
THE
STRUCTURAL

BASIS OF
ARCHITECTURE

THIRD EDITION

BJØRN N. SANDAKER, ARNE P. EGGEN
& MARK R. CRUVELLIER

THE STRUCTURAL BASIS OF ARCHITECTURE

THIRD
EDITION

BJØRN N. SANDAKER, ARNE P. EGGEN
& M

ARK R. CRUVELLIER

www.routledge.com

Routledge titles are available as eBook editions in a range of digital formats
9 781138 651999

ISBN 978-1-138-65199-9

“The profession of the master-builders split into the independent disciplines of architecture and structural engineering 
in the 19th century. In order to pursue a holistic approach, architects need an understanding of the structural basis of 
architecture. For this purpose, there is no better reading imaginable than this book. This is not only true for students, 
but also for practitioners who want to understand how buildings function structurally. Moreover, I would recommend 
this book to engineers, who seek to understand the reasoning and motivation of architects in order to find structural 
solutions for their intentions.” Manfred Grohmann, Founder and principal of Bollinger+Grohmann Ingenieure; 
Professor for Structural Design, Faculty of Architecture, University of Kassel

“The Structural Basis of Architecture, third edition, is a comprehensive account of the many trickeries architects 
employ to defeat ‘nature’. Since structure is our ultimate tool, the more extended our understanding of it the better 
chances to make a seamless transition of loads, either live or dead, into the ground.” Mauricio Pezo & Sofia von 
Ellrichshausen, founding partners of Pezo von Ellrichshausen

“What a delightful book! The Structural Basis of Architecture has been widely recognized as a classic that exposes 
how structures make Architecture. In this revisited third edition, new contemporary case studies, colored illustrations 
and an original chapter on structural systems sharpen and further reinforce any reader’s learning experience. Every 
student in architecture should study this book.” Sigrid Adriaenssens, Associate Professor, Department of Civil and 
Environmental Engineering, Princeton University

Review of the second edition
“The Structural Basis of Architecture uses a myriad of historical and contemporary case studies to provide a concise 
and thorough explanation of the relationship between engineering and architecture. This book is an indispensable 
source for anyone interested in the logic of structures and their role not just in supporting but in imagining 
architecture.” Mohsen Mostafavi, Dean, and Alexander and Victoria Wiley Professor of Design, Harvard University 
Graduate School of Design

This is a book that shows how to “see” structures as being integral to architecture. It engages a subject that is both 
about understanding the mechanical aspects of structure as well as being able to relate this to the space, form, and 
conceptual design ideas that are inherent to the art of building.

Analyzing the structural principles behind many of the best-known works of architecture from past and present alike, 
this book places the subject within a contemporary context. The subject matter is approached in a qualitative and 
discursive manner, illustrated by many photographs and structural behavior diagrams. Accessible mathematical 
equations and worked-out examples are also included so as to deepen a fundamental understanding of the topic. 

This new edition is revised and updated throughout, and is perfect as either an introductory structures course text or 
as a designer’s sourcebook for inspiration.

Bjørn N. Sandaker is a structural engineer and Professor of Architectural Technology at The Oslo School of 
Architecture and Design (AHO), Norway, as well as Adjunct Professor at the Norwegian University of Science and 
Technology (NTNU) in Trondheim, Norway.

Arne P. Eggen is an architect and Emeritus Professor at The Oslo School of Architecture and Design (AHO), Norway.

Mark R. Cruvellier is a structural engineer and the Nathaniel and Margaret Owings Distinguished Alumni Memorial 
Professor in Architecture as well as former Chair of the Department of Architecture at Cornell University, USA.

ARCHITECTURE

Cover image: © Hisao Suzuki



The  
Structural Basis 
of Architecture

This is a book that shows how to “see” structures as being integral to 
architecture. It engages a subject that is both about understanding 
the mechanical aspects of structure as well as being able to relate 
this to the space, form, and conceptual design ideas that are inherent 
to the art of building.

Analyzing the structural principles behind many of the best-known 
works of architecture from past and present alike, this book places 
the subject within a contemporary context. The subject matter is 
approached in a qualitative and discursive manner, illustrated by 
many photographs and structural behavior diagrams. Accessible 
mathematical equations and worked-out examples are also included 
so as to deepen a fundamental understanding of the topic. 

This new, color edition’s format has been thoroughly revised 
and its content updated and expanded throughout. It is perfect 
as either an introductory structures course text or as a designer’s 
sourcebook for inspiration, for here two essential questions are 
addressed in parallel fashion: “How do structures work?” and “What 
form do structures take in the context of architecture – and why 
so?” A rich, varied and engaging rationale for structural form in 
architecture thus emerges.

Bjørn N. Sandaker is a structural engineer and Professor of 
Architectural Technology at The Oslo School of Architecture and 
Design (AHO), Norway, as well as Adjunct Professor at the Norwegian 
University of Science and Technology (NTNU) in Trondheim, Norway. 
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Our traveling globe in galactic endlessness is divided into latitude and longitude.

With help of this grid, every point on the earth’s surface has its number.

At the grid’s intersections each plant, each creature receives 
its individual technology – its structure formed and created 
by the clouds’ movements, the wind’s strength, and the shifting positions of the sun.

On this organic mat, the acrobat (builder) attempts, with the help of instruments,
to deceive gravity and challenge death with every leap.

And when the perplexities of thought within your soul is provided space on earth, 
arises a duel with substance. Amidst brutality’s heat, 
beauty is born…

Sverre Fehn
(1924–2009)
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Preface

This is a book about structures, more specifically about structures 
and architecture; it is certainly not the first such book, nor will it be 
the last. It does represent, however, our view of how to engage a 
subject that is both about understanding the mechanical aspects 
of structure as well as being able to relate this to the space, form, 
and conceptual design ideas that are inherent to the art of building 
– in other words, how to “see” structures as being fully integral 
to architecture. It is at once a book that deals with the subject 
matter in a qualitative and discursive manner, that illustrates this 
discussion by means of many photographs of architectural projects 
and structural behavior diagrams, and yet that also doesn’t shy 
away from the relatively accessible mathematical equations and 
calculations that can be used to reinforce and extend a nascent 
understanding of the fundamentals of the topic – indeed, there 
are many ways to learn about and from structures. The lessons 
about structural forms and behaviors can be derived from building 
designs that span the course of time, and are here drawn from both 
the architectural canon as well as recent projects from around the 
world. Beyond this, we also briefly engage with art and furniture 
design, among other related fields of interest, as a means of 
connecting structural principles to a broader cultural context and 
vastly different physical scale.

Much has happened in the world of architecture since the 
publication of the first edition of The Structural Basis of Architecture 
in 1989. Stylistic periods such as those of High-Tech, Postmodernism, 
Deconstructivism, Starchitecture and Blob Architecture have waxed 
and waned, while Parametric and Computational Design are currently 
in vogue, as is architecture that is strongly influenced by Sustainability 
concerns and objectives. The range of examples that are featured 
in this third edition partially reflects these ongoing changes while at 
the same time not losing sight of the remarkable designs of earlier 
periods, most of which still serve as frequent and useful references 
for building designers today.

In terms of developments in the understanding of structural 
mechanics, on the other hand, it can be argued that things have 
been much more stable and that not much is new: statics is still 
what it was, and beams and domes span space in the manner that 
we have come to know and understand for hundreds of years, 
let alone the past 30. And while it is certainly true that computer 
methods for analyzing structures’ forces and stresses are much 
more prevalent and efficient today than they were three decades 
ago, nevertheless these programs have not really changed our 

fundamental understanding of the subject matter as much as 
sped up its application. Indeed, it has been recognized in both 
academia and in practice that there can be a certain danger in 
depending too much on the “black box” of analysis programs 
without a strong understanding of basic structural behavior. And 
so, while we recognize and in several places include projects that 
demonstrate the results of structural analyses derived from such 
computational advances, it will become evident throughout this 
book that we still firmly believe in an engagement of the subject 
matter using simple algebraic formulas and mathematics as well 
as discussing it in terms that are familiar to us from our everyday 
living experience. Not only do we see this approach as a means 
of developing an intuitive basic understanding of how structures 
work and how their forms make sense, but also that it enables 
more conceptual thinking on the part of architects and structural 
engineers alike for extrapolating into uncharted territory. That being 
said, it can legitimately be argued that where digital technology 
has had its biggest impact recently is in challenging the age-old 
building design adage that keeping things simple and repetitive and 
rectilinear is necessary in order to make construction economically 
viable. Today, buildings with seemingly infinite variations of member 
lengths and geometric details can be relatively easily accomplished 
because of remarkable advances in integrated digital fabrication 
technologies; some examples of this approach are included in the 
following chapters, right alongside the more “traditional” – but no 
less exceptional – forms of building structures.

This third edition of The Structural Basis of Architecture shares its 
title, vision, and basic organization with the original book, although 
even a cursory comparison will reveal that the contents have been 
completely revised and the scope substantially expanded since 
that earliest version. And whereas the second edition involved a 
comprehensive overhaul of the original, from rewriting the text to 
expanding and updating the range of illustrated examples, this 
third edition can perhaps better be characterized as a significant 
evolutionary step in terms of the development of the book’s contents. 
In that sense, those familiar with the previous edition will recognize 
and find comfort in numerous similarities. That being said, there 
are also substantial changes in this new edition that are worth 
drawing attention to here:

•	 A new Chapter 2 Introducing Structural Systems serves right 
from the start to identify fundamental structural actions, consider 



xiv

preface

the basic types of structural elements that can respond to these 
actions (skeletal vs. surface), and then project how such elements 
can be combined into three-dimensional building structural 
systems of various configurations, each having implicit spatial 
qualities and distinctive forms.

•	 A completely revamped Chapter 10 The Frame and the Shear Wall 
greatly expands on the previous treatment of lateral load resisting 
systems, which we felt in retrospect had been somewhat short-
changed in the second edition given their relative importance 
in the design of buildings – whether from a structural or spatial 
or conceptual point of view.

•	 An extended treatment of selected topics in several other 
chapters, including fleshed-out sections on beam grids, slabs, 
retaining walls, space frames, etc.

•	 The addition of many new examples (and the replacement of 
others) in order to refresh the contents, although without making 
change just for its own sake; i.e., what we thought served the 
purpose well in the previous editions has largely been retained. 

•	 And perhaps most obviously at first glance, changes have been 
made to the layout format: e.g., most illustrations are now 
in color, more emphasis has been placed on the explanatory 
structural behavior diagrams, and the running text now has 
direct call-outs to corresponding illustrations and figures – the 
better to allow the reader to directly connect images to text 
commentary. Also, the page layout for this third edition has 
been changed to a two-column format that more frequently 
enables text passages to be placed adjacent to related images. 

Finally, for those who would like to extend their exposure to 
the structural basis of architecture, it should also be noted that 
since the publication of the previous edition of this book two of 
the present authors – Cruvellier and Sandaker – have co-authored 
along with colleague Luben Dimcheff the companion book Model 
Perspectives: Structure, Architecture, and Culture (Routledge, 2017). 
That book’s reproductions of many short, insightful essay extracts 
as well as large-format photos of constructed model studies are 
intended to be complementary ways of addressing the essential 
questions at hand in the pages that follow: i.e., “How do structures 
work?” as well as “What do structures look like in the context of 
architectural design – and why so?”
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1
c h a p t e r

1

Structuring Space

1.1	 Structure as Spatial Generator and Mechanical Object
1.2	 Spatial Aspects
1.3	 Mechanical Aspects

Illustration 1.1
Galleria Vittorio Emanuele II, Milan, Italy 
(1865–1877). 
Prominently sited on the northern side 
of the Piazza del Duomo, this galleria is 
a covered double arcade formed by two 
glass-covered vaults at right angles to 
each other and intersecting in a domed, 
octagonal central space.

Architect: Guiseppe Mengoni.



Chapter 1: Structuring Space

2

1.1	 Structure as Spatial Generator  
and Mechanical Object

While it is easy to imagine structures without architecture, there 
can be no architecture without structures. Examples of the first 
category include construction cranes and transmission towers 
– structures whose sole purpose it is to keep loads lifted up off 
the ground. In architecture, the design of buildings commonly 
includes roofs, floors, and walls whose weight must also be borne 
and balanced by the help of structures. But beyond that, these 
elements are typically informed by requirements and conceptual 
ideas for their interior spaces and exterior forms. Structural issues, 
therefore, are inherently deeply embedded in architecture. The 
specific relationship between architecture and structure, however, 
whereby the one encompasses the other, may vary greatly from 
one architectural epoch to the next, or even from one building 
to another within the same time period. Today we are likely both 
to encounter buildings whose structures are of minor interest for 
architectural expression as well as others that display a particularly 
close correlation between structural form and its negative imprint, 
architectural space.

In order to shed some light on the particular connections 
that exist between structures and architecture, we first need 
to establish what we consider to be basic structural functions. 
Toward this end, we may ask: What purpose does the structure 
serve? What requirements govern the conditions establishing its 
overall and detailed form, and in what way do these conditions 
relate to one another? Addressing such questions allows us 
not only to develop a broad overview of the technical subject 
matter but also fosters a deeper understanding of what structures 
really are and how they can be assessed within the context of 
architectural design.

A fundamental point to be established from the beginning 
is that structures in architecture are conceived – and perceived 
– differently from structures in other contexts, and so they 
should be evaluated differently. In reflecting on the integral 
relationship that exists between structures and architectural 
spaces, forms, and ideas, certain issues arise that differentiate 
the structures of architecture from structures of other kinds. The 
most obvious and basic function of a structure is its capacity to 
keep something above the ground by bearing loads, and the 
practical use gained from that capacity is to keep floors, walls, 

and roofs in an elevated position, thereby establishing inhabitable 
spaces. In many cases in architecture, however, structures are not 
solely associated with such load-bearing functions. And while 
engineering is able to solve the necessary safety requirements, 
the door is luckily left wide open for making the structure even 
more deeply considered conceptually. Ideally, a close relationship 
is established between structure, space, and formal expression 
so that describing and characterizing a structure solely in terms 
of its load-bearing function is clearly insufficient. To understand 
structures in a wider sense as being part of an architectural context 
also means seeing their forms as space-defining elements, or 
as devices that modulate the amount and quality of daylight, 
or that reflect today’s sustainability concerns, or any number of 
other assigned functions. Structures can serve many purposes 
simultaneously to carrying loads, therefore, and we need to keep 
this in mind not only to enable a more profound understanding 
of the development of structural forms but also to undertake 
an appropriate and informed critique of structures within an 
architectural context.

How can one go about establishing a conceptual model for 
such a holistic understanding of structures? As a starting point, 
we can observe that structures play a role both as a provider of 
necessary stiffness and strength (which are the basic mechanical 
prerequisites for carrying load safely), and as an instrument for 
creating architectural spaces that embody certain other qualities. 
This notion of a dual function, both mechanical and spatial, proves 
rewarding when it comes to understanding and appreciating 
the multifaceted design of structures in various architectural 
settings. Structures range from those conceived of as pure force 
systems that follow a logic of maximum strength for a minimum 
of materials (i.e., structural efficiency), to those designed to act 
iconographically as visual images. On the one hand there is a 
load-bearing function, which helps to explain structural form from 
the point of view of technology and science, as objects required 
to supply stiffness, strength, and stability, while on the other the 
structure may take part in the organization of architectural spaces 
and the establishment of an architectural expression. Moreover, 
these dual aspects of structure are not typically wholly separate 
from one another, but instead tend to mix and their divisions to 
blur so that certain formal features of a structure may both be 
explained by mechanics and also be understood in light of their 
spatial functions. (e.g., Ill. 1.2 and Ill. 1.3, 1.4.)
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Illustration 1.2
Eames House (Case Study House No. 8), Pacific Palisades, CA, USA (1949).
Contrasting rather than adapting to the building site, the Eames House was intended to 
exploit off-the-shelf, prefabricated, industrial building components made of steel and make 
these applicable to residential design. Partly exposed, the steel structure orders the plan in 
modular bays of 2.4 by 6.4m (7.5 by 20ft). Quoting the architect: “In the structural system that 
evolved from these materials and techniques, it was not difficult to house a pleasant space for 
living and working. The structural approach became an expansive one in that it encouraged 
use of space, as such, beyond the optimum requirements of living.” And: “it is interesting to 
consider how the rigidity of the system was responsible for the free use of space and to see 
how the most matter-of-fact structure resulted in pattern and texture.”1

Architect: Charles and Ray Eames. Structural engineer: MacIntosh and MacIntosh Company. 
Photographer: Julius Schulman. Title/date: [Eames House (Los Angeles, CA): exterior], [1950] © J. 
Paul Getty Trust.
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Illustration 1.3
The Bordeaux House, Bordeaux, France (1998).
“Contrary to what you would expect,” the disabled client told the architect, “I do not want a 
simple house. I want a complex house, because the house will define my world.” 2

The house consists of three distinct levels: the lowest is cave-like – a series of spaces carved out 
from the hill for the most intimate life of the family. The highest level is divided into an area for 
the parents and another for the children. The most important level is almost invisible, sandwiched 
in between the other two: a glass room – half inside, half outside – that is used for living. 

Architect: OMA/Rem Koolhaas. Structural engineer: Arup/Cecil Balmond.

Illustration 1.4
The Bordeaux House.
A worm’s-eye view 
diagram showing 
material elements and 
structural principles. 
Moving the supports 
outside the plan 
contributed to an 
opening up of the 
space.
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transporting people and goods across a valley, a river, or even 
an expanse of sea; i.e., it is all about establishing a transport line 
from one bank to the other. The straight line of communication 
that this link commonly results in will most likely suggest a certain 
structural configuration, either as a construct that becomes an 
integral part of the structural system, or else as setting up the 
conditions for how this line should be supported. The utility function 
provides in either case highly important input for how a structure 
is actually designed as well as an understanding of the form of 
bridge that is possible.

The same thing is generally true with the structuring of 
architectural spaces: the choice of a structural system and its 
particular articulation is highly dependent on the practical function 
that is associated with it. For example, in the case of the large 
beams at the top level of the Grande Arche de la Défense in Paris 
by architect Johan Otto von Spreckelsen (1929–1987) and engineer 
Erik Reitzel (1941–2012), there is no way to fully understand the 
choice of that particular beam type without also recognizing that 
the structure is actually accommodating human activity within its 
structural depth, and enabling people to walk freely in the large 
space within and between these beams, all the while looking at art 
exhibitions. (Ill. 1.5, 1.6.) This relationship is made possible because 
the beams are of a type that have large, rectangular openings in 
them, termed Vierendeels. Hence, what we experience in the 
interior spaces of this upper level is actually the horizontal and 
vertical parts of these huge beams that span an impressive 70m 
(219ft) over the open public plaza located far below.

This object/space duality can serve as a starting point but, as 
is the case with most conceptual models, it may simplify too much 
the world of real structures. Nevertheless, as long as we keep in 
mind that theoretical models of this kind can act as catalysts for 
increased insight while not necessarily being able to embrace 
absolutely every possibility, it will be found to be rewarding to 
identify both spatial function and mechanical function as the two 
prime concepts that establish the basis for a holistic understanding 
of structures in the context of architecture.

1.2	 Spatial Aspects

The primary reason for the existence of structures is, of course, 
the practical purpose that they serve. Structures support loads 
from their location of application down to the ground, although 
typically not by means of the shortest possible “route” between 
those points since open and structure-free spaces of various 
sizes and shapes are needed in order to inhabit a building. This 
is the natural order of the relationship between the “why” and 
the “how,” of reason and consequence: practical purpose comes 
first, and physical necessity follows. The practical purpose that 
the structure is assigned, its utility aspect, is fairly straightforward 
to accept and appreciate: in the case of bridges, for example, 
this is made clear by acknowledging the fact that the principal 
utility function, its “raison d’être” so to speak, is typically that of 

Illustration 1.5
The Grande Arche de la Défense, Paris, France (1989).
The large Vierendeel beams enable utility functions, accommodating 
people and their through-passage within the overall structural depth. 

Architect: Otto von Spreckelsen. Structural engineer: Erik Reitzel.

Illustration 1.6
The Grande Arche de la Défense.
Vierendeel beams can be seen at the top during construction.
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With the Grande Arche it is relatively simple to point out the 
use-of-space utility function as a factor that offers design constraints 
and therefore has the ability to influence the chosen structural form. 
A second, perhaps somewhat more subtle, example of such a utility 
function may be in a situation where there is a central concern with 
the diffusion of natural light, which in the case of the Museum for 
the Menil Collection in Houston, Texas, resulted in a unique design 
for its roof trusses/reflectors that were made from a combination 
of different materials. (Ill. 1.7.) Generally, then, it can be said that 
for people to be able to do whatever they are meant to do in a 
particular architectural space, or so as to enable a certain non-load-
bearing performance on the part of the structure, structural form 

Illustration 1.7
Museum for the Menil Collection, Houston, Texas (1983). 
In addition to providing a load-bearing function, the 
lower part of the spanning elements for the roof are 
shaped to act as light reflectors; these are precisely 
spaced apart so as to prevent direct sunlight from 
entering the museum galleries, however. The lower 
part of each of these composite structural elements is a 
curved ferrocement form, while their upper part (unseen 
in this image) is trussed. Mechanical requirements for 
the combined strength and stiffness of these elements 
meet the demands of a particular type of spatial utility 
function.

Architect: Renzo Piano Building Workshop. Structural 
engineer: Arup by Peter Rice.
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may sometimes be shaped and configured in very particular ways. 
Without knowledge of the broader scope of such architectural utility 
functions in a building, therefore, a complete understanding of a 
particular structural configuration is not possible.

Beyond such variations of practical “utility,” there are other 
performance functions that are also frequently associated with 
structures in architecture. In some cases we may find that structures 
are designed to make observers see something else in them, 
representing an object outside of itself, or something that is not 
really there. And in certain of these instances, architects have chosen 
to design structures in a manner that gives their form a certain 
similarity to other objects. One reason for this design approach is 
to bring the imagination of the observer into the visual experience, 
and to strengthen the perception of a particular presence that is 
thought to enhance a structure’s architectural qualities. We may 
thus think of these structures as having iconographical functions. 
Among the numerous examples of this type are architect and 
engineer Santiago Calatrava’s “musical” beams for the Cabaret 
Tabourettli concert hall in Bern, Switzerland, and the lively structures 
of architect Zaha Hadid’s (1950–2016) Vitra Fire Station in Weil-am-
Rhein, Germany. Neither of the structures used for these buildings 
can be fully understood without invoking the concept of mimicry. 
In the case of the concert hall, beams are given a shape and a 
materiality that closely resembles that of instruments like violins 
and cellos, making the observer acutely aware of the type of room 
one is experiencing; indeed, the thin steel ties that are secured to 
each beam have an unmistakable likeness to the strings of musical 
instruments. (Ill. 1.8.) And at the Vitra Fire Station, sharp angles 
activate the whole composition of structural elements of columns, 
walls, and slabs alike, creating an unmistakably hyper-active, kinetic 
image that makes one think of flickering and dancing flames. (Ill. 1.9.)

Illustration 1.8
The Cabaret Tabourettli, Bern, Switzerland (1987). 
(a) Ceiling beams having iconographic function, designed to hint at the musical activities that take 
place in the room. (b) End-of-beam connection detail.

Architect and structural engineer: Santiago Calatrava.

Illustration 1.9
Vitra Fire Station, Weil-am-Rhein, Germany (1993).
Structural composition of elements in a design that takes the lively 
flickering of flames as a point of departure. Eventually, there was no 
longer need for a separate fire station at the Vitra industrial complex, 
and the building was repurposed to house lectures, concerts, 
exhibitions, and social events. 

Architect: Zaha Hadid. Structural engineer: Sigma Karlsruhe Gmbh and 
Arup by John Thornton.
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In yet other cases, structures are so closely tied to a particular 
idea that the architectural context is seen to strongly suggest their 
shape and organization. Structures of this “type” are designed 
with a primary concern for their ability to enhance an overriding 
theoretical concept – or at least their design is guided by a certain 
logic that makes their structural form dependent on formal or 
conceptual imperatives. Although not necessarily so, the result of 
such a contextual design approach may well be a structural form in 
which the “traditional” load-bearing logic that dictates an efficient 
use of materials and manufacturing methods is significantly disturbed. 
Some of the work of the architect Frank O. Gehry might be seen 
to promote structures of this type: the EMP project in Seattle, for 
example, displays steel beams of varying and not-particularly-efficient 
shape in order to accommodate the highly intricate external forms 
of the building, and can be said to be designed “from the skin-in.” 
(Ill. 1.10, 1.11.) Such a close link between this type of architectural 

Illustration 1.10
Experience Music Project, Seattle, Washington State, USA (2000).
Structural form adapts to the overall, formal concept, letting the 
architectural context and conceptual ideas act as a form generator.

Architect: Frank O. Gehry. Structural engineer: Hoffman Construction 
Company.

Illustration 1.11
Experience Music Project.
Model. Design concepts and exterior form establish rationale 
for structural frames’ curving profile seen in Ill. 1.10. 
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expression and the structural form calls for a different attitude 
toward evaluating structure than that which is appropriate when 
confronted by structures that have a more obvious technological 
basis. In these cases, structural forms cannot properly be understood 
in isolation as force systems that “purely” meet specific functional 
demands, but should instead be assessed within the framework 
of the governing design concepts and ideas. In other words, a 
“conventional” evaluation of such structures strictly in terms of 
concepts like strength and stiffness and the most efficient production 
methods, while not to be ignored, will be completely inadequate 
to fully explain and appreciate their design.

Of course, the various spatial aspect categories that we have 
so far identified need not exist in isolation from one another. The 
Blur Building, erected as a temporary media pavilion for the Swiss 
Expo 2002 and designed by architects Diller Scofidio + Renfro is an 

example of a work of architecture in which the structure is part of 
a design that features both iconographic and contextual qualities, 
while also maintaining an efficient load-bearing strategy. This is a 
“both/and” rather than an “either/or” condition. The pavilion was 
characterized as “an inhabitable cloud whirling above a lake”: set 
on pillars in Lake Neuchatel in Switzerland, it was enveloped in a 
fine mist created by a huge number of fog nozzles spraying water 
from the lake and creating an artificial cloud. (Ill. 1.12.) To further 
strengthen this image, the architects and engineers took care to 
design a structure that could be considered to have a similarly 
blurred image. The lightweight structural system was composed 
of a multitude of the thinnest possible structural members, all 
arranged according to a strategy of efficient resistance to loads; 
these structural members were clearly meant to visually disappear 
into the cloud. (Ill. 1.13.)

Illustration 1.12
The Blur Building, Yverdon-les-Bains, 
Switzerland (2002).
Blurring the presence of a building 
with the help of 11 000 fog nozzles 
spraying water from the lake. 

Architect: Diller Scofidio + Renfro. 
Structural engineer: Passera and 
Pedretti.

Illustration 1.13
The Blur Building.
A filigree trussed structure made possible the desired light appearance of the building.

Cornell model by Adam LeGrand.
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As a general observation from examining many other buildings 
besides the Blur pavilion, it can be stated that design requirements 
which primarily address the spatial aspects of structures are frequently 
found to also be in strong agreement with the requirements of a 
more mechanical nature. In other cases, however, structures that 
are meant to bring about particular spatial qualities may seem 
to cause their purely load-bearing and material-efficiency logic 
to “suffer.” At the extreme, a seeming incompatibility between 
spatial and mechanical requirements may even be seen to exist, 
lending the structure a certain ambiguous character, but this is still 
not necessarily to be considered a negative feature of structural 
form. On the contrary, such a condition can contribute to visual 
interest and to a clarification of a certain conceptual approach to 
the architecture/structure relationship. And we should not forget 
that even structures of this type are inevitably designed to be both 
safe and sound.

As an example, we can consider architect Coop-Himmelb(l)au’s 
Roof-top Remodeling intervention in Vienna which precisely 
represents this delicate balance between spatial ambition for 
structural form on the one hand, and a somewhat-less-than-
common mechanical logic on the other. (Ill. 1.14.) Far from being 
randomly designed, the former qualities can be seen to have led 
the design and the latter to have become of less importance. One 

can quickly spot what might be termed a spine in the form of a 
complex assemblage of steel sections aligned in a skewed plane 
that cuts right through the project, forming a line of symmetry 
or, rather, something that resembles symmetry. This is obviously 
an important structural element. The most spectacular feature 
of this spine is the thin curving line formed by a steel rod that 
binds the different members together. In fact, because of their 
standard structural profiles, all of the steel members seem to have 
a certain load-bearing function except for that thin, curving rod 
which is used to establish a visual demarcation line around the 
whole structural composition. The rod also projects out from the 
edge of the roof, hovering over the street below where it connects 
with other steel profiles in order to terminate the whole visual/
structural composition. We might ask: Is this apparent complexity 
of structural pathways and the absence of a clear structural system 
a negative feature in this design? To which we would answer: No, 
based on the rationale that both the great intensity of the lines and 
the ambiguous character of the structure add to the experience 
of a “high energy” work of architecture. Wolf Prix once said that 
“structures, although metaphors for forces, follow another force, 
not of weight, but of energy.”3 We experience the structure of this 
Viennese rooftop addition, as distorted as it is, as being highly 
appropriate for such an equally distorted spatial configuration; 

Illustration 1.14
Roof-top Remodeling, Falkestrasse, Vienna (1988).
The structural spine with a distorted and complex look enhances 
the high-energy character of the architecture.

Architect: Coop-Himmelb(l)au. Structural engineer: Oskar Graf.
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indeed, a regular and geometrically simpler structure would have 
significantly weakened the desired spatial quality.

As we have seen throughout this section, the particularities of 
structural form can be closely related to spatial functions and to 
conceptions of space. We can thus interpret structure as being part 
of an integrated design approach in which we cannot completely 
explain, understand, or appreciate structural form without recognizing 
its strong co-dependence on the particular character and use of the 
architectural space. It is of importance to note, however, that any 
gross deviation from what can be considered to be a reasonable 
concern for mechanical requirements should not be the result of 
random, uninformed, or thoughtless design, but rather of carefully 
considered ideas related to other design imperatives.

1.3	 Mechanical Aspects

We now turn to what can be considered to be the basic mechanical 
function of structures: that of being load-bearing objects that possess 
and display specific physical properties. As has been previously 
mentioned, among such properties is their ability to withstand loads 
and forces imposed by nature and derived from human activities, 

qualities that are typically embodied in the physical concepts of 
strength, stiffness, and stability. All of these latter concepts will 
be thoroughly explained in the chapters that follow; at this stage, 
however, it is sufficient to say that they all relate to how structures 
perform when loads act on them, and that these concepts address 
the way nature works and lend themselves readily to scientific 
analysis which may involve mathematics and physics. This means 
that there is a direct relationship that can be demonstrated between 
structural form, the direction and magnitude of loads, the properties 
of the materials, and the response of structures. We can illustrate 
the point in question by referring to one example among many 
where structural form is revealed or explained by referring to this 
relationship: i.e., the steel beams that are hidden within the roof 
of the Copenhagen Opera House clearly have varying structural 
depth. (Ill. 1.15.) There are no supports at the outer end of the 
roof cantilever, and so the beams must therefore carry the loads 
inward toward their line of support, collecting more and more loads 
along the way and needing to get progressively deeper in order 
to accommodate this.

Furthermore, there are architectural examples where the 
connection between form and nature’s laws is no longer just intuitively 
grasped but clearly depends on scientific analysis for their design, not 
merely for a confirmation of structural dimensions (while also that), 

Illustration 1.15
The Copenhagen Opera House, Copenhagen, Denmark (2004). 
The variation of the thickness of the projecting roof form follows the changing 
magnitude of forces within its (hidden) beam structure.

Architect: Henning Larsen. Structural engineers: Rambøll, Buro Happold.
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Illustration 1.16
CCTV Tower, Beijing, China (2008).
The diagonal pattern of structural members exposed in this building’s façades is 
irregular, closely following the stress pattern that results from the building’s particular 
shape and loading conditions. Where the intensity of these stresses increases, more 
structural members are inserted, thus tightening the “web” of structural lines needed 
to accommodate this.

Architect: OMA/Rem Koolhaas. Structural engineer: Arup by Cecil Balmond.
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but more explicitly that their shape cannot be properly explained 
without addressing theoretical knowledge of the strength/stiffness/
stability relationship. Among the many possibilities to illustrate this 
particular observation is the CCTV Tower in Beijing by architects 
OMA/Rem Koolhaas and structural engineer Arup/Cecil Balmond, 
where structures that are exposed in the façade are configured 
so as to follow a logic of structural sub-optimization that puts its 
distinctive mark on the character of the building;4 i.e., the pattern 
of diagonal lines is noticeably denser where the structure is more 
highly stressed. (Ill. 1.16.)

Historically, of course, the planning and construction of large 
objects and structures had nothing to do with science. Such 
constructs most certainly obeyed scientific laws, regardless of what 
their builders were aware of, but science played an insignificant 
role in explaining at the time just how they worked and why they 
were designed the way they were. Architecture, for its part, had 
for much of its existence been perfectly happy employing certain 
building technologies without benefiting from the input of science. 
For example, even the most advanced Gothic cathedrals were built 
without theoretical knowledge of mass, gravity, forces, and stability. 
Their builders employed available construction technologies, but did 
not command science as a tool for analysis. Today, we may explain 
the shapes of Gothic cathedrals by invoking scientific concepts, but 
at that time forms were arrived at following craft-based traditions 
and by trial and error; consequently, failures happened and these 
have been duly recorded. 

For the past 150 years, however, architecture has become ever 
more dependent upon and intertwined with the development of 
scientific knowledge. Part of the reason for this has to do with the 
sheer size of many architectural projects and that the consequences 
of construction failures are so grave that mistakes cannot afford to be 
made, whether for reasons of moral, financial, or legal responsibility. 
Of course, scientific knowledge also helps to bring about an efficient 
use of materials, enabling the fewest natural resources to be used. 
And, finally, we should also remember that architecture is typically 
concerned with developing “one-off” designs for buildings that 
explore and account for site specificity and individual programming 
and conceptual designs that make each building unique. In order 
to be able to cope with the inherent uncertainties of such new and 
untried designs, we take advantage of one of the natural sciences’ 
most wonderful abilities: the possibility of predicting the outcome 
by means of theories developed for material and structural form 

behavior. Architectural projects can thus be analyzed scientifically 
as the physical objects that they are, or are about to become, and 
the behavior of their masses of stones or skeletons of steel can be 
foretold in advance of construction. Physics, obviously, is the prime 
instigator in that respect, aided by mathematics. 

Looking at structures from a mechanical point of view is not 
restricted to a study of behavior based on scientific principles, 
however. It also involves a consideration of what we may think of 
as being structures’ technological aspects; i.e., how their parts are 
manufactured and how they are actually built. Decisions about how 
structures and structural components are produced and erected 
also make their imprint on structural form, especially at the detailing 
level. Consequently, technological matters should also be brought 
up for consideration when seeking to understand and critique 
structural form. It is particularly important when we study structures 
that they are considered not only as finished products, but also as 
manifestations of certain manufacturing and construction processes. 
Therefore, we need to look upon the mechanical aspects of a 
structure from both a scientific and a technological point of view, 
recognizing that there is a difference between the two that enables 
us to observe and understand the different qualities that these 
may bring to a design.

Building technology deals with the “making” processes. As such, 
it simultaneously addresses several production and manufacturing 
issues, from the production of building materials and structural 
elements, to their adaptation to suit a particular situation, and, 
finally, to the actual construction phase of a building. Technology 
thus involves operations like casting and rolling of metals to form 
components, sawing of timber boards and gluing them into laminated 
elements, as well as casting concrete into formwork made of various 
materials to produce different shapes and surface textures. To 
understand building technology, therefore, means to know how 
buildings are made. And to understand architecture and structures 
from a technological point of view means to look upon form, shape, 
and texture as the response of materials and components to their 
being processed, trimmed, outfitted, and assembled for a particular 
purpose, namely that of constituting an occupiable building volume. 
We may thus think of structural form and its articulation as testifying 
to the manufacturing and construction processes. 

As an example we can consider the church Chiesa Mater 
Misericordiae designed by architects Angelo Mangiarotti (1921–
2012) and Bruno Morassutti (1920–2008) with engineer Aldo Favini 
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Illustration 1.17
Chiesa Mater Misericordiae, 
Baranzate, Milan, Italy (1957). 
Construction technology, or the 
way the beams are actually built, 
becomes an important design factor. 
Here, post-tensioning cables are run 
through X-shaped precast concrete 
segments in order to be able to 
create long-span roof beams.

Architect: Angelo Mangiarotti and 
Bruno Morassutti. Structural engineer: 
Aldo Favini.

Illustration 1.18
Chiesa Mater Misericordiae.
Long-span beams seen in ceiling open up the interior space; these 
beams also project beyond the line of column support. The alternating 
open and closed-off bottom of these X-shaped beams reflects the 
variation of their internal compression and tension stresses according to 
the behavior of continuous beams. 
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(1916–2013), in which the roof beams consist of a large number of 
precast reinforced concrete sections or elements that are poured 
in a factory, transported to the building site, and then connected 
together by means of (post-tensioned) cables that run along the 
length of the beams. (Ill. 1.17.) The discrete component character 
of these beams stands as “proof” of how the structure is actually 
built, displaying simultaneously the technology of manufacture and 
construction that was employed. Beyond this, the church structure is 
also a good example of the value of invoking the scientific analysis 
perspective that relates form and strength: each element of the 
beams basically forms the letter X in cross-section, but with one 
side (upper or lower, depending on location in the span) closed 
off with a concrete slab that acts like the lid of a box. This extra 
material provides a greater resistance to compressive force on the 
side of the beam that it is on, and such extra capacity alternates 
from the top to the bottom of the beam along its length according 
to the behavior of continuous beams. Thus, by keeping in mind 
both technological and scientific matters, in this case we can better 

explain and understand the reasons for the particular structural 
form in the context of the working of the overall system, and of 
the desired spatial intentions. (Ill. 1.18.)

A second example requiring a technological approach to 
understanding structure can be found in the IAA pavilion built 
for BMW exhibitions that was designed by Bernhard Franken of 
ABB Architects and engineers Bollinger + Grohmann. The roof 
and walls of this building have an undulating form, with irregular 
ridges running along its length, while the structure is composed of 
a series of steel frames that cut transversely across it. Reflecting the 
overriding architectural design concept and geometry, these frames 
take on the curving, wave-like shape of the exterior of the building. 
(Ill. 1.19.) The complex curves of the frames had to be created by 
using technologically advanced manufacturing methods: they are 
built up from discrete pieces that are machined out of steel plates 
using computer-controlled cutters, and then these components 
are welded together. (Ill. 1.20.) The relatively thick and multiply 
curved profiles of the structural members making up these frames 

Illustration 1.19
IAA “Dynaform” Pavilion, Frankfurt, Germany (2001). 
Undulating structural frames reflect the overall architectural 
context as well as attest to the technological methods 
used to manufacture them.

Architect: ABB Architects with Bernhard Franken. Structural 
engineers: Bollinger + Grohmann.

Illustration 1.20
IAA “Dynaform” Pavilion.
CNC laser-cutting of steel plates that are then welded 
together to create the structural frames.5
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would have been impossible to produce by any other method, and 
acknowledging these structures’ particular technological basis and 
resolution becomes a precondition for gaining an understanding 
of and appreciation for their overall design.

Advanced technological fabrication methods are taken several 
steps further with the 2013–14 ICD-ITKE Research Pavilion, designed 
by teams from the University of Stuttgart’s Institute for Computational 
Design and Institute of Building Structures and Structural Design led 
by Profs. Achim Menges and Jan Knippers, respectively. (Ill. 1.21.) 
Inspired by a close study of the structure of beetles’ wings and shell 
abdomens and built as an exquisite adaptation of biomimicry, the 
distinctively domed structure for this pavilion covered 50m2 (540ft2), 
enclosed a volume of 122m3 (4300ft3) and yet weighed only 593kg 
(1300lbs), with the whole of it dependent on resin-impregnated 
glass and carbon fibers that were woven together by a pair of 
carefully synchronized 6-axis industrial robots. (Ill. 1.22.) A highly 
irregular overall geometry results in the end, taking its cues from 

Illustration 1.21
ICD-ITKE Pavilion, University of Stuttgart, Germany (2014).
Biomimetic form of this domed, double-layered fiber structure was 
inspired by the protective shells of beetles’ wings, and it is composed of 
36 modules, each having unique 3D geometry. 

Architects and engineers: ICD-ITKE University of Stuttgart. Prof. Achim 
Menges and Prof. Jan Knippers.

Illustration 1.22
ICD-ITKE Research Pavilion 2013–14.
Seemingly “dueling” 6-axis robots in fact work together in 
tandem in a highly precise digital choreography, with resin-
impregnated fibers spun together according to the results 
of advanced structural analyses.



