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PUBLISHERS PREFACE.

HE essays which comprise this volume appeared first in The

Meonist at different times during the years 1gog to 1916, and
under different circumstances, Some of the diagrams were photo-
graphed from the authors’ drawings, others were set in type. and
different authors have presented the results of their labors in
different styles. In compiling all these in book form the original
presentation has been largely preserved, and in this way uniformity
has been sacrificed to some extent, Clarity of presentation was
deemed the main thing, and sc it happens that elegance of typo-
graphical appearance has been considered of secondary importance.
Since mathematical readers will care mainly for the thoughts pre-
sented, we hope they will overlook the typographical shortcomings.
The first edition contained only the first eight chapters, and these
have now been carefully revised. The book has been doubled in
volume throvugh the interest aroused by the first edition in mathe-
matical minds who have contributed their labors to the solution of
problems along the same line.

In conclusion we wish to call attention to the title vignette
which is an ancient Tibetan magic square borne on the back of
the cosmic tortoise.






INTRODUCTION.

HE peculiar interest of magic squares and all lusus numerorum

in general lies in the fact that they possess the charm of mys-
tery. They appear to betray some hidden intelligence which by a
preconceived plan produces the impression of intentional design, a
phenomenon which finds its close analogue in nature,

Although magic squares have no immediale practical use, they
have always exercised a great influence upon thinking people. It
seems to me that they contain a lesson of great value in being a
palpable instance of the symmetry of mathematics, throwing therehy
a clear light upon the order that pervades the universe wherever
we turn, in the infinitesimally small interrelations of atoms as well
as in the immeasurable domain of the starry heavens, an order
which, although of a different kind and still more intricate, is also
traceable in the development of organized life, and even in the
complex domain of human action.

Pythagoras says that number is the origin of all things, and
certainly the law of number is the key that unlocks the secrets of
the universe. But the law of number possesses ah immanent order,
which is at first sight myvstifying, but on a more intimate acquain-
tance we easily understand it to be intrinsically necessary: and th's
law of number explains the wondrous consistency of the laws of
nature. Magic squares are conspicuous instances of the intrinsic
harmony of number, and so they will serve as an interpreter of the
cosmic order that dominates all existence. Though they are a mere
ntellectual play they not only illustrate the nature of mathematics,
but alse, incidentally, the nature of existence dominated by mathe-
matical regularity.
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In arithmetic we create a universe of figures by the process of
counting ; in geometry we create another universe by drawing lines
in the abstract field of imagination, laying down definite directions;
in algebra we produce magnitudes of a still more abstract nature, ex-
pressed by letters. In all these cases the first step producing the gen-
eral conditions in which we move, lays down the rule to which all
further steps are subject, and so every one of these universes is
dominated by a consistency, producing a wonderful symmetry.

There 1s 1o science that teaches the harmonjes of nature more
clearly than mathematics, and the magic squares are like a mirror
which reflects the symmetry of the divine norm immanent in all
things, in the immeasurable immensity of the cosmos and in the
construction of the atom not less than in the mysterious depths of
the human mind.

PauL Carus.
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CHAPTER 1.

MAGIC SQUARES.

THE study of magic squares probably dates back to prehistoric

times, FExamples have been found in Chinese literature written
about A.D. 1vz5* which were evidently copied from still older
documents, It is recorded that as early as the ninth century magic
squares were used by Arabian astrologers in their caleulations of
horoscopes etc.  Hence the probable origin of the term “magic”
which has survived to the present day.,

THE ESSENTIAL CHARACTERISTICS OF MAGIC SQUARES,

A magic square consists of a serics of numbers so arranged
in a sguare, that the suin of each row and column and of both the
corner diagonals shall be the same amount which may be termed
the summation (5). Any square arrangement of numbers that
fulfils these conditions may properly be called a magic square.
Various features may be added to such a square which may en-
hance its value as a mathematical curio, but these must he considered
non-essentials.

There are thus many different kinds of magic squares, but this
chapter will be devoted principally to the description of associated
or reguler magic squares, in which the sum of any two numbers
that are located in cells diametrically equidistant from the center
of the squarc equals the sum of the first and last terms of the
series, or n* - 1,

Magic sguares with au odd number of cells are usually con-

¥ See page 19 of Chincse PMhifusvphy iy Paul Carus.
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structed by methods which differ from those governing the con-
struction of squares having an even number of cclls, so these two
classes will be considered under separate headings.

ASSOCIATED OR REGULAR MAGIC SQUARES OF ODD NUMBERS,

The square of 3 X 3 shown in I'ig. 1 covers the smallest ag-
gregation of numbers that is capable of magic square arrangement,
and it is also the only possible arrangement of nine different num-
bers, relatively to cach other, which fulfils the required conditions.
It will be seen that the sum of each of the three vertical, the three
horizontal, and the two corner diagonal colunms in this square is
15, making in all cight columns having that total: also that the sum
of any two opposite numbers 15 10, which is twice the center num-
ber, or #* - I.

The next largest odd magic square is that of 5 5, aud there
are a great many different arrangements of twenty-five numbers,

724 4 ||

gls|é 23| £\ 7174 |s6
s|7| s=1s 2| 6173 |20)22| S=65
“|7 |2 P AW AVEAS VAR

¥ /J'zﬂz g

Fig. 1. Fig. 2.
which will show magic results, each arrangement being the pro-
duction of a different constructive method. Fig. 2 illustrates one
of the oldest and best known arrangements of this square.

The sum of each of the five horizontal, the five vertical, and the
two corner diagonal colunms is 65, and the sum of any two numbers
which are diametrically equidistant from the center number is 26,
or twice the center number.

In order intelligently to follow the rule used in the construction
of this square it may be conceived that its upper and lower edges
are bent around hackwards and united to form a horizontal cylinder
with the numbers on the outside, the lower line of figures thus
coming next in order to the upper line. [t may also be conceived
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that the square is bent around backwards in a direction at right
angles to that which was last considered, so that it forms a vertical
cylinder with the extreme right- and left-hand columns adjacent to
each other.

An understanding of this simple conception will assist the
student to follow other methods of building odd magic squares
that are to be described. which are based on a right- or left-hand
diagonal formation.

Referring to Fig. 2, it will be seen that the square is started
by writing unity in the cenier cell of the upper row, the consecutive
numbers proceeding diagonally therefrom in a right-hand direction.
Using the conception of a horizontal cylinder, z will be located in the
lower row, followed by 3 in the next upper cell to the right. Here
the formation of the vertical cylinder being conceived, the next up-
per cell will be where 4 is written, then g; further progress heing
here blocked by 1 which already occupies the next upper czll in
diagonal order.

When a block thus occurs in the regular spacing (which will
be at every ffth number in 2 5 X 5 square) the next number must
in this case be written in the cell vertically below the one last filled,
so that 6 is written in the cell below 5, and the right-hand diagonal
order is then continued in cells occupied by 7 and 8. Here th:
horizontal cylinder is imagined, showing the location of g, then the
conception of the vertical cylinder will indicate the location of 10;
further regular progression being here once more blocked by 6,
so 11 is written under 1o and the diagonal order continued to 15.
A mental picture of the combination of vertical and horizontal cyl-
inders will here show that further diagonal progress is blocked by
11, 80 10 is written under 15. The vertical cylinder will then indi-
cate the cell in which 17 must be located, and the horizontal cylinder
will show the next cell diagonally upwards to the right to be occu-
pied by 18, and so on until the final number 25 is reached and the
square completed.

Fig. 3 illustrates the development of a 7 X 7 square constructed
according to the preceding method, and the student is advised to
follow the sequence of the numbers to impress the rule on his mem-
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ory. A variation of the last method is shown in Fig, 4, illustrating
another 7 X 7 square. In this example 1 is placed in the next cell
horizonally to the right of the center cell, and the consccutive
numbers proceed diagonally upward therefrom, as before, in a
right-hand direction until a block occurs. The next number is then
written in the second cell horizontally to the right of the last cell
filled (instead of the cell below as in previous examples) and ihe
npward diagonal ord:r is resumed until the next block occurs.

& =175
30lagles| 7 |r0|r0 |25 4 |29|22|37 |20 |p5|28
38| 718 |48 27129 35| #3879 \salzp | 3
.9666’172655"; 17|42\ 28 |43 28| 2 |J4
5|4 /6|23 |34 |36 |45 w17 49128 7 |33 9
3|75 24133 |42 |44 | 4 B |us 2| 7132 8 |40
2/ (23|32 |4/ |43 3 (/2 L 7|28 | 6 |as A 38 | 451
22|37 40|49\ 2 | 11|20 22| 5|30 /3|38 |2/ |44

Fig. 3. Fig. 4.

10|78/ 74|22
/7|24 7 |20] 3
S AERVE AN S =65
23| 6 |s8] 2 |/5
Llra|25| F 75

Fig. 5.
Then two cells to the right again, and regular diagonal erder con-
tinved, and sp on until all the cells are filled.

The preceding examples may be again varied by writing the
numhbers in left-hand instead of right-hand diagonal sequence,
making use of the same spacing of numbers as before when blocks
occur in the regular sequence of constructiomn.

We now come to a series of very interesting methods for
building odd magic squares which involve the use of the knight’s
move in chess, and it is worthy of note that the squares formed by
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these methods possess curious characteristics in addition to those
previously referred to. To chess-players the knight's move will
require no comment, but for those who are not familiar with this
game it may be explained as a move of two cells straight forward
in any directien and one cell to either right or left.

The magic square of § X g illustrated in Fig. 5 is started by
placing 1 in the center cell of the upper row, and the knight's
move employed in its construction will be two cells upward and
one cell to the right.

Using the idea of the horizontal cylinder 2 must be written
in the second line from the bLottorn, as shown, and then 3 in the
second line from the top. Now conceiving a combination of the
horizontal and vertical cylinders. the next move will locat> 4 in the
extreme lower left-hand corner, and then 3 in the middle row. We
now find that the next move 15 blocked by 1, so 6 is written below
5, and the knight’s moves are then continued, and so until the
lagt number, 23, is written in the middle cell of the lower linz, and
the square is thus completed.

In common with the odd magic squares which were previously
described, it will be found that in this square the sum of each of
the five horizontal, the five perpendicular, and the two corner diag-
onal columns is 65, alse that the sum of any two numbers that are
diagonally equidistant from the center js 26, or twice the number
in the center cell, thus filling all the qualifications of an associated
magic square.

Iu addition, however, to these characteristics it will be noted
that each spiral row of fgures around the horizontal and vertical
cylinders traced either right-handed or left-handed also amounts
to 65. In the vertical cylinder, there are five right-hand, and five
left-hand spirals, two of which form the corner diagonal col-
urnns across the square, leaving eight new combinations, The sams
number of combinations will alsa be found in the horizontal cylin-
der. Counting therefore five horizontal columns, five vertical col-
umns, two corner diagonal columns, and eight right- and left-
hand spiral columns, there are in all twenty columns each of
which will sum up to 63, whereas in the 53 5 square shown
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in Fig. 2 there will be found only sixteen columns that will amount
to that number,

This method of construction is subject to a number of varia-
tions. For example, the knight's move may be upwards and to the
left hand instead of to the right, or it may be made downward and
either to the right or left hand, and also in other directions. There
are in fact eight different ways in which the knight's movz2 may
Le started from the center cell in the upper line. Six of these
moves are indicated by hgure 2's in different cells of Ifig. 6, and
each of these movcs if continoed in its own direction, varied by
the Lreaks as before described, will produce a different but associated
square. The remaining two possible knight's moves, indicated by
cyphers, will not produce magic squares nnder the above rules.

/0|2 /5] 23
/2|25 & L d

/ ta|r8| 2 |24 22) 20

0 7 7|24l 7120

P 2 17| s (23|27 | 0 )27

2 2 23| 6 (r2| 2 |25

2 2 & (72125 £ (48

Fig. 6. Fig. 7.

It may here be desirable to explain auother method for locating
numbers in their proper cells which some may prefer to that which
involves the conception of the double eylinder. This method con-
sists in constructing parts of auxiliary squares around two or more
sides of the main square, and temporarily writing the numbers in
the cells of these auxiliary squares when their regular placing car-
ries them outside the limits of the main square. The temporary
location of these numbers in the cells of the auxiliary squares will
then indicate into which cells of the main square they must be per-
manently transferred.

Fig. 7 shows a 3 X = main square with parts of three auxiliary
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squares, and the mam square will be built up in the same way as
Fig. 5.

Starting with 1 in the center of the top line, the first knight's
move of two cells upward and one to the right takes 2 across the
top margin of the main square into the second cell of the second
line from the bottom in one of the auxiliary squares, so 2 must be
transferred to the same relative position in the main square. Start-
ing again from 2 in the main square. the next move places 3 within
the main square, but 4 goes out of it into the lower left-hand corner
of an auxiliary square, from which it must be transferred to the
same location in the main square. and so on throughout.

The method last described and also the conception cf the double
cylinders may be considered simply as aids to the beginner. With
a little practice the student will be able to select the proper cells in
the square as fast as figures can be written therein.

Having thus explained these specific lines of construction, the
general principles governing the development of odd magic squares
by these methods may now be formulated.

1. The center cell in the square must always contain the middle
number of the series of numbers used, 1. €., a number which
is equal to one-half the sum of the first and last numbers of
the series, or #° 4~ I.

2. No associated magic square can therefore be started from its
center cell, but it may be started from any cell other than
the center one.

3. With certain specific exceptions which will be referred to
later on, odd magic squares may be constructed by either
right- or left-hand diagonal sequence, or by a number of so-
called knight’s moves, varied in all cases by periodical and
well defined departures from normal spacing.

4. The directions and dimensions of these departures from
normal spacing, or “break-moves,” as they may be termed.
are governed by the relative spacing of cells occupied by
the first and last numbers of the series, and may be deter-

mined as follows:
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Rure: Place the firsi number of the series in any desired cell
{excepting the center one) and the last number of the series
in the cell which is diametrically opposite to the cell con-
taining the first number. The relative spacing between the
cell that contains the last number of the series and the cell
that contains the first number of the series must then be
repeated whenever a block occurs in the regular progres-
siof,

EXAMPLES.

Using a blank square of 5 5, 1 may be written in the middle
cell of the upper line. The diametrically opposite cell to this being
the middle cell in the lower line, 25 must be written therein. 1 will
therefore be located four cells above in the middle vertical column,
or what is the same thing, and easier to follow, one cell below 2.

/ '3 8 25
J p’ 20 22/
6| |20 25—/
i ;f & + 5
7 25 S ld /0
*
Fle. 8. Fig. o

When, therefore, a square of 5 X 5 is commenced with the first
number in the middle cell of the upper line, the break-move will
be one cell downward, irrespective of the method of regular ad-
vance. Fig, 8 shows the break-moves in a § X g square as above
described using a right-hand upward diagonal advance.

Again using a blank § X g square, T may be written in the cell
immediately to the right of the center cell, bringing 25 into the cell
to the left of the center cell. The break-moves in this case will
therefore be two cells to the right of the last cell occupied, irrespec-
tive of the method used for regnlar advance. Fig. ¢ illustrates the
break-moves in the above case, when a right-hand upward diagonal
zdvance is used. The positions of these break-moves in the square
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will naturally vary with the method of advance, but the relative
spacing of the moves themselves will remain unchanged.

Note: The foregoing break-moves were previously described i
several specific examples (See Figs. 1, 2, 3, 4, and 5) and
the reader will now observe how they agrec with the gen-

eral rule.

Once more using a hlank square of 5< 5, T may be written
in the upper left-hand corner and 25 in the lower right-hand corner.
r will then occupy a position four cells removed from 23 in a left-
hand upward diagonal, or what is the same thing and easier to
follow, the next cell in a right-hand downward diagonal. This will
therefore be the break-move whenever a block occurs in the regular
spacing. Fig. 1o shows the break-moves which occur when a

— + —
/|75 4 l |
/6|5 L2 76| 01
¥
22 6 Torzel 4T
¥
2r/e r /2 2/
¥
1|28 iy 25
+
Fig. 10, TFig. 11.

knight's move of two cells 1o the right and one cell upward is used
for the regular advance.

As a final example we will write 1 in the second cell from the
teft in the upper line of a § X 3 square, which calls for the placing
of 25 in the second square from the right in the lower line. The
place relation between 25 and 1 may then be described by a knight's
move of two cells to the left and one cell downward, and this will
be the break-move whenever a block occurs in the regular spacing.
The break-moves shown in Illg. 11 occur when an upward right-
hand diagonal sequence is used for the regular advance.

As before stated odd magic squares may be commenced in
any cell excepting the center one, and associated squares may be
built up from such commencements by a great variety of moves,
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such as right-hand diagonal seyuence, upward or downward, left-
hand diagonal sequence npward or downward, or a number of
knight's moves in various directions. There are four possible moves
from each cell in diagonal sequence, and eight possible moves from
each cell by the knight's move. Some of these moves will produce
associated magic squares, but there will be found many exceptions
which can be shown most readily by diagrams,

Fig. 12 is a 5 X % square in which the pointed arrow heads in-
dicate the directions of diagonal sequence by which associated
squares may he constructed, while the blunt arrow heads show the
directions of diagonal sequence which will lead to imperfect results,
Fig. 13 illustrates the varions rormal knight's moves which may be

T EL R R e
I
R B A

X
s
had Hll s
P PR | FE AR

Fig. 12 Fig. 13.

XA A
PRI
P4 XXX
Pl ALK

started from each cell and also indicates with pointed and blunt
arrow heads the moves which will lead to perfect or imperfect re-
sults. For example it will be seen from Ifig. 12 that an associated
§ X § square cannot be built by starting from either of the four
corner cells in any direction of diagonal sequeice, but Fig. 13 shows
four different normal knight’s moves from each corner cell, any
of which will produce associated sgquares, Tt also shows four other
normal kunight's moves which produce imperfect squares.

EXAMULES OF § b § AIAGIC SODUMARES.

Figs. 14 and 15 show lwo § X 5 squares, each having 1 in
the upper left-hand corner cell and 25 in the lower right-hand
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corner cell, and being constructed with different knight's moves.

Fig. 16 shows a similar square in which an elongated knight's move

/oSS |24| £ |47 £ 24| IF|rT | F | AE e |22 g

2A| 7 |76 | & | % sl 7S |26 23| 7| 25| . 4

20| ¢ |r3|z2)| & 22|l 2o 3| & | & Flzrira| 5|y

F2l2ree s 3 0|3 |z |2 |r2 2s|s85| 2 18] 6

|_9 tF | 2 |2 |25 fFl |G 2 |25 r2| L |78 8 |28
Fig 14. Fig. 15. Fig. 16

is used for regular advance.
{See Fig, 10.)

same in each example.
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The break-move is

necessarily the
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Figs. 17, 18, 19 and 20 show four 3 X 5 squares, each having

1 in the sccond cell from the left in the upper line and 25 in the
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second cell from the right in the lower line, and being built up

respectively with right- and left-hand upward diagonal sequence
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and upward right- and downward left-hand knight's mowves, and
with similar break-moves in each example. See Iig. 11.)

Figs. 21, 22, and 23 illustrate three 5 X 5 squares, each having
1 in the upper right-hand corner and 25 in the lower left-hand
corner, and being built up respectively with upward and downward
right-hand normal knight's moves, and a downward right-hand
elongated knight's move,

For the sake of simplicity these examples have been shown in
5 X § squares, but the rules will naturally apply to all sizes of odd
magic squares by using the appropriate numbers. The explana-
tions have also been given at some length because they cover gen-
eral and comprehensive metheds, a good understanding of which
is desirable.

It is clear that no special significance can be attached to the

0|22 | |/ 9 \srj20|23|/ s2|23|9 j2e|/

| 1207 |24 P2 | TS 4 |25 |20t 7L
2t F8) 5 ‘7 2 | fo) 1|8 |2 7;2 Fdlza| w0
/8|6 123|785 /2|22 5 a’_ £ 179 |5 [#/ {22

zs|s2| % |25 | & 2513 16 12|ry 258 27| 9 e
Fig. 21. Fig. 2z Fig. z3.

so-called knight’s move, per se, as applied to the construction of
magic squares, it heing only one of many methods of regular spa-
cing, all of which will produce equivalent results, For example, the
3 X 3 square shown in Fig. 1 may be said to be built up by a suc-
cession of abbreviated knight's moves of one cell to the right and
one cell upwards. Squares illustrated in Figs. 2, 3, and 4 are also
constructed by this abbreviated knight’s move, but the square illus-
trated in Fig, 5 is built up by the normal knight's move,

It is equally easy to construct squares by means of an elongated
knight's move, say, four cells to the right and one cell upwards
as shown in Fig. 24, or by a move consisting of two cells to the
right and two cells downwards, as shown in Fig, 25, the latter being
equivalent to a right hand downward diagonal sequence wherein
alternate cells are consecutively filled.
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There are in fact almost innumerable combinations of moves

by which these odd magic squares may be constructed,

The foregcing method for building odd magic squares by a
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numbers varied by different well

spacing of consecutive
break-moves, but other

methods of construction have been known for many years.
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One of the most interesting of these other methods involves
the use of two or more primary squares, the sums of numbers in

similarly located cells of which counstitute the correct numbers for
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transfer into the corresponding cells of the magic square that is
to be constructed therefrom.

This method has heen ascribed primarily to De la Hire but has
been more recently improved by Prof, Scheffler.

It may be simply illustrated by the construction of a few 5 3
squarcs as examples, Figs. 26 and 27 show two simple primary
sruares in which the numbers 1 to 5 are so arranged that like num-
bers occur once and only once in similarly placed cells in the two
squares ; also that pairs of unlike numbers are not repeated in the
same order in any similarly placed cells, Thus, 5 oceupies the ex-
treme right-hand cell in the lower line of each square, but this com-
bination does not occur in any of the other cells.  So also in Fig. 27
4 occupies the extreme right-hand cell in the upper line, and in Fig.

SIS |32 Fl3| S| 24

Jl217 |74 Flzs|r7]a

S|l&w|d |2/ s A 3|2

2 /|3 |4 |3 5|24/

sl3lztzs|ag glalrslals
Tfig. =26, Fig. 27.

26 this cell contains z. No other cell, hawever, in Fig. 27 that con-
tains 4 corresponds in position with a cell in Fig. 26 that contains 2.
Leaving the numbers in FFig. 26 unaltered, the numbers in Fig. 27
must now be changed to their respective rool numbers, thus pro-
ducing the root square shown in Iig. 28. By adding the cell num-
bers of the primary square Tig. 26 to the corresponding cell numbers

Primary numbers .... I. 2, 3, 4, 5.
Root numbers ....... o, 5, 10, I5, 20,

of the root square Fig, 28, the magic square shown in Fig. 29 is
formed, which is also identical with the one previously given in
Fig. 14.

The simple and direct formation of Fig. 14 may be thus com-
pared with the De la Hire method for arriving at the same result,
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It is evident that the root square shown m Fig. 28 may be dis-
pensed with by mentally substituting the root numbers for the pri-
mary numbers given in Fig. 27 when performing the addition, and
by so doing only two primary squares are reguired to construct the
magic square. The arrangement of the numbers 1 to g in the two
primary sguarcs is obviously open to an immense number of varia-

o |ro|zat 5 lrs I ECRELIN o Vo4

20| 5|25 e |ro 23{ 7 |46 | 5 |12

/35| o jro|2e| 8 20| & |73 22| &

tojzol Flrs|eo t2ar|vo|re

F|2s5 | |ro) 8 SJ/J 2 172/ | 25
Fig. 2R Fig. 2g.

tions, each of which will result in the formation of a different but
associated magic square. Any of these squares, however, may be
readily constructed by the direct methods previously explained.

A few of these variations are given as examples, the root num-
bers remaining unchanged. The root square Fig, 32 js formed
from the primary square Fig. 31, and if the numbers in Fig, a2

Fl& |28 d S S 4|32
gl2 |8 |a17 3|2 |7 |54
25|37 |« J|4e|ld|z|/
sla|rj% |2 2|72 | d |« |d
KN IV 5 Gl |7 |5
Fig. a0 Fig. 31.

are added to those 1 the primary square Fig. 30, the magic square
FFig. 33 will be produced. This square will be found identical with
that shown in Fig. 15,

As a final example the magic square shown in Fig., 37, pre-
viously given in Fig. 17, is made by the addition of numbers in the
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primary square Fig. 34 to the numbers occupying similar cells in
root square Fig. 36, the latter being derived from the primary square
Fig. 35. I the root square shown in Fig, 38 is now constructed

g2 20 |50 5 s 2al sy |is| s

roi 5 o |2e|ss a7 |5 |2a]r6

0| e8| 0|5 |0 22(20|lral 28 | £

S e s vo| 3 |27|r2| 2

AN sF 2|9 | 2 |2s
Fig. 32. Fig. 33.

from the primary square Fig. 34 and the root numbers therein added
to the primary numbers in Fig. 35, the magic square shown in Fig.
39 is obtained, showing that two different magic squares may be

d|/ w215 2|7 |43 5|0 |zo{rslre
J|3|7/ |42 sl s g|lals BTV AN
2|37 | % Slaejalzlrs 2olss|li| 5|
s l21d|3]| 7 alalz2lrl s sl 5|0 l2o
a2 |a|a Slz2tr] s g sela | o 208
Fig. 34. Fig. zs. Fig. 36.
P 7 |2%|22 |28 s 0|28 5|20 s2| 7 |22| 9 |24
s 2318 25| 7 20008 O /5| & 24|05\ @ ioF | 7
2z(201/3 | 6 | # s 20| 0l o |rs ro 25| a2 |28
so|r2lre| s |2 /5|5 | 20|00 @ 29| F |z2|# | 5
|8 |2 |adisE e W o - -F - |7 & |25 222
Fig. 37. Fig. 38 Fig. 0.

made from any two primary squares by forming a root square from
cach of them in turn. Ifig. 39 has not been given before in this
book, but it may be directly produced by an elongated knight's
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move consisting of two cells to the right and two downward, using
the normal knight's move of two cells to the left and one cell down-
ward as a break-move at every block in the regular spacing.

It will be observed in all the preceding examples that the
oumber 3 invariably occupies the center cell in all 5§ X 5 primary
squares, thus bringing 10 in the center of the root squares, and 13 in
the center of the magic squares, no other number being admissible
in the center cell of an associated 5 % 5 magic square. A careful
study of these examples should suffice to make the student familiar
with the De la Hire system for building odd magic squares, and

pe
# 7o
3 9 /5
2] |4 & §2¢ 3 |/8|9 |22{s5
ARY | ool |24 208 |27 sul 2
é e N W 5 7 |25|08)7 |r8
i 7 29 2|2 S (1| &
/4 22 AV AVRIEN
2/
FED. Fig. 41.

this knowledge is desirable in order that he may properly appre-
ciate the other metheds which have been described.

Before concluding this branch of the subject, mention may
be made of another method for constructing odd magic squares
which is said to have been originated by Bachet de Méziriac,
The application of this method to a 5 X 5 square will suffice for
an example.

The numbers I to 25 are written consecutively in diagonal
columns, as shown in Fig. 40, and those nombers which come
outside the center square are transferred to the empty cells on
the opposite sides of the latter without changing their order. The
result will be the magic square of § 3 5 shown in Fig. 41. It
will be seen that the arrangement of numbers in this magic square
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is similar to that in the 7 X 7 square shown in Fig, 4, which
was built by writing the numbers 1 to 45 consecutively according
to rule. The 5 < 5 square shown in I'ig. 41 may also be written
out dircctly by the same tule without any preliminary or additional
work.

ASSOCTATED OR REGULAR MAGIC BQUARES OF EVEN
NUMBERS.

The numbers in the iwo corner diagonal columns in these magic
squares may be deterimined by writing the numbers of the series in
arithmetical order in horizontal rows, beginning with the first
number in the left-hand cell of the upper line and writing line after
line as in a beok, ending with the last number in the right-hand cell

LR A AR s |2
216179 ALAVARd
Freym|F 5 | s |
s 3| 2 s sdfjre |5 ’5
Irig. 4=, Fig. 43.

of the lower line, The numbers then found in the two diagonal
columns will be in magic square order, hut the position of the other
numbers must generally be changed.

The smallest even magic square that can be Luilt is that of
4 % 4. and one of its forms is shown m Fig. 42, It will be
seen that the stim of cach of the four horizontal, the four vertical,
and the two corner diagonal columns in this square i3 34, making
in all ten columns having that total; also that the sum of any two
dametrically opposite nunibers is 17, which is the sum of the first
and last numbers of the series. [t is therefore an associated square
of 4 X 4.

The first step in the construction of this square is shown in
Fig. 43, in which only the two coerner diagonal coluinns, which are
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written in heavy figures, have the correct summation.  The numbers
in these two colnmns nu:st therefore be left as they are, but the loca-
tion of all the other numbers, which are written in light figures, must
be changed. A simple method for effecting this change consists in
substituting for each number the complement between it and 17,
Thus, the complement between 2 and 17 is 13, 50 15 may be written

in the place of 2. and so on throughout. All of the light figure

AR A RYL . oS /2,

S|\ F S P 1 ”

9|7 5|13 K] TN | so

s |2y |/ S 4 s F 5
Fig. 44 Fig. 43

numbers being thus changed, the result will be the magic square
shown in Fig. 42,

The same relative arrangement of figures may be attamed by
leaving the light figure numbers in their original positions as shown
in Fig. 43, and changing the heavy figure numbers in the two
corner diagonal columns to their respective complements with 17.

It will be seen that this is only a reversal of the order of the figures

AT el d EJZ s dlz|a|la|sla

S| F |2 2,7‘!// 7 Fls|w|ir]e

2y | 23|28 | rb | ru|r2 3| e | S| 2B 27 | o

sE |7 Ar 22|27 /J’.- s | 2o | RS 23] 20| 2

r2 25| o |20 29 25 28| 24| 27 20 ) 39| 0o

S0 2 | 4 |33 3 |34 dF vz |as | o] a8
Fig. 48 g, a7.

in the two corner diagonal coluimns, and the resulting magic square
which is shown in Fig, 43 i1s simply an inversion of Fig, 42.

Fig. 43 is a geometrical diagram of the numbers in Fig. g2,
and it indicates a regular law in their arrangement, which also holds
good in many larger even squares, as will be seen later on.
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There are many other zrrangements of sixteen numbers which
will fulfil the required conditions but the examples given will suffice
to illustrate the principles of this square.

The next even magic squarc is that of 6 % 6, and one of its
many variations is shown in Fig. 46. An analysis of this square

/|3 RN3g| 12,32 4
30[ 8 (2812707 2=

2u\23[/5| 28|20 |19

st /7 25|22 vl ra
12|28\ 0|9 |29 7
37 5 | 11 ]2 a4

Fig. 48.

with the aid of geometrical diagrams will point the way not only
to its own reconstruction but also to an easy method for building
other 6 X 6 squares of this class,

Fig. 47 shows a 6 X 6 square in which all the numbers from

Fig. a5

1 to 36 are written in arithmetical sequence, and the twelve numbers
in the two corner diagonal columns will be found in magic square
order, all other numbers requiring rearrangement, Leaving there-
fore the numbers in the diagonal columns unchanged, the next step
will be to write in the places of the other numbers their complements
with 37, making the square shown in Fig. 48 In this square
twenty-four numbers (written in heavy figures) out of the total of
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thirty-six numbers, will be found in magic square order, twelve
numbers (written in light figures) being still incorrectly located.
Finally, the respective positions of these twelve numbers being re-
versed in pairs, the magic square given in Fig. 46 will be produced,

Fig. 5o shows the geometrical diagrams of this square, A
being a diagram of the first and sixth lines, B of the second and
fiith lines, and C of the third and fourth lines. The striking ir-
regularity of these diagrams points to the irregularity of the
square which they represent, in which, aithough the sum of each
of the two corner diagonal, the six horizontal, and the six perpendic-
ular columns is 1711, vet only in the two diagonal columns does the
sum of any twe numbers which occupy diametrically opposite cells,
amount to 37, or the sum of the first and last numbers of the series.

Owing to their pronounced irregularities, these diagrams convey

7 48 7 ag ’2 )
z g5 ] LR Ay 23
R de L) 2 o 2z
A B c
& 23 £ 22 /8 s
o ¥ I 24 4 EF]
é a7 3 24 s )
Fig. 52

but little meaning, and in order to analyze their value for further
constructive work it will be necessary to go a step backwards and
make diagrams of the intermediate square Fig, 48. These diagrams
are shown in Fig. 49, and the twelve numbers therein which must
be transposed (as already referred to) are marked by small circles
around dots, each pair of numbers to be transposed in position
being comnected by a dotted line. The numbers in the two corner
diagonal columns which were permanently located from the be-
ginning are marked with small circles.

We have here correct geometrical figures wiih definite and well
defined irregularities. The series of geometrical figures shown in
A, B, and C remain unchanged in shape for all variations of these
6 X 6 squares, but by modifying the irregularities we may readily
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obtain the data for building a large number of variants, all showing,
however, the same general characteristics as Iig. 40.

A series of these diagrams, with some maodifications of their
irregularities, ts given in Fig, g1, and in order to build a variety

of 6 X 6 magic squares therefrom it is only necessary to sclect three

/ 4 4 P

Mg, 51 (First Part).

diagrams in the order A, BB, and C, which have cach a different form
of frregularity, and after numbering them in arithmetical seguence
from I to 36, as shown in Fig. 49, copy the numbers in diagrammatic
order into the cells of a 6 X & square.

It must be remembered that the cells in the corner diagonal
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columns of these even magic squares may be correctly filled by writing
the numbers in arithmetical order according to the rule previously
given, so in beginning any new even square it will be found helpful
to first write the numbers in these columns, and they will then serve
as guides in the further development of the square.

&5

Iig. 51 (Second Part).

Taking for example the 6 X 6 magic square shown in Fig. 46,
it will be seen from Fig. 4¢ that it is constructed from the diagrams
marked 1—g and 17 in Fig. 51. Comparing the first line of Fig. 46
with diagram A, Fig. 49, the sequence of numbers is 1,—35—34
in unbroken order; then the diagram shows that 33 and 3 must be
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transposed, s0 3 is written next (instead of 33} then 32 and 6 in
unbroken order. In the last line of this square (still using diagram
A) 31 comes first, then, seeing that § and 2 must be transposed,
2 is written instead of 5; then 4; then as 3 and 33 must be trans-
posed, 33 is written instead of 3, 5§ instead of 2, and the line is
finished with 36, Diagram B gives the development of the second

TABLE SHOWING 128 CHANGES WHICH MAY BE RUNG ON
THE TWENTY-FOUR DIAGRAMS IN FIG. §I.

A B C
1,2, 30 4 g 17, 18, 19 or 20==16 changes
i L1 L1 i 10 1] 13 i 1] —— 16 1]
i i i 1] II 111 113 i 113 216 13
1] 113 T 111 12 13 13 Li 13 — 16 1]
5,6 7o0r 8 13 21, 22, 23 OT 24w== 16 “
i L1 1 il 14 L1 L1} 11 113 :[6 L1}
i 113 1] 111 IS 3 i i 113 e 16 ik
i 2] 1] (1] 16 £“ (14 o £1] —— 1.6 1]
Total changes = 128 “
EXAMPLES.
7 |85 4 |A9 (2] 8 PR ERRRYANY A I
2|8 (280270 |25 JO| & (2819 147 |25
2y (1715 r6| 20| 10 28 128)|05 2620|189
23|23 |22 4|28 24|t |2s 2277 |28
S0 (26|92 |ra|29| » 7 |281r0 2728 72
S/ 2 |[Ju|d |5 a8 I |SE) 4 (8|2 |as
Square derived from dia- Square derived from dia-
grams 2z, 10, and 18 grams 8, 13, and 22

and fifth lines of the square in the same manner, and diagram C
the development of the third and fourth lines, thus completing the
square.

The annexed table shows 128 changes which may be rung on
the twenty-four diagrams shown in Figure 5I, each combination
giving a different 6 X 6 square. and many others might be added
to the list,

The next size of even magic square is that of 8 X 8, and instead
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of presenting one of these squares ready made and analyzing it,
we will now use the information which has been offered by previous
examples in the construction of a new square of this size.
Referring to Fig. 45, the regular geometrical diagrams of the
4 X 4 square naturally suggest that an expansion of the same may

be utilized to construct an 8 XX & square. This expanded diagram

/ b 7 £’ 7 Py Py fo
2 i3 rs Ly i 47 ¥ s
o 11 » Iy s3 T4 ,,7 KX
& £ P P 1 or 2 47
F iy 1 ryl Y o 1s i
'] Frl ry Lol 24 3 Jo 5
b4 & A Fo 21 $2 ey Sy
# o s Y 2y Py 82 X
Fig. 52,

is accordingly shown in Fig. 52, and in Fig. 53 we have the magic
square that is produced by copying the numbers in diagrammatic

order.
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Fig. s53.

As might be anticipated, this square is associated and the ease
with which it has been constructed points to the simplicity of the
method employed.

The magic square shown in Fig. 53 is, however, only one of a
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multitude of 8 X & squares, all of which have the same general
characteristics and may bhe constructed with equal facility from

’ o b & a s 5& ‘2
2 r . 63 0 la, o &
3 '3 ” ><f s | 2w
# &t ’2 51 an
uf | b £ 2 2r
& 7 For | 7 22
7 ! TF u-L><-., Ja 23
¥ Nap | ol eS| gy

Fig. 55.

various regular diagrams that can be readily derived from trans-
positions of Fig, 52. Five of these variations are illustrated in Fig,
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54, which alse show the transpositions by which they are formed
from the original diagrams, To construct an associated magic square
from either of these variations it is only necessary to make four
copies of the one selected, annex the numbers 1 to 64 in arithmetical

2|7 e |baldr|62| 2 | #
LGSO | Fp| 53| 2| S| 2T 9

4t |apir9|2¢) 20| 22( 42|47

B3 [Jetdolad 2927 42 | 4o Totals = 260
otals = 200,

2525138 (a5 385107 |22

24|29 140 | eS| 4s VS| 28 | £

SE|SC Sy (73 R\ M 13|48

7| da| 3 |4 |8 a2 be

Fig. 6.

order as before explained, and then copy the numbers in diagram-
matic sequence into the cells of an 8 X 8 square.
It will be noted in the construction of the 4 X 4 and 8 X 8

. ( I\ g | o N4 . o 44| 25 w
r) #3 0 S5 | sk 7 kL
3 § V4

5 &t & Y| sy wé z7 dF
[ 2 £ Zer |4 @r | 2 .’/7
£ 2 P 1| as wu | 29 &
| s At s 12 | ard Jo S5

FY b e | o7 PERFTRY et w2 | 47 Fir o
L w 57 | s v2 | ¥ ¢ M owr | U2 49

Fig. s7

sguares that only one form of diagram has been hitherto vsed for
each square, whereas three different forms were required for the
6 % 6 square. It is possible, however, to use either two, three, or
four different diagrams in the construction of an 8 X 8 square, as
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shown in the annexed examples. Fig. g5 illustrates two different
forms from which the magic square Fig. 56 is constructed. Fig. 57
shows three different forms which are used in connection with the
square in Fig. 58, and in a similar manner Figs. 5g and 60 show
four different diagrams and the square derived therefrom. The

e

Fig. 61.

foregoing examples are sufficient to illustrate the immense number
of different 8 X 8 magic squares that may be constructed by the
aid of various diagrams,

We now come to the magic square of 10 X 10, and applying
the comparative method to the last examples, it will be easy to ex-
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pand the three diagrams of the 6 X 6 square {Fig. 49) into five
diagrams that are required for the construction of a series of
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These five diagrams are shown in Fig. 61, and

in Fig. 62 we have the magic square which is made by copying the
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numbers from 1 to 100 in diagrammatic order into the cells of a

10 X 10 square.
It will be unnecessary to proceed further with the construction
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ing resemblance between the diagrams of the 6 X 6 and the 10 X
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Fig. 64.

1o squares, especially in comnecticn

larities.

with their respective irregu-
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It will also be seen that the same methods which were used for
varying the 6 X 6 diagrams, are equally applicable to the 10 X 10
diagrams, so that an almost infinite variety of changes may be rung
on them, from which a corresponding number of 10 X 10 squares
may be derived, each.of which will be different but will resemble
the series of 6 X 6 squares in their curious and characteristic n-
perfections,

Fip. 65 (First part).

We have thus far studied the construction of even magic
squares up to and including that of 10 X 10, and it is worthy
of remark that when onc-half the number of cells in one side of
an evern magic square is an even number the square can be made
associated, but when it is an uneven number it is impossible to
build a fully associated square with a straight arithmetical series. The
difficulty can however be casily overcome by using a suitable number
serics.  As this subject is fully treated in Cahpter XI under the
heading, “Notcs on the Construction ef Magic Squares of Orders
in which » is of the General Form 4p + 2,” it is not discussed here,

Fig. 63 shows a secries of diagrams from which the 12 X 12
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Fig. 65 (Second Part),
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square in Fig, 64 is derived, The geometrical design of these
diagrams is the same as that shown in Fig, 52 for the 8 X 8 square,
and it is manifest that all the variations that were made in the 8 X 8
diagrams are also possible in the 12 X iz diagrams, besides an
immense number of additiona!l changes which are allowed by the
increased size of the square.

In Fig. 65 we have a series of diagrams illustrating the de-
velopment of the 14 X 14 magic square shown in Fig. 66. These
diagrams being plainly derived from the diagrams of the 6 X 6 and
10 X 10 squares, no explanation of them will be required, and it is
evident that the diagrammatic method may be readily applied to
the construction of all sizes of even magic squares.

It will be noted that the foregoing diagrams illustrate in a
graphic manner the interesting results attained by the harmonious
association of figures, and they also clearly demonstrate the almost
infinite variety of possible combinations,

/ % s d 2 |4 gl /

Z 13 4512|387 Jl2|2 |5

3 L2 |S |7 2148|312

/ & A I3[ 2 = P R VA P
Fig. o7. Fig. 68. Fig. é0.

THE CONSTRUCTION OF EVEN MAGIC SQUARES BY DE LA
HIRE'S METHOD.

An associated magic square of 4 X 4 may be constructed as
follows:

1. Fill the corner diagonal columns of a 4 X 4 square with the
numbers I to 4 in arithmetical sequence, starting from the
upper and lower left hand corners (Fig. 67).

2. Fill the remaining empty cells with the missing numbers of
the series T to 4 so that the sum of every perpendicular and
horizontal column equals 10 {Fig. 68).
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3. Construct another 4 >{ 4 square, having all numbers in the
same positions relatively to each other as in the last square,

but reversing the direction of all horizontal and perpendicular
columns (Fig. 6g). .

4. Form the root square Fig. 7o from Fig. 6g by substituting
root numbers for primary numbers, and then add the numbers
in this root square to similarly located numbers in the primary
square Fig, 68, The result will he the associated square of
4 X 4 shown in Fig. 72,

By making the root square Fig. 71 from the primary square
Fig. 68 and adding the numbers therein to similarly located numbers

2 |rz|r2t o | F |4 |72
|yl F F2| | F e
Ll F | F g 24| F e
FRIMARY ROOT "
NUMBERS NUMEERS /2o |0 /2 e £ 14 /2
1 o} Fig. 70. Fig. 71
2 4
3 8 VR VAR P77 sz £ |73
4 1z 2|78 /85| 86 \re K!
£ |21 | S | 7|
/3|3 |2 |/8 4 |9 | a4
Fig. 72 Fig. 3.

in the primary square Fig. 69, the same magic square of 4 X 4 will
be produced, but with all horizontal and perpendicular columns re-
versed in direction as shown in Fig. 73.

The magic square of 6 X 6 shown in Iigire 46 and also a
large number of variations of same may be readily constructed by
the De 1a Hire method, and the casiest way to explain the process
will be to analyze the above mentioned square into the necessary
primary and roat sguares, using the primary numbers T to 6 with
their respective root numbers as follows:

Primary numbers ..... 1, 2 3, 4, 5 6
Root numbers . ....... o, 0, 12, 18, 24, 30.
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The cells of two 6 X 6 squares may be respectively filled with
primary and roct numbers by analyzing the contents of each cell in
Fig. 46. Commencing at the left-hand cell in the upper row, we
note that this cell contains 1. In order to produce this number by
the addition of a primary number to a root number it is evident that
o and 1 must be selected and written into their respective cells,
The second number in the top row of Fig. 46 being 35, the root
number 30 must be written in the second cell of the root square and
the primary number § in the second ¢ell of the primary square, and
so on throughout all the cells, the finished squares being shown in
Figs. 74 and 75.

Another primary square may now be derived from the root
square Fig. 74 by writing into the various cells of the former the

/a5 lan| 3 |82 4 olanlio| o |s0|o
so| & 25|27 | 7 Pul b {2424 5

24| 238 | r8 |re |22 sE |\ 1F |22\ 12 |72 |18
r3|r7 122 |22 20|22 F2|I2 | sk |2F 28|72
12| 24| 9 |r0 |28 |28 G les| 6| 6 24|24
ar |z |4 (235 |24 vpe |0 |30 |0 |22
TFig. 46 {Dup.) Fig. 74.

primary numbers that correspond to the root numbers of the latter.
This second primary square is shown in Fig. 76. It will be seen that
the numbers in Fig. 76 occupy the same relative positions to each
other as the numbers of the first primary square {Fig. 75), but the
direction of all columns is changed from horizontal to perpen-
dicular, and wvice versa.

To distinguish and identify the two primary squares which are
used in these operations, the first one (in this case Fig. 75) will in
future be termed the A primary square, and the second one (in this
case Fig, 76) the B primary square.

It is evident that the magic square of 6 X 6 shown in Fig. 46
may now be reconstructed by adding the cell numbers in Fig. 74
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to the similarty placed cell numbers in Tig. 75. IHaving thus in-
versely traced the development of the magic squarce {rom its A and B
primary and rootf squares, it will be useful to note some of the general
characteristics of even primary squares, and also to study the rules
which govern their construction, as these rules will be found in-
structive in assisting the student to work out an almost endless
variety of even magic squares of all dimensions.

1. Referring to the 6 3 6 A primary square shown in Fig, 73, it
will be noted that the two corner diagonal colunins contain
the numbers I to 6 1n arithmetical order, starting respectively
from the upper and lower left hand corner cells, and that the
diagonal colnmns of the B primary square in Fig, 70 also
contain the same numbers in arithmetical order but starting

F S|l |28 s\E G| 8]

Sla|a|as|F) 2 S 12|55 2

sl alae|2z|” glatd|als |«

slsaley2]s E I B 7R R R

sraladlays]| s 2 lal2lz|s]s

2lzleta|s|é g | s /J Glr| 5
Fig. 73. Fig. 76,

from the two upper corner eells, The numhbers in the two
corner diagonal columns are subject to many arrangements
which differ from the above but it will be unnecessary to
consider them in the present article.

2. The numbers in the A primary square Fig. 75 have the same
relative arrangement as those in the B primary squarce Fig,
76, but the horizontal columns in one square form the per-
pendicular columus in the other and vice versa, This is a
general but not a universal relationship between A and B
primary sguares.

3. The sum of the series 1 to 6 is 21 and the sum of every
column in both A and B 6 X 6 primary squares must also
be 271,
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4- The sum of every column in a 6 X 6 root square must be go,
and under these conditions it follows that the sum of every
column of a 6 X 6 magic square which is formed by the
combination of a primary square with a root square must be

111 {21 + 9o == 111),

5. With the necessary changes in numbers the above rules hold
good for all sizes of A and B primary squares and root
squares of this class.

We may now proceed to show how a variety of 6 X 6 magic
squares can be produced by different combinations of numbers in

a
b
¢
d
&
f
Ist line
Z2nd
ard
4th “
Sth
6th

primary and root squares,

to produce a vast variety of squares which will naturally lead to
the development of a corresponding number of 6 X 6 magic squares.

In order to illustrate this in a systematic manner the different
rows of figures in Fig. 75 may be rearranged and identified by letters

as given in Fig. 77.

MAGIC SQUARES,

F 2 a|d |S| B
Fla|eid |28
Z|ls|ale]|2zi6
Alslatey|z|7
Sl 213 |4 |s]|r
G2 |a |3 |o]r
Fig. 77.
7 4
2 5
4
4
2 Fa
/ é
Fig. 78.

The six horizontal columns in Fig. 75
show some of the combinations of numbers from 1 to 6 that can be
used in 6 X 6 A primary squares, and the positions of these columns
or rows of figures relatively to each other may be changed so as

a, &, orec.
a, £, or f.
¢, d, ore.
¢, d, ore.
a, e orf,

a, b, orec.
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Fig. 78 shows the sequence of numbers in the diagonal columns
of these 6 X 6 A primary squares, and as this arrangement cannot
be changed in this series, the various horizontal columns or rows in
Fig. 77 must be selected accordingly. The small letters at the right

Ne.1. No.z No.3 No.g No.sg Nob

T S T L |
Tre o, ot Fy,om B
oM R, ™ e T
B, ot By D
ok, o B, RO
R ORem e ™y

Fig. 0.

of Fig. 78 indicate the different horizontal columns that may be used
for the respective lines in the square; thus either g, 4, or ¢ column
in Fig. 77 may be used for the first and sixth lines, g, ¢, or f for the
second and fifth, and ¢, d, or e for the third and fourth lines, but
neither &, ¢, or d can be used in the second or fifth lines, and so forth.

Six different combinations of columns are given in Fig, 7o,
from which twelve different 6 X 6 magic squares may be con-
structed. Taking column No. 1 as an example, Fig. 8o shows an

a 2 |ula |6 (s B |61/

f A2 |4la a7 2le|s|s |2 g

< ZIF |3 a2 |4 s leladd|s |«

d S| FlS |4 |2|7/ J |3 || wiajd

Glz|s |4«|s|/ S|Flz 2|2

b sl e |2 2|4 slr|ldlrs|r 8
Fig. Bo. Fig. 81

A primary square made from the combination @, f, ¢, d, e, b, and
Fig. 81 is the B primary square formed by reversing the direction
of the horizontal and perpendicular columns of Fig, 8. The root
square Fig. 8z is then made from Fig. 81 and the 6 X 6 magic
square in Fig. 84 is the result of adding the cell numbers of Fig. 82
to the corresponding cell numbers in Fig. 8o.
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The above operation may be varied by reversing the horizontal
columns of the roct square Fig. 82 right and left as shown in Fig.
83 and then forming the magic square given in Fig. 85. In this way
two different magic squares may be derived from each combination.

o |ae| o |do|ds| e ¢ |aelac| o |vo| 2

616 |2el24 6 |24 2|6 24|24t 6 | 4

AV ARz A AV . sF|ra sz sz s2

22|22 sf | s |rr| 2 TRV AV ZAPI VAN

24|24 6 | 6 |24| 48 4 |24l 6 | 4 |24 24

dol o |oe|l oo |a do|le |2 |as| o |ss
Fig. 82. Fig. 83.

It will be noted that all the 6 ) 6 magic squares that are con-
structed by these rules are similar in their general characteristics
to the 6 X 6 squares which are built up by the diagrammatic system,

Associated 88 magic squares may be constructed in great vari-
ety by the method now under consideration, and the different com-

S |32 4 |da|38| 6 2 |dzjau|J |ss s

2 & |28|27] 7 |25 S0\ & 262710 | 7

rg | 238|187\ 20 2y | 24 19 |/7 |r5| 16 | 28| 2%

8 |s7 (20| 22| 20|00 78|28 27|22 | ree |73

solzs| 9 |ro)20) > 2 28| 8 |re |28 |25

37 | & |34l 2 | 2 |af 37|54 232 |34
Fig. 84. Fig. 8.

binations of numbers from 1 to 8 given in Fig, 86 will be found use-
ful for laying out a large number of A primary squares.

Fig. 87 shows the fixed numbers in the diagonal columns of
these 8 )X 8 A primary squdres, and also designates by letters the
specific rows of figures which may be used for the different hori-
zontal columns. Thus the row marked ¢ in Fig. 86 may be used
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for the first, fourth, fifth, and eighth horizontal columns but cannot
he employed for the second, third, sixth or seventh columns, and so
forth.

Fig. 88 suggests half a dozen combinations which will form

si7l6 |||z |F a
sz |G| 7| b
Zizla | glu|dl2iF [
s|7e |« |56 2|5 d
2N\ |Flulb]2|s] e
Flz|s|d|«ia| 717 aa
Fl7|0 ||« 6]|2]7 bb
£ |7(s |4(siF|2]7] ¢
ple|sis|alalyls) dd
Flez|slalala | 77| €t
Fig. 86

as many primary squares, and it is evident that the number of
possible variations is very large. It will suffice to develop the first
and third of the series in Fig. 88 as examples.

1st line: | / £| a b, o, d ore.
2nd ¥ 2 7 b, ¢, aa, dd, oree.
ard ¢ 3 e d, e, aa, or cc.
4th “ 4| & a, b, d cc, or ee.
cth 4| S a, b, d, cc, or ee.
6th “ o g d, ¢, ae, ot ce.
Fth 2z Ve b, ¢, aa, dd, or ¢e.
8h “ |/ £l e b, ¢,4d, ore
Fig. 8.
Fig. 8g is the A prinfary square developed from column No, 1 .

in Fig. 88, and Fig. go is the B primary square made by reversing
the direction of all horizontal and perpendicular columns of Fig. 8.

Substituting root numbers for the primary numbers in Ifig. go, and
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adding these root numbers to the primary numbers in Fig. 8g gives
the regular magic square of 8 X 8 shown in Fig. 91. The latter will
be found identical with the square which may be written out directly

from diagrams in Kig. 3z2.

No.l. Ne.2, No.3. No.4. No.5 No. b,

a : b ¢ ad £ @
aa i & e def Iidd &
aa | 4 ot £ . e £

a , & 73 a e d

b c d ee d
aq | d P £ £ ¢
aa I & ¢ ad ee &

a ! & € d € @

Fig. 8.

Fig. gz shows an A primary square produced from column
No. 3 in Fig. 8. The D primary square Fig. 93 being made in the
regular way by reversing the direction of the columns in Fig. gz.

Primary numbers .. 1, 2, 3, 4 5 6, 7. &

Root numbers ..... o, 8 16, 24. 32, 40, 48, 50
A4 ACEEREREA & LNFE | EELS
22 |a|¢|d|7]|” |2> iz |2 \71712(217
Flz|3 |ate|s|7])7 ]2 Sl |s |m|dlald 4
A7 |d|le|ls|3|2|F]= s || T s | T
AV AL EEDERN-EFSE _.r—-z.; gla| s|4e|lswxls
Flels|Flu|6)7 |/ |a= Gl lala|d|s |4
£Flzla|s|«|6]| 7|7 ]2= 2 lztgizlziz|7]2
Mzl e aalz |+ ]= Flr|r|e|F |7 s+

Fig. 8g. Fig. oo

The associated magic square of 8 X 8 in IFig g4 1s developed from
these two primary squares as in the last example, and it will be
found similar te the square which may be formed directly from
diagram No. 2 in Fig. 54.
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TFig. g5 shows another 8 X 8 magic square which is constructed
by combining the A primary square in Fig. 8o with the B primary
square in Fig. 93 after changing the latter to a root square in the
manner before described. This magic square may also be directly
constructed from diagram No. 4 in Fig. 54.

It is evident that an almost unlimited number of different
8 > 8 magic squares may be made by the foregoing methods, and
their application to the formation of other and larger squares is
so obvious that it will be unnecessarry to present any further ex-
amples,

COMPOSITE MAGIC SQUARES.

These squares may be described as a series of small magic
squares arranged guadratically in magic square order,

The g X g square shown in Fig, g6 is the smallest of this class
that can be constructed and it consists of nine 3 X 3 sub-squares
arranged in the same order as the numerals 1 to g inclusive in the
3 X 3 square shown in Fig. 1. The first sub-square occupies the

7 exles|d |7 | 6 |13 ||
b |és |0l a3 | & | 7 1adf |0 |32

6772|6504 |9 2 |«s|aw |47

28 |48 |24 |4w|d7 |42 ]|ed |58 60

2s | 28| 25 |s0 e |as|op |9 |é7| Totals = 360.

22 |27 ko4 | w5 | s |Ga| 36

35|28 (223 |se | 78|22 |27 | #€ |#¢

go |az |de|polzolrs sz 1|26

dr |26 |29 |6 o7 | 7e |22 |0 | ¥

Fig. o6.

middle section of the first horizontal row of sub-squares, and it
contains the numbers 1 to g inclusive arranged in regular magic
square order being a duplicate of Fig, 1., The second sub-square
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is located in the right hand lower corner of the third horizontal row
of sub-squares and it contains the numbers 10 to 18 inclusive ar-
ranged in magic square order, and so on to the last sub-square
which occupies the middle section of the third horizontal row of

“y | 58 é? Fol /s [/2‘ 2.3],3:,1 seaf

T
57 &F 7z G | s 27|23 su |4k

&,} 7.?5,,9 LR LR Y R Y A

yavd FEZ0 |y (&2 63| a8 |8d

& (27|29 |0 |ar f2 83|65 |7e| Totals = 360.

26 |27 |29 | ko |S7 (62 |Gd| 78| o

26|28 |39 |50 (67 |2 7 4 |08

A6 |38 |wg|Go g7 |73 | 3 e l2s

37 || 59\ 70| FS| 2| |28 |28

Fig. o7.

13 | 727 /241//-4 Lo er | s | s LB |25 | Sy

s2g | itd (v rae |22 | 6 | 7 19 |92|d6|57 |Fg

s20 |22 |2 | £ Lo | M F |5 |22 | gf | £

AU\ 415 | pe | 2213 | 3 | 2 | e | R | A3 | F2 yé

23 \up w6 361685 7¢ |78 1 6F |97 |02/ |rs0 | soe

wy|ad |ag |wr)r6)po!l s |72 [r2e|n2| cos; 4]

| Totals
wo w2 |43 |37 |72 | 7 |75 &g |ww|wélrep| s :870_

37| IT| I |48 1 77 b7 |44 42 /9;199 b |z

i |
PERFREFERFE 729 3| iw2 r3z| sy 3 |20 |20

o e

62 | |8 |07 |rwro 230|357 | 2s | 22 |23 |2
| |

b S| Sp | 53|26 238 238 33|24 |28 |27 |27

&7 |57 | o (6o /w‘/\v /5&[{4;; 29 |sp |4 fd2

Fig. of
sub-squares, and which contains the numbers 73 to 81 inclusive,
This peculiar arrangement of the numbers 1 to 81 inclusive
forms a magic square in which the characteristics of the ordinary
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0 X g square are multiplied to a remarkable extent, for whereas in
the latter square {Fig. g7) there are only twenty columns which
sum up to 369, in the compound square of ¢ X g there are an
immense number of combination columns which yield this amount.
This is evident from the fact that there are eight columns in the
first sub-square which yield the number 15; also eight columns in
the middle sub-square which yicld the number 123—and eight col-
umns in the last sub-square which sum up to the number 231—and

15 + 123 4 231 = 360.

PRSI (S | AF

L

. . 5 ’ 25

23| /| 2 |20|/8
A, . ¥ 2 2e

12169 |7¢] #
3 A 22 4 a o &

gz alrs|zy
# . 22 - 2

£ ez |r7| 2] ¥
I P 4 ES as

25|24 6 | o
7 % & 2o & 2a
Fig. oo 7 o al #®
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K Ird

23| 7 |2 |20|/9
re /G

2z|r2| 76| 4«

s

slolrio|2s v
2 pr

4 74

Fig. 10z, Fig. 100, Fig. 101.

Totals of 3 X 3 squares = 30.
Totals of 5§ X 5 squares - 65.

The 15 3 15 comes next in order and this may be constructed
with twenty-five 3 3 3's or nine § X 5’5, and so on in the larger
sizes of these squares.

The next larger square of this class is that of 16 X 16 which
can only be built with sixteen sub-squares of 4 X 4. Next comes
the 18 X 18 compound sgquare which may be constructed with
thirty-six sub-squares of 3 3¢ 3 or with nine sub-squares of 6 X 6,
and so on indefinitely with larger and larger compound squares,
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CONCENTRIC MAGIC SQUARES.

Beginning with a small central magic square it is possible to
arrange ote or more panels of numbers concentrically around it so
that after the addition of each panel, the enlarged square will still
retain magic qualifications.

FEither a 33X 3 or a 4 X 4 magic square may be used as a
nucleus, and the square will obviously remain either odd or even,
according to its beginning, irrespective of the number of panels
which may be successively added to it. The center square will

‘., , 15 ’ 25

L » ¥ z 1y
J o a, 4o o 28
a 22
/222017 |23 I i
4 |61 T |rg 22 & 24
Fl | 73| 25| F 7o ol 2%
272|772 & ¥4

2 é é

3

Y

7
<

Fig. 103.

5

g

LE ]

Fig. 104. Fig, 105.

Totals of 3 X 3 square = 3g.

Totals of 5§ X 5 square — 65,
naturally be associated, but after one cr more panels have been added
the enlarged square will no longer be associated, because the pecu-
liar features of its construction will not permit the sum of every
pair of diametrically oppositc numbers to equal the sum of the
first and last numbers of the series used. The sum of every hori-
zontal and perpendicular column and of the two corner diagonal
columns will, however, be the same amount.



48

MAGIC SQUARES,

The smallest concentric square that can be constructed is that
of 5 X 5, an example of which is illustrated in Fig. gg.

The center square of 3 > 3 begins with 9 and continues, with
increments of 1, up to 17, the center number being 13 in accordance
with the general rule for a § X 5 square made with the series of

_Dfdypm:z Caluring 7)(7 el A5 Boasd. axd ‘j-?ucvrc.
b . 4 48 | 7 a7 | 2 25
: ) 2 45 | gf | 2z 2
4 o O ¢4 4 $7 o oI | 2 2
. . & o 48 id g P 24
. . 5 a5 | 7 83
f ar
. : ’ S 2 Fig. 100.
sar0 8,40 7 s | 7 s ol1e
: ) £ 42 | 1e o
: ) 7 v Fig. 108,
’ ' 1 al #e
43 solar
. 4 Y
- * g s 2|ar |20
r2 as _“_’f; 2|3 |42 |%
: ) Fig 107, wFlag|rdre |32 ol o
o |da|2f |27 | 28|78 &
7 r7|2a |2g| 27| a0 [4d
s 2o |24 |28 |22 40 ) S
s2 |79 |3y |36 | 8|0 |aF
0|48 g |aep| £ 13 ) 4

Fig. 110

Fig. 106.

i

Totals of 3 X 3 square 75
Totals of § X 5 square — 125§
Totals of 7 X 7 square = 175
numbers 1 to 25, The development of the two corner diagonal
columns is given in diagram Fig. 100, the numbers for these col-

umns being indicated by small circles. The proper sequence of the



other twelve numbers in the panels is shown in Fig. 101.
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The

relative positions of the nine numbers in the central 3 X 3 square

cannot be changed, but the entire square may be inverted or turned

one quarter, one half, or three guarters around, so as to vary the

Diagenal Celumns, D XG Fanel, ]X?}c’nw:z IS Bwdd dxa nfgua»-o.
. ’ LU 74 b5 1% 43 |3 23
: N 2 Er- Ay | 3¢ Fi | AL sy

3 77
. . 3 79| # 3| W g a5t |48y P
: . P 7| 200 o 61| a2 | o2

+a a 77| # s | a9 “g
s
6 4| 22 fo | 3¢ wr .
7 Fig, 113,
7 ra I EX SN Fy P aol«”
Fs 7 B Fri el rr
» 72| = 57 Fig. 114.
a4 72| 24 Ky
#” 77 | 22 EXy
2 2o | 22 Si
Za olés Fig. 113
Fiy &F
. Lrd 77712 |3 |4 |72 0|0 88
Fig. 111, ' 74 44 yé|62|r7 |02 (18|as 57| 58| 6
Fig. 112
& e CIA TIAREAR A PS4 i
pa oo | #u |27 |2 222 ]F
TOTALS: B B BRY RLE-JP-2aF ) g2y K ot
3 X 3 square 123, salzy|asjec|asias|wslar|ss
5 X 5 square 205, VES B4 ERAER RN AR g P P
7 X 7 sguare 287,
2
9 X 0 square 360. sé |26 | 65| G4|va| 24| 25| 25|48
rd|#r (Fo | polof| 0| |2 5
Fig. 116

position of the numbers in it relatively to the surrounding panel

numbers.

Fig. 102 shows a § X 5 concentric square in which the

panel numbers oecupy the same cells as in Fig. go, but the central
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3 X 3 squarc is turned around one guarter of a revolution to the
right.

Several variations may also be made in the location of the panel
numbers, an example being given in Figs. 103, 104, and 105. Many

Fambers in Aienrbere em Nosrders 1ne
Dragenal (ofurens 6Xx6 Brel, 4K G e,
7 o, g 15 ) o A8 # 24
R . z ¥ ‘z 25
. . + LES 73 Ja
v . &« A ] 24
. . s J2 Py 22
L Q, ¢ g o ] 2
. . Ve Jo 7 20
. . '3 29 ” 8
, . 2 ar Fig. 119.
L » o Z?
# |y rg 24 Fig. 118,
slag|ae| s 30| 6
N .
AN O:J 23 d3 V25| 24|29«
. . F 22|85 At By
6 Py 2& \Ef 20|20 /5F) 2

re|ag| st |r2 |28 2z

I]Q o 22

S/ 2 ddz;'da’

Fig. r17. Fig. 1z20.

Totals of 4 X 4 square = 74.
Totals of 6 X 6 square == 111,

other changes in the relative positions of the panel numbers are
selfevident.

One of many variations of the 7 X 7 concentric magic square
is shown in Fig. 110. The 3 X 3 central square in this example is
started with 21 and finished with 29 in order to comply with the
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general rule that 25 must occupy the center cell in a 7 )X 7 square
that includes the series of numbers 1 to 49. The numbers for the
two corner diagonal columns are indicated in their proper order
by small circles in Fig. 106, and the arrangement of the panel num-
bers is given in Figs. 107, 108 and 109. As a final example of an

Hoemiderd tn irnders i e dere en
Thagornal Columar. EXE Feneds H X A Tpeeare.
/ 0] 38 T o 45 " 24
. Fj 2 r .NJJ‘ 2 25
. » It Jae £3 2a
. ’ oy 23
- . L& 2z
4 o) o].d.} ¥ 27
. . 7 2
. . L7 ]
. , Fip. 123.
. .
” Fig. 122
s NdF|de| 5 |da |6
dE 1A | 2g |25 |2 &
tix ;‘— st |27 |20 |58
s za\ry|rs | ot 2y
. 7 |25 72 | ez (25| 29]
7 a2 17 |az]a |as
- .
Fig. 121. Fig. 124.

Totals of 4 X 4 square = 74.
Totals of 6 X & square = 111.

odd concentric square Fig. 116 shows one of g X g, its development
being given in Figs. 111, 112, 113, 114, and IIs.

All these diagrams are simple and obvious expansions of those
shown in Figs. 100 and 101 in connection with the 5 X 5 concentric
square, and they and their numerous variations may be expanded
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indefinitely and used for the construction of larger odd magic

squarcs of this class.

The smallest even conceniric magic square is that of 6 X 6, of

P

.D-'ajtna? Eodeermrnr, F & Pored
LN Ey ‘o o fu
) F 2 43
- . J Az
* ‘ £ b
- L]
. » 5 b
g e O]J-?- & ey
a . 7 EXs
- -
£ o o 47
» L]
. r = FE
) " i £
P [ Sa
» - 4 &
" * /2 x
. . 4 ¥
2o o o145 | Ly o
. . Fig. 126
L1
25 L:; 40
¥ 0 FA7 .
S g) a5

Fig. 125.
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Fig. 126.

Totals of 4 X 4 square = 130.
Totals of 6 X 6 square = 1g5.
Totals of 8 X 8 square = 2060.

which Fig. 120 is an example.
may be traced in the diagrams given in Figs. 117, 118, and 119,

The development of this square

The center square of 4 X 4 is associated, but after the panel is added
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the enlarged square ceases to be so, as already noted. Tigs. 121,
122, 123, and 124 illustrate another example of this square with
diagrams of development.

Deaganal botvmng PO XSO Benel. 5§28 Bul. E28 Barel &% iy Jguarz.

