries, one per shard. A good database
 abstraction layer can help ease the pain, but even then such queries
 are so much slower and more expensive than in-shard queries that
 aggressive caching is usually necessary as well.
Some languages, such as PHP, don't have good support for
 executing multiple queries in parallel. A common way to work around
 this is to build a helper application, often in C or Java, to
 execute the queries and aggregate the results. The PHP application
 then queries the helper application, which is often a web
 service.
Cross-shard queries can also benefit from summary tables. You
 can build them by traversing all shards and storing the results
 redundantly on each shard when they're complete. If duplicating the
 data on each shard would be too wasteful, you can consolidate the
 summary tables onto another data store, so they're stored only
 once.
Non-sharded data often lives in the "global" node, with heavy
 caching to shield it from the load.
Some applications use essentially random sharding when
 perfectly even data distribution is important, or when there is no
 good partitioning key. A distributed search application is a good
 example. In this case, cross-shard queries and aggregation are the
 norm, not the exception.
Querying across shards isn't the only thing that's harder with
 sharding. Maintaining data consistency is also difficult. Foreign
 keys won't work across shards, so the normal solution is to check as
 needed in the application. It's possible to use XA transactions, but
 this is uncommon in practice because of the overhead. See
 "Distributed (XA) Transactions" on Distributed (XA) Transactions for more on this
 topic.
You can also design cleanup processes that run intermittently.
 For example, if a user's book club account expires, you don't have
 to remove it immediately. You can write a periodic job to remove the
 user's comments from the per-book shard. You can also build a
 checker script that runs periodically and makes sure the data is
 consistent across the shards.

Allocating data, shards, and nodes

Shards and nodes don't have to have a one-to-one relationship.
 It's often a good idea to make a shard's size much smaller than a node's capacity, so you can
 store multiple shards on a single node.
Keeping each shard small helps keep the data manageable. It
 makes it easier to do database backups and recovery, and if the
 tables are small, it can ease jobs such as schema changes. For
 example, suppose you have a 100 GB table that you can either store
 as it is or split into 100 shards of 1 GB tables, which you would
 store on a single node. Now suppose you want to add an index to the
 table(s). This would take much longer on a 100 GB shard than it
 would on all the 1 GB shards combined, because the 1 GB shards fit
 completely in memory. You also might need to make the data
 unavailable while ALTER TABLE is
 running, and blocking 1 GB of data is much better than blocking 100
 GB.
Smaller shards are easier to move around, too. This makes it
 easier to reallocate capacity and rebalance the shards among the
 nodes. Moving a shard is generally not an efficient process. You
 typically need to put the affected shard into read-only mode (a
 feature you'll need to build into your application), extract the
 data, and move it to another node. This usually involves using
 mysqldump to export the data and
 mysql to reload it. (If you're using MyISAM,
 you can just copy the files; see Chapter 11 for more on this.)
In addition to moving shards between nodes, you might need to
 think about moving data between shards, preferably without
 interrupting service for the whole application. If your shards are
 large, it will be harder to balance capacity by moving entire shards
 around, so you'll probably need a way to move the individual bits of
 data (for example, a single user) between shards. Moving data
 between shards is usually a lot more complicated than just moving
 shards, so it's best not to do it if possible. That's why we
 recommend keeping the shard size manageable.
The relative size of your shards depends on the application's
 needs. As a rough guide, a "manageable size" for us is one that
 keeps tables small enough that we can perform regular maintenance
 jobs, such as ALTER TABLE, CHECK
 TABLE, or OPTIMIZE
 TABLE, within 5 or 10 minutes.
If you make your shards too small, you might end up with too
 many tables, which can cause problems with the filesystem or MySQL's
 internal structures. See "The Table Cache" on The Table Cache for more on this. Small shards might
 also increase the number of cross-shard queries you need to
 make.
Arranging shards on nodes. You'll need to
 decide how you want to arrange the shards on a node. Here are some
 common methods:
	Use a single database per shard, and use the same name for
 each shard's database. This method is typical when you want each
 shard to mirror the original application's structure. It can
 work well when you're making many application instances, each of
 which is aware of only one shard.

	Place tables from several shards into one database, and
 include the shard number in each table's name (e.g., bookclub.comments_23). A single
 database can hold multiple shards in this configuration.

	Use a single database per shard, and include all the
 application's tables in the database. Include the shard number
 in the database name but not the table name (e.g., the tables
 might be named bookclub_23.comments,
 bookclub_23.users, and so on). This is common when an
 application connects to a single database and doesn't specify
 the database name in any of its queries. The advantage is that
 you don't need to customize the queries per shard, and it can
 ease the transition to sharding for an application that uses
 only one database.

	Use a single database per shard, and include the shard
 number in both the database and table names (e.g., the table
 name would become bookclub_23.comments_23).

If you include the shard number in the table name, you'll need
 some way to insert the shard number into templated queries. Typical
 practices include special "magic" placeholder values in queries,
 sprintf()-style formatting
 specifications such as %s, and
 string interpolation with variables. Here is one way you can create
 templated queries in PHP:
$sql = "SELECT book_id, book_title FROM bookclub_%d.comments_%d... ";
$res = mysql_query(sprintf($sql, $shardno, $shardno), $conn);
You could also just use string interpolation:
$sql = "SELECT book_id, book_title FROM bookclub_$shardno.comments_$shardno ...";
$res = mysql_query($sql, $conn);
This is easy to build into a new application, but it might be
 harder for existing applications. When we're building new
 applications and query templating isn't an issue, we like to use a
 single database per shard, with the shard number in both the
 database and table name. It adds some complexity for jobs such as
 scripting ALTER TABLE, but it has
 advantages too:
	You can move a shard easily with
 mysqldump if it's completely contained in a
 single database.

	Because a database is a directory in the filesystem, you
 can manage a shard's files easily.

	It's easy to find out how large the shard is if it isn't
 mixed up with other shards.

	The globally unique table names help avoid mistakes. If
 table names are the same everywhere, it's easy to accidentally
 query the wrong shard because you connected to the wrong node,
 or import one shard's data into another shard's tables.

You might want to consider whether your application's data has
 any shard affinity. You might benefit from
 placing certain shards "near" each other (on the same server, on the
 same subnet, in the same data center, or on the same switch) to
 exploit some similarity in the data access patterns. For example,
 you can shard by user and then place users from the same country
 into shards on the same nodes.
Adding sharding support to an existing application often
 results in one shard per node. This simplification helps limit how
 much you need to change the application's queries. Sharding is
 usually a pretty disruptive change for an application, so it makes
 sense to simplify where possible. If you shard so each node looks
 like a miniature copy of the whole application's data, you might not
 have to change most of the queries or worry about routing queries to
 the desired node.

Fixed allocation

There are two main ways to allocate data to the shards: the
 fixed and dynamic
 allocation strategies. Both require a partitioning function that takes a row's partitioning
 key as input and returns the shard that holds the row. [95]
Fixed allocation uses a partitioning function that depends
 only on the partitioning key's value. Hash functions and modulus are
 good examples. These functions map each value of the partitioning
 key into a limited number of "buckets" that can hold the
 data.
Suppose you want 100 buckets, and you want to find out where
 to put user 111. If you're using a modulus, the answer is easy: 111
 modulus 100 is 11, so you should place the user into shard
 11.
If, on the other hand, you're using the CRC32() function for hashing, the answer
 is 81:
mysql> SELECT CRC32(111) % 100;
+------------------+
| CRC32(111) % 100 |
+------------------+
| 81 |
+------------------+
The primary advantages of a fixed strategy are simplicity and
 low overhead. You can also hardcode it into the application.
However, a fixed allocation strategy has disadvantages,
 too:
	If the shards are large and there are few of them, it can
 be hard to balance the load across shards.

	Fixed allocation doesn't let you decide where to store
 each piece of data, which is important for applications that
 don't have a very uniform load on the unit of sharding. Some
 pieces of data are much more active than others, and if many of
 those happen to fall into the same shard, a fixed allocation
 strategy doesn't let you ease the strain by moving some of them
 to another shard. This is not as much of a problem when you have
 many small pieces of data in each shard, because the law of
 large numbers will help even things out.

	It's usually harder to change the sharding, because it
 requires reallocating existing data. For example, if you've
 sharded by a hash function modulus 10, you'll have 10 shards. If
 the application grows and the shards get too large, you might
 want to increase the number of shards to 20. That will require
 rehashing everything, updating a lot of data, and moving data
 between shards.

Because of these limitations, we usually prefer dynamic
 allocation for new applications. But if you're sharding an existing
 application, you might find it easier to build a fixed allocation
 strategy instead of a dynamic one, because it's simpler.
We sometimes use fixed allocation even for new projects. One
 example where it worked well is at BoardReader (http://www.boardreader.com), a forum search engine
 some of the authors built. This site indexes a very large amount of
 data. We were tempted to shard the forums by a hash of the site ID.
 This would have placed all of a site's forums in one shard, which
 would have been good for queries that access data from many of a
 site's forums—for example, the query that finds a site's most
 popular forums. However, some sites have thousands of forums with
 tens or hundreds of millions of messages. The shards would have been
 too large to manage had we used that scheme, so we chose to shard by
 a hash of the forum's ID instead.

Dynamic allocation

The alternative to fixed allocation is a dynamic allocation that you store separately, as a
 per-unit-of-sharding mapping. An example is a two-column table of
 user IDs and shard IDs:
CREATE TABLE user_to_shard (
 user_id INT NOT NULL,
 shard_id INT NOT NULL,
 PRIMARY KEY (user_id)
);
The table itself is the partitioning function. Given a value
 of the partitioning key (the user ID), you can find the shard ID. If
 the row doesn't exist, you can pick the desired shard and add it to
 the table. You can also change it later—that's what makes this a
 dynamic allocation strategy.
Dynamic allocation adds overhead to the partitioning function,
 because it requires a call to an external resource, such as a
 directory server (a data storage node that
 stores the mapping). Such an architecture often needs more layers
 for efficiency. For example, you can use a distributed caching
 system to store the directory server's data in memory, because in
 practice it doesn't change all that much.
The biggest advantage of dynamic allocation is fine-grained
 control over where the data is stored. This makes it easier to
 allocate data to the shards evenly and gives you a lot of
 flexibility to accommodate changes you don't foresee.
A dynamic mapping also lets you build multiple levels of
 sharding strategies on top of the simple key-to-shard mapping. For
 example, you can build a dual mapping that assigns each unit of
 sharding to a group (e.g., a group of users in the book club), and
 then keeps the groups together on a shard where possible. This lets
 you take advantage of shard affinities, so you can avoid cross-shard
 queries.
If you use a dynamic allocation strategy, you can have
 imbalanced shards. This can be useful when your servers aren't all
 equally powerful, or when you want to use some of them for different
 purposes, such as archived data. If you also have the ability to
 rebalance shards at any time, you can maintain a one-to-one mapping
 of shards to nodes without wasting capacity. Some people prefer the
 simplicity of one shard per node. (But remember, there are
 advantages to keeping shards small.)
Dynamic allocation and smart use of shard affinities can
 prevent your cross-shard queries from growing as you scale. Imagine
 a cross-shard query in a data store with four nodes. In a fixed
 allocation, any given query may require touching all shards, but a
 dynamic allocation strategy might let you run the same query on only
 three of the nodes. This might not seem like a big difference, but
 consider what will happen when your data store grows to 400 shards:
 the fixed allocation will require querying 400 shards, while the
 dynamic allocation might still require querying only 3.
Dynamic allocation lets you make your sharding strategy as
 complex as you wish. Fixed allocation doesn't give you as many
 choices.
Mixing dynamic and fixed
 allocation. You can use a mixture of fixed and dynamic allocation, which is often helpful
 and sometimes required. Dynamic allocation works well when the
 directory mapping isn't too large. If there are many units of
 sharding, it may not work so well.
An example is a system that's designed to store links between
 web sites. Such a site needs to store tens of billions of rows, and
 the partitioning key is the combination of source and target URLs.
 (Just one of the two URLs may have hundreds of millions of links, so
 neither URL is selective enough by itself.) However, it's not
 feasible to store all of the source and target URL combinations in
 the mapping table, because there are many of them, and each URL
 requires a lot of storage space.
One solution is to concatenate the URLs and hash them into a
 fixed number of buckets, which you can then map dynamically to
 shards. If you make the number of buckets large enough—say, a
 million—you'll be able to fit quite a few of them into each shard.
 The result is that you get most of the benefits of dynamic sharding,
 without having a huge mapping table.

Explicit allocation

A third allocation strategy is to let the application choose
 each row's desired shard explicitly when it creates the row. This is
 harder to do with existing data, so it's not very common when adding
 sharding to an application. However, it can be helpful
 sometimes.
The idea is to encode the shard number into the ID, similar to
 the technique we showed for avoiding duplicate key values in
 master-master replication. (See "Writing to Both Masters in
 Master-Master Replication" on Writing to Both Masters in Master-Master Replication for more
 details.)
For example, suppose your application wants to create user 3
 and assign it to shard 11, and you've reserved the 8 most
 significant bits of a BIGINT
 column for the shard number. The resulting ID value is (11 << 56) + 3, or 792633534417207299. The application can
 easily extract the user ID and the shard ID later. Here's an
 example:
mysql> SELECT (792633534417207299 >> 56) AS shard_id,
 -> 792633534417207299 & ~(11 << 56) AS user_id;
+----------+---------+
| shard_id | user_id |
+----------+---------+
| 11 | 3 |
+----------+---------+
Now suppose you want to create a comment for this user and
 store it in the same shard. The application can assign the comment
 ID 5 for the user, and combine the value 5 with the shard ID 11 in
 the same way.
The benefit of this approach is that each object's ID carries
 its partitioning key along with it, whereas other approaches usually
 require a join or another lookup to find the partitioning key. If
 you want to retrieve a certain comment from the database, you don't
 need to know which user owns it; the object's ID tells you where to
 find it. If the object were sharded dynamically by user ID, you'd
 have to find the comment's user, then ask the directory server which
 shard to look on.
Another solution is to store the partitioning key together
 with the object in separate columns. For example, you'd never refer
 just to comment 5, but to comment 5 belonging to user 3. This
 approach will probably make some people happier, because it doesn't
 violate first normal form; however, the extra column causes more
 overhead, coding, and inconvenience. (This is one case where we feel
 there's an advantage to storing two values in a single
 column.)
The drawback of explicit allocation is that the sharding is
 fixed, and it's harder to balance shards. On the other hand, this
 approach works well with the combination of fixed and dynamic
 allocation. Instead of hashing to a fixed number of buckets and
 mapping these to nodes, you encode the bucket as part of each
 object. This gives the application control over where the data is
 located, so it can place related data together on the same
 shard.
BoardReader uses a variation of this technique: it encodes the
 partitioning key in the Sphinx document ID. This makes it easy to
 find each search result's related data in the sharded data store.
 See Appendix C for more on
 Sphinx.
We've described mixed allocation because we've seen cases
 where it's useful, but normally we don't recommend it. We like to
 use dynamic allocation when possible, and avoid explicit
 allocation.

Rebalancing shards

If necessary, you can move data to different shards to
 rebalance the load. For example, many readers have probably heard
 developers from large photo-sharing sites or popular social
 networking sites mention their tools for moving users to different
 shards.
The ability to move data between shards has its benefits. For
 example, it can help you upgrade your hardware by enabling you to
 move users off the old shard onto the new one without taking the
 whole shard down or making it read-only.
However, we like to avoid rebalancing shards if possible,
 because it can disrupt service to your users. Moving data between
 shards also makes it harder to add features to the application,
 because new features might have to include an upgrade to the
 rebalance script. If you keep your shards small enough, you might
 not need to do this; you can often rebalance the load by moving
 entire shards, which is easier than moving part of a shard (and more
 efficient, in terms of cost per row of data).
One strategy that works well is to assign new data to shards
 randomly. When a shard gets full enough, you can set a flag that
 tells the application not to give it any new data. You can then flip
 the flag back if you want more data on that shard in the
 future.
Suppose you install a new MySQL node and place 100 shards on
 it. To begin, you set their flags to 1, so the application knows they're ready
 for new data. Once they each have enough data (10,000
 users each, for example), you set their flags to 0. Then, if the node becomes underloaded
 after a while because of abandoned accounts, you can reopen some of
 the shards and add new users to them.
If you upgrade the application and add features that make each
 shard's query load higher, or if you just miscalculated the load,
 you can move some of the shards to new nodes to ease the load. The
 drawback is that an entire shard might be read-only or offline while
 you do this. It's up to you and your users to decide whether that's
 acceptable.

Generating globally unique IDs

When you convert a system to use a sharded data store, you
 frequently need to generate globally unique IDs on many machines. A
 monolithic data store often uses AUTO_INCREMENT columns for this purpose,
 but by default the AUTO_INCREMENT
 feature is designed to run on a single server that can easily
 guarantee uniqueness.
There are several ways to solve this problem:
	Use auto_increment_increment
 and auto_increment_offset
	These two server settings instruct MySQL to increment
 AUTO_INCREMENT columns by a
 desired value and to begin numbering from a desired offset.
 For example, in the simplest case with two servers, you can
 configure the servers to increment by two, set one server's
 offset to one, and set the other's to two (you can't set
 either value to zero). Now one server's columns will always
 contain even numbers, and the other's will always contain odd
 numbers. The setting applies to all tables in the
 server.
Because of its simplicity and lack of dependency on a
 central node, this is a popular way to generate values, but it
 requires you to be careful with your server configurations.
 It's easy to accidentally configure servers so that they
 generate duplicate numbers, especially if you move them into
 different roles as you add more servers, or when you recover
 from failures.

	Create a table in the global
 node
	You can create a table with an AUTO_INCREMENT column in your global
 database node, and applications can use this to generate
 unique numbers.

	Use memcached
	There's an incr()
 function in the memcached API that can
 increment a number atomically and return the result.

	Allocate numbers in batches
	The application can request a batch of numbers from a
 global node, use all the numbers, and then request
 more.

	Use a combination of values
	You can use a combination of values, such as the shard
 ID and an incrementing number, to make each server's values
 unique. See the discussion of this technique in the previous
 section.

	Use dual-column AUTO_INCREMENT
 keys
	This works only for MyISAM tables:
mysql> CREATE TABLE inc_test(
 -> a INT NOT NULL,
 -> b INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY(a, b)
 ->) ENGINE=MyISAM;
mysql> INSERT INTO inc_test(a) VALUES(1), (1), (2), (2);
mysql> SELECT * FROM inc_test;
+---+---+
| a | b |
+---+---+
1	1
1	2
2	1
2	2
+---+---+

	Use GUID values
	You can generate globally unique values with the UUID() function. Beware, though:
 this function does not replicate correctly, although, it works
 fine if your application selects the value into its own memory
 and then uses it as a literal in statements. GUID values are
 large and nonsequential, so they don't make good primary keys
 for InnoDB tables. See "Inserting rows in primary key order
 with InnoDB" on Inserting rows in primary key order with InnoDB.
The MySQL developers have created a UUID_SHORT() function that returns
 shorter, sequential values that should work better as a
 primary key. Future versions of the MySQL server may include
 this code, but at the time of this writing, it has not yet
 been released.

If you use a global allocator to generate values, be careful
 that the single point of contention doesn't create a bottleneck for
 your application.
Although the memcached approach can be
 very fast (tens of thousands of values per second), it isn't
 persistent. Each time you restart the memcached
 service, you'll need to initialize the value in the cache. This
 could require you to find the maximum value that's in use across all
 shards, which might be very slow and difficult to do
 atomically.
If you use a table in MySQL, one way to do it is to create a
 single-row MyISAM table with an AUTO_INCREMENT column that you access
 outside of a transaction for speed. You can either let the table
 grow as you add rows, or limit the table to a single row and use
 REPLACE:
CREATE TABLE single_row (
 col1 int NOT NULL AUTO_INCREMENT,
 col2 int NOT NULL,
 PRIMARY KEY(col1),
 UNIQUE KEY(col2)
) ENGINE=MyISAM;
You can use this table to generate values as follows:
mysql> REPLACE INTO single_row(col2) VALUES(1);
After this statement finishes executing, you can use the MySQL
 API's mysql_insert_id() function
 to retrieve the generated value. How you do this will vary between
 languages, but here's an example in Perl:
my $sth = $dbh->prepare('REPLACE INTO single_row(col2) VALUES(1)');
while (my $item = @work_to_do) {
 $sth->execute();
 my $id = $dbh->{mysql_insert_id};
 # Do the work...
}
You should not use another query, such as SELECT LAST_INSERT_ID(), to retrieve the
 value. This requires another round-trip to the server, which makes
 it less efficient.

Tools for sharding

One of the first things you'll have to do when designing a
 sharded application is write code for querying multiple data
 sources.
It's generally a poor design to expose the multiple data
 sources to the application without any abstraction, because it can
 add a lot of code complexity. It's better to hide the data sources
 behind an abstraction layer. This layer might handle the following
 tasks:
	Connecting to the correct shard and querying it

	Distributed consistency checks

	Aggregating results across shards

	Cross-shard joins

	Locking and transaction management

	Creating shards (or at least discovering new shards on the
 fly) and rebalancing shards if you have time to implement
 this

You might not have to build your own sharding infrastructure
 from scratch. There are several tools and systems that either
 provide some of the necessary functionality or are specifically
 designed to implement a sharded architecture. At the most basic
 level, you can use a tool such as MySQL Proxy to abstract some of
 the complexity of the multiple data sources. Depending on how MySQL
 Proxy evolves in the future, it could become a key part of many
 sharded data stores.
One database abstraction layer with sharding support that
 exists already is Hibernate Shards (http://shards.hibernate.org), an extension to the
 open source Hibernate object-relational mapping (ORM) library, which
 is written in Java. Google developed Hibernate Shards as one of its famous 20% projects and
 then contributed the code to the community. It provides shard-aware
 implementations of the Hibernate Core interfaces, so applications
 don't necessarily have to be redesigned to use a sharded data store;
 in fact, they may not even have to be aware that they're using one.
 Hibernate Shards is a good way to store and retrieve data across
 many servers transparently, but it doesn't provide some features,
 such as rebalancing shards and aggregating query results. It uses a
 fixed allocation strategy to allocate data to the shards.
Another sharding system is HiveDB (http://www.hivedb.org), an open source framework for sharding MySQL that tries to implement sharding's
 core ideas in a clear and concise way. HiveDB is written in Java and
 was designed from the ground up for creating, using, and managing a sharded data
 store. It has several features other systems don't support, such as
 creating shards and moving data between shards (rebalancing). HiveDB
 uses dynamic allocation and refers to sharding as "horizontal
 partitioning."
Sphinx is a full-text search engine, not a sharded data
 storage and retrieval system, but it is still useful for some types
 of queries across sharded data stores. It can query remote systems
 in parallel and aggregate the results, which is one of the harder
 things to do with a sharded data store. (You can read more about
 Sphinx in Appendix C.)

Scaling Back

One of the simpler ways to deal with an increasing data size and
 workload is to archive and purge unneeded data. Depending on your
 workload, you may be able to realize significant gains from archiving
 and purging data you don't need. This doesn't replace the
 need to scale horizontally, but it can be part of a short-term
 strategy to buy time and should probably be part of a long-term
 strategy to cope with large data volumes.
Here are some things to think about when designing archiving and
 purging strategies:
	Impact on the application
	A well-designed archiving strategy can move data away from
 a heavily loaded OLTP server without impacting transaction
 processing noticeably. The key is to make it efficient to find
 the rows to remove, and to remove them in small chunks. You'll
 usually need to balance the number of rows you archive at once
 with the size of a transaction to find a good compromise between
 lock contention and transactional overhead. You should design
 your archive jobs to yield to transactional processing jobs when
 necessary.

	Which rows to archive
	You can purge or archive data once you know you'll never
 refer to it again, but you can also design your application to
 archive seldom-accessed data. You can store the archived data
 adjacent to the core tables and access it through views, or even
 move it to another server entirely.

	Depth first or breadth first?
	Data relationships make archiving and purging more complex. A well-designed archiving
 job keeps the data logically consistent, or at least as
 consistent as the application needs, without involving multiple
 tables in huge transactions.
Deciding which tables to archive first is always a
 challenge when there are relationships among the tables. You'll
 have to consider the impact of "orphaned" or "widowed" rows
 while archiving. It's usually a matter of deciding whether to
 violate foreign keys (you can disable InnoDB foreign key
 constraints with SET
 FOREIGN_KEY_CHECKS=0) or to leave "dangling pointer"
 records temporarily. Which is preferable depends on how your
 application views the data. If the application views a
 particular set of related tables from the top down, you should
 probably archive them in the same order. For example, if your
 application always examines orders before invoices, archive the
 orders first; your application shouldn't see the orphaned
 invoices, and you can archive them next.

	Avoiding data loss
	If you're archiving between servers, you probably
 shouldn't do distributed transactions, and you may be archiving
 into MyISAM or another nontransactional storage engine anyway.
 Therefore, to avoid data loss, you should insert into the
 destination before deleting from the source. It might also be a
 good idea to write archived data to a file along the way. You
 should design your archive jobs so you can kill and restart them
 at will, without causing inconsistencies or index-violation
 errors.

	Unarchiving
	You can often trim a lot more data by archiving with an
 unarchiving strategy. This helps because it lets you archive
 data you're not sure you'll need, with the option of bringing it
 back later. If you can identify a few points of
 entry where your system can check whether it needs to retrieve
 some archived data, it might be fairly easy to implement such a
 strategy. For example, if you archive possibly inactive users,
 the entry point might be the login process. If a login fails
 because there's no such user, you can check the archive and see
 whether the user exists there, retrieve the user from the
 archive, and process the login.

Maatkit contains a tool that can help you archive and/or purge
 MySQL tables efficiently. It does not offer any support for
 unarchiving, however.
Keeping active data separate

Even if you don't actually move stale data away to another server, many applications can
 benefit from separating active and inactive datasets. This helps with cache efficiency,
 and it enables you to use different kinds of hardware or application
 architectures for the active and inactive data. Here are some ways
 to accomplish this:
	Splitting tables into parts
	It's often smart to split tables, especially if the
 entire table won't fit in memory. For example, you can split
 the users table into
 active_users and inactive_users. You might think this
 isn't necessary because the database will cache only the "hot"
 data anyway, but that depends on your storage engine. If you
 use InnoDB, caching works a page at a time. If you can fit 100
 users on a page and only 10% of your users are active, that
 probably makes every page "hot" from InnoDB's point of
 view—yet 90% of each "hot" page will be wasted space.
 Splitting the table in two could improve your memory usage
 dramatically.
The Falcon storage engine has row-level caching, which
 should help make the cache more efficient. However, that
 doesn't mean Falcon tables won't benefit from an
 active/inactive split too. Falcon caches its indexes a page at
 a time, so having a mixture of active and inactive data will
 make its index cache less efficient.

	MySQL partitioning
	MySQL 5.1 offers natively partitioned tables, which can
 help keep the most recent data in memory. See "Merge Tables
 and Partitioning" on Merge Tables and Partitioning for more about
 partitioning.

	Time-based data partitioning
	If your application continually gets new data, it's
 likely that the newest data will be far more active than the
 older data. For example, we know of one blog service whose
 traffic is mostly from posts and comments created in the last
 seven days. Most of its updates are to the same set of data.
 As a result, they keep this data entirely in memory, with
 replication to keep a recoverable copy on disk if there's a
 failure. The rest of the data lives forever in another
 location.
We've also seen designs that store each user's data in
 shards on two nodes. New data goes to the "active" node, which
 has a lot of memory and fast disks. This data is optimized for
 very fast access. The other node stores older data, with very
 large (but slower) disks. The application assumes that it's
 not likely to need the older data. This is a good assumption
 for a lot of applications, which might be able to satisfy 90%
 or more of requests from only the most recent 10% of the
 data.
You can implement this sharding policy easily with
 dynamic sharding. For example, your sharding directory's table
 definition might look something like the following:
CREATE TABLE users (
 user_id int unsigned not null,
 shard_new int unsigned not null,
 shard_archive int unsigned not null,
 archive_timestamp timestamp,
 PRIMARY KEY (user_id)
);
An archive script can move older data from the active node to the archive node,
 updating the archive_timestamp column when it
 moves a user's data to the archive node. The shard_new and shard_archive columns tell you which
 shard numbers hold the data.

Scaling by Clustering

Clustering is another way of scaling by distributing load across
 many servers. The term "clustering" is overloaded with several
 meanings in the computing field, but in general a clustered system consists of several hosts on a local
 area network configured to appear as a single server. A variation on
 clustering is federation—that is, accessing remote servers as though
 they're local, thus creating one giant "virtual server" that really
 acts as a proxy to many servers.
Clustering

MySQL's NDB Cluster storage engine is a distributed,
 in-memory, shared-nothing storage engine with synchronous
 replication and automatic data partitioning across the nodes. It has
 a completely different performance profile from other MySQL storage engines,
 and it performs best with specialized hardware. Although it is a
 very high-performance way to store data for some applications, it is
 not yet a good high-performance solution for most web
 applications.
NDB Cluster is good for applications that have relatively
 little data and execute simple queries. Good uses for it include
 storing web site sessions, file-storage metadata, and so forth. It
 performs very poorly for complex queries, including joins.
 Essentially, any query that's not a single-table indexed lookup
 requires inter-node communication and therefore is slow.
NDB Cluster is a transactional system, but it does not have
 MVCC support, and reads are locking. It also does not do any
 deadlock detection. If there's a deadlock, NDB resolves it with a
 timeout. The combination of locking reads and timeout-based deadlock
 resolution means it may not be a good solution for interactive
 multiuser applications or web applications.
You can implement a variety of other clustering solutions on
 top of, in front of, or underneath MySQL. One example is Continuent
 (http://www.continuent.com), [96] which offers synchronous replication, load balancing, and failover for MySQL via a
 middleware layer.

Federation

Federation is another term with many meanings. In the database
 world, it generally means accessing one server's data from another
 server. Microsoft SQL Server's distributed views are one
 example.
MySQL provides limited support for federation via the
 Federated storage engine. Like NDB Cluster, it works
 best for very simple lookups, though it is also an acceptable way to
 perform INSERT queries on another
 server. Its current architecture makes DELETE and UPDATE queries less efficient—much less
 efficient, in the worst case.
The Federated engine performs very badly with joins and large
 SELECT queries. For example, a
 GROUP BY query retrieves all the
 data from a table and uses mysql_store_result [97] to fetch that data from the remote server into the
 local server's memory. This can cause a lot of trouble as the
 application's data size grows. Federated tables can also make
 replication more complicated, because a single update can execute on
 multiple servers.

[92] Large amounts of memory are not as much of a problem, as
 long as you're using a 64-bit operating system and hardware. There
 are still some limitations, but they're not as severe and obvious.
 We discussed memory usage at length in Chapter 7.

[93] Sharding is also called "splintering" and "partitioning,"
 but we use the term "sharding" to avoid confusion. Google calls
 it sharding, and if it's good enough for Google, it's good
 enough for us.

[94] Thanks to the HiveDB project and Britt Crawford for
 contributing these elegant diagrams.

[95] We're using "function" in its mathematical sense here to
 refer to a mapping from the input (domain) to the output
 (range). As you'll see, you can create such a function in many
 ways, including using a lookup table in your database.

[96] Or its makers' open source offering, Sequoia, available at
 http://sequoia.continuent.org.

[97] See "The MySQL Client/Server Protocol" on Query Execution Basics for more about mysql_store_result.

Load Balancing

The basic idea behind load balancing is simple: to share the
 workload as evenly as possible among a collection of servers. The usual
 way to do this is to place a load balancer (often a specialized piece of
 hardware) in front of the servers. The load balancer then routes
 incoming connections to the least busy available server. Figure 9-5 shows a typical
 load-balancing setup for a large web site, with one load balancer for
 the HTTP traffic and another for MySQL traffic.
Load balancing has five common goals:
	Scalability
	If you've designed your systems properly, you can add
 capacity by adding more servers to a node. But when you add more
 servers, you have to balance the load among them.

	Efficiency
	Load balancing helps you use resources more efficiently
 because you have control over how requests are routed. This is
 particularly important if your servers aren't all equally
 powerful: you can direct more work to the powerful
 machines.

	Availability
	A smart load-balancing solution uses the servers that are
 available at each moment.

	Transparency
	Clients don't need to know about the load-balancing setup. They don't have to care about
 how many machines are behind the load balancer, or what their
 names are; the load balancer makes it so the clients see a single
 virtual server.

	Consistency
	

If your application is stateful (database transactions, web site
 sessions, etc.), the load balancer should direct related requests to a
 single server so that the state isn't lost between requests. This
 relieves the application of having to keep track of which server it's
 connected to.
[image: Typical load-balancing architecture for a read-intensive web site]

Figure 9-5. Typical load-balancing architecture for a read-intensive web
 site

In the MySQL world, load-balancing architectures are often tightly
 coupled with sharding and replication. You can mix and match
 load-balancing and high-availability solutions and place them at
 whatever level is appropriate within your application. For example, you
 can load balance across multiple nodes in a MySQL cluster. You can also
 load balance across data centers, and within each data center you might
 have a sharded architecture, each node of which is actually a
 master-master replication pair with many slaves that are load balanced
 yet again. The same is true of high-availability strategies; you can
 have multiple levels of failover in an architecture.
Load balancing has many nuances. For example, one of the challenges is managing read/write
 policies. Some load-balancing technologies do this themselves, whereas
 others require the application to be aware of which nodes are readable
 and writable.
You should consider these factors when you decide how to implement
 load balancing. A wide variety of load-balancing solutions
 are available, ranging from peer-based implementations such as
 Wackamole (http://www.backhand.org/wackamole/) to Domain Name System (DNS), LVS (Linux Virtual Server; http://www.linuxvirtualserver.org), hardware load
 balancers, MySQL Proxy, and managing the load balancing in the
 application.
Connecting Directly

Some people automatically associate load balancing with a
 central system that's inserted between the application and the MySQL
 servers. This isn't the only way to load balance, though. You can load
 balance and yet still connect directly from the application to the
 MySQL servers. In fact, centralized load-balancing systems usually
 work well only when there's a pool of servers the application can
 treat as interchangeable. If the application needs to make a decision
 such as whether it's safe to perform a read from a slave server, it usually needs to
 connect directly to the server.
Besides making special-case logic possible, handling the
 load-balancing decisions in the application can actually be very
 efficient. For example, if you have two identical slaves, you can
 choose to use one of them for all queries that touch certain shards
 and the other for queries that touch other shards. This makes good use
 of the slaves' memory, because each of them caches only a portion of
 the data from its disks in memory. If one of the slaves fails, the
 other still has all the data required to serve queries to both
 shards.
The following sections discuss some common ways to connect
 directly from the application, and some of the things you should
 consider as you evaluate each option.
Splitting reads and writes in replication

MySQL replication gives you multiple copies of your data and
 lets you choose whether to run a query on the master or a slave. The
 primary difficulty is how to handle stale data on the slave because
 replication is asynchronous. You should also treat slaves as
 read-only, but the master can handle both read and write
 queries.
You usually have to modify your application so that it's aware
 of these concerns. [98] The application can then use the master for writes and
 split the reads between the master and the slaves; it can use the
 slaves when possibly stale data doesn't matter and use the master
 for data that has to be up-to-date.
If you use a master-master pair with an active and a passive
 master, the same considerations hold. In this configuration, though,
 only the active server should receive writes. Reads can go to the
 passive server if it's OK to read potentially stale data.
The biggest problem is how to avoid artifacts caused by
 reading stale data. The classic artifact is when a user makes some
 change, such as adding a comment to a blog post, then reloads the page but doesn't see the change because
 the application read stale data from a slave.
Some of the most common methods of splitting reads and writes
 are as follows:
	Query-based split
	The simplest split is to direct all writes and any reads
 that can never tolerate stale data to the active or master
 server. All other reads go to the slave or passive server.
 This strategy is easy to implement, but in practice it won't
 use the slave as often as it could, because very few read
 queries can always tolerate stale data.

	Stale-data split
	This is a minor enhancement of the query-based split
 strategy. Relatively little extra work is required to make the
 application check the slave's lag and decide whether or not
 its data is too stale to read. Many reporting applications can
 use this strategy: as long as the nightly data load has
 finished replicating to the slave, they don't care whether its
 data is 100% in sync with the master's.

	Session-based split
	A slightly more sophisticated way to decide whether a
 read can go to a slave is to note whether the user has changed
 any data. The user doesn't have to see the most up-to-date
 data from other users but should see his or her own changes.
 You can implement this at the session level by flagging the
 session as having made a change and directing the user's read
 queries to the master for a certain period of time after
 that.
You can combine this with replication lag monitoring; if
 the user changed some data 10 seconds ago and no slave is more
 than 5 seconds behind, it's safe to read from a slave. It's a
 very good idea to select one of the slaves and use it for the
 whole session, though, or the user might see strange effects
 caused by some of the slaves being farther behind than
 others.

	Version-based split
	This is similar to session-based splitting: you can
 track version numbers and/or timestamps for objects, and read
 the object's version or timestamp from the slave to determine
 whether its data is fresh enough to use. If the slave's data
 is too old, you can read the fresh data from the master. You
 can also increment the top-level item's version number even
 when the object itself doesn't change, which simplifies
 staleness checks (you need to look in only one place—at the
 top-level item). For example, you can update the user's
 version if he or she posts a new blog entry. This will cause
 reads to go to the master.
Reading the object's version from the slave adds
 overhead, which you can reduce with caching. We discuss
 caching and object versioning further in the next
 chapter.

	Global version/session split
	This is a variation on version- and session-based
 splits. When the application performs a write, it runs
 SHOW MASTER STATUS after
 the transaction commits. It stores the master's log
 coordinates in the cache as the modified object's and/or
 session's version number. Then, when the application connects
 to the slave, it runs SHOW SLAVE
 STATUS and compares the slave's coordinates to the
 stored version. If the slave has advanced to at least the
 point at which the master committed the transaction, the slave
 is safe to use for the read.

Most read/write splitting solutions require monitoring the
 slave lag and using it to decide where to direct reads. If you do
 this, be aware that the Seconds_behind_master column from SHOW SLAVE STATUS is not a reliable way to
 monitor slave lag. See "Measuring Slave Lag" on Determining Whether Slaves Are Consistent with the
 Master for
 details.
If pure scalability is your goal and you don't care how much
 hardware it takes, you can keep things simpler and either not use
 replication or use it only for high availability and not for
 load balancing. That might let you avoid the
 complexity of splitting reads between the master and slaves. Some
 people think this makes sense; others think it wastes hardware. This
 division reflects differing goals: do you want scalability only, or
 both scalability and efficiency? If you want efficiency too, and
 thus want to use the slaves for something other than just keeping a
 copy of the data, you'll probably have to deal with some added
 complexity.

Changing the application configuration

One way you can distribute load is to reconfigure your
 application. For example, you can configure several machines to
 share the load of generating large reports. Each machine's
 configuration can instruct it to connect to a different MySQL slave
 and generate reports for every Nth
 customer or site.
This system is generally very simple to implement, but if it
 requires any code changes—including changes to configuration
 files—it becomes brittle and unwieldy. Anything hardcoded that you
 have to change on every server, or change in a central location and
 "publish" via file copies or source-control update commands, is
 inherently limited. If you store the configuration in the database
 and/or a cache, you can avoid the need to publish code
 changes.

Changing DNS names

A crude load-balancing technique, but one that works well for
 some simple applications, is to create DNS names for various
 purposes. You can then write a periodic job to monitor the MySQL
 servers, and point the names at different servers as appropriate.
 The simplest implementation is to have one DNS name for the
 read-only servers and one for the writable server. If the slaves are
 keeping up with the master, you can change the read-only DNS name to
 point to the slaves; when they fall behind, you can point it back to
 the master.
The DNS technique is very easy to implement, but it has many
 drawbacks. The biggest problem is that DNS is not completely under
 your control:
	DNS changes are not instantaneous. It can take a long time
 for DNS changes to propagate throughout a network or between
 networks.

	DNS data is cached in various places, and expiry times are
 advisory, not mandatory.

	DNS changes might require an application or server restart
 to take effect fully.

	It's not a good idea to use multiple IP addresses for a DNS name and rely on
 round-robin behavior to balance requests. The round-robin
 behavior isn't always predictable.

	DNS changes are not atomic.

	The DBA may not always have direct access to DNS.

Unless the application is very simple, it's dangerous to rely
 on a system that's not controllable. You can improve your control a
 little by making changes to /etc/hosts instead
 of DNS. When you publish a change to this file, you know the change
 has taken effect. This is better than waiting for a cached DNS entry
 to expire, but it is still not ideal.
We usually advise people to build for zero reliance on DNS.
 It's a good idea to avoid it even for simple applications, because
 you never know how large your application will grow.

Moving IP addresses

Some load-balancing solutions rely on moving virtual IP
 addresses [99] between servers, which can work very well. This may
 sound similar to making DNS changes, but it's not the same thing.
 Servers don't listen for network traffic to a DNS name; they listen
 for traffic to a specific IP address, so moving IP addresses allows
 DNS names to remain static. You can force IP address changes to be
 noticed very quickly and atomically via Address Resolution Protocol
 (ARP) commands.
Two systems that use this technique are Wackamole and LVS. For
 example, they let you have a single IP address associated with a
 role such as "read-only," and they take care of moving the IP
 address between machines as needed. Wackamole can manage many IP
 addresses and ensures that one and only one machine is listening on
 each address in the pool. Wackamole is unique in that the service is
 peer-based, which helps eliminate a single point of failure.
One handy technique is to assign a fixed IP address to each
 physical server. This IP address defines the server itself and never
 changes. You can then use a virtual IP address for each logical "service." These can move between
 servers easily, which makes it easy to move services and application
 instances around without reconfiguring the application. This is a
 nice feature, even if you don't move IP addresses a lot for
 load balancing or high availability.

Introducing a Middleman

So far, the techniques we've discussed all assume your
 application is communicating directly with MySQL servers. However, many
 load-balancing solutions introduce a middleman whose job is to act as
 a proxy for the network traffic. The middleman accepts all traffic on
 one side and directs it to the desired server on the other, then
 routes the responses back to the originating machine. Sometimes the
 middleman is a piece of hardware, and sometimes it's software.
 [100] Figure 9-6 illustrates this
 architecture. Such solutions generally work very well, although unless
 you make the load balancer itself redundant, they add a single point
 of failure.
[image: A load balancer that acts as a middleman]

Figure 9-6. A load balancer that acts as a middleman

Load balancers

There is a wide variety of load-balancing hardware and
 software on the market, but few of the offerings are designed
 specifically for balancing load to MySQL servers. [101] Web servers need load balancing much more often, so many
 general-purpose load-balancing devices have special features for
 HTTP and only a few basic features for everything else.
Tip
An exception is MySQL Proxy, which is a good way to help divide
 reads and writes for some applications. It adds complexity and
 some overhead, but it also gives a lot of flexibility and lets you
 use scripting for custom read/write splits. MySQL Proxy is
 relatively new, but already there are many tutorials and examples
 of how to use it for custom load balancing online. Because it can peek inside
 the conversations it's relaying, this tool can potentially do very
 complicated query routing.

MySQL connections are just normal TCP/IP connections, so you
 can use general-purpose load balancers for MySQL. However, the lack
 of MySQL-specific features does add some limitations:
	Unless the load balancer is aware of MySQL's true load,
 it's unlikely to balance load so much as
 distribute requests. Not all queries are
 equal, but general-purpose load balancers usually treat all
 requests as equal.

	Most load balancers know how to inspect an HTTP request
 and "stick a session" to a server to preserve session state on
 one web server. MySQL connections are stateful too, but the load
 balancer is unlikely to know how to "stick" all connection
 requests from a single HTTP session to a single MySQL server.
 This results in a loss of efficiency (if a single session's
 requests all go to the same MySQL server, the server's cache
 will be more efficient).

	Connection pooling and persistent connections can
 interfere with a load balancer's ability to distribute
 connection requests. For example, suppose a connection pool
 opens its configured number of connections, and the load
 balancer distributes them among the existing four MySQL servers.
 Now say you add two more MySQL servers. Because the connection
 pool isn't requesting any new connections, they'll sit idle. The
 connections in the pool also might end up being unfairly
 distributed among the servers, so some are overloaded and others
 are underloaded. You can work around these problems by expiring
 the connections in the pool at various levels, but that's
 complicated and difficult to do. Connection pooling solutions work best when they do their own
 load balancing.

	Most general-purpose load balancers know how to do health
 and load checks only for HTTP servers. A simple load balancer
 can verify that the server accepts connections on a TCP port,
 which is the bare minimum. A better load balancer can make an
 HTTP request and check the response code to determine whether
 the web server is running well. MySQL doesn't accept HTTP
 requests to port 3306, though, so you'll have to build a custom
 health check. You can install HTTP server software on the MySQL
 server and point the load balancer at a custom script that
 actually checks the MySQL server's status and returns an
 appropriate status code. [102] The most important things to check are the
 operating system load (generally by looking at
 /proc/loadavg), the replication status, and
 the number of MySQL connections.

Load-balancing algorithms

There are many different algorithms to determine which server
 should receive the next connection. Each vendor uses different
 terminology, but this list should provide an idea of what's
 available:
	Random
	The load balancer directs each request to a server
 selected at random from the pool of available
 servers.

	Round-robin
	The load balancer sends requests to servers in a
 repeating sequence: A, B, C, A, B, C, etc.

	Least connections
	The next connection goes to the server with the fewest
 active connections.

	Fastest response
	The server that has been handling requests the fastest
 receives the next connection. This can work well when the pool
 contains a mix of fast and slow machines. However, it's very
 tricky with SQL when the query complexity varies widely. Even
 the same query can perform very differently under different
 circumstances, such as when it's served from the query cache
 or when the server's caches already contain the needed
 data.

	Hashed
	The load balancer hashes the connection's source IP
 address, which maps it to one of the servers in the pool. Each
 time a connection request comes from the same IP address, the
 load balancer sends it to the same server. The bindings change
 only when the number of machines in the pool does.

	Weighted
	The load balancer can combine and weight several of the
 other algorithms. For example, you may have single- and
 dual-CPU machines. The dual-CPU machines are roughly twice as
 powerful, so you can tell the load balancer to send them an
 average of twice as many requests.

The best algorithm for MySQL depends on your workload. The
 least-connections algorithm, for example, might flood new servers
 when you add them to the pool of available servers—just when their
 caches aren't warmed up yet. The authors of this book's first
 edition experienced that problem firsthand.
You'll need to experiment to find the best performance for
 your workload. Be sure to consider what happens in extraordinary
 circumstances as well as in the day-to-day norm. It is under
 extraordinary circumstances—such as high load, schema changes, or an
 unusual number of servers going offline—when you can least afford
 something going terribly wrong.
We've described only instant-provisioning algorithms, which
 don't queue connection requests. Sometimes algorithms that use
 queuing can be more efficient. For example, an algorithm might
 maintain a given concurrency on the database server, such as
 allowing no more than N active
 transactions at the same time. If there are too many active
 transactions, the algorithm can put a new request in a queue and
 serve it from the first server that becomes "available" according to
 the criteria. Some connection pools support queuing
 algorithms.

Adding and removing servers in the pool

Adding a new server to the pool is usually not as simple as
 plugging it in and notifying the load balancer of its existence. You
 might think it'll be OK as long as it doesn't get flooded with
 connections, but that's not always true. Sometimes you can add load
 to a server slowly, but some servers whose caches are cold might be
 so slow that they shouldn't get any queries for
 a while.
When a server's caches are cold, even simple queries can take
 a long time to complete. If it takes 30 seconds to return the data a
 user needs to see for a page view, the server is unusable even for a
 small amount of traffic. You can avoid this problem by mirroring
 SELECT traffic from an active
 server for a while before you notify the load balancer about the new
 server. You can do this by reading and replaying the active server's
 log files on the newly started server.
You should configure the servers in the connection pool so
 that there is enough unused capacity to let you take servers out for
 maintenance, or to handle the load when servers fail. You need more
 than just "enough" capacity on each server.
Make sure your configuration limits are high enough to work
 when servers are out of the pool. For example, if you find that each
 MySQL server typically has 100 connections, you should set max_connections to 200 on each server in
 the pool. Then, even if half the servers fail, the pool should be
 able to handle the same number of connections as a whole.

Load Balancing with a Master and Multiple Slaves

The most common replication topology is a single master with
 multiple slaves. It can be difficult to move away from this
 architecture. Many applications assume there's a single destination
 for all writes, or that all data will always be available on a single
 server. Though this is not the most scalable architecture, there are
 ways you can use it to good effect with load balancing. This section examines some of those
 techniques:
	Functional partitioning
	You can stretch capacity quite a bit by configuring slaves
 or groups of slaves for particular purposes. Common functions
 you might consider separating are reporting and analytics, data
 warehousing, and full-text searching. You can find more ideas in
 "Custom Replication Solutions" on Custom Replication Solutions.

	Filtering and data partitioning
	You can partition data among otherwise similar slaves with
 replication filters (see "Replication Filters" on Replication Filters). This strategy can work well
 as long as your data is already separated into different
 databases or tables on the master. Unfortunately, there's no
 built-in way to filter at the level of individual rows. However,
 you could implement a row-level filtering scheme by replicating
 into a distribution master and using Blackhole tables with
 triggers to insert the rows into different tables based on a
 column's value.
You can even do more exotic things, such as replicating
 into Federated tables, but this will probably turn into a mess.
 Federated tables introduce interserver dependencies that are
 generally best avoided.
Even if you don't partition the data amongst the slaves,
 you can improve cache efficiency by partitioning reads instead
 of distributing them randomly. For instance, you might direct
 all reads for users whose names begin with the letters A–M to a
 given slave, and all reads for users whose names begin with N–Z
 to another slave. This helps use each machine's cache more
 fully, because repeated reads are more likely to find the
 relevant data in the cache. In the best case, where there are no
 writes, this strategy effectively gives you a total cache size
 the same as the two machine's cache sizes combined. In
 comparison, if you distribute the reads randomly among the
 slaves, every machine's cache essentially duplicates the data,
 and your total effective cache size is only as big as a single
 slave's cache, no matter how many slaves you have.

	Moving parts of writes to a slave
	The master doesn't always have to do all the work involved
 in writes. You can save a significant amount of redundant work
 for the master and the slaves by
 decomposing write queries and running parts of them on slaves.
 See "Excessive Replication Lag" on Excessive Replication Lag for more on this
 topic.

	Guaranteeing a slave is caught up
	If you want to run a certain process on the slave, and it
 needs to know that its data is current as of a certain point in
 time—even if it has to wait a while for that to happen—you can
 use the MASTER_POS_WAIT()
 function to block until the slave catches up to the desired
 point on the master. Alternatively, you can use a replication
 heartbeat to check for up-to-dateness, though this doesn't
 provide subsecond granularity. See "Measuring Slave Lag" on
 Determining Whether Slaves Are Consistent with the
 Master for
 more on this technique.

	Write synchronization
	You can also use MASTER_POS_WAIT() to make sure your
 writes actually reach one or more slaves. If your application
 needs to emulate synchronous replication to guarantee data
 safety, it can cycle between each slave, running MASTER_POS_WAIT() on each. This
 creates a "synchronization barrier" that can take a long time to
 pass if any of the slaves is far behind in replication, so it's
 a good idea to use it only when absolutely necessary. (You can
 also wait until just one slave receives the event if your goal
 is only to ensure that some slave has the event.)

[98] If you can use MySQL Proxy to split your queries, you
 might not need to change the application.

[99] Virtual IP addresses aren't connected to any specific
 computer or network interfaces; they "float" between
 computers.

[100] You can configure LVS so it is involved only when an
 application needs to create a new connection, and it isn't a
 middleman after that.

[101] We mentioned some of the software implementations
 (Sequoia, Continuent) earlier in the chapter; there's also
 DBIx::DBCluster for Perl, and
 SQL Relay (http://sqlrelay.sourceforge.net) for a
 language-independent solution.

[102] Actually, if your coding kung fu is up to the task of
 writing a program to listen on port 80, or if you configure
 xinetd to invoke your program, you
 don't even need to install a web server.

High Availability

Most people consider a system to be available if it is responding
 to users. Availability might be a little more complex than that,
 however. An application can be responding, yet in "degraded" mode, if
 part of it has failed but it has enough built-in fault tolerance to
 continue running. You may also place an application in read-only mode
 for maintenance or in case of an emergency; whether this counts toward
 its "uptime" is up to you. Most users of photo-sharing sites, for
 instance, don't mind a brief period when they're unable to upload new
 photos; on the other hand, an ATM user doesn't want to see a "read-only
 for maintenance" message. The web site can be considered up, but the ATM
 is down.
Implementing high availability is actually very simple: you build
 in redundancy, and make your systems bring replacements online when
 something fails. The hard part is doing this quickly and
 reliably.
Planning for High Availability

Applications have vastly different availability needs. Before
 you set your heart on a certain uptime goal, ask yourself what you
 really need to achieve. Each increment of availability usually costs
 far more than the previous one; the ratio of availability to effort
 and cost is nonlinear.
The most important principle of high availability is to find and
 eliminate single points of failure in your system. Think through your
 application and try to identify any such points. Is it a hard drive, a
 server, a switch or router, or the power for one rack? Are your
 machines all in one data center, or are your "redundant" data centers
 provided by the same company? Any point in your system that isn't
 redundant is a single point of failure. Other common single points of
 failure are reliance on services such as DNS, a single network
 provider (check that your redundant network connections are really
 connected to different Internet backbones), and a single power
 grid.
Try to understand all of the components that affect
 availability, take a balanced view of the risks, and work on the
 biggest ones first. Some people work hard to build software that can
 handle any kind of hardware failure, but bugs in this kind of software
 can cause more downtime than it saves. Some people build "unsinkable"
 systems with all kinds of redundancy, but they forget that the data
 center can lose power or connectivity. Or maybe they completely forget
 about the possibility of malicious attackers or programmer mistakes
 that delete or corrupt data—a careless DROP
 TABLE can cause downtime, too.
You can identify high-priority risks by calculating your risk
 exposure, which is the probability of failure multiplied by the cost
 of failure. A simple spreadsheet of risks—with columns for the
 probability, the cost, the exposure—can help you prioritize your
 efforts.
You can't always eliminate single points of failure. Making a
 component redundant might not be possible because of some limitation
 you can't work around, such as a geographic, budgetary, or timing
 constraint.
Next, think about switching (or failing over) to a standby
 system in the event of a failure, upgrade, application modification,
 or scheduled maintenance. Anything that makes part of your application
 unavailable might require a failover plan, and you need to identify
 how fast that failover needs to be.
A related question is how quickly you need to replace the failed
 component after a failover. Until you restore the system's depleted
 standby capacity, you have less redundancy and extra risk. Thus, having a standby
 doesn't eliminate the need for timely replacement of failed
 components. How quickly can you build a new standby server, install
 its operating system, and give it a fresh copy of your data? Do you
 have enough standby machines? You might need more than one.
Another consideration is whether you'll lose any data, even if
 your application doesn't go offline. If a server has a truly
 catastrophic failure, you might lose at least some data, such as the
 last few transactions that were written to the (now lost) binary log
 and didn't make it to a slave's relay log. Can you tolerate this? Most
 applications can; the alternatives are usually expensive, complex, or
 have some performance overhead. For example, you can use Google's
 synchronous replication patches (more on this later), or you can place
 the binary log on a device that's replicated by DRBD so you won't lose
 it even if the system fails completely.
A clever application architecture can often reduce your
 availability needs, at least for part of the system, and
 thus make high availability easier to achieve. Separating critical and
 noncritical parts of your application can save you a lot of work and
 money, because it's much easier to provide redundancy and high
 availability for a smaller system.
In general, making an application highly available and
 preventing data loss is difficult and expensive past a certain point,
 so we advise setting realistic goals and avoiding overengineering.
 Fortunately, the effort required to build two or three nines of uptime
 may not be that high, depending on the application.

Adding Redundancy

Adding redundancy to your system can take two forms: adding
 spare capacity and duplicating components.
It's actually quite easy to add spare capacity—you can use any
 of the techniques we've mentioned throughout this chapter. One way to
 increase availability is to create a cluster or pool of servers and
 add a load-balancing solution. If one server fails, the other servers
 take over its load. It is generally a good idea to underutilize your
 components if you can, because it gives you much more "headroom" to
 handle performance problems caused either by increased load or by
 component failures.
For many purposes, you will need to duplicate components and
 have a standby ready to take over if the main component fails. A
 duplicated component can be a simple as a spare network card, router,
 or hard drive—whatever you think is most likely to fail.
Duplicating entire MySQL servers is a little harder, because a
 server is useless without its data. That means you must ensure that
 your standby servers have access to the primary server's data. The
 following sections discuss some ways you can accomplish this.
Shared-storage architectures

Shared storage is a way to remove some single points of
 failure, usually with a SAN (see "Storage Area Networks" on Storage Area Networks and Network-Attached Storage for more on
 this). With this strategy, the active server mounts the filesystem
 and operates normally. If the active server dies, the standby server
 can mount the same filesystem, perform any necessary recovery
 operations, and start MySQL on the failed server's files. This
 process is logically no different from fixing the failed server,
 except that it's much faster because the standby server is already
 booted and ready to go. Filesystem checks and InnoDB recovery are
 the biggest delays you're likely to encounter.
Shared storage helps eliminate some data loss scenarios, but
 it is still a single point of failure. If it goes down, the whole
 system goes down. And if the failure corrupts your data files, the
 standby server might not be able to recover anyway. We highly
 recommend using InnoDB or another transactional storage engine with
 shared storage. A crash will almost certainly corrupt MyISAM tables,
 and repairing them can take a long time.

Replicated-disk architectures

A replicated disk is another way to keep your data safe in
 case of a catastrophic failure on a master server. The disk
 replication most commonly used for MySQL is DRBD (http://www.drbd.org), in combination with the tools from the Linux-HA
 project (more on this later).
DRBD is synchronous, block-level replication implemented as a
 Linux kernel module. It copies every block from a primary device
 over a network card to another server's block device (the secondary
 device), and writes it there before committing the block on the
 primary device. [103]
DRBD runs only in active-passive mode. The passive device is a
 hot standby, and you cannot access it—not even in read-only
 mode—unless it becomes primary. Because writes must complete on the
 secondary device before the writes on the primary are considered
 complete, the secondary device must perform at least as well as the
 primary, or it will limit write performance on the primary. Also, if
 you're using DRBD to have an interchangeable standby in the event
 that the primary fails, the standby server's hardware should match
 the primary server's.
If the active server fails, you can promote the secondary
 device to be the primary. Because DRBD replicates the disk at the
 block layer, however, the filesystem may become inconsistent. This
 means it's best to use a journaling filesystem for fast recovery.
 Once recovery is complete, MySQL will probably need to run its own
 recovery as well. If the first server recovers, it resyncs its
 device with the new primary device and assumes the secondary
 role.
In terms of how you actually implement failover, DRBD is
 similar to a SAN: you have a hot standby machine, and you make it
 begin serving from the same data as the failed machine. The biggest
 difference is that it is replicated storage—not shared storage—so
 with DRBD you're serving a replicated copy of the data, while with a
 SAN you're serving the same data from the same physical device as
 the failed machine. In both cases, the MySQL server's caches will be
 empty when you start it on the standby machine. In contrast, a
 replication slave's caches are likely to be at least partially
 warmed up.
DRBD has some nice features and capabilities that can prevent
 problems common to clustering software. An example is split-brain
 syndrome, which occurs when two nodes promote themselves to primary
 simultaneously. You can configure DRBD so it won't let split-brain
 syndrome happen. However, DRBD isn't a perfect solution for every
 need. Let's take a look at its drawbacks:
	DRBD's failover is not subsecond. It will generally
 require at least five seconds to promote the secondary device to
 primary, not including any necessary filesystem and MySQL
 recovery.

	It's expensive because you must run it in active-passive
 mode. The hot standby server's replicated device is not usable
 for any other tasks while it's in passive mode. Whether this is
 really a shortcoming depends on your point of view. If you want
 truly high availability and can't tolerate degraded service
 when there's a failure, you can't place more than one machine's
 worth of load on any two machines, because if you did, you
 wouldn't be able to handle the load if one of them failed. You
 can use the standby server for something else, such as a
 replication slave, but you'll still waste some resources.

	It's practically unusable for MyISAM tables, because they
 take too long to check and repair. MyISAM is not a good choice
 for any installation that requires high availability; use InnoDB
 or another storage engine that has good recovery performance
 instead.

	It does not replace backups. If your data becomes corrupt
 on disk due to malicious interference, mistakes, bugs, or
 hardware failures, DRBD will not help: the replicated data will
 be a perfect copy of the corrupted original. You need backups
 (or time-delayed MySQL replication) to protect against these
 problems.

Our favorite way to use DRBD is to replicate only the device
 that holds the binary logs. If the active node fails, you can start
 a log server on the passive node and use the recovered binary logs
 to bring all of the failed master's slaves up to the latest binary
 log position (see "Creating a log server" on Creating a log server). You can then choose one of the
 slaves and promote it to master, replacing the failed system.

Synchronous MySQL replication

In synchronous replication, a transaction cannot complete
 on the master until it commits on one or more slave servers. There
 are various levels of synchronous replication, which have several common
 names. MySQL does not offer synchronous replication at the time of
 this writing, but there are third-party solutions. One such solution
 is Google's internal patches.
Google has an extensive set of patches for MySQL and InnoDB,
 which add many extra features. Among them is semisynchronous
 replication, which causes a replication master to wait until at
 least one slave has received the event before it commits a
 transaction. Google has released its patches for MySQL 4.0.26 and
 5.0.37. You can download the patches and several related tools at
 http://code.google.com/p/google-mysql-tools.
Another option is Solid Information Technology's
 high-availability technology, which it has ported to
 solidDB for MySQL. This solution has several advantages over MySQL
 replication, including:
	The slave cannot fall behind the master.

	Solid uses multiple threads for writing on the slave,
 improving replication performance in many scenarios.

	The "safeness" level during replication is
 user-configurable. In 1-Safe mode, transactions return once they
 are committed on the master. In 2-Safe mode, transactions do not
 return until after they have also been committed on the slave,
 providing an extra level of safety in the event of a
 failure.

However, it works only with the solidDB storage engine, not
 with MyISAM, InnoDB, or any other storage engine. Solid may port
 more of its high-availability technology for a future
 release.
In addition to these two variations on the MySQL server
 itself, you can use a middleware solution such as Continuent.

Failover and Failback

Failover is the process of removing a
 failed server and using another server instead. This is one of the
 most important parts of a high-availability architecture.
Before we go any further, let's define a few terms. We use
 "failover" in a standard way; some people use "fallback" as a synonym.
 Sometimes people also say "switchover" to denote a switch that's
 planned instead of a response to a failure.
We also use the term "failback" to indicate the reverse of failover. If you
 have failback capability, failover can be a two-way process: when
 server A fails and server B replaces it, you can repair server A and
 fail back to it.
Failover comes in many flavors. We've already discussed several
 of them, because load balancing and failover are similar in many ways,
 and the line between them is a bit fuzzy. In general, we think a full
 failover solution, at a minimum, needs to be able to monitor and
 automatically replace a server. This should ideally be transparent to
 the application. Load balancing need not provide this
 capability.
In the Unix world, failover is usually accomplished with the
 tools provided by the High Availability Linux project (http://linux-ha.org), which—despite their creator's
 name, run on many Unix-like operating systems. The heartbeat tool
 provides monitoring, and various other tools accomplish IP takeover
 and load-balancing functionality. You can combine them with DRBD
 and/or LVS.
The most important part of failover is failback. If you can't
 switch back and forth between servers at will, failover is a dead end
 and only postpones downtime. This is why we like symmetrical
 replication topologies, such as the dual-master configuration, and we
 dislike ring replication with three or more co-masters. If the
 configuration is symmetrical, failover and failback are the same operation in opposite
 directions. (It's worth mentioning that DRBD has built-in failback
 capabilities.)
In some applications, it's critical that failover and failback
 be as fast and atomic as possible. Even when it's not, it's still a
 good idea not to rely on things that are out of your control, such as
 DNS changes or application configuration files. Some of the worst
 problems don't show up until a system becomes larger, when issues such
 as forced application restarts and the need for atomicity rear their
 heads. Anyone who's ever tried to atomically update code across many
 servers knows it's difficult.
Because load balancing and failover are closely related, and the
 same piece of hardware or software often serves both purposes, we
 suggest that any load-balancing technique you choose provide failover
 capabilities as well. This is the real reason we suggested you avoid
 DNS or code changes for load balancing. If you use these strategies
 for load balancing, you'll create extra work: you'll have to rewrite
 the affected code later when you need high availability.
The following sections discuss some common failover techniques.
Promoting a slave or switching roles

Promoting a slave to a master, or switching the active and
 passive roles in a master-master replication setup, is an important
 part of many failover solutions for MySQL. See "Changing Masters" on Changing Masters for
 detailed explanations of how to accomplish this.

Virtual IP addresses or IP takeover

You can achieve high availability by assigning a logical IP address to a
 MySQL instance that you expect to perform certain services. If the
 MySQL instance fails, you can move the IP address to a different
 MySQL server. This is essentially the same approach we wrote about
 earlier, in "Moving IP addresses" on Moving IP addresses, except that now we're using it to
 provide failover instead of load balancing.
The benefit of this approach is its transparency for the
 application. It will abort existing connections, but it doesn't
 require you to change your application's configuration. It is also
 possible to move the IP address atomically, so all applications see
 the change at the same time. This can be especially important when a
 server is "flapping" between available and unavailable
 states.
The downsides are as follows:
	You need to either define all IP addresses on the same
 network segment, or use network bridging.

	Changing the IP address requires root access to the
 system.

	Sometimes you need to update address resolution protocol
 (ARP) caches. Some network devices may cache ARP entries for too
 long, and may not instantly switch an IP address to a different
 MAC address.

	You need to make sure the network hardware supports fast
 IP takeover. Some hardware requires MAC address cloning for this
 to work properly.

	It's possible for a server to keep its IP address even
 though it's not fully functional, so you may need to physically
 shut it down or disconnect it from the network.

Floating IP addresses and IP takeover work well for failover
 between machines that are local to each other—that is, on the same
 subnet.
ora: Waiting for Changes to Propagate
Often, when you define redundancy on one layer, you have to
 wait for a lower layer to actually carry out a change. Earlier in
 this chapter, we pointed out that changing servers through DNS is
 a weak solution because DNS is slow to propagate changes. Changing
 IP addresses gives you more control, but IP addresses on a LAN
 also depend on a lower layer—ARP—to propagate changes.

The MySQL Master-Master Replication Manager

The MySQL Master-Master Replication Manager tool (http://code.google.com/p/mysql-master-master), or
 mmm for short, is a set of scripts that perform
 monitoring, failover, and management of master-master replication
 configurations. Despite its name, it can automate the failover
 process for other topologies as well, including simple master-slave
 and master-master configurations with one or many slaves. It uses
 the abstraction of a role, such as reader or
 writer, and a mixture of permanent and floating IP addresses. It
 notices when a server fails and reassigns IP addresses to "move the
 roles" if necessary. It can also help with planned failover for
 maintenance and other tasks.
The usual setup is a pair of co-master MySQL servers, with an
 mmmd_agent process running on each one. You
 need to configure each with some basic information, such as IP
 addresses, usernames, and passwords. Each of the
 mmmd_agent processes is aware of its
 peer.
There's also a separate monitoring node. This shouldn't run on
 the same hardware as either of the co-masters. It watches both nodes
 and handles failover—that is, moving the writer role. There are a
 total of three virtual IP addresses you can use to connect to the
 MySQL servers: two for the reader role and one for the writer. You
 can use the mmm_control program to view and
 control the MySQL instances and to move the writer role as
 desired.
You can combine mmm with other techniques
 (such as Google's semisynchronous replication patches, which we
 mentioned earlier in this chapter) to further increase reliability
 and availability.

Middleman solutions

You can use proxies, port forwarding, network address
 translation (NAT), and hardware load balancers for failover and failback. However, they do introduce a single point of
 failure themselves, and you'll need to make them redundant to avoid
 that problem.
One of the nice things you can do with such a solution is make
 a remote data center appear to be on the same network as your
 application. This lets you use techniques such as floating IP
 addresses to make your application begin communicating with an
 entirely different data center. You can configure each application
 server in each data center to connect through its own middleman,
 each of which routes traffic to the machines in the active data
 center. Figure 9-7
 illustrates this configuration.
[image: Using MySQL Proxy to route MySQL connections across data centers]

Figure 9-7. Using MySQL Proxy to route MySQL connections across data
 centers

If the active data center's MySQL installation fails entirely,
 the middleman can route the traffic to the pool of servers in the
 other data center, and the application never needs to know the
 difference.
The major disadvantage of this configuration is the high
 latency between the Apache server in one data center and the MySQL
 servers in the other data center. To alleviate this problem, you can
 run the web server in redirect mode. This will redirect traffic to
 the data center that houses the pool of active MySQL servers. You
 can also achieve this with an HTTP proxy.
Figure 9-7
 shows MySQL Proxy as the means of connecting to the MySQL servers,
 but you can combine this approach with many middleman architectures,
 such as LVS and hardware load balancers.

Handling failover in the application

Sometimes it's easier or more flexible to let the application
 handle failover. For example, if the application experiences
 an error that isn't normally detected by an outside observer, such
 as an error message indicating database corruption, it can handle
 the failover process itself.
Although integrating the failover process into the application
 may seem attractive, it tends not to work well. Most applications
 have many components, such as cron jobs,
 configuration files, and scripts written in different programming
 languages. Integrating failover into the application can therefore
 become unwieldy, especially as the application grows and becomes
 more complicated.
However, it's a good idea to build monitoring into your
 application and let it initiate the failover
 process if it needs to. The application should also be able to
 manage the user experience, by providing degrading functionality and
 showing appropriate messages to the user.

[103] You can actually adjust the level of synchronization for
 DRDB. You can set it to be asynchronous, to wait until the
 remote device receives the data, or to block until the remote
 device writes the data to disk. Also, it is strongly recommended
 to dedicate a network card to DRBD.

Chapter 10. Application-Level Optimization

This book would not be complete without a chapter on optimizing the
 applications that connect to MySQL, because they are frequently to blame
 for many performance problems that seem to be caused by MySQL. We focus mostly on
 optimizing MySQL in this book, but we don't want you to miss the bigger
 picture. There is no way to optimize MySQL enough to compensate for poor
 application design. In fact, sometimes the answer is to take operations
 entirely out of MySQL and do them in the application or use other tools,
 which may offer much better performance.
This chapter isn't a reference for how to build a high-performance
 application, but we hope it will help you avoid some common mistakes that
 can hurt MySQL's performance. We focus on web applications, because MySQL
 is so often used for them.
Application Performance Overview

The search for faster performance begins very simply: the
 application is taking too long to respond to requests, and you need to
 do something about it. But what exactly is the problem? The common
 bottlenecks are slow queries, locks, CPU saturation, network latency,
 and file I/O. Any of these can become a problem if the application is
 misconfigured or uses resources inappropriately.
Find the Source of the Problem

The first task is to find the culprit. This will be much easier
 if you've added profiling capabilities to your application. If you've
 done this but you can't see what's causing the slow performance, you
 may need to add more profiling calls. Look for places where a resource
 is either slow or requested many times.
If your application is waiting because it's CPU-bound and you
 have high concurrency, the "lost time" we mentioned in "Profiling an
 Application" on How and what to measure might be
 the problem. For this reason, it's sometimes helpful to profile under
 limited concurrency conditions.
Network latency can use up a lot of time, even on a local
 network. Application-level profiling already includes the network
 latency, so you should be able to see the effects of network
 round-trips in your profiling system. For example, if a page executes
 1,000 queries, just half a millisecond of network latency will add up
 to half a second of response time. This is a lot for a
 high-performance application.
If your application-level profiling is thorough, it should not
 be hard to find the source of your problem. If you don't have
 profiling built in, add it if possible. If you can't add it, try some
 of the suggestions in "When You Can't Add Profiling Code" on Operating System Profiling. This might be easier and
 faster than chasing dead-end theories about what's causing the
 slowdown.

Look for Common Problems

We see the same problems over and over again in applications,
 often because people have used poorly designed off-the-shelf systems
 or popular frameworks that simplify development. Although it's
 sometimes easier and faster to use something you didn't build
 yourself, it also adds risk if you don't really know what it's doing
 under the hood. Here's a list of things you should check:
	What's using the CPU, disk, network, and memory resources on
 each of the machines involved? Do the numbers look reasonable to
 you? If not, check the basics for the applications that are
 hogging resources. Configuration is sometimes the simplest way to
 solve problems. For example, if Apache runs out of memory because
 it creates 1,000 worker processes that each need 50 MB of memory,
 you can configure the application to require fewer Apache workers.
 You can also configure the system to use less memory for each
 process.

	Is the application really using all the data it's getting?
 Fetching 1,000 rows but displaying only 10 and throwing away the
 rest is a common mistake. (However, if the application caches the
 other 990 rows for later use, it might be an intentional
 optimization.)

	Is the application doing processing that ought to be done in
 the database, or vice versa? Two examples are fetching all rows
 from a table to count them and doing complex string manipulations
 in the database. Databases are good at counting rows, while
 application languages are good at regular expressions. Use the
 best tool for the job.

	Is the application doing too many queries? Object-relational
 mapping (ORM) query interfaces that "protect programmers from
 having to write SQL" are often to blame. The database server is
 designed to match data from multiple tables. Remove the nested
 loops in the code and write a join instead.

	Is the application doing too few queries? We know, we just
 said doing too many queries can be a problem. But sometimes
 "manual joins" and similar practices can be a
 good idea, because they can permit more
 granular and efficient caching, less locking (especially for
 MyISAM), and sometimes even faster execution when you emulate a
 hash join in application code (MySQL's nested loop join method is
 not always efficient).

	Is the application connecting to MySQL unnecessarily? If you
 can get the data from the cache, don't connect.

	Is the application connecting too many times to the same
 MySQL instance, perhaps because different parts of the application
 open their own connections? It's usually a better idea to reuse
 the same connection throughout.

	Is the application doing a lot of "garbage" queries? A
 common example is selecting the desired database before each
 query. It might be a good idea to always connect to a specific
 database and use fully qualified names for tables. (This also
 makes it easier to analyze queries from the log or via SHOW PROCESSLIST, because you can
 execute them without needing to change the database.) "Preparing"
 the connection is another common problem. The Java driver in
 particular does a lot of things during preparation, most of which
 you can disable. Another common garbage query is SET NAMES UTF8, which is the wrong way
 to do things anyway (it does not change the client library's
 character set; it affects only the server). If your application
 uses a specific character set for most of its work, you can avoid
 the need to change the character set by configuring it as the
 default.

	Does the application use a connection pool? This can be both
 a good and a bad thing. It helps limit the number of connections,
 which is good when connections aren't used for many queries (Ajax
 applications are a typical example). However, it can have side
 effects, such as applications interfering with each other's
 transactions, temporary tables, connection-specific settings, and
 user-defined variables.

	Does the application use persistent connections? These can
 result in way too many connections to MySQL. They're generally a
 bad idea, except if the cost of connecting to MySQL is very high
 because of a slow network, if the connection will be used only for
 one or two fast queries, or if you're connecting so frequently
 that you're running out of local port numbers on the client (see
 "Network Configuration" on Network Configuration for more about this). If you
 configure MySQL correctly, you may not need persistent
 connections. Use skip-name-resolve to prevent reverse DNS
 lookups and ensure that thread_cache is set high enough.

	Is the application holding connections open even when it's
 not using them? If so—particularly if it connects to many
 servers—it may be consuming connections that other processes need.
 For example, suppose you're connecting to 10 MySQL servers.
 Getting 10 connections from an Apache process isn't a problem, but
 only one of them will really be doing anything at any given time.
 The other nine will spend a lot of time in the Sleep state. If one server slows down,
 or there's a long network call, the other servers can suffer
 because they're out of connections. The solution is to control how
 the application uses connections. For example, you can batch
 operations to each MySQL instance in turn, and close each
 connection before querying the next one. If you're doing
 time-consuming operations, such as calls to a web service, you can
 even close the MySQL connection, perform the time-consuming work,
 then reopen the MySQL connection and continue working with the
 database.

The difference between persistent connections and connection pooling can be confusing. Persistent
 connections can cause the same side effects as connection pooling,
 because a reused connection is stateful in either case.
However, connection pools don't usually result in as many
 connections to the server, because they queue and share connections
 among processes. Persistent connections, on the other hand, are
 created on a per-process basis and can't be shared among
 processes.
Connection pools also allow more control over connection
 policies than shared connections. You can configure a pool to
 autoextend, but the usual practice is to queue connection requests
 when the pool is completely busy. This makes the connection requests
 wait on the application server, rather than overload the MySQL server
 with too many connections.
There are many ways to make queries and connections faster, but
 the general rule is that avoiding them altogether is better than
 trying to speed them up.

Web Server Issues

Apache is the most popular server software for web
 applications. It works well for many purposes, but when used badly it
 can consume a lot of resources. The most common issues are keeping its
 processes alive too long, and using it for a mixture of purposes instead
 of optimizing it separately for each type of work.
Apache is usually used with mod_php,
 mod_perl, and mod_python in
 a "prefork" configuration. Preforking dedicates a process for each request. Because
 the PHP, Perl, and Python scripts can be demanding, it's not uncommon
 for each process to use 50 or 100 MB of memory. When a request
 completes, it returns most of this memory to the operating system, but
 not all of it. Apache keeps the process open and reuses it for future
 requests. This means that if the next request is for a static file, such
 as a CSS file or an image, you'll wind up with a big fat process serving
 a simple request. This is why it's dangerous to use Apache as a
 general-purpose web server. It is general-purpose, but if you specialize
 it, you'll get much better performance.
The other major problem is that processes can be kept busy for a
 long time if you have Keep-Alive enabled. And even if you don't, some of the
 processes might be staying alive too long, "spoon-feeding" content to a
 client that is fetching the data slowly. [104]
People also often make the mistake of leaving the default set of
 Apache modules enabled. You can trim Apache's footprint by
 removing modules you don't need. It's simple: just review the Apache
 configuration file and comment out unwanted modules, then restart
 Apache. You can also remove unused PHP modules from your
 php.ini file.
The bottom line is that if you create an all-purpose Apache
 configuration that faces the Web directly, you're likely to end up with
 many heavyweight Apache processes. These will waste resources on your
 web server. They can also keep a lot of connections open
 to MySQL, wasting resources on MySQL too. Here are some ways you can
 reduce the load on your servers: [105]
	Don't use Apache to serve static content, or at least use a
 different Apache instance. Popular alternatives are
 lighttpd and
 nginx.

