How Plants Grow'm

The ‘Golden Mean” Ratlo

by Ned Rusinskh M.D.

Why do plants grow in the shapes
that they do? ' \
This question has fascinated sci-
entists for thousands of years, Al-
though the shapes of plants can be-
come quite complicaied, a great deal
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can be understood simply by consid-
ering what the plarit needs in order
to lunction. First, it needs to be ex-
posed to sunlight for phaotosynthe-
5is; so it will tend to grow in a shape
with a large surface area exposed to
the Sun. Second, it needs room to
grow, so it will tend to grow in such
a way that one part of the plant does
not crowd another part.

These simple ideas, if examined

carefully, lead to interesting conclu- .

sians about how the plant must be

shaped and how the plant must grow

into its praper shape. lwill show here
that the kind of shapes and growing
forms that best allow the plant to do
its work are all related o a particular
mathematical ratio called the golden
mean, which is approximately 1.62.
The golden mean is the ratio in which
the smaller part of a quantity is to the

- multiplication, rat

larger part of that same quantity as
the larger part is to the whole (Figure
1). The guantity can be just a line you
have drawn on paper and then divid-

. ed, a container full of marbles that

you divide, or wmelhmg living, like
aplant.

To understand the importance of
the golden mean, you must first no-
tice thatliving thi nlgs usually grow by

er than addition.
For example, if you start with 1 bac-
terium, after about 20 minutes it will
have divided In half and produced 2
barcteria; after another 20 minutes, 4
bacteria, then 8, then 16, and so on.
Every 20 minutes the number of bac-
teria doubles or, in other words,
multiplies by 2.

A series ol numbers that grows by
multiplication is called a geometric
series, such as 2, 4, 8, 16, and 50 on.
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The snail grows at a rate propor- . |
K tional to its size at any particular

: Ty Tk Figure 2 ¥ nime. Therefore, its rate of growth
p SELF-SIMILAR GROWTH ©5 = is always increasing. Since the
Ag the spruce trep grows, Its overall shape does nol change muoch, nnf}urs b shellis turning as il grows, it pro-
gize, This pives H SEH mm:hm;«' ir its shapre a5 i grows, .'i A duces a spiral shape,
ity 1y .
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In cantrast, a series that grows hy
addition, such as 2, 4, 68,10, and sp
on (here, 2 is added each time), is
called an arithmetic segjes, The main
point is that plants tend 1o grow by
geomelric series, and that this kind
of growth causes certain kinds of
shapes in the plants (see Fi tire 2).
Self-Similar Grow

The reason that plants grow in
Beometric series (for example, dou-
bling in size every six menths} is that
the entire plant js Browing as one
overall unit. This means that if it
weighs 1 pound and it takes a month-
ta grow another pound, then when
the plant welghs 2 pounds it will take
another month to grow another 2
pounds, and 50 on. The speed at
which it grows increases, and is re-
lated ta the plant'scurrent size at any
particular time, This causes the size
to increase as shown in Figure 2,
Since the plant is growing overall as
2 unit, it tends to keep the same
shape even though it gets bigger.
This is called self-similar growth,

It you look at the shape of a snail
you can see the same pattern of geo-
metric growth, only now since the
shape of the snail is turning as it
Erows, it produces a spiral (Figure 3},
This geometric spiral, also called a
logarithmic spiral, is the main kind
" shape you see in plants. f you can

==X Figure 4
SPIRAL PHYLLOTAXIS

in this plant the thoms are ar rnged
areund the siem in a spital pattern, if
you start with a particofar thoen, ran
you see how many therns vay have to
Pass through above thar
reach one exactly above the thom you
started wilhy
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Figure 5 »=—
THE PHYLLOTAXIS RATIO

In Figure 4 you saw that two th Gins that
Erow af the same position on the plant
stem are separated alang the siem By a
cedain number of thors, The phylla.
lais ratio is the ratio of the number of

turns in the spiral you had to make to .

gel from your reference thom te a thorm

growing at the same position on the

stem, divided by the number of thorns
you passed through. Here it is two turns

. and five thoms, Eiving a ralic of 2/5.

understand how this spiral works in
plants you will begin to see why they
are shaped the way they are,

A good example of a spiral in a
plant is the way the leaves or thorns
are located on a plant stem in many
kindsof plants (Figure 4). Look at the
overall shape ufa spruce tree, which
is a cone. The branches of the tree
stick out in a pattern that spirals
around the tree's cone shape (Fi gure

2), Now, let us see how this geomet-

ric growth connects to the specific
ratio of the golden mean. - ;

If you look at various tvpes of
plants, you find that the leaves
around the stem are arranged in dif-
ferent kinds of spiral patterns, If you
pick any leaf and call it a reference
fear, and then start counting leaves
above it as they spiral around up the
plant stem, sooner or later you will
find a leaf that is directly above the
reference leaf on the stem, You may
havelo goa number of times around
the spiral belore vou find this leaf.