! na | Fo arev| 0 cé2 | A3 ads ] 4 Ar
j z o2 | 26 52| 2y &7 | %9 a7
: :- 3 Lo S| A 58 | ar e
0 ETW % 57 | 22 7o <8 85| 54 e
. M & 25 | 24 75| 37 su e74 a4
. 4 S5 | 2y 771 Ma pdal 2
90 oz | 7 e | 25 8 | 99 b2 | wo ]
. . F] 2 | g a7 | e r| w2 -7
: K & S| 27 Fel 4 - Flg. 134
261 ars
B . wo sor | o Fa | w2 59
. . # s | 2 72 Fig. 133
w2 l?l ?“ 2 45 vl 7/
. . a5
AR et 5.3 ” ¥ 7
: : # 7| w2 o8
valod s | o 54 Fiz. 132,
we o | 24 £5 .
wh o s 99|98 5 |94 |9 |2 |r3 84| 0
i) iy } A7 a9
: : 97|29 \8r |50 22|23\ 77|78 | 26| &
’5 £3
. . ) S|\ G7|s8|s7|Ea|a5] 27| 9
Fig. 130 TFig. 131 7% 7 Z 7
93 |73 85| 2| a7|os 48|36 |28 | &
22 |28 40|54 |48 |23 |57 |67 At
TOTALS:
4 X 4 square == 202 S7 7| Belao | 52183 |47 4/ |30 |4
6 X 6 square = 303 26 |ar 42| o7 | s las|sw 59 polss
8 X 8 square == 404 £5 |a2|d0|salas by |s9|os|63)s 7
10 X 10 square = 505 s | 75|20\ 2, | o8| o] 2a 2| #2 |
2|8 |36 7 |92|s7 |dF |5 | 200

Fig, 135.
A concentric square of 8 X 8 with diagrams are given in Figs.
125, 126, 127, 128, and 129, and one of 10 10 in Figs. 130, 131,
132, 133, 134, and 135. It will be seen that all these larger squares
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have been developed in a very easy manner from successive expan-
sions of the diagrams used for the 6 X 6 square in Figs. 117, 118,
and 119.

The rules governing the formation of concentric magic squares
have been hitherto considered somewhat difficult, but by the aid of
diagrams, their construction in great variety and of any size has
been reduced to an operation of extreme simplicity, involving only
the necessary patience to construct the diagrams and copy the num-

bers.

GENERAL NOTES ON THE CONSTRUCTION OF MAGIC SQUARES,

There are two variables that govern the summation of magic
squares formed of numbers that follow each other with equal in-
crements throughout the series, viz.:

T. The Initial, or starting number,

2. The Increment, or increasing number.

When these two variables arc known. the summations can be
easily determined, or when either of these variables and the sum-
mation are known, the other variable can be readily derived.

The most interesting problem in this connection is the construe-
tion of squares with predetermined summations, and this subject
will therefore be first considered, assuming that the reader is familiar
with the usnal methods of huilding odd and even squares.

¥ ok

If a square of 3 »{ 3 is constructed in the usual manner, that is,
beginning with unity and proceeding with regular increments of
1, the total of ecach colimn will be 15.

RN

7 Totals = 15.
212

Fig. 136

If 2 is used as the initial number instead of 1 and the square
is again constructed with regular increments of 1, the total of each

column will be 18
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2127
Llo s Totals =z 18,
S|l

Fig. 137

If 2 15 still used as the initial number and the square is once
more constructed with regular increments of 2 instead of 1, the
total of each colmnn will be 3o.

2962 |12
6 {r0|s%| Total = 30.
K|/ 4

Fig. 138

It therefore follows that there must be initial numbers, the use
of which with given increments will entail summations of any pre-
deterinined amount. and there must also be increments, the use of
which with given initial numbers, will likewise produce predeter-
mined sarmmations.

These initial numbers and increments may readily be determined
by a simple form of equation which will establish a connection be-
tween them and the summation numbers.

Let:

A = initial number,

B = increment,

i = number of cells in one side of square,

5

= sununation,

L 41) =5,

Tf A and @ are more or less than onity, the following general
formula may be used:

Ast A ,e; (0t 1) =S,

It will be found convenient to substitute a constant, (K) for
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A . . .
> (#*--1) In the above equation, and a table of these constants is

therefore appended for all squares from 3 X 3 to T2 X 12,

Squares: Const, =K
3% 3 12
42X 4 3s
5X5 6o
6% 6 105
7X7 163
a8 252
aXo 300
o X 10 495
AT Hido
12X 12 8c8

When using the above constants the equation will he:
An4+ 8K =5
EXAMPLES,

What initial number is required for the square of 3 X 3, with
i as the increment. to produce 1923 as the swnmation?

Transposing the last equation:

or

3

6373 6305 | 625%

6325|6343 6365 Totals = 1003,
6333163556373

i 130

We will now apply the same equation to a square of 4 X 4. in

which case:

1903 — (1 X 390 _ 46814 — Initial No,
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GBEL | LFIE | S8 |47/ %

47t e |wres ey
GpSE | wrri |l |kp2i
LEOL | 4 god| el | LI

Fig. 140,

Also to a square of § 3 5,

1903 == . (1 X60) _ 368.6 — Initial No.

2Ep. 513526 1 3686|356 852.6

Ip0.5|372.6 |86 6| agr 6 |343.6

3748 |373.6|s80.6 3526 |8s9.4| Totals = 1903,

Apr6|3796 (2864 3486 | 3704

3766 | 3856|3926 | 38p.8|376.6

Fig. 141

And for a square of 6 X 6,

1go3 — (1 X 108)
6

2993 |23a ¥ |[d32F | Jorf |d30 T | ey

J262 |26 b | a6y |a25% | 309 [ s08%

J222 |azs v |arop | s alarzy|aryd Totals

ey |aes g |drp b |oze s |38y |38 % = 1903.

doofl32e d|dep d|aed | 3278|028 %

Jegi|aoet |s023 st Jo.:%lmz,‘-,*

Fig. 142

The preceding examples illustrate the construction of squares
built up with progressive increments of 1, but the operation may bz

varied by using increments that are greater or less than unity.

EXAMPLES,
What initial number nrust be used in a square of 3 3, with

increments of 3, to produce a summation of 1go3?
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Applying the equation given on page 56, but making £ =3
instead of 1, we have:

1503 —
1903 — (83X 12) _ 6551,
3
6221/, is therefore the initial number and by using this in a
3 X 3 sguare wilh progressive increments of 3, the desired results

arc obtained.

Spag | G225 | &3p%
6« v| Totals = 1903.

Br5516347
B35 [Gabi|é285y

Fig, 143,

To find the initial number with increments of 10,

1903 _—35 1o X 12) = 5041/, = Initlal No.

é6¢3 | Spud | oyl
brut | bay4 | 65w | Totals = 1903,

brui| bpy | Goas

Fig. w4

Or to find the initial number with increments of /.

_ 1
1go3 3( faX12) _ 633 = Initial No.

G355 633 |3t
6a35 6347 S35 Totals = 1903,

Gy |sa5El sast

Fig, 145.

These examples being sufficient to illustrate the rule, we will
pass on another step and show how to build squares with predeter-
mined summations, using any desired initial numbers, with proper

increments.
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EXAMPIES.

What increment number must be used in a square of 3 X 3,
wherein 1 is the initial number and 1903 the desired summmation?
Referring to cquation on page 56 and transposing., we have

S—An
K

1903 — (13X 3)
12

= B = increment, or

= 158/, — Increment,

Starting thercfore with unity and building up the square with
successive increments of 1581/, we obtain the desired result.

wogi| f | 7927
37y |Banttgss | Totals = 1903
476 |abys| ro8E

Fig. 146.

When it is desired to start with any number larger or smaller
than unity, the numbers in the equation can be modified accordingly.
Thus if 4 is selected as an initial number, the equation will be;

1903 — (4 X 3)

- = 1577/,, = Increment.

#OPE| 4 N\ 7ori
I35k 634X 9294 | Totals = 1903,

478\ 280 2B T

Fig. 147

With an initial number of /.

1003 — (/- X3 _ oy

1z

: Increment.

wook| S5 | rezi

dry | Gawn]osr & Totals = 1903,

5 7T s24ER| sTFF

Fig. 138
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It is thus demonstrated that any initial nunber may be used
providing (in a square of 3 X 3) it is less than one-third of the
summation. In a square of 4 X 4 it must be less than one-fourth
of the summation, and so on.

To illustrate an extreme case, we will select 634 as an initial
number in a 3 X 3 square and find the increment which will result
in a summation of 1903.

1903 — (634 X 3)

=1/, = Increment.
12 :

SauilBay [ Bagis
Gandloaptkbag ] Totals = 1go3.
/)-34'?:' (5.341;'3 634{1"9.

Fig. 149.

Having now considered the formation of magic squares with
predetermined summations by the use of proper initial numbers
and increments, it only remains to show that the summation of any
square may be found, when the initial number and the increment
are given, by the application of the equation shown on page 56, viz.:

An+BK=5.

EXAMPLES.

Find the summation of a square of 3 X 3 using 5 as the initial
number, and ¥ as the increment.

(5 3} + (7 X 12) = g9 = Summation.

Su | 5 | wo
rg | a8 | «y Totals = gg.
24 | Gr | 12

Fig. 150.

What will be the summation of a square of 4 %X 4 using 9 as
an initial number and 11 as an increment?

(g X 4) + (11 X 30) = 366 = Summation,
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o 53 32 @2

30| Gu 7 77

Totals = 366.
Fé |sof | rrg | 52
st 3s 2o | 27
Fie 151

The preceding equations may also be used for the construction
of magic squares involving zero and minus quantities, as illustrated
in the following examples.

What will be the summation of a square of 3 X 3, using 10 as
the initial number with — 2 increments?

- /0 [~
é 2 -2 Taotals = 6.
s | -8 &
Fig. 152,

What initial number must be used in a square of 3 X 3 with
increments of — 3 to produce a summation of 37

3= (=3xi2) _

3
- F 73 -2
7 s | - 5 | Totals = 3.
ey A
Fig. 133

What initial number is required for a 3 X 3 square, with in-
crements of 1, to produce a summation of of

_ 2 o P Totals = o,
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What increment must be used in a square of 3 3 wherein
12 is the initial number and — 12 the required summation?

— 12— (12
(12 X 3) = — 4 — Increment.
12
—tG| 2 |- F
& —r |2 Totals = — 12,
& - 2| F
Fig. 155.

What increment must be used in a square of 4 X 4 wherein 48
is the initial number and 42 the summation?

42— (48 X 4)
Kis)

sp | 22| 7|33
—7 | 23 /5 Fi
s3 4 -2 |28
— /2 34 |43 -27

Totals = 42.

Fig. 156.

The foregoing rules have been applied to examples in squares
of small size only for the sake of brevity and simplicity, but the
principles explained can evidently be expanded to any extent that
may be desired.

Numbers following each other with uniform increments have
been used throughout this article in the construction of magic
squares, in order to illustrate their formation according to certain
rules in a simple manner, It has however been shown by various
writers that the series of numbers used in the construction of
every magic square is divided by the breakmoves into # groups of »
numbers per group (» representing the number of cells in one
side of the square), and that the numbers in these groups do not
necessarily follow each other in regular order with equal increments,
but under certain well defined rules they may be arranged in a
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great variety of irregular sequences and still produce perfect magic
squares.

Referring to Fig. 40 as an example, many different 5 X §
squares may be formed by varying the sequence of the five groups,
and also by changing the arrangement of the numbers in each group.

Instead of writing the five diagenal columns in Fig. 40 with
the numbers 1 to 25 in arithmetical order thus:

a 1T 2 3 4 5

b 6 7 8 g 10

c. 1T 12 13 14 1§

d. 16 17 18 19 20

e. 21 22 23 24 25
they may De arranged in the order b ¢ ¢ a &, which will develop
the 5 % 5 square shown in Fig. 17.

Other variations may be made by re-arranging the consecutive

numbers in each group, as for example thus:

a t 4 3 2 5
6 o9 8 7 1o
11 14 I3 I2 1§
16 19 18 17 20
e. 21 24 23 22 25

B o

The foregoing may be considered as only suggestive of many
ways of grouping numbers by which magic squares may be pro-
duced in great variety, which however will bz generally found to
follow regular constructive rules, providing that these rules are
applied to series of numbers arranged in similar consccutive order.



CHAT'TER TII.

MAGIC CUBILS.

HI curious and interesting characteristics of magic squares

may be developed in figures of three dimensions constituting
magic cubes.

Cubes of odd numbers may be constructed by direct and con-
tinnous process, and cubes of cven numbers may be built up by the
aid of geometrical diagrams. In each case the constructive meth-
ods resemble those which werc previously explained in connection
with odd and even magic squares,

As the cube is a figure of three dimensions it is naturally more
difficult to construct in magic formation than the square (which
has only two dimensions) because the interrelations between the
variots numbers are more complext than those in a square and not
so easily adjusted onc with the other to sum the magic constants.

THE ESSENTIAL CHARACTERISTICS OF MAGIC CUBES.

A magic cube consists of a series of numbers so arranged in
cubical form that each row of numbers running parallel with any
of its cdges, and also each of its four great diagonals shall sum
the same amount. Any cubical arrangenment of numbers that fulfils
these conditions may be properly termed a magic cube. As in the
case of magic squares, various interesting but non-essential features
may be added to these requisites, and in this way many different
kinds of magic cubes may be constructed. In the present chapter,
however, associated or regular magic cubes will be principally

described.
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ASSOCIATED OR REGULAR MAGIC CUBES OF ODD NUMBRERS

The smallest magic cube is naturally 3 X 3 X 3.

Fig. 157 shows one of these cubes, and in columns I, IT and
111, Fig, 138, there are given the nine different squares which it
contains. In this cube there are twenty-seven straight columns,
two diagonal columns in each of the three middle squares, and four
diagonal colunms connecting the eight corners of the cube, making
in all thirty-seven columns each of which sums up to 42, The
center number is also 14 or {n* 4 1)/2 and the sum of any pair of

diametrically opposite numbers is 28 or n* + 1.

Totals = 42,

Tig. 157.

In deseribing the direct method of building odd magic squares,
many forms of regular advance moves were explained, inciuding
right and left diagonal sequence, and various so-called “knight's
moves.” Tt was also shown that the order of regular advance was
periodically broken by other well-defined spacings which were
termed “breakmoves.” In building odd magic squares, only one
form of breakmove was employed in each square, but in the con-
struction of odd magic cubes, two kinds are required in each cube
which for distinction may be termed n and #* breakmoves respec-
tively. It magic cubes which commence with unity and proceed
with increments of I, the #* Lircakmoves occur between cach mul-
tiple of #* and the next following number, which in a 33X 33X 3
cube brings them: between ¢ and o, 18 and 19, and also between
the last and first numbers of the series, 27 and 1. The # breakmoves
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are made between all other multiples of #, which in the above case
brings them between 3 and 4, 6 and 7, 12 and 13, 15 and 16, 21 and
22, and 24 and 25, With this explanation the rules for building
the magic cube shown in Fig. 1 may now be formulated, and for
convenience of observation and construction, the cube is divided
horizontally into three scetions or layers, each section being shown
separately in Column 1, Fig. 158,

It may be mentioned that when a move is to be continued wp-
ward from the top sguare it is carried around to the bottom square,

THRER SQUJ\RES THREE SQUARES THREE SQUARES
FROMTOPTOROTTOM FROM FRONT TO BACK FROM LEFT TORIGHT
COLUMN I. COLUMN T, COLUMN IIT,
/0 |26| 6 £ |75\ 19 10|24 | F
26|/ |17 2285 25| 7 172
£ (A2 23| 2 |/8 g \//|r2
23|3 |44 267 |77 26| 7 lrs
7 |25 |27 7 \re|2/ 3 /4|25
12|35 8 27| 27| # r3|27| 2
g |r3 |20 /026 6 6147 |r2
/727 4 23| |46 YA,
22| 2 s g |rd |20 20| 4 |18
Fig. 158

All totals = 42.

and when a move is to be made downward from the bottom square,
it is carried around to the top square. the conception heing similar
to that of the horizontal cylinder used in connection with odd magic
suares,

Commencing with 1 in the center cell of the top square. the
cells in the three squares are filled with consecutive numbers up
to 27 in accordance with the following directions:

Advanee move., One cell down in next sguare up (irom last

entry ).
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# breakmove, One cell in downward right-hand diagonal in

next square down (irom last entry).

n® breakmove, Same cell in next square down (from last

entry).

If it is desired to build this cube from the three vertical squares
from front to back of Fig. 1357, as shown in Column II, Fig. 158,
the directions will then be as follows: commencing with 1 in the
middle ¢ell of the upper row of numbers in the middle square,

Advance move., One cell up in next square up.

n breakmove, One cell in downward right-hand diagonal in

next square up.

#* breakmove. Next cell down in same square,

TABLE I
Alb |¢C A|B|cC AlB|c
Llejrjrfrojz|syz2 121377
szl bals|z2lzols |2
Sl a2z sla21]alr|a
F Qs )2y |2|2|7 22|32,
Slslz|2 4]z |2|2]23|a|2|2
olsl2zlafls|2(2|a]|24]a|2|s
Tl7|3|7p6[2la|sfas]a|a]|s
A A EAERES KX ERERE:
Shslala8l2la|s]|2i|las|a|a
Fig. 150,

Finally, the same cube may be constructed from the three vertical
squares running from left to right side ol Ifig. 157, as shown in
Column 111, Fig. 158 commencing, as in the last example, with 1
in the middle cell of the upper row of numbers in the middle
square, and proceeding as follows:

Advance move, Three consecutive cells in upward right-hand
diagonal in same square (as last entry).

1 breakmove. One cell in downward right-hand diagenal in
next square dowrn.
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n* breakmove. One cell down In same square {as last entrv).

Five variations may be derived from this cube in the simple
way illustrated in Table 1 on the preceding page.

Assign three-figure values to the numbers 1 to 27 inclusive in
terms of 1, 2, 3 as given in Table I, Fig. 159, and change the
numbers in the three squares in Column I, Fig. 158, to their cor-
responding three-figure values. thus producing the square shown in
Fig. 160. Tt is evident that if the arrangement of numbers in the
three squares in Column I were unknown, they could be readily
produced from Fig. 160 by the translation of the three-figure values
into regular numbers in accordance with Table I, but more than

alsl|clalsfc|a]|B|c
elelelalalzlsiz]s) e
Top Slelals|s|r]2la |22 .
Jyn.arfr
tlafalalelals s a .
Jlalz|s|riata|a]|s]| 7¥fLime
Adle W Vs Ts2l22lalsla] 2% .
J‘?“ﬂrf/
als|sda|latsls|ala|ar® .
slalaleslzlslalslz| 7L
Y23
Bettim ol V215 |5 ]ats 27|27 .
‘%“CJ‘&
salzlselslalz]olals? .
Fig. 160.

this can be accomplished. The letters A, B, C, in Table I indicate
the nornal order of the numerals 1, 2, 3, but by changing this order
other triplets of 3 X 3 squares can be made which will differ more
or less from the original models in the arrangement of their cell
numbers, but which will retain their general magic characteristics,

The changes which may be rung on A, B, C, are naturally six, as

follows:
A, B, C. C.B. A
R. C A, B. A C
C. A, B, A C B



MAGIC CUBES, 69

The combination of 1, 2, 3 being given in normal order in the
original cube, the five cubes formed from the other combinations
are shown in Figs. 161-165.

These magic cubes may also be constructed by the direct method
i accordance with the annexed directions,

2 ¢4 |22 4 |#P |20 2 |24 |26 ¥ |26 |72 s l2e| £
Zal s |27 24 |7 |FT SE| L 23 sE| 7|23 287 |4
so 23| 8 s2 (23| 7 22|78 wirs| 7 & lrey)re
/5|19 | F 171#8 | 6 7|20 '3 |22 23| 7 |2
7 |re 22 3 2% |25 192y | 8 17 e | 2 3 |rw |25
20|98 | s 2219 | s § |24 |23 & |28 |2/ rél2s |8
25| 4 |r2 2| 5126 2S5 |6 2|23 |8 P | |22
2T 4 fd|27| 2 g 27| s0 F |27 |0 fal27 |2
& |s0 |28 0|24 s2 |4 |26 /|2 lza 20| 4 (/4

PIG. 161 (B.C.A}rIG. 162, [C.AB)FIG. 163 {C.B. 4.} FIG. 164, (5.4.C.) Fini. 105.{a.c.8,)

Fig. 166 iz an example of another 3 X 3 ¥ 3 cube in which the
first number occupies a corner cell, and the last number flls the
diametrically opposite corner cell. the middle number coming in

TOFP SQU:\RE, MIDDLE SQUARE. BOTTOM SQ[IARE,

AR A 2318 |8 /4132 2

rF |29 F 7| s |2 20 |8 |78

28| 4 |20 1225 5 | |27
[z 166,

the center cell in accordance with the rule. Fig, 167 shows this
cube with the numbers changed to their three-figure values from
which five vartations of Fig. 166 may be derived, or they may be
constructed directly by the directions which are marked with the
changes of A. B. C. for convenient reference,
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The analysis of the numbers in Fig, 157 and Fig. 166 into their
three-figure values in terms of 1, 2, 3, as shown in Figs. 160 and
167, makes clear the curious mathematical order of their arrange-
ment which is not apparent ou the face of the regular numbers as

DIRECTIONS FOR CONSTRUCTING THE 3X 31X 3 MAGIC CUBE SHOWN IN FIG. 15y

AND FIVE VARIATIONKS OF THE SAME.

COMRBINA 2
ADVANCE MOVES # BREAKMOVES 7! BRERAKMOVES
TION
o nd . N COne cell in right-hand 5 i
A B C pecell down in nex downward diagonal ame cell in next
square up ; square down
in nexi square down
Three  consecutive
B.C A cells in l.!_pward One cell to left in Same as in A B. C.
left-hand diagomnal next square up
in same square
C. A B One cell to right in | One cell up in next | g o .cin A 1 C.
next square up square up
C B A Sameasin B. C. A | Sameasin C. A, B. Sameasin A B C.
B.A. C. | Sameasin A. B. C. | Same asin B, . A, Same asin A. B. C.
A.C B |SameasinC. A B. | Sameasin A B, C. Sameasin A, [} C,

they appear in the various cells of the cubes.

For example, it may

be seen that in every suhsquare in Figs. 160 and 167 (corresponding
to horizontal columns in the cubes} the nwmbers 1, 2, 3 are each

repeated three times.

Also in every horizontal and perpendicular
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column there is the same triple repetition.  Furthermore, all the
diagonal columns in the cubes which sum up to 42, if followed into
their analyses in Figs. 160 and 167 will also be found to carry simi-
lar repetitions. A brief study of these figures will alse disclose
other curious mathematical gnalities pertaining to their intrinsic
symmetrical arrangement.

The next odd magic cube in order is 5 X 5 X 5, and Fig. 168
shows one of its many possible variations. For convenience, it is
divided into five horizontal sections or layers, forming five g X §
squares from the top to the bottom of the cube.

Commiencing with 1 in the first cell of the mmddle horizontal

Alelc|lalslc]a|B|C
IAVEFEY 2 lalz]a]| Tz
7 -
ki 2lalalalrlr]s|a|zt 2% .
J’?{‘-ﬂ)ﬂ
alalz|s2lal2]s || 2¥ .
alalzlrslralzyal|s| Fzne
Al
Ul otz |alzlalrla] 2.
591&9!'!/
2 SlAA 4 / Fl 212 -4
2 e |laldtz]|r)7 |7 |2 2L e
Belion
e B IV IR ' P O 22|z 27
Jyuar.-.,
Jlz|slz2|72|2|a]a3]3 L
Fig. 163

¢olumn in the third square, this cube may be constructed by filling
in the various cells with consecutive nmumbers up to 125 in accord-
ance with the following directions:

Advance moves. One cell up in next square down,

u breakimove, Two cells to the left and one cell down (knight's
maove) in same square as the last entry.

#* breakmove. (One cell to right in same square as last entry.

This cube exhibits some interesting qualifications. Examin-
ing first the five horizoatal squares from the top to the bottom of
the cube as shown in IMig. 168, there are:
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50 straight columns summing up to......

... 315

10 corner diagonal columns summing up to,. 315

40 sub-diagonal columns swmming up to.... 315

DIRECTIONS FOR CONSTRUCTING THE 3 x 31X 1 MAGIC CUBE SHOWN IN FIG. 166
AND FIVE VARIATIONS OF THE SAME.

COMBINA-
TIONS

ADVANCE MOVES

? BREAKMOVES

#' BREAKMOVES

One cell to left in next
square up

One cell in vpward
left-hand diagonal
int pext square down

Onecell in downward
right-hand  diage-
nal in next square
down

Three  consecutive
cells in upward left-
bhand diagona! in
same squate

One cell in upward
right-hand diago-
nal in pext square
up

Sameasin A, B. C,

One cell up in next
square up

Onecell in downward
lefi-hand diagonal
in next square up

Sameasin A. B. C.

Sameasin B, C. A.

Same as in C. A B.

Sameasin A B. C.

Same asin A. B. C.

Same as in B. C. A,

Same asin & B. C.

Same as in C. A, B,

Same as in A B. C,

Same as in & B. C.

In the five wvertical squares from front to hack of this cube

there are:
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5o straight columns summing up to......... 315

6 corner diagonal columns sunuming up to .. 315

20 sub-diagonal columns summing up to.... 3I§
Total 76 columns having the same summation.

In the five vertical squares from right to left of cube, there are,
as in the last case, 76 columns which all sum up to 315. In the com-
plete cube there are also four great diagonals and also a number

of broken diagonals that sum up to 315.

1. 3 5.
By \9F \10y| 1 |26 SO | S/ | F2 | 13|19 J (3405|197 \¢22
WOV 52|78 (79 £ f/.9|2.5 25\57 66|97 (103 & |40
$F S\ S |\ 1027 /|32 63|94 1123 103 15|47\ 72|78
56|007|25 | 29| do 63140010/ 7 | a5 g7\ s8|ea |75} 06
4 |95]67 |92 24 107113 | 4yl 75| 76 90 | 114 zz,[z; 59

TOFP EQUARE. BOTTOM SQUARE

2. 4
106173 |43 |74 | Fo 5g 22012/ | 37] 58
42|35 |£7 |2 s 2 133 |84 |05|227
47\ 115124 0|55 o |96 \r02f £ |as
557|823 |124 s08| 1y |45 | 30 |77
68 |95 m‘fl 6|37 46| 52153 |ff-;- 20

Fig. 68

A table similar to Fig. 150 may be laid out giving three-figure
values for the numbers in 5 < 5 X 5 cubes from 1 to 125, and by
changing the numbers in Fig. 168 to these three-figure values, a
square similar to Fig. 160 will be produced from which five varia-
tions of Fig. 168 may be derived. Similar results, however, can
be obtained with less work by means of a table of numbers con-
structed as shown in Fig. 16g. (Table IT.)

The threc-figure values of cell numbers in § X 5 X 5 agic

cobes are found from this table as [ollows:
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Select the root-number which is nearest to the cell-number, Tt
beloww 1t in value, Then write down

1. The section number 1 which the root-number 1s found,
2. The primary vumber over the root-number,
3. The diffcrence between the root-munber and the cell-number.

Three figures will thus be determined which will represent the
required three-figure value of the cell-number.

Ervamples. The first number in the first row of the upper
square in Fig. 168 is 67. The nearest root-number to this and be-
low it in value is 65 in section 3 under the primary number 4 and the

TABLLE I1.

Brirrarg din | 2 2 4 & 5 | Sclicn

Footrizs | o | 5 | o | ra | o /
FS TP, -1 2 | s . 5| Seclion
Reot s | 25 | a0 |35 | w0 |45 £
[A s imrerguian | 7 z 3 “ 5 ] Seeliine
Foed AL g | s | b | 637 7o 3
Aemaog K| # 2 K] a S| Seadivn
retiis | g3 | do | 55 | w0 | os #
Brvicrig Mo | # =z 3 “ o b Secdion
ok e, N eaa |rod | 1o | e |r20 57
Fig. 169.

difference between the root-number and the cell number is 2. The
three-number value of 67 is therefore 3. 4. 2. Agamn, the fourth
number in the same row 1= 10. The nearest root-number but below
it i valie 1s 5 in section 1 under the primary number 2, and the
difference hetween the root-number and the cell-number is 5. The
three-figure value of 10 is therelore 1. 2. 5. Dy these simple opera-
tions the three-figure values of all the cell-numbers in the g X 5 < 5
cube in [Fig. 168 may be quickly determined, and by the system of
transposition previously explained, five variations of this cube may
be constructed.
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The shorter method of building these 5 X § X § cubes by the

direct process of filling the different cells in regular order with
consecutive numbers may, however, be considercd by some to be
preferable to the more roundabout way.

following table.)

(See directions in the

DIRECTIONS FOR CONSTRUCTING THE 5% sX5 MAGIC CUBE SHOWN N FIG, 168
AND FIVE VARIATIONS OF THE SAME.

COMEINA-
TloNs ADVANCE MOVES » BREAKMOVES %2 BREAEMOVES
o 1 i ; Two cells to left and | One cell to right in
A B.C. ne ce :;p ‘o nex one down in same same square as last
square dawn square aslast entry entry
Two cells tof]eft ;ud Two cells in upward
B.C.A | o0 WP IO H¥E | L.f phand disgonal | Same asin A. B. C.
consecutive num- .
; in next square down :
bers in same square ]
Twocellsinlefthand | One cell in  right. [
C A R dow?ward diago- hand dow.nward di- Same asin A, B, C,
nal in next square agonal  in next
up squate up
C.R A, [Sameasin 3, C. A, | Sameasin C. A. B. | Sameas in A. B. C,
B.A. L. | Sameasin A. B. C. | Bameasin B.C. A | Sameasin A. B. C.
A.C B, | SameasinC. A. B. | Sameasin A. B. C. Same as in A. B.C.

Fig, 170 is another example of a 5 X 5 X § magic cuhe which

is commenced in the upper left-hand corner of the top square, and

finished in the lower right-hand corer of the bottomt sguare, the
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middle number of the series (63) appearing in the center cell of the
cube according to rule.

dd magic cubes may bec commenced in various cells other
than those shown in the preceding pages, and they may be built
up with an almost infinite number of variations, It would, however,
be only superfluous and tiresome to aniplify the subject further, as
the examples already submitted cover the important points of con-

struction, and may readily be apphed to further extensious,

1. 3. 5.
7 |2 |as o7 65\ 15|97 |25 |10 724 .s-,-.r| F] |d7 5
V| T8V 7|28 105 by |20 |98 |27 422|725l 3 10|58
w7\ 7a | 4 |F5|as 26 10765 |49 |r00 DO\ pr|f28 50|
wo |8\ 72 3 |Fy 29 30 |r0d| B2 | /# F|RD \p5|r20)52
EARREA R iy |95 |25 | 0| B 51| 7\ EF Laeglezd]

TOP SQUARE. BOTTOM SQUARE.

z 4-
43 ]//4« 7olzs| 77 92 | 4d |toy| o | #
76!53 #3| bo|2s 15|91 | 47| 03| 59
2o |50 |7 | v2| 65 SF |2 |95 48| 102
b7l2s)79 85|\ 207, 37|43 | 2g | 50
15| 86|22 |75 a4 49103 5612 |23

Fig. 170.

Any sizes of odd magic cubes larger than 5 X 5 X 5 may be
constructed by the directions which govern the formation of 3 X 3
X 3 and § X 5 X 5 cubes,

ASSOCIATED OR REGULAR MAGIC CUBES OF EVEN NUMBERS.

Magic cubes of even numbers may he built by the aid of geo-
metric diagrams, similar to those illustrated in the preceding chap-
ter, which describes the construction of even magic squares.
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Fig. 171 shows one of the many possible arrangements of a

4 X 4 X 4 cube, the diagram of which is given in Fig. 172,

There are fifty-twe columns in this cube which sum up to 130,

viz,, sixteen vertical columns from the top of the cube to the

DIRECTIONS FOR CONSTRUCTING THE 535X 5 MAGIC CUBE SHOWN IN FIG. 170

AND FIVE VARIATIONS OF THE SAME.

COMBINA-
TIONS

ADVANCE MOVES

M BREAKMOVED

n? EREAKMOVES

Five consecutive cells
in upward left hand
diagonal in mext
square up

One cell in upward
right-hand diage-
nal in next sguare
up

Onecell in downward
right-hand diago-
val in pext square
down

Two cells down in
second square down

Qne cell in downward
left-hand diagenal
in second square
down

Same azin A. B. C,

Two cells to right in
next square up

Two cells in down-
ward right hand
diagonal in next
square down

Same asin A. B. C,

C. B, A

Some as in B. . A,

SameazsinC. A B,

Same as in A, B. C.

Same asin A. B. C.

Sameas in B, C. A.

Same as in A, B. C,

Same as in €. A. B.

Same as in A. B. C,

Sameasio A, B. C,

hottom, sixteen horizontal colurmns from the front to the back, six-

teen horizemtal columns from right to left, and four diagonal columns

uniting the four pairs of opposite corners.

The sum of any two
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numbers, which are diametrically opposite to each other and equi-
distant from the center of the cube also equals 65 or #® 4 1.
Another feature of this cube is that the sum of the four num-
bers in each of the forty-eight sub-squares of 2 X 2z is 130.
It has heen shown in the chapter on “"Magic Squares” that the

7 |83 |82
4 # ’ Su ] L1
(Top.) sol|d |7 |57
Section L. z ¢4 “ “7
s6|vo |7 |5s
3 13 '8 Iz
IFREYREL AL
ES . ki Ll 2 . . el
N o
Lo |78 |49 |4ed P S 8o 20 s
27 |43 (g2 |24 22
Section [ 4 2 #
15|38 13F (24
7 5 23 iz
34 |ag |ar |33
Fd ' _;7 2y -y

J2 |34 las |22

P &4 254 “a
37{27 |24 | 4o

Section IIT, 7127 w5 Ers 24 40
GF |23 |22 | 4%

M Lo 27 Y 3
29|46 47|77

7 24 - 54 E e a4

"\ )
\/ 4
!‘ N
Ll s
gl | P N
# 4 |52 vs \ ez w4 e dd
. 12 |se oy
Section 1V, |72]%* g A s s s
(Botton.) F|asise| s
A brol Fr E P
agrla |z |oe
/5 P g2 + 3
Fig. 171. Fig. 172.

Totals = 130.

square of 4 X 4 could be formed by writing the numbers 1 to 16
in arithmetical order, then leaving the numbers in the two corner
diagonals unchanged, but changing all the other numbers to their
complements with 17 or #* 4 1, It will be noted in the magic cube
of ¢ X 4 X 4, given in Fig. 171, that in the first and last of the
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four sections (I and IV} this rule also holds good. In the two
middle sections (II and III) the rule is reversed ; the numbers in the
two corner diagonals being complements with 65 or #* 4 1, and all
the other numbers in arithmetical order,

Fig. 173 shows four squares or sections of a cube, with the
numbers 1 to 64 wtitten in arithmetical order. Those numbers
that occupy corresponding cells in Fig. 171 are enclosed within
circles, If all the other numbers in Fig. 173 are changed (o their
complements with 65, the total arrangement of numbers will then
be the same as in Fig. 171,

In his interesting and instructive chapter entitled “Reflections
on Magic Squares™* Dr, Paul Carus gives a novel and ingenious
analysis of even squares in different “orders” of numbering, these
orders being termed respectively o, ro, ¢ and #f, It is shown that
the two magic squares of 4 % 4 (in the chapter referred to) con-

@z J @ /,7;30 44 @@dé @ .}7@
s s | [e)[22 24129 (37) ¢ sofea) | (o) o
2 @/.e @26 27 @42 43@ 7 @g‘,
@) s | 75\70) |20 Gofers2|  |wrfedler)«r e

Fig. 173

NOGE

sist only of o and r¢ numbers: ro numbers being in fact the com-
plements of o numbers with #* <4~ 1. This rule also obtains in the
magic cube of 4 X 4 3 4 given in Fig, 171. The four sections of
this cube may in fact be filled out by writing the ¢ numbers, in arith-
metical order in the cells of the two corner diagonal columns of
sections 1 and IV, and in all the cells of sections I and ITI, ex-
cepting those of the two corner diagonal columns, and then writing
the re numbers, also in arithmetical order, in the remaining empty
cells of the four scctions.

Fig. 171 may be considered as typical of all magiec cubes of
4 X 4 X 4 and their multiples, of this class, but a great many varia-
tions may be effected by simple transpositions. TFor example, Fig,

* See p. 113 I
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174 18 a 4 X 4X 4 cube which is constructed by writing the four
numbers that are contained in the 2 X 2 sub-squares (Fig. 171) in
a straight line, and there are many other possible transpositions
which will change the relative order of the numbers, without de-
stroying the magic characteristics of the cube.

/| da|de| b

Section L |62 | « | 7 |47
{Top.)

S6 | e |13 |5y

2 |58 | 40| 6 ’ Ge 4y #f
2 83 74 7
&2 8 w8

wf |25 |2/ |43
%4 22 o

AR s |2 |24
Section II. 42 & Y

25 |2e |26 |ae
X 22 «d

AF |28 (37 |23
g5 24 %2
Ky 24 “s

T

% Mo 4 b

dz|sa|dy|27

45 | 25 | 26 | we g6 25

%

Section IIT.

ar |23 |20 | w6 . 55 2 g

22 4w |57 |47 #” Erd £y a4

/32 PR 28

47
a8

£1 S22 25

w5 |22 js5p

iy 57 38 SF

Section IV. |re |g2|av| &
{ Bottom.)

§ o |8s | s e Ja4

sl ez |62 8 v¢ 42 24

Fig. 174. Fig. 175.
Totals = 130,

The arrangement of the numbers in Fig. 174 follows the dia-
grammatic order shown in Fig. 173.

The next even magic enbe is 6 X 6 X 6, but as Chapter IX
of this book has been devoted to a description of these cubes they
will be passed over here.
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The 8 % 8 X 8 magic cube follows next in order. Tig. 176
shows this cube divided, for convenience, into eight horizontal layers
or sections, and Fig. 177 gives the diagrammatic order of the num-
bers in the first and eighth sections, the intermediate sections being
built from similar diagrams, numbered in arithmetical order,

2o |atr |are| & | F |sey|des] £ e 230 | 237 | 387|350 | rIe| 23T 1377
Soul ro | 2 |sor mi g | 2 4_9{7 /.!; J/.f 374 Ao (rad |37 .J/a Ay
L8| r5 |19 |48a 432{22 24 |48 e T 2601486 | rat | e 3 Jb| 82|52
25 |wé7|ssd| 25 |29 953482 3z | $de [ | Adu] Jaz dxb|rsd [sas| 383
33 lagslezelag [ay [aps|0rs|se oz rdz|rdd | sy der| 28 /é; o]
u72|22 | 03 |ady|wcs od wy |98 S| 2pddulszz s pd | HIIE| 28
Bpi s | g |wds bbo| Sy |FF |48 FPF || TS| Af8 (24| 3D 30| Al
Ry B PEEL EE S o | B Jaar|sed2 54_ late |ie /.r;v 32 5| 2| | 2P (327
Section 1. Section II1
feo# | 66 | Ex Vaps|sgp | 7a |77 -|;w ;9.3!.;).9 FoE |98 | ayp [ 30T |00 | 202
FS #8890 | P4 | B | wbs|edn| S0 Jra| 202|200 |JoF [ daf |1ad | 20| 0]
£1 | p3s | 930 |Fg | §57 w2\ w2é| £ 304|270 | 2sr (367 | 300|228 | 24T 287
HTe|HO | F e dr | pie|Fu | Fa 4{// zz] 255 Jg |22 | Fos |2y (250 | 224
#78 |38 |98 (serd|her2|roz | 103 |wos 225|287 248|228 {028 2iy (202|242
FOF 4oy yof|rof | rog |wod|wo2| 22 206 | 25w | 205 277 2/?6 2aF| 35| 205
123 |329\355 |0 4| w7 |98 399|120 272202200268 28F | 208|207 263
Ja2lrz2|r23\ 308|558 (228|027 08T 22| 2dy \2dy | 2gz |asa | 2awd 2 rr | 206
Section II, Section IV.
{First Part.}
Fig. 176

It wiil be seen from these diagrams that the & X 8 X 8 magic
cube is simply an cxpansion of the 4 X 4 X 4 cube, just as the
2 X 8 magic square is an cxpansion of the 4 X 4 square. In like
manner all the diagrams which were given for different arrange-
ments of 8 X 8 magic squares may alse be employed in the con-
stritetion of & ) 8 X 8 magic cubes.
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An examination of Fig. 176 will show that, like the 4 X 4 X 4
cube in Fig. 171 it is built up of ¢ and ro numbers exclusively, In
sections I, IV, V, and VIII, the cells in the corner diagonal columns,
and in certain other cells which are placed in definite geometrical
relations thercto, contain ¢ numbers, while all the other cells con-

28 7|25 2 28w 2ds | 252\ 850 |24 SEF | e[ dep | 25| 420 | 380 | 2SS rzs
2ok | 254 26; 298 | 23yl 270 | 250 | 20t 393|148 | p0k |IFE| QY| 20T | 204t | i
290 (276|278 | 207 234 275 | 275|233 s | ver | poe \aop| waT| 00 rod|gof
218|237 230|254 | 250|227 226 | 249 row |besar | a2 | 288 | 208 |4artp| 40287 B
240|220 | 222 |2wi|agd (2o |20 ; P | prs| wre| 83 | 22 |y 22|zl |F2

278|252 208 |22812:0 002 203|208 #2557 FO | p2flg2l |83 | £2 (w22
208 |Jod Jdapleasi2oqlsre (300 (2ar 38| 78| AT #3p| 25| 74 o
W3 |88 |79V 318 | ar 7| S5 | 18| 20 72 |9uzlgxs| b3 | b4 aob|uiy G

Section V. Section VIIL

APLAA22 |a23 |00\ rtd |328| 327|088 oo | 60|82 | p52|pesa| 9w | o {493
S28 (/4 1AE 2|32\ 205 | 202 28| 334 56 |uds | 59| Sa | g2 |62 483|937
JS/ /]d" 7% B (W22 | pd | Sye 28 | pd8 447 w5 |4 |70 ;V/ 2
AP [ e I5 7] A5 gl dde|aav| 44 24 SITAF Lagh | a77| 08 |aae s P
FLTANES" a5s|rE7 srd|aselasslsan 447} 87 |37 |era| w27 28 |pbs
62 237 | p¥e | bis| Bz i d |68 24 |0 450 | 27 | 20 |92 \sdt 77
A59|racd| te 2| 372|823 | /a2 038 (276 26 |asi|spe|ra |22 |sez|sed) &

FAF) 22r (335|733 [032 |82\ 322 (128 sos) 7 & |eeFlsos)d | 2 w72

Section V1. Section V111,
(Second Part.}
Fig. 176,

tain ro numbers. In sections II, TII, VI, and VII, the relative
positions of the ¢ and ro numbers are reversed.

Dy noting the synunetrical disposition of these two orders of
numbers in the different sections, the cube may be readily con-
structed without the aid of any geometrical diagrams. Tig. 178
shows sections [ and II of Fig, 176 filled with ¢ and re symbols
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without regard to numerical values, and the relative symmetrical
arrangement of the two orders is therein plainly illustrated. This
clear and lucid analysis, for which we are indebted to Dr. Carus,
reduces the formation of a rather complicated numerical structure
to an operation of the utmost simplicity.

In this cube there are 192 straight columns, and 4 great diag-
onals {which unite the eight corners of the cube) each of which
sums up to 2052; also 384 half columns and the same number of
2 X 2 sub-squares each of which has the summation of 1026, It
will also be seen that the sum of any two numbers, which are lo-
cated in cells diantetrically opposite te each other and equidistant
from the center of the cube, is 513 or #* 4 1.

GENERAL NOTES ON MAGIC CUBES,

Magic cubes may be constructed having any desired summa-
tions by using suitable inmial numbers with given increntents, or
by applying proper increments to given initial numbers.

= ¥ ¥

The formula for determining the summations of magic cubes
is similar to that which was given in connection with magic squares
and may he expressed as follows:

Let:

A = initial number,

# == increinent,

—; {(n* +1) =85,

If A and 8 are more or less than unity, the following general
formula may be employed:

To shorten the above equation, ?; (#*— 1) may be expressed

as a constant (K) for each size of cube as follows:
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Cubes. Const. = K,
IX 3 X 3 30
AX 4 X Ao e 120
LI G T 310
D 4 645
DG 2. Qi S 1107
EXEXE 2044
X O Qe it 3276
IOX IO X 10, . o 4095
When using the above constants the equation will be:
(1) An 4 BK o= 5,
or:
(2) S —}{.’\]1 — JB,
or:
S 8K

EXAMI'LES.

What increment number is required for the cube of 33X 3
with an initial number of 10 to produce stmumations of 1087

Expressing equation {2) in figure values;

108 — (10 3 3)

Pt I il AL
39

25 |bo |20 Sa |24 |40 26|34 |28

B0 |52 22 a8 s 3| Az | E

24 |8 |48 S2| LS| S s2ls2 o

What increments should be used in a cube of 43X 43X 4 to

prodiuce summations of 7o4 if the initial number is 507

o1 (50X 4)
126 =4
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30 296|204 B2 235 | 27# |122 ] 226 2 2ulrg2 |56 62 252|s08 |v03| 254

288\ ye |y 2% 3| 218 2450 42 3y |rog | ra0 | 208 94 | 262|285 £2

27086 |90 |255 | 202 1R 1SS 200 |£35| 284|222 98 | 278|252 66
o8 |250|248| m0 o Wl 726|220\ 235|104 280, 5F | 1302
Section I (Top). Section IT. Section III. Section IV (Boltom),
Fig. 1%,
Totals = 704.

What initial number must be used with increments of 10 to
produce summations of 1906 in a 33X 3% 3 cube?
Expressing equation {3) in figure values:

1906 = (10 X 30} _

z o505t/

3
sead | Psriisard] | 7255|5255 855 4] S8 55| 65255 4954
| 35| So0H S65¢ ELEREER S oty bos3)7E5HSITF
Srad| dusil 605 4] 8155\ Fu 53 453 | 72§\ svast| 5755

Top Section. Middle Section. Bottom Section.
Fig. 13t
Totals = 1906

What initial number is required for the cube of §X 5 X5,
with 4 as increment number, to produce summations of 1gof?*

1906 —~ (4 X 310)
5

The preceding simple examples will be sufficient to illustrate
the formule given, and may suggest other problems to those who
are interested in the subject.

It will be noted that the magic cubes which have been deseribed
in this chapter are all in the same general class as the magic squares
which formed the subject of the previous chapter.

There are, however, many classes of magic squares and cor-

responding cubes which differ from these in the general arrange-

¥ This example was contributed Ly the late Llr. D. B. Ventres of Deep
River, Conn.
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ment of numbers and in various other features, while retaining the
common characteristic of having similar column values. An ex-

ample of this differentiation is seen in the interesting “Jaina’ square

127 21 52L 2| 5482|185 21 278.2 s5.2 srralsolafers #«.a;]
s92lr 78 2297242024452 1252|3482 45095 7 72| 200.2
3242|384 FedR 2|57 2\ 137 1 4772 Aos 2| 2252248 25588
470200872 (287 2|20 22368 2 143 2| 25LHAF 2 | S0 2| 6257
ral A28 2 J/"J.E 43/’!2 £ar2 Liccir 2|2 52T B8 50 2 .2/'72
Section I (Top). Section 1L
529213835 457 2lad 4 2 2052 woxe|os2ra 2|24 3602
Ledr 2| Bax2leas 2| 23243078 FS7 226220 388 2| S0 2 ard 2
733, 2| 2ap2| 3842 S052 B284 4092 573.2 5878 100 212852
o008 2527205382 /J;.z 2802 Jdr 2| 852|082 .Q/Jz,;;J;z
ff/zz reL 2|30 L2 4282 #JJ_&J 3/ 2 JJ}!;! b 2| SPT A 2082
Section [IL Section 1V.

P4k & | RESRSLA 4 ITY 677,

2|
9328772 T4 A2 2852 zﬁ.zl

(ST 8RN 2D B4t F 2 il 2

EXS FARPYE: PEE P L Vet zH

ad 3 2| 282 20y 2208 28472

Section V.
Fig. 132

described by Dr. Carus in his “Reflections on Magic Squares.”
Squares of this class can readily be expanded into cubes which will
naturally carry with them the peculiar features of the squares.
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Another class is illustrated in the “Franklin Squares,” and
these can also be expanded into cubes constructed on the same
general principles.

The subject of magic squares and cubes is indeed inexhaustible
and may be indefinitely extended. The philosophical significance
of these studies has been so ably set forth by Dr. Carus that the
writer consicers it unnecessary to add anything in this connection,
but he trusts that the present endeavor to popularize these inter-

esting problems may some time lead to useful results.



CHAPTER III,
THE FRANKLIN SQUARES.

HE following letter with squares of 8 X & and 16 X 16 is

copied from “Letters and papers on FPhilosophical subjects by
Benjamin Franklin, LL. D., F.R.5.)” a work which was printed in
London, England, in 176g.

Froa BexJaMIN Frawxnin Eso. or PHILADELPRIA.
To PeTer Corrinson Esq. at LoNpon.

Dear Sik:—According to your request I now send you the arith-
metical curiosity of which this is the history.

Being one day in the country at the honse of our common
friend, the late learned Mr. Logan, he showed me a folio French
book hlled with magic squares, wrote, if I forgei not by one Mr.
Frenicle, in which he said the author bad discovered great ingenuity
and dexterity in the management of numbers; and though several
other foreigners had distinguished themselves in the same way, he
did not recollect that any one Englishman had done anything of the
kind remarkable.

I said it was perhaps a mark of the good sense of our mathe-
maticians that they would not spend their time in things that were
merely difficifes wngae, incapable of any useful application. He
answered that many of the arithmetical or mathematical questions
publicly propeosed m England were equally trifing and useless.
Derhaps the considering and answering such questions, [ replied,
may not be altogether usecless if it produces by practice an habitual
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readiness and exactness in mathematical disquisitions, which readi-
ness may, on many occasions be of real use. In the same way
says he, may the making of these squares be of use. I then con-
fessed to him that in my younger days, having once some Icisure
{which I still think I might have employed more usefully) I had
amused myself in making these kind of magic squares, and, at
length had acquired such a knack at it, that I could fll the cells of
any magic square of reasonable size with a series of numbers as
fast as I could write them, disposed in such a manner that the sums
of every row, horizontal, perpendicular or diagonal, should be
-.equal; but not being satisfied with these, which I looked on as com-

;2'"6?],#"’_{3‘ \‘29__ .2.9\ \J‘é\llr{?.i:

ZiEs ’6:,5' 37|26 |35 |30 |28

55 pre ra /-27‘ 2¢ l!cf\ 37 ‘/}4\

AV AT AT A ZIE S S Y

53|58 | 7 | 16| 23] 2638 2
N8 |57 shl | |25 24
_.,5"0, 63 '2:"'/, E R 27

e’
2t (23 ]32] 77

R M

16| 27| O4|4

Fig. 183.

mon and easy things, I had imposed on myself more difficult tasks,
and succeeded in making other magic squares with a variety of
properties, and much more curious. He then showed me several
in the same book of an uncommon and more curious kind: but as
I thought none of them equal to some I remembered to have made,
he desired me to let him see them; and accordingly the next time
T visited him, I carried him a square of 8 which I found among my
old papers, and which ! will now give vou with an account of its
properties (see Fig, 183}, The properties are:

1. That every straight row (horizontal or vertical} of 8 num-
bers added together, makes 260, and half of each row, balf of 2060.

2. That the bent row of 8 numbers ascending and descending
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diagonally, viz,, from 16 ascending to 10 and from 23 descending to
17 and cvery onc of its parallel bent rows of 8 numbers malke 269, cte.,
etc. And lastly the four corner numbers with the four middle numbers

240 2/}"3&5[;4«’.5 g a5 |45 |55 e kg\‘)‘ag\ r2¢|736| 7w | Mhs | D58

55199 28| P\ 250|280\ 2sk | o0 | in 087 54\ 35| 0221005\ 90 | 71,
- - : T S ,_

ST

105 240, 250 287\ 8 |27 a5 | 55| yo| ok | so2| 7z "/34{\/44:'}56./‘5;

66'1_3,7’[;34’ 5 | 262 222 g.z’é ﬁ},kfr TS >a(5 233 )2351 /a¢ |9 3&2‘

I
Ed T

205|375 253 240 7 | 24 4/ |56, 73 28 |sog|s20l 287 ss0| 260

- . L ’ . 2 N N " Ya u 3
FE& w2 |28 |10 /2.;‘:7,2444.?/.1 202 3 /70\ 25 |3 | Fag, "0‘_3 &z

205 | 2te| 2 | 208 27

2% gl ;ﬁfé; }'J :;-%\ \/:by ant | 239\ 450 it p

#5 |wie| 27\ 12 249 288|2/5 | 200,788 S 2| 19| ip, B Yok | 35

B B - G T N [~ B -
&5 4% 22 |2y |28 245 207 2] 73|z )4,3 /‘/J\ 2#8| £

;d}yb ;3.3.3» "24:?1/,55-'.:.'/41" /’7 :j:g"/%g r32 }‘A{\ ey )4«‘\: "”Jﬁ}u N

" |gF 4j 46. 247 .?///1: .?dé ga!f:/};/_ );({/‘/,g v }).3. irz| &g

e

%

S

26

;d‘; ':/é 24 /" ;;z}t;a' (,3' /2,@ '4&3 d‘ﬂ 7\2 }‘4\.\/15_;9: ,\»'14 f«{ /\/;td\“ )/Zg }x:a
£q

Vil

e

peX]

455 284 225\ 255| 4| 28 ‘;6" 67 5a 3 | |ias /3.4 /:x/\ P

Gi|ari gl | 7 24 277 298] 1851798\ 463\ dsg| 43¢ P2 d 90 3y By
.7 . . . . J + | _ I3 B . N

2 . - . PR D s N A [\ <
PEEY KIEFYAF ol Py Jyr . G| B | P | PE |20\ 80 L3 8 4
‘ - - ' - . | . 'I'\"ﬁ

6ilas st s g4'4 ge‘é[gz‘z,z _@i)&g‘)w_ by /29| 13| 5 .’36‘(\‘[;5&5“

Fig. 184,

make 260. So this magical square seems perfect in its kind, but
these are not all its properties, there are 3 other curious ones which
at some time I will explain to you.

Mr. Logan then showed me an old arithnzetical book in quarto,



gz THE FRANKLIN SQUARES.

wrote, I think by one Stifelius, which contained a square of 16
which he said he should imagine to be a work of great labour; but
if T forget not, it had only the common properties of making the
same sum, viz,, 2056 in every row, horizontal, vertical and diagonal.
Not willing to be cutdone by Mr. Stifelius, even in the size of my
square, I went home, and made that evening the following magical
square of 16 (see Fig. 184) which besides having all the properties
of the foregoing square of 8, i. ¢., it would make zog6 in all the
same rows and diagonals, had this added, that a four-square hole
being cut in a piece of paper of such a size as to take in and show
through it just 16 of the little squares, when laid on the greater

2% Tiwe ende..._. A Aegirs

44'_ Fieve éej/u.r ______ .;" .: ...... 45E Forra snde
157 7. degroro .- ‘:' "..;" ------ S e end
FE e errels oo ;r;: poe. N 3™ Zoe begims
P
f L]
Fig. 184,

square, the sum of the 16 numbers so appearing through the hole,
wherever it was placed on the greater square should likewise make
2056. This I sent to our friend the next morning, who after some
days sent it back in a letter with these words:

“I return to thee thy astonishing
“or most stupendous piece
“of the magical square in which”. ...

—but the compliment is too extravagant and therefore, for his sake,
as well as my own I ought not to repeat it. Nor is it necessary,
for I make no question but you will readily allow the square of 16
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to be the most magically magical of any magic square ever made
by any magician,
I am etc. B. T.
It will be scen that the squares shown in Figures 183 and 184
are not perfect according to the rules for magic squares previously

BT e ez, _
i d- TE T Beping
45 Zina beginmi_

_____ . 3T Time Aepins

< Zins Begrng
27 Toue Begema. ... g
A
> S A Zee egoms
FF Tover faginr_ ..
5% Tove emefe ... e )
. TE Lerna emds
2 s wade. . ... e,
o [V QY

N e ema
L 35 A S

T T e ene
EF FTome eralie o oL

EXs 31,

Fig. 187,

given, but the interesting feature of their bent diegonal columns
calls for more than passing notice. In order to facilitate the study
of their construction, a 4 X 4 square is given in Fig. 185 which
presents similar characteristics.
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The dotted lines in this square indicate four bent diagonal col-
umms, each of which has a total of 34 three of these columns being
intact within the square and one being broken, Four bent diagonal
columns may be formed from cach of the four sides of the square,
but only twelve of these sixteen columns have the proper totals.
Adding to these the cight straight columns, we find that this square
contains twenty columns with summations of 34. The 4 X 4 “Jaina”
square contains sixteen columns which sum up to 34 while the
ordinary 4 X 4 magic square may centain only twelve,

The 8 X 8 Franklin square (Fig. 183) contains forty-eight col-
umns which sum up to 260, viz,, cight horizontal, eight vertical, six-
teen bent horizontal diagonals, and sixteen bent vertical diagonals,

S8 |s7]|60 selss| 7| &
o |55 |20 27|  Section 1. /2|8 |os|ss .
“Top.) Section 2,
«d|vz|2slzz tlop. ATy Yy
28 125 |40|97 S5 S2|26 |27
paleaiz |3 |2 184 8/
2316 |e@ gz . 37 lselrs | ree | Section 4.
Section 3. ( Bottom.)
20|77 a8 |43 Py w7128 ’9
35 lsglar |ae 28132133 |38
Fig. 188

whereas the pandiagonal associated 8 X 8 magic square may contain
only thirty-two colummns and diagonals of the same summation.

In addition to the other characteristics mentioned by Franklin
in his letter concerning his 8 X 8 magic square it may be stated that
the sum of the numbers in any 2 X 2 sub-square contained therein
is 130, and that the sum of any four numbers that are arranged dia-
metrically eguidistant from the center of the square also equals 130.

In regard to his 16 X 16 square, Franklin states in his letter
that the sum of the numbers in any 4 X 4 sub-square contained
therein is 2056, The sub-division may indeed be carried still further,
for it will be observed that the sum of the numbers in any 2 % 2
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sub-square is 514, and there are also other curious features which a
little study will disclose.

......... P = Sachion de’f'ns.
L ¥ A S .

P ot degins-. S
Ny e 2 Satiam Appina

T ---f“‘:rc.f‘-uﬁin FLY 8
..... AERRTE . SN T

Fig. 180.

The Franklin Squares possess a unique and peculiar symmetry
in the arrangement of their numbers which is not clearly observable
on their faces, but which is brought out very strikingly in their
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geometrical diagrams as given in Figs. 186 and 187, which illustrate
respectively the diagrams of the 4 X 4 and 8 X 8 squares,

Magic cubes may be readily constructed by expanding these
diagrams and writing in the appropriate numbers.

The cube of 4 X 4 X 4 and its diagram arc given as examples
in Figs. 188 and 18qg, and it will be observed that the curious char-
acteristics of the square are carried into the cube,

AN ANALYSIS OF THE FRANKLIN SQUARES.

In The Life and Times of Benjomin Franklin, by James Parton,
(Vol. I, pp. 235-257), there is an account of two magic squares, one
8 X 8, the other 16 X 16, which are given here in Figs. 191 and 192.

SR

=260 =13 =130 =260

= 2fio == 250 =I30 == 260

L] L1 L 1 [

=260 =260 =200 =260
PROPERTIES OF FRANKLIN'S 88 SQUARE.
Fig. 190,

Mr, Parton explains the 88 square as follows:
“This square, as explained by its contriver, contains astonishing
“properties: every straight row (horizontal or vertical) added to-
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52 |61 | ¢ |13 ] 20|29 |36 45
_14— 3|82 |5t|4f3s|30]|10
53|60l 5 [ 12|21 |28|37]aa
1| 6 (50754 |43 382722
55 |s8{ 7 (10|25 |26]|30]|42
9 | & |57 |5 |41 |40 ] 25|24
so |63 | 2 )15 | 18] 31 ) 34 | 47
16| 1 |64 |49 |48 |33 H:zhr_f—
FRANKLIN 8X8 sQUARE.
Fig. 191
200i217 232|240 8 | 25 | 40 157 | 72 | & 104[121 136 | 153 | 168 | 185
58 39| 26| 7 Ii250 3 _21—8|199 136 | 167 154;135 122 (103 | 90 | 7
198 | 219 | 230 251[ 6 |27 |38 50| 7| ot mzlms 134 | 155 | 166 | 187
60 | 37 | 28 | 5 | 252|229 | 220|197 E;ss gﬁn 124|101 | 92 | 69
201 216 253 2a8| 9 | 24 [ 41 |56 | 73 | 88 105 | 120137 152 | 169 T84
55 | 42| 23 | 10 |247 234|215 | 202| 183 170 | 151 | 138|119 | 106 | 87 | 74
203 214|235 | 246 11 | 22 | 43 | 54 | 75 86 [107 [ 118|139 [ 150 | 171 | 182
%53 44| 2|12 _245|?36 213 204ina1 172 | 149 140}-117 108| 85 | 76
205 212|237 | 244 13 l. | 45 szl_ﬂ 84 [ 100|118 ‘21 148 | 173 | 180
5l ]46 19 | 14 (243 238 ;T;];FI_I?: ;g 115 | 110 | &3 [ 78
207\2wi239 202 | 15| 18| 47 50\79 B2 | 111 [ 144143 146 | 175 [ 178
PRI Y 241 240|209 | 208 177 | 176 | 145 | 144 | 113 | 112 | 81 | 80
196 mizza 23| 4 |29 3| 6 ] 65 | 93 :;0;132 157 164 | 189
62 | 35| 20| 2 | 254|227 | 222 | 195 190 | 1g3 | 158 | 131 | 126 | 99 | 04 | 67
194 | 2231226 | 255 | 2 | 3t | 34 | &3 Tﬁs a5 “on | 127] 130 | 159 | 162 | 199
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FRANKLIK 1610 SOUARE,

TFig.
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LIL T

[ 1] LTI TIT]

ITTITTT]

=— 1028

= 2050

| L1 L]

= 2058

[

=2z046

= 102§ = z056—

B

128

PRUPERTIES OF FRANKLIN'S I6X 16 SQUARE.

Fig. 1903.
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“gether makes 200, and each half row bhalf 2Go.

99

The bent row of

“eight numbers ascending and descending diagonally, viz., from 16
“ascending to 10, and from 23 descending to 17, and every one of

“its parallel bent rows of cight numbers, makes 260.  Also, the bent

.

2

—

|_
|
|
= z055 =2050 4 128
|
I___

| | =056
|
- |

= z0356 =z056

PROPERTIES OF FRANKLIN'S 16316 SOUARE.

I, 193 {com.}.

“row from 52 descending to 54, and from 43 ascending to 45, and
“every onc of its parallel Lent rows of eight numbers, makes 26o.
“Also, the bent row from 45 to 43, descending to the left, and from
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Y23 to 17, descending to the right, and every one of its paralle! bent
“rows of eight numbers, makes 260. Also, the bent row from 52
“to 54, descending to the right, and from 10 to 16, descending to
“the left, and every ome of its porailel bent rows of eight nunibers,
“makes 260, Also, the parallel bent rows next to the above-men-
“tioned, which are shortened to three numbers ascending and three
“descending, etc., as from 53 to 4 ascending and from 29 to 44
“descending, make, with the two corner numbers, 260, Also, the two
“numbers, 14, 61, ascending, and 36, 19, descending, with the lower
“four nuimbers situated like them, viz., 50, 1, descending, and 32, 47,
“ascending, makes 260. And, lastly, the four corner numbers, with
“the four middle numbers, make 260,

“But even these are not all the properties of this marvelous
“square. Its contriver declared that it has ‘five other curious ones/’
“which he does not explain; but which the ingenious reader may
“discover if he can.”

These remarkable characteristics which Mr. Parton enumerates
are illustrated graphically in the accompanying diagrams in which the
relative position of the cells containing the numbers which make up
the number 200, is Indicated by the relation of the small hollow
squares (Fig. 190).

Franklin's 16X 16 square is constructed upon the same principle
as the smaller, and Mr. Parton continues:

“Nor was this the most wonderful of Franklin's magical
“squares. He made one of sixteen cells in each row, which besides
“possessing the properties of the squares given above (the amount,
“"however added, being always 2056), had also this most remark-
“able peculiarity : a sguare hole being cut in a piece of paper of such
"a size as to take in and show through it just sixteen of the little
“squares, when laid on the greater square, the sum of sixteen num-
“bers, so appearing through the hole, wherever it was placed on the
“greater square, should likewise make 2036.”

The additional peculiarity which Mr. Parton notes of the 16X
16 square is no more remarkable than the corresponding fact which
is true of the smaller square, that the sum of the numbers in any
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23Xz combination of its cells yields 130. The properties of the
larger square are also graphically represented here (TFig. 193).

A clue to the construction of these squares may be found as
follows:

We write down the mumbers in numerical order and call the
cells after the precedent of the chess-hoard, with two sets of symbols,
letters and numbers. We call this “the plan of construction” (Fig.
104).

Before we construct the general scheme of Franklin's square
we will build up another magic square, a little less complex in prin-
ciple, which will be preparatory work for more complicated squares.
We will simply intermix the ordinary series of numbers according
to a definite rule alternately reversing the letters so that the odd
rows are in alphabetical order and the even ones reversed. In order
to distribute the numbers in a regular fashion so that no combina-
tion of letter and number would occur twice, we start with 1 in the
upper left-hand corner and pass consecutively downwards, alter-
nating between the first and second cells in the successive rows,
thence ascending by the same method of simple alternation from 1
in the lower left-hand corner. We have now the key to a scheme
for the distribution of numbers in an 8X8 magic square. It is the
first step in the construction of the Franklin 8 X8 magic square, and
we call it “the key to the scheme of simple alternation” ([Fig. 195).

It goes without saying that the effect would be the same if we
begin in the same way ju the right-hand corners—only we must
beware of a distribution that would occasion repetitions,

To complete the scheme we have to repeat the letters, alternately
inverting their order row after row, and the first fwo given figures
must be repeated throughout every row, as they are started. The
top and bottom rows will read 1, 8; 1, 8; 1, 8: 1, 8. The sccond
row from the top and also from the bottom will be 7, 2; 7, 2; 7, 2:
», 2. The third row from the top and bottom will be 3, 6; 3, 6;
3, 6: 3, 6; and the two center rows 5, 4; 5. 45 5, 4: 5. 4. In
every line the sum of two consecutive figures yields g. This is the
second step, yielding the completed scheme of simple alternation

(Fig. 196).
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The square is now produced by substituting for the letter and
figure combinations, the corresponding figures according to the con-
secutive arrangement mn the plan of construction (Fig. 197).

Trying the results we find that all horizontal rows sum up to
260, while the vertical rows are alternately 260 -4, and 200 +4- 4.
The diagonal from the upper right to the lower left corner yields
a sum of 260432, while the other diagonal from the left upper
corner descending to the right lower corner makes 260—32. The
upper halves of the two diagonals yield 260, and also the sum of
the lower halves, and the sun total of both diagonals is accordingly
520 or 2X260. The sum of the two left-hand half diagonals re-
sults in 260 - 16, and the sum of the two half diagonals to the
right-hand side makes 260+16. The sum of the four central cells
plus the four extreme corner cells yields also 260.

Considering the fact. that the figures 1 to 8 of our scheme run
up and down in alternate succession, we naturally have an arrange-
ment of figures in which sets of two belong together. This hinate
peculiarity is evidenced in the result just stated, that the rows yield
sums which are the same with an alternate addition and subtraction
of an equal amount. So we have a symmetry which is astonishing
and might be deemed magical, if it were not a matter of intrinsic
necessity.

We represent these peculiarities in the adjoined diagrams (Fig.
198) which, however, by no means exbaust all the possibilities.