Chapter 1: Structuring Space

17

specific site conditions, but that was able to be composed and 
easily erected from 36 prefabricated, double-layered, doubly curved 
modular units, each one unique in form and size, and each one 
completely dependent for form and strength on its dense web of 
woven fibers connecting the inside and outside layers. Moreover, 
the highly specific layout of these fibers was established by the 
forces anticipated for the overall structure by means of advanced 
finite element analyses. In the end, quite a pleasant place to sit and 
gather with others was created, one which highlighted an essential 
and creative interaction between innovative material selections, 
design objectives, structural system configuration and logic as 
well as the application of state-of-the-art fabrication technology. 

These last three examples have shown that building technology 
is a body of knowledge that helps to bring about the transformation 
of raw materials into works of architecture, but we also know that 
scientific principles and mathematical analysis are necessary to 
make sure that the buildings we design perform according to our 
expectations and our basic need for safety and efficiency. Thus, 
both technological decisions and scientific reasoning become critical 
design factors, and while each, on its own terms, puts its imprint on 
the finished design, only when considered together do they allow 
for a complete understanding of structures as mechanical objects.

We will stress throughout this book the importance of taking a 
truly holistic approach to structures by considering all the different 
aspects that we have discussed in this chapter and that may influence 
structural form in one way or another, from those that relate to 
mechanical requirements to those that are derived from overall 
spatial ambitions. (Ill. 1.23.) This broadly based approach allows 
for the engagement of conceptual ideas that inform the design of 
structures, and provides an instrument for an informed evaluation 
of structures as the basis of architecture. Admitting structural issues 
into the more general architectural assessment of a building project 
is unfortunately as rare today as it is important; our explicit ambition 
in communicating structural knowledge is to discuss mechanical 
issues as an integral part of an overall consideration of architectural 
spaces, ideas, and forms.6

 

structure 

object space 

mechanical function spatial function 

science                    technology    utility        contextuality     iconography 

Illustration 1.23
A chart of various aspects of structural form 
based on a space/object duality. 
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2.1	 Revealing Structures
2.2	 Basic Structural Elements and Systems
2.3	 Contrasting Systems in Tokyo
2.4	 Fundamental Structural Actions
2.5	 Overall Stability – Taking a Bird’s-eye View

Illustration 2.1
Streetscape in Arles, France.
Prominent in the city’s historic urban 
core: the two-tiered, exposed stone 
arcade of the Arènes d’Arles, a Roman 
amphitheatre built in about AD 90 
based on the Coliseum in Rome, and the 
pointed Gothic-style Cordeliers steeple 
erected in 1469 and restored in 1993.
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2.1	R evealing Structures

Our first impression of a building, whether looking at it from a city 
street or a country road, is usually of its volume; i.e., its height 
and width and overall shape. Next, we will probably notice its 
surface, identified by the texture, color, and material nature of 
the building façade. As we gradually take in the situation, this 
particular building’s relationship to its immediate surroundings will 
begin to register; for example, whether it is larger or smaller than 
its neighbors, has similar or different window openings, whether 
its precise orientation aligns with that of other buildings in the 
area or perhaps with certain landscape elements instead – or else 
none of these, as the case may be. We are likely to quickly notice 
whether this building we are concerned with “blends in” with 
other buildings, or represents a “contrast” to those, or maybe it 
stands alone in relative isolation. To learn more about it, we will 
at this point need to enter the building and investigate its interior 
spaces – their size and shape and daylight conditions, for example. 
The main purpose that the building fulfills will probably become 
clear at this point, if it was not already made evident from the 
outside. It is also at this stage that we often begin to notice the 
way in which the building is constructed; i.e., we may see columns 
and beams or other traces of the building’s load-bearing structure, 
and perhaps also observe a certain pattern or hierarchy that these 
structural elements follow in order to create the form and size of 
the different rooms and spaces within the building, and that enable 
these to be kept up in the air and in specific relation to each other 
in spite of the forces of gravity that are trying to bring them down 
to the ground in a heap. 

It is also the case, however, that a building structure’s form 
and the material of which it is made may not be evident at all, 
whether the building is seen from the outside or from within; i.e., 
in some cases the structural elements are completely hidden from 
view. This could be for aesthetic reasons according to which an 
architect does not wish to have structure impart a certain type of 
character and atmosphere to the building façade nor to its internal 
spaces, whether as part of her/his general design approach or 
perhaps it is only in a particular instance for very specific conceptual 
reasons. Or, perhaps, the covering of structural elements may be 
for more pragmatic reasons such as shielding them from exterior 
temperature variations, or due to fire-protection regulations, or 
perhaps because of a desire to hide what may be considered to be, 

in certain situations, rather unsightly ventilation ducts, plumbing 
pipes, electrical conduits, etc., that are often attached to and 
running alongside the structural components. The question of 
whether to expose or hide structural elements and systems can 
be debated, and there is no right or wrong answer. Indeed, there 
are enough compelling examples at both ends of this spectrum 
to demonstrate that a building design can be considered to be 
successful according to one approach or the other, or to one that 
lies somewhere in the middle. What is irrefutable and what all 
buildings have in common, however, is that an overall structural 
system and its component elements must be present somewhere, 
and for our purposes here in this book it is simply a matter that this 
structure needs to be revealed in order for us to be able to study 
it. We shall begin this chapter by doing just that for the Pavilion 
Suisse, designed by the architect Le Corbusier and completed 
in 1932, and then for the Kunsthaus Bregenz by Peter Zumthor, 
which opened in 1997.

The Pavilion Suisse was designed as a facility that would house 
students from Switzerland at the Cité Internationale Universitaire in 
Paris. The building has three distinct volumes that essentially each 
accommodate a different function: there is a low, one-story portion 
containing the common meeting room for all residents, there is a 
tower-like middle part incorporating stairs and bathrooms, and finally 
there is a four-story vertical dormitory block where the students live. 
(Ill. 2.2.) Each volume has its own separate and different structural 
system, but it is the one for the dormitory which we will focus on 
here. We see from the outside that this building block is raised on 
thick, exposed concrete pillars, called “pilotis” in the vocabulary 
of Le Corbusier. These are placed in rows along both sides of the 
long, central axis of the building and support a pair of longitudinal 
beams, which in turn carry on top of them a slab of substantial 
thickness – all of which are made of reinforced concrete. As we 
will see, there is quite a different structural system arrangement for 
the dormitory levels above, one which is supported on this thick 
concrete transition slab. 

Looking at the south façade of the building we see that glass 
is the dominant material, and that this exterior wall is visually 
organized by a grid of horizontal and vertical lines; these lines 
demarcate the positions of floor levels and interior room-partition 
walls, respectively. We do not actually see the structural components, 
but nevertheless we do get a strong indication of where these are 
located. The north façade, however, shows no such trace of the 
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structural system. Here we see a uniform wall surface made of 
prefabricated concrete cladding panels, the only relief to which 
are square openings for windows. It may come as a surprise, then, 
when it is revealed that behind these façade walls and throughout 
the whole of the volume of the dormitory block there is actually 
a three-dimensional structural grid of steel columns and beams. 
(Ill. 2.3.) It can be said by analogy, therefore, that there is within 
this building volume a hidden skeleton that enables it to stand 
up just as is the case in nature with human beings and animals. 
Moreover, and also in common with these biological bodies, this 
structural skeleton can be seen to have a close functional and formal 
relationship to the internal spaces/organs of what it is supporting 
as well as to the overall external shape of its enveloping enclosure/
skin. For example, in the Pavilion Suisse we find that the distance 
between the steel columns along the south façade is the same as 
the width of each student’s room and that the height of the rooms 
is defined by the vertical distance between the steel beams of the 
frame. But at the same time as the dimensions of the structural grid 
can be seen to have a clear spatial relationship and visual impact, 
it is also true that its columns and beams themselves are in fact 
mostly hidden from direct view by the exterior cladding and by 
being wholly absorbed within room partition walls and covered 
over by floor slabs.

In contrast to the situation at the Pavilion Suisse, the exterior of 
the art gallery building in Bregenz, Austria, is even less revealing: 
here there are no external indications of a structural assembly 

Illustration 2.2
Pavilion Suisse, Paris (1932). 
Exterior view of south façade of 
dormitory block.

Architect: Le Corbusier. 

Illustration 2.3
Pavilion Suisse. 
Steel skeletal structure is used to support the 
dormitory floor levels, as seen during construction.
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that could begin to suggest, let alone explain, how this particular 
building is constructed. (Ill. 2.4.) The Kunsthaus is completely clad 
on all four sides with slightly angled, overlapping, semi-transparent 
etched glass panels through which we can get a glimpse of the 
outline of this façade’s steel support structure. The glass diffuses 
the light that enters the building during the daytime, and at night 
the building is artificially lit from within, turning the whole of the 
cubical volume into a large urban lantern. We can also see through 
the façade the blurred outlines of several mysteriously hovering 
thick horizontal and inclined bands, but there is no hint of what 
may be holding these up nor of what they may be, or even any 
recognizable features that would give them scale. 

Immediately upon entering the building, however, the load-
bearing structure is completely revealed to us: three huge reinforced 
concrete walls support the accumulating gravity loads at each floor 
level while also forming the stabilizing system against wind and 
earthquake lateral loads. (Ill. 2.5, 2.6.) Moreover, these three walls 
help to organize the building functions and arrange the space 
according to the daylighting strategy devised by the architect. 

Contrary to the open skeletal system of the Pavilion Suisse, the 
structure of the Kunsthaus does not merely indicate where room 
partition walls might be located, but instead the extensive surfaces 
of these three load-bearing walls themselves establish the large-
scale barriers that isolate the main gallery spaces at each floor level 
from the circulation stairs and elevators and from the secondary 
service areas that are located along the outside edges between 
these walls and the glass façade. The concrete walls are left exposed 
and, indeed, they delimit space itself. 

On the inside of this building, then, the structural system has a 
clear spatial and visual presence that is not the case for the system 
of the Pavilion Suisse, at least not to the same extent. On the 
outside, however, perhaps the opposite could be said, although 
in neither case is the structural system clearly legible. These 
two examples show fundamentally different ways of organizing 
the relationships between structure and architectural form and 
space, and we will repeatedly return to this way of looking at 
and considering these various relationships throughout the rest 
of this book. 

Illustration 2.4
Kunsthaus Bregenz, Bregenz, Austria (1997). 
Exterior view; overlapping, etched glass panels cover the entirety of the outside of the building. 

Architect: Atelier Peter Zumthor & Partner. Structural engineer: Robert Manahl.
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Illustration 2.5
Kunsthaus Bregenz. 
Building’s vertical structure consists of concrete load-
bearing walls; these are in full view in the interior spaces.

Illustration 2.6
Kunsthaus Bregenz. 
Floor plan showing location of the building’s three 
reinforced concrete walls, which are the only vertical 
structural elements in the building. 
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2.2	 Basic Structural Elements and Systems

Basic Functions and Terms

As has been discussed in the introductory Chapter 1 as well as in the 
previous section, buildings need a physical structure to keep them 
standing up. The materials that we use to construct our buildings, 
whether for the structure itself but also for all the other building 
components including partition walls and façade claddings and 
insulation materials, etc., generally constitute considerable weights 
that are lifted up from the ground and that need to stay there. This 
also applies to the weight of all the additional things that we put 
into buildings, including our own weight as building occupants as 
well as that of furniture and equipment. Moreover, buildings are 
obviously exposed to the weather and so they need to be able to 
resist loads caused by such things as wind and snow (perhaps) and 
in the parts of the world that are prone to earthquakes building 
structures need to be designed to withstand seismic forces. All this 
will be covered in much more detail in Chapter 3 Loads. In order 
to be able to withstand all of these various forces and their effects 
over long periods of time we have to provide physical structural 
elements in the form of beams and columns and/or walls or, perhaps, 
and as we will see later, arches or cables or frames or other basic 
structural components that have as one of their primary functions 
that of providing our buildings with the physical robustness needed 
to make them stand up. All of these individual elements considered 
together as one is known as the building’s structural system.

We established in Chapter 1 that in addition to providing 
adequate resistance to weight and other loads, a building structure 
is frequently called upon to perform other functions such as 
organizing internal spaces, defining external forms, controlling 
daylight, establishing circulation paths, etc. A structural system thus 
frequently also plays a part, to a greater or lesser degree as the 
case may be, in what might be characterized as the aesthetic and/
or functional and/or conceptual agenda influencing the design of 
a building and, therefore, it may affect the visual expression of the 
architectural work as a whole. Yet even while acknowledging and 
even highlighting such a holistic approach to the design of buildings, 
it remains that the present book is one that is centrally concerned 
with the physical mechanics of structural behavior as well as how 
various aspects of construction and material technologies need to 
be observed in order to ensure that a structural system is able to 

provide its essential resistance to collapse. In order to do this, we 
need to first go back to the fundamentals of structural response 
and discuss what actually happens within structural components 
when loads are acting on them. Indeed, even before we are able 
to do that, it is useful here to take one further step back by trying 
to describe more precisely just what a structure actually is.

A structure is commonly thought to be a material element or 
a number of such elements working together, providing strength, 
stiffness, and stability in order for loads to be held aloft. The reason, 
of course, that we need to organize physical matter in particular 
ways is to satisfy our basic need for shelter. To protect us from the 
natural elements while at the same time providing inhabitable spaces 
of various sizes within that shelter calls for an instrument of a sort, 
otherwise known as a structure, whose function it is to make sure 
that all loads remain right where they are applied and that these do 
not cause the shelter to collapse upon us. The loads will nonetheless 
cause various parts of the structure to respond with smaller-scale 
deformations, explainable as the result of internal member forces 
that are established within the structural system in response to 
the loads that are applied to it. Moreover, these internal forces 
and the structure’s deformations will be of a magnitude and type 
that is largely established by the structure’s overall configuration. 
Summarizing all this, we can say that for a structure to be functional 
it needs to be made of sufficiently strong and stiff materials, and 
that the way it works is heavily influenced by its geometry – which, 
admittedly, may still seem to be a somewhat vague statement at 
this point, but it nevertheless establishes the defining principles 
that will be returned to and refined throughout the rest of this book.

Line vs. Surface Structural Elements 

What kinds of structures exist? This is a big question that may 
be answered in very different ways. We could speak of spanning 
structures having as their primary function the “transport” of 
loads over horizontal distances, and of vertical support structures 
doing the same for loads acting over a building’s height.1 These 
two groups of structures are identified according to their spatial 
orientation. We could also identify structures by their physical 
response characteristics, applying terms like rigid or flexible 
structures. Furthermore, we might speak of skeletal structures 
versus massive structures, identifying structures by how much space 
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they occupy and which correspond to line structural elements 
versus surface elements, respectively.2 (Fig. 2.1; e.g., Ill. 2.7, 2.8.) 
There are many more ways to make such distinctions between 
structures, of course, but for now we will elaborate a bit more on 
this last classification and then go on to discuss the ways in which 
these two main groups of structural forms relate differently to the 
architectural spaces that they help create.

The line elements that make up skeletal structures may be 
classified according to their geometry as straight line elements and 
folded/curved line elements. Straight line elements typically form 
ties, columns, and beams, and on a more detailed level they also 
make up trusses that, geometrically speaking, are aggregations of 
many straight line elements. Folded or curved line elements typically 
form frames, arches, and cable structures. We shall discuss all of 
these basic structural types in much more detail later in the book.

If we take a closer look at skeletal structural systems that are built 
up of linear elements we will usually find that the different parts are 
arranged according to a system hierarchy. (Fig. 2.2.) To be able to 
actually construct the building envelope needed to seal off interior 
space from the exterior environment, for example, we frequently 
need a secondary system of linear structural elements attached to 

skeletal structures

line structural elements

massive structures

surface structural elements

folded or curved line elementsstraight line elements folded or curved surface elementsflat surface elements

skeletal structures

line structural elements

massive structures

surface structural elements

folded or curved line elementsstraight line elements folded or curved surface elementsflat surface elements

skeletal structures

line structural elements

massive structures

surface structural elements

folded or curved line elementsstraight line elements folded or curved surface elementsflat surface elements

skeletal structures

line structural elements

massive structures

surface structural elements

folded or curved line elementsstraight line elements folded or curved surface elementsflat surface elements

Illustration 2.7
“Construction Work” (1989). 
A composition of skeletal structural elements.

Painting by Tom Slaughter.

Illustration 2.8
“Torqued Ellipses,” The Matter of Time Exhibition 
(2005), Guggenheim Museum, Bilbao, Spain.
Surface elements can be considered structural just as 
much as they are sculptural.

Sculptures by Richard Serra.

Figure 2.1
Skeletal structures’ line structural elements versus 
massive structures’ surface structural elements.
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the primary structure. As a particular example of this condition, we 
might find that spanning between large inclined roof beams (also 
known as rafters) there are a number of smaller transverse beams 
(called purlins) running parallel to each other which, in turn, directly 
support a wood sheeting material that is used to make the roof 
surface. Structural elements such as these purlins are likely to span 
orthogonally with respect to their supporting elements, and to have 
a shorter spanning distance and therefore also be smaller; these are 
then typically termed secondary structural elements as opposed to 
the main beams that are the primary structural elements. In some 
cases there can even be a third layer of structural elements called 
tertiary structural elements.

Looking now at the other broad group of structures that we have 
called surface elements, we will find that these can generally be 
characterized as being essentially two-dimensional, with significant 
dimensions of both length and width, while having a thickness 
that is typically much smaller than the other two dimensions. As 
we did with line elements, we can also classify surface elements 
geometrically into two groups as flat surface elements and folded/
curved surface elements. Flat or planar surface elements form 
walls, slabs, and plate structures, while folded or curved surface 
elements in buildings may refer to the components of folded plate 
structures or else to singly curved arched vaults and cylindrical 
shells or to doubly curved tension membranes and domes and 
rigid shells. We will also find undulating surface elements within 
this last grouping, in the form of roof or floor slabs having varying 
curvatures, for example. For the time being, however, there is no 
need to worry about all of these new terms and structural forms; 
the later chapters of this book will eventually discuss just how all 
these different surface elements are shaped and how they behave 
when loads are applied to them.

As was previously discussed, structural systems have broader 
implications in the context of architecture than “simply” that of 

carrying and resisting loads. For example, one can observe the 
differences in terms of the spatial qualities produced by the two 
distinct vertical load-carrying systems of skeletal/line structures 
(columns) and massive/surface structures (walls) that were introduced 
above. Let us first consider, for example, the spaces within two 
well-known residences: the Villa Foscari at Malcontenta in Italy 
dating from 1560, and the Tugendhat Haus in Brno in the Czech 
Republic completed in 1930. The house from the Renaissance 
period designed by Andrea Palladio (1508–1580) represents a 
traditional building type in which masonry walls carry all the roof 
and floor loads and self-weight of the walls themselves down to 
the ground. (Ill. 2.9a.) These surface-type wall elements also very 
clearly establish the dimensions and sense of enclosure of the 
interior spaces of the house. It can be said that there is, therefore, 
an intimate relationship here between the functional aspect and 
quality of the architectural space on the one hand and the dimensions 
and geometrical arrangement of the load-bearing structure on 
the other. This has been the most common condition throughout 
building history when brick and/or stone structures were dominant 
and it continued to be the most important structural system until 
the twentieth century. 

In contrast to this, within the 1930 Modernist period Tugendhat 
House by Ludwig Mies van der Rohe (1886–1969) line structural 
elements in the form of steel columns carry the vertical loads, and in 
doing so these hardly interfere with the open space all around them. 
(Ill. 2.9b.) Indeed, in this house the limits of the different functions 
within its large room occur in ways that are totally independent of the 
grid that the columns set out, and these are infinitely changeable. 
This is an example, then, of the so-called “free plan” advocated 
by the architect Le Corbusier early in his career, and which is made 
possible here by the steel column grid; the relationship between 
the vertical support structure and the space of the house is one 
that is very free and open. 

Figure 2.2 
System hierarchy; primary and 
secondary structural elements.

facing page

Illustration 2.9
Ground floor plans of three houses that represent both the massive 
structural system with load-bearing walls, and the skeletal structural 
system with columns that carry vertical loads. 
(a) In the Villa Foscari, Malcontenta, Italy (1560) by the architect Andrea 
Palladio the load-bearing walls throughout also clearly establish the 
interior spaces. This is true for traditional building systems in which 
masonry of one sort or another was the most likely choice for structural 
materials. 
(b) In the Tugendhat House, Brno, Czech Republic (1930) by the architect 
Ludwig Mies van der Rohe, the skeletal structure enables the limits of the 
space to be independent of the support structure. 
(c) In the brick country house (1923) also designed by Mies in which load-
bearing walls do not form closed rooms as they do in the Villa Foscari, 
but rather create open spaces where movement is relatively free and 
uninhibited, and yet where they still suggest room zones and to a certain 
extent also control view sightlines.
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b) c)
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Looking just at these two examples might lead to the conclusion 
that load-bearing wall structures belong in the past. But that is 
not the case. In fact, in just the preceding section we saw that 
within the Bregenz Kunsthaus from 1997 there are three massive 
reinforced concrete walls that are the only means of support for 
the loads of the multilevel art gallery and that these walls also 
organize the plans and help to define the spaces of the museum, 
control their lighting, etc., and by doing so clearly demonstrating 
that the wall has not lost its place in contemporary architecture. In 
fact, in a similar vein it is interesting to note that early in his career 
Mies also worked with load-bearing walls as a way of establishing 
room zones within a basically open living space, as exemplified by 
his project for a brick country house from 1923. (Fig. 2.9c.) Both of 
these examples exploit the spatial potential of load-bearing walls 
in a different way than does the traditional building type in which 
walls completely enclosed and defined interior spaces. Instead, in 
the more contemporary examples, overall spaces are much more 
open and movement is relatively unconstrained in spite of the 
presence of structural walls. 

But at the same time it should also be noted that while the 
Modernist architectural style mostly developed from the early 1920s 
onward based on an exploration of new open spatial concepts and 
of structural systems involving skeletal frameworks, both of these 
innovations can not-so-coincidentally also be connected with the 
significant material advances that have occurred over the past 100 
years or so; i.e., the industrial production of structural steel and of 
high-strength concrete – but this is yet another topic that we will 
come back to repeatedly throughout this book, and especially in 
Chapter 5 Materials. Of course, Modernism has had a lasting legacy 
well into our time, with much of what we build today being based at 
least on some level on its fundamental principles, even as enclosed 
spaces still find their place and raison d’être today and as surface 
elements continue to be with us in the form of contemporary load-
bearing walls, slabs, folded structures, vaults, and shells. In fact, 
these structural forms can be said to be experiencing a renaissance 
of sorts in our age of computer-aided design and computer-assisted 
manufacturing, and we shall encounter some interesting examples 
of them in the chapters to come.

Structural System Categories:  
Long span vs. Low-to-mid-rise vs. Tall Building

It should be pointed out that so far in this section we have primarily 
been discussing the differences between vertical structural elements 
and the impact of these on certain architectural design objectives. 
The reason for this is that the majority of buildings around us are 
relatively low-to-mid-rise multistory buildings intended for common 
purposes; i.e., most are probably residential while a significant 
percentage will be commercial office buildings. An essential aspect 
of knowing about structural systems, therefore, must necessarily 
involve knowing how stories can be stacked up one on top of 
another and what the structural implications are when this takes 
place, both spatially and physically. 

In this very common building type, horizontal spans for the 
floors and the roof are typically relatively modest. This means that 
the structural logic and behavior of these spanning subsystems 
does not need to vary very much from one case to the next, and 
that these are thus of lesser importance at this very early stage of 
the discussion about structural element choices and their overall 
spatial consequences. The horizontally spanning structure in such 
buildings could be a flat concrete slab or a slab strengthened by 
underlying steel beams or else a timber beam system with a walking 
surface layer of wooden boards, etc. – and the typical spanning 
range for all of these falls within 3–10m (10–30ft), i.e., certainly 
enough to cover a typical room’s plan dimensions. Because floors 
generally need to be flat and uniformly solid in order for people to 
be able to occupy a space and circulate within it, aside from any 
resultant surface textures and visual patterns (e.g., beam spacing, 
material choices, etc.) there will be relatively little difference among 
these horizontal subsystem alternatives that would strongly affect 
an overall sense of space within this building category. Horizontal 
spans start to be more structurally challenging and of significant 
spatial and visual interest, however, when the spans go beyond 
this, and so we will return to this topic a bit later in the book to 
discuss the various options that are available for this purpose. 

So if we think of the low-to-mid-rise multistory building as a 
“core” building category, we may start to be able to see that the 
long-span building and the tall building are both “extensions” of 
this, one in the horizontal direction and the other in the vertical. (Fig. 
2.3.) At one extreme of this range, one-story buildings may be asked 
to provide large, open spaces that are uninterrupted by structural 
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elements. This calls for structures having long horizontal spans, 
which can be considered to be its own particular building category 
with its own set of structural and spatial considerations, such as 
strategically shaped beams, trusses, cable-supported structures, as 
well as vaults, domes, folded plates, and shells. At the other end of 
the spectrum, however, we have tall buildings in which both vertical 
gravity loads and lateral forces due to wind pressures and seismic 
conditions can become very substantial, and these impose new 
challenges on the structural system, including overall stability and 
dynamic movement. In our discussion of structural forms throughout 
this book, we will encounter examples associated with all three of 
these categories of (highly simplified) building types; i.e., the long-
span building, the low-to-mid-rise building, and the tall building. 

Locating and Arranging Vertical Structural Elements

Quite often the vertical supporting elements in a building are 
located according to the intersection points of a regular grid, with 
the horizontal distances between these structural elements found 
to be similar over most of the building plan. This regularity has the 
advantage of allowing for a standardized construction process and 
the eventual flexibility of occupancy arrangements. 

Different overall building plan configurations may lead to other 
ways of positioning the various vertical support elements, however. 
In a rectangular building, for example, columns and walls may, in a 
similar way to that which we have just described, be more or less 
uniformly distributed in each orthogonal direction according to a 
square grid overlaid over the building plan, resulting in roughly 
equal floor-beam or floor-slab spans in each direction. Or, perhaps, 
the grid is not symmetrical and these vertical supporting elements 
may be more closely spaced in rows that run parallel to the long 
sides of the building, leading to different span lengths for the 
beams or slab in the two directions. Or else yet again, columns 
and walls may be concentrated at certain points in the plan while 

still maintaining a certain overall geometrical regularity; there are, 
indeed, numerous ways of doing this within a floor-plan layout’s 
“spacing rules” that can be established by such a grid. 

Whether vertical structural elements are located according to 
positions established by a grid or not, however, we also need to 
consider their many possible combinations or arrangements over 
a building plan – keeping in mind, of course, that these elements 
are intended to support the many types of loads, both vertical and 
horizontal, that act on an overall building structure. To begin this 
discussion, we will once again start for simplicity’s sake and ease of 
classification with the basic premise that we will distinguish between 
arrangements that are made up of skeletal/line and massive/surface 
structural elements, the two basic element form categories that 
we have described above. 

Four basic variations of the many possible plan arrangements 
for these structural elements are shown in Figure 2.4. We can easily 
recognize the case of a “pure” skeletal system composed of line-
element columns and beams, with a variant of this being a system in 
which such columns support horizontal surface structural elements 
in the form of floor slabs. For our limited purposes here, however, 
in which we are only concerned with the form and arrangement of 
vertical structural elements, we will label both of these systems as 
belonging to the “skeletal structure” type. Instead of columns for the 
vertical structure, however, we may have massive/surface elements in 
the form of load-bearing walls that are located in the plan either as 
isolated planar elements, or else several of these may be arranged 
together in such a way that they form more-or-less-closed “boxes.” 
This latter grouping arrangement of intersecting walls effectively 
form vertical structural members having a hollow prismatic space in 
the middle, and these are known to have significant load-bearing 
capacity while at the same time possessing distinct spatial qualities. 
All of these four basic vertical structure arrangements can obviously 
be reconfigured in many different ways according to programmatic 
needs, design intentions, loading demands, etc. – some examples 
of which are shown in Figure 2.4.

Figure 2.3 
With the low-to-mid-rise building having 
a limited number of stories established as 
the “core” building category, by extending 
the vertical load-bearing system we may 
also identify a different building category, 
namely that of the tall building. Whether 
low or tall, a vertical structural system in a 
building is typically based on variations of the 
two fundamental structural element types: 
the column-based skeletal/line structure or 
the wall-based massive/surface structure. 
Likewise, at the other end of the spectrum, by 
extending the horizontal structural system of 
a building a large, horizontal span emerges. 
This third category of the long-span building 
typically leads to a discussion of alternative 
structural forms for coping with these large 
spans such as beams, arches, or cable 
structures. 
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Figure 2.4 
Four basic plan variations of 
vertical structural element 
arrangements are shown, while 
a large number of other related 
arrangements are possible, only 
some of which are represented. 
It should be noted that these are 
merely schematic suggestions 
and that they do not reflect all 
there is to a real-life building 
plan. 

Dots indicate column 
positions and thick black lines 
indicate the locations of load-
bearing walls. Thin black lines 
between the dots (columns) 
represent beams, and arrows 
point out the spanning direction 
of the floor structure. Where no 
beams are indicated by straight 
lines between columns, the 
horizontal (floor) structure is 
being thought of as a flat slab 
of reinforced concrete. Where 
arrows cross, two-way action of 
the floor slab is being suggested. 
Red lines represent the need for 
some sort of lateral bracing in the 
vertical structural system.
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As an aside, it should be noted that while regular grids are 
certainly the most common arrangement for vertical structural 
elements within a building plan, this need not be a necessity. In 
fact, in contemporary architecture a number of unique buildings are 
constructed with a much “looser” arrangement of column locations, 
whereby these elements may themselves establish different sub-
spaces and multiple circulation paths within an overall interior space. 
(e.g., Ill. 2.10.) Such column arrangements obviously correspond to 
a very different notion of “freedom” of organization and space and 
movement than that which the Modernists developed according 
to their regular orthogonal grids.

A structural system that is composed solely of columns as vertical 
load-bearing elements will need additional lateral bracing in order 
to maintain a building’s lateral stability. This is indicated in Figure 
2.4 by red lines that represent bracing strategies such as cross-
bracing, single-diagonal bracing, or rigid frames. There is much 
more discussion to come about lateral stability concerns in buildings 
and bracing options, as will be found in this chapter in Section 2.5 
and then later in the book when a full chapter is dedicated to the 
topic, i.e., Chapter 10 The Frame and the Shear Wall. 

It should also be pointed out that although we have repeatedly 
distinguished in this section between skeletal/line element structures 
and massive/surface element structures, in reality it is only in certain 
cases that only one or the other of these basic structural element 
types is used exclusively throughout in a building. In most cases we 
will find that overall structural systems will be something of a hybrid 
system, with both skeletal and massive structural elements utilized 
together. (Fig. 2.5.) Of course, various factors will influence the choice 
of a particular structural system and its unique configuration, such 
as architectural plan layout, desired visual appearance, spanning 
distances, building material selection, construction techniques, 
among many others.

Notwithstanding the basic structural element geometrical form 
classification that we have introduced in this section (e.g., column 
vs. wall), it will be found that the chapters of the present book have 
been organized according to basic structural element types that 
are identified by their behavior when carrying loads. This means 
that discussion about the structural response of corresponding 
line element and surface element forms can take place side by 
side and within the same context, irrespective of their geometrical 

Figure 2.5 
Diagram of hybrid structural systems that combine both the skeletal/line 
and massive/surface structural element types.

Illustration 2.10
White Forest Pavilion, KAIT, Atsugi, Japan (2007). 
Non-uniform interior spaces of a student workshop 
are created by having a large number (305) of 
irregularly placed, randomly oriented, small planar 
columns that suggest room zones and act as visual 
screens of variable densities aside from carrying loads. 

Architect: Junya Ishigami + Associates. Structural 
engineer: Yasutaka Konishi. Cornell model by Jordan 
Berta and Henry Gao.
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classification; e.g., beams and slabs are treated as two variants of 
the same structural problem, namely bending, and columns and 
walls share a chapter where compression and buckling are the main 
structural behavioral issues that one needs to be concerned with. 

Before being able to do any of that, however, we will first need 
to consider much more explicitly just what are these fundamental 
structural element behaviors/responses to carrying load that have 
been mentioned, and which we call basic structural actions. And 
this is just what we will do, after a brief interlude comparing the 
implications of and rationales for the vertical structural systems 
used in two Tokyo buildings. 

2.3	C ontrasting Systems in Tokyo 

Within the low-to-mid-rise “core” building category, we have 
seen that numerous structural system arrangement options are 
possible, all of which are variants and permutations derived from 
the two fundamental types of vertical structural elements, namely 
those that are of the skeletal/linear type, or columns, and those of 
the massive/surface type, or walls. In this section, we will directly 
compare and contrast two such buildings, both located in central 
Tokyo, built within a few years of each other, and similar in many 
other respects as well – such as by their overall modest height and 
overall size and intended office-use program function. Nonetheless, 
and in spite of all these similarities, these two buildings have rather 
dramatically contrasting structural systems that give them vastly 
different architectural resolutions. We are referring here to the 
Shibaura House, an office/workshop/community space building 
designed by the architect Kazuyo Sejima & Associates (Ill. 2.11, 
2.12), and to the R4 Office Building by Florian Busch Architects. 
(Ill. 2.13, 2.14.) 

While the Shibaura House can be characterized as being open 
and expressively extroverted, the R4 Building is much more closed 
in upon itself. Such overall spatial readings and visual appearances 
are very much reflected in these buildings’ contrasting vertical 
structural systems – or vice versa. In the former case this structure 
is composed of a skeletal/line element system of exposed steel 
columns and beams and diagonal braces whereas in the latter it 
consists of massive/surface structure in the form of nearly continuous 
load-bearing reinforced concrete walls all around the perimeter. 

Illustration 2.11
Shibaura Office Building, Tokyo, Japan (2011).
Exterior strongly expresses skeletal/line element structural 
system of columns, beams, and diagonal braces. 

Architect: Kazuyo Sejima & Associates. Structural engineer: 
Sasaki Structural Consultants. 

Illustration 2.12
Shibaura Office Building.
Skeletal/line element system minimizes member 
dimensions, creating a sense of openness from the 
inside toward the surrounding urban context. 



33

Illustration 2.13
R4 Building, Tokyo, Japan (2015).
Exterior expresses the massive/surface structural system of a perimeter concrete 
wall that is pierced by irregular window openings. 

Architect: Florian Busch. Structural engineer: Akira Suzuki / ASA.

Illustration 2.14
R4 Building.
Massive/surface structural system creates shelter and enclosure in a very tight urban 
condition, while strategic openings allow for limited but selective views toward the outside.
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The Shibaura House is completely enveloped in glass and its 
exterior columns and braces appear only as thin vertical lines that 
do not obstruct the daylight from entering the building in any 
significant way. Here the external surroundings are effectively 
made a part of the interior spaces because of the completely 
transparent nature of the line-element structural system and of 
the building’s glass cladding. And at night, the Shibaura House 
becomes a distinctive and active urban lantern. In the case of the 
R4 Building, only very limited and discrete square window openings 
are inserted into the perimeter wall at carefully selected locations 
in order to allow sufficient daylight into the inside and to provide 
tightly controlled views toward the exterior. Overall, these openings 
also form a seemingly random and arbitrary pattern on the building 
face, especially at night, and in so doing carefully camouflage the 
building’s scale and any notion of the predictable floor levels of a 
typical office building. 

The somewhat open public/private program of the Shibaura 
House invites people to observe the internal activities from the 
outside and to enter inside. There are also three large open-air 
terraces that are carved out of the volume of the building, thereby 
merging internal and external activities and combining the sense of 
interior/exterior spaces being simultaneously occupied. In contrast, 
the tight and awkward urban context of the curved and narrow 
site conditions for the R4 Building called for a much more insular 
and less transparent building. The activities taking place within its 
multiple leased office spaces are also inherently of a more private 
nature than at the Shibaura House, and so these need to be much 
more sheltered. In this respect as well, then, the reinforced concrete 
perimeter wall surface structure of the R4 Building works especially 
well.

These two very different choices of structural system arrangements, 
then, can be seen to each have their place in contemporary Tokyo. 
Each system relates in its own way to contrasting architectural design 
intentions that address visual appearances, spatial experiences, 
site conditions, and programmatic functions, while simultaneously 
adding new “life” to their urban environment. All things considered, 
these are no small tasks that the structural systems are being asked 
to perform – certainly much more than “just” carrying loads.

2.4	F undamental Structural Actions

In order to have a more informed and detailed understanding of 
the mechanics of structural behavior and about structural elements’ 
and systems’ response to loading, however, we must at this point 
take a big step back and establish certain fundamental principles. 

Types of Deformations and Structural Actions

To start with, we can identify the different types of deformations 
that result in structural elements when they carry loads, and the 
name that we give to the forces that are associated with those 
deformations. (Fig. 2.6.) Although we may not see them because 
of their typically small magnitudes, it must be understood that 
such deformations are always present in structural elements that 
carry load. But we also take care to design structural elements in 
such a way as to prevent any especially large deformations that 
clearly would not be acceptable for aesthetic or physical comfort 
reasons, or else that might cause cracking of floor and wall finishes, 
for example. Depending on the direction of the applied load with 
respect to the structural element, the different types of deformations 
that can result are as follows:

•	 Elongation or stretching of the element, which we explain as 
being the result of a tension force acting within the element. 
Tension force is the effect of two loads pulling away from each 
other in opposite directions.

•	 Shortening of the element, resulting from a compression force 
acting within the element. Compression force is created when 
two loads are pushing against each other.

•	 Flexing or curving of the element, caused by bending action 
within the element. Bending is the effect of transverse loads 
being applied to the element.3

•	 Twisting of the element, which is seen as a result of forces acting 
that cause the two ends of an element to twist in opposite 
directions (torsion).4

•	 Wracking or “shearing”; a parallel movement of one plane 
within an element relative to another. This is understood to be 
the result of shear forces acting. Shear force is the effect of two 
loads of opposite direction acting in two different planes within 
the structural element.
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Envisioning Fundamental Deformations  
and Structural Actions

In order to help visualize these structural actions in an architectural 
context, we will now closely examine the responses to loading of the 
elements (mostly columns and beams) that make up a representative 
building structure whose overall section is drawn in Figure 2.7. 
This example is particularly designed to demonstrate the different 
deformations and forces that we presented in isolation above 
and which we may encounter in any specific building. We see a 
large room with a ground floor and a mezzanine level over half 
of the available floor space. Columns carry both ends of the roof 
beams while the mezzanine at one end is suspended from those 

beams by help of vertical tension elements, called hangers, and 
at the other end rests on brackets fastened to the columns. An 
entrance at the right is protected by a canopy constructed with 
small beams projecting outwards without support at the outer end, 
but that are fixed to a beam that we will shortly see runs in what 
is the longitudinal direction of the building; i.e., into the plane of 
the paper in this two-dimensional representation. The weight of 
the structural elements themselves, plus the loads that they are 
supposed to carry such as snow load on the roof and canopy and 
live loads from the occupants and furnishings on the mezzanine 
level, are all represented in Figure 2.7b by a series of arrows that 
are evenly spread out over the length of the beams. This graphic 
depiction shows that gravity loads like these act vertically downward 

Figure 2.6 
Small deformations and 
accompanying forces in structural 
elements: elongation/tension, 
shortening/compression, flexing/
bending, twisting/torsion, 
wracking/shear.

Figure 2.7 
Representative building structure and loading.
(a) Building section taken through a large double-height room with 
a mezzanine. The roof beams rest on columns, while the mezzanine 
floor beams hang from above at one end and are connected to the 
columns at the other. A canopy structure projects outwards at the 
right side without being supported at the far end. 
(b) Building section with loads depicted. Arrows symbolize the 
loads and (reaction) forces involved.

a)

b)
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and that they are so-called uniformly distributed loads (UDL) along 
their length, at least in the present case. There will be much more 
discussion about loads on structures in Chapter 3. What we wish 
to know for now, however, is primarily what will happen to the 
different structural elements when these loads act on them. We can 
work our way through the whole structural system with the goal of 
identifying the structural actions that result in all the different parts 
of this building section when the loads act as stated. The result of 
such an analysis is drawn in Figure 2.8, and all five structural actions 
defined at the start of this section can be found to be represented. 