Now, if you count up the turns
around the spiral vou made, and di-
vide it by the number of leaves you
went through, you get a ratio that is
characteristic for wach plant species,
For example if you made 5 turns and
passed 13 leaves, the ratio is 313,
This is called the phyllotaxis ratio.
{Phyllotaxis comes from the Greek

them until you -
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words for leal, phyiion, and arder,
laxis; the plural of taxis js taxes.) See
Figure 5.
The Phyllotaxis Ratio

These phyllataxis ratios form an
interesting series of fractions: 1,1
2,173, 2/5, 3/, 5113, 821, 13734, and
50 on, What is intetesting is that all
the numbers come from a series
called the Ffibonaco series, named
after the 12th-century mathemati-
cian who discovered it. The Fibon-
acci series is form edby starting with

. 1,adding another 1, and then EElting

each nex! new member of the serieg
by adding the previous two mem-
bers:1+1=2,1 +21=3,2+3=5,
3+5=8, and 50 on. This Torms the
series 1,1, 2,3, 5, 8, 13, 21, 34, and
s on. (See Professor von Puzzle, p.
59.)

The plant phyllotaxes are ratios
formed by taking two numbers from
this series that are separated by one
number; for example 3 and & or 5
and 13, i ' e

This particular series has some in-
leresting geometrical properties.
Take a circle and divide it into 2 num-
ber of parts according to one of the
Fibonacei numbers, say, 13. Then
countoff sections of the circle by the
Fibonacci number that is two num-
bers behind 13, whichis 5. This gives
you the pattern shown in Figure 6,
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In this .-.ump-'e we choose a Fibonacci number, 13, and divide a circle .’nlu :
that number of parts (a). We then begin with one of the sections and start !
. counting off sections around the circle according to the numberthatistwo
“numbers back on the Fibonacci series, 5 (b). Call the original point on the
I:tl'-l.'fll A and the next point B. Noticg that 8 has dlwd'!# its space of 13
sections into two pants of 5 and the remaining 8. © 7 4 & il :
Next we continue the process by counting nﬁanurhgr 5sections toanile
at C (e, Point C divides its space, which is the 8 sections from 8 back =
around to A, inta two parts of 5 and 3. Next, we go around another five
', sections, passing A and arriving 21 D (d). Note here that D divides its space,
which consists of the suclrmbaunded b].rA mdﬂ into the iw pul.'l ur“ :
Zand . - Lk "lh o i
In e, two more paints have br.-maddur Edmdﬂ its :plu.rnm lhepm
« Zand 3, and F divides its space of 3 sections bounded by C and A into the
parts of 1 and 2.' in the final figure, f, Hzpm-:mummued ."urﬂ're ful'i'
i 13 paints. until the spiralretums ta A. 27 w7 L E 8 e
« % Note several interesting things: First, all the r.limluni are anrll:cr
' tios, MdMMglﬂufmemuwngpmmifhE. Second, each section of |
the original 13-section division of the circle has been used exactiy once in -
this process, Third, notice that the counting-off process has revolved around
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i ' 1 = 1.0000
; <3N = 2.0000
:3 ot 32 = 1.5000
? ' 53 = 1,6666
i : 0S5 = 1.6000
1378 = 1.6500

2113 = 1,614
2 = 1.61M
]
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As you can sce, cach new place
counled off on the circle divides its
Space into a Tihonaccltype ralio,
either 171,142, 243, 35, 5/8, 813, and
50 on. MNotice that these ralios are
the same as the ones you would have
produced | you had counted off 8
spaces going around the gircle in the
opposite direction. The Fibonacci
phyllotaxis can also be obtained by
taking two consecutive Fibonacci
numbers, 13 and 8 (that Is, without

_ skipping a number in the series), and

going around your circle in the op-
posite direction (Figure 7b).

You will obialn a similar picture by
starting out with a circle divided into
equal parts by any other Fibanacel
number, such as 21, (With the circle
divided into 21 parts, you would then
count off segments in groups of 13.)

Looking Down at the I'E.n

Now, consider the sectioned-off
circle you have drawn as a diagram
of a plant, looking down at the plant
Irom the top, with each of the above
countings in the circle representing
a new leaf sprouting out. You can
sen that each leaf is dividing its space
into a Fibonacei ratio. What can you
tell about these ratios?