We must bear in mind that these magic squares are to be re-
garded as continuons; that is to say, they are as if their opposite
sides in either direction passed over into one another as if they
were joined both ways in the shape of a cylinder. In other words
when we cross the boundary of the square on the right hand, the first
row of cells outside to the right has to be regarded as identical
with the first row of cells on the left; and in the same way the
uppermost or first horizontal row af cells corresponds to the frst
row of cells below the bottom row. This remarkable property ef
the square will bring out some additional peculiarities which mathe-
maticians may easily derive according to general principles; espe-
cially what was stated of the sum of the lower and upper half-
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=260 — 32
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==260

Fig. 198. PROPERTIES OF 88 SQUARE DY SIMPLE ALTERNATION,

AB

A=z056-—8
B=gzof6 |8
A-B==2X 2056

== 265t

= z056

Fig. 109, PROPERTILS OF 1613 SQUARE BY SIMPLE ALTERNATION.
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diagonal of any bent series of cells running staircase fashion either
upward or downward to the center, and hence proceeding in the
opposite way to the other side,

The magic square constructed according to the method of sim-

] ]

r“‘

L]

== z066 — 128 =alternately zo56 — 64 and 2056 4+ 64

]

- = 2050 4 128 = alternately 2056 — 64 and 2056 4 64
PROPERTIES OF 16310 SQUARE LY SIMPLE ALTERNATION,
Fig. 190 {com.).
ple alternation of figures is not, however, the square of Benjamin
Franklin, but we can easily transform the former into the latter
by slight modifications.
We notice that in certain features the sum total of the bent
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1 8 A1 Ba C b E F G H
7 2 H 7 02 F E n|cC B A
3] & Bl 1
5 4 2 7
a 1 & 3
2 ¥ 4 5
B 3 3 3]
4 E 5 4
Fig. zoo. Fitst Steps, Fig. za1.

KEY TQ THE SCHEMIE OF ALTERNATION WITH BINATE TRANSPOSITION.

Ayl Bg| C | Pg| E ] Fa| Gy g | 1|16 [17 | 32] 33 |48 )49 | 6d
Hy| Gy Fa | B3| B3] €3] By| Az 63 | 50 | 47 | 34|31 Jug |15 | 2
Asl By Cg| Dy | Egf ¥y | 95| B B | 9|24 |25]40 | 4135657
Hy| G7| Fo | B2 | Dy} Cq| By | A 58 (55 | 42|30 | 26| 23| 10| 7
Al B3| Co| P3| Egl Fa| GgjHy 6 | 11|22 )27 |38 43 | 5459
c . ]
Hy| G| Ful Bg | Dg| Csf Byl Ag 60 | 53|44 ;7| B N | 12| 5
Ayl Bs| Ca| Pg| E3| Fg | O3] Mg 3| 14f19]30|35)4 |51 |62
Hol 6] Pyl B 4| D5 | Cuf Bs| Ay 6t | 52045 | 26| 20| 20| 13] 4
Fig. a0z, Second Step. Fig. 203. Third Step,
SCHEME OF ALTERNATION WITH SQUARE CONSTRUCTED RY ALTERNA
BINATE TRANSPOSITION. TION WITH BINATE TRANSPOSITION

B8 Ayl Hgl Gy FB I':I D1 Cy

Fig. 204. SCHEME OF FRANKLIN'S 88 SQUARE,
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CONSECUTIVE ARRANGEMENT OF NUMBERS IN A 16X 6 SQUARE

Adeglelp|E|F[Gyn] || LM P|O
Q]5I’ZONHLR1HGFEDCB»‘\
3 4
13 4
5| 12
1| &
74
e B
8 a
7w
1| &
s 12
13
3|
15) 2
1 16

Fig. 206, KEY TQ THE SCHEME OF SIMPLE ALTERNATION,
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Fig. 207. SCHEME COF SIMPLE ALTERNATION,
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Pig, 7oB. 16 16 MAGIC SQUARE CONSTRUCTED BY SIMPLE ALTERNATION.
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Fig.212. SCHEME OF FRANKLIN'S 16 X 16 SQUARE.
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diagonals represents regularities which counterbalance one another
on the right- and the left-hand side, In order to offset these results
we have to shift the figures of our scheme.

We take the diagram which forms the key to the scheme of our
distribution by simple alternation (TFig. rgs), and cutting it in the
middle, furn the lower half upside down, giving the first two rows as
seen in Fig. 200 in which the heavy lines indicate the cutting, Cutting
then the upper half In two (i. e, in binate sections), and transposing
the second quarter to the bottom, we have the key to the entire ar-
rangement of figures: in which the alternation starts as in the
scheme for simple alternation but skips the four center rows passing
from 2 in the second cell of the second row to 3 in the first cell of
the seventh, and from 4 in the second cell of the eighth passing to
5 in the first cell, and thence upwards in similar alternation, again
passing over the four central rows to the second and ending with 8
in the second cell of the first row. Then the same alternation is pro-
duced in the four center rows. It is obvious that this can not start
in the first cell as that would duplicate the first row, so we start with
t in the second cell passing down uninterruptedly to 4 and ascending
as before from 5 to 8.

A closer examination will show that the rows are binate, which
means in sets of two. The four inner numbers, 3, 4, 5§, 6 and the
two outer sets of two numbers each, 1, 2 and %, 8, are brought to-
gether thus imparting to the whole square a binate character (Fig.
202),

We are now provided with a key to build up a magic square
after the pattern of Franklin. We have simply to complete it in
the same way as our last square repeating the letters with their
order alternately reversed as before, and repeating the figures in
each line,

When we insert their figure values we have a square which is
not the same as Franklin’s, but possesses in principle the same
qualities {Fig. 203).

To make our 8 X 8 square of binate transposition into the
Franklin square we must first take its obverse square; that is ta
say, we preserve exactly the same order but holding the paper
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with the figures toward the light we read them off from the obverse
side, ane then take the mirror picture of the result, holding the
mirror on either horizontal side. So far we have still our square
with the peculiarities of our scheme, but which lacks one of the
incidental characteristics of Franklin's square. We iust notice
that he makes four cells in both horizontal and vertical directions
sum up to 130 which property is necessarily limited only to two
sets of four cells in each row, If we write down the sum of 1424
3+4+5-+6+7+8=2X18, we will find that the middle set 3-4+4--
546 is equal to the rest consisting of the sum of two extremes,
1-+4.and 748, In this way we cut out in our scheme (Fig. 202}, the
rows represented by the letters C, D, E, I in either order and ac-
cordingly we can shift either of the twe first or two last vertical
rows to the other side. Franklin did the former, thus beginning
his square with G, in the left upper corner as in Fig. 204. We have
indicatec] this division by heavier lines in both schemes.

The greater square of Franklin, which is 16X 16, 1s made after
the same fashion, and the adjoined diagrams (Tigs. zog-z12) will
sufficiently explain its construction.

We do not know the method employed by Franklin; we pos-
sess only the result, but it is not probable that he derived his square
according to the scheme employed here,

Our 16X 16 square is not exactly the same as the square of
Franklin, but it belongs to the same class. Our method gives the
key to the construction, and it is understood that the system here
represented will allow us to construct many more squares by simply
pushing the square beyond its limits into the opposite row which
by this move has to be transferred.

There is the same relation between Franklin's 16X 16 square
and our square constructed by alternation with quaternate trans-
position, that exists between the corresponding 8 X8 squares.

P, C,



CHAPTER TV,

REFLECTTIONS ON MAGIC SQUARES.

ATHEMATICS, especizlly in the field where it touches philos-

ophy, has always been my foible, and so Mr, W, 5, Andrews’s
article on “Magic Squares” tempted me to seek a graphic key to the
interrelation among their figures which should reveal at a glance
the mystery of their construction.

THE ORDER OF FIGURES.

In odd magic squares, 3X 3, 5 5. 7 X 7, etc., there is no
difficulty whatever, as Mr. Andrews’s diagrams show at a glance
(Fig. 213). The consecutive figures run up slantingly in the form

5]
4 /2
3 9 25
2 g A 2 I |89 22|58
L/ 7 D r5 2‘11 20| 8 |27 |/ 2
4 ’2 sF 24 7| 25lesl s |22
2 77| |2s 24\72] 5|26 &
s8 22 s |#7|ro| 24
2/]

Fig. 2:3. & SPECIMEN OF v MAGIC SQUARE.

of a staircase, so as to let the next higher figutre pass over into the
next higher or lower cell of the next row, and those figures that ac-
cording to this method would fall cutside of the square, revert
into it as if the magic square were for the time (at the moment of
crossing its boundary) connected with its opposite side into the
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shape of a cylinder. This cannot be done at once with both its two
opposite vertical and its two opposite horizontal sides, but the pro-
cess is easily represented in the plane by having the magic square
extended on zll its sides, and on passing its limits on one side we
must treat the extension as if we had entered into the magic square
on the side opposite to where we left it. If we now transfer the
figures to their respective places in the inside square, they are shoved
over in a way whicli by a regular transposition will counteract their
regnlar increase of counting and so equalize the sums of entire rows,

The case is somewhat more complicated with even magic
squares, and a suggestion which I propose to offer here, pertains
to their formation. DMr. Andrews begins their discussion by stating
that “in regard to regular or associated magic squares it is not only
necessary that each row, column and corner diagenal shall sum
the same amount, but also that the pairs of pumbers which sum
n* 4 1 must occupy cells which are located diametrically equidis-
tant from the center of the square.”

The smaliest magic square of even numbers is, of course, 2 X 4;
and he points out that if we write the figures in their regular order
in a 4 X 4 square, those standing on the diagonal lines can remain
in their places, while the rest are to be reversed so as to replace
every figure by its complementary to 17 (i. e., 2 by 15, 3 by 14, 5 by
12. 9 by 8} the number 17 being the sum of the highest and lowest
numbers of the magic square (i. e,, n* - 7}, Tt is by this reversal
of figures that the inequalities of the natural order are equalized
_ again, 50 as to make the sum of ecach row equal to 34, which is one
fourth of the sum total of all figures, the general formula being

tf 24344, .0

M

:Z.(u?--{-— 1).

We will mow try to find out more about the relation which the
magic square arrangement bears to the normal sequence of figures.

For each corner there are two ways, one horizontal and one
vertical, in which figures can be written in the normal sequence;
accordingly there are altogether eight possible arrangements, from
which we select one as fundamental, and regard all others as mere
variations, produced by inverting and reversing the order.
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As the fundamental arrangement we choose the ordinary way
of writing from the left to the right, proceeding in parallel lines
downward. We call this “the original order™ or o. Its reverse
proceeds from the lower right-hand corner toward the left, and
line by line upward, thus beginning the series where the ordinary
arrengement ends, and ending where it started, as reflected on the
ground glass of a camera. We call this order "the reversed orig-
inal,”" or simply ro.

Another prder is produced by following the Hebrew and Arabic
mode of writing: we begin in the upper right-hand corner, proceed-
ing to the left, and then continue in the same way line by line
downward. This, the inverse direction to the original way. we call
briefly ¢ or "mirror” order.

The reverse order of [ starting in the lower left corner, pro-
ceeding to the right, and line by line upward, we call #i, or “lake”
order. Further on we shall have occasion to present these four orders
by the following symbols: o by @; ro by £3: 4 by o ; #i by .

1 12]3]als5]s
t7l8]9 |10l
13014151617 18 1817116 1501113
19]20]21]22 23|24 |34 2312 21- 0 19
25]26[27]28:20[ 30 130/20)28 27 :E"_z';'
31]32(33 34] 35| 36 '36135(347 33 1);31
oRDER ¢ (@), ORIGINAL. ORDER ¢ (»), MIRROR,
132133]341 35 36 §§_35'34_33G2;_31_
2526 2726129130 30,29 2812726 25
hola0 21]22]20T24 24123 22| 21| 20119
3efis el i) 1817 6 ]1s]ie 1y
"7!8j9|on'12 12|11 1098 |7
!1 20314|5]6 -"5_"?: 4 JI 20
CROER #i (-} ). LAKE. URDER ro (£83), CAMERA.

Fig. 214.
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Fig. 215, EVEN SQUARES IN MULTIPLES OF FOUR.*
* These squares, 4 X 4 and its mnltiples, consist of ¢ and 7o arders only,
aud it will be sufficient to write out the two 4 % 4 squares, which show how
¢ and ro are mutually interchangeable.
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It will be noticed that { is the vertical mirror picture of ¢ and
ro of #i, and wice wersa. Further if the mirror is placed upon one
of the horizontal lines, #7 is the mirror picture of ¢ as well as ro of ¢
and wice versa.

There are four more arrangements. There is the Chinese way
of writing downward in vertical columns as well as its inversion,
and the reversed order of both. This method originated by the use
of bamboo strips as writing material in China, and we may utilize
the two vowel sounds of the word “bambog” (viz., @ and ) to name
the left and the right downward order, e the left and u the right,
the reverse of the right ru and of the left »a, but for our present
purpose there will be no occasion to use them.

Now we must bear in mind that mapgic squares originate from
the ordinary and normal consecutive arrangement by such transpo-
sitions as will counteract the regular increase of value in the nor-
mally progressive series of figures; and these transpositions depend
upen the location of the several cells, All transpositions in the
cells of even magic squares are hrought about by the substitution
of figures of the ro, 1, and #i order for the original figures of the
ordinary or ¢ order, and the symmetry which dominates these
changes becomes apparent in the diagrams, which present at a glance
the order to which each cell in a magic square belongs.

Numbers of the same order are grouped not unlike the Chladni
acoustic figures, and it seems to me that the origin of the regular-
ity of both the magic figures and this phenomenon of acoustics, is
due to an analogous law of symmetry.

The dominance of one order o, ro, i, or #{, in each cell of an
even magic square, is simply due to a definite method of their
selection from the four different orders of counting. WNever can
a figure appear in a cell where it does not belong by right of some
regular order, either o, 7o, 1, or #i

The magic square of 4 X 4, consists only of o and »o figures,
and the same rule applies to the simplest construction of even squares
of multiples of four, such as 8 X &, and 12 X 12.

There are several ways of constructing a magic square of 6 X 6,
Our first sample consists of 12 0, 12 ro, 6 ri, and 6 { figures. The
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12 ¢ hold the diagonal lines. The 12 ro go parallel with one of
these diagonals, and stand in such positions that if the whole magic
square were diagonally turned upon itself, they would exactly cover
the 6 4, and 6 #{ figures. And again the 67 and 6 #7 also hold toward
each other places in the same way corresponding to one another;
if the magic square were turned upon itself around the other diag-
onal, each #i figure would cover one of the 7 order.

s (aF| «lI3lazl 4 AR EVART A A
r2| X (2827107 |25 SO S (28] 9 [ |25
24 | /7|75 28|26} 10 28| 28175 |26 |20 |18
F3 2827122\ 74| 28 Ty rgl|27 | 22]|77 |18
JO26|8 |r0 |20, 7 J |26|r0 27122 |72
S22 | del S |g |ad I S|4 [ (2 |ad

Fig. 2:6. 66 EVEN SQUARES.

If we compare the magic squares with the sanc-covered glass
plates which Chladni used, and think of every cell as equally filled
with the four figures that would fall upon it according to the normal
sequence of o, o, 4, and ri; and further if we compare their change
into a magic square to a musical note harmonizing whole rows into
equal sums, we would find (if by some magic process the different
values of the several figures would mechanically be turned up so

=] o]

T T W

RO

as to be evenly balanced in rows) that they would present geomet-
rically harmonious designs as muoch as the Chladni acoustic figures.

The progressive transformations of o, ro, 4, and »i. by mirroring,
are not unlike the air waves of notes in which ¢ represents the crest
of the wave, ro the trough, { and +f the nodes.

In placing the mirror at right angles progressively from o to
i, from ¢ to ro, from ro to #i, and from ri to o, we return to the
beginning thus completing a whole sweep of the circle* The re-

* Qee diagram on page 115,
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Fig. 217. CLHLADNI FIGURES.+

* The letter g indicates where the surface is touched with a finger; while
b marks the place where the bow strikes the glass plate. In the four upper
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verse of o which is ro represents one-half turn, { and #{ the first and
third quarter in the whole circuit, and it is natural, therefore, that
a symmetry-producing wave should produce a similar effect in the
magic square to that of a note upon the sand of a Chladni glass
plate.

MAGIC SQUARES I's SYMBOLS.

The diagrams which are offered here in IMig. 218 are the best
evillence of their resemblance to the Chladni figures, both exhibiting
in their formation, the effect of the law of symmetry. The most

0500000 DO

200220052003
L0020 200200020008
CO0TL00D 0220023005509
SO00LS005 0520000020
0SS 00DE® 200520052005
0800 E0 ] 1 Balid 1 Teded 1 Ity
0005003 02200200550
D00CC00D 05005500050
000269 2002320050003

0050025005

02200220053 @
38 320 and 32 ro. 160X 10. 72 ¢ and 72 ro.

SQUARES OF MULTIFLES GF FOUR.
Constructed only of o and ro,

@ L JoBd 1 BN
+ 95+00+
@ el Lkl |
B 92003
@ 0 -2005
@ ed Ll g
+ 05+-00+-&09
® 02 +-00+3T@
8% 8 SQUARES.
Caonstructed from all the orders, o, re, 1, and »i.
Fig. 218

diagrams the plate has heen fastened in the center. while in the lower ones
it has been held tight in an excentric position, indicated by the white dot.
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elegant way of rendering the different orders, 1, #i, 0, and ro, visible
at a glance, would be by printing the cells in four different colors,

®r+++++@
+OEHDSO L
220+ 108D
++ @@+ +
++ @@+ +
RO 06S
OO O
@+ +++ @

ANOTHER 238 SQUARE.

Tt will be noted that in this square the arrangement of the ¢ symbols
corresponds very closely to the distributicn of the sand in the second of the
Chladni dizgrams. The same may be said of the two following figures, and it
is especially true of the first one of the & X 8 squares just preceding.

®L++@0@
202108
TH00EB
++ 00+
+ O3 1-O+

 @+BEEe

®TO+-&11+02@

40 6, 40 ro, 10 1, 10 ¥

The reader will notice that there is a remarkable resemblance
between the symmetry displayed in this figure and in the fourth
of the Chladni diagrams.

Fig. zib. fcony. EXAMPLES OF 636 AND 10X 10 MAGIC SQUARES,

but for proving our case, it will be sufficient to have the four orders
represented by four symbols, omitting their figure values, and we
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here propose to indicate the order of o by @@, ro by @2, i by v,
ri by +.

THE MAGIC SQUARE IN CHINA.

In the introduction to the Chou edition of the ¥ih King, we
find somc arithmetical diagrams and among themn the Lok-Shu, the
scroll of the river Loh, which is a mathematical square from 1 to g,
so written that all the odd numbers are expressed by white dots,
i. e., yang symbols, the emblem of heaven, while the even numbers

® o [’ [

<

EmE)|
*

7
LI
&oe D

THE SCROLL OF LOH., THE MAF OF HO.*
{According to Ts‘al Yiiang-ting.)
Fig. 219. TWO ARITHMETICAL DESIGNS OF ANCIENT CHINA.

are in black dots, i, e., yin symbols, the emblem of carth, The in-
vention of the scroll is attributed to Fuh-Hi, the mythical founder
of Chinese civilization, who according to Chinese reports lived 2858-
2738 B. C. But it goes without saying that we have to deal here
with a reconstruction of an ancient document, and not with the
document itself. The scroll of Loh is shown in Fig. 219.

The first unequivocal appearance of the Loh-Shu in the form of
a magic square is in the latter part of the posterior Chou dynasty

* The map of Ho properly does not belong here, but we let it stand be-
canse it helps to illustrate the spirit of the times when the seroll of Loh was
composed in China. The map of Ho contains five groups of odd and even
figures, the numbers of heaven and earth respectively. If the former are re<
garded as positive and the latter as negative, the difference of each group
will uniformly yield 4+ 5 or —5.
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(g51-1126 A. D.} or the beginning of the Southern Sung dynasty
{1127-1333 A. D.}. The Loh-Shu is incorporated in the writings
of Ts'ai Yiian-Ting who lived from 1135-1198 A. D. (cf. Mayers,
Chinese Reader's Manunal, 1, 754a), but similar arithmetical dia-
grams are traceable as reconstructions of primitive documents among
scholars that lived under the reign of Sung Hwei-Tsung, which
lasted from i101-1125 A. D. (See Mayers, C. R. M., p. 57.)

The ¥Vih King is unquestionably very ancient and the symbaols
yang and yin as emblems of heaven and earth are inseparable from
its contents. They existed at the time of Confucius {551-47g9 B. C.),
for he wrote several chapters which are called appendices to the
Yih King, and in them he says (II[, I, IX, 49-50. 5. B. E., XVI,
p. 365.):

“To heaven belongs 1: to earth, 2; to heaven, 3; to earth, 4;
to heaven, 5; to earth, 6; to heaven, 7 to earth, 8; to heaven, 9;
to earth, 10.

*The numbers belonging to heaven are five, and those belonging
to earth are five. The numbers of these two series correspond to
each other, and each one has another that may be considered its
mate. The heavenly numbers amount to 23, and the earthly o 3o.
The numbers of heaven and earth together amount to g5. It is
by these that the changes and transformations are effected, and the
spiritlike agencies kept in movement.”

This passage was written about 500 B. C. and is approximately
simultaneous with the philosophy of Pythagoras in the Occident,
who declares number to be the essence of all things.

One thing is sure, that the magic square among the Chinese
cannot have been derived from Europe. It is highly probable, how-
ever, that both countries received suggestions and a general impulse
from India and perhaps ultimately from Babylonia. But the devel-
opment of the yang and yin symbols in their numerical and occult
significance can be traced back in China fo a hoary antiquity so as
te render it typically Chinese, and thus it seems strange that the
same idea of the odd numbers as belonging to heaven and the even
ones to earth appears in ancient Greece.

I owe the following communication to a personal letter from
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Professor David Eugene Smith of the Teachers’ College of New
York:

“There is a Latin aphorism, probably as old as Pythagoras,
Deus imparibus numeris gaudet. Virgil paraphrases this as follows:
Numero deus impare gandet. (Ecl. viti, 75). In the edition I have
at hand* there is a footnote which gives the ancient idea of the
nature of odd and even numbers, saying:

“, . .ompar wumerus immortalis, quie dividi integer non potesi,
far numerus mortalis, quia dividi potest; licet Varro dicat Pytha-
goreos putare tmparem numerunmt habere finem, parem esse infinitinn
[a curious idea which T have not seen elsewhere]; ideo medendi
causa multarumague rerun impares numeros sevvari: wom, uf supra
dictum est, superi dii impart, inferi pari gaudent.

“There are several references among the later commentators
to the fact that the odd numbers are masculine, divine, heavenly,
while the even ones were feminine, mortal, earthly, but I cannot just
at this writing piace my hands upon then.

“As to the magic square, Professor Fujisawa, at the Inter-
national Congress of Mathematicians at Paris in 1900, made the
assertion that the mathematics derived at an early time from the
Chinese (independent of their own native mathematics which was
of a somewhat more scientific character), included the study of
these squares, going as far as the first 400 numbers. He did not,
however, give the dates of these contributions, if indecd they are
known.”

As to other magic squares, Professor Smith writes in another
letter:

“The magic square is found in a work by Abraham ben Ezra
in the eleventh century. It is also found in Arabic works of the
twelith century. In 1904, Professor Schilling contributed to the
Mathematical Society of Gottingen the fact that Professor Kielhorn
had found a Jaina inscripiion of the twelfth or thirteenth century

* P, Virgilii Maronis | Opera, | cum integris commentariis | Servii, Phi-
largyrii, Pierii, | Accedunt | Scaligeri et Lindenbrogii| . . . . . | Pancratius
Masvicius| . .. |Tom. L | . .. |Leonardiae,| . . . | . . cIalocexvn |



REFLECTIONS ON MAGIC SQUARES. 125

in the city of Khajuraho, India, a magic squarc of the notable
peculiarity that each sub-square sums to 34."

Fig 220 is the square which Professor Smith encloses.

We must assume that we are confronted in many cases with
an independent parallel development, but it appears that suggestions
must have gone out over the whole world in most primitive times
perhaps from Mesopotamia, the cradle of Babylonian civilization,
or later from India, the center of a most brilliant development of
scientific and religious thought.

How old the magic square in China may be, is difficult to say.
It seems more than probable that its first appearance in the twelfth
cenitury is not the time of its invention, but rather the date of a

7|12 1|14
21138 |N
163 10| 5

9 6}15‘4

Fig. 220

recapitulation of former accomplishments, the exact date of which
can no longer be determined.

THE JATINA 5QUARE.

Professor Kielhorn's Jaina square is not “an associated or
regular magtc square’ according to Mr. Andrews’s d=finition, quoted
above. Yhile the sums of all the rows, hworizontal, vertical, and
diagonal, are equal, the figures equidistant from the center are not
equal to 2% 4 1, viz., the sum of the first and last numbers of the
series. Yet it will be seen that in other respects this square is more
regular, for it represents a distribution of the figure values in what
might be called ahbsolute ceuilibrium.

Tirst we must observe that the Jaina square is comntinuons,
by which I mean that it may vertically as well as horizontally be
turned upon itself and the rule still holds good that whercver we

may start four consectitive numbers in whatever direction, back-
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ward or forwatd, upward or downward, in horizoutal, vertical, or
slanting lines, always vield the same sum, viz. 34, which is 2(#4-1) ;
and so does any small square of 2 X 2 cells. Since we can not bend
the square upon itself at once in two directions, we make the result
visible in Fig. 221, by extending the square in each direction by
half its own size.

Wherever 4 X 4 cells are taken out from this extended square,
we shall find them satisfying all the conditions of this peculiar kind
of magic squares,

The construction of this ancient Jaina equilibrium-square re-
nuites another methed than we have suggested for Mr. Andrews’

0[5 (163 (10| 5 16! 3
15 9|6 (15)479]6
V|47 1201 |14 712
8111 2]13|8 112 (13
10| 5 (16| 3 10| 5 )16

1514196 (15|4]|9]|6
Tji4) 7 1201 |14, 7|12
12 13811 2|13

Fig. 221,

“agsociated squares,” and the following considerations will afford us
the key as shown in Fig. 222

First we write the numbers down into the cells of the square
in their consecutive order and call the four rows in one direction
A, B, C, D; in the other direction 1, 2, 3, 4. Out aim is to re-
distribute them so as to have no two numbers of the same denomi-
nation in the same row. In other words, each row must contain
one and only one of each of the four letters, and also one and only
one of each of the four figures.

We start in the left upper corner and write down in the firat
horizontal row the letters A, B, C, and D, in their ordinary succes-
sion, and in the second horizontal row, the same letters in their
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inverted order, We do the same with the numbers in the first and
second vertical rows. All that remains to be done is to fill out the
rest in such a way as not to repeat either a letter or a number. In
the first row there are still missing for C and D the numbers z and 3,
of which 2 must belong to C, for C, appears already in the second
row and 3 is left for D.

In the second row there are missing 1 and 4, of which 1 must
belong to B, because we have B, in the first row.

In the first vertical row the letters B and C are missing, of
which B must belong to 3, leaving C to 4.

1 2 3 4
!
Al1]|2]354 Ay|Bg:C | D
B 718 Dy |Cy| B A
cl9o|10|11]12 3. 2
D|13]|14 15116 4 1,
In Consecutive Order. The Start for a Redistribution,
Ap|Bg|C2|P3 1]8 0]
Dy |Cq|ByyAy 14§t 5| 4
B, Ay Dy (Cy 7.2'69
Cy D1]A3 B, 12‘T3. 3|6
The Perfected Redistribution. Figure Values of the Square.

Fig. 222

In the second vertical row A and D are missing for 1 and 2.
A, and D, exist, so A must go to 2, and D to 1,

In the same simple fashion all the columns are filled out, and
then the cell names replaced by their figure values, which yields
the same kind of magic square as the one communicated by Prof.
Smith, with these differences only, that ours starts in the left
corner with number 1 and the wvertical rows are exchanged with
the horizontal ones. [t is scarcely necessary to point out the beauti-
ful symmetry in the distribution of the figures which becomes fully
apparent when we consider their cell names. Both the letters, A,
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B, C, D, and the figures, 1, 2, 3, 4. are harmoniously distributed
over the whole square, so as to leave to each small square its dis-
tinct individuality, as appears from Fig. 223.

alslc]D 1]4]2]3
plc|B|A 2314
B|A|D|C 32 :
lc|p{als a1 a2

Fig. 223

The center square in cach case cxhibits a cross relation, thus:

C|B 3|1

A D 2]4

In a similar way each one of the four groups of four cells in
each of the corners possesses an arrangement of its own which is
symmetrically different from the others.



CHAPTER V.

A MATHEMATICAL STUDY OF MAGIC
SQUARES.

A NEW ANALYSIS

AGIC squares are not simple puzzles to be solved by the old

rule of “Try and try again,” but are visible results of “order”
as applied to numbers. Their construction is therefore governed by
laws that are as fixed and immutable as the laws of geometry.

It will be the object of this essay to mvestigate these laws, and
evolve certain rules therefrom. Many rules have been published

| z

o |8 I 23 3 ’; F ; # 23| 2 |22
=

de |7 Sl Py Sl |7 22 |23 | s
oE

A lm | 2 s 22';’ ; s | & | 2 fM|aL | 7

Fig. 224, Fig. 223, TFig. 2az6. Fig. 227.

by which various magic squares may be constructed, but they do
not seem to cover the ground comprehensively.

Let Fig. 224 represent a 3 X 3 magic sqnuare. Dy mspection we
note that:

htc=b-+m
and h+m=g—+¢
therefore 2h = b -+ g

In this way four equations may be evolved as follows:
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2h=0b+4 g
apm b4 d
20 = - m
20:::::m+g

It will be seen that the first terms of these equations are the
(uantities which occur in the four corner cells, and therefore that
the quantity in each corner cell is a mean between the two quan-
tities in the two opposite cells that are located in the middle of
the outside rows. It is therefore evident that the least quantity in
the magic square must occupy 2 middle cell in one of the four
outside rows, and that it camnot oceupy a corner cell.

Since the middle cell of an outside row must be occupied by the
least guantity, and since any of these cells may be made the middle
cell of the upper row by rotating the square, we may consider this
cell to be so occupied.

Having thus located the least quantity, it is plain that the next
higher guantity must be placed in one of the lower corner cells,
and since a simple reflection in a mirror would reverse the position
of the lower corner cells, it follows that the second smallest quantity
may oceupy either of these corner cells. Next we may write more
equations as follows:

a+4e-+#n=25 (or summation)

d+etg=S5
hdetec=58
also
atd-h=35
wntgdc=>5
therefore
=5
and
e == S/3

Hence the quantity i the central cell is an arithmetical mean
between any two quantities with which it forms a straight row or
column.
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With these facts in view a magic square may now be constructed
as shown in Fig. 225,

Let x, representing the least quantity, be placed in the middle
upper cell, and x +- y in the lower right-hand corner cell, ¥ being
the increment over x.

Since x -+ ¥ is the mean between x and the quantity in the
left-hand central cell, this cell must evidently contain » 4 2y,

Now writing # b 7 in the lower left-hand corner cell, {con-
sidering # as the increment over ) it follows that the central
right-hand cell must contain & 4- 29,

Next, as the quantity in the central cell in the square is a mean
between x + 2y and » 4 2o, it must be filled with x + 2+ v It
now follows that the lower central cell must contain x -4 2v - 2y,
and the upper left-hand corner cell » + 2v 4 4, and finally the
upper right-hand corner cell must contain & -+ v -} 2y, thus com-
pleting the square which necessarily must be magic with any con-
ceivable values which may be assigned to x, », and 3.

We may assign values to x, », and y which will produce the
numbers I to g inclusive in arithmetical progression. Evidently x
must equal 1, and as there must be a number 2, either » or y must
equal 1 also.

Agsuming yu=x 1, if =1 or 2, duplicate numbers would
result, therefore o cannot be less than 3.

Using these values, viz.,, v = 1.y == 1 and v == 3. the familiar
3 X 3 magic square shown in Fig 226 is produced.

Although in Fig. 226 the series of numbers used has an initial
number of 7, and also a constant mcrement of 1, this is only an
accidental feature pertaining to this particular square, the real fact
being that a magic square of 3 X 3 is always composed of three sets
each of three numbers. The difference between the numbers of
each trio is uniform, but the difference between the last term of one
trio and the first term of the next trio is not necessarily the same as
the difference between the numbers of the trios.

For example, if v+ =2, y = 5 and v = &, the resulting square
will be as shown in Fig. z27.
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The trios in this square are as follows:

2 e T e 12
10— 15— 20
18 —23—28

The difference between the numbers of these trios is y =75,
and the difference between the hemologous numbers is v = &.

A recognition of these different sets of increments is essential
to the proper understanding of the magic square. Their existence
is masked in the 3 X 3 square shown in Fig. 226 by the more or less
accidental quality that in this particular square the difference be-
tween adjacent numbers is always 1. Nevertheless the square given
in Fig. 226 is really made up of three trios, as follows:

Ist trig 1 —2— 3
2d Y 4—5—6
3d " 789

in which the difference between the numbers of the trios 1s y =1,

Having thus acquired a clear conception of the structure of a
3 X 3 magic square, we are in a position to examine a g X ¢ com-
pound square intelligently, this square being only an expansion of
the 3 X 3 square, and governed by the same counstructive rules.

Referring to Fig. 229 the upper middle cells of the nine sub-
squares may fArst be filled, using for this purpose the terms, x, #, and
5. Using these as the initial terms of the subsquares the square may
then be completed, using y as the increment between the terms of
each trio, and # as the increment between the homologous terms of
the trios. The completed square is shown in Fig, 228, in which the
assignment of any values to x, v, v, t and 5, will yield a perfecs,
compound G X g sguare.

Values may be assigned to &, v, v, f and s which will produce
the series 1 to 81 inclusive. As stated before in connection with
the 3 X 3 square, ¥ must naturally equal 1, and in order to produce
2, one of the remaining symbols must equal 1. In order to avoid
duplicates, the next larger number must at least equal 3. and by
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the same reason the next must not be less than ¢ and the remaining
one not less than 27. Becanse 14 I -+ 3+ 9 27 = 41, which
is the middle number of the series 1 — 81, therefore just these
values must be assigned to the five symbols, The only symbol
whose value is fixed, however, is x, the other four symbols may have
the values 1 — 3 —q or 27 assigned to them indiscriminately, thus
producing ali the possible variations of a ¢ X g compound magic
square.

If # 15 first made 1 and y = 2, and afterwards y is made 1 and
¥ = 2, the resulting squares will be simply reflections of each other,
efc. Six fundamental forms of g X g compound magic squares
may be constructed as shown in Figs. 230, 231, and 232.

Only six forms may be made, becatse, excluding a whose value
is fixed, only six different couples may be made from the four re-
maining symbols. Six cells being determined, the rest of the square
becomes fixed.

These squares are arranged in three groups of two each, on
account of the curious fact that the squares in each pair are mu-
tually convertible into each other by the following process:

1 the homologous cells of each 3 X 3 subsguare be taken in
order as they oceur in the g X g square, a new magic 3 X 3 square
will result. And if this process is followed with all the cells and
the resulting nine 3 X 3 squares are arranged in magic square
order a new ¢ X g compowid square will result.

For example, referring to the upper square in Fig. 230, if the
numbers in the central cells of the nine 3 X 3 subsquares are ar-
ranged in magic square order, the resulting square will be the
central 3 X 3 square in the lower 5 X 9 square in Fig, 230. This
law holds good in each of the three groups of two squares (Figs.
230, 231 and 232) and no fundamental forms other than these can
be constructed.

The question may be asked: How many variations of g X g
compound magie squares can be made? Since each subsquare may
assume any of eight aspects without disturbing the general order of
the complete square, and since there are six radically different, or
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fundamental forms obtainable, the number of possible variations
is 6 8!

We will now notice the construction of a 4 X 4 magic square
as represented in Fig. 233. From our knowledge of this magic
square we are enabled to write four equations as follows:

tdo4+n-+d=>5

By inspection of Fig, 233 it 13 seen that the sum of the initial
terms of these four equalions equals S, and likewise that the sum

a|a|cia 2 g LAEA A PR VEY P

g|4a |a|m L4 Eleysts saler| 7]

£ |e 5 g REAEA R 15| s0

[ T -2 4 § ‘é ¢ g ? ] 4 g | 76
Fig. 233. Fig. 234. Fig. 235 Fig. 236

of their final terms also equals S, Hence A4+-s4 04 p= 5. It
therefore follows:

{(1st) That the sum of the terms contamned in the inside 2 X 2
square of a 4 X 4 square is equal to S.

{2d) Because the middie terms of the two diagonal columns
compose this inside 2 X 2 square, their end terms, or the lerms in
the four corner cells of the 4 X 4 square must also equal 5, or:

etdAt+y=S

{3d) Because the two middle terms of each of the two inside
columns {either horizontal or perpendicular) also compose the cen-
tral 2 X 2 square, their four end terins must likewise equal S,

We may also note the following equations:

bt+etoetar=15
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therefore
at+d=v-tx

which shows {4th) that the sum of the terms in any two contiguous
corner cells is equal to the swin of the terms n the two middle cells
in the opposite outside column.
Because
gt+h+untmmy
and
ot+ht+utp=15

it follows that

or, (5th) that the sum of the two end terms of any inside column,
{either horizontal or perpendicular) is cqual to the sum of the two
middie terms in the other pavallel coluann,
Since
t4o+ntd=5
and
ht+o+n+4pm=S
therefore

t+d=h+p

or (6th) the sim of the two end terms of a dicgonal column is equal
fo the sum of the two inside terms of the other diagonal column.

These six laws govern all 4 X 4 magic squares, but the regu-
lar or associated squares also possess the additicnal feature that
the sum of the numbers in any two cells that are equally distant
from the center and symmetrically opposite to each other in the
square equals 5/2.

Squares of larger dimensicns de not seem to be reducible to
laws, on account of their complexity.

NOTES ON NUMBER SERTES USED TN THE CONSTRUCTION OF
MAGIC SQUARES.

It has long been known that magic squares may be construct:d
from serics of numbers wlhich do not progress in arithmetical order.
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- Experiment will show, however, that any haphazard series cannot
be nsed for this purpose, but that a definite order of sequence
is necessary which will entail certain relationships between different
members of the series. It will therefore be our endeavor to deter-
mine these relationships and express the same in definite terms.
Iet Fig. 237 represent a-magic square of 4 4. By our
rule No. 4 it is seen that “the sum of the terms in any two con-
tiguous corner cells is equal to the sum of the terms in the two
middle cells in the opposite outside column.” Therefore in Fig.
237, a+d=v+ s and it therefore follows that e —v=s5—d.
In other words, these four quantities form a group with the inter-

al|ldjecl & a—v =g =2 A=y =5 = [ T
] oo [

gla|r 7 7 l o l-—o=r_-g
[l [ oo

mplre Lo | @ ~ s A V. ]
1 1t [

Ziv|s |# z ¢ & F 4

Fig. 237, Fig. 238 Fig. 230. Fig. 240

relationship as shown. By the same rule (No. 4) it is also seen
that ¢ +¢t. : I+ p, and hence also, a-— 1= p — ¢, giving another
group of four nnmbers having the same form of interrelationship,
and since hoth groups have “a" as an initial number, it is evident
that the incresment used in one of ihese groups must be different
from that used in the other, or duplicate numbers would result. It
thercfore follows that the numbers composing a magie square are
not made up of a single group, but necessarily of more than one
group.

Since the term "a” forms a part of two groups, we may
write both groups as shown in [Fig. 238, one horizontally and the
other perpendicularly,

Next, by rule No. 5, it is shown that “the sum of the two end
terms of any fiside column {etther horvizontal or perpendicular) is
equal to the sumt of the two middle terms in the other parallel col-
w1t therefore followsthat v+ b~k f-corv - o =%k b.
Using the term # as the initial number, we write this series perpen-
dicularly as shown in Fig, 230. In the same way it is seen that
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l4g=n-4a, or I—o=n—g, thus forming the second hori-
zontal column in the square {Fig. 240}, Next p+m=h-+4 & or
p—Fk =h-—m, forming the third horizontal column and in this
simple manner the square may be completed as shown in Fig. 241,

It is therefore evident that a 4 X 4 magic square may bhe
formed of any series of numbers whose interrelations are such as
to permit them to be placed as shown in Fig. 2471,

The numbers 1 to 16 may be so placed in a great variety of
ways, but the fact must not be lost sight of that they only inciden-
tafly possess the guality of being a single series in straight arith-
metical order, being really composed of as many groups as there
are cells in a column of the square. Unless this fact is remem-
bered, a clear conception of magical series cannet be formed.

In illustration of the above remarks, three diagrams are given
in Figs, 242-244. Tigs. 242 and 243 show arrangements of the

=¥ =5 - S efad ok J o= om R 2 -9 = 7-t%
T [ S T [ [ [ T
f—o=2-g f—é:——;*d’ 3 =5 =i JO— IS = 2 =28
T oo h [ | EooRoom
pmlmh o I RN A—5 =tb-t5 FE= N = B=iF
[ T T [ b 1 [ T
F—bme -l PE == T 08 § —Falg-rd 2o-ry=dimd0
Fig. 241. Fig. 242, Fig. 243. Tig. 244

numbers 1 to 16 from which the diverse squares Figs. 245 and 246
are formed by the usual mmethod of construction.

Fig. 244 shows an irregular series of sixteen nuwmbers, which,
when placed in the order of magnitude run as follows:

2-7-Q-10-11-12-14-15-17-18-10-20-21-206-30-33

The magic square formed from this series is given in Fig. 247.

T the study of these munber series the natural guestion presents
itself ; Can as many diverse squares be formed from one series as
from another? This question opens up a wide and but little ex-
plored region as to the diverse constitution of magic squares. This
idea can therefore be merely touched upon in the present article,
examples of several different plans of construction being given in
illustration and the field left at present to other explorers,

Three examples will be given, Fig. 245 being what is termed
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an associated square, or one in which any two numbers that are
diametrically opposite and equidistant from the center of the square
will be equal in summation to any other pair of numbers so
situated. The second, Fig. 246, is a square in which the sum
of every diagonal of the four sub-squares of 2 X 2 is equal, and
the fourth, Fig. 248, a square 1n which the pairs of numbers having
similar sununations are arranged symmetrically in relation to a
perpendicular line through the center of the square,

Returning now to the question, but little reflection is required
to show that it must be answered in the negative for the following
reasons, I7ig. 247 represents a magic square having no special
qualities excepting that the columns, horizontal, perpendicular and
diagonal, all have the same summation, viz., 66, Henece any series

J o\ tairs) & P VPR 2 (27 |28 | g L |6 |6
S| s s |26 5|3 26|12\ 2 | 1o FIAVAR IR
2l7ie ¥ IFLD | b | A SE B |25 |22 72|50
3|2 |2 |8 gz |#|es 26| 2 | 7 a0 28|29 |
g, 245. Fig. 246, Fig. 247. Fig. 248

of numbers that can be arranged as shown in Fig, 241 will yield
magic squares as outlined. But that it shall also produce squares
that are associated, may or nmay not be the case accordingly as the
series may or may not be capable of still further arrangement,
Referring to Fig. 237, if we amend our definition by now call-
ing it an associated square, we must at once introduce the following

continuous equation:
a+y=h+o=t+d=n+k=bts=ct+v=g+p=m+i,

and if we make our diagram of magic square producing numbers
conform to these new requirements, the number of groups will at
once be greatly curtailed.

The multiplicity of algebraical sigus necessary in our amended
diagram is so great that it can only be studied in detail, the complete
diagram being a network of minus and equality signs.

The result will therefore only be given here, formulated in the



A MATHEMATICAL STUDY OF MAGIC SQUARES, 141

following laws which apply in large measure to all associated
squares.

1. Associated magic squares are made of as many series or
groups of numbers as there are cells in a column,

I1. Each series or group is composed of as many numbers as
there are groups,

I11. The differences between any two adjoining numbers of a

F—sAmrg - 28 3|3z |37 |28
] | 1 1
G ym s =29 28|35 |37 | 4
'3 [ '} L}
2/-3/m b= b b | 2P| t4 ) 2/
[ |
22—.52-.3/7-4; 22 /3|44 |7
Fig. 240. Fig. 230

series must obtain hetween the corresponding numbers of ali the
sertes.

IV. The initial terms of the series compose another series, as
do the second, third, fourth terms and so on.

V. The differences between any adjoining numbers of these
secondary series must also obtain hetween the corresponding terms
of all the secondary series.

7 oy oy o 43 75| 38| 7 |24 27

I A /] 20 AF[ L3y | 24| 22

r5 28 2r 24 27 0| & |27 |ox|az

2z 25 28 3/ B4 20|s8 |32 28| 7

25 3z 35 38 4 r5 28 |4t & |17
Fig. 251. Fig. 232,

The foregoing rules may be illustrated by the series and asso-
ciated square shown in TFigs. 242 and 245,

Following and consequent upon the foregoing interrelations
of these numbers is the remarkable quality possessed by the asso-
clated magic square producing serics as follows:

If the entire series is written out in the order of magnitude and
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the differences between the adjacent numbers are written below,
the row of differences will be found to be geometrically arranged
on each side of the center as will be seen in the following series
taken from Fig. 249.

3-4-13-14-18 19-21-22-28-29-31-32-36-37-46-47
1 9 I 4 1 2 1(6)01 2 1 4 1 g 1

In the above example the number 6 occupies the center and the
other numbers are arranged iu symmetrical order on each side of it.
It is the belief of the writer that this rule applies to all associated
squares whether odd or even.

The following example will suffice to illustrate the rule as
applied to a 5 X § magic square, Fig. 251 showing the serics and
Fig. 252 the square.

I.4.7.8.10.11.13.14.15.17. 18,20, 21,22, 24,25 .27.28.20.31.32.34 . 35. 38 .41
331212'{I2I21|1212IIQI2133

The diagram shown in Fig. 253 is given to impress upon the
reader the idea that a natural series of continuous numbers may
be arranged in a great varicty of different magic square producing
series. A perfect ¢ X g square will be produced with any con-
ceivable values that may be assigned to the symbols ¢, b, ¢, d and g.
used in this diagram. 1f the square is to be normal we must assign
the numbers 1, 1, 3, 9. 27 for these symbols, and @ must equal 1. It
is then evident that for 2 there is a choice of four cells, as this num-
ber may be eithera 4+ b, a4 ¢, a + dor e+ g. Selecting a 4- b for
2, makes b = 1. There is then a choice of three for 4, and for
this number we will choose a 4 &, making d = 3. A choice of
two, (e~ g and a4 ¢) now remains for 10. Selecting a+ g,
{and thus making g = g) 28 becomes the fixed value of a—+ ¢,
giving the value of 27 to ¢. It is thus evident that after locating
1 in any cell (other than the central cell) we may then produce at
will (4 X 3 X 2 =) 24 different g 3 9 magic squares. Neverthe-
less, each of these twenty-four squares will be made on exactly
the same plan, and using the same breakmoves; the variations,
radical as they may appear tc be, are only so because different
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series of the same numbers are employed, of which series, it has
been shown, there are at least twenty-four,

If the reader will take Fig. 253 and fill in number values,
making “B"” (successively) = 3, 9, and 27, he will acquire a clear
idea of the part taken in magic squares by the series conception.

The work of determining the possible number of g X 9 magic
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Fig. 253.

squares is now greatly simplified, for all elements are thus de-
termined saving ome, L. e., the mumber of possible modes of pro-
gression.

1 may be located in any of 8o cells and progress may be made
in x ways, and 24 variants may be constructed in each case. There-
fore, the possible number of different g 3 g squares will be at least
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8% X 24 X ¥ = 19202,

A single example will serve to illustrate the possibilities open
to x, the numerical value of which will be left for the preseut for
others to determine. As previously given, let

=1
bowox
d= 3
i o= 0
=27

Then Fig. 254 will represent a X ¢ square based on the
arrangement of symbols given in Fig. 253.

z2olrsl\as|20|6s |24 |85|52 |62

F2a2/9 (34|28 || 27|64 | 248
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S s |FIT| 1|5 | e b B3| S0|re
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Fig. 251

Considering the numbers 1 to 81 to be arranged in arithmetical
order the construction of this square must be governed by the fol-
lowing rule: '

Regular spacing: Three successive cells in upward right-hand
diagonal.

Ereakmoves between

3 and 4
6 v 7 | Three cells down and one to left.
g " 0o {Extended knight's move.)

1z " agete
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and between

27 and 28
54 " 5% two cells to the right.
g1 ¢ 1

In fact, however, the square is built up by the common rule,
viz.:

Regular spacing: Nine successive cells in upward right-hand
diagonal, and ol breakmoves, two cells to the right, the numbers
T to 81 being arranged in the following series:

I.2.3 28.29.30 35.56.57
4.5.6  31.32.33  58.59.60
7.8.9 34.35.360 61.62.03 ctc., ete.

As shown above, the numbers 1 to 81 may be arranged in at
least twenty-four of such magic square producing series, thus giving
twenty-four different squares, by the same method of progression,
and using the same breakmoves,



CHAPTER VL

MAGICS AND PYTHAGOREAN NUMBERS.

“T have compiled this discourse, which asks
for your consideration and pardon not only be-
cause the matter itself is by no means easy ta
be handled, but also because the doctrines herein
contained are somewhat contrary to those held
by most of the Platonic philosophers.” Plutarch.

HE mysterious relationships of numbers have attracted the

minds of men in all ages. The many-sided Franklin, whose zooth
anniversatry the philosophical, scientific, and literary worlds have
recently celebrated, used to amuse himself with the construction
of magic squares and in his memoirs has given an example of his
skill in this direction, by showing a very complicated square with
the comment that he believes the same to be the most magical magic
square yet constructed by any magician.

That magic squares have had in centuries past a deeper mean-
ing for the minds of men than that of simple mathematical curios
we may infer from the celebrated picture by Albert Diirer entitled
“Melancolia,” engraved in 1514. The symbolism of this engraving
has interested to a marked degree almost every observer. The figure
of the brooding genius sitting listless and dejected amid her un-
completed labors, the scattered tools, the swaying balance, the flow-
ing sands of the glass, and the magic square of 16 heneath the bell,
~-these and other details reveal an attitude of mind and a connection
of thought, which the great artist never expressed in words, but
left for every beholder to interpret for himself.

The discovery of the arrangement of numbers in the form of
magic diagrams was undoubtedly known to the ancient Egyptians



BMAGIC SQUARES AND PYTHAGOREAN NUMEERS. 147

and this may have formed part of the knowledge which Pythagoras
brought back from his foreign travels, We have no direct evidence
that the Pythagorean philosophers in their studies of the relation-
ship of numbers ever combined them into harmonic figures, yet ths

MELANCHOLY,

supposition that they did so is not at all improbable.  Such diagrams
and their symbolic meanings may well have formed part of the
arcana of the esoteric school of Pythagoras, for similar facts were
accounted by ancient writers as constituting a part of the aporrheta
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of the order and the story is told of an unworthy disciple who re-
vealed the secret of the construction of the dodecahedron inscribed
within a sphere, this being a symbol of the universe.

Among the best expositions of the Pythagorean philosophy are
sections of the “Timeus” and “Republic” of Plato. These dia-
logues were written after Plato’s return from Magna Graecia, where
from contact with Archytas of Tarentum and other philosophers,
he imbibed so much of the Ttalian school that his whale system of
philosophy became permeated with Pythagorean ideas., It is even
suggested that he incorporated into these dialogues parts of the
lost writings of Philolaus, whose works he i5 known to have pur-
chased. No portions of the dialogues named have been more
puzzling to commentators than the vague references to different
numbers, such as the number 729, which is chosen to express the
difference between the kingly man and the tyrant, or the so-called
number of the State in the “Republie,” or the harmonic number of
the soul in the “Timzus” of which Plutarch said that ‘it would be
an endless toil to recite the contentions and disputes that have from
hence arisen among his interpreters.” Either our text of these pas-
sages is corrupt or Plato is very cbscure, throwing out indirect hints
which would be intelligible only to those previously informed. Plato
states himself in the “Phaedrus™ that “all writings are to be regarded
purely as a means of recollection for him who already knows,” and
he, therefore, probably wrote more for the henefit of his hearers
than for distant posterity.

It is upon the principle of a magic square that I wish to inter-
pret the celebrated passage in the “Republic” referring to the number
729, proceeding from this to a discussion of certain other numbers
of peculiar significance in the Pythagorean svstem, My efforts in
this direction are to be regarded as purely fanciful ; the same may be
said, however, of the majority of other methods of interpretation.

The passage from the “Republic” referred to (Book I1X, § 587-8,
Jowett’s translation) reads as follows:

Socrates. "And if a person tells the measure of the interval
which separates the king from the tyrant in truth of pleasure, he
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will find him, when the multiplication is completed living 72q times
more pleasantly, and the tyrant more painfully by this samme interval.”

Glaycon, “What a wonderful calculation.”

Socrates. “Yet a true ealeulation and a number which closely
concerns liuman life, if hunan life is concerned with days and nights
and months and years.”

The number 7zg is found to be of great importance all through
the Pythagorcan system. Plutarch states that this was the number
belonging to the sun, just as 243 was ascribed to Venus, 81 to Mer-
cury, 27 to the moon, g to the earth, and 3 to Antichthon (the earth
opposite to ours}. These and many similar numbers were derived
frcm one of the progressions of the Tetractys,—r1:2::4:8 and 1:3
:g:27. The figures of the aboeve proportions were combined by
Plato into one series, 1. 2, 3, 4, 9. 8, 27. {Timzeus, § 35). Plutarch
in his “Procreation of the Soul,” which is simply a commentary
vpon Plato’s “Timaeus,” has rep-
resented the numbers in the form
of a triangle; the interior nun-
bers, 5, 13, and 3§, representing
the sums of the opposite pairs,
were also of great importance.

The deep significance of the
Tetractys in the system of Py-

o i "
thagoras may be inferred from 8 35 7

a fragment of an oath contained Fie oc
in the “Golden Verses.” =
Nai pé rév duérepov Yuyd mapabivra rerpucrdv

TMaytv, devdou diicews flduar’ éxovrar.

“¥ea, by our Tetractys which giveth the soul the fount and
source of ever flowing nature!”

Odd numbers were especially favored by the Pythagoreans
and of these certain ones such as 3 and its higher powers were
considered to have a higher significance than others and in this way,
perhaps, arose the distinction between expressible and inexpressible
or ineffable numbers (dplfust pyroi wat difyre).  Numbers which
expressed some astronomical fact also held high places of honer,
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as may be seen from a statement by Plutarch (Joc. ¢it.) in refercnce
to the Tetractys. “Now the final member of the series, which is
27, has this peculiarity, that it is equal to the sum of the preceding
numbers (142+4-3444948) ; it also represents the periodical num-
ber of days in which the moon completes her monthly course; the
Pythagoreans have made it the tone of all their harmonic intervals,”
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Fig. 236.

This passage indicates sufficiently the supremec importance of
the number 27.

If we construct a magic square zy7)27 upon the plan of a
checker-board—arranging the numbers 1 to 729 first in numerical
order, then shifting the g largest squares (939} into the positions
indicated in the familiar 3X3 square, repeating the process with
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the subdivisions of the ¢><g squares and so on down—we will arrive
at the following combination.!

It will be noted that we have 365 white squares or days and
364 dark squares or nights—a veritable “checkerboard of nights and
days.” The number 365, the days of the solar year, very appro-
priately occupies the centre of the system. The columns, hori-
zontals, and diagonals of the central square 3)¢3 foot up 1095, or
the days of a 3 year period, those of the larger center square 9X9g
foot up 3285 the days of a g year period, while those of the entire
combination 27Xz27 foot up ¢855,2 the days of a 27 year period,—
in other words, pericds of years corresponding to the Tetractys
I, 3. 9, 27. We may with safety borrow the language of Plato and
say that the above arrangement of numbers “is concerned with days
and nights and menths and years.”

The interpretation of the cther passage referred to in the “Re-
public”—the finding of the pumber of the State—(Book VIII,
§ 540) has been a subject of the greatest speculation and by con-
sulting the various editions of Plato it will be found that scarcely
any two critics agree upon a solution.® As Jowett remarks, it is
a puzzle almost as great as that of the Beast in the Book of Reve-
lation. Unfortunately we have no starting-point from which to
begin our calculations; this and the very uncertain meanings of
ntany of the Greek terms have caused many commentators to give
up the solution of the problem in sheer despair. Aristotle, who was
a hearer of Plato’s, writes as if having a full knowledge of the
mystery ; Cicero, however, was unable to solve the riddle and his
sentiment became voiced in the proverb aumeris Platonicis nihil
obscurius.

By taking a hint from our magic square and starting with the

! This method of constructing composite magic squares is, so far as 1
lcnow, original with the writer. It bears some resemblance to the method of
Schubert (see “Compound Magic Squares,” p. 44); the numbers of each
square, however, increase in periods of threes instead of by seguence.

*Not only the perpendiculars, horizontals, and diagonals of this large
square foot up g8ss, but there are an almost indefinite number of zig-zag
lines, which give the same footing.

¥ Schleiermacher, Donaldson, and Schneider suggest 216, and much may
be satd in faver of this number. Jowett gives 8000 as the possible solution.
Others suggest 951, 5040, 17,500, 1728, 10,000, etc.
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number 27, I believe we may arrive at as good a solution of the

problem as any that T have scen suggested. The following inter-

pretation of the Greek terms is offered.

aidfoe durduevei e Kal
SupaaTevducte

peir arosTdor

rérrapar di fpovy JaJoi-
izt

bpasivruy T noi Avo-
powoviTey nal avfevrue

the square of the nom-
ber times its root,

increased by thrice the
first terms {of the
Tetractys}

aod four times the

whole series
af numbers unlike yet
bearing the same ra-

27X P27 2187

(14+2+344t0iX3= 57

{1-p2+4344+o4-B4+27} X 4= 216

tio whether increas
ing or decreasing

ket gfvdriuy

(i, e. 12248 oy Brgeoa:y It may alsa refer
to the ascending and descending figures
of the triangle. 8, 4, 2, 1, 3.0, 27)
makes the sam  com-
mensurable and ex-
pressible in alt its
parts,

widvre Tpoadyopa kel prrd
mpic didgha amippuay

sum== 2460

(i e, 2900 98 easily divisible by 1, 2,3, ¢, 5.
B, 1o, 12 ete)

p Emisprrog mbudv, this sum increased by

P 2400 13 = 3280
meprdde ovivpeg and adding 3 32804 §m= 3285

tpic aigpbelr is multiplied by 3 3285% 3= 9855

This solution of the problem, g8z5, it will be noted. brings us
again but by a different route to the magic number of aur large
square, The second part of the passage contains a description of

the nwmber by which the above calculation may be verified,

Gio dppoviag mapéxerar (the pumber) yields

two harmonic parts,

v v logv iodeeg, one of which is a

sguare 3K 37 c
Exarin Teganrisr, multiplied by 100: 09X 100%= QOO
iy 8 looping piw, the other has one side

equal to the square 3

and the other ohlong

14 mpupinee 82, X 7985= Hgzy

surmz== gfgg
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The remainder of the passage describes the length of the ob-
long which we have shown above to be 2085:

fxardy pdv apflucw dmd (the oblong) is 10
degpitpeny tepridog, times the side of a
rectaogle having di-

agonals of 5. 100X 3= 300

[i. & having sides of 3 and 4.}

onraw deopévor f14; fxdo. less of one each of the

L, expressible parts, i. e.
4 and 5
appfren 3¢ Jveiv, and z of the inexpressi- Joo—{5-+q4F+343)= =zBs
ble
fkatdy 68 xifur rpeddos plus 1oo times the cube
of 3 (3% ro0== z700
sum== 3085

Plato states that the number of the State “represents a geo-
metrical figure which has control over the good and evil of births,
For when your guardians are ignorant of the right seasons and unite
Lride and bridegroom out of due time, the children will not be
goodly and happy.” The number 98g5, expressing a period of
27 years, might thus represent the dividing line between the ages
when men and women should begin to bear children to the State,«
20-27 vears for women, 27-34 years for men. (See also “Republic,”
Book V, §460). Aristotle in his “Politics” (V, 12. 8) says in
reference to the number of the State that when the progression of
number is increased by ¥/, and 3 is added, 2 harmonies are produced
giving a solid diagram. This, as may be seen from our analysis of
the first part of the passage, may have reference to the number
3285, which, being represented by 32365, may be said to have the
dimensions of a solid.

In his “Reflections on Magic Squares” Dr. Carus gives some
very striking examples of the relationship between magic squates
and the musical figures of Chladni. T would like to touch before
concluding upon a closely related subject and show certain connec-
tions which cxist between the magic square, which we have con-
structed, and the numbers of the Pythagorean harmonic scale, This
scale had, however. more than a musical significance among the
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Greck philosophers; it was extended to comprehend the harmony
of planetary movements and above all else to represent the manner
in which the "soul of the universe” was composed. It is especially
in the lafter sense that Plate employs the scale in his “Timzeus.”

In a treatise by Timzus the Locrian upon the “Soul of the
World and Nature,” we find the following passage: “Now all these
propottions are combined harmonically according to numbers, which
proportions the demiurge has divided according to a scale scien-
tifically, so that a person is not ignorant of what things and by what
means the soul is combined; which the deity has not ranked after
the substance of the body. ..., but he made it older by taking the
first of unities which is 384. Now of these the first being assumed
it is easy to reckon the double and triple; and all the terms, with
their complements and eights must amount to 114,693." (Trans-
lation by Burge.)

Flato’s account of the combination of the soul is very similar
to the above, though he seems to have selected 192, (384/2) for the
first number. Plutarch in his commentary makes no mention of
Timaeus, but states that Crantor* was the first to select 384, for the
reason that it represented the product of 8°)X6, and is the lowest
number which can be taken for the increase by eighths without
leaving fractions. Another very possible reason, which 1 have not
seen mentioned, is that 384 is the harmonic ratio of 27%/2 or 364.5,
# number which expresses very closely the days of the year,

2431256 ::364.51384.

The proportion 243:256(3%:4*) was employed by the Pyth-
agoreans to mark the ratie® which two unequal semitones of the
harmonic scale bear to one another,

Batteux has calculated the 36 terms of the Pythagorean scale
starting with 384 and his series must be considered correct, for it
fulfils the conditions specified by Timaus,~—the numbers all footing

* Crantor lived nearly 100 years after Tim=us the Locrian. The treatise
upon the “Soul of the World and Nature,” which bears the latter’s name
probably belongs to a much later period.

*Tor further references to this ratio see Plato’s “Timzus,” § 36, and
Plutarch’s “Procreation of the Soul,” § 18,
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up 114,695: A few of the numbers of this harmonic scale marking
the “first unity” and several of the semitones will be given.

If E 384
15t octave 3 C 486
I
L F 729 (For Batleux's ful]l series and
e 972 method of calculation the
znd octave 1 F 1458 reader is referred to Burge's
translation of Plato Vol. VI
c 1044
p. 171).
ard octave % B flat 2187
4th octave B flat 4374

By referring to our magic square it will be noted that the first
of unities,” 384. constitutes the magic number of the small 3 X 3
square beginning with the number loo. If we arrange the magic
numbers of the 81 squares (33} in the order of their magnitudes
we find that they fall into g series of g numbers, each series beginning
as follows:
I I ITIT v v VI YII VIII IX
7 330 573 816 105G 1jo2 1545 1788 2031

The intervals between these series are worthy of note.

INTERVALS.
Between I and I1 243 the first member of the ratio 243:256.
" I I 486 C of the 1st octave
" I IV g0 F ' 't o1st
& IV g7z C " v zond
“ I VI 1458 F © ¢ and
" I IX 1944 O ogd v

If we arrange the magic numbers of the large squares (9Xg)
in the same way, it will be found that they fall into 3 series of 3
numbers, each series beginning
I It InI
1017 3204 5391
Interval between I and II = 2187 B-flat of the 3rd octave.
u 41 Il = 4374 DB-fat v v gk v

Numerous other instances might be given of the very intimate
connection between magic squares and wvarious Pythagorean num-
bers, but these must be Jeft for the curious-minded to develop for
themselves, Such connections as we have noted are no doubt in
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some respects purely accidental, being due to the intrinsic harinony
of numbers and therefore not implying a knowledge by the ancients
of magic squares as we now know them. The harmonic arrangement
by the Greeks of numbers in geometrical forms both plane and
solid may, however, be accepted, and Plato’s descriptions of various
numbers obscure and meaningless as they were to succeeding gen-
erations, may have been easily comprehended by his hearers when
illustrated by a mathematical diagram or model.®

Difiercnces between the methods of notation in ancient and
modern times have necessarily produced differences in the concep-
tion of numerical relations. The expression of numbers among the
Greeks by letters of the alphabet was what led to the idea that every
name must have a numerical attribute, but the connection of the
letters of the name was in many cases lost, the number being re-
garded as a pure attribute of the object itself. A similar confusion
of symbols arose in the representation of variocus concepts by geo-
metrical forms, such as the five letters of YT'EIA and the symboliza-
tion of health by the Pythagoreans under the form of the pentalpha
or five-pointed star.

It was the great defect of the Greek schools that in their search
for truth, methods of experimental research were not cultivated.
Flato in his “Republic” (Book VII, § 530-531) ridicules the em-
piricists, whe sought knowledge by studying the stars or by com-
paring the sounds of musical strings, and insists that no value is
to be placed upon the testimony of the senses. “Let the heavens
alone and train the intellect” is his constant advice.

If the examples set by Pythagoras in acoustics and by Archi-
medes in statics had been generally followed by the Greek philos-
ophers, our knowledge of natural phenomena might have been ad-
vanced a thousand vears. But as it happened there came to prevail
but one idea intensified by both Plato and Aristotle, and handed
down through the scholastics even to the present time, that knowl-

®The deseription of the number of the State in the "Republic” and that
of the Soul in the “Timaxus” render such a mode of representation almost
necessary. Plutarch (“Procreation of Soul,” § 12} gives an illustration of an
harmonic diagram §X7 containing 33 small squares “which comprehends in
its subdivisions all the proportions of the first concords of muosic”
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edge was to be sought for only from within, Hence came the flood
of idle speculations which characterized the later Pythagorean and
Platonic schools and which eventually undermined the structure of
ancient philosophy. DBut beneath the abstractions of these schools
one can discover a strong undercurrent of truth. Many Pythago-
reans understood by number that which is now termed natural law,
Such undeoubtedly was the meaning of Philolaus when he wrote
“Number is the bond of the eternal continuance of things,” a senti-
ment which the modern physicist could not express more fittingly.

As the first study of importance for the youth of his “Republic”
Plato selected the science of numbers; he chose as the second ge-
ometry and as the third astronomy, but the point which he empha-
sized above all was that these and all other sciences should be
studied in their “mutual relationships that we may learn the nature
of the bond which unites themn,” “For only then,” he states, “will
a pursuit of them have a value for our object, and the labor, which
might otherwise prove fruitless, be well bestowed.” Noble utter-
ance! and how much greater need of this at the present day with
our complexity of sciences and tendency towards narrow speciali-
zation,

In the spirit of the great master whom we have just quoted
we may comparc the physical universe to an immense magic square.
Tsolated investigators in different areas have discovered here and
there a few seemingly restricted laws. and paying no regard to the
territory heyond their confines, are as vet oblivious of the great
pervading and unifying Bond which connects the scattered parts
and binds them mto one harmonious system. Omar, the astron-
amer-poet, may have had such a thought in mind, when he wrote:

“Yes; and a single Alif were the clue—

Could you but find it—to the treasure-house
And peradventure to the Master too;

Whose sccret presence, throungh ereation’s veins
Running quicksilverlike eludes your pains;” etc.
When Plato’s advice is followed and the “mutual relationships
between our sciences™ are understood we may perchance find this

clue, and having found it be surprised to discover as great a sim-
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plicity underlying the whole fabric of natural phenomena as exists
in the construction of a magic square,

C. A B.

ME. BROWNE'S SQUARE AND LUSUS NUMERORUM.