Starting with the roof beam resting as it is on a column at each 
end, both the uniformly distributed load it carries as well as the 
(concentrated) load it receives from the hanger that supports part of 
the mezzanine level below make the beam bend slightly downwards 
over its length in a curved fashion. This is an example of flexing, 
caused by bending action within the beam. Such bending can only 
take place if one part of the beam (the upper, in the present case) is 
shortened while the other part (the lower) is elongated, but above 
we have associated shortening and elongation with compression 
forces and tension forces, respectively. Therefore, bending action 
actually results in compression forces and tension forces acting on 
the cross-section of a structural element that is flexed. These are 
forces acting within the beam element: i.e., the upper part of the 

beam will experience an inner compression force while the lower 
part of the beam will experience an inner tension force. (Fig. 2.9.) 
We call the effect of these two internal forces a bending moment. 

Moreover, although it is not as easily noticed, the beam actually 
simultaneously deflects in another manner. If we imagine that the 
beam consists of a series of short planar rectangular segments that 
somehow are attached to one another side-by-side to make up the 
whole beam length, we will find that as a result of the loading on the 
beam there is a tendency for such a segment to “wrack” or deform 
vertically from one side to the other into a parallelogram shape. This 
is the type of deformation that is depicted in the element at the 
bottom of the preceding Fig. 2.6. We understand this deformation 
to be the result of shear forces acting between these two ends 
of the segment of the beam. Therefore, when there are bending 
moments in a beam element there are also shear forces present.

If we now direct our attention to the columns we can imagine that 
they will yield a little to the weight of the beam and all of the other 
loads it supports. (See Fig. 2.8.) The columns are pushed downwards 
along their lengths in the direction of the foundations and respond by 
being slightly shortened. This means that internal compression forces 
are at work according to what we have established in Figure 2.6. 

The structure of the mezzanine floor beam reacts in a similar 
way to the roof beam. (Also see Fig. 2.8.) The mezzanine beam will 

Figure 2.8 
Building section depicting the deformations, forces, and bending moments that act in 
the various structural elements; i.e., in the beams and columns, and in the hanger and 
support bracket at the ends of the beam for the mezzanine.



Chapter 2: Introducing Structural Systems

37

deflect downward due to the uniformly distributed loads that it is 
subjected to and so it will be subject to bending moments and, 
as explained above, simultaneously to shear forces. 

At its right-hand end we find that the mezzanine beam is 
suspended from above by a so-called hanger, commonly in the 
form of a steel rod or other types of slender steel profiles. The 
hanger is attached to the underside of the roof beam. A portion of 
the total weight of the mezzanine is therefore carried by the hanger, 
which stretches in response.5 In Figure 2.6 we have associated the 
elongation of a structural element with tension force, and conclude 
that the hanger experiences tension along its length.

The left end of the mezzanine structure rests on a bracket 
connected to the column. This short and stubby structural element 
has a more or less square elevation and if, so as to exaggerate 
the response to loading, we imagine this bracket to be made of a 
material that could deform easily, we can more easily visualize that 
the left-hand face of it which is fastened to the column is unable 
to move while its right-hand end is able to displace downwards 
somewhat. The square thereby deforms so that its elevation becomes 
lozenge-shaped and turns into a parallelogram. Again, this wracking 
deformation is the kind that we have earlier described as being 
caused by shear forces. Shear force is the dominant structural action 
for this short structural element.

Finally (at least as far as this two-dimensional representation of 
the structure is concerned), let us examine the canopy beam on the 
outside of the building. (See Fig. 2.8.) This beam, while attached 
to the building at its left end, is seen to be extending out into the 
air without support at its outer, right-hand end, and we call this 
condition a cantilever, or a cantilevering beam. Transverse loads 
on the canopy beam will cause it to progressively deflect more 
and more toward its outer end; with concave-downward curvature. 
The form of this bending behaviour implies that the upper part of 
the canopy beam in this case is stretched as a result of the inner 
tension forces that are acting, while the lower part is shortened 
as a result of compression forces at work. And, once again, there 

will simultaneously be a slight deformation of the beam caused 
by shear forces. 

At this point, however, let us imagine that the building continues 
into the paper plane of the section drawing, so that three-dimensional 
space is created and constructed, by repeating the same structural 
section every so often in what becomes the building’s longitudinal 
direction. (Fig. 2.10.) Let us then take another look at how this 
cantilevering canopy beam is attached to the rest of the building 
structure: somehow it is either bolted or welded (if made of steel) or 
cast (if concrete) to a longitudinal beam running along the building 
façade between adjacent columns. This condition is repeated at 
regular intervals all along the building’s length, and thereby helps 
to form an exterior shelter all along this face of the building. The 
canopy support beams tend to rotate clockwise when gravity loads 
act on them, but because each of their left ends is rigidly attached 
to the beam that is spanning longitudinally between columns, 
this will tend to cause this latter beam to twist. This means that 
two adjacent cross-sections of the longitudinal beam will rotate 
relative to one another. (Fig. 2.11.) We thus have a case of torsion 
forces acting in that beam, a structural action that was also briefly 
introduced at the start of this section as well as in Figure 2.6. 
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Figure 2.9 
Detail of a cut-out of the beam that is subject to bending; the 
upper part is shortened as a result of the bending and thus 
experiences a compression force in the cross-section while the 
lower part is elongated and experiences a tension force. 

Figure 2.10 
Perspective of the building as a volume, where the building section 
of Fig. 2.7 is successively repeated to form a space. The structural 
system is shown without any bracing that we will see is actually 
needed in order to secure its stability. 

Figure 2.11 
Diagram of the cantilevered canopy beam fixed to a beam in the 
longitudinal direction. This latter beam will be subjected to torsion 
forces; i.e., twin forces that together make up a particular kind of 
moment which causes the beam to twist slightly. The amount of 
twisting shown here is vastly exaggerated.
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Basic Concepts of Strength, Stiffness, and Stability

The overriding goal of structural design is to make sure that a 
building structure performs well and safely during its lifetime 
while preferably also contributing to an enhancement of its other 
architectural design objectives. This certainly implies that one 
needs to design the structure in such a way that at the very least 
strength, stiffness, and stability are all satisfactorily sustained for 
all possible loads that will be acting on it. By the strength of the 
structure or structural element, we basically refer to the point at 
which the forces reach the limit of what the material of which it is 
made can resist. This limit may be different for each type of force 
(i.e., tension strength, compression strength, etc.), and certainly it 
will vary quite substantially according to material choice. When such 
a limit is reached, we say that the structure or structural element 
fails. Failure is intimately linked with structural strength, and there 
are several ways in which failure can occur. If the tension force 
has reached the limit of what the element is able to resist for that 
type of structural action, then we say that a tension failure occurs, 
etc. (Fig. 2.12.)

By stiffness, we mean the ability of a structure to resist 
deformations, enabling it to function in the way that we expect 
and allowing us to comfortably occupy a building. We may refer 

on occasion to the stiffness of each structural element and in 
other cases to the stiffness of the structural system as a whole. A 
certain proportional deformation, given as a number, is commonly 
established as a limit for deformations; e.g., for a beam it might be 
a deflection of 1/300 of its length, and for a tall building a side-sway 
of 1/400 of its height may be considered the maximum permitted.

Last, but not least, stability concerns need to be addressed; if 
not, these may also be considered to be the cause of the failure 
of a structure. We can distinguish between the overall stability of a 
system and the internal stability of individual structural components. 
Indeed, a whole building’s structural system may twist about its base, 
or may overturn, or else slide on its foundations when subjected to 
horizontal loads caused by wind or earthquake. We refer to such 
failures as a lack of overall stability. (Fig. 2.13.) Moreover, individual 
structural elements need to hold their position in space relative to 
other elements; if not, the intended structural cooperation between 
them may be prevented and unacceptable large deformations may 
result. Abrupt and uncontrollable sideways deflection of a slender 
strut subjected to compression forces, for example, may exemplify 
a lack of stability of a structural member. (We will discuss this in 
Chapter 8.) The remedy for such concerns, obviously, is to ensure that 
through a knowledge of predictable structural behaviour we design 
stable structural elements according to the anticipated loading.

Figure 2.12 
Failure mechanisms related to 
structural strength: tension failure, 
compression failure, bending 
failure, and shear failure.

Figure 2.13 
Failure mechanisms related 
to structural stability. Overall 
stability failures from twisting, 
overturning, and sliding.
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2.5	O verall Stability  
– Taking a Bird’s-eye View

In this section, we will consider the different overall stability failures 
that may result from lateral loads acting on building structural 
systems, and thereby develop certain general principles for how 
we should organize and distribute structural subsystems within a 
building plan.

Overall Stability Concerns

For a building that is subjected to lateral loads, there are a number 
of basic requirements which must be fulfilled so that stability can 
be maintained. First, when seen in elevation, the building must 
be prevented from rotating on its edge when it is subjected to 
lateral loading or, to exaggerate the point, from rolling over like 
a tumble weed. (Fig. 2.14a.) This is most clearly envisaged for a 
tall building and especially one that has a particularly low weight. 
The critical aspect here is to make sure that the weight of the 
building is sufficient to keep the whole width of the building securely 
connected to the ground when maximum lateral wind loads are 
acting on it, and within an additional safety margin of perhaps 50 

percent for good measure; i.e., the objective is to be well assured 
of preventing the building from rotating as a rigid body about 
its potential axis of rotation, which is the line formed where the 
building structural system meets the ground on the leeward side, 
opposite to the one on which the wind acts. If this is not possible 
because the building is too tall and therefore it is subject to wind 
loads that are too large to prevent potential rotation, then we must 
mechanically anchor the building structure to the ground on the 
windward side. Of course, since wind forces are unpredictable and 
may reverse direction, the same would likely to have to be done 
in the opposite direction as well. 

Second, the overall structural system itself must be designed 
so that it is sufficiently stiff as well as strong enough to safely carry 
all lateral and gravity loads down the building from top to bottom. 
Among other things, this means that both lateral deformations 
(deflections) must be kept within acceptable limits, and that the 
overall horizontal shear forces and bending response of the structure 
that are produced as a result of the loading conditions will not 
be such as to cause failure of the structural material anywhere 
throughout the structural system. (Fig. 2.14b, c.) 

It is worth noting here that lateral-load-resisting structural systems 
do not necessarily have to take up a whole building’s length or width; 
indeed it is typical that they do not. In fact, the lateral-load-resisting 

a) b) c) d)

Figure 2.14 
A basic overall stability problem is that of rotational equilibrium. (a) The overturning moment 
produced by the horizontal loads acting at a certain height above the ground must not exceed 
the resisting moment produced by the dead load of the structure about the potential point 
of rotation, with the latter increased by a factor of 50 percent to assure safety. (b, c) Both 
shear forces and bending moments are typically produced and need to be resisted within 
the laterally stiff structural subsystems in a building. (d) The transfer of lateral loads acting on 
the building’s façade occurs through floor-level beams or slabs to the laterally stiff building 
subsystems, such as the walls around elevator and stair cores, for example, but that may be 
located elsewhere.
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subsystem is typically incorporated into an overall three-dimensional 
building structure that is often much more extensive. These adjacent 
structural elements are then stabilized by means of direct connection 
to the laterally stiff walls or other types of subsystems. (Fig. 2.14d.) 
Such an overall structural system assumes that all lateral forces are 
able to be transferred through the non-laterally stiff parts to the 
structure of the stiffer subsystems. In other words, the lateral loads 
must be channeled through floor beams, slabs, or roof diaphragms 
(structures that have large in-plane stiffness), and these therefore need 
to be designed for the resulting compression and/or tension forces 
as well as for their more easily anticipated transverse, out-of-plane 
bending caused by vertical gravity loads that are acting on these 
same floor beams, slabs, and roof diaphragms at the same time. 

Envisioning and Organizing a Lateral Stability 
Subsystem

Let us now take another look at the building perspective that we 
discussed in the previous section. (See Fig. 2.10.) If we “extrude” 
the planar building section that we initially considered into the third 
dimension, as we have done in this perspective view, we will have 
defined an occupiable architectural space. In fact, this is actually 
how many buildings are constructed, namely by letting the planar 
structure of a building section be repeated along a linear axis and 
thus, by help of external cladding fastened to the spaced-apart 
structural elements, enclosing a volume of space and creating the 
three-dimensional external form of a building. We can decide on 
an appropriate distance between the columns that recede into 
the space and let the same structural framework replicate itself 
as long as we need to, thereby establishing the building length 
and its overall size. 

At this stage, however, we may become aware of a new problem: 
the series of planar frameworks of beams and columns may, if we 
do not take measures to prevent them from doing so, collapse 
when wind loads act along the length of the building. In fact, like 
a row of huge, open domino tiles that stand on end one after 
another, these frameworks are prone to topple over on to each 
other, causing a so-called domino effect. We therefore need to 
provide some structural stabilizing elements in the third dimension 
between these frames that will prevent this from happening. Placing 
two beams that run in the longitudinal direction and that join the 
tops of all the columns at their connection to the ends of the roof 
beams is a good start. (Fig. 2.15.) These will tie all of the frameworks 
together, but that is not enough: at some point along the length 
of the building we need to make sure that we insert a structural 
stabilizing subsystem that does not easily give way to the horizontal 
(lateral) loads that act on the building along its length. 

A wall of a certain limited length may be used as what we call 
a stabilizing subsystem that is able to provide lateral resistance, 
since a wall is very stiff and unyielding along its length. Indeed, 
it would intuitively seem to be quite difficult to bend such a wall 
when horizontal forces act in the plane of the wall. So, by putting 
such a structural wall segment on each side of the building along 
its length between adjacent columns, and having those columns 
fastened to these walls, we will have provided stabilizing elements 
that under normal circumstances would not allow the structure 
to collapse in this direction. When we use a wall in this way as 
a stabilizing subsystem we usually call it a shear wall, since its 
dominating structural action for low buildings is shear force 
resistance. The two extended longitudinal beams that we just 
described connecting the ends of the transverse roof beams and 
the tops of the columns will actually enable all the frameworks to 
now be stabilized and prevented from overturning; i.e., they can 

Figure 2.15 
Perspective of the building as a volume. The structural system is 
shown with walls as bracing elements to secure its lateral stability. 
There are three walls altogether, and the stability of the building 
is thus covered in both directions. The roof is also shown as a 
stiff diaphragm to enable the wind loads to be transferred to the 
bracing walls.

Figure 2.16 
Lateral instability: with no walls or other measures to act as bracing 
in the transverse direction, wind loads will cause the structural 
framework to lean over and collapse sideways.
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all thereby “lean” on to the two stabilizing walls oriented in this 
direction, through the longitudinal beams transferring of forces 
from one beam-and-column framework to the next. If the building 
is not too long, one such stabilizing wall element along both rows 
of columns should be adequate.

It should be clear at this point, then, that it is not sufficient that 
every building has structural frameworks of sufficient strength and 
stiffness to withstand only vertical (gravity) loading; i.e., lateral 
loads will inevitably act on a building and they must be resisted 
in some way by the structural system. Moreover, we obviously do 
not live in a two-dimensional world and we must therefore expand 
our discussion to consider what it takes to have overall stability 
in a building’s structural system. To stabilize a building along one 
axis as we just did is not enough. Neither is it sufficient to have 
laterally stable subsystems arbitrarily scattered within the building 
plan. Instead, the overall structural system must comprise a stable 
structural arrangement that prevents the building as a whole from 
collapsing when subject to both vertical and lateral loads in any 
direction. 

Referring again to the “extruded” building section in the 
example we have been considering, we can illustrate these 
observations by putting them into context. It seems reasonable 
to think that this building may also tend to collapse sideways 
as a result of wind loads acting on the cladding that we have 
provided to enclose the sides of the building. Unless some new 
structural members or elements are introduced to prevent it, 
we can imagine that wind load coming from the side will cause 
the relatively thin columns to deform excessively, or that the 
connections between the columns and the roof beam, as well as 
those between the columns and the foundations, do not have 
the strength or stiffness to keep these elements together, but 
instead will allow the elements to rotate relative to one another. 

The result of this would be that the whole building leans over and 
falls down sideways. (Fig. 2.16.) Introducing stabilizing subsystems 
in the form of walls (or stabilizing subsystems of another type) 
in this transverse direction is therefore needed to prevent this 
from happening.

However, we would not be likely to put such walls into the middle 
of the building plan in the lateral direction as these would tend 
to interrupt the flow of open space, might interfere with internal 
circulation, or could limit options for rearranging the organization 
of internal spaces. Instead, we may choose to close off the ends of 
the building with transverse walls located there. These should be 
sufficient to resist the lateral forces acting on the whole building, 
especially since they will be resisting loads in their plane; i.e., in 
their longest and stiffest direction. But while these walls will clearly 
stiffen the end frameworks against sideways collapse, we need also 
to account for the stability of all the other frameworks along the 
length of the building. We can take care of this by constructing the 
roof as a stiff diaphragm (which acts somewhat like a table top), 
which would then be fully able to transfer wind loads acting along 
the side walls of the building to the laterally stiff end walls; i.e., all 
the internal frameworks would then be able to lean on to the roof, 
which in turn is connected to the stiff end walls. This transverse system 
strategy, together with the two short shear walls oriented along the 
length of the building that we discussed earlier, should plausibly be 
able to provide a complete stabilizing system that will prevent the 
building from falling over in any direction as a result of lateral loads. 

Beyond this specific example, it can more generally be stated 
with reference to Figure 2.17 that a minimum of three laterally 
stable subsystems must be introduced into a building plan, and 
that these must be arranged in such a way they can prevent the 
building from collapsing when subject to vertical and lateral loads 
acting in any direction.

Figure 2.17 
Effects of different distributions of lateral-load-resisting wall elements in a building plan: (a) two walls oriented in one 
direction leads to instability in the other direction; (b) one wall in each direction leads to rotational instability about 
the point where the walls meet (whether they do so physically or simply by projecting their alignments); (c) three walls 
oriented in such a way that they do not all meet in the same point provide overall stability. Such a stabilizing strategy 
depends on having floor and roof structures that can act as stiff diaphragms to connect together the three different 
walls and enable the wind loads to be distributed amongst them. 
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Basic Types of Lateral-load-Stabilizing Subsystems

The issue of lateral stability is necessarily of central concern for the 
design of a building structure, just as is the carrying of gravity loads. 
This is hardly surprising, as we are well accustomed in everyday life 
of thinking about buildings having to withstand wind and earthquake 
lateral forces; by implication, therefore, we understand that buildings 
must inherently contain structural systems that are able to resist 
such forces. 

In our introductory discussion about overall building systems in 
the preceding sections of this chapter, walls have been described 
as likely stabilizing elements, since these are easily recognized as 
being quite stiff in the direction of their planar surface. A shear 
wall is the name given to a wall acting in this manner, which in its 
most basic form is a flat surface element to which lateral loads are 
applied over its height in the direction of its plane. (Fig. 2.18a.) 
Shear walls can be made of any number of different materials, 
including masonry, reinforced concrete, sheathed timber stud 
walls, steel, etc. In addition to providing lateral stability, a shear 
wall usually also carries vertical gravity loads in compression. A 
clear example of a building that utilizes a shear wall structure for 
all of its gravity and lateral load carrying needs is the Museum for 
Architectural Drawing in Berlin, in which reinforced concrete walls 
surround the perimeter of the building, providing a quiet, secure, 
light-controlled space on the inside and an outer surface that is 
subtly but very appropriately covered with enlarged inscriptions 
of certain architectural drawings found in the museum archives. 
(Ill. 2.15, 2.16) Also, shear walls were instrumental for securing the 
stability of the Kunsthaus Bregenz, a project that we examined at 
the start of this chapter. (See Ill. 2.5, 2.6) 

Aside from the shear wall, there are two other main groups 
of lateral-load-resisting subsystems that can be used to stabilize 
buildings. One is the braced frame, which is essentially a column-
and-beam assembly of elements provided with diagonals in order 
to prevent the assembly from wracking sideways when lateral loads 
are applied to it. (See Fig. 2.18b–e.) Using the braced frame as 
a lateral-load-stabilizing subsystem is an effective way of not 
having the major visual obstruction of the plane of the shear wall 
while maintaining virtually the same degree of lateral stiffness. 
Aside from the classic-look single- and X-diagonal braced frames, 
several variations of form can be identified that also belong to this 
subsystem category, including lattices that are created by diagonal 

a)

b)

c)

d)

e)

f)

Figure 2.18 
Stabilizing elements (from top); 
(a) shear wall, (b) braced frame 
with cross-bracing, (c) braced 
frame with single diagonal, (d) 
diagrid, (e) inclined columns, 
and (f) rigid frame. 
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Illustration 2.15
Museum for Architectural 
Drawing, Berlin, Germany 
(2013). 
Concrete shear walls act as 
stabilizing subsystems all along 
this building’s perimeter, while 
also creating a quiet, secure, 
light-controlled space for the 
museum archives. At the top 
level, however, a steel skeletal 
structure opens things up for 
a meeting and reception room 
with spectacular views to the 
outside. 

Architect: Tchoban Voss 
Architekten. Structural engineer: 
PPW Dipl.-Ing. D. Paulisch. 

Illustration 2.16
Museum for Architectural 
Drawing.
Plan of third floor level; the 
configuration of the perimeter 
concrete walls changes at the 
floor levels below.
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and horizontal members in a triangular grid (these are also called 
diagrids), as well as inclined columns, which can act as both vertical-
load-carrying and stability-bracing elements simultaneously. (e.g. 
Ill. 2.17.) 

The third basic lateral-load-resisting subsystem is the so-called 
rigid frame. (See Fig. 2.18f.) The rigid frame can be characterized 
as simply an assembly of columns and beams that are connected 
together by means of rigid joints (and thus, its name). The rigid 
frame represents a structural assembly that offers not only support 
of gravity loads but also good lateral stability, all the while providing 
an almost complete visual and circulation openness within its interior 
space; i.e., the system is relatively free of either the obstructing 
solid plane of the shear wall or the diagonal member(s) of the 
braced frame. A “classic” example of such a lateral-load-resisting 
system can be observed in the open, one-story building for the 
Modern Art Glass Warehouse in Thamesmeade, UK. (Ill. 2.18.) Here, 

transverse stability is provided by a series of steel rigid frames 
that have stiffened, rigid connections between the side columns 
and the ends of the roof beams. This series of frames allows the 
interior space of the building to be completely free of obstruction. 

We will return to these stabilizing subsystems much later on, in 
Chapter 10 The Frame and the Shear Wall, and there we will go into 
much more detail about how they work and can be alternatively 
configured. Before that, however, a more precise account of the 
loads that act on buildings is needed as it would seem meaningless 
to discuss how individual structural elements and overall systems 
react to loads without specifying more precisely just what those 
loads are; i.e., what causes them, how they can be determined, 
and what design considerations might affect their overall impact. 
This is the topic for Chapter 3.

Illustration 2.17
Milas–Bodrum International Airport, Bodrum, Turkey (2012).
High ceilings of terminal building allow for expansive views of surrounding landscape. 
X-braced frames provide for lateral stability of this space while minimizing any 
obstruction of views. 

Architect: Tabanlıoǧlu Architects. Structural engineer: Arup.
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Illustration 2.18
Modern Art Glass Warehouse, Thamesmead, UK (1973). 
Transverse stability is provided by a series of steel rigid frames, whose rigid connections between 
the side columns and the ends of the roof beams are evident. This allows the interior space to be 
free of obstruction. Resistance to lateral loads on the building in the longitudinal direction, however, 
is provided by cross-bracing in a few bays along both sides of the building.

Architect: Foster + Partners. Structural engineer: Anthony Hunt Associates.
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3
c h a p t e rLoads

3.1	 CaixaForum – Loads to Consider
3.2	 Loads on Buildings – Dead or (a)Live?
3.3	 Dead Loads – Weights of Immovable Things
3.4	 National Theater Railway Station’s Underground Entrance
3.5	 Occupancy Live Loads – Animate Objects, but Inanimate Too
3.6	 Loading Diagrams – Abstractions of Reality
3.7	 Loads from Nature – Earth, Wind, and More

Illustration 3.1
Wells Cathedral, Wells, Somerset, England, 
UK (1239; tower repairs, 1338–1348).
Built in response to uneven tower pier 
settlements, uniquely shaped arches 
provide structural stability and spatial 
character. (See also, Ill. 5.14.)

Master mason for tower repairs: William Joy.
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3.1	C aixaForum – Loads to Consider 

In central Madrid, an 1899 electrical power station has been 
transformed into a multipurpose art gallery, music concert hall, 
film screening center, and conference venue. The Swiss architects 
Herzog & de Meuron’s innovative strategy for the reuse of this 
industrial building is at once to keep and preserve it, but also to 
unexpectedly and wholly lift its brick façade up off the ground so 
as to make it appear that the building is floating in the air. (Ill. 3.2.) 
The masonry wall thereby becomes truly a “curtain” wall hanging off 
a completely new structural framing system inside the building – in 
fact, the old brick walls are lined by new reinforced concrete walls 
that effectively act as deep beams bracketing off interior vertical 
concrete cores. The ground floor is left open, so that access to 
the entrance and spectacular ceremonial staircase is achieved by 
rather disconcertingly having to walk underneath the bottom edge 
of the newly “floating” building.

The new cultural program for CaixaForum required a five-fold 
increase in floor area from that which had previously existed in the 
industrial building. This radical expansion was achieved both by 

building beneath the building – notably, a large auditorium is built 
under the main courtyard (Ill. 3.3) – but also by adding significant 
building volume above the “roofline” of the historical building. 
For this upper portion, however, a completely different enclosing 
material from that of the historical masonry wall is used, namely: 
rusting cast iron plates. The overall profile and shape of this upper 
part of the building references the dimensions and roof-scape of 
the surrounding neighborhood, and the color of the oxidizing 
metal establishes a dialogue with that of the brick below. Finally, 
the plates are perforated by many small openings whose overall 
patterns mimic at a greatly magnified scale that produced by rusting 
action itself. These openings at once give the plates, when seen 
from the exterior, a textural scale that relates to the bricks below 
but also, when experienced from the inside, a certain lightness and 
transparency that allows some direct light to reach “secret” roof-top 
terraces adjacent to the upper level café and administration offices.

A third and distinctive cladding system is used on an adjacent 
blank party wall that frames the museum’s main entrance courtyard: 
a planted wall made up of 15 000 individual plants and 250 different 
species that was designed by the French botanist and artist Patrick 

Illustration 3.2
CaixaForum, Madrid, Spain (2008).
Three very different wall surface finishes around the entrance courtyard result in large 
variations of dead loads that need to be considered. 

Architect: Herzog & de Meuron. Structural engineer: WGG Schnetzer Puskas Ingenieure. 
Planted wall designer: Patrick Blanc.
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Blanc. The structure for this green wall consists of a light metal 
trellised framework placed in front of and stabilized by the wall of the 
adjacent building. A thin vertical layer of felt is used for anchoring 
the plant roots, and nutrient-rich solution is pulled downward by 
gravity in order to water the plants by means of capillary action. 
Aside from providing some cooling and relaxing natural vegetation 
to a very tight urban space, this wall can also be seen to be a direct 
reference to the Royal Botanical Garden located only a block away.

These three different wall surfaces at CaixaForum (and their 
associated weights) begin to illustrate the great variability of loads 
that can act on buildings according to the design decisions that are 
made, but this example can also serve to suggest the much broader 
range of loads that typically must be considered in the design of 
structures and that will be the focus of this chapter. Aside from the 
exterior surfaces, the supporting structural system of concrete walls, 
columns, and beams have significant mass and weight themselves 
that must be carried. Different parts of this building – from the 
auditorium and galleries to the stairways and restaurants – will be 
occupied by people in infinitely varying distributions and densities 
over the course of a single day, while the art exhibits on display will 
also change, albeit over somewhat longer periods of time. Below 
ground level, the structure will have to be able to deal with lateral 
pressures from the earth’s natural tendency to fill the void that 
has been created to serve the expanded program, while above it 
must be able to respond to the constant variations of wind forces 
and the potentially devastating effect of any possible earthquake 
action. CaixaForum, like any other building, is constantly facing an 
onslaught of loads – and it must be designed to be up to whatever 
challenge presents itself.

Illustration 3.3
CaixaForum 
Building section, including below-ground auditorium under courtyard. 
(right) Enlarged detail, showing exterior wall changing from brick-lined 
concrete to perforated cast iron plates above.
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3.2 loads on Buildings – dead or (a)live?

We use the term load to describe any infl uence that causes forces 
and deformations in a structure. This refl ects common usage of 
the word and implies a general understanding by the lay person 
of what it means in the context of building structures. A load can 
result in compression forces applied to a column that is holding up 
a roof or in tensile forces pulling on a steel cable that is suspending 
a walkway. A load can be the weight of a grand piano on a fl oor 
beam in a home or the crowds assembled on stadium seating for a 
World Cup soccer match. The effects of a temperature change on a 
beam that is fastened at both ends and has no room for expansion 
can also be considered as being caused by a load acting on the 
structural member. These examples are obviously but a few of the 
rather intimidatingly extensive range of different load conditions 
that can have an effect on structures. (Fig. 3.1.) Fortunately, many 
of the load types indicated in this fi gure are rather rare and are 
only occasionally found to be acting on an individual structural 
element or on a whole building’s structural system at any one 
time, if ever at all. We will focus in this chapter, therefore, on only 
that handful of loading types that are most commonly found in 
the architecture world.

From a conceptual and organizational point of view, loads on 
buildings are considered to be divided into two separate categories: 
dead loads and live loads. Those that are labeled as dead are ones 
that are considered to be constant over time and not capable of 
moving or being moved. The most obvious examples of this type 
are the self-weights of the columns, beams, fl oor slabs, walls, and 
other elements of a building’s structural system as well as of a 

building’s material fi nishes – such as that of the fl oors and ceilings 
and exterior wall enclosure systems that were discussed with regard 
to CaixaForum in the previous section, or that are also evident 
for the Poli House. (Ill. 3.4, 3.5.) All such loads are caused by the 
gravitational pull of the earth and have magnitudes, therefore, that 
depend on specifi c material densities (Chapter 5) and direction 
that is vertically downward.

Given the preceding defi nition for dead loads, we can conclude 
that loads that are instead going to be considered to be live must be 
those which are known to vary with time and that are easily capable 
of moving or being moved about on a structure. The most commonly 
encountered examples of this type of loading are occupancy loads 
and the environmental loads produced by snow, earth, water, wind, 
and seismic activity. Occupancy loads are particularly self-evident 
as to why they are included in this category: i.e., they include the 
weight of “live” people that occupy and move about a building 
space. (e.g., Ill. 3.6.) Perhaps less obviously but also to be included 
as occupancy loads are the weights of inanimate objects such as 
furniture, warehouse inventory, museum artwork, book stacks, etc.; 
i.e., items that over the typical life of a building have the possibility 
of being moved about a building space, however frequently or 
infrequently that may occur. Natural phenomena such as snow, 
wind, and earthquakes also all vary signifi cantly with time and so 
are considered to be part of the general live load category. We 
will take a more detailed and specifi c look at each of these load 
types in the pages that follow.

Before doing so, however, it is worthwhile making a few general 
comments about the importance of load calculation within the overall 
process of designing building structures. In fact, it is diffi cult to 
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Illustration 3.4
Poli House, Coliumo Peninsula, Chile (2005).
Dead loads include the weight of the structural system, 
which here consists of seemingly massive concrete walls. 
These walls also create the external form and define the 
internal spaces of this house, and they impart both a 
sense of solidity and “rootedness” of the building to its 
rocky outcrop overlooking the Pacific Ocean.

Architect: Pezo von Ellrichshausen. Structural engineer: Cecilia 
Poblete.

Illustration 3.5
Poli House.
Cut-away axonometric drawing reveals 
double-layer form of the exterior walls, 
which incorporate the house’s stairs and 
other service functions.
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overstate the critical nature of this seemingly obvious step, for actual 
building failures can be just as easily attributable to an incorrect 
anticipation of loading as to an erroneous selection of adequate 
member sizes after loads have been established. Moreover, the word 
“failures” here should be understood broadly to include anything 
that prevents the timely or safe occupancy of a structure, whether 
this is characterized by an actual collapse caused by loadings that 
exceed the capacity of structural members and their connections, 
or by significant instability and user comfort issues, or by some 
other major problem.1

3.3	D ead Loads  
– Weights of Immovable Things

The most obvious and inescapable of dead loads is the self-
weight of the structural elements that make up a building’s framing 
system. (e.g., Ill. 3.7, 3.8.) When a structural system’s dimensions 
and constituent material are known from the start (such as in the 
case, for example, of a building renovation project) these loads 
can be determined quite precisely by calculating each element’s 
geometric volume and multiplying by the material’s mass density 
and the gravitational acceleration constant, g, as will be discussed 
further in Chapter 4. This process can be accomplished simply by 
old-fashioned hand methods for relatively small-scale projects, but 
for large structures it quickly becomes a tedious algebraic exercise; 
fortunately, today these calculations can also be taken care of 

Illustration 3.6
National Opera and Ballet, Oslo, Norway (2008).
Live loads include the weight of human occupants, wherever 
these may occur.

Architect: Snøhetta. Structural engineer: Reinertsen Engineering AS.

Illustration 3.7
Eames House, Pacific Palisades, CA, USA (1949). 
Light structural elements such as open web steel trusses and narrow 
tubular columns help to minimize dead loads caused by self-weight.

Architect: Charles and Ray Eames. Structural engineer: MacIntosh and 
MacIntosh Company; also Edgardo Contini (for first version of house’s design 
in 1945 – and for which structural components were ordered).
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Illustration 3.8
SESC Pompéia, São Paulo, Brazil (1986).
Concrete walls and walkway beams produce substantial dead loads from 
their own self-weight. 

Architect: Lina Bo Bardi. Structural engineer: Figueiredo Ferraz.
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Figure 3.2
Spanning distance ranges for some typical 
floor and roof structural systems.
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automatically by the most basic of structural analysis computer 
programs.

In the early stages of a building’s design process, however, when 
things are still in the formative and schematic phase, a structural 
system’s configuration, including even spanning distances and 
specific material choices, may be uncertain. To get things going 
one must at that point rely on preliminary and very approximate 
estimates of typical spans and dead loads for various types of 
building systems. (Fig. 3.2, 3.3.) Starting with such general estimates 
and applying the lessons of the chapters that follow for designing 
individual structural members, one can through an iterative process 
relatively quickly reach a point where a more precise determination 
can be made of the necessary structural member dimensions and 
the dead loads that result from them.

Besides the structure’s self-weight, other dead loads are 
sometimes just as significant and cannot be ignored. Such loads 
are attributable to things like floor and ceiling finishes, MEP 
(mechanical, electrical, and plumbing) service ducts, conduits 
and pipes, a building’s exterior cladding, etc. – all of which are 
physically fastened to the structure of the building and, therefore, 
cannot move or be moved relative to it. The need to account for 
the dead loads of finishes remains true today despite the fact that 
the overall trend in architecture over time has been to reduce the 
weights of such “secondary” aspects of finished buildings: i.e., 
sweeping generalizations can be made that we have gone from 
thick masonry enclosure systems to thin and light glass curtain 
walls, and from heavy marble floor veneers and plaster ceilings 
covering structural framing to simply polishing raw concrete floor 

slabs and having beams and corrugated metal decking left exposed 
to view from below.

The weights of typical finishing and enclosure systems are usually 
defined either in terms of material densities (there will be more on 
this topic in Chapter 5) or weights per unit surface area according 
to standard dimensions that result from a particular manufacturing 
process. A detailed calculation of dead loads for particular floor 
or wall surface areas is often a matter of accounting for several 
“layers” of materials – that is, the structure itself plus multiple 
layers of various finishes. An example of such accumulations is 
approximated here for a typical floor at 30 St. Mary Axe where, 
as can be seen in the adjoining section, the floor’s framing system 
consists of a reinforced concrete slab cast on to a corrugated metal 
deck that is supported by an underlying steel beam framing system. 
(Ill. 3.9.) Several layers of additional, non-structural finishes such 
as a raised floor, air handling ductwork, and a suspended ceiling 
also need to be accounted for above and below the floor system 
itself. A reasonably accurate estimate of the dead loads that need 
to be considered for such a floor, therefore, may be calculated 
from various material self-weights and manufacturers’ product 
estimates as follows:

Lightweight concrete slab on steel  
beam floor system estimate:	 3.0kN/m2

Raised floor system estimate:	 0.75kN/m2

Air handling ductwork estimate:	 0.5kN/m2

Suspended ceiling estimate:	 0.25kN/m2

Total dead load estimate:	 4.5kN/m2 (90lbs/ft2)

Figure 3.3
Examples of dead load estimates for various 
floor and roof structural systems.

Illustration 3.9
30 St Mary Axe, London, England UK (2003).
Section drawing through floor system demonstrates layered  
aspect of dead loads produced by structure and various finishes.

Architect: Foster + Associates. Structural engineer: Arup.
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If the weight of such floor structural systems and their finishes 
is an obvious source of dead load, then so too is that of the 
exterior wall cladding enclosing virtually all buildings to keep us 
protected from the vicissitudes of the weather. For example, the 
section drawing just considered at 30 St. Mary Axe also shows 
a lightweight, double-glazed, and climate-controlling cladding 
system. The design of such systems, both in terms of aesthetics 
and of active and passive climate controlling features, is a long-
recognized avenue for architectural expression and, as such, the 
dead loads of cladding systems can vary greatly. A case in point is 
that of the CaixaForum in Madrid described earlier in Section 3.1, 
in which three purposefully very different cladding types help to 
accent the reprograming of the previously existing building and 
define its new urban courtyard space.

3.4	 National Theater Railway Station’s 
Underground Entrance 

The National Theater Railway Station entrance designed by architect 
Arne Eggen is situated underground, beneath the sloping landscape 
of the Royal Park in Oslo; the train platform has two means of 
access from the world above, one at each end. (Ill. 3.10.) From 
the western entrance vestibule one is able to catch a glimpse of 
the distant Oslofjord, which acts as an essential point of reference 
when emerging from the disorientation of the subterranean realm. 
The vestibule’s form, circular in plan and with a vaulted, dome-like 
ceiling, is inspired by the natural forms of the Park’s ridges and 
rolling landscape. Also, the circular form resolves the different 
alignments of the passage to the outside world and the tunnel of 
escalators leading down to the train platform.

Illustration 3.10
National Theater Railway Station Entrance, Oslo, Norway (1998). 
Section and plan drawings highlight underground aspect of station entrance as well as its 
circular and domed configuration.

Architect: Arne Eggen Arkitekter. Structural engineer: Rambøll Norway AS.
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In order to deal with both the downward and lateral soil pressures 
that result from being buried deep underground, the architecture 
of the station entrance is generated from curved geometric forms 
like that of the circle, the oval, the cylinder, and the sphere (we will 
explore these forms’ relationship to loading in Chapters 12 and 
13). But it is the vestibule’s domed ceiling that will mostly be the 
focus of discussion here; in order to carry the weight of the earth 
above it, a spherical cap of some sort was considered desirable. 
(Ill. 3.11.) However, the preparation of formwork for such a doubly 
curved ceiling surface made out of concrete is not a straightforward 
matter. In this case, the problem was resolved by transforming the 
smooth curvature of a spherical surface into one with vertical steps 
created by a series of horizontal concrete rings of varying diameter. 
The vertical edges of these rings were formed as short lengths of 
single-curvature cylinders with decreasing radii as one moves up, 

whereas the bottom sides of the rings are all purely flat, horizontal 
surfaces. Because the vertical steps all have the same height, the 
width of the rings increases toward the zenith point, with the overall 
composition somehow looking like the rings of the planet Saturn. 
By constructing the vestibule in this manner, and because the 
formwork could be built with free access to the excavation site 
from above before the earth was eventually pushed back to cover 
the completed structure, the vestibule ended up being relatively 
the easiest part of the station to build. By comparison, the vaulted 
tunnels and passages of the station farther below had to be cut 
out of solid rock and have their curved concrete walls and ceilings 
cast against it, something not so easily accomplished.

The vestibule of the station also has a couple of other interesting 
design features that warrant mention. First, in order to give the space 
lightness and an impression that the ceiling is “floating,” vertical 

Illustration 3.11
National Theater Railway Station Entrance.
Interior view, showing stepped rings of domed ceiling; also, columns that 
are thickened at mid-height.
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support is provided around the perimeter by eight slender steel 
columns. The main design criterion for the design of these columns 
was that they have minimum weight of material yet maximum bearing 
capacity. Toward this end, their cross-section is three-pronged 
(similar to the star on the grille of a Mercedes) in a manner that we 
will see makes sense in Chapter 8. Entasis, or the thickening of the 
column shaft at mid-height, can also be seen here although this is 
mainly for aesthetic effect rather than structural benefit: a column 
with a straight profile, although effectively having the same bearing 
capacity, might have been considered to have looked too frail.