	Use a caching proxy server, such as Squid or Varnish, to
 keep requests from ever reaching your web servers. Even if you can't
 cache full pages on this level, you may be able to cache most of a
 page and use technologies such as edge side includes (ESI; see http://www.esi.org) to
 embed the small dynamic portion of the page into the cached static
 portion.

	Set an expiration policy on both dynamic and static content.
 You can use caching proxies such as Squid to invalidate content
 explicitly. Wikipedia uses this technique to remove articles from
 caches when they change.

	Sometimes you might need to change the application so that you
 can use longer expiration times. For example, if you tell the
 browser to cache CSS and JavaScript files forever and then release a
 change to the site's HTML, the pages might render badly. You can
 version the files explicitly with a unique filename for each
 revision. For example, you can customize your web site publishing
 script to copy the CSS files to
 /css/123_frontpage.css, where
 123 is the Subversion revision number. You can
 do the same thing for image filenames—never reuse a filename, and
 your pages will never break when you upgrade them, no matter how
 long the browser caches them.

	Don't let Apache spoon-feed the client. It's not just slow; it
 also makes denial-of-service attacks easy. Hardware load balancers
 typically do buffering, so Apache can finish quickly and the load
 balancer can spoon-feed the client from the buffer. You can also use
 lighttpd, Squid, or Apache in event-driven mode
 in front of the application.

	Enable gzip compression. It's very cheap
 for modern CPUs, and it saves a lot of traffic. If you want to save
 on CPU cycles, you can cache and serve the compressed version of the
 page with a lightweight server such as
 lighttpd.

	Don't configure Apache with a Keep-Alive for long-distance connections, because that
 will keep fat Apache processes alive for a long time. Instead, let a
 server-side proxy handle the Keep-Alive, and shield Apache from the
 client. It's OK to configure the connections between the proxy and
 Apache with a Keep-Alive, because the proxy will use only a few
 connections to fetch data from Apache. Figure 10-1 illustrates
 the difference.

[image: A proxy can shield Apache from long-lived Keep-Alive connections, resulting in fewer Apache workers]

Figure 10-1. A proxy can shield Apache from long-lived Keep-Alive
 connections, resulting in fewer Apache workers

These tactics should keep Apache processes short-lived, so you
 don't end up with more processes than you need. However, some operations
 may still cause an Apache process to stay alive for a long time and
 consume a lot of resources. An example is a query to an external
 resource that has high latency, such as a remote web service. This
 problem is often unsolvable.
Finding the Optimal Concurrency

Every web server has an optimal
 concurrency—that is, an optimal number of concurrent
 connections that will result in requests being processed as quickly as
 possible, without overloading your systems. A little trial and error
 can be required to find this "magic number," but it's worth the
 effort.
It's common for a high-traffic web site to handle thousands of
 connections to the web server at the same time. However, only a few of
 these connections need to be actively processing requests. The others
 may be reading requests, handling file uploads, spoon-feeding content,
 or simply awaiting further requests from the client.
As concurrency increases, there's a point at which the server
 reaches its peak throughput. After that, the throughput levels off and
 often starts to decrease. More importantly, the response time
 (latency) starts to increase.
To see why, consider what happens when you have a single CPU and
 the server receives 100 requests simultaneously. One second of CPU
 time is required to process each request. Assuming a perfect operating
 system scheduler with no overhead, and no context switching overhead,
 the requests will need a total of 100 CPU seconds to complete.
What's the best way to serve the requests? You can queue them
 one after another, or you can run them in parallel and switch between
 them, giving each request equal time before switching to the next. In
 both cases, the throughput is one request per second. However, the
 average latency is 50 seconds if they're queued (concurrency = 1), and
 100 seconds if they're run in parallel (concurrency = 100). In
 practice, the average latency would be even higher for parallel
 execution, because of the switching cost.
For a CPU-bound workload, the optimal concurrency is equal to
 the number of CPUs (or CPU cores). However, processes are not always
 runnable, because they make blocking calls such as I/O, database
 queries, and network requests. Therefore, the optimal concurrency is
 usually higher than the number of CPUs.
You can estimate the optimal concurrency, but it requires
 accurate profiling. It's usually easier to experiment with different
 concurrency values and see what gives the peak throughput without
 degrading response time.

[104] Spoon-feeding occurs when a client makes an HTTP request but
 then doesn't fetch the result quickly. Until the client fetches the
 entire result, the HTTP connection—and thus the Apache process—stays
 alive.

[105] A good book on how to optimize web applications is
 High Performance Web Sites by Steve Souders (O'Reilly). Though it's mostly about how to
 make web sites faster from the client's point of view, the practices
 he advocates are good for your servers, too.

Caching

Caching is vital for high-load applications. A typical web
 application serves a lot of content that costs much more to generate
 than it costs to cache (including the cost of checking and expiring the
 cache), so caching can usually improve performance by orders of
 magnitude. The trick is to find the right combination of granularity and
 expiration policies. You also need to decide what content to cache and
 where to cache it.
A typical high-load application has many layers of caching.
 Caching doesn't just happen in your servers: it happens at every step
 along the way, including the user's web browser (that's what content
 expiration headers are for). In general, the closer the cache is to the
 client, the more resources it saves and the more effective it is.
 Serving an image from the browser's cache is better than serving it from
 the web server's memory, which is better than reading it from
 the server's disk. Each type of cache has unique characteristics, such
 as size and latency; and we examine some of them in the following
 sections.
You can think about caches in two broad categories:
 passive caches and active
 caches. Passive caches do nothing but store and return data. When
 you request something from a passive cache, either you get the result or
 the cache tells you "that doesn't exist." An example of a passive cache
 is memcached.
In contrast, an active cache does something when there's a miss.
 It usually passes your request on to some other part of the application,
 which generates the requested result. The active cache then stores the
 result and returns it. The Squid caching proxy server is an active cache.
When you design your application, you usually want your caches to
 be active (also called transparent), because they
 hide the check-generate-store logic from the application. You can build
 active caches on top of passive caches.
ora: Caching Doesn't Always Help
You need to make sure that caching really improves performance, because it might
 not help at all. For example, in practice it's often faster to serve
 content from lighttpd's memory than to serve it
 from a caching proxy. This is especially true if the proxy's cache is
 on disk.
The reason is simple: caching has its own overhead. There's the
 overhead of checking the cache, and serving the data from the cache if
 there's a hit. There's also the overhead of invalidating the cache and
 storing data in it. Caching is helpful only if these costs are less
 than the cost of generating and serving the data without a
 cache.
If you know the costs of all these operations, you can calculate
 how much the cache helps. The cost without the cache is the cost of
 generating the data for each request. The cost with the cache is the
 cost of checking the cache, plus the probability of a cache miss times
 the cost of generating the data, plus the probability of a cache hit
 times the cost of serving the data from the cache.
If the cost with the cache is lower than without, it's an
 improvement, but that's not guaranteed. Also bear in mind that, as in
 the case of serving data from lighttpd's memory
 rather than from the proxy's on-disk cache, some caches are cheaper
 than others.

Caching Below the Application

The MySQL server has its own internal caches, and you can build
 your own cache and summary tables too. You can custom design your
 cache tables so that they're most useful for filtering, sorting,
 joining to other tables, counting, or any other purpose. Cache tables
 are also more persistent than many application-level caches, because
 they'll survive a server restart.
We wrote about these cache strategies in Chapters Chapter 3 and Chapter 4, so in this chapter, we
 focus on caching at the application level and above.

Application-Level Caching

An application-level cache typically stores data in memory
 on the same machine, or across the network in another machine's
 memory.
Application-level caching can be more efficient than
 caching at a lower level, because the application can
 store partially computed results in the cache. Thus, the cache saves
 two types of work: fetching the data, and doing computations on it. A
 good example is blocks of HTML text. The application can generate HTML
 snippets such as the top news headlines, and cache them. Subsequent
 page views can then simply insert this cached text into the page. In
 general, the more you process the data before you cache it, the more
 work you save when there's a cache hit.
The disadvantage is that the cache hit rate can be lower, and
 the cache can use more memory. Suppose you need 50 different versions
 of the top news headlines, so the user sees different content
 depending on where she lives. You'll need enough memory to store all
 50 of them, fewer requests will hit any given version of the
 headlines, and invalidation can be more complicated.
There are many types of application caches. Here are a
 few:
	Local caches
	These caches are usually small and live only in the
 process's memory for the duration of the request. They're useful
 for avoiding a repeated request for a resource when it's needed
 more than once. There's nothing fancy about this type of cache:
 it's usually just a variable or hash table in the application
 code. For example, suppose you need to display a user's name,
 and you know the user's ID. You can build a get_name_from_id() function and add
 caching to it like this:
<?php
function get_name_from_id($user_id) {
 static $name; // static makes the variable persist
 if (!$name) {
 // Fetch name from database
 }
 return $name;
}
?>
If you're using Perl, the Memoize module is the standard way to
 cache the results of function calls:
use Memoize qw(memoize);
memoize 'get_name_from_id';
sub get_name_from_id {
 my ($user_id) = @_;
 my $name = # get name from database
 return $name;
}
These techniques are simple, but they can save your
 application a lot of work.

	Local shared-memory caches
	These caches are medium-size (a few GB), fast, and hard to
 synchronize across multiple machines. They're good for small,
 semi-static bits of data. Examples include lists of the cities
 in each state, the partitioning function (mapping table) for a
 sharded data store, or data that you can invalidate with
 time-to-live (TTL) policies. The biggest benefit of shared
 memory is that accessing it is very fast—usually much faster
 than accessing any type of remote cache.

	Distributed memory caches
	The best-known example of a distributed memory cache is
 memcached. Distributed caches are much
 larger than local shared-memory caches and are easy to grow.
 Only one copy of each bit of cached data is created, so you
 don't waste memory and introduce consistency problems by
 caching the same data many places. Distributed
 memory is great for storing shared objects, such as user
 profiles, comments, and HTML snippets.
These caches have much higher latency than local
 shared-memory caches, though, so the most efficient way to use
 them is with multiple-get operations (i.e., getting many objects
 in a single round-trip). They also require you to plan how
 you'll add more nodes, and what to do if one of the nodes dies.
 In both cases, the application needs to decide how to distribute
 or redistribute cached objects across the nodes.
Consistent caching is important to avoid performance problems
 when you add a server to or remove a server from your cache
 cluster. There's a consistent caching library for memcached
 at http://www.audioscrobbler.net/development/ketama/.

	On-disk caches
	Disks are slow, so caching on disk is best for persistent objects,
 objects that are hard to fit in memory, or static content
 (pregenerated custom images, for example).
One very useful trick with on-disk caches and web servers
 is to use 404 error handlers to catch cache misses. Suppose your
 web application shows a custom-generated image in the header,
 based on the user's name ("Welcome back, John!"). You can refer
 to the image as
 /images/welcomeback/john.jpg. If the image
 doesn't exist, it will cause a 404 error and trigger the error
 handler. The error handler can generate the image, store it on
 the disk, and either issue a redirect or just stream the image
 back to the browser. Further requests will just return the image
 from the file.
You can use this trick for many types of content. For
 example, instead of caching the latest headlines as a block of
 HTML, you can store them in a JavaScript file and then refer to
 /latest_headlines.js in the web page's
 header.
Cache invalidation is easy: just delete the file. You can
 implement TTL invalidation by running a periodic job that
 deletes files created more than N
 minutes ago. And if you want to limit the cache size, you can
 implement a least recently used (LRU) invalidation policy by
 deleting files in order of their last access time.
Invalidation based on last access time requires you to
 enable the access time option in your filesystem's mount
 options. (You actually do this by omitting the noatime mount option.) If you do this,
 you should use an in-memory filesystem to avoid a lot of disk
 activity. See "Choosing a Filesystem" on Choosing a Filesystem for more on this
 topic.

Cache Control Policies

Caches create the same problem as denormalizing your database
 design: they duplicate data, which means there are multiple places to
 update the data, and you have to figure out how to avoid reading bad
 data. The following are several of the most common cache control
 policies:
	TTL (time to live)
	The cached object is stored with an expiration date; you
 can either remove the object with a purge process when that date
 arrives, or leave it until the next time something accesses it
 (at which time you should replace it with a fresh version). This
 invalidation policy is best for data that changes rarely or
 doesn't have to be fresh.

	Explicit invalidation
	If stale data is not acceptable, the process that updates
 the source data can invalidate the old version in the cache.
 There are two variations of this policy:
 write-invalidate and
 write-update. The write-invalidate policy
 is simple: you just mark the cached data as expired (and
 optionally purge it from the cache). The write-update policy
 involves a little more work, because you have to replace the old
 cache entry with the updated data. However, it can be very
 beneficial, especially if it is expensive to generate the cached
 data (which the writer process might already have). If you
 update the cached data, future requests won't have to wait for
 the application to generate it. If you do invalidations in the
 background, such as TTL-based invalidations, you can generate
 new versions of the invalidated data in a process that's
 completely detached from any user request.

	Invalidation on read
	Instead of invalidating stale data when you change the
 source data from which it's derived, you can store some
 information that lets you determine whether the data has expired
 when you read it from the cache. This has a significant
 advantage over explicit invalidation: it has a fixed cost that
 you can spread out over time. Suppose you invalidate an object
 upon which a million cached objects depend. If you invalidate on
 write, you have to invalidate a million things in the cache in
 one hit, which could take a long time even if you have an
 efficient way to find them. If you invalidate on read, the write
 can complete immediately, and each of a million reads will be
 delayed slightly. This spreads out the cost of the invalidation
 and helps avoid spikes of load and long latencies.

One of the simplest ways to do invalidation on read is with
 object versioning. With this approach, when you
 store an object in the cache, you also store the current version
 number or timestamp of the data upon which it depends. For example,
 suppose you're caching statistics about a user's blog posts, including
 the number of posts the user has made. When you cache the blog_stats object, you store the user's
 current version number with it, because the statistics are dependent
 on the user.
Whenever you update some data that also depends on the user, you
 update the user's version number. Suppose the user's version is
 initially 0, and you generate and cache the statistics. When the user
 publishes a blog post, you increase the user's version to 1 (you'd
 store this with the blog post too, though we don't really need it for
 this example). Then, when you need to display the statistics, you
 compare the cached blog_stats
 object's version to the cached user's version. Because the user's
 version is greater than the object's version, you know that the
 statistics are stale and you need to recompute them.
This is a pretty coarse way to invalidate content, because it
 assumes that every bit of data that's dependent on the user also
 interacts with all other data. That's not always true. If a user edits
 a blog post, for example, you'll increment the user's version, and
 that will invalidate the stored statistics even though the statistics
 (the number of blog posts) didn't really change. The tradeoff is
 simplicity. A simple cache invalidation policy isn't just easier to
 build, it might be more efficient too.
Object versioning is a simplified approach to a tagged
 cache, which can handle more complex dependencies. A tagged
 cache knows about different kinds of dependencies and tracks versions
 separately for each of them. To return to the book club example from
 the previous chapter, you could make the cached comments dependent on
 the user's version and the book's version by tagging the comments with
 these version numbers: user_ver=1234 and book_ver=5678. If either version changes,
 you'd refresh the cached comments.

Cache Object Hierarchies

Storing objects in a cache hierarchically can help with
 retrieval, invalidation, and memory usage. Instead of caching just objects, you can cache the object IDs, as
 well as the groups of object IDs that you commonly retrieve
 together.
A search result on an e-commerce web site is a good example of
 this technique. A search might return a list of matching products,
 complete with names, descriptions, thumbnail photos, and prices.
 Caching the entire list would be inefficient: other
 searches would be likely to include some of the same products,
 resulting in duplicate data and wasted memory. That strategy would
 also make it hard to find and invalidate search results when a
 product's price changes, because you'd have to look inside each list
 to see which ones include the updated product.
Instead of caching the list, you can cache minimal information
 about the search, such as the number of results returned and a list of
 product IDs. You can then cache each product separately. This solves
 both problems: it doesn't duplicate any results, and it makes it easy
 to invalidate the cache at the granularity of individual
 products.
The drawback is that you have to retrieve multiple objects from
 the cache, instead of getting the entire search result at once.
 However, storing the list of product IDs for the search result makes
 this efficient. Now a cache hit returns the list of IDs, which you can
 use for a second call to the cache. The second call can return
 multiple products if the cache lets you get multiple results with a
 single call (memcached supports this through the
 mget() call).
If you're not careful, this approach could cause odd results.
 Suppose you use a TTL policy to invalidate search results, and you
 invalidate individual products explicitly when they change. Now
 imagine that a product's description changes so it no longer contains
 the keywords that matched a search, but the search isn't old enough to
 have expired from the cache. Your users will see stale search results,
 because the cached search will refer to the product even though it no
 longer matches the search keywords.
This isn't usually a problem for most applications. If your
 application can't tolerate it, you can use version-based caching and store the product versions with the results
 when you perform a search. When you find a search result in the cache,
 you can compare each product's version in the search results to the
 current (cached) version. If any product is stale, you can repeat the
 search and recache the results.

Pregenerating Content

In addition to caching bits of data at the application level, you can
 prerequest some pages with background processes and store the results
 as static pages. If your pages are dynamic, you can pregenerate parts
 of the pages and use a technique such as server-side includes to build
 the final pages. This can help to reduce the size and cost of the
 pregenerated content, because you might otherwise duplicate a lot of
 content due to minor variations in how the constituent pieces are
 assembled into the final page.
Caching pregenerated content can take a lot of space, and it's
 not always possible to pregenerate everything. As with any form of
 caching, the most important pieces of content to pregenerate are those
 that are requested the most, so you can do on-demand generation with
 the 404 error handlers we mentioned earlier in this chapter.
Pregenerated content sometimes benefits from being stored on an
 in-memory filesystem to avoid disk I/O.

Extending MySQL

If MySQL can't do what you need, one possibility is to extend
 its capabilities. We won't show you how to do that, but we want to
 mention some of the possibilities. If you're interested in exploring any
 of these avenues further, there are good resources online, and there are
 books available on many of the topics.
When we say "MySQL can't do what you need," we mean two things:
 MySQL can't do it at all, or MySQL can do it, but in a slow or awkward
 way that's not good enough. Either is a reason to look at extending MySQL. The good news is that MySQL is becoming
 more and more modular and general-purpose. For example, MySQL 5.1 has a
 lot of useful plug-in functionality; it even allows storage engines to
 be plug-ins, so you don't need to compile them into the server.
Storage engines are a great way to extend MySQL for a special
 purpose. Brian Aker has written a skeleton storage engine and a series
 of articles and presentations about how to get started writing your own
 storage engine. This has formed the basis for several of the major
 third-party storage engines. Many companies are writing their own
 internal storage engines now, as you'll see if you follow the MySQL
 internals mailing list. For example, Friendster uses a special storage
 engine for social graph operations, and we know of another company that
 built a custom engine for fuzzy searches. A simple custom storage engine
 isn't very hard to write.
You can also use a storage engine as an interface to another piece
 of software. A good example of this is the Sphinx storage engine, which
 interfaces with the Sphinx full-text search software (see Appendix C).
MySQL 5.1 also allows full-text search parser plug-ins, and you can write UDFs (see Chapter 5), which are great for CPU-intensive
 tasks that have to run in the server's thread context and are too slow
 or clumsy in SQL. You can use them for administration, service
 integration, reading operating system information, calling web services,
 synchronizing data, and much more.
MySQL Proxy is another option that's great if you want to
 add your own functionality to the MySQL protocol. And Paul McCullagh's
 scalable blob-streaming infrastructure project (http://www.blobstreaming.org) opens up a range of new
 possibilities for storing large objects in MySQL.
Because MySQL is free, open source software, you can even hack the
 server itself if it doesn't do what you need. We know of companies that
 have extended the server's parser grammar, for example. Third parties
 have submitted many interesting MySQL extensions in the areas of
 performance profiling, scalability, and new features in recent years.
 The MySQL developers are very responsive and helpful when people
 want to extend MySQL. They're available via the mailing list
 internals@lists.mysql.com (see http://lists.mysql.com to subscribe), MySQL forums, or
 the #mysql-dev IRC channel on freenode.

Alternatives to MySQL

MySQL is not necessarily the solution for every need. It's often
 much better to do some work completely outside MySQL, even if MySQL can
 theoretically do what you want.
One of the most obvious examples is storing data in a traditional
 filesystem instead of in tables. Image files are the classic case: you
 can put them into a BLOB column, but
 this is rarely a good idea. [106] The usual practice is to store images or other large
 binary files on the filesystem and store the filenames inside MySQL; the
 application can then retrieve the files from outside of MySQL. In a web
 application, you accomplish this by putting the filename in the element's src attribute.
Full-text searching is something else that's best handled outside
 of MySQL—MySQL doesn't perform these searches as well as Lucene or
 Sphinx (see Appendix C).
The NDB API can also be useful for certain tasks. For instance,
 although MySQL's NDB Cluster storage engine isn't (yet) well suited for
 storing all of a high-performance web application's data, it's possible
 to use the NDB API directly for storing web site session data or user
 registration information. You can learn more about the NDB API at http://dev.mysql.com/doc/ndbapi/en/index.html. There's
 also an NDB module for Apache, mod_ndb, which you
 can download at http://code.google.com/p/mod-ndb/.
Finally, for some operations—such as graph relationships and tree
 traversals—a relational database just isn't the right paradigm. MySQL
 isn't good for distributed data processing, because it lacks parallel
 query execution capabilities. You'll probably want to use other tools
 for this purpose (possibly in combination with MySQL).

[106] There are advantages to using MySQL replication to distribute
 images quickly to many machines, and we know of some applications
 that use this technique.

Chapter 11. Backup and Recovery

It's easy to focus on "getting real work done" and neglect backup
 and recovery. What's urgent is often not important, and what's important is often not
 urgent. Backups are important for high performance as well as for
 disaster recovery. You need to plan and design for backups from the start
 so that they don't cause downtime or reduced performance.
If you don't plan for backups and build them in early, you'll
 usually create a bolt-on solution later. At that point, you might find
 that you've made decisions that rule out the best way to handle
 high-performance backups. For example, you might set up a server and then
 realize you really want LVM so that you can take filesystem snapshots—but
 it's too late. You also might not notice some important performance
 impacts of configuring your systems for backups. And if you don't plan for
 and practice recovery, it won't go smoothly when you need to do it.
Backup systems are like monitoring and alerting systems: most system
 administrators have reinvented them at one time or another. This is a
 shame, because there is good, well-supported, flexible backup software out
 there—some of it open source and free. We encourage you to use the parts
 of these systems that make sense for you.
We aren't going to cover all parts of a well-designed backup and
 recovery solution in this chapter. The subject is big enough to fill a
 book, and in fact there are several books devoted to it. [107] We skim over some topics, and focus on solutions for
 high-performance MySQL. In contrast to the first edition of this book, we
 assume many readers are using InnoDB in addition to or instead of MyISAM.
 This makes some backup scenarios more complicated.
Overview

We begin this chapter with a review of some terminology and a
 discussion of various issues you should bear in mind when planning your
 backup and recovery solutions, including potential requirements. We
 then present an overview of the various technologies and methods for
 making backups and explore techniques for restoring data and recovering from disasters. Finally, we
 discuss a selection of the available backup tools, and we close the
 chapter with some examples of how to build your own backup
 utilities.
Terminology

Before we begin, let's clarify some key terms. First, you'll
 often hear about so-called hot, warm, and cold backups. People generally use these terms to denote
 a backup's impact: "hot" backups aren't supposed to require any server
 downtime, for example. The problem is that these terms don't mean the
 same things to everyone. Some tools even use the word "hot" in their
 names, but definitely don't perform what we consider to be hot backups. We try to avoid these terms and instead
 tell you how much a specific technique or tool interrupts your
 server.
Two other confusing words are restore and
 recover. We use them in specific ways in this
 chapter. Restoring means retrieving data from a backup and either
 loading it into MySQL or placing the files where MySQL expects them to
 be. Recovery generally means the entire process of rescuing a system,
 or part of a system, after something has gone wrong. This includes
 restoring data from backups, as well as all the steps necessary to
 make a server fully functional again, such as restarting MySQL,
 changing the configuration, warming up the server's caches, and so
 on.
To many people, recovery just means fixing corrupted tables
 after a crash. This is not the same as recovering an entire server. A
 storage engine's recovery reconciles its data and log files. It makes
 sure the data files contain only the modifications made by committed
 transactions, and it replays transactions from the log files that have
 not yet been applied to the data files. If you use a transactional
 storage engine, this may be part of the overall recovery process, or
 even part of making backups. However, it's not the same as the
 recovery you might need to do after an accidental DROP TABLE, for example.

It's All About Recovery

If all goes well, you'll never need to think about recovery. But
 when you do, the best backup system in the world won't help. Instead,
 you'll need a great recovery system.
The problem is it's easier to make your backup systems work
 smoothly than to build good recovery processes and tools. Here's
 why:
	Backups come first. You can't recover unless you've
 first backed up, so your attention naturally focuses on backups
 when building a system. It's important to counter this tendency by
 planning for recovery first. In fact, you shouldn't build your
 backup systems until you figure out your recovery
 requirements.

	Backups are routine. This makes you focus on automating and
 fine-tuning the backup process, often without thinking of it.
 Five-minute tweaks to your backup process may not seem important,
 but are you applying the same attention to recovery, day in and
 day out? You should intentionally practice your recovery procedure
 until it is as smooth and bug-free as your backup process.

	Backups aren't usually made under extreme pressure, but
 recovery is usually a crisis situation. It's hard to overstate how
 important this is.

	Security often gets in the way. If you're doing offsite
 backups, you're probably encrypting the backup data or taking
 other measures to protect it. It's easy to focus on how damaging
 it would be for your data to be compromised, and lose sight of how
 damaging it is when nobody can unlock your encrypted volume to
 recover your data—or when you need to extract a single file from a
 monolithic encrypted file.

	One person can plan, design, and implement backups,
 especially with the excellent tools available. That person might
 not be available when disaster strikes. You need to train several
 people and plan for coverage, so you're not asking an unqualified
 person to recover your data.

Here's an example we've seen in the real world: a customer
 reported that backups became lightning fast when the
 -d option was added to
 mysqldump, and wanted to know why no one had
 mentioned how much that option could speed up the backup process. If
 this customer had tried to restore the backups, it would have been
 hard to miss the reason: the -d option dumps no
 data! The customer was focused on backups, not recovery, so was
 completely unaware of this problem.
When you start thinking about recovery, it's a good idea to
 define your requirements before you do anything else. Here are some of
 the things you should consider:
	How much data can you lose without serious consequences? Do
 you need point-in-time recovery, or is it acceptable to lose
 whatever work has happened since your last regular backup? Are
 there legal requirements?

	How fast does recovery have to be? What kind of downtime is
 acceptable? What impacts (e.g., partial unavailability) can your
 application and users accept, and how will you build in the
 capability to continue functioning when those scenarios
 happen?

	What do you need to recover? Common requirements are to
 recover a whole server, a single database, a single table, or just
 specific transactions or statements.

Write down your answers to these questions, add them to your
 system's documentation, and keep them in mind as you read the rest of this chapter. Doing this
 exercise first will help you focus on recovery as you plan your backups. Keeping it with the rest of your documentation
 will help when you need to retrace your steps later.
ora: Backup Myth #1: "I Use Replication As a Backup."
This is a mistake we see quite often. A replication slave is
 not a backup. Neither is a RAID array. To see why, consider this: will they help
 you get back all your data if you accidentally execute DROP DATABASE on your production database?
 RAID and replication don't pass even this simple test. Not only are
 they not backups, they're not a substitute for backups. Nothing but backups fill the need for
 backups.

Topics We Won't Cover

Backing up MySQL is in many ways just a specialized case of the
 more general problem of backup and recovery. We want to focus on
 high-performance MySQL, but it's a little hard not to include material
 about lots of other topics too, especially because we've seen so many
 people struggling with the same backup and recovery problems. Here are
 some points we decided not to include:
	Security (who can access the backup, who has privileges to
 restore data, whether the files need to be encrypted)

	Where to store the backups, including how far away from the
 source they should be (on a different disk, a different server, or
 offsite), and how to move the data from the source to the
 destination

	Retention policies, auditing, legal requirements, and
 related subjects

	Storage solutions and media, compression, and incremental
 backups

	Storage formats (but we'll say this much: avoid proprietary
 backup formats)

	Monitoring and reporting on your backups

	Backup capabilities built into storage layers, or particular
 devices such as prefabricated file servers

These are important topics. You should read a book on backups if
 you are unfamiliar with them.

The Big Picture

Before we go into great detail on all of the available options,
 here's our opinion on what most people are likely to need for a backup
 and recovery solution. You can view these recommendations as a starting point, or a direction
 toward which you can work:
	Raw backups are practically a must-have for large databases: they're fast, which is very
 important. Snapshot-based backups are our favorite, but InnoDB
 Hot Backup is a good alternative if you use only InnoDB
 tables.

	Back up your binary logs for point-in-time recovery.

	Keep several backup generations, and keep binary log files
 long enough that you can restore from them.

	Test your backups and recovery process periodically by going
 through the entire recovery process.

	Create logical backups (probably from the raw backups, for efficiency) periodically. Make sure
 you keep enough binary logs to recover from your last logical
 backup.

	Test your raw backups, if possible, to make sure they're
 useful for recovery. If you can, test them during the backup
 process, before you copy them to the destination.

	Think hard about security. What happens if someone compromises your
 server—can he then get access to the backup server too, or vice
 versa?

	Monitor your backups and backup processes independently from
 the backup tools themselves. You need external verification that
 they're OK.

	Be smart about how you copy files between machines. There are much more
 efficient ways to copy files than scp or
 rsync. You can read more about this in Appendix A.

Why Backups?

If you're building a high-performance system that relies on
 MySQL, it's important to make backups. Here are a few reasons:
	Disaster recovery
	Disaster recovery is what you do when hardware
 fails, a nasty bug corrupts your data, or your server and its
 data become unavailable or unusable for some other reason (the
 potential reasons are many and varied—use your imagination).
 Although the odds of any particular disaster striking are fairly
 low, taken together they add up. You need to be ready for
 everything from someone accidentally connecting to the wrong
 server to type ALTER TABLE,
 [108] to the building burning down, to a malicious
 attacker or a MySQL bug.

	People changing their minds
	You'd be surprised how often we've seen the need to recover at least some
 data as it existed at some point. For some applications, this
 might happen even more often than disasters (for example, if an important customer
 intentionally deletes some data and then wants it back).

	Auditing
	Sometimes you need to know what your data or schema looked like at some point
 in the past. You might be involved in a lawsuit, for example, or you might discover a bug in your
 application and need to see what the code used to do (sometimes
 just having your code in version control isn't
 enough).

	Testing
	One of the easiest ways to test on realistic data is to
 periodically refresh a test server with the latest production
 data. If you're making backups, it's easy; just use the backup.

Check your assumptions. For example, do you assume your
 shared hosting provider is backing up the MySQL server
 provided with your account? Although shared hosting isn't really
 relevant to high performance, we want to point out that such
 assumptions can bite. (In case you were wondering, many hosting
 providers don't back up MySQL servers, and others just do a file copy
 while the server is running, which probably creates a corrupt backup
 that's useless.)

[107] We think W. Curtis Preston's Backup & Recovery
 (O'Reilly) is a good choice.

[108] Baron still remembers doing this as a developer at an
 e-commerce site by typing the command into the wrong window.
 It was the DBA team's fault; they shouldn't have given
 developers privileges on the live servers. Really!

Considerations and Tradeoffs

Backing up MySQL is harder than it looks. At its most basic, a
 backup is just a copy of the data, but your application's needs, MySQL's
 storage engine architecture, and your system configuration can make it
 difficult to make a copy of your data.
What Can You Afford to Lose?

Knowing how much data you can afford to lose will guide your
 backup strategy. Do you need point-in-time recovery capability, or is
 it enough to recover to last night's backup and lose whatever work has
 been done since then? If you need point-in-time recovery, you can
 probably make a regular backup and make sure the binary log is
 enabled, so you can restore that backup and recover to the desired
 point by replaying the binary log.
Generally, the more you can afford to lose, the easier it is to
 do backups. If you have very strict requirements, it's harder to
 ensure you can recover everything. There are even different flavors of
 point-in-time recovery. A "soft" point-in-time recovery requirement
 means you'd like to be able to recreate your data so that it's "close
 enough" to where it was when the problem happened. A "hard"
 requirement means you can never tolerate the loss of a committed
 transaction, even if something terrible happens (such as the server
 catching fire). This requires special techniques, such as keeping your
 binary log on a separate SAN volume or using DRBD disk replication.
 You can read more about these approaches in Chapter 9.

Online or Offline Backups?

If you can get away with it, shutting down MySQL to make a
 backup is the easiest, safest, and overall best way to get a
 consistent copy of the data with minimal risk of corruption or
 inconsistency. If you shut down MySQL, you can copy the data without
 any complications from things such as dirty buffers in the InnoDB
 buffer pool or other caches. You don't need to worry about your data
 being modified while you're trying to back it up, and because the
 server isn't under load from the application, you can make the backup
 more quickly.
However, taking a server offline is more expensive than it might seem. Even if
 you can minimize the downtime, shutting down and restarting MySQL can
 take a long time under demanding loads and high data volumes:
	If you have a lot of dirty buffers in the InnoDB buffer
 pool—that is, a lot of data that's been modified in memory but not
 yet written to disk—InnoDB can take a long time to flush the
 modified data to disk. You can influence InnoDB's shutdown time
 with the innodb_fast_shutdown
 configuration variable, which controls how InnoDB treats the
 buffer pool and inserts buffer at shutdown, [109] but this just shifts work around; it doesn't
 eliminate it. Thus, you can't significantly decrease the shutdown
 and restart cycle time this way. You can sometimes do so by
 configuring other aspects of InnoDB, but those changes have much
 broader performance effects. See "Tuning MySQL's I/O Behavior" on
 Tuning MySQL's I/O Behavior for more on
 this.

	Restarting can take a long time, too. Opening all the tables
 and warming up the caches can be a slow process, especially if you
 have lots of tables and data. If you set innodb_fast_shutdown=2 to make InnoDB
 shut down quickly, InnoDB will have to perform its recovery
 process before it starts fully. Even after your server appears to
 be fully started, it can take a long time for it to be warmed up
 and ready to use.

Consequently, if you're building for high performance, you'll
 almost certainly need to design your backups so that they don't
 require the production server to be taken offline. Depending on your
 consistency requirements, though, making a backup while the server is
 online can still mean interrupting service
 significantly.
For example, one of the most cited backup methods begins with
 FLUSH TABLES WITH READ LOCK. This tells MySQL to
 flush [110] and lock all tables, and also flushes the query cache.
 That can take a while to complete. (Exactly how long is unpredictable;
 it will be longer if the global read lock has to wait for a
 long-running statement to finish, or if you have many tables.) Until
 the locks are released, you can't change any data on the server.
 FLUSH TABLES WITH READ LOCK is not
 as expensive as shutting down, because most of your caches are still
 in memory and the server is still "warm," but it's relatively
 disruptive.
If this is a problem, you'll have to find an alternative. One
 method we use is to make a backup from a replication slave, which is
 one of a pool of slaves that can be cycled in and out pretty cheaply.
 We come back to this topic, and other considerations for online and
 offline backups, later in this chapter. For now, we'll just say this:
 online backups that don't interrupt service are difficult in MySQL at
 present.

Logical or Raw Backups?

There are two major ways to back up MySQL's data: with a
 logical backup (also called a "dump") and by
 copying the raw files. A logical backup contains
 the data in a form that MySQL can interpret either as SQL or as
 delimited text. [111] The raw files are the files as they exist on
 disk.
Each method of copying the data has advantages and
 disadvantages.
Logical backups

Logical backups have the following advantages:
	They're normal files that you can manipulate and inspect
 with editors and command-line tools such as
 grep and sed. This can
 be very helpful when restoring data, or when you just want to
 inspect the data without restoring.

	They're easy to restore. You can just pipe them into
 mysql or use
 mysqlimport.

	You can back up and restore across the network—that is, on
 a different machine from the MySQL host.

	They can be very flexible because
 mysqldump—the tool most people prefer to
 use to make them [112]—can accept lots of options, such as a WHERE clause to restrict what rows are
 backed up.

	They're storage engine-independent. Because you create
 them by extracting data from the MySQL server, they abstract
 away differences in the underlying data storage. Thus, you can
 back up from InnoDB tables and restore to MyISAM tables with
 very little work. You can't do this with raw file copies.

	If you specify the right options to
 mysqldump, in many cases, you can even
 import your logical backups into another database server, such
 as PostgreSQL.

	They can help avoid data corruption. If your disk drives
 are failing and you copy the raw files, you'll make a corrupt
 backup, and unless you check the backup, you won't notice it and
 it'll be unusable later. If the data MySQL has in memory is
 not corrupt, you can sometimes get a
 trustworthy logical backup when you can't get a good raw file
 copy.

Logical backups have their shortcomings, though:
	The server has to do the work of generating them, so they
 use more CPU cycles.

	Logical backups can be bigger than the underlying files in
 some cases. [113] The ASCII representation of the data isn't always
 as efficient as the way the storage engine stores the data. For
 example, an integer requires 4 bytes to store, but when written
 in ASCII, it can require up to 12 characters. You can often
 compress the files effectively, but this uses more CPU
 resources.

	The loss of precision in floating-point representations
 may prevent accurate restoration from dump files. (Google's
 patches to the MySQL server include a patch to
 mysqldump that works around this.)

	Restoring from a logical backup requires MySQL to load and
 interpret the statements and rebuild indexes, which piles more
 work onto the server.

The biggest disadvantages are really the cost of dumping the
 data from MySQL and the cost of loading data back in via SQL
 statements.

Raw backups

Raw backups have the following advantages:
	Raw file backups simply require you to copy the desired
 files somewhere else for backup. The raw files don't require any
 extra work to generate.

	Restoring raw backups can be simpler, depending on the
 storage engine. For MyISAM, it can be as easy as just copying
 the files into their destinations. InnoDB, however, requires you
 to stop the server and possibly take other steps as well.

	Raw backups are generally pretty portable across
 platforms, operating systems, and MySQL versions.

	It can be faster to restore raw backups, because the MySQL
 server doesn't have to execute any SQL or build indexes. If you
 have InnoDB tables that don't fit entirely in the server's
 memory, it can be much faster to restore
 raw files.

Here are some disadvantages of raw backups:
	InnoDB's raw files are often far larger than the
 corresponding logical backups. The InnoDB tablespace typically
 has lots of unused space. Quite a bit of space is also used for
 purposes other than storing table data (the insert buffer, the
 rollback segment, and so on).

	Raw backups are not always portable across platforms,
 operating systems, and MySQL versions. Filename case sensitivity
 and floating-point formats are places where you might encounter
 trouble. You might not be able to move files to a system whose
 floating-point format is different (however, the vast majority
 of processors use the IEEE floating-point format).

Raw backups are generally easier and more efficient. You
 should not rely on them for long-term retention or legal
 requirements, though; you must make logical backups at least
 periodically.
Don't consider a backup (especially a raw backup) to be good
 until you've tested it. For InnoDB, that means starting a MySQL
 instance and letting InnoDB recovery run, then running CHECK TABLES. You can skip this, or just
 run innochecksum on the files, but we don't
 recommend it. For MyISAM, you should run CHECK TABLES or use
 myisamchk.
Another smart option is to use a blend of the two approaches:
 make raw copies, then start a MySQL server instance and use it to
 create logical backups from the raw copies. This gives you the
 advantages of both approaches, without unduly burdening the
 production server during the dump. It's especially convenient if you
 have the ability to take filesystem snapshots—you can take a
 snapshot, copy the snapshot to another server and release it, then
 test the raw files and perform a logical backup.

What to Back Up

Your recovery requirements will dictate what you need to back
 up. The simplest strategy is to just back up your data and table
 definitions, but this is a bare minimum approach. You generally need a
 lot more to recover a server for use in production. Here are some
 things you might consider including with your MySQL backups:
	Nonobvious data
	Don't forget data that's easy to overlook: your binary
 logs and InnoDB transaction logs, for example.

	Code
	A modern MySQL server can store a lot of code, such as
 triggers and stored procedures. If you back up the mysql database, you'll back up much of
 this code, but then it will be hard to restore a single database
 in its entirety, because some of the "data" in that database,
 such as stored procedures, will actually be stored in the
 mysql database.

	Replication configuration
	If you are recovering to a server that is involved in
 replication, you should include in your backups whatever
 replication files you'll need for that—e.g., binary logs, relay
 logs, log index files, and the .info files. At a minimum, you
 should include the output of SHOW
 MASTER STATUS and/or SHOW
 SLAVE STATUS. It's also helpful to issue FLUSH LOGS so MySQL starts a new
 binary log. It's easier to do point-in-time recovery from the
 beginning of a log file than the middle.

	Server configuration
	If you have to recover from a real disaster—say, if you're
 building a server from scratch in a new data center after an earthquake—you'll appreciate
 having the server's configuration files included in the
 backup.

	Selected operating system files
	As with the server configuration, it's important to back
 up any external configuration that is essential to a production
 server. On a Unix server, this might include your
 cron jobs, user and group configurations,
 administrative scripts, and sudo
 rules.

These recommendations quickly translate into "back up
 everything" in many scenarios. If you have a lot of data, however,
 this can get expensive, and you might have to be smarter about how you
 do your backups. In particular, you might want to back up different
 data into different backups. For example, you can back up data, binary
 logs, and operating system and system configuration files
 separately.
Incremental backups

A common strategy for dealing with too much data is to do
 regular incremental backups. Here are some ideas:
	Back up your binary logs. This is the simplest, the most
 widely used, and overall the best way to make incremental
 backups.

	Don't back up tables that haven't changed. Some storage
 engines, such as MyISAM, record the last time each table was
 modified. You can see these times by inspecting the files on
 disk or by running SHOW TABLE
 STATUS. If you use InnoDB, a trigger can help you keep
 track of the last changes by recording the change times in a
 small "last changed time" table. You need to do this only on
 tables that change infrequently, so the cost should be minimal.
 A custom backup script can easily determine which tables have
 changed.
If you have "lookup" tables that contain data such as
 lists of month names in various languages or abbreviations for
 states or regions, it can be a good idea to place them into a
 separate database, so you don't have to back them up all the
 time.

	Don't back up rows that haven't changed. If a table is
 INSERT-only, such as a table
 that logs hits to a web page, you can add a TIMESTAMP column and back up only rows
 that have been inserted since the last backup. You can also use
 the Merge storage engine to good effect so that older data lives
 in static tables.

	Don't back up some data at all. Sometimes this makes a lot
 of sense—for example, if you have a data warehouse that's built
 from other data and is technically redundant, you can merely
 back up the data you used to build the warehouse, instead of the
 data warehouse itself. This can be a good idea even if it's very
 slow to "recover" by rebuilding the warehouse from the original
 files. Avoiding the backups can add up over time to much greater
 savings than the potentially faster recovery time you'll gain by
 having a full backup. You can also opt not to back up some
 temporary data, such as tables that hold web site session
 data.

	Back up just the changes to the binary log. You can use
 rdiff to get binary deltas of your binlogs
 and back up just the changes made since the last backup
 (periodically doing a full backup as well). Another useful tool
 we've used is rdiff-backup, which combines
 rdiff and rsync
 functionality into a complete backup solution. Or you can just
 use FLUSH LOGS to begin a new
 binary log after each backup, so you don't need to do binary
 deltas at all.

	Back up just the changes to the data files. This is like
 backing up differences in your binary logs. Common Unix tools
 for this purpose are, again, rdiff and
 rdiff-backup. This strategy is helpful for
 extremely large databases that don't change much. Suppose you
 have a terabyte of data, only 50 GB of which changes every day.
 It might be a good idea to back up binary differences daily, and
 just do a full backup once in a while. The benefit is that you
 can apply the binary differences to the full backup in a
 sequential disk read/write operation much faster than you can
 apply a binary log. The binary difference backup itself might be
 slower than making a full backup, though.

The drawback of incremental backups is increased complexity
 during recovery. If you have do recovery under stress, you'll
 appreciate being able to restore just one backup instead of having
 to apply incremental backups one after the other. If you can do full
 backups, we suggest that you do so for simplicity's sake.
Regardless, you definitely need to do full backups
 occasionally—we suggest at least weekly. You can't expect to recover
 from a year's worth of incremental backups. Even a week is a lot of
 work and risk.

Storage Engines and Consistency

MySQL's choice of storage engines can make backups significantly
 more complicated. The issue is how to get a consistent backup with any
 given storage engine.
There are actually two kinds of consistency to think about:
 data consistency and file
 consistency.
Data consistency

When you do backups, you must ensure that your data is
 point-in–time consistent. For example, in an e-commerce database,
 you need to make sure your invoices and payments are consistent with
 each other. Recovering a payment without its corresponding invoice,
 or vice versa, is bound to cause trouble!
If you're making online backups (from a running server), you
 need to make sure you get a consistent backup of all related tables.
 That means you can't just lock and back up tables one at a
 time—which in turn means your backups might be more intrusive than
 you'd like. If you're not using a transactional storage engine, you
 have no choice but to use LOCK
 TABLES on all the tables you want to back up together, and
 release the lock only when all the related tables have been backed
 up.
InnoDB's MVCC capabilities can help. You can begin a
 transaction, dump a group of related tables, and commit the
 transaction. (You should not use LOCK
 TABLES if you're using a transaction to get a consistent
 backup, because it commits your transaction implicitly—see the MySQL
 manual for details.) As long as you're using the REPEATABLE READ transaction isolation
 level, this will give you a perfectly consistent, point-in-time
 snapshot of the data that doesn't block further work from happening on
 your server while the backup is being made.
However, this approach doesn't protect you from poorly
 designed application logic. Suppose your e-commerce store inserts a
 payment, commits the transaction, and then inserts the invoice in a
 different transaction. Your backup process might start between those
 two operations, backing up the payment and not the invoice. This is
 why you have to design transactions carefully to group related
 operations together.
You can also get a consistent logical backup of InnoDB tables
 with mysqldump, which supports a
 --single-transaction option that does what we
 just described. However, this can cause a very long transaction,
 which might have an unacceptably high overhead on some
 workloads.
Tools that support "backup sets," such as ZRM (discussed
 later) or Maatkit's mk-parallel-dump, can help
 you back up related sets of tables easily.

File consistency

It's also important that each file is internally
 consistent—e.g., that the backup doesn't reflect a file's state
 partway through a big UPDATE
 statement—and that all the files you're backing up are consistent
 with each other. If you don't get internally consistent files,
 you'll have a nasty surprise when you try to restore them (they'll
 probably be corrupt). And if you copy related files at different
 times, they won't be consistent with each other. MyISAM's
 .MYD and .MYI files are an
 example.
With a nontransactional storage engine such as MyISAM, your
 only option is to lock and flush the tables. That means using either
 a combination of LOCK TABLES and
 FLUSH TABLES, so the server
 flushes its in-memory changes to disk, or FLUSH TABLES WITH READ LOCK. Once the
 flush is complete, you can safely do a raw copy of MyISAM's
 files.
With InnoDB, it's actually a little harder to ensure the files
 are consistent on disk. Even if you do a FLUSH TABLES WITH READ LOCK, InnoDB keeps
 working in the background: its insert buffer, log, and write threads
 continue to merge changes to its log and tablespace files. These
 threads are asynchronous by design—doing this work in background
 threads is what helps InnoDB achieve high concurrency—so they are
 independent of LOCK TABLES. Thus,
 you need to make sure not only that each file is internally
 consistent, but that you copy the log and tablespace files at the
 same instant. If you make a backup while a thread is changing a
 file, or back up the log files at a different point in time from the
 tablespace files, you can again end up with a corrupt system after
 recovery. You can avoid this problem in two ways:
	Wait until InnoDB's purge and insert buffer merge threads
 are done. You can watch the output of SHOW INNODB STATUS and copy the files
 when there are no more dirty buffers or pending writes. However,
 this approach might take a long time; it also involves too much
 guesswork and might not be safe, because of InnoDB's background
 threads. Consequently, we don't recommend it.

	Take a consistent snapshot of the data and log files with a system such as LVM. You
 must snapshot the data and log files
 consistently with respect to each other; it's no good to
 snapshot them separately. We discuss LVM snapshots later in this
 chapter.

Once you have copied the files elsewhere, you can release the
 locks and let the MySQL server run normally again.

Replication

The popular wisdom is that MySQL replication is fantastic
 for backups. There's merit to using replication as part
 of an overall backup strategy, but it's not the be-all and end-all of
 backups, as it's often said to be.
The biggest advantage to backing up from a slave is that it
 doesn't interrupt the master or place extra load on it. This is a good
 reason to set up a slave server, even if you don't need it for load
 balancing or high availability. If money is a concern, you can always
 use the backup slave for other purposes too, such as reporting—as long
 as you don't write to it and thus change the data you're trying to
 back up. The slave doesn't have to be dedicated to backups; it just
 has to be able to catch up to the master in time to make your next
 backup in the event that its other roles make it fall behind in
 replication at times.
When you make a backup from a slave, save all the information
 about the replication processes, such as the slave's position on the
 master. This is useful for cloning new slaves, reapplying binary logs
 to the master to get point-in-time recovery, promoting the slave to a
 master, and more. Also be sure that no temporary tables are open if
 you stop your slave, because they might keep you from restarting
 replication. You can read more about this in "Missing Temporary
 Tables" on Missing Temporary Tables.
Intentionally delaying replication on one of your slaves can be
 very useful for recovering from some disaster scenarios. Suppose you
 delay replication by an hour. If an unwanted statement runs on the
 master, you have an hour to notice it and stop the slave before it
 repeats the event from its relay log. You can then promote the slave
 to master and replay some relatively small number of log events,
 skipping the bad statements. This can be much faster than the
 point-in-time recovery technique we discuss later. The
 mk-slave-delay script from Maatkit can help with
 this.
Warning
The slave might not have the same data as the master. Many
 people assume slaves are exact copies of their masters, but in our experience, data
 mismatches on slaves are common, and MySQL has no way to detect this
 problem. Backing up wrong or corrupt data on the slave will not
 result in a useful backup. See "Determining Whether Slaves Are
 Consistent with the Master" on Determining Whether Slaves Are Consistent with the
 Master for more on
 how to ensure a slave's data is the same as its master's. Chapter 8 also contains advice on how to keep your
 slaves from becoming different from the master.
Having a replicated copy of your data may help protect you
 from problems such as disk meltdowns on the master, but there's no
 guarantee. Replication is not a backup.

[109] The insert buffer is stored in the InnoDB tablespace
 files, along with all other data; a background thread
 eventually merges inserted records into the tables where they
 belong.

[110] Flushing tables flushes MyISAM's data, but not InnoDB's, to
 disk.

[111] Logical backups produced by
 mysqldump are not always text files. SQL
 dumps can contain many different character sets, and can even
 include binary data that's not valid character data at all. Lines
 can be too long for many editors, too. Still, many such files will
 contain data a text editor can open and read, especially if you
 run mysqldump with the
 —hex-blob option.

[112] There are other choices, including tools that can do
 parallel dumps and restores, but this is the most popular
 tool.

[113] In our experience, logical backups are generally
 smaller than raw backups, but they aren't always.

Managing and Backing Up Binary Logs

Your server's binary logs are one of the most important things you
 can back up. They are necessary for point-in-time recovery, and because
 they're usually smaller than your data, they're easier to back up
 frequently. If you have a backup of your data at some point and all the
 binary logs since then, you can replay the binary logs and "roll
 forward" changes made since the last full backup.
MySQL uses the binary log for replication, too. That means that
 your backup and recovery policy often interacts with your replication
 configuration.
Binary logs are "special." If you lose your data, you really don't
 want to lose them as well. To minimize the chances of this happening,
 you can keep them on a separate volume. It's OK to do this even if you
 want to snapshot the binary logs with LVM. For extra safety, you can
 keep them on a SAN or replicate them to another device with DRBD. You
 can read more about this in Chapter 9.
It's a good idea to back up binary logs frequently. If you can't
 afford to lose more than 30 minutes' worth of data, back them up at
 least every 30 minutes. You can also use a read-only replication slave
 with --log_slave_updates, for an extra degree of
 safety. The log positions won't match the master's, but it's usually not
 hard to find the right positions for recovery.
Here's our recommended server configuration for binary
 logging:
log_bin = mysql-bin
sync_binlog = 1
innodb_support_xa = 1 # MySQL 5.0 and newer only
innodb_safe_binlog # MySQL 4.1 only, roughly equivalent to innodb_support_xa
There are several other configuration options for the binary log,
 such as options to limit the size of each log. You can learn more about
 these in the MySQL manual.
The Binary Log Format

The binary log consists of a sequence of events. Each event has a fixed-size
 header that contains a variety of information, such as the current
 timestamp and default database. You can use the
 mysqlbinlog tool to inspect a binary log's
 contents, and it prints out some of the header information. Here's an
 example of the output:
1 # at 277
2 #071030 10:47:21 server id 3 end_log_pos 369 Query thread_id=13 exec_time=0
 error_code=0
3 SET TIMESTAMP=1193755641/*!*/;
4 insert into test(a) values(2)/*!*/;
Line 1 contains the byte offset within the log file (in this
 case, 277).
Line 2 contains the following items:
	The date and time of the event, which MySQL also uses to
 generate the SET TIMESTAMP
 statement.

	The server ID of the originating server, which is necessary
 to prevent endless loops in replication and other problems.

	The end_log_pos, which is
 the byte offset of the next event. This value is incorrect for
 most of the events in a multistatement transaction. MySQL copies
 the events into a buffer on the master during such transactions,
 but it doesn't know the next log event's position when it does
 so.

	The event type. Our sample's type is Query, but there are many different
 types.

	The thread ID of the thread that executed the event on the
 originating server, which is important for auditing as well as for
 executing the CONNECTION_ID()
 function.

	The exec_time, whose true
 meaning is unclear even to some of the MySQL developers we asked
 about it. It generally records how long the statement took to
 execute, but under some conditions it can have strange values. For
 example, it will have very large values in the relay log on a
 slave whose I/O thread is far behind the master, even if the
 statements executed quickly on the master. It's a good idea not to
 rely on this value.

	Any error code the event raised on the originating server.
 If the event causes a different error when replayed on a slave,
 replication will fail as a safety precaution.

Any further lines contain the SQL needed to replay the event.
 User-defined variables and any other special settings, such as the
 timestamp in effect when the statement executed, also appear
 here.
Tip
If you're using the row-based logging available in MySQL 5.1,
 the event won't be SQL. Instead, it's a non-human-readable "image"
 of the modifications the statement made to the table.

Purging Old Binary Logs Safely

You'll need to decide on a log expiration policy to keep MySQL
 from filling your disk with binary logs. How large your logs grow
 depends on your workload and the logging format (row-based logging,
 available in MySQL 5.1, results in larger log entries). We suggest you
 keep logs as long as they're useful if possible. Keeping them is
 helpful for setting up replication slaves, analyzing your server's
 workload, auditing, and point-in-time recovery from your last full
 backup. Consider all of these needs when you decide how long you want to keep
 your logs.
A common setup is to use the expire_logs_days variable to tell MySQL to
 purge logs after a while. This variable isn't available until MySQL
 4.1; prior to this version, you had to purge binary logs manually.
 Thus, you might see advice to remove old binary logs with a
 cron entry such as the following:
0 0 * * * /usr/bin/find /var/log/mysql -mtime +N -name "mysql-bin.[0-9]*" | xargs rm
Although this was the only way to purge the logs prior to MySQL
 4.1, don't do this in MySQL 4.1 and newer! Removing the logs with
 rm will cause the
 mysql-bin.index status file to become out of sync
 with the files on disk, and some statements, such as SHOW MASTER LOGS, will begin failing
 silently. Changing the mysql-bin.index file by
 hand won't fix the problem, either. Instead, use a
 cron command such as the following:
0 0 * * * /usr/bin/mysql -e "PURGE MASTER LOGS BEFORE CURRENT_DATE - INTERVAL N DAY"
The expire_logs_days setting
 takes effect upon server startup or when MySQL rotates the binary log,
 so if your binary log never fills up and rotates, the server will not
 purge older entries. It decides which files to purge by looking at
 their modification times, not their contents.

Backing Up Data

As with most topics, there are better and worse ways to actually
 make a backup—and the obvious ways are sometimes not so good. The trick
 is to maximize your network, disk, and CPU capacity to make backups as
 fast as possible. This is a balancing act, and you'll have to experiment
 to find the "sweet spot."
Specific advice is hard to give, so we show you some more general
 techniques.
Making a Logical Backup

The first thing to realize about logical backups is that they are not all created equal.
 There are actually two kinds of logical backups: SQL dumps and delimited files.
SQL dumps

SQL dumps are what most people are familiar with, as they're
 what mysqldump creates by default. For example,
 dumping a small table with the default options will produce the
 following (abridged) output:
$ mysqldump test t1
-- [Version and host comments]

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
-- [More version-specific comments to save options for restore]

--
-- Table structure for table `t1`
--

DROP TABLE IF EXISTS `t1`;
CREATE TABLE `t1` (
 `a` int(11) NOT NULL,
 PRIMARY KEY (`a`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table `t1`
--

LOCK TABLES `t1` WRITE;
/*!40000 ALTER TABLE `t1` DISABLE KEYS */;
INSERT INTO `t1` VALUES (1);
/*!40000 ALTER TABLE `t1` ENABLE KEYS */;
UNLOCK TABLES;
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
-- [More option restoration]
The dump file contains both the table structure and the data,
 all written out as valid SQL commands. The file begins with comments
 that set various MySQL options. These are present either to make the
 restore work more efficiently or for compatibility and correctness.
 Next you can see the table's structure, and then its data. Finally,
 the script resets the options it changed at the beginning of the
 dump.
The dump's output is executable for a restore operation. This
 is convenient, but mysqldump's default options
 aren't great for making a huge backup (we delve into
 mysqldump's options in more detail
 later).
mysqldump is not the only tool that can
 make SQL logical backups. You can also create them with phpMyAdmin,
 for example. What we'd really like to point out here is not so much
 problems with any particular tool, but rather the shortcomings of
 doing monolithic SQL logical backups in the first place. Here are
 the main problem areas:
	Schema and data stored
 together
	Although this is convenient if you want to restore from
 a single file, it makes things difficult if you need to
 restore only one table, or want to restore only the data. You
 can alleviate this concern by dumping twice—once for data,
 once for schema—but you'll still have the next problem.

	Huge SQL statements
	It's a lot of work for the server to parse and execute
 all of the SQL statements. This is a relatively slow way to
 load data.

	A single huge file
	Most text editors can't edit large files or files with
 very long lines. Although you can sometimes use command-line
 stream editors—such as sed or
 grep—to pull out the data you need, it's
 preferable to keep the files small.

	Logical backups are expensive
	There are more efficient ways to get data out of MySQL
 than sending it over the client/server protocol as a result
 set.

These limitations mean that SQL dumps quickly become unusable
 as tables get large. There's another option, though: export data to
 delimited files.

Delimited file backups

You can use the SELECT INTO
 OUTFILE SQL command to create a logical backup of your
 data in a delimited file format. (You can dump to delimited files
 with mysqldump's --tab
 option, which runs the SQL command for you.) Delimited files contain
 the raw data represented in ASCII, without SQL, comments, and column
 names. Here's an example that dumps into comma-separated values
 (CSV) format, which is a good lingua franca for
 tabular data:
mysql> SELECT * INTO OUTFILE '/tmp/t1.txt'
 -> FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 -> LINES TERMINATED BY '\n'
 -> FROM test.t1;
The resulting file is more compact and easier to manipulate
 with command-line tools than a SQL dump file, but the biggest
 advantage of this approach is the speed of backing up and restoring.
 You can load the data back into the table with LOAD DATA INFILE, with the same options
 used to dump it:
mysql> LOAD DATA INFILE '/tmp/t1.txt'
 -> INTO TABLE test.t1
 -> FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 -> LINES TERMINATED BY '\n';
Here's an informal test we did to demonstrate the backup and
 restore speed difference between SQL files and delimited files. We
 adapted some production data for this test. The table we're dumping
 from looks like the following:
CREATE TABLE load_test (
 col1 date NOT NULL,
 col2 int NOT NULL,
 col3 smallint unsigned NOT NULL,
 col4 mediumint NOT NULL,
 col5 mediumint NOT NULL,
 col6 mediumint NOT NULL,
 col7 decimal(3,1) default NULL,
 col8 varchar(10) NOT NULL default '',
 col9 int NOT NULL,
 PRIMARY KEY (col1,col2)
) ENGINE=InnoDB;
The table has 15 million rows and uses about 700 MB on disk.
 Table 11-1 compares
 the performance of the two backup and restore methods. You can see
 there's a large speed difference in the restore times for the
 test.
Table 11-1. Backup and restore times for SQL and delimited
 dumps
	Method
	Dump size
	Dump time
	Restore time

	SQL dump
	727 MB
	102 sec
	600 sec

	Delimited dump
	669 MB
	86 sec
	301 sec

The SELECT INTO OUTFILE
 method has some limitations, though:
	You can back up only to a file on the machine on which the
 MySQL server is running. (You can roll your own SELECT INTO OUTFILE by writing a
 program that reads a SELECT
 result and writes it to disk, which is an approach we've seen
 some people take.)

	MySQL must have permission to write to the directory where
 the file is written, because the MySQL server—not the user
 running the SQL command—is what writes the file.

	For security reasons, you can't overwrite an existing
 file, no matter what the file's permissions are.

	You can't dump directly to a compressed file.

Parallel dump and restore

It's often much faster to back up and restore in parallel on a
 system with multiple CPUs. By "in parallel," we mean dumping or
 restoring multiple tables at once, not multiple programs working on
 the same table. Two programs loading data into a single table at the
 same time generally doesn't work well.
You don't need fancy tools to back up and restore in parallel;
 you can do it manually by running multiple instances of a backup
 tool. However, there are some tools and scripts specifically
 designed for this purpose, such as
 mk-parallel-dump from Maatkit and
 mysqlpdump (http://www.fr3nd.net/projects/mysqlpdump/). At the
 time of this writing, these tools are relatively new. However,
 benchmarks indicate that mk-parallel-dump can
 be several times faster than simply using
 mysqldump for backups.
In MySQL 5.1, mysqlimport has support for
 importing in multiple threads at once. You can use the 5.1 version
 of mysqlimport on earlier versions of
 MySQL.
Parallel dumps and restores might actually take longer if you
 use too high a degree of parallelism. Additionally, they may cause
 more data fragmentation, which can impact the system's
 performance.

Filesystem Snapshots

Filesystem snapshots are a great way to make online backups.
 Snapshot-capable filesystems can create a consistent image of their
 contents at an instant in time, which you can then use to make a
 backup. Snapshot-capable filesystems and appliances include FreeBSD's
 filesystem, the ZFS filesystem, GNU/Linux's Logical Volume Manager
 (LVM), and many SAN systems and file-storage solutions,
 such as NetApp storage appliances.
Don't confuse a snapshot with a backup. Taking a snapshot is
 simply a way of reducing the time for which locks must be held; after
 releasing the locks, you must copy the files to the backup. In fact,
 you can optionally take snapshots on InnoDB without even acquiring
 locks. We show you two ways to use LVM to make backups of an
 all-InnoDB system, with your choice of minimal or zero locking.
Tip
Lenz Grimmer's mylvmbackup is a
 ready-to-use Perl script for creating MySQL backups with LVM. See "Backup Tools" on
 Backup Tools for more details.

How LVM snapshots work

LVM uses copy-on-write technology to create a snapshot—i.e., a
 logical copy of an entire volume at an instant in time. It's a
 little like MVCC in a database, except it keeps only one old version
 of the data.
Notice we didn't say a physical copy. A
 logical copy appears to contain all the same data as the volume you
 snapshotted, but initially it contains no data. Instead of copying
 the data to the snapshot, LVM simply notes the time at which you
 created the snapshot, then reads the data from the original volume
 when you request it from the snapshot. So, the initial copy is
 basically an instantaneous operation, no matter how large a volume
 you're snapshotting.
When something changes the data in the original volume, LVM
 copies the affected blocks to an area reserved for the snapshot
 before it writes any changes to them. LVM doesn't keep multiple "old
 versions" of the data, so additional writes to blocks that are
 changed in the original volume don't require any further work for
 the snapshot. In other words, only the first write to each block
 causes a copy-on-write to the reserved area.
Now, when you request these blocks in the snapshot, LVM reads
 the data from the copied blocks instead of from the original volume.
 This lets you continue to see the same data in the snapshot without
 blocking anything on the original volume. Figure 11-1 depicts this
 arrangement.
[image: How copy-on-write technology reduces the size needed for a volume snapshot]

Figure 11-1. How copy-on-write technology reduces the size needed for a
 volume snapshot

The snapshot creates a new logical device in the
 /dev directory, and you can mount this device
 just as you would mount any other.
You can theoretically snapshot an enormous volume and consume
 very little physical space with this technique. However, you need to
 set aside enough space to hold all the blocks you expect to be
 updated in the original volume while you hold the snapshot open. If
 you don't reserve enough copy-on-write space, the snapshot will run
 out of space, and the device will become unavailable. The effect is
 like unplugging an external drive: any backup job that's reading
 from the device will fail with an I/O error.

Prerequisites and configuration

It's almost trivial to create a snapshot, but you need to
 ensure that your system is configured in such a way that you can get
 a consistent copy of all the files you want to
 back up at a single instant in time. First, make sure your system
 meets these conditions:
	All InnoDB files (InnoDB tablespace files and InnoDB
 transaction logs) must be on a single logical volume
 (partition). You need absolute point-in-time consistency, and
 LVM can't take consistent snapshots of more than one volume at a time. (This
 is an LVM limitation; some other systems do not have
 this problem.)

	If you need to back up the table definitions too, the
 MySQL data directory must be in the same logical volume. If you
 use another method to back up table definitions, such as a
 schema-only backup into your version control system, you may not
 need to worry about this.

	You must have enough free space in the volume group to
 create the snapshot. How much you need will depend on your
 workload. When you set up your system, leave some unallocated
 space so that you'll have room for snapshots later.

LVM has the concept of a volume
 group, which contains one or more logical volumes. You
 can see the volume groups on your system as follows:
vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 1 4 0 wz--n- 534.18G 249.18G
This output shows a volume group that has four logical volumes
 distributed across one physical volume, with about 250 GB free. The
 vgdisplay command gives more detail if you need
 it. Now let's take a look at the logical volumes on the
 system:
lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 home vg -wi-ao 40.00G
 mysql vg -wi-ao 225.00G
 tmp vg -wi-ao 10.00G
 var vg -wi-ao 10.00G
The output shows that the mysql volume has 225 GB of space. The
 device name is /dev/vg/mysql.
 This is just a name, even though it looks like a filesystem path. To add to the confusion, there's a
 symbolic link from the file of the same name to the real device node
 at /dev/mapper/vg-mysql, which you can see with
 the ls and mount
 commands:
ls -l /dev/vg/mysql
lrwxrwxrwx 1 root root 20 Sep 19 13:08 /dev/vg/mysql -> /dev/mapper/vg-mysql
mount | grep mysql
/dev/mapper/vg-mysql on /var/lib/mysql type reiserfs (rw,noatime,notail)
Armed with this information, you're ready to create a
 filesystem snapshot.

Creating, mounting, and removing an LVM snapshot

You can create the snapshot with a single command. You just
 need to decide where to put it and how much space to allocate for
 copy-on-write. Don't hesitate to use more space than you think
 you'll need. LVM doesn't use the space you specify right away; it
 just reserves it for future use, so there's no harm in reserving
 lots of space, unless you need to leave space for other snapshots at
 the same time.
Let's create a snapshot just for practice. We'll give it 16 GB
 of space for copy-on-write, and we'll call it backup_mysql:
lvcreate --size 16G --snapshot --name backup_mysql /dev/vg/mysql
 Logical volume "backup_mysql" created
Tip
We deliberately called the volume backup_mysql instead of mysql_backup so that tab completion
 would be unambiguous. This helps avoid the possibility of tab
 completion causing you to accidentally delete the mysql volume group. Little details like
 this can really help avoid catastrophe. At least one of this
 book's authors has been burned by hasty tab completion with
 LVM snapshots.

Now let's see the newly created volume's status:
lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 backup_mysql vg swi-a- 16.00G mysql 0.01
 home vg -wi-ao 40.00G
 mysql vg owi-ao 225.00G
 tmp vg -wi-ao 10.00G
 var vg -wi-ao 10.00G
Notice that the snapshot's attributes are different from the
 original device's, and that the display shows a little extra
 information: its origin and how much of the allocated 16 GB is
 currently being used for copy-on-write. It's a good idea to monitor
 this as you make your backup, so you can see if the device is
 getting full and is about to fail. You can monitor your device's
 status with a monitoring system such as Nagios:
watch 'lvs | grep backup'
As you saw from the output of mount
 earlier, the mysql volume
 contains a ReiserFS filesystem. That means the snapshot volume does too,
 and you can mount and use it just like any other filesystem:
mkdir /tmp/backup
mount /dev/mapper/vg-backup_mysql /tmp/backup
ls -l /tmp/backup/mysql
total 5336
-rw-r----- 1 mysql mysql 0 Nov 17 2006 columns_priv.MYD
-rw-r----- 1 mysql mysql 1024 Mar 24 2007 columns_priv.MYI
-rw-r----- 1 mysql mysql 8820 Mar 24 2007 columns_priv.frm
-rw-r----- 1 mysql mysql 10512 Jul 12 10:26 db.MYD
-rw-r----- 1 mysql mysql 4096 Jul 12 10:29 db.MYI
-rw-r----- 1 mysql mysql 9494 Mar 24 2007 db.frm
... omitted ...
This is just for practice, so we'll unmount and remove the
 snapshot now with the lvremove command:
umount /tmp/backup
rmdir /tmp/backup
lvremove --force /dev/vg/backup_mysql
 Logical volume "backup_mysql" successfully removed

LVM snapshots for online backups

Now that you've seen how to create, mount, and remove
 snapshots, you can use them to make backups. First, let's look at
 how to back up an InnoDB database without stopping the MySQL server.
 Connect to the MySQL server and flush the tables to disk with a
 global read lock, then get the binary log coordinates:
mysql> FLUSH TABLES WITH READ LOCK; SHOW MASTER STATUS;
Record the output from SHOW MASTER
 STATUS, and make sure you keep the connection to MySQL
 open so the lock doesn't get released. You can then take the
 LVM snapshot and immediately release the read lock,
 either with UNLOCK TABLES or by
 closing the connection. Finally, mount the snapshot and copy the
 files to the backup location. If you script this process, you can
 get the lock time down to a few seconds.
The major problem with this approach is that it may take a
 while to get the read lock, especially if there are long-running
 queries. All queries will be blocked while the connection waits for
 the global read lock, and it's impossible to predict how long this
 will take.
ora: Filesystem Snapshots and InnoDB
InnoDB's background threads continue to work even if you've
 locked all tables, so it is probably still writing to its files
 even as you take the snapshot. Also, because InnoDB hasn't
 performed its shutdown sequence, the snapshot's InnoDB files will
 look just as though the server has lost power
 unexpectedly.
This is not a problem, because InnoDB is an ACID system. At
 any instant (such as the instant you take the snapshot), every
 committed transaction is either in the InnoDB data files or in the
 log files. When you start MySQL after restoring the snapshot,
 InnoDB will run its recovery process, just as though the server
 had lost power. It will look in the transaction log for any
 committed transactions that haven't yet been applied to the data
 files and apply them, so you won't lose any transactions. This is
 why it's mandatory to snapshot the InnoDB data and log files
 together.
This is also why you should test your backups when you make
 them. Start an instance of MySQL, point it at the new backup, let
 InnoDB's recovery run, and check all the tables. This way you
 won't back up corrupted data without knowing it (the files could
 be corrupt for any number of reasons). Another benefit to this
 practice is that restoring from the backup will be faster in the
 future, because you've already run the recovery process.
You can optionally run this process on the snapshot before
 even copying it to the backup, but that can add quite a bit of
 overhead. Just be sure you plan for it. (More on this
 later.)

Lock-free InnoDB backups with LVM snapshots

Lock-free backups are only a little different. The
 distinction is that you don't do a FLUSH
 TABLES WITH READ LOCK. This means there won't be any
 guarantee that your MyISAM files will be consistent on disk, but if
 you use only InnoDB, that's probably not an issue. You'll still have
 some MyISAM tables in the mysql
 system database, but if your workload is typical, they're unlikely
 to be changing at the moment you take the snapshot.
If you think the mysql
 system tables might be changing, you can lock and then flush them.
 You shouldn't have any long-running queries on these tables, so this
 will normally be very fast:
mysql> LOCK TABLES mysql.user READ, mysql.db READ, ...;
mysql> FLUSH TABLES mysql.user, mysql.db, ...;
You're not getting a global read lock, so you won't be able to
 get anything useful from SHOW MASTER
 STATUS. However, when you start MySQL on the snapshot (to
 verify your backup's integrity), you'll see something like the
 following in the log file:
InnoDB: Doing recovery: scanned up to log sequence number 0 40817239
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Progress in percents: 3 4 5 6 ...[omitted]... 97 98 99
InnoDB: Apply batch completed
InnoDB: Last MySQL binlog file position 0 3304937, file name /var/log/mysql/mysql-
bin.000001
070928 14:08:42 InnoDB: Started; log sequence number 0 40817239
InnoDB logs the MySQL binary log position corresponding to the
 point to which it has recovered. This is the binary log position you
 can use for point-in-time recovery.
This approach to lock-free backups with snapshots has a twist in MySQL 5.0 and newer. These
 MySQL versions use XA to coordinate transactions between InnoDB and
 the binary log. If you restore the backup to a server with a
 different server_id from the one
 on which the backup was made, the server might find prepared
 transactions from a server whose ID doesn't match its own. In this
 case, the server can become confused, and it's possible for
 transactions to become stuck in PREPARED status upon recovery. This rarely
 happens, but it is possible. This is why you should always verify
 your backup before you consider it a success. It may not be
 recoverable!
If you're taking the snapshot from a slave, InnoDB recovery
 will also print some lines that look like these:
InnoDB: In a MySQL replication slave the last master binlog file
InnoDB: position 0 115, file name mysql-bin.001717
In some versions of MySQL, this output shows you the master's
 binary log coordinates (as opposed to the slave's binary log
 coordinates) at the point to which InnoDB has recovered, which can
 be very useful for making backups from slaves or cloning slaves from
 other slaves. However, in MySQL 5.0 and newer, the values are
 untrustworthy.

Planning for LVM backups

LVM snapshot backups aren't free. The more your server
 writes to the original volume, the more overhead they cause. When
 the server modifies many distinct blocks in random order, the disk
 head has to seek back and forth to the copy-on-write space and write
 the old version of the data there. Reading from the snapshot also
 has overhead, because LVM really reads most of the data from the
 original volume. It reads from the copy-on-write space only as
 needed; thus, a logically sequential read from the snapshot actually
 causes the disk head to move back and forth.
You should plan for this to happen. What it really means is
 that both the original volume and the snapshot will perform worse
 than usual for both reads and writes—possibly much worse if you use
 a lot of copy-on-write space. This can slow down both your MySQL
 server and the process of copying the files for the backup.
The other important thing to plan for is allocating enough
 space for the snapshot. We take the following approach:
	Remember that LVM needs to copy each modified block to the
 snapshot only once. When MySQL writes a block in the original
 volume, it copies the block to the snapshot, then makes a note
 of the copied block in its exception table. Future writes to
 this block will not cause any further copies to the
 snapshot.

	If you use only InnoDB, consider how InnoDB writes data.
 Because it writes all data twice, at least half of InnoDB's
 write I/O goes to the doublewrite buffer, log files, and other
 relatively small areas on disk. These reuse the same disk blocks
 over and over, so they'll have an initial impact on the
 snapshot, but after that they'll stop causing writes to the
 snapshot.

	Next, estimate how much of your I/O will be writing to
 blocks that haven't yet been copied to the snapshot, as opposed
 to modifying the same data again and again. Be generous with
 your estimate. This is how much extra I/O you expect the
 snapshot to cause. (Add in a little for the LVM process
 itself.)

	Use vmstat or
 iostat to gather statistics on how many
 blocks your server writes per second. You can learn more about
 these tools in Chapter 7.

	Measure (or estimate) how long it will take to copy your
 backup to another location: in other words, how long you need to
 keep the LVM snapshot open.

Let's suppose you've estimated that half of your writes will
 cause writes to the snapshot's copy-on-write space, and your server
 writes 10 MB per second. If it takes an hour (3,600 seconds) to copy
 the snapshot to another server, you will need 1/2 x 10 MB x 3,600,
 or 18 GB of space for the snapshot. Err on the side of caution, and
 add some extra space as well.
Sometimes it's easy to calculate how much data will change
 while you keep the snapshot open. Let's return to an example we've
 used in several other places. The BoardReader forum search engine
 has about 1 TB of InnoDB tables per storage node. However, we know
 the biggest cost is loading new data. About 10 GB of new data is
 added per day, so 50 GB should be plenty of space for the snapshot.
 This estimate doesn't always work, though. At one point, we had a
 long-running ALTER TABLE that
 changed each shard one after the other, which modified much more
 than 50 GB of data; while this was running, we weren't able to make
 the backup.

Other uses and alternatives

You can use snapshots for more than just backups. For example,
 they can be a useful way to take a "checkpoint" just before a
 potentially dangerous action. Some systems, such as ZFS, let you
 promote the snapshot to the original filesystem. This makes it easy
 to roll back to the point at which you took the snapshot.
Filesystem snapshots aren't the only way to get an
 instantaneous copy of your data, either. Another option is a
 RAID split: if you have a three-disk software
 RAID mirror, for example, you can remove one disk from the mirror
 and mount it separately. There's no copy-on-write penalty, and it's
 easy to promote this kind of "snapshot" to be the master copy if
 necessary.

Recovering from a Backup

Recovery is what really matters. In this section, we focus
 on MySQL-specific aspects of recovery and assume you know how to handle
 the other parts of your environment. Perform "fire drills" routinely, so
 you know how to back up and recover your data when there's a real
 emergency. Above all, test your backups.
How you recover your data depends on how you backed it up. You
 might need to take some or all of the following steps:
	Stop the MySQL server.