The 27 X 27 square of Mr. C. A. Browue, Jr. is interesting
because, in additon to its arithmetical qualities commonly possessed
by magic squares, it represents some ulterior significance of our
calendar system referring to the days of the month as well as the
days of the year and cycles of years. It is wonderful, and at first
sight mystifying, to cbserve how the course of naturc reflects even
to intricate details the intrinsic harmony of mathematical relations;
and yet when we consider that nature and purc thought are simply
the result of conditions first laid down and then consistently carricd
out in definite functions of a distinct and stable character, we will
no longer be puzzled but understand why science is possible, why
man’s reason contains the clue to many problems of nature and,
generally speaking, why reason with all its wealth of a prior:
thoughts can develop at all in a world that at first sight scems to be
a mere chaos of particular facts. The purely formal relations of
mathematics, materially considered mere nonentitics, constitute the
bond of union which encompasses the universe, stars as well as
motes, the motions of the Milkky Way not less than the minute com-
binations of chemical atoms, and also the construction of pure
thought in man’s mind.

Mr. Browne's square is of great interest to Greek schoiars be-
cause it throws light on an obscure passage in Plato's Republic, re-
ferring to a magic square the center of which is 365, the number of
days in a year.

The construction of Mr. Browne's square is based upon the
simplest square of odd numbers which is 33<3. DBut it becomes
somewhat complicated by being extended to three in the third power
which is 27. Odd magic squarcs, as we have secn, are built up
by a progression in staircase fashion, but since those numbers
that fall outside the square have to be transferred to their cor-
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responding places inside, the first and last staircases are changed
into the knight's move of the chessboard, and only the middle one
retains its original staircase form. We must construct the square
so that the central figure, which in a 333 square is 5, must always
fall in the central cell. Accordingly, we must start the square
beginning with figure 1 outside of the square in any middle cell
immediately bordering upon it, which gives four starting-points
from which we may either proceed from the right or the left, either
upwards ot downwards which yields eight possibilities of the 333
square. For the construction of his 27>(27 square, Mr. Browne
might have taken any of these eight possibilitfies as his pattern.

3 7 | 1
2|7 )6 4 8 219 | 4 4|82
11952 |91g|5]2]|% 3/715|s817 7|s]5|7]|3
4,98 |8 217 |6 6|1 |8 8 6
7 3 9 9
7 3 9 9
8¢ |4 6 2 6|7 |8 8 |1 (6
gl sz |5 (sl 125|211 3|7 |5 |8|7 7|9 |5{7]|3
61712 8| |4 2194 4|82
3 7 1 1
THE EIGHT POSSIBLE ARRANGEMENTS OF THE 32X 3 MAGIC SQUARE.
Fig. 257.

He selected the one starting on the top of the square and moving
toward the right, and thus he always follows the peculiar arrange-
ment of this particular square. It {s the fourth of the eight arrange-
ments shown in Fig. 274. Any one who will take the trouble to
trace the regular succession of Mr. Browne’s square will find that it
is a constant repetition of the knight’s move, the staircase move
and again a knight’s move on a small scale of 3)X3 which is repeated
on a larger scale 9Xg, thus leading to the wonderful regularity
which, according to Mr. Browne's interpretation of Plato, astonished
the sages of ancient Greece.

Any one who discovers at random some magic square with its
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immanent hatmeny of numbers, is naturally impressed by its ap-
parent occult power, and so it happens that they were deemed super-
natural and have been called “magic.” They seem to be the product
of some secret intelligence and to contain a message of ulterior
meaning. But if we have the key to their regularity we know that
the harmony that pervades them is necessary and intrinsic.

Nor is the regularity limited to magic squares. There are
other number combinations which exhibit surprising qualities, and
I will here select a few striking cases,

If we write down all the nine figures in ascending and descend-
ing order we have a number which is equal to the square of a num-
ber consisting of the figure g repeated g times, divided by the sum
of an ascending and descending series of all the figures thus:

12345678987654321 = 993999999X 999999999 . .
142434445+ 64748494+ B47 46+ 54+ 3241
The secret of this mystericus coincidence is that 11X 11==121;

ITIXTTT==12321; TIIIX1I11—=1234321, etc, and a sum of an
ascending and descending series which starts with 1 is always
equal to the square of its highest number. T-f2--1==2X2; 1424
3+4-+3+2t1==4X4, etc, which we will illustrate by one more
instance of the same kind, as follows:

7777777 X7771777 ]
1+ 24344+5+647+0+5+4+3+4 241

There are more instances of numerical regularities.

1234567654321

All numbers consisting of six equal figures are divisible by 7,
and also, as a matter of conrse, by 3 and 1!, as indicated in the
following list:

rrinan: y=15873
222222 F==31740
333333: 7747619
444444 : 7=03492
5555551 7279365
666666+ 705238
FFITFF L A=11TI1]T
8888RA: »=1206084
999999 : 7==142857
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Finally we will offer two more strange coincidences of n fusus

RUINEF OY U,

oXg+1=1
IX94+2=11
12X g+ 3=1II1I
123 X 9 44 = 1111
1234 X 9+ § — IIIII
12345 X g -+ 6 = 111111
123456 X 9 -+ 7 = 1iII111
1234567 X 9+ &8 = 11111111
12345678 X g 40 == 111131111
123456789 X 9 4+ 1o = ITITITTTLL,

1X841=0¢g
12X 84 2=¢8
123 X 8 4 3 =987
1234 X 8 4+ 4 = 0876
12345 X 8 + 5 = 98765
123456 X 8 + 6 = 987654

No wonder that such strange regularities impress the human
mind. A man who knows only the externality of these results will
naturally be inclined toward occultism. The world of numbers as
much as the actnal universe is full of regularities which can be
reduced to definite rutes and laws giving 1s a key that will unlock
their mysteries and enable us to predict certain results under defi-
nife conditions. Here is the key to the significance of the a priori.

Mathematics is a purely mental censtruction. but its compo-
sition 1s not arbitrary. On the contrary it is tracing the results of
our own doings and taking the consequences of the conditions we
have created. Thongh the scope of our imagination with all its
possibilities be infinite. the results of our construction are definitely
determined as soon as we have laid their foundation, and the actual
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world is simply one realization of the infinite potentialities of being,
Its regularities can be unraveled as surely as the harmonic relations
of a magic square.

Facts are just as much determined as our thoughts, and if we
can but gain a clue to their formation we can solve the problem of
their nature, and are enabled to predict their occurrence and some-
times even to adapt them to our own needs and purposes.

A study of magic sqnares may have no practical application,
but an acquaintance with them will certainly prove useful, if it
were merely to gain an insight into the fabric of regularities of any
kind. P. C.



CHAPTER VII,

SOME CURIOUS MAGIC SQUARES AND COM-
BINATIONS.

MANY curious and interesting magic squares and combinations
have been devised by the ingenious, a selection of which will
be given in the following pages, some of the examples being here
presented for the first tine in print.
The curious irregularities of the 6 X 6 magic squares were re-
ferred to in the first chapter, and many unsuccessful attempts have
been made to construct regular squares of this order. An interesting

F7 A7 ERA RN I sz (as] s |3 |2r|2s

~'/‘3 sFTSE |aF| 5| 7 29|30 ) 4 | 2 | 24|22

r2|\veksy|is|2s| 28 D | ze|r2 |25 2,

o | pao|se|25 27 AR RPN P p-7:]

A2 la2| s ja p2e|2d so|lrs)33las| 5| 7

2alds | g |3 zr|2s /3114 36 Jé: F .6
Fig. 258 Fig. 230,

6 % 6 syuare is illustrated in a work entitled Games, Ancient and
Oriental by Edward Falkener,* and is here reproduced in Fig. 253.
It will be seen however that the two corner diagonals of this square
de not sum 11, but by a transposition of the figures this imper-
fection is corrected in Fig. 259. Other transpositions are also pos-
sible which will effect the same result. The peculiarity of this

* Published by Longmans Green & Co., London and New York, 13g2,
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square consists in its being divided into nine 2 X 2 squares in each
of the four subdivisions of which the numbers follow in arithmetical
sequence, and the 2 X 2z squares are arranged in the order of a
3 X 3 magic square, according to the progressive value of the
numbers 1 to 36, The construction of this 6 X 6 square is regu-
lar only in relation to the totals of the 2 > 2 squares, as shown In
Fig. 260.

Fig. 261 is a remarkable 8 X 8 square which is given on page
300 of the above mentioned book, and which is presented by Mr.
FFalkener as “the most perfect magic square of 8 X 8 that can be
constructed.” Some of its properties are as fcllows:

I. The whole is a2 magic square of 8 X 8,

2. Fach quarter is an associated 4 X 4 square.

3. The sixteen 2 < 2 subsquares have a constant summation

of 130,

s27| rO | 85

w2 | ry |106

sf|ras| 26

Fig. 200.

4. Each quarter contains four 3 X 3 squares the corner numbers
of which sum 130,

5 Any 5 X 5 square which is contained within the 8 X 8 square

has its corner numbers in arithmetical sequence.

A very interesting class of squares i1s referred to in the same
work on pages 337-338 and 33y as follows:

"The Rev. A, H. Frost, while a missionary for many years in
India, of the Church Missionary Society, interested himself in his
leisure hours in the study of these squares and cubes, and in the
articles which he published on the subject gave them the name of
‘Nasik’ from the town in which he resided. He has also deposited
‘Nasik’ cubes in the South Kensington Museum (London) and he
has a vast mass of unpublished materials of an exhaustive nature
maost carefully worked out.
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“Mr. Kesson has also treated the same subject in a different way
and more popular form in the Queen.® He gives them the very
appropriate name of Caissan Squares, a name given to these squares,
he says, by Sir William Joenes,

“The proper name, however, for such sguares should rather be
‘Indian.” for not only have the Brahmins heen known to be great
adepts in the formation of such squares from time immemorial, not
only does Mr. Frost give his an Indian name. but one of these
squares is represented over the gate of Gwalior. while the natives of

s \swlss s | 2 _;éa ERTAS 7 .5;]'.3 sel# |da| 6 |ar
46|24 |27 (aa |op 20 |28 a4 26 |ssfra |59 |se|mw |2
32 I8 [mr |79 |07 105 | 90 oF 7 4zl'/_o vv|2alyy|2z o
g2 | @ 16 |bBylae|rzy 5 43 EFABERREARE A EEYRPAY-FaRT-]
EES o | o |SF gL ra 37| 2 59|« o] 7 G2l o
w8 |22 |25 las PRTY 2438 PR AR VRN PLIIR e P
o | 4o gy |28 |02 w220 g |28 (od |20 |ed |23 |ad| 2/
_49 2B P+ .fe!lxo 7| és ac|dr |38 |23 |25 |28 |25 | 24
Tig, 2611 TFig. 26z

India wear them as amulets, and La Loubére, who wrote in 1603,
expressly calls themn ‘Indian Squares.”

“Tn these Indian squares it is necessary not merely that the
summation of the rows, columns and diagonals should be alike, but
that the numbers of such sgnares shonld be so harimonionsly bei-
anced that the suamnmation of any eight numbers in one direction
as in the moves of a bishop or a knight should also be alike”

An example of one of these squares is given in Tig. 262 and
examination will show it to be of the same order as the " Jaina"
stjuare described by Dr. Carus n a previous chapter (pp. 125 ff.).
but having enlarged characteristics consequent on its increase in

size. Tt will be seen that the extraordinary properties as quoted

* Published in London, Eagland.
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above in jtalics exist in this square, so that starting from any cell
in the square, with a few exceptions, any eight numbers that are
covered by eight consecutive similar moves will sum 260, In
addition to this the numbers in every 2 X 2 square, whether taken
within the square or coustructively, sum 130; thus, 1 4 58 - 16
+55=130 and I -+ 1661 -+ 52 =130, also 1 4+ 58 + 40+ 31
= 130 etc. Furthermore, (as in the Jaina square) the properties
of this square will necessarily remain unchanged if columns are
taken from one side and put on the other, or if they are removed
from the top to the bottom, or wice verse, it being a perfectly con-
tinuous square in every direction.

The wonderful symmetry of this square naturally invites atten-
tion to the method of its construction, which is very simple, as may

/ J £ 4
3 A 2 s

7| | 24| (22

3% Ja 25 27
FauvZ73 W v
2 & 7 5
& |2 foF jla
;T 4 £ s
sale s 3
iF 24 2.4 2/
sz 7|
EY 22 24 24
Fig. 263. Fig. 264.

be seen by following the natural sequence of the numbers 1 to 3z
in Fig. 203 which shows the disposition of the numbers of the first
half of the series. The second half is simply a complementary repe-
tition of the first half. The numbers of this square are arranged
symmetrically in relation to similarly located cells in diagonally
opposite quarters, thus, (referring to Fig. 262) 1 + 64 =z 65 and
4 -+ 61 =z 65 etc.  This feature permits the completion of Fig, 203
by filling in the vacant cells at random with their respective differ-
ences between 65 and the various numbers already entered.

Fig. 264 shows a 4 3 4 square constructed by the same method
and having similar properties, with natural limitations due to its
small size. This square strikingly resembles the Jaina square as
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modified by Dr. Carus (see Fig. zz22, p. 127) the numbers and

arrangement of same in the two corner diagonal columns being

identical in both sguares, while the other numbers are differently

located.

Fig. 265 is an original 8 X 8 square contributed by Mr. L. S.
Frierson, which combines to a limited extent scme of the curious
characteristics of the Franklin and the Jaina or Indian squares. Tt

possesses the following properties:

1. Considered as a whole it is an 8 X B magic square.

2. Each quarter is in itself a magic square.

3. The four central horizontal columns make two 4 X 4 magic
squares.

/|25 fc5|4uf 2 26|55 47 1 i ) pE

58 .64,‘/,7 o gl aa|ss|so ] N,

F7133178| 24|58 |34 |/5 |20 .

2|8 |srl9slss| 7 2|5 y

3|27 S48 4 |28 5|45 <

IF (62|19 |2/ ;57 67| 20|/72 \\ .

FY| 35|14 (22|60 36|73 |2/ -

300G |@d|as|22| T |4% 52 IR 27T

TFig. 26s. Tig. 266,

4. It contains twenty-five 2 X 2 squares, each having a con-
stant summation of I30.

5. It also contains twenty-four 3 » 3 squares, the four corner
cells of which have a constant summation of 130.

0. Any 4 % 4 square has a constant summation of g5zo.

7. In any 5 X 5 square the four corner cells contain numbers

in arithmetical sequence.

. Any rectangular parallelogram which is concentric with

any of the nine subcenters contains numbers in jts corner
cells that will sum 130, excepting when the diagonals of
any of the four subsquares of 4 X 4 form one side of the
parallelogram.
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9. Any oclagon of two cells on a side, that is concentric with
any of the nine subcenters will have a constant summation
of 260,

10. No less than 192 columns of eight consecutive numbers
may be found having the constant summation of 260 as
follows (see Fig. 266):

Horizontal columns ... ii i nn. g

Perpendicular columns ... oo, 8

Perpendicular zig-zags (A to A,) ... .. oiiallL, 8

Herizontal zig-zags (A to AL) ... iiiiiiiin et 8

Corner diagonals ... ... .. oo i, 2

Constructive diagonals (Dto DY oo ool &

Bent diagonals (as in Franklin squares} (T to T, and

T 0 Ta) oo et e et 16

Colurans partly straight and partly zig-zag (as Vto V,) 88

Columns partly diagonal and partly zig-zag {as Pto D)) 32

Double bent diagonal columns (as M 1o N} ........ 10

AMr. rierson has also constructed an 8 X 8 square shown in

Fig. 267, which is still more curious than the last one, in that it

perfectly combines the salient features of the Franklin and the In-

dian squares, viz., the bent and the continuous disgonals, besides

exhibiting meany other interesting properties, some of which may

be mentioned as follows:

I.

2,

3.

4.

Any 2 X z square has a constant summalion of 130, with
four exceptions,

The corner cells of any 3 X 3 square which lies wholly to
the right or left of the axis AB sum 130.

The corner cells of any 2 X 4, 2 X6 or 2 X & rectangle
perpendicular to AR and symmetrical therewith sum 130,
The corner cells of any 2 X 7 or 3 X 6 rectangle diagonal
to AB sum 130, as 1245045+ 23 = 130, 49 + 10 4
19 + 40 = 130 etc., elc.,
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5. The corner cells of any § X § square contain numbers in
arithmetical progression.

6. Any constructive diagonal column sums 260.

7. Any bent diagonal sums 260,

8. Any reflected diagonal sums 260,

{Nore: Reflected diagonals are shown in dotted lines on Fig. 267.)

Dy dividing this sguare into quarters, and subdividing each
quarter into four z X 2 squares, the numbers will be found sym-
metrically arranged in relation to cells that are similarly located in
diagonally opposite 2 X 2 squares in each quarter, thus: 64 + I =
65, 57 + 8 =065 etc.

A

1 ..3‘- ~ T T K
é(‘.‘"'_” 4 |5 |sb|s2 /z.'z /\w do /\{% 9 53|52 \;6
3. \5\‘\6{ GENAH /4 .:J 5o k2/,62 S92 7 N10) 5y |50 L5
ér180| 7| 8 |5 38| 9|48 6al s |6 )sd ﬁ@/ AR
R — > < O
2 :7 Hz|oy /0:)‘5 .r;;l.f/ ,54\5/ .rj;;v £ /zGJ ]
43;4/ |2 4«olgq 2&’%2‘.9 2.;_;,4,9 #J‘(l?) J:}.ié A7 29
‘/‘g___i‘gz" 47| #2{27 g0 13:9_“.;4' 23)“ 45 @@\ d5|3f {26
45 iae|r 7|20 o 7|06 | 25| 32 42 zz)@47 I /za.sy
T '..' ". B ' "\ .
/S ]w f-w; %3 MI.};‘ aF IJJ‘ Py 2@(20/“’ 22 @3 @40
B
Fiz. 267. Fig. 268

Another 8 X & square by Mr. Frierson is given in Fig. 268
which is alike remarkable for ils constructive simplicity and for
its curious properties, Like Fig. 267 this square combines the
principal features of the Indian and the Franklin squares in its
bent and continnons diagonal colunns.

To render its structure graphically plain, the numbers 1 to 32
are written within circles. The numbers in the complete square are
arranged symmetrically in relation to the two heavy horizontal lines
so that when the numbers in the first half of the series are entered,
the remaining numbers may be filled in at random as explained in
connection with the 8 % 8 Indian square (Fig. 263).

Two other examples of the Irierson squares showing inter-
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esting constructive features are given in Figs. 269 and zyo. The
scheme followed in these squares may also be employed in making
magic rectangles, two examples of which are given in Figs. 271
and 272. I[n IMig. 272 the numbers are arranged in the following
series before they are entered in the rectangle:

I . 5.9 .13.1%7.21.25.29

z.6.10.14,18,22.20.30

3.7 .11.15.10.23.27.3[

4.8 . 12.10.20.24.28. 32

s 12 4@@& 2/ |22 Gb A3 (/\@49 a';l.m e E;)’;%
N
- EZJ ErA e 24‘@*”) C,; @JQ .ﬂfid‘.ﬁ' &2 @@/
T T ;o i ) I
@\{_—5@‘9 JD/J sau | T J/,.jo\ IF |og | |43 (19 i
@@Ga 45) FF| 2B |52 @25937 Heo |53 94%
2iien| & | & [da J@lga\g\;/ & | art fzo ;\ ra2 2/ 4:‘:52
N T y :
27|28 | 7 | &F _I:/fh\a?/a%g/ g2 |35 (271 8 Kf/ 22 st 5F
(ss G; 29 |s0 (36 as)s7{ra A3 |3 @\7/@ 2947[.1'0
” @.5/ RYROP X3 PTRPY by los \{}\@j@@w X
Fig, 260. Iig, 270
O 40}
(}“; 27 [ 26)
] -  Fr
>.Si\/z 3"‘&{2 >fj/g D
@/6 249 T AF GJMV’? /@
20177 /.;t)/.j“’ jﬂ /6@
262/ s0) 22 %)/5
T OF 2 (Y7 ) 7
Sz [ 29 (2 K] 24/;\7)/3
Fig. 271, Fig. 272.

Figs. 273 and 274 are ingenigus combinations of 4 > 4 squares
also devised by Mr. Frierson. Fig. 273 is a magic cross which
possesses many unique featlures. It is said to contan the almost
meredible number of 160,144 different columns of twenty-one num-
bers which sum 1471,
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Some of the properties found in the magic pentagram Fig. 274
may be stated as follows:

Each 4 X 4 rhombus is perfectly magic, with summations of
162. Tt therefore follows that from any point to the next the nun-

2 |56 rz?fos
37 |fg 5|28 |20

28| o |7 |55
73 /3192 |20

g |57 724708

90 |rau )39 |22

28| 75 38 |s5¢

2|5 23 | e
&y |58 Yraslorp T |52 2y rod O |bo yza|ias| 7 167 (122 myl
&3 Yad| go | 22|88 o2|4r (23 87 bup ez |24 |56 ru0j 43|25
k0|78 | 35|53 rar| 77 | sm |2 - 232| 78 133 |57 |233| 79 sz |se
72|17 |94 2] 20 |18 |as|ms 49l rs |98 ire| 68 | sy |97 s

& {62 )r2s)i08

TS VI 4ar |26

L ag| 80 |37 |49
87|14 |oa |ed

@ l6ai20prz

Fg baf|e s 27

lras| g7 |ao | as

88 | s2 =2 7

0 | Bulrs|ror

£3 az 86128

38182 |28 |97

ag| /7 roo|res

Fig. 273.
bers sumi 324, and also that every bent row of eight numbers which
is parallel with the rows from poinl to ponit sums 324.
In each 4 X 4 rhoinbus there are five others of 2 X 2 whose
numbers stun 162, alsa four others of 3 X 3, the corner numbers of

which sum 106z,
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In each 4 X 4 rhombus, every number ends with one of two
numbers, viz., 0 and 1, 2 and g, 3 and B, 4 and 7, 5 and 6.

Fig. 274.

Modifications of the concentric magic squares (described in the
first chapter) have been devised by Mr. IFrierson, two examples of
which are shown in Figs. 275 and 276.

90| 2 |rlaziso] 2 |ae |2 |7e

24 gt |Grlss (26|03 |69 255y

37187 | ¢ |2a G2 |ba| g |salse

] B R R

|2y |25 | el | B 4| 40i60le3|28|64|/8 |as|2z
’5

/20|20 4|42 48 |4z22 04|92 75| 7 |70 |72

22 |1y |/8|s9]25| 9 13 |g0 25 68 | /6 |gelsa syl 5

2a|rz|sa|28| 6 |as c9l29 |65 ]s0'66 24105 5920

s |as|27|33|2 |7 76470;3115';37.;630.55

36| 2 |r0| 4 30|529 6|78 |r2 |8 ]74!4;'46!47{52

Fig. 275, Fig. 276.

A 5 X 5 magic square, curiously quartered with four 2 X 3
magic rectangles, devised by Dr, Planck, is shown in Fig. 277.

The interesting ¢ > ¢ magic, Fig. 278, was made by Mr, Frier-
son, It possesses the following properties:
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I. All odd and even numbers are segregated.

2. Any pair of numbers located equally above and below the
horizontal axis end in the same integer.

3. The sum of any pair of numbers located equally right and
left of the perpendicular axis ends with 2,

4. The twenty-five odd numbers within the circles make a
balanced 5 X 5 square.

Sofgr =360
Sof 37 = 205
Sof g4t =165
FEA RN G‘*@ g |ge|ae| g0
5 of square = s 2 lco|ss(25) 1 (7] 78 | 26| 0
S of rectangles = {;g z /f\/}‘g ;'3__\\2/ o @;i 2o
52| 7 Ja5(23)3/ (38) 67 (s55) o0
25| s 23] 6 |vo /;}6_,@,3@33@5,7@)
2 E D 20| /6 22 (27) s5[exy s (58] 27 :7.:> 30
2 |28 /3] 8 |/F sz\aclse) ra (/) 29 @76 7o
T2 8977 72| 56| # (f) 7/@_7\2! G| 8O
s & |ezp # gzl eg|as 74@x& s | 2| #o
Fig. 277 TFig. 278,
S = fzo00
5= 2126 7328|0342 |7387| 7335|308
£39 | 525 | 528 | 536 1380|134 (0353|1502 | 132
SEF| S| 533 |3/ PEEFVAEVRPAT L7 PR VL PREY
SI2| F30 | S28 | FIS 2333|0398 (7337|/346) rase
s27 | 537 | gae | g2 138 |r3 g5\ ra2s(r3a8|ra sk
Fig. 270, Fiz. 280.

5. The sixteen odd numbers between the circles make a hal-
anced 4 X 4 square,
6. The great square is associaled.
It is purposed to treat of magic squares composed exclusively
of prime numbers in another book. ©Mr. Chas. T, Shuldham has
contributed original 4 X 4 and 53X § magics. having the lowest



174 SOME CURIOUS MAGIC SQUARES AND COMEBINATIONS.

possible summations when wmade exclusively of conseculive com-
posite numbers, as shown in Figs. 279 and 280,

There is nothing curious in the coustriction of these squares,
as in this particufar they follow the same rules that are applied to
all squares that are made from any consecutive arithmetical series.
Thus in the square of order 4 given in Fig. 279, 524 takes the
place of 1 in an ordinary square, 525 of 2, and so on. They are
here submitted to the reader simply as examples of common squares,
having the lowest possible swwmmations that can be made from a
series containing no prime monbers. There are many longer sc-
guences of consecutive composite numbers, from which larger squares
might be made, but they run into such high values that the construc-
tion of magics therewith becomes laborious.

"Dr. C. Planck has kindly contributed the following list of con-
secutive composite numbers that can be used for squares of order 6
to order 12 under the condition of lowest possible summations.

For Order 6.  1568; — 13710 == 36 numbers
o 7. 19610 — 19738 = 49 ¢
oo 8. 31398 — 31401 = 64 a

“ 9. 1550922 — 156,002 = 81
P 10, 370.2062 —  370.361 = 100
v 11, 1,357,202 — 1,357,322 = 121
v I2. 2010734 - 2010877 = 144

Many attempts have been made to construct magic squares
from a natural series of numbers by locating each succeeding aum-
ber a knight's move from the last one, until every cell in the square
is included in one coutinuous knight's tour. This difficult problem
however has never beeu solved. and the sguare in question probably
does not exist, Many squares have Leen made that sum correctly
in their lines and columus. but they all fail in their two diagonals and
therefore are not strictly magie.

In Games Ancient and Oricntal (p. 325) one of the most
interesting squtiares of the above description is presented, and it is
reproduced here in Fig, 281, the knight's tour heing shown in Tig,
282,



SOME CURIOUS MAGIC SQUARES AND COMBINATIONS. 175

This square, like all others of its kind, fails in its two diagonals,
but it is remarkable in being quartered, i. e., all of its four cormer
4 X 4's are magic in their lines and columns, which sum 130.
Furthermore, if each corner 4 X 4 is subdivided into 2 X 2's, each
of the latter contains numbers that sum i3c. It is stated that this
square was made by Mr. Beverly and published in the Philesophical
Magasine in 1848,

If the use of consecutive numbers is disregarded, a continuous

s |98 |ar |so|as | e )|Gatre ’\AJ/)/X/\ P
30|37 |96) 3 |62| 09| 2 |a5 OW;\)Q/ @@'ﬂ)&’
57| 2 |98 |32|s5las|r7 o %ﬁ/’V\/V ﬁﬁx”ﬁ/\(}’
sz | 29| # |#5|20\ar |36 |15 ()/) Q\_\‘()
s |##|25|a6| s |s0| 2/ 0w O(///'\\@Q(//\\N/\@
7y |53 & |#s |2#lsz| sz a7 OO é?q& OO
23| 6 |os |26 |as |0 |so |22 g&&@ 9(5&

s#|z7|va| 7 |ge| 28|38 | s LRI | ATV

Fig. 281, Fig. 282
knight's tour may be traced through many different magic squares,
in which every period of s numbers throughout the tour will sum S,
A square having this quality is shown in TFig. 261, The knight's
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tour through this square is given in Fig. 283 in which the starting
numbers of cach period of eight are marked by circles with arrow
ieads mdicating the direction of progression,



176 SOME CURIOUS MAGIC SQUARES AND COMBINATIONS.

Oddities and curios in magics might be illustrated almost with-
out end, but one more will suffice as a final example.

Fig. 284 shows an 18 X 18 magic made by Mr. Iarry A.
Sayles, the most interesting feature of which is the method of its
production from the values of */15. The lines of recurring deci-
mals for 14, g, Ho.. ... 1819 are arranged one below the other
so as to form a magic square. 5=z 81, It will be seen that the
sequence of the digits in all lines is the same, the position of the
decimal point in relation to the series being the only difference.

e =lo|F(2| 63|/ (S| 7|s |92 |7|3|6|F|F| 2}/
e =lslo| SR |G|V |F| 7|8 9| F|7|3| 67|« 2
-',,Jz./.f7rs47.36'342/ o|s| 2|6l
% =l|2|s|e|s|2l6la|s|s|7(8|8|#|7|3|6|s |4+
Y =lals|als|s |7 e\e |4 |7 |06l |#|2ir|e|s
% =3/ |s|7 e |27 s |6is|#|2|/0]|s|2]6
2 =lalelele|2z|s|o|s|2|6|ls|s|s|7e|o|#|”
T =R |27 |o|F|2|6|a|s|s|7|0|9|4|7|3|6|5
Y =270 |6 |8 |2/ 0|\ 2lg|ls|s|s| |23
e T2 Glals ||| |e || 7| 3|6 5|+ |2/ ]0
%:.5735¢7068‘?210d‘266/
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“n =17]2|6el#|2|/|o]s]2]slo|{/Ts|7]e][s ]+
%:-7&34756842/0526‘3/5
Yy = Ele|2|s|ojs2|s|e|sisi7|e|e| |7 |als
0/3:,3_9.;7.35;42/0&‘263/&‘7
”0:..947‘365*42&0.5‘26;3/573
g, 28y,

A peculiar feature of the recurring decimals used in this square
may be mentioned, although it is common to many other such
series, with variations. M4 = .052031578047368121..... decimal
repeats. Starting with the first 5§ and dividing by 2 each integer
determines the next integer following, thus:
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2) 52631578, ........ . 2631878, L.,

The same procession follows for "/;9 and also for 1/(19 X 2")
though the operation will not apply in all cases to the first few
numbers of each series.

If the dectmal .03263..... I, consisting of 18 figures, is divided
inte two even sections of ¢ figures each, and one section superposed
on the other, the sum will be a series of g's thus:

.052631578

999939909

The series is thus shown to consist of nine g's = 81, so that each
line of the square, FFig. 284, must sum 81, Alsoc, as any two num-
bers symmetrically located above and below the horizontal axis
of the square sum ¢, each column also consists of nine ¢'s == 87.

It is not easy to vnderstand why each of the two diagonals
of this square should sum 81, but if they are written one over the
other, cach pair of numbers will sum g

Considering its constructive origin, and the above mentioned
mnteresting features, this square, notwithstanding its simplicity, may
be fairly said to present one of the most remarkable illustrations of
the intrinsic harmony of numbers. W. S A,
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NOTES ON VARIOUS CONSTRUCTIVE PLANS BY WHICH
MAGIC SQUARES MAY BE CLASSITFTED.

N odd magic square must necessarily have a central cell, and if
the square is to he associated, this cell must be occupied by the
middle number of the series,|(n* 4 1) /2] around which the other
numbers must be arranged and balanced in pairs, the sum of each
pair being #* -~ 1. Although in 5 X 5 and larger odd squares the
pairs of numbers are capable of arrangement in a multitude of
different ways relative to each other as pairs. yet when one number
of a pair i{s located, the position of the other number becomes
fixed in order to satisty the rule that the sum of any twe nnmbers
that are diametrically equidistant from the center number must
equal twice that number, or #* 4+ 1,

In an even magic square, however, there is no central cell and
no middle number in the series, so the method of construction is
not thus limited, butt he pairs of numbers which sum »* + 1 may
be harmonionsly halanced either around the center of the square,
as in odd sguares, or in a variely of other ways.

Mr, T.. S. Frierson has cleverly utilized this feature as the basis
for a series of constructive plans, accerding to which the various
types of even squares may be classificd. e has shown eleven dif-
ferent plans and Mr, Henry E. Dudeney has contributed the twelfth,
all of which may be used in connection with 4 X 4 squares. These
twelve constructive plans clearly differentiate the various types
of 4 > 4 squarcs,—there heing for example one plan for the asso-
ciated or regnlar squares, another plan for the lranklin squarcs,
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another for the pandiagonal or continitons squares and so forth, so

that a knowledge of these plans makes it casy to classify all 4 > 4

squares.

Six of the eleven plans given by Mr, Frierson cover

distinet methods of arrangement, the remaining five plans being

made up of various combinations.

In this plan, which is the simplest of all, the pairs of numbers

that sum #? 4 1 are arranged syimmetrically in
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Fig. 285,

T

Tig. 284,

ing two vertical columns, as shown in I'ig. 285, and diagrammatically

in Fig. 2%6.

This plan differs from No. 1 only m the fact that the pairs of
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numbers are placed in alternate instead of in adjacent colummns, as

seen in TMigs. 287 and 283,
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According to this plan the pairs of numbers are arranged sym-
metrically on each side of the central axis, one-half of the elements
being adjacent to cach other, and the other half constructively ad-
jacent as shown in Figs. 289 and 2g9o, This arrangement furnishes
the Franklin squares when expanded to 8 X 8, providing that the
numbers in aff 2 »}( 2 subsquares are arranged to sum 130 (See
Figs. 291 and 2g2). If this condition is not fulfilled, only half of

sa|dr| & |23 |20 29|36 |es |

sl S |\ B2|as |ab|2F |30 |19
Jileol s |rz2|2/ |28 |37 | 4s

2| 6 |ag|sg|e3(3F 27|22 i -

S5\ 55 J o)z 28|35 |42 I I

G| & 57|56 |4 |90 |25 | 24 7

JO|63] 2 (r5)|28 |37 |I4 |57

PG| 1 |ou|42as |43 (12|27 T -+

Fig. 201 IFig. 292.
the bent diagonals will have proper summations, An imperfect
Franklin square of this type may be seen in Fig. 268.
PLAN NO. 4.

In this plan the pairs of numbers are arranged adjacent to each
other diagonally, producing four centers of equilibrium (See Figs.
293 and 294). '

|7 |ve ez '
sols6| s |s —K]

S| F | 4

J‘lE[/’/ 23 I

Fig. 203. Fig. 204.

Magic squares constructed on this plan exhibit in part the fea-
tures of the Franklin and the pandiagonal squares.
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FLAN NO. 5.

The pairs of numbers in this plan are arranged in alternate
cells in the diagonal celumms. and it produces the continitons squares
which have been termed Jama, Nasik and pandiagonal squares.
Fig. 205 15 the Jaina square as modified by Dr. Carus {Fig. 222, p.

127}, and Fig. 296 shows the arrangement of the pairs of numbers.

Fyler | 5

A

<
|
N

2|8

F2F3 | a3

Fig. 29s. Fig, 206,

B

The diagram of the Nasik square (Fig. 262) is a simple expansion
of Tig. 206, and the diagram of the Frierson square {ig. 207)

shows a design like Tig. 206 repeated in each of its four quarters.

PLAN N0, 6.

Under this plan the pairs of numbers are balanced symmet-
rically around the center of the square, and this arrangement is

common to all associated squares, whether odd or even.  Tig. 297
2yl 4 \ \|’.'!
ezl e |7 |e -~ -
Fhrola|as i N
2300 |2 |4 ; / ‘|\
Fig. 297. Fig, 208

shows a comnion form of 1 X 1 square, the diagranmatic plan
being given in Fig. 298,
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PLAN NO. 7.

Magic squares on this plan are formed by combining plans

1| 2 |13 5 - —+
2l | B s

A ARRY

Eo I S I B =Y

Fig. 200. Fig. 300
Nos. 1 to 3, a square and its diagram being shown in Figs. 299 aud

300.

FLAN NC. 8.

This plan covers another combination of plans 1 and 3, and

Figs. 301 and 302 show squarc and diagram.

A VAN ] 7]
|9 |26 -4 -+
w7 2| -+ -
Fle |8l -
Fig. zor1. Fig. 30z,

FLAN NO. g

This is a combination of plans 2z and 3, a square and its dia-

gram being given in Figs. 303 and 304.
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Fig. 303 Fig. 304.
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PLAN NO. 10,

This is alse a combination of plans 2 and 3 and is illustrated in
Figs. 305 and 305.

IR E S I

PR Ve

& 7 2 /;J_

& (263 |4 .
Fig. 305. Fig. 306.

PLAN N IT,

One-half of this square is made in accordance with plan No.
2, but in the other half the pairs of nunibers are located apart by
knight's moves, which is different from any plan hitherto considered.

It 35 impossible to arrange the entirc square ou the plan of the

7| 2| es

sE || |3

27l |é X N

£\ S| //B(\I\
Fig. 307, Fig. 308.

knight’s move, I7igs. 307 and 308 shaw this square and its construc-
tive plan.

PLAN NO. T2,

We are indebted to Blr. Henry E. Dudeney for the combination
shown in Figs. 309-370, thus filling a complete dozen plans which
probably cover all types of 4 X 4 magic squares.

2|25 | |48

M lro | é | &

\\/ NS
XY
7|4 |72 IINT 7N

Fig., 204. Fig. 310.



184

In even squares larger than 4 X 4 these plans naturally exhibit
great diversity of design. The following 6 X 6 squares with their
respective plans are given as examples in Figs. 311, 312 to 321, 322.

NOTES ON VARIOUS CONSTRUCTIVE PLANS.
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Ifigs. 315 and 317 are identical with 6 X & squares shown on

pages 19
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and 24. All squares of this class have the same charac-

leristic plans.
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The peculiar structure of the squares shown in Figs. 319 and
321 is visualized in their plans (Figs. 320 and 322). Fig. 314 is
worthy of notice in having eight pairs of numbers located apart

T
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by knight's moves. THigs. 323, 324 aud 323 illustrate another 6 X 6
square with its plan and numerical diagram. It will be seen that

the latter is synuuetrically balanced on cach side, differing in this
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NOTES ON VARIOUS CONSTRUCTIVE PLANS.
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respect from the numerical diagrams of the 6 3( 6 squares as de-

scribed in Chapter L.

Figs. 326-333 are four 6 X 6 magic squares contributed by
Mr. E. Black which show an interesting symmetry in their con-

structive plans.
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THE MATHEMATICAL VALUE OF MAGIC SQUARES.

Fig.

332.

Fig. z33.

The following quotations bearing on the above subject are
copied from a paper entitled “Magic Squares and Other Problems
on a Chesshoard” by Major P. A, MacMahon, R.A., D.Sc., F.R.S.,
published in Proceedings of the Roval Institution of Great Britain,
Vol. XVII, No. 96, pp. 50-61, Feb. 4, 1802,

“The construction of magic squares is an amusement of great
antiquity ; we hear of their being constructed in India and China
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Lefore the Christian era, while they appear to have been introduced
into Furope by Moscopulus who flourished at Constantinople early
in the fhfteenth century.

“However, what was at first merely a practice of magicians
and talisman makers has now for a long time become a serious
study for mathematicians. Not that they have imagined that it
would lead them to anything of solid advantage, but becanse the
theory was seen to be fraught with difficulty, and it was considered
possible that some new properties of numbers might be discovered
which mathematicians could turn to accotnt,  This has in fact
proved to be the case, for from a certain point of view the subhject
has been found to be algebraical vather than arithmetical and to be
intimately connected with great departnents of science suclh as the
‘infinitesimal caleulus,” the ‘calculus of aperations,” and the ‘theory
of groups.

“No person living knows in how many ways it 1s possible to
form a magic square of any order exceeding 4 X 4. The fact is
that hefore we can attemupt to enumerate magie squares we must
see our way to sclve problems of a far more simple character.

“To say and to establish that problems of the general natore
of the magic square are ntmately commected with the infinitesi-
mal caleulus and the caleulus of fnite differences is to s the

matter up

It is therefore evident that this fietd of study is Dy no means
limited, aud if this may be sald in comncction with magic squares
the statement will naturally apply with a larger meaning to the

cousideration of magic cubes.



CHAPTER IX.
MAGIC CUBES OF THE SIXTH ORDER.

T 15 stated by Dr. €. Planck in his article on “The Theory of

Reversions.” Chapter X1I, pp. 208 and 304, that the first magic
cube of this order was made by the latc W, Firth, Scholar of
Emanuel, Cambridge, England, in 188¢. The psendo-skeleton of
Tirth's construction is shown in Fig. 585, on p. 304 and its develop-
ment into a magic 6* is given by Dr, Planck in Fig, 587. He also
presents in Fig. 507 in the same chapter ancther magic 6" which he
made in 1894 by the artifice of “index-cubes.” and gives a full
explanation of s method.

Although the cube presented in this chapter by Prof. TT. AL
Kingery is imperfect in its great diagonals, and therefore not
strictly magie, il posscsses many novel and interesting features,
being an ingemons cxample of the general principle of the “Irank-
lin” squares carried into the third dimension, and showing, as it
does, perfect “bent diagonals.” The same method will construct
cubes of 10, 14, and other cubes of the 4p -} 2 orders.

The second article in this chapter by Mr. Llarry A, Sayles
gives a clear and concise solution of the problemt by the Ia 1lireian
method,  Mr. Sayles's cube 1s strictly magic,

The cube offered in the third article by the late John YWorthing-
ton, besides being strictly magic, shows the unique feature of hav-
ing perfect chiagonals on the six outside squares. WS A,

A “FRANKLIN" CURE OF SIX.

For a long time after cubes had heen constructed and analyzed
consisting of odd munbers and thase evenly even (divisible by 4),
the peculiar properiies of the addly even numbers baftled all attempts
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to treat them in like manner. While the following construction
does not comply with all the criteria laid down for “magic” cubes
it has some remarkable features which appear to the writer to
deserve attention. It will at least serve to arouse some criticism
and discussion, and may contain hints for a complete solution of
the problem.

In the first place six magic squares were constructed, exactly
similar in plan except that three of them began {at the upper left-
hand corner) with odd numbers, each of which was 1 or 1 plus a
multiple of 36, and the other three with even numbers, each a mul-
tiple of 18. In the first three sguares the numbers were arranged
in ascending order, in the other three descending. The initial
numbers were so chosen that their sum was 651, or {n/z) (#* + 1),
which is the proper summation for each dimension of the projected
magic cube. In the construction of these original squares, by the
way, the diagrams presented in the first chapter of this book
proved a great convenience and saved much time,

Each of the six squares so made is “magic’ in that it has the
same sum (051) for each column, horizontal row and corner diag-
onal. As the initial numbers have the same sum the similarity of
the squares, with ascending arrangement in one half and descending
in the other half, insures the same totals throughout for numbers
occupying corresponding cells in the several squares; e. g., taking
the third number in the upper row of each square and adding the
six together we reach the sum 631, and so for any other position
of the thirty-six.

In constructing cur cube we may let the original six sqguares
serve as the horizontal layers or strata. We have seen that the
vertical columns in the cube must by construction have the correct
summation. Furthermore, as the successive right-and-left rows in
the horizontal squares constitute the rows of the vertical squares
facing the front or back of the cube, and as the columns in the
horizontal squares constitute the rows of the vertical squares facing
right or left, it is easily seen that each of these twelve vertical
squares has the correct summation for all its columns and rows.

Here appears the first imperfection of our cube. Neither the
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diagonals of the vertical squares nor those of the cube itself have
the desired totals. though their averege footing is correct. It s true
further that the footings of the two cubic diagonals originating at
opposite extremities of the same plane diagonal average 631, though
neither alone is right.

At this point, however, we come upon an interesting fact.
While the cubic diagonals vary. the two hali-iiagonals eriginating
at opposile extrennties of either plane diagonal in either the upper
or the lower face, and mecting at the center of the cube, together
have the sum 651, These correspond in the cube to the “bent
diagonals”™ of Franklin's "square of squares.” (Of course a moment’s
reflection will show that this feature is inevitable. The original
squares were so constructed that in their diagonals the numbers
equidistant from the middle were “complementary.” that is, taken
together they cqualed 217, or #* 4 1. # representing the number of
cells in a side of the square. Tn taking one complementary pair from

each of three successive squares to make our “bent diagonal™ we

As i the Franklin squares, so in this cube do the “bent diag-
onals” parallel to those already described have the same totals. A
plane square may be thought of as being bent around a cylinder so
as to Dbring its upper edge into coutact with the lower, and when
this is done witly a Franklin square it will be seen that there is
one of these “hent diagonals™ for each row. Tn like manner, if it
were possible by some, fourth-dimension process analogous to this
to set ontr cube upon itself, we should see that there were six (or
in general =) “bent diagonals™ for cach diagonal in each of the
horizontal faces, or 24 i all. and all having the same sum, 631,

The occurrences of 5 may be tabulated as follows:

In the vertical columms ... ... ... ..o36Bor n®
Tn the rows from front to back ....... .. 3 or W
T the rows from right to left ... ... 36 or w?
It the diagonals of the original square ... 12 or 2x
In the cnbic “bent dingonals™ ... ... .. 24 Or 4n

144 Or 3 -kOn
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The column of # values at the right represents the “general” num-
bers, found in cubes of 10, 14, etc., as well as in that of 6.

All these characteristics are present no matter in what order
the original squares are piled, which gives us 720 permutations.
Furthermore, only one form of magic square was employed, and
Mr. Andrews has given diagrams to illustrate at least 128 forms,
any one of which might have been used in the construction of our
cube.® Still further, numerous transpositions within the squares
are possible--always provided the vertical totals are guarded by
making the same transpositions in two squares, one ascending and
the other descending. From this it is easy to see that the numbers
1—216 may be arrauged In a very great number of different ways
to produce such a cube.

So much for the general arrangement, If we so pile our originai
s.uares as to bring together the three which begin with odd numbers
and follow them with the others {or vice versa) we find some new
features of interest. In the arrangement already discussed none
of the vertical squares has the correct sum for any form of diagora’.
The arrangement now suggested shows “hent diagonals” for the
vertical squares facing right and left as follows: Each of the outside
sguares--at the extreme right or left-—has four “bent diagonals”
facing the upper and four facing the lower edge. These have their
origin in the first, second, fourth and fifth rows moving vpward or
downward, 1. e, in the first two rows of each group—those yielded
by original squares starting with odd and those with even numberr.
Each of the four insidc vertical squares has but two “bent diag-
onals™ facing its upper and two facing its lower edge, and thesc
start in the first and fourth rows—the first of each group of three,
This will be true no matter in what order the original squares are
pited, provided the odd ones are kept together and the evens to-
gether., This will add 32 {8 for each of tlie two outer and 4 for each
of the four inner squares) to the 141 appearances of the sum fig1
tabulated above, making 176; but this will apply, of course, only
to the cube in which the odd sguares are successive and the even
squares suceessive.  As the possible permutations of three objects

* See pp. 22 and 23.
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number 6, and as each of these permutations of squares beginning
with edd numbers can be combined with any one of the equal num-
ber of permutations of the even squares, a total of 36 arrangements
is possible.

While the straight diagonals of these squares do not give the
required footing the two in each square facing right or left average
that sum: thus the diagonals of the left-hand square have totals of
506 and 70f, of the second square 708 and 594, third gi2 and 320,
fourth 596 and 706, fifth 798 and 504, and the right-hand square
986 and 316, each pair averaging 651, T have not yet found any
arrangement which yields the desired total for the diagonals, either
straight or bent, of the vertical squares facing back or front; nor do
their diagonals, like those just discussed, average 631 for any single
square, though that is the exact average of the whole twelve,

By precisely similar methods we can construct cubes of 1o, 14,
18, and any other oddly-even numbers, and find them possessed of
the same features. [ have written out the squares for the magic
cube of 10, but time would fail to carry actual construction into
higher numbers. FEach column and row in the 10-cube foots up
soos, in the 14-cube 19,215, in the 30-cube 403,015, and in a cube
of 42 no less than 1,555.869! Life is too short for the construction
and testing of squares and cubes involving such sums.

That it is possible to build an absolutely “perfect” cube of 6 is
difficult to affirm and dangerous to deny. The present construction
fails in that the ordinary diagonals of the vertical squares and of
the cube itself are unequal, and the difficulty is made to appear in-
superable from the fact that while the proper summation is 657,
an odd number, all the refractory diagonals are even in their sum-
mation.

The diagrams in Figure 335 are especially valuable because
they show how the numbers of the natural series 1-216 are arranged
in the squares which constitute the cube. This is a device of Mr.
Andrews’s own invention, and certainly is ingenious and beautiful.
The diagrams here given for squares of six can be expanded on
well-defined principles to apply to those of any oddly-even number,
and several of them are printed in Chapter L.
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It will be noticed that the numbers 1-108 are placed at the left
of the diagrams, and those from 10g to 216 inclusive at the right in
inverse order. Consequently the sum of those opposite each other
is everywhere 217. In each diagram are two pairs of numbers con-
nected by dotted lines and marked (). These in every case are to
be interchanged. Starting then at the heavy dot at the top we follow
the black line across to 215, down to 21z (substituting 3 for 213)
and back to 6; then across on the dotted line to 210 and along the
zigzag black hine to 8, 208, 207, 11 and 7 (interchanged with 203) ;
down the dotted line 1o 204, then to 203, 15, 16, 14 (in place of 200),
199 ; then across the diagram and upward, observing the same meth-
ods, back 1o 216. Tlis gives us the numbers which constitute our
square No. I, written from left to right in successive rows. In like
manner the diagranms i column I give us square No. . TI, and so
on to the end. It is worthy of notice that in the fourth column of
diagrams the numbers are written in the reverse of their natural
order. This is because it was necessary in writing the fourth square
to begin with the number 145 {which naturally would be at the bot-
tom of the diagram) in order to give the initial numbers the desired
sum of 651. H, M. K.

A MAGIC CUBE OF SIX.

The two very interesting articles on Oddly-Even Magic Squares
by Messrs. I T, Savage and W. S, Andrews, which appear in
Chapter X, might suggest the possibilities of extending those
methods of construction into magic cubes. Tt is an interesting
proposition and might lead o many surprising results.

Although the cube to be described here is not exactly of the
nature mentioned abowve, it follows similar principles of construc-
tion and involves features quite unusual to cubes of tlus class.

The six respective layers of this cube are shown in Thig. 3360, All
of its 108 columns, and its four great diagonals give the constant
summation of 651. If we divide this into 27 smaller cubes, which
we will call cubelets, of eight cells cach, the six faces, and also
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two diagonal planes of any cubelet give constant summations,
For example, we will note the central cubelet of the first and

4 li3g| 161 | 26| 174|147 133|548 (80 215]| 29 |6s
85 | 166107 (188|932 HZ2 |3 134 |53 1zo (200
98 (152|138 3 [103)157 12571 | 57 |i92{130 |76
17917 |84|165]184| 22 44 20¢| 11} (30 )49 200
183|121 | 13 17583 170 48 |zZi0|202|40 {116 (35
10z|i56)i48]04] 8 143 25|75 [67 |21 |97 ]2
z
18 (1531136 |163]| 23 158 20772 |55 [ 28)2:2i77
99 |1aal 1 |82 [104]185 12645 [180)109)131 | 50
18119 198 176171 9 Ag (208[122|41 |3a 1982
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second Javer, whieh is shown disgrammatically in Fig. 337, Its
sunnnations are as iollows.

The six faces:

5700 138 138 84 57 192
152 3 3 165 111 30
30 165 152 30 81 165
e 2 37 1 138 3

300 3no 300 300 3oo 390
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The two diagonal planes:

57 192
30 111
165 84
138 3
390 390

Fig. 337

Also, if the sum of the eight cells in each of the cubelets be
taken as a whole, we have a 3X3X3 cube with 37 summations, each
amounting to 2604.

The construction of this cube is by La Hirelan method, using
two primaty cubes shown in Figs. 338 and 339. Fig. 338 con-
tains 27 cubelets, each containing eight cells with eight equal num-
bers ; the numbers in the respective cubelets ranking in order as the
series, 1, 2, 3,....27. These 27 cubelets are arranged according to
the methods of any 333 cube, This gives us a primary cube
with all the features of the final cube.

Fig. 3301s also divided ino 27 cubelets, each of which must con-
tain the series o, 27, 54, 81, 108, 135, 162, 189. The arrangement
of the numbers in these 27 cubelets must be such as will give the
primary cube all the required features of the final cube. The eight
numbers of the cubclet series are, for convenicnee, divided by 27,
and give the series 0, 1, 2, 3, 4, §, 6, 7, which can easily be brought
back to the former series after the primary cube is constructed.
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To construct the cubelet, we divide the above series into two
sets of four numbers cach, so that the sums of the two sets are equal,
and the complementarics of one sct are found in the other, This
division is 0, 5, 6, 3 and 7, 2, 1, 4, which separales the complemen -

4426|2612 12 4141262612 |12
A4 g 28 26]2 |12 4 4 j2el2s|iZ2 |12
17 |7 3|22 |zz (1713 |3 122122
717 | a3 ez | 22 17 (17 3 |z2z2|2z2
2r|2t |33 8 l8 223 lx|a 8
21 2113113 l 21|21 |3JT_|:3 8|8

i 2
gl |1 |23]|23 *8 8111 [e3]22
18| 18¢ 1 | |23 |23 3| ] |23|23
22 |44|9's3 2|34 14]2
19|10 14{2 {2 L1344

27 27|16 |10 5 !5 127 27|00

5 !5 [27|27]i0 10 sis 27|z7|wo |10

3 P
202015 15[ 7 |7 zo(2o0lis 157 | 7
zolzofis 5|7 17 20, 20115 (57 |7
P.G 6 |25 |as|H |t 251251 H (1l
Gle |25 |25|m U 25281 (11 |
6 (B2 2|24 |20 16 | 16 z (24 (24
6|6]z |2 |292e 6162 |2 |2al2a)

E [

Fig. 338

taries and gives two sets, each amounting to 74, We can place one
set in any desired order on one face, and it only remains to place
the four complementaries in the opposite face, so that the four lines
connecting complententary pairs are parallel.
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These enbelets are arranged In the primary cube with the
0, 5, 5. 3 faces placed in the 1st, 3¢, and 5th lavers, and the 7, 2, 1, 4
faces placed in the 2d, 4th, and Gth layers, which arrangement satis-
fies the summations perpendicular to the Jayers.

o555 |0]ec |5 7jz|z|7]|t |2
3|ej2|6]2 0 41|41 |al7
3|55 |0{3 |5 4|z|laj7|4|2
|03 6|6 |0 1 (7Zj4 |11 |7
c|lo|oje|3le Llzl{7z|r )4
3|5|5|a{0 |5 4lz|2z|a]|7i2
z
ols|s|e|ols 7iz|2z{1 |72
3|16|lOo|3|2 6 4 (1|7 (a4
610)|3|6|¢]° V| 7]a|i |7
3|S515(0(}31|5 212 (7|42
6 [Q]|3t6|6]0 1 (21411 |1 |7
A[s|510la s 4(z|2 |74 |2
3 4
5|o|s|ole|s 2 7|z |7y |2
3|ej3 /6|20 4 |1 |4 |t ]|a]|7
o|313l6|3 |6 Zialalilal
5|6 |5|0|0 |5 2l 2 |717 |2
5|o|5|a|2 |5 2{7|2|alae |2
Alse|O0j6|6|D a4l1|2{1 ]|y |7
3 [

Tig. 330.

It now remains to adjust the pairs in the cubelets to snit the
summiations in the lavers and the four diagonals, We first arrange
the pairs that will give the diagonal summations, and by doing <o,

we set the position of four numbers in each of the layvers 3 and 4,
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and eight numbers in each of the layers 1, 2, 5 and 6, We then ar-
range the remaining numbers in the layers 1, 3 and 5 to suit the
twelve summations of each layer, which consequently locates the
numbers for layers 2, 4 and 6, since complementary pairs must lie
perpendicularly to the cubes layers. This gives us a primary cube
stich as that shown in Ifig. 330.

The numbers in each cell of Fig. 330 must then be multiplied by
27, and added to the respective cells in Fig. 338, which combination
gives us the final cube shown in Fig. 336. IL A. S,

MAGIC CUBE OF SIX.

I the cube, whose horizontal squares are shown in Fig. 340, the
sum of each of the normal rows (those perpendicular to the
faces of the cube} is 6571, and the sum of cach of the sixteen
diagonals connecting the corners of the cube is the same.

These diagonals include the entire diagonals of the surfaces
of the cube and the four diagonals of the solid running from corner
to corner through the center of the cube.

DIAGONALS.

Top Sguare. Io6 116 115 103 104 107
I0g Iz Il 202 205 II2

Bottom Square, 1t 117 118 o8 g7 IIo
108 13 14 207 204 105

TFront Square. 112 131 132 8z 84 1lo
o7 31 20 Igo 189 105

Rear Square. 106 130 136 83 88 108
eg 3o 25 191 185 117

Left Square, O 37 40 182 181 103

11z 126 121 8y gz 117
Right Square. 109 34 3B 183 177 110
107 127 125 00O 04 108
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Diagonals of 106 152 147 70 66 110

the Solid. 109 143 139 77 78 1o%

o7 153 156 63 61 17T

112 46 42 172 171 108

FIRST OR TOP SQUARE. SECOND SQUARE.
106 | 8 | 7 |212 |209 109 166 | 130 [ 120 | 32 | 30 |164
00 {116 13 | 15 |12 | 108 37 | 152|148 | 137 [ 143 | 34
196 114 [115 | 11 [ 15 200 33 | 151 | 50 | 142 | 140 | 35
21 203 |202 | 103 {100 | 22 128 | 41 | 47 157 | 154 | 124
17 |20 [208 | 99 [104 | 18 126 | 46 | 44 | 155|153 |127
112 6 | 6 |210|211 | 107 161 ) 131 | 133 | 2B | 31 | 167

THIRD SQUARE, FOURTH $QUARE.
163 |135 | 136 | 25 | 27 |165 55 192 (190 | 83 [ 81 |49
36 |145 | 149 |44 [138 | 30 93 | 6o | 57| 176| 174] o1
40 |146 (147 139 |141 | 3B By | 62 | 63 [s72 175 | o0
121 | 48 | 42 | 156 | 139 |125 182174 {77 | 70 | 65 | 183
123 | 43 | 45 [158 | 160 | 122 1Bo| 75 | 73 {68 | 71 | 184
168 1134 |132 | 29 | 26 | 162 52 | 188 | 190 | B2 | 85 | 54
FIFTII SQUARE SIXTH OR BOTTOM SQUARE.
5o (185 (186 [ 86 | 88 sﬁ-h | o 2 {213 |216 108
02 |61 |64 [160 171 | 4 fo4 |11z 120 | 9 | 13 {168
96 |59 |58 ;123 f170 | 05 197 | 119 (118 | 14 | 10 | 203
170 |70 {76 [ 67 |72 |18 20 |206 1207 { 08 |101 | 19
Bt |78 {80 6o | 66 [177 24 |204 | 201 {102 | 97 | 23
53 {180 |1B7 (87 {84 | 51 1050 4 [ 3 [215|2t4 |110

Fig, 340,
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The foregoing cube was constructed in the following manner.
The foundation of this construction is the cube of 3 which is

shown in Fig. 341.

FIRST OR SECOND OR THIRD OR
TOF SYUARE MIiDDLE SQOUARE, BOTTOM SQUARE
195 |18 15 |25 | 2 B |12 [22
17 |2t | 4 I |14 27 241{7 |11
6 [16 |20 26,3113 wlaz) o
Fig. 341

FIRST, OR TOP, AND SECOND SQUARLS,

144 | 144 | 32 | 32 | 136 136

144 | 144 | 32 1 32 136|136

128 | 128 160 | 160 | 24 | 24

128 | 128 | 160 | 160 | 24 | 24

40 | 40 | 120 | 120 | 152 | 152

40 | 40 | 120 | 120 | 1852 | I52

THIRD AND FOURTH SQUARES. FIFTH AND SIXTH SQUARLES.
12112 (102 (102 | B [ 8 56 [ 56 | 88 | 88 | 168 | 168
12 (112 (192|102 | 8 | 8 56 1 56 [ 88 | 88 | 168 | 168
o | o |104 104|208 | 208 1841184 48| 48| % ! Bo
o | 0 |104{104|208 208 185182 48 | 48 | B | 8o
200|200 16 ] 16 | 96 | o6 ya | ¥z (126|176 | 64 | 64
200 200 | 16 | 16 | 96 | 96 72 | 72 | 176|176 | 64 | 64

Fig. 342, Tue Basic Cupe

The sum of each normal row in the above cube, whether run-
ning from left to right, irom rear to iront or from top to bettom,
is 42 and the sum of each diagonal of which the central term 14
is a member, as 19 14 0, § 14 23, 15 14 13, ete., is also 42.
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Deduct 1 from each term of the above cube and multiply
the remainder by 8. With each of these multiples construct a cubic
group consisting of cight repctitions of the multiple.  Substitute

FIRST OR TOP SQUARE. SECOND SQUARE,
3/2|8 6 . 5_ 6lzl1l3]la4|6
511|472 4 (815|277 1]
8l7|3|5|3|1 1{2/6[4|6]|8
4|6 |8 | 2|23 slajfslz| 7] 4
$13|3|2|8|6 4 (616 |7 |x]|3
2|8 |1 |s5|714 711|844 2]|s

THIRD SQUARE. FOURTII SQUARE,
324|873 6]7(sl1]2]6]
114[7(3|4|8 8|s|2/6 5|1
7825|124 2|17 |48 E
6 (s |81313]2 3(4|1]616]7
8l5)]112|83 rl4|8|y|1i6
2|3[5|6(aj7 7]16/4]3[5]2

FIFTH SQUARE, SIXTH OR BOTTOM SQUARE,
2/3(8]7]2|5 (7]6]cfa2 4
8ls5|4|06|3|1 I|4|5]13|6|8
2|1|2|8|8'6 7| 8|7'1]1|2a
3|5(5,3 4 |L 6|4 4|6 |52
Bl6 |5 |2|2]|5 t|3|4|8|7]|4
4173|283 5l2|/6|y|1]|6

Fig. 343 Tue Grovr CUBE.
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FIRST OR TOI* 5QUARE, SECOND SQUARLE.

47| 146 ) 40 | 38 § 141130 150 IST| 33 | 35 | 140 142
149} 145 36 | 39 | 138 | 144 4B | 152 | 37 | 34 | 143|137
136|135 1163 165 | 27 | 25 120 [ 130 | 166 | 164 | 30 | 32
132|134 | 168|162 | 26 | 20 133 | 130§ 161 | 167 | 31 | 28
45 | 43 | 123 | 122 | 160 | 138 —; 46 | 126 | 127 | 153 | 155
42 | 48 121 [125 | 150 ) E56 147 41 | 128 | 124 554 | 157

THIRD SQUARL. FOURTH SQUARE,
115 114 | 196 (200 | 15 | 11 118119197 103 10 | 14
1131016 { 109 | 1G5 | 12 | 16 120|117 104 | 168 13 | ©
7 | 8 | 106]100 200 | 212 2 r | 111|108 216 | 213
6 | 5 tiz |107 |211 |210 3 4 | 105 | 116 214 | 215
208 |205| 17 | 18 (104 | OO 201 | 204 | 24 | 23 ) o7 | 102
202 | z03 | 21 | 22 | 100 [ 103 207 2060 20 | 19 101 o8

FITTII SOUARIE SINTIL OR BOTTOM SOUARF.
58 | 50 [ 66|05 {170 173 63621 8 | o0|175] 172
64 | 61 |92 | 94 |171 {160 57 | 6093 |01 17g] 176
31185150 j56 |88 |8 pr|rg2| 55 | 40 | 81 | 83
187 | 189 53 | 51 | 84 | 8 190 (188 52 | 54 | 85 | 82
80 | 78 118y [1y7 | 66 | 69 73| 75 | 180 [ 184) 71 | 68
76 | 79 j179 1178 | 72 | 67 77 | 74 | 182 [183) 85 | 70

Fig. 511 Ter CosmiieTe CUBL.
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each of these groups for that term of the cube from which it was
derived, and the result will be a cube with six terms in each row.
The horizontal squares of this cube are shown in Tig. 342, the
second square being the same as the first, the fourth as the third,
and the sixth as the fifth,

The sum of the terms in each normal row of the preceding
cube is 624, and the sum of each diagonal which includes two terms
from the central group of the cube is alsc 624. It follows that the
middle two squares in each nermal direction are magical and that
each diagonal of the solid has the same sum as the normal rows.
This cube is called the basic cube,

Another magic cube with six terms in each row was next con-
structed. This cube is called the group cube. Each position which
in the basic cube is occupied by a cubic group of eight equal num-
hers is occupied in the group cube by a cubic group consisting of
the numbers 1, 2, 3, 4, 5, 0, 7, 8. All of the rows and diagonals
which have equal sums in the basic cube will have egnal sums in the
group cube.

Adding together the terms which occupy corresponding posi-
tions in the basic cube and the group cube the result is the complete
cube shown in Fig. 344, containing the munbers from 1 to 6* = 216.

In the complete cube the middle two squares in each direction
are magical while the outer squares are not.

To bring these magical squares to the surface the squares of
cach set of parallel squares may be permuted as follows:

Original order ........ 1,2 3,4, 5 6,
Permuted order ..., ... 3,2 I, 6,5, 4.

The result is the final cube shown In Fig. 140.

The above permutation is subject to two conditions. The sev-
eral sets of parallel squares must all be permuted in the same man-
ner. Any two parallel squares which in the original cube are located
on opposite sides of the middle plane of the cube and at an equal
distance from it, in the permuted cube must be located on opposite
sides of the middle plane of the cube and at an equal distance from it,
These conditions are for the protection of the diagonals. 7. w.



CHAPTER X.

VARIOUS KINDS OF MAGIC SQUARES.

OVERLAPPING MAGIC SQUARES.

PECULIAR species of compound squares may be called over-

lapping magic squares. In these the division is not made as usual
by some factor of the root into four, nine, sixteen or more subsquares
of equal area, but into several subsquares or panels not ali of the
same size, some lying contiguous, while others overiap. The sim-
plest specimens have two minor squares of equal measure apart in
gpposite corners, and in the other corners two major squares which
overlap at the center, having as common territory a middle square
2% 2, 3 X 3. or larger, or only a single cell, Such division can be
made whether the root of the square is a composite or a prime
number, as 4-5-9; 4-6-10; 5-6-11; 6-g-15; 8-12-20 etc. The natural
series 1 to #° may be entered in such manner that each subsguare
shall be magie by itself, and the whole square also magic to a higher
ot lower degree. For example the g-square admits of division into
two minor squares 4 X 4. and two major squares 5 X 5 which over-
lap in the center having one cell in common. For convenience, the
process of construction may begin with an orderly arrangement of
materials,

The series 1 to 81 is given in Fig. 345, which may be termed a
primitive square. The nine natural grades of nine terms each, ap-
pear in direct order on horizontal lines. Tt is evident that any natural
series 1 to #* when thus arranged will exhibit » distinct grades of »
terms each, the common difference being unity in the horizontal
direction, # vertically, n-+1 on direct diagonals, and #—1 on trans-
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verse diagonals. This primilive square is therefore something more
than a mere assemblage of numbers, for, on dividing it as proposed,
there is seen in each section a set of terms which may be handled
as regular grades, and with a little manipulation may become mag-
ical. The whole square with all its component parts may be tilted
over to right or left 45°, so that all grades will be turned into a diag-
onal direction, and all diagonals will become rectangular rows, and
presto, the magic square appears in short order. The prineiple has
been admirably presented and employed in various connections on
pp. 17 and 113, It is a well-known fact that the primitive square
gives in its middle rows an average and equal summation ; it is also
a fact not so generally recognized, or so distinetly stated, that afl

sl2|3 et sié |72

FI- BN R P RERE PP P . Ly aris

29 |20 |as |e2]2a|24 2528125

2F8 |22 (s |Ss|I8|0S [J4|S35]|a8

.57 ML RS P72y PRt E2 P

46 |aplud|wo|ow a7 joz s |Fe

s5|s8|sy|FF 59| ba &7 | S2|sa

Sy |Ba| b6 &7 24 7o\ |72
S SNV ANV A Vod VedVcat LA X

Fig. 343.
the diagonal rows are already correct for a magic square. Thus in
this g-square the direct diagonal, 1, 11, 21, 37 etc. Lo 81 is o mathe-
matical serics, 44 normal couplets — 309, Also the parallel partial
diagonal 2, 12, 22, 32, ete. to 72, eight terms, and 73 to complete it,
= 360. So of all the broken diagonals of that system: so also of
all the nine transverse diagonals; cach contains 41 normal couplets
or the value thereof = 360, The greater includes the less, and these
features are prominent in the subsquares. Dy the expeditious plan
mdicated above we might olilain i each section sonie squares of fair
magical quality, ruite regular and synmnetrical, but when paired
they would not be equivalent. and it is obvious that the coupled
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squares must have an equal summation of rows, whatever may be
their difference of complexion and constitutien. The major squares
are like those once famous Siamese twing, Eng and Chang, united by
a vinculum, an organic part of each, through which vital currents
must flow; the central cell containing the middle term 41, must be
their bond of union, while it separates the other pair. The materials
being parceled out and ready to hand, antccedents above and con-
sequents below, an equitable allotment may be made of normal
couplets to each square. Thus from N. W, scction two grades may
be taken as they stand horizontally, or vertically, or diagonally or
any way symmetrically. The consequents belonging to those, found
in 5. E. scction will furnish two grades more and complete the
square. The other eight terms from above and their consequents
from below will empty those compartments and supply the twin
4-square with an cxact equivalent. Some elaborate and elegant
specimens, magic to a high degree, may be obtained from the follow-
ing distribution:

15t grade 1, 3, 11, 13 (all edd), 2, 4. 10, 12 (all even};

2d grade 19, 21, 29, 31 and 20, 22, 28, 30

Then from N. E. section two grades may be taken for one of
the major squares; thus g, 6, 7. 8, 9 and 23, 24, 25, 26, 27 lcaving
for the twin square, 14. 15, 16, 17, 18 and 32, 33, 34, 35. 306. To
each we join the respective consequents of all those terms forming
4th and gih grades, and they have an equal assignment. But each
requires a middle grade, and the only material remaining is that
whole middle grade of the g-square, Evidently the middle portiou,
39. 40, 41, 42, 43 must serve for both, and the 37, 38, and their
partners 44, 45 must be left out as undesirable citizens. Fach hav-
ing received its quota may organize by any plan that wiil produce
a magic and bring the middle grade near the corner, and especially
the nwumnber 41 into a corner cell.