It should also be mentioned that a domed space is by nature 
considered to be a very active one acoustically. And in the vestibule 
for the National Theater Railway Station, with its granite floor and 
the flat-bottomed surfaces of the ceiling’s stepped concrete rings, 
the space acts as a resonator with a sound focal point at its middle. 
“Flutter echo” is the term used to describe the phenomenon when 
the sound of footsteps and conversation is reinforced and keeps 
vibrating within a space, and this is a quality which is distinctly 
noticeable in the vestibule, giving even further life and interest to 
the underground circulation space. This observation reminds us of 
the long history of building designers exploring the relationships 
between acoustics and the shape and volume of space, and it may 
bring to mind the Byzantine church of St. Mark’s in Venice, which 
was built over the plan of a Greek cross and thus has five domes 
– one in the middle and one over each cross arm; in the sixteenth 
century, the composer and organist Andrea Gabrieli composed 
music that exploited the special acoustics of this multi-domed space.

3.5	O ccupancy Live Loads – Animate 
Objects, but Inanimate Too

Amid all the hyperbole that often surrounds architectural design, 
it is sometimes seemingly forgotten that the primary purpose of 
buildings is, after all is said and done, to create sheltered space 
for people and their myriad activities. As has been suggested 
already, there is an essential variability to the human occupation 
of buildings that doesn’t lend itself to as precise an accounting of 
loads as we have discussed with dead loads, even when one is at 
the point of final design for a structural element. (e.g., Ill. 3.12.) 
For example, an auditorium may be either unoccupied, sparsely 

populated, or exceed official seating capacity all within a 24-hour 
cycle, and may be repeatedly so. Or, within the living room of a 
home, furniture such as bookcases and couches and cabinets may 
be moved around every now and then as one tires of a particular 
arrangement. Moreover, every apartment in a building will be 
furnished differently depending on various individuals’ aesthetic 
tastes and interests. (Ill. 3.13.) And over the longer term, a building 
may eventually be “re-programed” as it gets reused. Buildings 
that were once designed as an automotive manufacturing plant 

Illustration 3.12
Seattle Public Library, Seattle, WA, USA (2004).
Occupancy live load conditions vary within a building according to 
anticipated function, but also with time: (a) people circulate, and furniture 
and shelves can be moved, (b) chairs may or may not be used at any 
given moment in time.

Architect: Office for Metropolitan Architecture (OMA). Structural engineer: 
Arup and Magnusson Klemencic Associates.
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or slaughterhouse may eventually become a hotel or library, for 
example; the permutations and possibilities of such reuse of buildings 
are virtually endless.

Trying to account for such variability could potentially cause 
designers to throw up their hands and give up before even beginning, 
but that is demonstrably not the case as buildings surround us. 
Instead, practical experience gained over time and corroborating 
scientific experiments have helped establish the means to develop 
today’s building codes that define load allowances according to 

different types of inhabitation. (Fig. 3.4.) As can reasonably be 
expected, the lowest such load allowance, 1kN/m2 (20lbs/ft2), may 
be for an attic space with no headroom and where entry can only be 
accomplished by means of a trap door (presumably severely limiting 
one’s ability to store especially heavy objects), whereas the larger 
occupancy loads, 5kN/m2 (100lbs/ft2) or more, are associated with 
building lobby areas, library book stacks, and industrial building 
spaces. In order to help give a better “feel” for the magnitude of 
these load allowance numbers, they can be compared to an easily 

Illustration 3.13
Highline 23, New York City, NY, USA (2009).
Individual preferences for furniture styles and apartment layouts need to be 
accounted for as part of occupancy live load allowances.

Architect: Neil M. Denari Architects. Structural engineer: DeSimone Consulting Engineers.
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imagined condition: if people weighing on average 70kg (154lbs) 
are standing shoulder to shoulder and front to back with each 
thereby occupying roughly 0.25m2 (2.7ft2), this condition translates 
roughly into an average loading of 2.7kN/m2 (57lbs/ft2); i.e., such 
a load condition essentially mimics the design loading for typical 
office floor occupancy. (e.g., Ill. 3.14.) Like the dead loads previously 
considered, occupancy loads are caused by the earth’s downward 
gravitational pull and they act, therefore, vertically downward.

It is important to understand that building code allowances 
are almost assuredly different from that of a precise and specific 
loading situation at any given moment in time; rather, they are 
meant instead to allow for the infinite variations of how people will 

occupy a certain space over time as well as for the random and 
changing placement of such things as filing cabinets and desks 
according to typically flexible furnishing arrangements. Conceptually 
such live load allowances can be thought of as though all human 
occupants and their associated belongings are being converted 
into a uniformly thick layer of equivalent weight spread over the 
entire floor area (Fig. 3.5), and these represent an estimate of 
the maximum live load conditions that can be anticipated for any 
particular space occupancy; i.e., whether residential, office use, 
assembly hall, etc.

As useful as such a code-defined approach is in simplifying the 
definition of occupancy live loads to be considered, it must also 

Figure 3.4
Typical live load allowances for 
various types of occupancy.

Illustration 3.14
Visualizing occupancy live loads by means of varying densities of 
people in an elevator.
Top left 200kgf/m2 or about 2.0kN/m2 (40lbs/ft2), bottom right 
700kgf/m2 or about 7.0kN/m2 (140lbs/ft2).

Source: National Laboratory for Civil Engineering, Portugal, 1971.
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be recognized that things change with time. In the example of 30 
St. Mary’s Axe (see Ill. 3.9) the standard office space allowance of 
3kN/m2 (60lbs/ft2) would not be considered sufficient if the space 
was to be used as an atypical heavy storage area with a sea of very 
tall and tightly packed filing cabinets. Judgment and common 
sense need to be exercised, therefore, both in the original design 
in anticipating how a space is realistically and legally intended 
to be used, and then afterward in recognizing when a change of 
occupancy and/or loading condition might go beyond what the 
structure was originally designed for.

Illustration 3.15
The Broken Kilometer (1979).
Art installation that happens to closely mimic building codes’ 
uniformly distributed live loads allowances.

Artist: Walter De Maria. Long-term installation at Dia Art Foundation, 
393 West Broadway, New York City, NY, USA. Photographer: Jon 
Abbott. © Dia Art Foundation.

Figure 3.5
Uniform distribution representation 
of occupancy loading.
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3.6	L oading Diagrams – Abstractions of 
Reality

To summarize the preceding discussion, both dead loads and 
occupancy live loads on buildings are largely determined in terms 
of load per unit surface area – whether the surface is a structural 
floor or a wall system. This is a reflection of the largely Cartesian 
planar geometric reality of our built environment, a phenomenon 
very strongly dictated by the direction of the force of gravity, but 
also by economy of means and efficiency of space usage. In very 
general and simplistic terms, it can be said that we occupy buildings 
on floors that are typically flat horizontal surfaces and whose exterior 
and interior walls vertically enclose and subdivide interior space, 
respectively. To say that buildings are the equivalent of houses of 

cards may be pushing the point, but as a simplistic approximation 
with which to begin it is not that far off the mark.

The reality of construction and of structural systems is typically 
more complicated (and stable, fortunately) than is such a precariously 
balanced and loose-fitting stack of cards. A common development 
in buildings is that floors are often supported by a system of beams 
and occupiable space is opened up by the use of columns instead of 
walls. Since both beams and columns are linear structural elements 
as opposed to planar ones, i.e., each such member can basically be 
defined by a certain cross-sectional shape that is extruded along an 
axis, a refinement of our simple model of structures is to consider 
that they consist of an open three-dimensional grid of beams and 
columns to which planar floor and wall surfaces are attached. (e.g., 
Ill. 3.16, 3.17.) Such a simplifying notion and vision of structure was 
instrumental in the development of Modern architecture.

Illustration 3.16
The New Museum, New York City, NY, USA (2007).
Shifting volumes produce a distinctive building profile and suggest 
different program spaces within. Structure is not visible, but plays an 
integral role in creating these. 

Architect: SANAA. Structural engineers: Guy Nordenson and Associates; 
associate: Simpson Gumpertz and Heger; consulting: Sasaki Structural 
Consultants.

Illustration 3.17
The New Museum.
Structural system shifts in concert with building profile and interior 
spaces. Diagram highlights increasing forces in columns due to 
gravity load accumulations over the height of the building.
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Uniformly Distributed Loads

If we set aside, for the time-being, the overall stability issues of 
such gridded building frames in response to loading (we will return 
to discuss this topic in Chapter 10) we can limit our introductory 
discussion here to being about how planar surface loads are 
supported on linear structural elements. For example, an individual 
beam can be seen to be supporting a discrete part of a floor, and 
such an area is commonly referred to as its tributary area.2 (Fig. 3.6.) 
Establishing exactly how much of a floor or wall surface is supported 
by an individual structural member can become somewhat complex 
depending on particular circumstances, but most of the time what 
would seem to be intuitively obvious is quite close to reality: e.g., 
between two relatively closely spaced and parallel supporting beams 
the floor surface is assumed to span transversely from one to the 
other (this is known as a one-way spanning system) and the floor 
load being carried can be considered to be equally divided between 
the two beams. This condition is often represented graphically by 
means of arrows indicating the floor’s spanning direction and lines 
drawn midway between adjacent supporting beams indicating the 
division between supported areas. For visual clarity, the tributary 
area that is carried by an individual beam can be distinguished by 
some form of shading.

At this point we are still envisioning a three-dimensional condition 
of dead and live loads acting on a planar floor surface that is 
being carried on a supporting linear beam. This situation can be 
more conveniently represented in two dimensions, however, by 
notionally “squashing” the surface load perpendicular to the axis 
of the beam into a statically equivalent linear load along its length. 
(Fig. 3.7.) At that point, it becomes convenient to draw the beam 
in a two-dimensional elevation view and the loading condition is 
known, for self-evident reasons, as a uniformly distributed load 

Figure 3.7
(a) Single beam and its tributary area, topped by live load allowance; 
non-shaded area indicates “tributary strip” carried by unit length of 
beam, (b) equivalent loading along beam produced by “squashing” 
together actual 3-D surface loads, and (c) corresponding 2-D 
representation of uniformly distributed load on beam.

Figure 3.6
Floor surface supported by closely 
spaced parallel beams; one-way 
spanning direction between beams 
is shown; shaded area indicates 
tributary area for single beam.
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(UDL) acting along the length of the member. The magnitude of the 
uniformly distributed load on the beam can simply be calculated 
by multiplying the surface loads (kN/m2, lbs/ft2) by the width (m, 
ft) of the tributary area perpendicular to the spanning direction 
of the beam, thus establishing the load per unit length along the 
beam as having units of kN/m or lbs/ft.

It should be noted that in addition to the surface-load-derived 
UDL there is, strictly speaking, always going to be a second uniformly 
distributed load that the beam must be designed to carry: that of 
its own self-weight. (Fig. 3.8.) The magnitude of this load (in units of 
kN/m or lbs/ft) can be either looked up directly in tables for particular 
beam sizes or else it can be calculated from the member’s cross-
sectional dimensions and constituent material density. Depending on 
the choice of materials, the self-weight of the supporting structure 
may in fact not be very significant compared to that of the supported 
surface loads, and if so it is sometimes conveniently ignored at the 
preliminary stages of member size selection. Certainly, any final 
design of a structural element, however, should always account for 
the structure’s self-weight.

While the parallel-beam floor framing condition we have just 
looked at and the resulting uniform load distribution is a very 
common situation, it is by no means the only condition that exists; 
for various aesthetic and practical reasons, not all floors in buildings 
are supported by beams arranged in such a straightforward manner. 
In situations where beams are equally spaced in both orthogonal 
directions (essentially in a “grid” condition), the load is then shared 
between the beams in the two directions (more about this in Chapter 
7). Yet further complexity arises if beam arrangements are chosen 
that are irregular and non-orthogonal, although the fundamental 
principles of what we have just discussed here will essentially remain 
the same.

Point Loads

A second load type can be identified that occurs very frequently 
in the world of architecture and buildings: that of the point load 
that is highly concentrated over a relatively short length or surface 

Illustration 3.18
“New York Construction Workers Lunching on a Crossbeam” (1932).
Nonchalant gathering of workers during construction of RCA Building in 
Rockefeller Center conceptually represents an example of a uniformly 
distributed load acting along part of the length of a beam.

Photographer: Charles C. Ebbets. © Bettman/Getty Images.

Figure 3.8
Conceptual loading diagram matching unusual 
condition of the “New York Construction Workers 
Lunching on a Crossbeam” image in Ill. 3.18: partial-
length uniformly distributed load (UDL) corresponds to 
extent of workers, UDL over full length corresponds to 
beam’s self-weight.
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area. (Fig. 3.9.) A point load is not so difficult to conjure: perhaps 
it is the weight of an exceptionally large and permanently situated 
sculpture or else a heavy piece of equipment fastened to the floor 
of the mechanical room in a building;3 maybe it is the total weight 
of a lantern at the top of a dome or of a large built-in tree planter 
on a roof terrace; it may also be the force from a column that is 
being picked up on a beam in order to open up the occupiable 
space below; or, perhaps most commonly, it may be the result of 
the action/reaction support condition where one beam transversely 
frames into another beam, or connects into a truss, a column, 
etc. A point load may also be used to represent the statically 
equivalent gravity load on the surface on a large tributary floor 
area or, as we will see shortly, of wind pressure acting on the side 
of a building. Whatever the cause, a load of this type is effectively 
considered to be acting at a single “point” on a structure and is 
typically represented in a loading diagram by means of a force 
arrow showing its magnitude, direction, and location (more about 
this in Chapter 4.)

G

G

Illustration 3.19
Hemeroscopium House, Madrid, Spain (2008).
Stone at top and beam-upon-beam construction (made of 
precast concrete) represents a point load condition. 

Architect: Ensamble Studio. Technical architect: Javier Cuesta.

Figure 3.9
Conceptual loading diagram corresponding to the point loading 
condition illustrated in the photo of the Hemeroscopium House in 
Ill. 3.19: the large stone block at the top as well as the load from 
the end of the transverse beam immediately under it produce 
a large point load on the precast concrete beam seen in the 
foreground. The self-weight of the precast beam, on the other 
hand, contributes a uniformly distributed load along its full length. 



66

3.7	L oads from Nature  
– Earth, Wind, and More

Although the focus of this chapter so far has been on gravity loads 
caused by the weights of structure and various finishes as well as on 
code-defined allowances for occupancy, we now turn our attention 
to the effects of other load-producing natural phenomena. Mother 
Nature has quite a wide range of “weapons” in her arsenal to throw 
at the structures we build ever so defiantly; there is no attempt here 
to deal with them all. Perhaps most critically in terms of developing a 
primary understanding of overall structural behavior and configuration, 
however, will be the recognition that some of these natural elements 
cause significant lateral forces to be applied to structures in addition 
to the gravity loads that we have just considered. Especially important 
in this regard are the effects of wind pressures and seismic activity, 
and these will be considered shortly. Before doing so, however, we 
will first look briefly at the somewhat particular impact of three other 
frequently encountered natural live load types: snow, earth, and water.4

Snow

In temperate and colder climates, the loads produced by the weight 
of snow accumulations always need to be considered for the design 

of roofs and other exposed surfaces. As our general experience 
would suggest, such loads are highly dependent upon, among other 
things, geographic location, topographic elevation, particular local 
physical and climatic conditions, and the angle of inclination of a 
roof surface. The numerical value of the snow load to be used will 
typically need to be looked up in a local building code that will in 
one way or another account for these and perhaps other variables as 
well. Such a number will include, for instance, an allowance for the 
depth of snow that statistically has been determined to be expected 
to accumulate at a certain location. Also, as anyone who has shoveled 
a driveway can attest from first-hand experience, the weight of snow 
can vary greatly according to its water content – either because of 
a typically humid local climate or because of the inevitable water-
logging of snow in spring or from a winter thaw – and this must be 
accounted for. The slope of a roof is also a critically important factor 
in determining design snow loads, with the steeply pitched roofs of 
Swiss chalets no accident (nor due to a cultural proclivity for a particular 
architectural style, at least originally). Indeed, the snow-shedding 
capabilities of pitched roofs are such that if they have a slope steeper 
than 60 degrees they typically need not be designed for any snow 
loading whatsoever, whereas flat surfaces in the same location will 
need to be designed for significant accumulations. Wind may also 
cause snow to pile up on certain parts of a roof while sweeping it 
off completely in other areas (e.g., Ill. 3.20), which even for simple 

Illustration 3.20
The Rolling Huts, Mazama, WA, USA (2007).
Snow accumulations can be significant on flat-roofed structures, while wind effects can 
cause some parts to be swept clean, causing pattern loading.

Architect: Olson Kundig. Structural engineer: Monte Clarke Engineering, Inc.
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building shapes can lead to having to design a roof for particular 
patterns of loading (e.g., with half the roof considered to be loaded 
with snow and the other half not), whereas for more complex and 
unusually shaped structures it can lead to the need for complicated 
computer and physical wind tunnel modeling to predict just how 
much snow will accumulate on a roof and where.

In order to give at least some sense of the relative magnitudes of 
typical snow loads, and to provide a starting point for the preliminary 
design of roof structures, it should be considered that these may 
range from 1.0kN/m2 (20lbs/ft2) to 8.0kN/m2 (150lbs/ft2) or more. 
Regarding the minimum, it should be borne in mind that even 
for predictably snowless regions a roof surface still needs to be 
designed for at least a minimum live load allowance of perhaps 
1.0kN/m2 (20lbs/ft2) in order to allow for roof construction and 
repair. For most locations roof snow loads will be significantly less 
than the typical occupancy loads for the floors of the building it 
covers, with a consequent likelihood of a lighter structural framing 
system being possible. In certain locations that are particularly 
susceptible to huge snowfalls in short periods of time, however, 
this condition can easily be reversed.5

Earth and Water

Loose soil or rock also produces its own distinctive type of loading 
on structures. Although much of architecture is implicitly considered 
to be about buildings that are above the ground surface, there 
is a long history of carving inhabitable space out of the earth. 
Even if a building is not completely below ground, however, any 
natural slope or incline will require the designer to either “float” 
the building up on posts on the downhill side or dig it out of the 
ground on the uphill side (thus requiring the unstable earth to be 
held back against falling into the living space (e.g., Ill. 3.21)) – and 
often both of these strategies are employed on the same building. 
Terracing by means of a series of earth-retaining walls is also a 
well-known strategy for occupying sloped ground. (e.g., Ill. 3.22.) 
For buildings on flat terrain there is typically the need in temperate 
and colder climates for the base of foundations to be kept well 
below the ground surface level in order to prevent frost upheaval, 
thereby providing the reason for typical below-grade perimeter 
basement walls against which loose earth is typically backfilled. 
And more recently there is renewed interest in taking advantage 
of the long-recognized energy-saving thermal benefits of building 
into and against the ground. So, all things considered, loads that 
are caused by loose earth and stone are not of insignificant interest 
in architecture after all.

Illustration 3.21
Eames House, Pacific Palisades, CA, USA (1949). 
A 60m (200ft) long, full-story-high earth-retaining wall allows the Eames House to be 
nestled into a hillside despite lateral earth pressures. (See also, Ill. 1.2.)

Architect: Charles and Ray Eames. Structural engineer: MacIntosh and MacIntosh 
Company; also Edgardo Contini (for first version of house’s design in 1945 – and for which 
structural components were ordered).

Figure 3.10
Lateral pressure distribution caused 
by soil against retaining wall.
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We may understand from our own gardening experience that soil 
is far from weightless, so there is the expectation that accumulations 
of it will cause significant downward gravity load to be applied to 
any structure carrying it – and such loads can become very significant 
or even critical for planted rooftops, as we saw for the underground 
entrance to the National Theater Railway Station in Section 3.4. 
In addition, when there is any substantial depth of a “loose” and 
compressible material like earth (as well as water, for that matter) 
and when it is “contained” or prevented from expanding sideways 
as it gets compressed from above, we need to be concerned with 
more than just vertical loading: also present in this situation will be 
sideways pressure exerted against the restraining structure – which 
in the case of architecture is likely to be a foundation or retaining 
wall of some sort. Of course, as may be familiar from common 
knowledge about water depths and pressures, the greater the depth 

of material the more pressure is exerted, and this leads directly to 
the representation of triangular lateral pressure diagrams acting 
on any vertical structure that is holding back or containing earth or 
water. (Fig. 3.10.) Anyone who has walked past an overburdened 
retaining wall that is uncomfortably leaning outward into empty 
space, or who has remarked upon the need for the substantial 
thickness of the transparent walls of deep aquarium pools will have 
been the unwitting and perhaps uncomfortable observer of such 
lateral loading. (e.g., Ill. 3.23, 3.24.)

Illustration 3.22
Machu Picchu, near Cuzco, Peru (fifteenth century). 
Numerous stone retaining walls create the terraced landscape used 
to support farming on the steep slopes of this mountaintop Incan 
royal estate.
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Illustration 3.24
Villa dall’Ava, Saint-Cloud, Paris, France (1991).
Water in roof-top swimming pool causes significant gravity loads as well as lateral pressures to be 
applied to pool’s supporting and enclosing structure, respectively.

Architect: Office for Metropolitan Architecture (OMA). Structural engineer: Marc Mimram.

Illustration 3.23
AquaDom, Sea Life Centre, Berlin, 
Germany (2004). 
Contained within a 16m (52ft) tall 
vertical aquarium made of bonded 
acrylic panels are 940 000 litres 
(250 000 US gallons) of saltwater 
and over 1500 fish of 50 different 
species. The water is held between 
two cylinders, one within the other, 
thus enabling a transparent central 
elevator. The weight of the water 
produces a large gravity load at the 
base; in addition, lateral pressures 
increase linearly with the water 
depth, acting radially upon the 
cylinders. Their circular form in 
plan is ideal for resisting such loads 
by means of circumferential hoop 
stresses, as will be discussed later 
in Chapter 13. 

Designer and constructed by: 
International Concept Management. 
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Wind

The fact that buildings are affected by wind should be self-evident 
to anyone who has walked outdoors on even a slightly gusty day, 
while those who have experienced a hurricane or tornado first-
hand can attest to its very real capacity for doing serious damage 
to structures. But acknowledging that the wind will have an effect 
on buildings is one thing, while finding accurate ways to quantify 
and design for its highly erratic behavior is quite another matter.

To begin, one can readily recognize that air has both density d 
(granted, this is relatively small, but it exists nonetheless) and velocity 
v (potentially quite large) and then apply the basic relationship 
that wind pressure is proportional to these two quantities in the 
following manner:

pressure ∝ d × v2

For sea level air density and in metric units this equation becomes 
approximately

pressure = v2/1.6

where the pressure is measured in N/m2 and the velocity in m/s. 
(The equivalent in American Standard Units is pressure = 0.00256 v2, 
where pressure and velocity are in units of psf and mph, respectively.) 
From daily weather forecasts, we are used to hearing about calm 
breezes of 3m/s (5mph), gales of 30m/s (60mph) and hurricane force 
storm conditions of 45m/s (100mph); in order to give a sense of the 
typical range of resulting lateral wind pressures acting on buildings, 
these speeds can easily be converted into corresponding pressures 
of 5, 480, and 1230N/m2 (0.10, 9.9, and 24.7lbs/ft2), respectively.

With wind understood in this way as sideways pressure, it is 
evident that building shape – especially the structure’s “sail” or 
transverse-to-the-wind-direction surface area – becomes of critical 
importance in establishing magnitude of loads. Everything we have 
previously discussed in the previous section in terms of establishing 
tributary areas and converting uniform surface pressures into 
equivalent two-dimensional line loading diagrams can be applied 
here again, with the difference now being that the pressure is lateral 
and acting on the vertical building face (Fig. 3.11) instead of gravity’s 
downward direction acting over horizontal floor surface. Loads 

Figure 3.11
Conceptualizing wind forces: (a) wind pressure over 
building face, tributary area for single floor (shaded), and 
(b) conversion into point loads at each floor level.

Illustration 3.25
Northwest Corner Building, Columbia University, New York, NY, USA (2010).
Wind imposes sideways pressure acting over the surface of building 
façades, as depicted in Fig. 3.11.

Architect: Rafael Moneo + Moneo Brock Studio and Davis Brody Bond. Structural 
engineer: Arup. 
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can thus be determined whether for individual vertical mullions 
supporting part of a curtain wall or for investigating equilibrium 
conditions for the building as a whole. In the latter case, determining 
equivalent point loads for wind at each floor level typically ends up 
being a matter of multiplying the appropriate wind pressure (roughly, 
this will be something in the neighborhood of 1.0kN/m2 (20lbs/ft2) 
except for taller buildings) by the vertical tributary area for each 
floor (i.e., the building’s transverse width times the story height).6

In reality, of course, the situation is quite a bit more complicated 
than this simplistic load representation of uniform lateral pressure. In 
order to help better visualize what is actually going on it is common 
to make the analogy of a building within an invisible flow of air 
being like a rock in a fast-flowing stream of water. We easily observe 
and understand that there is a significant push or pressure exerted 
by the water on the upstream side of the rock in the direction of 
the stream flow. On the downstream side immediately behind the 
rock, the interrupted flow produces a partial vacuum effect and 
suction force. And on the rock’s sides and top (if it is covered by 
the water), there is an increase in the velocity of the water as it 

flows around the obstruction – generally also producing negative 
pressures or suctions on these faces of the rock.7 Sophisticated 
computer simulations and the typical diagramming of wind flow 
over and around buildings will be found to closely follow the general 
characteristics of this familiar analogy. (Fig. 3.12.)

Perhaps because wind is identified in everyday life by a single 
number describing its speed, it is common to think of it as being 
a uniform “laminar flow,” that is, that the speed will be the same 
for every vertical layer, or “lamina,” of wind. In reality, however, this 
mental image is significantly inaccurate. There will be considerable 
friction or drag right along the surface of the ground produced 
by the irregularities and “roughness” of the terrain caused by 
trees, hills, buildings of various heights, etc.8 The characteristic 
wind velocity profile, therefore, is one which is close to constant 
only above an elevation of a few hundred meters but which is 
considerably reduced from this maximum speed as one gets closer 
and closer to the ground. Such a varying speed profile is confirmed 
by measurements on building façades, and is often translated into a 
corresponding set of building-code-defined static pressures whose 

Figure 3.12
Diagram of wind flow around 
building and code-defined 
variations of pressures and suctions 
on various building surfaces.

Illustration 3.26
Akers Mechanical Workshop and 
Factory, Oslo, Norway (1841). 
The sideways-displacement effect 
of wind pressures and suctions 
acting on a building has long 
been known, as is indicated by 
the presence of diagonal bracing 
members within frameworks of 
vernacular timber construction. 
The brickwork here is infill that is 
unconnected to the frame and 
is used only to create enclosure, 
rather than contributing to lateral 
load resistance. 
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magnitudes (in units of kN/m2 and lbs/ft2) typically increase in a 
step-like fashion with elevation. (Fig. 3.13.)

Numerous other characteristics of both the wind and the buildings 
upon which it acts will further influence the magnitudes of the pressures 
and suctions that need to be considered. Some of these factors are 
natural phenomena that are beyond an architect’s control on a given 
project, such as global geographic location and local prevailing wind 
patterns and directions, but others are well within a designer’s capacity 
to influence, such as a building’s shape (streamlined vs. blunt; e.g., 

Ill. 3.27), surface texture (smooth vs. rough), stiffness of the structural 
frame (flexible vs. rigid), and the building’s height, placement on a 
site, and relationship to its surrounding context. These effects may 
be more familiar in other design fields, such as how the streamlining 
of the shape of cars enhances air flow in order to make them more 
fuel efficient and how the surface texture of ski and swim suits can 
significantly enhance the performance of top Olympic athletes, but 
these characteristics are just as applicable, if perhaps underutilized, 
in the context of building design.

Figure 3.13
Variation of wind speed with height; 
typical representation in building codes by 
stepped function of wind pressures.

Illustration 3.27
30 St. Mary Axe, London, UK (2003).
Relatively smooth wind flow pattern 
is produced around tapered, rounded 
shape of building.

Architect: Foster + Partners. Structural 
engineer: Arup. Wind tunnel consultant: 
ChapmanBDSP.
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Illustration 3.28
Carnegie Hall Tower and Metropolitan Tower, New York City, NY, 
USA (1991, 1987). 
Tall buildings’ surrounding urban context and local wind conditions 
as well as their particular geometric form all affect the magnitude 
and distribution of the wind loads that need to be designed for. 
In the case of these Manhattan towers of exceptional slenderness 
ratio (i.e., height vs. width parallel to wind direction), wind-tunnel 
testing and computer modeling was the only way to properly 
anticipate the wind loading. (Carnegie Hall Tower is tallest at the 
center of this photo, Metropolitan Tower is the triangular, black-
glass-prism volume to its left.)

Architect: Pelli Clarke Pelli Architects and SLCE Architects, respectively. 
Structural engineer: Rosenwasser Grossman Consulting Engineers (for 
both); one of the present co-authors, Mark Cruvellier, worked extensively 
on their structural modeling, analysis, and design.

It should be noted that buildings that are especially large, 
unusually shaped, or particularly sensitive cannot be dealt with 
adequately by the static pressure loading model discussed so far 
and will have to be otherwise investigated, perhaps using physical 
testing in a wind tunnel facility. (e.g., Ill. 3.28.) This involves building 
a scale model of not only the building being designed but also of 
an extensive portion of the surrounding urban context or natural 
terrain. This model is then placed on a turntable at the opposite 
end of a long room from a large high-powered fan – the revolving 
table allowing the effects of every angle of incidence of wind to be 
considered. The scaling of readings from several pressure gauges 
inserted into the model of the building allows for quite accurate 
predictions of actual wind forces – and includes the well-known but 
otherwise very-difficult-to-account-for effects of adjacent buildings 
and landforms on the wind flow.

Finally, we must consider the dynamic response of buildings to 
wind. The static load model previously discussed, with its implied 
assumption of never-changing wind speed on a building of standard 
shape, produces a predictable and singular lateral building deflection. 
This represents greatly simplified conditions and assumptions for 
both the wind’s behavior and the building’s response (although 
such a model has fortunately been found to be perfectly safe 
and economical for the design of most low- and medium-scale 
buildings). Contrary to the stasis of this model, however, our everyday 
experience with wind reminds us that its speed is endlessly variable, 
with gusts and lulls constantly occurring. As a result, we need to 
recognize that a building’s general overall response to wind is (a) 
to deflect sideways roughly based on the average wind speed 
and (b) to oscillate back and forth about this primary deflected 
shape because of the irregularities of the wind. (Fig. 3.14.) It is 
important to recognize, however, that the to-and-fro motion of the 
building will be according to its own inherent period of vibration 
and typically not according to wind gust frequencies, although 
there are a few famous examples of the potentially catastrophic 
results of having these match.9 Such behavior is confirmed by careful 
measurements that have been taken of building movements and 
by even more dramatic recordings that exist of buildings swaying 
very regularly back and forth in the wind, sounding for all the world 
like the creaking wooden hulks of tall-mast sailing ships rolling in 
the waves. Although a somewhat uncomfortable reality, building 
motions are indeed an undeniable fact of life that needs to be 
contained. Fortunately for typical low-rise buildings they are barely 
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baked rubber t=15mm

baked rubber t=30mm

steel rigid frame / brace
baked rubber t=15mm

Illustration 3.29
Little Hilltop Wind Tower, Yamagushi 
Prefecture, Japan (2011). 
(a, b) Designed to enable visitors to a 
wind farm to “see” the wind, this tower is 
deliberately designed to visibly sway back 
and forth: for a 8m/s (18mph) wind, the 
top deflects 150mm (6in). (c) The structure 
is made of particularly light, thin steel 
components that incorporate specially 
detailed sliding connections; this is covered 
by a flexible skin made of vulcanized 
rubber sheets so as to allow for large 
displacements without damage.

Architect: Shingo Masuda and Katsuhisa 
Otsubo, with Yuta Shimada. Structural 
engineer: Jun Sato Structural Engineers.

a)

b)

c)

Figure 3.14
Average deflected profile of 
building (at exaggerated scale) 
caused by lateral wind pressures; 
typical back-and-forth oscillations.

baked rubber t=15mm

baked rubber t=30mm

steel rigid frame / brace
baked rubber t=15mm
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perceptible, but if not carefully controlled as we build ever lighter, 
more efficient and flexible structures, dynamic movement may all 
too readily be heard, seen, or felt to the point of discomfort and 
alarm. As a result, the past quarter century has seen the rapid 
development of various damping systems whose objective it is to 
attenuate building motions, in an analogous fashion to car shock 
absorbers that quickly reduce the bouncing up and down of a 
vehicle after it has passed over a bump in the road. This broad 
topic, while noteworthy and of considerable interest, is generally 
considered to be beyond the scope of the present book, however.

Earthquake

Accounts of the destructive power of seismic tremors on buildings 
abound, from such examples as the Great Lisbon Earthquake of 
1755 written about by Goethe and Voltaire to the widely publicized 
events of the more recent past such as at Loma Prieta, Kobe, Bam, 
Port-au-Prince, Concepción, Amatrice, Christchurch, Kathmandu, 
Mexico City, etc. – all helping to ensure that there is a general 
human consciousness about the potentially catastrophic effects 
of seismic motion on buildings. Moreover, simply spending a few 
moments observing a seismograph capable of recording every 
earth tremor around the globe will make one come away convinced 

about just how unstable is this ever-moving earth’s crust upon which 
we construct our lives.

If the danger of seismic action is well appreciated, what is not 
so clearly self-evident is just how the earth’s “quaking” causes 
forces to be applied to buildings. Whereas with the other types 
of loads that we have considered, whether gravity dead loads 
from material self-weights or occupancy live loads or the lateral 
pressures produced by wind or soil, it is relatively straightforward 
to visualize their direct conversion into statically equivalent force 
vectors applied at particular locations on a structure, in the case of 
earthquake action this is certainly not the case. The only external 
action happening to a building during an earthquake is the shaking 
of the ground on which it sits, and yet the simplest and most 
common code-defined representation used to account for seismic 
action on a building is a set of horizontal “earthquake forces” 
applied at each floor level of the structure. (Fig. 3.15.) It needs to 
be explained why this makes sense. 

In order to better understand the logic of this earthquake force 
model, we begin by considering a simplistic representation of 
a building as conceptually consisting of a single lumped mass 
supported by a structural framing system (represented by a 
vertical dowel-like line) that is connected to the ground through 
its foundations. (Fig. 3.16.) Such a framing system is, of course, 
essential for any building regardless of any earthquake action in 

lumped mass at 
floor levels

static model
seismic force

Figure 3.16
Variations of building response to ground shaking 
caused by earthquakes: (a) conceptually simplified 
building representation as a single lumped mass and  
a uniform structural system; (b) with a very flexible 
lateral-load-resisting system, the mass moves little;  
(c) a system having very large lateral stiffness causes 
the mass to move along with the ground.

Figure 3.15
Static load model used to represent the effects 
of earthquake action on a building; masses 
lumped at floor levels, forces are correspondingly 
concentrated at those levels.
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order both to carry gravity loads to the ground as well as to resist the 
ever-present wind forces that we discussed in the preceding section. 
Any sideways movement of the ground caused by an earthquake 
can be thought of as having the model base displacing sideways; 
the building mass, however, will react differently depending on 
the lateral stiffness of the framing system. If it is (hypothetically) 
considered to be infinitely flexible, then the base would move back 
and forth while the lumped building mass would remain completely 

stationary above it. If, on the other hand, the framing system’s 
lateral stiffness were (again hypothetically) infinitely rigid, then all 
of the building’s mass would be forced to displace sideways an 
equal amount to and in unison with the base/ground.

Real building frames, of course, lie somewhere between these 
two imaginary extremes; i.e., any structural system has a certain 
lateral stiffness that is neither infinitely rigid nor completely 
flexible. (e.g., Ill. 3.30.) A lateral displacement of the ground in 

Illustration 3.30
Seattle Public Library, Seattle, WA, USA (2004).
Live loads on buildings include lateral wind and earthquake forces that must be resisted – in 
this case by means of expressed steel diagonal bracing systems. In relation to Figure 3.16, such 
bracing is an example of a relatively stiff lateral-load-resisting system that in this case connects 
one floor level of the building to the next and that, at the lowest level, connects the building to 
any ground displacements that may occur in an earthquake.

Architect: Office for Metropolitan Architecture (OMA). Structural engineer: Arup and Magnusson 
Klemencic Associates.
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an earthquake, therefore, also necessarily brings about a certain 
lateral movement of the building as a whole due to the structural 
frame “dragging” the building along with it in some fashion. And 
when the mass “m” of the building that started out at rest is no 
longer stationary but is instead caused to be moving at some 
velocity, we can recall from elementary physics that an acceleration 
“a” must have taken place and, therefore, can begin to think 
in terms of a conceptually equivalent earthquake force (since 
F = ma, see Chapter 4) being applied to the building. Carrying 
this line of reasoning a little farther, because for most buildings 
built today approximately 90 percent of the total mass can be 
considered to be concentrated at the floor levels (the occupiable 
space between floors being mostly air), the basis for representing 
earthquake loading by a set of horizontal forces applied at each 
floor level becomes more evident.10

The detailed procedure for calculating such building-code-defined 
earthquake forces can become quite tedious, and is something that 
we will avoid here. It is useful, however, to consider the parameters 
of typical code equations that are used for this purpose in order 
to highlight the factors that most strongly affect earthquake force 
magnitudes. The total horizontal earthquake force V that a building 
must be designed for is established by an algebraic equation 
something along the lines of

V ∝ ZICWR

in which Z is a code-defined earthquake zone factor that varies 
by a factor of four or more according to geographic location, 
I is a so-called “importance” safety factor that helps to insure 
that “essential” buildings (e.g., hospitals, etc.) are more likely to 
remain standing and functional after an earthquake, C is a numerical 
coefficient that accounts for a building’s height, its natural period 
of vibration, as well as local ground conditions that might amplify 
initial motions, W is the total dead load of a building, and R is a 
factor that accounts for the relative lateral stiffness of one structural 
system vs. another.11

Let us consider what this proportional relationship can tell us 
about how to design a building for earthquake forces. Aside from 
the obvious impact of choosing a strategically advantageous location 
for a building site – something over which the designer typically 
has little or no choice, as people will always choose to live in such 
places as California or Japan or Italy – there are obviously other 

factors over which the designer can exercise significant judgment at 
the earliest stages of design so as to preemptively limit earthquake 
forces that must be dealt with. Reducing a building’s mass through 
the judicious selection of building materials, whether that of the 
structural system itself or of the attached cladding and finishes, is 
an obvious case in point. In this regard, the general historical trend 
away from heavy, massive stone and brick as structural materials 
and toward lighter and more open metal frames is undeniably 
advantageous, but even among today’s building materials and 
finishes there are important decisions for the designer to make: 
e.g., brick or stone exterior cladding panels vs. woven metal mesh? 
Or an extremely light fabric membrane roof vs. a heavy beam 
system? These selections will have a very significant and obvious 
impact on the seismic force that needs to be designed for, aside 
from being determinant of a building’s appearance.

A building structure’s lateral stiffness also plays a critical role in 
determining the magnitude of the earthquake forces that need to 
be designed for, but this aspect is somewhat counterintuitive: the 
greater the lateral stiffness of the system, the greater will be the 
earthquake forces and the more will have to be done to counter 
them. In life one is much more used to the notion that more is 
better, and certainly that is the usual expectation in structures; 
i.e., a bigger column will carry more load, as will a deeper beam. 
But here we have the opposite effect: i.e., the stiffer one makes a 
lateral-load-resisting system, the more one increases the earthquake 
force that must be designed for – something of a self-defeating 
situation. We can explain this apparent contradiction by going back 
to the conceptualized stiff-versus-flexible structural systems that 
we considered previously in Fig. 3.16. In the rigid case, when the 
ground displaces back and forth, the mass of the building is dragged 
along closely with it, thus maximizing accelerations and forces.12 A 
completely flexible system, on the other hand, would in theory allow 
the horizontal ground displacements to occur without entailing any 
sideways movement of the building whatsoever – meaning that 
there would be no accelerations to speak of and, therefore, no 
resulting earthquake forces acting on the building. Of course, even 
if it were possible to build such a completely flexible lateral-load 
system it would be useless for dealing with the wind forces that 
also must be resisted by the structural frame on an everyday basis, 
so some lateral stiffness is, in fact, always necessary. Escaping the 
development of earthquake forces is thus never possible, although 
interesting base support isolation strategies and detailing can be 
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developed that work toward this objective. (e.g., Ill. 3.31.) We will 
come back to further discussions of frames and lateral stability issues 
in Chapter 10; for now, however, the implications of this discussion 
for building designers in earthquake-prone regions are clear – there 
is distinct structural advantage to making buildings both light and 
flexible, assuming that this fits with other architectural objectives.