	Take notes on the server's configuration and file
 permissions.

	Move the data from the backup into the MySQL data
 directory.

	Make configuration changes.

	Change file permissions.

	Restart the server with limited access, and wait for it to
 start fully.

	Reload logical backup files.

	Examine and replay binary logs.

	Verify what you've restored.

	Restart the server with full access.

We demonstrate how to do each of these steps as needed in the
 following sections. We also add notes specific to certain backup methods
 or tools in sections about those methods or tools later in this
 chapter.
Warning
If there's a chance you'll need the current versions of your
 files, don't replace them with the files from the
 backup. For example, if your backup includes the binary
 logs, and you need to replay binary logs for point-in-time recovery, don't overwrite the current binary logs with
 older copies from the backup. Rename them or move them elsewhere if
 necessary.

Limiting Access to MySQL

During recovery, it's often important to make MySQL inaccessible
 to everything except the recovery process. This is hard to guarantee
 in complex systems. We like to start MySQL with the
 --skip-networking and
 --socket=/tmp/mysql_recover.sock options to
 ensure that it is unavailable to existing applications until we've
 checked it and brought it back online. This is especially important
 for logical backups, which are loaded in pieces.

Restoring Raw Files

Restoring raw files tends to be pretty
 straightforward—which is another way of saying there aren't many
 options. This can be a good or a bad thing, depending on your recovery
 requirements. The usual procedure is simply to copy the files into
 place.
Whether you need to shut down MySQL depends on the storage
 engine. MyISAM's files are generally independent from one another, and
 simply copying each table's .frm, .MYI, and
 .MYD files works well, even if the server is
 running. The server will find the table as soon as anyone queries it
 or otherwise it makes the server look for it (for example, by
 executing SHOW TABLES). If the
 table is open when you copy in these files, it'll probably cause
 trouble, so before doing so, you should either drop or rename the
 table, or use LOCK TABLES and
 FLUSH TABLES to close it.
InnoDB is another matter. If you're restoring a traditional
 InnoDB setup, where all tables are stored in a single tablespace,
 you'll have to shut down MySQL, copy or move the files into place, and
 then restart. You also need to ensure that InnoDB's transaction log
 files match its tablespace files. If the files don't match—for
 example, if you replace the tablespace files but not the transaction
 log files—InnoDB may refuse to start. This is one reason it's crucial
 to back up the transaction log along with the data files.
If you're using the newer InnoDB file-per-table feature
 (innodb_file_per_table), InnoDB
 stores the data and indexes for each table in a
 .ibd file, which is like a combination of
 MyISAM's .MYI and .MYD
 files. You can back up and restore individual tables by copying these
 files, and you can do it while the server is running, but it's not as
 simple as with MyISAM. The individual files are not independent from
 InnoDB as a whole. Each .ibd file has internal
 information that tells InnoDB how the file is related to the main
 (shared) tablespace. When you restore such a file, you have to tell
 InnoDB to "import" the file.
There are many restrictions on this process, which you can read
 about in the MySQL manual section on using per-table tablespaces. The
 biggest is that you can only restore a table to the server from which
 you backed it up. It's not impossible to back up and restore tables in
 this configuration, but it's trickier than you might think.
All this complexity means that restoring raw files can be very tedious, and it's easy
 to get it wrong. A good rule of thumb is that the harder and more
 complex your recovery procedure becomes, the more you need to protect
 yourself with logical backups as well. It's always a good idea to have
 a logical backup, in case something goes wrong and you can't convince
 MySQL to use your raw backups.
Starting MySQL after restoring raw files

There are a few things you'll need to do before you start the
 MySQL server you're recovering.
The first and most important thing, and one of the easiest to
 forget, is to check your server's configuration and make sure the
 restored files have the correct owner and permissions,
 before you try to start the MySQL server. These
 attributes must be exactly right, or MySQL may not start. The
 attributes vary from system to system, so check your notes to see
 exactly what you'll need to set. You typically want the
 mysql user and group to own the files and
 directories, which you want to be readable and writable by that user
 and group but no others.
We also suggest watching the MySQL error log while the server
 starts. On a Unix-style system, you can watch the file like
 this:
$ tail -f /var/log/mysql/mysql.err
The exact location of the error log will vary. Once you're
 monitoring the file, you can start the MySQL server and watch for
 errors. If all goes well, you'll have a nicely recovered server once
 MySQL starts.
Watching the error log is even more important in newer MySQL
 versions. Older versions wouldn't start if InnoDB had an error, but
 in newer versions the server will start anyway and just disable
 InnoDB. Even if the server seems to start without trouble, you
 should run SHOW TABLE STATUS in
 each database, then check the error log again.

Restoring Logical Backups

If you're restoring logical backups instead of raw files, you
 need to use the MySQL server itself to load the data back into the
 tables, as opposed to using the operating system to simply copy files
 into place.
Before you load that dump file, however, take a moment to
 consider how large it is, how long it'll take to load, and anything
 you might want to do before you start, such as notifying your users or
 disabling part of your application. Disabling binary logging might be
 a good idea, unless you need to replicate the restoration to a slave:
 a huge dump file is hard enough for the server to load, and writing it
 to the binary log adds even more (possibly unnecessary) overhead.
 Loading huge files also has consequences for some storage engines. For
 example, it's not a good idea to load 100 GB of data into InnoDB in a
 single transaction, because of the huge rollback segment that will
 result. You should load in manageable chunks and commit the
 transaction after each chunk.
There are two kinds of restoration you might do, which
 correspond to the two kinds of logical backups you can make.
Loading SQL files

If you have a SQL dump, the file will contain executable SQL.
 All you need to do is run it. Assuming you backed up the Sakila
 sample database and schema into a single file, the following is a
 typical command you might use to restore it:
$ mysql < sakila-backup.sql
You can also load the file from within the
 mysql command-line client with the SOURCE command. Although this is mostly a
 different way of doing the same thing, it makes some things easier.
 For example, if you're an administrative user in MySQL, you can turn
 off binary logging of the statements you'll execute from within your
 client connection, and then load the file without needing to restart
 the MySQL server:
mysql> SET SQL_LOG_BIN = 0;
mysql> SOURCE sakila-backup.sql;
mysql> SET SQL_LOG_BIN = 1;
If you use SOURCE, be aware
 that an error won't abort a batch of statements, as it will by
 default when you redirect the file into
 mysql.
If you compressed the backup, don't separately decompress and
 load it. Instead, decompress and load it in a single operation. This
 is much faster:
$ gunzip -c sakila-backup.sql.gz | mysql
If you want to load a compressed file with the SOURCE command, see the discussion of
 named pipes in the next section.
What if you want to restore only a single table (for example,
 the actor table)? If your data
 has no line breaks, it's not hard to restore the data if the schema
 is already in place:
$ grep 'INSERT INTO `actor`' sakila-backup.sql | mysql sakila
Or, if the file is compressed:
$ gunzip -c sakila-backup.sql.gz | grep 'INSERT INTO `actor`'| mysql sakila
If you need to create the table as well as restore the data,
 and you have the entire database in a single file, you'll have to
 edit the file. This is why many people like to dump each table into
 its own file. Most editors can't deal with huge files, especially if
 they're compressed. Besides, you don't want to actually edit the
 file itself—you just want to extract the relevant lines—so you'll
 probably have to do some command-line work. It's easy to use
 grep to pull out only the INSERT statements for a given table, as we
 did in the previous commands, but it's harder to get the CREATE TABLE statement. Here's a
 sed script that extracts the paragraph you
 need:
$ sed -e '/./{H;$!d;}' -e 'x;/CREATE TABLE `actor`/!d;q' sakila-backup.sql
That's pretty cryptic, we admit. If you have to do this kind
 of work to restore data, your backups are poorly designed. With a little planning,
 it's possible to prevent a situation in which you're panicked and
 trying to figure out how sed works. Just back
 up each table into its own file, or, better yet, back up the data
 and schema separately.

Loading delimited files

If you dumped the data via SELECT
 INTO OUTFILE, you'll have to use LOAD DATA INFILE with the same parameters
 to restore it. You can also use mysqlimport,
 which is a wrapper around LOAD DATA
 INFILE. It relies on naming conventions to determine where
 to load a file's data.
We hope you dumped your schema, not just your data. If so,
 it's a SQL dump, and you can use the techniques outlined in the
 previous section to load it.
There's a great optimization you can use with LOAD DATA INFILE. It must read directly
 from a file, so you might think you have to decompress the file
 before loading it, which is very slow and disk-intensive. However,
 there's a way around that, at least on systems that support FIFO
 "named pipe" files, such as GNU/Linux. First, create a named pipe
 and stream the decompressed data into it:
$ mkfifo /tmp/backup/default/sakila/payment.fifo
$ chmod 666 /tmp/backup/default/sakila/payment.fifo
$ gunzip -c /tmp/backup/default/sakila/payment.txt.gz > /tmp/backup/default/sakila/
payment.fifo
Notice we're using a greater-than character (>) to redirect
 the decompressed output into the payment.fifo
 file—not a pipe symbol, which creates anonymous pipes between
 programs. The payment.fifo file is a named
 pipe, so there's no need for an anonymous one.
The pipe will wait until some program opens it for reading
 from the other end. Here's the neat part: the MySQL server can read
 the decompressed data from the pipe, just like any other file. Don't
 forget to disable binary logging if appropriate:
mysql> SET SQL_LOG_BIN = 0; -- Optional
 -> LOAD DATA INFILE '/tmp/backup/default/sakila/payment.fifo'
 -> INTO TABLE sakila.payment;
Query OK, 16049 rows affected (2.29 sec)
Records: 16049 Deleted: 0 Skipped: 0 Warnings: 0
Once MySQL is done loading the data,
 gunzip will exit, and you can delete the named
 pipe. You can use this same technique to load compressed files from
 within the MySQL command-line client with the SOURCE command.
ora: Why Test Backups?
One of the authors recently changed a column from DATETIME to TIMESTAMP to save space and make
 processing faster, as recommended in Chapter 3. The resulting table
 definition looked like the following:
CREATE TABLE tbl (
 col1 timestamp NOT NULL,
 col2 timestamp NOT NULL default CURRENT_TIMESTAMP
 on update CURRENT_TIMESTAMP,
 ... more columns ...
);
This table definition causes a syntax error on MySQL 5.0.40,
 the server version from which it was created. You can dump it, but
 you can't reload it. Odd, unforeseen errors such as this one are
 among the reasons why it's important to test your backups. You
 never know what will prevent you from restoring your data!

Point-in-Time Recovery

The most common way to do point-in-time recovery with MySQL is to restore your last full backup
 and then replay the binary log from that time forward (sometimes
 called "roll-forward recovery"). As long as you have the binary log,
 you can recover to any point you wish. You can even recover a single
 database without too much trouble.
A common scenario is undoing the effects of a harmful statement,
 such as a DROP TABLE. Let's see a
 simplified example of how to do that, using only MyISAM tables.
 Suppose that at midnight, the backup job ran the equivalent of the
 following statements, which copied the database elsewhere on the same
 server:
mysql> FLUSH TABLES WITH READ LOCK;
 -> server1# cp -a /var/lib/mysql/sakila /backup/sakila;
mysql> FLUSH LOGS;
 -> server1# mysql -e "SHOW MASTER STATUS" --vertical > /backup/master.info;
mysql> UNLOCK TABLES;
Then, later in the day, suppose someone ran the following
 statement:
mysql> USE sakila;
mysql> DROP TABLE sakila.payment;
For the sake of illustration, we assume that we can recover this
 database in isolation (that is, that no tables in this database were
 involved in cross-database queries). We also assume that we didn't
 notice the offending statement until some time later. The goal is to
 recover everything that's happened to the database, except for that
 statement. That is, we must also preserve all the modifications that
 have been made to other tables, including after that statement was
 run.
This isn't all that hard to do. First, we stop MySQL to prevent
 further modifications and restore just the sakila database from the backup:
server1# /etc/init.d/mysql stop
server1# mv /var/lib/mysql/sakila /var/lib/mysql/sakila.tmp
server1# cp -a /backup/sakila /var/lib/mysql
We disable normal connections by adding the following to the
 server's my.cnf file while we work:
skip-networking
socket=/tmp/mysql_recover.sock
Now it's safe to start the server:
server1# /etc/init.d/mysql start
The next task is to find which statements in the binary log we
 want to replay, and which we want to skip. As it happens, the server
 has created only one binary log since the backup at midnight. We can
 examine this file with grep and find the
 offending statement:
server1# mysqlbinlog --database=sakila /var/log/mysql/mysql-bin.000215 | grep -B
3 -i 'drop table sakila.payment'
at 352
#070919 16:11:23 server id 1 end_log_pos 429 Query thread_id=16 exec_time=0
error_code=0
SET TIMESTAMP=1190232683/*!*/;
DROP TABLE sakila.payment/*!*/;
The statement we want to skip is at position 352 in the log
 file, and the next statement is at position 429. We can replay the log
 up to position 352, and then from 429 on, with the following
 commands:
server1# mysqlbinlog --database=sakila /var/log/mysql/mysql-bin.000215
--stop-position=352 | mysql -uroot -p
server1# mysqlbinlog --database=sakila /var/log/mysql/mysql-bin.000215
--start-position=429 | mysql -uroot -p
Now all we have to do is check the data just to be sure, stop
 the server and undo the changes to my.cnf, and
 restart the server.

More Advanced Recovery Techniques

Replication and point-in-time recovery use the same mechanism:
 the server's binary log. This means replication can be a helpful tool
 during recovery, in some not-so-obvious ways. We show you some of the
 possibilities in this section. This isn't an exhaustive list, but it
 should give you some ideas about how to design recovery processes for
 your needs. Remember to script and rehearse anything you think you'll
 need to do during recovery.
Delayed replication for fast recovery

As we mentioned earlier in this chapter, having a delayed replication slave can make point-in-time
 recovery much faster and easier if you notice the accident before
 the slave executes the offending statement.
The procedure is a little different from that outlined in the
 preceding section, but the idea is the same. You stop the slave,
 then use START SLAVE UNTIL to
 replay events until just before the statement you want to skip.
 Next, you execute SET GLOBAL
 SQL_SLAVE_SKIP_COUNTER=1 to skip the bad statement. Set it
 to a value higher than 1 if you
 want to skip several events (or simply use CHANGE MASTER TO to advance the slave's
 position in the log).
All you have to do then is execute START SLAVE and let the slave run until it
 is finished executing its relay logs. Your slave has done all the
 tedious work of point-in-time recovery for you. Now you can promote
 the slave to master, and you've recovered with very little
 interruption.
Even if you don't have a delayed replication slave to speed recovery, slaves
 can be useful because they fetch the master's binary logs onto
 another machine. If your master's disk fails, a slave's relay logs
 might be the only place you'll have a reasonably up-to-date copy of
 the master's binary logs. (It's even safer to keep the binary logs
 on a SAN or replicate them with DRBD, as discussed in Chapter 9.)

Recovering with a log server

There's another way to use replication for recovery: set up a log server. (See "Creating a
 log server" on Creating a log server for more
 details on how to do this.)
A log server is more flexible and easier to use for recovery
 than mysqlbinlog, not only because of the
 START SLAVE UNTIL option, but
 also because of the replication rules you can apply (such as
 replicate-do-table). With a log
 server, you can do much more complex filtering than you'd be able to
 do otherwise.
For example, a log server lets you recover a single table
 easily. This is a lot harder to do correctly with
 mysqlbinlog and command-line tools—in fact,
 it's hard enough that we advise you not to try.
Let's suppose our careless developer dropped the same table as
 before, and we want to recover it without reverting the whole server to last night's
 backup. Here's how to do this with a log server:
	Let the server you need to recover be called server1.

	Recover last night's backup to another server, called
 server2. Run the recovery process on this server to avoid the risk
 of making things worse if you make a mistake in recovery.

	Set up a log server to serve server1's binary logs, following the
 directions in "Creating a log server" on Creating a log server. (It might be a good idea to
 copy the logs away to another server and set up the log server
 there, just to be extra careful.)

	Change server2's
 configuration file to include the following:
replicate-do-table=sakila.payment

	Restart server2, then
 make it a slave of the log server with CHANGE MASTER TO. Configure it to read
 from the binary log coordinates of last night's backup. Don't
 run START SLAVE yet.

	Examine the output of SHOW SLAVE
 STATUS on server2
 and verify that everything is correct. Measure twice, cut
 once!

	Find the binary log position of the offending statement,
 and execute START SLAVE UNTIL
 to replay events until just before that position on server2.

	Stop the slave process on server2 with STOP SLAVE. It should now have the
 table as it existed just before it was dropped.

	Copy the table from server2 to server1.

This process is possible only if the table isn't the target of
 any multitable UPDATE, DELETE, or
 INSERT statements. Any such
 statements will execute against a different database state than the
 one that existed when the binary log events were logged, so the
 table will probably end up containing different data than it
 should.

InnoDB Recovery

InnoDB checks its data and log files every time it starts to see
 whether it needs to perform its recovery process. However, InnoDB's
 recovery isn't the same thing we've been talking about in the context
 of this chapter. It's not recovering backed-up data; instead, it's
 applying transactions from the logs to the data files and rolling back
 uncommitted modifications to the data files.
Exactly how InnoDB recovery works is a little too complicated to
 describe here. We focus instead on how to actually perform recovery
 when InnoDB has a serious problem.
Most of the time InnoDB is very good at fixing problems. Unless
 there is a bug in MySQL or your hardware is faulty, you shouldn't have
 to do anything out of the ordinary, even if your server loses power.
 InnoDB will just perform its normal recovery upon startup, and all will be well. In the log
 file, you'll see messages like the following:
InnoDB: Doing recovery: scanned up to log sequence number 0 40817239
InnoDB: Starting an apply batch of log records to the database...
InnoDB prints progress messages in percents into the log file.
 Some people report not seeing these until the whole process is done.
 Be patient; there is no way to hurry the process. Killing and
 restarting will just make it take longer.
If there's a severe problem with your hardware, such as memory or disk corruption,
 or if you run into a bug in MySQL or InnoDB, you might have to
 intervene and either force recovery or prevent the normal recovery
 from happening.
Causes of InnoDB corruption

InnoDB is generally pretty robust. It is built to be reliable,
 and it has a lot of built-in sanity checks to prevent, find, and fix
 corrupted data—much more so than some other storage engines.
 However, it can't protect itself against everything.
At a minimum, InnoDB relies on unbuffered I/O calls and
 fsync() calls not returning until
 the data is safely written to physical media. If your hardware
 doesn't deliver these, InnoDB can't protect your data, and a crash
 can cause corruption.
Many InnoDB corruption problems are hardware-related (e.g.,
 corrupted page writes caused by power failures or bad memory).
 However, misconfigured hardware is a much bigger source of problems
 in our experience. Common misconfigurations include enabling the
 writeback cache on a RAID card that doesn't have a battery backup
 unit, or enabling the writeback cache on hard drives themselves.
 These mistakes will cause the controller or drive to lie and say the
 fsync() completed, when the data
 is in fact only in the writeback cache, not on disk. In other words,
 the hardware doesn't provide the guarantees InnoDB needs to keep
 your data safe.
Sometimes machines are configured this way by default, because
 it gives better performance—which may be fine for some purposes, but
 not for a transactional database server. You should always check a
 machine if you didn't set it up yourself.
You can also get corruption if you run InnoDB on
 network-attached storage (NAS), because completing a fsync() to such a device just means the
 device received the data. The data is safe if InnoDB crashes, but
 not necessarily if the NAS device crashes.
Sometimes the corruption is worse than other times. Severe
 corruption can crash InnoDB or MySQL, but less severe corruption
 might just mean some transactions are lost because the log files
 weren't really synced to disk.

How to recover corrupted InnoDB data

There are three major types of InnoDB corruption, and each
 requires a different level of effort to recover the data:
	Secondary index corruption
	You can often fix a corrupt secondary index with OPTIMIZE
 TABLE; alternatively, you can use SELECT INTO OUTFILE, drop and
 recreate the table, then use LOAD
 DATA INFILE. These processes fix the corruption by
 building a new table, and hence rebuilding the affected
 index.

	Clustered index corruption
	You may need to use the innodb_force_recovery settings to
 dump the table (more on this later). Sometimes the dump
 process crashes InnoDB; if this happens, you may need to dump
 ranges of rows to skip the corrupted pages that are causing
 the crash. A corrupt clustered index is more severe than a
 corrupt secondary index because it affects the data rows
 themselves, but it's still possible to fix just the affected
 tables in many cases.

	Corrupt system structures
	System structures include the InnoDB transaction log,
 the undo log area of the tablespace, and the data dictionary.
 This type of corruption is likely to require a complete dump
 and restore, because much of InnoDB's inner workings may be
 affected.

You can usually repair a corrupted secondary index without
 losing any data. However, the other two scenarios often involve at
 least some data loss. If you have a backup, you're probably better
 off restoring that backup rather than trying to extract data from
 corrupt files.
If you must try to extract the data from the corrupted files,
 the general process is to try to get InnoDB up and running, then use
 SELECT INTO OUTFILE to dump the
 data. If your server has already crashed and you can't even start
 InnoDB without crashing it, you can configure it to prevent the
 normal recovery and background processes from running. This
 might let you start the server and make a logical backup with
 reduced or no integrity checking.
The innodb_force_recovery
 parameter controls which kinds of operations InnoDB will do at
 startup and during normal operation. The normal value is 0, and you can increase it up to 6. The MySQL manual documents the exact
 behavior of each option; we won't duplicate that information here,
 but we will note that you can increase the value to as high as
 4 with little danger. At this
 setting, you may lose some data on pages that have corruption; if
 you go higher, you may extract bad data from corrupted pages, or
 increase the risk of a crash during the SELECT INTO OUTFILE. In other words,
 levels up to 4 do no harm to your data, but they might miss
 opportunities to fix problems; levels 5 and 6 are more aggressive at
 fixing problems but risk doing harm.
When you set innodb_force_recovery to a value greater
 than 0, InnoDB is essentially
 read-only, but you can still create and drop tables. This prevents
 further corruption, and it makes InnoDB relax some of its normal checks so it doesn't intentionally crash
 when it finds bad data. In normal operations, this is a safeguard,
 but you don't want it when you're recovering. If you need to force
 InnoDB recovery, it's a good idea to configure MySQL not to
 allow normal connection requests until you're finished.
If InnoDB's data is so corrupt that you can't start MySQL at
 all, you can use the InnoDB Recovery Toolkit to extract data directly from
 the tablespace pages. These tools were developed by some of this
 book's authors and are freely available at http://code.google.com/p/innodb-tools/.
Warning
We usually don't mention specific bugs in MySQL, but there's
 a pretty severe bug in many versions of MySQL that prevents you
 from performing recovery when innodb_force_recovery is defined. You
 can track the bug's status at http://bugs.mysql.com/28604. If you get the error
 "Incorrect key file" while trying to dump a corrupt InnoDB table,
 read that bug report and see if it's the problem. If so, you may
 be able to use MySQL 5.0.22 to dump the data. Hopefully, you'll
 never need to worry about this.

Backup and Recovery Speed

Next to correctness, speed is the most important concern for
 backing up and recovering high-performance systems. Here are some things
 to consider:
	Lock time
	How long do you need to hold locks, such as the global
 FLUSH TABLES WITH READ LOCK,
 while backing up?

	Backup time
	How long does it take to copy the backup to the
 destination?

	Backup load
	How much does it impact the server's performance to copy the
 backup to the destination?

	Recovery time
	How long does it take to copy your backup image from its
 storage location to the MySQL server, replay binary logs, and so
 on?

The biggest tradeoff is backup time versus backup load. You can
 often improve one at the other's expense; for example, you can
 prioritize the backup at the expense of causing more performance
 degradation on the server.
You can also design your backups to take advantage of load
 patterns. For instance, if your server is only 50% loaded for 8 hours
 during the night, you can try to design your backups to load the server
 less than 50% and still complete within 8 hours. You can accomplish this
 in many ways: for example, you can use ionice and
 nice to prioritize the copy or compression
 operations, use different compression levels, or compress the data on
 the backup server instead of the MySQL server. You can also use O_DIRECT or madvice to
 bypass the operating system's cache for the copy operations, so they
 don't pollute the server's caches.
In general, it's a good bit faster and requires less work to do
 raw copies than logical backups. However, logical backups are an important
 supplement, because raw files aren't as portable, aren't restorable
 indefinitely, and can have corruption that's hard to detect. If you do
 periodic logical backups from a raw file copy, you can get the best of
 both worlds for relatively little extra effort.

Backup Tools

Anything beyond simply stopping the server, restoring the data,
 and restarting the server can get pretty involved. It's essential to
 rehearse and script these actions. The following sections introduce some
 tools that are useful for backup and recovery, both for scripting and
 for one-shot dumps and restores.
The first edition of this book said, "If you have a complex
 configuration or unusual needs, there's a chance that none of these
 alone will do the job for you. Instead, you'll need to build a custom
 solution." Times have changed, and today we'd advise against scripting
 your own backup tools unless it's really necessary. There's a good
 chance that some preexisting tool will fit your needs nicely, and if
 not, you may be able to modify one to do what you need.
Still, some of the more complicated backup scenarios will
 necessitate custom scripting, so we've included some basic how-to advice
 at the end of the chapter.
mysqldump

The most popular program for creating logical backups of data and schema is
 mysqldump. mysqldump is provided with the server,
 so you don't even need to install it. It's a general-purpose tool that
 can be used for many tasks, such as copying a table from one server to
 another:
$ mysqldump --host=server1 test t1 | mysql --host=server2 test
We've shown several examples of how to create logical backups
 with mysqldump throughout this chapter. By
 default, it outputs a script containing all the commands needed to
 create a table and fill it with data; there are also options to output
 views, stored routines, and triggers. Here are some more examples of
 typical usage:
	To make a logical backup of everything on a server to a
 single file:
$ mysqldump --all-databases > dump.sql

	To make a logical backup of only the Sakila sample
 database:
$ mysqldump --databases sakila > dump.sql

	To make a logical backup of only the sakila.actor table:
$ mysqldump sakila actor > dump.sql

You can use the --result-file option to
 specify an output file, which can help prevent newline conversion on
 Windows:
$ mysqldump sakila actor --result-file=dump.sql
The default options for mysqldump aren't all that good
 for serious backup purposes. You'll probably want to specify some
 options explicitly to change the output. Here are options we use
 frequently to make mysqldump more efficient and
 make its output easier to use:
	--opt
	Enables a group of options that disable buffering (which
 could make your server run out of memory), write more data into
 fewer SQL statements in the dump, so they'll load more
 efficiently, and do some other useful things. Read your
 version's help for the details. If you disable this group of
 options, mysqldump will store each table
 you dump in its memory before writing it to the disk, which is
 impractical for large tables.

	--allow-keywords, --quote-names
	Make it possible to dump and restore tables that use
 reserved words as names.

	--complete-insert
	Makes it possible to move data between tables that don't
 have identical columns.

	--tz-utc
	Makes it possible to move data between servers in
 different time zones.

	--lock-all-tables
	Uses FLUSH TABLES WITH READ
 LOCK to get a globally consistent backup.

	--tab
	Dumps files with SELECT INTO
 OUTFILE, which is very fast to dump and to
 restore.

	--skip-extended-insert
	Causes each row of data to have its own INSERT statement. This can help you
 selectively restore certain rows if necessary. The cost is
 larger files that are more expensive to import into MySQL; you
 should enable this only if you need it.

If you use the --databases or
 --all-databases options to
 mysqldump, the resulting dump's data will be
 consistent within each database, because
 mysqldump will lock and dump all tables a
 database at a time. However, tables from different databases may not
 be consistent with each other. Using the
 --lock-all-tables option solves this
 problem.

mysqlhotcopy

mysqlhotcopy is a Perl script included in
 standard MySQL server downloads. It was designed for MyISAM tables, and in our opinion it does
 not do "hot" backups, because it locks all tables
 before copying them. Although it used to be one of the most popular
 options for backups on a live server, it is less popular these days.
 Many high-performance installations are moving away from MyISAM, and
 even if you're using only MyISAM, filesystem snapshots are often less
 intrusive because they can lock the data for a shorter time.
As an example, we created a copy of the Sakila sample database
 using all MyISAM tables. To back up this database to
 /tmp, we ran the following command:
$ mysqlhotcopy sakila_myisam /tmp
This created a sakila_myisam subdirectory
 in /tmp that contained all the tables from the
 database:
$ ls -l /tmp/sakila_myisam/
total 3632
-rw-rw---- 1 mysql mysql 8694 2007-09-28 09:57 actor.frm
-rw-rw---- 1 mysql mysql 5016 2007-09-28 09:57 actor.MYD
-rw-rw---- 1 mysql mysql 7168 2007-09-28 09:57 actor.MYI
... omitted ...
-rw-rw---- 1 mysql mysql 8708 2007-09-28 09:57 store.frm
-rw-rw---- 1 mysql mysql 18 2007-09-28 09:57 store.MYD
-rw-rw---- 1 mysql mysql 4096 2007-09-28 09:57 store.MYI
It copied the data, index, and table definition files for each
 table in the database. To save space, you can use the
 --noindices option to back up only the first
 2,048 bytes of each .MYI file, which is all MySQL
 needs to reconstruct the indexes later. If you use this option, you'll
 need to rebuild the indexes after restoring the files. You can either
 use myisamchk with the
 --recover option, or use the REPAIR TABLE SQL command.
mysqlhotcopy is pretty complicated and not
 all that flexible, so a lot of people roll their own scripts to do
 essentially the same job in a slightly different way.
Warning
mysqlhotcopy will copy the
 .ibd data files when InnoDB is configured with
 innodb_file_per_table, but that's
 useless. Don't let this give you a false sense of security; it is
 not a safe way to back up your InnoDB data.

InnoDB Hot Backup

The InnoDB Hot Backup, ibbackup, is a
 commercial tool distributed by the makers of InnoDB (Innobase). Using
 it does not require stopping MySQL, setting locks, or interrupting
 normal database activity (though it will cause some extra load on your
 server). It can also compress backups.
Configure ibbackup by providing it with a
 configuration file matching your production server's
 my.cnf file, but with a different data directory.
 The tool reads both configuration files and copies the InnoDB files
 from the production server to the location specified in the second
 configuration file:
$ ibbackup /etc/my.cnf /etc/ibbackup.cnf
To restore the backup, shut down MySQL and run the following
 command:
$ ibbackup --restore /etc/ibbackup.cnf
There's one small problem: ibbackup copies
 only the InnoDB files, not the table definition or other necessary
 files. Innobase also provides an innobackup
 helper script that wraps file copies, table locks, and
 ibbackup into a single command that can back up
 table definitions and MyISAM files as well as the InnoDB files. Unlike
 ibbackup by itself, this does interrupt normal
 processing, because it uses FLUSH TABLES WITH
 READ LOCK. It is free software.
In our opinion, LVM's snapshot capabilities are more convenient
 and useful for InnoDB backups than ibbackup.
 One of LVM's great conveniences is that you don't need to make a
 second copy of your data on the filesystem—you can create a snapshot,
 perform InnoDB recovery on it if you wish, and then send it directly
 to the backup destination.
LVM and ibbackup generally have comparable
 performance, depending on how you've configured the backup and whether
 you have a write-intensive workload. In that case, there will be a lot
 of copy-on-write overhead for LVM. On the other hand,
 ibbackup may not scale linearly with data size.
 It works by copying the data files page-by-page, then applying the log
 file to the copied data files to "recover" them to a single point in
 time that corresponds to the end of the backup process.

mk-parallel-dump

This tool is part of Maatkit (http://maatkit.sourceforge.net). It performs several
 backup operations at the same time.
By default, mk-parallel-dump acts as a
 multithreaded wrapper around mysqldump, but it
 can also perform tab-separated exports with SELECT INTO OUTFILE. It defaults to one
 thread per CPU, so the more CPUs you have, the faster it generally
 works. It can also back up each table in chunks of a desired size,
 which makes restore operations much faster for InnoDB tables. The
 benefit is that you can avoid an enormous transaction when restoring.
 A large transaction can cause InnoDB's tablespace to grow very large
 and increases rollback time if there's an error.
The tool also has some nice features, such as the ability to do
 incremental backups and group tables into logical backup sets.
 Benchmarks indicate a significant speed boost from doing logical
 backups in parallel.
Maatkit also contains mk-parallel-restore,
 a companion program to do multithreaded imports. Both tools make good use of Unix idioms such as pipes and
 FIFO devices to reduce the impact of compressing and decompressing
 files.

mylvmbackup

Lenz Grimmer's mylvmbackup (http://lenz.homelinux.org/mylvmbackup/) is a Perl
 script to help automate MySQL backups via LVM snapshots. It gets a
 global read lock, creates a snapshot, and releases the lock. It then
 compresses the data with tar and removes the
 snapshot. It names the tarball according to the timestamp at which the
 backup was made.

Zmanda Recovery Manager

Zmanda Recovery Manager for MySQL, or ZRM (http://www.zmanda.com), is
 the most comprehensive of the backup and recovery tools we mention
 here. It comes in both free (GPL) and commercial versions. The
 enterprise edition comes with a management console that provides a
 graphical web-based interface for configuration, backup, verification,
 recovery, reporting, and scheduling. It can also back up MySQL
 Cluster, and it has all the usual benefits (such as
 support).
The open source edition is not crippled in any way, but it
 doesn't include some of the extra niceties, such as the web-based
 console. It's perfectly usable if you're comfortable at the command
 line. For example, you can still schedule and check backups at the
 command prompt.
ZRM is actually more of a "backup coordinator" than a single
 tool. It wraps its own functionality around standard tools and
 techniques, such as mysqldump and LVM snapshots,
 and it stores the data in standard formats, so there's no need to buy
 proprietary software to restore a backup. One of its nice features is
 its unified recovery mechanism, which works the same way regardless of
 how the backup was made.
Figure 11-2
 shows the enterprise version's calendar overview of MySQL backups and
 the binary log analyzer, which Zmanda calls the "Database Events
 Viewer." It is essentially a search tool for your binary logs; you can
 use ordinary search syntax to find events, which makes it easier to
 restore to a certain log event or point in time.
Installing and testing ZRM

Zmanda's web site claims it takes about 15 minutes to install,
 perform, and verify a backup; set up and verify a daily schedule;
 and perform a restoration. As a test, we installed ZRM from scratch
 on a laptop running Ubuntu. The ZRM package itself is a tiny
 download, and we installed it with sudo dpkg -i
 mysql-zrm_1.2.1_all.deb. There were several
 prerequisites, but they were easy to install with sudo
 apt-get -f install. The process took less than a minute
 .
[image: ZRM's backup calendar and binary log search interface]

Figure 11-2. ZRM's backup calendar and binary log search
 interface

We followed the instructions on the web site to configure the
 backup set, which, in our case, was a logical backup of the Sakila
 sample database. This took about three minutes. Then we typed the
 following command to begin the backup:
mysql-zrm-scheduler --now --backup-set dailyrun
The backup took just a moment, and the resulting file was
 stored in /var/lib/mysql-zrm/dailyrun. We then
 ran it again and deliberately caused some errors for ZRM, such as
 killing some of its child processes and giving it the wrong login
 parameters. It correctly detected the errors and noted them in the
 backup emails it sent. Details were logged to the expected system
 log location.
Finally, we dropped the sakila database and restored it from the
 last successful backup with the following commands:
mysql-zrm-reporter --show restore-info --where backup-set=dailyrun
mysql-zrm-restore --backup-set dailyrun --source-directory
/var/lib/mysql-zrm/dailyrun/20070930134242/
In general, ZRM is a well-designed system with good error
 checking that automates much of the tedious work of backups and
 recovery. And, as its name indicates, it is designed
 from the bottom up for recovery.

R1Soft

R1Soft (http://www.r1soft.com)
 offers a product called Continuous Data Protection that is similar to filesystem
 snapshots, except that when it copies a snapshot to another server, it
 copies only the blocks that have changed. You can use it to roll back
 to multiple past versions of your data. It is commercial
 software.

MySQL Online Backup

MySQL online backup isn't a tool; it's a feature that's being
 developed for MySQL 5.2 (currently in alpha) and is likely to be
 released in MySQL 6.0.
The interface is a new BACKUP
 DATABASE SQL statement, which writes a consistent snapshot
 from each table to a file at high speed. It uses either a default
 driver that can back up any storage engine, or a driver implemented
 for a particular storage engine to do the backup more efficiently. The
 default driver blocks other SQL statements, but native drivers can
 perform the backup without blocking. Restore functionality is also
 included.
At the time of this writing, the project has an initial
 implementation in the 5.2 source tree and a respectable list of
 features completed, but there are also many features that have yet to
 be implemented, such as a native driver for MyISAM and consistent
 backups across storage engines.
Online backup is much anticipated, and when it's complete, it is
 likely to be one of the most important ways to back up MySQL.

Comparison of Backup Tools

Table 11-2 provides a
 quick summary of some of the backup methods we discussed in this
 chapter.
Table 11-2. Characteristics of backup tools
	 	mylvmbackup
	mysqldump
	mk-parallel-dump
	mysqlhotcopy
	ibbackup

	Blocks processing?
	Optional
	Yes
	Yes
	Yes
	No

	Logical or raw
	Raw
	Logical
	Logical
	Raw
	Raw

	Engines
	All
	All
	All
	MyISAM/Archive
	InnoDB

	Speed
	Very good
	Slow
	Good
	Very good
	Very good

	Remote backups
	No
	Yes
	Yes
	No
	No

	Availability
	Free
	Free
	Free
	Free
	Commercial

	License
	GPL
	GPL
	GPL
	GPL
	Proprietary

Scripting Backups

We've advised you not to reinvent the wheel if an existing system
 will work for you, but you still might need to either roll your own or
 modify an existing script. Here are some of the kinds of backup
 configurations we've seen in the real world:
	Backing up many servers onto some number of backup servers,
 which have large, cheap hard drives without RAID. The backup script
 allocates different volumes for each backup, based on which servers
 have enough space. It also ensures that different backup generations
 go on different servers, so losing any single server isn't a big
 deal.

	Slicing a backup archive into pieces, encrypting them, and
 storing them outside the data center, on Amazon's S3 service or
 another large storage service.

	Integrating recovery with replication, so you can reclone a
 slave from a backup.

Rather than showing you a sample program, which would necessarily
 have a lot of scaffolding that just takes up space on the page, we list
 the ingredients that go into a typical backup script and show you code
 snippets for a Perl script. You can view these as building blocks that
 you can snap together to create your own script. We show them in roughly
 the order you'll need to use them:
	Sanity checking
	Make life easier on yourself and your teammates—turn on
 strict error checking and use English variable names:
use strict;
use warnings FATAL => 'all';
use English qw(-no_match_vars);
If you script in Bash, you can enable stricter variable
 checking too. The following will raise an error when there's an
 undefined variable in a substitution or when a program exits with
 an error:
set -u;
set -e;

	Command-line arguments
	Every script needs to accept command-line arguments. If you
 find yourself hardcoding configuration such as usernames and
 passwords, you really should be working at a higher level.
use Getopt::Long;
Getopt::Long::Configure('no_ignore_case', 'bundling');
GetOptions(....);

	Connecting to MySQL
	The standard Perl DBI library is nearly ubiquitous, and it
 provides a lot of power and flexibility. Read the Perldoc
 (available online at http://search.cpan.org)
 for details on how to use it.
use DBI;
$dbh = DBI->connect(
 'DBI:mysql:;host=localhost', 'user', 'pass', {RaiseError => 1 });
For command-line scripting, read the --help text
 for the standard mysql program. It has a lot
 of options to make it friendly for scripting. For example, here's how to iterate over a
 list of databases in Bash:
for DB in `mysql --skip-column-names --silent --execute 'SHOW DATABASES'`
do
 echo $DB
done

	Stopping and starting MySQL
	The best way to stop and start MySQL is to use your
 operating system's preferred method, such as running the
 /etc/init.d/mysql init script or the service
 control (on Windows). It's not the only way, though. You can shut
 down the database from Perl, with an existing database
 connection:
$dbh->func("shutdown", 'admin');
You shouldn't rely on MySQL being shut down when this
 command completes—it may only be in the process of shutting down.
 You can also stop MySQL from the command line:
$ mysqladmin shutdown

	Getting lists of databases and
 tables
	Every backup script asks MySQL for a list of databases and
 tables. Beware of entries that aren't really databases, such as
 the lost+found directory in some journaling
 filesystems and the INFORMATION_SCHEMA. Make sure your
 script is ready to deal with views, too, and be aware that
 SHOW TABLE STATUS can take a
 really long time when you have lots of data in InnoDB:
mysql> SHOW DATABASES;
mysql> SHOW /*!50002 FULL*/ TABLES FROM <database>;
mysql> SHOW TABLE STATUS FROM <database>;

	Locking, flushing, and unlocking
 tables
	You're bound to need to lock and/or flush one or more
 tables. You can either lock the desired tables by naming them all,
 or just lock everything globally:
mysql> LOCK TABLES <database.table> READ [, ...];
mysql> FLUSH TABLES;
mysql> FLUSH TABLES <database.table> [, ...];
mysql> FLUSH TABLES WITH READ LOCK;
mysql> UNLOCK TABLES;
Be very careful about race conditions when getting lists of
 tables and locking them. New tables could be created, or tables
 could be dropped or renamed. If you lock and back them up one at a
 time, you won't get consistent backups.

	Flushing binary logs
	It's handy to ask the server to begin a new binary log (do
 this after locking the tables, but before taking a backup):
mysql> FLUSH LOGS;
It makes recovery and incremental backups easier if you
 don't have to think about starting in the middle of a log file.
 This does have some side effects with regard to flushing and
 reopening logs and potentially destroying old log entries, so be
 careful you're not throwing away data you need.

	Getting binary log positions
	Your script should get and record both the master and slave
 status—even if the server is just a master or just a slave:
mysql> SHOW MASTER STATUS;
mysql> SHOW SLAVE STATUS;
Issue both statements and ignore any errors you get, so your
 script gets all the information possible.

	Dumping data
	Your two best options are to use
 mysqldump or SELECT
 INTO OUTFILE.

	Copying data
	Use one of the methods we showed throughout the
 chapter.

These are the building blocks of any backup script. The hard part
 is to script the recovery. If you want inspiration for how to do this
 well, take a look at the source code for ZRM. Its scripts do some smart
 things, such as keeping metadata with each backup to make it easier to
 restore.

Chapter 12. Security

Keeping MySQL secure is critical to protecting your data's integrity
 and privacy. Just as you have to protect Unix or Windows login accounts,
 you need to ensure that MySQL accounts have good passwords and only the
 privileges they need. Because MySQL is often used on a network, you also
 need to consider the security of the host that runs MySQL, who has access
 to it, and what someone could learn by sniffing traffic on your
 network.
MySQL has a nonstandard security and privilege system that lets you
 do a lot of specialized tasks. It's built around a set of simple rules,
 but there are many complicated exceptions and special cases, so it can be
 hard to understand. In this chapter, we look at how MySQL's permissions
 work and how you can control who has access to your data. The MySQL manual
 has thorough documentation on privileges, so we just explain the confusing
 concepts and show you how to do some common tasks that might otherwise be
 hard to learn. We also consider some of the basic operating system and
 network security measures you can employ to keep the bad guys out of your
 databases. Finally, we discuss encryption and running MySQL in a highly
 restricted environment.
Terminology

Before we begin, let's define a few terms that may be confusing.
 We use them to mean specific things in this chapter:
	Authentication
	Who are you? MySQL authenticates you with a username, a
 password, and the host from which you are connecting. Knowing who
 you are is a prerequisite to determining your
 privileges.

	Authorization
	What are you allowed to do? Shutting down the server, for
 example, requires that you have the SHUTDOWN privilege. In MySQL,
 authorization applies to global privileges, which aren't associated with any
 specific schema objects (such as tables or databases).

	Access control
	What data are you allowed to see and/or manipulate? When you
 try to read or modify data, MySQL checks to see that you've been
 granted permission to see or change the columns you are selecting. Unlike global privileges, access controls apply to specific
 data, such as a particular database, table, or column.

	Privileges and permissions
	These terms mean roughly the same thing—a privilege or
 permission is how MySQL represents an authorization or access
 right.

Account Basics

MySQL accounts aren't like accounts in most systems, because
 MySQL considers the origin of a login attempt to be part of the authentication. In contrast, a Unix login attempt
 is usually authenticated with just a username and a password. In other
 words, a Unix account's primary key is the username, whereas in MySQL
 it's the username and location (usually a hostname, IP address, or
 wildcard).
As we'll see, having a location associated with the account adds
 complexity to an otherwise simple system. The user
 joe who logs in from joe.example.com may not be the same
 as the joe who logs in from sally.example.com. From MySQL's
 point of view, they can be completely different users, with different
 passwords and privileges. On the other hand, they could be the same
 user. It depends on how you've configured the accounts.
Privileges

MySQL uses your account information (username, password, and
 location) to authenticate you. Once it has done so, it must decide
 what you're allowed to do. It does this by consulting your
 privileges, which are usually named after the SQL
 queries they let you execute. For example, you need the SELECT privilege on a table to retrieve data
 from it.
There are two kinds of privileges: those that are associated
 with objects (such as tables, databases, and views), and those that
 aren't. Object-specific privileges grant you
 access to specific objects. For example, they control whether you can
 retrieve data from a table, alter a table, create a view in a
 database, or create a trigger. MySQL 5.0 and newer have many
 additional object-specific privileges, because of the introduction
 of views, stored procedures, and other new features.
Global privileges, on the other hand, let
 you perform functions such as shutting down the server, executing
 FLUSH commands, running various
 SHOW commands, and viewing other
 users' queries. In general, the global privileges let you do things to
 the server, and the object-based privileges let you do things to the
 server's contents (although that distinction is not always sharply
 defined). Each global privilege has far-reaching security
 implications, so be very cautious when granting any of them!
MySQL privileges are Boolean: a privilege is either granted or
 not. Unlike some other database systems, MySQL doesn't have the notion
 of explicitly denied privileges. Revoking a privilege doesn't forbid
 the user to perform an action; it merely removes the
 privilege to perform the action if it exists.
MySQL's privileges are also hierarchical, with a twist or two.
 We explain this in a bit.

The Grant Tables

MySQL uses a series of grant tables to
 store users and their privileges. The tables are ordinary MyISAM
 tables [114] that live in the mysql database. Storing the security
 information in grant tables makes a lot of sense, but it also means
 that if the server isn't configured correctly, any user can make
 security changes by altering the data in those tables!
MySQL's grant tables are the heart of its security system. MySQL
 now gives you nearly full control of security with the GRANT, REVOKE, and DROP USER commands (which we discuss later).
 However, manipulating the grant tables used to be the only means of
 performing certain tasks. For instance, in old MySQL versions, the
 only way to remove a user completely was to DELETE that user from the user table, then FLUSH PRIVILEGES.
We don't recommend changing the grant tables directly, but you
 should still understand how they work so you can debug unexpected
 behavior. We encourage you to examine the grant table structures with
 DESCRIBE or SHOW CREATE TABLE, especially after you use
 GRANT and REVOKE to change privileges. You'll learn
 more from doing that than from reading about them.
Here are the grant tables in the order in which MySQL consults
 them when checking whether a user is authorized to do a specific
 operation:
	user
	Each row contains a user account (the username, hostname,
 and encrypted password) and the user's global privileges. MySQL
 5.0 adds optional per-user limits, such as the number of
 connections the user is allowed to have.

	db
	Each row contains database-level privileges for a specific
 user.

	host
	Each row contains privileges to one database for a user
 connecting from a given host. The entries are "merged" with
 entries in db when checking
 database-level access. Though we list it as a grant table, the
 GRANT and REVOKE commands never modify the
 host table. You can only add
 and remove entries manually.
We recommend that you do not use this
 table to prevent maintenance problems and confusing
 behavior later.

	tables_priv
	Each row contains table-level privileges for a specific
 user and table. It also contains view privileges.

	columns_priv
	Each row contains column-level privileges for a specific
 user and column.

	procs_priv (new
 in MySQL 5.0)
	Each row contains privileges for a specific user and
 stored routine (stored procedure or function).

How MySQL Checks Privileges

MySQL checks the privileges from the grant tables in the order
 we listed them in the previous section. The server stops checking when
 it finds a match that grants the desired privilege. That is, if it
 finds a matching entry in the db
 table that grants the desired access, it will not consult the tables_priv table at all. Figure 12-1 illustrates this
 process.
[image: How MySQL checks privileges]

Figure 12-1. How MySQL checks privileges

MySQL determines which privileges apply by issuing the
 equivalent of a SELECT statement
 against the cached grant tables. This virtual statement's WHERE clause contains the columns of each
 table's primary key. Some of the columns allow pattern matches, and
 many of them have "magical" meanings when they have special values,
 such as when they're empty. Consult the MySQL manual for details.
You could spend a lot of time learning about the grant tables
 and how they work, and that knowledge might occasionally come in
 handy. However, we wouldn't recommend putting in all that time unless
 it's absolutely necessary. Instead, read the next section. Delving
 deeply into the grant tables is worthwhile only if you find a
 situation that you can't set up (or that is too complex to set up)
 with the GRANT and REVOKE commands.

Adding, Removing, and Viewing Grants

The recommended way to add user accounts and add and remove
 privileges in MySQL is via the GRANT and REVOKE commands, which are well documented
 in the MySQL manual. They provide a simple syntax for making most
 changes without needing to understand the underlying grant tables and
 their various matching rules. You can add a new user account or a
 privilege with GRANT, but REVOKE can remove only privileges, not
 accounts; you'll need to use DROP
 USER to remove a user account.
You can use SHOW GRANTS to
 see a user's grants. The result is the syntax required to recreate the
 same account with its current privileges. For example, here's what a
 default installation on a Debian system shows after logging in as
 root:
mysql> SHOW GRANTS;
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+
This statement shows the grants for the user that executed it by
 default, so it's an easy way to see who you're logged in as and what
 your current privileges are. The user shown here has all privileges,
 but there's no password, which means that user can log in without
 specifying a password. [115] That's very insecure! This is one of the first things
 you should check for when setting up a fresh MySQL
 installation.
If you want to see the grants for a different user, you'll need
 to specify the username and hostname for that particular user. For
 example, the same Debian system has the following entries in the
 user table:
+------------------+-----------+
| user | host |
+------------------+-----------+
repl	%
root	127.0.0.1
root	kanga
debian-sys-maint	localhost
root	localhost
+------------------+-----------+
Notice there are three root accounts! If
 you want to see the grants for a specific one, you must specify both the
 username and hostname. The default hostname is %, so omitting the hostname will cause an
 error:
mysql> SHOW GRANTS FOR root;
ERROR 1141 (42000): There is no such grant defined for user 'root' on host '%'
If you issue a GRANT for a
 user without specifying a hostname, you effectively grant to
 user@'%' (e.g., any host).
There's nothing to prevent you from using normal INSERT, UPDATE, and DELETE queries to manipulate the grant
 tables directly, but sticking to the GRANT and REVOKE commands insulates you from changes
 in those tables. It is also easy to make very bad mistakes when
 modifying the tables directly. For instance, MySQL
 doesn't stop you from changing the tables to contain data it doesn't
 know how to interpret. The GRANT
 and REVOKE commands are the
 recommended way of managing privileges and are likely to remain
 so.
If you do decide to manipulate the grant tables by hand rather
 than using the GRANT and REVOKE commands, you must tell MySQL that
 you've done so by issuing a FLUSH
 PRIVILEGES command, which refetches and recaches the
 accounts and privileges in the tables. Any changes you make to the
 grant tables with an INSERT or
 other generic command may go unnoticed until you restart the server or
 run FLUSH PRIVILEGES.

Setting Up MySQL Privileges

Let's look at an example of how to create appropriate user
 accounts and privileges for a fictional organization, widgets.example.com. We'll
 assume you're logging into a freshly installed MySQL instance and have
 deleted all default accounts with DROP
 USER. Be sure to check the mysql.user table to make sure you got them
 all.
MySQL does not support roles or groups, which you may be
 familiar with from other database servers. MySQL supports only
 users.
The basic idiom is to use combinations of these three
 commands:
GRANT [privileges] ON [objects] TO [user];
GRANT [privileges] ON [objects] TO [user] IDENTIFIED BY [password];
REVOKE [privileges] ON [objects] FROM [user];
ora: Password Security
We use the intentionally cute "p4ssword" for purposes of illustration, but it's not a good password
 for real installations. Just because MySQL passwords
 aren't stored in plain text doesn't mean you can be careless about
 password complexity. Anyone who can connect to your MySQL server can
 run a brute-force attack against it in an attempt to discover
 passwords, and in MySQL there aren't as many sophisticated ways to
 detect and prevent this as there are with other types of passwords, such as Unix passwords. MySQL also
 doesn't provide any way for an administrator to enforce good
 password standards. You can't link MySQL against
 libcrack and demand that passwords meet its
 criteria, no matter how cool that idea may be. There are many good
 tools and web sites out there that can help you and your users
 generate strong passwords—we recommend that you use one of them.

Here's an overview of the types of accounts you may need to
 create and the privileges you should set for them:
	System administrator account
	In most large organizations, you have two important
 administrator roles. The system
 administrators manage the "physical" server,
 including the operating system, Unix login accounts, etc., and
 the database administrators concentrate on
 the database server. How you allocate the administrator accounts
 is up to you—you might want to just keep things simple and ask
 anyone who needs to do administrative tasks to log into MySQL as
 a superuser, or you might want to create a separate account for
 each person who needs administrative access. We keep it simple
 to begin with and create a super-privileged user named
 root (after the traditional Unix
 superuser):
mysql> GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost'
 -> IDENTIFIED BY 'p4ssword' WITH GRANT OPTION;

	Database administrator accounts
	When more than one DBA has access to MySQL, it's sometimes
 a good idea to give each one a separate account rather than
 having them share the root account. This setup provides greater
 accountability and auditability:
mysql> GRANT ALL PRIVILEGES ON *.* TO 'john'@'localhost'
 -> IDENTIFIED BY 'p4ssword' WITH GRANT OPTION;

	Per-employee accounts
	The average widgets.example.com
 employee is a customer service representative responsible for
 entering orders taken over the phone, updating existing orders,
 and so on. Let's assume that Tera, a customer service
 representative, logs into a custom application that passes her
 username and password through to the MySQL server for any
 activity. The command to create Tera's account might look like
 this:
mysql> GRANT INSERT,UPDATE PRIVILEGES ON widgets.orders
 -> TO 'tera'@'%.widgets.example.com'
 -> IDENTIFIED BY 'p4ssword';
Tera must provide her username and password to the
 application, which then lets her add new orders or update
 existing orders. However, she can't go back and delete entries,
 etc. In this configuration, every employee of widgets.example.com
 that needs to enter an order into the system has her own
 individual database access. Instead of a shared "application
 account," each employee's transactions are logged under her own
 username, and each employee has only the privileges she needs to
 enter or work with orders.

	Simulated groups
	MySQL doesn't provide any functionality for user groups or roles, as they're variously
 known in other database servers. Sometimes it makes sense to
 create an account named after a particular employee or
 application role, such as custserv or
 analyst, but we won't do that in this
 example.

	Logging, write-only access
	It is common to use MySQL as the backend for logging various types of data. Whether you
 have Apache recording every request in MySQL or you're keeping
 track of when your doorbell rings, logging is a write-only
 application that probably needs to write to only a single
 database or table. You can create a logging account with a
 command like this:
mysql> GRANT INSERT ON logs.* TO 'logger'@'%.widgets.example.com'
 -> IDENTIFIED BY 'p4ssword';
This command adds a row to the user table, but because we specified
 no global (*.*) privileges, all the privilege columns in the
 resulting row in user will
 contain N. The only purpose
 of the row here is to let the user connect from any host and
 provide a password. Because we specified a privilege that
 applies to a specific database, the interesting bits were added
 to the db table, where the
 resulting row's columns will all contain N, except for the Insert_priv column, which will contain
 Y.

	Backups
	A backup user who will do backups via
 mysqldump will typically need only SELECT and LOCK TABLES privileges. If the user
 will do tab-delimited dumps with the --tab
 option to mysqldump, or via SELECT INTO OUTFILE, you will also
 need to grant that user the FILE privilege. Here's a sample backup
 user who can connect only from the local host:
mysql> GRANT SELECT, LOCK TABLES, FILE ON *.* TO 'backup'@'localhost'
 -> IDENTIFIED BY 'p4ssword';
To guarantee consistency many backup operations use
 FLUSH TABLES WITH READ LOCK,
 which requires the RELOAD
 privilege as well. This privilege also permits several other
 common operations, such as FLUSH
 LOGS.

	Operations and monitoring
	There may be times when you'll want to give
 someone or something (e.g., a user or some monitoring software
 at a network operations center, or NOC) access to your MySQL
 server for the purposes of maintenance or troubleshooting. This
 user account needs to be able to connect, issue the KILL and SHOW commands, and shut down the
 server. Because this ability is very powerful, it has to be
 limited to a single host. This means that even if an
 unauthorized user compromises the password, that user will have
 to be in the NOC to do anything. This statement accomplishes
 that:
mysql> GRANT PROCESS, SHUTDOWN on *.*
 -> TO 'noc'@'monitorserver.noc.widgets.example.com'
 -> IDENTIFIED BY 'p4ssword';
You might also need to grant the SUPER privilege, which lets the user
 execute SHOW INNODB
 STATUS.

Privilege Changes in MySQL 4.1

MySQL 4.1 introduced a new, much more secure password hashing
 scheme. However, you can still use the old password hashing scheme in
 the newer versions (even MySQL 5.0 and newer). We recommend against
 this, because the old-style password hashing is easy to crack. If you
 care about security, use MySQL 4.1 or newer and stick to the new
 scheme.
Some GNU/Linux distributions configure MySQL to use old-style
 password hashing by default, for compatibility with older client
 programs. Check your default configuration for the old_passwords option. If you want the MySQL
 server to reject any attempts to connect with an old-style, insecure
 password, you can set the secure_auth option in the server's
 configuration file. There's a similar option for client programs,
 which will prevent them from trying to send passwords to the server in
 the old format even if the server asks for it. This can be a good
 idea, because the old format is easy to sniff and crack.
New-style passwords begin with an asterisk, so you can tell them
 apart readily with visual inspection. In most cases, user accounts
 that were upgraded from older MySQL versions will authenticate fine.
 However, when a pre-MySQL 4.1 client program tries to connect to a
 newer MySQL server with a user account whose password is stored in the
 new format, it won't be able to connect. To fix this problem, you can
 either set the account's password back to the old-style hashing
 manually with OLD_PASSWORD(), or
 upgrade the client program's MySQL client library.

Privilege Changes in MySQL 5.0

MySQL 5.0 added a few new kinds of privileges and changed some existing behaviors slightly.
 This section gives an overview of the changes. Before you upgrade to any new MySQL version, you should
 read the release notes to learn what's new and what's changed.
Stored routines

As we discussed in Chapter 5,
 MySQL 5.0 added support for stored routines. These can execute in two security
 contexts: as the definer (i.e., the user who defined the routine) or
 the invoker (i.e., the user who invokes the routine).
Stored routines are commonly used as proxies to grant specific
 rights to tables where users don't have any rights assigned
 directly. The usual idiom is to create a privileged user, then
 create the routines with that user as their definer, and give them
 the SQL SECURITY DEFINER
 characteristic. Table 12-1 illustrates
 how a stored procedure allows users to execute statements with
 another user's privileges.
Table 12-1. The security context for statements inside a stored
 procedure
	User who calls the procedure
	Security context for statements
	
	 	With SQL SECURITY INVOKER
	With SQL SECURITY DEFINER
 and DEFINER=LegalStaff

	LegalStaff
	LegalStaff
	LegalStaff

	HumanResources
	HumanResources
	LegalStaff

	CustomerService
	CustomerService
	LegalStaff

This approach lets you grant or deny access to tables based on
 who the user is, and at the same time grant permission to perform
 specific actions on tables—the actions encapsulated in the stored
 procedure—when you don't want the user to access the tables
 directly. For instance, say you want some private legal data in a
 set of tables (such as the status of a contract with an outside
 party) to be visible only to the legal staff, but your customer
 service representatives need to be able to update a particular
 column in these tables. You can deny SELECT privileges for the tables to
 everyone but the legal staff, and then write a stored procedure to
 permit everyone to update the desired column and use SQL SECURITY DEFINER to make it run with
 LegalStaff's privileges. This is rather like
 using SUID privileges in Unix-like operating systems.
The namespace of stored routines is per schema (database), so
 you can have db1.func_1() and
 db2.func_1() without a naming
 conflict.
MySQL checks privileges for each statement within the stored
 routine. The privilege to execute the routine doesn't provide a
 blanket authorization for the statements inside it. The statements
 inside are checked against either the definer's or the invoker's
 privileges, depending on whether you created the routine with
 SQL SECURITY DEFINER or SQL SECURITY INVOKER.

Triggers

MySQL 5.0 also added support for triggers, which require special privileges to execute if they're not defined with the
 SQL SECURITY DEFINER
 characteristic. This can have confusing effects, such as the
 following error message when trying to run UPDATE, INSERT, or DELETE queries on a table:
mysql> INSERT INTO ...;
ERROR 1142 (42000): Access denied; you need the SUPER privilege for this operation
If the trigger isn't created with the SQL SECURITY DEFINER characteristic the
 user who inserts into the table must have the SUPER privilege to execute the trigger,
 which is why the error message seems to say the SUPER privilege is required to insert into
 the table. (MySQL 5.1 includes a TRIGGER privilege, which should make this
 error message a little less confusing.)
MySQL checks privileges for the statements inside a trigger just as
 it does for a stored routine.

Views

Like stored procedures and triggers, you can execute views with the privileges of
 either the definer or the invoker. Definer privileges let you give a
 user access to a view but not to the underlying tables.
This lets you implement row-level security, but also restrict
 access to columns. We believe this is a better solution than
 specifying column-level privileges with GRANT, as it is much easier to maintain.
 If you put the views in a separate database, you can simply grant
 database-level privileges to users, rather than having to maintain
 privileges on individual tables or views. Figure 12-2 shows the
 difference between granting access to particular columns with
 GRANT and extracting the relevant
 columns into a view.
[image: Simplifying access to particular columns by defining a view]

Figure 12-2. Simplifying access to particular columns by defining a
 view

On the left side of Figure 12-2, the DBA
 issues a GRANT statement granting
 fine-grained access to individual columns. This slows down all
 database accesses and requires separate GRANT statements for each table that
 requires column-level permission checking.
On the right side of Figure 12-2, the DBA
 creates a new database named views to hold a series of views. He then
 creates a view containing the columns from the table where he wants users to have fine-grained
 privileges. Any such views can be stored in views, and the single GRANT statement grants access
 efficiently.

Privileges on the INFORMATION_SCHEMA tables

The official SQL standards define a set of views, collectively
 known as the INFORMATION_SCHEMA
 tables, which give you information about databases, tables, and
 other parts of your database server. MySQL tries to follow these
 standards as closely as possible. As a result, the server manages
 privileges for these tables automatically, and it's best not to
 define any privileges explicitly. If a user without the appropriate
 privileges attempts to access rows or values in these tables, MySQL
 will not show the rows and will return NULL for the values. For example, a user
 will not be able to see tables in the INFORMATION_SCHEMA.TABLES view unless she
 has some privileges for those tables. This is analogous to MySQL's
 SHOW TABLES behavior: MySQL will
 not show tables for which the user has no privileges.

Privileges and Performance

Privileges may not seem very related to performance, but they
 can actually cause performance problems in certain circumstances. Here
 are some things to think about:
	Too many privileges
	If you have a very large number of entries in your grant
 tables, the overhead can be significant. Each privilege adds to
 the work the server must do when checking whether a user can
 execute a statement. Privileges also consume memory.

	Privileges that are too
 fine-grained
	Each level of the privilege hierarchy in MySQL (user,
 database, host, table, and column) makes privilege checks more
 expensive. Checking for global privileges is relatively quick,
 but if you define even one column privilege, the server will
 potentially have to examine every query for global, database,
 table, and column privileges (recall from "How MySQL Checks
 Privileges" on How MySQL Checks Privileges
 that the server begins at the highest level and continues
 looking until it finds a match that grants the necessary
 privilege).

	Column privileges and the query
 cache
	At the time of this writing, queries that access a table
 with column privileges cannot be served from the query cache. We
 suggest using views instead of column privileges, as discussed
 in the previous section, to avoid this and other problems with
 column privileges.

By default, MySQL does both a forward and a reverse DNS lookup
 when authenticating users. Adding skip_name_resolve to your
 my.cnf file will disable this. This can be good
 for both security and performance, because it speeds up connections,
 reduces reliance on DNS servers, and reduces susceptibility to
 denial-of-service attacks.
The side effect of this change is that it prevents you from
 defining users with hostnames in the Host column. These user definitions will
 just stop working. Instead, you must use IP addresses (but you can
 still use wildcards, such as 192%). You can also
 use the special value localhost even when
 skip_name_resolve is
 enabled.

Common Problems and Solutions

Because the MySQL manual covers privileges thoroughly, we decided to limit this section
 of the book to a discussion of common needs, gotchas, and unexpected
 behavior, so you can use it as a quick-reference manual or for
 troubleshooting. The following sections describe
 frequently asked questions, common tasks, and puzzling situations
 we've encountered.
ora: Errors When Connecting
Mailing lists, forums, and IRC channels are jam-packed with
 users having trouble connecting to MySQL servers. There are dozens of
 reasons for these problems, ranging from TCP connections failing because skip_networking is defined in
 my.cnf, to bind_address being set to an IP address
 that doesn't match the server's, to mistakes with the GRANT statement, to firewalls. We can't
 cover all the reasons here, but the MySQL manual has a section
 dedicated to this topic.

Connecting through localhost versus 127.0.0.1

The localhost hostname is usually an
 alias for the IP address 127.0.0.1, but MySQL has slightly different
 default behavior. When you specify the hostname
 localhost as a connection parameter, it tries
 by default to connect through a Unix socket [116] instead of via TCP/IP, as you might expect. Thus, the
 following command will connect over a Unix socket:
$ mysql --host=localhost
This is a somewhat unfortunate design decision, because it
 doesn't behave as people expect; however, it's too late to change it
 because doing so would break compatibility with older applications
 and client libraries. If you want to connect via TCP/IP to the
 machine on which you're running, you have two choices: specify an IP
 address instead of the hostname, or specify the protocol explicitly.
 Either of the following two commands will connect via TCP/IP:
$ mysql --host=127.0.0.1
$ mysql --host=localhost --protocol=tcp
On a related note, if you attempt to connect to the forwarded
 TCP port on localhost when setting up SSH
 tunneling, you'll find that it doesn't work. You have to use TCP to
 connect to a port, so you must use the IP address 127.0.0.1 instead.
 We discuss SSH tunneling later in the chapter.
This hostname is special in another way, too: MySQL won't try
 to match localhost against a
 % wildcard. In other words, it is not redundant
 to specify permissions for user@'%' and
 user@localhost.

Using temporary tables safely

MySQL doesn't have special privileges for temporary tables, other than the CREATE TEMPORARY TABLE privilege. Once a
 temporary table is created, the user's normal table-level privileges apply. This means that a user might be able
 to create a temporary table, but then be denied the right to add
 more columns, alter the table, and add indexes (or even to SELECT from it). However, granting these
 rights might let the user harm real tables, which you don't
 want.
The solution is to disallow these privileges except in a
 special database reserved for temporary tables:
mysql> CREATE DATABASE temp;
mysql> GRANT SELECT, INSERT, UPDATE, DELETE, DROP, ALTER, INDEX,
 -> CREATE TEMPORARY TABLES ON temp.* TO analyst@'%';

Disallowing passwordless access

MySQL allows passwordless access. An account without a
 password is one whose row in the user table contains an empty string in the
 password column. You can create
 such an account with a GRANT
 statement that has no IDENTIFIED
 BY clause.
You can't completely disallow passwordless access in MySQL,
 but if you have control over the machines from which the users
 connect, you can add an entry in the [client] section of
 my.cnf as follows:
password
This will cause programs that read this file by default (which
 includes all the programs MySQL distributes, unless they're
 instructed otherwise) to always prompt the user for a password. In
 MySQL 5.0 and newer, you can set the server's SQL mode to NO_AUTO_CREATE_USER to prevent GRANT from creating users without a
 password, but it's possible for a determined user to work around
 this.
Remember, a user whose password in the mysql.user table is an empty string is a
 user without a password, not a user with an empty password.

Disabling anonymous users

MySQL also allows anonymous users: any entry in the grant tables whose
 User column contains the empty
 string defines privileges for anonymous users. Be careful of such entries, as SHOW
 GRANTS will not show the resulting privileges. We think
 it's best to remove these entries. You can run the MySQL-provided
 mysql_secure_installation program to do
 this.

Remember to quote hostnames separately

It's easy to forget to quote usernames and hostnames
 separately. The following command doesn't do what it looks like it
 should:
mysql> GRANT USAGE ON *.* TO 'fred@%';
It looks like it creates an account for a user named
 fred who can connect from anywhere, but in fact
 it creates a user named fred@%. The correct
 syntax is as follows (note that the user and host are quoted
 separately):
mysql> GRANT USAGE ON *.* TO 'fred'@'%';

Don't reuse usernames

MySQL considers users with the same username but different
 hosts to be entirely different users. It may seem helpful that you
 can grant a user completely different privileges depending on where
 the connection attempt originated, but in our experience it's rarely
 a good idea to do this. The potential for confusion or problems far
 outweighs the benefits. It's much simpler to treat usernames as
 though they should be unique, and use the Host column to restrict where
 users can connect from, rather than what they
 can do once connected. For example, you might decide that
 you want to allow connections only from the local machine, only from
 the local network, or only from a specific subnet. This is a
 reasonable security precaution, though a firewall is a much safer
 way to restrict connection attempts (we discuss this more
 later).
Just because MySQL allows a lot of flexibility doesn't mean it
 will make your life easier. We think it's better to keep it
 simple.

Granting SELECT allows SHOW CREATE TABLE

Granting the SELECT
 privilege lets a user execute SHOW CREATE
 TABLE, which shows the SQL command that will recreate a
 table. This is usually fine, but sometimes it can show sensitive
 details. The most obvious case is for Federated tables in MySQL 5.0:
 the user will be able to see the username and password by which the
 engine connects to the remote server. (MySQL 5.1 adds a separate
 mechanism for managing remote connections for Federated
 tables.)

Don't grant privileges on the mysql database

If you grant privileges on the mysql database, a user might be able to
 update her own privileges, view other users' privileges (which opens
 the door to easy password-guessing attacks), or even rename or
 change the tables MySQL needs to run. There's no need to give
 ordinary users any access to these tables—even
 read-only access. That means the following is a bad idea, because it
 grants privileges globally:
mysql> GRANT ... ON *.* ...;
If a user has permission to modify the tables in the mysql database, that user should also have
 the GRANT option. Otherwise, it
 will be possible for the user to drop privileges by deleting rows, yet
 to be unable to add them back. One of this book's authors once
 accidentally removed every user in the system this way, and had to
 shut down the MySQL server and restore the users by starting the
 server with the --skip_grant_tables
 option.

Don't grant the SUPER privilege freely

The SUPER privilege lets a
 user do superuser operations (such as changing data on a server
 that's configured to be read-only), as you might expect, but it also
 has one extra behavior: MySQL will reserve one connection for a user with the SUPER privilege, even if it has reached
 its max_connections limit. This
 lets you connect and administer the server even when it won't accept any more normal client
 connections.
You should try to avoid granting the SUPER privilege to too many users, but
 this can be difficult as it's needed for several other common
 purposes (such as purging master logs).

Granting privileges on wildcarded databases

MySQL's database pattern matching doesn't let you specify "all
 databases except these." That means it can be tedious to omit
 privileges for the mysql database. A good naming convention
 can help: just name all databases with a common prefix and grant
 privileges to the wildcarded database name. For example:
mysql> GRANT ... ON `analysis%`.* TO 'analyst' ...;
Unfortunately, MySQL doesn't have true schemas, which would
 help with this problem. Naming conventions can ease some of the
 pain, though. Note that you must quote the database name as an
 identifier (with backticks) in the GRANT statement.
This is also a useful technique for setting up a shared
 hosting environment. Most such environments restrict users to
 databases whose names begin with their own username and an
 underscore. The underscore is a wildcard pattern, so you must escape
 it in the GRANT statement. For
 example, you might use a command like this to set up a new hosting
 account for a user named sunny:
mysql> GRANT ... ON `sunny_%`.* TO 'sunny' ...;
You probably should not grant the SHOW DATABASES privilege in a shared
 hosting environment. This will ensure that users don't see databases
 to which they don't have access—the less they know, the
 better.

Revoking specific privileges

If you grant privileges globally, you can't revoke them nonglobally:
mysql> GRANT SELECT ON *.* TO 'user';
mysql> SHOW GRANTS FOR user;
+-----------------------------------+
| Grants for user@% |
+-----------------------------------+
| GRANT SELECT ON *.* TO 'user'@'%' |
+-----------------------------------+
mysql> REVOKE SELECT ON sakila.film FROM user;
ERROR 1147 (42000): There is no such grant defined for user 'user' on host '%' on
table 'film'
This privilege was granted globally and can only be revoked
 globally; attempting to revoke it from a specific table causes MySQL
 to complain that there's no table-level privilege matching the
 specified criteria.

Users can connect even after REVOKE

Suppose you revoke every privilege for a user:
mysql> REVOKE ALL PRIVILEGES ON...;
The user will still be able to connect, because REVOKE doesn't remove user accounts; it
 just removes privileges. You have to use DROP USER to remove the account entirely
 (or, in old MySQL versions, DELETE the row from the mysql.user table).
If you merely revoke all privileges, SHOW GRANTS will show that the user still
 has the USAGE privilege. You
 can't revoke this privilege, because it's a synonym for "no
 privileges." It simply means the user can connect to
 MySQL.

When you can't grant or revoke a privilege

In addition to the GRANT
 option, you must have the privilege you're trying to grant or
 revoke. This safeguard prevents users from escalating each other's
 permissions. If you're trying to revoke ALL
 PRIVILEGES, you must have the CREATE USER privilege.

Invisible privileges

SHOW GRANTS doesn't really
 show all the privileges for a user: it merely shows the privileges
 explicitly assigned to that user. A user may have other permissions,
 perhaps because of permissions granted to anonymous users. For
 example, default MySQL installations grant privileges on the
 test database, and databases
 whose names begin with test_, to
 every user! Let's look at an example. First, we log in as
 root and create a user with no
 privileges:
mysql> GRANT USAGE ON *.* TO 'restricted'@'%' IDENTIFIED BY 'p4ssword';
mysql> SHOW GRANTS FOR restricted;
+--+
| Grants for restricted@% |
+--+
| GRANT USAGE ON *.* TO 'restricted'@'%' IDENTIFIED BY |
| PASSWORD '*544F2E9C6390E7D5A5E0A508679188BBF7467B57' |
+--+
Looks good; the user seems to be able to connect but do
 nothing else. That's not the whole story, though. To prove it, just
 log in as that user and run SHOW
 DATABASES:
$ mysql -u restricted -pp4ssword
mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| test |
+--------------------+
This server also contains a copy of the Sakila sample
 database, which isn't listed because the user doesn't have the
 SHOW DATABASES privilege, but the
 test database is listed. In fact,
 as you can see here, the new user has privileges to that database and all tables in
 it:
mysql> USE test;
mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| heartbeat |
+----------------+
mysql> SELECT * FROM heartbeat;
+----+---------------------+
| id | ts |
+----+---------------------+
| 1 | 2007-10-28 21:31:08 |
+----+---------------------+
The user account can't just read from the tables; it also has
 most other privileges. In fact, it can even create a new
 database:
mysql> CREATE DATABASE test_muah_ha_ha;
Query OK, 1 row affected (0.01 sec)
The culprit is two rows in the mysql.db table:
mysql> SELECT * FROM mysql.db\G
*************************** 1. row ***************************
 Host: %
 Db: test
 User:
 Select_priv: Y
... omitted ...
*************************** 2. row ***************************
 Host: %
 Db: test_%
 User:
 Select_priv: Y
... omitted ...
Notice that the User
 columns are blank, which means anonymous users—in effect, all
 users—have these privileges, even though they don't appear in the
 SHOW GRANTS [117] output. The moral of this story is that SHOW GRANTS doesn't always show you
 everything. Sometimes you still need to know how to read and
 interpret the grant tables.
This isn't the only way a user's privileges can behave strangely, though. Because
 hostname and database matching prefer the most specific match first,
 grants for a less specific match will be hidden even when they're more permissive.
Consider the following scenario: instead of adopting a naming
 convention as we suggested earlier and using the principle of least
 privileges, a lazy DBA decides to take the reverse approach. He
 grants all privileges for a user, and then overrides undesired
 privileges by hiding privileges in the mysql database with a row whose privilege
 columns are all set to N:
mysql> GRANT USAGE ON *.* TO 'gotcha'@'%' IDENTIFIED BY 'p4ssword';
mysql> GRANT ALL PRIVILEGES ON `%`.* TO 'gotcha'@'%';
mysql> INSERT INTO mysql.db(Host, DB, User) VALUES('%', 'mysql', 'gotcha');
mysql> FLUSH PRIVILEGES;
Because the mysql pattern
 is more specific than the % pattern, the lazy DBA reasons that the
 user should be denied privileges such as SELECT in the mysql database. And indeed, this is the
 case:
mysql> SELECT * FROM mysql.user;
ERROR 1142 (42000): SELECT command denied to user 'gotcha'@'localhost' for table
'user'
The problem is that this privilege scheme sets a trap for
 anyone who changes that user's privileges in the future. It's very
 easy to mistakenly remove the mysql-specific privileges, which unmasks
 the elevated privileges in that database. In other words, removing
 privileges can actually grant more privileges!
 This scheme is not nearly as clever as it seems, and in fact it's
 dangerous. It also doesn't show up in SHOW
 GRANTS, so it's easy to miss.
You can play similar games with hostname matching, with the
 same consequences. For example, if you want to allow the
 gotcha user to connect from all but a specific
 hostname, you can't do it by specifying a "negated hostname
 pattern," because no such thing exists in MySQL. The only way to do
 this is to create a user with the same username, but specify the
 blocked hostname and a bogus password:
mysql> GRANT USAGE ON *.* TO 'gotcha'@'denied.com' IDENTIFIED BY 'b0gus';
Now when gotcha tries to connect from
 this hostname, MySQL will try to authenticate against the gotcha@denied.com row in the user table and will deny the login because
 the password doesn't match. This "solution" can turn out to be very
 dangerous, however, if someone thinks this entry in the table is a
 mistake and removes it, or disables hostname lookups for performance
 reasons, or perhaps if the user compromises reverse DNS. In any of
 these cases, the user will be able to connect as
 gotcha@'%'.
We advise you to avoid hidden privileges and "clever tricks" such as the
 schemes we just showed. Instead, adopt a common-sense approach, don't
 try to do anything fancy with privileges if you don't need to, and follow best
 practices such as the principle of least privileges.