First, each place you have marked
off on the circle divides the previous
space marked olf on the circle nearly
in hall. Thus, each new leaf is almost
evenly placed belween two previous
leaves, givingit lots of space in which
fo grow. Second, each leal also has
lots of space fo ger sunlight. In these
divisions, the space on one side of a

leal is never more than twice the .

space on the other side.
MNaow, calculate the ratios you have
marked off as they get farther along

in the series, dividing the numerator .

by the denominator, You can see that
the ratios get closer and closer to the
ratio 1.62, which is the golden mean
{see table). Some plants, in fact, have
the iulden mean ratio as the angle
of the separation of consecutive
leaves (Figure fl).
+ What about other ratios? Let us try
an experiment with a ratio that is nol

-fram the Fibonacci series. Keeping

the 13-divided circle, if you countoff
by 7 seciors al a lime (instead of 8 as
in the Fibonacci series) you get with-
in one section of the first leal alter
just lwo leaves, causing unnecessary
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Pk COUNTING ind i
 [na, the 13:-sector circle is counts
I ed off in groups of five, giving *:

the points A, B, and C, In b, the .,
i _same dircie is counted off Jn.

rection, giving the exac! same lo- |
o Cation of the ponts A, B, and C. |

- We see, thesefore, that the ,‘
nmxhbﬁrmg i h‘mlm numberto '/
. ,,th which u 8, can be used tr.l. -;.
gfktrheummmh:ui‘ k.
p,_;‘ If you work out this example

_allthe my.aswdunehﬁgum o
i 6, you will see thatall 13 sections .
are used up. Now, haweve.r !n- t
stead of 5 complete ‘rotations
around the circle, there are 8§,
g.-wng a phy.li'n uxh ratin af B3, -'r L

¥,
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oowding. If you use 4 1o count off,
or rotate, you get again within one
section of the start within three leaves
(Figure 9). You can ry this with other
numbers of sectior divisions and ro-
lations.

To see why the Fibonacci numbers
work so well, look more carefully at

groups of 8, in the oppasite dif) ,;."

i *"ﬁ?&m
4. : Figure 8 'J""'H-?‘ %!
GDLDEH MEAN S-EI‘,AM“DH

OF LEAF ATTACHMENT
LOCATIONS 7 £ i

. Here the circle is divided b_r rhe i
' golden mean, which is approxi-*

'; mately 1,62 or 137.5 degrees fout
of Iﬁﬂdegmeﬂ Nﬂf]c" thal ﬂlﬂ‘ A

- points are locared in. posrlrmF
. that give them ample ;

what happens in the above example

of a circle divided into 13 sections by
counting off 5 (or the equivalent, 8,
n the opposite direction). The first
counting divides the circle into Band
5, which are the two previous terms
in the Fibonacci series. The next
counting, or rotation, of 5 sections
divides the space of 8 sections be-
tween the first and second leaves into

. two partions of 5 and 3, which are
. the next numbers counting back-

wards in the Fibonacci series.

Now, the next counting of 5 goes
past the first leaf and divides the
space of 5 sections between the first
two leaves into two portions of 2 and
3. Again, this is done by moving
backwards in the Fibonaccl series,
continuing the process (Figure 6).
This is really like an “"unpeeling” of
the Fibonacci series by subtraction)

Since the Fibonacdi ratios get pro-
%::sslvei? closer to a constant value,

golden mean, the series be-
comes close 1o a geometric series in
which the golden mean is the con-
stant factor of multiplication. Flants
frequently flip from one phyllotaxis

to another in the course ol early de- |
- velopment, or in the evolution of

new species of plants. Since the ra-
tim' are in a geometric series, this

The Young Scientist
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S LS THE CIRCLE | alid
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E:_ ON- -FIBONACCI DIVISION OF
i..

ol equm!ent 8), such as 4, Here !he
first added leaf, 8, da'wdes its
. space. E.rp into 4 and 9, which is !
i less symmeétric than the 5 and 8
I division. Tﬁesemrrd leaf added,’ "
¥ C, divides jts space. between H' o
E‘ and A of 9 secﬁms into4ands,
v agood dw.‘m'on but thenfr_: nest! '
b J'H.F 0, d.lwdeiflss;:actﬂf.‘isec-
[3 ‘tions into 4and 7, a fighly upe- %
Y qual division. Simifar highty un-. "fg
L equal divisions occur with ather

o

aspect of evalution is really a geo-
metric jump, from ane ratio to an-

aspect of self-similar growth that is
more easily seen in the overall
growth of the snail or the overall
shape of a tree as it prows.