Finally, it must be recognized that the static earthquake load 
representation discussed so far can hardly be taken to be an accurate 
reflection of what is in reality a highly dynamic situation. Not only 
does the ground’s motion vary greatly during an earthquake but 
also the building’s ensuing response will consist of back-and-forth 
vibrations whose frequencies are themselves independent of the 
earthquake’s shaking.13 As a simple analogy to the condition of a 
single-story building, we can think of a tennis ball skewered on to a 
thin metal vertical rod that is rigidly attached to a base. If the base 
is sharply displaced laterally (crudely mimicking the ground motion 
of an earthquake) the ball starts swinging back and forth with its 
own characteristic period of vibration that continues even when the 
ground motion has stopped. The same happens in a building, and 
as the mass swings to and fro it accelerates and decelerates from 
rest at the extremes of the oscillation to a maximum velocity at mid-
vibration, effectively producing constantly varying load conditions 
and deformations that need to be accounted for in the design of 

the building’s structure. And in a multistory building the situation 
becomes even more complex, with several modes of vibration 
occurring simultaneously and superimposing themselves upon 
each other. Yet further adding to the intricacies of this highly time-
dependent situation, the back-and-forth swinging of the building 
will gradually diminish as the earthquake’s imparted energy is 
dissipated. Fortunately, computer modeling can simulate all this 
dynamic behavior relatively accurately and be accomplished relatively 
quickly and economically, and this is done for any structures that 
venture outside of the norms of conventional construction. (e.g., 
Ill. 3.32.)

Illustration 3.31
de Young Museum, San Francisco, CA, USA (2005).
Detail in model of overall structural system suggests column base-isolation method used in 
actual building to reduce earthquake loads; further physical isolation is provided by providing a 
gap at the lower level between building and surrounding ground. 

Architect: Herzog & de Meuron. Structural engineer: Rutherford & Chekene. Cornell model by Reilly 
Hogan and Kumar Atre.
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Illustration 3.32
Century Tower, Tokyo, Japan (1991).
Double-story-height eccentrically braced frames expressively reflect the need to design for large 
lateral wind and seismic forces in Tokyo; the eccentric bracing configuration does not form rigid 
triangles in the central part of the frame, thereby providing a desirable measure of flexibility to 
the lateral-load-resisting structural system with regard to large earthquake forces.

Architect: Foster + Partners. Structural engineer: Arup. 
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4.2	 Isaac Newton and the Mechanical Basis of Structures
4.3	 Pyramidal Contrasts – Weight vs. Lightness
4.4	 Forces and Moments – Concepts to Explain Movement and Deformation
4.5	 Equilibrium – A Fundamental Structural Requisite
4.6	 Intermezzo Italiano
4.7	 Support Conditions and Reactions
4.8	 Nordic Expressions of Forces and Moments

Illustration 4.1
La Gare d’Austerlitz, Paris, France (1869).
The so-called Polonceau truss that was introduced to several 
of Paris’ railway terminals in the mid-nineteenth century 
spans over the tracks and platforms.

Architect: Louis Renaud. Structural engineer: Sévène.
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4.1	 Polonceau – Past and Present

The French engineer and constructor Camille Polonceau (1813–
1859) exploited the principle of how a slender beam can be 
reinforced by adding a small transverse compression member 
below its center (or three, as the case may be) and tying the 
lower end of this strut by means of tension rods to the ends of 
the beam. By inclining two such reinforced beams toward each 
other and further connecting the ends of the two compression 
struts with a horizontal member in tension, Polonceau designed 
a very effective structure for large roofs. (Fig. 4.1.) In this way the 
two beams were held in position and at the same time he gained 
greater spatial height than could be achieved with a traditional 
roof structure having a horizontal lower flange. The structure made 
use of the available materials of that time in an optimal way; for 
the beams he mostly used wood while the compression struts 

were made of cast iron and the tension ties of wrought iron. This 
so-called Polonceau truss, well suited for long spans, was used 
extensively in large hall projects during the mid-1800s. From a 
contractor’s point of view, the structure had the advantage of 
consisting of two symmetrical parts; each could be assembled 
separately on the ground, then lifted up and connected at the 
top and across at middle height by means of the horizontal tie.

The roofs of many large railway terminals in Paris were structured 
by means of such Polonceau trusses. In 1877 the painter Claude 
Monet made several studies, sketches, and paintings of La Gare 
Saint-Lazare depicting the lively atmosphere of modern travel; 
through the steam from the locomotives we get a glimpse of the 
roof structure. (Ill. 4.2, 4.3.) The Polonceau system, with its slender, 
balanced members and efficient distribution of forces in tension 
and compression, has gathered many admirers over the decades 
since then.

Illustration 4.2
La Gare St-Lazare, Paris, France (1852). 
Traces of Polonceau trusses are evident in the roof structure. 

Sketch by Claude Monet, 1877. 

Architect: Alfred Armand. Structural engineer: Eugène Flachat.
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Illustration 4.3
La Gare St-Lazare.
Close-up view of part of a Polonceau truss, with visible distinction 
between its tension and compression components. 

Illustration 4.4
Riding Hall, Flyinge, Sweden (2005).

Architect: AIX Arkitekter. Structural engineer: J. Riebenhauer.

Figure 4.1 
Overall Polonceau truss configuration. At each side along the 
roofline, a slender inclined beam is reinforced by angled tension 
rods between the beam ends and the tips of three transverse 
compression struts. Two such inclined reinforced beams, one 
at each side and meeting at the central ridgeline, are also 
connected to each other by means of a horizontal tension tie.



84

On the plains of Skaane in southern Sweden, we find the National 
Stud of Flyinge, world famous for horse breeding since 1661, where 
riders trot among buildings in a seventeenth-century aristocratic 
setting. Hidden behind solid red brick façades, however, is a small 
riding hall with an innovative roof sporting a contemporary version of 
the Polonceau truss, simply detailed but still honest and trustworthy 
in appearance. (Ill. 4.4.)

In 2005, a design competition was won by AIX Arkitekter for the 
large space of the riding hall. To span this space, several changes 
have been made to its Polonceau roof structure from that of the 
original system of 150 years ago. The wooden beam is replaced 
by inclined slabs of solid wood. The tension part of the structure 
consists of paired steel rods, enabling a better and more evenly 
distributed support of the wooden slabs (i.e., the single tie has here 
been subdivided). And the ties consist of simple steel reinforcing 
bars with typical ribbing, which here have found a most simple and 
elegant aesthetic purpose. (Ill. 4.5.)

There is no need for insulating the roof in addition to the wood 
since the horses and light fixtures provide the necessary warmth for 
the daily use of the hall. With no need for a ventilation system of 
air ducts running here and there, and with lighting fixtures attached 
directly to the wooden ceiling, the result is a crisp and elegant 
structure. The hall has glazed walls toward the north and east as well 
as skylights of frosted glass. Careful studies of the sun path have 
been done to avoid glare that might disturb the horse and rider.

4.2	I saac Newton and the Mechanical Basis 
of Structures

Studying the load-bearing properties of structures means to look at 
form from a mechanical point of view. The Polonceau truss that we 
just considered, for example, is an uncommonly clear load-bearing 
structure where a group of structural elements together and in a 
visually expressive manner provide the necessary resistance to the 
loads that are acting on it. We are able to grasp how it works since 
we have previously introduced the various basic types of load-
bearing elements and described their corresponding structural 
actions in Chapter 2 (Section 2.4). But in order to more fully be 
able to understand and communicate just what is actually taking 
place within structures more broadly we first need to refresh our 
memories about some fundamental mechanical principles. 

Mathematics and the particular branch of physics called 
mechanics enable us to analyze structural forms. (Fig 4.2.) Mechanics 
deals with motions and forces, with statics being the branch of 
mechanics concentrating on studying forces acting on rigid bodies 
at rest. The very word statics comes from the Greek word “staticos,” 
which means “to make something stand still.” This is precisely 
the request we make of structural elements in the context of 
architecture; i.e., that they maintain their position in space even 
when loads are acting on them. This basic demand enables us 
to analyze structural forms and structural systems in order to find 
out to what extent they are stressed and what types of stresses 
are acting in the system.

We have again just used the rather abstract term of “force”, 
as we did in Chapter 2. We commonly think that forces appear 
in material bodies when loads are imposed on them. In reality, 
though, the physical concept of force is a bit vague; nobody has 

Illustration 4.5
Riding Hall, Flyinge.
Detail of joint with intersecting 
tension and compression members.
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Illustration 4.6
“Le Château des Pyrénées” (1959).
Imagined free-fall motion.

Painting by René Magritte.

ever seen a force. What we are able to observe, however, are the 
results of forces acting in the form of movements or deformations 
of a body. The latter effect of forces was described in Section 2.4. 
One way of defining a force is therefore to claim that it is a physical 
influence, caused by a load which changes, or tries to change, the 
state of rest in a body. Moreover, as we have mentioned, a force 
may also deform or deflect a material body.

It was among Newton’s remarkable achievements that he linked 
the concept of force to the state of rest. He observed that a body 
will continue to move at a constant velocity, or be at rest, if no net 
force is acting on it.2 We call this observation Newton’s first law. 
This does not necessarily mean that no forces are acting, but rather 
that the sum of forces must be zero. If there are a number of forces, 
they must effectively cancel each other out in order for the body 
or element to remain still, or resting. We depend on this rest for 
a load-bearing structure to do its job, where the sum of forces is 
zero and the structure remains still. The energy corresponding to 
the forces involved instead causes the structure to deform. If, on 
the other hand, a net force is acting, this will accelerate the body. 
The net force, also called the resultant force, will set the body in 
motion, and the acceleration will be proportional to the applied 
force. The proportional constant is the body’s mass; the larger the 
mass, therefore, the more force must be applied to obtain the 
same acceleration. We call this statement Newton’s second law. In 
mathematical terms, we may write

F = ma

where F = the resultant force, a = the acceleration, and m = the 
body’s mass. If, in the equation, F is zero, then a is also zero. This 
means that if no resultant force is acting on a body, then there is 
no acceleration. No acceleration implies constant velocity or the 
body being at rest. Hence we can observe that Newton’s first law 
is a special case of his second.

Acceleration is defined as a change of velocity per unit of time. 
Velocity is most familiar to us in terms of kilometers per hour (miles 
per hour). In scientific terms, however, velocity is typically measured 
in meters per second (m/s) or feet per second (ft/s). Acceleration, 
then, is expressed in units of meters per second per second, or 
m/s2 (ft/s2).

Mass is measured in kilograms, kg (slugs).3 If we multiply 
acceleration by mass we will have a unit for force written as  

Figure 4.2 
The mechanical sciences represented as a branch of 
physics. Kinematics deals with pure geometrical description 
of movement and was pioneered by Galileo Galilei (1564–
1642). Dynamics study the laws governing motion, founded 
by Sir Isaac Newton (1642–1727),1 with kinetics operating 
on force systems in motion and statics on force systems at 
rest. Mechanics of materials, or the strength of materials, 
is an extension of mechanics into the study of stresses and 
strains in material bodies.
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kgm/s2 (slug-ft/s2). This force unit in the Système International (SI) 
aptly is called Newton, N. Trying to grasp what this unit represents 
physically, we may think of the weight of one fairly large apple, 
linking the unit to the legend of Isaac Newton having an apple fall 
on to his head. Here we acknowledge the most common force of 
all, the force of gravity, also known as weight, which is the force 
that pulls all material bodies in the direction of the center of the 
earth. For this force we can write

W = mg

where W = the force of gravity acting on a body having a mass 
of m, with the acceleration in this case being the gravitational 
constant g = 9.81m/s2 (32.2ft/s2) applying in the context of the 
gravity of the earth. According to Imperial or American standards, 
the force unit (slug-ft/s2) is called pound, abbreviated lb.4 One 
pound is approximately 4.45N. Since 1N is a fairly small force, 
it is convenient to also operate with 1000N as a unit for force; 
this unit is called kiloNewton (kN). Parallel to this we find in the 
Anglo-American tradition the force unit called kip, which is the 
same as 1000lb.

While in the equation for Newton’s second law acceleration is 
a familiar concept, mass tends to be more evasive. Unlike weight, 
the mass of 1kg (or 1 slug) of steel is the same in all gravitational 
systems. The mass is a constant throughout the universe, whether 
we measure mass on earth or on the moon. The weight of this mass, 
however, will vary according to the “strength” of the gravitational 
field which, in the case of the moon, is about one-sixth of the 
value for the earth. We may think of mass, then, as a measure of 
the quantity of matter. 

All of these various concepts, quantities, terms, and the 
relationships among them are depicted in Figure 4.3. 

There is also a third “law” attributed to Newton. This one 
introduces us to the idea of forces having directions, as well as to 
the most fundamental observation of equilibrium: if a body is at 
rest on a horizontal plane, it quite certainly exerts a pushing force 
on the surface of that plane, the force being the gravity force. We 

have learnt from the second law, however, that if there is a net 
force acting, the body will accelerate, in this case downward. But 
this is contrary to our observation of the body being at rest on the 
plane, so there must in fact be another force acting on the body 
which maintains equilibrium.5 That force has to be of the same 
magnitude as the gravity force for the resultant force to be zero, 
and also to act in exactly the opposite direction. (Fig. 4.4.) Newton 
called this force a reaction force and stated that all forces have 
reaction forces which are of the same magnitude as the “action” 
forces but are oriented in the opposite direction. Or, in the Latin 
words of Newton’s time: “actio = reactio.”

Having introduced the basic concepts of statics, we will in Sections 
4.4 and 4.5 look more closely into the ways we represent and 
analyze forces theoretically; we will also study the conditions for 
equilibrium. First, however, we will reflect a bit more on the concept 
of weight, this time from an architectural perspective.

4.3	 Pyramidal Contrasts  
– Weight vs. Lightness

Mass is of particular importance for the structures of architecture. 
As we have just seen, mass is associated with weight, and a 
tendency today is to free architecture from as much weight as 
possible, with the objective of lighter, more delicate structures. 
This has not always been the case, however; mass has also been 
seen as a particular quality of value expressing monumentality, 
endurance, and power.

In the last period of the European Stone Age, mighty, heavy 
monuments were raised in the Mediterranean area and its surrounding 
continents. We meet them at Stonehenge in England, in circular 
forms in Bretagne, France, and farther north in Europe as well in 
the form of huge stone blocks forming chamber tombs. However, 
this common urge toward erecting stone massifs saw its fulfillment 
in the architecture and arts of ancient Egypt where hundreds of 

Figure 4.3 
Diagram linking the basic physical concepts 
of length, time, and mass to those of velocity, 
acceleration, and weight/force.
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generations of slave labor produced the crystalline expressions of 
mass and weight reflective of that society’s hierarchy and enduring 
stability: the pyramids.

The Cheops Pyramid

In the group of royal tombs dating from the Fourth Dynasty (2723–
2563 bc) and located at Giza in the vicinity of Cairo, Egyptian 
architecture found its most refined and impressive realization. The 
original experience of powerful and durable masses of stone figures 
had been developed and symbolized in terms of absolute and 
determining stereometric relationships to each other. Father of all 
later historians, the Greek Herodotus, traveling about the ancient 

world and taking notes, visited the pyramids around 500 bc. The 
Cheops Pyramid, at that time already in place for 2000 years, is the 
largest and oldest of pyramids; it is oriented exactly according to 
its celestial latitude and longitude, while its square plan measures 
230 by 230m (754 by 754ft) and it rises to an impressive height 
of 147m (482ft).

According to Herodotus, Pharaoh Cheops ordered “all Egyptians” 
to work for him. They numbered 100 000 at a time, all toiling 
continuously for three months each year for 20 years. Some were 
ordered to the stone quarries in the Arabic mountains, while others 
dragged the stones by ropes on wooden sleighs up to the building 
site after they had been carried down the Nile on boats. The workers’ 
tools were simple chisels and picks made of copper that enabled 
the piling up of some 2.5 million blocks of stone weighing on 

Figure 4.4 
The weight W of the body 
held in equilibrium by a 
reaction force R from the 
surface that the body is at 
rest on.

Illustration 4.7
“Levitated Mass” (2012).
Motion of 340-ton boulder is arrested 
by steel brackets attached to the 
concrete side walls of a trench through 
which visitors may walk.

Sculpture at Los Angeles County Museum 
of Art (LACMA) by Michael Heizer.
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average 2.5 metric tonnes. (Ill. 4.8.) The whole massive volume of 
the pyramid was originally covered with precisely polished Tura 
limestone that reflected the rays of the sun; ornamentation and 
detailing were omitted on the outside so as to strengthen the 
effect of the basic form and its smooth surfaces. The pyramids, 
representing the Egyptian cosmos, were made to last for eternity. 
The observant visitor at Giza today notices that the old Egyptians 
were careful in choosing the sites for their vast monuments: the 
pyramids are built to last, situated as they are on solid rock.

Within these solid masses of stone, narrow passages led to three 
burial chambers conceived of as small cells. (Ill. 4.9.) Above the 
voids of these internal pathways, mighty tilted stone slabs lean in 
against each other, forming a pitched roof in section and leading 
the tremendous weight of the stone mass above on to the long 
sidewalls of the cell.

Contrasting with this ancient quest for weight and solidity, our 
era has seen a search for minimal structures and material economy, 
an ambition of “zero weight and infinite span” in the words of 
the French engineer Robert le Ricolais (1894–1977). In this spirit 
of lightness and transparency, supported by advanced computer 
technology and a refined building process industry, a large glass 
pyramid was built in Paris in the late twentieth century.

La Pyramide du Grand Louvre

Contrary to the heavy mass at Cheops, another famous pyramid 
exists at one of the largest museums in the world, the Louvre; this 
pyramid, however, is a relatively lightweight structure made of glass 
and thin stainless steel bars and rods, designed by the architect 
I.M. Pei. In addition to being the main entrance and a source of 
natural light to the museum’s spacious underground vestibule, 
this large pyramid is situated along the great Parisian axis of Le 
Louvre–L’Étoile–La Défence; clearly strategic pyramid positioning 
was not something restricted to the Egyptians. With a height of 
21.5m (70ft) and a side length of 35m (115ft), the glass pyramid is 
placed like a finely cut diamond in the Cour Napoléon, surrounded 
by the Louvre’s eighteenth-century stone buildings. (Ill. 4.10). 

Let us take a closer look at what it takes to make a pyramid 
with 612 rhombus-shaped glass panels. Each triangular side of 
the pyramid is supported by two sets of 16 intersecting, inclined 
trusses of different lengths, the top edges of which lie flush with the 
pyramid’s surface. These trusses’ compression members, primarily 
their top chord and the perpendicular struts, are built of hollow, 
circular-shape members, while the tension members at the bottom 
chord of the trusses and its diagonals are solid steel rods or cables. 
The glass panels are fastened at the intersecting points of the top 
chords of the trusses by extension bolts, allowing their weight to 

Illustration 4.8
Cheops Pyramid, Giza, Egypt (third millennium bc).

Illustration 4.9
Cheops Pyramid.
Section drawing, depicting narrow passages and small burial 
chambers within mass of built-up stone blocks. 

Drawing courtesy of the Florida Center for Instructional Technology.
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be carried but keeping the glass free from direct contact with the 
main load-bearing system. (Ill. 4.11.)

Aside from carrying their own self weight and the dead loads of 
the glass, these trusses also resist the inward wind pressures applied 
to the surface of the pyramid. The negative surface pressures, 
or suction, which can also result from wind action (see Section 
3.7) is countered by yet another set of tension rods/cables with 
opposing curvature that are also connected to the joints of the 
truss network.

According to this description, the structure of the Pyramide can 
be seen to be very much in keeping with the French tradition that 
starts with Polonceau’s achievements in the nineteenth century of 
incorporating subtle variations between compression and tension 
elements in steel structures and that we saw earlier in this chapter 
in Section 4.1. Another important aspect of this pyramid is hinted 
at by its cast stainless steel joints. (Ill. 4.12.) We recognize in these 
the turnbuckle and clevis (or shackle) that we fi nd in the rigging of 
sailboats and yachts, suggesting that what we have in this pyramid 
is actually a minimal structure that is at least partly designed to 
withstand large tension forces, in a manner similar to the way that 
the rigging of sailboats holds the mast. Thus, with the help of 
outstanding “seamanship” and the successful rigging and stiffening 
of all the joints under the precise glass surfaces of this remarkable 
structure, a contemporary pyramid was made possible.

illustration 4.10
La Pyramide du Grand Louvre, Paris, France (1989).

Architect: I.M. Pei. Structural engineers: Rice Francis Ritchie (RFR) 
and Nicolet Chartrand Knoll Ltd.

illustration 4.11
La Pyramide du Grand Louvre.
Interior, with very evident structural forms and linear elements.

illustration 4.12
La Pyramide du Grand Louvre.
Sketch of connection detail for intersecting tension elements. 
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4.4	F orces and Moments – Concepts to 
Explain Movement and Deformation

Mass is a quantity that is exactly defined by a number establishing 
its magnitude, as are length and time. These are scalars. Forces, 
however, cannot be precisely defined without stating both their 
magnitude and their direction. The same is true for velocities and 
accelerations. This latter group of physical phenomena that are also 
defined by directions are called vectors. Graphically, we usually let 
arrows represent vectors, where the length of the arrow sometimes 
stands for its magnitude and the direction of the arrow indicates 
the direction of the vector.6

If two or more forces act along the same line, as they do in the 
well-known tug-of-war game, we say that they have the same line 
of action. The combined result of such forces acting on a body can 
be found by simple arithmetic. When acting in the same direction 
the resultant force will be the sum of the two forces. If they are 
acting in opposite directions, then one should be subtracted from 
the other. Graphically, the resultant force vector is found by setting 
the beginning of one vector after the end of another, observing 
their magnitude and direction. (Fig. 4.5.) The specific succession 
of the vectors is unimportant, and their sum – the resultant force 
or net force – is the vector force which may be drawn from the tail 
of the first vector to the tip of the last vector in the sequence. This 
is the principle of vector addition along a straight line.

If, on the other hand, force vectors are combined which have 
different directions while their lines of action are passing through 

the same point (i.e., the vectors are intersecting), the resultant 
force vector can always be found graphically. (Fig. 4.6.) We set one 
vector after the other in such a way that the resultant force vector 
completes a figure in the form of a triangle (in the case of two 
forces) or another polygon (in the case of more than two forces). 
The resultant force is, as before, the vector running from the tail 
of the first to the tip of the last force. 

Such insight about summing the effects of force vectors is not 
new: as far as we know, the graphical method for finding the sum 
of forces was first used by Leonardo da Vinci (1452–1519) (e.g., Ill. 
4.13), but Stevin from Brügge (1548–1620) was the first to publicize 
the method formally in 1586. 

Whether for intersecting forces or for forces acting along the 
same line, we can therefore find a resultant force, which is the 
force having the same effect on the body as do the sum of all the 
separate forces acting on it simultaneously. We may say that the 
resultant force is statically equivalent to the system of forces it is 
derived from. As an example to help visualize this conclusion as well 
as the graphical abstractions of Figure 4.6, one can consider the 
situation of the many intersecting tow-lines and evident resultant 
movement of the Condeep oil platform shown in Ill. 4.14.

At this point, we can consider all this from another perspective. 
Since we have established that we can combine two or more forces 
into one resultant or net force having the same effect as all the 
others, we may also do just the opposite: i.e., it is possible to 
resolve a force into its component forces in such a way that their 
sum is statically equivalent to the original force. What we do in 

Figure 4.5 
The sum of two force vectors acting 
along the same line of action. When 
acting in the same direction the 
resultant force will be the sum of the 
magnitude of the forces. If the forces 
act in opposite directions, then one 
should be subtracted from the other.

Figure 4.6 
The sum of force vectors acting in different, 
but intersecting directions.
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Illustration 4.13
Leonardo da Vinci’s sketch demonstrating his early insight into vector analysis of forces.

Illustration 4.14
Pulling of the Condeep oil platform in the North Sea (1987).
The tugboats’ lines of forces will sum up to help establish the 
speed and direction of the platform’s movement through the water.
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this case is called resolving a force into components. Forces may 
be resolved in countless ways as long as the principle of closed 
triangles or polygons is observed. The force F in Figure 4.7a has 
the components A and B along with innumerable other possibilities 
and combinations. The number of component forces we might 
wish to resolve a singular force into, and the directions we choose 
for this new group of forces, will depend on the geometry of the 
case in question and what function we would want the component 
forces to accomplish. Often, the resolution of a force is made by 
splitting it into horizontal and vertical components, which is the 
same as asking for the effect of the force in the horizontal and 
vertical directions. This is a common way of organizing forces for 
the sake of clarity and ease of calculation. Besides, in practical 
instances of force resolution, it is actually the case that most 
beams and floors are horizontal and the majority of columns or 
walls are vertical.

Considering the force F in a Cartesian coordinate system, we 
may resolve the force into components aligned with the x- and 
y-axes.7 Those components are commonly called forces Fx and Fy. 
(Fig. 4.7b.) And while a graphical approach to the study of force 
vectors has been convenient for conveying the basic principles 
until this point, actual practice and computer programs favor the 
use of simple mathematics for calculating vector sums. By using 
trigonometry, therefore, we can determine the horizontal and vertical 
components of force F to be

Fx = F cosα
Fy

 = F sinα

where α = the angle between force F and the x-axis. In the context 
of Cartesian coordinates, it is also possible to keep track of the 
directions of the forces and force components, as positive forces 
can be taken as those which point in the positive directions of the 
x- and y-axes while negative forces point in the opposite direction. 
In Section 4.7 and throughout the rest of this book we will see the 
great advantage of resolving forces into components parallel to 

the horizontal and vertical axes, especially when many forces are 
involved and we need to know their combined effects.

Before proceeding with that, however, there is still one common 
and critical effect of forces that we have not yet looked into and to 
which we will now turn our attention: i.e., when net forces act on a 
body they not only tend to cause it to displace along a straight line 
but also to rotate. In this case, both the magnitude of the force as 
well as its distance from the point (or axis) about which the rotation 
takes place are relevant parameters that help establish the action. 
We thus need to define a new concept called the moment of a 
force, M, in which both the force and a distance are involved; i.e., 

moment = force × distance

Since moments M are products of forces and distances, they are 
commonly defined in units of (kilo)Newton meters, kNm or Nm, 
respectively. Similarly, Imperial or American Standard Units give 
moments in pound-inches (lb-in), pound-feet (lb-ft), or kip-feet 
(kip-ft). The distance is called the moment arm. 

When one thinks about it, we are not even able to do a simple 
thing like opening a door without experiencing the effect of 
moments. (Fig. 4.9.) We push or pull the door open by exerting 
a force on the door surface. When pushing open the door, we 
instinctively apply a force at the longest possible distance to the 
vertically hinged axis about which the door swings; this will ensure 
that the moment is pleasantly and usefully large. If we try to open 
the door by pushing it closer to the hinges, we find that we need 
to apply more force in order to do so.

The lever principle perfectly illustrates the effect of moments.8 
To lift a heavy boulder vertically up out of the ground, for example, 
we may use a stiff bar acting as a lever with one end under the 
boulder and then we apply a downward force at the other end. 
(Fig. 4.10.) The lever will rotate about a strategically placed smaller 
stone on the ground (a fulcrum) and produce a pushing force acting 
on the heavy boulder from below which hopefully will be sufficient 
to lift it up. The whole idea of the level principle, though, is that in 

Figure 4.7 
(a) Arbitrary resolution of force F into components A and B 
by help of a force parallelogram. (b) Resolution of force F 
into horizontal and vertical component forces Fx and Fy.

Figure 4.8
Definition of the trigonometric relationships of 
sine, cosine, and tangent.

a)

b)



Chapter 4: statics

93

order to do this we actually only need to apply a moderate amount 
of downward force at our end because we do this at a considerable 
distance from the point of rotation of the bar. This distance is called 
the lever arm. If the force pushing on the boulder from below is 
greater than its weight, rotation of the lever will take place and the 
boulder will be lifted. This will happen if the moment of the applied 
force is greater than the moment of the weight of the boulder that 
tries to prevent rotation. If the magnitude of the applied force at the 
very instant when rotation about the fulcrum occurs is designated 
as A, and the weight of the stone is W, then

Aa = Wb
A = Wb/a

where a = the lever arm, which is the perpendicular distance between 
the line of action of the applied force and the fulcrum axis about 
which the rotation takes place, and b = the corresponding distance 
from the line of action of the stone’s weight. If “a” is four times 
the distance “b”, for example, then A = W/4 which means that 
applying a force of a little more than a quarter of the weight of the 
stone is all that is necessary to lift it. Beyond this specific example, 
we can say that moments that are created by applying forces at 
a distance from a point of rotation multiplies the effect of these 
forces, whether for good (as for the lifting of this boulder) or for 
bad (as when considering the effect of lateral wind forces acting on 
a building at certain heights above ground; e.g., for the common 
situation shown in Fig. 3.11.)

There is another thing to note and extrapolate from in the 
preceding lever example: not only do the forces cause the bar 
to experience in-plane rotation about the so-called fulcrum 
point, but in addition they produce moments that will result 
in the flexing or bending of the bar, since this is made out of 
real-life materials and is not infinitely stiff. This is in essence the 
effect of transverse loads acting on structural elements that was 
generally introduced in Chapter 2 (Section 2.4); more explicitly, 
transverse forces produce what are very aptly called bending 

moments in beams – a topic that will be much further discussed 
and elaborated upon in Chapter 7. Analogous to our observation 
that if the sum of forces is zero then structures will not move, but 
will deform/deflect instead, in the case of a zero moment sum 
structures will not rotate, but will bend instead. 

Finally, in this very introductory discussion about forces and 
moments, we should also be aware that we have so far only discussed 
moments that tend to rotate a structural element as a rigid body 
in 2-D planar space. While this is generally a perfectly adequate 
simplification for dealing with the analysis and design of most 
structural elements of real-life buildings (more about this shortly), we 
should at this stage point out yet another potential effect of forces 
that are acting at a certain distance from elements but in 3-D space: 
i.e., force-produced moments may in fact cause structural elements 
to not only bend but also to twist about the axis along their length. 
Consider a locked door handle, for example. (Ill. 4.15.) By applying 
a downward force to the one-piece handle, the part of it that is 

R

Figure 4.9
Moments at work in the simple operation of pushing open a door. 
The moment arm is always the perpendicular distance between the 
line of action of the force and the point or axis about which rotation 
may take place. If the magnitude of the moment (taken about the 
hinge) necessary to open the door is M = Fa = Kb, then since b < a, 
producing this moment requires that K > F.

Figure 4.10
The lever principle is illustrated. Because of the differences 
between the lengths of the moment arms a and b, a being much 
longer, the magnitude of the necessary applied force A will be 
significantly smaller than the weight W to be lifted. The forces 
involved are proportionally related as the inverse ratio of the 
corresponding lengths.

Illustration 4.15
Forces and moments on a door handle: when the lock is set, a 
downward push on the one-piece handle will cause a twisting 
deformation of the part of it that is protruding at right angles from 
the door, whereas the part that we grip will tend to bend.

R

R

R

R
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sticking out perpendicularly from the door surface tends to be 
twisted about its axis; i.e., the force magnitude multiplied by its 
distance to the axis about which the handle twists produces a 
moment, but now which is called a torsional moment. The part 
of the handle that we grip, however, will be subject to the more 
usual bending deformations and corresponding bending moments. 

4.5	E quilibrium – A Fundamental Structural 
Requisite

As we next consider the effects of these forces and moments that 
we have just described, it is helpful to visualize and specify just 
what it is that these actions will tend to do to the objects that they 
act upon: i.e., to displace and rotate in space. The “Locus of Lines” 
constructed art piece, for example (Ill. 4.16), is delicately crafted 
and articulated so as to be able to move quite freely with the wind, 
but always in such a way that it also remains balanced with respect 
to the gravity loads acting on it. One can clearly envision in this 
case the various downward force vectors from the weights of the 
individual rods and the sideways force vectors from the wind all 
acting at the same time – and, moreover, that the lines of action 
of these forces will be at certain distances from various axes of 
rotation of the sculpture, thereby producing moments. Not only 
are the anticipated displacements and rotations of the different 
parts of this artwork clear to imagine, but it is also obvious that 
this is a highly dynamic situation, i.e., one that changes easily with 
time. Even from a loose, layperson’s understanding of the concept 
of equilibrium, then, it should be clear why one would refer to 
this as an example of dynamic equilibrium. In a similar manner, 
Alexander Calder’s “mobiles” also come to mind, and these can 
then be contrasted with the equilibrium conditions of his “stabile” 
sculptures. (Ill. 4.17, 4.18.) 

Or, as another way to broach this broad topic of equilibrium, we 
might also choose to contemplate the words of the French author 
André Gide (1869–1951): 

This state of equilibrium is only attractive when we walk  
a tightrope;

 sitting on the ground there is nothing marvelous about it.9

But, of course, “sitting on the ground” is just what the buildings 
of architecture do – and yet, as we shall see, that doesn’t make 
equilibrium any less marvelous!

In order to begin to develop a more mathematical/scientific 
understanding of equilibrium, we need to go back to statements of 
first principles. For obvious reasons, neither large-scale translational 
movements nor rotations are acceptable in a building structure, 
unlike in the “Locus of Lines” or “Little Janey Waney” sculptures. 
Also, forces and moments resulting from loads acting in one part 
of the system must be balanced by forces and moments acting 
elsewhere so that structural elements or systems are always kept at 
rest. We need to develop the conditions, then, that ensure these 
statements are true by making sure that forces and moments really 
are in equilibrium.

Recalling from the previous section our consideration of forces 
having the same line of action, we stated that their force resultant is 

Illustration 4.16
“Locus of Lines.”
Visualizing balance and movement in dynamic equilibrium. After a period 
of oil painting, the Japanese artist Su-su-mu-  Shingu developed an interest 
in the third dimension and started making objects that moved in the 
wind. His works become one with the natural energy of water and wind 
and seem to breathe with a life of their own.

Sculpture by Su- su-mu-  Shingu. Model in painted aluminum by architecture 
students at AHO; Kristin C. Braut, Karen Sletvold, and Emelie Tornberg. 
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the sum of the magnitudes of the forces, observing their positive or 
negative directions. If two or more such forces acting on a body are 
to be kept in equilibrium, there has to be a force or forces present 
having a magnitude which is the same as the resultant force, but 
acting in the opposite direction. (Fig. 4.11.) In this way the total 
sum of forces will be equal to zero, which is one requisite for 
maintaining equilibrium. We may call such a condition translational 
equilibrium; this can be described as the necessary condition to 
prevent a body from starting to move along the line of action of 
the forces. Since forces are balanced a body is compressed or 
stretched rather than set into motion.

We have also looked at bodies subjected to intersecting force 
components A and B whose combined resultant is force F. (Fig. 
4.12.) Unless there is another force acting on it, the body will 
accelerate in the direction of the force F according to Newton’s 
first law. But since we cannot allow structural parts to move, we 
must be certain that the resultant force is met by an equally large 
but directly opposite force, R, in order to maintain equilibrium. 
We have shown that the resultant force F makes up a triangle with 
A and B as the other two sides, where the direction of force F is 

Illustration 4.17
“Little Janey Waney” (1976), Louisiana Museum of Modern Art, 
Humlebaek, Denmark.
A so-called “mobile” sculpture by Alexander Calder (1898–1976).

Illustration 4.18
“Big Sail” (1966), MIT Campus, Cambridge, MA, USA.
A so-called “stabile” sculpture by Alexander Calder.

Figure 4.11
Translational equilibrium of forces acting along the same 
line. To be at rest, there must be a force R present which 
is equal to the sum of A and B (A + B = F), but acting in 
the opposite direction.

A B

F = A + B

F + (-R) = 0

R
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from the tail of one component to the tip of the other. The force R 
which is to hold the vector sum of A and B at rest, however, is the 
“reactio” of F and is directed oppositely to it. To have equilibrium 
between the three forces (A, B, and R), therefore, their vectors should 
make up a closed triangle where all forces are linked from tail to 
tip. Likewise, a system of more than two forces is in equilibrium if 
all force vectors comprise a polygon where the “last” force ends 
up tip to tail with the “first” force. This is the graphical depiction 
of forces whose net result is zero, written

Σ (A + B + R) = 0

where the Greek letter Σ (capital sigma) means “the sum of.” When 
all three forces are present, translational equilibrium is maintained. 
This means that no net resulting force is acting and that the structural 
element or system is at rest. We will return to considering this 
condition of equilibrium later in this section. 

Considering now the equilibrium of moments, we can observe 
through an example that in order to prevent rotation, moments 
acting on a structure must necessarily cancel one another out. 
The Buvette de la Source Cachat (Ill. 4.19) is primarily known 
because Jean Prouvé (1901–1984) was involved in its design and 
construction.10 The structure for this particular building serves as 
a convenient example for illustrating the principle of equilibrium 
of both moments and forces. A series of somewhat Y-shaped steel 
structural elements support the roof at the tip of its two “arms” 
that project outward from a central column or pillar. Such “arms” 
or beams that have support at only one end (their other end is free 
of support) are called cantilevers (see Chapter 7). Since the two 
cantilevers in this case support different portions of the roof area 
and, therefore, different amounts of vertical load, there is a real 
risk that the Y-shaped steel structure would overturn by rotating 
about the point where it meets the ground. As can be seen, the 
column tapers in width to almost a point at its base, which would 

enable such rotation to occur easily. To prevent this, the tip of 
one of the projecting beams (the one shown on the right side in 
Fig. 4.14) is tied down to a foundation in the ground by means 
of a vertical steel rod. The whole structure is kept in equilibrium 
because the moment produced by the roof load on the tip of the 
(left-side) cantilever is equally as large as the moment resulting 
from the tension force in the rod.11 Both moments are considered 
to act about the potential point of rotation at the base of the 
Y-shaped column.

When doing a mathematical summing of moments we must 
take care to observe their potential direction of rotation. Moments 
either tend to rotate a body clockwise or counterclockwise, and 
we may, as a sign convention, define moments acting clockwise 
as positive and moments acting counterclockwise as negative. In 
the diagram of the Buvette structure shown in Fig. 4.14, then, the 
moment of the tension force T about the column base is taken 
to be positive and the moment of the roof load P is negative. 
Formally, we seek the magnitude of these moments whose sum 
is zero in order to have rotational equilibrium. In mathematical 
terms this means that

+Te – Pa = 0

where e and a are the respective moment arms. This is the 
condition for maintaining equilibrium between the two moments, 
both considered to act about the point of support of the structure. 
We call this a moment equilibrium equation, and have, therefore, 
that

Te = Pa

which means that a state of equilibrium is found if the two moments 
produced are equal in magnitude to each other but have opposite 
directions. We can state as a general rule that the sum of moments 

4kN
3kN

5kN

Figure 4.12
The body acted on by forces A and B, which together 
produce the resultant force F, but that can be held in 
equilibrium by a balancing force R.

Figure 4.13
Demonstration of the equilibrium of forces using springs.
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taken about any point in a structure must be equal to zero if the 
structure is to be at rest; i.e., if it is not to rotate. Mathematically, 
we write this as

ΣMz = 0

where M is the sum of all the moments acting on a structure about 
some arbitrarily chosen point “z” in its 2-D plane. (Technically, it 
actually doesn’t matter whether this point is within the structure 
or not, although it is often convenient to consider it to be.) So, 
in addition to the general need for equilibrium of forces that we 
described before, another requirement for maintaining overall 
equilibrium of a structure is that the sum of positive and negative 
moments acting on it should always nullify one another. This is 
called rotational equilibrium.

It should be pointed out that in this example we have been 
considering forces that are not acting along the same line nor 
intersecting, as we had been doing until now, but rather that 
are parallel to each other. Nevertheless, these forces’ combined 
effect on a structure must sum up to zero in every way in order 
to have equilibrium; i.e., not only rotational equilibrium but also 
translational. For the Buvette structure just considered, we have 

seen that summing moments can help us guarantee rotational 
equilibrium, but this will not inform us about any tendency of the 
structure to move up or down in a vertical direction. To prevent 
this, we must introduce the mathematical condition that the sum 
of forces present is always equal to zero. Referring again to Fig. 
4.14, we may write this as

+R – P – T = 0

Figure 4.14
Buvette de la Source Cachat. 
Sketch of Y-shaped steel structural component. Positive 
moments act clockwise (+Te), balancing negative 
counterclockwise (–Pa).

Illustration 4.19
Buvette de la Source Cachat, Évian, France (1956).
A line of distinctive Y-shaped steel columns supports the roof; to give 
a sense of scale to this image, the distance between the support 
structures in the longitudinal direction of the building is 6m (20ft).