Obsolete privileges

MySQL doesn't clean up old privileges when you remove objects.
 For example, let's say you've done the following:
mysql> GRANT ALL PRIVILEGES ON my_db.* TO analyst;
And you later run this command:
$ mysqladmin drop my_db
It would be nice if MySQL destroyed the GRANT as a result, but the privileges will
 actually remain in the db table.
 If you later create another database with the same name, the
 privileges will still exist; this may cause problems, as you may not
 even remember that the analyst account ever had
 any privileges.
In MySQL 5.0 and newer, the INFORMATION_SCHEMA tables can help you
 find obsolete privileges. For example, you can use an
 exclusion join query to find privileges that reference nonexistent
 databases:
mysql> SELECT d.Host, d.Db, d.User
 -> FROM mysql.db AS d
 -> LEFT OUTER JOIN INFORMATION_SCHEMA.SCHEMATA AS s
 -> ON s.SCHEMA_NAME LIKE d.Db
 -> WHERE s.SCHEMA_NAME IS NULL;
+------+---------+------+
| Host | Db | User |
+------+---------+------+
| % | test_% | |
+------+---------+------+
You can write similar queries against any of the other tables
 in INFORMATION_SCHEMA. In earlier
 MySQL versions, you have to search for obsolete privileges manually, or write a script to do
 it for you.
MySQL will let you create database-level privileges for databases that don't exist, but it
 won't let you grant table-level privileges for tables that don't exist. If you need to
 do this, you'll have to insert rows directly into mysql.tables_priv.

[114] And they must remain ordinary MyISAM tables. Don't change
 their storage engine to anything else.

[115] The only mitigating factor is that this user cannot log in
 from any other host, but that's not much of a security
 measure.

[116] localhost isn't special on Windows,
 but . is; it means to connect via a named pipe.

[117] This example illustrates one of the "magic" values in
 MySQL's privilege tables. The empty string in the User column can indicate an anonymous
 user, which is how MySQL will authenticate you if you connect
 with a nonexistent username, or it can indicate that the
 privilege applies to everyone.

Operating System Security

Even the most well thought out and secure grant tables will do you
 little good if an attacker can get root access to your server. With
 unlimited access, the user could simply copy all your data files to
 another machine running MySQL. [118] Doing so would effectively give the attacker an identical
 copy of your database.
Data theft isn't the only threat to guard against, though. A
 creative attacker may decide that it's more fun to make subtle changes
 to your data over the course of weeks or even months. Depending on how
 long you keep backups and how much time passes before you notice the
 data corruption, such an attack could be devastating.
Guidelines

The general guidelines discussed here aren't a comprehensive
 guide to system security. If you are serious about security—and you
 should be—we recommend a copy of Practical Unix and Internet
 Security by Simson Garfinkel et al. (O'Reilly). That said, here are some
 ideas for maintaining good security on your database
 servers:
	Don't run MySQL from a privileged
 account
	The root user on Unix and the system (administrator) user
 on Windows possess ultimate control over the system. If someone
 finds a security bug in MySQL and you're running it as a
 privileged user, the attacker can gain extensive access to your
 server. The installation instructions are quite clear about
 this, but it bears repeating: create a separate account, usually
 mysql, for the purpose of running
 MySQL.

	Keep your operating system
 up-to-date
	All operating system vendors (Microsoft, Sun, Red Hat,
 Novell, etc.) provide notifications when a security-related
 update is available. Find your vendor's mailing list and
 subscribe to it. Pay special attention to the security list for
 MySQL itself, as well as anything that may interact directly
 with the database, such as PHP or Perl.

	Restrict logins on the database
 host
	Does every developer building a MySQL-based application
 need an account on the server? Certainly not; only system and
 database administrators need accounts on the machine. All the
 developers need to be able to do is issue queries against the
 database remotely using TCP/IP.

	Separate production from everything
 else
	Separate your production environment from your development and
 testing environments. It's best to use entirely different
 physical servers. The security and access requirements for a production
 server are completely different from those of a development server, so it makes sense to
 physically separate them. This also prevents mistakes and makes
 management and maintenance easier. It requires that you create
 proper procedures and tools from the very beginning, such as
 ways to transfer data between servers.

	Have your server audited
	Many larger organizations have internal auditors who can
 assess the security of a server and make recommendations for improving
 it. If you aren't lucky enough to have access to auditors, you
 can hire a security consultant to perform the audit.

	Use the strongest means
 available
	You can use techniques such as chrooting, jails, zones, or
 virtual servers to isolate MySQL even more

Keeping your backups on a different server is another important
 security measure. If someone breaks into your server, you'll need to
 reinstall the operating system from an untainted source. Once that's
 done, you'll be faced with the task of having to restore all the data.
 If you have time, you might want to compare the compromised server to
 a known good backup in an effort to determine how the attacker gained
 entry.

[118] Remember: MyISAM data files are portable across operating
 systems and CPU architectures (provided the CPU's floating-point
 format is also the same).

Network Security

It's always best to isolate your servers and make them
 inaccessible, but you may need to have a MySQL server that is accessible
 to clients not located on the same host. We look at several techniques
 you can use to limit such a server's exposure.
Even if you use your server only on an internal network at your
 organization, you should take steps to keep data away from prying eyes.
 After all, some of the most serious security threats in a company
 actually come from the inside.
Keep in mind that this information is only a starting point in the
 process of ensuring that your MySQL servers are well protected. There
 are numerous good network security books available, including
 Building Internet Firewalls by Elizabeth D.
 Zwicky et al., and TCP/IP Network
 Administration by Craig Hunt (both from O'Reilly). If you're serious about network
 security, do yourself a favor and pick up a book on the topic (after you
 finish this one!).
As with operating system security, having a third-party audit of your network done can be quite helpful in spotting
 weaknesses before someone exploits them.
Localhost-Only Connections

If you use MySQL in an application that resides on the same host
 (as is common with small and mid-size web sites), there's a good
 chance you won't need to allow any access to MySQL over the network. Eliminating the need
 to accept external connections reduces the number of ways an attacker
 can get access to your MySQL server.
Disabling network access limits your ability to make
 administrative changes remotely (adding users, rotating logs, etc.),
 so you'll need to either log into the MySQL server via SSH, or install
 a web-based application that lets you make those changes. The remote
 login requirement can be difficult on some Windows systems, but there
 are other remote-access alternatives. One solution to the problem
 might be to install phpMyAdmin. But beware,
 because it has been known to have security flaws too!
The skip_networking option
 tells MySQL not to listen on any TCP socket, but it will still allow
 connections on a Unix socket. Starting MySQL without networking
 support is simple. Just place the following option in the [mysqld] section of your
 my.cnf file:
[mysqld]
skip_networking
The skip_networking option
 has some inconvenient side effects: it prevents you from using tools
 such as stunnel for secure remote connectivity
 and replication, and it doesn't let Java applications connect
 (Connector/J will connect only through TCP/IP). An alternative is to
 configure MySQL as follows:
[mysqld]
bind_address=127.0.0.1
This enables TCP connections, but only from the local machine,
 so it's both secure and convenient. Some popular GNU/Linux
 distributions have switched to this configuration by default.
Tip
A MySQL slave server configured with skip_networking is an interesting
 configuration. Because it initiates its connection to the master,
 the slave still gets all its data updates, but because no TCP
 connections are permitted, you can have a more secure "backup
 replica" that can't be remotely tainted. You can't use such a slave
 in a failover configuration, though: no other client could connect
 to it.

Firewalling

As with any other network-based service, it is important that
 you allow connections only from authorized hosts. You can use MySQL's
 GRANT command to restrict the hosts
 from which users can connect, but it's a good idea to have more than
 one level of protection. Having multiple ways to filter
 connections means that a single mistake, such as a typo in a GRANT command, won't allow connections from
 unauthorized hosts. Using a firewall to filter connections at the
 network level gives you extra security. [119]
In many organizations, network security is administered by a
 different group of people from those developing applications. This
 helps further reduce the risk that a single person's change can expose
 a server.
The most secure approach to use when firewalling a machine is to
 deny all connections by default. Then you can add rules that allow
 access to the few services other hosts may need to access. For a
 system limited to providing a MySQL server, you should allow
 connections only to TCP port 3306 (MySQL's default) and possibly to a
 remote login service such as SSH (typically on TCP port 22).
No default route

Consider not having a default route configured on your
 firewalled MySQL servers. That way, even if the firewall
 configuration is compromised and someone tries to contact your MySQL
 server from the outside, the packets will never get back to them.
 They'll never leave your local network.
Let's say your MySQL server is 192.168.0.10, and the local
 network has a 255.255.255.0 netmask. In this configuration, any
 packet from 192.168.0.0/24 is considered "local" because it can be
 reached directly via the attached network interface (probably
 eth0 or the host operating system's
 equivalent). Traffic from any other address will have to be directed
 to a gateway to reach its final destination, and because there is no
 default route, there is no way for those packets to find their
 gateway and get to their destination.
If you must allow a select few outside hosts to access your
 otherwise firewalled server, add static routes for them. Doing so
 ensures that the server responds to as few outside hosts as
 possible.
The practice of not configuring a default route isn't
 foolproof, and it protects you more from firewall configuration
 mistakes than from a full compromise. However, every little bit
 helps.

MySQL in a DMZ

Simply firewalling MySQL servers isn't secure enough for many
 installations. If one of your web or application servers is compromised, an
 attacker could use that server to attack a MySQL server directly. Once
 the attacker gains access to a single computer on the firewalled
 network, all the other servers on that network are reachable with
 relatively few restrictions in most configurations. [120]
Moving the MySQL servers to their own separate network segment,
 which isn't accessible from the outside, can improve security. For instance, imagine a LAN containing the web
 or other application servers and a firewall. Behind the firewall, on a
 different physical network segment and a different logical subnet, is
 one or more MySQL server(s). The application servers have restricted
 access to the MySQL servers: all of their traffic must first pass through the firewall,
 which you can configure in a very restrictive way. If someone gains
 access to the application server but the firewall permits traffic only
 to port 3306 on the MySQL servers, the intruder won't be able to
 launch an attack on other services that may be running on the MySQL
 server, such as SSH.
You might even put the application servers either in the DMZ or
 in their own separate DMZ. Is that going too far? Maybe. As is always
 the case in security matters, you may need to trade safety measures
 for convenience; however, you should be aware of the risks you're
 taking in doing so.

Connection Encryption and Tunneling

Any time you need to communicate with a MySQL server across a
 network that is public (such as the Internet) or otherwise open to
 traffic sniffing (as many wireless networks are), consider using some
 form of encryption. Doing so can make it far more difficult for anyone
 who might try to intercept the connection and either sniff or spoof
 the data.
As an added benefit, many encryption algorithms result in a
 compressed data stream. So, not only are your data more secure, but
 you're also using the available network bandwidth more
 optimally.
Although our discussion focuses on a client accessing a MySQL
 server, the client could be another MySQL server. This is common when
 using MySQL's built-in replication: each slave server connects to the
 master with the same protocol normal MySQL clients use.
Virtual private networks

A company with two or more offices in distant locations may set up a virtual private network (VPN) between them, using a
 variety of technologies. A common solution is for the external routers at each office to encrypt all
 traffic destined for another office. In such a situation, there's
 little to worry about. All the traffic is already being encrypted as
 it is sent out over whichever public or private network happens to
 connect the offices.
Does the VPN preclude the necessity of applying a
 MySQL-specific solution? Not necessarily. In the event that the VPN
 must be disabled for some reason, it would be nice if MySQL's
 network traffic remained secret. Configuring MySQL to allow
 connections only from the VPN IP addresses should
 solve this problem: if the VPN is disabled, the MySQL server won't
 be reachable.

SSL in MySQL

As of version 4.1, MySQL has native support for Secure Sockets
 Layer (SSL)—the same technology that keeps your credit card
 number safe when buying books on Amazon.com or airline tickets from
 your favorite travel site. Specifically, MySQL uses the freely
 available yaSSL library (or OpenSSL in older builds).
Some binary versions of MySQL don't have SSL enabled by
 default. To check your server, simply inspect the have_openssl variable:
mysql> SHOW VARIABLES LIKE 'have_openssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_openssl | NO |
+---------------+-------+
If it says NO, you'll need
 to compile your own MySQL server or get a different version. If it
 says YES, whole new levels of
 database access security are opened to the administrator. How you use
 them will depend on the security needs of your particular
 application.
At the most basic level, you may wish to allow only encrypted
 sessions, relying on the SSL protocol to protect the user's
 password. You can require a user to connect via SSL with optional
 arguments to the GRANT
 command:
mysql> GRANT ... IDENTIFIED BY 'p4ssword' REQUIRE SSL;
That GRANT, however,
 doesn't place any restrictions on the SSL certificate the connecting
 client uses. As long as the client and the MySQL server can
 negotiate an SSL session, MySQL won't check the client certificate's
 validity.
You can require minimal checking of the client certificate
 with the REQUIRE x509
 option:
mysql> GRANT ... IDENTIFIED BY 'p4ssword' REQUIRE x509;
This requires that the client certificate be at least
 verifiable against the CA certificates the MySQL server has been set
 up to recognize.
One step up might be to permit only a specific client
 certificate to access the database. You can do that with the
 REQUIRE SUBJECT syntax:
mysql> GRANT ... IDENTIFIED BY 'p4ssword'
 -> REQUIRE SUBJECT "/C=US/ST=New York/L=Albany/O=Widgets
Inc./CN=client-ray.example.com/emailAddress=raymond@example.com";
Maybe you don't care specifically what client license is used
 but only that it be one issued with your organization's CA
 certificate. In this case, you might use the REQUIRE ISSUER syntax to do something like
 the following:
mysql> GRANT ... IDENTIFIED BY 'p4ssword'
 -> REQUIRE ISSUER "/C=US/ST=New+20York/L=Albany/O=Widgets
Inc./CN=cacert.example.com/emailAddress=admin@example.com";
For the ultimate in authentication, you can combine the two
 clauses to require both the issuer and subject to be predefined
 values. For example, you can require Raymond to use the specific
 certificate issued with your organization's CA certificate as
 follows:
mysql> GRANT ... IDENTIFIED BY 'p4ssword'
 -> REQUIRE SUBJECT "/C=US/ST=New York/L=Albany/O=Widgets
Inc./CN=client-ray.example.com/emailAddress=raymond@example.com"
 -> AND ISSUER "/C=US/ST=New+20York/L=Albany/O=Widgets
Inc./CN=cacert.example.com/ emailAddress=admin@example.com";
One other minor SSL-related option is the CIPHER requirement option, which lets the
 administrator permit only "trusted" (strong) encryption ciphers to be used. SSL is cipher
 independent, and the potentially strong SSL encryption can be
 invalidated if a really weak cipher is used to protect the data
 being transferred. You can restrict the choice of protocols to a set you consider to be secure by
 issuing a command like the following:
mysql> GRANT ... IDENTIFIED BY 'p4ssword'
 -> REQUIRE CIPHER "EDH-RSA-DES-CBC3-SHA";
Managing individual client certificates may seem like
 excellent security, but it can be an administrative nightmare.
 When you create a client certificate, you have to assign it an
 expiration date—preferably something not too far in the future. You
 want its life to be long enough that you're not constantly having to
 regenerate a new certificate, but short enough that if the
 certificate falls into the hands of a hostile entity it won't have access to your data
 for too long.
In a small environment with a couple of employees, it may be
 very easy to keep track of individual certificate ownership. But
 when your organization scales upward to hundreds or thousands of
 employees with certificates, keeping track of which certificates
 expire when and making sure that client certificates don't expire
 before they've been replaced can become quite cumbersome.
Some organizations solve this problem with a combination
 of REQUIRE ISSUER
 and a series of monthly client certificates that they distribute
 via a trusted distribution path, such as a company intranet. Clients
 can download and connect to the MySQL server with certificates that
 are good for a month or two. This way, if an employee loses
 access to the company intranet, or a partner is no longer given
 access to the monthly key, even if the administrator isn't told to
 remove that user's access her ability to connect will naturally
 expire in a predetermined schedule.

SSH tunneling

If you're using an older version of MySQL or simply don't want
 the hassle of setting up SSL support, consider using SSH instead. If
 you use Linux or Unix, there's a good chance you're already using
 SSH to log into remote machines. [121] What a lot of people don't know is that you can use
 SSH to establish an encrypted tunnel between two hosts.
SSH tunneling is best illustrated with an example. Let's
 suppose that you want an encrypted connection from a GNU/Linux workstation to the MySQL
 server running on db.example.com. On the
 workstation, you execute the following command: [122]
$ ssh -N -f -L 4406:db.example.com:3306
This establishes a tunnel between TCP port 4406 on the
 workstation and port 3306 on db.example.com. You can now
 connect to MySQL through the tunnel from the workstation by doing
 this:
$ mysql -h 127.0.0.1 -P 4406
SSH is a very powerful tool that can do far more than this
 simple example illustrates. Stunnel is another
 tool for creating secure tunnels, but without a login/shell
 component. It's also a good substitute for a VPN in some
 cases.

TCP Wrappers

You can compile MySQL with support for TCP wrappers on Unix systems. If a full-blown firewall
 isn't an option, TCP wrappers provide a basic level of defense: you
 can gain additional control over which hosts MySQL will or will not
 talk to without having to change your grant tables. Some operating
 systems, such as Debian GNU/Linux, build MySQL this way by
 default.
To use TCP wrappers, you need to build MySQL from source and
 pass the --with-libwrap option to
 configure so that it will know where to find the
 proper header files on your operating system:
$./configure --with-libwrap=/usr/local/tcp_wrappers
Assuming you have an entry in your
 /etc/hosts.deny file that denies all connections
 by default:
deny all connections
ALL: ALL
you can explicitly add MySQL to your
 /etc/hosts.allow file:
allow mysql connections from hosts on the local network
mysqld: 192.168.1.0/255.255.0.0 : allow
The only other catch is that you need an appropriate entry in
 /etc/services for MySQL. If you don't already have one, add a line
 such as the following:
mysql 3306/tcp # MySQL Server
If you are running MySQL on a nonstandard port, use that number
 instead of 3306.
TCP wrappers add some overhead, such as reverse DNS lookups.
 This creates a dependency on the DNS subsystem, which you might not
 want.

Automatic Host Blocking

MySQL provides some help in preventing network-based attacks: if
 it notices too many bad connections from a particular host, it starts
 blocking connections from that host. The server variable max_connection_errors determines how many
 bad connections MySQL will allow before it begins blocking. A "bad
 connection" is any connection attempt that doesn't complete (i.e.,
 result in a valid MySQL session). Bad passwords are often the culprit,
 but network problems can lead to bad connections, too.
When MySQL blocks a host, it logs a message that looks like
 this:
Host 'host.badguy.com' blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'
As that message indicates, you can use the mysqladmin
 flush-hosts command to unblock the host, presumably after
 you have figured out why that host was having problems connecting and
 have addressed the relevant issue. The mysqladmin
 flush-hosts command simply executes a FLUSH HOSTS SQL command, which empties
 MySQL's host cache tables. This unblocks all
 blocked hosts; there's no way to unblock a single host.
If you find that this becomes a common problem for some reason, you can set the max_connection_errors variable in the
 my.cnf file to a relatively high number to avoid
 hosts being blocked:
max_connection_errors=999999999
It isn't possible to set max_connection_errors to 0 and disable the check entirely, and you
 wouldn't really want to do that anyway. It's better to find and
 resolve the underlying problem.

[119] For our purposes, a firewall is simply a device that network
 traffic passes through for the purposes of filtering and possibly
 routing. Whether it's a "real" firewall, a router, or an old 486
 PC doesn't matter.

[120] That's not entirely true. Many modern network switches let
 you configure multiple Virtual LANs (VLANs) on a single physical
 network. Machines that aren't on the same VLAN may not be able to
 talk to each other.

[121] A variant of OpenSSH is available for Windows clients, and
 Putty is also popular (http://www.chiark.greenend.org.uk/~sgtatham/putty/).
 There is a full tutorial on how to set up SSH tunnels to connect to MySQL machines at http://www.vbmysql.com/articles/security/sshtunnel.html.

[122] Assuming SSH version 2 is installed. SSH version 1 has no
 -N option. See your SSH documentation for
 details.

Data Encryption

In applications that store sensitive data, such as banking
 records, you may want to store the data in an encrypted format. This
 makes it very difficult for unauthorized people to use the data even if
 they have physical access to your server. A full discussion of the relative merits of encryption algorithms and techniques is beyond the
 scope of this book, but we will take a quick look at some of the
 relevant topics.
Hashing Passwords

In less sensitive applications, you may need to protect just a
 small amount of information, such as a password database for another
 application. Passwords really shouldn't be stored in the clear, so
 they are commonly encrypted in applications. But rather than using
 encryption, it may be wise to follow the lead of most Unix systems and
 even MySQL itself: use a hashing algorithm on the passwords and store the results
 in your table.
Unlike traditional encryption, which can be reversed, a good
 hash function is a one-way process that can't be undone. The only way
 to determine the password that generated a particular hash value is to
 use a very computationally expensive brute-force attack (trying all
 possible combinations of input).
MySQL provides three user functions for hashing passwords: ENCRYPT(),
 SHA1(), and MD5().
 [123] The best way to see the results of each function is to
 try them all on the same source text. Let's see how the string
 p4ssword hashes in the three
 functions:
mysql> SELECT MD5('p4ssword'), ENCRYPT('p4ssword'), SHA1('p4ssword')\G
*************************** 1. row ***************************
 MD5('p4ssword'): 93863810133ebebe6e4c6bbc2a6ce1e7
 ENCRYPT('p4ssword'): dDCjeBzIycENk
 SHA1('p4ssword'): fbb73ec5afd91d5b503ca11756e33d21a9045d9d
Each function returns a fixed-length alphanumeric string that
 you can store in a CHAR column. To
 cope with the possibility of mixed-case characters in the result of ENCRYPT(), it's
 best to declare the column CHAR
 BINARY.
Warning
Never use MySQL's internal PASSWORD() function in applications. The
 result is not the same in all MySQL versions.

Storing hashed data is as easy as:
mysql> INSERT INTO user_table (user, pass) VALUES ('user', MD5('p4ssword'));
To verify user's password, run a SELECT query to see if the supplied username
 and password match. In Perl for example, you can do this:
my $sth = $dbh->prepare('SELECT * FROM user_table '
 . 'WHERE user = ? AND pass = MD5(?)');
$sth->execute($username, $password);
Password hashing is an easy-to-use and relatively secure way to
 store passwords in a database without them being easily recoverable.
 For a slightly better approach that makes dictionary attacks more
 difficult, you can combine the username and password for the hash, so
 it depends on more variables:
my $sth = $dbh->prepare('SELECT * FROM user_table '
 . 'WHERE user = ? AND pass = SHA1(CONCAT(?, ?))');
$sth->execute($username, $username, $password);
The only trouble is the possible security risk caused by sending
 the password to MySQL in plain text; it could be written in plain text
 to the disk in the logs, and it's visible in the process list. You
 could store the password as a user variable to reduce the risk a
 little bit, or move the hashing into the application to avoid it
 entirely. There are encryption functions or libraries in most programming
 languages. We look at application-level encryption shortly.

Encrypted Filesystems

Because MySQL's various storage engines all store their data as
 regular files on whatever filesystem you may be using, it's possible
 to use an encrypted filesystem. Most popular operating systems have at
 least one encrypted filesystem available (either free or
 commercial).
The main advantage of this approach is that you don't have to do
 anything special for MySQL to take advantage of it. Because all the
 encryption and decryption takes place outside MySQL, it just performs
 reads and writes without any knowledge of what's happening under the
 hood. All you need to do is make sure you store your data and logs on
 the proper filesystem. From your application's point of view, there's
 nothing special about this arrangement either.
There are a few downsides to using an encrypted filesystem with
 MySQL. First of all, because you're encrypting all the data, indexes, and logs, there will be a fair amount of
 CPU overhead involved in encrypting and decrypting the data. If you're
 thinking about using an encrypted filesystem, be sure to perform good
 benchmarks, so you understand how it behaves under heavy load.
Also, be sure that you don't decrypt the data when you make
 backups of it. This isn't a hard rule to follow, but it's easy to
 forget to do.
A final concern is that an encrypted filesystem provides no
 protection against people who get access to the server that has the
 data. Because the server that mounts the filesystem transparently
 decrypts it, anyone with access to the server can read the data—and
 make decrypted copies of it.

Application-Level Encryption

A more common approach to encryption is to build it into the
 application (or middleware). When the application needs to store
 sensitive data, it first encrypts the data and then stores the result
 in MySQL. Conversely, when it retrieves encrypted data from MySQL, it
 must decrypt it.
This approach provides a lot of flexibility. It doesn't tie you
 to a particular filesystem, operating system, or even database (if
 your code is written in a generic fashion), and it gives the
 application designer the freedom to choose the encryption algorithm
 that's most appropriate (balancing speed and strength) for the data
 being stored.
Because the data is encrypted, backups are very easy. No matter
 where you copy the data, it is encrypted. However, this also means
 that access to the data must go through software that understands how
 to decrypt it. You can't just fire up the mysql
 command-line tool and begin issuing queries.
Application-level encryption is often a good solution,
 but it does have some drawbacks. For example, it's much harder for
 MySQL to effectively index encrypted data, and it's much harder to
 optimize MySQL's performance when you're working with encrypted
 data.
Design issues

The freedom and flexibility we mentioned have interesting
 implications for database design. One issue is that you must ensure
 that the column types you're using are appropriate for the type of
 encryption you're using. Some algorithms produce blocks of data with fixed minimum sizes. That means you may
 need a column that can hold 256 bytes just to hold a piece of data
 that was significantly smaller than that before encryption. Also,
 many popular encryption libraries produce binary data, so you'll
 need to create columns that can store binary data. As an alternative, you can convert the binary
 data to a hex or base-64 representation, but that will require more
 space and time.
Deciding exactly what data should and shouldn't be encrypted
 isn't easy, either. You need to balance security against making the
 information in your tables difficult to query. For example, you
 might have an account table that
 represents bank accounts and contains the following columns:
	id

	type

	status

	balance

	overdraft_protection

	date_established

Which columns does it make sense to encrypt? If you encrypt
 the balance, which seems reasonable, it will be difficult to answer
 common reporting questions. For example, you might try to write the
 following query to find the minimum, maximum, and average balance
 of accounts of each account type:
mysql> SELECT MIN(balance), MAX(balance), AVG(balance)
 -> FROM account GROUP BY type;
But the results will be meaningless. MySQL doesn't know what
 the encrypted balance column
 means, so it will just try to perform those functions on the
 encrypted data.
The solution is for your application to read all the rows from
 the account table and do the math
 for the report you need. That may not be terribly difficult, but
 it's annoying. Not only are you reimplementing functionality MySQL
 already provides, you're also slowing down the process
 considerably.
What all this boils down to is a tradeoff between security and
 the advantages of using a relational database in the first place.
 Any column that contains encrypted data is basically useless to
 MySQL's built-in functions, because they need to operate on
 unencrypted data. Similar problems arise in query optimization. For
 instance, in an unencrypted setup, you can easily find all the
 accounts with a balance greater than $100,000:
mysql> SELECT * FROM account WHERE balance > 100000;
If there is an index on the balance column and it's not encrypted,
 MySQL can use the index to find the desired rows. But if the data is
 encrypted, you'll have to fetch all the rows into your application,
 decrypt them, and then filter them.

Encrypting and decrypting inside MySQL

That said, you can store encrypted values inside MySQL and encrypt and decrypt them as needed
 with its built-in functions. The best functions to use for this
 purpose are AES_ENCRYPT() and
 AES_DECRYPT(), which convert
 strings to encrypted binary strings and back again. They are
 symmetric: the key you use for encryption is the same key you use for decryption. For
 example:
mysql> SET @key := 's3cret';
mysql> SET @encrypted := AES_ENCRYPT('sensitive data', @key);
mysql> SELECT AES_DECRYPT(@encrypted, @key);
+-------------------------------+
| AES_DECRYPT(@encrypted, @key) |
+-------------------------------+
| sensitive data |
+-------------------------------+
We didn't show the encrypted value because it is binary ones
 and zeros and will appear simply as garbled characters.
This approach doesn't solve all the problems we've mentioned,
 though. For one thing, it doesn't avoid the indexing issues;
 additionally, the data you're trying to encrypt will still be in
 plain text in the SQL query, and it will still be logged into the
 server's log (assuming it is activated). However, we did show one
 step you can take to help reduce the risk of other users seeing your secret data: store the
 encryption key in a user variable. There are more secure ways to
 actually set the variable's value, too. For example, you can place
 the variable in a stored procedure and call the stored procedure to
 set its value, and then restrict access to the stored procedure.
 This makes it harder for other users to determine the key's
 value.

Source Code Modification

If you're looking for a more flexible approach than either
 encrypted filesystems or application-based encryption, you can always
 build a custom solution. The source code for MySQL is freely available under the GNU
 General Public License.
This sort of work requires that you either know C++ or hire
 someone who does. Beyond that, you'll be looking to create your own
 storage engine with native encryption support, or you might find it
 easier to extend an existing one with encryption.

[123] MySQL's ENCRYPT() simply
 calls the C library's crypt()
 function. On some Unix variants, crypt() is an MD5 implementation, making
 it no different from MD5(). On
 others, it is the traditional DES encryption algorithm.

MySQL in a chrooted Environment

Running a server in a chrooted environment greatly enhances overall system
 security on a Unix system. It does this by setting up an isolated
 environment in which files outside of a given directory are no longer
 accessible. That way, even if a security flaw is found in the server and
 exploited, the potential for damage is limited to the files in that
 directory, which should only be the files for that particular
 application.
If you want your MySQL application to run in a chrooted
 environment, you'll have to begin by either compiling MySQL from source
 or unpacking and installing the binary package MySQL AB provides. Many
 administrators do this as a matter of course, but it's an absolute must
 for a chrooted application: many prepackaged MySQL installations put
 some files in /usr/bin, some in
 /var/lib/mysql, etc., but all the files in a
 chrooted installation need to reside under the same directory
 structure.
What we tend to do is to create a /chroot
 directory where all our chrooted applications will live. To do this, you
 can configure your MySQL installation as follows:
$./configure --prefix=/chroot/mysql
Then compile MySQL as you normally would, and let the installation
 procedure install the MySQL files in the
 /chroot/mysql tree.
The next thing to do is a little magic, to make everything
 happier. chroot actually stands for
 change root. If you enter:
$ chroot /chroot/mysql
the / directory is now actually
 /chroot/mysql. Because both the chrooted server and
 the non-chrooted client use the files, it's important to set up the
 filesystem so that both the server and the clients can find the files
 they need. An easy solution to this problem is to do the
 following:
$ cd /chroot/mysql
$ mkdir chroot
$ cd chroot
$ ln -s /chroot/mysql mysql
This creates a symbolic directory path,
 /chroot/mysql/chroot/mysql, which actually points
 to /chroot/mysql. Now, even if the application is
 chrooted and trying to get to /chroot/mysql, it
 will reach the proper directory. Meanwhile, if the client application is
 running outside the chroot environment, it can find the files it
 needs.
The last step is to send the proper commands to
 mysqld_safe, so that the MySQL server can start
 itself up and chroot to the proper directory. To do
 this, you might enter something like the following:
$ mysqld_safe --chroot=/chroot/mysql --user=1001
You'll notice we used the Unix UID of the MySQL user (1001),
 instead of --user=mysql. This is because in the
 chrooted environment, the MySQL server may no longer be able to query
 your authentication backend to do username-to-UID lookups. [124]
There are some caveats when using a chrooted MySQL server.
 LOAD DATA INFILE and other commands
 that access filenames directly may behave significantly differently from
 what you expect, because the server no longer considers / to be the
 filesystem root. So, if you tell it to load data from
 /tmp/filename, you should be sure that the file is
 actually /chroot/mysql/tmp/filename, or MySQL won't
 be able to find it.
A chrooted environment is only one way to partially isolate MySQL.
 There are others, such as FreeBSD jails, Solaris Zones, and
 virtualization.

[124] From our experience in testing this, it might be as simple as
 copying libnss* to
 your MySQL library directory in the chrooted environment, but from a
 practical standpoint, it's probably best not to worry about such
 things and to just enter the UID directly in your startup
 script.

Chapter 13. MySQL Server Status

You can answer many questions about a MySQL server by inspecting its
 status. MySQL exposes information about server internals in two main ways:
 the newest is the standard INFORMATION_SCHEMA database, and the more
 traditional is a series of SHOW
 commands (which MySQL continues to support even though the INFORMATION_SCHEMA database is the preferred
 mechanism for new features). Some information you can get via SHOW commands isn't found in the INFORMATION_SCHEMA tables yet.
The challenges for you are determining what is relevant to your problem, how to get the
 information you need, and how to interpret it. Although MySQL lets you see
 a lot of information about what's going on inside the server, it's not
 always easy to use that information. Understanding it requires patience,
 experience, and ready access to the MySQL manual.
There are some tools that can help you understand the server status
 in various contexts, such as monitoring and profiling, and we mention a
 few of those in the next chapter. However, you should still understand the
 values at a high level—at a minimum, what the categories of values are—and
 know how to get them from the server.
This chapter explains many of the status commands and their output.
 When we've covered a topic in detail elsewhere, we refer you to that part
 of the book.
System Variables

MySQL exposes many system variables through the SHOW
 VARIABLES SQL command, as variables you can use in
 expressions, or with mysqladmin variables at the
 command line. From MySQL 5.1, you can also access them through tables in
 the INFORMATION_SCHEMA
 database.
These variables represent a variety of configuration information,
 such as the server's default storage engine (storage_engine), the available time zones, the
 connection's collation, and startup parameters. We explained how to set
 and use system variables in Chapter 6.

SHOW STATUS

The SHOW STATUS command shows
 server status variables in a two-column name/value table. Unlike
 the server variables we mentioned in the previous section, these are
 read-only. You can view the variables by either executing SHOW STATUS as a SQL command or executing
 mysqladmin extended-status as a shell command. If
 you use the SQL command, you can use LIKE and WHERE to limit the results; the LIKE does a standard pattern match on the
 variable name. The commands return a table of results, but you can't
 sort it, join it to other tables, or do other standard things you can do
 with MySQL tables.
Tip
We use the term "status variable" to refer to a value from
 SHOW STATUS and the term "system
 variable" to refer to a server configuration variable.

The behavior of SHOW STATUS
 changed greatly in MySQL 5.0, but you might not notice unless you're
 paying close attention. Instead of just maintaining one set of global
 variables, MySQL now maintains some variables globally and some on a
 per-connection basis. Thus, SHOW
 STATUS contains a mixture of global and session variables.
 Many of them have dual scope: there's both a global and a session
 variable, and they have the same name. SHOW
 STATUS also now shows session variables by default, so if you
 were accustomed to running SHOW
 STATUS and seeing global variables, you won't see them
 anymore; now you have to run SHOW GLOBAL
 STATUS instead. [125]
In MySQL 5.1 and newer, you can select values directly from the
 INFORMATION_SCHEMA.GLOBAL_STATUS and
 INFORMATION_SCHEMA.SESSION_STATUS
 tables.
There are hundreds of status variables in a MySQL 5.0 server, and
 newer versions include even more. Most either are counters or contain
 the current value of some status metric. Counters increment every time
 MySQL does something, such as initiating a full table scan (Select_scan). Metrics, such as the number of
 open connections to the server (Threads_connected), may increase and decrease.
 Sometimes there are several variables that seem to refer to the same
 thing, such as Connections (the
 number of connection attempts to the server) and Threads_connected; in this case, the variables
 are related, but similar names don't always imply a
 relationship.
Counters are stored as unsigned integers. They use 4 bytes on
 32-bit builds and 8 bytes on 64-bit builds, and they wrap back to 0
 after reaching their maximum values. If you're monitoring the variables
 incrementally, you might need to watch for and correct the wrap; you
 should also be aware that if your server has been up for a long time,
 you might see lower values than you expect simply because the variable's
 values have wrapped around to zero. (This is very rarely a problem on
 64-bit builds.)
The best way to look at many of these variables is to see how much
 their values change over the course of a few minutes. You can use
 mysqladmin extended-status -r -i 5 or
 innotop.
The following is an overview—not an exhaustive list—of the
 different categories of variables you'll see in SHOW STATUS. For full details on a given variable, you should consult
 the MySQL manual, which helpfully documents them at http://dev.mysql.com/doc/en/mysqld-option-tables.html.
 When we discuss a set of related variables whose name begins with a
 common prefix, we refer to the group collectively as "The
 <prefix>_* variables."
Thread and Connection Statistics

These variables track connection attempts, aborted connections, network traffic, and thread
 statistics:
	Connections, Max_used_connections,
 Threads_connected

	Aborted_clients,
 Aborted_connects

	Bytes_received,
 Bytes_sent

	Slow_launch_threads,
 Threads_cached, Threads_created,
 Threads_running

If Aborted_connects isn't
 zero, it may mean that you have network problems or that someone is
 trying to connect and failing (perhaps because they're specifying the
 wrong password or an invalid database). If this value gets too high,
 it can have serious side effects: it can cause MySQL to block a host.
 See Chapter 12 for more on this.
Aborted_clients has a similar
 name but a completely different meaning. If this value increments, it
 usually means there's been an application error, such as the
 programmer forgetting to close MySQL connections properly before
 terminating the program. This is not usually indicative of a big
 problem.
A useful metric is how many threads are created per second
 (Threads_created/Uptime). If this
 value is not close to zero, it may mean your thread cache is too small
 and new connections aren't able to find free threads to use from the
 thread cache.
It's most useful to look at the values of all these variables
 and metrics over the course of the last several minutes, not over the
 entire uptime of the server.

Binary Logging Status

The Binlog_cache_use and
 Binlog_cache_disk_use status variables show how many transactions have been
 stored in the binary log cache, and how many transactions were too
 large for the binary log cache and so had their statements stored in a
 temporary file. We explained how to size the binary log cache in Chapter 6.

Command Counters

The Com_* variables count the
 number of times each type of SQL or C API command has been issued. For example, Com_select counts the number of SELECT statements, and Com_change_db counts the number of times a
 connection's default database has been changed, either with the
 USE statement or via a C API call.
 The Questions variable counts the
 total number of queries and commands the server has received. However,
 it doesn't quite equal the sum of all the Com_* variables, because of query cache
 hits, closed and aborted connections, and possibly other
 factors.
The Com_admin_commands
 status variable may be very large. It counts not only
 administrative commands, but ping requests to the MySQL instance as
 well. These requests are issued through the C API and typically come
 from client code, such as the following Perl code:
my $dbh = DBI->connect(...);
while ($dbh && $dbh->ping) {
 # Do something
}
These ping requests are "garbage" queries. They probably don't
 load the server very much, but they're still a waste. We've seen ORM
 systems that ping the server before each query, which is pointless.
 We've also seen database abstraction libraries that change the default
 database before every query, which will show up as a very large number of Com_change_db commands. It's best to
 eliminate both practices.

Temporary Files and Tables

You can view the variables that count how many times MySQL has
 created temporary tables and files with:
mysql> SHOW GLOBAL STATUS LIKE 'Created_tmp%';

Handler Operations

The handler API is the interface between MySQL and its storage
 engines. The Handler_* variables
 count handler operations, such as the number of times MySQL
 asks a storage engine to read the next row from an index. Studying
 your server's Handler_* variables
 can give insight into what kinds of work your server does most.
 Handler_* variables are useful for
 profiling queries as well. You can view these variables
 with:
mysql> SHOW GLOBAL STATUS LIKE 'Handler_%';

MyISAM Key Buffer

The Key_* variables contain
 metrics and counters about the MyISAM key buffer. You can view these
 variables with:
mysql> SHOW GLOBAL STATUS LIKE 'Key_%';
See Chapter 6 for a detailed
 explanation of how to analyze and tune the key caches.

File Descriptors

If you mainly use the MyISAM storage engine, it's important to
 watch file descriptor statistics, because they tell you how often
 MySQL opens each table's .frm, .MYI, and
 .MYD files. InnoDB keeps all data in its
 tablespace files, so if you mainly use InnoDB, these variables aren't
 as important. You can view the Open_* variables with:
mysql> SHOW GLOBAL STATUS LIKE 'Open_%';
Chapter 6 explains in detail
 how to tune the settings that influence these variables.

Query Cache

You can inspect the query cache by looking at the Qcache_* status variables. All the variables
 in this group are important if you rely on your query cache for
 performance. To inspect them, use:
mysql> SHOW GLOBAL STATUS LIKE 'Qcache_%';
There's a detailed explanation of how to tune the query cache in
 Chapter 5.

SELECT Types

The Select_* variables are
 counters for certain types of SELECT queries. They can help you see the
 ratio of SELECT queries that use
 various query plans. Unfortunately, there are no such status variables for other kinds of queries, such as
 UPDATE and REPLACE; however, you can look at the
 Handler_* status variables
 (discussed earlier) for insight into the performance of non-SELECT queries. To see all the Select_* variables, use:
mysql> SHOW GLOBAL STATUS LIKE 'Select_%';
In our judgment, the Select_*
 status variables can be ranked as follows, in order of ascending
 cost:
	Select_range
	The number of joins that scanned an index range on the
 first table.

	Select_scan
	The number of joins that scanned the entire first table.
 There is nothing wrong with this if every row in the first table
 should participate in the join; it's only a bad thing if you
 don't want all the rows and there is no index to find the ones
 you wanted.

	Select_full_range_join
	The number of joins that used a value from table
 n to retrieve rows from a range of
 the reference index in table n + 1.
 Depending on the query, this can be more or less costly than
 Select_scan.

	Select_range_check
	The number of joins that reevaluate indexes in table
 n + 1 for every row in table
 n to see which is least expensive.
 This generally means no indexes in table
 n + 1 are useful for the join. This
 query plan has very high overhead.

	Select_full_join
	A cross join, or a join without any criteria to match rows
 in the tables. The number of rows examined is the product of the
 number of rows in each table. This is usually a very bad
 thing.

The last two variables should not increase rapidly on a
 well-tuned server. You can sometimes spot a badly optimized workload
 by comparing the ratio of these two counters to the total number of
 SELECT queries your server is
 processing (Com_select). If either
 is more than a few percent of the total, you probably need to optimize
 your queries and/or schema.
A related status variable is Slow_queries. The patches we've developed
 for the slow query log can help you see whether a query required a
 full join, whether it was served from the query cache, and so on. See
 "Finer control over logging" on Finer control over logging for more
 information.

Sorts

We covered a lot of MySQL's sorting optimizations in Chapters Chapter 3 and Chapter 4, so you should have a good
 idea of how sorting works. When MySQL can't use an index to retrieve
 rows presorted, it has to do a filesort, and it increments the
 Sort_* status variables. Aside from Sort_merge_passes, you can influence these
 values only by adding indexes that MySQL can use for sorting. Sort_merge_passes depends on the sort_buffer_size server variable (not to be
 confused with the myisam_sort_buffer_size server variable).
 MySQL uses the sort buffer to hold a chunk of rows for sorting. When
 it's finished sorting them, it merges these sorted rows into the
 result, increments Sort_merge_passes, and fills the buffer with
 the next chunk of rows to sort. If the sort buffer is too small, it
 will have to do this many times, and the value of the status variable
 will be large.
You can see all the Sort_*
 variables with:
mysql> SHOW GLOBAL STATUS LIKE 'Sort_%';
MySQL increments the Sort_scan and Sort_range variables when it reads sorted
 rows from the results of a filesort and returns them to the client.
 The difference is merely that the first is incremented when the query
 plan causes Select_scan to
 increment (see the preceding section), and the second is incremented
 when Select_range increments. There
 is no implementation or cost difference between the two; they merely
 indicate the type of query plan that caused the sort.

Table Locking

The Table_locks_immediate and
 Table_locks_waited variables tell
 you how many locks were granted immediately and how many had to be
 waited for. If you see many threads in the Locked state in SHOW FULL PROCESSLIST, check these
 variables. Be aware, however, that they show only server-level locking
 statistics, not storage engine locking statistics. See Appendix D for more about debugging locks.

Secure Sockets Layer (SSL)

The Ssl_* variables show how
 the server is configured for SSL if applicable. You can see all the SSL variables
 with:
mysql> SHOW GLOBAL STATUS LIKE 'Ssl_%';

InnoDB-Specific

The Innodb_* variables show
 some of the data included in SHOW INNODB
 STATUS, discussed later in this chapter. The variables can
 be grouped together by name: Innodb_buffer_pool_*, Innodb_log_*, and so
 on. We discuss InnoDB's internals more when we examine SHOW INNODB STATUS.
These variables are available in MySQL 5.0 and newer, and they
 have an important side effect: they create a global lock and traverse
 the entire InnoDB buffer pool before releasing the lock. In the
 meantime, other threads run into the lock and block until it is
 released. This skews some status values, such as Threads_running, so they will appear higher
 than normal (possibly much higher, depending on how busy your server
 is). The same effect happens when you run SHOW INNODB STATUS or access these
 statistics via the INFORMATION_SCHEMA tables (in MySQL 5.0 and
 newer, SHOW STATUS and SHOW VARIABLES are mapped to queries against
 the INFORMATION_SCHEMA tables
 behind the scenes).
These operations can, therefore, be expensive in these versions
 of MySQL—checking the server status too frequently (e.g., once a
 second) causes significant overhead. Using SHOW STATUS LIKE doesn't help, because it
 retrieves the full status and then post-filters it.

Plug-in-Specific

MySQL 5.1 and newer support pluggable storage engines and
 provide a mechanism for storage engines to register their own status
 and configuration variables with the MySQL server. You may
 see some plug-in-specific variables if you're using a pluggable
 storage engine.

Miscellaneous

Some other status variables include the following:
	Delayed_*,
 Not_flushed_delayed_rows
	These variables are counters and metrics for INSERT DELAYED queries.

	Last_query_cost
	This variable shows the query optimizer's query plan cost for the last query run. We
 discussed the query plan cost in Chapter 4.

	Ndb_*
	These variables show NDB Cluster configuration information, if
 applicable.

	Slave_*
	These variables apply if the server is a replication
 slave. The Slave_open_temp_tables variable is
 particularly important for statement-based replication. See
 "Missing Temporary Tables" on Missing Temporary Tables for more about replication
 and temporary tables.

	Tc_log_*
	These counters are for a server that acts as the
 coordinator for XA transactions. See "Distributed (XA) Transactions" on Distributed (XA) Transactions for details.

	Uptime
	This variable shows the server's uptime, in
 seconds.

A good way to get a feel for your overall workload is to compare
 values within a group of related status variables—for example, look at
 all the Select_* variables
 together, or all the Handler_*
 variables. If you're using innotop, this is easy
 to do in Command Summary mode, but you can also do it manually with a
 command like mysqladmin extended -r -i60 | grep
 Handler_. Here's what innotop shows
 for the Select_* variables on one
 server we checked:
____________________ Command Summary ___________________ _ _
Name Value Pct Last Incr Pct
Select_scan 756582 59.89% 2 100.00%
Select_range 497675 39.40% 0 0.00%
Select_full_join 7847 0.62% 0 0.00%
Select_full_range_join 1159 0.09% 0 0.00%
Select_range_check 1 0.00% 0 0.00%
The first two columns of values are since the server was booted,
 and the last two are since the last refresh (10 seconds ago, in this
 case). The percentages are over the total of the values shown in the display, not over the total of all
 queries.
Even though this server has a relatively low percentage of full
 joins, it might be worth looking into why there are any at all.

[125] There's a gotcha waiting here: if you use an old version of
 mysqladmin on a new server, it won't use
 SHOW GLOBAL STATUS, so it won't
 display the "right" information.

SHOW INNODB STATUS

The InnoDB storage engine exposes a lot of information about its
 internals in the output of SHOW ENGINE INNODB
 STATUS, or its simpler synonym, SHOW
 INNODB STATUS. Unlike most of the SHOW commands, its output consists of a single
 string, not rows and columns. It is divided into sections, each of which
 shows information about a different part of the InnoDB storage engine.
 Some of the output is most useful for InnoDB developers, but much of it
 is interesting—or even essential—if you're trying to understand and tune
 InnoDB for high performance.
Tip
InnoDB often prints out 64-bit numbers in two pieces: the high 32 bits and the
 low 32 bits. An example is a transaction ID, such as TRANSACTION 0 3793469. You can calculate the
 64-bit number's value by shifting the first number left 32 bits and
 adding it to the second one. We show some examples later.

The output includes some average statistics, such as fsync() calls per second. These show average
 activity since the last time the output was generated, so if you're
 examining these values, make sure you wait 30 seconds or so between
 samples to give the statistics time to accumulate. The output is not all
 generated at a single point in time, so not all averages that appear in
 the output are calculated over the same time interval. Also, InnoDB has
 an internal reset interval that is unpredictable and varies between
 versions; you should examine the output to see the time over which the
 averages were generated, because it will not necessarily be the same as
 the time between samples.
There's enough information in the output to calculate averages for
 most of the statistics manually if you want. However, a monitoring tool
 such as innotop—which does incremental differences
 and averages for you—is very helpful here.
Header

The first section is the header, which simply announces the
 beginning of the output, the current date and time, and how long it
 has been since the last printout. Line 2 shows the current date and
 time. Line 4 shows the time frame over which the averages were
 calculated, which is either the time since the last printout or the
 time since the last internal reset:
1 =====================================
2 070913 10:31:48 INNODB MONITOR OUTPUT
3 =====================================
4 Per second averages calculated from the last 49 seconds

SEMAPHORES

If you have a high-concurrency workload, you may want to pay
 attention to the next section, SEMAPHORES. It contains two kinds of data:
 event counters and, optionally, a list of current waits. If you're having trouble with
 bottlenecks, you can use this information to help you find the
 bottlenecks. Unfortunately, knowing what to do about them is a little
 more complex, but we give some advice later in this chapter. Here is
 some sample output for this section:
 1 ----------
 2 SEMAPHORES
 3 ----------
 4 OS WAIT ARRAY INFO: reservation count 13569, signal count 11421
 5 --Thread 1152170336 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds
 the semaphore:
 6 Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
 7 waiters flag 0
 8 wait is ending
 9 --Thread 1147709792 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds
 the semaphore:
10 Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
11 waiters flag 0
12 wait is ending
13 Mutex spin waits 5672442, rounds 3899888, OS waits 4719
14 RW-shared spins 5920, OS waits 2918; RW-excl spins 3463, OS waits 3163
Line 4 gives information about the operating system wait array,
 which is an array of "slots." InnoDB reserves slots in the array for
 semaphores, which the operating system uses to signal threads that
 they can go ahead and do the work they're waiting to do. This line
 shows how many times InnoDB has needed to use operating system waits. The reservation count indicates
 how often InnoDB has allocated slots, and the signal count measures
 how often threads have been signaled via the array. Operating system
 waits are costly relative to spin waits, as we'll see
 momentarily.
Lines 5 through 12 show the InnoDB threads that are currently
 waiting for a mutex. The example shows two waits, each beginning with
 the text "-- Thread <num> has waited…" This section should be
 empty unless your server has a high-concurrency workload that causes
 InnoDB to resort to operating system waits. The most useful thing to
 look at, unless you're familiar with InnoDB source code, is the
 filename at which the thread is waiting. This gives you a hint where
 the hot spots are inside InnoDB. For example, if you see many threads
 waiting at a file called buf0buf.ic, you have
 buffer pool contention. The output indicates how long the thread has
 been waiting, and the "waiters flag" shows how many waiters are
 waiting for the mutex.
The text "wait is ending" means the mutex is actually free already, but
 the operating system hasn't scheduled the thread to run yet.
You might wonder what exactly InnoDB is waiting for. InnoDB uses
 mutexes and semaphores to protect critical sections of code by
 restricting them to only one thread at a time, or to restrict writers
 when there are active readers, and so on. There are many critical
 sections in InnoDB's code, and under the right conditions any of them
 could appear here. Gaining access to a buffer pool page is one you
 might see commonly.
After the list of waiting threads, lines 13 and 14 show more event counters. Line 13 shows several counters
 related to mutexes, and line 14 is for read/write shared and exclusive
 locks. In each case, you can see how often InnoDB has resorted to an
 operating system wait.
InnoDB has a multiphase wait policy. First, it tries to
 spin-wait for the lock. If this doesn't succeed after a preconfigured
 number of spin rounds (specified by the innodb_sync_spin_loops configuration
 variable), it falls back to the more expensive and complex wait array.
 [126]
Spin waits are relatively low-cost, but they burn CPU cycles by
 checking repeatedly if a resource can be locked. This isn't as bad as
 it sounds, because there are typically free CPU cycles while the
 processor is waiting for I/O. And even if there aren't any free CPU
 cycles, spin waits are often much less expensive than the alternative.
 However, spinning monopolizes the processor when another thread might
 be able to do some work.
The alternative to a spin wait is for the operating system to do
 a context switch, so another thread can run while the thread waits,
 then wake the sleeping thread when it is signaled via the semaphore in
 the wait array. Signaling via a semaphore is efficient, but the
 context switch is expensive. These can add up quickly: thousands of
 them per second can cause a lot of overhead.
You can try to strike a balance between spin waits and operating
 system waits by changing the innodb_sync_spin_loops system variable.
 Don't worry about spin waits unless you see many (perhaps in the range
 of hundreds of thousands) spin rounds per second. There's more advice
 on how to tune this part of InnoDB in Chapter 6.

LATEST FOREIGN KEY ERROR

The next section, LATEST FOREIGN KEY
 ERROR, doesn't appear unless your server has had a foreign
 key error. There are many places in the source code that can generate
 this output, and it varies depending on the kind of error. Sometimes
 it's a transaction and the parent or child rows it was looking for
 while trying to insert, update, or delete a record. At other times
 it's a type mismatch between tables while InnoDB was trying to add or
 delete a foreign key, or alter a table that already had a foreign
 key.
This section's output is very helpful for debugging the exact
 causes of InnoDB's often vague foreign key errors. Let's look at some examples. First, we create
 two tables with a foreign key between them, and insert a little
 data:
CREATE TABLE parent (
 parent_id int NOT NULL,
 PRIMARY KEY(parent_id)
) ENGINE=InnoDB;

CREATE TABLE child (
 parent_id int NOT NULL,
 KEY parent_id (parent_id),
 CONSTRAINT child_ibfk_1 FOREIGN KEY (parent_id) REFERENCES parent (parent_id)
) ENGINE=InnoDB;

INSERT INTO parent(parent_id) VALUES(1);
INSERT INTO child(parent_id) VALUES(1);
There are two basic classes of foreign key errors. Adding, updating, or deleting data
 in a way that would violate the foreign key causes the first class of
 errors. For example, here's what happens when we delete the row from
 the parent table:
DELETE FROM parent;
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint
fails (`test/child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES
`parent` (`parent_id`))
The error message is fairly straightforward, and you'll get
 similar messages for all errors caused by adding, updating, or
 deleting nonmatching rows. Here's the output from SHOW INNODB STATUS:
 1 ------------------------
 2 LATEST FOREIGN KEY ERROR
 3 ------------------------
 4 070913 10:57:34 Transaction:
 5 TRANSACTION 0 3793469, ACTIVE 0 sec, process no 5488, OS thread id 1141152064
 updating or deleting, thread declared inside InnoDB 499
 6 mysql tables in use 1, locked 1
 7 4 lock struct(s), heap size 1216, undo log entries 1
 8 MySQL thread id 9, query id 305 localhost baron updating
 9 DELETE FROM parent
10 Foreign key constraint fails for table `test/child`:
11 '
12 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent` (`parent_
 id`)
13 Trying to delete or update in parent table, in index `PRIMARY` tuple:
14 DATA TUPLE: 3 fields;
15 0: len 4; hex 80000001; asc ;; 1: len 6; hex 00000039e23d; asc 9 =;; 2: len
 7; hex 000000002d0e24; asc - $;;
16
17 But in child table `test/child`, in index `parent_id`, there is a record:
18 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
19 0: len 4; hex 80000001; asc ;; 1: len 6; hex 000000000500; asc ;;
Line 4 shows the date and time of the last foreign key error. Lines 5 through 9 show details about
 the transaction that violated the foreign key error; we explain more
 about these lines later. Lines 10 through 19 show the exact data
 InnoDB was trying to change when it found the error. A lot of this
 output is the row data converted to printable formats; we say more
 about this later, too.
So far, so good, but there's another class of foreign key error
 that can be much harder to debug. Here's what happens when we try to
 alter the parent table:
ALTER TABLE parent MODIFY parent_id INT UNSIGNED NOT NULL;
ERROR 1025 (HY000): Error on rename of './test/#sql-1570_9' to './test/parent'
(errno: 150)
This is less than clear, but the SHOW
 INNODB STATUS text sheds some light on it:
 1 ------------------------
 2 LATEST FOREIGN KEY ERROR
 3 ------------------------
 4 070913 11:06:03 Error in foreign key constraint of table test/child:
 5 there is no index in referenced table which would contain
 6 the columns as the first columns, or the data types in the
 7 referenced table do not match to the ones in table. Constraint:
 8 ,
 9 CONSTRAINT child_ibfk_1 FOREIGN KEY (parent_id) REFERENCES parent (parent_id)
10 The index in the foreign key in table is parent_id
11 See http://dev.mysql.com/doc/refman/5.0/en/innodb-foreign-key-constraints.html
12 for correct foreign key definition.
The error in this case is a different data type. Foreign-keyed
 columns must have exactly the same data type,
 including any modifiers (such as UNSIGNED, which was the problem in this
 case). Whenever you see error 1025 and don't understand why, the best
 place to look is in SHOW INNODB
 STATUS.

LATEST DETECTED DEADLOCK

Like the foreign key section, the LATEST DETECTED DEADLOCK section appears
 only if your server has had a deadlock.
A deadlock is a cycle in the waits-for graph, which is a data
 structure of row locks held and waited for. The cycle can be
 arbitrarily large. InnoDB detects deadlocks instantly, because it checks for a cycle in
 the graph every time a transaction has to wait for a row lock.
 Deadlocks can be quite complex, but this section shows
 only the last two transactions involved, the last statement executed
 in each of the transactions, and the locks that created the cycle in
 the graph. You don't see other transactions that may also be included
 in the cycle, nor do you see the statement that may have really
 acquired the locks earlier in a transaction. Nevertheless, you can
 usually find out what caused the deadlock by looking at this
 output.
There are actually two types of InnoDB deadlocks. The first, which is what most people are
 accustomed to, is a true cycle in the waits-for graph. The other type
 is a waits-for graph that is too expensive to check for cycles. If
 InnoDB has to check more than a million locks in the graph, or if it
 recurses through more than 200 transactions while checking, it gives
 up and says there's a deadlock. These numbers are hardcoded constants
 in the InnoDB source, and you can't configure them (though you can
 change them and recompile InnoDB if you wish). You'll know when
 exceeding these limits causes a deadlock, because you'll see "TOO DEEP
 OR LONG SEARCH IN THE LOCK TABLE WAITS-FOR GRAPH" in the
 output.
InnoDB prints not only the transactions and the locks they held
 and waited for, but also the records themselves. This information is
 mostly useful to the InnoDB developers, but there's currently no way
 to disable it. Unfortunately, it can be so large that it runs over the
 length allocated for output and prevents you from seeing the sections
 that follow. The only way to remedy this is to cause a small deadlock
 to replace the large one, or to use a patch one of this book's authors
 developed, which is available at http://lists.mysql.com/internals/35174.
Here's a sample deadlock:
 1 ------------------------
 2 LATEST DETECTED DEADLOCK
 3 ------------------------
 4 070913 11:14:21
 5 *** (1) TRANSACTION:
 6 TRANSACTION 0 3793488, ACTIVE 2 sec, process no 5488, OS thread id 1141287232
 starting index read
 7 mysql tables in use 1, locked 1
 8 LOCK WAIT 4 lock struct(s), heap size 1216
 9 MySQL thread id 11, query id 350 localhost baron Updating
10 UPDATE test.tiny_dl SET a = 0 WHERE a <> 0
11 *** (1) WAITING FOR THIS LOCK TO BE GRANTED:
12 RECORD LOCKS space id 0 page no 3662 n bits 72 index `GEN_CLUST_INDEX` of table
 `test/tiny_dl` trx id 0 3793488 lock_mode X waiting
13 Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
14 0: len 6; hex 000000000501 ...[omitted] ...
15
16 *** (2) TRANSACTION:
17 TRANSACTION 0 3793489, ACTIVE 2 sec, process no 5488, OS thread id 1141422400
 starting index read, thread declared inside InnoDB 500
18 mysql tables in use 1, locked 1
19 4 lock struct(s), heap size 1216
20 MySQL thread id 12, query id 351 localhost baron Updating
21 UPDATE test.tiny_dl SET a = 1 WHERE a <> 1
22 *** (2) HOLDS THE LOCK(S):
23 RECORD LOCKS space id 0 page no 3662 n bits 72 index `GEN_CLUST_INDEX` of table
 `test/tiny_dl` trx id 0 3793489 lock mode S
24 Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
25 0: ... [omitted] ...
26
27 *** (2) WAITING FOR THIS LOCK TO BE GRANTED:
28 RECORD LOCKS space id 0 page no 3662 n bits 72 index `GEN_CLUST_INDEX` of table
 `test/tiny_dl` trx id 0 3793489 lock_mode X waiting
29 Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
30 0: len 6; hex 000000000501 ...[omitted] ...
31
32 *** WE ROLL BACK TRANSACTION (2)
Line 4 shows when the deadlock occurred, and lines 5 through 10
 show information about the first transaction involved in the deadlock.
 We explain the meaning of this output in detail in the next
 section.
Lines 11 through 15 show the locks transaction 1 was waiting for
 when the deadlock happened. We've omitted some of the information
 that's useful only for debugging InnoDB on line 14. The important
 thing to notice is line 12, which says this transaction wanted an
 exclusive (X) lock on GEN_CLUST_INDEX [127] on the test.tiny_dl
 table.
Lines 16 through 21 show the second transaction's status, and lines 22 through 26 show the locks it held.
 There are several records listed on line 25, which we've removed for
 brevity. One of these was the record for which the first transaction
 was waiting. Finally, lines 27 through 31 show the locks for which it
 was waiting.
A cycle in the waits-for graph occurs when each transaction
 holds a lock the other wants and wants a lock the other holds. InnoDB
 doesn't show all the locks held and waited for, but it shows enough to
 help you determine what indexes the queries were using, which is
 valuable in determining whether you can avoid deadlocks.
If you can get both queries to scan the same index in the same
 direction, you can often reduce the number of deadlocks, because queries can't create a cycle when
 they request locks in the same order. This is sometimes easy to do.
 For example, if you need to update a number of records within a
 transaction, sort them by their primary key in the application's
 memory, then update them in that order—then they can't deadlock. At
 other times, however, it can be infeasible (such as when you have two
 processes that need to work on the same table but are using different
 indexes).
Line 32 shows which transaction was chosen as the deadlock
 victim. InnoDB tries to choose the transaction it thinks will be
 easiest to roll back, which is the one with the fewest updates.
This information can be valuable to monitor and log for
 analysis. Maatkit's mk-deadlock-logger tool is a
 convenient way to do this. It's also very helpful to examine the
 general log, find all the queries from the threads involved, and see
 what really caused the deadlock. Read the next section to see where to
 find the thread ID in the deadlock output.

TRANSACTIONS

This section contains a little summary information about
 InnoDB transactions, followed by a list of the currently active
 transactions. Here are the first few lines (the
 header):
1 ------------
2 TRANSACTIONS
3 ------------
4 Trx id counter 0 80157601
5 Purge done for trx's n:o <0 80154573 undo n:o <0 0
6 History list length 6
7 Total number of lock structs in row lock hash table 0
The output varies depending on the MySQL version, but it
 includes at least the following:
	Line 4: the current transaction identifier, which is a
 system variable that increments for each new transaction.

	Line 5: the transaction ID to which InnoDB has purged old
 MVCC row versions. You can see how many old versions haven't yet
 been purged by looking at the difference between this value and
 the current transaction ID. There's no hard and fast rule as to
 how large this number can safely get. If nothing is updating any
 data, a large number doesn't mean there's unpurged data, because
 all the transactions are actually looking at the same version of
 the database. On the other hand, if many rows are being updated,
 one or more versions of each row is staying in memory. The best
 policy for reducing overhead is to ensure that transactions commit
 when they're done instead of staying open a long time, because
 even an open transaction that doesn't do any work keeps InnoDB
 from purging old row versions.
Also in line 5: the undo log record number InnoDB's purge
 process is currently working on, if any. If it's "0 0", as in our
 example, the purge process is idle.

	Line 6: the history list length, which is the number of
 unpurged transactions in the undo space in InnoDB's data files.
 When a transaction performs updates and commits, this number
 increases; when the purge process removes the old versions, it
 decreases. The purge process also updates the value in line
 5.

	Line 7: the number of lock structs. Each lock struct usually
 holds many row locks, so this is not the same as the number of
 rows locked.

The header is followed by a list of transactions. Current
 versions of MySQL don't support nested transactions, so there's a
 maximum of one transaction per client connection at a time, and each
 transaction belongs to only a single connection. Each transaction has
 at least two lines in the output. Here's a sample of the minimal
 information you'll see about a transaction:
1 ---TRANSACTION 0 3793494, not started, process no 5488, OS thread id 1141152064
2 MySQL thread id 15, query id 479 localhost baron
The first line begins with the transaction's ID and status. This transaction is "not started," which means
 it has committed and not issued any more statements that affect
 transactions; it's probably just idle. Then there's some
 process and thread information. The second line shows the MySQL process ID, which is also the same as
 the Id column in SHOW FULL PROCESSLIST. This is followed by
 an internal query number and some connection information (also the
 same as what you can find in SHOW FULL
 PROCESSLIST).
Each transaction can print much more information than that,
 though. Here's a more complex example:
1 ---TRANSACTION 0 80157600, ACTIVE 4 sec, process no 3396, OS thread id 1148250464,
 thread declared inside InnoDB 442
2 mysql tables in use 1, locked 0
3 MySQL thread id 8079, query id 728899 localhost baron Sending data
4 select sql_calc_found_rows * from b limit 5
5 Trx read view will not see trx with id>= 0 80157601, sees <0 80157597
Line 1 in this sample shows the transaction has been active for
 four seconds. The possible states are "not started," "active,"
 "prepared," and "committed in memory" (once it commits to disk, the
 state will change to "not started"). You may also see information
 about what the transaction is currently doing, though this example
 doesn't show that. There are over 30 string constants in the source
 that can be printed here, such as "fetching rows," "adding foreign
 keys," and so on.
The "thread declared inside InnoDB 442" text on line 1 means the
 thread is doing some operation inside the InnoDB kernel and has 442
 "tickets" left to use. In other words, the same SQL query is allowed
 to reenter the InnoDB kernel 442 more times. The ticket system limits
 thread concurrency inside the kernel to prevent thread thrashing on
 some platforms. Even if the thread's state is "inside InnoDB," the
 thread might not necessarily be doing all its work inside InnoDB; the
 query might be processing some operations at the server level and just
 interacting with the InnoDB kernel in some way. You might also see
 that the transaction's status is "sleeping before joining InnoDB queue" or
 "waiting in InnoDB queue."
The next line you may see shows how many tables the current
 statement has used and locked. InnoDB doesn't normally lock tables,
 but it does for some statements. Locked tables can also show up if the
 MySQL server has locked them at a higher level than InnoDB. If the
 transaction has locked any rows, there will be a line showing the
 number of lock structs (again, not the same thing as row locks) and
 the heap size; you can see examples of this in the earlier deadlock
 output. In MySQL 5.1 and newer, this line also shows the actual number
 of row locks the transaction holds.
The heap size is the amount of memory used to hold row locks.
 InnoDB implements row locks with a special table of bitmaps, which can
 theoretically use as little as one bit per row it locks. Our tests
 have shown that it generally uses no more than four bits per
 lock.
The third line in this example has a little more information
 than the second line in the previous sample: at the end of the line is
 the thread status, "Sending data." This is the same as what you'll
 see in the Command column in
 SHOW FULL PROCESSLIST.
If the transaction is actively running a query, the query's text
 (or, in some MySQL versions, just an excerpt of it) will come next, in
 this case in line 4.
Line 5 shows the transaction's read view, which indicates the
 range of transaction identifiers that are definitely visible and
 definitely invisible to the transaction because of versioning. In this
 case, there's a gap of four transactions between the two numbers. These four
 transactions may or may not be visible. When InnoDB
 executes a query, it must check the visibility of any rows whose
 transaction identifiers fall into this gap.
If the transaction is waiting for a lock, you'll also see the
 lock information just after the query. There are examples of this in
 the earlier deadlock sample as well. Unfortunately, the output doesn't
 say which other transaction holds the lock for
 which this transaction is waiting.
If there are many transactions, InnoDB may limit the number it prints to
 try to keep the output from growing too large. You'll see "
 …truncated… " if this happens.

FILE I/O

The FILE I/O section shows
 the state of the I/O helper threads, along with performance counters:
 1 --------
 2 FILE I/O
 3 --------
 4 I/O thread 0 state: waiting for i/o request (insert buffer thread)
 5 I/O thread 1 state: waiting for i/o request (log thread)
 6 I/O thread 2 state: waiting for i/o request (read thread)
 7 I/O thread 3 state: waiting for i/o request (write thread)
 8 Pending normal aio reads: 0, aio writes: 0,
 9 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
10 Pending flushes (fsync) log: 0; buffer pool: 0
11 17909940 OS file reads, 22088963 OS file writes, 1743764 OS fsyncs
12 0.20 reads/s, 16384 avg bytes/read, 5.00 writes/s, 0.80 fsyncs/s
Lines 4 through 7 show the I/O helper thread states. Lines 8 through 10 show the
 number of pending operations for each helper thread, and the number of
 pending fsync() operations for the
 log and buffer pool threads. The abbreviation "aio" means
 "asynchronous I/O." Line 11 shows the number of reads, writes, and
 fsync() calls performed. These are
 good variables to monitor with a trending and graphing system such as
 those we mention in the next chapter. Absolute values will vary with
 your workload, so it's more important to monitor how they change over
 time. Line 12 shows per-second averages over the time interval shown
 in the header section.
The pending values on lines 8 and 9 are good ways to detect an
 I/O-bound application. If most of these types of I/O have some pending
 operations, the workload is probably I/O-bound.
On Windows, you can adjust the number of I/O helper threads with
 the innodb_file_io_threads
 configuration variable, so you may see more than one read and write
 thread. However, you'll always see at least these four threads on all
 platforms:
	Insert buffer thread
	Responsible for insert buffer merges (i.e., records being merged
 from the insert buffer into the tablespace)

	Log thread
	Responsible for asynchronous log flushes

	Read thread
	Performs read-ahead operations to try to prefetch data
 InnoDB predicts it will need

	Write thread
	Flushes dirty buffers

INSERT BUFFER AND ADAPTIVE HASH INDEX

This section shows the status of the INSERT BUFFER AND
 ADAPTIVE HASH INDEX:
1 -------------------------------------
2 INSERT BUFFER AND ADAPTIVE HASH INDEX
3 -------------------------------------
4 Ibuf for space 0: size 1, free list len 887, seg size 889, is not empty
5 Ibuf for space 0: size 1, free list len 887, seg size 889,
6 2431891 inserts, 2672643 merged recs, 1059730 merges
7 Hash table size 8850487, used cells 2381348, node heap has 4091 buffer(s)
8 2208.17 hash searches/s, 175.05 non-hash searches/s
Line 4 shows information about the insert buffer's size, the
 length of its "free list," and its segment size. The text "for space
 0" seems to indicate the possibility of multiple insert buffers—one
 per tablespace—but that was never implemented, and this text has been
 removed in recent MySQL versions. There's only one insert buffer, so
 line 5 is really redundant. Line 6 shows statistics about how many
 buffer operations InnoDB has done. The ratio of merges to inserts
 gives a good idea of how efficient the buffer is.
Line 7 shows the adaptive hash index's status. Line 8 shows how many hash
 index operations InnoDB has done over the time frame mentioned in the
 header section. The ratio of hash index lookups to non-hash index
 lookups is another good efficiency metric, because hash lookups are
 faster than non-hash lookups. This is advisory information; you can't
 configure the adaptive hash index.

LOG

This section shows statistics about InnoDB's transaction LOG
 subsystem:
1 ---
2 LOG
3 ---
4 Log sequence number 84 3000620880
5 Log flushed up to 84 3000611265
6 Last checkpoint at 84 2939889199
7 0 pending log writes, 0 pending chkp writes
8 14073669 log i/o's done, 10.90 log i/o's/second
Line 4 shows the current log sequence number, and line 5 shows
 the point up to which the logs have been flushed. The log sequence
 number is just the number of bytes written to the log files, so you
 can use it to calculate how much data in the log buffer has not yet
 been flushed to the log files. In this case, it is 9,615 bytes
 (13000620880 – 13000611265). Line 6 shows the last checkpoint (a
 checkpoint identifies an instant at which the data and log files were
 in a known state, and can be used for recovery). Lines 7 and 8 show
 pending log operations and statistics, which you can compare to values
 in the FILE I/O section to see how
 much of your I/O is caused by your log subsystem relative to other
 causes of I/O.

BUFFER POOL AND MEMORY

This section shows statistics about InnoDB's BUFFER POOL AND MEMORY (see Chapter 6 for information on how to tune
 the buffer pool):
 1 ----------------------
 2 BUFFER POOL AND MEMORY
 3 ----------------------
 4 Total memory allocated 4648979546; in additional pool allocated 16773888
 5 Buffer pool size 262144
 6 Free buffers 0
 7 Database pages 258053
 8 Modified db pages 37491
 9 Pending reads 0
10 Pending writes: LRU 0, flush list 0, single page 0
11 Pages read 57973114, created 251137, written 10761167
12 9.79 reads/s, 0.31 creates/s, 6.00 writes/s
13 Buffer pool hit rate 999 / 1000
Line 4 shows the total memory allocated by InnoDB, and how much
 of that amount is allocated in the additional memory pool.
Lines 5 through 8 show buffer pool metrics, in units of pages.
 The metrics are the total buffer pool size, the number of free pages,
 the number of pages allocated to store database pages, and the number
 of "dirty" database pages. InnoDB uses some pages in the buffer pool
 for lock indexes, the adaptive hash index, and other system
 structures, so the number of database pages in the pool will never
 equal the total pool size.
Lines 9 and 10 show the number of pending reads and writes (i.e., the
 number of logical reads and writes InnoDB needs to do for the buffer
 pool). These values will not match values in the FILE I/O section, because InnoDB might merge
 many logical operations into a single physical I/O operation. LRU
 stands for "least recently used"; it's a method of freeing space for
 frequently used pages by flushing infrequently used ones from the
 buffer pool. The flush list holds old pages that need to be flushed by
 the checkpoint process, and single page writes are independent page
 writes that won't be merged.
Line 8 in this output shows that the buffer pool contains 37491
 dirty pages, which need to be flushed to disk at some point (they have
 been modified in memory but not on disk). However, line 10 shows that
 no flushes are scheduled at the moment. This is not a problem; InnoDB
 will flush them when it needs to.
Line 11 shows how many pages InnoDB has read, created, and
 written. The pages read and written values refer to data that's read
 into the buffer pool from disk or vice versa. The pages created value
 refers to pages that InnoDB allocates in the buffer pool without
 reading their contents from the data file, because it doesn't care
 what the contents are (for example, they might have belonged to a
 table that has since been dropped).
Line 13 reports the buffer pool hit rate, which measures the
 rate at which InnoDB finds the pages it needs in the buffer pool. This
 is a cache efficiency metric. It measures hits since the last InnoDB
 status printout, so if the server has been quiet since
 then, you'll see "No buffer pool page gets since the last printout."
 Because of how InnoDB is designed, you can't compare the InnoDB buffer
 pool hit rate directly to MyISAM's key buffer hit rate.

ROW OPERATIONS

This section shows ROW
 OPERATIONS and miscellaneous InnoDB statistics:
 1 --------------
 2 ROW OPERATIONS
 3 --------------
 4 0 queries inside InnoDB, 0 queries in queue
 5 1 read views open inside InnoDB
 6 Main thread process no. 10099, id 88021936, state: waiting for server activity
 7 Number of rows inserted 143, updated 3000041, deleted 0, read 24865563
 8 0.00 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s
 9 ----------------------------
10 END OF INNODB MONITOR OUTPUT
11 ============================
Line 4 shows how many threads are inside the InnoDB kernel (we
 referred to this in our discussion of the TRANSACTIONS section). Queries in the queue
 are threads InnoDB is not admitting into the kernel yet to restrict
 the number of threads concurrently executing. Queries can also be
 sleeping before they go into the queue to wait, as discussed
 earlier.
Line 5 shows how many read views InnoDB has open. A read view is
 a consistent MVCC "snapshot" of the database's contents as of the
 point the transaction started. You can see whether a specific
 transaction has a read view in the TRANSACTIONS section.
Line 6 shows the kernel's main thread status. The possible status values in MySQL 5.0.45 and
 5.1.22 are as follows:
	archiving log (if log
 archive is on)

	doing background drop
 tables

	doing insert buffer
 merge

	flushing buffer pool
 pages

	flushing log

	making checkpoint

	purging

	reserving kernel
 mutex

	sleeping

	suspending

	waiting for buffer pool flush to
 end

	waiting for server
 activity

Lines 7 and 8 show statistics on the number of rows inserted,
 updated, deleted, and read, and per-second averages of these values.
 These are good numbers to monitor if you want to watch how much work
 InnoDB is doing.
The SHOW INNODB STATUS output
 ends with lines 9 through 13. If you don't see this text, you probably
 have a very large deadlock that's truncating the output.

[126] The wait array was changed to be much more efficient in
 MySQL 5.1.

[127] This is the index InnoDB creates internally when you don't
 specify a primary key.