Nexl, take the circle on which you
haredrawnthe leaves and re-draw it
back to its original spiral shape (Fig-
ure 10). Here you can see thal as the
Fibonacci series s “unpeeled,” the

" leaves are spread oul verlically, so
that neighboring leaves onthe circle
are far away from each alther on the
grown plant. The outward growth of
elongalion of the leaf stems makes
sure that the new leaves do nat shad-

rectly under them .or near them in
the circle madel,

This completes the overall ple-
ture, showing that the plant is gen-
erally shaped like a cone with a spiral

ol leaves coming out of a central
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spiral would bave had to tum 8 tim

-....-r

,d! I;;H':quafy 15 shown in b, 5

stém. The plantalways grows in such
away that it expands into a new size
but keeps a similar conical shape.
: The Question of Crowding

The same question of crowding
applies ta the small piece of plant
tissue at the growing tip of the plant

where the new |eaves actually sprout.
" This tissue is called the meristem, and

measures less than 132 of an |ru:h
ey i J_r e
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HErc |'.h£ r:rderep:esenrauun i3 uncaoifed o reveal the underlying spira

-J'ea;l' arrangement. In this example the 13- section circle becomes a'13.
section spiral. After 5 turns abovea given polntinthe spisal, th erefsanother, !
" point at the same angle on the spiral. Again, another spical could have -
been diawn through the same 73 points but in the opposite drrec!:m, This |
es betweeh the matched points. The ©
L top view of this spiral is sh own in 3, and the side view of chespfﬂ! fooked
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across. The new leaf buds come out
of this tissue at the same angles they
will have on the stem as aduFt leaves,
Therefore, the crowding question for
grawth and sunlight is exactly the
same as it is in the case of starting the
leaves out with room to grow on the
meristern in the first place (Figure 11).
‘This shows that the question of
what the best leaf spaclngls for sun-

";..:m T ﬁmﬁm?r 'a.'h., ,,d

“7‘3‘:1

P‘h-:cnnn by Tr. H.L Fatersar, Unhsaraity of Gue-ph, l.‘.lnlnn:- Canadd

Figure 11
HOW BUDS GROW ON THE MERISTEM
The meristem shuwn here is magnifled 250 times, and the auter leaves are cut
away to expose the very youngest feal budhs as they begin ta for on the surface
of the menistem tissue, Notice how close the young leaf buds are to one anather.
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light, for growth, for growing out in
the meristem, and for evolution as
well, are all rt:-all;,- the same. Those
problems require the same solu-
hions, and the best solutions are all
based on self-similar geometric
shapes related to the golden mean.
Some Experiments

Inwrder to look at these ideas more
clearly you can do several kinds of
expetiments. First, do the example
described above of dividing a circle
into a Fibonacci number of sections
and then counting off sequences of
sections according to the next small-
er Fibonacci number. Notice how the
addition of each leaf divides the
s?:m[e for that leaf in a Fibonacei ra-
Mo

You can try this ewrclsﬂ with oth-
er numbers that are not from the Fi-
bonacci senes to see whether the leai
spacing is as good,

Second, collect plant samples that
have the various Fibonacci ratios in
their leaf or tharn patterns around
the stem. Examine these specimens
[rom various angles to see the effect
ol the spacing on sunlight expasure
and growth crowding. A few com-
mon examples are the 13 ratio in

eech trees, the 2/5 ratio in vak, the
4/8 ratio in poplar, and the 5413 ratio
in willows.,

Third, dissect the meristem tip of
a plant under'a’ low power micro-
scope or strang hand lens, to see the

pattern ol leaf buds and how they
form a Fibonacci geometry, Notice

the extremely close crowding of
growth al the meristem lip. '
Fourth, lake snapshot pictures ol
a growing plant every day at the same
time from the same place, in order
to visualize the growth patterns thal

follow the sell-similar patterns you

have outlined. _

Fifth, a more challenging experi-
ment would be to investigate why
some plants that may start out in a
conical shape change to other
shapes. I'll give you a hint: The in-
crease in crowding of the plant (s
population density) may affect its
shape as it atlempts 1o maximize ex-
posure o the Sun or to ground water.

Farexample alone oak may be wider .

atits base, bul an oak in a crowded
“srest may be wider on top.