Architect: Maurice Novarina. Structural engineer: Serge Ketoff. Designer 
and craftsman: Jean Prouvé.
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where R is taken as a positive force acting upward and P and T 
as negative forces acting downward. R is in fact a reaction force 
supporting the combined forces of P and T, and for equilibrium 
this necessarily has to act upward. Solving the equation will give us

R = P + T

Not surprisingly, R will be of the same magnitude as the sum of P 
and T, but is acting in the opposite direction. We may, therefore, 
state as a general rule that the sum of all forces in a structure must 
be equal to zero if the structure is to be in translational equilibrium. 
Mathematically, we write this as

ΣF = 0

where F represents all forces acting. In the case of the Buvette, 
the forces we have been looking at all act vertically and we may 
indicate this by adding the subscript “y” to the group of forces, such 
that Fy refers to vertical forces oriented in a Cartesian coordinate 
system. Likewise, any forces that may act horizontally would be 
given the subscript “x”. If we have resolved forces into components 
acting vertically and components acting horizontally, we can write 
the requirement for translational equilibrium in terms of these 
two directions. Thus, if in any planar system of forces the three 
requirements for equilibrium applying to moments and to forces 
acting in the two directions of x and y are observed, then the 
structure is in both rotational and translational equilibrium. The 
three corresponding equilibrium equations are, then

ΣFx = 0 	 ΣFy = 0 	 ΣMz = 0 

which we will return to and make use of over and over again 
throughout the rest of this book. Equilibrium is indeed a fundamental 
and powerful concept.

4.6	I ntermezzo Italiano

A couple of examples in the central Italian city of Gubbio can help 
to shed some light on Newton’s laws. Along the street leading to 
Piazza della Signoria stands a masonry dwelling of five stories. 
Over the course of many years, the façade of this building has had 
the tendency to bulge farther and farther out in certain places, to 
the point that it was necessary to take precautionary measures to 
prevent it from tumbling into the street.

The solution was a set of vertical, two-story-high bracing systems 
mounted to the façade with bolts. (Ill. 4.20.) A vertical piece of 
timber, attached to secure elements in the building structure at 
its top and bottom, is connected at its middle to a horizontal 
compression member projecting outward and that is secured at its 
tip by means of angled tension rods, recalling the basic elements of 
the Polonceau system we have seen earlier in this chapter in Section 
4.1, but here oriented vertically. With the help of turnbuckles in the 
rods in order to keep them tightly stretched, this bracing system can 
keep the façade in check and control the forces causing its outward 
deformation. The situation is now stable, having achieved equilibrium 
between the forces pressing the façade outward and those of the 
support system – all according to Newton’s first law, which states 
that for a system of forces to be at rest, no net resulting forces 
can act on it. Another result of these emergency arrangements, as 
we may call them, is that they happen to have enriched the visual 
character of the streetscape.

In the same street, a bit closer to the piazza, an antique store 
offers crossbows for sale. The tension system of this weapon presents 
a situation similar to that of the support system bolted to the 
bulging wall façade. When the crossbow is cocked, the system is in 
equilibrium in accordance with Newton’s first law. But the moment 
we pull the trigger and fire, the tension is unleashed and the arrow 
flies, fulfilling Newton’s second law. (Ill. 4.21.)
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4.7	 Support Conditions and Reactions

We have examined the requirements for equilibrium of forces and 
moments in Section 4.5 and established that for a planar structure 
there are three equations that mathematically express its essential 
state of rest; i.e., that there will be no overall displacements and no 
rotation of the structure. Until this point, though, we have arrived at 
these equilibrium conditions by studying only a few carefully selected 
examples with given force vector magnitudes and directions and 
that, especially, were strategically isolated from having to deal with 
certain aspects of built reality. In particular, there was no explicit 
consideration of the effect on equilibrium of a structure’s support 
conditions – where one structural element is connected to another 
or where one meets the ground – and how such support conditions 
may in fact help to ensure equilibrium. And so it is to these issues 
that we now turn our attention.

In order to develop an understanding of the importance of 
structural support conditions in relation to equilibrium, and vice 
versa, we will start by considering the situation of the very basic 
case of a horizontal beam spanning between two supports with 
a downward point load P acting on it at mid-span. (Fig. 4.15.) An 
obvious question in this situation quickly comes to mind: What 
forces must be generated at the end supports of such a beam in 
order for it to be kept in equilibrium?

To answer this question, we will first need to understand and 
describe in some detail the physical behavior of the beam in response 
to the loading as well as in relation to the specifics of the support 
conditions. With respect to the latter in particular, this actually 

Illustration 4.20
Tension and compression façade-stabilizing bracing 
assemblies in a street in Gubbio, Italy.

Illustration 4.21
A crossbow: when cocked, the components are in 
equilibrium and at rest; when the trigger is pulled, stored 
energy is released and the arrow is put into motion.
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means establishing whether or not the connections allow for some 
rotation and/or for some translation of the beam ends relative to 
the supporting structures. In this case, we will set the connections 
to be such that the beam is restricted from horizontal movement 
at the left support, but is allowed a slight sideways movement at 
the right one. At both supports, however, vertical movements are 
prevented. Also, we will imagine the connections are of a type that 
allows both left and right beam ends to be able to rotate slightly. 
We call the type of support/connection at the left end a pinned 
connection, and that at the right end is called a roller connection. 

The logic behind these support conditions is as follows. When 
the load acts on the beam it will surely deflect downward, however 
slightly. By becoming curved, it will need to contract laterally; i.e., 
the actual distance between the supports would have to become 
smaller. To accommodate this, one of the supports needs to be 
able to move horizontally in order to prevent elongation of the 
beam itself. In the end, it does not matter which of the two ends is 
allowed to be pulled inward; it is the relative movement between 
the two ends that matters. It would not be wise, however, to allow 
both supports to move, because then the overall horizontal stability 
of the beam would be lost. In actual building practice where the 
span is modest, we will commonly observe that the two support 
connections are similar and it is not possible to identify which is 
the pinned connection and which is of the roller type. With a large 
horizontal movement of the beam thus prevented, the idea is that 

the theoretical shortening of the beam to accommodate its small 
vertical deflection can nonetheless take place within the imprecision 
of the connections themselves, thus eliminating the need for an 
explicit roller connection. When the span is larger, however, a true 
roller connection is more likely to be necessary.

Figure 4.16 shows the symbols used to graphically represent 
these two different types of support conditions, and the potential 
translations and rotations as well as the corresponding forces and 
moments that each type of support/connection condition is able to 
provide. A third possible support/connection type, this one called 
fixed, is also included and will be discussed a bit later; for now, 
though, it is enough to point out that at this type of connection 
condition neither translation nor rotation is permitted. A specific 
example of each of these three types of connections is provided in 
Illustration 4.22, but it should be borne in mind that these are very 
particular cases that have been chosen because they clearly express 
their respective translational/rotational freedoms and constraints; 
in reality, the way connections “look” can and does vary quite 
widely. Regardless of their physical appearance, however, what is 
critical to establish is how a particular connection (or pairs of end-
connections considered together, as discussed in the preceding 
paragraph) addresses the possibility of translation and rotation of 
the structural element.

We are now in a position to address the equilibrium of the 
end-supported beam we introduced in Figure 4.15. One end of 
this beam is taken to have a pinned support and the other a roller 
support, a situation that is so common in building construction that 
it is given its own name and is explicitly called a simply supported 
beam. The forces at supports resulting from the applied load are 
called support reactions, and their magnitude and direction can 
be found by seeking equilibrium for the whole beam structure, as 
will be done presently. 

Let us consider the simply supported beam AB having an 
inclined force P acting on it at mid-span, as shown in Figure 4.17. 
Where the loaded beam is restrained from possible movements, 
support reactions are generally created. Hence, in this example 
three unknown support reactions are established. These are the 
horizontal and vertical force components at support A, called Ax 
and Ay, and the vertical component at support B, called By. We will 
now study the beam’s behavior when looked at as a rigid body. 
If we consider the beam from the point of view of support A, it 
seems as if the force By and the vertical component of the external 

Figure 4.15
When loads act on a beam it will bend. (The 
amount of bending, as depicted here, is greatly 
exaggerated.) The new curved line takes a longer 
path between the supports, and to accommodate 
this without stretching the beam, the supports 
will need to move relative to one another, thus 
making the span slightly shorter. Hence, one of the 
supports (it doesn’t matter which) should be a pinned 
connection while the other is of the roller type.
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Figure 4.16 
Three types of support conditions 
and their accompanying force 
reactions. These are idealized 
representations for the roller 
support, pinned support, and 
fixed support.

Illustration 4.22
Examples of the three basic types of support conditions.
(a) Roller support condition, literally so here for the support of one end of a long-span 
beam; beam end is free to rotate and the steel cylinder permits free movement in the 
direction of the span while still preventing vertical displacement. 

(b) Apple Store, Fifth Avenue, New York, NY, USA (2006). 
Pinned support condition, here for a glass beam-to-column connection; beam end is 
free to rotate about the central steel pin, but neither lateral nor vertical displacements 
are allowed.

Architect: Bohlin Cywinski Jackson. Structural engineer (glass): Eckersly O’Callahan.

(c) Stratford Regional Station, Jubilee Line, London, UK (1999). 
Fixed support condition for the end of a curved roof beam; anchoring bolts over 
full width of connection mean that rotation of the beam end is prevented, as are 
displacements in any direction.

Architect: Wilkinson Eyre. Structural engineer: Hyder Consulting Limited.

a) b)

c)
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load, Py, might each cause the beam to rotate around the support. 
Both forces act at a distance to support A. Each creates a moment 
where the actual perpendicular distances from support A to the 
respective forces’ lines of action constitute moment arms. The forces 
acting at support A, however, are directed through the center of 
the connection and create no moment about A since there is no 
moment arm. For the beam to be in equilibrium, therefore, the 
two moments of the forces By and Py, acting in opposite directions, 
must be equal in magnitude. Since the sum of moments taken 
about support A must be zero (ΣMA = 0) we have

+PyL/2 – ByL = 0, or
By = Py/2

This equation shows By to be one half of the magnitude of the 
load Py. Having found one vertical support reaction, we may now 
look at the requirement for vertical equilibrium. If ΣFy = 0, then

Ay + By – Py = 0, or
Ay = Py – By = Py – Py/2 = Py/2

This shows Ay to be equal to By. Furthermore, the condition for 
horizontal equilibrium yields

Ax – Px = 0
Ax = Px

(Note that if force P is vertical, then Px = 0 and therefore Ax = 0, 
so there would be no horizontal reaction force at A in that case.) 

All three unknown forces have thus been found by applying 
the three equations of equilibrium. Neither of the supports in 
the example is able to resist moments by itself; i.e., one support 
depends on the cooperation of the other in order to prevent the 
beam structure from rotating. There are ways to design support 
connections, however, in such a way that one support on its own 
may prevent rotation. As mentioned previously, we call such a 
connection a fixed support (see Fig. 4.16, Ill. 4.22c), and a beam 
with a support of this type at one end is called a cantilever.

The way in which a cantilever works is by effectively establishing 
two lines of force within the dimensions of the connection itself, in 
such a way that there is a distance, or moment arm e, between them. 
(Fig. 4.18.) When moments act about this support, two oppositely 
directed force reactions will develop (T will pull and C will push 
at the beam end) and create a moment (M = Te = Ce) at the end 
of the beam which can provide equilibrium with the moments 
resulting from the loads acting on the beam. The two horizontal 
force reactions at the fixed support have equal magnitude, but 
opposite directions. We call such a set of forces a couple, and 
recognize that a couple produces a moment.

We noted that all three support reactions in the example of the 
simply supported beam above were found by applying equilibrium 
equations. This is logical, since there are three conditions for 
equilibrium for plane structures. So if we are able to establish three 
independent equations in such conditions, then obviously three 
unknown forces will be able to be found by solving those equations. 

Figure 4.17
A beam simply supported at A and B with support reactions Ax, Ay, 
and By. The detailing of the connections at A and B informs us about 
the support conditions. 
Support A is imagined to be a pinned connection which restricts both 
horizontal and vertical movements. The connection is thus able to 
mobilize support reactions in both directions to keep the beam at rest. 
At support B, small horizontal movements are possible. This means 
that no horizontal support reaction can be established; only a vertical 
reaction exists that keeps the support from moving downwards. 
With these support conditions, we have three unknown force support 
reactions which can be calculated by applying the three equations for 
equilibrium. We say that such a beam is statically determinate.

Figure 4.18
A cantilever has one fixed support.
When loads act on the beam a couple (forces having the 
same magnitude but opposite directions, acting with a 
distance between them) is created at the support which 
can provide equilibrium with moments resulting from 
the loads. (In addition – but not shown here – a vertical 
reaction force must also balance the net transverse force 
acting on this cantilever.)
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But what if the support conditions for the beam were different 
than simply supported? Let us say, for example, that we support 
a beam on two pinned supports. (Fig. 4.19.) If the loads on the 
structure are resolved into both horizontal and vertical components, 
then horizontal and vertical force reactions will be created at both 
supports. We will then be dealing with four unknown force reactions, 
not three. How would we be able to calculate those by applying 
three equations? The answer is that we will not! To calculate the 
forces in such a system, we need to go beyond statics and apply a 
knowledge of how the system deflects. The theory for this, though, 
is outside the scope of this book. What we should know, however, 
is that a plane structural system (comprising one rigid body) where 
there are more than three unknown support reactions is referred to 
as being statically indeterminate externally. We also say that such 
a structure is redundant, a label that expresses that there are more 
support reactions present than the minimum that is necessary for 
maintaining equilibrium. In the case of the situation cited above 
with two pinned supports for the structure, there is one redundant 
horizontal force in the system. On the other hand, a system that 
is statically determinate with respect to its exterior supports (such 
as the simply supported beam that we were able to determine the 
reactions for) has exactly the minimum number of required support 
reactions for the structure to be in equilibrium (three for a planar 
system, six for a three-dimensional spatial system).12

Now imagine what would happen if one of the supports in the 
statically indeterminate beam with two pinned ends were to sink. 
(Fig. 4.20a.) This can happen, for example, if foundations give way 
slightly when the supporting soil at one end is soft and the width 

of the foundation is inadequate. Since any horizontal movement of 
the supports is assumed to be prevented, a vertical movement will 
cause the beam to actually have to become physically longer, and 
tension forces will necessarily develop along the length of the beam. 
An unforeseen vertical support movement will, therefore, create 
new and unforeseen forces in the structure. The same is true if an 
increase in temperature results in a tendency for a beam to expand. 
(Fig. 4.20b.) Since the beam is prevented from moving horizontally 
to accommodate this added length, horizontal compression forces 
will be created within the beam which will push against the supports. 
The pinned supports will allow each end to rotate, though, and 
so the compression force will result in the beam curving out from 
its initially straight, horizontal axis, causing it to bend. Hence, in 
redundant or statically indeterminate systems additional forces and 
moments are developed internally, whereas this is not the case for 
structures that are statically determinate, a fact that is considered 
to be an advantage in many cases.

Historically, the innovative large spans in iron and steel that were 
developed during the nineteenth century were to a large extent 
designed to be statically determinate structures; their engineers 
felt that such structures’ behavior was easier to control as well 
as to calculate, and so those types were preferred. Are statically 
indeterminate systems entirely less desirable, then? Not at all. In 
fact, many structural systems built today are highly redundant. The 
very complicated calculations that are necessary to predict their 
behavior, however, no longer represent the same obstacles in this 
era of computers. Besides, having more means of support than 
is strictly necessary may also mean greater safety: if one support 

Figure 4.19
A statically indeterminate beam with four support 
reactions. With two pinned supports, there are four 
unknown forces. We are unable to calculate the 
magnitude of these forces by methods from statics 
alone and we refer to such a system as being statically 
indeterminate externally.

a)

b)

Figure 4.20
Both beam supports are pinned and prevented from 
moving sideways.
(a) If one support were to sink, the vertical movement will 
result in the beam becoming slightly longer, which means 
that a tension force is created within the beam. 
(b) A rise of temperature in a statically indeterminate 
beam that is unable to expand horizontally leads to 
internal compression forces in the beam (and eventually 
to its bending). A statically determinate system, on the 
other hand, would compensate by moving horizontally.



Chapter 4: statics

104

gives way, the structure may remain in equilibrium by means of 
those that are left.

In the following chapters, we will apply our knowledge of the 
requirements for equilibrium introduced in this chapter to study in 
more detail how the most common of structural elements function, 
as well as how much more complicated structural systems work to 
resist the loads that are applied to them.

4.8	 Nordic Expressions of Forces and 
Moments

Structures made from all materials face the same elementary 
challenges: How should elements be connected? This is a question 
that has tortured the minds of architects ever since Antiquity. Many 
requirements must be fulfilled by the connections, but certainly 
an overriding one is the necessity for force transmission. In that 
process, forces commonly change directions. In this section we will 
look at a few architectural details and systems that involve some 
form of force distribution between two or more structural elements, 
starting with column-to-beam connections in concrete and then 
moving on to study some complex joining of elements in wood, 
all the while within a Nordic architectural context.

The Gothenburg Law Courts from 1937 is one of the most 
admired works of modern architecture. It stands shoulder to shoulder 
with the nineteenth-century neoclassic Town Hall and faces Gustav 
Adolf Square in the center of old Gothenburg. Inside, a large 
open hall extends through three floors and radiates a remarkable 
spaciousness, partly by making use of glass walls facing the inner 
courtyard, effectively connecting exterior and interior into one 
large space. Also within this hall, the architect Gunnar Asplund 
(1885–1940) created a fine cantilevered mezzanine level with a 
beautiful open staircase.

To achieve a high degree of transparency for the interior 
space, Asplund decided to use a minimal and open steel frame, 
although due to fire regulations the steel had to be encased in 
concrete. The structural honesty is nevertheless evident in the 
free-standing columns, where the concrete form reveals the shape 
of the hidden H-rolled steel profile as well as that of the tapered 
profiles of the beams under the mezzanine and roof. (Ill. 4.23.)  

Illustration 4.23
Gothenburg Law Courts, Gothenburg, Sweden (1937). 
Column-to-beam connections in central hall. Steel 
structural elements are encased in concrete. This is an 
example of a fixed connection.

Architect: Gunnar Asplund.
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In particular, close to the glazed façade, the daylight from the 
courtyard brings life to the beautifully designed connections 
between columns and beams.

Paustian is a furniture dealer in Copenhagen with a marvelous 
stock of classic modern furniture, certainly Danish but also 
international in origin. Somewhat away from the city center, Jørn 
Utzon (1918–2008) was asked to design a new furniture store in 
a formerly run-down part of the Copenhagen harbor area, thus 
initiating some much-needed urban redevelopment. For this, Utzon 
opted for a type of precast concrete system that might be found in 
any industrial building. With a pitched roof covering one large hall 
with mezzanine floor levels, the building offers a variety of spaces, 
both high and low. Daylight from above brings the interior scenery 
alive; one of Utzon’s recurring inspirations is the characteristic space 
and light of the Danish beech woods. The structural system here is 
based on continuous columns with brackets for carrying the beams 
that support the floor decks and roof, the whole system together 
forming frames along the length of the building. (Ill. 4.24.) Rigid 
frame connections are achieved between columns and beams by 
shaping the top of the brackets into large triangular gusset plates; 
besides securing the stability of the building, this column-beam 
system and its distinctive connections form beautiful frames for 
viewing the various furniture departments on the mezzanine levels. 
Furthermore, double precast concrete T-beams, with their ribbed 
appearance on the underside, add to the structural quality of the 
hall. All concrete work is bright white; the only color introduced is by 
the dark ultramarine glazed ceramic tiles on top of the balustrades 
and the handrails in the stairs.

Leaving the subject of beam-to-column connections, we will 
next take a look at four architectural examples featuring structural 
systems that involve the cooperation and connection of a number 
of structural elements. It is true that advances in technology have 
made it possible for us to enclose large spaces with long and deep 
simple beams, some of which result in uniform and unarticulated 
architectural expressions. Yet long spans can alternatively be broken 
up and a shorter-span structural system can be deployed to create a 
varied and rich architectural expression. Talented Nordic architects 
and builders through time have incorporated these principles in 
the design of structures made of wood.

The Nes stave church in Hallingdal, Norway, dating from the 
1100s, was at one time one of the few examples of a so-called 
middle-masted church in wood: after a long period of deterioration, 

Illustration 4.24
Paustian Furniture Showroom, Copenhagen, Denmark (1986).
Overall framework made with precast concrete elements 
connected together. Triangular brackets create fixed connections 
between columns and beams.

Architect: Jørn Utzon. Structural engineer: Johs Jørgensen AS.
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however, the church was demolished in 1864. Fortunately, detailed 
measured drawings were done during the church’s very last hours, 
giving us good insight into the structural system. (Ill. 4.25.) The floor 
plan was quite simple and consisted of a rectangular nave with four 
corner posts and a mast in the middle, plus an apse. The middle-
mast extended up to the rafters and was connected to four beams 
stiffened by half arches. Diagonal struts from here supported the 
peaks of the gables and the roof ’s spire. A series of scissor-trusses 

supported the roof over the nave. A more thorough examination 
of this church is beyond the scope of this book, but we can begin 
to imagine how such a 900-year-old structural system worked and 
gave the building its particular character. Its design and construction 
is unified with the creation of its architectural expression.

Alvar Aalto’s (1898–1976) courthouse in Säynätsalo, Finland, 
was inaugurated in 1952. The multiform complex in red brick is 
deployed around a central courtyard that is elevated with respect 

Illustration 4.25
Nes stave church, Hallingdal, Norway (twelfth century).
Structural system recreated from measured drawings done before the church was 
demolished in 1864.

Model by architecture students at AHO: Olav Dalheim, Svein Hoelseth, and Jan Petter Seim.
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to the surrounding terrain. The main hall of the courthouse is a 
cubic form, with its height matching its width. The sloping roof 
structure over this space spans almost 10m (33ft) by having two 
wood tension elements drop down to meet at an angle, forming a 
prominent connection point from which a bundle of compression 
struts fan up and out to support the roof above. (Ill. 4.26.) The depth 
of the roof beams is thereby reduced, since the bundles of struts 
greatly shorten the distance that the roof beams have to span. The 

base of the strut fan could have obviously been supported by a 
column that would have transferred the load on downward, but 
Aalto chose instead a hanging tension system that brings the roof 
loads back up to the top of the load-bearing walls at the perimeter. 
The actual connection collecting the 16 individual strut members 
is carefully designed as a single steel trough.

In the unbuilt project for an indoor swimming pool at Peblingesø, 
a lake in central Copenhagen, the Danish architect Jørn Utzon 

Illustration 4.26
Town Hall at Säynätsalo, Finland (1952). 
Compression struts fan up to support the ceiling of the council chamber. The lower ends 
of these struts connect together at two locations in the middle of the space, but instead 
of having columns come down from there and interrupt the open space below, these 
connection points are supported by two angled wood elements that bring the loads back up 
to the top of the brick walls surrounding the room. 

Architect: Alvar Aalto.
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(1918–2008) shows how he mastered a theme and gave it his own 
special interpretation. The building design is light and open, giving 
the observer an impression of the lake as continuing in through 
the building to form the swimming pool. (Ill. 4.27.) Structural order 
characterizes the building plan, and the roof above is carried by 
two parallel rows of wooden compression struts. The struts branch 
out to support the rafters which consequently are subdivided and 
can be very slender in relation to their length. Massive foundation 
pillars with wide bases combined with the triangles formed by the 
arrangement of compression struts and rafters make sure that the 
building is fully stabilized in both directions. The reflection of the 
branching structure mirrored in the water surface underlines the 
main idea of visual integration of the lake and the pool.

Finally, the Metla Building from 2005 houses the Finnish Forest 
Research Institute at Joensuu, a university town in the forest-rich 
area close to the Russian border. An innovative use of wood was the 
natural starting point for the design by SARC architects. Appearing 
as a cubic volume, the building is organized around a courtyard that 
gives access to the vestibule and laboratories. The structural system 

is a regular and flexible fir-laminated post-beam-slab system based 
on a module of 7.2m (24ft); such a system allows for a change in 
internal partitions and even external façades as needed.

While the layout for laboratories and office follow a straightforward 
and economical pattern, the most impressive part of the building 
is the three-story-high vestibule area with reception and cafeteria. 
The distinctive structure here comprises a row of four bundles of 
columns. (Ill. 4.28.) Each bundle in turn consists of four inclined 
timber members jutting out from one unified steel joint on the 
floor. To prevent these members from buckling (they have, after 
all, a length of 12m (39ft) up to the ceiling), these columns become 
spatial; i.e., they are each composed of four subparts having square 
cross-section that are spaced apart. At equal intervals along the 
height of the columns these parts are kept apart by means of steel-
spacers, in this way producing a fine curved appearance and an 
increased resistance against buckling. (There will be more about 
this in Chapter 8). Dramatized by the shifting daylight, the bold 
and thoroughly detailed structure creates a memorable space.

Illustration 4.27
Indoor swimming pool facility, Peblingesø, Copenhagen, Denmark (designed 1979; unbuilt).
Roof was to be carried by angled wooden compression struts that would have branched out from 
two lines of columns along the sides of the pool. This number of struts would have minimized the 
span of the roof beams, keeping their dimensions to a minimum. 

Architect: Jørn Utzon. 
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Illustration 4.28
Metla Building, Finnish Forest Research Institute, Joensuu, Finland (2005).
Bundled groups of angled columns support the roof in the three-story-high vestibule 
area. To increase their load-carrying capacity given their exceptional length, each 
column element is made up of four subparts that are spaced apart. 

Architect: SARC. Structural engineer: Olof Granlund Oy.
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5.1	 St. Paul’s to Tate Modern – A Material Walkabout
5.2	 The Mechanical and Physical Properties of Materials
5.3	 Lessons from History and Nature
5.4	 Concrete, Stone, Earth, and Clay Bricks
5.5	 Steel, Iron, and Aluminum
5.6	 Wood and Cardboard
5.7	 Glass
5.8	 Fibers and Fabrics
5.9	 Plastics and Composites

5.10	 The Case of Chairs – Exploiting Material Properties 

Illustration 5.1
Admiral Hotel, Copenhagen, Denmark 
(eighteenth century). 
Pomeranian pine was used for the structure 
of this old warehouse, now converted 
into a modern hotel at the Copenhagen 
waterfront.
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5.1	 St. Paul’s to Tate Modern  
– A Material Walkabout 

In central London, one is easily able to span the course of time in 
relatively few steps. There is one such short walk in particular, going 
from St. Paul’s Cathedral across the Millennium Bridge to the Tate 
Modern art gallery, along which various building materials that have 
been used over the past 350 years are conveniently concentrated 
and put on display. In observing these, one can also contemplate 
just how material selection plays a key and integral role in the 
design of structural systems supporting diverse architectural design 
objectives, irrespective of date of construction. 

St. Paul’s Cathedral

Following London’s Great Fire of 1666 and the destruction of the 
previous St. Paul’s Cathedral with its wooden roof construction and 
its spectacularly tall Gothic spire (this part was actually destroyed a 
century earlier in 1561 due to another fire, thought to have been 
caused by a lightning strike), Sir Christopher Wren (1632–1723) 
was commissioned to design a replacement cathedral that would 
be no less dominant on the London skyline. In developing the 
design for the new St. Paul’s, Wren was influenced by his travels 
to continental Europe (and especially by the domed Pantheon and 
Baroque-style St. Peter’s in Rome) as well as by medieval English 
church designs and, also, by a then rapidly evolving scientific 
understanding of the workings of structural systems. The exterior 
walls of the Cathedral were built of Ashlar masonry – grayish-white 
rectangular-cut limestone blocks from Portland in Dorset – which 
was considered at the time to be the finest stone masonry but 
was becoming increasingly rare, which likely made it seem all the 
more appropriate for this landmark building. Above these walls at 
the crossing, a large dome was erected that is supported by eight 
stone piers – two along each side and four corner bastions – rather 
than the more typical four supports because of what were known 
to be unstable ground conditions on the site, thus enabling the 
vertical loads to be more distributed and thus reduce the risk of 
differential settlement. 

This dome of St. Paul’s is a most remarkable structure: it is 
actually composed of three geometric surfaces with differing 

profiles, as can clearly be seen in the perspectival section drawing 
in Ill. 5.2. (See also Ill. 13.15.) A mostly hidden brick structural 
cone is in the middle and is the workhorse of the three; it is 
only 46cm (18in) thick and yet reaches up the desired height of 
111m (365ft) in order to support the large ornate stone lantern 
at the top of the dome that weighs 850 tonnes (1 900 000lbs). 
Carrying such a large concentrated load on a conical structure, 
which is straight-line in section, is remarkably efficient with most 
of the load able to be carried in direct compression while also 
minimizing the outward bulging that a curved-in-section structural 
dome would be subjected to. (There will be more on this topic 
in Chapters 12 and 13.) Any limited tendency for the cone to 
bulge outward due to gravity or lateral wind loading is resisted 
by circumferential iron chains located at intervals up the height 
of the cone, as well as by a set of radial stone buttress walls 
around the base of the cone (which are hidden from view behind 
a perimeter colonnade). 

But this brick cone also supports an open timber framework 
necessary to carry the traditionally curved shape of the lead-sheet-
clad outer dome surface, a profile that would have been expected 
on such a prominent city and ecclesiastical landmark during the 
seventeenth century – notwithstanding any scientific advances 
being made at that time. Also to be expected would have been a 
correspondingly domed-shape interior ceiling above the crossing 
– not the steep, straight sides of the interior of a cone. And so, 
within the structural cone, we indeed find the third of St. Paul’s 
dome surfaces: this one also made of brick, also 46cm (18in) thick, 
but having a strategic catenary shape to support its self-weight 
(again, see Chapters 12 and 13) and with a large opening at the 
center. The paintings on this inner dome surface can thus be better 
brought into sight of the congregation below, while the opening 
at the center allows the sense of space to project further upward, 
with strategic openings in the conical surface illuminating the apex 
of its underside.

In summation, then, we see here at St. Paul’s dome that the 
use of traditional heavy masonry materials like stone and brick 
replaced earlier and more vulnerable timber construction, and 
moreover that these were shaped and deployed in innovative ways 
so as to achieve a relatively light and efficient overall structural 
system given the building’s remarkable height and open volume; 
i.e., the choice of materials enables and supports the architectural 
design intentions.
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Illustration 5.2
St. Paul’s Cathedral, London, UK (1708).
Perspectival section drawing shows St. Paul’s dome to be composed of 
three geometric surfaces: an inner masonry dome that is most visible from 
the inside and so has paintings on its underside, above that a straight-
sided conical surface also made of masonry blocks and that bears the 
weight of the heavy lantern, and the outer, lead-sheet-clad dome surface 
that creates the form seen from the outside – which can be seen to be 
supported on timber framework also carried by the masonry cone. 

Architect: Sir Christopher Wren.  
Engraving by Samuel Wale and John Gwynn (1755).
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Millennium Bridge

As its name implies, this landmark footbridge was built to mark the 
celebrations of the year 2000. Its alignment connects visually on the 
north side of the Thames with the open urban axis up Peter’s Hill to 
St. Paul’s dome and on the South Bank to the Tate Modern located 
within a renovated and newly expanded power station building, 
which is a city landmark of its own right but from a different era. 
(Ill. 5.3, 5.4.) In contrast to needs-to-be-seen guidelines set for St. 
Paul’s Cathedral dome just discussed, for the Millennium Bridge 
the design objective was also to have a signature structure but in 
this case one which was very low and slender so as to preserve 
existing views to and from the urban surroundings. This goal was 
accomplished through a collaboration of the architects Foster + 
Partners, sculptor Anthony Caro, and Arup structural engineers. 

The Millennium Bridge is a 320m (1050ft) 3-span steel suspension 
cable structure (we will discuss this structural type in detail in Chapter 
11) that has an exceptionally low profile, with the draping cables 
running closely alongside the pedestrian deck level – i.e., they 
go from just below the deck level at mid-span to only 2.3m (7.5ft) 
above it at the piers. This very shallow cable profile works well to 
allow maximum views of the surrounding cityscape and minimize 
the physical presence of the bridge, but with a profile six times as 
shallow as for a conventional suspension bridge the magnitude 
of the resulting cable forces are greatly magnified over what they 
might otherwise be. As a result, eight relatively large suspension 
cables are needed – two groups of four 120mm diameter (4.7in) 
on each side, each one a locked coil strand; i.e., these are made of 
many galvanized, shaped, high-strength steel wires that are wound 
helically around a core, with this particular material and technology 
being used to minimize structural dimensions while also seeking 
to prevent rust corrosion.

The two Y-shaped piers that provide intermediate cable support 
are made of folded, welded steel box sections for their upper 
arms that are connected together at the tops of tapering elliptical 
reinforced concrete piers, whose shape accounts for water flow 
and barge/ship impact as well as for rising water levels due to 
global warming. The 4m (13ft) wide deck is supported on steel 
box-section cross beams located 8m (26.5ft) apart that connect the 
deck to the cables; the walkway deck itself is made of extruded 
aluminum panels that span side-to-side between two steel tube 
edge beams.

At the bridge abutments, a 3m (10ft) thick reinforced concrete 
pile-cap is anchored to the ground by means of groups of 2.1m 
(7ft) diameter reinforced concrete piles – 12 at the north bank with 
concrete shear walls aligned with the bridge axis to transfer the 
cable forces, and 16 at the south bank due to tighter site constraints, 
necessitating a shorter pile-cap and, therefore, less moment arm 
to work with to resist the overturning moment produced by the 
cables being anchored above ground level. The cables pull with a 
force of 2000 tonnes (4 400 000lbs) against the abutments at each 
end, which is enough to support 5000 people on the bridge at 
one time. At the south end, the site constraints have been turned 
to design advantage, with the pedestrian pathway splitting apart 
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Illustration 5.3
(a) Millennium Bridge, London, UK (2000).  
(b) Tate Modern creates backdrop when looking southward.
Lighting reveals details of this distinctive footbridge 
structure: its two Y-shaped steel and concrete piers, 
shallow-profile steel suspension cables, and closely spaced 
steel cross beams whose geometry changes along the 
span. St. Paul’s dome looms directly on axis with the bridge.

Architect: Foster + Partners with Anthony Caro (sculptor). 
Structural engineer: Arup.

Illustration 5.4
Site plan establishes urban context and relationships between St. Paul’s 
Cathedral, the Millennium Bridge, and Tate Modern, London, UK.

Drawing by Herzog & de Meuron. 
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before doubling back on itself into a north-pointing staircase. The 
view of St. Paul’s dome from this vantage point is very fine indeed! 

Of course, the Millennium Bridge was made famous/infamous 
because of its instability problems on opening day, when 90 000 
people visited (about 2000 at a time, or about 1.5 people/m2 (1.25 
people/yd2)). The result was greater-than-expected side-sway due 
to people intuitively locking step with the natural oscillations of 
the bridge, thus multiplying the effect with discomforting results. 
The bridge was closed for two years of study and research of the 
phenomenon, with a retrofit of dampers being added below the 
deck to lesson movements – 37 fluid-viscous energy-dissipating 
dampers to control horizontal movement and 52 tuned mass inertial 
dampers to control vertical movement. The bridge has since then 
been open and performing as intended. Pushing the limits of 
design obviously can have its consequences, but at the same time 
this often leads to remarkable advances in the understanding of 
structural behavior, with longstanding and more widespread benefits 
that ensue. 

Tate Modern – Turbine Hall

Located just beyond the Millennium Bridge on the South Bank, and 
balancing the physical presence of St. Paul’s Cathedral to the north, 
is the large brick bulk of a building that is the Tate Modern, an art 
gallery also opened in the year 2000 for displays of contemporary 
art and large-scale public art installations. The galleries inhabit the 
shell of the former mid-twentieth-century electricity-generating 
Bankside Power Station which, in turn, was built on the site of an 
earlier building that used to burn coal to produce electrical power, 
but this process was considered too polluting for the city center 
and so a change was made to burning oil instead. It is interesting 
in the context of our current discussion that the height of the power 
station’s prominent chimney tower was limited to being less than 
that of St. Paul’s dome, with the result that air pollution in the 
surrounding neighborhoods was greater than it otherwise might have 
been. The structure for this power station was basically that of an 
open steel framework, with the perimeter of the building enclosed 

Illustration 5.5
Bankside Power Station, London, UK (1953, 1963 for two phases of construction). 
Conversion to Tate Modern (2000).
Turbine room of former power station was converted into a large-scale public art gallery. The 
column-and-beam steel framing on both sides of this central open space was largely retained in 
the repurposed building. 

Architect: Herzog & de Meuron (for conversion); Sir Giles Gilbert Scott (for previous power station). 
Structural engineer: Arup (for conversion). 
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by a brick skin; the 4.2 million bricks used for this challenged the 
availability of this building material at the time. The power station 
building was organized into three parts running east–west, with a 
boiler house to the north, the full-height open turbine hall in the 
middle, and the switch house and underground oil storage tank 
facilities on the back, southern side. This basic plan and volumetric 
organizing principle was retained by the architects Herzog and de 
Meuron for their recent reincarnation of this building as the Tate 
Modern, whose central public space is the Turbine Hall that is used 
for large-scale art installations, and with multilevel art galleries and 
service spaces being inserted in and added to the north and south 
sides, respectively.

The original steel column-and-beam framing system is most easily 
observed along the long sides of the open space of the original 
Turbine Hall, as are the trusses spanning across the roof skylight 
from north to south and the gantry crane now (re)used to move large 
artwork. (Ill. 5.5.) This steel framing also is used today to provide 
anchorage points for various large-scale art installations, some of 
which require elevated points of attachment. Contrasting subtly 
with this is a completely new steel structural frame that has been 
inserted into the northern, boiler house portion of the preexisting 
building to support seven new levels of galleries and support service 
facilities. All along the edge adjacent to the Turbine Hall, these new 
steel columns are situated just “behind” the existing steel columns 
– so that the new structure is barely evident from the main hall. (Ill. 
5.6.) Upon closer examination, however, the differences between 
the old and new columns are quite evident: the former are larger, 
made up of multiple steel sections that are riveted together while 
the latter are smaller-dimensioned but thicker-walled contemporary 
rolled steel sections. This subtle contrast exemplifies the design 
intentions of Herzog & de Meuron to respect and be influenced 
by the preexisting structure and building design but not be bound 
by it; theirs is an intent to blend old and new design, as well as 
space and structure alike.

A steel frame in this northern portion of the repurposed building 
was also used for other, less-evident reasons: it was easier to fit 
it into the tight space of the existing building envelope, and its 
relatively light self-weight helped to address some of the difficulties of 
inserting new foundations within those that were previously existing. 
Also, the steel column grid could be better coordinated with the 
retained building envelope so that the vertical “lancet” windows 
would remain unobstructed. Finally, the relatively slender dimensions 

of the new steel structure could be mostly hidden within the new 
galleries’ double partition walls that also incorporate lighting and 
mechanical and other building service functions. Here at the Tate, the 
old and new steel frame structure have been deployed purposefully 
in support of the design: made evident in the Turbine Hall where 
the dimensions and desired qualities of the space demanded it, 
but hidden away in the smaller gallery levels where this it is not 
beneficial, while being strategically and somewhat perplexingly 
contrasted at the boundary between these two programmatic and 
spatial areas. There is nothing self-evident here, just as was the 
case in the dome of St. Paul’s.

Illustration 5.6
Tate Modern.
Contrasting, yet echoing, material technologies: bolted splice 
for end-to-end connection of rolled steel column segments in 
art gallery (left), next to built-up, riveted steel plate columns of 
previous power station (right).
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Tate Modern Extension – Switch House

Expanding the Tate Modern, as had been originally planned, into 
the southern portion of the original building’s tripartite division is 
the more recently completed (2016) Switch House. This addition 
builds upon the preexisting underground concrete cylinders that 
had once been used for oil storage for the power station, but it is 
essentially a new 10-story building volume that adds 60 percent 
more space to the heavily visited museum. Also designed by Herzog 
& de Meuron, the unique cut-off pyramidal, ziggurat-like twisting 
outer form of this building creates its own iconic addition to the 
London city skyline, all the while addressing the disjuncture between 
the long rectangular bulk of the power-station-turned-museum and 
the much more eclectic architectural forms and styles that have 
mushroomed around it. On the inside, the Switch House can be 
considered to be organized as an ascending circulation promenade 
that links together a variety of galleries, education rooms, public 
spaces, and bar, going from dark, interior basement galleries up 
to a panoramic sky terrace, with strategically located intermediate 
stop-off points along the way. Continuing the promenade near 
the top, a link to the Turbine Hall is reestablished by means of an 

elevated bridge that gives a new and different vantage point to 
the undisputed central space of the museum.