In the 5-square Fig. 346 we may begin anywhere, say the cell
below the center and write the 1st grade, 14, 15, 16, 17, 18, by &
uniform oblique-step moving to the left and downward. From the
end of this grade a new departure is found by counting two cells
down or three cells up if more convenient, and the 2d grade, 32,
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33, 34, 35. 36 goes in by the same step of the 1st grade. All the
grades foliow the same rule. The leading terms 14, 32, 39, 46. 64
may be placed in advance, as they go by a uniform step of their
own, analogous to that of the grades: then there will be no need of
any “break-move,” but each grade can form on its own leader
wherever that may stand, raaking its proper circuit and returning
to its starting point. The steps are so chosen and adjusted that
every number finds its appointed cell unocenpied, each series often
crossing the path of others but always avoiding cellision, The re-
sulting square is magic to a high degree. It has its twelve normal
couplets arranged geometrically radiating around that ummatched
middle term 471 in the central cell. In all rectangular rows and in
all diagonals, entire and broken, the five numbers give by addition

JO @JJ;{\67 :2_.3)4.5"1? jaié

%;7 6 (46440 s5| 70 @«3/ ;xf

J;J‘/LSJ/J /‘3.304/3‘2.@

we |36 @9654{ R¥ g @77 rz|zy

VA1) P 4.3@2 e e 24@5.9
Fig. 346. Fig. 247.

the constant S:=205. There arc twenty such rows. Other re-
markable features might be mentioned.

For the twin square Fig. 347 as the repetition of some terms and
omission of others may be thonght a blemish, we will try that dis-
carded middle grade, 37, 38, 41, 44, 45. The other grades must be
reconstructed by borrowing a few numbers from N. W. section so
as to conform to this in their sequence of differences, as Mr. Frier--
son has ably shown (Fig. 249, p. 141). Thus the new series in line
§-6-0-12-13, 23-24-27-30-31, 37-3%-(47)-44-45 etc. has the differ-
ences T 3 3 1 repeated throughout, and the larger grades will
necessarily have the same, and the differences between the grades
will be reciprocal, and thus the series of differences will be halanced
geometrically on each side of the center, as well as the normal
couplets. Therefore we proceed with confidence to counstruct the
5-square Fig. 347 by the same rule as used in Fig. 346, only applied
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in contrary directions, counting two cells to right and one upward.
When completed it will be the reciprocal of Fig. 346 in pattern,
equivalent in summation, having only the term 41 in common and
possessing similar magical properties. It remains to be seen how
those disorganized grades in the N. W, section can be made available
for the two minor squares, Fortunately, the fragments allow this
distribution :
Regular grades 1, 2, 3. 4—irregulargrades 7, 8, 1o, 1I
19, 20, 21, 22 25, 20, 28, 20
These we proceed to enter in the twin squares Figs, 348 and
349. The familtar two-step is the only one available, and the last
half of each grade must be reversed, or another appropriate permu-
tation employed in order to secure the best results. Also the 4th
grade comes in before the 3d. Bul these being consequents, may

- R
T el
FACLIEREL Fo|d2| 2 jzr
" N
ATED ORI
Ty |Felro|28 sol|lésla 2o
Fig. 348 Fig. 340.

go in naturally, each diagonally opposite its antecedent. The squares
thus made are magical to a very high degree. All rectangvlar and
all diagonal rows to the number of sixteen have the constant
S = 164. Each quadrate group of four numbers = 164, There are
nine of these overlapping 2-squares. The corner numbers or two
numbers taken on one side together with the two directly opposite
= 164. The corner numbers of any 3-squares == 164. There are
four of these ovverlapping combinations arising from the peculiar
distribution of the eight normal couplets.

These squares may pass through many changes by shifting
whole rows froi side to side, thal is to say that we may choose any
cell as starting point. In fact both of them have been thus changed
when taking a position in the main square. The major squares
shown in Figs. 346 and 347 pass through similar changes in order to
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bring the number 41 to a corner. With these four subsquares all
in place we have the g-square, shown in Fig. 350, containing the
whole series 1 to 81. The twenty continuous rows have the con-
stant S = 104 - 205 = 309. RBesides the 4-squares in N. W, and
5.E. there is a 4-square in each of the other corners overlapping
the 5-square, not wholly magic but having eight normal couplets
placed geometrically opposite. so that taken by fours symmetrically
they == 164. The four corner numbers 31 + 36 - 22 + 73 == 164.

This combination may be taken as typical of the odd squares
which have a pair of subsquares overlapping by a single cell. What-
ever peculiarities each individual may exhibit they must all conform

| 75 [sa s | 25 | 7% H | pes|e2|de

FENPI AN PARSY PLIPRIREY PEAF- "4

VAT BRI AP A AR

+F 24 | 72 S| G ad| g0 |y 7

F2) 82|73 | Jg | as (A5 08 | Gy |47

s2|2y | |57 | pr|ro | 2oy 3 |6

7 | 58| 78 9 | 25| 4 |Ba 87|18

| a| & 23145 |s# | 2ol 2| 2 62

S 4w | 55| 7ol 5] s .6.374’22

Fig. 350

to the requirement of equal swmmation in coupled subsquares; and
for the distribution of values the plan of taking as a unii of measure
the normal cotplet of the general series is so efficacious and of such
universal application that no other plan need be suggested. These
principles apply alse to the even squares which have no central cell
but a block of four cells at the intersection of the axes. TIfor ex-
ample, the 14-square, Fig. 351, has two minor subsquares 6 X 6, and
two major squares 8 % 8 with a middle square 2 X 2. This indi-
cates a convenient subdivision of the whole area into 2-squares.
Thus in N. W. section we have sixteen blocks: it is a quasi-4-square,
and the compariments may be numbered from 1 to 16 following
some approved pattern of the magie square, taking stich point of
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departure as will bring 16 to the central block. This 15 called 1 for
the 5. E. section in which 2, 3, cte. to 106 are located as lLefore.
Now as these single numbers give a constant s in every line,
so will any mathematical series that may replace them in the same
order as 1st, 2d, 3d terms ete. Thus in 1 the numbers 1, 2, 3, 4.,
in2:5, 6.7 8, and so on by current groups, will give correct results.
In this case the numbers 1 to 18, and 19 to 36 with their consequents
should be reserved for the twin minor srquares. So that here in
the N. W. section we begin with 37, 38, in 1 instead of 1, 2, leaving
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Trig. 331,

the 3. 4 spaces to be occupied by Lhe cousequents 139, 160. Then
in 2 we continne 30, 40 (instead of 35, 6} and so following the path
of the primary series, putting two terms intc each z-square, and
arriving with 07, GB at the middle square. Then the coupled terms
go on 69, yo—71, 72 etc. by some magic step across the 5. I, section
reaching the new No. 16 with the terms g7, g8 This exhausis
the antecedents. FEach 2-square is half full. We may follow a
reversed track putting in the consequents gg, 100 ete. returning to the
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starting point with 150, 160, It is evident that all the 2-squares
are equivalent, and that each double row of four of them — 1576,
but it does not follow that cach single row will = 788. In fact they
do so, but that is due to the position of each block as direct or re-
versed or inverted according to a chart or theorem emplayed in
work of this kind. The sixteen rectangular rows, the two entire
diagonals and those which pass through the centers of the 2 X z
blocks sum up correctly. There are also many bent diagonals and
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zigzag rows of eight numbers that — 788. Each quarter of the
square = 1576 and any overlapping 4-square made by four of the
blocks gives the same total. The minor squares are inlaid. Thus in
the N. E. square if the twenty numbers around the central block be
dropped out and the three at each angle be hrought together around
the block we shall have a 4-square magical to a high degree. In
fact this is only reversing the process of construction,

Fig. 352 is a 15-square which develops the overlapping principle
to an unusual extent. There are two minor squares 6X6, and two



VARIOUS KINDS OF MAGIC SQUARES, 215

major squares ) X g with a middle square 3 X 3 in common, The
whole area might have been cut up into 3-squares. The present
division was an experiment that turned out remarkably well. The
general series, I to 225 is thus apportioned. For N, W, 6-square
the numbers 1 to 18 and 208 to 2z25; for 5. E. 19 to 36 and 190 to
207; that is just eighteen normal couplets to each. For 5. W, ¢-
square the numbers 37 to 72 and 154 to 18g; for N.E. 73 to 108
and 118 to 153; for the middle square, 10g to 117. Figs. 353 and
354 show the method of construction. The nine middle terms are
first arranged as a 3-square, and arcund this are placed by a well-
known process (Fig. 103, p. 47} eight normal couplets 10t + 125
etc. forming a border and making a 3-square. By a similar process
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Fig. 353. Fig. 354.

this is enlarged to a 7-square, and this again to a g-square, Fig. 353.
Each of these concentric, or bordered, or overlapping squares is
magic by itself. The twin square N. E. is made by the same process
with the same 3-square as nucleus. In order to bring this nucleus to
the corner of each so that they may coalesce with a bond of union,
both of the squares are turned inside out., That is, whole rows are
carried from bottom to top and from left to right. Such trans-
position does not affect the value of any rectangular row, but it
does affect the diagonals. In this case the corner numbers, 74, 138
and 132 become grouped arcund the other corner 83, each of the
couplets having the same diagonal position as before. Thus we



216 VARIOUS KINDS OF MAGIC SQUARES.

obtain a 7-square with double border or panel on the North and
East, still magic. This 7-square may now be moved down and out
a little, from the border so0 as to give room to place its bottom
row above, and its left column te the right, and we have a 5-square
with panels of four rows. Again we move a little down and out
leaving space for the bottom and left rows of the g-square and thus
the 3-square advances to the required position, and the four squares
still overlap and retain all of their magical propertics. The twin
square 5. W. passes through analogous transformation. The minor
squares were first built up as bordered 4%'s as shown in [ig. 354 and
then the single horder was changed to double panel on two sides,
but they might have gone in without change to il the corners of the
main square. As all this work was done by the aid of movable
numbered blocks the various operations were more simple and
rapid than any verbal description can be. The 13-square (Fig. 352)
as a whole has the constant § = 165 in thirty rectangular rows
and two diagonals, and possibly some other rows will give a correct
result,  If the double border of fifty-two normal couplets be re-
moved the remaining Ii-square, 4-7-1f will be found made up of
two 4-squares and two overlapping 7-squares with middle 3-square,
all magic. Within this is a volunteer 7-square, of which we must
not expect too much, but its six middle rows and two diagonals are
correct, and the corner 2 X 2 blocks pertaining to the 4-squares
although not composed of actual covolets have the value thereod,
224 -+ 228, However, without those blocks we have two overlapping
s-squares all right. By the way, these 4-squares have a very high
degree of magic, like those shown in IFig. 350, with their 2-squares
and 3-squares so curiously overlapping. Indeed, this recent study
had its origin some years ago from observing these special features
of the 4-square at its best state. The same trails were recognized
in the 8's and other congeners; also scme remarkable results found
in the oddly-even squares when filled by current groups, as well as
in the guartered squares, led gradually to the general scheme of

overlapping squarcs as here. presented. D.F. S,
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ODDLY-EVEN MAGIC SQUARES.

A convenient classification of magic squares is found by recog-
nition of the root as either a prime number or evenly-even, or oddly-
even, of oddly-odd. These four classes have many common traits,
but owing to some characteristic differences, a universal rule of
construction has  hitherto seemed unattainable. The oddly-even
squares especially, have proved intractable to methods that are
readily applicable to the other classes, and it is commonly believed
that they are incapable of attaining the high degree of magical
character which appears in those others.

As some extensive explorations, recently made along those lines,
have reached a very high latitude, the results will now be presented,
showing a plan for giving to this peculiar sort, more than the
ordinary magical properties.

Problem: To make oddly-even squarcs which shall have proper
swnmation in all diagonal and rectangular rows except two, which
two shall contain S——1 and S-41 respectively. This problem is
solved by the use of auxiliary squares.

If 7 is an oddly-even root, and the natural series 1, 2, 3 etc. to
n? is written in current groups of four terms, thus:

1.2.3.4.—5.6.7.8.—0.10.11.12.—13.14.15.16, etc,
0.1.2.3.—0.1.2.3.—0. T, 2, 3.— 0, [. 2. 3. etc.

1 5 g 13 etc.
then from each current group a scries 0.1.2.3 may be subtracied,
leaving a series 1.5.9.13 etc. to #*—3, a regular progression of
/4 ters available for constructing a square whose side is n/2,
As there are four such series, four such squares, exactly alike,
readily made magic by well-known rules, when fitted together around
a center, will constitute an oddly-even square possessing the magical
character to a high degree. This will serve as the principal auxil-
iary. Another square of the same size must now be filled with the
series 0.1.2.3 repeated n*/4 times. The summation 3n/2 being
always odd, cannot be secured at once in every line, nor equally
divided in the half lines, but all diagonal and all rectangular rows,



218 VARIOUS KINDS OF MAGIC SQUARES,
|

except two of the latfer, can be made to sum up correctly. Hence
the completed square will show a minimum of imperfection.

In illustration of these gcneral principles, a few examples will
be given, beginning properly with the 2-square, smallest of all and
first of the oddly-even. This is but an embryo, yet it exhibits in
its nucleated cells some germs of the magical character, capable of
indefinite expansion and growth, not only in connection with those
of its own sort, but also with all the other sorts. Everything being
reduced to lowest terms, a very general, if not a universal principle
of construction may be discovered here. Proceeding strictly by
rule, the series 1.2.3.4. affords only the term 1. repeated four
times, and the series o.1.2.3. taken once. The main auxiliary
(Fig. 355) is 2 genuine quartered 2-square, equal and identical and
regular and continuous every way. 5=z,

LS @ |7 [Z ] 2| d /|2

s/ 2|3 a |7/ 2|7 3| 4

Fig. a55. Fig. 356. Fig 357. Fig 358. Fig 350

The second auxiliary (Fig. 356} taking the terms in direct order,
has ecight lines of summation, showing equality, S=3, in all four
diagonals, while the four rectangular rows give inequalities 1.§
and 2.4, an exact balance of values. This second auxiliary may
pass through eight reversed, inverted or revolved phases, its semi-
magic character being unchanged. Other orders may be employed,
as shown in Figs. 357 and 358, bringing equality into horizontal or
vertical rows, but not in both directions at the same time. Now
any one of these variables may combine with the constant shown
in Fig. 155, developing as many as twenty-four different arrange-
ments of the z-square, one example of which is given in Fig. 350.
It cannot become magic unless all its terms are equal; a series
whose common difference is reduced to zero. As already suggested,
this 2-square plays an important part in the present scheme for
producing larger squares, pervading them with its kaleidoscopie
changes, and forming, we may say, the very warp and woof of their
substance and structure.

The 6-square now claims particular attention. The main auxil-
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iary, Fig. 360, consists of four 3-squares, each containing the series
1.5.0.13 ete. to 33. The 3-square Is infantile; it has but one plan
of construction ; it is indeed regular and can not be otherwise, but it
is imperfect. IHowever, in this combination each of the four has a
different aspect, reversed or inverted so that the inequalities of par-
tial diagonals exactly balance. With this adjustment of subsquares
the 6-square as a whole becomes a perfect quartered square, S=102;
it is a quasi 2-square analogous to Fig. 355.

The four initial terms, 1.1.1.1 symmetrically placed, are now
to be regarded as one group, a z-square scattered into the four
quarters; so also with the other groups 5.5.5.5 etc. Lines con-
necting like terms in each quarter will form squares or other

AA 33 TS |aa|rS a|l2|2|0|s |2

G |7 |2g|25 72 dglrsl73|a]|s

2at s |eslar| 7 |29 ¢ l|l2|2|lela|2

28| F |Ef|2s| 7 | 257 eS|/

g |sp|2s|ag|sr |2 g3 |l2lel2 |2

/J .3-:3 & ..f- S3| 43 d | RV
Fig. 3f0. Fig. 361.

rectangles, a pattern, as shown in Fig. 363. with which the sec-
ond auxiliary must agree. The series 0.1.2.3 is used nine times
to form this second square as in Fig. 361. There are two con-
ditions: to secure in as many lines as possible the proper summation,
and alsc an adjustinent to the pattern of Fig. 360, For in order that
the square which is to be produced by combination of the two
auxiliaries shall contain all the terms of the original series, 1 to 26,
a group 0.1.2.3 of the one must correspond with the group 1.1.1.1
of the other, s0 as to restore by addition the first current group
I.2.3.4. Another set o.1.2.3 must coincide with the 5.5.5.5;
another with the 9.9.9.9 and so on with all the groups. The
auxiliary Fig. 361 meets these conditions. It has all diagonals cor-
rect, and also all rectangular rows, cxcept the 2d and sth verticals,
which sum up respectively 8 and 10.
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Consequently, the finished square Fig. 362 shows inequality in
the corresponding rews. However, the original series has been
restored, the current groups scattered according to the pattern, and
although not strictly magic it has the inevitable inequality reduced
to a minimum. The faulty verticals can be easily equalized by trans-
posing the 33 and 34 or some other pair of numbers thercin, but
the four diagonals that pass through the pair will then become in-
correct, and however these inequalitics may be shifted about they
can never be wholly eliminated. It is obvious that many varieties
of the finished square having the same properties may be obtained
by reversing or revolving either of the auxiliaries, and many more
by some other arrangement of the subsquares. It will be observed

43 3.5".7 Ly .56!/.5 ol | 21

r2|r8 |26| 25|17 |00 Hlimie= |

29| 3 23|27 |4 or IIERESRRIL !
- i

Salzs (2224 2 |Ja 1 ! J l

v
9 20|27\ 25|08
s6lag| &4 54[/« 3 /
Fig. 362, Fig. 363.

that in Fig. 360 the group 21 is at the center, and that each 3-square
may revolve on its main diagonal, 1 and 25, ¢ and 33, 29 and §
changing places. Now the subsquares may be placed so as to bring
either the § or the 13 or the 29 group at the center, with two
changes in each case. So that there may be 8X8X8=512 variations
of this kind. There are other possible arrangements of the sub-
squares that will preserve the balance of the partial diagonals, but
the pattern will be partly rhomboidal and the concentric figures
tilted to right and left. These will require special adaptation of
the second auxiliary.

We come now to the 1o-square, no longer hampered as in the
6-square, by the imperfection of the subsquares. The main auxil-
iary Tig. 364 consists of four g-squares, precisely alike, each contain-
ing the series T.5.9 etc. to gy, S==243, in every respect regular
and continnous. All four face the sanie way, but they might have
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been written right and left, as was necessary for the 3-square. The
groups T.I.1.1, 5.5.5.5 etc. are analogously located, and the pat-
tern consists of equal squares, not concentric but overlapping. The
10-square as a whole is regular and continuous. S=490.

.
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Fig. 36s.

The second auxiliary Fig, 365 is supposed to have at first the
normal arrangement in the top line ¢.3.0.0.3.2.2.1.2.2. which
would lead to correct results in the rectangular rows, but an alter-
nation of values in all diagonals, 14 or 16. This has been equalized
by exchange of half the middle columns, right and left, making all
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the diagonals = 15, but as the portions exchanged are unequal
those two columns are unbalanced. The exchange of half columns
might have taken place in the 1st and 8th, or in the 2d and 6th, either
the upper or the lower half, or otherwise symmetrically, the same
results following.

The resultant square Fig. 366 contains all the original series, I ta

forty rows. When made magic by transposition of 15 and 16, or
some other pair of numbers in those affected columns, the four
diagonals that pass through such pair must bear the inegnality.
Here, as in the previous example, the object is to give the second

73|32 s s |20 JI[as FF| 43|73

48| 7 || dE | 29| ws| 2 |50 [ S| 20

J7|e6|s0| 5 |Galas|of| 4| 7 |62

2B S| 2a |rod s |0 |B5 | 24|08 |52

87 | B |2 | 8224 (53|59 19 |77 |27

JE\ 22|58 |54 AV AEAEF RTINS

3| & |77 |4 G2yl S | FF| S5 |3

wolod|sa| £ |67 |28 |94 |av| & |62

Alseiarioz|sé| »# |67 22|02 55
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Fig. 366.

auxiliary equal summation in all diagonals at the expense of two
verticals, and then to correct the corresponding error of the fin-
ished square by exchange of two numbers that differ by unity.

In all cases the main auxiliary is a quartercd square, but the
second auxiliary is not; hence the completed square cannot have the
half lines equal, since S is always an odd number. However,
there are some remarkable combinations and progressions. TFor
instance in IFig. 366 the half lines in the top row are 252 4 253; in
the second row 253-+252; and so on, alternating all the way down,
Also in the top row the alternate numbers 73-4-804-20-} 31 +43==253
and the 32, 41 ete. of course = 252, The same peculiarity is found
in all the rows. [igs. 364 nad 365 have similar combinations. Also
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Figs. 360, 361 and 362. This gives rise to some Nasik progressions.
Thus in Fig. 364 from upper left corner by an obligue step one cell to
the right and five cells down: 73429485441 etc. ten terms, prac-
tically the same as the top row ==4g0. This progression may be
taken right or left, up or down, starting from any cell at pleasure.
In Fig. 365 the ten terms will always give the constant $ = 15 by the
knight’s move (2, 1) or (1,2) or by the elongated step (3,4). Fig,
366 has not so much of the Nasik property. The oblique step one to the
right and five down, 73429486 44 etc. ten terms = 505. This
progression may start from any cell moving up and down, right and
left by a sort of zigzag., The second auxiliary is richest in this
Nasik property, the main auxiliary less so, as it 1s made by the
knight’s move; and the completed square still less so, as the other
two neutralize each other to some extent. A vast number of varia-
tions may be obtained in the larger squares, as the subsquares
admit of so many different constructive plans,

The examples already presented may serve as models for the
larger sizes; these are familiar and casily handled, and they clearly
show the rationale of the process. If any one wishes to traverse
wider areas and to set down more numbers in rank and file, no
further computations are required. The terms o0.1.2.3 are always
employed: the series 1.5.9 ete, to 97, and after that 101.105.100
and so on. The principal auxiliary may be made magic by any
approved process as elegant and elaborate as desired, the four sub-
squares being facsimiles. The second auxiliary has for all sizes an
arrangement analogous to that already given which may be tabu-
lated as follows:

6-square, 0 3 0—2 2 2 top row
Io-square, 0 3003—221 22 “ "
Ig-square, 03 30003—222122]1 * e

18-square, 0 3330000 3—=2z22212112 %" “
ete.

The top row being thus written, under each term is placed its
complement, and all succeeding rows follow the same rule, so that
the 1st, 3d, 5th etc. are the same, and the 4th, 6th, 8th ete. are repe-
titions of the 2d. This brings all the 0.3 terms on one side and all
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the 1.2 terms on the opposite. In columns there is a regular alter-
nation of like terms; in horizontals the like terms are mostly con-
secutive, thus bringing the diagonals more nearly to an equality
so that they may be corrected by wholesale at one operation. This
systematic and somewhat mechanical arrangement insures correct
summation in rows and columns, facilitates the handling of diag-
onals, and provides automatically for the required pattern of the
2-squares, in which both the auxiliaries and the completed square
must agree, In making a square from the table it should be ob-
served that an exchange of half columns is required, either tlie
upper or the lower half, prefcrably of the middle columns; but as
we have seen in the 1o-square, several other points may be found
suitable for the exchange,

sV s ey [ I I S ) S F |32
FAlF || P sl w2 |
s |re| 2 Jlela|le 4| |08
PEYIE-I B 2|7 2|7 sFteo ]S | &
Fig. 367. TFig. 368 Fig. 36q9.

This plan and process for developing to so high a degree of
excellence, the oddly-even squares, starting with the 2-square, and
constantly employing its endless combinations, is equally applicable
to the evenly-cven squares. They do not need it, as there are many
well-known, convenient and expeditious methods for their construc-
tion. However, in closing we will give a specimen of the 4-square,
tvpe of all that class, showing the pervading influence therein of the
truly ubiquitous 2-square.

The primaries IFigs. 367 and 368 as well as the complete square
Fig. 300 singly and together fill the Lill with no discount. Each
is a quartered square, magic to a high degree. Each contains
numerous 2-squares, four being compact in the quarters and five
others overlapping. And there are many more variously scattered
abroad especially in Fig. 368. While these specimens seem to con-
form exactly to foregoing rules they were actually made by contin-
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uous process using the knight's move {2, 1) and (1,2). The pattern
is rhomboidal,

In all the combinations here presented, and especially in these
last specimens, the 2-square is pervasive and organic. “So we have
a symmetry,” as one of our philosophical writers has said-"which is
astonishing, and might be deemed magical, if it were not a matter
of intrinsic necessity.” D. F. 8.

NOTES ON ODDLY-EVEN MAGIC SQUARES.

The foregoing article on oddly-even squares by Xr. D. T
Savage is a valuable contribution to the general literature on magic
squares. Mr. Savage has not only clearly described a clever and
unique method of constructing oddly-even squares, but he has also
lucidly demonstrated the apparent limit of their possible perfection,

The arrangement of concentric guartets of four comsecutive
numbers in his 66 square is strikingly peculiar, and in studying
this feature it occurred to the writer that it might be employed in
the development of these squares by a direct and continuous process,
using the arithmetical series 1 to u® taken in groups of four con-
secutive terms, 1.2.3.4. —¢5.6.7.8. etc.

The constructive method used by Mr. Savage is based on the
well-known and elegant plan of De la Hire, but the two number
series which he has chosen for the first and second auxiliary squares
are unusual, if not entively new. It is difficult to see how these
unique squares could have been originally evolved by any other
method than that adopted by Mr. Savage, and the different con-
structive scheme presented herewith must be regarded as only a
natural outcome of the study of his original plan. Tt may also tend
to throw a little additional light on the “ubiquitous 22 square” and
to make somewhat clearer the peculiar features that obtain in these
oddly-even squares.

Referring to Fig. 370 (which 15 a reflected inversion of Fig.
361 and therefore requires no further explanation) it will be seen
that this square contains nine gquadrate groups of the series o.1.
2.3., the numbers in each group being scattered in each of the
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31X 3 quarters, and in concentric relationship to the 6X6 square.
The numbers of these quadrate groups are not, however, distributed
in any apparent order as viewed numerically, although the diagram
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Fig. 370.

of their consecutive forms, which will be referred to later on, re-
veals the symmetry of their arrangement.
Any middle outside cell of the. 33{3 quarters containing a

a 1 1 3 » " 1% 1B
2 L] -4 4] [} [0 13 15
A B ) c n
Fig. 371,

cypher can be used as a slarting point for a 66 square, and in-
spection will show four such cells in Fig, 370.

Selecting the second cell from the left in the upper line to start

sy 2 g2/ (2224 2 |90
g, 5 |2c 2y las|r2 |
%1 pE(33| &6 | F |3y |/
a F 7S aé| s
’z 12|r8 26|28 |7 |10
4. R Py 233 |2a 25| 4 (a7

Fig. 372 Fig. ara.

from, the numbers in the quadrate concentric group of which this
cell {s a member will be seen to have the formation shown in Tig.
371A, so the first group of four numbers (:1.2.3.4) in the series
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I to 36 are similarly placed in Fig. 372, running also in the same
relative numerical order,

To secure magic results in the completed square, each suc-
ceeding entry in the 3)X3 quarters must follow the last entry in
wmagic square order. [or the next entry in Fig. 372 there is conse-
quently a choice of two cells. Selecting the lower right-hand
corner cell of the 3>(3 quarter of [Fig. 370 used at the start, it is seen
to be occupied by 1, and the formation of the gquadrate concentric
group is as shown in Fig. 3718, The terms 5.6.7.8 are therefore
entered in Fig. 372 in similarly located cells, and as before, in the
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same refative numerical order. The next quadrate group of 9. 1o,
11.12 have the order shown in Tig, 371C,—13.14.15.16 are ar-
ranged as in Fig. 371D, and so on until all of the 306 cells are filled.
The resulting finished square is shown in Fig. 373.

Fig. 374 shows the different forms of (he nine consecutive
quadrate groups contained w1 Fig. 373, written in regnlar order, and
it discloses the harmonious relationship of the couplets.

There are two alternative forms Ior the first group, as shown
in Fig. 374. If the synare is to be pan-diagonal or continuous at the
expense of the summation of two wvertical columns, the right-hand
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form must be used, but if the square is to be strictly magic at the
expense of making four diagonals incorrect, then the left-hand
form is correct.

This graphic presentation of number order is instructive, as it
shows at a glance certain structural peculiarities which are not ap-
parent on the face of the square,
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Fig. 376.

Another of the many variants of this 636 square may be made
by starting from the fourth cell of the second line in Fig. 370, this
being alse a middle outside cell of a 33 square.

Under this change the forms of the quadrate groups are shown
in Fig. 373, the resulting square being given in Fig. 376.
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When these 6X6 squares are made pan-diagonal, i. e., perfect
in all their diagonals, the normal couplets are arranged in harmonic
relation throughout the square, the two paired numbers that equal
%* 1 being always located in the same diagonal and equally spaced
n/z cells apart. If the square is made strictly magic, however, this
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harmenic arrangement of the couplets is naturally disturbed in the
imperfect diagonals,

The above remarks and rules will of course apply generally to
1oX10 and larger squares of this class. A 10X10 square modified
from Mr. Savage's example to secure the harmonic arrangement
of the couplets. as above referred to, s given in Tig. 377, w.s .

NOTES ON PANDIAGONAL AND ASS0CIATED MAGIC SQUARLES,

The reader’s attention is invited to the plan of a magic square
of the thirteenth order shown in Fig, 378 which is original with the

Fig. 378,

writer. Tt is composed of four magic squares of the fourth order,
two of the fifth order, two of the seventh order, two of the ninth
order, one of the eleventh order and finally the total square of the
thirteenth order, thus making twelve perfect magics in one, several
of which have cell numbers in common with each other.

To construct this square it became necessary to take the arith-
metical series 1, 2, 3.... 169 and resolve it into different series
capable of naking the sub-squarcs. A close study of the con-
stitution of all these squares became a prercquisite, and the fol-
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lowing observations are in a large part the fruit of the effort to
accomplish the square shown. This article is intended however
to cover more particularly the constitution of squares of the fifth
order. The results naturally apply in a large degree to all magic
squares, but especially to those of uneven orders.

It has of course been long known that magic squares can he
built with series other than the natural series I, 2, 3.... #%, but the
perplexing fact was discovered, that although a magic square might
result from one set of numbers when arranged by some rule, yet
when put together by another method the construction would fail
to give magic results, although the second rule would work all right
with another series. It therefore became apparent that these rules
were in a way only accidentally right. 'With the view of explaining
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Fig. 379. Fig. 380, Fig. 381

these puzzling facts, we will endeavor to analyze the magic square
and discover, if possible, its raison d'étre.

The simplest, and therefore what may be termed a “primitive”
square, is one in which a single number is so disposed that every
column contains this number once and only once. Such a square
is shown in Fig. 379, which is only one of many other arrangements
by which the same result will follow. In this square every column
has the same summation (a) and it is therefore, in a limited sense,
a magic square.

Our next observation is that the empty cells of this figure may
be filled with other guantities, resulting, under proper arrangement,
in a square whose every column will still have a constant summa-
tion. Such 2 square is shown in Fig. 380 in which every column sums
¢+ b+ d- g, each quantity appearing once and only once
in each row, column, and diagonal. These squares however have
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the fatal defect of duplicate numbers, which can not be tolerated.
This defect can be removed by constructing another primitive square,
of five other numbers { Fig. 381), superimposing one square upon the
other, and adding together the numbers thus brought together.
This idea is De la Hire's theory, and it lies at the very foundation
of magical science. If however we add a to x in one cell and in
another cell add them together again, duplicate numbers will still
result, but this can be obviated by making the geometrical pattern
in one square the rewerse of the same pattern in the other square.
This idea is illustrated in Figs. 380 and 381, wherein the positions of
a and v are reversed. Hence, in the addition of cell numbers in
two such squares a series of diverse numbers must result. These
series are necessarily magical because the resulting square is so,
We can now lay down the first law regarding the constitution of
magical series, viz., 4 magic series is made by the addition, lerm to
term, of x gquantities to x cther guantilies.

As an example, let us take five quantities, @, b, ¢, d and g, and
add them successively to five other guantities #, y, 5, ¢ and v, and
we have the series:

a-x a-ty ats a4t a4
b+ x b+ y b+s b4 b+ v
c+ =z c+ ¥ €5 ¢}t c+v
d+x d4-y d-ts d -t d-+v
g+x g+v g4+s5 g+t gtv

This series, with any pafues given to the respective symbols, will
produce magic squares if properly arranged. It is therefore a
universal series, being convertible inte any other possible series.

We will now study this series, to discover its peculiar proper-
ties if we can, so that hereafter it may be possible at a glance to
determine whether or not a given set of values can produce mag-
ical results, First, there will be found in this series a property
which may be laid down as a law, viz.:

There is a constant difference belween the homologous num-
bers of any two rows or columns, whether adjacent to each other
or not. For exarnple, between the members of the first row and the
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corresponding miembers of the second row there is always the con-
stant difference of a— 5. Also between the third and fourth rows
there 1s a constant difference ¢ — d, and between the second and
third columns we find the constant difference ¥ — s etc., etc. Second,
it will be seen that any column can occcupy any vertical position in
the system and that any row could exchange place with any other
row, (As any column could therefore cccupy any of five positions
in the system, in the arrangement of columns we see a total of

5X 47X 3 X 2X 1 =120 choices.
Also we see a choice of 120 in the rows, and these two factors
indicate a total of 14,400 different arrangements of the 25 numbers
and a stmilar munber of variants in the resulting squares, to which

point we will revert later on.)
This uniformity of difference between homologous numbers of

z ;’, 3 ‘zf £ S| 23 |y |zadizsy sdalesq| /18 |0
A ;r 67|220|08s| 7 | 5o 227 73 |25 287|137,
v H § ‘% i rag|a g & e pd| sy o‘; 77 |73 |229|a
§ “ S < 3}7 49 |r0t|063|227 |85 &3 |og|z2atear sy
? ‘f f—. \i‘, f? ra32ig| 73 |27 bag el (e83|287| 7 | £
Fig. 382 Fig. 283 Fig. 384.

any two rows, or columns, appears to be the only essential quality
of a magical serics. It will be further seen that this must neces-
sarily be so, because of the process by which the series is made, 1. e,
the successive addition of the terms of one series to those of the
other series.

As the next step we will take two series of five numbers each,
and, with these quantities we will construct the square shown in
Fig. 382 which combines the two primitives, IFigs. 380 and 3R1.

Ry observation we see that this is a pure square, 1L e, in no
row, column, or diagonal is any quantity repeated ot lacking. Be-
cause any value may be assigned to each of the ten syntbols used,
it will be seen that this species of square depends for its peculiar
properties upon the geometrical arvangement of its members and not
on their aritlunetical values; also that the Aive numbers represented
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by the symbols o, b, ¢, d, g, need not bear any special ratio to each
other, and the same heterogencity may obtain between the numbers
represented by x, ¥, 5, ¢, 7.

There is however another species of magic square which is
termed “associated” or “regular,” and which has the property that
the sum of any two diametrically opposite numbers equals twice
the contents of the central eell. If we suppese Fig. 382 to be such
a square we at once obtain the following equations:

(1) (d+s) L {(d4+2) =2d 42y ~ x4 5= 2y
(2) (dt+t) + (d+v) =z2d f2y o~ t v == 2y
(3) ety +(gty)=2dt2y ot g= 2d
(4) {et+y)+(d+y)y=ad+t2y natb=2d

Hence it is evident that if we are to have an associated square,
the element & must be an arithmetical mean between the quantities
¢ and g and also between @ and b, Also, ¥ must be a mean between
a and 5, and between f and v, [t therefore follows that an associated
square can only be made when the proper arithmetical relations
exist between the numbers vsed, while the construction of a con-
tintlous or pandiagonal square depends upon the method of ar-
rangement of the numbers.

The proper relations are embraced in the above outline, i, e,
that the central terin of each of the five (or x) quantifies shall be
a mean between the diametrically opposite pair. TFor example,
1,4,0.14,17, or 1,2,3.4,5, or 1.2,10,18 19, or 1,10,1I,12,2I
are all series which, when combined with similar series, will yield
magical series from which associated magle squares may be con-
structed.

The failure to appreciate this distinction between pandiagonal
and associated squares is responsible for much confusion that exists,
and because the natural scries I,2,3,4....#87 happens, as it were,
accidentally to be such a series as will yield associated squares, ent-
pirical rules hove been evolved for the production of squares which
are only applicable fo such a series, and which consequently fail
when another series is used. For example, the old time Indian

“tule of regular diagonal progression when applied to a certain class
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of series will yield magic resuits, but when applied to another class
of series it fails utterly!

As an example in point, the following series, which is composed
of prime numbers, will yield the continuous or Nasik magic square
shown in Fig, 383. but a square made from the same ntnnbers ar-
ranged according to the old rule is not magic in its diagonals as
shown in Fig. 384,

1 7 37 67 73
17 23 53 8 &
101 107 I37 167 173
157 163 193 223 229
191 197 227 257 263

The fundamentally partial rules, given by some authors, have
elevated the central row of the proposed numbers into a sort of
axis on which they propose to build. This central row of the series
is thrown by their rules into one or the other diagonal of the com-
pleted square. The fact that this central row adds to the correct
simmation is, as before stated, simply an accident accruing to the
normal series. The central row does not sum correctly in many
magical series, and rules which throw this row into a diagonal are
therefore incompetent to take care of such series.

Returning to the general square, Ifig. 382, it will be seen that
because each row, column and diagonal contains every one of the
ten quantities composing the series, the sum of these ten quantities
equals the summation of the square. Hence it i{s easy to make a
square whose summmation shall be any desired amount, and also at
the same time to make the square contain certain predetermined
numbers.

For example, suppose it is desired to make a square whose
summation shall be 666, and which shall likewise contain the mum-
bers 6, 111, 3 and 222, To solve this problem, two sets of five
numbers each must be selected, the sum of the two sets being 666,
and the sums of some members in pairs being the special numbers
wished. The two series of five numbers each in this case may be
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3 0

6 108
20 216
50 100
100 63

179 -+ 487 == 666

from which by regular process we derive the magic square series

3 ¢ 20 50 100
rrr 114 128 158 208
219 222 230 206 316
103 106 120 150 200

06 69 83 113 163

containing the four predetermined numbers. The resulting magic
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Fig. 38s. Fig. 3%. TFig. 337.

square is shown in Fig. 383, the summation of which is 666 and which
is continuous or pandiagonal. As many as eight predetermined num-
bers can be made to appear together with a predetermined sum-
mation, in a square of the fifth order, but in this case duplicate
numbers can hardly be avoided if the numbers are selected at ran-
dom. We may go still further and force four predetermined num-
hers into four certain cells of any chosen column or row as per fol-
lowing example:

A certain person was born on the 15t day of the &th month,
was married at the age of 19, had 1% children and is now 1oz vears
old. Make a pandiagonal square whose S=102 and in which
numbers 1, 8, ]5'. 1g shall occupy the first, third, fourth and fifth
cells of the upper row.

Referring to the universal square given in Fig. 382,
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Let 2 == 0 Fo== T
c=3 §==5
d=g9g =6
g=2=a6 v =13

These eight quantities sum 43, so that the other pair (b and y)

must sum 59, (43 -+ 5o=102). Making therefore b=—20 and

= 30, and replacing these values in Fig. 382, we get the desired
square shown in Fig. 386,

As previously shown, continucus squares are dependent on the
geometrical placing of the numbers, while associated squares depend
also upon the arithmetical qualities of the numbers used. In this
connection it may be of interest to note that ¢ square of third order
can not be made continuous, but must be associated ; a square of the
fourth order may be made either confinuous or associated, but can
not combine these qualities ; in a square of the fifth order both gqual-
ities may belong to the same square. As I showed in the first article
of this chapter, very many centinuous or Nasik squares of the
fifth order may be constructed, and it will now be proven that asso-
ciated Nasik squares of this order can only be made in fewer
numbers.

In a continuous or “pure” square each number of the sub-series
must appear once and only once in each row, column, and diagonal
{broken or entire). Drawing z square, Fig. 387, and placing in it
an element x as shown, the cells in which this element cannof then
be placed are marked with circles. In the second row only two cells
are found wvacant, thus giving only two choices, indicating two
farms of the square. Drawing now another square, I'ig. 388, and
filling its first row with five numbers, represented by the symbols
{, v, x, y and &, and choosing one of the two permissible cells for & in
the second row, it will be seen that there can be but fwo variants
when once the first row is filled, the contents of every cell in the
square being forced as soon as the cheoice between the two cells in
the second row is made for x. For the other subsidiary square,
Fig. 189, with numbers represented by the symbols, g, &, ¢, d and g, .
there is no choice, except in the filling of the first row. If this row
is filled, for example, as shown in Fig. 380, all the other cells in this
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square must be filled in the manner shown in order that it may fit
Fig. 288,

Now, therefore, taking the five symbols x, y, 5, {, v, any one
of them may be placed in the first cell of the first line of Fig. 383.
For the second cell there will remain a choice of four symbols, for
the third cell three, for the fourth cell two, for the fifth cell no
choice, and finally in the second line there will be a choice of two
cells. In the second subsidiary there will be, as before, a choice of
five, four, three and finally two, and no cheice in the second row.
Collecting these choices we have (§x4x3x2x2) X {(5x4x3x2)
== 28,800, so that exactly 28,800 continuous or Nasik squares of the
fifth order may be made from any series derived from ten numbers,

v |z |y|s a|d|c|d|& - - )
x|g|as | dlg|le|d|e d | # |2
s{E | v lx &l | | gl e S|4 | A
volax |y |5 |2 glajsdle | gl r|lF|2 |3
yls |2 |v | |x < glal|é 2w
Fig. 388 Fig. 330, Fig. 3g0.

Only one-eighth of these, or 30600, will be really diverse since any
square shows eight manifestations by turning and reflection,

The question now arises, how many of these 3600 diverse Nasik
squares are also associated? To determine this query, let us take the
regular series 1,2, 3....25 made from the ten numbers

I 2 3 4 5
© 5 10 i3 20

Making the first subsidiary square with the numbers 1,2, 3,4, 5,
(Fig. 390) as the square is to be associated, the central cell must
contain the number 3. Selecting the upward left-hand diagonal to
work on, we can place either 1, 2, 4 or 5§ in the next upward cell of
this diagonal (a choice of four). Choosing 4, we must then write
2 in its associated cell. For the upper corner cell there remains
a choice of two numbers, 1 and 5. Selecting 1, the location of 5
is forced. Next, by inspection it will be seen that the number 1
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may be placed in either of the cells marked. 01, giving two choices.
Selecting the upper cell, every remaining cell in the square becomes
forced. Tor this square we have therefore only

4x2x2=16 choices,

For the second subsidiary square (IFig. 391) the number 1o must
occupy the central cell. In the leit-hand upper diagonal adjacent
cell we can place either o, 5, 15 or 20 (four choices), Selecting
o for this cell, 20 becomes fixed in the cell associated with that con-
taining ©. In the upper left-hand corner cell we can place either
5 or 15 (two choices). Selecting 15, 5 becomes fixed. Now we
cannot in this square have any further choices, because all other
15's must be located as shown, and so with all the rest of the num-
bers, as may be easily verified. The tolal number of choices in this

s|a7| 6 {ed] T us

5| &) o |2e S 35| 77130 |2 |ar |46

]
oI 01
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O |2 |sF |0 |5 /) (_) 4(.3J/0 G| 49|24 |2

Fig. z01. TFig. 302 Tig. 303

square are therefore 4 x 2=28, and for both of the two subsidiaries,
16x8 =128 Furthermore, as we have seen that each sgunare has
eight manifestations, there are rcally only 1284 = 16 differens plans
of squares of this order which combine the associated and Nasik
features.

I{ a centinnous square is expanded indefinitely, any square
block of twenty-five figures will be magic. Hence, with any given
square, twenty-five squares may be made, only one ef which can be
associated. There are therefore 16x 25 =400 variants which can
be made according to the above plan. We have however just now
shown that there are 3600 different plans of continuous squares of
this order. Hence it is seen that only one plan in nine (3800,, —9)
of continuous squares can be made associated by shifting the lines
and columns, Bearing in mind the fact that eight variants of a
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square may bhe made by turning and reflection, it is interesting to
note that if we wish a square of the fifth order to be both associated
and eontinuons, we can locate unity in any one of the four cells
marked 0 in Fig. 392, but by no constructive process can the de-
sired result be effected, if unity is located in any cells marked Q.
Then having selected the cell for 1, the cell next to 1 in the same
column with the central cell (13) must contain one of the four
numbers 7, 9, 17, or 19, The choices thus entailed yield our esti-
mated number of sixteen diverse associated Nasik squares, which
may he naturally increased eight times by turning and reflection.

That we must place in the same row with I and 13, one of the
four numbers 7, g, 17, or 19 is apparent when it is noted that of
the series

having placed 3 and 1o in the central cells of the two subsidiaries,
and ¢ and 1 in two other cells, we are then compelled fo use in the
same line either § or 15 in one subsidiary and either 2 or 4 in the
other subsidiary, the combination of which four numbers affords
only 7 and 17, or g and 19.

With these facts now before us we are better prepared to con-
struct those squares in which only prime numbers are used, ete.
Reviewing a list of primes it will be seen that every number ex-
cepting 2 and § ends in either 1, 3, 7 or . Arranging them there-
fore in regular order according to their terminal figures as

I 11 31 41
3 13 23 43
7 17 37 47 etc.
we can make an easier selection of desired numbers.

A little trial develops the fact that it is impossible to make
five rows of prime numbers, showing the same differences between
every row, or members thereof, and therefore a sef of differences
must be found, such as 6, 30, 30, 6 (or some other suitable se?).
Using the above set of differences, the series of twenty-five primes
shown on page 234 may be found. In this series it will be seen that
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similar differences cxist between the homologous numbers of any
row, or column, and it is therefore only necessary to arrange the
numbers by a regular rule, in order to produce the magic square in
Fig. 383.

These facts throw a flood of light upon a problem on which
gallons of ink have been wasted, i. e., the production of pandiagonal
and regular squares of the sixth order, It is impossible to dis-
tribute six marks among the thirty-six cells of this square so that
one and only one mark shall appear in every column, row and
diagonal. Hence a primifize pandiagonal magic square of this
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Fig. 304

order is excluded by a geometrical necessity. In this case the
natural series of numbers is not adapted to construct pandiagonal
squares of this order, That the difficulty is simply an arithmetical
one is proven by the fact that 6 x6 pandiagonal squares can be
made with ether series, as shown in Fig, 393. We are indebted to
Dr, C. Planck for this interesting square which is magic in its six
rows, six columns and twelve diagonals, and is also four-ply and
nine-ply, i. e., any square group of four or nine cells respectively,
sums four or nine times the mean, It is constructed from a series

made by arranging the numbers I to 49 in a square and eliminating
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ail numbers in the central line and column, thus leaving thirty-six

numbers as follows:*

r 2 3 5 6 7
8 9 10 12 13 14
15 16 17 10 20 2I
20 30 31 33 34 35
36 37 38 40 41 42
43 44 45 47 48 49

Fig. 394 shows the completed square which is illustrated in
skeleton form in IFig. 378. All the subsquares are faultless except
the small internal 3 x 3, in which one diagonal is incorrect.

L. & F.

SERRATED MAGIC SQUARES.

The curious form of magic squares which is to be described
here possesses a striking difference from the general form of magic

sgQuares.

at
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To conform with the saw-tooth edges of this class of squares,
I have ventured to call them “serrated” magic squares,

A square containing the series I, 2, 3, 4,....41 is shown in
Fig. 395. Its dilagonals are the horizontal and vertical series of nine
numbers, as A in Fig. 306. Tts rows and columns are zigzag as

* For further informalion regarding squares of this type wherein #n is of
the form 4p + k. See p. 267,
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shown at B, and are sixteen in number, a quantity which is always
equal to the number of cells which form the serrations.

All of this class of squares must necessarily contain the two
above features.

[ |
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72 ¥ # 2z 7 3 28
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#4 2 LF g FE
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Fig. 307.

DBut, owing to its Nasik formation, I'ig. 395 possesses other fea-
tures as follows:

There are nine summations each of the square and cruciform,
as at C and D in Fig. 390, the centers of which are 40, 11, 32, 5, 21,
37, 10, 31 and 2 respectively. Of E and F there are six summations
each, and of the form G there are twclve summations.

This square was formed by the interconcentric position of the

fl2 |3 |alrje | 7|8 |2

| A |42 AP e | e |47 |48

v 2o |2¢ |22 |23 z4[y 26 |27
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Fig. 308,

two Nasik squares shown in Fig. 397, and the method of selecting
their numbers is clearly shown in Fig. 308.

There are numerous other selections for the sub-squares and
the summations are not necessarily constant. This is shown by the
following equations,
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Let N and » equal the number of cells on a side of the large
and small syuares respectively, and let S equal the sunmations.
Then, when the means of each sub-square are equal
(14 N2+a") (N 4u)
2
When the large square has the first of the series and the small
square has the last of the scries

N{14+N2)  n{l4 %)
A + _é“

HB=

5= + N2z

When the large square has the last of the scries and the small
sguare has the first of the serics

N(1+Ni+?z(1+?:2)

o _ 2
5= > 7 4+ N
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Only in such squares that fit the first eguation, is it possible to
have complementary pairs balanced about the center; in other words
known as regular or associated squares.

Fig. 399 is one of this class and has summations of 855. In
this case the mean of the series was used in the 7X7 sub-square and
the remaining extremes made up the 8X8 sguare.
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Figs. 400, 401, and 402 are the smallest possible examples of
serrated squares. Fig. 400 is regular and is formed with the first
of the above mentioned equations, and its sunimations are g1. TFig.
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Fig. 400. Tig. qo1. Fig. 40z

4o1 is formed with the second equation and its summations are g7,
Fig. 402 is Tformed with the third equation and its summations are 85,

H. A, 5,

LOZENGE MAGIC SQUARES.

Recently the writer has noticed in a weekly periodical a few
examples of magic squares in which all of the odd numbers are
arranged sequentially in the form of a square, the points of which
meet the centers of the sides of the main square and the even
numbers filling in the coriters as shown in Fig, 405,

These articles merely showed the completed square and did not
show or describe any method of construction.

A few simple methods of constructing these squares are de-
“scribed below, which may be found of some interest.

To construct such squares, # must necessarily be odd, as 3, 5,
7, 9, 11 etc.

A La Hircian method is shown in Figs. 403, 404, and 405, in
which the first two figures are primary squares used to form the
main square, Fig. 405. We begin by filling in the cells of Fig. 403,
placing 1 in the top central cell and numbering downward 1, 2, 3
to 7 or 7. We now repeat these numbers pan-diagonally down to
the left filling the square.

Fig. qo4 1s filled in the same manner, only that we use the series
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©, 1, 2, t0 6 or #—1 i our central vertical column, and repeat these
pan-diagonally down to the right, The cell numbers in Fig. 404 are
then multiplied by 7 or u and added to the same respective cell
mmubers of Mg, 403, which gives us the final square Tig. 405.
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Tix. 403, Fig. aoa. Fig. 403,

Another method is shown In IFig. 400 where we have five sub-
squares placed in the form of a cross, The central one of these is
filled consecutively from 1 to 1%, We then take the even numbers of
the upper quarter, in this case 2, 8 and 4, and place them in the
same respective cells in the lower sub-square. The lower quarter

T
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or 22, 18 and 24, are placed in the upper square. Likewise the
left-hand quarter is placed in the right-hand square, and the right-
hand quarter in the left-hand square. This gives us the required
square, which is shown in heavy numbers.

A third method is to write the numbers consecutively, in the

form of a square. over an arca of adjacent squares as in Fig. 407,
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The mean of the series must be placed in the center cell of the
central or main square and the four next nearest to the center must
find their places in the corner cells of the main square, which con-
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sequently governs the spacing in writing the series. We then re-
move all these numbers to the same respective cells in the main
square, and this gives us the square shown in Fig. 4o8.



VARTOUS KINDS OF MAGIC SQUARES. 247

This last method is not preferable, owing to the largeness of
the primary arrangement, which becomes very large in larger squares,
It might however be used in the break-move style where the steps
are equal to the distance from the center cell to the corner cell, and
the breakmoves are one cell down when 1 is at the top.

What seems to be the most simple method is shown in Fig. 409
where the odd numbers are written consecutively in the main square,
and directly following in the same order of progression the even
numbers are written.
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Fig. 410,

The even numbers necessarily run over into three adjacent sub-
squares. These are removed to the saume respective cells in the
main square, the result of which is shown in Fig. g10.

The summations of IFig. 405 are 173, the summations of Figs.
406 and 408 are 63, and the summations for Fig. 410 are 360. Also,
all complementary pairs are balanced about the center.

H, A. 8,



CHAPTER XI.

SUNDRY CONSTRUCTIVE METHODS.

A NEW METHOD FOR MAKING MAGIC SQUARES OF ODD
ORDERS.

N an cndeavor to discover a general rule wherchy all forms of

magic squares might be constructed, and thereby to solve the
question as to the possible number of squares of the fifth order, a
method was devised whereby squares may be made, for whose con-
struction the rules at present known to the writer appear to be in-
adequate,

A general rule, however, seems as yet lo be unattainable: nor
does the solution of the possible number of squares of an order
higher than four seem to be yet in sight, though. Lecause of the
discovery, so to speak, of hitherto unknown variants, the goal must,
at least, have been brought nearer to realization.

The new method now to be described does not pretend to be
other than a partial rule, t. e.. a rule by which most, but possibly
not aff kinds of magic squares may be made. 1t is based on De la
Hire's method. i. e.. on the implied theory that a normal magic square
is made up of two primary squares, the one superimposed on the
other and the numbers in similarly placed cells added together, This
theory is governed by the fact that a given series of mnnbers may
he produced by the consecutive addition of the terms of two or more
diverse series of numbers. TFor example, the series of natural num-
bers from one to sixteen may be regarded {a) as a single series,
as stated. or (b)) as the result of the addition, successively, of all



SUNDRY COXNSTRUCTIVE METHODS, 249

the terins of a series of eight terms to those of another series of
two terms. For example. if series No. 1 is composed of o-1-2-3-4-5-6
and 7 and series No. 2 1s composed of 1 and g, all the numbers from
I to 16 may be thus produced. Or (¢) a series of four numbers,
added successively to all the terms of another series of four num-
bers, will likewise produce the same result, as for example o-1-2
and 3, and 1-5-9 and 13.

Without undertaking to Lrace out the steps leading up to the rule
to be described, we will at once state the method in connection with
a 35X § square.  First, two primary squares must be made, which
will hereafier be respectively referred to as the A and B primary
squares. If the proposed magie square is to be associated, that is, if
its complementary couplets are to be arranged geometrically equi-
distant from the center, the central cell of each square must naturally

3 ’o J3

3 1/0 3

Fig. 411 Fig. 412 Tig. 413.

be occupied by the central number of the series of which the square
is composed. The two series in this case may be 1-2-3-4-5 and o-3-
To-15-20. The central number of the first series being 3 and of the
second series 10, these two numbers must occupy the central cells of
their respective sqnares.

In gach of these squares, each of the terms of its scries must be
represented five times, or as many times as the series has terms.
Having placed 3 and 1o in their respective central cells, four other
cells in each square must be similarly filled.  To locate these cells,
any geometrical design may be selected which is balanced about the
central cell. IHaving done this in primary square A the reverse of
the same design must be taken for primary square I3, two examples
being shown in Figs. 411 and grz and IFigs. 413 and 414.
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Having selected a design, the next step will be to fill the central
row, which may be done by writing in any of the four empty cells
in this row, any of the four remaining terms of the series. The

10 9 HoBEpr
i0 @ (G ) o2 ]# |7
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/0 @) alal|s @ ey

Fig. 414. Fig. 415, Fig. 416,

opposite cell to the one so filled must then be filled with the com-
plementary number of the one last entered. Next. in either of the
two remaining empty cells, write either of the remaining two terms

5!50@20 S || F|r2 |24 \1}
R
2014|180 o] 23|07 |4 |27 @
r5| 0 Yro)z0| 5 /8| 7|23 \25| 7 @
Py Yo R I B PN /229 |26 3 @
o () 20| 5|/ 2 |rel|2s]8 |20 (3 )
Fig. 417 Fig. 418 Fig. 410.

of the series, and, in the last empty cell the then remaining number,
which will complete the central row as shown in Fig. 415. All the
other rows in the square must then be filled, using the same order
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Fig. 420, Fig. 421, Fig. 422,

of swmbers as in this basic row, and the square will be completed as
shown in Fig. 416. The second square can then he made up with the
numbers of its series in exactly the same way, as shown in Fig. 417,
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Adding together the terms of Tigs. 476 and 417, will give the asso-
ciated 5 % 5 magic square shown in Fig. 418, which can not be made
by any previously published rule known to the writer, Amnother
example may be given to impress the method on the student’s mind,
Fig. 419 showing the plan, Figs, 420 and 421 the A and B primary

@ 7@\13.3.:'6
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@ J .fé;@/ 2
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Fig. 423. Fig. 4=24.

squares, and [Fig. 422 the resulting magic square. Any odd square
can be readily made by this method, a 7 X 7 being shown. Fig. 423
shows the plan, Figs. 424 and 425 being the primary squares and
426 the complete example. Returning to the 5 X 5 square, it will be
seen that in filling out the central row of the A primary square
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Fig. 423 Fig, 426,

Fig. 415, for the first of the four empty cells, there is a choice of
16, and next a choice of four. Also for the B primary square there
are the same choices. Hence we have

(16 X 4)* = 4006 choices.
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In addition to this, by reversing the patierns in the two primary
squares, the above nuntber can be doubled.

Tt is thercfore evident that with any chosen geometrical plan,
8192 variants of associated § X 35 squares can be produced, and as at
least five distinct plans can be made, 40960 different 5 X 5 asso-
ciated squares can thus be formed. This however is not the limit,
for the writer believes it to be a law that all *figures of equilibriin”
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Fig. 427, Fig. 428 Fig. 429.

will produce magic squares as well as geemetrically balanced dia-
grams or plans.

Referring to Fig. 427, if the circles represent equal weights
comnected as by the dotted lines, the system would balance at the
center of the square. This therefore is a “figure of equilibrium”
and it may be used as a basis for magic squares, as follows: [Fill the
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Fig. 430 Fig. 431, Fig. a3z

marked cells with a number, as for example I as in Fig. 428; then
with the other numbers of the series, (excepting only the¢ central
number) make three other similar “figures of equilibrivm™ as shown
separatcly in Figs. 429, 430 and 437, and collectively in Fig. 432,
The five cells remaining empty will be geometrically balanced, and
must be filled with the middle terms of the series {in this instance
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3} thus completing the A primary square as shown in Fig. 433
Fill the B primary square with the series o-5-10-15-20 in the same
manner as above described and as shown in Fig. 434. The com-

Y
s c | 22
/\,L,qd'z @ | sd| e |20 & |3 |52
24‘5/® el o || 2|2l & |8 | #
5 2\9)4 / 20, 45| 055 | 0 rE|ep |t |9/
@ L2 Vs 2| AE| S| 20| | AT FE S W T B )
G172 | 2 @J‘ O | o |E 20[/; w |l 7 |2alze
Fig. 433. Fig. 434. Fig. 43s.

bination of IVigs. 433 and 434 produces the associated magic square

given in Fig, 435.
There are at least five different "figures of equilibrium’ that
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can be drawn in a § X 5 square, and these can he rcadily shown ta
give as many varianis as the geometrical class, which as before

noted yielded 40.960 different squares. The munmber may therefore
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now be doubled, raising the total to 81,020 associated § X 5 magic
squares that are capable of being produced by the rules thus far
considered.
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The student must not however imagine that the possibilities of
this method are now exhausted, for a further study of the subject
will show that a geometrical pattern or design may often be used
not only with its own reverse as shown, but also with another
entirely different design, thus rendering our search for the universal

SUNDRY CONSTRUCTIVE METHODS.

rule still more difficult.

For example the pattern shown in Fig. 436 may be combined in
turn with its reverse shown in Ifig. 437 and also with Fig. 438, mak-
ing the two associated magic squares shown in Figs. 439 and 440.

In consideration of this as yet unexplored terrftory, therefore,
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the ruies herein hriefly outlined can only be considered as partial,
and fall short of the “universal” rule for which the writer has been
seeking. Their comprehensiveness however is evidenced by the
fact that any square made by any other rule heretofore known to the
writer, may be made by these rules, and also a great variety of other

Fig. 444.

Fig. 445
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squares which may only be made with great difficulty, if at all, by
the older methods.

To show the application of these rules to the older methods,
a few squares given in Chapter I may be analyzed.

Figs. 441, 442 and 443 show the plans of 5 X 5 squares given
in Figs. 22, 23 and 41 in the above mentioned chapter.

Their comprehensiveness is still further emphasized in squares
of larger size, as for exaniple in the 7 X 7 square shown in [Fig, 420,
Two final examples are shown in Figs. 444 and 445 which give
plans of two ¢ X g squares which i worked out will be found to
be unique and beyond the power of any other rule to produce. In
conclusion an original and curious 8 X 8 square is submitted in
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Tig. 446. Fig. a47.

Fig. 449. This square is both associated and continuous or Nasik,
masmuch as all constructive diagonals give the correct summation.

The theory upou whicl the writer proceeded in the construction
of this square was to consider it as a compound square composed
of four 4 X 4 squares, the latter being in themselves continuous
but not associated. That the latter quality might obfain in the
8 % 8 square. each guarter of the 4 3 4 square is made the exact
counterpart of the similar guarter in the diagonally opposite 4 X 4
square, but turned on its axis 180 degrees.

Having in this manner made an associated and continuous
8 X & square composed of four 4 X 4 squares, each containing the
series 1 to 16 inclusive, another & X 8 square, made with similar
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propetties, with a proper number series and added to the first square
term to term will necessarily yield the desired result.

Practically, the work was done as follows: In one quarter of
an 8 X & square, a continuous (but not associated} 4 X 4 square
was inscribed, and in the diagonally opposite quarter another 4 X 4
sguare was written in the manner heretofore described and now
illustrated in Fig. 446. A simple computation will show that in the
unfilled parts of Fig. 440, if it is to be coutinnous, the contents of
the cells C and I} nust be 29 and A and B must equal 5. Hence
A and B may contain respectively T and 4. or else 2 and 3. Choosing
2 and 3 for A and B, and 14 and 13 for Id and C, they were located
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as marked by circles in Fig, 447, the associated or centrally bal-
anced idea being thus preserved.

The other two quarters of the 8 X 8 square were then com-
pleted in the usual way of making Nasik 4 X 4 squares, thus pro-
ducing the A primary square shown in Fig. 447, which, in accord-
ance with our theory must be both associated and continuous which
inspection confirms.

As only the numbers in the series 1 to 16 iuclusive appear in this
square, it is evident that they must be considered term by term with
another square made with the series 0-16-32-48 in order that the
final square may contain the series I to 064 inclusive. This is accom-
plished in Fig. 448, which shows a 4 >{ 4 sqnare both associated and
continuous, composed of the numbers in the ahove mentioned

series,
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At this point, two courses of operation seemed to be open, the
first being to expand Fig. 448 into an 8 X 8 square, as in the case of
the A primary square, Fig. 447, and the second being to consider
Fig. 447 as a ¢ X 4 sguare, built up of sixteen subsquares of 2 >( 2
regarded as units,

The latter course was chosen as the easier one, and each indi-
vidual term in Fig. 448 was added to each of the four numbers in the
corresponding quadruple cells of Fig, 447, thus giving four terms
in the complete square as shown in Fg. 4409. For example o being
the termi in the upper left-hand cell of Fig. 448, this term was added
to 114154 in the first quadruple cell of Fig. 447, leaving these
numbers unchanged in their value, so they were simply transferred
to the complete magic square Fig, 449. The second quadruple cell
in Fig. 447 contains the numbers 7-12-9-6, and as the second cell
m IFig, 448 contains the mumber 48, this number was added to
each of the last mentioned four terms, converting them respectively
into 55-60-57 and 54, which numbers were inscribed into the cor-
responding cells of TVig. 449, and so on throughout.

Attention may here be called to the “fgure of equilibrium”
shown in I'ig. 448 by circles and its quadruple reappearance in Fig.
449 which is a complete associated and centinuous 8 X 8 magic
square, having many unique summations. L. 8. F.

THE CONSTRUCTION OF MAGIC 5QUARES AND RECTANGLES
BY THE METHOD OF “"COMPLEMENTARY DIFFERENCES.*

We are indebted to Dr. . Planck for a new and power-
ful method for producing magic squares, rectangles etc. This
method is especally attractive and valuable in furnishing a general
or unizersal rule covering the construction of all conceivable types
of squares and rectangles, both odd and even. It is not indeed the
easiest and best method for making all kinds of squares, as in many
cases much simpler rules can be used to advantage, but it will be
found exceedingly helpful n the production of new variants, which

* Thiz article has been compiled almost entirely from correspondence re-
ceived by the writer from Dr. Planck, and in a large part of it the text of his
letters has been copied almost verbatim. Its publication in present form has
naturaily received his sanction and endorsement, W, 5. A
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might otherwise remain undiscovered, seeing that they may be non-
I.a Hireian and ungoverned by any obvicus constructive plan.

When a series of numbers is arranged in two associated col-
umns, as shown in Fig. 450, each pair of numbers has its distinctive
difference, and these “complementary differences,” as they are
termed by Dr. Planck, may be used very effectively in the con-
struction of magic squares and rectangles, In practice it is often
nuite as efficient and simpler to use half the differences, as given in
Fig. 450.