- ¥
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Brulher Bonaccu s Rabblts

Filius (Brother) Bonacci, who was
born in Pisa, ltaly, in the year 1170
AD, discovered a unique senes of
numbers that have ever since borne
his name—the Fibonaca series.
Brother Bonacci is said to have dis-
covered the series ohserving the re-
production of rabbits. =~ " -

Suppose we want 1o raise rabbits,
and we start with a newbom pair—a
male and a female. Let's assume for.
simplicity that each rabbit pair takes
one month (o mature to the point
that it can produce offspring, and that
the female carries her young for one,.
month. That means it will take two
months from the birth of the first:
rabbit pair to produce the first off-
spring. Let’s also assume for simplic-
ity's sake that each lifter consists of
one male and ane female rabbit.

Now let's look at the growth of the

July-August 1984

rabbl'l population by rnumh In the:
first month we have one pair, and so
also in the second. At the beginning
ol the third month a new pair is bom.
Now we have two rabbit pairs. At the -
beginning of the fourth month, that
néw pairis maturing, and the origh
nal pair give birth 1o another pair.'
The total number of plm now equals
three, ] '
What do you think hippum inthe
fifth month? Let's see. The original
pair gives birth lo yet another pair,,
making four pairs. Bul the pair thal
was born al the beginning of the third
month also has a pair. So the total
number of pairs equals five. ;
The chart helps you lo see how
this growth continues, praducing the,
series named alier Filius Bmlccl
1.7,2,3,58,13,2,.
This series has two 'I'Eﬂ-' impnrlnnt :

FUSION -~ 59




properties. First, any term in the se-
ries Is equal to the sum of the two
previous lenms. Furexample ’

L
2=1+1;0r13=5+8 '

Knowing this, you can produce the

series just beglnning with 1 and 1.
-Second, the. ratio of any two

nmghburlng terms of the series is al-

most equal {o the number 1,614,
which is the ralio of the golden sec-

. lion or golden mean (see “How Plants
- Grow,” p. 54). The higher we get in

the series, the more true this is. Try
it yourself. Use the first property |
have |u5[5huwrl‘r1:|utnwrrte out the
Fibonacci series a few terms beyond
the highest number (21) that | have
given you. Now take any two neigh-
boring numbers and divide them, the
higher by the lower. (For E-xampre
21+13=1.615). You may use a cal-
culator to facilitate this long divi-
sion. -

You see that the higher vou go in
the series, the closer it gets lo the
ratic of the goldensection, which is
approximately 1.678. This iz called
convergence. The ralio of neighbaor-
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ing terms in lhe Fibonacei series '

converges an the golden se:nun A

7" A Geomelric Construction ~ &
You can also produce the Fiban- |

~ acci series by a geomelric construc-

tion. Start with a square whase sides
we consider to be 1x1. Now, you

need only follow a‘simple rule to

generate the Fibonacci serles. The
rule is: Always add aSquare lo the
longest side of your figure. Since we -
begin with a square, no side is the
longest; we can addasquaretultun
any side (Figure 1).
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Ar_l A_Jternative to Nuclear

By Ihe Tr.'r:hm-:nl Staff of the Fu:ton

For 30 years the world has been held hostage to the threat of
nuelear halecaust. The nuclsararmed IC B8 bai beeh called the
ultimate olensive weapan, against which there can be na de-
feriae, Bt row v ditecied energy bram Jrrhnnhglﬂ rr.;lr_g
possible the deselopment of delersive weipond that can knock
“oul nuelear minsiles in the first few i inutes of their launc b, pre:
venting them fram exploding. Beam Defense: An Albsmative 1a |
Muclear Destruetion deseribeg imadotal] what these techrologied ane, hu.rn'lhzr vt v hionw last we can
Rave thiem, and how they winild change the strabegie sitaation, snding the era of Mutuslly Assured
Destruction (MADY. Equally imporiaisl the book oullines how fhe dr-urrnpmfnl of bram lech-
Srelogies will beng us inte the plasma age il the unlimited, cheap vnergy of fusion and |h.-
eevolulionary applications of plasma echnalogles o industey, migdieng, lm! Achence,, | S L -
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But now we have a figure twice as

longas itiswde (2x1). Sowe add a_

square lo its langest side (Figure 2),

“ Nowourfigure is3x 2. Aswe keep
adding squares to the longest side,
we get figures of 3%3, Bx5, 13x8,
and sa on. As the figure grows larg-
er, the propa-tions of the rectangle
hardly changz. This is self-similar
growth. The size Increases, but not
the shape. AI‘I hwng lhmgs grow this
way.

Naw for the puzzle: What will
happen if you start with any rectan-
gle and construct asquareonitslong
side, making a new, larger rectan-
gle? Repeat the process a number of
times, Then nake a series of num-
bers from the lengths of the rectan-

gles you have constructed, What can

you d:scuver about these l'El_'l;.ilﬂ-
plest
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