The main material used for the structural system of this building 
is concrete, from a core of reinforced concrete shear walls seemingly 
emerging from the cylindrical concrete tank walls in the basement 
to an open concrete framework of columns, beams, and slabs. Of 
particular interest are the precast concrete perimeter columns that 
slope and twist at different angles according to the cranked building 
geometry; their relative slenderness is made possible by having a 
core made of structural steel, while their cruciform profile provides 
projecting arms to support precast concrete panels, glazing, and 
brickwork. The floor system consists of a concrete beam and slab 
system, with long-span continuous beam ribs supporting the concrete 
floorplate. In strategic places at the lower levels connecting to the 
power station, steel trusses and beams are introduced to further 
open up the spans, with 18m (59ft) clear spans achieved in certain 
galleries; moreover, echoing the “blurring” of old/new systems that 
we saw for the steel structural systems of the northern galleries, 
some of these steel beams span from the Switch House’s concrete 
core walls to new steel columns inserted adjacent to the preexisting 
Turbine Hall’s riveted steel columns. All in all, then, what we have 

Illustration 5.7
Switch House extension to Tate Modern, 
London, UK (2016).
Angled, warping geometry of outer walls 
required development of innovative 
lattice-like brick-stacking technique that 
relied on digital technology to implement. 
Unique visual effects result, whether seen 
from inside or out, or during the daytime 
or when lit at night. Long horizontal 
window openings reveal edges of precast 
concrete floor elements that support the 
weight of the brickwork at regular vertical 
intervals.

Architect: Herzog & de Meuron. Structural 
engineer: Rambøll. 
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here in the Switch House is an opportunistic wall-frame structural 
system made mostly of concrete but that in the end is made of 
various structural material combinations and technologies that best 
suit structural capacity needs and architectural design intentions. 

As for the unique and arresting exterior brickwork skin that 
encloses this concrete structural skeleton: it is a non-load-bearing 
perforated lattice made up of 336 000 bricks that allows light to filter 
into the building during the day and turn it into a glowing form at 
night. Of course, such a brick curtain wall serves to unify the Switch 
House addition to the original brick-clad power station building. 
But upon closer examination, there is something very different and 
contemporary about this new brick exterior. Because of the steeply 
angled and warping slope of the outer walls of the building, the 
bricks could not be placed by the usual bricklaying techniques 
with a standard mortar connection; instead, preassembled pairs 
of bricks bear on each other through small neoprene washers held 
in place by vertical stainless steel rods that are inserted through 
carefully positioned predrilled holes in the brick pairs. Given the 
varying geometry of the building façade, all this needed to be very 
carefully coordinated, with the predrilled holes and ever-changing 
overlaps digitally calculated. (Ill. 5.7, 5.8.) 

Of course, the fact that the window openings in the upper 
part of the Switch House are horizontal instead of vertical as they 
are in the power station is a dead give-away that its brickwork 
is not carrying its self-weight down to the ground, let alone 
supporting anything else; nonetheless, this orientation of the 
openings makes possible spectacular views outward to the 
cityscape. Such viewpoints also provide a fitting terminus to 
our short material walkabout in London, where we went from 
brickwork being strategically shaped into a cone configuration to 
do all the heavy lifting at St. Paul’s in order to support a “fake” 
exterior dome surface to the opposite here in the Tate Modern 
Switch House, with an exuberant and very visible brickwork skin 
being supported on a concrete structural framework. Among other 
things, this establishes an interesting material dialogue across 
the centuries, with the slender steel cables of the Millennium 
Bridge connecting the two design approaches. 

Illustration 5.8
Switch House extension to Tate Modern.
Detail drawing of brickwork façade and its connection 
to supporting precast concrete structure.

Drawing by Herzog & de Meuron.
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5.2	 The Mechanical and Physical Properties 
of Materials

To successfully design structures, a basic knowledge of the most 
common structural materials is needed. The shapes and dimensions 
of structural members are heavily influenced by the various properties 
of the materials used, and a familiarity with how materials are 
produced and processed greatly helps the designer to make 
appropriate decisions. (e.g., Ill. 5.9, 5.10.) In addition, a good 
knowledge of materials may inspire new design ideas. Within a 
building’s life span, materials may also undergo changes that we 
need to understand and foresee at the time of construction in order 

to prevent unpleasant surprises as the structure ages. Moreover, 
and from a broader perspective, the impact materials may have on 
the environment, whether when they are produced or when they 
are used in buildings (including the energy consumption associated 
with their production and manufacture as well as shipping) has 
today become an especially important material characteristic that 
we need to pay more and more attention to.

Of obvious primary interest for us in the present context is 
knowledge about how materials respond when forces are applied 
to them. We want to know what it takes to break or crush a 
particular material, and how it deforms. Material properties that 
inform us about such things are called the mechanical properties 

Illustration 5.9
Gando Primary School Extension, Burkina Faso (2008).
Locally made and readily available materials are used for this structural system: hand-
made compressed earth bricks for the walls as well as the curved ceiling vaults spanning 
across the classrooms from side-to-side; a wide reinforced concrete beam at the top of 
the walls resists the outward thrust of these vaults; and many steel reinforcing bars are 
welded together into a trussed/space frame-like structure that supports a shading canopy 
above, which also allows air circulation. 

Architect: Kéré Architecture. Structural engineer: Prof. Dr.-Ing. Eddy Widjaja. 
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of materials. Likewise, we may think of properties characterizing 
how materials react to environmental influences such as gravity, 
temperature, magnetism, electricity, and chemical substances as 
the material’s physical properties (some of these will obviously be 
of lesser relevance to us in terms of structural performance.) In 
addition to mechanical and physical properties, there are material 
characteristics that are not readily given by a set of precise numbers, 
but these may still influence us about other design aspects ranging 
from visual qualities to how well the material can be recycled. This 
book certainly does not adequately cover all of these topics, and 
we generally encourage the reader to seek additional information 
from more specialized literature, some of which is listed in the 
Bibliography and Suggested Reading.

Beginning with a very basic and obvious physical property that 
is closely linked to structures, we may state that it is always of great 
interest to know how “heavy” or “light” a material is. As we have 
seen in Chapter 3, the dead weight of materials is a very significant 
contributor to the loads acting on a structural system. To determine 
weights of materials, we apply the notion of

•	 density, ρ (Greek letter “rho”) which describes the amount of mass 
contained in a unit volume, given as kg/m3 in SI units (slug/ft3). 
If we are interested in the weight of a lump of material, we need 
to multiply the (mass) density by the gravitational constant g 
which yields N/m3 (lb/ft3) and is called weight density. If we 
consider steel, for example, the mass density is 7800kg/m3 
(15.2slug/ft3). Since the gravitational constant is close to 10m/s2  
(32.2ft/s2), we find that the weight of a unit volume of 1m3 (in 
Imperial units this would be in terms of 1ft3) of steel is about 
78 000N (490lb); that is, in SI units, at least, we multiply the 
mass by a factor of ten in order to obtain the magnitude of the 
weight. (See Table 5.1.)

Let us now reconsider the Polonceau trusses described at the 
beginning of Chapter 4. We have stated that the lower chord 
which ties the assemblage of structural members together acts in 
tension. How does the tension force actually affect the material in 
the chord? We understand instinctively that if the cross-section of 
that member is quite thin, the tension force will affect the material 
more intensely than if the cross-section was thicker, since in the 
latter case more material would be able to share in the load-carrying 
duty. What is of interest for the material, then, is the intensity of 

Illustration 5.10
Gando Primary School Extension.
Exploded axon and section drawings. 
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the force, or the force per unit of area that the force acts on. We 
call this force intensity

•	 stress, and measure stress in N/mm2 (lb/in2). (N/mm2 is also 
called MPa, megapascals.) Mathematically, we write

σ = P/A	 (5.1)

where σ = the material stress (Greek letter “sigma”), in this case 
a tension stress, and P = the tension force (N, lb) acting on the 
cross-sectional area A (mm2, in2). (e.g., Ill. 5.11.) We are aware 
of the fact that structural members may break if the force that is 
acting on it becomes too large. What actually happens is that the 
stress in the material reaches a value where the molecules are no 
longer able to withstand the amount of tension (or compression) 
that they are being subjected to, and the bonds between them 
break. The stress level at which this occurs differs from material 
to material and is, therefore, an important mechanical property 
of the material. We call this stress level the material’s

•	 ultimate stress, σu, or material strength, defined once again 
by the stress units of N/mm2 (lb/in2). A material which has a 
high ultimate stress is subsequently called a strong material, 
while a material which fails at a low stress level is commonly 
thought of as a weak material. Many materials will show great 
differences in ultimate stresses when subjected to tension forces 
as opposed to compression forces or shear forces. (See Table 
5.1.) Materials like stone, clay bricks, unreinforced concrete, and 
cast iron are relatively strong in compression, but quite weak 
in tension. In such cases, then, we need to identify the type 
of force we are referring to when we give figures for ultimate 
stresses. It is common to speak of the material’s ultimate stress 
in tension, in compression, or in shear; these are also referred 
to as the tensile strength, the compression strength, and the 
shear strength of the material, respectively. When the material 
reaches its ultimate stress in a structural member, we say that the 
member strength is reached. This is the load-carrying capacity 
of the structural member.

When stresses develop in a structural member subjected to 
tension or compression forces, the member deforms, by an amount 
ΔL. If the stresses are tensile, the member becomes longer whereas 
if they are compressive, the member becomes shorter. Structural 
materials are, to a larger or lesser degree, elastic; some elongation 
or shortening will always take place when they are loaded, even if 
the deformations are so small that they can only be observed by 
the use of precise measuring instruments. (Fig. 5.1.) Let us once 
again refer to the lower chord of the Polonceau truss discussed in 
Section 4.1. Since the tension force acting in the chord follows the 
direction of the chord’s axis along its length, so-called axial stresses 
develop. These stresses have a direction which is perpendicular 
to the cross-section over which they act, and consequently the 
axial tension stresses are also called normal stresses. Furthermore, 
these stresses are uniformly distributed over the entire area of the 
cross-section. Obviously, normal stresses may also be compressive 
in a member subject to compression forces.

When the force is increased, the elongation ΔL will increase. This 
direct correlation between force and deformation is a measure of 
the stiffness of the material. If the length of the chord is L before 
the force is applied, it will be L + ΔL after the tension force has 
acted on it. The relative elongation (or shortening if compression 
stresses are acting) is called the strain, ε:

ΔL/L = ε

where L = the original length of the member, ΔL is the change in 
length and, ε = the strain resulting from the applied force (Greek 
letter ε, “epsilon”, mm/mm (in/in)). Since strain is a relative number, or 
ratio, it is given as a percentage (%) of the original length. Moreover, 
if force and strain are proportional, that is, if an increase of the force 
by a factor of two leads to an increase of the strain by a matching 
factor of two and so on, then the material is called linearly elastic. 
There is in that (very common) case a linear correlation between 
applied force P and the resulting strain ε. We can write:

ΔL/L = ε = constant × P	 (5.2)

Illustration 5.11
Drawing depicting the relative stress magnitudes under a 
high-heel shoe versus that under a flat-soled shoe.

Figure 5.1
Tension element with tensile axial 
stresses.
Since the material is elastic, some 
elongation ΔL takes place in the 
element. If the length of the element 
is L before the force is applied, it will 
be L + ΔL after the tensile force has 
acted. The relative elongation ΔL/L (or 
shortening if compression stresses are 
acting) is called the strain, ε.
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Which parameters influence the relationship between force 
and relative elongation? Obviously, the larger the cross-section 
of the member, the smaller will be the elongation caused by a 
specified force. The cross-sectional area A is, therefore, inversely 
proportional to the strain. Furthermore, the elastic properties of the 
material naturally also play an important part, since a very elastic 
material like rubber will experience a much larger deformation 
than a very stiff material like steel when the two materials have the 
same force applied to them and if their cross-sections are identical. 
We therefore need to introduce a parameter which is a measure 
of how stiff materials are, enabling us to compare materials and 
to calculate deformations exactly. This is the

•	 modulus of elasticity of materials, E, also called Young’s modulus.1 
(See Table 5.1.) It represents a very important mechanical property 
of structural materials: the modulus is large for very stiff materials 
and small for more deformable materials. Since a stiffer material 
(high E) will experience smaller deformations, the modulus of 
elasticity is also inversely proportional to the strain. The preceding 
equation (5.2) thus becomes:

ΔL/L = ε = P/EA	 (5.3)

where E = the material’s modulus of elasticity, having units of 
N/mm2 (lb/in2 or psi), P = the applied force (N, lb), and A = the 
area of the cross-section (mm2, in2). But we have previously 
defined P/A as the stress in the member, and so it is convenient 
to write the equation above as:

ε = σ/E, or
σ = ε E	 (5.4)

The modulus of elasticity in fact “regulates” the relative values 
of stress and strain in a material. This very important equation 
(5.4) is called Hooke’s law after the British scientist Robert Hooke 
(1635–1703), who was the first to observe scientifically how forces 
and deformations in materials relate to one another. It is valid for 

linearly elastic materials, and offers an understanding of the elastic 
behavior of structural members. If we graphically depict the stress/
strain relationship, letting the y-axis represent the stress and the 
x-axis the strain, the slope of the straight line is precisely the elastic 
modulus. (Fig. 5.2.)

For quite small axial deformations, meaning as little as a few 
thousandths of a meter, it is reasonable to think of most structural 
materials as linearly elastic. As stresses increase, however, so do 
deformations, and we might no longer find their relationship to be 
directly proportional. In fact, some materials, particularly metals, show 
a strange but nonetheless desirable behavior when stressed. Long 
before reaching their ultimate stress, the relationship between stress 
and strain changes dramatically. A so-called plastic range replaces 
the elastic range, in which large deformations happen without the 
stresses increasing significantly. (Fig. 5.3.) We say that at this level 
of stress the material yields. If an applied force is removed while a 
material is within the elastic range, the deformations will go back 
to the original condition. Once stressed to the point where the 
material is in the plastic range, however, the deformations will not 
go back to the original even when a force is removed; the structural 
member will in this case exhibit a permanent deformation. For steel, 
the potential plastic deformation is extremely large compared to 
the maximum elastic deformation, and in this plastic range the 
concept of a material having a constant modulus of elasticity is 
no longer valid.

Materials that experience large plastic deformations are called 
ductile. Ductile materials have distinct advantages as structural 
materials because, if unduly stressed, they will deform significantly 
before ever reaching their ultimate stress, and this deformation 
can likely be observed, warning of possible collapse. The plastic 
range also works as a reserve whereby the material is able to 
carry loads long after the elastic limit is reached, a phenomenon 
that can be taken advantage of in the design of buildings, having 
particular importance in seismic regions. Steel, in particular, has 
quite a precise and easily definable limit where the material 
moves from an elastic state into a plastic state. The stress level 
associated with this limit is called the material’s

Figure 5.2
The relationship of stress and strain in a linearly elastic 
material. The slope of the straight line, σ/ε, is the 
modulus of elasticity, E.

Figure 5.3
Simplified depiction of the stress/strain diagram for steel in 
tension. The diagram is not to scale. While the yield stress may be 
reached at a strain of 0.002 mm/mm (in/in), or 0.2 percent, failure 
is only expected to occur at 12–15 percent strain.
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•	 yield stress. The yield stress represents an important material 
property which conveys much about our understanding of the 
behavior of some materials, particularly metals, when subjected 
to loads.

Conversely, materials that show no significant plastic range 
when stressed, but instead fail abruptly when the stress has reached 
a critical level, are classified as brittle. Brittle materials are in an 
elastic state until very close to the point of their ultimate stress, 
and since the elastic deformation commonly is quite small no visual 
forewarning of an oncoming material failure is typically observed. 
Glass is a typical brittle material, as is historically important cast 
iron. Great care should be shown when brittle materials are used 
to carry load.

The typical stress/strain diagrams for common structural materials 
are shown in Figure 5.4.

Aside from the material properties relevant to mechanical loads, 
other characteristics can be defined in relation to a wide range of 
physical influences; in this context, we need to recognize that the 
effect of temperature can be particularly important. All materials 
expand when the temperature rises, and having a clear notion of 
what actually happens when they do is a precondition to avoiding 
cracking and unwarranted deformations and stresses in materials 
and structural assemblies. Various materials’ change of dimension 
when subjected to temperature change can be expressed by their

•	 coefficient of thermal expansion, α (Greek letter “alpha”). (See 
Table 5.1.) Materials that experience a substantial change of 
volume when the temperature changes are said to have a high 
coefficient of thermal expansion. If not greatly influenced by 
temperature changes, on the other hand, the material has a low 
such coefficient. For a structural element of length L subjected 

to a positive temperature change of ΔT (temperature rise), we 
can calculate the (increased) relative length ΔL/L as follows:2

ΔL/L = αΔT, or	
α = ΔL/(LΔT)	 (5.5)

The unit α for thermal expansion is, therefore, given as  
mm/(mm °C), or 1/°C (1/°F), which can also be written as °C–1 (°F–1). 
Incidentally, the reason why it is possible to reinforce concrete with 
steel bars without causing significant distress to the material when 
temperature changes occur is that the two materials have very 
similar coefficients of thermal expansion. If this were not the case, 
temperature changes would lead to the materials expanding or 
contracting very differently, introducing stresses that might result 
in cracking or other material distress.

From an ecological perspective, structural materials usually 
provide relatively few negative environmental effects per unit weight 
compared with a number of other building materials.3 Nevertheless, 
since structural materials account for a large part of the total weight 
of a building, the choice of materials remains an important factor 
in a building’s environmental profile. Of particular relevance are 
energy consumption and greenhouse gas pollution (CO2). The 
primary energy consumption is the amount of energy required to 
first produce a unit weight of the material. This parameter is an 
indication of the energy that is effectively stored in different structural 
materials; recycling of materials, however, makes the absolute 
measure of the stored energy less precise and often far lower 
than what the primary energy consumption parameter indicates. 
Structural materials may represent approximately 30–40 percent 
of the total primary energy consumption needed to build a house, 
including transport,4 but we should also recognize that from the 
lifecycle perspective, buildings have traditionally consumed far more 

Figure 5.4
Typical stress/strain diagrams for 
some structural materials.
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operational energy than what was embodied in the manufacture 
of their structure, and that is something that is unlikely to change 
very significantly for the foreseeable future.

We will in the following sections of this chapter discuss the 
mechanical and physical properties of the most common structural 
materials, describing each in some detail. For convenience’s sake 
and for ease of comparison, however, some specific numerical values 
that can be associated with these materials have been collected 
and presented together in Table 5.1. Within the individual sections 
we will also discuss some other important material characteristics, 
any number of which may be relevant to their being selected and 
used in a particular building project. Since architecture is by nature 

Table 5.1
Examples of mechanical properties of a number of 
materials.

Note: Numbers given for stress and elasticity, especially, 
are highly approximate; in reality these vary substantially 
according to the quality/type of the material. For a more 
precise and detailed account, see specialized literature.

Weight Density Ultimate Stress Modulus of Elasticity Coefficient of Thermal 
Expansion

Tension Compression
N/mm2 (103 psi) N/mm2 (103 psi) (lb/ft3) kN/m3 103  N/mm2 (106 psi) 10-6/°C  (10-6/°F)

Acrylic Glass (PMMA)

Aluminium

Clay Brick Masonry

Concrete

Glass Fiber Reinf. Polymer (GFRP)

Glass Fiber Fabric, PTFE coat.*

Polycarbonate (PC)

Float Glass

Steel - High Strength (typical)**

Steel - Structural (typical)

Stone

Wood (softwood, fiber direction)

8012 3 110(0.4) (61)(77) (12) 120 (17)

27 70 24(10) (13.3)(172) 270 (39) 270 (39)

19 10 5(1.5) (2.8)(120) - - 10 (1.5)

23 30-50 10(4-7.5) (5.6)(144) 20-140 (3-20)- -

0.012 kN/ m2 (0.25 lb/ft2) 16N/mm (91 lb/in) - - - - - -

30 (4.5) 200 (29)25 (160) 70 (10) 8.5 (4.7)

12 2.4 65(0.3) (36)(77) 65 (9) 80 (12)

19 45 25(6.5) (13.9)(121) 500 (72) 500 (72)

77 210 12(27) (6)(490) 400 (58) 400 (58)

77 210 12(27) (6)(490) 600 (87) 600 (87)

25 20-100 12.5(3-15) (6)(160) 60-130 (9-19)

5 11 5(1.6) (2.8)(32) 30 (4.5) 30 (4.5)

- -

* Fabric thicknesses vary according to type and weight, but in most cases will be of the order of only a few millimeters.
** Steel wire used for winding into cables has an even higher tension strength, e.g. of the order of 1600 N/mm2 (230 psi).

Illustration 5.12
Fondazione Querini Stampalia, Venezia, Italy (1963). 
The Fondazione Querini Stampalia in Venice was renovated 
and reorganized in 1963 by that city`s famous architect Carlo 
Scarpa (1906–1978). The palazzo is accessed from the adjacent 
piazza by a lightweight stepped bridge. Beyond overcoming 
the relatively short distance 6.5m (21.3ft) between the ends of 
the bridge, the two steel support arches allow sufficient height 
for gondolas to pass underneath. The railings complete the 
very delicate detailing of the small bridge: they are composed 
of flat steel bars supporting two kinds of handrails. One is an 
oval-shaped lacquered teak railing for leaning on that has brass 
end plates; these are attached to the other handrail made of 
tubular steel and used for holding on to while crossing. The 
steel tube is closed at its ends with a polished hemisphere. 
Brass fittings to hold the teak handrail are secured with copper 
bolts, with the metal connectors carefully detailed to be flush 
with the teak. When Le Corbusier passed over this bridge while 
conceiving his unrealized city hospital for Venice, he is reported 
to have remarked: “Who is this fine craftsman?”

Architect: Carlo Scarpa.
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holistic, a successful design will often result from a thoughtful 
consideration of many different aspects of material properties. 
Among these important concerns are appearance and sensory 
characteristics, for while the mechanical and physical properties 
of materials describe how materials react to the influence of the 
environment, their visual and tactile qualities involve how we, in 
turn, react to them. (e.g., Ill. 5.12.)

5.3	L essons from History and Nature

Buildings were long built using traditional materials such as wood, 
stone, and clay brick and following assembly methods that were 
based on historical experience. Builders learned from past successes 
and perhaps especially from failures, and tried to correct for the 
latter by further experimenting and developing new construction 

methods and systems for each particular building type and specific 
design condition. In this way it can be said that within certain 
socio-geo-political realms, at least, there has been continuity in 
the development in the art of building over the centuries.5

The master builders of the Gothic period, for example, were 
skilled craftsmen in architecture, engineering, and detailed 
stonework. They were equally qualified as designers and technicians; 
sketchbooks and notes from that period show that they were also 
well traveled, and we can be sure that they kept an attentive eye 
open for new solutions.6 La Cathédrale de Beauvais (begun in 
1225) today stands as a symbol of the Gothic period’s heaven-
aspiring world view and consequent structural experimentation 
and expertise. (Ill. 5.13.) Without taking anything away from the 
remarkable aspect of this building, it is worth noting in the present 
context that the designers initially pushed the link between heaven 
and earth further than had been previously attempted for the 60m 
(198ft) height of the choir, exceeding the limits of the structure’s 

Illustration 5.13
La Cathédrale de Beauvais, Beauvais, France (begun 1225; largely completed by 1272; major 
collapse in 1284; reconstruction continued through to mid-1500s).
The soaring height and remarkable light admission qualities of this structure are self-evident; its 
tall, open, internal space is made possible by an armature of transverse stone walls and flying 
buttresses on the outside. 
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capacity. A few of the columns failed, leading the choir to collapse 
spectacularly as is described in Erik Lundberg’s book The Visual 
Language of Architecture.7 After thorough examinations of these 
ruins at the time, it was concluded that the original columns needed 
to be strengthened and the builders made a fresh start; after many 
years the cathedral was reconstructed and it stands to this day as 
it was rebuilt. 

Sometimes the onset of a collapse could be anticipated in 
advance of such catastrophic failure by observing increasing 
deformations and visible cracks in a building’s masonry, and the 
problem could be dealt with before calamity struck. One of the 
more remarkable examples of such a reactive and inventive solution 
to loading problems can be seen, also in the Gothic motif, at 
Wells Cathedral. In this case the builders went too far by adding 
a weighty spire on to the central tower, whose four supporting 
pillars started to settle unevenly due to differing soil conditions 
under the tower legs’ foundations. The spectacular and very 

specific solution that master mason William Joy introduced over 
the next ten years was to construct unique “scissor”-arches on 
three of the four sides of the crossing under the tower. (Ill. 5.14.) 
Supplemented by other semi-hidden buttresses, these scissor-
arches (which effectively are a form of X-bracing that will be 
discussed in Chapter 10) simultaneously prevented the pillars from 
failing, redistributed the forces more evenly amongst the piers, 
and braced the tower against lateral wind forces. This dramatic 
feat of retroactive strengthening not only has kept the tower 
stable in the intervening 650 years without giving further cause 
for anxiety but it also proved to be an instant visual success and 
architectural attraction.

Aside from such experimentation and after-the-fact correction, 
the designers of structures over time have also speculated and 
theorized on structural capacity prior to construction. In his discussion 
of different types of bridges, Andrea Palladio (1508–1580) wrote 
that all beam bridges could have an unlimited span, as long as 
their internal proportions remained constant.8 (Ill. 5.15.) While this 
proposal at first sounds quite logically appealing and, indeed, 
might have roughly worked for him within the limited range of 
spans that he was involved in designing, Palladio was actually 
wrong: beyond a certain limited span range, bridges designed 
by this rule will collapse. The reason why? Let us imagine starting 
with a freely supported beam having a cross-section of 1m x 
1m (3.3ft x 3.3ft) and a length of 3m (9.8ft), but then doubling 
the beam dimensions so that the cross-section becomes 2m x 
2m (6.6ft x 6.6ft) and increasing its length to 6m (19.6ft). The 
weight of the beam increases according to its change in material  
volume

1m × 1m × 3m = 3m3    vs.    2m × 2m × 6m = 24m3

i.e., the beam must carry roughly eight times the weight of the initial 
condition and now over twice the original distance. The maximum 
stresses that result from the bending of beams that carry only 
their own weight, however, are proportional to the cross-sectional 
dimensions and the square of the span and are inversely proportional 
to the beam width multiplied by the square of its depth (we will 
explain all this later on in Chapter 7), or quantitatively:

[1 x 1][3]2 / [1 x (1)2] = 9    vs.    [2 x 2][6]2 / [2 x (2)2] = 18

Illustration 5.14
Wells Cathedral, Wells, Somerset, England, UK (1239; tower repairs, 
1338–1348).
Across-the-nave “scissor”-arch that was built to retroactively 
stabilize the original tower structure.

Master mason for tower repairs: William Joy.
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i.e., “the maximum stresses in the larger, longer beam will be 
twice as large as in the smaller one” – clearly Palladio’s rule about 
proportional increases to the dimensions of beams, when taken 
beyond a limited range of extrapolation, would have been a highly 
dangerous one to follow.

In fact, it was not that long after Palladio that Galileo Galilei 
(1564–1642) became the first person to formally propose that 
maximum spans for particular beam sizes do in fact exist, as he clearly 
demonstrated in his Dialogues Concerning Two New Sciences.9 In 
this work, his “new science” is written as a dialogue between three 
men, Salvati, Sagredo, and Simplicio, who discuss a number of 
examples that show that the size of an object or a building has an 
important influence on the efficient use of construction materials; 
also, the point is made that certain types of construction materials 
are only applicable within a certain range of sizes. One of these 
well-known examples shows what the bone of a small animal would 
look like if it were to try and fulfill the same load-bearing function 
in an animal three times as large. (Ill. 5.16.) One might at first 
expect the bone simply needing to be three times bigger, but as 
with Palladio’s beams the increase in load from the change in the 
volume and weight of the animal would be much greater than the 
load-carrying capacity of a bone having triple its cross-sectional 
width. The bone, therefore, would need to be disproportionately 
enlarged to withstand the actual load increase. Similar changes would 

Illustration 5.15
Ponte degli Alpini, Bassano della Grappa, Vicenza, Italy (originally built 1569).

Designer: Andrea Palladio. AHO model.

Illustration 5.17
Skeleton of a Camarosaurus dinosaur from Jurassic period 
(200–145 million years ago).

Illustration 5.16
Disproportionate bone size comparison sketches by 
Galileo Galilei in Due Nuovo Scienze (1638).
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occur with all the joints in the animal, and we can then begin to 
imagine a resulting different type of creature, considerably sturdier 
and heavier than was the original. This phenomenon has clearly 
manifested itself in the natural world: dinosaurs and their colossal 
bones are long since extinct, perhaps because they became too 
heavy, too slow, and lost the battle for survival against smaller 
and quicker species. (Ill. 5.17.) Large and heavy animals, such as 
elephants, have massive bone structures and move slowly, while 
antelopes with their spindly bone structure are remarkably fleet-
footed. And on the weight-to-strength relationship, Salvati notes 
that a small animal will have a greater relative strength than a larger 
one, which he illustrates by pointing out that “a small dog probably 
could carry on his back two or three dogs of his own size, but a 
horse could not carry even one of his own size.”

Given this discussion, it is interesting to consider that many 
buildings in the past were planned and built with the help of small-
scale models on which certain simple load tests and evaluations 
were conducted. While these may have obviously been helpful 
in developing a first order of understanding of primary structural 
actions such as tension and compression forces, the above anecdotal 
discussion and modern-day theories and experiments warn us that 
the structural member proportions that work quite well for a model 
should not be directly and proportionately applied to a building 
that will be many times larger. In Hagia Sophia in Istanbul, for 
example, where we can be almost certain that a model was used 

in planning and construction during the sixth century, relatively 
recent investigations and calculations conclude that the existing 
foundations challenge the limits of capacity.10 But such a lesson is 
not just about historical structures: even today building designers 
must take care not to rely too literally on simply being able to scale 
up physical model measurements and then expect the corresponding 
life-size building to function without distress.

To summarize our model-to-structures scaling discussion so far, 
one can obviously say that the proportions of a given structural 
member need to be carefully considered relative to the loads it 
is expected to carry, and that it may not be enough to know that 
a certain structural system works at one scale to know that it can 
safely be applied to another. Beyond this, though, the “brute force” 
approach of overcompensation for increases in scale may not be 
at all appropriate from an architectural point of view. It is at this 
stage that the material of which a structure is made may have to be 
completely changed or else the structural configuration as a whole 
may need to be revised. For instance, the architectural equivalent 
of the dinosaur bones discussed above would clearly have been at 
odds with the literal and figurative admission-of-light objectives of 
the Gothic designers as they built taller and taller cathedral naves, 
leading them to instead develop and use the highly innovative 
flying buttress system in order to dramatically reduce the bulk of 
the side walls. (Ill. 5.18.)

Illustration 5.18
Cathédrale Notre-Dame de Paris, 
France (1163–1345). 
Among the first cathedrals to 
feature flying buttresses, these 
were added as a retrofit as the tall, 
thin walls of the nave and choir 
showed signs of cracking and 
distress. 

Engraved illustration from drawing 
of Fichot and Gaildrau, published 
in “L’Illustration, Journal Universel”, 
Paris, 1860. 
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Today we have clearly moved beyond the scale model approach 
for trying to responsibly establish member sizes.11 We regularly 
make use of computer structural analysis programs that are at our 
ready disposal and that can with amazing speed and accuracy 
determine the loads on a structure and the member dimensions that 
are needed to safely carry such loads. Nevertheless, despite such 
advances and the highly scientific, mathematical, and automated 
approach toward structural dimensioning that this process involves, 
it is important that structural design not become merely relegated 
to an isolated evaluation of such quantities as member forces, 
directions, and sizes. The design of structural members and the 
overall configuration of structural systems should still be seen 
in relation to a building project’s expressive and programmatic 
objectives; moreover, the choice of member materials and system 
configurations can do much to support, both literally and figuratively, 
a designer’s architectural intent. We should take heed from the 
Gothic masters’ versatility and comprehensive vision.

5.4	C oncrete, Stone, Earth, and Clay Bricks

Concrete

Concrete is a construction material that has been used by people 
for thousands of years. The first large-scale users of the material 
were the Romans, who employed it throughout their empire during 
the period 300 BC–AD 476. The primary reason for this was their 
incorporation of pozzolanic ash into the mix of materials that typically 
made up concrete – the name derives from the town, Pozzuoli, 
where the main deposits of ash were found. In the presence of 
water, the ash chemically reacts with other elements in the mix at 
room temperature to produce insoluble compounds that eventually 
harden and bind materials together. This property freed the Romans 
from the restrictions of stone and brick materials, and enabled 
the arches, vaults, and domes of their large-scale constructions, 
from the Colosseum and Pont du Gard (both largely concrete with 
stone masonry facing; for the latter, see Ill. 12.8) to the Pantheon 
(which remains today the world’s largest unreinforced concrete 
dome, see Ill. 13.20.)

After the fall of the Roman Empire, however, the use of burned 
lime and pozzolana was all but forgotten from AD 500 to the 

eighteenth century. The extent of what had been forgotten in 
terms of this building material can begin to be appreciated when it 
is considered that a patent was granted in 1824 to Joseph Aspdin 
(1778–1855) for Portland cement, named after the color of the 
limestone that was quarried for this purpose on the Isle of Portland 
in Dorset, England; his son, William Aspdin (1815–1864), is regarded 
as the inventor of “modern” Portland cement due to his further 
development of the material in the 1840s. The French gardener 
Joseph Monier (1823–1906) received a patent in 1867 for the 
introduction of iron bars into flower pots and tubs made of concrete 
as a means to reinforce these against cracking and falling apart; 
Monier would quickly go on to apply this technological advance to 
the design of beams and even a bridge in 1875. He had exhibited 
his reinforced flower pots at the 1867 Paris World’s Fair, however, 
and there they were seen by the French engineer and self-taught 
builder François Hennebique (1842–1921). Hennebique began 
experimenting with how this composite material could be applied 
to building construction, and by 1892 he too was granted a patent, 
this time for the first truly monolithic structural system in which 
columns and beams could work together as one structural entity. 
This technological advance spread quickly: during the decade that 
followed several thousand structures are said to have been built 
using the Hennebique system, from buildings to water towers to 
bridges, etc.

Today, by volume concrete is the most utilized building material. 
It is produced by mixing cement, water, and aggregate, the latter 
usually made up of crushed stone or gravel and sand. (Ill. 5.19.) 
Aggregate comprises approximately 70 percent of concrete’s 
total volume, critically contributing to the material’s hardness 
and compression strength. Lightweight concretes can be made 
by substituting light (e.g., expanded clay) aggregate for the 
crushed stone that is typically used. Cement is a fine, gray powder 
manufactured from a number of raw materials that are dominated 
by lime and gypsum, and what are called hydraulic cements set 
and harden after combining with water, thereby becoming an 
effective “glue” that binds the different materials together. The 
compression strength of concrete is highly dependent on the ratio 
of water to cement in the mix, which can be readily set according to 
specific needs. Beyond a certain minimum water content needed 
to ensure that all of the cement will chemically react and harden, 
it can be stated as a general rule that the less water is added to 
the concrete mix the higher will be its resulting strength; a typical 
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water-to-cement weight ratio is approximately 1:2. There are also 
a large number of additives available that can be added to the 
base mix of cement, water, and aggregate in order to improve or 
alter the characteristics of concrete.

In terms of type of structural load-carrying capability, concrete 
on its own is strong in compression but very weak in tension. (See 
Table 5.1 and Fig. 5.4.) In structural elements, therefore, concrete 
is typically reinforced with steel bars so as to provide the resulting 
composite material with tensile as well as compressive strength. 
There are two primary ways of producing structural components: 
cast-in-place or precast concrete. Cast-in-place concrete (also 
called “in situ” concrete) is poured directly on site and allows for 
monolithic structural systems in a wide variety of shapes. By creating 
the appropriate formwork, concrete has a remarkable sculptural 
potential, so that establishing shape, size, texture, color, etc. can 
be significant design factors. Precast concrete, on the other hand, 
is generally made in a factory, where the mixing of concrete and 
casting of elements take place in a controlled environment and 
the finished structural element is later transported to the building 
site. Common precast concrete components are beams, columns, 
slabs, and wall panels, as well as unreinforced products like concrete 
masonry blocks. Notably, reinforcement of such precast elements 
may be of the pre-stressed type, whereby compression forces are 
introduced into the concrete cross-section by the pre-tensioning 
of steel strands before the concrete is cast and hardens in the 
manufacturing plant. Such a strategy is typically used to anticipate 
and counter the loading that will eventually be applied to the 
structural element by partly or totally eliminating tensile stresses 
in the cross-section. Pre-stressing of cast-in-place concrete can be 
done by means of the post-tensioning technique, whereby steel 
strands that are threaded through channels within the concrete are 
stressed after the concrete has hardened. Pre-stressed concrete is 
generally a more efficient material than is conventionally reinforced 
concrete, resulting in the opportunity for a lighter, more slender 
structure, or one that spans greater distances or carries greater loads.

Cast in a formwork of lumber, plywood, metal, fiberboard, or 
polymers, concrete will yield different surface textures. (e.g., Ill. 
5.20, 5.21.) Pigmenting admixtures can also be used to add color 
to the material, while white concrete is made by using white cement 
and aggregate of white minerals. Form-ties help to prevent the 
two sides of the formwork from separating due to the outward 
pressure of the wet concrete when it is poured; the imprint of 

Illustration 5.19
Église Saint-Pierre de Firminy, Firminy, France (1973–2006).
Polished cut surface of concrete displays stone aggregate 
distributed within its solidified binding “matrix” of water-
activated cement and sand.

Architect: Le Corbusier, José Oubrerie.
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Illustration 5.20
Faculty of Architecture and Urbanism, University of São 
Paulo, Brazil (1968).
A rough concrete finish left by formwork boards reflects a 
certain “honesty” of expression about the liquid-to-solid 
making of this material, as does – in this case – the sculpted/
plastic form of the column supports for the large elevated 
volume. Their common surface finish also serves to unify 
these very different elements of the building structure. 

Architect: João Vilanova Artigas and Carlos Cascaldi. Structural 
engineer: Escritorio Figueiredo Ferraz.

Illustration 5.21
The Royal Library’s “Black Diamond” extension, 
Copenhagen, Denmark (1999).
The smooth finish of the concrete structure that is 
exposed in certain places within this building works 
with the sleek glass and polished black granite surfaces 
of the exterior to offer a contemporary contrast 
with the traditional architecture and materials of the 
surrounding urban context.

Architect: Schmidt/Hammer/Lassen Architects. Structural 
engineer: Moe & Brødsgaard A/S. 
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their anchoring will remain visible on the surface of the hardened 
concrete structure, however. For exposed concrete surfaces it is 
therefore important that both the location of the form-ties, as 
well as the configuration of the formwork panels, are thoroughly 
considered as part of the design process.

Fiber-reinfored concrete (FRC) contains short discrete fibers 
instead of steel reinforcing bars. The fibers are uniformly distributed 
and randomly oriented throughout the concrete. The “fibers” 
themselves can be made of very short steel strips or glass or synthetic 
filaments, all of which have the ability to change the characteristics 
of the hardened material. The use of fibers in lieu of steel reinforcing 
bars can enable the manufacturing of remarkably thin structural 
cross-sections, such as prefabricated shells, for example. A related 
material is called ferrocement. This is a composite material made by 
a plastering technique whereby mortar is put by hand over several 
layers of wire mesh; the result is a dense matrix of mortar filling the 
spaces of the reinforcing mesh grid. This technique allows for thin, 
delicate structural elements with a hard, dense surface texture. The 
Italian engineer Pier Luigi Nervi (1891–1979) is perhaps the best 
known among the pioneers of this particular material.

Concrete masonry units (CMU) are industrially produced, standard-
sized rectangular blocks cast from concrete whose aggregate is 
typically sand or fine gravel. Low-density blocks may use industrial 
waste such as fly ash as the aggregate instead, which are thus 
known as cinder blocks in the United States. Typical block sizes 
vary somewhat from country to country but are approximately 410 
x 200 x 200mm (16 x 8 x 8in) when used for structural purposes 
and these can be built up into walls in masonry fashion, with layers/

courses of staggered blocks stacked one on top of another. (e.g., Ill. 
5.22) The blocks usually have two hollow cavities which, if oriented 
vertically, can allow for the insertion of steel reinforcing bars to tie 
the blocks together once the voids are filled with concrete grout 
– something that is especially critical in regions that are prone to 
seismic activity. The cavities in the block also greatly reduce this 
material’s weight per unit of volume. CMU can be made to have 
different finishes, opening patterns, and colors, and can be useful 
in various instances for providing thermal mass, fire safety, sound 
insulation, and visual screening; these qualities make them frequently 
used in dense, low-rise urban environments around the world, as 
well as in buildings with repetitive floor plans such as dormitories, 
hospitals, apartments, hotels, etc.