In illustrating tlis method we will first apply it to the con-
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struction of an associated or regular 3 x 5 magic rectangle, in which
the natural numbers 1 to 15 inclusive are to be so arranged that
every long row sums 40, and every short columm siums 24, The
center cell must necessarily be occupied by 8, which is the middle
number of the series, and the complementary numbers must lie in
associated cells, such as aa— b b —cc in Tig. 451,

The first operation is to lay out a 3x3 rectangle and fill it
with such numbers that all the short columns shall sum 24, but
in which the numbers in the columns will not be placed in any
particular order. When two coluiuns of this rectangle are filled
three pairs of complementary numbers will have been used, and
their differences will have disappeared, as these two columns must
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each sum 24. Hence, one complementary difference must equal
the sum of the other two.

We have therefore (neglecting the middle column) to make
two equations of the forms a=b+¢ from the complementary dif-
ferences, without using the same difference twice. Thus:

726+1}
5=3+2

is such a pair of equations.

The first equation indicates that the greater of the two comple-
ments whose half difference is 7 can lie in the same column with
the lesser members of the pairs whose half differences are 6 and 1.
In other words, the numbers 13, 7 and 2 can lie In one column,
and their complements 14, 9 and T in the associated column. The
second equation (5-3+2) gives similar information regarding
the other pair of assocciated columns, and the three remaining num-
bers must then be placed in the middle column, thus producing the
rectangle shown in Fig. 452.

These equations determine nothing as to the placing of the
numibers in the rows, since in Fig. 452 the numbers in the columns
have no definite order.

The rows may now be attacked in a similar manner. Two of
the complementary differences in the upper or lower row must equal
the other three, and the equation will therefore be of the order
a+b-c+d+te

In order that the disposition of munbers in the columns shall
not be disturbed, the numbers used in this equation must be sg
chosen that any tewo numbers which appear together on the same
side of an equality sign in the short column equation, must not so
appear in a long row equation, also if two numbers appear on the
opposite sides of an equality sign in a shert column equation, they
pst not so appear n the long row equation,

There is only one such equation which will conform to the
above rules, viz.,

6+2=4433+1.
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Interpreting this as before we have the rectangle given in Fig.
453, in which cach of the three rows sums 40, We have now two
rectangles, Fig. 452 showing the correct numbers in the columns,
and Fig. 433 showing the proper disposition of the numbers in the
rows. By combining them we get the associated or regular magic
rectangle given in Ing, 454

s T 7140|724 7S | 0| e
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Fig. 453. Fig. 454.

If a mere shuffling of pairs of complementary rows or columns
is ignored, this is the only solution of the problem.*

There are two pairs of equations of the form

a=-btr
d=e+f
namely, the one given in (1} and
7=5+2
> } .......................................... an
4=3+1

and there are nine equations of the form
a+b=c+d+e

but of these nine equations only one will go with (T) and none
will go with (TT) so as to conform with the above rules.

If the condition of association 1s relaxed there are thirty-nine
different 3 x 5 magic rectangles.

This method can naturally be used for constructing all sizes of
magic rectangles which are possiblef but we will only consider
one of 5x7 as a final example.

* The solution of this prablem of the associated rectangle is the first step
in the construction of the higher ornate magics of composite odd orders. For
example, if 1he above single solution for the 35 rectangle did not exist it
would be impossible to construct a magic, pan-diagonal, associated (= rezu-
lar) square of order 15, which shall be both g-ply and 25-ply, i. e., any sguare
bunch of g cells to sum up 9 times the mean, and any square bunch of 25 cells
25 limes the mean. € F

t A magie reclangle with an odd number of cells in one side znd an even
numhber in the oiher, is impossible witl consecutive numbers. c e,
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Fig. 435 shows the associated series of natnrul numbers from
1 to 35 with their half differences, from which the numbers must
be chosen in accordance with the above rules. In this case three
will be three equations of the order
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a+b=c+dre
for the columnz, and two cquations of the order

a+bic=dtetrf+yg
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for the rows. The following selection of numbers will satisfy

the conditions:

1+17= 9+ 742
44132 B4 6430 oot (11D
15+16=14+12+5

for the columns, and

12+13+16=17+11+9+ 4}
7+ 8+410= 2+ 3+5+15

for the rows.

Fig. 456 is a rectangle made from (II[) in which all the
columns sum 90, and Fig. 457 is a rectangle made from (IV) in
which all the rows sum 126. Combining these two rectangles pro-
duces Fig. 438 which is magic and associated,

We will now consider this method in connection with magic
squares and will apply it to the construction of a square of order 5
as a first example, In this case two equations of the order

a+b=c+d+e

will be required for the rows and two more similar equations for

the columns,

The following will be found suitable for the rows:

12411=-10+9+4
............................... (V)
8+ 6= 74542
and
11+8=12+6+1}
.............................. (V1)
10+7= 94+5+3

for the columns,

It will be seen that the rule for pairs of numbers in the same
equation is fulfilled in the above selection. In (V) 12 and 11 are on
the same side of an equality sign, but in (VI) these numbers are
on opposite sides, also, 10 and 9 are on the same side in (V) and
on opposite sides in {(VI) and so on,
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The resulting magic square is given in Fig. 439, it is non-
La Hireian, and could not easily be made in any way other than as
above described.

The construction of a square of order © under this method
presents more difficulties than previous examples, on account of
the inherent disabihties natural to this square and we will consider
it as a final example. The method to be employed is precisely the
same as that previously discussed.

For the columms three equations should be made of the form:

g+bt+e=d+erf
or

a+d =c+d+e+f
and three similar equations are required for the rows, all Leing
subject to the rule for “pairs and equality sign” as above described.

2ul 3|9 | 4 |ESF

22\ || & |18

22120 | /320 |24

IE ST |2 T

s |22|spi23) 2

Fig. 450.

On trial, however, this will be found to be impossible,® but if for
one of the row- or column-eguations we substitute an inequality
whose difference s 2 we shall obtain a square of 6, which will be
“associated,” but in which two lines or columns will be erratic, one
showing a correct summation - 1 and the other a correct summa-
tion +1. The following equations (VII) may be used for the
columns :

11+ 7= 94 5+ 3417
23417 +13=21 +19+ 15 f ------------------ (VIT}
J

35+ 31 +23=334+20+27
and for the rows:

* It is demonstrably impossible for all orders = 4p 2,1, e, 0, 1o, 14,, etc. C.p
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20425=-33+13+ 7+1
35419+ 3=31+21+ 5 b ... (VILD)

27+23217415+11+9
the last being an fnequality. Fig. 460 shows the complementary

2yl |db o282
22 27|34 (33|24 20
/ 36 a5 s taslso sz | 249
2 35 43 /618 1217|6238
J 34 S/ AR ERRAVE
7 A3 29 IE NS ]/22&
5 32 2y Fig. 461,
6 37 28 d3|as| 2 |s2lsT|sdf
7 S 23 aolas|20| 3V F [s6
F 24 2/ dz2\30 |0 |7 |73 | /4
9 28 /9 26| 24|23 5 7127
s6 27 27 du|zo 27| /S |27
V7 26 rS 252279 46 |as
/2 25 | /9 Fig. 462
23 24 2/ s8] 2 33|25
Py 24 e 6| & |38 3 t2e|20
s 2z 7 sy 2|30 5_2 20|23
16 2/ 5 24127 5| 726|235
‘7 20 J 1719 |2g| 7/ |29)|2/
’E /3 / 225 5y |3T 6 |19
Fig. 460. Fig. 463.

pairs of natural numbers 1 to 36 with their whole differences,
which in this casc are used in the equations {VII) and (VIII) in-
stead of the half differences, Lecause these differences cannot be
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halyed without involving fractions, Fig. 461 is the square derived
from equations {(VII) and will be found correct in the colummns.
Fig. 462 is the square formed from equations { VIII) and is correct
in the Ist, 2d, 5th, and 6th rows, but erratic in the 3d and 4th rows.
The finished six-square made by combining Figs. 461 and 462 is
shown in Fig. 463 which is associated or regular, and which gives

/F |37 2 (s |r2d3

6| & |s6l2oi28| 3 A 5

AN ER RVANPEARY:

22|25 4 |8 | 6 |35

/73-342/25/ c L

2|2yl 523 \26| 7

Fip. 464. Iig. 465.
correct summations in all the columns and rows excepting the 3d
and 4th rows which show — 1 and + 1 inequalities respectively.

Fig. 463, like TFig. 439, could not probably be produced by any
other method than the one herein employed, and both of these
squares therefore demonstrate the value of the methods for con-
structing new wvariants. Tig. 463 can be readily converted into a

TR 7 |7 7zl el 2
213X | 223l L
/6|3 || & glel«|rs
2 |6 |s5| 4 6|3 |5 |0
Fig. 466, Fig. 467.

continuous or pan-diagonal square by first interchanging the 4th
and 6th columns and then, in the square so formed, interchanging
the 4th and 6th rows. The result of these changes is given in
Fig. 464 which shows correct summations in all columns and rows,
excepting in the 3d and Gth rows which carry the inequalities
shown in Fig, 463. This square has lost its property of association
by the above change but has now correct summation in all its diag-
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onals. It is a demonstrable fact that squares of orders 4p+2,
(i e, 6, 10, 14 etc.) cannot be made perfectly magic in columns and
rows and at the same time either associated or pandiagonal when
constructed with consecutive numbers.

Dr. Planck also points out that the change which converts all
even associated squares into pan-diagonal squares may be tersely
expressed as follows:

Divide the sguare into four quarters as shown in Fig. 465,

Leave A untouched.

Reflect B.

Invert C.

Reflect and invert D.

7 aglsz|aa| 2 |43las]|on

SE( 19|39 |rg|s7 |20 |40|23

38|25\ S8\ 08 \IF |6 B2y

29|56 | 4 |4t |30 | 55| 3 |az

24| Ballo a5 2418/ |2 |48

435492J¢76J02;

F2lasjas| £ |57 |26 |«b 7

M ldplaz | da|r2 |33 |27 |6y

Fig. 468.

The inverse change from pan-diagonal to association is not
necessarily effective, but it may be demonstrated with the *Jaina”
square given by Dr. Carus on p. 125, which is here repeated in Fig.
466. This is a continuous or pan-diagonal square, but after making
the above mentioned changes it becomes an associated or regular
square as shown in Fig. 467,

Magic squares of the 8th order can however be made to com-
bine the pan-diagonal and associated features as shown in Iig. 463
which is contributed by Mr. Frierson, and this is true also of all

larger squares of orders 4p. W, S A,
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NOTES ON THE CONSTRUCTION OF MAGIC SQUARES OF
ORDERS IN WHICH » 15 OF THE GENERAL FORM 4f {2

It is well known that magic squares of the above orders, 1. e.,
62,102,142, 182, cte.. cannot be made perfectly pandiagonal and ornate
with the natural series of numbers.

Dr. C. Planck has however pointed oul that this disability is
purely arithmetical, seeing that these magics can be readily con-
structed as perfect and ornate as any others with a properly selected
series of numbers.

In all of these squares » is of the general form 4p + 2, hut they
can be divided into two classes:

Class I. Where u is of the form 8p - 2, as 62, 14%, 22° etc.

Class II. Where # is of the form 8p + 2, as 102, 18, 26° cte.

The series for all magics of Class I may be derived by making
a square of the natural series 1 to (#+1)2 and discarding the numbers
in the middle row and column,

Thus, for a 6% magic the series will he:

1 23 —5 67
8 9 10 — 12 13 14
1516 17 — 19 20 21
29 30 31 — 33 34 35
36 37 38 — 40 41 42
43 44 45 — 47 48 49

The series for all magics of Class IT may be made by writing
a square of the natural numbers 1 to {#+3)* and discarding the
numbers in the three middle rows and eolumns. The scries for a
10° magie, for example, will be:

1 2 3 4 5 . . . 9 10 11 12 13
14 15 16 17 18 . . . 22 23 24 25 26
27 28 29 30 31 . . . 35 36 37 38 39
40 41 42 43 4 . . . 48 49 50 31 52

33 54 53 56 57 . . . 6l 62 63 64 63
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105 106 107 108 109 . . . 113 114 113 116 117

118 119 120 121 122 . . . 126 127 128 129 130
131 132 133 134 135 . . . 139 140 141 142 143
144 145 146 147 148 . . . 132 153 154 155 136
157 158 159 160 161 . . . 163 166 167 168 1469

By using series as above deseribed, pandiagonal magics with
double-ply properties, or associated magics may be readily made
either by the La Hireian method with magic rectangles, or by the
path method as developed by Dr. C. Planck.

/|29 AP APAVAFAE:

/0|5 srl6|s]r 5

Fig. 460. AEAEAVAEAE

G lstrs |65

22|\ 7 |74 Ji2!S /|2 S

O (35|28 /16 /|G |s
Fig. 470. Lig. a1,

Referring now to the La Hireian method and using the 62
magic as a first example, the rectangles reguired for making the
two auxiliary squares will necessarily be 2x3, and the numbers used
therein will be those commonly employed for squares of the seventh
order, i. e, (6+1)2 with the middle nunibers omitted thus:

1 2 3 — 5 6 7
0 7 14 — 28 35 42

It may be shown that a magic rectangle having an odd number
of cells in one side, and an even number of cells in the other side
is impossible with consecutive numbers, but with a series made as
above it can Dbe constructed without any difficulty, as shown in
Figs. 469 and 470.
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Two auxiliary squares may now be made by filling them with
their respective rectangles. If this is done without forethought,
a plain pandiagonal magic of the sixth order may result, but if
attention is given to ornate qualities in the two auxiliaries, these fea-
tures will naturally be carried into the final square. For example, by
the arrangement of rectangles shown in Figs. 471 and 472 both auxil-
iaries are made magie in their six rows, six columns and twelve

O \y2|lo 42| 0 g2 7|49 3 (42| 2 |25
AV ACAVACAVA 36) 73 40@/// ’2
28 |/ g |28 | r5| 2814 35| r6| 37127 307y
O |4z| 0 ezl 0 122 /\4:; 5‘@64}
s5| 7 (o8| 7 |s5! 7 42| 9 238 |74 |37 |r0
28 | s\ 28|\ ra| 28|74 g@ 20|33 Q@ 34|09
lig. 172, Fig. 473.
7123|327 O |\g2) O |w2| 0 |42
sl6|a|s| 6|7 35| 7|35 7 1a5| 7
YAERER ERER VA 25 |t |28 s | 26 |2
rl6|s]sio) s 25V /| 28| rap 25 | re
71213 s 2|7 35| Fyas\7 |45 7
rle|s|ls|6]| 7 O |n2) o 42| 0 |az
Fig. 47.4. Tig. 475

diagonals, and they are also 4-ply and 9-ply. Their complementary
couplets are also harmoniously connected throughout in steps of
3, 3. These ornate features are therefore transmitted into the fn-
ished 6* magic shown in Fig. 473. Tf it is desired to make this square
associated, that is with its complementary couplets evenly balanced
around its center, it is only necessary to introduce the feature of
association into the two auxillary squares by a rearrangement of
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their magic rectangles as shown in Figs. 474, 475 and 476. the last
figure being a pandiagonal associated magic.

The next larger square of Class T is 142, and it can be made
with the natural series 1 to (14+1)2 arranged in a square, discard-
ing, as before, all the numbers in the central row and column.

The rectangles for this square will necessarily be 2x7 and the
numbers written therein will be those ordinarily used for a square

J | O |45 2 |48

36123 | 40|22 lar| &

3F|r6 |37 |77 (30|27

2G| RO IS |19 |S4|7F

42| 9 L3F | O | D7 | /4

L |48 47| 6 |43

Fig. 476.
of the fifteenth order, (14+1)?, with the middle numbers cmitted,
thus:
1 2 3 4 &5 6 7 — 9 10 11 12 13 14 15
0 15 30 45 60 75 90 - 120 135 150 165 180 195 210

Simple forms of magic rectangles for the anxiliaries are shown
in Figs. 477 and 478 but many other arrangements of the couplets
will work equally well.

/s 2t |\relw | 6| ;| |ee| 5|0 |65050| 5| 20
9

S N FS| gy | IO ¢ |r95|/80| 45 | o |r35|720

Fig. a77. Fig. 478.

The smallest magic of Class II is 10, the series for which is
given below. The rectangles used for filling the two auxiliaries of
this square are 2x5, and they can be made with the numbers which
would be commenly used for a square of the thirteenth order (1043)2
omitting the three middle numbers in each row thus:
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1 2 3 4 5 . . . 9 10 11 12 13
0 13 26 39 352 . . . 104117 130 143 136

Figs. 479 and 480 show these two rectangles with a simple ar-
rangement of the numbers. The two auxiliaries and the finished 102
magic are given in Figs. 481, 482 and 483. TFig. 483 is magic in its

sl 217 4 ls 56| 13 |130| 38 [ 52
s ir2| 3 \ro| @ O (43|26 127 | /04
Fig. 470. Fig. 480.

ten rows, ten columns and twenty diagonals. It is alsc 4-ply and

25-ply. Like the 6% magic, this square can also be associated by

changing the disposition of the magic rectangles in the auxiliaries.
The ahove examples will suffice to explain the general con-

s 2ty y a2 lael|ls
s sz 3 || 817 2l 3o 8
3l 22| | s|ra| 22|55
Slrald || B 7 |72l 3 (0|2
3l S|3| 27wl F
Zdrszl3|lwol@| 7 |r2l 3 ol 2
S| 2V | T3 2|2 e S
s 2| 3|27 rz|ls |02
3l a2zl | alray 2 | 7] #|a
szl 3 |0 27|23 |ro] @
Fig. 481.

straction of these squares by the La Hirelan method with magic
rectangles. It may however be stated that although the series pre-
viously described for use in building these squares include the lower
numetical values, there are other series of higher numbers which
will produce equivalent magic results,
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o lrstl o lrsé| ¢ |158] 0 |56 0 (256

£33l 23 Vwa| v |red)| 23 |r43|73 |red| 7d

26 \r30| 26 |r30| 26 | r30| 26 | r30| 26 | 730

7|39 4 BN ARy //7 a9 77 34

rou |52 fog| 52 | rog| T2 (roy| T2 | oF| L2

o |rss| o \r58l 0 1156| 0 |r56] 0 156

2 d|23 Ve 3|23 253 23 (763 73 |74 3] 73

26 |\r30] 28 |730| 26 |730| 26| 730 26 | £30)

g7 |38 |y |3 /// 39 /// S8 //] 32

o | 52 | fog| 52 |10g| 52 [foy| 2 |roy| 52

73 /JJ[ 2 |1Go| S (269 2 |167| 4 |67

14| 25 |Fyb| 23 |ra2| ry (155 06 (453 22

SO 13237 |/ 3437 |14 d| 2F [ F4/| 30 | /35

128 | S7 | r20| & |r26| 40129 42 227| F

1ty Sg 5| 56|09 65 08| 63| 708 5y

FARYZ T (ISP 7 r57)22 s389| 20 |26 5]

IEG| IS |/SA LT 148\ 2O (3] 2y | syl 4F

27 s 29 | /40331235138 |133| .36 | 28

P3P el P28 3 222 S22\ A78) SO #24 | #ow

rws|G6liey 62 w3 |53 \WOVSS | el 67

Fig. 483,
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The following table illustrates another rule covering the selec-
tion of numbers for all magic squares of these orders.

ORDER

OF NATURAL SERIES DISCARDING NUMEERS IN
SQUARE

6th 1to{ 6+1)2 the middle row and column.
10th 1 to (1043)2 the 3 middie rows and columns.
14th 1 to (1445)2 the 5 middle rows and columns.
13th 1 to (18+7)2 the 7 middle rows and columns.
22nd | 1 to{22+9)® the 9 middle rows and columns.
26th 1 to (26+11)+ the 11 middle rows and columns.

and so forth,

These figures show that this rule is equivalent to taking the

L {3n -4 L -4
numbers of the natural series (“—) and omitting the central 1 5

2

rows and columns, In comparing the above with the rules pre-
viously given, for which we are indebted to Dr. C. Planck, it will
be seen that in cases of magics larger than 10¢ it involves the use of
unnecessarily large numbers,

The numerical values of the ply properties of these squares
are naturally governed by the dimensions of the magic rectangles
used in their construction. Thus the rectangle of the 6* magic
(Fig, 473} is 2x3, and this square is 2%-ply and 3%-ply. The rectangle
of the 10¢ magic being 2x5, the square may be made 22ply and
52.ply, and so forth.

The formation of these squares by the “path” method which has
been so ably developed by Dr. C. Planck* may now be considered.
The first step is to rearrange the numbers of the given series in
such a cyclic order or sequence, that each number being written con-
secutively into the square by a well defined rule or path, the re-
sulting magic will be identical with that made by the La Hireian
method, or equivalent thereto in magic qualities. Starting, as before,
with the 6* magic, the proper sequence of the first six numbers is
found in what may be termed the “continuous diagonal” of its magic
rectangle. Referring to Fig. 469, this sequence is seen to be 1, 2, 5,

*The Theory of Path Nasitks, by C. Planck, M.A, M.R.C.S., published
by A. T. Lawrence, Rugby, England.
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7, 6, 3, but it is obvious that there may be as many different se-
quences as there are variations in the magic rectangles.

The complete series given on page 267 must now be rearranged
in its lines and eohrmns in accordance with the numerical sequence

@@@(?@ 00006C
Fl2|a |5 7 AR

) 513

F |G s |72 |rd | s 2VF |9 r2|rpe|r3/0

G5 |26 |77 |19 | 20|27 29| 30| S3|35 24 37

@2.9 SIS |33 | |55 43| by | 47| #2 48 | 4T

36 |37 |38 | 40| 4/ a2 @Jé 37|43 | 42|42 |38

4 V53 | wu| 45|27 |4 |wa @/5 /6179 22|20 77
Fig. 4B4. Fig. 48s.

of the first six numbers as above indicated. To make this arrange-
ment quite clear, the series given on p. 267 is reproduced in Fig. 484,
the numbers written in circles outside the square showing the numer-
ical order of lines and columns aunder rearrangement. I'ig. 485 shows
the complete series in new cyclic order, and to construct a sguare
directly therefrom, it is only necessary to write these numbers con-

7 ) 2
& A B
s 5 &
C D
Fig. 486. TFig. 487.

secutively along the proper paths. Since the square will be pandiag-
onal it may be commenced anywhere, s0 in the present example we
will place 1 in the fourth cell from the top in the first column, and
will use the paths followed in I7ig, 473 so as to reproduce that square.
The paths may be written

3, 2| and since we can always write

¥
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-(n —a) instead of a, we may write this | 3, 2]. This only means

-2, 3
that the numbers in the first column of Fig. 485 (which may be

termed the feading mumbers) are to be placed In order along the
path (3, 2). as in the numbers enclosed in circles in Fig, 473; and
then starting from each cell thus occupied, the remaining five num-
bers in each of the six rows of Fig, 485 are to be written along the
path (-2, 3). It will be seen that this is equivalent to writing the
successive rows of IMig. 483 intact along the path (-2, 3), or (3, -2)
and using a “‘break-step” (1, -1}, as in Fig. 486 where the first
break-step is shown with an arrow. The break-step is always given

2rlz |a 4/7/6/53’/5

s |eojro|\/s| o | A 7/44;9

Tig. ago.

2322:‘4/96/75/9/0/5

s/ |22 3 205/3’7/6/5/4://

Fig. 401

29| 2 l2y| 4 |25 6 |23| & |9 |20|/n |28 13

v 28| 3 26| 5 (24| 7 |22|2r\r0 |19 (2217

Fig. 4g92.

by summing up the coordinates; thus, the paths here being | 3, 2 1,
-2,3

by summing the columns we get (1, 5), that is (1, ~1). The re-
sulting square is, of course, identical with Fig. 473.

As previously stated, this square being pandiagonal, it may be
commenced in any of its thirty-six cells, and by using the same
methods as before, different aspects of Fig. 473 will be produced.
Also, since by this metiiod complementary pairs are always sepa-
rated by a step (n/2, n/2), any of the thirty-six squares thus formed
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may be made associated by the method described under the heading
“Magic Squares by Complenientary Differences,” viz., Divide the
sguare into four quarters as shown in TFig. 487 ; leave A untouched,
reflect B, invert C and reflect and invert D. For this concise and
elegant method of changing the relative positions of the comple-
mentary couplets in a square we are indebted to Dr. Plauck,

The next square in order is 10%. The series of numbers nsed
is given on page 267 and their rearrangement in proper cyclic order
for direct entry may be found as before in the continuous diagonal
of its magic rectangle. The sequence shown in Fig. 479 is, 1,2, 3,4,
9,13, 12, 11, 10, 5, and the complete rearrangement of the series in
accordance therewith is given in Fig, 488, Various 10* magics may
5.4

1w

will make Fig. 489, which is

be made by using this series with different paths. The paths

52

2.5

equivalent to Fig, 483 in its ornate features.

will produce Fig. 483, and

These squares and all similarly constructed larger ones of these
orders may be changed to the form of association wherein the com-
plementary couplets are evenly balanced around the center of the
square, by the method previously explained. It will be unneccssary
to prolong the present article by giving any examples of larger
squares of this class, but the simple forms of magic rectangles for
182 and 22* and 26° magics. shown in Figs, 490, 491, and 492, may be
of some assistance to those who desire to devote further study to
these interesting squares.*® W.S A, L.ST.

KNOTES ON THE CONSTRUCTION OF MAGIC SQUARES OF
ORDERS IN WHICH » IS OF THE GENERAL FORM &p+=2.

Tt has just been shown that the minimum series to be used in

constructing this class of squares is selected from the series 1, 2,

* More geuerally, if p, g are relative primes, the square of order pg will
lie magic on its pg rows, pg columns ancl_z;‘rq dingouals, and at {he sanie time
#2-ply and g?-ply, if it be constructed with the paths [ #, g |, and the pertod be

q.
taken from the continuous diagonal of the magic rectangle p > g, The limi-
tations are dictated by the magic rectaugle. F\ulently Foaud g st bath e
~ 1, and consecutive nnmbers must fail if the order is =2 (mod. 4); in all
other cases cansecutive numbers will suffice. [l OF
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K T {n+3)% by discarding 3 rows and columns from the natural
square of the order #+ 3.

It is not necessary, however, to discard the three central rows
and columns, as was therein explained, there being munerous

4

T

2
variations, the total number of which is always equal to (”4_2)

Fig. 403. Fig. 404. Fig. 495.
Fig. 406. Fig. agy. TFig. 498,
] |
| 1]
Fig. 400. Fig. so0. Fig. son.

therefore the 102 can be constructed with 9 different series, the 182
with 25 different seties, the 262 with 49 different series, and s0 on.
In Figs. 493 to 501 are shown all the possible variations of dis-
carding rows and columns for the 10?, Fig. 493 representing the
series explained in the foregoing article.
The central row and column must always be discarded, the
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Sth, or 7th, cte, rows from it. and irrespective of the rows, we do
likewise with the columns.

In a manner already explained, numbers are sclected according
to the series desired and arranged in rectangles with which the
magic square is constructee.

A set of rectangles with their respective series is shown in
Fig. 302, and the following table will give directions for their use.

SERIES REecTancLes {SEE Fig, 502)
Fig. 493 Aand X
Fig. 494 I3 and X
Fig. 495 Cand X
Fig. 496 AandY
Fig. 497 Band ¥y
Fig. 498 Cand Y
Fig. 499 Aand Z
Fig. 500 Band 2
Fig. 501 Cand Z

For example, suppose we were to construct a square, using the
series denoted in Tig, 495, By referring to the table it is seen that we
must employ rectangles C and X. DBy usings the La Hirelan method
these rectangles are placed as shown m Fig. 303, care heing taken to
arrange them in respect to the final square, whether it is to he asso-

ciated or non-associated.*

* See preccding article,
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A non-associated sqguare resulting from rectangles C and X is
shown in Fig. 504. Another example is shown in Figs. 505, 506
and 507, Here a series corresponding to Fig. 500 has been selected
and the natural square is shown in Fig. 505, the heavy lines indi-
cating the discarded rows and columns. The rows and columns
are re-arranged according to the numerical sequence of the contin-
uous diagonals® of rectangles B and Z of Fig, 502, this re-arrange-
ment being shown in Fig. 506.

In constructing the final square, Fig, 507, an advance move — 4,
—5 and a break move 1, 1| was used.

It will be unnecessary to show examples of higher orders of
these squares. as their methods of construction are only extensions
of what has been already described. It may be mentioned that these
squares when non-associated can be transformed into assoclated
squares by the method given in the preceding article. H. A, S

GEOMETRIC MAGIC SQUARES AND CUBES.

The term “geometric” has been applied to that class of magic
squares wherein the numbers in the different rows, columns, and
diagonals being multiplied together give similar products, They
are analogous in all respects to arithmetical magic squares.

Any feature produced in an arithmetical square can likewise
be produced in a geometric square, the only difference being that the
features of the former are shown by simmations while those of the
latter are shown by products. Where we use an arithmetical series
for one, we use a geometric series for the other, and where one is
constructed by a method of differences the other is constructed by
ratios.

These geometric squares may be considered unattractive because
of the large numbers involved, but they are interesting to study,
even though the actual squares are not constructed. The absurdity
of constructing large geometric squares can be easily shown. TFor
example, suppeose we were to construct an 8th order square Llsirlg
the series 2° 21 27, 2% ....2% the lowest number would be 1 and

¥ Bee preceding article
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the highest number would be 9223,372,036,854,775,808., Who would
be willing to test the accuracy of such a square by multiplying to-
gether the numbers in any of its rows or columns?

Analogous to the arithmetical squares the geometric squares
may be constructed with a straight geometric series, a broken geo-
metric series, or a series which has no regular progression.

I have divided the methods of construction into four groups,
namely: the “Exponentiat method,” the “Exponential La Hireian
method,” the “Ratio method,” and the “Factorial method.”

The Exponential Method.

The most common way of constructing these squares is with
a straight geometric series, arranged in the same order as a straight
arithmetical series would be in any summation square. This is
equivalent to the following.

Form any magic with a straight arithmetical series as in Fig.
308. Consider these numbers as exponents by repeating any number

710 |s 221 2f 28| + |3z
2|4 |6 2% 2% | 2* 4 |2 |64 p_ 4008
z|8]7 231z |2 8 |2ss| 2

Fig. 508. Fig. 509, Fig. 510,

(in this case 2) before each of them, which will give us a square as
shown in Fig. 509. Tt may be noticed that 2 is taken 12 times as a
factor in each of the rows, columns, and diagonals, therefore form-
ing a geometric square with constant products of 4096, The square
transposed in natural numbers is shown in Fig, 510.

4|-3]e 35" |3* 8| #H|2
+17]3 373’ |3° £13 27| puy
o| s5|-2 3|37 [3* ! laes| 4
Fig. 511, Fig. 312 Fig. 513,

TFig. 311, 312 and 513 show the same process involving negative
exponents.



SUNDRY CONSTRUCTIVE METHODS. 285

Figs. 514, 515 and 516 show how fractional exponents may be
used; and the use of both fractional and negative exponents is
shown in Figs. 317, 518 and 515.

Figs. 520 and 321 show the exponential method applied to a
fourth order square. The exponents in Fig. 520 taken alone, ob-
viously form an arithmetical magic,

33| o |24 4% |4° |22 28| s |3z
I z|3 4’ |4% |47 4 | % |6s P = 4006
FIANE N 4% | 2% |47 5 |2s6| 2!
iz, 514, Fig. 515, Fig, s,
23 [~ | 12 af 37 | 3d 23| § |27
of s}z 3" 1a’ |3 rl31o| P=2
3 |4 3t |3® |7¢ g lz7 [VF
Fig. 517. Fig. 518, Fig. 510

This square is an assoclated square with the products of cach
complementary pair equaling 32.

2727 |2% |2 & |92 |z256) &
2 |2° |2 |2° et| 1|2 | &
22t |z 4 | |32 4 P oo
27|27 2" 2" iz8| F | & oz
Fig. s20. Fig. 521,

The Exponential La Hircian Method.

Two primary squares are shown in Figs. 522 and 323. One is
filled with the powers 0, 1 and 2 of the factor 2, and the other with
the powers 0, 1 and 2 of the factor 5. Each primary square in itself
is a geometric magic with triplicate numbers. TFigs. 522 and 523
multiplied together, cell by cell, will produce the magic shown in
Fig. 524.

The factor numbers, in this case 2 and 5, arc not necessarily
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different, but when they are alike the exponents must suit the con-
diticn, to avoid duplicate numbers in the final square. To make this
clearer: if we form two primary squares that will add together and
form an arithietical magic, the same factor number may be added

to each of these primary squares, using the former numbers as ex-

P = 1000
2|27 | 2 552|587 5 |wol 2
2|z |2° 5’| 5|52 4 |10 |25
2 [2°] 2% 5%15° 5" so| 1 izo
Fig. 5za. Fig. 523. Fig. 324.

ponents, and the two will become geometric primary squares that
will multiply together and form a geometric magic without duplicate
numbers,

Figs. 525, 526 and 527 show the same methods applied to the
fourth order squares. This is a Jaina square, and is consequently
pandiagonal and also contains the other Jaina features.

P = 2685084
3|3 |33 2|22 2° / |92 |36 432
F |3 |3 |3 22| 2° | 2° 08 |14 | 3 164
3|3 |3 3" 2 2|2 |2 48 | 4 li7z8| 2
33713 |3 2 |z° 2% 2° 57|27 /6 | /2
Fig. sac. Fig. 526. TFig. 527,

Figs. 528, 529, 530 show the application of a double set of
factors to the primary squares. The constants of Fig. 528 are
3x 5% and those of Fig. 529 are 22 x7. This is also a Jaina square.

The Ratio Method.

If we fill 2 square with numbers as in Fig. 531, such that the
ratios between all horizontally adjacent cells are equal, and the
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ratios between all vertically adjacent cells are equal, we have a
natural square which can be formed into a geometric magic by any
of the well-known methods.

The horizontal ratios in Fig. 531 are 2 as represented by the
figure at the end of the division line, and the vertical ratios are 3
as indicated, and Fig, 532 shows the magic arrangement of this
series.

In a fourth order square, as n Fig. 533, the horizontal ratios

P = 21000
315153 2 [2° |22 |7’ 2 | & |wo|zs
3 |57 5|37 2|7 2" |2° 2 75| |t
513°13 |87 7'12% 2% |2’ 35 |4 |3 |S0
sfl a3 272" | 7 |2® z25|l6 | 7 |20
Fig. 528, Fig. 520. Fig. 530,

are not necessarily equal, and neither are the vertical ratios. A
magic may be made from this natural sguare by forming the num-
bers in the upper row into a primary square as in Fig. 534. The
numbers in the left-hand column are then formed into another pri-
mary square as in Fig, 535, These two primary squares will then
produce the magic shown in Fig. 536.

fl1a2 |4 s/ |2
2|6 |z 41 6|9 | Peratb
’ 2 | /8 36 J |36
Fig. 531 Fig. 532

Fig. 537 is a balanced natural square. This series will produce
a perfect Jaina, or Nasik,* or an associated square. Figs. 538, 539
and 540 show it arranged in a2 Nasik formation.

Mr. L. S. Frierson’s arithmetical equation squares also have
their geometric brothers. Where he applies the equation g-b=

* A concise description of Nasik squares is given in Ene, Brit.
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¢~ d, we use the proportion a:b::c:d. Fig. 542 shows a natural
equation square, and besides the proportions there shown, the diag-
onals of the magic depend on the necessary proportion a:b::ic:d
as indicated in the respective cells of Fig. S#a.

P =y560
4
rlzlal=z] ] 2|le r{7|els ¢ a |z |
)
4| ale|lzl|2|3|2]|/ i 5|t 17| |||z
F
L2
Slwo|Mslar| 2722 Flag | 7|/ o |a 653
e
>
s|llazr|63| |3 |2]|s 2 7lels|le)|z|2|F]|8
Fig. 533 Fig. 534. Fig. 535. Fig. 536.

The magic is then formed by revolving the diagonals 180° as
is shown in Fig, 343, or by interchanging the numbers represented
by like letters in Fig. 541

P = 14400
|25 |2 /2| F fjmR| 7 |/a /ze | o |60
F|el| w50 | S| r)2 F|# |5 |2 30 |z0| 3 | &
#

4 | 8|20 |#0 i|la|®|F a2l ez)/ 2|2 |lke| S
E]

2 2 ) 60 |20 o|lsr|& 4 |F 4|7 40 4| 6

Fig. 537. Fig. 538 Fig. 530. Fig. 540.

Another form of natural equation square is shown in Fig. 546,
The diagonals in this square depend on the equation axb=cxd
(see Fig. 5445). The magic is made by interchanging the numbers

2132416 Ag| 3 | &£ | i+
A8
clelele F 7T 8|5 fle |2 | =
S aam mET P o1z
plEFI2 za |21t |8 | |28|8 7 |® +
AlS8
M lEalas 1o & (49 (24| 2
TFig. 541. Fig. 542, Fig. 543

represented by like letters in Fig. 545, producing Fig. 347 and then
adjusting to bring the numbers represented by the A's and D's in
Fig. 545, in one diagonal and the numbers represented by the B's
and C’s in the other diagonal. or in other words, shifting the left-
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hand column of [ig. 347 so as to make it the right-hand column,
and then shifting the bottom line of the square thus formed to the
top. The result of these changes is shown in Fig. 548,

a a
b b
[ c
| ol ot
Fig. 5444. Fig. 544b.
P = 11700
1A £2 ::33':._“ :<z: g2 35|/ | 8 E | %|7 | S
AlB g:(%‘-:éar:{ 2 | & 21|70 a5t/ 18 (42
cls %:‘E‘ufénré 28\ |10 |2 4|zl ]|2
21c 4 k2ot k 7 Sle || 7 m |03 |z8
Fig. 345. Fig. z46. Fig. za7. Fig. 548,
2 £ % 3
/1213 |25 Il2ia|e)|s
) 6 |2 | /8 |2z¢ |30 S|/ |2
f?ﬁ‘z;za.u' sli]z]als
:uzzasw.ﬁ i Rl R
V3|26 |39 |52 |85 4157122
Fig. 345. Fig. 550,
P = 20720
FN 7|3 e | l i | 39|28 | 95
e\ N | |7 |P /8 | ge | S5 7
7|6 |uls 5|3 |z l33 |4
vlr 7| e zz| 3 |28 | 65
alelw f'{? stoll—ff A ¥-7)
Fig. 53t Fig. 552,

Fig. 549 is a fifth order natural square, and Figs. 330, 351 and
352 clearly show the method of forming the magic, which is pan-
diagonal.
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In the same manner Dr. Planck constructed his arithmetical
Nasik squares® of orders 4p+2, we can likewise construct geo-
metric squares.

Fig, 5533 shows a natural 7 x 7 square with the central row and
column cast out. This is formed by path method into the Nasik
square, rearranging the columns in this order 1, 4, 32, 64, 16, 2

P~ 22 X 1012

™
A
&
¥
2
™

- 2% 22 ZM Z" 2

™~
]

™
4

zzz 23: 27 Z“ 2%

"+ 234 2;: 2.:0 Zza 22.9 2:‘

B

247 Z‘ 242 z.f z“

2

z2* |22 |27 |27 | 2% |2

NN IN|N
1
M
[

2|27 (2% |27 |27 |2"

Fig. s553. Tig. 554.

and the rows in this order 1, 27, 224, 242 295 2% and using advance
move 2, 3 and a break-move -1, - 1,

The Factorial Method.

In this method we fill two primary squares, cach with # sets
of any n different numbers, such that each row, column, and diag-
onal contains each of the » different numbers.

To avoid duplicates in the magic, the primary squares should
have only one number in common, or they may not have any number
in common. Also, no two numbers in one primary square should
have the same ratio as two numbers in the other primary square.

This may be more clearly explained by an example. Suppose
we select two sets of numbers as follows for constructing a fourth
order square,

1
1

o fa
o~

2
3

Four sets of the upper row of numbers are to fill one primary

* See "Notes on the Cemstruction of Magic Squares” (» in (he form of
4p + 2}, p. 267.
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square and four sets of the lower row are to fill the other. These
two groups contain only one number in common, but the magic
would contain duplicate numbers due to the duplicate ratios 2:4 as
3:6, Therefore 2x6=4x3, consequently the duplicate numbers
would be 12, But if we interchange the numbers 2 and 5, the fault
will be corrected and the square can then be constructed without
duplicate numbers,
The square in Tig. 335 is constructed with the two groups

1 2 3 4
13 67
P = z000 P = 362830

f 152 | 4

Z8 | #B | 2 |2 | A5

B2 |20 |42
2| € | o

Jo| 7 | B |27

zo| 2|7 |8

24|13 |6 |5 |~

Fig. 533, Fig. 536,
/ |32 ! |2e3, 8/
ér| 2 |4 7291 3 |2
Fig. 557. Fig. 558 IMig. 559.

A fifth order square is shown in Fig. 556 and in this case the
following groups are used:
1 23 46
1 5 7 8 9

This square is pan-diagonally magic.

I will now show how a Nasik sixth order square may be made
by a method derived from Dr. Planck’s method of constructing
Nasik squares with arithmetical series.

Fill two six-celled rectangles, cach with six different numbers,
the two rectangles to have no more than one number in common.
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The numbers in each rectangle should be arranged so that the
products of its horizontal rows are equal, and the products of its
vertical rows are equal,

Two of such sets of numbers that will suit the above conditions
will not be found so readily as in Dr. Planck’s examples above men-
tioned.

728 | 19z | 3 |eessa| 3 | 576

32 | 486 (2592| Z |¥776 | w2

HEEE| 12 | M8 |28 | #5 | 36

P == 101,550,056,063,410.
} lsssz| & | 64 | ze3 | smms

23328 & | 248 (M58 %6 | B

fe PR |/EBe| £ |JE8E| 324

Fig. s60.
The two sels forming the magic rectangles in Figs. 537 and 538
are taken from the following groups:
20 21 22 2.‘1 2-1 2'5 20
30 31 3‘3 3:; 34 35 3«
Each group is a geometrical series of seven numbers, and in form-

ing the rectangle, the central number in each group is omitted.

A k)
Fia |« 3| & |2 Z |8 |3

& | o #o 5| 30 | 6o 45 | Do /80

25 | so | oo 75 | e | J00] |225 &850 |F00

Fig. 561.

The rectangles are arranged in primary squares as shown in
Fig. 539, and the two rectangles in Figs. 537 and 5538 so arranged
will produce the square in Fig. 560. This square is pan-diagonal,
22-ply and 3*-ply *

* A square is said to be #?-ply when the numbers in any w2 gronp of con-
tiguous cellAs Eirwe a constant product in geometric squares, or a constant sum
in arithmetical squares.
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Geometric Magic Cubes.

I will here briefly describe the analogy between the series which
may be used in constructing cubes. and those used in constructing
sguares,

It is obvious that an unbroken geometric series of any sort may

f | B0 | 300 s £ s Bo || 2

60 |25 | &8 9 |30 |rea| | S0 |36 | A5 P = 27000
4502 | S| |20 |225]| & 3 | w0 |so0
Fig. 56z

be arranged in a cube of any order, by placing the numbers in the
cube in the same progression as the numbers of an arithmetical
series would be placed in forrming an arithmetical cube. This may
be accomplished by an extension aof the method exemplified in Figs.
308 to 521 inclusive.

z &
ok e ooninoonionns

re

5 »
-
3 ®® 20 | V2r Y4z | ros z@
¥ o
8 Y ao )40 28 | 56 | Mo 280
C/(J ]
&t

Y o) o
@/ 54 |35 i‘p iga @@/3&0
&+ &
o N z\
=213 [

G) 180 | 360 @ 252

72 25z
[ 1
Jod @;a@ B0 e | 1542 | 3780
¢ N2 K

R

-
84 560
- <
Fig. 363,
P =z7.153.000
75k0| 2 | & | Me 7 |Felze | D 2 le20 | 88| B0 120 | i26 | 308 | 42

3 |60 sof| g0 360 |42 |05 | T 280 | Ja | /35 | z8 89|20 | 8 @90

4 |5\ 378 | 0 270 | 58 | Mo |27 2o |72 | B | 24 2z | /5| & \|eszo

630 | 24 | B0 | 63 8¢ 95 | 18 |Feo| |8 | 35| |oso| | o |mse2 37&9& 7

IFig. 56).

In using the Expounential La Hireian method, the same process
is followed in cubes as in squares, the main diference heing that
three primary cubes are necessarily vsed.

Fig. 561 shows a natural cubic series, obtained by the ratio

method, The three squares represent the three planes of the cube.
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The numbers 5 at the left of the first square represent the ratio
between vertically adjacent cells in each of the planes. The num-
bers 2 above represent the ratio between horizontally adjacent cells
in each of the planes, and the numbers 3 between the squares repre-
sent the ratic between adjacent cells from plane to plane.

By rearranging this series into a cube according to the path
methods as in arithmetical cubes many results may be obtained,
onc of which is shown in Fig. 562.

A fourth order balanced or assoctated series is shown in Fig.
563. This series is analogous to the plane series in Fig. 537, and
may be transformed into a magic cube by the following well-known
method:

Interchange the numbers in all associated pairs of cells which
are inclosed in circles, producing the result shown in Fig. 564

The possibilities in using the Factorial method in constructing
cubes, have not been investigated by the writer, H. A, S.



CHAPTER XIL

THE THEORY OF REVERSIONS.

QUARES like those shown in Figs. 565 and 566, in which the

numbers occur in their natural order, are known as nafural
squares. In such squares, it will be noticed that the numbers in
associated cells are complementary, 1. e, their swm is twice the
mean number. It follows that any two columns equally distant
from the central bar of the latfice are complementary columns,
that is, the magic sum will be the mean of their sums. Further any
two numbers in these complementary columns which lie in the same

11271345 |6

7189 (101112

121314 13714(15[16]17 |18

516 |7 |8 1920]21 (22|23 {24

9|10y11}12 25126127 (28|29 |30

13141 15]16 31132133 [34(35]|36
Fig. 365. Fig. 566,

row have a constant difference, and therefore the sums of the two
columns differ by # times this difference. If then we raise the
lighter column and depress the heavier column by n/z times this
difference we shall bring both to the mean value. Now we can
effect this change by interchanging half the numbers in the one
column with the numbers in the other column lying in their respec-
tive rows. The same is true with regard to rows, so that if we can
make #/2 horizental interchanges betweea every pair of comple-
mentary celumns and the same number of vertical interchanges
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between every pair of complementary rows, we shall have the
magic sum in all rows and columns. It is easy to see that we can
do this by reversing half the rows and half the columns, provided
the two operations are so arranged as not 1o interfere with one
another. This last condition can be assured by always turning over
columns and rows in associated pairs, for then we shall have made
harizontal interchanges only between pairs of numbers previously
tntotiched between pairs, each of whose constitnents has already
received an equal vertical displacement; and similarly with the
vertical interchanges, Dy this method, it will be noticed, we always
secure magic central diagonals, for however we choose our rows
and columns we only alter the central diagonals of the natural

1 [58]59]4 |5 |6z2]63]8
16]55| 54 [13] 125150 ] 9 |)
17 (4243 (20|21 |46 |47 |24
32[39]38 20|28 |35 3425
4013130 37 36 |27 |26 | 33
a1|18] 19 [44 [45 [22]23 |48
56115} 14 53 |52 [11 [10 |49
s702 )3 leofer]6 |7 [

Ing, g6,

square (which are already magic) by interchanging pairs of com-
plementaries with other pairs of complementaries.

Since the #/2 columns have to be arranged in pairs on, either
stde of the central vertical Lar of the latlice, n/2z must be even,
and so the method, fie ity shmplest form, applics only to orders = o
(mod 4). We may formulate the rule thus: For orders of form o,
reverse wm o peirs of complementary columns and w pairs of comple-
mentary rows, and the evude magic is completed.

In the following example the curved lines indicate the rows
and enlumns which have heen reversed (Fig. 56v7).

We have said that this method applies only when a/2 is even
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but we shall now show that by a slight modification it can be applied
to all even orders. For suppose # is double-cf-odd: we cannot
then arrange half the columns in pairs about the center since their
number is odd, but we can so arrange n/2 -1 rows and #/2 -1
columns, and if we reverse all these rows and colummns we shall
have made n/2 — 1 interchanges between every pair of comple-
mentary rows and columns.  We now require only to make the

16| 2] 3|13
s|1fw|s
917612
4|14)15]1

Fig. 568.

one further interchange between every pair of rows and columns,
without interfering with the previous changes or with the central
diagonals. To effect this 1s alwavs easy with any orders =2
(mod 4), (6, 10, 14 ete.), excepting the first. In the case of &
an artifice is necessary. Tf we reverse the two central diagonals
of a square it will be found, on examination, that this is equivalent
to reversing two rows and two columns; in fact, this gives us a

G323 (45 |31
1212019 |28 126 |7
] " 13 (14 (22121 |17 |24
19123116115 120 118

— =[1 25111127 |10 [ & 30
1

g 6|2 [34]35]35] 1

Fig. 569. Fig. 370.

method of forming the magic 4* from the natural square witht the
teast number of displacements, thus:

Applying this idea, we can complete the crude magic 6* from
the scheme shown in Fig. 569 where horizontal lines indicate hori-
zontal interchanges, and vertical lines vertical interchanges: the
lines through the diagonals implying that the diagonals are to be
reversed. The resulting magic is shown in Fig. gyo.
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The general method here described is known as the method
of rewversions, and the artifice used in the double-of-odd orders is
called the broken reversion. The method of reversions. as applied
to all even orders, both in squares and cubes, was first(?) investi-
gated by the late W. Firth, Scholar of Emmanuel, Cambridge.*

The broken reversion for 6* may, of course, be made in
various ways, but the above scheme is one of the most symmetrical,
and may be memorialized thus: For horizonial changes commence
at the two nuddle cells of the bottom row, and progress wpward
and divergently along two knight's paths. For vertical changes turn
the square on one of its sides und proceed as before.

1(82|8 {9495 (96197 |3 [9 |10
20(12)13 84185 |86 |87 |88 119 |11
71129 (23|74 |75 |76 |77 |28 |22 |30
| 4039|3867 66 (65 |64 |33 (62 |31
= L 50| 49 | 48| 57 | 56 |55 |54 |43 142 |51
I 60| 59|58 (47|46 45 [44 |53 |52 {41
| 70|69 |68 | 37| 36 |35 |34 |63 |32 |61
! 21(72(73) 24|25 (26 27 |78 |79 |80
g " 81(82183|17|15 (1614 |18 |89 |90
91| 2|93 4|6 |5 |7 [98199 o0

Iig. 571, Fig. 57z,

In dealing with larger double-of-odd orders we may leave the
central diagonals “intact”™ and invert s/z—1 rows and n/z—1
columns. The broken reversion can then always be effected in a
multitude of ways. It must be kept in mind, however, that in
making horizontal changes we must not touch numbers which havz
been already moved horizontally, and if we use a ntmber which
has received a vertical displacement we can only change it with
a number which has received an equal vertical displacement, and
similarly with wvertical interchanges. Lastly we must not touch
the central diagonals,

* Died 188g. For historical notice see pp. 304-305.
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Fig. 571 is such a scheme for 10%, with the four central rows
and columms reversed, and Fig. 572 shows the completed magic.

Tt is unnecessary to formulate a rule for making the reversions
in these cases, becanse we are about to consider the method from a
broader standpoint which will lead up to a general rule.

If the reader will consider the method used in forming the
magic 6 by reversing the central diagonals, he will find that this
artifice amounts to taking in every column two numbers equally
distant from the central horizental bar and interchanging each of
them with its complementary in the associated cell, the operation
being so arranged that two and only two numbers are moved in
each row, This, as we have already pointed out, is equivalent to
reversing two rows and two columns. Now these skew inter-
changes need not be made oun the central diagonals—they can be
made in any part of the lattice. provided the conditions just laid
down are attended to. If then we make a second series of skew
changes of like kind. we shall have, in effect, reversed 4 rows aud 4
columns, and so on. each complete skew reversion representing
two rows and columns. Now if # = 2 (imod 4) we have to reverse
1/2 -1 tows and columns before making the broken reversion,
therefore the same result is attained by making (12 —2)/4 com-
plete sets of skew reversions and one broken reversion. In like
manner, if =0 (mod 4). instead of reversing n/2 rows and
columns we need only to make s/4 sets of skew reversions,

We shall define the symbol [X| as implying that skew inter-
changes are 1o be made between opposed pairs of the four numbers
symmetrically situated with regard to the central horizontal and
vertical bars, one of which numbers occupies the cell in which the
symbol is placed. In other words we shall assume that Fig. 5730
indicates what we have hitherto represented as in Fig. 573b.
Further, it is quite unnecessary to use two symbols for a vertical
or horizontal change, for TMig. 573¢ sufficiently indicates the same
as Fig. 573d. Ti these abbreviations are granted, a scheme like
I'ig. 560 may be replaced by a small square like Fig. 574, which is
to be applied 1o the top feft-hand corner of the natural 62

Fig. 575 is the extended scheme from I'ig. 574, and Fig. 576
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is the resulting magic. The small squares of symbols like Fig. 574
may be called index squares.

The law of formaticn for index squares is sufficiently obvious,
To secure magic rows and columns in the resulting square, the
symbols — and | must oceur once on each row and column of the
index, and the symbol X an equal number of times on each row
and column : that is, if there are two series X X....X the symbol
X must appear twice in every row and twice in every column, and

a i ¢ d
X

Fig. 373
so an. But we already know Dby the theory of paths that thesc
conditions can be assured by laying the successive symbolic periods
along parallel paths of the index, whose coordinates are prime to
the order of the index. Tf we decide always to use paralle! diagonal
paths and always to apply the index to the top left-hand corner
of the natural square, the index square will he completely repre-

6|5 (33(4 ]2 (a1

250201109 126 |12

T = 18 (20122 {21 |17 |13

““ 19 {14 {16 |15 |23 | 24

=11 ] 7 {1127 |28|8 {30

X ' 6 132(3 [34]35]1
= x 1 e :
Fig. 374 Fig. 573 Tig. 576.

sented by its top row. In Fig 574 this is [ X [—] | |, which we
may call the index-rod of the square, or we may simply call Fig.
576 the magic [ X [—1 | |. Remembering that we require {#—2)/4
sets of skew reversions when # =2 (mod 4) and n/4 when n =0,
it is obvious that the following rule will give crude magic squares
of any even order n:

Take a rod of n/2 cells, /4 symhols of the form X, (using
the integral part of #/q only), and if there is a remainder when #
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is divided by 4. add the symbols | and —, Place one of the sym-
bols X in the left-hand cell of the rod, and the other symbols
in any cell, but not more than one in each cell. The result is an
index-rod for the magic »2

Take a square lattice of order n/2, and lay the rod along the
top row of the lattice, Till up every diagonal slanting downward
and to the right which has a symbol in its highest cell with repeti-
tions of that symbol. The resulting index-square if applied to the
top left-hand corner of the natural »°, with the symbols allowed
the operative powers already defined. will produce the magic »°

The following are index-rods for squares of even orders:

4 X[ 10° e O IX[]
6° 122 [x[ T Ix[x] ]
8 142 x]=Txi | Ixft]

When the number of celis in the rod exceeds the number of
symbols, as it always does excepting with 6%, the first cell may be
left blank. Also, if there are sufficient blank cells, a X may

14a)134[135] o [ra0| 7 T'6 137} 4 Too i1 Juaa
24131|123)124] 20 [127]126[ 17 | 21 |22 [122] 13
[120] 35 [118]112[113[ 31 [ 30 |32 |33 [t11] 26 109
a8{107] 46 [103(101|102[ 43 [ 44 1000 30 |08 |37
8515994 57]92] 0053 [89 [s52 |87 |50 |60
73174|70(81|68] 79|78 65|76 |63 |71 |72
(<[ T E=IX] 61] 62| 75| 69| 77| 67| 66 |80 |64 |82 |83 |84

40| BO| 58| 88| 56{ 54|91 (53|93 (51 (9596

X1 TTT=T]= o7] 47] 99| 45| 41| 42 |103[104] 40 {106/ 38 |108

I S 36]110] 34| 28| 29| 114115[16117| 27 {119} 25

“IX=xP 121f 23 15| 16 |125] 19| 18 {128[129(130] 14 [132

e 12 2| 37136 8 |138)139] 5 [141]142)143] 1
Fig. 577. Fig. 578

be replaced by two vertical and two horizontal symbols. Thus 12°
might be given so | X | 1 | - | —1X | —]|. This presentation of
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12% 15 shown in Figs. 577, 578, and 147 from the index-rod given
above, in Ifigs. 579 and ;80.

Of course the employment of diagonal paths in the construction
of the index is purely a matter of convenience. In the following
index for 10%, (Iig. 581) the skew-symbols are placed along two

16| 13 (1941 4 | 5 (191189 |8 |188|10 |11 (1852 (183
1691181 26 [179( 19 |20 176175 |23 (24 |172|17 70|28

1681156(166( 39 (164 | 34 |35 (36 37 |159)32 157 |41 |L535

a3 133143]151 | 52 [140] 49 {50 [146/47 [144] 54 L4236
57| 58 1138[130136| 65 [134[133[62 |131[ 67 12060 [70

126072173 (123117121 |78 |77 118 80 |116[BZ |83 |113

98 |111] 87 | BB 108|104 (106105 |93 |103] 85 |96 1(-)0 85

99167 [101|102| 94 |90 (92 191 (107|892 |109]110|86 (112

XEET TIXO) o S-H= 1 - — ]
R4 |114113] 81 | 75 |79 f119l120(76 [122] 74 124 h2s [ 71
1271128) 68 | 60 | 66 [132] 64 |63 135 |61 [137] 59 |130]140
Tl (14155 ] 45 | 53|145| 51 147|148 48 150] 46 [152] 44 [154
XXX L 42| 5040 fsEEs 1§§ 1_§_1_ 1£2 1_65:3:3_- 165) 31 |167] 29
T X[%]=(%] [ 15] 27 |171] 25| 178 |174] 22 |21 177 ]178] 18 150l 16 [182
T helilx) | 14]se] 12 isel a7 9 | 7 Jioo] 6 isz|isa] 3 Jrss| 1
Fig. s79. Fig. 320

parallel paths (2, 1} and the symbols — and | are then added so
that each shall appear once in each row and once in each column,
but neither of them on the diagonal of the index slanting upward
and to the left.

1[xf-{ ]
[

).('_
] x|
FANES
Fig. g1,

IERES

[Ti=x[x

Crude cubes of even orders we shall treat by the index-rod
as in the section on squares. The reader will remember that we
constructed squares of orders =0 {mod 4} Ly reversing half the
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rows and half the columns, and it is easy to obtain an analogous
method for the cubes of the same family. Suppose we reverse the
V-plantes* in associated pairs: that is, turn each through an angle
of 180° round a horizontal axis parallel to the paper-plane so that
the associated columns in each plane are interchanged and reversed.
We evidently give to every row of the cube the magic sum, for half
the numbers in each row will be exchanged for their complemen-

—

62(63| 4 17 |46 |47 |20 33130 |31 |36 49 |14 | 15| 52
58159 8 21 |42 143 |24 37 |26 |27 |40 53 (10 [11] 55
545512 25 (38 (39128 41 |22 |23 |44 5716|760
131 50| 51|16 29 | 34| 35|32 45 |18 [19 |48 61|23 |64

R =R T

Muagic in rows only.
Fig. 582, The natural 4* with V-planes reversed.

1162|63] 4 17 46 (47 |20 33 |30 |31 |36 49114 (1552
56| 11110 53 40 (27 | 26 |37 24 143 |42 |21 B |59[581 5
6 7| 6|5 44 |23 |22 141 28 (39138 |25 1215554 9
13| 50|51 | 16 29 (3435 |32 45 113 19 |48 61121364

Magic in rows and colummns.
Fi. 583. Being TFig. 583 with H-planes reversed.

£ TN
1] 62|63 4 3235|3429 48 49114 | 15] 52
56| 11) 10 53 41 |22 |23 |44 25 |38 (39 |28 8|59 |58| 5
o 7| 6|57 3712627 |40 21|42 143 |24 12155154
13 50 31] 16 20147 |46 |17 36|31 )30 33 61 2|3 |64

Mlagic in rows, columns and lines.
Fig. 584. Being Fig. 19, with P-planes reversed.

CRUDE MAGIC 4%

taries. If we do likewise with H-planes and P-planes the rows and
linest will become magic. But as with the square, and for like
reasons, these three operations can be performed without mutual

* P-plane == Presentation-, or Paper-plane; H-plane = Horizontal plane;
V-plane = Vertical plane.

paper-plane,
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interference. Hence the simple general rule for all cubes of the
double-of-even orders:

Reverse, in assacigted pairs, half the V-planes, holf the H-
planes and half the P-planes,

With this method the ceutral great diagonals, of course, main-
tain their magic properties, as they must do for the cube to be
considered even a crude magic, To make the operation clear to

A R c
2,816, 112,,8 [5.,2]2,.86, 4| (6,,4]2_5[6, 4
6i74 2635 6|74 674| 6|74 8532 2538 64‘?| 2538
6,.25,8(1,55] [65,25,.2/8,.4 [1,,5/6.7]6,,2
]7356I47 6482 4518 674| 2736 6432 5238 I735
8352 64'?' 8352 2358 6!74 |4‘?6 4?I6 2635 47I6
4 '612%sla"'6| |4"76|278|27%5] |8*°2l6™ 1|18%°2

TFig. 585,

the reader we append views of 4* at each separate stage, the central
pair of planes being used at each reversion,

By this method the reader can make any erude magic cube of
order 4m. Wilh orders of form 4m -+ 2 we find the same diffs-
culties as with squares of like orders. So far as we are aware
no magic cube of this family had been constructed until Firth suc-

11724 1515 | &8 26| 6 |10

2313 | 1a 7|14 |21 12125| §
1822 2 2019 113 4 11127
Fig. 586.

ceeded with 6" in 188¢9. Firth's original cube was buiit up by the
method of “pseudo-cubes,” being an extension to solid magics of
Thompson's method. The cube of 216 cells was divided into 27
subsidiary cubes each containing 2 cells in an edge. The 8 cells of
each subsidiary were filled with the numbers 1 to 8 in such a way
that each row, columun, line, and central great diagonal of the large
cube summed 27, The cube was then completed by using the



THE THEORY OF REVERSIONG. 303

magic 3* in the same way that 6% is constructed from 3% Tirth
formulated no rule for arrangement of the mumbers in the pseudo-
cubes, and great difficulty was encountered in balancing the central
great diagonals. His pseudo-skeleton is shown in Fig. 383, where
each plate represents two P-planes of 6° each plate containing 9
pseudo-cubes, The numbers in the subsidiaries are shown i dia-
grammatic perspective, the four “larger” numbers lying in the
anterior layer, and the four “smaller” numbers, grouped in the
center, in the posterior layer.

I 11 T1T.
2| 8 |134(1291186|192 5| 3 |132]135(189(187 117]114[146]152| 62 | 60
6| 4 [130[133;190(188 1|7 1361131185191 11B[113]150(148 64 1 58
182(178; 21 | 24 |121]125 180|184 | 18 | 19 [127|123 541 50 |109(106[168| 164
177|181 22 |23 (126]122 183 (179|117 120 [124|128 52|56 110105162 (166
144(138/174[169| 16 | 10 139(141}172|125] 11 | 13 154|160| 70 | 68 |97 {102
140(142(1701173| 12 | 14 143137 176171115 | 9 156(158 |66 |72 |98 101

1200 115145(147 | 63 | 59 206|204| 42| 45| 78| 76 201(207) 48 | 43 | 731 7%

119(116[145(151 161 {59 202|2081 46 | 41 | 74 | 80 2051203] 44 | 47 | 77 73
51| 55 112107 61165 8993 (198|199 38 | 34 05191 193(196| 36| 40

53| 49 (111108 (167|163 94 | 90 |197(200| 33} 37 92| 96 |194|195| 39| 35
1353(157( 65 |71 (100(103 2830|8285 212214 31[ 25| B8 | 83 (215209
1531139| 69 | 67 |99 |104 32|26 | 86| 81 216|210 27| 20] 84 | 87 |211|213

v v V1
Fig. 585,

I we use this with the magic of Fig. 386 we obtain the magic
H* shown in Fig. 587.

This cube is non-La Hirelan, as is frequently the case with
magics constructed by this method,

The scheme of pseudo-cubes for 6* once found, we can easily
extend the method to any double-of-odd order in the following
manner. Take the pseudo-scheme of next lower order [e. g., 6% to
make 107, 10" te make 14" etc.]. To each of three outside plates
of cubes, which meet at any corner of the skeleton, apply a replica-
plate, and to ecach of the other three faces a complementary to the
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plate opposed to it, that is a plate in which each number replaces
its complementary number (1 for 8, 2 for 7, etc.). We now have
a properly balanced skeleton for the next double-of-odd order,
awanting only its 12 edges. Consider any three edges that meet at
a corner of the cube; they can be completed {wanting their corner-
cubes) by placing in each of them any row of cubes from the
original skeleton. Each of these three edges has three other edges
parallel to it, two lying in the same square planes with it and the
third diagonally opposed to it. In the former we may place edges
complementary to the edge to which they are parallel, and in the
latter a replica of the same. The skeleton wants now only its 8
corner pseudo-cubes. Take any cube and place it in four comners,
no two of which are in the same row, line, column, or great diag-
onal {e. g., B, C, E, H in Fig. Go2), and in the four remaining
corners place its complementary cube. The skeleton is now com-
plete, and the cube may he formed from the odd magic of half its
order.

This method we shall not follow further, but shall now turn
to the consideration of index-cubes, an artifice far preferable.

Before proceeding, the reader should carefully study the method
of the index-rod as used for magic squares (pp. 209-302).

The reversion of a pair of planes in each of the three aspects,
as previously employed for 4% is evidently eguivalent to inter-
changing two numbers with their complementaries in every row,
line, and column of the natural cube. If therefore we define the
symbol X as implying that such an interchange is to be made not
only from the cell in which it is placed, but also from the three
other cells with which it is symmetrically sitnated in regard to the
central horizontal and vertical bars of jts P-plane, and can make
one such symbol operate in every row, line and column of an index-
cube whose edge is half that of the great cube, we shall have
secured the equivalent of the above-mentioned reversion. For
example, a X placed in the second cell of the top row of any
P-plane of 4°, will denote that the four numbers marked @ in Fig.
588 are each to be interchanged with its complement, which lies in
the associated cell in the associated P-plane.
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From this it follows that we shall have a complete reversion
scheme for any order 4m, by placing in every row, hiue and column
of the index (2m)?, s of the symbols . In the case of orders
qm ¥ z, after placing s such symbols in the cube {(2m - 1)% we
have still to make the equivalent of one reversed plane in each of
the three aspects. This amounts tc making one symmetrical ver-
tical interchange, one symmetrical horizontal interchange, and one
symmetrical interchange at right angles to the paper-plane in every

afa

Q21a

Fig. 388

row, line and column.  Tf we use the symbol | to denote such a ver-
tical interchange, not only for the cell in which it stands, hat also
for the associated cell, and give like meanings to — and -, for hori-
zontal changes and changes along lnes, we shall have made the
broken reversion when we allow each of these symbols to operate
once in every row, column and line of the index, For example,
a in Iig. 589 means b in its own P-plane, and ¢ in the associated
P-plane; while d indicates that the numbers lying in its own

i b ¢ d I f
i i [ A A

L ]! | B B
Fig. 5%,

P-plane as in ¢ are to be interchanged, A with A and 13 with 13,

with the numbers lying in the associated plane f. We can always

prepare the index, provided the rod does not contain a less number
of cells than the number of symbols, by the following rule, »
being the order.