SHOW PROCESSLIST

The process list is the list of connections, or threads, that are currently connected to
 MySQL. SHOW PROCESSLIST lists the
 threads, with information about each thread's status. For
 example:
mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
 Id: 61539
 User: sphinx
 Host: se02:58392
 db: art136
Command: Query
 Time: 0
 State: Sending data
 Info: SELECT a.id id, a.site_id site_id, unix_timestamp(inserted) AS
inserted,forum_id, unix_timestamp(p
*************************** 2. row ***************************
 Id: 65094
 User: mailboxer
 Host: db01:59659
 db: link84
Command: Killed
 Time: 12931
 State: end
 Info: update link84.link_in84 set url_to =
replace(replace(url_to,'&','&'),'%20','+'), url_prefix=repl
There are several tools (such as innotop)
 that can show you an updating view of the process list.
The Command and State columns are where the thread's "status"
 is really indicated. Notice that the first of our processes is running a
 query and sending data while the second has been killed, probably
 because it took a very long time to complete and someone deliberately
 terminated it with the KILL command.
 A thread can remain in this state for some time, because a kill may not
 complete instantly. For example, it may take a while to roll back the
 thread's transaction.
SHOW FULL PROCESSLIST (with the
 added FULL keyword) shows the full
 text of each query, which is otherwise truncated after 100
 characters.

SHOW MUTEX STATUS

SHOW MUTEX STATUS returns
 detailed InnoDB mutex information and is mostly useful for gaining
 insight into scalability and concurrency problems. Each mutex protects a
 critical section in the code, as explained previously.
The output varies depending on the MySQL version and compile
 options. Sometimes you get the names of the mutexes and several columns of output for each; sometimes
 you just get a filename, a line, and a number. You may need to write a
 script to aggregate the output, which can be very large. Here's a single
 line of sample output:
*************************** 1. row ***************************
 Mutex: &(buf_pool->mutex)
 Module: buf0buf.c
 Count: 95
 Spin_waits: 0
 Spin_rounds: 0
 OS_waits: 0
 OS_yields: 0
OS_waits_time: 0
You can inspect the output to help determine which parts of InnoDB
 are bottlenecks. Having many CPUs, for example, can cause bottlenecks.
 MySQL has recently fixed many InnoDB scalability problems on multi-CPU
 systems, but some problems with mutexes remain. Typical ones we've seen
 people encounter are AUTO_INCREMENT
 locks, which are global per table and protected by a mutex in InnoDB,
 and the insert buffer. Anywhere there's a mutex, there's a potential for
 contention.
The columns in the output are as follows:
	Mutex
	The mutex name.

	Module
	The source file where the mutex is defined.

	Count
	How many times something has requested the mutex.

	Spin_waits
	How many times InnoDB chose to spin-wait for the mutex to be
 free. Recall that InnoDB first tries a spin wait and then falls
 back to an operating system wait.

	Spin_rounds
	How many times InnoDB checked whether the mutex was free in
 a spin wait.

	OS_waits
	How many times InnoDB fell back to an operating system wait
 for the mutex.

	OS_yields
	How many times the thread waiting for the mutex yielded to
 the operating system so another thread could run.

	OS_waits_time
	If the timed_mutexes
 system variable is set to 1,
 this is the number of milliseconds spent waiting.

You can find the hot spots by comparing the relative size of the
 counters. There are three main strategies for easing the bottlenecks:
 try to avoid InnoDB's weak points, try to limit concurrency, or try to
 balance between CPU-intensive spin waits and resource-intensive
 operating system waits. For more advice on tuning InnoDB's concurrency,
 see "InnoDB Concurrency Tuning" on InnoDB Concurrency Tuning.

Replication Status

MySQL has several commands for monitoring replication. On a master
 server, SHOW MASTER STATUS shows the
 master's replication status and configuration:
mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000079
 Position: 13847
 Binlog_Do_DB:
Binlog_Ignore_DB:
The output includes the master's current binary log position. You
 can get a list of binary logs with SHOW BINARY
 LOGS:
mysql> SHOW BINARY LOGS
+------------------+-----------+
| Log_name | File_size |
+------------------+-----------+
| mysql-bin.000044 | 13677 |
...
| mysql-bin.000079 | 13847 |
+------------------+-----------+
36 rows in set (0.18 sec)
To view the events in the binary logs, use SHOW BINLOG EVENTS.
On a slave server, you can view the slave's status and
 configuration with SHOW SLAVE STATUS.
 We won't include the output here, because it's a bit verbose, but we
 will note a few things about it. First, you can see the status of both the slave I/O and slave SQL threads,
 including any errors. You can also see how far behind the slave is in
 replication. Finally, for purposes of backups and cloning slaves, there
 are three sets of binary log coordinates in the output:
	Master_Log_File/Read_Master_Log_Pos
	The position at which the I/O thread is reading in the
 master's binary logs.

	Relay_Log_File/Relay_Log_Pos
	The position at which the SQL thread is executing in the
 slave's relay logs.

	Relay_Master_Log_File/Exec_Master_Log_Pos
	The position at which the SQL thread is executing in the
 master's binary logs. This is the same logical position as
 Relay_Log_File/Relay_Log_Pos,
 but it's in the slave's relay logs instead of the master's binary
 logs. In other words, if you look at these two positions in the
 logs, you will find the same log events.

INFORMATION_SCHEMA

The INFORMATION_SCHEMA database
 is a set of system views defined in the SQL standard. MySQL implements
 many of the standard views and adds some others. In MySQL 5.1, many of
 the views correspond to MySQL's SHOW
 commands, such as SHOW FULL
 PROCESSLIST and SHOW
 STATUS. However, there are also some views that have no
 corresponding SHOW command.
The beauty of the INFORMATION_SCHEMA views is that you can query
 them with standard SQL. This gives you much more flexibility than the
 SHOW commands, which produce result
 sets that you can't aggregate, join, or otherwise manipulate with
 standard SQL. Having all this data available in system views makes it
 possible to write interesting and useful queries.
For example, what tables have a reference to the actor table in the Sakila sample database? The
 consistent naming convention makes this relatively easy to
 determine:
mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA='sakila' AND COLUMN_NAME='actor_id'
 -> AND TABLE_NAME <> 'actor';
+------------+
| TABLE_NAME |
+------------+
| actor_info |
| film_actor |
+------------+
We needed to find tables with multiple-column indexes for several
 of the examples in this book. Here's a query for that:
mysql> SELECT TABLE_NAME, GROUP_CONCAT(COLUMN_NAME)
 -> FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 -> WHERE TABLE_SCHEMA='sakila'
 -> GROUP BY TABLE_NAME, CONSTRAINT_NAME
 -> HAVING COUNT(*) > 1;
+---------------+--------------------------------------+
| TABLE_NAME | GROUP_CONCAT(COLUMN_NAME) |
+---------------+--------------------------------------+
film_actor	actor_id,film_id
film_category	film_id,category_id
rental	customer_id,rental_date,inventory_id
+---------------+--------------------------------------+
You can also write more complex queries, just as you would against
 any ordinary tables. The MySQL Forge (http://forge.mysql.com) is a great place to find and
 share queries against these views. There are samples to find duplicate
 or redundant indexes, find indexes with very low cardinality, and much,
 much more.
The biggest drawback is that the views are sometimes very slow
 compared to the corresponding SHOW
 commands. They typically fetch all the data, store it in a temporary
 table, then make the temporary table available to the query. For many
 monitoring, troubleshooting, and tuning purposes, it's faster to simply
 type the SHOW command, rather than
 type the full SQL to select the data from the views.
The views also aren't updatable at the time of this writing.
 Although you can retrieve server settings from them, you can't update
 them to influence the server's configuration. In practice, these
 limitations mean you'll still need to use the SHOW and SET commands for configuration, even though
 the INFORMATION_SCHEMA views are very
 useful for other tasks.

Chapter 14. Tools for High Performance

The MySQL server distribution doesn't include tools for many common
 tasks, such as monitoring the server or comparing data between servers.
 Fortunately, MySQL's devoted community has made a wide variety of tools
 available, reducing the need to roll your own. Many companies also provide
 commercial alternatives or supplements to MySQL's own tools.
This chapter covers some of the most popular and important
 productivity tools for MySQL. We divide the tools into categories:
 interface, monitoring, analysis, and utilities.
Interface Tools

Interface tools help you run queries, create tables and
 users, and perform other routine tasks. This section gives a brief
 description of some of the most popular tools for these purposes. You
 can generally do all or most of the jobs they're used for with SQL
 queries or commands; the tools we discuss here just add convenience,
 help you avoid mistakes, and speed up your work.
MySQL Visual Tools

MySQL AB distributes a set of visual tools that includes
 MySQL Query Browser, MySQL Administrator, MySQL
 Migration Toolkit, and MySQL Workbench. These are all freely
 available, and you can download and install them as a bundle. They run
 on all popular desktop operating systems. These tools previously had
 many annoying quirks, but MySQL AB recently made an effort to find and
 fix bugs in all four of them.
MySQL Query Browser can be used for tasks such as running
 queries, creating tables and stored procedures, exporting data, and
 browsing database structures. It has integrated documentation on
 MySQL's SQL commands and functions. It is most useful for those who
 develop and query MySQL databases.
MySQL Administrator is focused on server administration and is therefore most useful for DBAs,
 not developers or analysts. It helps automate tasks such as creating
 backups, creating users and assigning privileges, and viewing server
 logs and status information. It includes some basic monitoring
 functionality, such as graphing status variables, but is not as
 flexible as the interactive monitoring tools presented later in this chapter. It also doesn't
 record the statistics for later analysis, which many other monitoring
 tools are designed to do.
The bundle also includes MySQL Migration Toolkit, which helps migrate databases from
 other systems to MySQL, and the MySQL Workbench modeling tool.
The benefits of MySQL's own tools are that they're free, they're now
 quite good quality, and they run on most desktop operating systems.
 They have a simple feature set that's adequate for many tasks. The
 standout features are the user management and backup features in MySQL
 Administrator and the integrated documentation in MySQL Query
 Browser.
The primary drawback of these tools is that they are somewhat
 simplistic, without all the bells and whistles power users may come to
 appreciate and demand. A complete description, including screenshots,
 is available on MySQL's web site at http://www.mysql.com/products/tools/.
Tip
MySQL Workbench was recently rewritten from scratch and is now
 available in both free and commercial versions. The free version is
 not feature-crippled, but the commercial version includes some
 plug-ins that help automate tasks so that they require less manual
 work. At the time of this writing, the new version of the MySQL
 Workbench tool is still in beta.

SQLyog

SQLyog is the most popular visual tool for MySQL. It is well
 designed to support DBA and developer productivity. The full feature
 list is too large to include here, but here are some
 highlights:
	Code autocompletion to help you write queries more
 quickly

	The ability to connect over SSH tunnels to remotely hosted
 servers

	Visual tools and wizards to help with common tasks like
 building queries

	The ability to schedule tasks such as backups, data imports,
 and data synchronization

	Keyboard shortcuts

	Schema comparisons, offering access to properties of objects
 such as tables and views

	User management

SQLyog also has all the standard features you'd expect,
 such as a schema editor. It is available only for Microsoft Windows,
 in a full-featured edition for a price and in a limited-functionality
 edition for free. More information about SQLyog is available at http://www.webyog.com.

phpMyAdmin

phpMyAdmin is a popular administration tool that runs on a web server and gives you a browser-based interface to your MySQL servers. It has a lot of nice
 features for querying and administration. Its main advantages are
 platform independence, a large feature set, and access through a
 browser. Browser-based access is nice if you're away from your usual
 environment and a browser is all you have. For example, you can
 install phpMyAdmin on hosted servers where you have only FTP access
 and therefore can't run the mysql client or any
 other programs for a shell.
phpMyAdmin is certainly a handy tool that can be just what you
 need for a lot of situations. Be very careful when installing it on
 systems that are accessible to the Web, however, because if your
 server isn't secured properly, you could hardly give an attacker a
 better way in.
phpMyAdmin's detractors say it has too many features and is too
 large and complex.phpMyAdmin is hosted on SourceForge.net, where it is
 consistently ranked one of the top projects. More information is
 available at http://sourceforge.net/projects/phpmyadmin/.

Monitoring Tools

Monitoring MySQL is a topic that almost deserves its own book:
 it's a large and complicated task, with different applications often
 having different requirements. However, we can direct you to some of the
 better tools and resources on the subject.
"Monitoring" is one of those terms people tend to overload with
 several meanings, assuming others know what they're talking about.
 However, in our experience, most MySQL shops need to do many different
 kinds of monitoring.
We focus on tools for noninteractive monitoring and interactive monitoring.
 Noninteractive monitoring usually involves an automated system that
 takes measurements and potentially alerts the administrator when some
 parameter is out of its safe range. Interactive monitoring tools let you watch a server in real time. We
 present these two categories of tools separately in the following
 sections.
You might also be interested in other distinctions between tools,
 such as those that monitor passively (such as innotop) versus
 the active ones that can send alerts or initiate actions (for example,
 Nagios); or perhaps you're looking for a tool that creates an
 information warehouse, rather than one that just displays current
 statistics. We indicate each tool's qualities as we go.
Noninteractive Monitoring Systems

Many monitoring systems are not designed specifically to
 monitor the MySQL server. Instead, they are general-purpose systems
 designed to periodically check the status of many kinds of resources,
 from machines to routers to software (such as MySQL). They usually
 have some kind of plug-in architecture and often come with ready-made
 plug-ins for MySQL. Some such systems can record the status of the
 systems they monitor and graph it via web interfaces. Many can also
 send alerts or initiate an action when something they're monitoring
 fails or exceeds a safe limit.
You generally install such a system on its own server and use it
 to monitor other servers. If you're using it to monitor important
 systems, it will quickly become a critical part of your
 infrastructure, so you may need to take extra steps, such as making
 the monitoring system itself redundant with failover.
An automated monitoring system that records history and shows
 trends can be a lifesaver when a MySQL instance slows down under
 increasing load or experiences other troubles. Fixing problems often
 requires knowing what has changed, which requires knowing your
 server's history and thus recording that history. A system that alerts
 you when something looks awry can warn you before disaster strikes and
 help focus your troubleshooting efforts if it does.
Homegrown systems

Many organizations start by building their own monitoring and
 alert systems. This usually works OK when there are few systems to
 monitor and few people involved. However, when the organization
 becomes larger and more complex and more members of the system
 administration staff get involved, homegrown monitoring systems tend
 to break down. They might flood mailboxes with thousands of email
 messages every time there's a network outage, or they might fail
 silently and not alert anyone of a critical problem. Duplicate or
 redundant notifications are a frequent issue with homegrown systems
 and can be an obstacle to getting any work done.
If you are considering writing a monitoring tool yourself—even
 something as simple as a cron job that checks a
 query and emails someone when there's a problem—you should give this
 some thought. It's probably a better idea to invest the time and
 energy into learning one of the systems mentioned in the following
 sections. Even though some of these systems have a steep learning
 curve and might not seem worth the initial investment, they will
 save you time and energy in the long run, and your organization will
 be better off. Implementing one of them, even if it's done poorly at
 first, will ultimately prove preferable to implementing your own
 system. At the very least, in the long run, you will have gained
 experience and competence in using a standard monitoring
 system.

Nagios

Nagios (http://www.nagios.org) is an open source monitoring and alerting system that periodically
 checks services you define and compares the results to default or
 explicit limits. If the results are outside the limits, Nagios can
 execute a program and/or alert someone to the trouble. Nagios's
 contact and alert system lets you escalate alerts to different
 contacts, change alerts or send them to different places depending
 on the time of day and other conditions, and honor scheduled
 downtime. Nagios also understands dependencies between services, so
 it won't bother you about a MySQL instance being down when it
 notices the server is unreachable because a router in the middle is
 down, or when it finds that the host server itself is down.
Nagios can run any executable file as a plug-in, provided it
 accepts the right arguments and gives the right output. As a result,
 Nagios plug-ins exist in many languages, including the shell, Perl,
 Python, Ruby, and other scripting languages. There's even a web
 site, http://www.nagiosexchange.org, devoted
 to sharing and categorizing plug-ins. And if you can't find a
 plug-in that does exactly what you need, it's simple to create your
 own. A plug-in just needs to accept standard arguments, exit with an
 appropriate status, and optionally print output for Nagios to
 capture.
Nagios can monitor just about anything you can measure, on
 many operating systems, via several methods (including active
 checks, remotely executed plug-ins, and passive checks that merely
 accept status data "pushed" from other systems). It has a web
 interface as well, which you can use to check status, view graphs
 and visualizations of your network and its status, schedule planned
 downtime, and much more.
Nagios's major shortcoming is its daunting complexity. Even
 once you've learned it well, it is hard to maintain. It also keeps
 its entire configuration in files, which have a special syntax that
 is easy to get wrong, and they are labor-intensive to modify as your
 systems grow and evolve. Finally, its graphing, trending, and
 visualization capabilities are limited. Nagios can store some
 performance and other data in a MySQL server and generate graphs
 from it, but not as flexibly as some other systems.
There are several books devoted to Nagios; we like Wolfgang
 Barth's Nagios System and Network
 Monitoring (No Starch Press).

Alternatives to Nagios

Although Nagios is the most popular general-purpose monitoring
 and alerting software, [128] there are several open source alternatives:
	Zenoss
	Zenoss is written in Python and has a
 browser-based user interface that uses Ajax to make it faster
 and more productive. It can autodiscover resources on the
 network, and it folds monitoring, alerting, trending, graphing, and
 recording historical data into a unified tool. Zenoss uses SNMP to gather data from remote
 machines by default but can also use SSH, and it has support
 for Nagios plug-ins. More information is available at http://www.zenoss.com.

	Hyperic HQ
	Hyperic HQ is a Java-based monitoring system
 that is targeted more toward so-called enterprise monitoring
 than most of the other systems in its class. Like Zenoss, it
 can autodiscover resources and supports Nagios plug-ins, but
 its logical organization and architecture are different, and
 it is a little "bulkier." Whether this suits you will depend
 on your preferences and what you are trying to monitor. More
 information can be found at http://www.hyperic.com.

	OpenNMS
	OpenNMS is written in Java and has an active
 developer community. It has the usual features, such as
 monitoring and alerting, but adds graphing and trending
 capabilities as well. Its goals are high performance and
 scalability, automation, and flexibility. Like Hyperic, it is
 intended for enterprise monitoring of large, critical systems.
 For more information, see http://www.opennms.org.

	Groundwork Open Source
	Groundwork Open Source is actually based on
 Nagios, and it combines Nagios and several other tools into one system with a portal interface.
 Perhaps the best way to describe it is as the system you might
 build in-house if you were an expert in Nagios, Cacti, and a
 host of other tools and had a lot of time to integrate them
 seamlessly together. See http://www.groundworkopensource.com for more
 information.

	Zabbix
	Zabbix is an open source monitoring system
 similar in many respects to Nagios but with some key
 differences. For example, it stores all configuration and
 other data in a database, not in configuration files. It also
 stores more types of data than Nagios and can thus generate
 better trending and history reports. Its network graphing and
 visualization capabilities are superior to Nagios's, and many
 people find it easier to configure and more flexible. It is
 also said to stand up to much heavier loads than Nagios. On
 the other hand, Zabbix has a more limited community than
 Nagios, and its alerting capabilities aren't as advanced. See
 http://www.zabbix.com for more
 information.

MySQL Monitoring and Advisory Service

MySQL's own monitoring solution is designed specifically to
 monitor MySQL instances, and it can monitor some key aspects of the
 host machine as well. It is not open source, and it requires a MySQL
 Enterprise subscription.
A major advantage of this service over Nagios is that it
 offers a prebuilt set of rules, or "advisors," that examine many
 aspects of server performance, status, and configuration. It can
 also suggest solutions to the problems it notices, instead of just
 letting the system administrator figure out what's wrong. It has a
 well-designed dashboard that shows status information for all your
 servers at once.
Though it would be possible to use Nagios or another system to
 monitor the same statistics, it would be a fair amount of work to
 write the necessary plug-ins and configure Nagios to monitor each of
 the scores of metrics the MySQL Monitoring and Advisory Service provides out of the
 box.
The disadvantage of this product is that you can't monitor the
 rest of your network with it; it is designed for monitoring only
 MySQL. It also requires an agent to be installed on each system it
 monitors. This is distasteful to some MySQL administrators, who like
 to keep their servers trimmed down to the bare essentials.
More information is available at http://www.mysql.com/products/enterprise/advisors.html.

MONyog

MONyog (http://www.webyog.com) is a
 lightweight, agentless monitoring system that takes a different
 approach from the tools previously mentioned. It is designed to run
 on a desktop system, where it starts an HTTP listener on an unused
 port. You can point your browser at this port to see information on
 your MySQL servers, rendered by a combination of JavaScript and
 Flash. The underlying implementation uses a JavaScript engine, and
 all configuration is done via a JavaScript object model.
MONyog is actually both interactive and noninteractive, so you might want to examine its
 capabilities for both kinds of monitoring.

RRDTool-based systems

Although it's not strictly a monitoring system, RRDTool (http://www.rrdtool.org)
 is important enough to mention here. Many organizations use some
 kind of script or program—often homemade—to extract information from
 servers and save them in round-robin database (RRD) files. RRD files
 are an elegant solution for many situations that require recording
 and graphing data. They automatically aggregate incoming data,
 interpolate missing values in case the incoming values are not
 delivered when expected, and have powerful graphing tools that
 generate beautiful, distinctive graphs. Several RRDTool-based
 systems are available.
The Multi Router Traffic Grapher, or MRTG (http://oss.oetiker.ch/mrtg/), is the quintessential
 RRDTool-based system. It is really designed for recording network
 traffic, but it can be extended to record and graph other things as
 well.
Munin (http://munin.projects.linpro.no) is a system that gathers data for you, puts it into
 RRDTool, and then generates graphs of the data at several levels of
 granularity. It creates static HTML files from the configuration, so
 you can browse them and view trends easily. It is easy to define a
 graph; you just create a plug-in script whose command-line help
 output has some special syntaxes Munin recognizes as graphing
 instructions. Munin's disadvantages include the requirement to load
 an agent on each system it monitors, and simplified
 one-size-fits-all configuration and graphing options that might not
 be flexible enough for some needs.
Cacti (http://www.cacti.net) is
 another popular graphing and trending system. It works by fetching
 data from systems, storing it in RRD files, then graphing the data
 with RRDTool via a PHP web interface, which is also the
 configuration and management interface (configuration data is stored
 in a MySQL server). It is template-driven, so you can define
 templates and then apply them to your systems. It can fetch data
 from SNMP or custom scripts.
Cricket (http://cricket.sourceforge.net)
 is a Cacti-like system written in Perl, but with a file-based
 configuration system. Ganglia (http://ganglia.sourceforge.net) is also similar to
 Cacti, but it's designed to monitor clusters and grids of systems,
 so you can view data from many servers in aggregate and drill down
 to the individual servers if you wish. (Cacti and Cricket can't show
 aggregated data.)
These systems can all be used to gather, record, and graph
 data and report on MySQL systems, with various degrees of
 flexibility and for slightly different purposes. They all lack a
 really flexible means of alerting someone when something is wrong,
 and some of them don't even have a concept of "wrong." Some people
 view this as an advantage, feeling it is better to separate the jobs
 of recording, graphing, and alerting; in fact, Munin is specifically
 designed to use Nagios as the alerting system. However, for others
 it's a drawback. Another disadvantage is the time and effort you may
 need to invest to install and configure a system that almost meets
 your needs, but not quite.
Finally, you should consider your future needs. RRD files
 don't let you query the data by SQL or other standard means, and nor
 do they store data at a fine granularity forever by default. Many
 MySQL administrators are unwilling to accept these limitations and
 opt to store historical data in a relational database instead. A lot
 of DBAs also want more customized and flexible ways to record data,
 so they end up writing their own systems or tweaking an existing
 one.
Whether RRDTool-based systems are a good match for your
 organization will be a matter of personal choice, availability of
 the skills needed to administer the system, and your organization's
 requirements.

Interactive Tools

Interactive tools are those you can start on demand and
 use to get a continually updating view of what's happening in your
 server. We concentrate on innotop (http://innotop.sourceforge.net), but there are several others, such as
 mtop (http://mtop.sourceforge.net), mytop (http://jeremy.zawodny.com/mysql/mytop/), and some web-based clones of
 mytop.
innotop

Baron Schwartz, one of this book's authors, wrote
 innotop. Despite its name, it is not limited to
 monitoring InnoDB internals. This tool was inspired by
 mytop but offers much more functionality. It
 has many modes to monitor all kinds of MySQL internals, including
 all the information available in SHOW
 INNODB STATUS, which it parses into its component parts.
 It lets you monitor multiple MySQL instances simultaneously, and it
 is very configurable and extensible.
Some of its features include:
	A transaction list that displays current InnoDB
 transactions

	A query list that shows currently running queries

	A list of current locks and lock waits

	Summaries of server status and variables to show the
 relative magnitudes of values

	Modes to display information about InnoDB internals, such
 as its buffers, deadlocks, foreign key errors, I/O activity, row
 operations, semaphores, and more

	Replication monitoring, with master and slave statuses
 displayed together

	A mode to view arbitrary server variables

	Server grouping to help you organize many servers
 easily

	Noninteractive mode for use in command-line scripting

It's easy to install innotop. You can
 either install it from your operating system's package repository or
 download it from http://innotop.sourceforge.net, unpack it, and run
 the standard make install
 routine:
perl Makefile.PL
make install
Once you've installed it, execute innotop
 at the command line, and it will walk you through the process of
 connecting to a MySQL instance. It can read your
 ~/.my.cnf option files, so you may not need to
 do anything but type your server's hostname and press Enter a few
 times. Once connected, you'll be in T (InnoDB Transaction) mode, and
 you should see a list of InnoDB transactions, as shown in Figure 14-1.
[image: innotop in T (Transaction) mode]

Figure 14-1. innotop in T (Transaction) mode

By default, innotop applies filters to
 reduce the clutter (as with everything in
 innotop, you can define your own or customize
 the built-in filters). In Figure 14-1, most of the transactions
 have been filtered out to show only active transactions. You can
 press the i key to disable the
 filter and fill the screen with as many transactions as will
 fit.
innotop displays a header and a main
 thread list in this mode. The header shows some overall InnoDB
 information, such as the length of the history list, the number of
 unpurged InnoDB transactions, the percentage of dirty buffers in the
 buffer pool, and so forth.
The first key you should press is the question mark (?), to
 see the help screen. This screen's contents will vary depending on
 what mode innotop is in, but it always displays
 every active key, so you can see all possible actions. Figure 14-2 shows the help screen in T
 mode.
We won't go through all of its other modes, but as you can see
 from the help screen, innotop has a lot of
 features.
The only other thing we cover here is some basic customization
 to show you how to monitor whatever you please. One of
 innotop's strengths is its ability to interpret
 user-defined expressions, such as Uptime/Questions to derive a
 queries-per-second metric. It can display the result since the
 server was started and/or incrementally since the last
 sample.
This makes it easy to add your own columns to its tabular
 displays. For example, the Q (Query List) mode has a header that
 shows some overall server information. Let's see how to modify it to
 monitor how full the key cache is. Start
 innotop and press Q to enter Q mode. The result will look
 like Figure 14-3.
The screenshot is truncated because we're not interested in
 the query list for this exercise; we care only about the
 header.
[image: innotop help screen]

Figure 14-2. innotop help screen

[image: innotop in Q (Query List) mode]

Figure 14-3. innotop in Q (Query List) mode

The header shows statistics for "Now" (which measures
 incremental activity since the last time
 innotop refreshed itself with new data from the
 server) and "Total" (which measures all activity since the MySQL
 server started 25 days ago). Each column in the header is derived
 from an equation involving values from SHOW
 STATUS and SHOW
 VARIABLES. The default headers shown in Figure 14-3 are built-in, but it's
 easy to add your own. All you have to do is add a column to the
 header "table." Press the ^ key to start the table editor, then
 enter q_header at the prompt to
 edit the header table (Figure 14-4).
 Tab completion is built-in, so you can just press q and then Tab to complete the
 word.
[image: Adding a header (start)]

Figure 14-4. Adding a header (start)

After this, you'll see the table definition for the Q mode
 header (Figure 14-5). The table
 definition shows the table's columns. The first column is selected.
 We could move the selection around, reorder and edit the columns,
 and do several other things (press ? to see a full list), but we're
 just going to create a new column. Press the n key and type the column name (Figure 14-6).
[image: Adding a header (choices)]

Figure 14-5. Adding a header (choices)

[image: Adding a header (naming column)]

Figure 14-6. Adding a header (naming column)

Next, type the column's header, which will appear at the top
 of the column (Figure 14-7).
 Finally, choose the column's source. This is an expression that
 innotop compiles into a function internally.
 You can use names from SHOW
 VARIABLES and SHOW
 STATUS as though they're variables in an equation. We use
 some parentheses and Perl-ish "or" defaults to prevent division by
 zero, but otherwise this equation is pretty straightforward. We also
 use an innotop transformation called percent() to format the resulting column
 as a percentage; check the innotop
 documentation for more on that. Figure 14-8 shows the
 expression.
[image: Adding a header (text for column)]

Figure 14-7. Adding a header (text for column)

[image: Adding a header (expression to calculate)]

Figure 14-8. Adding a header (expression to calculate)

Press Enter, and you'll see the table definition just as
 before, but with the new column added at the bottom. Press the + key
 a few times to move it up the list, next to the key_buffer_hit column, and then press
 q to exit the table editor.
 Voilà: your new column, nestled between KCacheHit and BpsIn (Figure 14-9). It's easy to customize
 innotop to monitor what you want. You can even
 write plug-ins if it really can't do what you need. There's more
 documentation at http://innotop.sourceforge.net.
[image: Adding a header (result)]

Figure 14-9. Adding a header (result)

[128] Perhaps because once you've installed and configured
 Nagios, you never want to think about monitoring systems
 again.

Analysis Tools

Analysis tools help you automate the tedious job of inspecting
 servers and looking for areas that might benefit from optimization or
 tuning. These tools can be a great way to get started tackling
 performance problems. If one of them raises an obvious issue, you can
 focus your efforts there and perhaps solve the problem more
 quickly.
HackMySQL Tools

Daniel Nichter maintains a web site called HackMySQL, where he hosts some useful MySQL tools.
 mysqlreport is a Perl script that examines the
 server's SHOW STATUS output,
 transforms it into an easy-to-read report, and prints it out. You can
 read this report much more quickly than you can examine SHOW STATUS, and it is quite
 thorough.
Here's an overview of the major parts of the report, as of
 version 3.23:
	The "Key" section shows how your keys (indexes) are being
 used. If these values are not healthy, you probably need to tune
 your key cache settings.

	The "Questions" section shows what kinds of queries your
 server is executing to give you an idea of where the load is
 concentrated.

	The "SELECT and Sort" section shows what kinds of query
 plans and sort strategies your server runs most often. This
 section can show problems with indexing or poorly optimized
 queries.

	The "Query Cache" section shows how well your query cache is
 performing. If it is not performing well, you may need to tune the
 settings or, if your workload doesn't benefit from caching, even
 disable the cache.

	Several sections show information about tables, locks,
 connections, and network traffic. Problems here usually indicate a
 poorly tuned server.

	Three sections show InnoDB performance metrics and settings.
 Problems here might indicate bad server settings, hardware
 problems, or query or schema optimization issues.

More information is available at http://hackmysql.com/mysqlreport, including a detailed
 tutorial on how to interpret reports. It's worth taking the time to
 learn how to read the reports, especially if you frequently
 troubleshoot unfamiliar servers. With practice, you can scan a report
 and immediately pick out problems.
mysqlsla (the MySQL Statement Log Analyzer) is another useful tool.
 You can use it to analyze the general log of all queries executed on
 the server, the slow query log (that is, queries that needed more than
 the configured maximum time to execute), or any other log. It accepts
 several log formats and can analyze many logs at once. See "Finer
 control over logging" on Finer control over logging
 for more on analyzing MySQL's log files.
Other programs at the site can help you analyze a server's index
 usage and examine MySQL-related network traffic.

Maatkit Analysis Tools

Maatkit is another of Baron Schwartz's creations. It is a
 collection of command-line tools, all written in Perl and designed to
 provide important functionality that MySQL's products don't supply. It
 is available at http://maatkit.sourceforge.net
 and includes a mixture of analysis tools and utilities.
One of the analysis tools is
 mk-query-profiler, which can execute queries
 while it watches your server's status variables. It prints out a
 detailed, easy-to-read report on the differences before and after a
 query. This report gives you a deeper understanding of your query's
 performance impact than execution time alone.
You can pipe queries into
 mk-query-profiler's standard input, specify one
 or more files of queries, or simply ask it to observe your server
 without running any queries (this can be helpful while you're running
 an external application). You can also make it execute shell commands
 instead of queries.
mk-query-profiler's report is divided into
 sections. By default, the profiler prints a batch summary, but you can
 also get a report on each query or selected queries in the batch,
 which you can easily compare with the included
 mk-profile-compact helper tool.
Here are the report's major sections:
	The "Overall stats" section lists basics such as execution
 time, number of commands, and network traffic.

	The "Table and index accesses" section shows how many of the
 various types of execution plans the batch caused. If you see many
 table scans, it probably means you don't have indexes well suited
 to the queries.

	The "Row operations" section shows you how many low-level
 handler and/or InnoDB operations the batch caused. Poor query
 plans may cause many more low-level operations.

	The "I/O operations" section shows how much memory and disk
 traffic the batch caused. A companion section shows
 InnoDB-specific data operations.

All told, this report gives detailed insight into how much and
 what type of work the server does, which is much more valuable than
 just measuring how long queries take. For example, it can help you
 choose between two queries that run in about the same time on a small
 dataset under low load, but that might run very differently with a lot
 of data or under high load. It can also validate whether your
 optimizations are working. In this sense, it's like a miniature
 benchmark tool.
There are several other analysis tools in the toolkit:
	mk-visual-explain
	Reconstructs the query execution plan from EXPLAIN and displays it as a tree,
 which many people find more readable. This is especially helpful
 as query plans become more complex; we have seen EXPLAIN output require hundreds of
 lines, and it's nearly impossible to understand at that length.
 mk-visual-explain is also useful as a
 teaching tool, or when you're trying to learn how to read
 EXPLAIN output.

	mk-duplicate-key-checker
	Identifies duplicate or redundant indexes and foreign
 keys, which can be very bad for performance. See "Redundant and
 Duplicate Indexes" on Packed (Prefix-Compressed) Indexes for more on
 this.

	mk-deadlock-logger
	Watches for InnoDB deadlocks and records them in a file or
 table.

	mk-heartbeat
	Measures replication lag accurately, without needing to
 check SHOW SLAVE STATUS
 (which is not always correct). It keeps moving averages over the
 last 1, 5, and 15 minutes by default. This is a more complete
 and configurable implementation of the heartbeat script
 mentioned in the first edition of this book.

MySQL Utilities

Several tools have sprung up to fill gaps in the functionality
 provided by the MySQL server and its accompanying command-line
 tools. This section discusses a few of those.
MySQL Proxy

The MySQL Proxy project is developed and maintained by MySQL
 AB, is licensed under the GPL, and will probably be distributed with
 the MySQL server in the future. At the time of this writing, it is
 less than a year old and is in very rapid development. [129] You can currently find it on the Community section of
 http://www.mysql.com, and documentation is
 available in the MySQL manual.
The core concept is a stateful application that understands the
 MySQL client/server protocol and can sit between a client and server,
 transparently relaying their messages. A client application can
 connect to it exactly as though it were a server. The proxy can then
 create a connection to a real MySQL server and act as a man in the
 middle.
This functionality alone could be used for many applications
 (e.g., load balancing and failover), but the proxy goes a step
 further. It understands the client/server protocol, so it can inspect
 the queries and responses. It also has a built-in Lua interpreter, so
 you can write custom scripts and do nearly anything you can imagine to
 queries and responses. Here are a few of the possibilities:
	Rewriting or filtering queries. For example, you can pass
 commands to the proxy itself by writing a script to recognize them
 and do something instead of passing the query to the
 server.

	Generating new result sets that appear to have come from the
 MySQL server, or discarding those the server did generate.

	Dynamically tuning the MySQL server based on what it
 observes. For example, the proxy can enable or disable the slow
 query log, or it can keep track of query statistics and show
 response time histograms in response to a query.

	Injecting queries every time a transaction commits (for
 example, to create a global transaction identifier).

There's working code for all of these, which you can download
 from online articles and source code repositories. The possibilities
 are almost limitless, and creative users will certainly find uses for
 the proxy that we haven't yet imagined. If you're having trouble
 thinking of what to do with it, we suggest reading some articles by
 Giuseppe Maxia or Jan Kneschke.

Dormando's Proxy for MySQL

Another GPL proxy project that appeared around the same time as
 MySQL Proxy (and actually offered Lua scripting first) is Dormando's Proxy for MySQL. It was in part a response to
 the MySQL Proxy project, which was unreleased at the time and whose
 eventual licensing was uncertain. Like MySQL Proxy, it is changing
 rapidly, so you should check the latest release to see its true
 status. Its web site is http://www.consoleninja.net/code/dpm/.

Maatkit Utilities

We mentioned Maatkit earlier while listing analysis tools, but
 it includes a number of utility scripts too. The most important of the tools are
 mk-table-checksum and
 mk-table-sync, which we wrote about in
 "Determining Whether Slaves Are Consistent with the Master" on Determining Whether Slaves Are Consistent with the
 Master. Aside from the
 tools we listed earlier, Maatkit includes the following:
	mk-archiver
	Runs purging and archiving jobs to help keep your tables
 free of unwanted data. This tool is designed to move data
 without affecting OLTP queries, but you can also use it to build
 a data warehouse or find and remove stale data. It can write
 data to a file and/or another table on any MySQL instance. It
 has a plug-in mechanism that makes it easy to customize jobs;
 for example, you could use a plug-in to build summary tables on
 a data warehouse while inserting the data into a log
 table.

	mk-find
	Similar to the Unix find command, but
 for MySQL databases and tables.

	mk-parallel-dump
	Does multithreaded logical backups, breaking each table
 into chunks of the desired size, for faster backups on systems
 with many CPUs or disks. In fact, you can use this as a
 multithreaded wrapper around any tool, so it's also useful for
 doing multithreaded CHECK
 TABLE or OPTIMIZE
 TABLE operations (for example). Many types of jobs
 benefit from parallelization on systems with more than one CPU
 and disk.

	mk-parallel-restore
	The companion program to
 mk-parallel-dump: loads files into MySQL in
 parallel. This tool can load delimited files directly via
 LOAD DATA INFILE, or delegate
 SQL files to the mysql client program. It
 is a smart wrapper around many load operations, such as loading
 compressed files through named pipes.

	mk-show-grants
	Canonicalizes, negates, separates, and sorts GRANT statements for easy command-line
 manipulation. One interesting application is to store your
 database privileges into a version-control system without
 getting spurious changesets.

	mk-slave-delay
	Makes a slave lag behind its master, which is convenient
 for disaster recovery. If a destructive SQL statement executes
 on the master, you can stop the slave before it applies that
 statement, replay the binary log up to the statement, and
 promote it to master. This is typically faster than reloading
 the last backup and then replaying a day's worth of binary
 logs.

	mk-slave-prefetch
	Implements the techniques discussed in "Prime the cache
 for the slave thread" on Prime the cache for the slave thread. On some
 workloads, it can help replication run more quickly on the
 slave.

	mk-slave-restart
	Restarts a slave after an error.

	mk-table-checksum
	Checksums table contents efficiently on one or
 many servers in parallel, or propagates checksum queries through replication to verify the
 integrity of your slaves.

	mk-table-sync
	Finds the differences between tables efficiently, and
 generates a minimal set of SQL commands to resolve them. It can
 also operate through replication.

Baron adds new tools frequently, so this list is probably out-of-date.
 Downloads and up-to-date documentation are always available at
 http://maatkit.sourceforge.net.

[129] MySQL Proxy is evolving quickly, so this information
 is likely to be outdated by the time you read this book.

Sources of Further Information

If you find yourself doing a lot of repetitive or error-prone
 manual work with MySQL, someone might already have created a tool or
 script to ease your load. Finding the tool is another matter. We've
 learned about many of our favorite tools from reading the Planet MySQL
 blog aggregator (http://www.planetmysql.org) and
 the MySQL Forge community site (http://forge.mysql.com). These are great resources for
 learning about MySQL in general. There are also mailing lists, IRC
 channels, and forums where you can often get answers from friendly gurus
 (but search the archives first!).
Conferences are another important place we've learned about MySQL
 tools and techniques. Even if you can't attend conferences, you can
 frequently download slide decks or watch videos online.
Further information on some of the more complex tools, such as
 Nagios, can also be found in books dedicated to those tools. These
 resources go into much more detail than we can in this chapter.

Appendix A. Transferring Large Files

Copying, compressing, and decompressing huge files (often across a network) are common
 tasks when administering MySQL, initializing servers, cloning slaves, and
 performing backups and recovery operations. The fastest and best ways to
 do these jobs are not always the most obvious, and the difference between
 good and bad methods can be significant. This appendix shows some examples
 of how to copy a large backup image from one server to another using common
 Unix utilities.
It's common to begin with an uncompressed file,
 such as one server's InnoDB tablespace and log files. You also want the
 file to be decompressed when you finish copying it to the destination, of
 course. The other common scenario is to begin with a
 compressed file, such as a backup image, and finish
 with a decompressed file.
If you have limited network capacity, it's usually a good idea to
 send the files across the network in compressed form. You might also need
 to do a secure transfer, so your data isn't compromised; this is a common
 requirement for backup images.
Copying Files

The task, then, is to do the following efficiently:
	(Optionally) compress the data.

	Send it to another machine.

	Decompress the data into its final destination.

	Verify the files aren't corrupted after copying.

We've benchmarked various methods of achieving these goals. The
 rest of this appendix shows you how we did it and what we found to be
 the fastest way.
For many of the purposes we've discussed in this book, such as
 backups, you might want to consider which machine to do the compression
 on. If you have the network bandwidth, you can copy your backup images
 uncompressed and save the CPU resources on your MySQL server for
 queries.
A Naive Example

We begin with a naïve example of how to send an uncompressed
 file securely from one machine to another, compress it en route, and
 then decompress it. On the source server, which we call server1, we execute the following:
server1$ gzip -c /backup/mydb/mytable.MYD > mytable.MYD.gz
server1$ scp mytable.MYD.gz root@server2:/var/lib/myql/mydb/
And then, on server2:
server2$ gunzip /var/lib/mysql/mydb/mytable.MYD.gz
This is probably the simplest approach, but it's not very
 efficient because it serializes the steps involved in compressing, copying, and decompressing the file. Each step also requires reads
 from and writes to disk, which is slow. Here's what really happens
 during each of the above commands: the gzip
 performs both reads and writes on server1, the scp reads
 on server1 and writes on server2, and the gunzip
 reads and writes on server2.

A One-Step Method

It's more efficient to compress and copy the file and then
 decompress it on the other end in one step. This time we use SSH, the
 secure protocol upon which SCP is based. Here's the command we execute
 on server1:
server1$ gzip -c /backup/mydb/mytable.MYD | ssh root@server2
"gunzip -c - > /var/lib/mysql/mydb/mytable.MYD"
This usually performs much better than the first method, because
 it significantly reduces disk I/O: the disk activity is reduced to
 reading on server1 and writing on
 server2. This lets the disk operate
 sequentially.
You can also use SSH's built-in compression to do this, but
 we've shown you how to compress and decompress with pipes because they
 give you more flexibility. For example, if you didn't want to
 decompress the file on the other end, you wouldn't want to use SSH
 compression.
You can improve on this method by tweaking some options, such as
 adding –1 to make the gzip
 compression faster. This usually doesn't lower the compression ratio
 much, but it can make it much faster, which is important. You can also
 use different compression algorithms. For example, if you want very
 high compression and don't care about how long it takes, you can use
 bzip2 instead of gzip. If
 you want very fast compression, you can instead use an LZO-based
 archiver. The compressed data might be about 20% larger, but the compression will be around five times
 faster.

Avoiding Encryption Overhead

SSH isn't the fastest way to transport data across the network,
 because it adds the overhead of encrypting and decrypting. If you don't need encryption,
 you can just copy the "raw" bits over the network with
 netcat. You invoke this tool as
 nc for noninteractive operations, which is what
 we want.
Here's an example. First, let's start listening for the file on port 12345 (any unused
 port will do) on server2, and
 uncompress anything sent to that port to the desired data file:
server2$ nc -l -p 12345 | gunzip -c - > /var/lib/mysql/mydb/mytable.MYD
On server1, we then start
 another instance of netcat, sending to the port
 on which the destination is listening. The -q
 option tells netcat to close the connection after
 it sees the end of the incoming file. This will cause the listening
 instance to close the destination file and quit:
server1$ gzip -c - /var/lib/mysql/mydb/mytable.MYD | nc -q 1 server2 12345
An even easier technique is to use tar, so
 filenames are sent across the wire, eliminating another source of
 errors and automatically writing the files to their correct locations. The
 z option tells tar to use
 gzip compression and decompression. Here's the
 command to execute on server2:
server2$ nc -l -p 12345 | tar xvzf -
And here's the command for server1:
server1$ tar cvzf - /var/lib/mysql/mydb/mytable.MYD | nc -q 1 server2 12345
You can assemble these commands into a single script that will
 compress and copy lots of files into the network connection efficiently, then
 decompress them on the other side.

Other Options

Another option is rsync. rsync is
 convenient because it makes it easy to mirror the source and
 destination and because it can restart interrupted file transfers, but
 it doesn't tend to work as well when its binary difference algorithm
 can't be put to good use. You might consider using it for cases where
 you know most of the file doesn't need to be sent—for example, for
 finishing an aborted nc copy operation.
You should experiment with file copying when you're not in a crisis situation, because
 it will take a little trial and error to discover the fastest method.
 Which method performs best will depend on your system. The biggest
 factors are how many disk drives, network cards, and CPUs you have,
 and how fast they are relative to each other. It's a good idea to
 monitor vmstat -n 5 to see whether the disk or
 the CPU is the speed bottleneck.
If you have idle CPUs, you can probably speed up the process by
 running several copy operations in parallel. Conversely, if the CPU is
 the bottleneck and you have lots of disk and network capacity, omit
 the compression. As with dumping and restoring, it's often a good idea
 to do these operations in parallel for speed. Again, monitor your
 servers' performance to see if you have unused capacity. Trying to
 over-parallelize may just slow things down.

File Copy Benchmarks

For the sake of comparison, Table A-1 shows how quickly
 we were able to copy a sample file over a standard 100 Mb/S Ethernet
 link on a LAN. The file was 738 MB uncompressed and compressed to 100 MB
 with gzip's default options. The source and
 destination machines had plenty of available memory, CPU resources, and
 disk capacity; the network was the bottleneck.
Table A-1. Benchmarks for copying files across a network
	Method
	Time (seconds)

	rsync without
 compression
	71

	scp without
 compression
	68

	nc without
 compression
	67

	rsync with compression
 (-z)
	63

	gzip, scp, and
 gunzip
	60 (44 + 10 + 6)

	ssh with
 compression
	44

	nc with
 compression
	42

Notice how much it helped to compress the file when sending it
 across the network—the three slowest methods didn't compress the file.
 Your mileage will vary, however. If you have slow CPUs and disks and a
 gigabit Ethernet connection, reading and compressing the data might be
 the bottleneck, and it might be faster to skip the compression.
By the way, it's often much faster to use fast compression, such
 as gzip --fast, than to use the default compression
 levels, which use a lot of CPU time to compress the file only slightly
 more. Our test used the default compression level.
The last step in transferring data is to verify that the copy
 didn't corrupt the files. You can use a variety of methods for this,
 such as md5sum, but it's rather expensive to do a
 full scan of the file again. This is another reason why compression is
 helpful: the compression itself typically includes at least a cyclic
 redundancy check (CRC), which should catch any errors, so you get error
 checking for free.

Appendix B. Using EXPLAIN

This appendix shows you how to invoke EXPLAIN to get information about the query
 execution plan, and how to interpret the output. The EXPLAIN
 command is the main way to find out how the query optimizer decides to
 execute queries. This feature has many limitations and doesn't always tell
 the truth, but its output is the best information available, and it's
 worth studying, so you can make an educated guess about how your queries
 are executed.
Invoking EXPLAIN

To use EXPLAIN, simply add the
 word EXPLAIN just before the SELECT keyword in your query. MySQL will set a
 flag on the query. When it executes the query, the flag causes it to
 return information about each step in the execution plan, instead of
 executing it. It returns one or more rows, which show each part of the
 execution plan and the order of execution.
Here's the simplest possible EXPLAIN result:
mysql> EXPLAIN SELECT 1\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: NULL
 type: NULL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: NULL
 Extra: No tables used
There's one row in the output per table in the query. If the query
 joins two tables, there will be two rows of output. An aliased table
 counts as a separate table, so if you join a table to itself, there will
 be two rows in the output. The meaning of "table" is fairly broad here:
 it can mean a subquery, a UNION
 result, and so on. You'll see later why this is so.
There are two important variations on EXPLAIN:
	EXPLAIN EXTENDED appears to
 behave just like a normal EXPLAIN, but it tells the server to
 "reverse compile" the execution plan into a SELECT statement. You can see this
 generated statement by running SHOW
 WARNINGS immediately afterward. The statement comes
 directly from the execution plan, not from the original SQL
 statement, which by this point has been reduced to a data structure.
 It will not be the same as the original statement in most cases. You
 can examine it to see exactly how the query optimizer has
 transformed the statement. EXPLAIN
 EXTENDED is available in MySQL 5.0 and newer, and it adds
 an extra filtered column in MySQL
 5.1 (more on that later).

	EXPLAIN PARTITIONS shows
 the partitions the query will access, if applicable. It is available
 only in MySQL 5.1 and newer. See "Partitioned Tables" on Partitioned Tables for details on partitions.

It's a common mistake to think that MySQL doesn't execute a query
 when you add EXPLAIN to it. In fact,
 if the query contains a subquery in the FROM clause, MySQL actually executes the
 subquery, places its results into a temporary table, and then finishes
 optimizing the outer query. It has to process all such subqueries before
 it can optimize the outer query fully, which it must do for EXPLAIN. This means EXPLAIN can actually cause a great deal
 of work for the server if the statement contains expensive
 subqueries or views that use the TEMPTABLE algorithm.
Bear in mind that EXPLAIN is an
 approximation, nothing more. Sometimes it's a good approximation, but at
 other times, it can be very far from the truth. Here are some of its limitations:
	EXPLAIN doesn't tell you
 anything about how triggers, stored functions, or UDFs will affect
 your query.

	It doesn't work for stored procedures, although you can
 extract the queries manually and EXPLAIN them individually.

	It doesn't tell you about ad-hoc optimizations MySQL does
 during query execution.

	Some of the statistics it shows are estimates and can be very
 inaccurate.

	It doesn't show you everything there is to know about a
 query's execution plan. (The MySQL developers are adding more
 information when possible.)

	It doesn't distinguish between some things with the same name.
 For example, it uses "filesort" for in-memory sorts and for
 temporary files, and it displays "Using temporary" for temporary
 tables on disk and in memory.

	It can be misleading. For example, it can show a full index
 scan for a query with a small LIMIT. (MySQL 5.1's EXPLAIN shows more accurate information
 about the number of rows to be examined, but earlier versions don't
 take LIMIT into account.)

Rewriting Non-SELECT Queries

MySQL explains only SELECT
 queries, not stored routine calls or INSERT,
 UPDATE, DELETE, or any other statements. However, you can
 rewrite some non-SELECT queries to
 be EXPLAIN-able. To do this, you
 just need to convert the statement into an equivalent SELECT that accesses all the same columns.
 Any column mentioned must be in a SELECT list, a join clause, or a WHERE clause.
For example, suppose you want to rewrite the following
 UPDATE statement to make it
 EXPLAIN-able:
UPDATE sakila.actor
 INNER JOIN sakila.film_actor USING (actor_id)
SET actor.last_update=film_actor.last_update;
The following EXPLAIN
 statement is not equivalent to the UPDATE, because it doesn't require the
 server to retrieve the last_update
 column from either table:
mysql> EXPLAIN SELECT film_actor.actor_id
 -> FROM sakila.actor
 -> INNER JOIN sakila.film_actor USING (actor_id)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: index
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: NULL
 rows: 200
 Extra: Using index
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.actor.actor_id
 rows: 13
 Extra: Using index
This difference is very important. The output shows that MySQL
 will use covering indexes, for example, which it can't use when
 retrieving and updating the last_updated column. The following statement
 is much closer to the original:
mysql> EXPLAIN SELECT film_actor.last_update, actor.last_update
 -> FROM sakila.actor
 -> INNER JOIN sakila.film_actor USING (actor_id)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: actor
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 200
 Extra:
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 2
 ref: sakila.actor.actor_id
 rows: 13
 Extra:
Rewriting queries like this is not an exact science, but it's
 often good enough to help you understand what a query will do.
It's important to understand that there is no such thing as an
 "equivalent" read query to show you the plan for a write query. A
 SELECT query needs to find only one
 copy of the data and return it to you. Any query that modifies data
 must find and modify all copies of it, in all indexes. This will often
 be much more expensive than what appears to be an equivalent SELECT query.

The Columns in EXPLAIN

EXPLAIN's output always has the same columns (except for EXPLAIN EXTENDED, which adds a filtered column in MySQL 5.1, and EXPLAIN PARTITIONS, which adds a partitions column). The variability is in the
 number and contents of the rows. However, to keep our examples clear, we
 don't always show all columns in this appendix.
In the following sections, we show you the meaning of each of the
 columns in an EXPLAIN result. Keep in
 mind that the rows in the output come in the order in which MySQL
 actually executes the parts of the query, which is not always the same
 as the order in which they appear in the original SQL.
The id Column

This column always contains a number, which identifies the
 SELECT to which the row belongs. If
 there are no subqueries or unions in the statement, there is only one
 SELECT, so every row will show a
 1 in this column. Otherwise, the
 inner SELECT statements generally
 will be numbered sequentially, according to their positions in the
 original statement.
MySQL divides SELECT queries
 into simple and complex types, and the complex types can be grouped
 into three broad classes: simple subqueries, so-called derived tables
 (subqueries in the FROM
 clause),[130] and UNIONs. Here's a
 simple subquery:
mysql> EXPLAIN SELECT (SELECT 1 FROM sakila.actor LIMIT 1) FROM sakila.film;
+----+-------------+-------+...
| id | select_type | table |...
+----+-------------+-------+...
| 1 | PRIMARY | film |...
| 2 | SUBQUERY | actor |...
+----+-------------+-------+...
Subqueries in the FROM clause
 and UNIONs add more complexity to
 the id column. Here's a basic
 subquery in the FROM clause:
mysql> EXPLAIN SELECT film_id FROM (SELECT film_id FROM sakila.film) AS der;
+----+-------------+------------+...
| id | select_type | table |...
+----+-------------+------------+...
| 1 | PRIMARY | <derived2> |...
| 2 | DERIVED | film |...
+----+-------------+------------+...
As you know, this query is executed with a temporary table.
 MySQL internally refers to the temporary table by its alias (der) within the outer query, which you can
 see in the ref column in more
 complicated queries.
Finally, here's a UNION
 query:
mysql> EXPLAIN SELECT 1 UNION ALL SELECT 1;
+------+--------------+------------+...
| id | select_type | table |...
+------+--------------+------------+...
| 1 | PRIMARY | NULL |...
| 2 | UNION | NULL |...
| NULL | UNION RESULT | <union1,2> |...
+------+--------------+------------+...
Note the extra row in the output for the result of the UNION. UNION results are always placed into
 a temporary table, and MySQL then reads the results back out of the
 temporary table. The temporary table doesn't appear in the original
 SQL, so its id column is NULL. In contrast to the preceding example
 (illustrating a subquery in the FROM clause), the temporary table that
 results from this query is shown as the last row in the results, not
 the first.
So far this is all very straightforward, but mixtures of these
 three categories of statements can cause the output to become more
 complicated, as we'll see a bit later.

The select_type Column

This column shows whether the row is a simple or complex
 SELECT (and if it's the latter,
 which of the three complex types it is). The value SIMPLE means the query contains no
 subqueries or UNIONs. If the query
 has any such complex subparts, the outermost part is labeled PRIMARY, and other parts are labeled as
 follows:
	SUBQUERY
	A SELECT that is
 contained in a subquery in the SELECT list (in other words, not in
 the FROM clause) is labeled
 as SUBQUERY.

	DERIVED
	The value DERIVED is
 used for a SELECT that is
 contained in a subquery in the FROM clause, which MySQL executes
 recursively and places into a temporary table. The server refers
 to this as a "derived table" internally, because the temporary
 table is derived from the subquery.

	UNION
	The second and subsequent SELECTs in a UNION are labeled as UNION. The first SELECT is labeled as though it is
 executed as part of the outer query. This is why the previous
 example showed the first SELECT in the UNION as PRIMARY. If the UNION were contained in a subquery in
 the FROM clause, its first
 SELECT would be labeled as
 DERIVED.

	UNION RESULT
	The SELECT used to
 retrieve results from the UNION's temporary table is labeled as
 UNION RESULT.

In addition to these values, a SUBQUERY and a UNION can be labeled as DEPENDENT and UNCACHEABLE. DEPENDENT means the SELECT depends on data that is found in an
 outer query; UNCACHEABLE means
 something in the SELECT prevents
 the results from being cached with an Item_cache. (Item_cache is undocumented; it is not the
 same thing as the query cache, athough it can be defeated by some of
 the same types of constructs, such as the RAND() function.)

The table Column

This column shows which table the row is accessing. In most
 cases, it's straightforward: it's the table, or its alias if the SQL
 specifies one.
You can read this column from top to bottom to see the join
 order MySQL's join optimizer chose for the query. For example, you can
 see that MySQL chose a different join order than the one specified for
 the following query:
mysql> EXPLAIN SELECT film.film_id
 -> FROM sakila.film
 -> INNER JOIN sakila.film_actor USING(film_id)
 -> INNER JOIN sakila.actor USING(actor_id);
+----+-------------+------------+...
| id | select_type | table |...
+----+-------------+------------+...
| 1 | SIMPLE | actor |...
| 1 | SIMPLE | film_actor |...
| 1 | SIMPLE | film |...
+----+-------------+------------+...
Remember the left-deep tree diagrams we showed in "The execution
 plan" on The execution plan? MySQL's query
 execution plans are always left-deep trees. If you flip the plan on
 its side, you can read off the leaf nodes in order, and they'll
 correspond directly to the rows in EXPLAIN. The plan for the preceding query
 looks like Figure B-1.
[image: How the query execution plan corresponds to the rows in EXPLAIN]

Figure B-1. How the query execution plan corresponds to the rows in
 EXPLAIN

Derived tables and unions

The table column becomes
 much more complicated when there is a subquery in the FROM clause or a UNION. In these cases, there really isn't
 a "table" to refer to, because the temporary table MySQL creates
 exists only while the query is executing.
When there's a subquery in the FROM clause, the table column is of the form <derivedN>,
 where N is the subquery's id. This is always a "forward
 reference"—in other words, N refers to a
 later row in the EXPLAIN
 output.
When there's a UNION, the
 UNION RESULT table column
 contains a list of ids that
 participate in the UNION. This is
 always a "backward reference," because the UNION RESULT comes after all of the rows
 that participate in the UNION. If
 there are more than about 20 ids
 in the list, the table column may
 be truncated to keep it from getting too long, and you won't be able
 to see all the values. Fortunately, you can still deduce which rows
 were included, because you'll be able to see the first row's
 id. Everything that comes between
 that row and the UNION RESULT is
 included in some way.

An example of complex SELECT types

Here's a nonsense query that serves as a fairly compact
 example of some of the complex SELECT types:
 1 EXPLAIN
 2 SELECT actor_id,
 3 (SELECT 1 FROM sakila.film_actor WHERE film_actor.actor_id =
 4 der_1.actor_id LIMIT 1)
 5 FROM (
 6 SELECT actor_id
 7 FROM sakila.actor LIMIT 5
 8) AS der_1
 9 UNION ALL
10 SELECT film_id,
11 (SELECT @var1 FROM sakila.rental LIMIT 1)
12 FROM (
13 SELECT film_id,
14 (SELECT 1 FROM sakila.store LIMIT 1)
15 FROM sakila.film LIMIT 5
16) AS der_2;
The LIMIT clauses are just
 for convenience, in case you wish to execute the query without
 EXPLAIN and see the results. Here
 is the result of the EXPLAIN:
+------+----------------------+------------+...
| id | select_type | table |...
+------+----------------------+------------+...
| 1 | PRIMARY | <derived3> |...
| 3 | DERIVED | actor |...
| 2 | DEPENDENT SUBQUERY | film_actor |...
| 4 | UNION | <derived6> |...
| 6 | DERIVED | film |...
| 7 | SUBQUERY | store |...
| 5 | UNCACHEABLE SUBQUERY | rental |...
| NULL | UNION RESULT | <union1,4> |...
+------+----------------------+------------+...
We've been careful to make each part of the query access a
 different table, so you can see what goes where, but it's still hard
 to figure out! Taking it from the top:
	The first row is a forward reference to der_1, which the query has labeled as
 <derived3>. It comes
 from line 2 in the original SQL. To see which rows in the
 output refer to SELECT statements that are part of
 <derived3>, look
 forward …

	…to the second row, whose id is 3. It is 3 because it's part of
 the third SELECT in the
 query, and it's listed as a DERIVED type because it's nested
 inside a subquery in the FROM
 clause. It comes from lines 6 and 7 in the original SQL.

	The third row's id is
 2. It comes from line 3 in the original SQL. Notice that it
 comes after a row with a higher id number, suggesting that it is
 executed afterward, which makes sense. It is listed as a
 DEPENDENT SUBQUERY, which
 means its results depend on the results of an outer query (also
 known as a correlated subquery). The outer query in this case is
 the SELECT that begins in
 line 2 and retrieves data from der_1.

	The fourth row is listed as a UNION, which means it is the second or
 later SELECT in a UNION. Its table is <derived6>, which means it's
 retrieving data from a subquery in the FROM clause and appending to a
 temporary table for the UNION. As before, to find the EXPLAIN rows that show the query plan
 for this subquery, you must look forward.

	The fifth row is the der_2 subquery defined in lines 13,
 14, and 15 in the original SQL, which EXPLAIN refers to as <derived6>.

	The sixth row is an ordinary subquery in <derived6>'s SELECT list. Its id is 7, which is important…

	…because it is greater than 5, which is the seventh row's id. Why is this important? Because it
 shows the boundaries of the <derived6> subquery. When
 EXPLAIN outputs a row whose SELECT type is DERIVED, it represents the beginning
 of a "nested scope." If a subsequent row's id is smaller (in this case, 5 is smaller than 6), it means the
 nested scope has closed. This lets us know that the seventh row
 is part of the SELECT list
 that is retrieving data from <derived6>—i.e., part of the
 fourth row's SELECT list
 (line 11 in the original SQL). This example is fairly easy to
 understand without knowing the significance and rules of nested
 scopes, but sometimes it's not so easy. The other notable thing
 about this row in the output is that it is listed as an UNCACHEABLE SUBQUERY because of the
 user variable.

	Finally, the last row is the UNION RESULT. It represents the stage
 of reading the rows from the UNION's temporary table. You can begin
 at this row and work backward if you wish; it is returning
 results from rows whose ids
 are 1 and 4, which are in turn references to
 <derived3> and <derived6>.

As you can see, the combination of these complicated SELECT types can result in EXPLAIN output that's pretty difficult to
 read. Understanding the rules makes it easier, but there's no
 substitute for practice.
Reading EXPLAIN's output
 often requires you to jump forward and backward in the list. For
 example, look again at the first row in the output. There is no way
 to know just by looking at it that it is part of a UNION. You'll only see that when you read
 the last row of the output.

The type Column

The MySQL manual says this column shows the "join type," but we
 think it's more accurate to say the access
 type—in other words, how MySQL has decided to find rows in
 the table. Here are the most important access methods, from worst to
 best:
	ALL
	This is what most people call a table scan. It generally
 means MySQL must scan through the table, from beginning to end,
 to find the row. (There are exceptions, such as queries with
 LIMIT or queries that display
 "Using distinct/not exists" in the Extra column.)

	index
	This is the same as a table scan, except MySQL scans the
 table in index order instead of the rows. The main advantage is
 that this avoids sorting; the biggest disadvantage is the cost
 of reading an entire table in index order. This usually means
 accessing the rows in random order, which is very
 expensive.
If you also see "Using index" in the Extra column, it means MySQL is using
 a covering index (see Chapter 3) and scanning only
 the index's data, not reading each row in index order. This is
 much less expensive than scanning the table in index
 order.

	range
	A range scan is a limited index scan. It begins at some
 point in the index and returns rows that match a range of
 values. This is better than a full index scan because it doesn't
 go through the entire index. Obvious range scans are queries
 with a BETWEEN or > in the
 WHERE clause.
When MySQL uses an index to look up lists of values, such
 as IN() and OR lists, it also displays it as a
 range scan. However, these are quite different types of accesses, and they have important
 performance differences. See the sidebar "What Is a Range
 Condition?" on Avoiding Multiple Range Conditions for more
 information.
The same cost considerations apply for this type as for
 the index type.

	ref
	This is an index access (sometimes called an index lookup)
 that returns rows that match a single value. However, it might
 find multiple rows, so it's a mixture of a lookup and a scan.
 This type of index access can happen only on a nonunique index
 or a nonunique prefix of a unique index. It's called ref because the index is compared to
 some reference value. The reference value is either a constant
 or a value from a previous table in a multiple-table
 query.
The ref_or_null access
 type is a variation on ref.
 It means MySQL must do a second lookup to find NULL entries after doing the initial
 lookup.

	eq_ref
	This is an index lookup that MySQL knows will return at
 most a single value. You'll see this access method when MySQL
 decides to use a primary key or unique index to satisfy the
 query by comparing it to some reference value. MySQL can
 optimize this access type very well, because it knows it doesn't
 have to estimate ranges of matching rows or look for more
 matching rows once it finds one.

	const, system
	MySQL uses these access types when it can optimize away
 some part of the query and turn it into a constant. For example,
 if you select a row's primary key by placing its primary key
 into the WHERE clause, MySQL
 can convert the query into a constant. It then effectively
 removes the table from the join execution.

	NULL
	This access method means MySQL can resolve the query
 during the optimization phase and will not even access the table
 or index during the execution stage. For example, selecting the
 minimum value from an indexed column can be done by looking at
 the index alone and requires no table access during
 execution.

The possible_keys Column

This column shows which indexes could be used for the query,
 based on the columns the query accesses and the comparison operators
 used. This list is created early in the optimization phase, so some of
 the indexes listed might be useless for the query after subsequent
 optimization phases.

The key Column

This column shows which index MySQL decided to use to optimize
 the access to the table. If the index doesn't appear in possible_keys, MySQL chose it for another
 reason—for example, it might choose a covering index even when there
 is no WHERE clause.
In other words, possible_keys
 reveals which indexes can help make row lookups
 efficient, but key shows
 which index the optimizer decided to use to minimize query
 cost (see "The Query Optimization Process" on The Query Cache for more on the optimizer's cost
 metrics). Here's an example:
mysql> EXPLAIN SELECT actor_id, film_id FROM sakila.film_actor\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: film_actor
 type: index
possible_keys: NULL
 key: idx_fk_film_id
 key_len: 2
 ref: NULL
 rows: 5143
 Extra: Using index

The key_len Column

This column shows the number of bytes MySQL will use in the
 index. If MySQL is using only some of the index's columns, you can use
 this value to calculate which columns it uses. Remember that MySQL can
 use only the leftmost prefix of the index. For example, sakila.film_actor's primary key covers two
 SMALLINT columns, and a SMALLINT is two bytes, so each tuple in the
 index is four bytes. Here's a sample query:
mysql> EXPLAIN SELECT actor_id, film_id FROM sakila.film_actor WHERE actor_id=4;
...+------+---------------+---------+---------+...
...| type | possible_keys | key | key_len |...
...+------+---------------+---------+---------+...
...| ref | PRIMARY | PRIMARY | 2 |...
...+------+---------------+---------+---------+...
Based on the key_len column
 in the result, you can deduce that the query performs index lookups
 with only the first column, the actor_id. When calculating column usage, be
 sure to account for character sets in character columns:
mysql> CREATE TABLE t (
 -> a char(3) NOT NULL,
 -> b int(11) NOT NULL,
 -> c char(1) NOT NULL,
 -> PRIMARY KEY (a,b,c)
 ->) ENGINE=MyISAM DEFAULT CHARSET=utf8 ;
mysql> INSERT INTO t(a, b, c)
 -> SELECT DISTINCT LEFT(TABLE_SCHEMA, 3), ORD(TABLE_NAME),
 -> LEFT(COLUMN_NAME, 1)
 -> FROM INFORMATION_SCHEMA.COLUMNS:
mysql> EXPLAIN SELECT a FROM t WHERE a='sak' AND b = 112;
...+------+---------------+---------+---------+...
...| type | possible_keys | key | key_len |...
...+------+---------------+---------+---------+...
...| ref | PRIMARY | PRIMARY | 13 |...
...+------+---------------+---------+---------+...
The length of 13 bytes in this query is the sum of the lengths
 of the a and b columns. Column a is three characters, which in utf8 require up to three bytes each, and
 column b is a four-byte
 integer.
MySQL doesn't always show you how much of an index is really
 being used. For example, if you perform a LIKE query with a prefix pattern match, it
 will show that the full width of the column is being used.
The key_len column shows the
 maximum possible length of the indexed fields, not the actual number
 of bytes the data in the table used. MySQL will always show 13 bytes
 in the preceding example, even if column a happens to contain no values more than one
 character long. In other words, key_len is calculated by looking at the
 table's definition, not the data in the table.

The ref Column

This column shows which columns or constants from preceding
 tables are being used to look up values in the index named in the
 key column. Here's an example that
 shows a combination of join conditions and aliases. Notice that the
 ref column reflects how the
 film table is aliased as f in the query text:
mysql> EXPLAIN
 -> SELECT STRAIGHT_JOIN f.film_id
 -> FROM sakila.film AS f
 -> INNER JOIN sakila.film_actor AS fa
 -> ON f.film_id=fa.film_id AND fa.actor_id = 1
 -> INNER JOIN sakila.actor AS a USING(actor_id);
...+-------+...+--------------------+---------+------------------------+...
...| table |...| key | key_len | ref |...
...+-------+...+--------------------+---------+------------------------+...
...| a |...| PRIMARY | 2 | const |...
...| f |...| idx_fk_language_id | 1 | NULL |...
...| fa |...| PRIMARY | 4 | const,sakila.f.film_id |...
...+-------+...+--------------------+---------+------------------------+...

The rows Column

This column shows the number of rows MySQL estimates it will
 need to read to find the desired rows. This number is per
 loop in the nested-loop join plan. That is, it's not just
 the number of rows MySQL thinks it will need to read from the table;
 it is the number of rows, on average, MySQL thinks it will have to
 read to find rows that satisfy the criteria in effect at that point in
 query execution. (The criteria include constants given in the SQL as
 well as the current columns from previous tables in the join
 order.)
This estimate can be quite inaccurate, depending on the table
 statistics and how selective the indexes are. It also doesn't reflect
 LIMIT clauses in MySQL 5.0 and
 earlier. For example, the following query will not examine 1,022
 rows:
mysql> EXPLAIN SELECT * FROM sakila.film LIMIT 1\G
...
 rows: 1022
You can calculate roughly the number of rows the entire query
 will examine by multiplying all the rows values together. For example, the
 following query might examine approximately 2,600 rows:
mysql> EXPLAIN
 -> SELECT f.film_id
 -> FROM sakila.film AS f
 -> INNER JOIN sakila.film_actor AS fa USING(film_id)
 -> INNER JOIN sakila.actor AS a USING(actor_id);
...+------+...
...| rows |...
...+------+...
...| 200 |...
...| 13 |...
...| 1 |...
...+------+...
Remember, this is the number of rows MySQL thinks it will
 examine, not the number of rows in the result set. Also realize that
 there are many optimizations, such as join buffers and caches, that
 aren't factored into the number of rows shown. MySQL will probably not
 have to actually read every row it predicts it will. MySQL also
 doesn't know anything about the operating system or hardware
 caches.

The filtered Column

This column is new in MySQL 5.1 and appears when you use
 EXPLAIN EXTENDED. It shows a
 pessimistic estimate of the percentage of rows that will satisfy some
 condition on the table, such as a WHERE clause or a join condition. If you
 multiply the rows column by this
 percentage, you will see the number of rows MySQL estimates it will
 join with the previous tables in the query plan. At the time of this
 writing, the optimizer uses this estimate only for the ALL, index, range, and index_merge access methods.
To illustrate this column's output, we created a table as follows:
CREATE TABLE t1 (
 id INT NOT NULL AUTO_INCREMENT,
 filler char(200),
 PRIMARY KEY(id)
);
We then inserted 1,000 rows into this table, with random text in
 the filler column. Its purpose is
 to prevent MySQL from using a covering index for the query we're about
 to run:
mysql> EXPLAIN EXTENDED SELECT * FROM t1 WHERE id < 500\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 1000
 filtered: 49.40
 Extra: Using where
MySQL could use a range access to retrieve all rows with IDs
 less than 500 from the table, but it won't because that would
 eliminate only about half the rows. It thinks a table scan is less
 expensive. As a result, it uses a table scan and a WHERE clause to filter out rows. It knows
 how many rows the WHERE clause will
 remove from the result, because of the range access cost estimates.
 That's why the 49.40% value appears in the filtered column.

The Extra Column

This column contains extra information that doesn't fit into other columns.
 The MySQL manual documents most of the many values that can appear
 here; we have referred to many of them throughout this book.
The most important values you might see frequently are as
 follows:
	"Using index"
	This indicates that MySQL will use a covering index to
 avoid accessing the table (see "Covering Indexes" on Covering Indexes). Don't confuse covering indexes
 with the index access
 type.

	"Using where"
	This means the MySQL server will post-filter rows after
 the storage engine retrieves them. Many WHERE conditions that involve columns
 in an index can be checked by the storage engine when (and if)
 it reads the index, so not all queries with a WHERE clause will show "Using where."
 Sometimes the presence of "Using where" is a hint that the query
 can benefit from different indexing.

	"Using temporary"
	This means MySQL will use a temporary table while sorting
 the query's result.

	"Using filesort"
	This means MySQL will use an external sort to order the
 results, instead of reading the rows from the table in index
 order. MySQL has two filesort algorithms, which you can read
 about in "Optimizing for Filesorts" on Optimizing for Filesorts. Either type can be done
 in memory or on disk. EXPLAIN
 doesn't tell you which type of filesort MySQL will use, and it
 doesn't tell you whether the sort will be done in memory or on
 disk.

	"range checked for each record (index map:
 N)"
	This value means there's no good index, and the indexes
 will be reevaluated for each row in a join.
 N is a bitmap of the indexes shown in
 possible_keys and is
 redundant.

[130] The statement "a subquery in the FROM clause is a derived table" is true,
 but "a derived table is a subquery in the FROM clause" is false. The term "derived
 table" has a broader meaning in SQL.

Visual EXPLAIN

MySQL's developers have said that they'd like EXPLAIN's output to be formatted as a tree, showing a more accurate
 representation of the execution plan. MySQL's users have wished for such
 an improvement as well. As it is, EXPLAIN is a somewhat awkward way to see the
 execution plan; a tree structure doesn't fit very well into a tabular
 output. The awkwardness is highlighted by the large number of possible
 values for the Extra column, as well
 as by UNION. UNION is quite unlike
 every other kind of join MySQL can do, and it doesn't fit well into
 EXPLAIN.
It's possible, with a good understanding of the rules and
 particularities of EXPLAIN, to work
 backward to a tree-formatted execution plan. This is quite tedious,
 though, and it's best left to an automated tool. Maatkit (see Chapter 14) contains
 mk-visual-explain, which is such a tool.