Take an index-rod of #n/2 cells, n/4 symbols of the form X,
(using the integral part of #/4 only), and ii there is any remainder
when 2 is divided by 4 add the three symbols |, -. Now prepare
an index square in the way described on page 300, but using the
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diagonals upward and to the right instead of upward to the left*
and take this square as the first P-plane of an index-cube. Fill

I 1T It v

59|58 8 21| 43142124 372726 140 53 [11[1G]56

641 213161 48] 18| 19|45 3213435 |29 16 |30 [ 51 |13
5
9

5515412 2513913828 411 23] 22|44 5717 {660

52]1 14115 |49 3613031133 20146 |47 |17 4162|631

Fig. 5oo.
every greai diagonal of the cube, running to the right, down and
azeay, which has a symbol in this P-plane cell, with repetitions of
that symbol.¥  This index-cube applied to the near, left-hand, top

[ p=p= | %X

x| 1 [=]*iX

XX 11=]=

eI

Bx]x] 1 -] ~[eIxIx]1

Index Rod. Index Square.
Fig. s01.

corner of the natural #", with the symbols allowed the operative
powers already defined, will make the magic »*
This method for even orders applies universally with the single

X X|—=|1]|+ I]= |2 ]|x] Xiv|1]=|% —|X|%|=]1 ol [=|X{X
X|=11] X X |—=]1 ] |—{X[x Wi e|]]|— I|=|X|X] =
HILIEAESES X x|—=| 1]~ | |—[X|[X]= Mie1|—=|X —|X[X]+]1
1= [X]|X[— X|=il]|*|X | Xl ] A b XX e]t{—
XX =1 = 1= |¥]|X XK= =11 = 1 |—=1X]|X]» Xl={l]|~IX

Fig. 592. Index Cube.
exception of 0% and in the case of 6 we shall presently show
that the broken reversion can still be made by scattering the sym-
bols over the whole cube. The following are index-rods for various

cubes.
# X[ 123 [ IxIx I
& [ Ix 143 [ Ix[=[x]=]x]1]

10> (X[

* Either way will do, bul it happens that the former has been used in the
examples which follow.

+ More briefly, in the language of Paths, the symbols are laid, in the squure,
on (1, 1); their repetitions in the cube, on (1, — 1, 1).
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As in the case of index-rods for squares, the first cell may be
left blank, otherwisc it must contain a .
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Fig. 503, Extended Reversion Scheme for 1ot

Fig, 300 is a 4%, made with the index-rod given above. It has

only lalf the numbers removed from their natural places.  Figs.
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221|272(\728|727\275|776(724|7231279| 280 63013721323 374|626 623|377 | 378 |679| 621
2811212283 |717|716|715 714 |2881289|790 620|619]1383{314|385| 386|387 | 688 |612|611
710{202|203|294|706|705]|297| 298] 799|701 391609| 608| 3941 305| 3196|6971 603 | 602{ 400)

sotl4921408] 597 |s0alsos|s0alnalaos]at]  Ja01[502[503[497 [ave|eos[494] 5051599510
| arolsaal s7lsis|atol ssalsealarzlazd]  {511]512]488] 487{a15]516] 484]4s3]510] 590
430570(578|524|a75 |a26|az7 [s73(s72]a21]  [s21]azelarslazafsas|srels2r|aza[erzsan
s701569|533| 464|436 435|a37|43sls62(561]  [470] a60]433[534535] 536] 567|538 462]¢s1
S5015421453|4a7 (556|555 444 |4aslasa)ss1|  [aso{aaz]s43| 544l 46| 455 s47] 558lsa0] 451
s5014520443454| 546|545 4571458 50| 5a1|  |450{552553{557]446|445] 554[ 548] 350441
540[539(463]434 |465 466|267 |s68|s32]531|  [a40]430]s63]564]s66]565(337|468432]421
471|s20]528[47a425 476577523 522 48| sso]429]428]574575 26477 423 422]571
n11|482[518(517]485|586 514513 ag9l400|  s81{s80]418]417]583 4s6[a14]a13]582]520
491|402{493(507{506|505|504 [498]490]600]  J501{592|598407 |406]405{404|s03{ 500|500

Fig. 594. First 6 plates of 10%, made from Fig. 593. (Sum = 5003.)
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591 and 5oz are the index-rod, index-square and index-cube for
10%, and Fig. 593 is the extended reversion scheme obtained {rom
these, in which ™\ and / denote single changes between associated
cells. and the symhals |, -, and -, single changes parallel to columns,
rows, and lines. Tigs. 594 and 3595 show the resulting cube.

Tf we attack 6* by the general rule. we find 4 symbols, X, —,
|, -, and only 3 cells in the rod; the construction is therefore

601|399( 398 304|605 696[ 607 393( 392|610 300{202)703|704| 206] 20517071 798| 7061291

390(3891313|614)615|616/687(618(382| 381 211|712[713| 287 | 2B6]285| 284|718 782|720

380 322|623|624|376| 375 627|678| 629|371 721|722|278)2771225)726|274|27 3|7 29780

331|6321633|367 | 366/ 363 | 364638 669,640 7312692681234 735)766| 737|263 | 262|740
641|642|358(357|345/646|354 (353|649 660“ 2601259)243| 744\ FAS)746{757 1748|252 251
651|659|348|347 |655/356 | 344 1343|652 | 650 25012481753 |7341756)735|747 | 258|242 241

661(662|668|337 [336]335 |3341663|639|370 7T0§239{238| 764|765|736(267 (233|232 76!
33(H672|673|677 (326]325 |674|628| 379|321 1779|228 227|775k276(224| 223|772|7 30
320(319|683|684 |6B6[6R5 617 (388 |312|31t 781 [782(788|217(216|2151214|783 7151250

700|309 318|694 |695]6061395 303 302|691 2100792|793| 797(206|205| 794| 708269201

BOT|B02|198(197 (105806 194|193 8091900 099 | 3 |904(305|906|997[908] 92 | 91
B11|189| 188|114 |B13|836|817]183| 182|820 90| 12 [91%]914| 36 | 83 |917|98R(919| 31
180(179|123|824 8258261877 [828| 172|171 21 |9221923| 77 | 76 | 75 | 74 [92B(979]930
170)132|833|834 (166[165 [837 |368(339] 161 931932 68 | 67 | 35 |936| 64 } 63 | 9391970
141|8421843|157 (156/155(154]848 |359(850 941| 59 | 58 | 44 |945]956(947| 53 | 52 [950
851(852|B58(147 |146|145|144|853| 849160 960) 49| 48 |954/035{0946| 57 | 43 | 42 [951
140{B62|863 (367 |136]135|B64 B38| 169]131L 9611969] 38 | 37 |965] 66 | 34 | 33 |962[940
1301129|873|874 [876 (875 (827 |178(122|121 STL(972|978] 27 | 26 | 25 | 24 |973(929| 80
R90(119|118(3%4 (385 [316 (187 (113112881 20 [982(9831987| 16| 15 |984(918( 89 | 11
891|899)108}107 |393]196(104 103 852]810 1G] 9 |993{9941996|995 |07 98 | 2 | 1

Fig. 505, Last 4 plates of 104, made {rom: Fig 593. (Sum — 5005.)

impossible.  Suppose we construct an index-cube from the rod
X 1 [ |, we shall find it impossible to distribute the remaining
symbol [+] in the extended reversion-scheme obtained from this
index. The feat. however, is possible if we make {{for this case
only} a slight change in the meanings of | and - By the general
rule X operates on 4 cells in its own P-plane, where, by the rule of
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_ | 1 withé
associztion, the plaues are paired thus: ‘ 2 " 5, In interpreting
113
3" 4]
the meanings of =~ and —, in this special case, we must make

T 1T 111
A =-T+T7] [=INZT-T7] [=-I3ND T T7[=
=IN=1] D= SOl=1=]+]~
(x| 1| Fj— S |=]=f+|~ [ N S Y

BEHEE AL NENDEN
NTHER o0 \ Al N

] - ~ 1« [7]~ o] s

NEEAL NENDBEER t]e s
N I|s|r ~ NVaE N VFERE
MIEARER S il ~ «|7]1
== A= =™ | A= gl
Al=l=l L= == ]! —e]rfn]ti-
1= 00 FREIOE =R =S

v v Vi

IFig. 306, Exteaded Reversion-Scheme for 64
1 TF T

216132 | 4 | 3 185211 67 | 41 |178,177 [ 38 [150 78 143|105\ 112(140| 73
25 |11 208207 8 |192 48 |173] 63 1154 1701 43 138| 98 | 82 | 81 |119(133
18 [203| 21 |1961200( 13 168| 56 | 52 |51 161|163 91| B9 [130[125| 86 |126

1991197115 {22 |194| 24 162| 50 |165|58 |59 (157 85 [128[124]123|95 |96

7 |206[190(189(29 | 30 169|155(45 |64 |152| 66 126] 80 [135[100 (101 )115
186 2 [213] 34 | 35 |181 37 176|1481147 |71 | 72 139(113] 75 |106 (1113{108

1091071111 76 |104 144 1451146( 70| 69 (179 42 36 1182|1834214 5 [31
102[116|117|136| 83 | 97 151] 63 [133] 46 | 62 |174 187|188] 28 | 27 {289 12
121(1221 64 |63 [131|90 60 [138|159(166] 53 | 55 193| 23 [195| 16 | 20 1204

132|902 |88 | 87 123|127 54 |167| 57 | 160|164 | 49 19117 [202]201] 14 (198

B4 (13799 |118(134|79 61 {47 |172;171144 136 210126 | 10 | 9 [191]205
103| 77 |142)141 [ 74 (114 180t 68 |40 | 39 |149(175 6 (215 33 [184)212] 1

v v VI
Fig. su7, made fran g 306, Sum =651,

a cyclic change in the right-hand column of this little table.
| 1T with 5 | _ I with ¢ |

Thus for =" |2 ™ 4, and for “—" |2 * 6| This means
13 © 6] 13 " sl
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that a |I], for example, in the second P-plane has its usual

meaning in that plane, and also acts on the two cells which would

be the associated cells if the 4th plane were to become the sth, etc.

If we extend this scheme, there will be just room to properly dis-

tribute the [+ ]’s in the two parallelopipeds which form the right-

61321 3134135 1 357 04| 52|03| 01|30

711l 27|28t & 30 4044 |13 (12|41 (15

to] 14| 16| 15| 23| 24 25] 31| 3332|2420

181 200 22| 21| 17|13 30(21|23|22|34435

25| 20| 10| 9| 26] 12 X|1]= 10) 14| 42 |43 11145

sl s|33l4l2zlm T 5 )I< G5: 5102 (5354|0073
Fig, 5u8. Fig. 500, Fig. 600,

T 11 1t
5551031003 |02 5041550 150 104’453 452(1G1 (405 203(354(252|303|351 (200
040|014 543542 OIlJ.SlS 115[444(142(|413|441 710 345(241|213|212|314 (340
023]534|032|523531 }020 435|131 123(122(424|430 230(224(333(332|221(325
530]|324{022|033 521]035 425|121 432{133 134|420 2200331(3231322{234(235
0101541513]512044[0as|  |4a0{41a{1120143(a111a5)  [315]211]3421243]244]310
505(001(5352|053|0534(500 100(451(403/402 1542155 350(304|202|253(3011253
300|254 |302[203|2531|355 400[401(153(152(454|105 055(501°502|5531004|050
243|3111312|343| 214|240 410]1441412| 113|141 445 510, 511043|042|544 015
J20(3211233]|232| 334|225 135]421(422(4331124|130) 320|034|522|023|031|535
335(231|223|222(324{330 1231434(132(423|431[120 _l:JSO .024 333|332|0214525
215(344|2421313| 341|210 140 .1.14 443(442|111|415 545|041 013[(112)514 (540
2505204 3531352)1 200 ’SUB 435|151]103 102|404|450 005|554\ 052(503[551 (000

v v VI

Fig. go1.

hand upper and left-hand lower quarters of the cube, as shown

m Iig. 5006

This scheme produces the cube shown in Fig. 597, which is magic

on its 30 rows, 30 columus, 30 lines, and on its 4 central great diag-

anals.
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IFig. 506 is the identical scheme discovered by Firth in 1889,
and was obtained a few months later than the pseudo-skeleton
shown in Fig. 585. A year or two earlier he had discovered the
broken reversion for squares of even order, but he never general-
ized the method, or conceived the idea of an index-cube. The
development of the method as here described was worked out by
the present writer in 18g4. About the same time Rouse Ball, of
Trinity College, Cambridge, independently arrived at the mcthod
of reversions for squares (compare the earlier editions of his

£ F = H
a E -] ¢ : G
ik sl
e o AL E
Fig. oz, Fig. 603. Fig. 60j.

Fig. 605, 1st reversion.  Fig, €os, 2d reversion.  Fig. o7, 3d reversion,

a 7

I¥ig. 608, gth reversion.

A

Mathematiced Recrcations, Macmillan), and in the last edition,
1905, he adopts the idea of an index-square; but he makes no
application to cubes or higher dimensions, There is reason to
believe, however, that the idea of reversions by means of an index-
square was known to Fermat. In his letter to Mersenne of April
I, 1640, ((Euvres de Ferinat, Vol 11, p. 193), he gives the square
of order 6 shown in Fig. 5§08 This is obtaimed by applying the
index (Fig. 509) to the boitam left-hand corner of the natural
square written from below upward, i. e, with the numbers 1 to 6
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in the bottom row, 7 to 12 in the row above this, etc. There is
nothing surprising in this method of writing the natural square, in
fact it is suggested by the conventions of Cartesian geometry, with
which Fermat was familar. There is a much later similar instance:

Cayley, m 18g0, dealing with “Latin squares,” writes from below

upward, although Euler, in his original Memoire (1782), wrote

tp2]13.:4 65 | 66 | 67 | 68 129(130{131132 193)194{195(196
248|247 (246|245 184 [183 (182181 1201119{118|117 56 S5]54]53
252|251|250]249 188|187 186|183 124[123122121 60| 59 | 58 | 57
13141516 77| 7B |79 |80 141[142{143)144 205206207 208

17 (18119 ]20 81 |82 |83 |84 145146147 (148 209(2101211)212
232123112304229 168167 |166]165 104(103(102{101 40 (39138137
236|235)|2341233 172171170169 108107 |i06|105 44 | 43142 |41
29 (30031 |32 93104 195 |96 157158159160 221|222(223(224

33|34 (35|36 97 168 | 5% 1100 161|1621163(164 225|226|227 228
2161215214 213 152|151 |150(149 8887|865 |85 24023122121
2201219{218|217 156(155{154 153 0291|9089 282712625
45 |46 | 47 |48 109 (110111112 173[1741175 (176 237238220240

49150 |51 |52 1131114115116 1771178179180 241|242(243 244
200{1991198[197 136|135|134|133 7277069 817]6|5
2041203202 1201 140139138137 76|75 (7473 i2({11(10| ¢
61 6263 |64 125(126 (127128 182(190]1911192 253]254|255)256

Tiig. 6oo.

from above downward. Another square of order 6, given by
Fermat, in the same place, is made from the same index, but is dis-
guised because he uses a “deformed” natural square.

It 15 interesting to note that all these reversion magics (unlike
those made by Thompson's method). are La Hirelan, and also that
the La Hireian scheme can be obtained by turning a single outline
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on itsclf, To explain this statement we will translate the square
in Fig. 376 into the scale whose radix is 6, first decreasing every
number by unity. This last artifice is merely equivalent to using
the #* consccutive numbers from o to #® — 1. instead of from 1 to
n% and is convenicnt because it brings the scheme of units and
the scheme of 6's digits inlo uniformity,

1 |2541255] 4 65 |190]|191) 68 126|126[127 132 193| 6263 |196
248| 11| 10245 184175 | 74 151 120(139]138]117 56 (203|202 53
252) 7 ] 6 (249 188171 |70 |185 124135(134 (121 60 |199|108] 57
13 [242)243] 16 77 [178(179 |80 141]114115]144 2051 30 | 51 (208

17 1238|239 | 20 81 174|175 |84 1451101111148 2000 46 | 47 1212
232| 27 | 26 |229 168 (91 |90 165 104155 |134|101 40 [219]218] 37
236| 23 | 22 (233 172 |87 |86 [169 103151 1501103 44 1215214} 1
20 |226[227] 32 93 1621163 (96 15798 |99 160 221134 35 (224

33|222|223) 36 97 [158 1591100 16154 | 95 164 225] 30| 31 {228
216] 43 (42 1213 152]107 {106 (149 22 171(170( 85 24 |235{234] 21
220| 39 | 38 217 156(103 |102 (153 92 1167 1661 80 28 1231(230] 25
4512101211148 109[146/(147 112 173|482 |83 1176 2371 18 [ 19 {240

49 |206(207| 52 113|142|143|116 17778 | 79 [180 241 1413244
200 59§ 58 1197 136(123;122(133 72 187 186169 8 |251(250] 5
204 55 | 54 |20 1401112118137 76 |1B3182(73 121247 (246 9
61 [194[195 | 64 125130 131 128 189] 66 | 67 (192 253 2 3-256

Fig. 610,

If we examine this result as shown i Fig. 600 we find that
the scheme for units can be converted into that for the &'s, by
turning the skeleton through 180° about the axis AD; that 1s to
say, a single ocutline turned upen itself will produee the magic.

The same is true of the cube; that is, just as we can obtain
a La Hireian scheme for a square by turning a single square outling
once upon itself, so a similar scheme for a cube can be abtained
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by turning a cubic outline twice upan itsclf,

My

If we reduce all the

nmumbers in Fig. 307 by unity and then “unroll” the cube, we get

the La Hirelan scheme of Fig. 6o1 in the scale radix 6.

If now we represent the skeleton of the 6*'s: (left-hand) digits

by I'ig. 6oz, and give this cube the “twist” indicated by I'ig. 603, we

1 [2saless] 4 | fos foofiot|es | [zs[izsfizrfraz]  [ieaf62]e3 1%
2481 111 10 |243 18475 174 |18% 120]139 ijg-i-l')] 56 |203|202] 53
2320 7 16 pao]  [esizi [0 liss|  [izafisshsatizi]| (6o [199]1o8] 57
13 la2leasfie | 77 irsfizolso | [rarfialiisfiaa]  [20s{so 51 208
224135131221 Feojoo Jos [is7]  [os [ieshiez{o3 | [ 32 [2z7]226] 20
a [21alnslas | foshsohist|ios]  [reo] 86 (87 [1i72]  [233] 22 23 226
s7izslni0l40 | [oifiselissfios|  hes|[oo o1 [es] [220] 26 27 232
2121 47 146|209 481111110048 84 1751741 81 200 [239|238]17
2an[ 1018 ]237]  [17a]=3 (82 [173] [niz[147]iaeioe] [ zudl210]as
25 [230f231] 28| o [1eslierl 02| [1safr02f103]iss| [207] 38 ] 30 {220
21 |23al2as| 24 | |5 Lizohi7i[ss | Jiaoliosior|is2| V21al 42| 43|26
228|131 | 30 225‘ 1641 95 | 94 |161 1001159 158| 97 362232221 33
wl2oe|207] s2]  [1s[iazliaaine]  [177] 78 {70 Nieo]  f2a1] 14| 1524a
200|505 107]  [13e[iz3f122133] [ 7z2[187{1se[eo | [ & [2si|esd s
204|535 | 54 (201 -1_40 1191118|137 Ja 1g3|182173 1212471248 9
61 1oahos|6al f1zshaofiaifr2s| |isoles |67 [192] 253 2 | 3 |2%6

IFig. i,
shall get the skeleon of the 6's (middle) digits, and the turn

suggested by IMig. 6o4 gives that of the units {right-hand) digits.

Thus a single outline turned twice upon itself gives the scheme.

We can construct any crude magic octahedroid® of double-

¥ DIMENSIONS

ReEGULAR FIGURFE

BoUNDARIES

Mok LI DG

Tetragon {or square
flexahedron (cube)
Orfzhedroid

ete.

< one-dimensioual straight lines
6 two-dimensional squares
& three-dimmensional cubes

etc.
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of-even order, by the method of reversions, as shown with 4* in
Figs. 605 to 608,

The first three reversions will be easily understood from the
figures, but the fourth requires somc explanation. Tt actually
amounts to an interchange between every pair of numbers in asso-
ciated cells of the parallelopiped formed by the two central cubical

1 1254|2551 4 192| 67 |66 [189 128[131 (1304125 193] 62 |63 196
248(11 |10 (245 73 |182(183| 75 137(118/119} 140 56 [203|202) 53
2520 7 | 6 |249 69 (18618772 1331122|123]136 60 [1991108| 57
13 24224316 18079478 177 Li6[ 143142113 205 | 50 |51 |208

224] 35 |34 221 97 (158155100 161) 54 | 65 {164 32 |2271226] 29
41 [214[215| 44 152|107 [106]149 38 1171)170] 85 233|122 23 |236
37 j218|219| 40 156/103|102|153 92 167 |166{ 89 229| 26| 27 (232
212|47 (46 209 1091146 (147 1112 173|182 (83 176 20 [239(238|17

240|119 [ 18 |237 81 |174]175) 84 145 110) 111 148 48 (2111210] 45
25 |2301231( 28 168 (91 |90 1165 104(155|154 (101 217138 | 39220
21 [234|235| 24 172( 87 | 86 1169 108[1511150[105 213 4243|216
228(31 |30 1225 93 16216396 157198 199 1160 36 |223(222] 33

49 (206]207] 52 144(115/ 11414} B0 (179178| 77 2417 1415|244
200 59 | 38 [197 1211134]135(124 185/ 70| 71 |188 8 2511250] 5
204 55| 54 (201 117|138]1397120 181 74| 75 | 184 12 [2471246] 9
61 1154|195 | 64 132127 126|129 68 [191[190 | 65 2533 2 13 |256

Fig. 612,

selections, If the reader will use a box or some other “rectangular”
solid as a model, and numbers the & corners, he will find that such
a change cannot be effected in three-dimensional space by turning
the parallelopiped as a whole, on the same principle that a right
hand cannot, by any turn, be converted into a left hand. But such
a change can be produced by a single turn in 4-dimensional space;
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in fact this last reversion is made with regard to an axis in the 4th,
or imaginary direction. The following four figures (60g-612) show
each stage of the process. and if the reader will compare them with
the results of 2 like series of reversions made from a different
aspect of the natural octahedroid, he will find that the “imaginary”
reversion then becomes a real reversion, while one of the reversions
which was real becomes imaginary. Fig. 609 is the natural gt
after the first reversion, magic in columns only; Fig. €10 is Fig.
6oy after the second reversion, magic in rows and columns: Fig.
611 is Fig. 610 after the third reversion, magic in rows, colunins
and lines ; and Fig. 612 is Fig. 611 after the fourth reversion, magic

x[x| Jx xIx[ T [xT [x[x]

x! |x 'x
X x| xIx x[x]| [x X
x[x] Ix] 1 ix]x x| [x[x

X
x
X
x
=

%X, [x x|x x| [xix

X x XX X|x| |x X
x x XX XX x X
X% x XX x] [xX{xX

Fig. 613. Skew Reversion for 4t

in rows, columns, lines and #'s, == crude magic 4*. The symbol {
denotes series of cells parallel to the imaginary edge.

Fig. 612 is magic on its 64 rows, 64 columns, 64 lines, and 64
i's and on its 8 central hyperdiagonals. Througlout the above opera-
tions the columins of squares have been taken as forming the four
cells of the P -aspect * the rows of squares taken to form cubes,
of course, show the P,-aspect.

This construction has been introduced merely (o accentuate
the analogy between magics of various dimensions: we might have

* Since the 41l dimension is the square of the second, two aspects of the
octahedroid are shown in the presentation plane. The 3d and gth aspects are
in H-planes and V-planes. Since there are two P-plane aspects it might appear
that each would produce a different H-plane and V-plane aspect; but this is
a delusion.
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obtained the magic 4* much more rapidly by a method analogous
to that used for 4* (Fig. sgo). We have simply to interchange
each number in the natural octahedroid occupying & cell marked
[X] in Fig. 613, with its complementary number lying in the
associated cell of the associated cube. Fig. 613 is the extended
All magic octahedroids of double-of-odd order > 10* can he
constructed by the index-rod. for just as we construct an index-
square from the rod. and an index-cube from the square, so we
can construct an index-octahedroid from the cube. The magics 6*
and 10* have not the capacity for construction by the general rule,
but they may he obtained by scattering the symbols over the whole
figure as we did with 6% C. P



CHAPTER XIIIL

MAGIC CIRCLES, SPHERES ANID STARS.

h{ AGIC circles, spheres and stars have been apparently much

less studied than magic squares and cubes. We cannot say
that this is because their range of variety and development is limited;
but it may be that our intercst in them has been discouraged, owing
to the difficulty of showing them clearly on paper, which is espe-
cially the case with those of three dimensions.

It is the aim of the present chapter to give a few examples of
what might be done in this line, and to explain certain methods of
construction which are similar in some respects to the methods used
in constructing magic squares,

MAGIC CIRCLES.

The most simple form of magic spheres is embodicd in all per-
fect dice. It is commonly known that the opposite faces of a dic
contain complementary numbers; that is, 6 is opposite to 1, 5 is
apposite to 2, and 4 is opposite to 3—the complementaries in each
case adding to 7-—consequently, any band of four numbers encirc-
ling the die, gives a summation of 14. This is illustrated in Fig. 614,
which gives a spherical representation of the die; and if we imagine
this sphere flattened into a plane, we have the diagram shown in
Fig. 615, which is the simplest form of magic circle.

Fig. 616 is another construction giving the same results as Fig.
015 the only difference being in the arrangement of the circles, It
will be noticed in these two diagrams that any pair of complementary
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numbers is common to two circles, which is a rule also used in con-
structing many of the following diagrams.

Fig. 617 contains the series1, 2, 3.... 12arranged in four circles
of six numbers each, with totals of 39. Any one of these circles
laps the other three, making six points of intersection on which are
placed three pairs of complementary numbers according to the above
rule. The most simple way of followiag this rule is to start by pla-
cing number 1 at any desired point of intersection; then by tracing

F:g. 614. Fig. 615, Fig. 616,
/Q l[o a
\ /
\ A\ / / \
”_-H/ h“‘s/ U
Fig. 617. Fig. 18

ont the two circles from this point, we find their second point of
intersection, on which must be placed the complementary nwmber
of 1. Accordingly we locate 2 and its complementary, 3 and its com-
plementary, and so on until the diagram is completed.

Fig. 618 is the same as Tig. 617, differing only in the arrange-
ment of the circles.

Fig. 619 containg the series 1,2, 3. ... 20 arranged in five circles
of eight nuwmbers each, with totals of 84.
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Fig. 620 contains the series 1,2,3....14 arranged in five circles
of six numbers each, with totals of 45. It will be noticed in this
diagram, that the 1 and 14 pair is placed at the intersections of
three circles, but such interscctions may exist as long as each circle
containg the same nummber of pairs.

Fig. a1,

Fig. 621 contains the series 1, 2, 3.. . .24 arranged in six circles
of eight numbers each, with totals of 100.

Fig. 622 contains the series 1, 2, 3. ... 30 arranged in six circles
of ten numbers each, with totals of 155. Also, if we add togetlier
any two diametrical lines of four and six numbers respectively, we
will get totals of 155 but this is only in consequence of the comple-
mentaries being diametrically opposite.
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Fig, 623 contains the series 1, 2, 3...40 arranged in eight
circles of ten numbers each, with totals of 205,

Fig. 624 contains the series 1, 2, 3....8 arranged in eight circles
of four numbers cach, with totals of 18 This diagram involves a
feature not found in any of the foregoing examples, which is due
to the arrangement of the circles. It will he noticed that each

Fig. 622

number marks the intersection of four circles, but we find that no
other point is common to the saine four circles, consequently we necd
more than the foregoing rule to meet these conditions. If we place
the pairs on horizontally opposite points, all but the two large circles
will contain two pairs of complementaries. The totals of the two
large circles must be accomplished by adjusting the pairs. This
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adjustment is made in Fig. 623, which shows the two selections that
wiil give totals of 18

Thg. 620 contains the series 1. 2z, 3.... 24 arranged in ten
circles of six nwmnbers each, with totals of 75. This is accomplished
by placing the pairs on radial lines such that each of the six equal

circles contains three pairs. Tt then only remains to adjust these
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pairs to give the constant totals (o each of the four concentric eireles.
Their adjustiment s shown diagrammatically in Fig. 627, which is
one of many selections that would suit this case.

Fig. 628 contains the s=ries 1, 2, 3.... 12 arranged in seven
circles and two diametrical lines of fonr numbers cach with totals

of 20.

The large number of tangential points rowlers this problem
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quite difficult, and it appears to be solvable only by La Hireian
methods. It was derived by adding together the respective num-
bers of the two primary diagrams Tigs. 629 and 630, and Fig. 630
was in turn derived from the two primary diagrams Figs. 031
and 63z.

We begin first with Fig. 629 by placing four each of the num-

a
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ﬁi/
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Fig. 630,
bers 0, 4, and & so that we get nine fotals amounting to 16. This
is done by placing the 4’s on the non-tangential circle; which leaves
it an easy matter to place the o's and 8's in their required positions.
Fig. 630 must then be coustructed 50 as to contain three sets of the
series 1, 2, 3, 4, each set to correspond in position respective to the
three sets in [Fig. 029, and give totals of 0. This could be done by
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experiment, but their positions are much easier found with the twa
diagrams, Figs. 631 and 632. Fig. 631 contains six o's and six 2's
giving totals of 4, while Fig. 632 contains six 1's and six 2's giving

2
i
|

Tng. 633.
totals of 6. Tt will be noticed in Fig. 62g that the o's form a hori-
zontal diamond, the 8's a vertical diamond and the 4's a square,
which three figures are shown by dotted lines in Figs. 631 and 632.
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Besides giving the required totals. I'igs. 631 and 632 must have their
numbers so arranged, that we can add together the respective dia-
monids and squares, and obtain the series I, 2, 3, 4 for each diamond
and square, which is shown in Fig. 630. Figs. 630 and 62g are then
added together which gives us the result as shown in [ig. 628
This diagram was first designed for a sphere, in which case

Fig. 634,

the two diametrical lines and the 5, 6, 7, 8 circle were great circles
on the sphere and placed at right angles to each other as are the
three circles in Fig, 614. The six remaining circles were equal and
had their tangential points resting on the great circles. The dia-
grams used here are easier delineated and much easier to under-
stand than the sphere would have been.

Fig. 633 contains the series 1, 2, 3 .... 54 arranged in nine
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circles of twelve numbers each with totals of 330. The arrange-
ment also forims six 3X3 magic squares.

We begin this figure by placing the numbers 1 to 9 in magic
square order, filling any one of the six groups of points; then,

44 |48 (92
112134 0 |92 4448 4 |40 |52 88_|
43|21 44|48 | ¢ |92 8 |35 |35¢ a4
211143 484492 0 12|32 |e0 |80
3412 52| 0 |48 |44 6 |28 |64 |76
20 |84 &8 |72

Fig. 635. I1g. 636, IFig, 6a7.

according to the first general rule, we locate the complementaries
of cach of these numbers, forming a second and complementary
square. We locate the remaining two pairs of squares in the same
manner. The pairs of squares in the figure are located in the same

r It .'Elf M,
|
|23 16 3 9,
2 d Jic 7
~
13, 5, 12 4

Fig. 638. Fig. 630,

relative positions as the pairs of numbers in g, /6. in which respect
the two figures are identical,
IFig. 134 contains the series 1. 2. 3 .... yf aranged in twelve

circles of sixteen numbers eacl, with totals of 770, The sum of the
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sixteen numbers in each of the six squares is also 776. These
squares possess the features of the ancient Jaina square, and are
constructed by the La Hireian method as follows.

The series o, 4, 8, 12 .... 92 are arranged in six horizontal
groups of four numbers, as shown in Fig. 637, by running the series
down, up, down, and up through the four respective vertical rows.
The upper horizental row of TFig. 637 is used to form the primary
square ['ig. 635 likewise, five other squares are formed with the
remaining groups of Fig. 637. These six squares are each, in turn,
added to the primary square, IFig. 635, giving the six squares in Fig.
634. There is no necessary order in the placing of these squares,
since their summations are equal.

Figs. 638 and 0639 show the convenience of using circles to show
up the features of magic squares. The two diagrams represent the
same square, and show eighteen summations anounting to 34.

1. AL S

MAGIC SPHERES,

In constructing the following spheres, a general rule of placing
complenmentary numbers diametrically opposite, has been followed,
in which cases we would term them associated. This conforms with
a characteristic of magic squares and cubes.

Fig. 640 1s a sphere containing the series 1, 2, 3....26 arranged
in nine circles of eight numbers each, with totals of 108,

In this example, it is only necessary to place the pairs at dia-
metrically opposite points; because all the circles are great circles,
which necessifates the diametrically opposite position of any pair
common to two or more circles. Otherwise we are at liberty to
place the pairs as desired; so. in this sphere it was chosen to place
the series 1, 2, 3....9 in magic square form, on the front face, and
in consequence. we form a complementary square on the rear face,

Fig. 641 i3 a sphere containing the serics 7,2, 3. ... 20, arranged
in seven circles of eight numbers eacly, with totals of 108,

This was accomplished by placing the two means of the series

at the poles, and the cight extremes in diametrically opposite pairs
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on the central borizontal circle. In order to give the sphere “associ-
ated” qualities, as mentioned before, the remaining numbers should
be placed as shown by diagram in Fig. 642. This shows the two
selections for the upper and lower horizontal circles. The numbers
for the upper circle are arranged at random, and the numbers in the
lower circle are arranged in respect to their complementaries in the
upper circle,

Fig. 642

Fig. G44 is a sphere contamning the serics 1,2, 3... .02 arranged
in eleven circles of twelve numbers each, with totals of 378.

This is & modification of the last example and represents the
parallels and meridians of the carth. Its method of construction
is also similar, and the selections are clearly shown in Fig. 643.

Fig. 645 shows two concentric spheres containing the series
1,2, 3 .... 12 arranged in six circles of four numbers each, with
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totals of 26, It also has three iametrical lines running through the
sphieres with totals of 26.

The method for constructing this is shmple, it being only neces-
sary to select three pairs of numbers for each sphere and place the
complementaries diametrically opposite cach other.

Fig. 646 is the same as the last example with the exception that

Fig. 641.

two of the circles do not give the constant total of 26; but with tiis
sacrifice, however, we are able to get twelve additional summations
of 26, which are shown by the dotted circles in Figs. 647, 648 and
649. TFig. 647 shows the vertical receding plane of eight numbers,
Fig. 648, the horizontal plane; and IFig. 649, the plane parallel to the
picture, the latter containing the two concentric circles that do not
give totals of 26.
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In this example all pairs are placed on radial lines with one
aumber in each sphere which satisfies the summations of the twelve

dotted circles., The selections for the four concentric circles are
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Fig figz Fig. 613,

shown in Tlig. 630, The full lines show the selections for Fig. 647
and the dotted lines for Fig. 648. Tt is impossible to get constant
totals for all six concentrie circles,



MAGIC CIRCLES, SPHERES AND STARS. 335

Fig. 651 is a sphere containing the series 1, 2, 3....98, ar-
ranged in fifleen circles of sixteen numbers each, with totals of ygz.
It contains six 3X3 magic squares, two of which, cach form the
nuclens of a 535 concentric square.  Also, the sum of any two dia-
metrically opposite numbers is gg.

To construct this figure, we must select two complementary

Fig. 644

sets of 25 numbers each, that will form the two concentric squares;
and four scts of g mumbers cach. to form the remaining squares, the
four sets to be selected in two complementary pairs,

This selectiou s shown in Fig. 632, in which the nnmbers en-
closed in full and dotted circles represent the selection for the front
and back concentric squares respectively., The numbers marked with
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T, B, L and R represent the selections for the top, bottom, left and
right horizon squares tespectively,

After arranging the numbers in the top horizon square, we
locate the complementary of each number, diametrically opposite
and accordingly form the bottom square, The same method is used
in placing the left and right square.

The numbers for the front concentric square are duplicated in

Fig. 653. The numbers marked by dot and cirele represent the selec-
tion for the nucleus square, and the diagram shows the selections
for the sides of the surrounding panel, the numbers 4, 70, 34 and 40
forming the corners,
By placing the complementaries of each of the above 25 num-
bers, diametrically opposite, we form the rear concentric square.
After forming the six squares, we find there are twelve num-
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bers left, which are shown in IFig. 634, These are used to form the
four horizon triads. Two pairs are placed on the central circle, and
by selection, as shown in the diagram, we fill in the ather two
circles with complementary numbers diametrically opposite. The
above selection is such that it forms fwo groups of numbers, cach
with a summation of 193 this being the amount necessary to com-
plete the required surimations of the horizon circies,

There are many selections, other than those shown in Fig. 652,
which could have been taken. A much simpler one would be to
sclect the top 25 pairs for the front and back concentric squares.

- A, 5,

MAGIC STARS,

We are indebted to Mr. Frederick A, Morton, Newarl, N. |.,
for these plain and simple rules for coustructing magic stars of all
orders. .

A five-pointed star being the smallest that can be made, the
rules will be first applied to this one.

Choosing for its constant, or summation (5) =48, then:

(3% 48y /2=120=sum of secries.

Divide 120 into two parts, say 80 and 40, although many other
divistons will work out equally well. Next find a scries of five
numbers, the sum of which is one of the above two numbers.
Selecting 40, the series 6+7+8+9210=40 can he used. Tlhese
numbers must now be written in the central pentagon of the star
following the Jirection of the dotted lines, as shown in Tig. 633,
Find the sum of cvery pair of these numbers around the circle
beginning in this case with 6+9 =15 aud copy the sums in a sepa-
rate column {(A) as shown helow:

(A
fi+ 9=13 17+15+16=48
7+10=17 15+17+153-42
$+ G-14 13+ 14+ 19=4%
9y 7=16 19016413 - 48

10+ 8-18 1341841/ - 48
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Place on each side of 13, numkers not previously used in the
central pentagon, which will make the *ntal of the three numbers
=48 or 8. 17 and 16 are here selected. Copy the last number of
the trio (16) under the first number (17) as shown above, and
under 16 write the number required to make the sum o1 the second
trio=48 (in this case 13}. Write 153 under 16, and proceed as
before to the end. If proper nwmbers are selected .0 make the
sum of the first trio =48, it will be found that the first number of
the first tric will be the same as the last number of the last trio
{(in this case 17) and this result will indicate that the star will sum
correctly if the numbers in the first column are written in their

Fig. fi3s. Fig. 630

proper order at the points of the star, as shown in [Fig. 636. If the

first and last numbers prove different, a simple operation may he
used to correct the error. When the last number is smgre than the
first number, add half the difference between ihe lwo nunbers to
the first number and proceed as before, but if the last number is
less than the first number, then subtract hali the difference from
the first number. One or other of these operations will always
correct the error.
For example, if 14 and 19 had been chosen instead of 17 and

16, the numbers would then run as follows:

141541948

19+17 + 12 =48

124144 22=48

22416+ 10=48

10+184+420=48
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The difference between the first and last numbers is seen to be 6
and 20 being sore than 14, half of 6 added tc 14 makes 17 which
is the correct starting number. Again, if 21 #nd 12 had been se
lected, then:

214134 12=4x
12417 4 19=48
19+ 14+ 1a=4x
15+164+17=48
17+18+13=48

The difference botween the first and last numbers i- here 8, and the
last number being less than the first, half of this difference sub-
tracted from 21 leaves 17 as before.

Tt is obvious that the constant S of a star ol any order may
be changed almost indefinitely by adding or subtracting a number
selected so as to avoid the introduction of duplicates, Thus, the
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constant of the star shown in Fig. 636 may be reduced from 48 tg
40 by subtracting 4 from each of the five inside numbers, or it may
be increased to 56 by adding 4 to each of the five outside numbers
and another variant may then be made by using the five inside
numbers of 540, and the five outside numbers of S=55. These
three variants are shown respectively in Figs. 637, 638 and 639.

Tt is also obvious that any pair of five-pointed or other stars
may be superposed to form a new star, and by rotating one sta:
over the other, four other variants may be made; but in these and
similar operations duplicate numbers will frequently occur, which

Fig. 661. Fig, 662,

of course will make the variant ineligible although its constant
must necessarily remain correct.

Variants may also be made in this and all other orders of
magic stars, by changing each number therein to its complement
with some other number that is larger than the highest number
used in the original star, The highest number in Fig. 636, for exaimple
is 19, Choosing 20 as a number on which to base the desired variant
19 in Fig. 656 is changed to I, 17 to 3 and so on throughout, thus
making the new five-pointed star shown in Fig. 600 with 5= 32.

The above notes on the construction of variants are given in
detail as they apply to aff orders of magic stars and will not need
repetition,

The construction of a six-pointed star may now be considercd

Selecting 27 as a constant:
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(6x27)/2=81=sum of the series,

Divide 81 into two parts, say 60 and 21, and let the sum of the
six numbers in the inner hexagon=21, leaving 60 to be divided
among the outer points,  Select a series of six numbers, the sum
of which is 21, say 1, 2, 3. 4, 5, 6, and arrange these six numbers in
hexagonal form, so that the sum of each pair of opposite numbers

&2
f 7 4
1J:Jz ! /12|34
il 5
JAB 6 |7 (812
D . A r
C|D Hlelalsg
5 9
B\ 7|8 e
Fig. 663.
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Fig. 663. Fig. 666.

=7. Fig. 661 shows that these six inside numbers form part of two
triangles, made respectively with single and double lines. The
outside numbers of cach of these two triangles must he computed
separately according to the method used In connection with the
five-pointed star. Deginning with the two upper numbers in the
single-lined triangle and adding the couplets together we have:
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(A}
3+1-4 12+4+11=27
5+4-9 1149+ 7=27
6+2-8 7+8+12=27

Writing these sumis in a separate column {A) and procecding as
before described, the numbers 12, 11, 7 arc obtained for the points
of the single-lined triangle, and in the same manaer 13, 8, 9 are
found for the points of the double-lined triangle, thus completing
the six-pointed star Fig. 661.

The next larger star has seven points.  Selecting 30 for a con-
stant, which is the lowest possible;

(7 x30)/2=103=sum of the series.

Dividing this sum as before into two parts, say 31 and 74,
seven numbers are found to stm 74, say, 618+10+114+124+13+ 14

Fig. 667, Fig. 668,
=74, and these nombers are written around the inside heptagon

as shown in Fig. 662, Adding thent together in pairs. their sums are
written in a column and treated as shown below, thus determining
the numbers for the points of Fig., 002,

14+13=27 1+27+2-30
10+11=21 2+421+7=30
6+12=18 7+18+5=30
8+14=22 5+22+3=30
13+10-23 3+23+4-30
11+ 6=17 4+17+9=30

12+ 8-20 9420+:1=30
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The next larger star has eight points and it can be made in
two different ways, viz., By arranging the numbers in one con-
tinuous line throughout as in stars already deseribed having an odd
number of points, or by making it of two interlocking squares.
The latter form of this star may be constructed by first making a
4* with one extra cell on each of its four sdes, as shown in Fig. 663.
A series of sixteen numbers is then selected which will meet the

conditions shown by italics a, g, g, and b, b, b, in the figure, i e,
all differences between row numbers must be the same, and also all
differences between column numbers, but the two differences must
be unlike. The coustant (5) of the series when the latter is ar-
ranged as a magic 4° must also be some multiple of 4. The series
is then put into magic formaticn by the old and well-known rule
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for making magic squares of the 4th order. The central 2x2
square is now eliminated and the numbers therein transferred to
the four extra outside cells as indicated by the letters A. B. C. D.
Finally all numbers are transferred in their order into an eight-
pointed star.

Fig. 67a4. Fig. 673.

A series of numbers meeting the required conditions is shown
in Fig. 664, and its arrangement according to the above rules is given
in Fig. 665, the numbers in which, transferred to an eight-pointed
star, being shown in Fig. 666, 5 =40. The 4* inagic arrangement of
the series must be made in accordance with Fig. 663, for other magic
arrangements will often fail to work out, and will never do so in



MAGIC CIRCLES, SPHERES AND ST.ARS. 347

accerdance with [Fig. 663. The above instructions cover the simplest
method of making this form of star but it can be constructed in
many other different ways and also with constants which are not
evenly divisible by 4.

Turning now to the construction of the eight-pointed star by
the continoous line method, inspection of Figs. 666 and 667 will show
that although the number of points is the same in each star yet the
arrangement of numbers in their relation to one another in the
eight quartets is entirely different.

Fig, 676,

Choosing a constant of 39 for an example:
{(39x8)/2 w156 =s5um of series.

This sum is now divided into two parts, say 36 and 120, The sum
of the Hirst eight digits Leiug 36, they may be placed around the
inside octagon so that the sum of each opposite pair of numbers =9,
as shown in Tig. 067, Adding them together in pairs, as indicated
by the connecting lines in the figure. their sums are written in a
column and treated as before explained, thus giving the correct
nwnbers to be arranged around the points of the star IFig, 667,

These rules for making magic stars of all orders are so simple
that further examples are deemed unnecessary. Nine-, ten-, eleven-,
and twelve-pointed stars, made by the methods described. are shown
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respectively in Figs. 668, 669, 670 and 671, Several other diagrams
of ingenious and more intricate star patterns made by Mr, Morton
are also appended for the interest of the reader in Figs, 672 to 681
inclusive.
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Fig. 681,



CHAPTER XIV.

MAGIC OCTAHEDROIDS.

MAGIC IN THE FOURTH DIMENSION.

Definition of terms: Row is a general term; rank denotes a hori-
zantal right-to-left row; file a row from front to back; and column

a vertical row in a cube—not used of any horizontal dimension,
F »® numbers of a given series can be grouped so as to form a
magic square and n such squares be so placed as to censtitute a
magic cube, why may we not go a step further and group » cubes
in relations of the fourth dimension? In a magic square containing

n{n?4-1)

the natural series 1., .x® the sumhmation is———"%; in a magic cube

r
. . . n{ntT .
with the geries 1...2%i1t is u-(—-n-:t--—)--; and in an analogous fourth-

2
dimension construction it naturally will be@.

With this idea in mind I have made some experiments, and the
results are interesting, The analogy with squares and cubes is not
perfect, for rows of numbers can be arranged side by side to repre-
sent a visible square, squares can be piled one upon another to make
a visible cube, hut cubes cannot be so combined in drawing as to
picture to the eye their higher relations. My expectation a priori
was that some connection or relation, probably through some form
of diagonal-of-diagonal, would be found to exist between the cubes
containing the »* terms of a series, This particular feature did ap-
pear in the cases where n was odd. Here is how it worked out:

1. When n is odd.
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vided into three sub-series such that the sum of each would be
one-third the sum of the whole, In dealing with any such series
when n is odd there will be # sub-series, each starting with one of
the first # numbers, and the difference between successive terms will
be n41, except after a multiple of #, when the difference is 1. In
the present case the three sub-series begin respectively with 1, 2, 3,
and the first is 1 59 To X4 18 19 23 27 28 32 30 37 4@ 45 46 50 54
55 50 63 64 68 72 73 77 81. These numbers were arranged in
three sguares constituting a magic cube, and the row of squares
so formed was flanked on right and left by similar rows formed from
the other two sub-series (see Fig. 682).

1 Il I

25| 38| 60| 28| 77| 18167 8 | 48
33|70 11| 72{ 1| 50| 2| 40 62

65| 6152|2314a5)55735| 25|13
W16 68) o 46]|26| 30|58
70| 2 | 51| 1ol 41 63]31| 80|12
24143156(36| 73] 14|66| 4 |53
6o| 7 |47{27{37]50]30|76] 17
20|42 |60 32]81 | o7 3149

I8

34| 74| 15{64) 5| 54) 22| 44|57

Fig. 682, (39

It is not easy—perhaps it is not possible~to make an abso-
hitely perfect cube of 3. These are not perfect, yvet they have many
striking features. Taking the three cubes separately we find that
in each all the “straight” dimensions—rtank, file and column—have
the proper footing, 123. In the middle cube there are two plane
diagonals having the same summation, and in cubes I and IIT one
each, In cube II four cubic diagonals and four diagonals of vertical
squares are correct; T and IT] each have one cubic diagonal and one
vertical-square diagonal.

So much for the original cubes; now for some combinations,
The three squares on the diagonal running down from left to right
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will make a magic cube with rank, file, column, cubic diagonals,
two plane diagonals and four vertical-square diagonals (37 in all)
correct. Two other cubes can be formed by starting with the top
squares of 1T and IIT respectively and following the “broken diag-
onals” running downward to the right. In each of these S occurs
at least 28 times (in g ranks, g files, g columns and one cubic diag-

1 Il 11 1v v

317 4231604 10 [161b 102|118 470|310 36 | 67 |223]a54 385 [sa6[s67 | 0B jzen|et0]avi]4a2] 308 14| rac]2Ra]
1ro (236202 gl 579l bre ] oo (167 (323454 |45 |51 7| 42 108 (220|360 (3H8 |42 | 73 |aod)2as |2t |47 (573 ] pe

422 (554 |82 |236 (2678208 (420|585 1o ]az] 123 304|400 611 {12 | 48 179 (335 480 |5r7)5a8| 34 200 (360 (302

201 (307|308 | 520 | 60 | 86 lrgz|273 |404 |560| 586 117 | 138 |20 Ja 35 460 {617 | 23 |1531310] 330|402 | 523 | 29 [1%5

S0 | 35 180 (342 4981370 (335 | 61 J2r7.373| 254 [410 (361 vz [248 125 |2Bs |436]502 [ 123] 4 [re|q1efabr(tes
G| 12 168|324 3580512 43 proa(i30| 336|387 [543 | 74 |2os |23 [262 [11Blsr s | 8o [108] 37| 203 | 1g |58

200 (430 sBry 11z 143l 17a b0z 436612, 18 | 40 Di8a| 30487 [508]509| 55 |206) 362 | 303] 424 555] &1 |237|268]

B7 (243|274 405 (356] 587 [0 3| rag 1280 430 | 462 |GrR) 24 |is333050337 (403 ]524| 30 18] 212 304] 390| 330| 56

3800 B2 208|374 255 (406 (5627 05 (24| 130281 (437 503 124| 5 [156{312(468 (624 505| 31 | 187] 343 499|

103|340 |480 (sof | 37 | 68 (224|355 (381|527 568 uo |230 1236 412|423 1500 10| 131 |87 ) 318 4y | as| 6 162
173301 [457 [313 | ro [ so [176]332 [488[5to) 50 51 [207 365 3ot |42z lssr| 82 |238]260] 3] 236 s82] 1 13) 144

sB3 g 1gnlazn |x2| a6y |61g] 25 (10| 307] 338|494 525 | 26 (182|202 | 360|400 |326] 37 | 88 |2qq| avs 400357

250 4oy [363 ) v |2s0) 126 |28 438 s fras| ¢ |15y |3s|abe foes| 01| 32 | 188 344 | 500|376 532 | 63 | 210|378

23|y 200 (326|357 1388 (344 | 75 [2en b2 263 latg 575 | 76 | o7 38| 2gs| ase|5p6| Bo7] 13 | 160 325|450

464 [B20 | 20 [152(308| 330 495 (321 | 27 [183)zry(zr0 396|527 | 58 | Bo |213 (271|402 |558] 582 | 120 1.46] 277|433

370|986 |227 238 |44 |5 (506 (102|133 (289|320 (471 (Baz[ & |164|105 (348|477 (508 | 30| 7o | 221|352 383 530

338|380 [543 71 (2023|264 420571 | 27 |roR |30 (205 (440|577 [B08 | 14 [170| 221 4520 483 514) 45 | 196|327

26 127|333 450 [s20] 546 | 52 (208 (364 1305|421 |552| B3 (230 f2po | 206 (427 | 3B3] rra) 145171 ] 302|458 6t4| 20

3 |tan)ars|abn|eez| 50| 51 100|340 laar|a73 23] 65 (206 (372|253 {400 | 65] 01 |247] 128 284| 440] 501 122]

$41 (507 |roz |3 feno) 261z (603 | o frEspior |17 | 478 ze0| a0 | 66 |22z 333 384] s40] 566| o7 2390 415

234 (263 416|572 78 DLograge| 200|447 |578 |6oa] 15 | 186322 (453 [a%4 [315| 41 | o7 328] 359) 0| 547) 72| 203

S47| 33 200|365 |20 |aga faan| S |2an| 260 207 28 5B | 115 (141 |72 | 3] ase 6=l 6] 47178 334 490 516

dolar (520 &8 |18y 25 (300 300 |508 | 50 |90 (240 272|408 550 |90 | 1 16] 147| 278] 434] afis| 016 22§ 153

Fig. 683 (59
onal). Various other combinations may be found by taking the
squares together in horizontal rows and noting how some columns
and assorted diagonals have the proper summation, but the most
important and significant are those already pointed out. In all the
sum 123 occurs over 200 times in this small figure.
One most interesting fact remains to be noticed, While the
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three cubes were constructed separately and independently the figure
formed by combining them is an absolutely perfect square of g, with
a summation of 300 in rank, file and corner diagonal (besides all
“broken” diagonals running downward to the right), and a perfect
balancing of complementary numbers about the center, Any such
pair, taken with the central number 41, gives us the familiar sum 123,
and this serves to bind the whole together in a remarkable manner,

1 [ nt v

—
I |255 254! 4 1248 10 11 |245%]|240 18%19 237| 25 j231 230 28

252 6 | 7 lagg] 13 24902421 16 | 21 235]234 24 228;30 31 |225

8 |zcoj251| 8 Y241 15 | 14 |244|233| 23 22 :236 32 1226|227 | 20

253| 3 | 2 |256] 12 246i247! 0 |20 z38iz3g 17 |220| 27 | 20 (232

224 | 34 | 35 |221| 41 (215|214 44 |49 |207 206! 52 J200| 58 | 59 197
37 219i218 40 |212| 46 47|209 204 54|5s 201| 61 |105|104] 64

21739 38~220 48 |210 21}?45 86 (202 (203 53 193_ 63 | 6z (196
13 '43 5.42 ‘216|205 51 |50 [208] 60 (1981100 | 57
192| 66 | 67 ‘18| 73 183'1821376 81 175 174' 84 [168| g0 ! o1 (168
6o (187 186'72 80| ¥R 79}177 1721 86 87;169 o3 | 163 |162| 96
185| 71 | 70 |188| 80 [178 170’ 77 | 88 170 171! 85 |161] 05 | 04 E
68 |roo|191' 65 [181| 75 |74 |18B4)173| 83 | 82 176) 02 | 166|167 | By
97 |59 158 100|152 (106107140144 | 124 115|141 121';135 134|124
156|102 5103 ':153 100|147 |146 | 112|117 139'138|120 132!126 127129

36 |z22 223 33-_é13

104|154 (155 101|145 [117T 110|148 337|130 118| 140[128 130|131 [125

T N T
157 | 99 ' 68 160|108 (750|151 |105{116|142 ;143| 113|133 | 123 122;136

Fig. 684. (4%)

2, Let # =5, then 5= 1565.—In Fig. 683 is represented a group
of 5-cubes each made up of the numbers in a sub-series of the nat-
ural series 1...625. In accordance with the principle stated in a pre-
vious paragraph the central sub-series is 1 7 13 19 25 26 32 ... 6235,
and the other four can easily be discovered by inspection. Each of
the twenty-five small squares has the surmmation 1565 in rank, file,
corner diagonal and broken diagonals, twenty times altogether in
each square, or 500 times for all.
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Combining the five squares in col. T we have a cube in which
ail the 75 “straight” rows (rank, file and vertical column), all the
horizontal diagonals and three of the four cubic diagonals foot up
1565. In cube III all the cubic diagonals are correct. Each cube
also has seven vertical-square diagonals with the same summation.
Taking together the squares in horizontal rows we find certain
dizgonals having the same sum, but the columns do not. The five
squares in either diagonal of the large square, however, combine to
produce almost perfect cubes, with rank, file, column and cubic
diagonals all correct, and many diagonals of vertical squares.

A still more remarkable fact is that the squares in the broken
diagonals running in either direetion also combine to produce cubes
as nearly perfect as those first considered, Indeed, the great square
seems to be an enlarged copy of the small squares, and where the
cells in the small ones unite to produce 5 the corresponding squares
in the large figure uuite to produce cubes more or less perfect,
Many other combinations are discoverable, but these are sufficient
to illustrate the principle, and show the interrelations of the cubes
and their constituent squares. The summation 1565 occurs in this
figure not less than 1400 times.

The plane figure containing the five cubes (or twenty-five
squares) is itself a perfect square with a sunvwation of 7823
for every rank, file, corner or broken diagonal. Furthermore all
complementary pairs are balanced about the center, as in Fig, 682.
Any square group of four, nine or sixteen of the small squares is
magic, and if the group of nine is taken at the center it is “perfect.”
It is worthy of notice that all the powers of »# above the first lie in
the nriddle rank of squares, and that all other multiples of n are
grouped in regular relations in the other ranks and have the same
grouping in all the squares of any given rank. The same is true
of the figure illustrating 7*, which is to be considered next,

3. Let n==y, then 5=8407.—This is so similar in all its prop-
erties to the 5-construction just discussed that it bardly needs sep-
arate description. It is more nearly perfect in all its parts than the
5% having a larger proportion of its vertical-square diagonals cor-
rect. Any square group of four, nine, sixteen, twenty-five or thirty
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six small squares is magic, and if the group of nine or twenty-five
be taken at the center of the figure it is “perfect.” The grouping
of multiples and powers of » is very similar to that already described
for g,
IT. When n is even.
I. Let n—=4, then S=g514.—The numbers may be arranged in

i [FY3

I 14005/4004| 4 | 5 [4001|4000| 8 J4032| 66 | 67 |4020|4028| 70 | 71 |402

4088{ 10 | 1T | 4085|4084 14 | 15 |4081] 73 |4023|4022] 76 | 77 | 40ig[4018| Bo

4080( 18 | 1o |4077

2z | 23 {4o73] Br |q015|an14) 84 | Bs {4011 |4010] 88

4005] 31 | 30 | 4068 27 | 26 (q072] 96 |4002|4003| 03 | 92 |400G|4007| 89

476

25 |4071|4070| 28 | 20 |4067(4006{ 32 [4008) 00 | o1 4005|4004 94 | 95 [4001
4069
20

4070, 17 |4000| 87 | 86 (4012|4013 83 | Bz [4016

2 )q006] 72 [4020(40270 69 ! 68 |4030|4031| 63

4078

16 14082  4083| 13 | 12 14086(4087| 9 |4017| 79 | 78 |4o20l4021] 75 | 74 4024
1
k')

q064| 34 | 35 |4061|4060

41 | 40554054| 44 | 45 [4051)4050] 48 |3902| 106 | 107 | 3989 3988| 110 | 11r|aghy

39 4057 07 |3900(3968| roo | 1o1 | 3005|3004] 104

40 |4047|4046| 52 | S3 [4043{4042) 56 | 30B4| 14| 115)3981) 3080 118 | 110 | 3977

4040 58 | 50 [4037]4036| 62 | 63 [4033] 121 | 3075 |3974] 124 | (25 | 3971 |3970| 128

64 1403414035} 61 | 6o |403814030/ 57 13960; 127 | 126 (3072|3073 123 | 122 3076

'

4041 55 | 54 a044|4045| 51 | 50 |4048| 120 3078|3070, 117 | 116 | 398213083 113

4040| 47 | 45 (4052|4053 43 | 42 |4056] £12| 3086|3087 100 | 108 | 3000 3g91| o5

40 | 40584050 37 | 36 |4062| 4063 33 3993] Iosf'rue 3996|3007 90 | of (4000

1T v
Fig. 686, 8¢, First Part {Qne cube written).

¢ither of two ways. If we take the diagram for the 4-cube as
given in Chapter TI, page 78 and simiply exiend it to cover
the larger nummbers involved we shall have a group of four cubes
in which all the “straight” dimensions have S=514. but no diag-
onals except the four cubic diagonals. ITach horizontal row of
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squares will produce a cube having exactly the same properties as
those in the four vertical rows, If the four squares in either diag-
onal of the figure be piled together neither vertical columns nor
cubic diagonals will have the correct sunmmation, but all the diagonals
of vertical squares in either direction will. Regarding the whole
group of sixteen squares as a plane square we find it magic, having

v VIT

3968) 130 | 131 | 3965 3964' 134 | 135 | 3961| 103 | 3003) 3902 196! 197 | 3899| 3898, 200

I . .
137 | 3059| 3058| 140| 141 | 3085| 3954| 144 3806 202| 203 | 3803| 3892 206 | 207 | 3880
3885|3884 214 | 215 | 3881

-

|
145 (3951|3950 148 | 149 | 3047|3946, 1523888 210 | 21

3044| 154 | 135 [3941]3040| 158 | 150 :'393? 217 | 3870; 3878| 220 | 221 (3875|3874 224

: s
160 |3038(3939| 157 | 156 | 3042|3043 153 |3873| 223 [ 222 | 3876) 387 | 219 | 218 | 3880

J |

| ;
3045| 181 | 150 | 3048) 3040| 147 : 146 ' 3052f 216 | 3882) 3883 213 | 212 | 3886 3887| 209

=1

3953| 143 | 142 | 3956|3057 139 | 138 | 3960] 208 | 3800] 3B01| 20§ | 204 3B04| 3805| 2ot

136 | 3062|3063 | 133 132 |3066|3067| 120 [3%7| Tog | 108 |3000({3001| 105 | 104 390ﬂ

161 | 3935 3034 164 | 165 | 3037|3030| 168 | 3872 226 | 227 | 3869|3868 230 | 231 3865|

3028| 170 { 1713025 3024| 174 | 175 |3027) 233 | 3863 3862| 236 | 237 | 3850] 3858| 240

3eo| 178 | 176 |3917|3916| 182 | 183 |3013] 241 | 3855)3854) 244 | 245 | 3851|3850( 248
185 | 3011|3010 1881 180 | 3007 | 3906| Toz | 384B) 250 | 251 | 3843|3844/ 254 255 (3841
3905| 191 | 190 | 3008) 3009 187 | 186 | 3012{ 256 | 3842] 3843) 253 | 252 | 3846 3847) 249

184 | 3914] 3015] 181 r80%3918 3019| 177 13849] 247 | 246 | 3852| 3853) 243 | 242 | 3854

176 {3922| 3023] 173 | 172 | 3020 3927 160 | 385y 239 | 238 | 3BGo| 3B6I| 235 | 234 | 3864

1
soe0| 167 | 166 | 3932|3033| 163 | 162 | 3036] 232 | 3966 3867[ 229 | 228 3870|3871 | 225

T Vi

TFig. 686, 84, Second Part {One cube writen).
the summation 2056 in cvery rank, file and corner diagonal, 1028
in each half-rank or half-file, and 514 in each quarter-rank or
quarter-file, Furthermore all complementary pairs are balanced about
the center.

The alternative arrangement shown in Fig. 684 malkes each of the
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small squares perfect in itself, with every rank, file and corner diag-
onal footing up 514 and complementary pairs balanced about the
center.  As in the other arrangement the squares in each vertical
or horizontal row combine to make cubes whose “straight” dimen-
sions all have the right summation, In addition the new form has
the two plane diagonals of each original square {eight for each
cube), but sacrifices the four cubic diagonals in each cube. In lien
of these we find a complete set of “bent diagonals™ (“Franklin™)
like those described for the magic cube of six in Chapter IX.

IT the four squares in either diagonal of the large figure be
piled up it will be found that neither cubic diagonal nor vertical
column is correct, but that all diagonals of vertical sqnares facing
toward front or back are. Taken as a plane figure the whole group
makes up a magic square of 16 with the summation 2056 in every
rank, file or corner diagonal, half that summation in half of each
of those dimensions, and one-fourth of it in each quarter dimension.

2. Let n=6, then 5—=38g1.—With the natuoral series 1...1206
squares were constructed which combined to produce the six magic
cubes of six indicated by the Roman numerals in Figure 685.
These have all the characteristics of the 6-cube described in Chap-
ter IX——108 “straight” rows, 12 plane diagonals and 25 “bent”
diagonals in each cube, with the addition of 32 wvertical-square
diagonals if the squares are piled in a certain order. A seventh
cube with the sanie features is made by combining the squares in
the lowest horizontal row—i. e., the bottom squares of the num-
bered cubes. The feature of the cubic bent diagonals is found on
combining any three of the small squares, no matter in what order
thev are taken. In view of the recent discussion of this cube it seems
unnecessary to give any further account of it now.

The whole figure, made up as it is of thirty-six magic squares,
is itself a magic square of 36 with the proper sununation (23346)
for every rank. file and corner diagonal, and the corresponding
fractional part of that for each hali, third or sixth of those dimen-
sions.  Any square group of four, nine, sixteen or twenty-five of the

small squares will be magic tn all its dimensions.
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3. Let #==8, then 5=16388.-The numbers 1...4006 may be
arranged in several difierent ways. [f the diagrams in Chap-
ter Il be adopted we have a group of eight cubes in which
rank, file, column and cubic diagonal are correct (and in which
the halves of these dimensions have the half summation), but all
plane diagonals are irregular. If the plan be adopted of construct-
ing the small squares of complementary couplets, as in the O-cube,
the plane diagonals are equalized at the cost of certain other features.
I have used therefore a plan which combines to some extent the ad-
vantages of both the others.

It will be noticed that each of the small squares in Fig. 686 is
perfect in that it has the surmmation 16388 for rank, file and corner
diagonal (also for broken diagonals if each of the separated parts
contain two, four or six--not an odd number of cells), and in balan-
cing complementary couplets. When the eight squares are piled
one upon the other a cube results in which rank, file, column, the
plane diagonals of each horizontal square, the four ordinary cubic
diagonals and 32 cubic bent diagonals all have $=16388. What is
still more remarkable, the half of each of the “straight”™ dimensions
and of each cubic diagonal has half that sum. Indeed this cube of
eight can be sliced into eight cubes of 4 in each of which every rank,
file, column and cubic diagonal has the footing 8194 ; and each of
these g-cubes can be subdivided into eight tiny 2-cubes in each of
which the cight numbers foot up 16388,

So nmuch for the features of the single cube here presented.
As a matter of fact only the one cube has actually been written out.
The plan of ils construction, however, is so simple and the relations
of numbers so uniform in the powers of 8§ that it was easy to in-
vestigate the properties of the whole 8 scheme without having the
sgquares actually before me. T give here the initial number of each
of the eight squares in each of the eight cubes, leaving it for some
one possessed of more leisure to write them all out and verify my
statements as to the intercubical features. It should be remembered
that in each square the number diagonally opposite the one here
given is its complement. i. e. the number which added to it will
rive the sum 4007.
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1 i1 I 1v V VI VIl VI
1 3840 3584 760 3oz 1281 1537 2304
4064 289 545 3200 1057 2784 2528 1825
4032 321 577 3204 10Bp 2752 2496 1857
97 3744 3488 865 20976 1377 1633 2208
3968 285 641 3200 1153 2688 2432 1921
161 3680 3424 929 2912 Ig441 1607 2144
193 3648 3392 o6t 2880 1473 1729 z2I12
3872 48t 737 3104 1249 2592 2336 2017

16388 16388 16388 16388 16388 16388 16388 16388

Each of the sixty-four numbers given above will be at the
upper left-hand corner of a square and its complement at the lower
right-hand corner. The footings given are for these initial numbers,
but the arrangement of numbers in the squares is such that the
footing will be the same for every one of the sixty-four columns
in each cube. If the numbers in each horizontal line of the table
above be added they will be found to have the same sum: conse-
quently the squares headed by them must make a cube as nearly
perfect as the example given in Fig. 686, which is cube T of the table
above. DBut the sum of half the numbers in each line is half of
16288, and hence each of the eight cubes formed by taking the
squares in the horizontal rows is capable of subdivision into g-cubes
and 2-cubes, like our original cube. We thus have sixteen cubes, each
with the characteristics described for the one presented in Fig. 636.

If we pile the squares lying in the dizgonal of our great square
(starting with 1, 280, etc., or 2304, 2528, etc.} we find that its col-
umns and cubic diagonals are not correct; but all the diagonals of
its vertical squares are so, and even here the remarkable feature of
the half-dimension persists.

Of course there is nothing to prevent one's going still further
and examining constructions involving the fifth or even higher pow-
ers, but the utility of such research may well be doubted, The purpose
of this article is to suggest in sketch rather than to discuss exhaus-
tively an interesting ficld of study {or some one who may have time
to develop it. II. M. K.
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FOUR-FOLD MAGICS.*

A magic square has two magic directions parallel to its sides
through any cell—a row and a column: a magic cube has three magic
directions parallel to its edges, a row, a colunmin and a “line,” the latter
being measured at right angles to the paper-plane. By analogy,
if for no other reason, a magic 4-fold should have four magic direc-
tions parallel to its linear edges. a row, a column, a line, and an “i.”
[The i is a convenient abbreviation for the Imaginary direction,
after the symbol { = v/--1.] Tt is quite casy to determine by analogy
how the imaginary direction is to be taken, If we look at a cube,
set out as s0 many square sections on a plane, we see that the direc-
tions we have chosen to call rows and columns are shown in the
square sections, and the third direction along a line is found by
taking any cell in the first sqoare plate, the similarly situated cell
i the second plate, then that in the third and so on. In an octra-
hedroid the rows, columns and lines are given by the several cubical
sections, viewed as solids, while the fourth or imaginary direction
is found by starting at any cell in the first cube, passing to the cor-
responding cell of the second cube, then to that of the third, and
$0 On.