Appendix C. Using Sphinx with MySQL

Sphinx (http://www.sphinxsearch.com) is a
 free, open source, full-text search engine, designed from the ground up to
 integrate well with databases. It has DBMS-like features, is very fast,
 supports distributed searching, and scales well. It is also designed for
 efficient memory and disk I/O, which is important because they're often
 the limiting factors for large operations.
Sphinx works well with MySQL. It can be used to accelerate a variety
 of queries, including full-text searches; you can also use it to perform
 fast grouping and sorting operations, among other applications.
 Additionally, there is a pluggable storage engine that lets a programmer
 or administrator access Sphinx directly through MySQL. Sphinx is
 especially useful for certain queries that MySQL's general-purpose
 architecture doesn't optimize very well for large datasets in real-world
 settings. In short, Sphinx can enhance MySQL's functionality and
 performance.
The source of data for a Sphinx index is usually the result of a
 MySQL SELECT query, but you can build
 an index from an unlimited number of sources of varying types, and each
 instance of Sphinx can search an unlimited number of indexes. For example,
 you can pull some of the documents in an index from a MySQL instance
 running on one remote server, some from a PostgreSQL instance running on
 another server, and some from the output of a local script through an XML
 pipe mechanism.
In this appendix, we explore some use cases where Sphinx's
 capabilities enable enhanced performance, show a summary of the steps
 needed to install and configure it, explain its features in detail, and
 discuss several examples of real-world implementations.
Overview: A Typical Sphinx Search

We start with a simple but complete Sphinx usage example to
 provide a starting point for further discussion. We use PHP because of
 its popularity, although APIs are available for a number of other
 languages, too.
Assume that we're implementing full-text searching for a
 comparison-shopping engine. Our requirements are to:
	Maintain a searchable full-text index on a product table
 stored in MySQL

	Allow full-text searches over product titles and
 descriptions

	Be able to narrow down searches to a given category if
 needed

	Be able to sort the result not only by relevance, but by item
 price or submission date

We begin by setting up a data source and an index in the Sphinx
 configuration file:
source products
{
 type = mysql
 sql_host = localhost
 sql_user = shopping
 sql_pass = mysecretpassword
 sql_db = shopping
 sql_query = SELECT id, title, description, \
 cat_id, price, UNIX_TIMESTAMP(added_date) AS added_ts \
 FROM products
 sql_attr_uint = cat_id
 sql_attr_float = price
 sql_attr_timestamp = added_ts
}

index products
{
 source = products
 path = /usr/local/sphinx/var/data/products
 docinfo = extern
}
This example assumes that the MySQL shopping database contains a products table with the columns we request in
 our SELECT query to populate our
 Sphinx index. The Sphinx index is also named products. After creating a new source and
 index, we run the indexer program to create the
 initial full-text index data files and then (re)start the
 searchd daemon to pick up the changes:
$ cd /usr/local/sphinx/bin
$./indexer products
$./searchd --stop
$./searchd
The index is now ready to answer queries. We can test it with
 Sphinx's bundled test.php sample script:
$ php -q test.php -i products ipod

Query 'ipod ' retrieved 3 of 3 matches in 0.010 sec.
Query stats:
 'ipod' found 3 times in 3 documents
Matches:
1. doc_id=123, weight=100, cat_id=100, price=159.99, added_ts=2008-01-03 22:38:26
2. doc_id=124, weight=100, cat_id=100, price=199.99, added_ts=2008-01-03 22:38:26
3. doc_id=125, weight=100, cat_id=100, price=249.99, added_ts=2008-01-03 22:38:26
The final step is to add searching to our web application. We need
 to set sorting and filtering options based on user input and format the
 output nicely. Also, because Sphinx returns only document IDs and
 configured attributes to the client—it doesn't store any of the original
 text data—we need to pull additional row data from MySQL
 ourselves:
 1 <?php
 2 include ("sphinxapi.php");
 3 // ... other includes, MySQL connection code,
 4 // displaying page header and search form, etc. all go here
 5
 6 // set query options based on end-user input
 7 $cl = new SphinxClient ();
 8 $sortby = $_REQUEST["sortby"];
 9 if (!in_array ($sortby, array ("price", "added_ts")))
10 $sortby = "price";
11 if ($_REQUEST["sortorder"]=="asc")
12 $cl->SetSortMode (SPH_SORT_ATTR_ASC, $sortby);
13 else
14 $cl->SetSortMode (SPH_SORT_ATTR_DESC, $sortby);
15 $offset = ($_REQUEST["page"]-1)*$rows_per_page;
16 $cl->SetLimits ($offset, $rows_per_page);
17
18 // issue the query, get the results
19 $res = $cl->Query ($_REQUEST["query"], "products");
20
21 // handle search errors
22 if (!$res)
23 {
24 print "Search error:" . $cl->GetLastError ();
25 die;
26 }
27
28 // fetch additional columns from MySQL
29 $ids = join (",", array_keys ($res["matches"]);
30 $r = mysql_query ("SELECT id, title FROM products WHERE id IN ($ids)")
31 or die ("MySQL error: " . mysql_error());
32 while ($row = mysql_fetch_assoc($r))
33 {
34 $id = $row["id"];
35 $res["matches"][$id]["sql"] = $row;
36 }
37
38 // display the results in the order returned from Sphinx
39 $n = 1 + $offset;
40 foreach ($res["matches"] as $id=>$match)
41 {
42 printf ("%d. %s, USD %.2f
\n",
43 $n++, $id, $match["sql"]["title"], $match["attrs"]["price"]);
44 }
45
46 ?>
Even though the snippet just shown is pretty simple, there are a
 few things worth highlighting:
	The SetLimits() call tells
 Sphinx to fetch only the number of rows that the client wants to
 display on a page. It's cheap to impose this limit in Sphinx (unlike
 in MySQL's built-in search facility), and the number of results that
 would have been returned without the limit are available in $result['total_found'] at no extra
 cost.

	Because Sphinx only indexes the title column and doesn't
 store it, we must fetch that data from
 MySQL.

	We retrieve data from MySQL with a single combined query for
 the whole document batch using the clause WHERE id IN
 (…), instead of running one query for each match (which
 would be inefficient).

	We inject the rows pulled from MySQL into our full-text search
 result set, to keep the original sorting order. We explain this more
 in a moment.

	We display the rows using data pulled from both Sphinx and
 MySQL.

The row injection code, which is PHP-specific, deserves a more
 detailed explanation. We couldn't simply iterate over the result set
 from the MySQL query, because the row order can (and in most cases
 actually will) be different from that specified in the WHERE id IN (…) clause. PHP hashes
 (associative arrays), however, keep the order in which the matches were
 inserted into them, so iterating over $result["matches"] will produce rows in the
 proper sorting order as returned by Sphinx. To keep the matches in the
 proper order returned from Sphinx (rather than the semirandom order
 returned from MySQL), therefore, we inject the MySQL query results one
 by one into the hash that PHP stores from the Sphinx result set of
 matches.
There are also a few major implementation and performance
 differences between MySQL and Sphinx when it comes to counting matches
 and applying a LIMIT clause. First,
 LIMIT is cheap in Sphinx. Consider a
 LIMIT 500,10 clause. MySQL will
 retrieve 510 semirandom rows (which is slow) and throw away 500, whereas
 Sphinx will return the IDs that you will use to retrieve the 10 rows you
 actually need from MySQL. Second, Sphinx will always return the exact
 number of matches it actually found in the result set, no matter what's
 in the LIMIT clause. MySQL can't do
 this efficiently (see "Optimizing SQL_CALC_FOUND_ROWS" on Optimizing UNION for details).

Why Use Sphinx?

Sphinx can complement a MySQL-based application in many ways,
 bolstering performance where MySQL is not a good solution and adding
 functionality MySQL can't provide. Typical usage scenarios
 include:
	Fast, efficient, scalable, relevant full-text searches

	Optimizing WHERE conditions
 on low-selectivity indexes or columns without indexes

	Optimizing ORDER BY … LIMIT
 N queries and GROUP BY queries

	Generating result sets in parallel

	Scaling up and scaling out

	Aggregating partitioned data

We explore each of these scenarios in the following sections. This
 list is not exhaustive, though, and Sphinx users find new applications
 regularly. For example, one of Sphinx's most important uses—scanning and
 filtering records quickly—was a user innovation, not one of Sphinx's
 original design goals.
Efficient and Scalable Full-Text Searching

MySQL's full-text search capability [131] is fast for smaller datasets but performs badly when the
 data size grows. With millions of records and gigabytes of indexed
 text, query times can vary from a second to more than 10 minutes, which is unacceptable for a
 high-performance web application. Although it's possible to scale
 MySQL's full-text searches by distributing the data in many locations,
 this requires you to perform searches in parallel and merge the
 results in your application.
Sphinx works significantly faster than MySQL's built-in
 full-text indexes. For instance, it can search over 1 GB of text
 within 10 to 100 milliseconds—and that scales linearly up to 10–100 GB
 per CPU. Sphinx also has the following advantages:
	It can index data stored with InnoDB and other engines, not
 just MyISAM.

	It can create indexes on data combined from many source
 tables, instead of being limited to columns in a single
 table.

	It can dynamically combine search results from multiple
 indexes.

	In addition to indexing textual columns, its indexes can
 contain an unlimited number of numeric
 attributes, which are analogous to "extra
 columns." Sphinx attributes can be integers, floating-point
 numbers, and Unix timestamps.

	It can optimize full-text searches with additional
 conditions on attributes.

	Its phrase-based ranking algorithm helps it return more
 relevant results. For instance, if you search a table of song
 lyrics for "I love you, dear," a song that contains that exact
 phrase will turn up at the top, before songs that just contain
 "love" or "dear" many times.

	It makes scaling out much easier. For more on scaling, see
 Chapter 9 and "Scaling" on
 Scaling, later in this appendix.

Applying WHERE Clauses Efficiently

Sometimes you'll need to run SELECT queries against very large tables
 (containing millions of records), with several WHERE conditions on columns that have poor
 index selectivity (i.e., return too many rows for a given WHERE condition) or could not be indexed at
 all. Common examples include searching for users in a social network
 and searching for items on an auction site. Typical search interfaces
 let the user apply WHERE conditions
 to 10 or more columns, while requiring the results to be sorted by
 other columns. See "An Indexing Case Study" on An Indexing Case Study for an example of such an
 application and the required indexing strategies.
With the proper schema and query optimizations, MySQL can work
 acceptably for such queries, as long as the WHERE clauses don't contain too many
 columns. But as the number of columns grows, the number of indexes
 required to support all possible searches grows exponentially.
 Covering all the possible combinations for just four columns strains
 MySQL's limits. It becomes very slow and expensive to maintain the
 indexes, too. This means it's practically impossible to have all the
 required indexes for many WHERE
 conditions, and you have to run the queries without indexes.
More importantly, even if you can add indexes, they won't give
 much benefit unless they're selective. The classic example is a
 gender column, which isn't much
 help because it typically selects half of all rows. MySQL will
 generally revert to a full table scan when the index isn't selective
 enough to help it.
Sphinx can perform such queries much faster than MySQL.
 You can build a Sphinx index with only the required columns from the
 data. Sphinx then allows two types of access to the data: an indexed
 search on a keyword or a full scan. In both cases, Sphinx applies
 filters, which are its equivalent of a WHERE clause. Unlike MySQL, which decides
 internally whether to use an index or a full scan, Sphinx lets you
 choose which access method to use.
To use a full scan with filters, specify an empty string as the
 search query. To use an indexed search, add pseudokeywords to your
 full-text fields while building the index and then search for those
 keywords. For example, if you wanted to search for items in category
 123, you'd add a "category123" keyword to the document during indexing
 and then perform a full-text search for "category123." You can either
 add keywords to one of the existing fields using the CONCAT() function, or create a special
 full-text field for the pseudokeywords for more flexibility. Normally,
 you should use filters for nonselective values that cover over 30% of
 the rows, and fake keywords for selective ones that select 10% or
 less. If the values are in the 10–30% gray zone, your mileage may
 vary, and you should use benchmarks to find the best solution.
Sphinx will perform both indexed searches and scans faster than
 MySQL. Sometimes Sphinx actually performs a full scan faster than
 MySQL can perform an index read.

Finding the Top Results in Order

Web applications frequently need the top
 N results in order. As we discussed in
 "Optimizing LIMIT and OFFSET" on Optimizing SQL_CALC_FOUND_ROWS, this is hard to optimize
 in MySQL.
The worst case is when the WHERE condition finds many rows (let's say 1
 million) and the ORDER BY columns
 aren't indexed. MySQL uses the index to identify all the matching
 rows, reads the records one by one into the sort buffer with
 semirandom disk reads, sorts them all with a filesort, and then
 discards most of them. It will temporarily store and process the
 entire result, ignoring the LIMIT
 clause and churning RAM. And if the result set doesn't fit in the sort
 buffer, it will need to go to disk, causing even more disk I/O.
This is an extreme case, and you might think it happens rarely
 in the real world, but in fact the problems it illustrates happen
 often. MySQL's limitations on indexes for sorting—using only the
 leftmost part of the index, not supporting loose index scans, and
 allowing only a single range condition—mean many real-world queries
 can't benefit from indexes. And even when they can, using semirandom
 disk I/O to retrieve rows is a performance killer.
Paginated result sets, which usually require queries of the form
 SELECT … LIMIT N,
 M, are another performance problem in MySQL. They read
 N + M rows from disk, causing a large
 amount of random I/O and wasting memory resources. Sphinx can
 accelerate such queries significantly by eliminating the two biggest
 problems:
	Memory usage
	Sphinx's RAM usage is always strictly limited, and the
 limit is configurable. Sphinx supports a result set offset and
 size similar to the MySQL LIMIT N, M
 syntax but also has a max_matches option. This controls the
 equivalent of the "sort buffer" size, on both a per-server and a
 per-query basis. Sphinx's RAM footprint is guaranteed to be
 within the specified limits.

	I/O
	If attributes are stored in RAM, Sphinx does not do any
 I/O at all. And even if attributes are stored on disk, Sphinx
 will perform sequential I/O to read them, which is much faster
 than MySQL's semirandom retrieval of rows from disks.

You can sort search results by a combination of relevance
 (weight), attribute values, and (when using GROUP BY) aggregate function values. The
 sorting clause syntax is similar to a SQL ORDER BY clause:
<?php
$cl = new SphinxClient ();
$cl->SetSortMode (SPH_SORT_EXTENDED, 'price DESC, @weight ASC');
// more code and Query() call here...
?>
In this example, price is a
 user-specified attribute stored in the index, and @weight is a special attribute, created at
 runtime, that contains each result's computed relevance. You can also
 sort by an arithmetic expression involving attribute values, common
 math operators, and functions:
<?php
$cl = new SphinxClient ();
$cl->SetSortMode (SPH_SORT_EXPR, '@weight + log(pageviews)*1.5');
// more code and Query() call here...
?>

Optimizing GROUP BY Queries

Support for everyday SQL-like clauses would be incomplete
 without GROUP BY functionality, so
 Sphinx has that too. But unlike MySQL's general-purpose
 implementation, Sphinx specializes in solving a practical subset of
 GROUP BY tasks efficiently. This
 subset covers the generation of reports from big (1–100 million row)
 datasets when one of the following cases holds:
	The result is only a "small" number of grouped rows (where
 "small" is on the order of 100,000 to 1 million rows).

	Very fast execution speed is required and approximate
 COUNT(*) results are
 acceptable, when many groups are retrieved from data distributed
 over a cluster of machines.

This is not as restrictive as it might sound. The first scenario
 covers practically all imaginable time-based reports. For example, a
 detailed per-hour report for a period of 10 years will return fewer
 than 90,000 records. The second scenario could be expressed in plain
 English as something like "as quickly and accurately as possible, find
 the 20 most important records in a 100-million-row sharded
 table."
These two types of queries can accelerate general-purpose
 queries, but you can also use them for full-text search applications.
 Many applications need to display not only full-text matches, but some
 aggregate results as well. For example, many search result pages show
 how many matches were found in each product category, or display a
 graph of matching document counts over time. Another common
 requirement is to group the results and show the most relevant match
 from each category. Sphinx's group-by support lets you combine
 grouping and full-text searching, eliminating the overhead of doing
 the grouping in your application or in MySQL.
As with sorting, grouping in Sphinx uses fixed memory. It is
 slightly (10% to 50%) more efficient than similar MySQL queries on
 datasets that fit in RAM. In this case, most of Sphinx's power comes
 from its ability to distribute the load and greatly reduce the
 latency. For huge datasets that could never fit in RAM, you can build
 a special disk-based index for reporting, using inline attributes
 (defined later). Queries against such indexes execute about as fast as
 the disk can read the data—about 30–100 MB/sec on modern hardware. In
 this case, the performance can be many times better than MySQL's,
 though the results will be approximate.
The most important difference from MySQL's GROUP BY is that Sphinx may, under certain
 circumstances, yield approximate results. There are two reasons for
 this:
	Grouping uses a fixed amount of memory. If there are too
 many groups to hold in RAM and the matches are in a certain
 "unfortunate" order, per-group counts might be smaller than the
 actual values.

	A distributed search sends only the aggregate results, not
 the matches themselves, from node to node. If there are duplicate
 records in different nodes, per-group distinct counts might be
 greater than the actual values, because the information that can
 remove the duplicates is not transmitted between nodes.

In practice, it is often acceptable to have fast approximate
 group-by counts. If this isn't acceptable, it's often possible to get
 exact results by tuning the daemon and client application
 carefully.
You can generate the equivalent of COUNT(DISTINCT
 <attribute>), too. For example, you
 can use this to compute the number of distinct sellers per category in
 an auction site.
Finally, Sphinx lets you choose criteria to select the single
 "best" document within each group. For example, you can select the
 most relevant document from each domain, while grouping by domain and
 sorting the result set by per-domain match counts. This is not
 possible in MySQL without a complex query.

Generating Parallel Result Sets

Sphinx lets you generate several results from the same data
 simultaneously, again using a fixed amount of memory. Compared to the
 traditional SQL approach of either running two queries (and hoping
 that some data stays in the cache between runs) or creating a
 temporary table for each search result set, this yields a noticeable
 improvement.
For example, assume you need per-day, per-week, and per-month
 reports over a period of time. To generate these with MySQL you'd have
 to run three queries with different GROUP
 BY clauses, processing the source data three times. Sphinx,
 however, can process the underlying data once and accumulate all three
 reports in parallel.
Sphinx does this with a multi-query
 mechanism. Instead of issuing queries one by one, you batch several queries
 and submit them in one request:
<?php
$cl = new SphinxClient ();
$cl->SetSortMode (SPH_SORT_EXTENDED, "price desc");
$cl->AddQuery ("ipod");
$cl->SetGroupBy ("category_id", SPH_GROUPBY_ATTR, "@count desc");
$cl->AddQuery ("ipod");
$cl->RunQueries ();
?>
Sphinx will analyze the request, identify query parts it can
 combine, and parallelize the queries where possible.
For example, Sphinx might notice that only the sorting and
 grouping modes differ, and that the queries are otherwise the same.
 This is the case in the sample code just shown, where the sorting is
 by price but the grouping is by
 category_id. Sphinx will create
 several sorting queues to process these queries. When it runs the
 queries, it will retrieve the rows once and submit them to all queues.
 Compared to running the queries one by one, this eliminates several
 redundant full-text search or full scan operations.
Note that generating parallel result sets, although it's a
 common and important optimization, is only a particular case of the
 more generalized multi-query mechanism. It is not the
 only possible optimization. The rule of thumb is
 to combine queries in one request where possible, which generally
 allows Sphinx to apply internal optimizations. Even if Sphinx can't
 parallelize the queries, it still saves network round-trips. And if
 Sphinx adds more optimizations in the future, your queries will use
 them automatically with no further changes.

Scaling

Sphinx scales well both horizontally (scaling out) and
 vertically (scaling up).
Sphinx is fully distributable across many machines. All the use
 cases we've mentioned can benefit from distributing the work across
 several CPUs.
The Sphinx search daemon (searchd) supports
 special distributed indexes, which know which
 local and remote indexes should be queried and aggregated. This means
 scaling out is a trivial configuration change. You simply partition
 the data across the nodes, configure the master node to issue several
 remote queries in parallel with local ones, and that's it.
You can also scale up, as in using more cores or CPUs on a
 single machine to improve latency. To accomplish this, you can just
 run several instances of searchd on a single
 machine and query them all from another machine via a distributed
 index. Alternatively, you can configure a single instance to
 communicate with itself so that the parallel "remote" queries actually
 run on a single machine, but on different CPUs or cores.
In other words, with Sphinx a single query can be made to use
 more than one CPU (multiple concurrent queries will use multiple CPUs
 automatically). This is a major difference from MySQL, where one query
 always gets one CPU, no matter how many are available. Also, Sphinx
 does not need any synchronization between concurrently running
 queries. That lets it avoid mutexes (a synchronization mechanism),
 which are a notorious MySQL performance bottleneck on multi-CPU
 systems.
Another important aspect of scaling up is scaling disk I/O.
 Different indexes (including parts of a larger distributed index) can
 easily be put on different physical disks or RAID volumes to improve
 latency and throughput. This approach has some of the same benefits as
 MySQL 5.1's partitioned tables, which can also partition data into
 multiple locations. However, distributed indexes have some advantages
 over partitioned tables. Sphinx uses distributed indexes both to
 distribute the load and to process all parts of a query in parallel.
 In contrast, MySQL's partitioning can optimize some queries (but not
 all) by pruning partitions, but the query processing will not be
 parallelized. And even though both Sphinx and MySQL partitioning will
 improve query throughput, if your queries are I/O-bound, you can
 expect linear latency improvement from Sphinx on all queries, whereas
 MySQL's partitioning will improve latency only on those queries where
 the optimizer can prune entire partitions.
The distributed searching workflow is straightforward:
	Issue remote queries on all remote servers.

	Perform sequential local index searches.

	Read the partial search results from the remote
 servers.

	Merge all the partial results into the final result set, and
 return it to the client.

If your hardware resources permit it, you can search through
 several indexes on the same machine in parallel, too. If there are
 several physical disk drives and several CPU cores, the concurrent
 searches can run without interfering with each other. You can pretend
 that some of the indexes are remote and configure
 searchd to contact itself to launch a parallel
 query on the same machine:
index distributed_sample
{
 type = distributed
 local = chunk1 # resides on HDD1
 agent = localhost:3312:chunk2 # resides on HDD2, searchd contacts itself
}
From the client's point of view, distributed indexes are
 absolutely no different from local indexes. This lets you create
 "trees" of distributed indexes by using nodes as proxies for sets of
 other nodes. For example, the first-level node could proxy the queries
 to a number of the second-level nodes, which could in turn either
 search locally themselves or pass the queries to other nodes, to an
 arbitrary depth.

Aggregating Sharded Data

Building a scalable system often involves
 sharding (partitioning) the data across different physical MySQL servers. We
 discussed this in depth in "Data sharding" on Data sharding.
When the data is sharded at a fine level of granularity, simply fetching
 a few rows with a selective WHERE
 (which should be fast) means contacting many servers, checking for
 errors, and merging the results together in the application. Sphinx
 alleviates this problem, because all the necessary functionality is
 already implemented inside the search daemon.
Consider an example where a 1 TB table with a billion blog posts
 is sharded by user ID over 10 physical MySQL servers, so a given
 user's posts always go to the same server. As long as queries are
 restricted to a single user, everything is fine: we choose the server
 based on user ID and work with it as usual.
Now assume that we need to implement an archive page that shows
 the user's friends' posts. How are we going to display Other sysbench features, with entries 981 to 1000, sorted
 by post date? Most likely, the various friends' data will be on
 different servers. With only 10 friends, there's about a 90% chance
 that more than 8 servers will be used, and that probability increases
 to 99% if there are 20 friends. So, for most queries, we will need to
 contact all the servers. Worse, we'll need to pull 1,000 posts from
 each server and sort them all in the application.
 Following the suggestions we've made in Chapter 10 and elsewhere, we'd trim
 down the required data to the post ID and timestamp only, but that's
 still 10,000 records to sort in the application. Most modern scripting
 languages consume a lot of CPU time for that sorting step alone. In
 addition, we'll either have to fetch the records from each server
 sequentially (which will be slow) or write some code to juggle the
 parallel querying threads (which will be difficult to implement and
 maintain).
In such situations, it makes sense to use Sphinx instead of
 reinventing the wheel. All we'll have to do in this case is set up
 several Sphinx instances, mirror the frequently accessed post
 attributes from each table—in this example, the post ID, user ID, and
 timestamp—and query the master Sphinx instance for entries 981 to
 1000, sorted by post date, in approximately three lines of code. This
 is a much smarter way to scale.

[131] See "Full-Text Searching" on Natural-Language Full-Text Searches.

Architectural Overview

Sphinx is a standalone set of programs. The two main programs
 are:
	indexer
	A program that fetches documents from specified sources
 (e.g., from MySQL query results) and creates a full-text index
 over them. This is a background batch job, which sites usually run
 regularly.

	searchd
	A daemon that serves search queries from the indexes
 indexer builds. This provides the runtime
 support for applications.

The Sphinx distribution also includes native
 searchd client APIs in a number of programming
 languages (PHP, Python, Perl, Ruby, and Java, at the time of this
 writing), and the SphinxSE, which is a client implemented as a pluggable
 storage engine for MySQL 5.0 and newer. The APIs and SphinxSE allow a
 client application to connect to searchd, pass it
 the search query, and fetch back the search results.
Each Sphinx full-text index can be compared to a table in a
 database; in place of rows in a table, the Sphinx index consists of
 documents. (Sphinx also has a separate data
 structure called a multivalued attribute, discussed
 later.) Each document has a unique 32-bit or 64-bit integer identifier
 that should be drawn from the database table being indexed (for
 instance, from a primary key column). In addition, each document has one
 or more full-text fields (each corresponding to a text column from the
 database) and numerical attributes. Like a database table, the Sphinx
 index has the same fields and attributes for all of its documents. Table C-1 shows the analogy
 between a database table and a Sphinx index.
Table C-1. Database structure and corresponding Sphinx structure
	Database structure
	Sphinx structure

	CREATE TABLE documents (
 id int(11) NOT NULL auto_increment,
 title varchar(255),
 content text,
 group_id int(11),
 added datetime,
 PRIMARY KEY (id)
);
	index documents
 document ID
 title field, full-text indexed
 content field, full-text indexed
 group_id attribute, sql_attr_uint
 added attribute, sql_attr_timestamp

Sphinx does not store the text fields from the database but just
 uses their contents to build a search index.
Installation Overview

Sphinx installation is straightforward and typically includes
 the following steps:
	Building the programs from sources:
$ configure && make && make install

	Creating a configuration file with definitions for data
 sources and full-text indexes

	Initial indexing

	Launching searchd

After that, the search functionality is immediately available
 for client programs:
<?php
include ('sphinxapi.php');
$cl = new SphinxClient ();
$res = $cl->Query ('test query', 'myindex');
// use $res search result here
?>
The only thing left to do is run indexer
 regularly to update the full-text index data. Indexes that
 searchd is currently serving will stay fully
 functional during reindexing: indexer will detect
 that they are in use, create a "shadow" index copy instead, and notify
 searchd to pick up that copy on
 completion.
Full-text indexes are stored in the filesystem (at the location
 specified in the configuration file) and are in a special "monolithic"
 format, which is not well suited for incremental updates. The normal
 way to update the index data is to rebuild it from scratch. This is
 not as big a problem as it might seem, though, for the following
 reasons:
	Indexing is fast. Sphinx can index plain text (without HTML
 markup) at a rate of 4–8 MB/sec on modern hardware.

	You can partition the data in several indexes, as shown in
 the next section, and reindex only the updated part from scratch
 on each run of indexer.

	There is no need to "defragment" the indexes—they are built
 for optimal I/O, which improves search speed.

	Numeric attributes can be updated without a complete
 rebuild.

A future version will offer an additional index backend, which
 will support real-time index updates.

Typical Partition Use

Let's discuss partitioning in a bit more detail. The simplest
 partitioning scheme is the main + delta approach
 in which two indexes are created to index one document collection.
 Main indexes the whole document set, while
 delta indexes only documents that have changed
 since the last time the main index was built.
This scheme matches many data modification patterns perfectly.
 Forums, blogs, email and news archives, and vertical search engines
 are all good examples. Most of the data in those repositories never
 changes once it is entered, and only a tiny fraction of documents are
 changed or added on a regular basis. This means the delta index is
 small and can be rebuilt as frequently as required (e.g., once every
 1–15 minutes). This is equivalent to indexing just the newly inserted
 rows.
You don't need to rebuild the indexes to change attributes
 associated with documents—you can do this online via
 searchd. You can mark rows as deleted by simply
 setting a "deleted" attribute in the main index. Thus, you can handle
 updates by marking this attribute on documents in the main index, then
 rebuilding the delta index. Searching for all documents that are not
 marked as "deleted" will return the correct results.
Note that the indexed data can come from the results of any
 SELECT statement; it doesn't have
 to come from just a single SQL table. There are no restrictions on the
 SELECT statements. That means you
 can preprocess the results in the database before they're indexed.
 Common preprocessing examples include joins with other tables,
 creating additional fields on the fly, excluding some fields from
 indexing, and manipulating values.

Special Features

Besides "just" indexing and searching through database content,
 Sphinx offers several other special features. Here's a
 partial list of the most important ones:
	The searching and ranking algorithms take word positions and
 the query phrase's proximity to the document content into
 account.

	You can bind numeric attributes to documents, including
 multivalued attributes.

	You can sort, filter, and group by attribute values.

	You can create document snippets with search query keyword
 highlighting.

	You can distribute searching across several machines.

	You can optimize queries that generate several result sets
 from the same data.

	You can access the search results from within MySQL using
 SphinxSE.

	You can fine-tune the load Sphinx imposes on the
 server.

We covered some of these features earlier. This section covers a
 few of the remaining features.
Phrase Proximity Ranking

Sphinx remembers word positions within each document, as do
 other open source full-text search systems. But unlike most other
 ones, it uses the positions to rank matches and return more relevant
 results.
A number of factors might contribute to a document's final rank.
 To compute the rank, most other systems use only keyword frequency:
 the number of times each keyword occurs. The classic BM25 weighting
 function[132] that virtually all full-text search systems use is built
 around giving more weight to words that either occur frequently in the
 particular document being searched or occur rarely in the whole
 collection. The BM25 result is usually returned as the final rank
 value.
In contrast, Sphinx also computes query phrase proximity, which
 is simply the length of the longest verbatim query subphrase contained
 in the document, counted in words. For instance, the phrase "John Doe
 Jr" queried against a document with the text "John Black, John White
 Jr, and Jane Dunne" will produce a phrase proximity of 1, because no
 two words in the query appear together in the query order. The same
 query against "Mr. John Doe Jr and friends" will yield a proximity of
 3, because three query words occur in the document in the query order.
 The document "John Gray, Jane Doe Jr" will produce a proximity of 2,
 thanks to its "Doe Jr" query subphrase.
By default, Sphinx ranks matches using phrase proximity first
 and the classic BM25 weight second. This means that verbatim query
 quotes are guaranteed to be at the very top, quotes that are off by a
 single word will be right below those, and so on.
When and how does phrase proximity affect results? Consider
 searching 1,000,000 pages of text for the phrase "To be or not to be."
 Sphinx will put the pages with verbatim quotes at the very top of
 search results, whereas BM25-based systems will first return the pages
 with the most mentions of "to," "be," "or," and "not"—pages with an
 exact quote but only a few instances of "to" will be buried deep in
 the results.
Most major web search engines today rank results with keyword
 positions as well. Searching for a phrase on Google will likely put
 perfect or near-perfect phrase matches at the very top, followed by
 the "bag of words" documents.
However, analyzing keyword positions requires additional CPU
 time, and sometimes you might need to skip it for performance reasons.
 There are also cases when phrase ranking produces undesired,
 unexpected results. For example, searching for tags in a cloud is
 better without keyword positions: it makes no difference whether the
 tags from the query are next to each other in the document.
To allow for flexibility, Sphinx offers a choice of ranking
 modes. Besides the default mode of proximity plus BM25, you can choose
 from a number of others that include BM25-only weighting, fully
 disabled weighting (which provides a nice optimization if you're not
 sorting by rank), and more.

Support for Attributes

Each document may contain an unlimited number of numeric
 attributes. Attributes are user-specified and can contain any
 additional information required for a specific task. Examples include
 a blog post's author ID, an inventory item price, a category ID, and
 so on.
Attributes enable efficient full-text searches with additional
 filtering, sorting, and grouping of the search results. In theory,
 they could be stored in MySQL and pulled from there every time a
 search is performed. But in practice, if a full-text search locates
 even hundreds or thousands of rows (which is not many), retrieving
 them from MySQL is unacceptably slow.
Sphinx supports two ways to store attributes: inline in the
 document lists or externally in a separate file. Inlining requires all
 attribute values to be stored in the index many times, once for each
 time a document ID is stored. This inflates the index size and
 increases I/O, but reduces use of RAM. Storing the attributes
 externally requires preloading them into RAM upon
 searchd startup.
Attributes normally fit in RAM, so the usual practice is to
 store them externally. This makes filtering, sorting, and grouping very fast, because
 accessing data is a matter of quick in-memory lookup. Also, only the
 externally stored attributes can be updated at runtime. Inline storage
 should be used only when there is not enough free RAM to hold the
 attribute data.
Sphinx also supports multivalued attributes
 (MVAs). MVA content consists of an arbitrarily long list
 of integer values associated with each document. Examples of good uses
 for MVAs are lists of tag IDs, product categories, and
 access control lists.

Filtering

Having access to attribute values in the full-text engine allows
 Sphinx to filter and reject candidate matches as early as possible
 while searching. Technically, the filter check occurs after
 verification that the document contains all the required keywords, but
 before certain computationally intensive calculations (such as
 ranking) are done. Because of these optimizations, using Sphinx to
 combine full-text searching with filtering and sorting can be 10 to
 100 times faster than using Sphinx for searching and then filtering
 results in MySQL.
Sphinx supports two types of filters, which are analogous to
 simple WHERE conditions in
 SQL:
	An attribute value matches a specified range of values
 (analogous to a BETWEEN clause,
 or numeric comparisons).

	An attribute value matches a specified set of values
 (analogous to an IN()
 list).

If the filters will have a fixed number of values ("set" filters
 instead of "range" filters), and if such values are selective, it
 makes sense to replace the integer values with "fake keywords" and
 index them as full-text content instead of attributes. This applies to
 both normal numeric attributes and MVAs. We see some examples of how
 to do this later.
Sphinx can also use filters to optimize full scans. Sphinx
 remembers minimum and maximum attribute values for short continuous
 row blocks (128 rows, by default) and can quickly throw away whole
 blocks based on filtering conditions. Rows are stored in the order of
 ascending document IDs, so this optimization works best for columns
 that are correlated with the ID. For instance, if you have a
 row-insertion timestamp that grows along with the ID, a full scan with
 filtering on that timestamp will be very fast.

The SphinxSE Pluggable Storage Engine

Full-text search results received from Sphinx almost always
 require additional work involving MySQL—at the very least, to pull out
 the text column values that the Sphinx index does not store. As a
 result, you'll frequently need to JOIN search results from Sphinx with other
 MySQL tables.
Although you can achieve this by sending the result's document
 IDs to MySQL in a query, that strategy leads to neither the cleanest
 nor the fastest code. For high-volume situations, you should consider
 using SphinxSE, a pluggable storage engine that you can compile into
 MySQL 5.0 or newer, or load into MySQL 5.1 or newer as a
 plug-in.
SphinxSE lets programmers query searchd and
 access search results from within MySQL. The usage is as simple as
 creating a special table with an ENGINE=SPHINX clause (and an optional
 CONNECTION clause to locate the
 Sphinx server if it's at a nondefault location), and then running
 queries against that table:
mysql> CREATE TABLE search_table (
 -> id INTEGER NOT NULL,
 -> weight INTEGER NOT NULL,
 -> query VARCHAR(3072) NOT NULL,
 -> group_id INTEGER,
 -> INDEX(query)
 ->) ENGINE=SPHINX CONNECTION="sphinx://localhost:3312/test";
Query OK, 0 rows affected (0.12 sec)

mysql> SELECT * FROM search_table WHERE query='test;mode=all' \G
*************************** 1. row ***************************
 id: 123
 weight: 1
 query: test;mode=all
group_id: 45
1 row in set (0.00 sec)
Each SELECT passes a Sphinx
 query as the query column in the
 WHERE clause. The Sphinx
 searchd server returns the results. The
 SphinxSE storage engine then translates these into MySQL
 results and returns them to the SELECT statement.
Queries may include JOINs
 with any other tables stored using any other storage engines.
The SphinxSE engine supports most searching options available
 via the API, too. You can specify options such as filtering and limits
 by plugging additional clauses into the query string:
mysql> SELECT * FROM search_table WHERE query='test;mode=all;
 -> filter=group_id,5,7,11;maxmatches=3000';
Per-query and per-word statistics that are returned by the API
 are also accessible through SHOW
 STATUS:
mysql> SHOW ENGINE SPHINX STATUS \G
*************************** 1. row ***************************
 Type: SPH INX
 Name: stats
Status: total: 3, total found: 3, time: 8, words: 1
*************************** 2. row ***************************
 Type: SPHINX
 Name: words
Status: test:3:5
2 rows in set (0.00 sec)
Even when you're using SphinxSE, the rule of thumb still is to allow
 searchd to perform sorting, filtering, and
 grouping—i.e., to add all the required clauses to the query string
 rather than use WHERE, ORDER BY, or
 GROUP BY. This is especially
 important for WHERE conditions. The
 reason is that SphinxSE is only a client to
 searchd, not a full-blown built-in search
 library. Thus, you need to pass everything that you can to the Sphinx
 engine to get the best performance.

Advanced Performance Control

Both indexing and searching operations could impose a
 significant additional load on either the search server or the
 database server. Fortunately, a number of settings let you limit the
 load coming from Sphinx.
An undesired database-side load can be caused by
 indexer queries that either stall MySQL
 completely with their locks or just occur too quickly and hog
 resources from other concurrent queries.
The first case is a notorious problem with MyISAM, where
 long-running reads lock the tables and stall other pending reads and
 writes—you can't simply do SELECT * FROM
 big_table on a production server, because you risk
 disrupting all other operations. To work around that, Sphinx offers
 ranged queries. Instead of configuring a single
 huge query, you can specify one query that quickly computes the
 indexable row ranges and another query that pulls out the data step by
 step, in small chunks:
sql_query_range = SELECT MIN(id),MAX(id) FROM documents
sql_range_step = 1000
sql_query = SELECT id, title, body FROM documents \
 WHERE id>=$start AND id<=$end
This feature is extremely helpful for indexing MyISAM tables,
 but it should also be considered when using InnoDB tables. Although
 InnoDB won't just lock the table and stall other queries when running
 a big SELECT *, it will still use
 significant machine resources because of its MVCC architecture.
 Multiversioning for a thousand transactions that cover a thousand rows
 each can be less expensive than a single long-running million-row
 transaction.
The second cause of excessive load happens when
 indexer is able to process the data more quickly
 than MySQL provides it. You should also use ranged queries in this
 case. The sql_ranged_throttle
 option forces indexer to sleep for a given time
 period (in milliseconds) between subsequent ranged query steps,
 increasing indexing time but easing the load on MySQL.
Interestingly enough, there's a special case when you can tune
 Sphinx to achieve exactly the opposite effect: that is, improve
 indexing time by placing more load on MySQL. When
 the connection between the indexer box and the
 database box is 100 Mbps, and the rows compress well (which is typical
 for text data), the MySQL compression protocol can improve overall
 indexing time. That comes at a cost of more CPU time spent on both the
 MySQL and indexer sides to compress and
 uncompress the rows transmitted over the network, respectively.
 However, overall indexing time could be up to 20–30% less because of
 greatly reduced network traffic.
Search clusters can suffer from occasional overload, too, so
 Sphinx provides a few ways to help avoid searchd
 going off on a spin.
First, a max_children option
 simply limits the total number of concurrently running queries and
 tells clients to retry when that limit is reached.
Then there are query-level limits. You can specify that query
 processing stop either at a given threshold of matches found or a
 given threshold of elapsed time, using the SetLimits() and SetMaxQueryTime() API calls, respectively.
 This is done on a per-query basis, so you can ensure that more
 important queries always complete fully.
Finally, periodic indexer runs can cause
 bursts of additional I/O that will in turn cause intermittent
 searchd slowdowns. To prevent that, options that
 limit indexer disk I/O exist. max_iops enforces a minimal delay between
 I/O operations that ensures that no more than max_iops disk operations per second will be
 performed. But even a single operation could be too much; consider a
 100-MB read() call as an example.
 The max_iosize option takes cares
 of that, guaranteeing that the length of every disk read or write will
 be under a given boundary. Larger operations are automatically split
 into smaller ones, and these smaller ones are then controlled by
 max_iops settings.

[132] See http://en.wikipedia.org/wiki/Okapi_BM25 for
 details.

Practical Implementation Examples

Each of the features we've described can be found successfully
 deployed in production. The following sections review several of these
 real-world Sphinx deployments, briefly describing the sites and some
 implementation details.
Full-Text Searching on Mininova.org

A popular torrent search engine, Mininova.org, provides a clear
 example of how to optimize "just" full-text searching. Sphinx replaced several MySQL
 slaves using MySQL built-in full-text indexes, which were
 unable to handle the load. After the replacement, the search servers
 were underloaded; the current load average is now in the 0.3–0.4
 range.
Here are the database size and load numbers:
	The site has a small database, with about 300,000–500,000 records and about 300–500
 MB of index.

	The site load is quite high: about 8–10 million searches per
 day at the time of this writing.

The data mostly consists of user-supplied filenames, frequently
 without proper punctuation. For this reason, prefix indexing is used
 instead of whole-word indexing. The resulting index is several times
 larger than it would otherwise be, but it is still small enough that
 it can be built quickly and its data can be cached effectively.
Search results for the 1,000 most frequent queries are cached on
 the application side. About 20–30% of all queries are served from the
 cache. Because of the "long tail" query distribution, a larger cache
 would not help much more.
For high availability, the site uses two servers with complete
 full-text index replicas. The indexes are rebuilt from scratch every
 few minutes. Indexing takes less than one minute, so there's no point
 in implementing more complex schemes.
The following are lessons learned from this example:
	Caching search results in the application helps a
 lot.

	There might be no need to have a huge cache, even for busy
 applications. A mere 1,000 to 10,000 entries can be enough.

	For databases on the order of 1 GB in size, simple periodic
 reindexing instead of more complicated schemes is OK, even for
 busy sites.

Full-Text Searching on BoardReader.com

Mininova is an extreme high-load project case—there's not that
 much data, but there are a lot of queries against that data.
 BoardReader (http://www.boardreader.com) was
 initially just the opposite: a forum search engine that performed many
 fewer searches on a much larger dataset. Sphinx replaced a commercial
 full-text search engine, which took up to 10 seconds per query to
 search through a 1 GB collection. Sphinx allowed BoardReader to scale
 greatly, both in terms of data size and query throughput.
Here's some general information:
	There are more than 1 billion documents and 1.5 TB of text
 in the database.

	There are about 500,000 page views and between 700,000 and 1
 million searches per day.

At the time of this writing, the search cluster consists of six
 servers, each with four logical CPUs (two dual-core Xeons), 16 GB of
 RAM, and 0.5 TB of disk space. The database itself is stored on a
 separate cluster. The search cluster is used only for indexing and
 searching.
Each of the six servers runs four searchd
 instances, so all four cores are used. One of the four instances
 aggregates the results from the other three. That makes a total of 24
 searchd instances. The data is distributed evenly
 across all of them. Every searchd copy carries
 several indexes over approximately 1/24 of the total data (about 60
 GB).
The search results from the six "first-tier"
 searchd nodes are in turn aggregated by another
 searchd running on the frontend web server. This
 instance carries several purely distributed indexes, which reference
 the six search cluster servers but have no local data at all.
Why have four searchd instances per node?
 Why not have only one searchd instance per
 server, configure it to carry four index chunks, and make it contact
 itself as though it's a remote server to utilize multiple CPUs, as we
 suggested earlier? Having four instances instead of just one has its
 benefits. First, it reduces startup time. There are several gigabytes
 of attribute data that need to be preloaded in RAM; starting several
 daemons at a time lets us parallelize that. Second, it improves
 availability. In the event of searchd failures or
 updates, only 1/24 of the whole index is inaccessible, instead of
 1/6.
Within each of the 24 instances on the search cluster, we use
 time-based partitioning to reduce the load even further. Many queries
 need to be run only on the most recent data, so the data is divided
 into three disjoint index sets: data from the last week, from the last
 three months, and from all time. These indexes are distributed over
 several different physical disks on a per-instance basis. This way,
 each instance has its own CPU and physical disk drive and won't
 interfere with the others.
Local cron jobs update the indexes
 periodically. They pull the data from MySQL over the network but
 create the index files locally.
Using several explicitly separated "raw" disks proved to
 be faster than a single RAID volume. Raw disks give control over which
 files go on which physical disk. That is not the case with RAID, where
 the controller decides which block goes on which physical disk. Raw
 disks also guarantee fully parallel I/O on different index chunks, but
 concurrent searches on RAID are subject to I/O stepping. We chose RAID
 0, which has no redundancy, because we don't care about disk failures;
 we can easily rebuild the indexes on the search nodes. We could also
 have used several RAID 1 (mirror) volumes to give the same throughput
 as raw disks while improving reliability.
Another interesting thing to learn from BoardReader is how
 Sphinx version updates are performed. Obviously, the whole cluster
 cannot be taken down. Therefore, backward compatibility is critical.
 Fortunately, Sphinx provides it—newer searchd
 versions usually can read older index files, and they are always able
 to communicate to older clients over the network. Note that the
 first-tier nodes that aggregate the search results look just like
 clients to the second-tier nodes, which do most of the actual
 searching. Thus, the second-tier nodes are updated first, then the
 first-tier ones, and finally the web frontend.
Lessons learned from this example are:
	The Very Large Database Motto: partition, partition,
 partition, parallelize.

	On big search farms, organize searchd
 in trees with several tiers.

	Build optimized indexes with a fraction of the total data
 where possible.

	Map files to disks explicitly rather than rely on the RAID
 controller.

Optimizing Selects on Sahibinden.com

Sahibinden.com, a
 leading Turkish online auction site, had a number of performance
 problems, including full-text search performance. After deploying
 Sphinx and profiling some queries, it was found that Sphinx could
 perform many of the frequent application-specific queries with filters
 faster than MySQL—even when there was an index on one of the
 participating columns in MySQL. Besides, using Sphinx for non-full-text searches resulted in
 unified application code that was simpler to write and support.
MySQL was underperforming because the selectivity on each
 individual column was not enough to reduce the search space
 significantly. In fact, it was almost impossible to create and
 maintain all the required indexes, because too many columns required
 them. The product information tables had about 100 columns, each of
 which the web application could technically use for filtering or
 sorting.
Active insertion and updates to the "hot" products table slowed
 to a crawl, because of too many index updates.
For that reason, Sphinx was a natural choice for
 all the SELECT
 queries on the product information tables, not just the full-text
 search queries.
Here are the database size and load numbers for the site:
	The database contains about 400,000 records and 500 MB of
 data.

	The load is about 3 million queries per day.

To emulate normal SELECT
 queries with WHERE conditions, the
 Sphinx indexing process included special keywords in the full-text
 index. The keywords were of the form _ _CATN_ _ _, where
 N was replaced with the corresponding
 category ID. This replacement happened during indexing with the
 CONCAT() function in the MySQL
 query, so the source data was not altered.
The indexes needed to be rebuilt as frequently as possible. We
 settled on rebuilding them every minute. A full reindexing took 9–15
 seconds on one of many CPUs, so the main + delta
 scheme discussed earlier was not necessary.
The PHP API turned out to spend a noticeable amount of time (7–9
 milliseconds per query) parsing the result set when it had many
 attributes. Normally, this overhead would not be an issue because the
 full-text search costs, especially over big collections, would be
 higher than the parsing cost. But in this specific case, we also
 needed non-full-text queries against a small collection. To alleviate
 the issue, the indexes were separated into pairs: a "lightweight" one
 with the 34 most frequently used attributes, and a "complete" one with
 all 99 attributes.
Other possible solutions would have been to use SphinxSE or to
 implement a feature to pull only the specified columns into Sphinx.
 However, the workaround with two indexes was by far the fastest to
 implement, and time was a concern.
The following are the lessons learned from this example:
	Sometimes, a full scan in Sphinx performs better than an
 index read in MySQL.

	For selective conditions, use a "fake keyword" instead of
 filtering on an attribute, so the full-text search engine can do
 more of the work.

	APIs in scripting languages can be a bottleneck in certain
 extreme but real-world cases.

Optimizing GROUP BY on BoardReader.com

An improvement to the BoardReader service required counting
 hyperlinks and building various reports from the linking data. For
 instance, one of the reports needed to show the top
 N second-level domains linked to during the
 last week. Another counted the top N
 second- and third-level domains that linked to a given site, such as
 YouTube. The queries to build these reports had the following common
 characteristics:
	They always group by domain.

	They sort by count per group or by the count of distinct
 values per group.

	They process a lot of data (up to millions of records), but
 the result set with the best groups is always small.

	Approximate results are acceptable.

During the prototype-testing phase, MySQL took up to 300 seconds
 to execute these queries. In theory, by partitioning the data,
 splitting it across servers, and manually aggregating the results in
 the application, it would have been possible to optimize the queries
 to around 10 seconds. But this is a complicated architecture to build;
 even the partitioning implementation is far from
 straightforward.
Because we had successfully distributed the search load with
 Sphinx, we decided to implement an approximate distributed GROUP BY with Sphinx, too. This required
 preprocessing the data before indexing to convert all the interesting
 substrings into standalone "words." Here's a sample URL before and
 after preprocessing:
source_url = http://my.blogger.com/my/best-post.php
processed_url = my$blogger$com, bloggercom, mybloggercommy,
 my$blogger$commybest, my$blogger$commybest$post.php
Dollar signs ($) are merely a unified replacement for URL
 separator characters so that searches can be conducted on any URL
 part, be it domain or path. This type of preprocessing extracts all
 "interesting" substrings into single keywords that are the fastest to
 search. Technically, we could have used phrase queries or prefix
 indexing, but that would have resulted in bigger indexes and slower
 performance.
Links are preprocessed at indexing time using a specially crafted MySQL UDF. We also enhanced
 Sphinx with the ability to count distinct values for this task. After
 that, we were able to move the queries completely to the search
 cluster, distribute them easily, and reduce query latency
 greatly.
Here are the database size and load numbers:
	There are about 150–200 million records, which becomes about
 50–100 GB data after preprocessing.

	The load is approximately 60,000–100,000 GROUP BY queries per day.

The indexes for the distributed GROUP
 BY were deployed on the same search cluster of 6 machines
 and 24 logical CPUs described previously. This is a minor
 complementary load to the main search load over the 1.5 TB text
 database.
Sphinx replaced MySQL's exact, slow, single-CPU computations
 with approximate, fast, distributed computations. All of the factors
 that introduce approximation errors are present: the incoming data
 frequently contains too many rows to fit in the "sort buffer" (we use
 a fixed RAM limit of 100K rows), we use COUNT(DISTINCT), and the result sets are
 aggregated over the network. Despite that, the results for the first
 10 to 1000 groups—which are actually required for the reports—are from
 99% to 100% correct.
The indexed data is very different from the data that would be
 used for an ordinary full-text search. There are a huge number of
 documents and keywords, even though the documents are very small. The
 document numbering is nonsequential, because it uses a special
 numbering convention (source server, source table, and primary key)
 that does not fit in 32 bits. The huge amount of search "keywords" was
 also causing frequent CRC32 collisions (Sphinx uses CRC32 to map
 keywords to internal word IDs). For these reasons, we were forced to
 use 64-bit identifiers everywhere internally.
The current performance is satisfactory. For the most complex
 domains, queries normally complete in 0.1 to 1.0 seconds.
The following are the lessons learned from this example:
	For GROUP BY queries,
 some precision can be traded for speed.

	With huge textual collections or moderately sized special
 collections, 64-bit identifiers might be required.

Optimizing Sharded JOIN Queries on Grouply.com

Sphinx's MVA support is a fairly new feature, but users have
 already found clever uses for it. Grouply.com built a Sphinx-based
 solution to search its multimillion-record database of tagged messages. The database is split
 across many physical servers for massive scalability, so it may be
 necessary to query tables that are located on different servers.
 Arbitrary large-scale joins are impossible because there are too many
 participating servers, databases, and tables.
Grouply.com uses
 Sphinx's MVA attributes to store message tags. The tag list is
 retrieved from a Sphinx cluster via the PHP API. This replaces
 multiple sequential SELECTs from
 several MySQL servers. To reduce the number of SQL queries as well,
 certain presentation-only data (for example, a small list of users who
 last read the message) is also stored in a separate MVA attribute and
 accessed through Sphinx.
Two key innovations here are using Sphinx to prebuild JOIN results and using its distributed
 capabilities to merge data scattered over many shards. This would be
 next to impossible with MySQL alone. Efficient merging would require
 partitioning the data over as few physical servers and tables as
 possible, but that would hurt both scalability and
 extensibility.
Lessons learned from this example are:
	Sphinx can be used to aggregate highly partitioned data
 efficiently.

	MVAs can be used to store and optimize prebuilt JOIN results.

Conclusion

We've discussed the Sphinx full-text search system only briefly in
 this appendix. To keep it short, we intentionally omitted discussions of
 many other Sphinx features, such as HTML indexing support, ranged
 queries for better MyISAM support, morphology and synonym support,
 prefix and infix indexing, and CJK indexing. Nevertheless, this appendix
 should give you some idea of how Sphinx can solve many different
 real-world problems efficiently. It is not limited to full-text
 searching; it can solve a number of difficult problems that would
 traditionally be done in SQL.
Sphinx is neither a silver bullet nor a replacement for MySQL.
 However, in many cases (which are becoming common in modern web
 applications), it can be used as a very useful complement to MySQL. You
 can use it to simply offload some work, or even to create new
 possibilities for your application.
Download it at http://www.sphinxsearch.com—and don't forget to share
 your own usage ideas!

Appendix D. Debugging Locks

Any system that uses locks to control shared access to resources can be hard to
 debug when a lock contention issue crops up. Perhaps you're trying to add
 a column to a table, or just trying to run a query, when suddenly you find
 that your queries are blocked because something else is locking the table
 or rows you're trying to use. This appendix shows you what to do when you
 encounter these situations in MySQL. Often all you will want to do is find
 out why your query is blocked, but sometimes you will want to know what's
 blocking it, so you know which process to kill. This appendix shows you
 how to achieve both goals.
Lock Waits at the Server Level

A lock wait can happen at either the server level or the storage
 engine level. [133] (Application-level locks could be a problem too, but we're
 focusing on MySQL.)
The MySQL server itself uses several types of locks. If a query is
 waiting for a lock at the server level, you can see evidence of it in
 the output of SHOW PROCESSLIST. In
 addition to server-level locks, any storage engine that supports
 row-level locks, such as InnoDB, implements its own locks, at least at
 the time of this writing. In MySQL 5.0 and earlier versions, the server
 is unaware of such locks, and they're mostly hidden from users and
 database administrators. Future versions may expose more of these locks
 at the server level, probably through pluggable INFORMATION_SCHEMA tables.
Here are the kinds of locks the MySQL server uses:
	Table locks
	Tables can be locked with explicit read and write locks.
 There are a couple of variations on these locks, such as local
 read locks. You can learn about the variations in the LOCK TABLES section of the MySQL manual.
 In addition to these explicit locks, queries acquire implicit
 locks on tables for their durations.

	Global locks
	There is a single global read lock that can be acquired with FLUSH TABLES WITH READ LOCK.

	Name locks
	Name locks are a type of table lock that the
 server creates when it renames or drops a
 table.

	String locks
	You can lock and release an arbitrary string server-wide
 with GET_LOCK() and its
 associated functions.

We examine each of these lock types in more detail in the
 following sections.
Table Locks

Table locks can be either explicit or implicit. You
 create explicit locks with LOCK
 TABLES. For example, if you execute the following command in
 a mysql session, you'll have an explicit lock on
 sakila.film:
mysql> LOCK TABLES sakila.film READ;
If you then execute the following command in a different
 session, the query will hang and not complete:
mysql> LOCK TABLES sakila.film WRITE;
You can see the waiting thread in the first connection:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 7
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: NULL
 Info: SHOW PROCESSLIST
*************************** 2. row ***************************
 Id: 11
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 4
 State: Locked
 Info: LOCK TABLES sakila.film WRITE
2 rows in set (0.01 sec)
Notice that thread 11's state is Locked. There is only one place in the MySQL
 server's code where a thread enters that state: when it tries to
 acquire a table lock and another thread has the table locked. Thus, if
 you see this, you know the thread is waiting for a lock in the MySQL
 server, not in the storage engine.
Explicit locks, however, are not the only type of lock that might
 block such an operation. As we mentioned earlier, the server implicitly locks tables during queries. An easy
 way to show this is with a long-running query, which you can create
 easily with the SLEEP()
 function:
mysql> SELECT SLEEP(30) FROM sakila.film LIMIT 1;
If you try again to lock sakila.film while that query is running, the
 operation will hang because of the implicit lock, just as it did when
 you had the explicit lock. You'll be able to see the effects in the
 process list, as before:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 7
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 12
 State: Sending data
 Info: SELECT SLEEP(30) FROM sakila.film LIMIT 1
*************************** 2. row ***************************
 Id: 11
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 9
 State: Locked
 Info: LOCK TABLES sakila.film WRITE
In this example, the implicit read lock for the SELECT query blocks the explicit write lock
 requested by LOCK TABLES. Implicit
 locks can block each other, too.
You may be wondering about the difference between implicit and
 explicit locks. Internally, they are the same type of structure, and
 the same MySQL server code controls them. Externally, you can control
 explicit locks yourself with LOCK
 TABLES and UNLOCK
 TABLES.
When it comes to storage engines other than MyISAM, however,
 there's one very important difference between them. When you create a
 lock explicitly, it does what you tell it to, but implicit locks are
 hidden and "magical." The server creates and releases implicit locks
 automatically as needed, and it tells the storage engine about them.
 Storage engines "convert" these locks as they see fit. For example,
 InnoDB has rules about what type of InnoDB table lock it should create
 for a given server-level table lock. This can make it hard to
 understand what locks InnoDB is really creating behind the
 scenes.
In MySQL 5.0 and 5.1, the server manages server-level table locks in a deadlock-free manner, by creating and
 releasing them all at the same time, and all in the same internally
 defined order. In MySQL 6.0, it is possible to add more locks without
 releasing your existing locks, so it may be possible to create deadlocks on
 table-level locks. However, this functionality is incomplete at the
 time of this writing, so the ultimate behavior is unknown.
Finding out who holds a lock

If you see a lot of processes in the Locked state, your problem might be that
 you're trying to use MyISAM or a similar storage engine for a
 high-concurrency workload. This can block you from performing an
 operation manually, such as adding an index to a table. If an
 UPDATE query is queued and
 waiting for a lock on a MyISAM table, even a SELECT query won't be allowed to run. (You
 can read more about MySQL's lock queuing and priorities in the MySQL
 manual.)
In some cases, it can become clear that some connection has
 been holding a lock on a table for a very long time and just needs
 to be killed (or a user needs to be admonished not to hold up the
 works!). But how can you find out which connection that is?
There's currently no SQL command that can show you which
 thread holds the table locks that are blocking your query. If you run
 SHOW PROCESSLIST, you can see the
 processes that are waiting for locks, but not which processes hold
 those locks. Fortunately, there's a debug
 command (which it's not possible to run through SQL) that can print
 information about locks into the server's error log. You can use the
 mysqladmin utility to run the
 command:
$ mysqladmin debug
The output includes a lot of debugging information, but near the end you'll see
 something like the following. We created this output by locking the
 table in one connection, then trying to lock it again in
 another:
Thread database.table_name Locked/Waiting Lock_type

7 sakila.film Locked - read Read lock without concurrent inserts
8 sakila.film Waiting - write Highest priority write lock
You can see that thread 8 is waiting for the lock thread 7
 holds.
The mysqladmin debug command prints out
 more information if MySQL is compiled with debugging enabled, but it
 prints the locks and some other useful information no matter
 what.

The Global Read Lock

The MySQL server also implements a global read lock. You can
 obtain this lock as follows:
mysql> FLUSH TABLES WITH READ LOCK;
If you now try to lock a table in another session, it will hang
 as before:
mysql> LOCK TABLES sakila.film WRITE;
How can you tell that this query is waiting for the global read
 lock and not a table-level lock as before? Look at the output of
 SHOW PROCESSLIST:
mysql> SHOW PROCESSLIST\G
...
*************************** 2. row ***************************
 Id: 22
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 9
 State: Waiting for release of readlock
 Info: LOCK TABLES sakila.film WRITE
Notice that the query's state is Waiting for release of readlock. This is
 your clue that the query is waiting for the global read lock, not a
 table-level lock.
MySQL provides no way to find out who holds the global read
 lock.

Name Locks

Name locks are a type of table lock that the server creates when it renames or drops a table. A name
 lock conflicts with an ordinary table lock, whether implicit or
 explicit. For example, if we use LOCK
 TABLES as before, and then in another session try to rename
 the locked table, the query will hang, but this time not in the
 Locked state:
mysql> RENAME TABLE sakila.film2 TO sakila.film;
As before, the process list is the place to see the locked
 query, which is in the Waiting for
 table state:
mysql> SHOW PROCESSLIST\G
...
*************************** 2. row ***************************
 Id: 27
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 3
 State: Waiting for table
 Info: rename table sakila.film to sakila.film 2
You can see the effects of a name lock in the output of SHOW OPEN TABLES, too:
mysql> SHOW OPEN TABLES;
+----------+-----------+--------+-------------+
| Database | Table | In_use | Name_locked |
+----------+-----------+--------+-------------+
sakila	film_text	3	0
sakila	film	2	1
sakila	film2	1	1
+----------+-----------+--------+-------------+
3 rows in set (0.00 sec)
Notice that both names (the original and the new name) are
 locked. sakila.film_text is locked
 because there's a trigger on sakila.film that refers to it, which
 illustrates another way locks can insinuate themselves into places you might not
 expect. If you query sakila.film,
 the trigger causes you to implicitly touch sakila.film_text, and therefore to
 implicitly lock it. It's true that the trigger really doesn't need to
 fire for the rename, and thus technically the lock isn't required, but
 that's the way it is: MySQL's locking is sometimes not as fine-grained
 as you might like.
MySQL doesn't provide any way to find out who holds name locks,
 but this usually isn't a problem because they're generally held for
 only a very short time. When there's a conflict, it is generally
 because a name lock is waiting for a normal table lock, which you can
 view with mysqladmin debug, as shown
 earlier.

User Locks

The final type of lock implemented in the server is the user
 lock, which is basically a named mutex. You specify the string to lock
 and the number of seconds to wait before the lock attempt should time
 out:
mysql> SELECT GET_LOCK('my lock', 100);
+--------------------------+
| GET_LOCK('my lock', 100) |
+--------------------------+
| 1 |
+--------------------------+
1 row in set (0.00 sec)
This attempt returned success immediately, so this thread now
 has a lock on that named mutex. If another thread tries to lock the
 same string, it will hang until it times out. This time the process
 list shows a different state:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 22
 User: baron
 Host: localhost
 db: NULL
Command: Query
 Time: 9
 State: User lock
 Info: SELECT GET_LOCK('my lock', 100)
The User lock state is unique
 to this type of lock. MySQL provides no way to find out who holds a
 user lock.

[133] Refer to Figure 1-1 in Chapter 1 if you need to refresh your memory
 on the separation between the server and the storage engines.

Lock Waits in Storage Engines

Locks at the server level can be quite a bit easier to debug than locks
 in storage engines. Storage engine locks differ from one storage engine
 to the next, and the engines may not provide any means to inspect their
 locks. We focus mostly on InnoDB in this appendix, because it's currently the most
 popular storage engine that implements its own locks.
InnoDB Lock Waits

InnoDB exposes some lock information in the output of SHOW INNODB STATUS. If a transaction is
 waiting for a lock, the lock will appear in the TRANSACTIONS section of the output from
 SHOW INNODB STATUS. For example, if
 you execute the following commands in one session, you will acquire a
 write lock on the first row in the table:
mysql> SET AUTOCOMMIT=0;
mysql> BEGIN;
mysql> SELECT film_id FROM sakila.film LIMIT 1 FOR UPDATE;
If you now run the same commands in another session, your query
 will block on the lock the first session acquired on that row. You can
 see the effects in SHOW INNODB
 STATUS (we've abbreviated the results for clarity):
1 LOCK WAIT 2 lock struct(s), heap size 1216
2 MySQL thread id 8, query id 89 localhost baron Sending data
3 SELECT film_id FROM sakila.film LIMIT 1 FOR UPDATE
4 ------- TRX HAS BEEN WAITING 9 SEC FOR THIS LOCK TO BE GRANTED:
5 RECORD LOCKS space id 0 page no 194 n bits 1072 index `idx_fk_language_id` of table
 `sakila/film` trx id 0 61714 lock_mode X waiting
The last line shows that the query is waiting for an exclusive
 (lock_mode X) lock on Optimizing UNION of the table's idx_fk_language_id index. Eventually, the
 lock wait timeout will be exceeded, and the query will return an
 error:
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
Unfortunately, without seeing who holds the locks, it's hard to figure out which
 transaction is causing the problem. You can often make an educated
 guess by looking at which transactions have been open a very long
 time; alternatively, you can activate the InnoDB lock monitor, which
 will show up to 10 of the locks each transaction holds. To activate
 the monitor, you create a magically named table with the InnoDB
 storage engine: [134]
mysql> CREATE TABLE innodb_lock_monitor(a int) ENGINE=INNODB;
When you issue this query, InnoDB begins printing a slightly
 enhanced version of the output of SHOW INNODB
 STATUS to standard output at intervals (the interval varies,
 but it's usually several times per minute). On most systems, this
 output is redirected to the server's error log; you can examine it to
 see which transactions hold which locks. To stop the lock monitor,
 drop the table.
Here's the relevant sample of the lock monitor output:
 1 ---TRANSACTION 0 61717, ACTIVE 3 sec, process no 5102, OS thread id 1141152080

 2 3 lock struct(s), heap size 1216
 3 MySQL thread id 11, query id 108 localhost baron
 4 show innodb status
 5 TABLE LOCK table `sakila/film` trx id 0 61717 lock mode IX
 6 RECORD LOCKS space id 0 page no 194 n bits 1072 index `idx_fk_language_id` of table
 `sakila/film` trx id 0 61717 lock_mode X
 7 Record lock, heap no 2 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
 8 ... omitted ...
 9
10 RECORD LOCKS space id 0 page no 231 n bits 168 index `PRIMARY` of table `sakila/film`
 trx id 0 61717 lock_mode X locks rec but not gap
11 Record lock, heap no 2 PHYSICAL RECORD: n_fields 15; compact format; info bits 0
12 ... omitted ...
Notice that line 3 shows the MySQL thread ID, which is the same
 as the value in the Id column in
 the process list. Line 5 shows that the transaction has an implicit
 exclusive table lock (IX) on the
 table. Lines 6 through 8 show the lock on the index. We've omitted the
 information on line 8 because it's a dump of the locked record and is
 pretty verbose. Lines 9 through 11 show the corresponding lock on the
 primary key (a FOR UPDATE lock must
 lock the row, not just the index).
It's undocumented, but when the lock monitor is activated the
 extra information appears in the output of SHOW INNODB STATUS too, so you don't
 actually have to look in the server's error log to see the lock
 information.
Toward more usable lock output

The lock monitor is not optimal, for several reasons. The
 primary problem is that the lock information is very verbose,
 because it includes hex and ASCII dumps of the records that are
 locked. It fills up the error log, and it can easily overflow the
 fixed-size output of SHOW INNODB
 STATUS. This means you might not get the information
 you're looking for in later sections of the output (see "LATEST
 DETECTED DEADLOCK" on LATEST DETECTED DEADLOCK
 for more on this). InnoDB also has a hardcoded limit to the number
 of locks it prints per transaction—after printing 10 locks, it will
 not print any more, which means you may not even see any information
 on the lock you want. To top it all off, even if what you're looking
 for is there, it's hard to find it in all that lock output. (Just
 try it on a busy server, and you'll see!)
Two things can make the lock output more usable. The first is
 a patch one of this book's authors wrote for InnoDB and
 the MySQL server. The patch removes the verbose record dumps from
 the output, includes the lock information in the output of SHOW INNODB STATUS by default (so the lock
 monitor doesn't need to be activated), and adds dynamically settable
 server variables to control the verbosity and how many locks should
 be printed per transaction. You can get the patch for MySQL 5.0 at http://lists.mysql.com/internals/35174.
The second option is to use innotop to
 parse and format the output. Its Lock mode shows locks, aggregated
 neatly by connection and table, so you can see quickly which
 transactions hold locks on a given table. This is not a foolproof
 method of finding which transaction is blocking a lock, as that
 would require examining the dumped records to find the precise
 record that's locked. However, it's much better than the usual
 alternatives, and it's good enough for many purposes.
InnoDB developers have told us they're working on exporting
 InnoDB information into INFORMATION_SCHEMA tables for a future
 release, but this code isn't in any public release yet. In the
 future, this will probably be the preferred way to expose lock
 information.

Falcon Lock Waits

The Falcon transactional storage engine, which is part of the
 MySQL 6.0 alpha release at the time of this writing, exports its
 transaction information to an INFORMATION_SCHEMA table. You can use this
 to find the cause of a lock wait very easily with a SQL
 command:
mysql> SELECT a.THREAD_ID AS blocker, a.STATEMENT AS blocking_query,
 -> b.THREAD_ID AS blocked, b.STATEMENT AS blocked_query
 -> FROM INFORMATION_SCHEMA.FALCON_TRANSACTIONS AS a
 -> INNER JOIN INFORMATION_SCHEMA.FALCON_TRANSACTIONS AS b ON
 -> a.ID = b.WAITING_FOR
 -> WHERE b.WAITING_FOR > 0;
+---------+----------------+---------+------------------------------+
| blocker | blocking_query | blocked | blocked_query |
+---------+----------------+---------+------------------------------+
| 4 | | 5 | SELECT * FROM tbl FOR UPDATE |
+---------+----------------+---------+------------------------------+
This type of diagnostic information should make life much easier
 for MySQL database administrators in the future!

[134] InnoDB honors several "magical" table names as instructions.
 Current practice is to use dynamically settable server variables,
 but InnoDB has been around a long time, so it still has some old
 behaviors.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	% (percent sign), Adding, Removing, and Viewing Grants, Connecting through localhost versus 127.0.0.1
	* (asterisk), Setting Up MySQL Privileges
	? (question mark), Prepared Statements

A
	ab tool, Benchmarking Tools
	Aborted_clients status variable, Inspecting MySQL Server Status Variables, Thread and Connection Statistics
	Aborted_connects status variable, Inspecting MySQL Server Status Variables, Thread and Connection Statistics
	access control, Terminology
	access time, Choosing Hard Disks, Choosing Hard Disks
	accounts, How Replication Works, Account Basics, The Grant Tables, Adding, Removing, and Viewing Grants, Adding, Removing, and Viewing Grants, Setting Up MySQL Privileges, Disabling anonymous users
		adding, Adding, Removing, and Viewing Grants
	anonymous, Disabling anonymous users
	for replication, How Replication Works
	removing, Adding, Removing, and Viewing Grants
	stored in grant tables, The Grant Tables
	types of, Setting Up MySQL Privileges

	ACID test, Transactions
	active caches, Caching
	active monitoring, Monitoring Tools
	adaptive hash indexes, Hash indexes, INSERT BUFFER AND ADAPTIVE HASH INDEX
	administration, MySQL Visual Tools, phpMyAdmin
	administrator account, Setting Up MySQL Privileges, Setting Up MySQL Privileges
		database, Setting Up MySQL Privileges
	system, Setting Up MySQL Privileges

	AES_DECRYPT() function, Encrypting and decrypting inside MySQL
	AES_ENCRYPT() function, Encrypting and decrypting inside MySQL
	Aker, User-Defined Functions
	algebraic equivalence rules, The query optimizer
	ALTER TABLE command, Reducing Index and Data Fragmentation, Speeding Up ALTER TABLE, The MyISAM Storage Engine, The MyISAM Storage Engine
		improving performance of, Speeding Up ALTER TABLE, The MyISAM Storage Engine, The MyISAM Storage Engine

	analysis tools, Analysis Tools, MySQL Proxy, Maatkit Analysis Tools, Maatkit Analysis Tools, MySQL Utilities, MySQL Proxy
	ANALYZE TABLE command, Updating Index Statistics
	Analyzing state, Query states
	anonymous users, Disabling anonymous users
	Apache web server, Web Server Issues, Finding the Optimal Concurrency, Web Server Issues, Web Server Issues, Finding the Optimal Concurrency
	application-level caching, Application-Level Caching, Cache Control Policies, Application-Level Caching, Cache Control Policies
	application-level encryption, Application-Level Encryption, MySQL in a chrooted Environment, Encrypting and decrypting inside MySQL, MySQL in a chrooted Environment
	applications, Profiling an Application, How and what to measure, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, Profiling a MySQL Server, Profiling a MySQL Server, Join Decomposition, Application-Level Optimization, Find the Source of the Problem, Look for Common Problems, Look for Common Problems, Caching, Caching, Application-Level Caching, Application-Level Caching, Cache Object Hierarchies, Cache Object Hierarchies
		joins performed in, Join Decomposition
	performance of, Application-Level Optimization, Look for Common Problems, Look for Common Problems, Caching, Caching, Application-Level Caching, Application-Level Caching, Cache Object Hierarchies, Cache Object Hierarchies
		caching for, Caching, Caching, Application-Level Caching, Application-Level Caching, Cache Object Hierarchies, Cache Object Hierarchies
	problems with, Application-Level Optimization, Look for Common Problems, Look for Common Problems

	profiling, Profiling an Application, How and what to measure, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, Profiling a MySQL Server, Profiling a MySQL Server, Find the Source of the Problem

	Archive storage engine, The Archive Engine, Storage Engine Summary
	archiving data, Selective replication, Tools for sharding, Clustering, Scaling Back, Keeping active data separate, Clustering, Clustering, Maatkit Utilities
		for scalability, Tools for sharding, Clustering, Scaling Back, Keeping active data separate, Clustering, Clustering
	replication for, Selective replication
	utility for, Maatkit Utilities

	Atomicity, Transactions
	attributes support, Support for Attributes
	auditing, Why Backups?
	authentication, Connection Management and Security, Terminology
	authorization, Terminology
	AUTOCOMMIT mode, AUTOCOMMIT
	autogenerated schemas, Choosing Identifiers
	automatic host blocking, Automatic Host Blocking
	auto_increment_increment variable, Master-Master in Active-Active Mode
	auto_increment_offset variable, Master-Master in Active-Active Mode
	availability, Problems Solved by Replication, Scaling and High Availability, Terminology, High Availability, Planning for High Availability, Planning for High Availability, Adding Redundancy, Replicated-disk architectures, Synchronous MySQL replication, Synchronous MySQL replication, Failover and Failback, Failover and Failback, Handling failover in the application, Promoting a slave or switching roles, Promoting a slave or switching roles, Promoting a slave or switching roles, Virtual IP addresses or IP takeover, Virtual IP addresses or IP takeover, Virtual IP addresses or IP takeover, The MySQL Master-Master Replication Manager, Middleman solutions, Middleman solutions, Handling failover in the application, Handling failover in the application
		adding redundancy, Adding Redundancy
	failover and failback for, Failover and Failback, Handling failover in the application, Promoting a slave or switching roles, Middleman solutions, Handling failover in the application, Handling failover in the application
	IP addresses, Virtual IP addresses or IP takeover
	IP takeover for, Virtual IP addresses or IP takeover
	masters, Promoting a slave or switching roles
	middleman solutions for, Middleman solutions
	planning for, Planning for High Availability
	replication for, Problems Solved by Replication
	slave, Promoting a slave or switching roles
	synchronous replication for, Synchronous MySQL replication

B
	B-Tree indexes, B-Tree indexes, Hash indexes, B-Tree indexes, B-Tree indexes, B-Tree indexes, B-Tree indexes, B-Tree indexes, B-Tree indexes, Hash indexes
		limitations of, B-Tree indexes
	when to use, B-Tree indexes

	Background Patrol Read, RAID Failure, Recovery, and Monitoring
	Backup & Recovery (Preston), Backup and Recovery
	backup accounts, Setting Up MySQL Privileges
	BACKUP DATABASE command, MySQL Online Backup
	backups, Selecting the Right Engine, Recommended Replication Configuration, Backup and Recovery, Backup and Recovery, What Can You Afford to Lose?, Overview, It's All About Recovery, It's All About Recovery, It's All About Recovery, It's All About Recovery, The Big Picture, The Big Picture, The Big Picture, The Big Picture, The Big Picture, The Big Picture, Why Backups?, Why Backups?, Why Backups?, Why Backups?, Why Backups?, Why Backups?, What Can You Afford to Lose?, What Can You Afford to Lose?, Online or Offline Backups?, Online or Offline Backups?, Logical backups, Raw backups, What to Back Up, What to Back Up, Incremental backups, Incremental backups, Replication, Incremental backups, Data consistency, File consistency, Replication, Replication, Replication, The Binary Log Format, Purging Old Binary Logs Safely, SQL dumps, How LVM snapshots work, Recovering from a Backup, Prerequisites and configuration, Creating, mounting, and removing an LVM snapshot, LVM snapshots for online backups, Planning for LVM backups, Recovering from a Backup, Starting MySQL after restoring raw files, Backup and Recovery Speed, Backup Tools, mysqldump, mysqlhotcopy, InnoDB Hot Backup, mk-parallel-dump, Installing and testing ZRM, Comparison of Backup Tools, Scripting Backups, Guidelines, Maatkit Utilities
		by shared hosting provider, What Can You Afford to Lose?
	choosing storage engine based on, Selecting the Right Engine
	copying files between machines, The Big Picture
	data and file consistency of, Incremental backups, Replication, Data consistency, File consistency, Replication
	for auditing, Why Backups?
	for disaster recovery, The Big Picture
	for testing purposes, Why Backups?
	importance of, Backup and Recovery, Why Backups?
	incremental, Incremental backups
	location of, Guidelines
	logical backups, Logical backups, Starting MySQL after restoring raw files
		restoring, Starting MySQL after restoring raw files

	LVM snapshots, How LVM snapshots work, Recovering from a Backup, Prerequisites and configuration, Creating, mounting, and removing an LVM snapshot, LVM snapshots for online backups, Planning for LVM backups, Recovering from a Backup
	of binary logs, Why Backups?, Replication, The Binary Log Format, Purging Old Binary Logs Safely
	offline, Online or Offline Backups?
	online, Online or Offline Backups?
	RAID as, It's All About Recovery
	raw backups, The Big Picture, Raw backups
	recommendations for, The Big Picture
	replication for, It's All About Recovery, Replication
	replication slave initialization using, Recommended Replication Configuration
	scripting, Scripting Backups
	security of, The Big Picture
	speed of, Backup and Recovery Speed
	SQL dumps, SQL dumps
	tools for, Backup Tools, mysqldump, mysqlhotcopy, InnoDB Hot Backup, mk-parallel-dump, Installing and testing ZRM, Comparison of Backup Tools, Maatkit Utilities
	what data to include in, Why Backups?, What to Back Up, What to Back Up, Incremental backups

	Barth, Nagios
	battery backup unit (BBU), The RAID cache, Using Multiple Disk Volumes
	BBU (battery backup unit), The RAID cache
	BENCHMARK() function, Single-Component Tools
	benchmarking, Finding Bottlenecks: Benchmarking and Profiling, Benchmarking Strategies, Benchmarking Strategies, What to Measure, What to Measure, What to Measure, What to Measure, What to Measure, What to Measure, Benchmarking Tactics, Benchmarking Tactics, Benchmarking Tactics, Benchmarking Tactics, Designing and Planning a Benchmark, Designing and Planning a Benchmark, Designing and Planning a Benchmark, Designing and Planning a Benchmark, Designing and Planning a Benchmark, Designing and Planning a Benchmark, Designing and Planning a Benchmark, Getting Accurate Results, Getting Accurate Results, Getting Accurate Results, Running the Benchmark and Analyzing Results, Running the Benchmark and Analyzing Results, Benchmarking Tools, Single-Component Tools, Full-Stack Tools, Full-Stack Tools, Single-Component Tools, Single-Component Tools, Single-Component Tools, Single-Component Tools, Benchmarking Examples, Profiling, http_load, The sysbench file I/O benchmark, The sysbench file I/O benchmark, The sysbench OLTP benchmark, The sysbench OLTP benchmark, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite, MySQL Benchmark Suite, Profiling, Getting Started
		before configuring server, Getting Started
	changing parameters of, Getting Accurate Results
	common mistakes in, Benchmarking Tactics
	data set for, Designing and Planning a Benchmark
	designing benchmarks, Designing and Planning a Benchmark
	errors during, Benchmarking Tactics
	examples of, Benchmarking Examples, Profiling, http_load, The sysbench file I/O benchmark, The sysbench file I/O benchmark, The sysbench OLTP benchmark, The sysbench OLTP benchmark, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite, MySQL Benchmark Suite, Profiling
	full-stack, Benchmarking Strategies, Full-Stack Tools
	goals for, What to Measure, What to Measure, What to Measure, What to Measure
	latency, What to Measure
	number of times to run, Running the Benchmark and Analyzing Results
	of migrations, Getting Accurate Results
	queries for, Designing and Planning a Benchmark
	realistic scenarios for, Benchmarking Tactics
	reasons for, Benchmarking Strategies
	repeatability of, Designing and Planning a Benchmark, Getting Accurate Results
	results of, Designing and Planning a Benchmark, Designing and Planning a Benchmark, Running the Benchmark and Analyzing Results
		accuracy of, Designing and Planning a Benchmark
	analyzing, Running the Benchmark and Analyzing Results
	documenting, Designing and Planning a Benchmark

	scalability measurements, What to Measure
	single-component, Single-Component Tools
	standard benchmarks, Designing and Planning a Benchmark
	tools for, Benchmarking Tools, Single-Component Tools, Full-Stack Tools, Single-Component Tools, Single-Component Tools, Single-Component Tools, dbt2 TPC-C on the Database Test Suite
		Database Test Suite, dbt2 TPC-C on the Database Test Suite
	JMeter, Full-Stack Tools

	warming up system before, Benchmarking Tactics

	BIGINT type, Whole Numbers
	binary log events, How Replication Works
	binary logs, Other I/O tuning options, Problems Solved by Replication, Recommended Replication Configuration, The Big Picture, Replication, The Binary Log Format, Purging Old Binary Logs Safely, Backing Up Data, Binary Logging Status, Replication Status
		backing up, The Big Picture, Replication, Backing Up Data
	flushing, Other I/O tuning options
	for replication, Problems Solved by Replication, Recommended Replication Configuration
	format of, The Binary Log Format
	purging, Purging Old Binary Logs Safely
	status of, Replication Status
	status variables for, Binary Logging Status

	bind_address variable, Localhost-Only Connections
	binlog dump process, How Replication Works
	Binlog_cache_disk_use status variable, Inspecting MySQL Server Status Variables, Binary Logging Status
	Binlog_cache_use status variable, Inspecting MySQL Server Status Variables, Binary Logging Status
	binlog_do_db variable, Replication Filters
	binlog_ignore_db variable, Replication Filters
	BIT type, Bit-Packed Data Types
	bit-packed data types, Bit-Packed Data Types, Choosing Identifiers, Bit-Packed Data Types, Choosing Identifiers, Choosing Identifiers
	Blackhole storage engine, The Blackhole Engine, Storage Engine Summary
	blob streaming infrastructure, The PBXT (Primebase XT) Engine
	BLOB types, BLOB and TEXT types, Optimizing for BLOB and TEXT Workloads, Optimizing for BLOB and TEXT Workloads
	books and publications, SHOW STATUS
		MySQL documentation, SHOW STATUS

	Boolean full-text searches, Boolean Full-Text Searches
	buffer pool, Getting Started, The InnoDB Buffer Pool, BUFFER POOL AND MEMORY
	BUFFER POOL AND MEMORY section, BUFFER POOL AND MEMORY
	Building Internet Firewalls (Zwicky et al.), Network Security
	bulletin boards, Bulletin boards and threaded discussion forums

C
	CACHE INDEX command, The MyISAM Key Cache
	cache miss rate, Finding an Effective Memory-to-Disk Ratio
	cache tables, Cache and Summary Tables, Counter tables, Cache and Summary Tables, Cache and Summary Tables, Counter tables, Counter tables
	cache units, The working set and the cache unit
	caches, Balancing Memory and Disk Resources
	caching, Per-connection memory needs, MyISAM I/O Tuning, Allocating memory for caches, The MyISAM Key Cache, The MyISAM Key Cache, The InnoDB Buffer Pool, The InnoDB Buffer Pool, The Thread Cache, The InnoDB Data Dictionary, MyISAM I/O Tuning, Random Versus Sequential I/O, Caching, Pregenerating Content, Caching, Caching, Caching, Caching Below the Application, Application-Level Caching, Cache Control Policies, Application-Level Caching, Application-Level Caching, Cache Control Policies, Cache Control Policies, Cache Control Policies, Cache Object Hierarchies, Pregenerating Content, Pregenerating Content
		active caches, Caching
	application-level, Application-Level Caching, Cache Control Policies, Cache Control Policies
	below application level, Caching Below the Application
	control policies for, Cache Control Policies
	memory requirements for, Per-connection memory needs, MyISAM I/O Tuning, Allocating memory for caches, The MyISAM Key Cache, The MyISAM Key Cache, The InnoDB Buffer Pool, The InnoDB Buffer Pool, The Thread Cache, The InnoDB Data Dictionary, MyISAM I/O Tuning
	passive caches, Caching
	pregenerating content for, Pregenerating Content
	reads and writes affected by, Random Versus Sequential I/O

	caching proxy server, Web Server Issues
	Cacti tool, Network Configuration, RRDTool-based systems
	capacity, Terminology
	CD-ROM applications, CD-ROM applications
	CHANGE MASTER TO command, Starting the Slave, Planned promotions
	CHAR type, VARCHAR and CHAR types, BLOB and TEXT types, VARCHAR and CHAR types, BLOB and TEXT types
	CHARACTER SET clause, Special-case behaviors
	character sets, Character Sets and Collations, Choosing a Character Set and Collation, How MySQL Uses Character Sets, How MySQL Uses Character Sets, Settings for client/server communication, Settings for client/server communication, How MySQL compares values, How MySQL compares values, Special-case behaviors, Special-case behaviors, Choosing a Character Set and Collation, Choosing a Character Set and Collation, Choosing a Character Set and Collation, Choosing a Character Set and Collation, Choosing a Character Set and Collation, Full-Text Searching, How Character Sets and Collations Affect Queries, How Character Sets and Collations Affect Queries, How Character Sets and Collations Affect Queries, How Character Sets and Collations Affect Queries, Full-Text Searching
		character length affected by, How Character Sets and Collations Affect Queries
	choosing, Choosing a Character Set and Collation
	client/server communication of, Settings for client/server communication
	comparison of values between, How MySQL compares values
	default, How MySQL Uses Character Sets
	effects on queries, Choosing a Character Set and Collation, Full-Text Searching, How Character Sets and Collations Affect Queries, How Character Sets and Collations Affect Queries, Full-Text Searching
	escape sequences, Special-case behaviors
	index limitations affected by, How Character Sets and Collations Affect Queries
	specifying in statements, Settings for client/server communication, Choosing a Character Set and Collation
	supported, Choosing a Character Set and Collation

	character_set_client variable, Settings for client/server communication
	character_set_connection variable, Settings for client/server communication
	character_set_database variable, Special-case behaviors
	character_set_result variable, Settings for client/server communication
	CHAR_LENGTH() function, How Character Sets and Collations Affect Queries
	CHECK TABLE command, Finding and Repairing Table Corruption
	checksum queries, Maatkit Utilities
	chrooted environment, MySQL in a chrooted Environment
	CIPHER requirement option, SSL in MySQL
	client/server protocol, The MySQL Client/Server Protocol, The Query Optimization Process, The Query Optimization Process
	clustered indexes, The InnoDB Engine, Clustered Indexes, Inserting rows in primary key order with InnoDB, Clustered Indexes, Clustered Indexes, Clustered Indexes, Clustered Indexes, Clustered Indexes, Clustered Indexes, Clustered Indexes, Comparison of InnoDB and MyISAM data layout, Comparison of InnoDB and MyISAM data layout, Comparison of InnoDB and MyISAM data layout, Comparison of InnoDB and MyISAM data layout, Comparison of InnoDB and MyISAM data layout, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB
		advantages of, Clustered Indexes
	disadvantages of, Clustered Indexes
	InnoDB implementation of, The InnoDB Engine, Clustered Indexes, Clustered Indexes, Comparison of InnoDB and MyISAM data layout, Comparison of InnoDB and MyISAM data layout, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB

	clustered systems, Scaling by Clustering
	code reuse, Storing Code Inside MySQL
	coercibility of values, How MySQL compares values
	cold backups, Terminology
	Cole, SHOW PROFILE
	collate clauses, How MySQL compares values
	collations, Character Sets and Collations, Choosing a Character Set and Collation, Defaults for creating objects, How MySQL compares values, Special-case behaviors, Choosing a Character Set and Collation, Choosing a Character Set and Collation
		default, Defaults for creating objects
	escape sequences, Special-case behaviors

	column privileges, Privileges and Performance
	columns_priv table, The Grant Tables
	command counters, Command Counters
	command-line scripting, innotop
	comments in stored code, Preserving Comments in Stored Code
	COMMIT command, Transactions
	compressing files, Transferring Large Files, File Copy Benchmarks, A Naive Example, Avoiding Encryption Overhead, File Copy Benchmarks
	Com_* status variables, Inspecting MySQL Server Status Variables
	Com_admin_commands status variable, Command Counters
	Com_change_db status variable, Command Counters
	Com_select status variable, When the Query Cache Is Helpful, Command Counters
	concurrency, Concurrency Control, Transactions, Concurrency Control, Lock Granularity, Row locks, Transactions, Multiversion Concurrency Control, Tuning MySQL Concurrency, InnoDB Concurrency Tuning, InnoDB Concurrency Tuning, InnoDB Concurrency Tuning, Workload-Based Tuning, Finding the Optimal Concurrency
		locks determining level of, Multiversion Concurrency Control
	optimal, Finding the Optimal Concurrency
	tuning, Tuning MySQL Concurrency, InnoDB Concurrency Tuning, InnoDB Concurrency Tuning, InnoDB Concurrency Tuning, Workload-Based Tuning

	concurrency measurements, What to Measure
	concurrent_insert variable, MyISAM Concurrency Tuning
	connection pooling, Look for Common Problems
	connections, Connection Management and Security, Operating System Profiling, Troubleshooting MySQL Connections and Processes, Per-connection memory needs, Common Problems and Solutions, Guidelines, Common Problems and Solutions, Connecting through localhost versus 127.0.0.1, Users can connect even after REVOKE, Guidelines, Connection Encryption and Tunneling, TCP Wrappers, Virtual private networks, SSL in MySQL, SSL in MySQL, TCP Wrappers, SHOW PROCESSLIST
		after removing all privileges, Users can connect even after REVOKE
	encryption for, Connection Encryption and Tunneling, TCP Wrappers, Virtual private networks, SSL in MySQL, SSL in MySQL, TCP Wrappers
	errors from, Common Problems and Solutions
	list of, SHOW PROCESSLIST
	localhost, Connecting through localhost versus 127.0.0.1
	memory required for, Per-connection memory needs
	troubleshooting, Operating System Profiling, Troubleshooting MySQL Connections and Processes, Common Problems and Solutions, Guidelines, Guidelines

	Connections status variable, Inspecting MySQL Server Status Variables, SHOW STATUS
	CONNECTION_ID() function, How MySQL Checks for a Cache Hit
	Consistency, Transactions
	consistency of data, Storage Engines and Consistency
	constant expressions, The query optimizer
	Continuous Data Protection, R1Soft
	CONVERT() function, How MySQL compares values
	copying files, Transferring Large Files, File Copy Benchmarks, A One-Step Method, File Copy Benchmarks
		large files, Transferring Large Files, File Copy Benchmarks, A One-Step Method, File Copy Benchmarks

	Copying to tmp table state, Query states
	correlated subqueries, Correlated Subqueries, When a correlated subquery is good, When a correlated subquery is good, When a correlated subquery is good
	COUNT() function, The query optimizer, SELECT and UPDATE on the same table
	counter tables, Counter tables
	covering indexes, Covering Indexes, Covering Indexes, Covering Indexes, Covering Indexes, The query optimizer
	CPU benchmark, The sysbench CPU benchmark
	CPU-bound server, A CPU-Bound Machine
	CPUs, A PHP profiling example, What Limits MySQL's Performance?, Balancing Memory and Disk Resources, What Limits MySQL's Performance?, Which Is Better: Fast CPUs or Many CPUs?, Scaling to Many CPUs and Cores, Which Is Better: Fast CPUs or Many CPUs?, Which Is Better: Fast CPUs or Many CPUs?, Which Is Better: Fast CPUs or Many CPUs?, Which Is Better: Fast CPUs or Many CPUs?, CPU Architecture, CPU Architecture, CPU Architecture, Scaling to Many CPUs and Cores, Scaling to Many CPUs and Cores, Scaling to Many CPUs and Cores, Balancing Memory and Disk Resources, Buying Time Before Scaling
		architecture of, CPU Architecture
	number of, What Limits MySQL's Performance?, Which Is Better: Fast CPUs or Many CPUs?, Which Is Better: Fast CPUs or Many CPUs?, Scaling to Many CPUs and Cores, Buying Time Before Scaling
	profiling usage of, A PHP profiling example
	saturation of, What Limits MySQL's Performance?, Balancing Memory and Disk Resources, Which Is Better: Fast CPUs or Many CPUs?, CPU Architecture, Scaling to Many CPUs and Cores, Balancing Memory and Disk Resources
	speed of, Which Is Better: Fast CPUs or Many CPUs?, Scaling to Many CPUs and Cores, Which Is Better: Fast CPUs or Many CPUs?, CPU Architecture, Scaling to Many CPUs and Cores

	crash recovery, Considerations
	CREATE TEMPORARY TABLE command, The Memory Engine
	CREATE USER privilege, When you can't grant or revoke a privilege
	Created_tmp* status variables, Command Counters
	Created_tmp_disk_tables status variable, Inspecting MySQL Server Status Variables
	Created_tmp_tables status variable, Inspecting MySQL Server Status Variables
	Cricket tool, RRDTool-based systems
	CSV storage engine, The CSV Engine, Storage Engine Summary
	current waits, SEMAPHORES
	CURRENT_DATE() function, How MySQL Checks for a Cache Hit
	CURRENT_USER() function, How MySQL Checks for a Cache Hit
	cursors, Cursors

D
	data consistency, Storage Engines and Consistency
	data dictionary, The InnoDB Data Dictionary
	data distribution, Problems Solved by Replication
	data fragmentation, Reducing Index and Data Fragmentation
	data sharding, Data sharding, Choosing a partitioning key, Data sharding, Data sharding, Choosing a partitioning key, Choosing a partitioning key, Choosing a partitioning key, Querying across shards, Allocating data, shards, and nodes, Allocating data, shards, and nodes, Fixed allocation, Fixed allocation, Dynamic allocation, Dynamic allocation, Explicit allocation, Rebalancing shards, Generating globally unique IDs, Tools for sharding, Generating globally unique IDs, Generating globally unique IDs, Tools for sharding, Tools for sharding, Aggregating Sharded Data, Installation Overview, Optimizing Sharded JOIN Queries on Grouply.com
		aggregating data with Sphinx, Aggregating Sharded Data, Optimizing Sharded JOIN Queries on Grouply.com
	arranging shards on nodes, Allocating data, shards, and nodes
	dynamic allocation of data to shards, Dynamic allocation
	explicit allocation of data to shards, Explicit allocation
	fixed allocation of data to shards, Fixed allocation
	fixed and dynamic allocation, Dynamic allocation
	globally unique IDs needed for, Generating globally unique IDs, Tools for sharding, Generating globally unique IDs, Generating globally unique IDs, Tools for sharding
	in Sphinx, Installation Overview
	partitioning function for, Fixed allocation
	partitioning keys for, Choosing a partitioning key
	querying across shards, Querying across shards
	rebalancing shards, Rebalancing shards
	size of shards, Allocating data, shards, and nodes
	tools for, Tools for sharding
	unit of sharding for, Choosing a partitioning key

	data types, Choosing Optimal Data Types, Choosing Optimal Data Types, Choosing Optimal Data Types, Choosing Optimal Data Types, Whole Numbers, VARCHAR and CHAR types, VARCHAR and CHAR types, VARCHAR and CHAR types, VARCHAR and CHAR types, BLOB and TEXT types, Using ENUM instead of a string type, Date and Time Types, Bit-Packed Data Types, Choosing Identifiers
		autogenerated schemas choosing, Choosing Identifiers
	optimal, Choosing Optimal Data Types, Choosing Optimal Data Types, Choosing Optimal Data Types, Choosing Optimal Data Types, Whole Numbers, VARCHAR and CHAR types, VARCHAR and CHAR types, VARCHAR and CHAR types, VARCHAR and CHAR types, BLOB and TEXT types, Using ENUM instead of a string type, Date and Time Types, Bit-Packed Data Types
		date and time, Choosing Optimal Data Types, Date and Time Types
	for identifier columns, Bit-Packed Data Types
	nullable, Choosing Optimal Data Types
	size of, Choosing Optimal Data Types, VARCHAR and CHAR types
	strings, VARCHAR and CHAR types, VARCHAR and CHAR types, VARCHAR and CHAR types, BLOB and TEXT types, Using ENUM instead of a string type
	whole numbers, Whole Numbers

	database, Multiversion Concurrency Control, Using Multiple Disk Volumes, Network Configuration, Using Multiple Disk Volumes, Using Multiple Disk Volumes, Network Configuration, Granting privileges on wildcarded databases, Guidelines, MySQL Visual Tools
		files for, Using Multiple Disk Volumes, Network Configuration, Using Multiple Disk Volumes, Using Multiple Disk Volumes, Network Configuration
	host for, Guidelines
	migrating to MySQL, MySQL Visual Tools
	privileges for, Granting privileges on wildcarded databases
	storage location of, Multiversion Concurrency Control

	database administrator accounts, Setting Up MySQL Privileges
	Database Test Suite, Single-Component Tools, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite
	date and time data types, Date and Time Types
	DATETIME type, Choosing Optimal Data Types
	db table, The Grant Tables
	dbt2 tool, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite, dbt2 TPC-C on the Database Test Suite
	deadlocks, Deadlocks, LATEST FOREIGN KEY ERROR, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK
		status of, LATEST FOREIGN KEY ERROR, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK

	debug command, Finding out who holds a lock
	DECIMAL type, Real Numbers
	decompressing files, Transferring Large Files, File Copy Benchmarks, A Naive Example, Avoiding Encryption Overhead, File Copy Benchmarks
	DEFAULT keyword, Syntax, Scope, and Dynamism, MyISAM I/O Tuning
		for configuration variables, Syntax, Scope, and Dynamism
	for MyISAM recovery, MyISAM I/O Tuning

	default route, No default route
	delayed key writes, MyISAM features
	DELAYED option, Query Optimizer Hints
	delayed replication, Delayed replication for fast recovery
	Delayed_* status variables, Miscellaneous
	DELAY_KEY_WRITE option, MyISAM features
	delay_key_write variable, MyISAM I/O Tuning
	DELETE command, Rewriting Non-SELECT Queries
	delimited file backups, Delimited file backups, Loading delimited files
	denormalization, Normalization and Denormalization, A Mixture of Normalized and Denormalized
	DETERMINISTIC option, Stored Procedures and Functions
	directio() function, How InnoDB opens and flushes log and data files
	dirty read, Isolation Levels
	disaster recovery, Why Backups?
	discussion forums, Bulletin boards and threaded discussion forums
	DISTINCT clause, Optimizing GROUP BY and DISTINCT
	distributed (XA) transactions, Distributed (XA) Transactions, Miscellaneous
	distributed memory caches, Application-Level Caching
	distribution master, Master, Distribution Master, and Slaves
	DNS, Network Configuration
	document pointers, Full-Text Searching
	documentation for MySQL, SHOW STATUS
	Dormando's Proxy for MySQL tool, Dormando's Proxy for MySQL
	double buffering, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, The working set and the cache unit
		with fsync(), How InnoDB opens and flushes log and data files
	with O_SYNC flag, How InnoDB opens and flushes log and data files

	DOUBLE type, Real Numbers
	doublewrite buffer, The doublewrite buffer
	DRBD, Replicated-disk architectures
	drop command, Obsolete privileges
	DROP USER command, Adding, Removing, and Viewing Grants
	duplicate indexes, Redundant and Duplicate Indexes, Indexes and Locking, Redundant and Duplicate Indexes, Redundant and Duplicate Indexes, Indexes and Locking
	Durability, Transactions
	dynamic optimizations, The query optimizer

E
	edge side includes (ESI), Web Server Issues
	employee accounts, Setting Up MySQL Privileges
	ENCRYPT() function, Hashing Passwords
	encryption, MySQL in a DMZ, TCP Wrappers, Virtual private networks, SSL in MySQL, SSL in MySQL, TCP Wrappers, Data Encryption, MySQL in a chrooted Environment, Hashing Passwords, Hashing Passwords, Application-Level Encryption, MySQL in a chrooted Environment, Design issues, Design issues, Encrypting and decrypting inside MySQL, Encrypting and decrypting inside MySQL, MySQL in a chrooted Environment, MySQL in a chrooted Environment
		application-level, Application-Level Encryption, MySQL in a chrooted Environment, MySQL in a chrooted Environment
	in MySQL, Encrypting and decrypting inside MySQL
	of connections, MySQL in a DMZ, TCP Wrappers, Virtual private networks, SSL in MySQL, SSL in MySQL, TCP Wrappers
	of data, Data Encryption, MySQL in a chrooted Environment, Hashing Passwords, Design issues, Design issues, Encrypting and decrypting inside MySQL, MySQL in a chrooted Environment
	of filesystems, Hashing Passwords

	ENUM type, Using ENUM instead of a string type, Choosing Identifiers
	equality propagation, The query optimizer, Equality propagation
	escape sequences, Special-case behaviors
	ESI (edge side includes), Web Server Issues
	event counters, SEMAPHORES
	events, Events, How Replication Works
		binary log events, How Replication Works

	exclusive locks (write locks), Read/Write Locks
	execution plan of query, MySQL's join execution strategy, The Query Execution Engine
	expire_logs_days variable, Other I/O tuning options, Replication Files, Purging Old Binary Logs Safely
	EXPLAIN command, Using EXPLAIN, Invoking EXPLAIN, Invoking EXPLAIN, Rewriting Non-SELECT Queries, The Columns in EXPLAIN, The Columns in EXPLAIN, The id Column, The id Column, The select_type Column, The select_type Column, The table Column, Derived tables and unions, Derived tables and unions, An example of complex SELECT types, An example of complex SELECT types, An example of complex SELECT types, An example of complex SELECT types, The type Column, The type Column, The type Column, The type Column, The possible_keys Column, The key Column, The key Column, The key_len Column, The key_len Column, The ref Column, The ref Column, The rows Column, The filtered Column, The filtered Column, The Extra Column, The Extra Column, Visual EXPLAIN
		for non-SELECT queries, Rewriting Non-SELECT Queries
	invoking, Invoking EXPLAIN
	output from, Using EXPLAIN, The Columns in EXPLAIN, The Columns in EXPLAIN, The id Column, The id Column, The select_type Column, The select_type Column, The table Column, Derived tables and unions, Derived tables and unions, An example of complex SELECT types, An example of complex SELECT types, An example of complex SELECT types, An example of complex SELECT types, The type Column, The type Column, The type Column, The type Column, The possible_keys Column, The key Column, The key Column, The key_len Column, The key_len Column, The ref Column, The ref Column, The rows Column, The filtered Column, The filtered Column, The Extra Column, The Extra Column, Visual EXPLAIN
		extra column, The Extra Column
	filtered column, The filtered Column
	id column, The id Column
	in tree structure, The Extra Column
	key column, The key Column
	key_len column, The key_len Column
	partitions column, The Columns in EXPLAIN
	possible_keys column, The possible_keys Column
	ref column, The ref Column
	rows column, The rows Column
	select_type column, The select_type Column
	table column, The table Column, Derived tables and unions, An example of complex SELECT types, An example of complex SELECT types
	type column, The type Column, The type Column, The key Column

	performance of, Invoking EXPLAIN

	EXPLAIN EXTENDED command, Invoking EXPLAIN
	EXPLAIN PARTITIONS command, Invoking EXPLAIN
	explicit invalidation, Cache Control Policies
	explicit locking, Implicit and explicit locking
	ext2 filesystem, Choosing a Filesystem, Choosing a Filesystem
	ext3 filesystem, Choosing a Filesystem, Choosing a Filesystem
	extended command, Profiling a MySQL Server, The MyISAM Key Cache, SHOW STATUS, SHOW STATUS, Miscellaneous
	external XA transactions, External XA Transactions

F
	failback, Failover and Failback, Handling failover in the application, Middleman solutions, Handling failover in the application
	failover, Problems Solved by Replication, Failover and Failback, Handling failover in the application, Failover and Failback, The MySQL Master-Master Replication Manager, Handling failover in the application, Handling failover in the application
	Falcon storage engine, Multiversion Concurrency Control, Multiversion Concurrency Control, The Falcon Engine, Storage Engine Summary, Whole Numbers
		integer types, Whole Numbers
	locking in, Multiversion Concurrency Control
	MVCC supported by, Multiversion Concurrency Control

	fastest response, Load-balancing algorithms
	fault tolerance, Terminology, Terminology
	fdatasync() function, How InnoDB opens and flushes log and data files
	Federated storage engine, The Federated Engine, Storage Engine Summary, Federation
	federation, Scaling MySQL, Federation
	Feuerstein, Storing Code Inside MySQL
	file consistency, File consistency
	file descriptors, File Descriptors
	FILE I/O section, FILE I/O
	FILE privilege, Setting Up MySQL Privileges
	fileio benchmark, The sysbench file I/O benchmark
	files, Optimizing Server Settings, Configuration Basics, The InnoDB transaction log, The InnoDB tablespace, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, The InnoDB tablespace, Storage Area Networks, Network Configuration, Using Multiple Disk Volumes, Using Multiple Disk Volumes, Network Configuration, Transferring Large Files, File Copy Benchmarks, A Naive Example, Other Options, File Copy Benchmarks
		copying large files, Transferring Large Files, File Copy Benchmarks, A Naive Example, Other Options, File Copy Benchmarks
	database, Storage Area Networks, Network Configuration, Using Multiple Disk Volumes, Using Multiple Disk Volumes, Network Configuration
	reading and flushing, The InnoDB transaction log, The InnoDB tablespace, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, The InnoDB tablespace
	server configuration, Optimizing Server Settings, Configuration Basics

	filesorts, Optimizing for Filesorts
	filesystem snapshots, Filesystem Snapshots, Recovering from a Backup, Prerequisites and configuration, Prerequisites and configuration, Creating, mounting, and removing an LVM snapshot, LVM snapshots for online backups, Lock-free InnoDB backups with LVM snapshots, Other uses and alternatives, Recovering from a Backup
	filesystems, Choosing a Filesystem, Choosing a Filesystem, Choosing a Filesystem, Hashing Passwords
		choosing, Choosing a Filesystem, Choosing a Filesystem, Choosing a Filesystem
	encryption of, Hashing Passwords

	filtering, Support for Attributes
	FLOAT type, Real Numbers
	FLUSH HOSTS command, Automatic Host Blocking
	FLUSH PRIVILEGES command, Adding, Removing, and Viewing Grants
	FLUSH QUERY CACHE command, Reducing fragmentation
	FLUSH STATUS command, Profiling Queries with SHOW STATUS
	FLUSH TABLES WITH READ LOCK command, Online or Offline Backups?, The Global Read Lock
	flush-hosts command, Automatic Host Blocking
	FOR UPDATE option, Query Optimizer Hints
	FORCE INDEX option, Query Optimizer Hints
	foreign keys, The InnoDB Engine, The InnoDB Storage Engine, Foreign Key Constraints, SEMAPHORES, LATEST DETECTED DEADLOCK, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR, LATEST DETECTED DEADLOCK
		errors in, SEMAPHORES, LATEST DETECTED DEADLOCK, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR, LATEST DETECTED DEADLOCK

	Fowler/Noll/Vo (FNV) UDF, Hash indexes
	fragmentation of data, Reducing Index and Data Fragmentation
	FreeBSD operating system, Choosing an Operating System
	.frm files, MySQL's Storage Engines, Speeding Up ALTER TABLE
	fsync() function, How InnoDB opens and flushes log and data files, SHOW INNODB STATUS
	ft_min_word_len parameter, Full-Text Tuning and Optimization
	full-stack benchmarking, Benchmarking Strategies, Full-Stack Tools
	full-text searching, Spatial (R-Tree) indexes, Full-Text Searching, Full-Text Tradeoffs and Workarounds, Full-Text Searching, Boolean Full-Text Searches, Full-Text Searching, Full-Text Searching, Natural-Language Full-Text Searches, Natural-Language Full-Text Searches, Natural-Language Full-Text Searches, Boolean Full-Text Searches, Boolean Full-Text Searches, Boolean Full-Text Searches, Full-Text Changes in MySQL 5.1 and Beyond, Full-Text Changes in MySQL 5.1 and Beyond, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Full-Text Tuning and Optimization, Full-Text Tuning and Optimization, Data archiving, Extending MySQL, Why Use Sphinx?, Full-Text Searching on Mininova.org, Full-Text Searching on BoardReader.com, Full-Text Searching on BoardReader.com
		Boolean, Boolean Full-Text Searches
	changes in version 5.1, Full-Text Changes in MySQL 5.1 and Beyond
	collection for, Full-Text Searching
	indexes for, Spatial (R-Tree) indexes
	limitations of, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds
	natural-language, Full-Text Searching, Boolean Full-Text Searches, Natural-Language Full-Text Searches, Boolean Full-Text Searches
	parser plug-ins for, Extending MySQL
	replication slaves used for, Data archiving
	tuning and optimization, Full-Text Tuning and Optimization, Full-Text Tuning and Optimization
	with Sphinx, Why Use Sphinx?, Full-Text Searching on Mininova.org, Full-Text Searching on BoardReader.com, Full-Text Searching on BoardReader.com

	functional partitioning, Functional partitioning, Load Balancing with a Master and Multiple Slaves
	functions, How MySQL Checks for a Cache Hit, Storing Code Inside MySQL, User-Defined Functions
		nondeterministic, How MySQL Checks for a Cache Hit
	stored, Storing Code Inside MySQL
	user-defined (UDFs), User-Defined Functions

G
	Galbraith, User-Defined Functions
	Garfinkel, Guidelines
	gdb tool, Advanced Profiling and Troubleshooting
	general query log, Logging queries
	GET_LOCK() function, User Locks
	global locks, Lock Waits at the Server Level
	global privileges, Terminology, Revoking specific privileges
	global read locks, The Global Read Lock
	global version/session split, Splitting reads and writes in replication
	GNU/Linux operating system, Network Configuration, Choosing an Operating System
	GRANT command, Replication Filters, How MySQL Checks Privileges, Adding, Removing, and Viewing Grants
		not replicating, Replication Filters

	grant tables, The Grant Tables, How MySQL Checks Privileges, Adding, Removing, and Viewing Grants
		how MySQL uses, How MySQL Checks Privileges
	modifying directly, Adding, Removing, and Viewing Grants

	granularity of locks, Lock Granularity
	Grimmer, Filesystem Snapshots, mylvmbackup
	Groundwork Open Source tool, Alternatives to Nagios
	GROUP BY clause, Optimizing GROUP BY and DISTINCT, Finding the Top Results in Order, Optimizing GROUP BY on BoardReader.com
	group commit, Internal XA Transactions
	groups, Setting Up MySQL Privileges
	gunzip tool, A Naive Example
	gzip compression, Web Server Issues
	gzip tool, A Naive Example, Avoiding Encryption Overhead

H
	HackMySQL tools, HackMySQL Tools
	handler operations, Handler Operations
	Handler_* status variables, Handler Operations
	Handler_read_rnd_next status variable, Inspecting MySQL Server Status Variables
	hard disks, Choosing Hard Disks, RAID Performance Optimization, Choosing Hardware for a Slave, RAID Performance Optimization
		choosing, Choosing Hard Disks, RAID Performance Optimization, Choosing Hardware for a Slave, RAID Performance Optimization

	hardware, Choosing Hardware for a Slave, Buying Time Before Scaling
		for slave server, Choosing Hardware for a Slave
	upgrading, Buying Time Before Scaling

	Harrison, Storing Code Inside MySQL
	hash code, Hash indexes
	hash functions, Hash indexes, Hash indexes, Hash indexes, Hashing Passwords
	hash indexes, Hash indexes, Hash indexes, Hash indexes, Hash indexes, Hash indexes, Hash indexes, Hash indexes, Spatial (R-Tree) indexes, The Memory Storage Engine
		collisions, Hash indexes
	limitations of, Hash indexes

	hash joins, Hash joins
	hashed, Load-balancing algorithms
	hashing passwords, Hashing Passwords
	have_openssl variable, SSL in MySQL
	heartbeat record, Measuring Slave Lag
	helper threads, FILE I/O
	HFS Plus filesystem, Choosing a Filesystem
	Hibernate Shards, Tools for sharding
	hidden privileges, Revoking specific privileges, Obsolete privileges, Invisible privileges, Invisible privileges, Invisible privileges, Obsolete privileges
	High Availability Linux project, Failover and Failback
	High Performance Web Sites (Souders), Web Server Issues
	HIGH_PRIORITY option, Query Optimizer Hints
	HiveDB, Tools for sharding
	host table, The Grant Tables
	hostnames, Adding, Removing, and Viewing Grants, Connecting through localhost versus 127.0.0.1, Disabling anonymous users
		default, Adding, Removing, and Viewing Grants
	localhost, Connecting through localhost versus 127.0.0.1
	quoting in commands, Disabling anonymous users

	hot backups, Terminology
	http_load tool, Full-Stack Tools, http_load
	Hunt, Network Security
	Hyperic HQ tool, Alternatives to Nagios

I
	I/O, The InnoDB Data Dictionary, MyISAM I/O Tuning, InnoDB I/O Tuning, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace, The doublewrite buffer, Other I/O tuning options, Random Versus Sequential I/O, Random Versus Sequential I/O, Caching, Reads, and Writes
		caches affecting, Caching, Reads, and Writes
	for InnoDB, InnoDB I/O Tuning, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace, The doublewrite buffer, Other I/O tuning options
	for MyISAM, The InnoDB Data Dictionary, MyISAM I/O Tuning
	random, Random Versus Sequential I/O
	sequential, Random Versus Sequential I/O

	I/O merging, Caching, Reads, and Writes
	I/O saturation, What Limits MySQL's Performance?
	I/O slave thread, How Replication Works
	I/O-bound server, A CPU-Bound Machine
	ibbackup (InnoDB Hot Backup tool), InnoDB Hot Backup, Comparison of Backup Tools
	.ibd files, The InnoDB tablespace
	identifier columns, Choosing Identifiers
	ifconfig tool, Operating System Status
	IGNORE INDEX option, Query Optimizer Hints
	implicit locking, Implicit and explicit locking
	IN() list comparisons, The query optimizer
	incremental backups, Incremental backups
	index merge algorithms, Index merge optimizations
	index scans, Loose index scans
	index statistics, Table and index statistics
	index writes, MyISAM I/O Tuning
	index-covered queries, Covering Indexes
	indexer program, Architectural Overview
	indexes, MyISAM features, Indexing Basics, B-Tree indexes, Hash indexes, B-Tree indexes, Hash indexes, Hash indexes, Isolate the Column, Hash indexes, Hash indexes, Hash indexes, Hash indexes, Spatial (R-Tree) indexes, Full-text indexes, Isolate the Column, Isolate the Column, Prefix Indexes and Index Selectivity, Prefix Indexes and Index Selectivity, Clustered Indexes, Clustered Indexes, Clustered Indexes, Inserting rows in primary key order with InnoDB, Covering Indexes, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Covering Indexes, Covering Indexes, Covering Indexes, Covering Indexes, Redundant and Duplicate Indexes, Redundant and Duplicate Indexes, Indexes and Locking, Indexes and Locking, Indexes and Locking, Indexes and Locking, Finding and Repairing Table Corruption, Indexes and Locking, Supporting Many Kinds of Filtering, Supporting Many Kinds of Filtering, Avoiding Multiple Range Conditions, Avoiding Multiple Range Conditions, Optimizing Sorts, Optimizing Sorts, Optimizing Sorts, Index and Table Maintenance, Finding and Repairing Table Corruption, Updating Index Statistics, Building MyISAM Indexes Quickly, The query optimizer
		B-Tree indexes, B-Tree indexes, Hash indexes, B-Tree indexes, Hash indexes, Hash indexes
	corruption of, Index and Table Maintenance
	covering indexes, Covering Indexes, Covering Indexes, The query optimizer
	example of, Indexes and Locking, Finding and Repairing Table Corruption, Supporting Many Kinds of Filtering, Supporting Many Kinds of Filtering, Avoiding Multiple Range Conditions, Optimizing Sorts, Optimizing Sorts, Finding and Repairing Table Corruption
	full-text indexes, Full-text indexes
	hash indexes, Hash indexes, Isolate the Column, Hash indexes, Hash indexes, Hash indexes, Isolate the Column
		collisions, Hash indexes

	in MyISAM, MyISAM features
	inserting records in primary key order, Inserting rows in primary key order with InnoDB, Covering Indexes, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Covering Indexes
	performance of, Isolate the Column, Prefix Indexes and Index Selectivity, Prefix Indexes and Index Selectivity, Clustered Indexes, Clustered Indexes, Clustered Indexes, Covering Indexes, Redundant and Duplicate Indexes, Redundant and Duplicate Indexes, Indexes and Locking, Indexes and Locking, Indexes and Locking, Optimizing Sorts, Building MyISAM Indexes Quickly
		building quickly, Building MyISAM Indexes Quickly
	clustered indexes, Clustered Indexes, Clustered Indexes, Clustered Indexes
	covering indexes, Covering Indexes
	duplicate indexes, Redundant and Duplicate Indexes
	isolating columns, Isolate the Column
	locking and, Indexes and Locking, Indexes and Locking, Indexes and Locking
	prefix indexes, Prefix Indexes and Index Selectivity, Prefix Indexes and Index Selectivity
	redundant indexes, Redundant and Duplicate Indexes
	sorting, Optimizing Sorts

	range conditions and, Avoiding Multiple Range Conditions
	spatial indexes, Spatial (R-Tree) indexes
	statistics for, Updating Index Statistics

	info() function, Updating Index Statistics
	INFORMATION_SCHEMA database, Views, Obsolete privileges, System Variables, SHOW STATUS, INFORMATION_SCHEMA
		finding obsolete privileges with, Obsolete privileges
	system variable access in, System Variables
	table privileges for, Views

	InnoDB Recovery Toolkit, How to recover corrupted InnoDB data
	InnoDB storage engine, AUTOCOMMIT, Multiversion Concurrency Control, Multiversion Concurrency Control, Compressed MyISAM tables, The InnoDB Engine, The InnoDB Engine, The InnoDB Engine, The InnoDB Engine, Storage Engine Summary, Clustered Indexes, The InnoDB Storage Engine, The InnoDB Storage Engine, How MySQL Checks for a Cache Hit, InnoDB and the Query Cache, The InnoDB Buffer Pool, The InnoDB Data Dictionary, InnoDB I/O Tuning, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace, The doublewrite buffer, Other I/O tuning options, Other I/O tuning options, InnoDB Concurrency Tuning, Lock-free InnoDB backups with LVM snapshots, Restoring Raw Files, Recovering with a log server, Backup and Recovery Speed, InnoDB Recovery, Causes of InnoDB corruption, How to recover corrupted InnoDB data, How to recover corrupted InnoDB data, Backup and Recovery Speed, SHOW INNODB STATUS, SHOW PROCESSLIST, SHOW INNODB STATUS, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK, TRANSACTIONS, TRANSACTIONS, TRANSACTIONS, TRANSACTIONS, FILE I/O, FILE I/O, INSERT BUFFER AND ADAPTIVE HASH INDEX, INSERT BUFFER AND ADAPTIVE HASH INDEX, BUFFER POOL AND MEMORY, BUFFER POOL AND MEMORY, ROW OPERATIONS, ROW OPERATIONS, SHOW PROCESSLIST, innotop, InnoDB Lock Waits, InnoDB Lock Waits
		64-bit numbers, SHOW INNODB STATUS
	buffer pool, The InnoDB Buffer Pool
	clustered indexes, Clustered Indexes, The InnoDB Storage Engine
	concurrency tuning, The InnoDB Engine, InnoDB Concurrency Tuning
	corruption problems with, Causes of InnoDB corruption
	data dictionary, The InnoDB Data Dictionary
	foreign key constraints in, The InnoDB Storage Engine
	I/O, InnoDB I/O Tuning, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace, The doublewrite buffer, Other I/O tuning options, Other I/O tuning options
		binary log settings, Other I/O tuning options
	doublewrite buffer settings, The doublewrite buffer
	log file and buffer settings, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files, How InnoDB opens and flushes log and data files
	tablespace settings, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace
	transaction log settings, The InnoDB transaction log

	isolation levels in, AUTOCOMMIT, The InnoDB Engine
	lock waits in, InnoDB Lock Waits, InnoDB Lock Waits
	lock-free backups, Lock-free InnoDB backups with LVM snapshots
	locking in, Multiversion Concurrency Control, The InnoDB Engine
	monitoring, innotop
	MVCC supported by, Multiversion Concurrency Control
	recovery for, Recovering with a log server, Backup and Recovery Speed, InnoDB Recovery, How to recover corrupted InnoDB data, How to recover corrupted InnoDB data, Backup and Recovery Speed
	restoring raw files, Restoring Raw Files
	status information for, SHOW INNODB STATUS, SHOW PROCESSLIST, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK, TRANSACTIONS, TRANSACTIONS, TRANSACTIONS, TRANSACTIONS, FILE I/O, FILE I/O, INSERT BUFFER AND ADAPTIVE HASH INDEX, INSERT BUFFER AND ADAPTIVE HASH INDEX, BUFFER POOL AND MEMORY, BUFFER POOL AND MEMORY, ROW OPERATIONS, ROW OPERATIONS, SHOW PROCESSLIST
		adaptive hash index, INSERT BUFFER AND ADAPTIVE HASH INDEX
	buffer pool, BUFFER POOL AND MEMORY
	deadlocks, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK
	foreign key errors, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR
	I/O helper threads, FILE I/O
	insert buffer, FILE I/O
	row operations, ROW OPERATIONS
	transactions, TRANSACTIONS, TRANSACTIONS

	tablespaces in, Compressed MyISAM tables
	transactions affecting query cache, How MySQL Checks for a Cache Hit, InnoDB and the Query Cache

	Innodb_* status variables, InnoDB-Specific
	Innodb_buffer_pool_pages_dirty status variable, The InnoDB Buffer Pool
	innodb_buffer_pool_size variable, Getting Started
	innodb_commit_concurrency variable, InnoDB Concurrency Tuning
	innodb_concurrency_tickets variable, InnoDB Concurrency Tuning
	innodb_data_file_path variable, The InnoDB tablespace
	innodb_data_home_dir variable, The InnoDB tablespace
	innodb_doublewrite variable, The doublewrite buffer
	innodb_file_io_threads variable, How InnoDB opens and flushes log and data files
	innodb_file_per_table variable, The InnoDB Data Dictionary
	innodb_flush_log_at_trx_commit variable, The InnoDB transaction log
	innodb_flush_method variable, How InnoDB opens and flushes log and data files
	innodb_force_recovery variable, How to recover corrupted InnoDB data
	innodb_log_buffer_size variable, The InnoDB transaction log
	innodb_log_file_size variable, Getting Started
	innodb_max_dirty_pages_pct variable, The InnoDB Buffer Pool
	innodb_max_purge_lag variable, The InnoDB tablespace
	innodb_open_files variable, The InnoDB Data Dictionary
	Innodb_os_log_written status variable, The InnoDB transaction log
	innodb_thread_concurrency variable, InnoDB Concurrency Tuning
	innodb_thread_sleep_delay variable, InnoDB Concurrency Tuning
	innotop tool, SHOW STATUS, Interactive Tools
	insert buffer, FILE I/O
	INSERT BUFFER AND ADAPTIVE HASH INDEX section, INSERT BUFFER AND ADAPTIVE HASH INDEX
	INSERT command, Table Conversions, Miscellaneous
		DELAYED, Miscellaneous
	with SELECT, Table Conversions

	interactive monitoring tools, Interactive Tools, Analysis Tools, Analysis Tools
	interface tools, Interface Tools, Monitoring Tools, MySQL Visual Tools, phpMyAdmin, Monitoring Tools
	internal concurrency issues, Scaling to Many CPUs and Cores
	internal XA transactions, Internal XA Transactions
	intra-row fragmentation, Reducing Index and Data Fragmentation
	introducers, How MySQL compares values
	invalidation on read, Cache Control Policies
	invisible privileges, Invisible privileges, Obsolete privileges, Invisible privileges, Invisible privileges, Invisible privileges, Obsolete privileges
	iostat tool, How to Read iostat Output
	IP addresses, Special Types of Data
	Isolation, Transactions
	isolation levels, Isolation Levels, AUTOCOMMIT, AUTOCOMMIT, Multiversion Concurrency Control, The InnoDB Engine
		MVCC support for, Multiversion Concurrency Control
	setting, AUTOCOMMIT
	with InnoDB, AUTOCOMMIT, The InnoDB Engine

J
	JFS filesystem, Choosing a Filesystem, Choosing a Filesystem
	JMeter tool, Full-Stack Tools
	joins, Join Decomposition, The query optimizer, MySQL's join execution strategy, MySQL's join execution strategy, MySQL's join execution strategy, MySQL's join execution strategy, MySQL's join execution strategy, The execution plan, The join optimizer, The join optimizer, Sort optimizations, More complex optimizations
		decomposition of, Join Decomposition
	execution strategy for, MySQL's join execution strategy, MySQL's join execution strategy, MySQL's join execution strategy, MySQL's join execution strategy, MySQL's join execution strategy
	optimizations for, The query optimizer, The execution plan, The join optimizer, The join optimizer, Sort optimizations, More complex optimizations

	join_buffer_size variable, Syntax, Scope, and Dynamism

K
	Keep-Alive configuration, Web Server Issues, Web Server Issues
	key block size, The MyISAM key block size
	key caches (key buffers), Side Effects of Setting Variables, Allocating memory for caches, The MyISAM Key Cache, The MyISAM Key Cache, The MyISAM key block size
	Key_* status variables, MyISAM Key Buffer
	Key_blocks_used status variable, Inspecting MySQL Server Status Variables
	KEY_BLOCK_SIZE option, The MyISAM key block size
	key_buffer_size variable, Syntax, Scope, and Dynamism, Side Effects of Setting Variables
	Key_reads status variable, Inspecting MySQL Server Status Variables

L
	Last_query_cost status variable, Miscellaneous
	latency, Which Is Better: Fast CPUs or Many CPUs?, Choosing Hard Disks, Using Multiple Disk Volumes
		for networks, Using Multiple Disk Volumes
	low, Which Is Better: Fast CPUs or Many CPUs?

	LATEST DETECTED DEADLOCK section, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK
	LATEST FOREIGN KEY ERROR section, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR, LATEST FOREIGN KEY ERROR
	least connections, Load-balancing algorithms
	lighttpd, Web Server Issues
	lightweight profiling, A PHP profiling example
	LIMIT clause, Optimizing LIMIT and OFFSET
	Linux Virtual Server (LVS), Load Balancing
	LinuxThreads thread library, Threading
	load, Terminology
	load balancing, Clustering, Load Balancing with a Master and Multiple Slaves, Load Balancing, Load Balancing, Load Balancing, Load Balancing, Connecting Directly, Load balancers, Splitting reads and writes in replication, Splitting reads and writes in replication, Splitting reads and writes in replication, Changing the application configuration, Changing DNS names, Changing DNS names, Moving IP addresses, Moving IP addresses, Moving IP addresses, Introducing a Middleman, Introducing a Middleman, Load Balancing with a Master and Multiple Slaves, Load balancers, Load balancers, Load balancers, Load balancers, Load-balancing algorithms, Adding and removing servers in the pool, Load Balancing with a Master and Multiple Slaves, Load Balancing with a Master and Multiple Slaves, Load Balancing with a Master and Multiple Slaves, Load Balancing with a Master and Multiple Slaves, Load Balancing with a Master and Multiple Slaves, Load Balancing with a Master and Multiple Slaves, Load Balancing with a Master and Multiple Slaves
		algorithms for, Load-balancing algorithms
	application configuration for, Changing the application configuration
	connecting directly with, Connecting Directly, Load balancers, Introducing a Middleman, Load balancers
	data partitioning for, Load Balancing with a Master and Multiple Slaves
	DNS names, Changing DNS names
	filtering for, Load Balancing with a Master and Multiple Slaves
	goals of, Load Balancing
	IP addresses, Changing DNS names
	master and multiple slaves for, Load Balancing with a Master and Multiple Slaves
	middleman solutions for, Introducing a Middleman, Load Balancing with a Master and Multiple Slaves, Load balancers, Load Balancing with a Master and Multiple Slaves, Load Balancing with a Master and Multiple Slaves
	replication for, Splitting reads and writes in replication
	servers, Adding and removing servers in the pool
	tools for, Load Balancing, Moving IP addresses

	LOAD DATA FROM MASTER command, Initializing a Slave from Another Server
	LOAD DATA INFILE command, Special-case behaviors, Delimited file backups
	LOAD INDEX command, The MyISAM Key Cache
	LOAD TABLE FROM MASTER command, Initializing a Slave from Another Server
	local caches, Application-Level Caching
	local shared-memory caches, Application-Level Caching
	localhost hostname, Privileges and Performance
	localhost-only connections, Localhost-Only Connections
	locality of reference, Balancing Memory and Disk Resources
	LOCK IN SHARE MODE option, Query Optimizer Hints
	LOCK TABLES command, Implicit and explicit locking, MyISAM I/O Tuning, Table Locks
	lock waits, innotop, Lock Waits at the Server Level, User Locks, Lock Waits at the Server Level, Table Locks, Finding out who holds a lock, Name Locks, User Locks, Lock Waits in Storage Engines, Lock Waits in Storage Engines, Lock Waits in Storage Engines, InnoDB Lock Waits
		displaying list of, innotop
	in storage engine, Lock Waits in Storage Engines, Lock Waits in Storage Engines, InnoDB Lock Waits
	server level, Lock Waits at the Server Level, User Locks, Lock Waits at the Server Level, Table Locks, Finding out who holds a lock, Name Locks, User Locks, Lock Waits in Storage Engines

	Locked state, Query states
	locks, Read/Write Locks, Read/Write Locks, Lock Granularity, Table locks, Row locks, Implicit and explicit locking, Implicit and explicit locking, Multiversion Concurrency Control, MyISAM features, The InnoDB Engine, The Memory Engine, The Memory Engine, Redundant and Duplicate Indexes, An Indexing Case Study, Indexes and Locking, Indexes and Locking, An Indexing Case Study, Lock Waits at the Server Level, Table Locks, Finding out who holds a lock, Finding out who holds a lock, Name Locks, InnoDB Lock Waits, Falcon Lock Waits, InnoDB Lock Waits, InnoDB Lock Waits, Falcon Lock Waits
		concurrency level of, Multiversion Concurrency Control
	debugging, Finding out who holds a lock
	explicit, Implicit and explicit locking
	implicit, Implicit and explicit locking
	indexes affecting, Redundant and Duplicate Indexes, An Indexing Case Study, Indexes and Locking, Indexes and Locking, An Indexing Case Study
	InnoDB, The InnoDB Engine, InnoDB Lock Waits, Falcon Lock Waits, InnoDB Lock Waits, Falcon Lock Waits
	Memory engine, The Memory Engine
	MyISAM engine, MyISAM features
	name locks, Lock Waits at the Server Level, Name Locks
	performance of, Lock Granularity
	read locks, Read/Write Locks
	row locks, Row locks
	table locks, Table locks, Table Locks
	who is holding, Finding out who holds a lock, InnoDB Lock Waits
	with Archive engine, The Memory Engine
	write locks, Read/Write Locks

	log buffer, The InnoDB transaction log
		size of, The InnoDB transaction log

	log files, The InnoDB transaction log, Using Multiple Disk Volumes
		separating from data files, Using Multiple Disk Volumes
	size of, The InnoDB transaction log

	LOG section, LOG
	log server, Creating a log server, Recovering with a log server
		for recovery, Recovering with a log server
	replication for, Creating a log server

	logging, Transaction Logging, Considerations, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, How Replication Works
		relay log, How Replication Works
	storage engines suited for, Considerations
	transaction logging, Transaction Logging, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log

	logging accounts, Setting Up MySQL Privileges
	logical backups, The Big Picture, Logical or Raw Backups?, Filesystem Snapshots, Restoring Raw Files, Point-in-Time Recovery, Loading delimited files, Point-in-Time Recovery, mysqldump
		creating, Filesystem Snapshots, mysqldump
	restoring, Restoring Raw Files, Point-in-Time Recovery, Loading delimited files, Point-in-Time Recovery

	logical concurrency issues, Scaling to Many CPUs and Cores
	logical reads, Caching, Reads, and Writes
	logical unit numbers (LUNs), Storage Area Networks
	logins, Guidelines
	log_bin_trust_function_creators variable, Stored Procedures and Functions
	log_queries_not_using_indexes variable, Logging queries
	log_slave_updates variable, Configuring the Master and Slave, Sending Replication Events to Other Slaves, Managing and Backing Up Binary Logs
	LONGBLOB type, BLOB and TEXT types
	LONGTEXT type, BLOB and TEXT types
	long_query_time variable, Logging queries, Finer control over logging, Finer control over logging
	loose index scans, Loose index scans
	LOW_PRIORITY option, Query Optimizer Hints
	low_priority_updates variable, MyISAM Concurrency Tuning
	lsof tool, Troubleshooting MySQL Connections and Processes
	LUNs (logical unit numbers), Storage Area Networks
	LVM (Logical Volume Manager) snapshots, Initializing a Slave from Another Server, Filesystem Snapshots, Recovering from a Backup, Prerequisites and configuration, Prerequisites and configuration, Prerequisites and configuration, Creating, mounting, and removing an LVM snapshot, Creating, mounting, and removing an LVM snapshot, LVM snapshots for online backups, LVM snapshots for online backups, Lock-free InnoDB backups with LVM snapshots, Lock-free InnoDB backups with LVM snapshots, Planning for LVM backups, Planning for LVM backups, Recovering from a Backup
		configuration for, Prerequisites and configuration
	creating, Creating, mounting, and removing an LVM snapshot
	for online backups, LVM snapshots for online backups
	initializing slave using, Initializing a Slave from Another Server
	lock-free InnoDB backups using, Lock-free InnoDB backups with LVM snapshots
	planning for, Planning for LVM backups

	LVS (Linux Virtual Server), Load Balancing

M
	Maatkit tools, Maatkit Analysis Tools, Maatkit Utilities
	Maria storage engine, The Maria Storage Engine, Storage Engine Summary
	master.info file, Replication Files
	MATCH AGAINST clause, Natural-Language Full-Text Searches
	materialized views, Limitations of Views
	MAX() function, The query optimizer, MIN() and MAX()
	Maxia, Storing Code Inside MySQL
		library of stored routines by, Storing Code Inside MySQL

	max_allowed_packet variable, The MySQL Client/Server Protocol, Measuring Slave Lag
	max_connection_errors variable, Automatic Host Blocking
	max_length_for_sort_data variable, Optimizing for Filesorts
	max_sort_length variable, Optimizing for Filesorts
	Max_used_connections status variable, Inspecting MySQL Server Status Variables
	McCullagh, The PBXT (Primebase XT) Engine
	MD5() function, Single-Component Tools, VARCHAR and CHAR types, Choosing Identifiers, Hash indexes, Writing to Both Masters in Master-Master Replication, Hashing Passwords
	MEDIUMBLOB type, BLOB and TEXT types
	MEDIUMINT type, Whole Numbers
	MEDIUMTEXT type, BLOB and TEXT types
	memcached, User-Defined Functions, Rebalancing shards, Generating globally unique IDs, Application-Level Caching
		for globally-unique IDs, Rebalancing shards, Generating globally unique IDs
	user-defined functions for, User-Defined Functions

	memlock variable, Swapping
	memory, How MySQL Checks for a Cache Hit, How the Cache Uses Memory, How the Cache Uses Memory, How the Cache Uses Memory, Tuning Memory Usage, The MyISAM Key Cache, How much memory can MySQL use?, Per-connection memory needs, Per-connection memory needs, MyISAM I/O Tuning, Per-connection memory needs, Reserving memory for the operating system, Allocating memory for caches, Allocating memory for caches, The MyISAM Key Cache, The MyISAM Key Cache, The MyISAM Key Cache, The MyISAM key block size, The Thread Cache, The Thread Cache, The Table Cache, The InnoDB Data Dictionary, MyISAM I/O Tuning, Balancing Memory and Disk Resources, RAID Performance Optimization, Random Versus Sequential I/O, Caching, Reads, and Writes, Caching, Reads, and Writes, The working set and the cache unit, Finding an Effective Memory-to-Disk Ratio, Finding an Effective Memory-to-Disk Ratio, Choosing Hard Disks, Choosing Hardware for a Slave, RAID Performance Optimization
		amount available to MySQL, How much memory can MySQL use?
	balancing with disk resources, Balancing Memory and Disk Resources, RAID Performance Optimization, Random Versus Sequential I/O, Caching, Reads, and Writes, Caching, Reads, and Writes, The working set and the cache unit, Finding an Effective Memory-to-Disk Ratio, Finding an Effective Memory-to-Disk Ratio, Choosing Hard Disks, Choosing Hardware for a Slave, RAID Performance Optimization
	cache requirements for, Per-connection memory needs, MyISAM I/O Tuning, Allocating memory for caches, The MyISAM Key Cache, The MyISAM Key Cache, The MyISAM key block size, The Thread Cache, The Thread Cache, The Table Cache, The InnoDB Data Dictionary, MyISAM I/O Tuning
	operating system requirements for, Reserving memory for the operating system
	peak consumption of, Per-connection memory needs
	query cache use of, How MySQL Checks for a Cache Hit, How the Cache Uses Memory, How the Cache Uses Memory, How the Cache Uses Memory
	server configuration for, Tuning Memory Usage, The MyISAM Key Cache, Per-connection memory needs, Allocating memory for caches, The MyISAM Key Cache

	memory benchmark, Other sysbench features
	memory mapping, MyISAM I/O Tuning
	Memory storage engine, The InnoDB Engine, Storage Engine Summary, BLOB and TEXT types, The Memory Storage Engine, The Memory Storage Engine, The Memory Storage Engine
		data not persisted, The Memory Storage Engine
	dynamic rows not supported, The Memory Storage Engine
	index statistics not supported, The Memory Storage Engine
	on-disk temporary tables used by, BLOB and TEXT types

	memory-to-disk ratio, Finding an Effective Memory-to-Disk Ratio, Finding an Effective Memory-to-Disk Ratio
	MERGE algorithm, Views
	Merge storage engine, Multiversion Concurrency Control, The MyISAM Merge Engine, Storage Engine Summary
	merge tables, Merge Tables and Partitioning, Partitioned Tables, Merge Tables, Merge Tables, Merge table performance impacts, Merge table strengths, Partitioned Tables
	migration of databases, MySQL Visual Tools
	MIN() function, The query optimizer, MIN() and MAX()
	mk-archiver tool, Data archiving, Maatkit Utilities
	mk-deadlock-logger tool, MySQL Utilities
	mk-find tool, Maatkit Utilities
	mk-heartbeat tool, Measuring Slave Lag, Maatkit Analysis Tools
	mk-parallel-dump tool, Parallel dump and restore, mk-parallel-dump, Comparison of Backup Tools, Maatkit Utilities
	mk-parallel-restore tool, mk-parallel-dump, Maatkit Utilities
	mk-profile-compact tool, Maatkit Analysis Tools
	mk-query-profiler tool, Maatkit Analysis Tools
	mk-show-grants tool, Maatkit Utilities
	mk-slave-delay tool, Maatkit Utilities
	mk-slave-prefetch tool, Maatkit Utilities
	mk-slave-restart tool, Maatkit Utilities
	mk-table-checksum tool, Determining Whether Slaves Are Consistent with the
 Master, Maatkit Utilities
	mk-table-sync tool, Resyncing a Slave from the Master, Maatkit Utilities
	mk-visual-explain tool, Maatkit Analysis Tools
	monitoring tools, Monitoring Tools, Analysis Tools, Noninteractive Monitoring Systems, Nagios, Alternatives to Nagios, Alternatives to Nagios, MySQL Monitoring and Advisory Service, Interactive Tools, Analysis Tools, Analysis Tools, Analysis Tools
		interactive tools, Analysis Tools
	noninteractive tools, Alternatives to Nagios

	MONyog tool, MONyog
	mpstat tool, Operating System Status
	MRTG (Multi Router Traffic Grapher), Network Configuration, RRDTool-based systems
	mtop tool, Interactive Tools
	Multi Router Traffic Grapher (MRTG), Network Configuration, RRDTool-based systems
	multimaster replication, Master-Master in Active-Active Mode, Emulating multimaster replication
	multiple disk volumes, Using Multiple Disk Volumes, Network Configuration, Using Multiple Disk Volumes, Using Multiple Disk Volumes, Network Configuration
	multivalued attributes (MVAs), Support for Attributes
	Munin tool, RRDTool-based systems
	mutex benchmark, Other sysbench features
	mutexes, SHOW MUTEX STATUS
	MVAs (multivalued attributes), Support for Attributes
	MVCC (multiversion concurrency control), Multiversion Concurrency Control, Multiversion Concurrency Control, Multiversion Concurrency Control, The InnoDB Storage Engine
	my.cnf file, Configuration Basics
	.MYD files, Storage
	.MYI files, Storage
	MyISAM storage engine, MySQL's Storage Engines, Storage, MyISAM features, MyISAM features, MyISAM features, MyISAM features, MyISAM features, Compressed MyISAM tables, The MyISAM Merge Engine, Storage Engine Summary, Full-text indexes, Clustered Indexes, Comparison of InnoDB and MyISAM data layout, Comparison of InnoDB and MyISAM data layout, Packed (Prefix-Compressed) Indexes, The MyISAM Storage Engine, The MyISAM Storage Engine, The MyISAM Storage Engine, The MyISAM Storage Engine, Full-Text Searching, Tuning MySQL's I/O Behavior, MyISAM I/O Tuning, MyISAM I/O Tuning, MyISAM I/O Tuning, MyISAM I/O Tuning, InnoDB I/O Tuning, MyISAM Concurrency Tuning, InnoDB Concurrency Tuning, InnoDB Concurrency Tuning, MyISAM Key Buffer
		compact storage used by, The MyISAM Storage Engine
	compressed tables in, Compressed MyISAM tables
	concurrency tuning, MyISAM Concurrency Tuning, InnoDB Concurrency Tuning, InnoDB Concurrency Tuning
	data recovery not automated, The MyISAM Storage Engine
	delayed key writes in, MyISAM features
	full-text indexing, Full-text indexes, Full-Text Searching
	I/O, Tuning MySQL's I/O Behavior, MyISAM I/O Tuning, InnoDB I/O Tuning
	indexes in, MyISAM features, Clustered Indexes, Comparison of InnoDB and MyISAM data layout, Comparison of InnoDB and MyISAM data layout, MyISAM I/O Tuning
		writes to, MyISAM I/O Tuning

	key caches (key buffers), MyISAM Key Buffer
	locking in, MyISAM features
	memory mapping, MyISAM I/O Tuning
	packed indexes, Packed (Prefix-Compressed) Indexes
	recovering from corruption, MyISAM I/O Tuning
	repair of tables in, MyISAM features
	table locks, The MyISAM Storage Engine
	transactions not supported, The MyISAM Storage Engine

	myisam_block_size variable, The MyISAM key block size
	myisam_recover variable, MyISAM I/O Tuning
	myisam_use_mmap variable, MyISAM I/O Tuning
	mylvmbackup tool, Filesystem Snapshots, mylvmbackup, Comparison of Backup Tools
	MySQL, MySQL Architecture, Concurrency Control, MySQL's Logical Architecture, Optimization and Execution, Concurrency Control, A PHP profiling example, Logging queries, Finer control over logging, Finer control over logging, Finer control over logging, Profiling a MySQL Server, Other Ways to Profile MySQL, Other Ways to Profile MySQL, When You Can't Add Profiling Code, Troubleshooting MySQL Connections and Processes, Troubleshooting MySQL Connections and Processes, Full-Text Tradeoffs and Workarounds, Extending MySQL, Extending MySQL, Privilege Changes in MySQL 5.0, Stored routines, Triggers, Views, Views, Common Problems and Solutions, Obsolete privileges, Encrypting and decrypting inside MySQL, Source Code Modification, Toward more usable lock output
		architecture of, MySQL Architecture, Concurrency Control, MySQL's Logical Architecture, Optimization and Execution, Concurrency Control
	connecting to, When You Can't Add Profiling Code, Troubleshooting MySQL Connections and Processes, Troubleshooting MySQL Connections and Processes, Common Problems and Solutions
	developers of, Extending MySQL
	extending, Extending MySQL
	full-text searching, Full-Text Tradeoffs and Workarounds
	in chrooted environment, Encrypting and decrypting inside MySQL
	patch, Toward more usable lock output
	patch for slow query times, Finer control over logging
	privileges, Privilege Changes in MySQL 5.0, Triggers, Views
	privileges for running, Obsolete privileges
	profiling, A PHP profiling example, Logging queries, Finer control over logging, Finer control over logging, Profiling a MySQL Server, Other Ways to Profile MySQL, Other Ways to Profile MySQL
	source code for, Source Code Modification
	stored routines, Stored routines
	triggers, Views

	MySQL Administrator, MySQL Visual Tools
	MySQL Benchmark Suite (sql-bench), Single-Component Tools, MySQL Benchmark Suite
	MySQL Master-Master Replication Manager tool, The MySQL Master-Master Replication Manager
	MySQL Migration Toolkit, MySQL Visual Tools
	MySQL Monitoring and Advisory Service, MySQL Monitoring and Advisory Service
	MySQL Proxy, When You Can't Add Profiling Code, Load balancers, Extending MySQL, MySQL Proxy
	MySQL Query Browser, MySQL Visual Tools
	MySQL Statement Log Analyzer (mysqlsla), Log analysis tools, HackMySQL Tools
	MySQL Stored Procedure Programming (Harrison, Storing Code Inside MySQL
	MySQL visual tools, MySQL Visual Tools
	MySQL Workbench, MySQL Visual Tools
	mysql-bin.index file, Replication Files, Purging Old Binary Logs Safely
	mysql-relay-bin.index file, Replication Files
	mysqlbinlog tool, The Binary Log Format
	mysqldump tool, Resyncing a Slave from the Master, Making a Logical Backup, Backup and Recovery Speed, Comparison of Backup Tools
		logical backups using, Making a Logical Backup, Backup and Recovery Speed, Comparison of Backup Tools
	resyncing slave using, Resyncing a Slave from the Master

	mysqldumpslow tool, Log analysis tools
	mysqlhotcopy tool, Initializing a Slave from Another Server, mysqlhotcopy, Comparison of Backup Tools
	mysqlmanager tool, Configuration Basics
	mysqlpdump tool, Parallel dump and restore
	mysqlreport tool, Inspecting MySQL Server Status Variables, HackMySQL Tools
	mysqlsla (MySQL Statement Log Analyzer), Log analysis tools, HackMySQL Tools
	mysqlslap tool, Single-Component Tools
	mysqlsniffer tool, When You Can't Add Profiling Code
	mysql_slow_log_filter tool, Log analysis tools
	mysql_slow_log_parser tool, Log analysis tools
	mytop tool, Interactive Tools

N
	Nagios System and Network Monitoring (Barth), Nagios
	Nagios tool, Nagios
	name locks, Lock Waits at the Server Level, Name Locks
	NAS (network-attached storage), Network-Attached Storage
	Native POSIX Threads Library (NPTL), Threading
	natural-language full-text searches, Natural-Language Full-Text Searches, Natural-Language Full-Text Searches, Boolean Full-Text Searches
	nc tool, Avoiding Encryption Overhead
	NDB Cluster storage engine, The NDB Cluster Engine, Storage Engine Summary, Clustering, Plug-in-Specific
		configuration, Plug-in-Specific

	Ndb_* status variables, Miscellaneous
	netstat tool, Troubleshooting MySQL Connections and Processes, Operating System Status
	network, Network Configuration, Choosing an Operating System, Network Configuration, Network Configuration, Network Configuration, Choosing an Operating System, Find the Source of the Problem, Guidelines, Hashing Passwords, Network Security, Localhost-Only Connections, Firewalling, MySQL in a DMZ, SSL in MySQL, SSL in MySQL, SSH tunneling, TCP Wrappers, Automatic Host Blocking, Hashing Passwords
		access to, Localhost-Only Connections
	configuration of, Network Configuration, Choosing an Operating System, Network Configuration, Network Configuration, Choosing an Operating System
	latency of, Find the Source of the Problem
	monitoring, Network Configuration
	security for, Guidelines, Hashing Passwords, Network Security, Firewalling, MySQL in a DMZ, SSL in MySQL, SSL in MySQL, SSH tunneling, TCP Wrappers, Automatic Host Blocking, Hashing Passwords

	network-attached storage (NAS), Network-Attached Storage
	next-key locking strategy, The InnoDB Engine
	Nichter, HackMySQL Tools
	nondeterministic functions, How MySQL Checks for a Cache Hit
	noninteractive mode, innotop
	noninteractive monitoring tools, MONyog
	nonrepeatable read, Isolation Levels
	normalization, Normalization and Denormalization
	Not_flushed_delayed_rows status variable, Miscellaneous
	NOW() function, How MySQL Checks for a Cache Hit
	NOW_USEC() UDF, User-Defined Functions
	NPTL (Native POSIX Threads Library), Threading
	NTFS filesystem, Choosing a Filesystem
	nullable data types, Choosing Optimal Data Types

O
	object hierarchies, Cache Object Hierarchies
	object versioning, Cache Control Policies
	Object-relational mapping (ORM), Choosing Identifiers
	object-specific privileges, Privileges
	obsolete privileges, Obsolete privileges
	offline backups, Online or Offline Backups?
	OFFSET clause, Optimizing LIMIT and OFFSET
	OLAP (online analytical processing), Separating functions
	OLTP (online transaction processing), What to Measure, Separating functions
		performance of, What to Measure
	separating from OLAP on different slaves, Separating functions

	on-controller cache (RAID cache), The RAID cache
	on-disk caches, Application-Level Caching
	online analytical processing (OLAP), Separating functions
	online backups, Online or Offline Backups?
	Opened_tables status variable, The Table Cache
	OpenNMS tool, Alternatives to Nagios
	OpenSSL library, SSL in MySQL
	Open_* status variables, File Descriptors
	Open_files status variable, Inspecting MySQL Server Status Variables
	Open_tables status variable, Inspecting MySQL Server Status Variables
	operating system, When You Can't Add Profiling Code, Advanced Profiling and Troubleshooting, Advanced Profiling and Troubleshooting, Advanced Profiling and Troubleshooting, Choosing an Operating System, How to Read iostat Output, A CPU-Bound Machine, An I/O-Bound Machine, An I/O-Bound Machine, What to Back Up, Guidelines
		backing up files on, What to Back Up
	choosing, Choosing an Operating System
	profiling, When You Can't Add Profiling Code, Advanced Profiling and Troubleshooting, Advanced Profiling and Troubleshooting, Advanced Profiling and Troubleshooting
	security of, Guidelines
	status of, How to Read iostat Output, A CPU-Bound Machine, An I/O-Bound Machine, An I/O-Bound Machine
		for CPU-bound server, How to Read iostat Output
	for I/O-bound server, A CPU-Bound Machine
	for idle server, An I/O-Bound Machine
	for swapping server, An I/O-Bound Machine

	operating system waits, SEMAPHORES
	OProfile tool, Advanced Profiling and Troubleshooting
	optimal concurrency, Finding the Optimal Concurrency
	optimization, Schema Optimization and Indexing, Choosing Optimal Data Types, Whole Numbers, VARCHAR and CHAR types, Using ENUM instead of a string type, Date and Time Types, Avoiding Multiple Range Conditions, Finding and Repairing Table Corruption, Finding and Repairing Table Corruption, Updating Index Statistics, Reducing Index and Data Fragmentation, Normalization and Denormalization, Cache and Summary Tables, Counter tables, Cache and Summary Tables, Counter tables, Counter tables, Counter tables, The join optimizer, The join optimizer, Full-Text Tuning and Optimization, Full-Text Tuning and Optimization, Optimizing for BLOB and TEXT Workloads, Inspecting MySQL Server Status Variables, Optimizing for BLOB and TEXT Workloads, Inspecting MySQL Server Status Variables, Optimizing for BLOB and TEXT Workloads, Optimizing for BLOB and TEXT Workloads, Inspecting MySQL Server Status Variables, Inspecting MySQL Server Status Variables, Which Is Better: Fast CPUs or Many CPUs?, Balancing Memory and Disk Resources, Which Is Better: Fast CPUs or Many CPUs?, CPU Architecture, Scaling to Many CPUs and Cores, Balancing Memory and Disk Resources, Finding an Effective Memory-to-Disk Ratio, RAID Performance Optimization, Finding an Effective Memory-to-Disk Ratio, Choosing Hard Disks, Choosing Hard Disks, Choosing Hard Disks, Choosing Hardware for a Slave, Storage Area Networks, RAID Performance Optimization, RAID Performance Optimization, RAID Performance Optimization, RAID Failure, Recovery, and Monitoring, Balancing Hardware RAID and Software RAID, RAID Configuration and Caching, The RAID cache, The RAID cache, The RAID cache, Storage Area Networks, Using Multiple Disk Volumes, Using Multiple Disk Volumes, Choosing an Operating System, Network Configuration, Network Configuration, Choosing an Operating System, Choosing an Operating System, Choosing a Filesystem, Choosing a Filesystem, Choosing a Filesystem
		BLOB columns, Optimizing for BLOB and TEXT Workloads, Inspecting MySQL Server Status Variables, Optimizing for BLOB and TEXT Workloads, Inspecting MySQL Server Status Variables
	cache tables, Cache and Summary Tables, Counter tables, Counter tables
	data types, Schema Optimization and Indexing, Choosing Optimal Data Types, Whole Numbers, VARCHAR and CHAR types, Using ENUM instead of a string type, Date and Time Types
		date and time, Date and Time Types
	nullable, Choosing Optimal Data Types
	strings, VARCHAR and CHAR types, Using ENUM instead of a string type
	whole numbers, Whole Numbers

	filesystem for, Choosing a Filesystem, Choosing a Filesystem, Choosing a Filesystem
	fragmentation, Reducing Index and Data Fragmentation
	index corruption, Finding and Repairing Table Corruption
	index statistics, Updating Index Statistics
	normalization, Normalization and Denormalization
	of CPUs, Which Is Better: Fast CPUs or Many CPUs?, Balancing Memory and Disk Resources, Which Is Better: Fast CPUs or Many CPUs?, CPU Architecture, Scaling to Many CPUs and Cores, Balancing Memory and Disk Resources
	of filesorts, The join optimizer, Optimizing for BLOB and TEXT Workloads
	of full-text searching, Full-Text Tuning and Optimization, Full-Text Tuning and Optimization
	of memory-to-disk ratio, Finding an Effective Memory-to-Disk Ratio, RAID Performance Optimization, Finding an Effective Memory-to-Disk Ratio, Choosing Hard Disks, Choosing Hard Disks, RAID Performance Optimization
	of multiple disk volumes, Using Multiple Disk Volumes
	of network configuration, Using Multiple Disk Volumes, Choosing an Operating System, Network Configuration, Network Configuration, Choosing an Operating System
	of RAID, Choosing Hardware for a Slave, Storage Area Networks, RAID Performance Optimization, RAID Performance Optimization, RAID Failure, Recovery, and Monitoring, Balancing Hardware RAID and Software RAID, RAID Configuration and Caching, The RAID cache, The RAID cache, The RAID cache, Storage Area Networks
	of slave hardware, Choosing Hard Disks
	of sorts, Avoiding Multiple Range Conditions, The join optimizer
	operating system for, Choosing an Operating System
	summary tables, Cache and Summary Tables, Counter tables, Counter tables
	table corruption, Finding and Repairing Table Corruption
	TEXT columns, Optimizing for BLOB and TEXT Workloads, Inspecting MySQL Server Status Variables, Inspecting MySQL Server Status Variables

	OPTIMIZE TABLE command, Reducing Index and Data Fragmentation
	optimizer_prune_level variable, Query Optimizer Hints
	optimizer_search_depth variable, Query Optimizer Hints
	order processing, Order processing
	ORM (Object-relational mapping), Choosing Identifiers
	O_DIRECT flag, How InnoDB opens and flushes log and data files
	O_DSYNC flag, How InnoDB opens and flushes log and data files
	O_SYNC flag, How InnoDB opens and flushes log and data files