If we denote each of the nine subsidiaries of order 3 in Fig. 637
by the number in its central cell, amd take the three squares 43, I,
77, in that order, to form the plates of a first cube; 73, 41, g to form
a second cube, and 5, 81, 37 for a third cube, we get an associated
octahedroid, which is magic along the four directions parallel to its
edges and on its 8 central hyperdiagonals. We find the magic sum

* The subject has heen treated hefore in:

Frost {A. F1.3, “The Properties of Nasik Cubes,” Quarferly Fournal of
Mathematics, London, 1878, p. o3

“C.Pr (C Planck), “Magic Squares, Cubes, etc,” The English Mechonic,
Londan, March 16, 1888

F;*I\mmlx {Gabriel), Arithmétique graphigue, Paris, 1804, Gauthier-Villars

et Fils,

Fianck (C.}, Fhe Thearv of Path Nasiks. 1905, Printed far private cirau-
lation. There are copies at the British Musenm, the Bodleian, Oxford, and the
University Library, Camhridge.
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on g rows, g columns and 18 diagonals, the nine subsidiaries cqually
weighted and magic in rows and columns, and further the square is
g-ply. that is, the wine numbers in any square scction of order 3
give the magic sum of the great square.

It will be convenient lere to turn aside and examine the evo-
lution of the Nasik idea and the general analogy hetween th> fizures
of various dimensions in order that we may determine how the Nasik
concept ought {o be expanded when we apply it in the higher dimen-
sions. This method of treatment is suggested by Professor King-
ery’s remark, p. 352, "It is not easy--perhaps it is not possible—to
make an absolutely perfect cube of 3. Tf we insist on magic central

65) 6 |52F529( 78|16 20] 42| 61

36|73 142737591721 |30

22|44 |s57| 67| 8 [48] 31| 80| 12

69 7 |47 |33 |9 |11 ] 24|43 56

WAIT (1B 19|41 |63 ] 64| 5 |52

26 13958 71| 3 149 35|75 13

W2 |51 |34 (T4 |15] 25138 |60

32|81 110 | 23 (45 (55 6B 9 |46

2140|6266 4 |33} 30|76)17

Fig. 687,

diagonals we know that, in the restricted sense, there is only one
magic square of order 3, but if we reckon reflections and reversions
as different there are 8. If we insist on magic central greal diag-
onals in the cube, as by analogy we ought to do, then, in the re-
stricted sense, there are just 4 magic cubes of order 3. But each
of these can be placed on any one of six bases and then viewed from
any one of four sides, and each view thus obtained can be duplicated
by reflection. In the extended sense, therefore, there are 192 magic
cubes of order 3. None of these, howcever, has the least claim to
be considered “perfect.” This last term has been vsed with several
different meanings by various writers on the subject. Trom the
present writer's point of view the Nasik idea, as presently to be de-
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veloped, ought to stand pre-eminent; next in importance comes
the ply property, then the adornment of magic subsidiaries, with the
properties of association, bent diagonals of Franklin, etc,, etc., tak-
ing subordinate places.

The lattice ldea certainly goes back to prehistoric time, and
what we now call the rows and columns of a rectangular lattice
first appealed to man becanse they disclose contiguous rectilinear
series of cells, that is sets of cells, whose centers are in a straight
line, and cach of which has linear contact with the next. It must
soon have been noticed that two other series exist in every square,
which fulfil the same conditions, only now the contact is punctate
instead of linear. They are what we call the central diagonals. Tt
was not entil the congruent nature of the problem was realized that
it became apparent that a square lattice has as many diagonals as
rows and columns together. Yet the ancient Hindus certainly recog-
nized this congruent feature. The eccentric diagonals have been
called “broken diagonals,” but they are really not broken if we re-
member that we tacitly assume all space of the dimensions under
consideration saturated with contiguons replicas of the figure before
vs. cells similarly situated in the several replicas being considered
identical. A. H. Frost® nearly o vears ago invented the term " Nasik”
to embrace that species of square which shows magic summations
on all its comtiguovs rectilinear series of cells, and Jater extended
the idea Ly analogy to cubes,t and with less success to a figure in
four dimensions, If the Nasik criterion be applied to 3-dimensional
magics what does it require? We must have 3 magic directions
through any cell parallel to the edges, {planar contact), 6 such
directions in the diagonals of square sections parallel to the faces
(linear contact), and 4 clirections parallel to the great diagonals of
the cube (point contact), a total of 13 magic directions through
every cell. It has long been known that the smallest square which
can be nasik is of order 4, or If the square is to be associated, (that

* Quarterly JTournal of Mathematics, London, 1863, and 1878, pp. 3jand o3.

1 The idea of the crude magic cube i3, of course, much older: Fermat
gives a 4 in his letter to Mersenne of the tst of April, 1630, (Buwres de
Fermut, Vol. 11, p. 101.
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is with every pair of complementary numbers occupying cells which
are equally displaced from the center of the figure in opposite di-
rections ), then the smallest Nasik order is 5. Frost stated definitely*
that in the case of a cube the smallest Nasik order is g; Arnouxt was
of opinion that it would be 8. though he failed to construct such a
magic. It is only quite recentlyf that the present writer has shown
that the smallest Nasik order in & dJimensions is always 2f, {or
2k 1 if we require association).

Tt is not difficult to perceive that if we push the Nasik analogy
to higher dimensions the number of magic dircctions through any
cell of a k-fold must be 3(3b—1), for we require magic directions
from every cell through each cell of the surrounding little k-fold
of order 3. Tn a 4-fold Nasik, therefore, there are 40 contiguous
rectilinear summations through any cell. But how are we to de-
termine these 40 directions and what names are we to assign to the
magic figures in the 4th and higher dimensions? By far the best
nomenclature for the latter purpose is that invented by Stringham §
who called the regular m-dimensional figure, which has » {(m—T1)-
dimensional boundaries, an m-fold s-hedroid.  Thus the square is
a z-fold tetrahedroid (tetragon), the cube a 3-fold hexahedroid
{hexahedren) ; then come the g-fold octahedroid, the 5-fold deca-
hedroid, and so on.  Of course the 2-fold octahedroid is the plane
octagon, the 3-fold tetrahedroid the solid tetrahedron; but since the
regular figure in & dimensions which is analogous Lo the square and
cube has always zk (k&

1)-dimensional boundaries—is in fact 2
E-fold 2k-hedroid—the terms octahedroid, decahedroid, cte., as ap-
plied to magics, are without ambiguity, and may be appropriately
used for magics in 4, 5. etc. dimensions, while retaining the familiar
“square,” “cube,” for the lower dimensions.

To obtain a complete knowledge of these figures, requires a
study of analytical geometry of the 4th and higher dimensions, but,
by analogy, on first principles, we can obtain sufficient for our pur-
pose, If we had only a linear one-dimensional space at command

¥ Quarterly Fournal, Vol XV, p. 110

T Arithunétique graphique, Paris, 1804, p. 140

t Theory of Path Nasiks, 1003,

§ Amerfean JTowrnal of Mathemafics, Val. 11T, 1880,
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we could represent a square of order 5 in two ways, (“aspects™),
either by laying the » rows, in order, along our linear dimension,
or by dealing similarly with the # columns, In the first aspect, by
rows, the cells which form any column cannot appear as contiguou.s,
though they actnally are so when we represent the figure as a square

34| 7415 G5 | & | 52 24| 43 156

23 (45|55 36173 |14 64 [ 5 |54

66 [ 4 |53 22 |44 |57 357513

20| 42 | 61 33 (791 02|51

211 |50 19 | 4063 32 (81|10
31]80 (12 REEREL 21| 40| 62

62| 7147 25| 38|60 29| 78| 18
28|77 |18 68| 4 |46 27| 37| 59
26 {394 3R 0| 76|17 67| 8 48

Fig. 688, P.- and Praspects.

69 (2034} | 7 |42 7a]| {47 |61 )15 69| 7 |47| |28) 77| 18] |26] 3958
28|72 (23 771 |45 18 | 50| 55 0, 42 | 61 72| 1|50 3118012
26 | 31 |66 39|80 4 38|12 153 34?‘?4 15 237 45| 55 66| 4 | 53
25p33|65] fas|re|a]| feo|11]s2 25| 38| 60| e8] 9| 48] | 30| 76| 17
68119136 | | o |41 23] P46 |63 |14 33| 7o) [ ape3| | 71| 3|49
3o|7r]22) |76 |3 |44 |17 |49 57 650 6 [S2] | 36| 73| 14| | 22| 44| 57
29|70 |24 812 |43 145 | 51 | 56 29| TR 16 271 37| 59 61| B |48
27|32 |6a) |37 81| 5| bso|tofs4 ol 2 |si) |32 stt10] | 2i] 40| 62
67 21350 | 8 |40 75| [48 a2 (13 24| 4356 64| 5|54 | 35] 75|13
Fig.68g. V-aspect. Fig. 6go. H-aspect.

on a plane. Similarly we can represent a cube on a plane in three
aspects. Suppose the paper-plane is placed vertically before us and
the cube is represented by # squares on that plane (P-plane aspect).
We get a second aspect by taking, in order, the first column of each
square to forin the first square of the new aspect, all the second col-
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umns, in order, to form the second square of the new aspect, and so
on (V-plane aspect). We obtain a third aspect by dealing simi-
larly with the rows {H-plane aspect). IHere the “"lines,” which
appear as contiguous cells in the V- or I-plane aspects do not so
appear in the P-plane aspect, though they actually are contiguous
when we examine the cube as a solid in three dimensions, Now
consider an octahedroid represented by 2 cubes in a space of three
dimensions. We get a second aspect by taking the n anterior, vertical
square plates of each cube, in order, to form a first new cube; the
1 plates immediately behind the anterior plate in each cube to formn
a second new cube, and so on.  Evidently we obtain a third aspect,
in like manner, by slicing each cnbe into vertical, antero-posterior
plates, and a fourth aspect by using the horizontal plates. Carrying
on the same reasoning, it becomes clear that we can represent a
k-fold of order n, in k-1 dimensions, by # (k—1)-folds, in & dif-
ferent aspeets. Thus we can represent a 3-fold decahedroid of
arder #, In 4-dimensional space, by 1 4-fold octahedroids, and this in
5 different ways or aspects.

Return now to TFig. 687 and the rule which follows it, for form-
ing from it the magic octahedroid of order 3. If we decide to
represent the three cubic sections of the octahedroid by successive
columns of squares we get Fig. 688

If we obtain a second aspect by using the square plates of the
paper-planie, as explained above, we find that this is equivalent
to taking the successive rows of squares from Fig. 688 to form our
three cubes, instead of taking the columns of squares. Thus the
presentation plane shows two different aspects of an octahedroid
this is due to the fact that the fourth dimension is the square of
the second. We may call ihese aspects P,- and P,-aspects. The
aspect obtained by wsing antero-posterior vertical planes is shown in
Fig. 68, that from horizontal planes in TFig. 6go. We may call these
the V- and H-uaspects, I we use the rows of squares m Tigs. 68g
or 6go we get correct representations of the octahedroid, but these
are not new aspects, they are merely repetitions of P,, for they give
uew vicws of the same three cubes as shown mn P,. In the same

way, if we turned all the Iplane plates of a cube upside down
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we should not call that a new aspect of the cube. The aspects
P,, V, H can be obtained from P, by turning the octahedroid as a
whole in 4-dimensional space. just as the V-plane and H-plane
aspects of a cube can be obtained from the P-plane aspect by
turning the cube in 3-dimensional space. Fig. 692, above, is Fig.
688 turned through a right angle about the plane of xy; we can
turn about a plane in 4 dimensions just as we turn about a
straight line in 3 dimensions or about a point in 2 dimensions. Tt
will be noticed that in the four aspects each of the 4 directions
parallel to an edge becomes in turn Imaginary, so that it cannot be
made to appear as a series of contiguous cells in 3-dimensional
space; vet if we had a 4-dimensional space at commmand, these four
directions could all be made to appear as series of contiguous cells.
There is one point. however, which must vot be overlocked. When
we represent 4 cube as so many squares, the rows and columns ap-
pear as little squares having linear contact, but actually, in the
cube, the cells are all cubelets having planar contact. Similarly, in
an octahedroid represented as so many cubes the rows and col-
umns appear as cubelets having planar contact, but in the octa-
hedroid the cells are really little octahedroids having solid, 3-dimen-
sional contact.

When we examine the above octahedroid {Figs. 688-Og0) in all
its aspects we see that there are through every cell 4 different direc-
tions parallel to the edges, 12 directions parallel to the diagonals
of the square faces, and 16 directions parallel to the great diagonals
of the several cubical sections. There remain for consideration the
hivperdiagonals, which bear to the octahedroid the same relation that
the great diagonals bear to a cube. T we represent a cube by squares
on a plane we can obtain the great diagonals by starting at any
corner cell of an outside plate, then passing to the next cell of the
corresponding diagonal of the succeeding plate, and so on.  Simi-
larly we obtain the hyperdiagonals of the octahedroid by starting
from any corner cell of an outside cube, passing to the next cell
on the corresponding great diagonal of the succeeding cube, and so
on., Ewvidently there are 8 central hyperdiagonals, for we can start
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at any one of the 8 corners of one outside cube and end at the oppo-
site corner of the other outside cube. There are therefore, through
any cell, 8 different directions parallel to the central hyperdiagonals.
With the directions already enumerated this makes a total of 40
directions through each cell and agrees with the result already stated.®
Evidently the nuniber of £-dimensional diagonals of a k-fold is 25—,
and if the analogy with the magic square is 1o be carried through
then all the cenfral k-dimensional diagonals of a k-fold ought always
to be magic.

The smallest octahedroid which can have all these 40 directions
magic is 16, and the writer has given one of the 256 square plates
of this magic and a general formuta by which the number occupying
any specified cell can be determined. But it will be interesting to
determine how nearly we can approach this ideal in the lower orders.
The octahedroid of order 3 can be but ¢rude, and practically Fig. 688
cannot be improved upan. All rows, columns, lines, and “i”s are
magic, and likewise the 8 central hyper-diagonals. Of course, since
the figure is associated, all central rectilinear paths are magic, but
this is of little account and other asymmetrical magic diagonal sum-
mations are purely accidental and therefore negligible,

Turning to the next odd order, 5: Professor Kingery's Fig. 683
is not a magic octabedroid as it stands, but a magic can be obtained
from it by taking the diagonals of subsidiary squares to form the
5 cubes. Denoting each subsidiary by the number in its central cell,
we may use 60z, 41, 210, etc. for the first cube; 291, 400 ete. for
the second cube; 85, 149, ete. for the middle cube, etc., ete. But
few of the plane diagonals through any cell of this octahedroid are
magic, In fact no octahedroid of lower order than 8 can have all
its plain diagonals magic: but by sacrificing this property we can
obtain a 3! with many more magic properties than the above,

In Fig. 601 the great square is magic, Nasik and 25-ply: the 25
subsidiaries are purposely not Nasik, but they are all magic in rows

#* If we call the diagonals in square seclions parallel to faces 2-dimensional,
those parallel to the great diagonals of cubical sections 3-dimensional, ete., etc.,
then the number of m-dimensional diagonals of 3 &-fold is 281k m  (B—m) !
In fact the number required is the (m-1)th term of the expansion of
Lo (142)% ¥t will be noticed that this reckons rows, columms ete. as “diag-
onals of one dimension.”
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and colwmms. If we take vp the subsidiaries in the way just de-
scribed, viz., 513, 221, ete., for the first cube; 203, 413. cte., for the
second cube, and so on, we get a 5%, which has 20 contiguous recti-
linear sumuiations through any cell, viz., the 4 directions paralle]
to the edges and the whole of the 16 three-dimensional diagonals
parallel to the great diagonals of any cubical section. Ii the reader

405 | 58 (271 |58 fi52Y 478 | 60 1250 59?!165 126 54 267 (385|173 ] sou [ar (2ssises|ise a2 | 75 \2ussTa]iee

17813911 84 | 207 [a15] 186|329 92 | 285] 623| 199 387( 30 [ 20| eos| 182 |400| 83 274| GL19| 193|383 B6 | 269|602
si (204|417 110 323] s24|202| 208] i1a) 30s| 507 225|413 100 314 520|208 421] 114) 302| 503| 216 4| 122] 515

349|537\ 230|443 6 | 332(550| 235|426 19| 345|533 246( 400 2 | 528 341|239) a47| 15[ 16| 529) 242) 435) 23
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Fig. 61,
will write out the four aspects of the octahedroid, in the way already
explained, he will be able to verify this statement. As an example,
the 20 swmmations through the cell containing the number 3zs,
which lies in the first plate of the first cube of the P,-aspect, are here

shown:
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CUBICAL DTAGONALS

B | P -asrBcT | Fy-asrecT | V-asbrcT | H asrECT

E
a
=

325 325 325 325|325 35 325 328|37% 3#3 325 325|325 325 385 3F5|335 375 35 335
515 B 5oB 512|534 388 B0y 3|s528 202 6117|533 3By 6084|413 103 507 so0g
200 466 216 204(153 576 169 456|126 580 152 abg|147 5o 166 438[501 406 219 218
419 154 404 4T6(477 44 451 164(404 31 468 151|479 41 454 162|119 214 401 402
107 612 112 roB| 86 23z 13 H1y} Bz zaB g 613 By =233 12 616|207 gy 113 111

COLUMN
LINE

Since there are 20 magic summations through each of the 623
cells and each summation involves 5 cells, the total number of dif-
ferent symmetrical magic summations in this octahedroid is z500,
This does not include the 8 central hyperdiagonals, which are also
magie, for this is not a symmetrical property since all the hyper-
diagonals are not magic.

The next odd order, 7, was the one which Frost attacked.
Glass models of his 7 cubes were for many yvears to be seen at the
South Kensington Museum, London, aud possibly are still there.
He does not appear to have completely grasped the analogy between
magics in 3 and 4 dimensions, and from thz account he gives in
The Quarterly Fouwrnal, he evidently assumed that the figure was
magic on all its plane diagonals, Actually it is magic on all plane
diagonals only m the P-aspect; in the other 3 aspects it is Nasik in
one set of planes but only semi-Nasik in the other two sets of planes,
therefore of the 12 plane diagonals through any cell of the octa-
hedroid only 9 are magic.* Frost obtained his figure by direct
application of the method of paths; the present writer using the
method of formative square has obtained an example with one ad-
ditional plane magic diagonal, It is shown as a great square of order
44, magic on its 49 rows, 49 columns and 98 diagonals, and 49-ply, that
is eny square bunch of 49 numbers gives the same sum as a row
or column. The 49 subsidiaries are equally weighted Nasiks, magic
on their 7 rows, 7 columns and 14 diagonals. If the subsidiaries be
taken up along the Indian paths, as in the previous examples, we
get 7 cubes forming an octahedroid of order 7. This is magic on
the 4 directions paralle!l to the edges, is completely plane Nasik in

* Probably the reader will have alrealy noticed that although there are 4
aspects, and 6 plane diagonals appear in each aspect, yet there are only 12
plane diagonals in all, since, with this method of enumeration, cach diagonal
Goeurs twige,
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the P, and D’,-aspects, and in the other two aspects it is Nasik in two
sets of planes and crude in the third set. Therefore of the 12 plan:
diagonals through any cell 10 are magic. It is practically certain
that we can go no further in this direction witl this order, but by
giving up the magic plane diagonals we can, as with 3* above, obtain
a larger number of magic semumations on the higher diagonals.

When we consider the even orders we find those 2 = (mod 4)
of little interest. The powerful methods used for the other orders
are now useless If we Insist on using consecutive numbers: we must
cmploy other methods. The best methods here are either to use an
extenston of Thompson's method of psendo-cubes, as employed by
Alr. Worthington in s construction of 6% (pp. 201-200) % or, best
of all, to use the method of reversions.

With orders = o{mod 4) we ¢an give a greater number of ornate
features than with any other orders. We quote one example be-
low (Fig. Hhgz).

The colunins of IYig. Gyz give the 4 cubes of an octahedroid of
order 4. which is ¢rude in plane diagonals, but is magic on every
other contiguous rectilinear path, it has therefore 28 such paths
through each cell, The 28 magic paths through the ceil containing
the number 155 are displaved below,

CUBICAL DIAGONALS
. JRR— —
< | By -aspEaT [ FP,-AsiFeT | VASTIVT | Heasli#nt

oW
COLUMY
LINK

I55 155 I55 T55|T55 155 IS5 IS§(0155 IS5 f55 715
38 7o ef | = 5o 4% toq] 5 53 245 roy| 7y 125 »3 6g| 36 33 225 228
O tF1 131 134[103 103 103 1030106 106 108 106166 166 166 166] 86 B6 86 B
zze 118 110 104|254 znd 14 G2|248 zao B o|rifi £R Be 128|237 240 4R 45

153 TRE 135 MSE[U55 155 155 155

HYTFTERDHAGONALS

I35 I55 TE5 155 IS5 155 ISG IG5
256 208 16 64 2853 205 13 6
1oz 102 102 18T 102 te2 102 102
booo4u 241 103 4 52 244 196

Dut this does not exhaust the magic properties, for this figure
is 4-ply in every plane section parallel to any face of the octahedroid,

# 1t was hy this method that Fivth m the 80' canstricted what was, almast
certainly, the first correct magic cube of aorder 6. AMr. Worthington's intro-
duction of magic contral diagonals on all the faces is newe. Thowgh, of course.
wol a symonetrical summation, this s a very pleasing feature.
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If the reader will examine the figure in its four aspects he will find
that 6 such planes can be drawn through any cell, and since a given
number is a member of four different 4-ply bundles in each plane,
it follows that each number is a member of 24 different bundles,
[f we add the 28 rectilinear summations through any cell we see

1 |128]193]192 254131| 62 | 67 4 |125 (196|159 255|130 63 | 66

24001457 48 | 81 19 (110211174 237|148 | 45 | 84 18 | 111]213(175

49 | 80 (241144 206|179 14 |115 52| 77 |244 (141 207|578 15 |114

224|161 32 1 97 35| 94 227158 221|164 | 29 |100 3495 1226|159

248|137| 56 | 73 11 [118[203]182] |245i140]53 |76 10 |119]202 183

25 | 104|217 (168 230(155| 38| 91 28 [101 |220|t65 231[154| 30 (90

200)185] 8 |121 59| 70 | 2511134 197|188 5 (124 387125010135

41 | 88 [233]152 2141171 22 107 44 | 85 |236|149 215(170( 23 106

13 [116]205}180 242|143 50| 79 i6 (113|208 (177 2431142151 |78

228|157 36| 93 31 | 98 223|162 225 (160( 33 | 96 30| 99 1232 163

61| 68 253|132 194 (191] 2 (127 64 165 1256120 1951150] 3 [126

212173120 |109 47 182 1239|146 2091176 17 112 46 | 83 |238 147

2521133 | 60| 69 7 [122}199|186 2491136 57 | 72 6 |1231198 |187

21108213172 234 (151 42 | 87 24 105216169 235)|150( 43 |86

201|181 12 | 117 55 | 74 247|138 201|184 9 |120 54| 75 1246 (139

37|92 |2294156 218[167] 26 | 103 40| 89 |232|153 219|166 27 102

Fig, tga.

that each of the 256 numbers takes part in 52 different summations,
The total number of different magic stmmations in the octahedroid

256 x 52
4

through 155 are shown in IFig. 693, and from them the 24 different

is therefore — 3328, The six planes parallel to the faces

bundles in which 155 is involved can be at once determined.
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The reader might cbject that the border cells of a square section
caniot be involved in 4 bundies of that section: but this would
be to overlook the congruent property. The number 107, which

11 [118]203]|182 19 1110]211]174 131 118]143] 122

230|155 38 { 91 230(155] 38 |91 110[155| 98 | 151

59| 70 (251|134 3198|223 162 1790 70| 191} 74

214171 22 [107 234|151] 42 | B7 941171 82167

251104)217) 168 137 [118]140(119 1451110|1481111

230155138 | 1 104 (138101 154 104155 [101 {154

287101)220| 165 185 |70 |188 )71 15798 (16099

231]154) 39| 90 88 (17183 |170 108|151 (105 {150

Fig. 6g3.
accupies a corner cell of the first section given above is contained in

the following bundles:

107,214,

i251.134‘ |34 59 i2210?

B H 1 .
22:107| |to7 214,  [203 182| jr8z 11

It is noticeable that the four corner cells of a square form one of its
4-ply bundles.

It would have been desirable to indicate the methods by which
the above examples have been coustructed, but exigencies of space
forbid. The four orders dealt with. 3. 5. 7, 4, were all obtained in
different ways. Fig. 6092 was constructed by direct application, in
four dimensions, of the method of paths; in fact, it is the octahedroid

zzazx
2212
z 1232
12 22)|4,

The whole of its magic properties may be deduced by examination
of the determinant and its adjoint, without any reference to the
constructed figure, There is thercfore nothing eimpirical about this

methodl,
c.In



CHAPTER XV.

ORNATE MAGIC SQUARES.

GENERAL RULE FOR CONSTRUCTING ORNATE MAGIC SQUARES
OF ORDERS =0 (mod4),

AKE a square lattice of order 4m and draw heavy lines at

every fourth vertical bar and also at every fourth horizontal bar,
thus dividing the lattice into m?* subsquares of order 4. The “period”
consists of the 4 natural numbers 1, 2, 3.... 4, Chooge from
these any lwe pairs of complementary nmnbers, that is, pairs whose
sum is 4m + 1 and arrange these four numbers, four times repeated,
as in a Jaina square (first type} in the left-hand square of the top
row of subsquares in the large lattice. It is essential that the faina
pattern shall contain only one complementary couplet in each of
its four columms, i. e.. if the two pairs are a, @, and b, b,, every
column mmst consist entirely of ¢'s. or entirely of b#'s. The first
Jaina type can be cobtained by using the paths (1. 2} (2, 1) and the
order a, b, a. &, four times repeated. This gives the square shown
in Fig. 694, which fulfils the conditions, DProceed in the same way
with cach of the s subsquares in the top row, using a diffcrent
pair of complementarics in cach subsguare.  Since the period 1,
2, 3.... 4m contains 2m complementary pairs and two pairs are
used for each subsquare, it follows that when the lop row of sub-
squares is filled vp, all the 4 numbers will have been used.

Now 011 all the remaining rows of subsquares in the large
lattice with replicas of the top row. The ontline so constructed can
always be turned over either of s central diagonals without repe-
tition. The resulting square will therefore contain the frst (4n)?



ORNATE MAGIC SQUARES. 377
numbers without repetition or omission, and it will always have the
following magic propertics,

A, The Great Square. . ...
1. is magic on its $m rows and $m columns;

L ARVANARF A WEAE S AWAR K2

231 46| /8 | #3| 2/ |4 & 20| 4/
So| /| S5| a2 2 (|53 /6

g7 oe | L) 9| ga] 2| AE 27

a’t 51 &, 3‘

P 26| 35|as |as|2s| a3| 22|40
a,l 3|,
i 4 7 |62 2 |so| s | 62| 2 |37
Fs )
ARARARE 34| 27|39 |J0|s8 25|37 32
Rl R dgsl 6 |ax|d |87 & |6a| 7

Fig. 6a4. Fig. 603.

2. 15 pandhiagonal, i. e., magic on its 8m diagenals ;

3. has Iranklin’s property of bent diagonals in an extended
sense; i, e., we can start at any cell in the top row, and proceeding
downward bend the diagonal at eny heavy horizontal bar. It

213t 7|F|4L |/ 15| & F 481 & (45| 8 |48 & |4
yAR-AW-AIN I P - /B 20| 16| 20| /8 | 20| 16 |40
2|37+ 7)o |F 45| & |2gl 8 | 28| & |22 F
slelzlalag 8|47 S0 | 26 | #o| 16 | 40| 167\ d0| 76
zlalz e+ |7 | 5|8 24| 32| 2¢|az|z2e|a2| 22|32
AR 2B I o o 56| o lsS| o |s5| o |55
21317164+ | /T & 3224|232 |z¢|32| 24 |32| 24
7|23 |S| 8|4/ st o |s8| o |56 o |s€] ¢
Fig. Gob. Fig. fg7.

matters not how many times we bend, or at which of the heavy
bars, providing only that when the traverse is completed, the number
of cells passed over in the one direction {downward to the right)
shall be exactly equal to the number passed over in the other direc-
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tion (downward to the left). Similarly we may start at any cell
in the left-hand column and. proceeding diagonally to the right,
bend the diagonal at any heavy vertical bar under the same limita-
tions.

It will be noticed that when the order of the squarc is =4
{mod 8}, i. e., when m is odd, the central bars are not heavy bars,

y lade| 20 Lawg| a Dax| sa sl 5 UsE| 6 bes| 7 ber| s lasa| & lasa| s2 Pay

Fo 7l ar DEz|as Dy 2 [sdr g b 2 aseNa Lirs|ar (sda|oz 377 |20 o

lrds| 2 |#00| v9 P82 4 ed| /7 V383 & 298| /5 sy & Peasa |osy| o as2| #

ssol a9 167 |22 {ars|a7 |a8s] eelorslos say| 26 e 00 (387 |28 |o7e|ar [s63|a0

27 12| 5235923 |aks| 58 \as7) o5 bas| 56 basle7 |ses|ae boalew e v (a5

S 3as| 67 Pzl 74 laay| 64 |are]| 75 hasl 85|25 74 |323| 677 [as] 72 pas| E2 |83

bps |92 |ade| so Pea| pa 1|57 P as| 28 [356] 55 [2er | 25 J.w—!.f.s Loeer| 7 | Sz v

1o 79 |32/ | G2 |aas| 77 2o | Gelaas) 2 |aza s o | 78 2yl ek 252 72 |a2s) 7o

£/ aoa|roolis|sa Dol 88 78S Pos| 26 |ass|#7 |Jor|.a« (30 | £5 Woo| S22 |3k

F2T R ou| for | 2EANE |29 00 | 2RE|AFE (AR5 rosT | BRS | e 238 \ro | BRF A7 2 B9/ | /08| 280

Hor | #2 [a20|sy hos| a4+ (38 |87 Pos]#E [B25105 |00 | £F [3042|90 Pog|se [3/2 |8/

lioe |42 (202 oz |298| re 7 280 |ioa|2es| ir s (288 roseaa|rrd (280 | r08 [222| 177 288 e

271282\ pa0l2ral 20 |26\ 08 277 125|268 | sas|2r s 2 7 |ask| s 36| 228|128 | 200\ ra2 227

S0 |59 | s s 24288 | 257 s |2esl s |aa| sas | 248 vt |25 | e 7 | 208 |252| 250 ra 2 250

267 lrrz |oao|asalesdiras (278 |37 |26 28 275 | r 30265 r2p | 220 | 133|283 | sa o |20 2| r0s

Jrdenl sg Bk Lrbg| 2| p 87 2ild | ARk 205 |00 | 2| G 2R 1855 |2 m 7| ra 8 | 252 sy |29 050

61 |eaz |rdo |zas|ibn (2Rl 7s (2ol |2 28 rp| 285 16D |22 | 74 | 2RI ES 230 | A ra|2ay

[200|20a 280 |2o2)|tod| 277|183 (20|08 |20 s s 5| 206 st 1200 (0 7|08 a2 | 20t | 4859 | 20e

22/ |162 |2a 0\ 75|22 3| r 85208 177|225 | 55|20 s 05 227 (160 | 284023 |229 IPO\RIE\F,

280 | £99 | 20/ |rP2|208 | 477|288 ot o Vs | 2CS| SrEEr it 493 2o | ipx |22 | s | Zeg|iva

Fig. voo.

and also the number of rows of subsquares is odd. We cannot
therefore in these cases get a magic bent diagonal traverse from
top to bottom of the square, but we may stop at the last heavy har
before reaching the bottom of the square, when we shall have a
sum 4~ 1) times the mean, or we may carry the diagonal heyond
the bottoin of the square and traverse the top row of subsqguares a
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4, The great square is 4-ply, and therefore 4-symmetrical,
i. e, we may choose any vertical and any horizontal bar (not
necessarily heavy bars) and we shall find that any four cells, sym-
metrically situated with regard to these two bars as axes, will con-
tain numbers whose sum is four times the mean, [t follows that
any 4 cells which form a symmetrical figure with regard to any
such axes will contain numbers whose sum is the magic sum of the
great square.

B. The Subsquares.....

5. are balanced Jaina squares, 1. e., each of them has the 36
summations of a Jaina and in each case the magic sum is four times
the mean number of the great square,

6. They have the property of subsidiary minors, i. e, if we

PR/ G- A - R B | S e/ A - X ISRy A (7

tla | |rs|ralre| el || E|d| 7|9 s
g £\ 7

2 |E|\rshra| |32\l s | E| & 7 8 |12
2 &

a5 |7 el | aaisets |G |72/ 8

iasl s |2l#Fia3ra|lrela| 6|2 /0 7

Fig. 7oz

erase any p rows of subsquares. and any p columms of the same
and draw the remaining rows and columns together, we have a
square with all the properties of the original great sguare.

EXAMILES

In every case the Jaina pattern quoted above is used. Fig. 695 is
an example of order & and the complementaries have been paired
thus: 2.7 with 3.6 and 4.3 with 18, The La Hirelan primaries
of Tig. 695 are shown in Figs. 696 and 697,

E = £

Fig.698is an example of an order 12 square in which the pairing
of the complementaries is 3,10 with 4,9; 1,12 with 5,8; and 6.7
with 2,11,
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A square of order 16 is shown in Fig. 699, The couplets in this
square are taken thus:

8 and © with 7 and 10; 1 and 16 with 5 and 12;
4 and 13 with 6 and 11: 2 and 15 with 3 and 14,

Figs. 700 and 701 show respectively squares of orders 20 and 24
in which the couplels are taken in numerical order, i, e, for ordsr
20, 1 and 20 with 2 and 19; 3 and 18 with 4 and 17, etc.

In Fig. 701 there are 1008 magic diagonal summations. Since we

7 |z |2es |2e0|i93 (224 | 49 |#8 177 | 176|657 | 98 |13 |12 | r28 | s

242238 2 |a7 |50 |#7 (49¢|222]| 86 | 985|178 |7 75| 1A | 153|274 | 127

18 | 77 |2s82e5) 208|209 64 |33 | 192|180 | 0 | 27 |r28( 27 | 1eh] 145

255|228\ r5 1 28 | 83 |ar N207|200| 79 | #2157 | 162|123\ 108|127 98

23 |20 (258|228 |20\212) B |86 | /29 |1EF1 2T | P/ 25\ 100 |1 | 182

zam227| 14 | 49 | B2 | oS 206|207 | 72 | 83 | 190|083 | 122|187 | 226 | 29

4 |29 lgeglzaplradlzzs) 2 |8\ 10| /73| 6% |93 |18 | 109\ raz (167

243|208 3 |ao { o7 |# asizzz| 67 Ll ALy PR IGVET s g il

72 |27 |252'228 | 200  203) o | a7 | 128|165 76 | a5 | r24t| s | 1t 5

257 |230) 1t {22 | 59| 38 |2a3|208) 75| $E 27 |85 | 18| 150 123 s02]

O | 24 (245 razlzzo| £8 (42| 87\ 12| 63 (w2 | 117 | o8| 233 |s8T

248|255 & |27 | S| A3 198|202 70 | 37 |18z | 170 | 138|158 0 r2)

P |25 |24L za3| 2ee 227 | S8 Nt || 8 | 22 B9 |20 sas) 38 53

292|23¢| 7 (28 | sw| w2 |rse| 22| 77 | o 183 |70 SToss| six |rof

| 24 |2k2 | 292|200 | 208 | 57 |40 |25t 065 73 |88 |r2r ot |iaz |an2

250|237 | 20 | 23 |58 a9 |zoz|ans| 22| #7 |va8| g7 Var Loy v22 |sas

Fig. yo3.

can bend at any heavy bar, the number of bent diagonals from top
to bottom, starting at a given cell in the top row, is the same as the
number of combinations of 6 things 3 at a time, viz., 20, Therefore
there are 20x24=480 bent diagonals from top to bottom and 480
more from side to side. Adding the 48 continuous diagonals we
get 1008,

In the foregoing pages the question of magic knight paths has
not been considered. Tt is, however, easy for all orders > 8 and =0
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{mod &) to add the knight Nasik property without sacrificing any of
the other features, by a proper choice of the comiplementary coup-
lets for the subsquare outiines. The example shown in Fig. 702 will
explain. Tt shows the top row of subsquares in a scheme for order
16. The numbers above the squares indicate the couplets used,
the Jaina pattern. Fig. 694, Leing used throughout. The rule is
simple: the leading numbers, 1. 13, 12, 8 'must sum four times
the mean of the period, i ¢., 34, while of course 1o one of them
may be a complement of any other. Their complementaries 16,
4, 5,9, will then have the sante surg, and the second members in
each square will be similarly related. The square is completed by
filling the remaining rows with replicas and turning over a central
diagonal. Fig. 703 is a square of order 16 constructed from the
cutline Fig. 702, It has all the properties of the 16* shown in Fig.
699 and is also magic on its 63 knight paths.

The following is an arrangement of the couplets for a square
of order 24:

I |
|1.24_4.21|8, 17_5.20‘10.15_13, 12‘11 .14.-16.9‘22.3...18.7‘23.2_19.6|

C. P,

ORNATE MAGIC SQUARES OF COMPOSITE ODD ORDERS.

When we consider these orders in the light of the general rule
used for orders = 0 (mod 4) it appears at first sight that they
cannot be made to fulfil all the conditions: but it is not essential
to the ply property, nor to the balanced magic subsquares that the
numbers be taken in complementary pairs for the subsquares of the
outline. All that is necessary is that the groups of numbers clhiosen
shall all have the same sum.

Suppose, as an illustration, we are dealing with order 15. If
we can arrange the first 15 natural numbers in five balanced
colunns, three in a column, and form five magic outlines of order 3,
using a different column thrice repeated for each outline, we shall
have five balanced magic outlines like Fig. 704. These can be ar-
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ranged in the first row of subsquares with replicas in the following
rows. Jf we can turn this outline upon itself in some way to avoid
repetitions, we shall have a magic square which will be 9-ply and
with magic subsquares. But will it be pandiagonal?

2|7 | 2|89
/5| 2 E|3LVE |3/

/sial? 7| o] = |r0| e

Fig. 7o4. g, 7053

In the small outlines of 9 cells made from Fig. 704 as a pattern,
it will be noticed that like numbers must always occur in parallel
diagonals; therefore if we arrange the five small squares so that

like numbers always lie along  diagonals, the great outline will

TN/ F | S |24 |8 |/ |20|3]8 |14/

T |AF| 2 [ S|23 |G |4 EF (r2|ra| S|/ |9

/|2 |73 |& | SR |24 |3 ||| s |9 |1

Fig. 7ob.

be “boxed” and therefore magic in N\ diagonals, but in the
diagonals we shall have in every case only five different numbers
each occurring thrice. The problem is thus reduced to finding a

2ls2le|a|wlmsle]s|malalr|alm s
sla|luw|alm|rs|m|lalmsle || almw 7|4+

A2 |7219 |6 |3 |\s5| & |7 |23 00,7 | #F| /| &

2lo |6 |xi2|8|7r |33 |8\ || S| 7

G|\ 2|2B|3|\a|\ss| 8|7 S\l T|F| 4

IMig. 7oy
magic rectangle 3x 3. We therefore construct such a rectangle by
the method of “Complementary Differences™ as shown in Fig. 705,
In Fig. 706 we have the five magic outlines constructed from the
fve columns of the rectangle, and placed side by side with like

* See “The Caonstruction of Magic Squares and Rectangies by the Method
of Complementary Differences,” by W. S Andrews, pp. 257 ff.
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nunibers always in the / diagonals, and so disposed that the number
in any  diagonal is always succeeded (when the diagonal passes
across into a neighboring square) by the number which succeeds it
in its row in the rectangle.

1f an associated square is required the magic rectangle must
be associated and the large rectangle of subsquares must also be
associated as a whole. 1t will be noticed that all these conditions
will be fnlfilled in practice #f we write the suecessive columns of the

IS5\ 2F |1/ IRS| B8 \ASE| 20 (78| /26| 80 |/ ES| RS /70423 15/

G202\ 21g | PR | 28238 |22/ 8| B |/9H DS 27802 1 182
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/57|30 467\ r27| 0| 152 22 /80| 102 | E2 | 163 17 |/ 72| 035|277

A0 |23\ 45 s0 | 123|271 220 08| // \rF0| 33 227\ 0513 9

#0703 51 | 200| 78 |rer | 85 | 58 |20/ |65 | 148 |56 | 50 | 20856

R 16 | /78| 13478 | 755|289 /56 |29 85 | /57| 24 129|127 | £

|34 228|127} 2 V57|42 (20|78 | 72 | /58408 [222|/09| & 192

222|035 27 (2o2] 75| 23787 | G0 197 |67 | 15092 |52 |2/0|82

260| 18 |# 76| 130\ 7F |81 | 28 |68 037 | 3.5 | /53] 28 /75)23 S

S5 |223| | S |193(36 |225 |28 | B 185143 (228|270 23 | 456

r43|.9/ | St |2c9| &7 || 1| 26 | pod| 74 | /36| 89 |59 1096 |87

A B3 |y |sad| BA|EE|\ /S |£FI I 79 | A5 27 | o |28 |87

d7|zaslroz) 7 |295|32 (277|722 £ |#Fp 4T\ 27278 25 |02
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Fig. 7oH. S = 1695
magic rectangle Fig. 703 along the N\ central diagonals of the sue-
cessive square outlines in the larger rectangle I'ig. 706 and fill in all
the  diagonals with replicas. If now all the remaining rows of
subsquares be filled with replicas of the top row it will be found
that the whole outline camiot be turned over either of its central
diagonals without repctitions in the magic, but it can be turned
successiully @ its own plone, about its central point through one
right angle, without repetitions. (This will bring the top row in
coincidenee with the left-hand column, so that the right-hand square
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in Fig. 706 is turned on its side and lies over the left-hand square.)
The resulting magic is shown in Fig. 709. Tt is magic on its 13 rows,
15 columns, 30 diagonals and 00 knight paths, also 9-ply and asso-
ciated. The 25 subsquares of ordzr 3 all sum 339 on their 3 rows
and 3 columns. (It is easy to see that only one of them can have
miagic central diagonals, for a magic of order 3 can only have this
property when it is associated. and in this case the mean number
must oceupy the central cell, but there is here only one mean num-
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202 | /5 V22| 200073 726|059 & Vaz|2as| o |ra/|2e8| 7 29
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B8\ 7| 37 163 [rar | A5 |/3F|r 87 | 34| /539G |0 /57 |/ L8 F
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S2 Vo |87 S0 | 118 ¢ 71| 99213777 S5 | roR| 77658 106 |ri#

o |47 |222 Lo 7|51 |20 /7.3'.:'? o) ssglae | 8| 186| a | rr2

pa|f2] 75 r58 80 | 7o | 292|786 |19/ | &5 | Ga|ras| £2 (Gr

G lios| 77 |G |493| 87 | B> |/581 87| 701783\ 86 | 7# 187 |84+

G0 | G2 /82| 88 |6E /85|80 |72 /88| 78 | 7/ | W90\ 7E | 3 194

2/2| 22 /05 28| 20 103 |222|/9 |98 |22/| 25|23 279|292 |9/

I7 1225 r7 loszaa| 27 ot lers|ny | roo|or| 28 | r0#| 277 | 24
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Iig. 799. 5 1093
ber, viz., 113, therefore only the central subsquare can have magic
diagonals.)

In exactly the same manner as above described, by using the
long rows of the magic rectangle. Fig. 703, instead of the short col-
umns, we can construct another ornate magic of order 15.

Fig. 707 shows the Rrst row of 25-celled subsguares constructed
from the rows of the rectangle, and using a magic square of order
5 as pattern. If we fill the two remaining rows of subsquares with
replicas the outline can be turned over either of its central diagonals.
The resulting square is shown in Fig. 710, Tt is magic on 15 rows,
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15 colnmns, 30 diagonals and 60 knight paths, also 23-ply and asso-
ciated. Also the nine subsquares of order 5 are balanced nasiks,
sumtning 565 on their 3 rows, 5 columns and 10 diagonals,

The above method can of course be used when the order is
the square of an odd number, e. g.. orders 9, 25, etc. These have
previously been dealt with by a simpler method which is not appli-
cable when the order is the product of different odd numbers.

sT IR\ A7 7 |86 IO /28|15 PR\ TS |22 (sad | 184/ 70\ S
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Fig. 710. 5= tys

A similar distinction arises in the case of orders = 0 (mod 4)
previously considered. These were first constructed by a rule which
applied only to orders of form 2", e g., 4. 8 16, 32, etc., but the
peneral rule is effective in every case.

There are two other ornate squares of order 135, shiown in Figs.
708 and 711, these four forms of ornate squares being numbered in
ascending order of difficnlty in construction, TFig, 708 is constructed

by using the paths :;' ‘;! and taking the period from the continuons

diagonal of the magic rectangle Fig. 703,
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Fig. 7C8 is magic on 15 rows, 13 columns, 30 diagonals, 60 knight
paths, and 1s 9-ply, 25-ply and asscciated.

The square shown in Fig. 711 has been only recentiy obtained;
for many years the conditions therein fulfilled were believed to be
impossible. It is magic on 15 rows, 15 columns and 30 diagonals,
and is 3 x5 rectangular ply. L. e, any rectangle 3 5 with long axis
horizontal contains numbers whose sum is the magic sum of the
square. Also the 13 subrectangles are balanced magics, summing
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Flg JIL. g = 1695
To 5 in their three long rows and 339 in their five short columns.

This square is not associated, and only half of its knight paths are
magic.

The three squares of order 13, shown in Figs., 708, 709, and
710 are described as magic on their 60 knight paths, but actually
they are higher Nasiks of Class II, as defined at the end of my
pamphlet on The Theory of Fath Nasiks* Turther, the squares in
Figs. 709 and 710 have the following additional properties.

*The Theory of Path Nasiks, by C. Planck, M. A, M.R.C.S,, printed by
A. J. Lawrence, Rugly, Eng,
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Referring to the square in Fig. 710 showing subsquares of order
31 if we superpose the diagonals of these subsquares in the manner
described in my paper on “‘Fourfold Magics” (above, page 363,
last paragraph). we obtain threc magic parallelopipeds 3» 5% 3.
Denoting each subsquare by the number in its central cell, the three
parailelopipeds will be:

L. 53, 189, 117,
I. 177, 113, 49,
1. 109, . 57, 173

These three together form an octahedroid 5% 3x3x3 which is
associated and magic in each of the four directions parallel to its
edges.

1f we deal in like manner with Fig. 709 which has subsquares of
order 3 we obtain five magic parallelopipeds of order 3x3x3 to-
gether foriming an associated magic octahedroid of order 3x 33 5x 5.
Since the lengths of the edges are the same as those of the octa-
hedroid formed from TFig. 710 square, these two four-dimensional
figures are identical but the distribution eof the numbers in their
c:ls is not the same. They can however be made completely iden-
tical both in form and distribution of numbers by a slight change
in our method of dealing with the square FFig. 709, 1. e, by taking
the square plates to form the parallelopipeds from the knight pathis
instead of the diagonals. Using the path (-1, 2) we get 223, 106, 3,
188, 43 for the first plates of each parailelopiped, and then using
(2, — 1) for the successive plates of each, we obtain the parallelo-
pipeds:

L 225 g, 31, 118, 183
IT. 100, 193, 213, 13, 38
IIL 3. 45, 113, 181, 223
vV, 188, 211, 13, 33 120
V. 43, 108, 193, 218, 1

This octahedroid 1s completely identical with that previously ob-
iained from I'ig, 710, as can be easily verified by taking any number
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at random and writing down the four series of numbers through
its containing cell parallel to the edges, first in one octahedroid
and then in the other. The sets so obtained will be found iden-
tical.

C.r.

THE CONSTRUCTION OF ORNATE MAGIC SQUARES OF ORDERS
8 12 AND 16 BY TABLES,

The foilowing simple method for construeting ornate magic

squares of the above orders is presented in the belief that it is new

and original. All squares of orders 4i can be tmade by this method,

se it will suffice to explain in detail only the rules for constructing
squares of order 8.

/ ?'«5[4 /16l
sl2]a]s sls]s]z
Fig. 712 Fig. 7i3.

I. Make a magic rectangle with the first ¢ight digits as shown
in Fig. 712, This is the only form in which this rectangle can he
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Fig. 714 Fig. 715.

made. 1. e, uno complementary couplet therein can be inverted
without destroying the magic feature, but the relative positions of
the couplets can naturally be shiited without affecting it.
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II. Draw a table diagram such as Fig. 714, and write the row
numbers of the magic rectangle Fig. 712, alternately at the top and
hottom of the cight columns as shown by dotted Jines,

II1. Tellowing the arithmetical order of the numbered columus,
write in the numbers 1 to &4 downward and upward, thus making
the table, Fig. 715,
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NoTe. A variety of different tables may be made on the above
principle by changing the progression, and each table will produce
a different magic square. Any number that will divide #* {which
in this case is 64} without remainder may be used as an increment.

Thes in the present case 2, 4, 8, 16 and 32 are available.  When the
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addition produces a number larger than 64, the lowest wnused num-
ber of the series is substituted. TFor example, 1f 32 is made the
increment, the numbers in the columns of the table will run thus:
1, 33, 2, 34, 3, 35 etc.

because

1+32=33, 33+ 32 =63 substitute 2

2+ 32 =34, H+32=065 v 3 etc.

I1V. The table must now be indexed with some arrangement

of the numbers 1 to 8 under the following conditions: The first
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four digits used must include no complementary couplet, and the
last four digits must be'selected so as to balance each of the first
tour with its complementary. The straight arithmetical series is
used in Fig. 715 as it fulfils the above conditions, but any series,
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such as shown in the subjoined examples, will produce magic

results, and each arrangement will make a different magic square.
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The index numbers are written in colummns on each side of the

table, those on one side being in roverse order to those on the

other side,

One set of these numbers may be conveniently written
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in circles for identification, or any other way of distinguishing the

similar numbers may be used.

V. Make another 2x 4 magic rectangle with a re-arrangement
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of couplets, such as shown in Fig. 713.

Any other arrangement
that differs from Fig. 712 would, however, answer equally well.

VI. Draw an 8x8 lattice (Fig. 716) and write opposite the
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alternate cells of the two outside columns the eight numbers in
Fig. 713 in their linear order, from the top of the lattice down-
ward. and the same numbers (in circles} opposite the remaining
alternate cells from the bottom of the lattice upward,

Inspection of Figs. 715 and 716 will assist a clear understand-
ing of the above directions,

The magic square is now made by filling the cells of the lattice
with the numbers from the table in linear groups of four, according

!
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S N

P, 731

to their index numbers., The linear groups of four numbers in the
left-hand half of square are written from left to right and those
in the right-hand half of square from right to [eft.

Another example of an order 8 magic square, including rect-
angles and table, 15 shown in Figs, 717, 718, 719 and 720. The
progressive increment in the table, Fig. 717, is 32, as referred to
in a previous paragraph, and the index numbers are written in the
orcder shown in the first column of numbers on page 392,

The magic squares, FFigs. 716 and 720, are 4-ply, associated and
pandiagonal,

In using the above rules there are at least three different ways
for producing variations.
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2. By changing the progression in the table.

b. By making divisions in the table (as in Fig. 726}.

¢. By using different arrangements of couplets in rectangles.
d. By using different arrangements of index numbers,

It is thercfore evident that the possible number of variants is
very large, and each of them will possess the samie ornate qualities
as theose above described.

A magic square of order 12 is given in Fig. 721, and the table
used in its construction with two 2x6 magic rectangles in Figs.
722,723 and 724. This square is 4-ply, associated and pandiagonal.
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Fig. 733.

A magic square of order 16 with its table and rectangles are
shown in Figs. 725, 726, 727 and 728. In addition to the ornate
features common to the squares shown in Figs, 716, 720 and 721,
this square is also knight Nasik. Fig. 723 can readily be chauged
into a balanced, quartered, 4-ply, pandiagonal Franklin magic square
by one transposition, as shown in Fig. 730, which is indexed by the
rectangle Fig. 729, By this change it ccases to be associated and
knight Nasik, but acquires other ornate fcatures besides becoming
a Frankiin square. It coniains nine magic subsquares of order
8, each of which is pandiagonal: also, the numbers in the corner



@ % v o % A L NN

URNATE MAGIC 53QUARES.

T P
/ /2 4 ta ' 4 &

1 H r \ H :

s |24 r38tss2) 25| 48 sdois0s £5| 721 95 | 2g
2 | 23|/34l03/| 26| 42 siolior| 8| 77 | So| 73
3

3 | 22 | sasips0| 27| #6 i rod 52 70l a2

Nar|redf 69

20|0i3\io4| 25 44| Sa|fo |83 628

PEVIVES

o

K

raslris| & | a3 vit|i23] 5o 43 |g#| 79150 |67

29 /zfa 7 /l:v .’/:J /c%z .;f; 42 .fJ‘ 7;? 97 625

44 J'IJJ .fl /7 ”35 101 sz fif J‘G 77 92 6::-i‘
4| 5 | /6 |sin /og,s:.!_,f:a .:*7,_‘: )

P 3|5%

Tyelf il AL -
| ST ER[I23| 3 | IS (IR |27 (9 75

o | el d3|siz| as|ap |1is| 92 | 95\ 82|57 | 74

i2\ s\ ras2r| 38|37 | 120157 |98 ) 67 |60 | 73

g, 733.

4| ZFNID 2|28 | £8 (008 851 72 |43 |84

S38\722| O |28 | irk|v03| 30 43 gt |79 |90 |G7

F2 |23\ ML E/NS6 D7 |12\ 97 |96 |67 150 (7T

J— - —t b

F39| /28 7 |28 \AT|loz J/]aﬁz e S Pyt

2 | 23|/39|/3/026 |27 /MI/M £E& |7/ | | Fa

e — e — .

/.375/?5’5' S| ROV SOk 25| EE| IS J‘Old’y :5&'

1
AW ]/N AR22{35 (38 ]//..9 S| g8 52 J.?j:l'/"#—

1RO0|/2S| & |27 |E /r?L]JZ A5 |SE |77 -92?.65

I |22 |/3851/9A 27 461///-1/06 7| 70|57 | F2

F3A\ 2P| £ | 27|52\ A0S 23.145“ I2| P | PP |5

70| A (12| F 23|34 | I | K E |8 | S 63| S .7‘5

AESNSEN B BT 0| 33| A J7|?6 23 |&

Fig. 736.



ORNATE MAGIC 3QUARES, 300

cells of any 4 x4, 8x8, 12x12 square and the corner cells of the
great square sum 5/4 - 314, as do also the corner numbers in any
2x4, 2x6, 2x8 rectangle etc.

The "table” method for constructing ornate magics is not limited
to the foregoing rules. For a long time the writer endeavored in
vain to make tables that would be competent to produce Franklin
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Fig. 737.

squares directly without any transpositions, until it occurred to him
that this might be accomplished by bending the columns of the table.
This simple device worked out with perfect success, thus adding
another link to the scheme for making ail kinds of the 4m squares
by this method. The bending of the table columns also leads to the
construction of & number of other ornate variants, as will be shown

in examples to follow.
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Fig. 731 is a table constructed with the straight series I to 64,
the bending of the columns being shown by the dotted lines, As
in tables previously explained, each column of mumbers is started
and finished foilowing the arithimetical sequence of the numerals
at the top and bottom of the table, but the four middle numbers of
each column are bent three spaces out of line either to right or left.
It will be seen that the column numerals are written in couplets
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Fig. 73%
=#+ 1, as marked by brackets. The relative positions of these
couplets may, however. he varied.

The horizontal lines of the table are indexed with the first eight
digits in straight series, but either of the series shown on page 3
or an equivalent, may be used.

This torm of table differs essentially in one feature from those
previously described, there being no vertical central division, and
each complete line of eight numbers is copled into the magic square
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as written in the table. A table made in this way with bent columns
is in fact a square that is magic in its lines and columns but not in
its diagonals. The re-arrangement of its lines by the index num-
bers corrects its diagonals and imparts its ornate features,

An 8x 8 lattice is now drawn and indexed on one side with the
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first eight digits, so selected that alternate numbers form couplets
=n+1 in each subdivision of the square.

Finally, the lines from the table {Fig. 731) are transferred to
the lattice in accordance with the index numbers, and the square
thus made (Fig. 732) is 4-ply, pandiagonal, and Franklin; also
each corner subsquare of ord:r 4 is a magic pandiagonal.
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Note, In some cases the numbers of the indexing cottplets are
more widely scparated. as in Fig. 734: while in other cases they
may be written adjoining each other. In all cases, however, a sym-
metrical arrangement of couplets is observed, but their positions,
as shown in these examples, is an essential featurc only in connec-
tion with the particular squares illustrated.

Fig, 733 shows another talble in which the columns are bent
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.9.9\‘\/.:"0 Pt ;45 F2s5lraa /2/ i

/37/7;"}:5“‘?3 s s Y

Fig. 740,

through a space of four columns, which produces the magic square,
Fig. 734. This square is 4-ply, pandiagonal and kaight Nasik.

Fig. 735 is a table with bent columns from which the square
of order 12, shown in Fig. 736, is constructed. This square is 4-ply
and pandiagonal, and it contains nine pandiagonal subsquares of
order 4, as shown by the heavy bars in the lattice,

A table and square of order 16 are shown in Figs, 737 and 738,
The square is 4-ply, pandiagonal and Franklin. and it also possesses
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many other interesting features. It is composed of 16 subsquares
of order 4, as shown by the heavy bars, and each subsquare is magic
and pandiagonal.

Fig. 739 is a table from which our final example of magic
square, shown in Figs. 740 and 741, 1s coostructed. The table
series is made with increments of 32 and the columns are bent as
marked by the dotted lines. The square is 4-ply (and therefore
4 symmetrical) quartered, pandiagonal, knight Nasik, Franklin and
magic in its reflected diagonals. Also, any 9x9 square has its
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corner numbers in arithmetical sequence. Fig. 740 shows it laid
out in one continuous re-entrant kmght’s tour. The first number
of each of the 32 periods of 8 numbers is enclosed it a dotted cell
and an arrowhead points the direction of progression. The num-
bers in each of these periods sum 5/2=1028. also, the numbers in
each half period sum 5/4=0514. Although this feature exists in
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many other squares, it may not be commonly known. Fig. 741 is
the samez square written in the usual way to facilitate the checking
up of its several ornate qualities.

F. AW,

THE CONSTRUCTION OF ORNATE MAGIC SQUARES OF ORDER
16 BY MAGIC RECTANGLES.

In the preceding paper Mr. Woodruff presents a remarkable
magic of order 16 which is 4-ply, pandiagonal, associated and
knight Nasik, a combination of ornate properties which has prob-
ably never been accomplished before in this order of square, and it
is constructed moreover by a unigque method of his own devising,
{See Fig. 723.)

An analysis of Alr. Woodruff's magic by the La Hireian plan
shows its primary to he composed of sundry 2 x B rectangles having
no particular numerical arrangement that indicates intentional de-

Fig. 742
sign. This feature might naturally be expected in a square made
by a new method, but it suggested to the writer that squares similar
te Mr. Woodruff's in their ornate qualifications might be formed
by applying the well-known method of magic rectangles on the TLa
lireian principle, as described in the present paper.

In using 2x & magic rectangles for making ornate squares of
order 16 by the La Hircian method, it is found that certain rect-
angles will produce knight Nasik squares while others will not. By
inspection of the arrungement of the nwmbers in any 2 x 8 magie
rectangle, guided by a simple rule. it may easily be determined if
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a knight Nasik square will result from its use, and if not, how the
numbers may be re-arranged to produce Nasik results.

There are four knight paths through each cell of a square. as
shown by dotted lings in Fig, 742, and the numbers included in
each of these paths must cbviously sum the magic constant of the
square to be constructed if the latter is to be knight Nasik.

The La Hireian primary of arder 16, shown in Tig. 743, is
made up of sixteen 2 x 8 magic rectangles. as indicated by the heavy
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1 743

bars. Starting from any cell i Fig. 743, the sum of the numbers
included in the complete knight paths, indicated by aa and bb in
Fig. 742, will sum 136= 5, but the paths ¢¢ and dd will sum either
104 or 168, and therefore this primary is incompetent to produce a
knight Nasik magic square.

The knight paths az and #d are necessarily Nasik, as they
include the numbers in one or other of the long rows of numbers
in the magic rectangles which sum 68, The other two knight paths,
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cc and dd, fail to be Nasik because they include the numbers en-
closed in circles in Fig. 743, or their complementaries, and these
numbers do not sum 08, It therefore follows that in order to
produce a knight Nasik primary, the magic rectangle from which
it is formed must show a summation of 68 for the numbers enclosed
in circles in Fig. 743 and their complementaries. A re-arrangement
of the couplets in the 2 x 8§ magic rectangle, without inverting any
couplet, is shown in the La Hireian primary square, Fig. 744, By
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Fig. 744

this re-arrangement, the numbers in circles are made to sum 68,
and the rectangle is therefore competent to produce a knight Nasik
square. A second La Hirelan primary (Fig, 745) is made by
changing the numbers in Fig. 744 to their root numbers and then
turning this primary around its central point 90” to the right, thus
changiug the horizontal lines in Fig. 744 into the vertical columns
in Fig. 745. The final magic square. Fig. 746, is constructed in the
usual way by adding together the numbers in these two primaries,



ORNATE MAGIU SQUARES, 407

cell by cell,  Like its two primaries, this square is 4-ply, associated,
pandiagonal and knight Nasik.

If the magic square shown in Fig. 746 i{s divided into Z2x &
rectangles in the same way as Fig. 744 or Fig. 745, these rectangles
will show the same features in summations as the rectangles of the
primary squares, i. ¢., each summation will be §/2,

Using the natural series 1 to 16 inclusive, it is only possible
to construct four distinet forms of 2 x 8 magic rectangles, as shown
in Figs. 747 and 748. The four columns of numbers in Fig. 747
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Fig. 745.
show the selection of numbers in the upper and lower rows of the
four forms of 2x & rectangles, the numbers in eircles being those
used in the upper rows of the respective rectangles.
The designs below the rectangles in Fig, 748, FForms I, 1T, 111
and IV, show the geometric arrangement of the numbers as written
in the upper and lower lines of same. Tn the upper row of Farm

11l rectangle there is a departure from the column sequence of
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numbers in order to make it suitable for constructing Nasik magic
squares, and it is rather curious that this change is required only
in this one rectangle out of the four. The relative positions of the
couplets in each form of 2x8 rectangle may naturally be re-
arranged in a great many different ways without disturbing their
general magic qualities, although in some cases such re-arrangement
will upset the magic summation of the numbers in a zig-zag line
of cells, which, as previously noted, is of vital importance when

the square is to be knight Nasik,
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Fig. 7460
Inspection of these examples will show that the couplet 1—16
15 commoan to all four forms. but in every other case there is a
difference. Thus the couplet 2—13 is only found in Form T, and
it is inverted in the othier three forms. The couplet 3—14 exists
only in Form IT, being clsewhere inverted. The couplet 4—13 is
seen in Forms 11 and IV, and is inverted in Forms 1 and TT—and

so forth,
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The above described method will preduce knight Nasik squares
of all orders = 0 (mod 8) excepting order 8, but it will not apply
in this respect to orders = 4 (mod 8).

Fig. 749 shows a 2x 12 magic rectangle that may be used
for a magic square of order 24 covering the knight Nasik property.

W.S. A

PANDIAGONAL-CONCENTRIC MAGIC SQUARES OF ORDERS 4m.

These squares are composed of a central pandiagonal square
surrounded by one or more bands of numbers, each band, together
with its enclosed numbers, forming a pandiagonal magic square.

The squares described here are of orders 4 and the bands
or borders are composed of double strings of numbers. The central
square and bands are constructed simultaneously instead of by the
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Fig. »50.

usual method of first forming the nucleus square and arranging
the bands successively around it.

A square of the 8th order is shown in Fig, 750, both the central
4* and 8 being pandiagonal. It is 4% ply, i. e, any square group
of 16 numbers gives a constant total of 8(n2+1), where # = the num-
ber of cells on the edge of the magic. Tt is also magic in all of its
Franklin diagonals; i. e., each diagonal string of numbers bending
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at right angles on either of the horizontal or vertical center lines
of the square. as is shown by dotted lines, gives constant totals.
In any size cancentric square of the type here described, all of its
concentric squares of orders 8m will be found to possess the Frank-
lin bent diagonals.

The analysis of these pandiagenal-concentric squares is best
illustrated by their La Hireian method of construction, which is
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here explained in connection with the 12th order square. The
square lattice of the subsidiary square, Fig, 751, is, for convenience
of construction, divided into square sections of 16 cells each. In
each of the corner sections {regardless of the size of the square
to be formed) are placed four I's, their position to be as shown in
Fig. 751. Each of these 1's is the initial number of the series 1, 2,
3. (#/4Y%, which must be written in the lattice in natural order,
each number falling in the same respective cell of a 16-cell section
as the initial number. Two of these series are indicated in Fig. 751
by circles enclosing the numbers, and inspection will show that each
of the remaining series of numbers is written in the lattice in the
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same manner, though they are in a reversed or reflected order. Any
size subsidiary square thus filled possesses all the magic features
of the final square.

99 | S | 72 |45

28 8 |35 /8

&3 | 90 | 36 |8/

o |7 27 (/26

Iig. 732

A secoud subsidiary square of the 4th order is constructed with
the series Q, {n/4)2, 2(u/4)*, 3(n/H". .. ... 15{#n/4)?, which must
be so arranged as to produce a pandiagonal magic such as is shown
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Fig. 753,

in IYig. 732, It is obvious that if this square is pandiagonal, several
of these squares may be contigucusly arranged to form a larger
squarc that is pandiagonal and 4%-ply, and also has the cencentric

features proviously meontioned.
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Fig. 732 is now added te cach section of Fig. 731, cell to cell,
which will produce the final magic square in Fig. 733,

With a little practice, any size square of order 4m may be con-
structed without the use of subsidiary squares, by writing the numbers
directly into the square and following the same order of numeral
procession as shown in Fig. 734 Other processes of direct con-
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Fig. 754.

struction may be discovered by numerous arrangements and com-
binations of the subsidiary squares.

Fig. 754 contains pandiagonal squares of the 4th, 8th, 12th and
16th orders and is 4%-ply. The 8th and 16th order squares are also
magic in their Franklin bent diagonals.

These concentric squares involve another magic feature in
respect to zig-zag strings of numbers. These strings pass from
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side to side, or from top to bottom, and bend at right angl-s after
every fourth cell as indicated by the dotted line in Fig, 754, Tt should
be noted. however, that in squares of orders 8m +4 the central four
numbers of a zig-zag string must run parallel to the side of the
square, and the string must be symmetrical in respect to the center
line of the square which divides the string in halves. For example
in a square of the 20th order, the zig-zag string shoald bz of this form

\/—_\/ and not of this form /\w

In fact any group or string of numbers in these squares, that
is symmetrical to the horizontal or vertical center line of the magic
and is selected in accordance with the magic properties of the 16-
cell subsidiary square, will give the sum [»{n*+1}]/2, where r=
the number of cells in the group or string, and # = the number of
cells in the edge of the magic. One of these strings is exemplified
in Fig. 734 by the numbers enclosed in circles.

To explain what is meant above in reference to selecting the
numbers in accordance with the magic properties of the 16-cell sub-
sidiary square, note that the numbers, 27, 107, 214, 166, in the exem-
plified string. form a magic row n the small subsidiary square, 70,
235, 179, 30 and 251, 86, 14, 163 form magic diagonals, and 65,
159, 235, 34 and 141, 239, 82, 52 form ply groups.

H- A 8.
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