P
	packed (prefix-compressed) indexes, Packed (Prefix-Compressed) Indexes
	packet loss, Network Configuration
	packet sniffers, When You Can't Add Profiling Code
	parallel dump and restore, Parallel dump and restore
	parallel execution, Parallel execution
	parallel result sets, Generating Parallel Result Sets
	partitioned tables, Merge Tables and Partitioning, Merge table strengths, Partitioned Tables, Partitioned Tables, Why partitioning works, Partitioning examples, Partitioning examples, Partitioned table limitations, Partitioned table limitations, Optimizing queries against partitioned tables, Optimizing queries against partitioned tables, Optimizing queries against partitioned tables
		advantages of, Merge table strengths
	examples of, Partitioning examples
	limitations of, Partitioned table limitations
	queries against, Optimizing queries against partitioned tables
	types of, Partitioned Tables

	partitioning, Scaling Out, Functional partitioning
	partitioning keys, Data sharding, Choosing a partitioning key, Choosing a partitioning key
	passive caches, Caching
	passive monitoring, Monitoring Tools
	passwordless access, Disallowing passwordless access
	passwords, Setting Up MySQL Privileges, Hashing Passwords
		hashing, Hashing Passwords
	security of, Setting Up MySQL Privileges

	pattern matching, Granting privileges on wildcarded databases
	PBXT (Primebase XT) storage engine, The PBXT (Primebase XT) Engine, Storage Engine Summary
	percentile response times, What to Measure
	performance, Table locks, What to Measure, A PHP profiling example, Clustered Indexes, Redundant and Duplicate Indexes, Optimizing Sorts, Counter tables, Speeding Up ALTER TABLE, The MyISAM Storage Engine, Modifying Only the .frm File, Building MyISAM Indexes Quickly, The MyISAM Storage Engine, The MyISAM Storage Engine, Slow Query Basics: Optimize Data Access, Slow Query Basics: Optimize Data Access, Are You Asking the Database for Data You Don't Need?, Rows examined and access types, Rows examined and access types, Rows examined and access types, Ways to Restructure Queries, Complex Queries Versus Many Queries, Join Decomposition, Join Decomposition, The Query Cache, MySQL's join execution strategy, MySQL's join execution strategy, The join optimizer, The join optimizer, The join optimizer, The join optimizer, Sort optimizations, The Query Execution Engine, Limitations of the MySQL Query Optimizer, Correlated Subqueries, When a correlated subquery is good, When a correlated subquery is good, When a correlated subquery is good, Index merge optimizations, Loose index scans, Loose index scans, SELECT and UPDATE on the same table, Query Optimizer Hints, Storing Code Inside MySQL, Preserving Comments in Stored Code, Storing Code Inside MySQL, Stored Procedures and Functions, Stored Procedures and Functions, Triggers, Events, Events, Preserving Comments in Stored Code, Cursors, Cursors, Limitations of Prepared Statements, Views, Performance Implications of Views, How Character Sets and Collations Affect Queries, Full-Text Searching, How Character Sets and Collations Affect Queries, How Character Sets and Collations Affect Queries, Full-Text Searching, Boolean Full-Text Searches, Foreign Key Constraints, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Foreign Key Constraints, Foreign Key Constraints, Merge table performance impacts, Optimizing queries against partitioned tables, Internal XA Transactions, Optimizing Server Settings, Syntax, Scope, and Dynamism, Getting Started, Side Effects of Setting Variables, Side Effects of Setting Variables, Getting Started, Workload-Based Tuning, What Limits MySQL's Performance?, Network Configuration, Swapping, Replication Limitations, The Future of MySQL Replication, How Fast Is Replication?, How Fast Is Replication?, The Future of MySQL Replication, Terminology, Buying Time Before Scaling, How to recover corrupted InnoDB data, Privileges on the INFORMATION_SCHEMA tables, Interface Tools, Monitoring Tools, Maatkit Analysis Tools, MySQL Proxy, Invoking EXPLAIN, The SphinxSE Pluggable Storage Engine
		application level profiling affecting, A PHP profiling example
	development complexity increased by
 improving, Counter tables
	in Sphinx, The SphinxSE Pluggable Storage Engine
	of ALTER TABLE command, Speeding Up ALTER TABLE, The MyISAM Storage Engine, Modifying Only the .frm File, Building MyISAM Indexes Quickly, The MyISAM Storage Engine, The MyISAM Storage Engine
	of backup and recovery, How to recover corrupted InnoDB data
	of character sets and collations, How Character Sets and Collations Affect Queries, Full-Text Searching, How Character Sets and Collations Affect Queries, How Character Sets and Collations Affect Queries, Full-Text Searching
	of cursors, Cursors
	of distributed (XA) transactions, Internal XA Transactions
	of DNS, Network Configuration
	of EXPLAIN command, Invoking EXPLAIN
	of foreign keys, Foreign Key Constraints
	of full-text searching, Boolean Full-Text Searches, Foreign Key Constraints, Full-Text Tradeoffs and Workarounds, Full-Text Tradeoffs and Workarounds, Foreign Key Constraints
	of indexes, Clustered Indexes, Redundant and Duplicate Indexes, Optimizing Sorts
		clustered indexes, Clustered Indexes
	redundant indexes, Redundant and Duplicate Indexes
	sorting, Optimizing Sorts

	of locks, Table locks
	of merge tables, Merge table performance impacts
	of OLTP, What to Measure
	of partitioned tables, Optimizing queries against partitioned tables
	of prepared statements, Cursors
	of queries, Slow Query Basics: Optimize Data Access, Slow Query Basics: Optimize Data Access, Are You Asking the Database for Data You Don't Need?, Rows examined and access types, Rows examined and access types, Rows examined and access types, Ways to Restructure Queries, Complex Queries Versus Many Queries, Join Decomposition, Join Decomposition, The Query Cache, MySQL's join execution strategy, MySQL's join execution strategy, The join optimizer, The join optimizer, The join optimizer, The join optimizer, Sort optimizations, The Query Execution Engine, Limitations of the MySQL Query Optimizer, Correlated Subqueries, When a correlated subquery is good, When a correlated subquery is good, When a correlated subquery is good, Index merge optimizations, Loose index scans, Loose index scans, SELECT and UPDATE on the same table, Query Optimizer Hints
		data access, Slow Query Basics: Optimize Data Access, Slow Query Basics: Optimize Data Access, Are You Asking the Database for Data You Don't Need?, Rows examined and access types, Rows examined and access types, Rows examined and access types
	optimizer for, MySQL's join execution strategy, MySQL's join execution strategy, The join optimizer, The join optimizer, The join optimizer, The join optimizer, Sort optimizations, The Query Execution Engine, Limitations of the MySQL Query Optimizer, Correlated Subqueries, When a correlated subquery is good, When a correlated subquery is good, When a correlated subquery is good, Index merge optimizations, Loose index scans, Loose index scans, SELECT and UPDATE on the same table, Query Optimizer Hints
	query cache for, The Query Cache
	restructuring queries for, Ways to Restructure Queries, Complex Queries Versus Many Queries, Join Decomposition, Join Decomposition

	of replication, Replication Limitations, The Future of MySQL Replication, How Fast Is Replication?, How Fast Is Replication?, The Future of MySQL Replication
	of server variables set dynamically, Syntax, Scope, and Dynamism, Getting Started, Side Effects of Setting Variables, Side Effects of Setting Variables, Getting Started
	of stored code, Storing Code Inside MySQL, Preserving Comments in Stored Code, Storing Code Inside MySQL, Stored Procedures and Functions, Stored Procedures and Functions, Triggers, Events, Events, Preserving Comments in Stored Code
	of temporary tables, Workload-Based Tuning
	of UDFs, Limitations of Prepared Statements
	of views, Views, Performance Implications of Views
	privileges affecting, Privileges on the INFORMATION_SCHEMA tables
	server configuration benefits for, Optimizing Server Settings
	swapping affecting, Swapping
	tools for, Interface Tools, Monitoring Tools, Maatkit Analysis Tools, MySQL Proxy
		analysis tools, Maatkit Analysis Tools
	interface tools, Interface Tools
	monitoring tools, Monitoring Tools
	MySQL Proxy, MySQL Proxy

	performance counters, FILE I/O
	permissions, Terminology
	perror utility, The Table Cache
	persistent connections, Look for Common Problems
	phantom read, Isolation Levels
	phpMyAdmin tool, Localhost-Only Connections, phpMyAdmin
	phrase proximity ranking, Phrase Proximity Ranking
	phrase searches, Boolean Full-Text Searches
	physical reads, Caching, Reads, and Writes
	physical size, Choosing Hard Disks
	plug-in-specific status variables, Plug-in-Specific
	point-in-time recovery, Point-in-Time Recovery
	Practical Unix and Internet Security (Garfinkel et
 al.), Guidelines
	prefix indexes, Prefix Indexes and Index Selectivity, Clustered Indexes, Prefix Indexes and Index Selectivity, Prefix Indexes and Index Selectivity, Prefix Indexes and Index Selectivity, Clustered Indexes
	preforking, Web Server Issues
	prepared statements, Prepared Statements, The SQL Interface to Prepared Statements, Limitations of Prepared Statements
		limitations of, Limitations of Prepared Statements
	SQL interface for, The SQL Interface to Prepared Statements

	Preston, Backup and Recovery
	primary key order, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB
	privileges, Creating Replication Accounts, Terminology, Account Basics, Privileges, Privileges, How MySQL Checks Privileges, How MySQL Checks Privileges, Setting Up MySQL Privileges, Setting Up MySQL Privileges, Setting Up MySQL Privileges, Setting Up MySQL Privileges, Setting Up MySQL Privileges, Privilege Changes in MySQL 5.0, Triggers, Triggers, Views, Privileges on the INFORMATION_SCHEMA tables, Privileges and Performance, Using temporary tables safely, Don't grant privileges on the mysql database, Don't grant the SUPER privilege freely, Revoking specific privileges, Revoking specific privileges, Obsolete privileges
		amount of, Views
	displaying for user, How MySQL Checks Privileges
	for adding privileges, Revoking specific privileges
	for backup accounts, Setting Up MySQL Privileges
	for database administrator accounts, Setting Up MySQL Privileges
	for employee accounts, Setting Up MySQL Privileges
	for INFORMATION_SCHEMA tables, Privileges on the INFORMATION_SCHEMA tables
	for logging accounts, Setting Up MySQL Privileges
	for mysql database, Don't grant privileges on the mysql database
	for removing privileges, Revoking specific privileges
	for replication accounts, Creating Replication Accounts
	for stored routines, Privilege Changes in MySQL 5.0
	for system administrator account, Setting Up MySQL Privileges
	for temporary tables, Using temporary tables safely
	for triggers, Triggers
	for views, Triggers
	for wildcarded databases, Don't grant the SUPER privilege freely
	global, Privileges
	how MySQL checks, How MySQL Checks Privileges
	object-specific, Privileges
	obsolete, Obsolete privileges
	performance affected by, Privileges and Performance
	types of, Account Basics

	/proc filesystem, Troubleshooting MySQL Connections and Processes
	procedures, Storing Code Inside MySQL, The SQL Interface to Prepared Statements
	processes, Operating System Profiling
	procs_priv table, The Grant Tables
	production environment, Guidelines
	profiling, Finding Bottlenecks: Benchmarking and Profiling, Profiling, Profiling an Application, Profiling an Application, How and what to measure, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, Profiling a MySQL Server, A PHP profiling example, A PHP profiling example, Logging queries, Logging queries, Finer control over logging, How to read the slow query log, Log analysis tools, Profiling a MySQL Server, Profiling a MySQL Server, Other Ways to Profile MySQL, Profiling a MySQL Server, Profiling a MySQL Server, Profiling a MySQL Server, SHOW PROFILE, Profiling Queries with SHOW STATUS, Profiling Queries with SHOW STATUS, Profiling Queries with SHOW STATUS, SHOW PROFILE, SHOW PROFILE, SHOW PROFILE, Other Ways to Profile MySQL, When You Can't Add Profiling Code, When You Can't Add Profiling Code, Operating System Profiling, Advanced Profiling and Troubleshooting, Advanced Profiling and Troubleshooting, Application-Level Optimization
		application level, Profiling an Application, Profiling an Application, How and what to measure, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, Application-Level Optimization
		example of, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example, A PHP profiling example
	lightweight, A PHP profiling example
	measurements for, Profiling an Application
	performance affected by, A PHP profiling example

	CPU usage, A PHP profiling example
	MySQL, A PHP profiling example, Profiling a MySQL Server, Logging queries, Logging queries, Finer control over logging, How to read the slow query log, Log analysis tools, Profiling a MySQL Server, Profiling a MySQL Server
	MySQL server, Profiling a MySQL Server, Other Ways to Profile MySQL, Profiling a MySQL Server, Profiling Queries with SHOW STATUS, Profiling Queries with SHOW STATUS, SHOW PROFILE, SHOW PROFILE, Other Ways to Profile MySQL
	operating system, Operating System Profiling, Advanced Profiling and Troubleshooting, Advanced Profiling and Troubleshooting
	proxies for, When You Can't Add Profiling Code
	queries, Profiling a MySQL Server, SHOW PROFILE, Profiling Queries with SHOW STATUS, SHOW PROFILE
	without code or patches, When You Can't Add Profiling Code

	PURGE MASTER LOGS command, Monitoring Replication
	purging data, Scaling Back, Scaling Back, Keeping active data separate, Keeping active data separate
	Putty tool, SSH tunneling
	pyramid (tree) topology, Tree or Pyramid

Q
	Qcache_* status variables, Inspecting MySQL Server Status Variables, Query Cache
	Qcache_hits status variable, When the Query Cache Is Helpful
	Qcache_inserts status variable, When the Query Cache Is Helpful
	Qcache_not_cached status variable, When the Query Cache Is Helpful
	queries, Optimization and Execution, Profiling Queries with SHOW STATUS, SHOW PROFILE, Profiling Queries with SHOW STATUS, SHOW PROFILE, Slow Query Basics: Optimize Data Access, Slow Query Basics: Optimize Data Access, Is MySQL Examining Too Much Data?, Is MySQL Examining Too Much Data?, Complex Queries Versus Many Queries, Is MySQL Examining Too Much Data?, Rows examined and rows returned, Rows examined and rows returned, Rows examined and access types, Rows examined and access types, Rows examined and access types, Ways to Restructure Queries, Complex Queries Versus Many Queries, Complex Queries Versus Many Queries, Join Decomposition, Join Decomposition, Query Execution Basics, Query states, The parser and the preprocessor, The parser and the preprocessor, The parser and the preprocessor, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, MySQL's join execution strategy, MySQL's join execution strategy, MySQL's join execution strategy, The execution plan, The execution plan, The join optimizer, The join optimizer, The join optimizer, The join optimizer, The Query Execution Engine, Returning Results to the Client, Limitations of the MySQL Query Optimizer, Correlated Subqueries, Correlated Subqueries, When a correlated subquery is good, When a correlated subquery is good, UNION limitations, Index merge optimizations, Loose index scans, Loose index scans, Loose index scans, Optimizing Specific Types of Queries, Optimizing UNION, Myths about MyISAM, Optimizing Subqueries, Optimizing Subqueries, Optimizing GROUP BY and DISTINCT, Optimizing GROUP BY and DISTINCT, Optimizing LIMIT and OFFSET, Optimizing SQL_CALC_FOUND_ROWS, Optimizing UNION, Optimizing UNION, Query Optimizer Hints, Query Optimizer Hints, How MySQL Checks for a Cache Hit, Prepared Statements, How Character Sets and Collations Affect Queries, Full-Text Searching, How Character Sets and Collations Affect Queries, Full-Text Searching, How Character Sets and Collations Affect Queries, How Character Sets and Collations Affect Queries, Full-Text Searching, Full-Text Searching, Tools for High Performance, innotop, HackMySQL Tools, Applying WHERE Clauses Efficiently
		access methods used by, Rows examined and access types
	analyzing, Slow Query Basics: Optimize Data Access, Rows examined and rows returned, HackMySQL Tools
	character sets affecting, How Character Sets and Collations Affect Queries, Full-Text Searching, How Character Sets and Collations Affect Queries, How Character Sets and Collations Affect Queries, Full-Text Searching
	collations affecting, How Character Sets and Collations Affect Queries, Full-Text Searching, Full-Text Searching
	consistent formatting of, How MySQL Checks for a Cache Hit
	DISTINCT clauses, Optimizing GROUP BY and DISTINCT
	execution of, Query Execution Basics, The Query Execution Engine
	execution plan for, The execution plan
	execution time of, Is MySQL Examining Too Much Data?
	monitoring, innotop
	optimizations for specific types of, Optimizing Specific Types of Queries, Optimizing UNION, Myths about MyISAM, Optimizing Subqueries, Optimizing GROUP BY and DISTINCT, Optimizing LIMIT and OFFSET, Optimizing UNION, Optimizing UNION
	optimizer for, Optimization and Execution, The parser and the preprocessor, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, The query optimizer, MySQL's join execution strategy, MySQL's join execution strategy, MySQL's join execution strategy, The execution plan, The join optimizer, The join optimizer, The join optimizer, The join optimizer, Limitations of the MySQL Query Optimizer, Correlated Subqueries, When a correlated subquery is good, When a correlated subquery is good, UNION limitations, Index merge optimizations, Loose index scans, Loose index scans, Loose index scans, Optimizing SQL_CALC_FOUND_ROWS, Query Optimizer Hints, Query Optimizer Hints
		dynamic optimizations, The query optimizer
	early termination by, The query optimizer
	hint options for, Optimizing SQL_CALC_FOUND_ROWS, Query Optimizer Hints
	join optimizations by, The execution plan, The join optimizer, The join optimizer, The join optimizer
	join strategy used by, MySQL's join execution strategy, MySQL's join execution strategy, MySQL's join execution strategy
	limitations of, The parser and the preprocessor, Limitations of the MySQL Query Optimizer, Correlated Subqueries, When a correlated subquery is good, When a correlated subquery is good, UNION limitations, Index merge optimizations, Loose index scans, Loose index scans, Loose index scans
	optimizations performed by, The query optimizer, The query optimizer
	sort optimizations used by, The join optimizer
	static optimizations, The query optimizer
	system variables affecting, Query Optimizer Hints

	parser for, The parser and the preprocessor
	prepared statements for, Prepared Statements
	preprocessor for, The parser and the preprocessor
	profiling, Profiling Queries with SHOW STATUS, SHOW PROFILE, Profiling Queries with SHOW STATUS, SHOW PROFILE
	restructuring, Ways to Restructure Queries, Join Decomposition, Join Decomposition
		breaking into multiple queries, Ways to Restructure Queries
	join decomposition, Join Decomposition

	results returned by, Returning Results to the Client
	rows examined by, Is MySQL Examining Too Much Data?, Complex Queries Versus Many Queries, Rows examined and rows returned, Rows examined and access types, Rows examined and access types, Complex Queries Versus Many Queries
	rows returned by, Slow Query Basics: Optimize Data Access, Is MySQL Examining Too Much Data?, Complex Queries Versus Many Queries
	software for, Tools for High Performance
	states of, Query states
	subqueries, The query optimizer, Correlated Subqueries, Optimizing Subqueries
	WHERE clause, The query optimizer, Applying WHERE Clauses Efficiently

	query cache, Optimization and Execution, Profiling a MySQL Server, The Query Cache, The MySQL Query Cache, The MySQL Query Cache, How MySQL Checks for a Cache Hit, How MySQL Checks for a Cache Hit, How MySQL Checks for a Cache Hit, How MySQL Checks for a Cache Hit, How the Cache Uses Memory, How the Cache Uses Memory, How the Cache Uses Memory, How the Cache Uses Memory, How the Cache Uses Memory, When the Query Cache Is Helpful, When the Query Cache Is Helpful, When the Query Cache Is Helpful, When the Query Cache Is Helpful, When the Query Cache Is Helpful, When the Query Cache Is Helpful, When the Query Cache Is Helpful, When the Query Cache Is Helpful, How to Tune and Maintain the Query Cache, How to Tune and Maintain the Query Cache, Reducing fragmentation, Reducing fragmentation, Reducing fragmentation, Improving query cache usage, Improving query cache usage, General Query Cache Optimizations, General Query Cache Optimizations, General Query Cache Optimizations, Side Effects of Setting Variables, Privileges and Performance, SELECT Types
		cache hits, How MySQL Checks for a Cache Hit, Improving query cache usage
		checking for, How MySQL Checks for a Cache Hit
	improving, Improving query cache usage

	cache misses, When the Query Cache Is Helpful
	column privileges not using, Privileges and Performance
	disabling, General Query Cache Optimizations
	excluding queries from, General Query Cache Optimizations
	fragmentation in, How the Cache Uses Memory, Reducing fragmentation
	helpfulness of, When the Query Cache Is Helpful, When the Query Cache Is Helpful, When the Query Cache Is Helpful
	hit rate of, When the Query Cache Is Helpful
	locks affecting, Reducing fragmentation
	memory use by, How the Cache Uses Memory, How the Cache Uses Memory, How the Cache Uses Memory, When the Query Cache Is Helpful
	not using for query, Profiling a MySQL Server
	overhead added by, How MySQL Checks for a Cache Hit
	pruning of, Improving query cache usage, General Query Cache Optimizations
	removing all queries and results from, Reducing fragmentation
	result sets in, How to Tune and Maintain the Query Cache
	size of, How MySQL Checks for a Cache Hit, When the Query Cache Is Helpful, Side Effects of Setting Variables
		performance affected by, How MySQL Checks for a Cache Hit
	potential, When the Query Cache Is Helpful

	status variables for, SELECT Types
	tuning, How to Tune and Maintain the Query Cache

	query logs, Logging queries, Profiling a MySQL Server, Logging queries, Finer control over logging, How to read the slow query log, How to read the slow query log, Log analysis tools, Log analysis tools, Profiling a MySQL Server
	query plan cost, Miscellaneous
	Query state, Query states
	query-based split, Splitting reads and writes in replication
	query_cache_limit variable, How to Tune and Maintain the Query Cache
	query_cache_min_res_unit variable, How the Cache Uses Memory
	query_cache_size variable, How to Tune and Maintain the Query Cache, Syntax, Scope, and Dynamism
	query_cache_type variable, How to Tune and Maintain the Query Cache
	query_cache_wlock_invalidate variable, How to Tune and Maintain the Query Cache
	Questions status variable, Command Counters

R
	R-tree (spatial) indexes, Spatial (R-Tree) indexes
	R1Soft, R1Soft
	RAID (Redundant Arrays of Inexpensive Disks), Choosing Hardware for a Slave, Storage Area Networks, RAID Performance Optimization, RAID Performance Optimization, RAID Failure, Recovery, and Monitoring, RAID Performance Optimization, RAID Performance Optimization, RAID Failure, Recovery, and Monitoring, RAID Failure, Recovery, and Monitoring, RAID Failure, Recovery, and Monitoring, RAID Failure, Recovery, and Monitoring, RAID Failure, Recovery, and Monitoring, Balancing Hardware RAID and Software RAID, Balancing Hardware RAID and Software RAID, Balancing Hardware RAID and Software RAID, RAID Configuration and Caching, Storage Area Networks, The RAID stripe chunk size, The RAID cache, The RAID cache, The RAID cache, The RAID cache, The RAID cache, Storage Area Networks, Storage Area Networks, It's All About Recovery
		as backups, It's All About Recovery
	configuration, RAID Configuration and Caching, Storage Area Networks, The RAID cache, Storage Area Networks
	crash testing script for, The RAID cache
	failure of, RAID Failure, Recovery, and Monitoring
	hardware, Balancing Hardware RAID and Software RAID
	levels of, RAID Performance Optimization, RAID Failure, Recovery, and Monitoring, RAID Failure, Recovery, and Monitoring, RAID Failure, Recovery, and Monitoring, RAID Failure, Recovery, and Monitoring
	monitoring, RAID Failure, Recovery, and Monitoring
	stripe chunk size for, The RAID stripe chunk size

	RAID cache, The RAID cache
	random, Load-balancing algorithms
	random I/O, Random Versus Sequential I/O
	range condition, Avoiding Multiple Range Conditions
	range partitioning, Partitioned Tables
	ranged queries, Advanced Performance Control
	raw backups, The Big Picture, Logical backups, Restoring Raw Files
	READ COMMITTED isolation level, Isolation Levels
	read locks, Read/Write Locks
	READ UNCOMMITTED isolation level, Isolation Levels
	read-around writes, The MyISAM key block size
	read-mostly tables, Read-only or read-mostly tables
	read-only slaves, Read-only slaves
	read-only tables, Read-only or read-mostly tables
	read_buffer_size variable, Side Effects of Setting Variables
	read_only variable, Recommended Replication Configuration
	read_rnd_buffer_size variable, Side Effects of Setting Variables
	real numbers, Real Numbers
	records_in_range() function, Updating Index Statistics
	recovery, Overview, It's All About Recovery, It's All About Recovery, Why Backups?, Recovering from a Backup, Recovering from a Backup, Limiting Access to MySQL, Restoring Raw Files, Restoring Raw Files, Restoring Logical Backups, Loading SQL files, Point-in-Time Recovery, More Advanced Recovery Techniques, Delayed replication for fast recovery, Recovering with a log server, Recovering with a log server, Backup and Recovery Speed, Recovering with a log server, InnoDB Recovery, InnoDB Recovery, How to recover corrupted InnoDB data, How to recover corrupted InnoDB data, How to recover corrupted InnoDB data, Backup and Recovery Speed, Backup and Recovery Speed
		delayed replication for, Delayed replication for fast recovery
	disaster recovery, Why Backups?
	limiting MySQL access during, Limiting Access to MySQL
	log server for, Recovering with a log server
	logical backups, Restoring Raw Files, Restoring Logical Backups, Loading SQL files
	with InnoDB, Recovering with a log server, Backup and Recovery Speed, InnoDB Recovery, How to recover corrupted InnoDB data, Backup and Recovery Speed, Backup and Recovery Speed

	redundancy, Planning for High Availability
	redundant indexes, Redundant and Duplicate Indexes, Redundant and Duplicate Indexes, Redundant and Duplicate Indexes
	ReiserFS filesystem, Choosing a Filesystem, Choosing a Filesystem
	relay log, How Replication Works
	relay-log.info file, Replication Files
	relay_log variable, Configuring the Master and Slave
	relay_log_space_limit variable, Recommended Replication Configuration
	RELOAD privilege, Setting Up MySQL Privileges
	REPAIR TABLE command, Finding and Repairing Table Corruption
	REPEATABLE READ isolation level, Isolation Levels
	replicated-disk architectures, Replicated-disk architectures
	replicate_* variables, Replication Filters
	replicate_ignore_db variable, Data archiving
	replication, Stored Procedures and Functions, User-Defined Functions, Which Is Better: Fast CPUs or Many CPUs?, Choosing Hardware for a Slave, Replication, How Replication Works, Replication Overview, Replication Overview, Replication Overview, Replication Overview, Replication Overview, Replication Overview, Problems Solved by Replication, Problems Solved by Replication, How Replication Works, How Replication Works, How Replication Works, Setting Up Replication, Setting Up Replication, Configuring the Master and Slave, Configuring the Master and Slave, Configuring the Master and Slave, Starting the Slave, Starting the Slave, Starting the Slave, Initializing a Slave from Another Server, Initializing a Slave from Another Server, Initializing a Slave from Another Server, Initializing a Slave from Another Server, Recommended Replication Configuration, Recommended Replication Configuration, Recommended Replication Configuration, Statement-Based Replication, Row-Based Replication, Replication Files, Sending Replication Events to Other Slaves, Sending Replication Events to Other Slaves, Replication Filters, Replication Topologies, Master and Multiple Slaves, Master-Master in Active-Active Mode, Master-Master in Active-Active Mode, Master-Master in Active-Active Mode, Master-Master in Active-Active Mode, Master-Master with Slaves, Ring, Master, Distribution Master, and Slaves, Master, Distribution Master, and Slaves, Master, Distribution Master, and Slaves, Data archiving, Using slaves for full-text searches, Emulating multimaster replication, Creating a log server, Replication and Capacity Planning, Replication and Capacity Planning, Why Replication Doesn't Help Scale Writes, Why Replication Doesn't Help Scale Writes, Replication Administration and Maintenance, Measuring Slave Lag, Determining Whether Slaves Are Consistent with the
 Master, Changing Masters, Changing Masters, Planned promotions, Unplanned promotions, Locating the desired log positions, Locating the desired log positions, Switching Roles in a Master-Master Configuration, Errors Caused by Data Corruption or Loss, Errors Caused by Data Corruption or Loss, Using Nontransactional Tables, Using Nontransactional Tables, Mixing Transactional and Nontransactional Tables, Different Storage Engines on the Master and Slave, Different Storage Engines on the Master and Slave, Data Changes on the Slave, Undefined Server IDs, Undefined Server IDs, Dependencies on Nonreplicated Data, Missing Temporary Tables, Not Replicating All Updates, Lock Contention Caused by InnoDB Locking Selects, Lock Contention Caused by InnoDB Locking Selects, Lock Contention Caused by InnoDB Locking Selects, Writing to Both Masters in Master-Master Replication, Writing to Both Masters in Master-Master Replication, Excessive Replication Lag, Don't duplicate the expensive part of writes, Do writes in parallel outside of replication, Prime the cache for the slave thread, Prime the cache for the slave thread, Oversized Packets from the Master, Limited Replication Bandwidth, No Disk Space, Replication Limitations, The Future of MySQL Replication, Scaling Up, Connecting Directly, Synchronous MySQL replication, It's All About Recovery, Raw backups, Replication, Delayed replication for fast recovery, Replication Status
		accounts for, Setting Up Replication
	capacity planning for, Replication and Capacity Planning, Why Replication Doesn't Help Scale Writes
	configuration for, Configuring the Master and Slave, Recommended Replication Configuration, Raw backups
		backing up, Raw backups
	recommended, Recommended Replication Configuration

	CPUs affecting, Which Is Better: Fast CPUs or Many CPUs?
	delayed, Delayed replication for fast recovery
	files used by, Replication Files
	filtering for, Replication Filters
	for backups, Problems Solved by Replication, It's All About Recovery, Replication
	for load balancing, Connecting Directly
	for scalability, Scaling Up
	future of, The Future of MySQL Replication
	in versions prior to 4.0, How Replication Works
	limitations of, Replication Limitations
	monitoring, Replication Administration and Maintenance
	row-based, Replication Overview, Row-Based Replication
	scaling reads using, Replication Overview
	scaling writes using, Replication and Capacity Planning
	setting up, Setting Up Replication, Configuring the Master and Slave, Configuring the Master and Slave, Starting the Slave, Starting the Slave, Initializing a Slave from Another Server, Initializing a Slave from Another Server, Recommended Replication Configuration, Recommended Replication Configuration, Sending Replication Events to Other Slaves
	slave lag, Measuring Slave Lag
	slave server, Choosing Hardware for a Slave, Starting the Slave, Initializing a Slave from Another Server, Initializing a Slave from Another Server, Sending Replication Events to Other Slaves, Determining Whether Slaves Are Consistent with the
 Master, Changing Masters, Changing Masters, Planned promotions, Unplanned promotions, Locating the desired log positions, Locating the desired log positions
		as master of other slaves, Sending Replication Events to Other Slaves
	changing master of, Changing Masters
	consistency with master, Determining Whether Slaves Are Consistent with the
 Master
	hardware for, Choosing Hardware for a Slave
	initializing from another server, Initializing a Slave from Another Server
	promoting to master, Changing Masters, Planned promotions, Unplanned promotions, Locating the desired log positions, Locating the desired log positions
	starting, Starting the Slave, Initializing a Slave from Another Server

	speed of, User-Defined Functions
	statement-based, Replication Overview, Statement-Based Replication
	status of, Replication Status
	stored routines and, Stored Procedures and Functions
	synchronous, Synchronous MySQL replication
	topologies for, Replication Topologies, Master and Multiple Slaves, Master-Master in Active-Active Mode, Master-Master in Active-Active Mode, Master-Master in Active-Active Mode, Master-Master in Active-Active Mode, Master-Master with Slaves, Ring, Master, Distribution Master, and Slaves, Master, Distribution Master, and Slaves, Master, Distribution Master, and Slaves, Data archiving, Using slaves for full-text searches, Emulating multimaster replication, Creating a log server, Switching Roles in a Master-Master Configuration
		data archiving, Data archiving
	full-text searches, Using slaves for full-text searches
	log server, Creating a log server
	master, Master, Distribution Master, and Slaves, Master, Distribution Master, and Slaves, Master, Distribution Master, and Slaves
	master and multiple slaves, Master and Multiple Slaves
	master-master, Master-Master in Active-Active Mode, Master-Master in Active-Active Mode, Master-Master in Active-Active Mode, Switching Roles in a Master-Master Configuration
	master-master with slaves, Master-Master with Slaves
	multimaster, Master-Master in Active-Active Mode, Emulating multimaster replication
	ring, Ring

	troubleshooting, Errors Caused by Data Corruption or Loss, Errors Caused by Data Corruption or Loss, Using Nontransactional Tables, Using Nontransactional Tables, Mixing Transactional and Nontransactional Tables, Different Storage Engines on the Master and Slave, Different Storage Engines on the Master and Slave, Data Changes on the Slave, Undefined Server IDs, Undefined Server IDs, Dependencies on Nonreplicated Data, Missing Temporary Tables, Not Replicating All Updates, Lock Contention Caused by InnoDB Locking Selects, Lock Contention Caused by InnoDB Locking Selects, Lock Contention Caused by InnoDB Locking Selects, Writing to Both Masters in Master-Master Replication, Writing to Both Masters in Master-Master Replication, Excessive Replication Lag, Don't duplicate the expensive part of writes, Do writes in parallel outside of replication, Prime the cache for the slave thread, Prime the cache for the slave thread, Oversized Packets from the Master, Limited Replication Bandwidth, No Disk Space
		all updates not replicated, Not Replicating All Updates
	bandwidth, Limited Replication Bandwidth
	data changes on slave, Data Changes on the Slave
	data corruption or loss, Errors Caused by Data Corruption or Loss, Errors Caused by Data Corruption or Loss, Using Nontransactional Tables
	dependencies on nonreplicated data, Dependencies on Nonreplicated Data
	disk space, No Disk Space
	InnoDB locking SELECTs, Lock Contention Caused by InnoDB Locking Selects, Lock Contention Caused by InnoDB Locking Selects
	locking contentions, Lock Contention Caused by InnoDB Locking Selects
	mixing transactional and nontransactional
 tables, Mixing Transactional and Nontransactional Tables
	nondeterministic statements, Different Storage Engines on the Master and Slave
	nontransactional table errors, Using Nontransactional Tables
	nonunique server IDs, Undefined Server IDs
	packets from master, Oversized Packets from the Master
	slave lag, Writing to Both Masters in Master-Master Replication, Excessive Replication Lag, Don't duplicate the expensive part of writes, Do writes in parallel outside of replication, Prime the cache for the slave thread, Prime the cache for the slave thread
	storage engines different on master and slave, Different Storage Engines on the Master and Slave
	temporary tables, Missing Temporary Tables
	undefined server IDs, Undefined Server IDs
	writing to both masters, Writing to Both Masters in Master-Master Replication

	underutilization of servers, Why Replication Doesn't Help Scale Writes
	uses of, Replication Overview
	versions of MySQL used with, Replication Overview

	REQUIRE ISSUER option, SSL in MySQL
	REQUIRE SUBJECT option, SSL in MySQL
	RESET QUERY CACHE command, Reducing fragmentation
	restoring data, Overview
	reuse of code, Storing Code Inside MySQL
	REVOKE command, How MySQL Checks Privileges, Revoking specific privileges, Revoking specific privileges
		for global privileges, Revoking specific privileges

	Richter, Finer control over logging
	ROLLBACK command, Transactions
	round-robin, Load-balancing algorithms
	row fragmentation, Reducing Index and Data Fragmentation
	row locks, Row locks, Multiversion Concurrency Control, The Memory Storage Engine
	row operations, ROW OPERATIONS
	ROW OPERATIONS section, ROW OPERATIONS
	row-based replication, Replication Overview, Row-Based Replication
	RRDTool-based systems, RRDTool-based systems
	rsync tool, Other Options

S
	SAN (storage area network), Storage Area Networks and Network-Attached Storage
	Sandbox script, Starting the Slave
	sar tool, Operating System Status
	scalability, Terminology, Scaling MySQL, Scaling MySQL, Planning for Scalability, Planning for Scalability, Scaling Up, Scaling Up, Scaling Out, Scaling Out, Functional partitioning, Data sharding, Choosing a partitioning key, Fixed allocation, Scaling Back, Clustering, Scaling Back, Keeping active data separate, Scaling by Clustering, Scaling by Clustering, Clustering, Load Balancing, Load Balancing with a Master and Multiple Slaves, Load Balancing, Load balancers, Load balancers, Load Balancing with a Master and Multiple Slaves, Load Balancing with a Master and Multiple Slaves
		active data, Keeping active data separate
	clustering for, Scaling by Clustering
	load balancing for, Load Balancing, Load Balancing with a Master and Multiple Slaves, Load Balancing, Load balancers, Load balancers, Load Balancing with a Master and Multiple Slaves, Load Balancing with a Master and Multiple Slaves
	planning for, Planning for Scalability
	scaling back, Scaling Back, Clustering, Scaling Back, Scaling by Clustering, Clustering
	scaling horizontally (out), Scaling MySQL, Scaling Up, Scaling Out, Scaling Out, Functional partitioning, Data sharding, Choosing a partitioning key, Fixed allocation
		data sharding for, Data sharding, Choosing a partitioning key, Fixed allocation
	partitioning for, Scaling Out, Functional partitioning
	replication for, Scaling Up

	scaling vertically (up), Scaling MySQL, Scaling Up

	scalability measurements, What to Measure
	scanning indexes, Using Index Scans for Sorts, Packed (Prefix-Compressed) Indexes, Packed (Prefix-Compressed) Indexes, Packed (Prefix-Compressed) Indexes
	scp tool, A Naive Example
	scripting backups, Scripting Backups, Scripting Backups, Scripting Backups, Scripting Backups
	searchd program, Architectural Overview
	Seconds_Behind_Master status variable, Starting the Slave, Measuring Slave Lag
	security, Setting Up MySQL Privileges, Operating System Security, Guidelines, Hashing Passwords, Network Security, Firewalling, MySQL in a DMZ, Connection Encryption and Tunneling, TCP Wrappers, Virtual private networks, Virtual private networks, SSL in MySQL, SSL in MySQL, SSL in MySQL, SSH tunneling, TCP Wrappers, TCP Wrappers, TCP Wrappers, Data Encryption, Data Encryption, MySQL in a chrooted Environment, Hashing Passwords, Hashing Passwords, Encrypted Filesystems, Encrypted Filesystems, Design issues, Encrypting and decrypting inside MySQL, Source Code Modification, MySQL in a chrooted Environment, MySQL in a chrooted Environment, Secure Sockets Layer (SSL)
		chrooted environment, MySQL in a chrooted Environment
	connection encryption, Connection Encryption and Tunneling, TCP Wrappers, Virtual private networks, SSH tunneling, TCP Wrappers
	data encryption, Data Encryption, MySQL in a chrooted Environment, Hashing Passwords, Encrypted Filesystems, Design issues, Encrypting and decrypting inside MySQL, MySQL in a chrooted Environment
	filesystem encryption, Encrypted Filesystems
	of network, Guidelines, Hashing Passwords, Network Security, Firewalling, MySQL in a DMZ, Virtual private networks, SSL in MySQL, SSL in MySQL, TCP Wrappers, Data Encryption, Hashing Passwords
	of operating system, Operating System Security
	of passwords, Setting Up MySQL Privileges
	source code modification for, Source Code Modification
	SSL, SSL in MySQL, Secure Sockets Layer (SSL)
	TCP wrappers, TCP Wrappers

	SELECT command, Loose index scans
		with UPDATE, Loose index scans

	SELECT INTO OUTFILE command, Special-case behaviors, Delimited file backups
	SELECT privilege, Terminology, Granting SELECT allows SHOW CREATE TABLE
	selective replication, Selective replication
	selectivity of indexes, Prefix Indexes and Index Selectivity, Clustered Indexes, Prefix Indexes and Index Selectivity, Prefix Indexes and Index Selectivity, Prefix Indexes and Index Selectivity, Clustered Indexes
	Select_full_join status variable, Inspecting MySQL Server Status Variables, SELECT Types
	Select_full_range_join status variable, Inspecting MySQL Server Status Variables, SELECT Types
	Select_range status variable, SELECT Types
	Select_range_check status variable, Inspecting MySQL Server Status Variables, SELECT Types
	Select_scan status variable, SHOW STATUS
	SEMAPHORES section, SEMAPHORES
	Sending data state, Query states
	sequential I/O, Random Versus Sequential I/O
	seqwr benchmark, Other sysbench features
	SERIALIZABLE isolation level, Isolation Levels
	server, Profiling Queries with SHOW STATUS, SHOW PROFILE, innotop, Debugging Locks, User Locks, Lock Waits at the Server Level, User Locks, User Locks, User Locks
		grouping servers, innotop
	lock waits in, Debugging Locks, User Locks, Lock Waits at the Server Level, User Locks, User Locks, User Locks
	profiling, Profiling Queries with SHOW STATUS, SHOW PROFILE

	server administration, MySQL Visual Tools, phpMyAdmin
	server configuration, Optimizing Server Settings, Optimizing Server Settings, Configuration Basics, Syntax, Scope, and Dynamism, Syntax, Scope, and Dynamism, Syntax, Scope, and Dynamism, Syntax, Scope, and Dynamism, Syntax, Scope, and Dynamism, Side Effects of Setting Variables, Getting Started, General Tuning, Tuning Memory Usage, The MyISAM Key Cache, Per-connection memory needs, Allocating memory for caches, The MyISAM Key Cache, The InnoDB Buffer Pool, The MyISAM Key Cache, The MyISAM Key Cache, The InnoDB Buffer Pool, The Thread Cache, The Table Cache, The InnoDB Data Dictionary, InnoDB Concurrency Tuning, Optimizing for Filesorts, Inspecting MySQL Server Status Variables, Tuning Per-Connection Settings, Tuning Per-Connection Settings
		benchmarking prior to, Getting Started
	changing dynamically, Syntax, Scope, and Dynamism, Side Effects of Setting Variables
	concurrency tuning, InnoDB Concurrency Tuning
	data dictionary, The InnoDB Data Dictionary
	default settings for, Optimizing Server Settings
	files for, Configuration Basics, Syntax, Scope, and Dynamism
	filesorts, Optimizing for Filesorts
	for memory usage, Tuning Memory Usage, The MyISAM Key Cache, Per-connection memory needs, Allocating memory for caches, The MyISAM Key Cache
	key caches, The MyISAM Key Cache, The InnoDB Buffer Pool, The MyISAM Key Cache, The InnoDB Buffer Pool
	performance benefits from, Optimizing Server Settings
	sample files for, General Tuning
	scope of settings in, Syntax, Scope, and Dynamism
	status variables, Inspecting MySQL Server Status Variables, Tuning Per-Connection Settings, Tuning Per-Connection Settings
	syntax used in, Syntax, Scope, and Dynamism
	table cache, The Table Cache
	thread cache, The Thread Cache
	units used in, Syntax, Scope, and Dynamism

	server variables, innotop
	/server-status/ URL, Troubleshooting MySQL Connections and Processes
	session-based split, Splitting reads and writes in replication
	SET CHARACTER SET command, Settings for client/server communication
	SET command, Configuration Basics
	SET NAMES command, Settings for client/server communication
	SET TRANSACTION ISOLATION LEVEL command, AUTOCOMMIT
	SET type, Bit-Packed Data Types
	SHA1() function, Single-Component Tools, Choosing Identifiers, Choosing Identifiers, Hashing Passwords
	shared hosting provider, Why Backups?
	shared locks (read locks), Read/Write Locks
	shared-storage architectures, Shared-storage architectures
	SHOW BINARY LOGS command, Replication Status
	SHOW BINLOG EVENTS command, Monitoring Replication, Replication Status
	SHOW CHARACTER SET command, Choosing a Character Set and Collation
	SHOW COLLATION command, Choosing a Character Set and Collation
	SHOW CREATE TABLE command, Granting SELECT allows SHOW CREATE TABLE
	SHOW DATABASES privilege, Granting privileges on wildcarded databases
	SHOW ENGINE INNODB STATUS command, SHOW INNODB STATUS
	SHOW FULL PROCESSLIST command, Query states
	SHOW GLOBAL STATUS command, Inspecting MySQL Server Status Variables, SHOW STATUS
	SHOW GLOBAL VARIABLES command, Syntax, Scope, and Dynamism
	SHOW GRANTS command, Adding, Removing, and Viewing Grants, Revoking specific privileges, Invisible privileges, Invisible privileges
	SHOW INNODB STATUS command, SHOW INNODB STATUS, SEMAPHORES, SEMAPHORES, LATEST FOREIGN KEY ERROR, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK, TRANSACTIONS, TRANSACTIONS, TRANSACTIONS, INSERT BUFFER AND ADAPTIVE HASH INDEX, LOG, BUFFER POOL AND MEMORY, InnoDB Lock Waits, InnoDB Lock Waits
		TRANSACTIONS section, InnoDB Lock Waits

	SHOW MASTER LOGS command, Creating a log server
	SHOW MASTER STATUS command, Configuring the Master and Slave, Replication Status
	SHOW MUTEX STATUS command, SHOW MUTEX STATUS
	SHOW PROCESSLIST command, Profiling a MySQL Server, SHOW PROCESSLIST, Lock Waits at the Server Level
	SHOW PROFILE patch, SHOW PROFILE
	SHOW SESSION STATUS command, Profiling Queries with SHOW STATUS
	SHOW SLAVE STATUS command, Starting the Slave
	SHOW STATUS command, Profiling a MySQL Server, SHOW STATUS, Command Counters, MyISAM Key Buffer, Sorts, Miscellaneous, Miscellaneous, HackMySQL Tools
	SHOW TABLE STATUS command, MySQL's Storage Engines
	SHOW USER STATISTICS command, Excessive Replication Lag
	SHOW VARIABLES command, System Variables
	shutdown command, Scripting Backups
	SHUTDOWN privilege, Terminology
	single-component benchmarking, Benchmarking Strategies, What to Measure, Full-Stack Tools
	single-pass sort algorithm, Sort optimizations
	skip_grant_tables variable, Don't grant privileges on the mysql database
	skip_name_resolve variable, Network Configuration, Privileges and Performance
	skip_networking variable, Localhost-Only Connections
	skip_slave_start variable, Recommended Replication Configuration
	Slave_* status variables, Miscellaneous
	slave_compressed_protocol variable, Limited Replication Bandwidth
	Sleep state, Query states
	SLEEP() function, Table Locks
	slow query log, Logging queries, Log analysis tools, Finer control over logging, How to read the slow query log, How to read the slow query log, How to read the slow query log, Log analysis tools
	Slow_launch_threads status variable, Inspecting MySQL Server Status Variables
	Slow_queries status variable, SELECT Types
	slow_query_log variable, Logging queries
	slow_query_log_file variable, Logging queries
	SMALLBLOB type, BLOB and TEXT types
	SMALLINT type, Whole Numbers
	SMALLTEXT type, BLOB and TEXT types
	Smokeping tool, Network Configuration
	SNAP Innovation GmbH, The PBXT (Primebase XT) Engine
	snapshot-based backups, The Big Picture
	snapshots, Filesystem Snapshots, Prerequisites and configuration, Creating, mounting, and removing an LVM snapshot, LVM snapshots for online backups, Lock-free InnoDB backups with LVM snapshots, Other uses and alternatives
	software RAID, Balancing Hardware RAID and Software RAID
	Solaris operating system, Choosing an Operating System
	Solid Information Technology, The solidDB Engine
	solidDB storage engine, Multiversion Concurrency Control, The solidDB Engine, Storage Engine Summary
	sorting, Using Index Scans for Sorts, Packed (Prefix-Compressed) Indexes, Using Index Scans for Sorts, Using Index Scans for Sorts, Packed (Prefix-Compressed) Indexes, Optimizing Sorts, Sorts
		index scans for, Using Index Scans for Sorts, Packed (Prefix-Compressed) Indexes, Using Index Scans for Sorts, Using Index Scans for Sorts, Packed (Prefix-Compressed) Indexes
	optimizing, Optimizing Sorts
	status variables for, Sorts

	Sorting result state, Query states
	sort_buffer_size variable, Syntax, Scope, and Dynamism, Sorts
	Sort_merge_passes status variable, Optimizing for Filesorts, Sorts
	Sort_range status variable, Sorts
	Sort_scan status variable, Sorts
	Souders, Web Server Issues
	spatial (R-tree) indexes, Spatial (R-Tree) indexes
	Sphinx tool, Tools for sharding, Using Sphinx with MySQL, Using Sphinx with MySQL, Overview: A Typical Sphinx Search, Efficient and Scalable Full-Text Searching, Efficient and Scalable Full-Text Searching, Finding the Top Results in Order, Optimizing GROUP BY Queries, Generating Parallel Result Sets, Aggregating Sharded Data, Typical Partition Use, Special Features, Support for Attributes, Filtering, Advanced Performance Control, Practical Implementation Examples, Full-Text Searching on Mininova.org, Full-Text Searching on Mininova.org, Full-Text Searching on BoardReader.com, Optimizing Selects on Sahibinden.com, Optimizing GROUP BY on BoardReader.com, Optimizing GROUP BY on BoardReader.com, Optimizing Sharded JOIN Queries on Grouply.com, Optimizing Sharded JOIN Queries on Grouply.com
		examples using, Using Sphinx with MySQL, Overview: A Typical Sphinx Search, Practical Implementation Examples, Full-Text Searching on Mininova.org, Full-Text Searching on BoardReader.com, Optimizing Selects on Sahibinden.com, Optimizing GROUP BY on BoardReader.com, Optimizing Sharded JOIN Queries on Grouply.com
	filtering in, Filtering
	for data sharding, Tools for sharding
	full-text searching with, Efficient and Scalable Full-Text Searching, Full-Text Searching on Mininova.org
	GROUP BY queries, Optimizing GROUP BY Queries, Optimizing GROUP BY on BoardReader.com
	MVAs supported by, Support for Attributes
	partitioning in, Typical Partition Use
	performance control with, Advanced Performance Control
	reasons to use, Efficient and Scalable Full-Text Searching
	scalability of, Generating Parallel Result Sets
	sharded data, Aggregating Sharded Data, Optimizing Sharded JOIN Queries on Grouply.com
	top results in order, Finding the Top Results in Order

	SphinxSE storage engine, The SphinxSE Pluggable Storage Engine, The SphinxSE Pluggable Storage Engine
	spindle rotation speed, Choosing Hard Disks
	SQL dumps, Making a Logical Backup
	SQL SECURITY DEFINER characteristic, Stored routines
	SQL SECURITY INVOKER characteristic, Stored routines
	SQL slave thread, How Replication Works
	sql-bench (MySQL Benchmark Suite), MySQL Benchmark Suite
	SQLyog tool, SQLyog
	SQL_BIG_RESULT option, Query Optimizer Hints
	SQL_BUFFER_RESULT option, Query Optimizer Hints
	SQL_CACHE option, Query Optimizer Hints, General Query Cache Optimizations
	SQL_CALC_FOUND_ROWS option, Optimizing SQL_CALC_FOUND_ROWS
	SQL_NO_CACHE option, Profiling Queries with SHOW STATUS, Query Optimizer Hints, General Query Cache Optimizations
	SQL_SMALL_RESULT option, Query Optimizer Hints
	SSH tunneling, SSH tunneling
	SSL (Secure Sockets Layer), SSL in MySQL, Table Locking
	Ssl_* status variables, Secure Sockets Layer (SSL)
	stale-data split, Splitting reads and writes in replication
	Starkey, The Falcon Engine
	START SLAVE command, Starting the Slave
	START TRANSACTION command, Transactions
	statement handle, Prepared Statements
	statement-based replication, Replication Overview, Statement-Based Replication
	static optimizations, The query optimizer
	Statistics state, Query states
	status of MySQL server, MySQL Server Status, System Variables, SHOW STATUS, Thread and Connection Statistics, Thread and Connection Statistics, Binary Logging Status, Handler Operations, MyISAM Key Buffer, Query Cache, SELECT Types, Sorts, Table Locking, Secure Sockets Layer (SSL), InnoDB-Specific, Miscellaneous, Miscellaneous, Miscellaneous, TRANSACTIONS, TRANSACTIONS, FILE I/O, INSERT BUFFER AND ADAPTIVE HASH INDEX, BUFFER POOL AND MEMORY, SHOW PROCESSLIST, Replication Status, Replication Status, INFORMATION_SCHEMA
		binary logs, Replication Status
	connections, SHOW PROCESSLIST
	determining, MySQL Server Status
	INFORMATION_SCHEMA views for, INFORMATION_SCHEMA
	InnoDB status, TRANSACTIONS, TRANSACTIONS, FILE I/O, INSERT BUFFER AND ADAPTIVE HASH INDEX, BUFFER POOL AND MEMORY
		adaptive hash index, INSERT BUFFER AND ADAPTIVE HASH INDEX
	buffer pool, BUFFER POOL AND MEMORY
	insert buffer, FILE I/O
	transactions, TRANSACTIONS, TRANSACTIONS

	replication, Replication Status
	status variables, SHOW STATUS, Thread and Connection Statistics, Thread and Connection Statistics, Binary Logging Status, Handler Operations, MyISAM Key Buffer, Query Cache, SELECT Types, Sorts, Table Locking, Secure Sockets Layer (SSL), InnoDB-Specific, Miscellaneous, Miscellaneous, Miscellaneous
		binary logging, Binary Logging Status
	connections, Thread and Connection Statistics
	handler operations, Handler Operations
	InnoDB, InnoDB-Specific
	INSERT DELAYED queries, Miscellaneous
	MyISAM key buffer, MyISAM Key Buffer
	NDB Cluster configuration, Miscellaneous
	query cache, Query Cache
	query plan cost, Miscellaneous
	SELECT queries, SELECT Types
	sorting, Sorts
	SSL, Secure Sockets Layer (SSL)
	table locking, Table Locking
	threads, Thread and Connection Statistics

	system variables for, System Variables

	status of operating system, Operating System Status, How to Read vmstat Output, How to Read iostat Output, How to Read iostat Output, A CPU-Bound Machine, An I/O-Bound Machine
	stock quotes, Stock quotes
	stopwords, Full-Text Searching
	storage area network (SAN), Storage Area Networks and Network-Attached Storage
	storage capacity, Choosing Hard Disks
	storage engine API, MySQL's Logical Architecture
	storage engines, MySQL's Logical Architecture, Deadlocks, Mixing storage engines in transactions, The PBXT (Primebase XT) Engine, CD-ROM applications, Considerations, Read-only or read-mostly tables, Stock quotes, CD-ROM applications, Storage Engine Summary, Storage Engine Summary, CREATE and SELECT, InnoDB Lock Waits
		choosing for an application, The PBXT (Primebase XT) Engine, CD-ROM applications, Considerations, Read-only or read-mostly tables, Stock quotes, CD-ROM applications
	converting tables between, CREATE and SELECT
	list of, Storage Engine Summary
	lock waits in, InnoDB Lock Waits
	mixing in transactions, Mixing storage engines in transactions

	storage_engine variable, System Variables
	stored code, Storing Code Inside MySQL, Storing Code Inside MySQL, Storing Code Inside MySQL, Triggers, Triggers, Events, Preserving Comments in Stored Code, The SQL Interface to Prepared Statements
		advantages of, Storing Code Inside MySQL
	comments in, Preserving Comments in Stored Code
	disadvantages of, Storing Code Inside MySQL
	events, Events
	language constructs used in, Storing Code Inside MySQL
	stored procedures, The SQL Interface to Prepared Statements
	triggers, Triggers, Triggers

	stored functions, Stored Procedures and Functions
	stored procedures, Stored Procedures and Functions, The SQL Interface to Prepared Statements
	stored routines, Stored routines
	strace tool, Operating System Profiling, Advanced Profiling and Troubleshooting
	STRAIGHT_JOIN option, Query Optimizer Hints
	string locks, Lock Waits at the Server Level
	strings, String Types, Date and Time Types, VARCHAR and CHAR types, BLOB and TEXT types, BLOB and TEXT types, Using ENUM instead of a string type, Date and Time Types, Date and Time Types, Choosing Identifiers
		data types for, String Types, Date and Time Types, VARCHAR and CHAR types, BLOB and TEXT types, BLOB and TEXT types, Using ENUM instead of a string type, Date and Time Types, Date and Time Types
	for identifier columns, Choosing Identifiers

	Stunnel tool, SSH tunneling
	subqueries, The query optimizer, When a correlated subquery is good
		correlated, When a correlated subquery is good
	optimizations for, The query optimizer

	summary tables, Cache and Summary Tables, Counter tables, Cache and Summary Tables, Cache and Summary Tables, Counter tables, Counter tables
	SUPER privilege, Recommended Replication Configuration, Don't grant the SUPER privilege freely
		and read_only option, Recommended Replication Configuration
	when to grant, Don't grant the SUPER privilege freely

	Super Smack, Single-Component Tools
	surrogate keys, Inserting rows in primary key order with InnoDB
	swapping, Swapping, A Swapping Machine
	synchronous replication, Synchronous MySQL replication
	sync_binlog variable, Other I/O tuning options, Using Multiple Disk Volumes, Recommended Replication Configuration
	sysbench tool, Single-Component Tools, sysbench, The sysbench file I/O benchmark, The sysbench OLTP benchmark, Other sysbench features
	system administrator account, Setting Up MySQL Privileges
	system security, Operating System Security

T
	T-Tree indexes, B-Tree indexes
	table cache, Side Effects of Setting Variables, The Table Cache
	table conversions, Table Conversions
	table locks, Table locks, Building MyISAM Indexes Quickly, The Memory Storage Engine, Lock Waits at the Server Level, Table Locks, Table Locks, Finding out who holds a lock
		as potential bottleneck, Building MyISAM Indexes Quickly

	table statistics, Table and index statistics
	tables, Multiversion Concurrency Control, MySQL's Storage Engines, MySQL's Storage Engines, Maatkit Utilities
		checksums of, Maatkit Utilities
	filename of, Multiversion Concurrency Control
	information about, MySQL's Storage Engines
	storage engine used by, MySQL's Storage Engines

	tablespace, The InnoDB Engine, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace, The InnoDB tablespace
	tables_priv table, The Grant Tables
	table_cache variable, Syntax, Scope, and Dynamism
	table_cache_size variable, Side Effects of Setting Variables
	table_definition_cache variable, The Table Cache
	Table_locks_immediate status variable, Table Locking
	Table_locks_waited status variable, Inspecting MySQL Server Status Variables, Table Locking
	table_open_cache variable, The Table Cache
	tagged cache, Cache Control Policies
	tar command, Avoiding Encryption Overhead
	TCP wrappers, TCP Wrappers
	TCP/IP Network Administration (Hunt), Network Security
	tcpdump tool, When You Can't Add Profiling Code
	Tc_log_* status variables, Miscellaneous
	temporary files, Temporary Files and Tables
	temporary tables, The Memory Engine, Using temporary tables safely
		compared to Memory tables, The Memory Engine
	privileges for, Using temporary tables safely

	TEMPTABLE algorithm, Views
	TEXT types, BLOB and TEXT types, Optimizing for BLOB and TEXT Workloads, Optimizing for BLOB and TEXT Workloads, Optimizing for Filesorts
	thread cache, Side Effects of Setting Variables, The Thread Cache
	thread libraries, Threading
	threaded discussion forums, Bulletin boards and threaded discussion forums
	threads benchmark, Other sysbench features
	Threads_connected status variable, The Thread Cache, SHOW STATUS
	Threads_created status variable, The Thread Cache, Thread and Connection Statistics
	thread_cache_size variable, Side Effects of Setting Variables
	throughput, What to Measure, Which Is Better: Fast CPUs or Many CPUs?, Choosing Hard Disks
	time to live (TTL), Cache Control Policies
	time-based data partitioning, Keeping active data separate
	TIMESTAMP type, Choosing Optimal Data Types, Date and Time Types
		compared to DATETIME type, Choosing Optimal Data Types

	TINYBLOB type, BLOB and TEXT types
	TINYINT type, Whole Numbers
	TINYTEXT type, BLOB and TEXT types
	TPC-C test, What to Measure, dbt2 TPC-C on the Database Test Suite
	transaction logs, Deadlocks, The InnoDB transaction log, The InnoDB transaction log, The InnoDB transaction log, LOG
	transactions, Transactions, Multiversion Concurrency Control, Transactions, Isolation Levels, Isolation Levels, Isolation Levels, Deadlocks, Deadlocks, AUTOCOMMIT, AUTOCOMMIT, Mixing storage engines in transactions, Mixing storage engines in transactions, Multiversion Concurrency Control, Multiversion Concurrency Control, How MySQL Checks for a Cache Hit, Reducing fragmentation, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK, TRANSACTIONS, Maatkit Analysis Tools
		DDL commands committing automatically in, AUTOCOMMIT
	deadlocks of, Deadlocks, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK, LATEST DETECTED DEADLOCK, Maatkit Analysis Tools
	isolation levels for, Isolation Levels, AUTOCOMMIT, Multiversion Concurrency Control
	query cache affected by, How MySQL Checks for a Cache Hit, Reducing fragmentation
	status of, TRANSACTIONS

	transactions per time unit (throughput), What to Measure
	TRANSACTIONS section, TRANSACTIONS, TRANSACTIONS, TRANSACTIONS
	transfer speed, Choosing Hard Disks, Choosing Hard Disks
	tree (pyramid) topology, Tree or Pyramid
	TRIGGER privilege, Triggers
	triggers, Triggers, Triggers, Triggers
		privileges used with, Triggers

	troubleshooting, Troubleshooting MySQL Connections and Processes, Advanced Profiling and Troubleshooting, Troubleshooting MySQL Connections and Processes, Advanced Profiling and Troubleshooting, Troubleshooting MySQL Connections and Processes, Advanced Profiling and Troubleshooting, Advanced Profiling and Troubleshooting, Updating Index Statistics, Reducing Index and Data Fragmentation, Using Nontransactional Tables, Mixing Transactional and Nontransactional Tables, Missing Temporary Tables, Limited Replication Bandwidth, No Disk Space, Caching, Caching, Application-Level Caching, Cache Object Hierarchies, Pregenerating Content, Common Problems and Solutions, Guidelines, Common Problems and Solutions, Using temporary tables safely, Disabling anonymous users, Don't grant privileges on the mysql database, Revoking specific privileges, Invisible privileges, Invisible privileges, Obsolete privileges, Guidelines, Debugging Locks, Falcon Lock Waits, Table Locks, Table Locks, Table Locks, Name Locks, Lock Waits in Storage Engines, InnoDB Lock Waits, Falcon Lock Waits
		application performance, Caching, Caching, Application-Level Caching, Cache Object Hierarchies, Pregenerating Content
		caching, Caching, Caching, Application-Level Caching, Cache Object Hierarchies, Pregenerating Content

	connection errors, Common Problems and Solutions
	connections, Troubleshooting MySQL Connections and Processes, Advanced Profiling and Troubleshooting, Troubleshooting MySQL Connections and Processes, Advanced Profiling and Troubleshooting
	data fragmentation, Reducing Index and Data Fragmentation
	index fragmentation, Updating Index Statistics
	locks, Debugging Locks, Falcon Lock Waits, Table Locks, Table Locks, Table Locks, Name Locks, Lock Waits in Storage Engines, InnoDB Lock Waits, Falcon Lock Waits
	privileges, Common Problems and Solutions, Guidelines, Using temporary tables safely, Disabling anonymous users, Don't grant privileges on the mysql database, Revoking specific privileges, Invisible privileges, Invisible privileges, Obsolete privileges, Guidelines
	processes, Troubleshooting MySQL Connections and Processes, Advanced Profiling and Troubleshooting, Advanced Profiling and Troubleshooting
	replication, Using Nontransactional Tables, Mixing Transactional and Nontransactional Tables, Missing Temporary Tables, Limited Replication Bandwidth, No Disk Space
		bandwidth, Limited Replication Bandwidth
	disk space, No Disk Space
	mixing transactional and nontransactional
 tables, Mixing Transactional and Nontransactional Tables
	nontransaction table errors, Using Nontransactional Tables
	temporary tables, Missing Temporary Tables

	TTL (time to live), Cache Control Policies
	tunneling, Connection Encryption and Tunneling, SSH tunneling
	two-pass sort algorithm, Sort optimizations

U
	UFS filesystem, Choosing a Filesystem
	UFS2 filesystem, Choosing a Filesystem
	unarchiving, Scaling Back
	UNION clause, UNION limitations, Optimizing UNION, Merge Tables
	UNLOCK TABLES command, Implicit and explicit locking, Table Locks
	UNSIGNED attribute, Whole Numbers
	updatable views, Updatable Views
	UPDATE command, MIN() and MAX()
		with SELECT, MIN() and MAX()

	upgrades, Problems Solved by Replication
		testing with replication, Problems Solved by Replication

	Uptime status variable, Miscellaneous
	USAGE privilege, Users can connect even after REVOKE
	USE INDEX option, Query Optimizer Hints
	user locks, User Locks
	user table, Privileges
	user-defined functions (UDFs), User-Defined Functions
	user-defined variables, User-Defined Variables, User-Defined Variables, User-Defined Variables, User-Defined Variables, User-Defined Variables, User-Defined Variables, User-Defined Variables
	usernames, Account Basics, Disabling anonymous users
		uniqueness of, Account Basics, Disabling anonymous users

	UUID values, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB
		inserting, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB, Inserting rows in primary key order with InnoDB

V
	VARCHAR type, VARCHAR and CHAR types, VARCHAR and CHAR types, Using ENUM instead of a string type
	variables, User-Defined Variables, User-Defined Variables, User-Defined Variables, User-Defined Variables
	version-based split, Splitting reads and writes in replication
	views, Views, Views, Updatable Views, Performance Implications of Views, Limitations of Views, Limitations of Views
		limitations of, Limitations of Views
	materialized, Limitations of Views
	performance of, Views, Performance Implications of Views
	updatable, Updatable Views

	virtual private network (VPN), Virtual private networks
	vmstat tool, Swapping
	VPN (virtual private network), Virtual private networks

W
	Wackamole, Load Balancing
	waits, SEMAPHORES
	warm backups, Terminology
	web server logs, When You Can't Add Profiling Code
	web server problems, Web Server Issues, Caching, Web Server Issues, Finding the Optimal Concurrency, Caching, Caching
	web site resources, Single-Component Tools, Single-Component Tools, Single-Component Tools, Finer control over logging, Tools for sharding, Tools for sharding, Load Balancing, Replicated-disk architectures, Extending MySQL, R1Soft, SSH tunneling, MySQL Visual Tools, SQLyog, phpMyAdmin, Nagios, Alternatives to Nagios, Alternatives to Nagios, Alternatives to Nagios, Alternatives to Nagios, Alternatives to Nagios, MySQL Monitoring and Advisory Service, RRDTool-based systems, RRDTool-based systems, RRDTool-based systems, Interactive Tools, Interactive Tools, Interactive Tools, innotop, MySQL Proxy, Dormando's Proxy for MySQL, Maatkit Utilities, Using Sphinx with MySQL, Toward more usable lock output
		Cricket, RRDTool-based systems
	Database Test Suite, Single-Component Tools
	Dormando's Proxy for MySQL, Dormando's Proxy for MySQL
	DRBD, Replicated-disk architectures
	Groundwork Open Source, Alternatives to Nagios
	Hibernate Shards, Tools for sharding
	HiveDB, Tools for sharding
	Hyperic HQ, Alternatives to Nagios
	innotop, Interactive Tools, innotop
	Maatkit tools, Maatkit Utilities
	mtop, Interactive Tools
	Munin, RRDTool-based systems
	MySQL Benchmark Suite (sql-bench), Single-Component Tools
	MySQL developers, Extending MySQL
	MySQL Monitoring and Advisory Service, MySQL Monitoring and Advisory Service
	MySQL Proxy, MySQL Proxy
	MySQL visual tools, MySQL Visual Tools
	mytop, Interactive Tools
	Nagios, Nagios
	OpenNMS, Alternatives to Nagios
	patch for removing verbose record dumps, Toward more usable lock output
	patch for slow query times, Finer control over logging
	phpMyAdmin, phpMyAdmin
	R1Soft, R1Soft
	RRDTool, RRDTool-based systems
	Sphinx, Using Sphinx with MySQL
	SQLyog, SQLyog
	SSH tunnels, SSH tunneling
	Super Smack, Single-Component Tools
	Wackamole, Load Balancing
	Zabbix, Alternatives to Nagios
	Zenoss, Alternatives to Nagios

	weighted, Load-balancing algorithms
	WHERE clause, Applying WHERE Clauses Efficiently
		Sphinx improving efficiency of, Applying WHERE Clauses Efficiently

	whole numbers, Whole Numbers
	Widenius, The Maria Storage Engine
	wildcarded databases, Granting privileges on wildcarded databases
	Windows operating system, Choosing an Operating System
	WITH ROLLUP clause, Optimizing GROUP BY WITH ROLLUP
	with-libwrap variable, TCP Wrappers
	working concurrency, What to Measure
	working set of data, What's Your Working Set?
	workload-based tuning, Workload-Based Tuning, Tuning Per-Connection Settings, Inspecting MySQL Server Status Variables, Inspecting MySQL Server Status Variables, Tuning Per-Connection Settings
	write capacity, Data sharding
	write locks, Read/Write Locks
	write-ahead logging, Caching, Reads, and Writes

X
	XFS filesystem, Choosing a Filesystem, Choosing a Filesystem

Y
	yaSSL library, SSL in MySQL

Z
	Zabbix tool, Alternatives to Nagios
	Zenoss tool, Alternatives to Nagios
	ZFS filesystem, Choosing a Filesystem, Choosing a Filesystem
	Zmanda Recovery Manager (ZRM), Zmanda Recovery Manager, Installing and testing ZRM
	ZRM (Zmanda Recovery Manager), Zmanda Recovery Manager, Installing and testing ZRM
	Zwicky, Network Security

About the Authors
Baron Schwartz is a software engineer who lives in Charlottesville, Virginia and goes by the online handle of "Xaprb," which is his first name typed in QWERTY on a Dvorak keyboard. When he's not busy solving a fun programming challenge, he relaxes with his wife Lynn and dog Carbon. He blogs about software engineering at http://www.xaprb.com/blog/.
A former manager of the High Performace Group at MySQL AB, Peter Zaitsev now runs the mysqlperformanceblog.com site. He specializes in helping administrators fix issues with Web sites handling millions of visitors a day, dealing with terabytes of data using hundreds of servers. He is used to making changes and upgrades both to hardware to software (such as query optimization) in order to find solutions. He also speaks frequently at conferences.
Vadim Tkachenko was a Performance Engineer in at MySQL AB. As an expert in multithreaded programming and synchronization, his primary tasks were benchmarks, profiling, and finding bottlenecks. He also worked on a number of features for performance monitoring and tuning, and getting MySQL to scale well on multiple CPUs.
Jeremy Zawodny and his two cats moved from Northwest Ohio to Silicon Valley in late 1999 so he could work for Yahoo!--just in time to witness the .com bubble bursting first-hand. He's been at Yahoo!® ever since, helping to put MySQL and other Open Source technologies to use in fun, interesting, and often very big ways. Starting with the popular and high-traffic Yahoo! Finance site, he worked to make MySQL part of the site's core infrastructure in large batch operations as well as real-time feed processing and serving content directly on the site. He then helped to spread "the MySQL religion" to numerous other groups within Yahoo!, including News, Personals, Sports, and Shopping. Nowadays he acts as Yahoo!'s MySQL guru, working with Yahoo!'s many engineering groups to get the most out of their MySQL deployments.

In 2000, he began writing for Linux Magazine and continues to do so today as a columnist and contributing editor. After over a year of active participation on the MySQL mailing list, he got the idea to write a book about MySQL. (How hard could it be, really?) You can still find him answering questions on the list today. Since 2001, Jeremy has been speaking about MySQL at various conferences (O'Reilly's Open Source Conference, PHPCon, The MySQL User Conference, etc.) and user groups in locations as far away as Bangalore, India. His favorite topics are performance tuning, replication, clustering, and backup/recovery. In more recent times, he's rediscovered his love of aviation, earning a Private Pilot Glider license in early 2003. Since then he's spent far too much of his free time flying gliders out of Hollister, California and Truckee, near Lake Tahoe. He hopes to soon earn his Commercial Pilot license and then go on to become a certified flight instructor someday. Occasional MySQL consulting also helps to pay for his flying addiction.

Jeremy rambles almost daily about technology and life in general on his weblog: www.jeremy.zawodny.com/blog/
Arjen Lentz was born in Amsterdam but has lived in Queensland Australia since the turn of the millennium, sharing his life these days with his beautiful daughter Phoebe and black cat Figaro. Originally a C programmer, Arjen was employee #25 at MySQL AB (2001-2007). After a brief break in 2007, Arjen founded Open Query (http://openquery.com.au), which develops and provides its own data management training and consulting services in the Asia Pacific region and beyond. Arjen also regularly speaks at conferences and user groups. In his abundant spare time Arjen indulges in cooking, gardening, reading, camping, and exploring the RepRap. Arjen's weblog is at http://arjen-lentz.livejournal.com/
Derek J. Balling has been a Linux system administrator since 1996. He
has helped build and maintain server infrastructure for companies like
Yahoo, and institutions like Vassar College. He has also written
articles for The Perl Journal and a number of online magazines, and is
on the Program Committee for the 2008 LISA Conference. He is currently
employed as the Data Center Manager for Answers.com.

When not working on computer-related issues, Derek enjoys spending
time with his wife Debbie, and their posse of animals (4 cats and a
dog). He also makes his opinion known on current events or whatever is
annoying him lately on his blog at http://blog.megacity.org/.

Colophon
The animal on the cover of High Performance
 MySQL is a sparrow hawk (Accipiter nisus),
 a small woodland member of the falcon family found in Eurasia and North
 Africa. Sparrow hawks have a long tail and short wings; males are
 bluish-gray with a light brown breast, and females are more brown-gray and
 have an almost fully white breast. Males are normally somewhat smaller (11
 inches) than females (15 inches).
Sparrow hawks live in coniferous woods and feed on small mammals,
 insects, and birds. They nest in trees and sometimes on cliff ledges. At
 the beginning of the summer, the female lays four to six white eggs,
 blotched red and brown, in a nest made in the boughs of the tallest tree
 available. The male feeds the female and their young.
Like all hawks, the sparrow hawk is capable of bursts of high speed
 in flight. Whether soaring or gliding, the sparrow hawk has a
 characteristic flap-flap-glide action; its large tail enables the hawk to
 twist and turn effortlessly in and out of cover.
The cover image is a 19th-century engraving from the Dover Pictorial
 Archive. The cover font is Adobe ITC Garamond. The text font is Linotype
 Birka; the heading font is Adobe Myriad Condensed; and the code font is
 LucasFont's TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages206450.png

OEBPS/httpatomoreillycomsourceoreillyimages206396.png

OEBPS/httpatomoreillycomsourceoreillyimages206440.png

OEBPS/httpatomoreillycomsourceoreillyimages206466.png

OEBPS/httpatomoreillycomsourceoreillyimages206412.png

OEBPS/httpatomoreillycomsourceoreillyimages206359.png

OEBPS/httpatomoreillycomsourceoreillyimages206345.png

OEBPS/httpatomoreillycomsourceoreillyimages206442.png

OEBPS/httpatomoreillycomsourceoreillyimages206460.png

OEBPS/httpatomoreillycomsourceoreillyimages206428.png

OEBPS/httpatomoreillycomsourceoreillyimages206364.png

OEBPS/httpatomoreillycomsourceoreillyimages206366.png

OEBPS/httpatomoreillycomsourceoreillyimages206353.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages206418.png

OEBPS/oreilly_large.gif

OEBPS/httpatomoreillycomsourceoreillyimages206349.png

OEBPS/httpatomoreillycomsourceoreillyimages206388.png

OEBPS/httpatomoreillycomsourceoreillyimages206404.png

OEBPS/httpatomoreillycomsourceoreillyimages206400.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages206424.png

OEBPS/httpatomoreillycomsourceoreillyimages206362.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages206374.png

OEBPS/httpatomoreillycomsourceoreillyimages206426.png

OEBPS/httpatomoreillycomsourceoreillyimages206452.png

OEBPS/httpatomoreillycomsourceoreillyimages206382.png

OEBPS/httpatomoreillycomsourceoreillyimages206464.png

OEBPS/httpatomoreillycomsourceoreillyimages206390.png

OEBPS/httpatomoreillycomsourceoreillyimages206394.png

OEBPS/httpatomoreillycomsourceoreillyimages206378.png

OEBPS/httpatomoreillycomsourceoreillyimages206351.png

OEBPS/httpatomoreillycomsourceoreillyimages206339.png

OEBPS/httpatomoreillycomsourceoreillyimages206408.png

OEBPS/httpatomoreillycomsourceoreillyimages206372.png

OEBPS/httpatomoreillycomsourceoreillyimages206416.png

OEBPS/httpatomoreillycomsourceoreillyimages206446.png

OEBPS/httpatomoreillycomsourceoreillyimages206347.png

OEBPS/httpatomoreillycomsourceoreillyimages206410.png

OEBPS/httpatomoreillycomsourceoreillyimages206341.png

OEBPS/httpatomoreillycomsourceoreillyimages206343.png

OEBPS/httpatomoreillycomsourceoreillyimages206456.png

OEBPS/httpatomoreillycomsourceoreillyimages206444.png

OEBPS/httpatomoreillycomsourceoreillyimages206420.png

OEBPS/httpatomoreillycomsourceoreillyimages206360.jpg

OEBPS/httpatomoreillycomsourceoreillyimages206414.png

OEBPS/httpatomoreillycomsourceoreillyimages206386.png

OEBPS/httpatomoreillycomsourceoreillyimages206370.png

OEBPS/httpatomoreillycomsourceoreillyimages206434.png

OEBPS/httpatomoreillycomsourceoreillyimages206335.png

OEBPS/httpatomoreillycomsourceoreillyimages206402.png

OEBPS/httpatomoreillycomsourceoreillyimages206448.png

OEBPS/httpatomoreillycomsourceoreillyimages206436.png

OEBPS/httpatomoreillycomsourceoreillyimages206368.png

OEBPS/httpatomoreillycomsourceoreillyimages206438.png

OEBPS/httpatomoreillycomsourceoreillyimages206398.png

OEBPS/httpatomoreillycomsourceoreillyimages206454.png

OEBPS/httpatomoreillycomsourceoreillyimages206355.png

OEBPS/httpatomoreillycomsourceoreillyimages206337.png

OEBPS/httpatomoreillycomsourceoreillyimages206376.png

OEBPS/httpatomoreillycomsourceoreillyimages206406.png

OEBPS/httpatomoreillycomsourceoreillyimages206462.png

OEBPS/httpatomoreillycomsourceoreillyimages206392.png

OEBPS/httpatomoreillycomsourceoreillyimages206430.png

OEBPS/httpatomoreillycomsourceoreillyimages206458.png

OEBPS/httpatomoreillycomsourceoreillyimages206422.png

OEBPS/httpatomoreillycomsourceoreillyimages206357.png

OEBPS/httpatomoreillycomsourceoreillyimages206384.png

OEBPS/httpatomoreillycomsourceoreillyimages206432.png

OEBPS/httpatomoreillycomsourceoreillyimages206380.png