The production of cement is the main contributor to the negative 
environmental effects of concrete. Cement production releases large 
amounts of the greenhouse gas carbon dioxide, and requires a 
substantial amount of energy. Today, so-called low carbon concrete 
is also available, where measures have been taken along the whole 
production chain to minimize the carbon footprint. For reinforced 
concrete, environmental issues concerning the production of the 
steel reinforcing bars will also come into play. On the other hand, 
the durability of concrete structures is a positive environmental 
factor; since they can last for decades, if not centuries, any negative 
environmental factors should be considered in the context of the 
material’s impressive life span.

Illustration 5.22
Cube House, Ithaca, NY, USA 
(2000).
A contemporary two-story 
residence whose perimeter walls 
can be clearly distinguished as 
being made of concrete masonry 
blocks. 

Architect: Simon Ungers; Matthias 
Altwicker (project architect).
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Stone 

Stone is a natural building material that has been used by humankind 
for thousands of years, and it is clear from that that it is typically a 
strong and durable one. Pyramids persist, early temples still shelter, 
Gothic cathedrals soar ever skyward, while myriad forts, palaces, 
stadia, and amphitheaters alike remain, just as do infrastructural 
bridges and aqueducts built exclusively of this remarkable material. 
(e.g., Ill. 5.23.) Moreover, stone has many different colors and 
textures and it can be sculpted into exquisite artistic forms, giving 
the material many additional qualities for designers to consider in 
an architectural context aside from structural capacity – especially 
so historically, although not necessarily so. (e.g., Ill. 5.24.) Much 

depends on how the stone being used was naturally “made”; 
i.e., whether by igneous processes (e.g., granite), sedimentary 
(sandstone, limestone), or metamorphic (marble, slate), with granite, 
sandstone, and limestone often having been used for building walls 
because of their relatively widespread and abundant availability 
from surface quarries. The strength of stone can vary from certain 
types of relatively weak marble up to tremendously strong granite 
– with a numerical range that essentially matches concrete’s, which 
should not be surprising given that the latter’s strength is largely 
established by that of its stone aggregate. The earliest stone walls 
were composed by so-called dry stacking methods, in which irregular 
stones were carefully selected and fit together, although such walls 
typically lack long-term stability. Cut, shaped, and smoothed stones 

Illustration 5.23
Inca stone wall, Peru (fifteenth 
century).
Large stones, with their inherent 
irregularities, were finely worked to 
fit and dry stacked without mortar. 

Illustration 5.24
SGAE (General Society of Authors and Publishers) Central Office, Santiago de Compostella, Spain (2008).
Contemporary stone wall, forming outer edge of covered walkway. Seemingly “random” arrangement is 
actually carefully balanced, then held together by steel rods.

Architect: Ensamble Studio.
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provide much better fit and stability, but were considerably more 
intensive in terms of the labor needed to produce them. Masonry 
stone walls improved on that yet again with stacked stones fixed 
together using mortar – a cement or lime and water mixture layered 
between courses to act as a binding agent. True solid stone walls 
are rarely built today because of the expense of the quarrying, 
cutting, transporting, and intensive labor involved to erect them, 
even as stone remains a favored material for building façades – 
but these are usually only a thin veneer that has been glued or 
mechanically fastened to other supporting elements that do the 
structural load-carrying work. (e.g. Ill. 5.25.)

Rammed Earth

The ancient techniques of employing earth in building structures have 
worked their way into contemporary architecture, albeit in modified 
form. Roughly, we can say that there are two main techniques 
available in this context: making un-fired earth bricks and blocks 
is one option; the other is the production of monolithic structural 
elements by using a ramming technique. Adobe in its modern 
form involves the manufacturing of load-bearing bricks or blocks 
made of tightly compacted earth, clay, and straw. So-called CEB, or 
compressed earth blocks, contain no straw, but add lime or cement 
as a stabilizer to hold the material together. In the rammed earth 
technique, the soil is mixed with cement, water, and waterproofing 

Illustration 5.25
Guggenheim Museum, Bilbao (1997).
Thin sheets of stone cladding are attached to a braced steel structure that is responsible for 
carrying all the loads to the ground.

Architect: Frank O. Gehry and Associates. Structural engineer: Skidmore Owings & Merrill (SOM).
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additives so as to form primary structural wall elements that are 
manufactured in situ.

It is perhaps the rammed earth technique which has the most 
interesting potential in a contemporary structural and architectural 
context, with its unexpected ability to form an earth-based material 
into a firm, hard vertical wall surface that also has significant 
compression strength. (e.g., Ill. 5.26.) Stabilized rammed earth 
uses the natural subsoil (free of humus) or crushed stone in a (damp) 
mixture with 6–7 percent cement as a stabilizer; its compression 
strength is moderate, but certainly adequate for low-rise structures. 
When hydraulically compacted in removable formwork, the finished 
surface of the wall usually has no need for additional protection. 
Rammed earth can be made very compact if the particles are of 
the right size and there is a proper distribution with particles of 
different sizes. The color of the finished material is basically that 
of the earth from which it is made, which can lead to a visually 
interesting layered appearance, to say nothing of its obvious visual 
connection to the ground upon which it sits; the use of white 
cement, on the other hand, can lighten all colors.

The materials of rammed earth construction and its low-tech 
manufacturing process are environmentally friendly, with quite 
low embodied energy; the material also has a high potential for 
eventually being recycled.

Clay Bricks

Clay materials that are dried and fired are called ceramics. As a 
group, these materials can generally be characterized as being 
hard, brittle, and heat resistant. Clay bricks are made in a series of 
steps involving the preparation of the raw material, the extrusion of 
the soft clay into long strips, before cutting these into short pieces 
that will later become individual bricks. After drying, these bricks 
are fired in an oven at well over 1000 °C (1832 °F).

Clay bricks are one of the oldest of building materials, especially if 
we are considering materials that involve a certain degree of human 
intervention in order to make them. Historic architecture in most 
cultures depended to a large extent on clay-brick masonry and its 
particularities for the making of built form. It is impossible to think 
of Roman architecture, to take one example, without recognizing 
the dependence of many vaults and arches as well as walls and 
pillars on the particular strength properties of the clay brick. In fact, 
structural principles and the shape of structural elements in Roman 
classical architecture are testimonies to the low tension strength 
and the good compression strength of clay-brick masonry.

Clay bricks today are produced in different sizes and shapes, 
whether perforated or solid (e.g., Ill. 5.27, 5.28, and see also Ill. 
5.9). The density of the material depends on the composition 

Illustration 5.26
Windhover Contemplative Center, Stanford University, Stanford, CA, USA (2014).
Rammed earth walls made from soil from the site compose the structure as well as the interior 
and exterior spaces of this one-story nondenominational center intended for relaxation and 
silent contemplation on this university campus; distinctively uneven horizontal layering is a 
visual pattern that contributes to the relaxing atmosphere of this building. 

Architect: Aidlin Darling Design; Andrea Cochran Landscape Architecture. Structural engineer: 
Rutherford & Chekene.
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Illustration 5.28
Church of Christ the Worker, 
Atlantida, Uruguay (1960).
Flat clay bricks are used in 
different ways and orientations 
in the curving sidewalls, the 
double-layered undulating roof 
surface with concrete mortar 
and integrated steel reinforcing 
bars, as well as the angled light-
screening façade elements. 

Designer and structural engineer: 
Elaudio Dieste.

Illustration 5.27
Robie House, Chicago, USA (1909).
The essential low-slung horizontal form of the house is accented 
by (a) the continuous concrete bands at the tops of the walls 
and parapets as well as by the low, cantilevering roofline. (b) 
the extra-long bricks that were used for the exterior walls. 
Also, the horizontal mortar joints are slightly recessed and form 
continuous lines while the vertical joints are filled flush with the 
brick and blend in with its red/brownish color, thus preventing 
vertical lines from being established. 

Architect: Frank Lloyd Wright.
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of its raw material, and clay bricks with the highest densities 
are those with the highest strength. More important than the 
strength of individual bricks, however, is the strength of the brick 
masonry that these bricks are built up into. When bricks are laid 
in mortar, the material becomes anisotropic, having different 
properties in different directions. Furthermore, the ultimate 
compression stresses for the combined brick/mortar masonry 
material is typically significantly lower than that of the individual 
clay bricks themselves.

The natural colors of clay bricks vary according to regional 
differences of the chemical compositions of the clay. Clays with a 
high content of iron become naturally red after firing, while clay 
with high lime content tends to have a yellow color. In addition, 
the duration in and temperature of the oven will affect their final 
color: the longer the time and higher the temperature of drying, 
the darker and browner the brick will become. Metal oxides can 
also be mixed in with the clay before burning in order to make 
other color variations.

Because of their considerable density and particular material 
composition, masonry made of clay bricks will have very good fire-
resistance and sound insulation properties. Clay bricks also exhibit 
exceptionally long durability and low maintenance requirements, 
resulting in an environmentally friendly material over the long term, 
in spite of the considerable energy consumption needed initially 
for the high-temperature firing process.

5.5	 Steel, Iron, and Aluminum

Steel and Iron

Iron alloys constitute the most important metals in contemporary 
architecture, and foremost among them is steel.12 Common to 
these metals is their small carbon content which, in spite of its 
relatively modest weight in comparison to iron, heavily influences 
metals’ properties. The first major breakthrough for metals into 
the structures of architecture was by means of the introduction 
of cast iron, a material that was able to be manufactured in large 
quantities when coke-fired ovens were introduced toward the end 
of the eighteenth century. The resulting metal is hard and strong in 
compression, but is brittle and performs poorly when subjected to 

tension and bending.13 Historically, wrought iron is the precursor of 
modern steel. By being a metal that is easily forged while hot and 
also a ductile material, wrought iron found interesting applications 
in structures in the nineteenth century; a case in point is the Eiffel 
Tower, made of wrought iron in 1889 instead of steel, which was 
considered too expensive at the time.

Historically, Sir Henry Bessemer is credited with being the first to 
introduce the manufacturing of steel by modern methods in about 
1856. Steel is the end product of a process that begins with the 
raw material that is found in nature called iron ore. This material 
in the form of pellets is mixed with coke14 and limestone and fed 
into a blast furnace, a process that isolates the iron from the ore. 
Two alternative methods are used to produce steel from iron; 
either by means of a converter process or an electric arc furnace 
technique. The resulting metal of the converter process is mostly 
so-called mild carbon steel. Alternatively, recycled iron and steel 
is fed into an electric arc furnace where the metal is transformed 
into high-quality special steels.

The steel products of primary interest for architecture are 
rolled profiles, tubes, and steel plates or sheets. (e.g., Ill. 5.29, 
5.30, 5.31) Structural profiles are hot rolled or cold formed, 
with the latter type used for thin sections manufactured from 
sheet metal. Hot-rolled profiles are made by deforming the steel 
while red-hot. This is done by a series of rollers working on the 
metal in a number of cycles, gradually making the cross-section 
thinner and smaller, resulting in a prescribed section of standard 
measurements. Other hot-rolled products include steel plates 
of different thicknesses and steel bars. Tubes and rectangular 
hollow sections are manufactured from folded sheets and are 
welded after shaping, or else are made “seamless” by means of 
a process in which the material in the center of a solid section is 
punched out along the length. Steel wires are manufactured by 
repeated drawing of a rod through progressively smaller dies or, 
traditionally, through holes in special draw plates, thus reducing 
the cross-section to the desired diameter. Wire strands are made 
by twisting together several wires like a helix, and several strands 
together in turn make up a wire rope by employing a similar 
twisting process. (Wire strands and ropes are particular to tension 
cable structures, and will be discussed further in that context in 
Chapter 6, Section 6.8.) 

Carbon steel for construction purposes is highly ductile, easily 
forged, and has excellent welding properties; in addition, it works 
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Illustration 5.29
“Midday” (1960).
Short segments of different profiles of rolled structural steel are 
displayed, with the classic shape of an I-beam standing up in the 
foreground. 

Sculpture by Anthony Caro.

Illustration 5.30
Hotel Arts, Barcelona, Catalonia, Spain (1992; built as part of the Vila 
Olímpica for the 1992 Olympic Games). 
Detail of external structure made of carbon steel rolled profiles. 
Differently shaped sections as well as various bolted and welded 
connections can be seen.

Architect and structural engineer: Skidmore, Owings & Merrill (SOM).

Illustration 5.31
Tondonia Winery Pavilion, Haro, 
La Rioja, Spain (2006).
Sides of wine-flask-shaped 
tasting pavilion are made of 
rolled steel plates precisely 
welded together and stiffened 
with orthogonally arranged ribs. 
Steel is painted, giving interior 
a light, bright atmosphere that 
sets off the winery’s fin-de-siècle 
style wooden pavilion that 
had been brought to the 1910 
Brussels World Fair. (See also 
Ill. 7.15.)

Architect: Zaha Hadid Architects. 
Structural engineer: Jane Wernick 
Associates.
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very well in compression as well as in tension. Other steels or 
iron alloys of interest for architecture are so-called cast steel (e.g., 
Ill.5.32) and ductile iron (spheroidal graphite iron). In ductile iron, the 
molecular form in which the carbon occurs reduces the brittleness 
characteristic of normal cast iron, and this results in an iron having 
higher strength and ductility. Compared to and unlike cast steel, 
which has to be reheated after casting, ductile iron can be made 
into finer and more delicate shapes. We should note, however, 
that unlike cast steel, ductile iron cannot be welded.

Ferrous metals are highly susceptible to corrosion since iron 
oxidizes easily.15 As a result, steel structures that are left exposed 
must have their surfaces protected, and the most common form 
of protection is provided by painting it (e.g., Ill. 5.30, 5.33.); this 
is especially necessary in a wet or aggressive environment. Paint 
provides a barrier that restricts the transport of water, oxygen, 
and ions, all of which cause corrosion to occur. Stainless steel, on 

the other hand, is an example of an alloy with a higher amount 
of the metals chromium and nickel as well as a higher carbon 
content than has carbon steel, all of which are helpful to prevent 
corrosion. Cor-Ten steel is a particular weathering steel type 
that is an alloy of iron, carbon, copper, chromium, silicon, and 
manganese; the surface oxidizes quickly and forms a dense, 
passive barrier against further corrosion. The surface becomes 
textured with colors ranging from brown to orange/red or purple. 
(e.g., Ill. 5.34.) Yet another important way of protecting steel from 
rusting is by means of a galvanizing process. Hot-dip galvanizing 
involves dipping steel components into a bath of molten zinc. 
A thin coat of an iron/zinc alloy is created on the steel surface, 
while a topcoat of pure zinc is exposed to the environment. 
Galvanized steel has a characteristically reflective, crystalline, 
or speckled surface pattern which oxidizes to a self-protecting 
matte gray color.

Illustration 5.32
Stuttgart Airport Terminal, Stuttgart, Germany (1998). 
Cast steel joint in the structural “trees” of the terminal building. 
Cast steel has higher manganese and silicon content than carbon 
steel, as well as high carbon content. This provides this type of 
steel with a good form-filling ability. In addition to lending itself to 
casting, the best of cast steels have strength and ductility that are 
comparable to those of carbon steel. It can be welded, including 
to carbon steel.

Architect von Gerkan, Marg und Partner. Structural engineer: Schlaich 
Bergermann und Partner; Weidleplan Consulting Gmbh.

Illustration 5.33
Tate Modern, London, UK (2000). 
Painted surface of riveted built-up steel column was originally 
part of Bankside Power Station, London, UK (1953, 1963), now 
converted to Tate Modern. (See also Ill. 5.6.)

Architect: Herzog & de Meuron (for conversion); Sir Giles Gilbert Scott 
(for previous power station). Structural engineer: Arup (for conversion). 
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Steel exhibits a very significant reduction in strength and stiffness 
at higher temperatures and so in most cases of architectural 
application steel structural members will need fire protection of 
one sort or another. The most common types are either a fire-
resistant paint or else a protective cladding made of fire-resistant 
material such as gypsum board, cementitious coatings, or sprayed 
fire-resistive material (SFRM) coatings. Oversized cross-sections 
will also increase the time it takes for the steel to reach critical 
temperatures. A more unusual protection method of steel tubes 
consists of letting water fill the hollow structural profiles in an effort 
to keep the steel temperature down. Hollow profiles filled with 
reinforced concrete is also an option, where the idea is that the 
concrete core becomes structurally active as soon as the steel around 
it loses strength and stiffness as a result of the higher temperature. 
Encasing steel structural members in reinforced concrete is also a 
well-established method of fire protection. Many of these methods 

have their aesthetic implications, of course, which need to be taken 
into account by the designer.

From an environmental standpoint, steel production and 
manufacturing create significant amounts of greenhouse gases. 
Moreover, the amount of energy needed for their initial manufacture 
is substantial. Steel is, however, one of the construction materials that 
lends itself best to recycling, and the energy required to produce 
steel members, as well as the carbon footprint, are significantly 
lowered when it is being produced from recycled materials. And 
although a detailed consideration of this topic is beyond the scope 
of this book, it is worth noting that a focus on required energy is 
only meaningful if also we take into consideration the actual work (or 
load-bearing function) that we can demand from a specific amount 
of material. It should be clear that steel, with its high load-bearing 
capacity and the resulting minimization of the amount of material 
required, benefits from incorporating this perspective into overall 
ecological considerations.

Aluminum

Commercial production of aluminum started in the 1890s, but the 
then newly available metal was primarily employed for kitchen 
hardware. It took as long as the 1930s before this material found 
its way into the building sector, with aluminum presented as a new 
option for window frames. Aluminum is actually the most abundant 
metal element in the Earth’s crust, but it is typically bound in natural 
mineral compounds such as bauxite ore; the metal is made by 
means of an electrolytic process that extracts aluminum from these 
mineral compounds, a process that is highly energy intensive. 

Today aluminum is the second most commonly used metal 
in the construction industry after steel, although it still remains 
unusual for use in primary structural members. (e.g., see Ill. 6.11, 
8.18.) It is a silvery white metal that is easily forged. It is very light 
and has a favorable strength-to-weight ratio. Pure aluminum is too 
soft for structural use, however, and for construction purposes it 
is commonly alloyed with copper, manganese, zinc, silicon, and 
magnesium. The particular mix can be designed to suit specific 
purposes, such as improving casting abilities or adding strength. 
Aluminum remains quite soft, however, and has an elastic modulus 
E that is about one-third that of steel, indicating that it is a material 
that is inherently much less stiff. Therefore, if deflection is a critical 

Illustration 5.34
“Shaft”, Oslo, Norway (1989).
Cor-Ten weathering steel’s oxidized surface can take on striking 
coloration and patterning.

Sculpture by Richard Serra.
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design issue in a particular instance, an aluminum cross-section 
may turn out to need to be quite a bit larger than that made of 
steel, in spite of the metal’s relatively low weight-per-unit-volume 
(which reduces self-weight due to dead load.)

The shaping of aluminum components employs some of the 
same methods that are used for working steel, including casting, hot 
rolling, and cold forming. In addition to those methods extruding 
the metal through a die allows for more complex shapes and forms 
to be created. (e.g., Ill. 5.35.) The die tool is a cylinder of steel with 
a hole in the shape of the desired profile. A massive aluminum bar, 
heated to 500–550 °C (932–1022 °F), is forced through the tool, 
extruding profiles in continuous lengths of up to 40m (130ft). The 
working of aluminum takes place at a much lower temperature than 
steel because its melting point is lower. The actual production of 
structural elements from bulk aluminum is therefore less energy-
consuming and far cheaper than working steel.

There are other pros and cons to the metal that need to be 
considered. Some disadvantages, for example, are greater thermal 
expansion and lower fire resistance than steel; on the other hand, 
aluminum has excellent corrosion-resistance properties, although not 
when in direct contact with other, more noble metals – a situation 
that can result in so-called galvanic corrosion.16 Also, as we’ve 
already stated, the primary extraction of aluminum from bauxite 
is an extremely energy-consuming process; yet again, aluminum 
recycles very well, resulting in large reductions of required energy 
when the material is reused.

5.6	 Wood and Cardboard

Wood

Wood is a “natural” material, which means that very little processing 
of the material itself is needed before using it for structural members. 
Wood is basically ready for use in the state we find it in nature, 
which goes a very long way to explaining its long-standing and 
widespread use in various contexts and for different purposes. The 
most commonly used tree species for structures are softwoods such 
as spruce, pine, and fir – which are all characterized by being light 
and relatively strong materials.17

However, in spite of its being so familiar and of such common 
origin, wood is in fact quite a complex material. To begin with, it 
is anisotropic, which means that it has different visual and physical 
properties in its two main directions. At a micro-scale, wood’s tube-
like cells can be considered to be a structure in and of themselves. 
(Ill. 5.36.) In fact, an analogy to the microstructure of wood could 
be a bundle of long, thin, hollow drinking straws that are bound 
together side by side and that follow the direction of the tree 
trunk. Because of this particular cellular structure, the material has 
very different properties along the length of the wood grain (or 
straw!) than perpendicular to it; as a general rule the stiffest and 
strongest direction by far is parallel to the grain, in the so-called 
longitudinal direction.

The density of softwoods is less than that of water; which is 
the reason why wood typically floats. Wood expands (swells) as 

Illustration 5.35
A distinctively shaped extruded 
aluminum profile. Great 
complexity and precision of 
cross-section are possible with 
this manufacturing technology. 
The material appears with its 
well-known grayish, silvery color 
which is neither shiny nor dull.



Chapter 5: Materials

143

its moisture content rises and shrinks as it lowers, and more so in 
the plane of a typical member cross-section; i.e., perpendicular 
to the grain. The coefficient of thermal expansion also varies 
relative to the direction of the grain, with the largest dimensional 
change from temperature also to be expected perpendicular to 
the wood grain.

In spite of all this, wood is a most efficient structural material in 
the sense that it has much to offer in terms of strength relative to 
its weight. Perhaps surprisingly, the tensile strength-to-weight ratio 
for softwoods like spruce, pine, and fir is quite significant, easily 
competing with that of steel. Tension and compression capacities 
along the length of a member are comparable, although the tensile 
strength when tested on faultless wood specimens is somewhat 
higher than that of the corresponding compression stress, since 
the cellular tube structure in compression is susceptible to buckling 
failure. (There will be much more on this mode of failure in Chapter 
8.) The micro-tube cellular structure, however, leads to very different 
compressive capacities for wood whether being considered parallel 
or perpendicular to the grain; with the latter being considerably 
lower due to the tendency for the tubular cells to flatten and crush 
when transverse loads are applied to a wood structural element. 
We should also be aware that wet lumber can be expected to have 
25 percent lower strength than dry lumber.

The basic method for manufacturing most wood products for use 
in the construction industry includes sawing the log longitudinally, 
producing what is then called lumber. Structural lumber is judged 
on its density and strength, including the effect of knots, splits, 
and other natural deformities, all features that compromise the 
structural integrity of the material. With respect to cross-sectional 
dimensions, wood members are cut from the original log into 
a variety of different and commonly used sizes; those that are 
larger than nominally 125 x 125mm (5 x 5in) are commonly called 
timber or structural solid wood. Taken together, sawn members 
of all sizes still comprise a large percentage of all wood structural 
elements that are used today; in North America, for example, small-
dimensioned sawn lumber is the most basic unit of construction for 
the platform framing technique that is used for standard residential 
home construction. 

To provide greater strength and length in structural timber 
members as well as larger structural dimensions than are typically 
possible today from one log, and thereby offer other architectural 
design possibilities, the use of laminated wood is an attractive option. 
Structural members in laminated wood (also called glulam) are built 
up of layers of wood that are glued together to form rectangular 
cross-sections of specific dimensions suitable for use as beams, 
columns, trusses, etc. (e.g., Ill. 5.37.) The glue provides full static 

Illustration 5.36
The microstructure of wood. Cross-section features long 
tube-like cells.

Illustration 5.37
Tautra Maria Convent, Tautra Island, Norway (2006). 
Laminated wood members are used for the main roof support 
structure. Smaller sawn lumber used to create a diagrid to 
carry the glass roof. Angled ends of the glulam members are 
connected with hidden steel plates. The resulting material 
quality as well as light and shadow effects in this space are 
remarkable. 

Architect: Jensen & Skodvin. Structural engineer: Dr.techn. Kristoffer 
Apeland AS.
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interaction between the wood layers, guaranteeing the strength 
of the cross-section as if it were made from one, homogeneous 
piece of material. Indeed, since the different layers of 30 to 40 mm 
(roughly, 1.25 to 1.5in) thicknesses of wood used in the glulam are 
made of graded lumber in which knots and splits have been carefully 
avoided, the quality and strength of laminated wood is generally 
higher than that associated with timber of the same dimensions. 
Laminated wood can also easily be curved to form bent beams or 
arches; the hardened glue will cause the member to maintain its 
shape. (e.g., Ill. 5.38.)

Wood panel products are another interesting and efficient use 
of the material that have a variety of applications. Among the 
different wood panels that are specified either by their thickness or 
a span rating, plywood is structurally among the most interesting. 
This manufactured product is made up of multiple wood veneers 
(thin sheets) that are glued together, commonly in such a way that 
adjacent layers in the panel have alternating grain directions at 90⁰ 
to each other. This provides the panel with nearly identical strength 
and stiffness properties in both orthogonal directions.

Structural insulated panels (SIPs) are industrial products that 
consist of a sandwich of two layers of wood panels, usually OSB 
(oriented strand board) or plywood, with an insulating layer of 
foam in between them. The rigid insulation core and the facing 

panels perform as web and flanges respectively, securing adequate 
strength and stiffness for SIPs to find applications in relatively short 
height/span walls, floors, and roof surfaces.

Beams may also be produced from glued veneers. So-called 
laminated veneer lumber (LVL) uses multiple layers of thin veneers 
or OSB cut into rectangular strips that are glued together. Such 
beams have a grain orientation parallel to their length, and are less 
likely to warp, twist, or shrink than conventional lumber. By being 
more uniform, they are also stronger.

Other engineered wood products include the timber I-joist, a 
built-up wood beam with enlarged flanges and relatively thin web 
whose overall profile resembles that of a rolled steel section. Such 
beams may replace conventional sawn lumber for floor structures 
involving long spans. The flanges may be manufactured from lumber 
or glulam, with a web made of plywood or other wood-based panels.

A more recent structural wood product is the thick planar solid 
wood panel element that can be used to make a floor or roof slab 
or else wall elements capable of carrying both vertical loads as 
well as in-plane and out-of-plane horizontal loads. (e.g., Ill. 5.39.) A 
number of types of such elements are produced, but common for 
all is the use of boards arranged in layers and that are bonded by 
glue, or by wooden dowels. Elements can be produced in a factory 
by a process similar to that used for laminated wood, whereby a 

Illustration 5.38
Hedmark Museum, Hamar, Norway (1971).
Glulam beam supporting roof in the northwest corner of 
the museum curves upward toward the roof rafters to give 
headroom clearance for the elevated platform of the exhibition 
space just below. 

Architect: Sverre Fehn. Structural engineer: Terje Orlien.
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large number of boards are stacked one on top of another until 
a large, thick solid wood panel element is formed. Alternatively, 
layers of boards can be stacked with alternating layers oriented 
in orthogonal directions, forming a structural element having the 
same strength in both directions, which recalls the manufacture 
of plywood but in this case using boards instead of thin sheets of 
wood. (Ill. 5.40.)

While it seems self-evident that wood may catch fire and burn, 
depending on the member dimensions wood structures actually 
can perform relatively well when subjected to fire. One reason for 
this is that a layer of charcoal is produced on the external wood 
surface when it burns, and this has the ability to slow down the 
burning of the remainder of the wood member. Second, wood 
burns at a predictable speed which makes it possible to calculate 
the time it will take before the member cross-section is reduced 
to a size that will no longer be capable of resisting the loads being 
carried. Member sections can thus be sized to withstand fire for a 
prescribed duration of time (that is established by building codes 
in order to allow for evacuation.)

Illustration 5.39
Pulpit Rock Mountain Lodge, Strand, Norway (2008). 
Solid wood panels are used to create a series of transverse walls, which works spatially to subdivide space 
into individual rooms; in this communal space, however, these walls are partially opened up to become 
distinctive frames. 

Architect: Helen & Hard. Structural engineer: Wörle Sparowitz Ingenieure.

Illustration 5.40
Solid wood samples. Two samples formed using different 
manufacturing technologies: glued and doweled.
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Wood is obviously a renewable structural material and, moreover, 
is one that traps its embodied carbon dioxide (CO2), which makes it 
doubly environmentally friendly. Also, if the material is not transported 
across large distances, the energy consumption associated with 
its production, manufacture, and delivery to the building site is 
fairly low compared with a number of other structural materials. 
The use of glue to produce glue-laminated wood, plywood, and 
solid wood panels will, however, affect this very favorable energy 
and carbon footprint balance to a smaller or larger degree, as will 
the extensive use of steel detailing that often accompanies larger 
wood structures. 

Cardboard

Cardboard is the end product of a multi-step manufacturing process 
in which wood is the originating raw material; i.e., it is made from 
a number of layers of recycled paper that are glued together. In 
recent years cardboard has found interesting applications beyond 
its conventional packaging use by being formed into load-bearing 
structural elements that are used in several high-profile architectural 
projects. Certainly the architect best known for much of the 
pioneering development of cardboard as a structural material 
that can be used for building purposes is Shigeru Ban. (e.g., Ill. 
5.41, see also Ill. 6.25, 6.26, and Ill. 9.14.)

We typically find cardboard that is used structurally to be in 
the form of hollow tubes (Ill. 5.42); these can be effectively used 
as individual columns and other straight-axis elements, such as 
angled struts and beams. Lines of tubes placed side by side can 
form walls of various configurations in plan, as in the Miyake Picture 
Studio Gallery (seen in Ill. 5.41). The cardboard tubes themselves 
cannot be curved along their longitudinal axis, however, so arches 
and other inherently bent structural forms need to be created as a 
connected series of many short, straight-line segments. Cardboard 
panels can also be created, either as a solid made up of many flat 
sheets of the material glued together or else in a mostly composite 
hollow form, with a honeycomb core made up of short transverse 
tube segments with multilayered cardboard sheets making up 
the panel’s outer surfaces. These can act as flat panel segments 
of a folded roof structure, for example; an added benefit of this 
arrangement is that the trapped air within the honeycomb will 
significantly improve such a panel’s insulation properties. 

Tests show that the ultimate compression and tension stresses of 
cardboard have about the same value, with ultimate stresses roughly 
one-quarter to one-third of that of softwood’s for compression 
in the direction of the grain.18 The material is considerably more 
elastic than wood, though, bending and flexing far more when 
subjected to load if members with equal dimensions are compared. 
The mechanical properties of cardboard strongly decrease with 
increased moisture content, and so techniques for ensuring that 
the material stays dry must be included in the design. 

We are well aware that paper burns easily and so we should 
logically be concerned about this aspect of structural cardboard, 
but as does wood in a fire, the surface of thick cardboard panels 
char and this creates a protective layer for the underlying material, 

Illustration 5.41
Miyake Design Studio Gallery, Shibuya-Ku, Tokyo, Japan (1994).
Side-by-side cardboard tube columns effectively form a curved backdrop 
to this temporary gallery, while spaced further apart they open the space 
to the outside; smaller diameter tubes serve structurally at a furniture 
scale as table legs (columns) and chair seats (beams).

Architect: Shigeru Ban.
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restricting further damage. By applying a varnish to the cardboard 
surface, improved resistance to the spread of flames can also be 
achieved. On the other hand, since the material’s thicknesses 
may be relatively small, as is the case for hollow cardboard tubes, 
additional protections must be taken in certain cases where severe 
fire classifications must be met.

Since cardboard is made from recycled paper products, this 
suggests that it is likely to be a material of considerable interest from 
an environmental conservation point of view. It should be borne 
in mind, however, that its manufacturing process does consume 
quite a lot of energy.

5.7	 Glass

Although known and highly valued as a material at least since the 
time of the Phoenicians around 5000 BC, and used in subsequent 
millennia for everything from jewelry and artwork to drinking 
containers and storage vessels to small windows and spectacular 
piecework stained glass window rosettes in Gothic cathedrals, it 
was not until the mid-1600s that significant plate glass processes 
were devised. Industrial-scale production of glass can be said 
to have been heralded by the Crystal Palace for the World’s Fair 
in London in 1851 and thereafter the material took on more 
significance in terms of its use in an architectural context for 
opening up interior space to the outside and vice versa. But even 
so, its use as a structural material, beyond limited capabilities 
for resisting wind pressures by spanning across a window frame 
and vertically from the outside edge of one floor level to the 
next for floor-to-ceiling glass, was very limited. Over the past 
few decades, however, the structural properties of glass have 
increasingly been explored and developed, and today it is a 
material that has its place among the viable palette of options 
for designing certain structural elements, albeit still a limited 
one since it is fundamentally a brittle material and so special 
care must be taken to design load-bearing structures that are 
made of it.

Glass is an inorganic, transparent material that has become 
effectively solid and rigid without crystallizing. The production 
of glass starts with melting together (mainly) quartz sand (silica), 
sodium carbonate, and lime.19 A controlled cooling process 
(annealing) produces an amorphous (i.e., not crystalline) material 
which is solid at room temperatures, even though the microstructure 
resembles that of liquids. The faintly green color of glass is due 
to small amounts of impurities in the glass from iron and chrome 
oxides.20

By far the most common form of this material in architecture is 
the glass sheet made using the float glass method.21 In this process, 
a continuous ribbon of glass is formed by using a bath of molten 
tin, on to which the molten glass spreads laterally, controlled by 
gravity and surface tension. The molten glass forms a floating 
ribbon on the tin surface having a perfectly smooth glossy surface 
on both sides. The thickness of the glass is controlled by the speed 
of the flow, and the continuous glass ribbon is cut after controlled 
cooling. A standard maximum size for a finished sheet glass is 

Illustration 5.42
Samples of cardboard hollow tubes.
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3210 × 6000mm (10ft × 20ft) with thicknesses ranging from 1mm 
to 25mm (0.04in to 1in). (e.g., Ill. 5.43.)

It is difficult to give the strength of sheet glass as fixed material 
properties, since flaws such as microscopic cracks (so-called Griffith 
flaws) that develop all over the surface will concentrate and magnify 
any applied stress and thus significantly limit the material’s ability to 
withstand tensile stress.22 Compressive stress, on the other hand, 
tries to close rather than open any crack; consequently, glass is 
considered to have a higher compressive strength than tensile 
strength. Nonetheless, glass is being used with increasing frequency 
in bending (for panels and beams) where the tensile strength is 

decisive for establishing the necessary structural dimensions (e.g., Ill. 
5.44, 5.45, see also Ill. 7.13, 7.14), and it can even be found being 
used as a primary tension element in hanging glass façades in which 
the glass sheet is made to carry not only its own weight but that 
of all glass panels hung below it. (e.g., see Ill. 11.26.) The ultimate 
stresses of glass are usually given as design values according to the 
direction of load, and they are statistically determined.

The strength of glass may be increased by subjecting it to 
another process. Toughened glass is heat treated after the initial 
manufacturing process, in order to leave the outer surfaces of the 
glass with large compression stresses that are balanced by tension 

Illustration 5.43
Time Warner Center, New York City, NY, USA (2003).
The reflective quality of flat sheet glass seen from an angled point of view is observed 
here for a very large, cable-supported glass wall made up of many individual panels. The 
transparent visual quality of glass when viewed transversely can be observed for this same 
glass wall in Ill. 6.2, 6.3.

Architect: Skidmore, Owings & Merrill, and, for glass wall, James Carpenter Design Associates. 
Structural engineer: WSP Cantor Seinuk and, for glass wall, Schlaich Bergermann und Partner.
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stresses in the core (resulting from different rates of cooling). The 
locked-in compression stresses will prevent the surface cracks from 
opening, and thus make the glass significantly stronger. Starting 
with annealed float glass, heat treatment can result in two kinds 
of toughened glass: heat strengthened and fully tempered, with 
the latter being the strongest. When toughened glass breaks, it 
characteristically shatters into many small fragments.

Two or more glass layers may be laminated into one thick sheet 
by the help of thin plastic interlayers, typically of polyvinyl butyral 
(PVB). The interlayered plastic film may be colored or otherwise 
printed. In the case of breakage of this so-called laminated glass, 

Illustration 5.45
Casa da Música, Porto, Portugal, 
(2005).
Undulating structural glass for walls 
situated at both ends of the main 
auditorium; shape allows glass to 
span greater distance vertically 
without secondary support system.

Architect: OMA. Structural engineer (for 
the glass walls): Rob Nijsse.

Illustration 5.44
Apple Store, Fifth Avenue, New 
York, NY, USA (2006).
Detail showing curved glass 
in combination with titanium 
bolts. While glass structures in 
most cases have connections 
made of stainless steel bolts, in 
certain cases titanium bolts are 
used instead. The reason is that 
titanium and glass are much more 
compatible as far as thermal 
expansion is concerned than are 
stainless steel and glass. The risk 
of damage due to temperature 
changes when the two materials 
are in direct contact with each 
other is thus reduced.

Architect: Bohlin Cywinski Jackson. 
Structural engineer (glass): Eckersly 
O’Callahan.
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the outer layers stick to the plastic interlayer, thus reducing the risk 
of injury from falling glass splinters or shards. As a result, laminated 
glass and toughened glass are both considered and labeled as 
safety glasses.

From an ecological point of view, in spite of the intensive 
manufacturing process just described, glass is able to at least partly 
counter this with an almost unmatched resistance to deterioration. 
Although it is important to note that it must be protected from 
direct contact with concrete, cement, and lime mortars as water-
containing substances from those materials is strongly alkaline and 
may damage the glass surface. Glass is also certainly a material that 
can easily be recycled. And, more indirectly, it must be acknowledged 
that the transparency of glass may present great ecological benefit 
from frequently being used in architecture projects that exploit 
solar energy for thermal gain, although the downside of this is the 
likelihood of overheating when large glass areas are left exposed 
to the sun. The balancing of all these environmental pros and cons 
is not an obvious matter, however.

5.8	F ibers and Fabrics

Mineral and synthetic fibers are materials of crucial importance 
in contemporary lightweight tensile membranes and in polymer 
(plastic) composites. Their tensile strength is exploited in pre-
stressed membrane structures, in which woven fabrics commonly 
form doubly curved structural shapes. (e.g., Ill. 5.46, see also Chapter 
11, Section 11.8.) In rigid fiber/polymer composites, the fibers lend 
strength to the polymer that envelops and holds them in place; 
these will be discussed in the next section.

Natural fibers like cotton and wool are by no means stiff and 
strong enough to be of much help in contemporary fabric structures; 
neither do they have appropriate aging and weathering properties. 
Instead, the mineral glass fibers and synthetic polyester fibers (e.g., 
Dacron) are now the two most common in structural textile fabrics. 
Well-known among yachtsmen are also the very stiff aramid fibers 
(e.g., Kevlar) that are used in sails. An important feature of fibers 
is that their strength may far exceed that of the same material in 
another form. The case of glass fibers is particularly illustrative: as 
a fiber, glass contains surface cracks infinitely smaller than those 

Illustration 5.46
Imagination Headquarters 
Building, London, UK (1990). 
PTFE-coated glass-fiber 
tensioned fabric covers five-
story atrium, admits light into 
former gap in this inventive 
building conversion project.

Architect: Ron Herron. Structural 
engineer: Buro Happold.



Chapter 5: Materials

151

found in a sheet of glass. This means that the micro cracks are far 
less critical and do not reduce the tensile strength of glass fibers 
by the same proportion that they do in sheet glass. Carbon fibers, 
invented in the 1960s, is a highly interesting material for rigid 
composites.23 Carbon fibers are exceptionally stiff (i.e., a substantial 
tension force results in a very small elongation) and also quite strong.

One thread or filament usually consists of a large number of 
fibers; in turn, many threads are woven together to form fabrics. 
The initially straight threads running in the direction in which the 
fabric is manufactured are called warp threads, while the threads 
that are woven orthogonally under and above these are called 
the weft (or fill) threads. Since the straightened warp threads are 
pre-stressed during manufacturing, the resulting fabric material has 
more stiffness and strength in this direction, with less elongation 
before failure. (Fig. 5.5.)

To protect the woven fabric from moisture, UV radiation, 
or fungus or microbe attack, it is usually coated on both sides. 
Coatings also influence the fabric’s resistance to becoming dirty, 
and affect its working life. The most common coating material is 
PVC (polyvinylchloride), often applied to polyester-fiber fabrics, 
and PTFE (poly-tetra-fluoro-ethylene) for protecting glass-fiber 
fabrics. PTFE-coated glass-fiber fabrics are non-combustible and 

are generally thought to have longer life than PVC-coated polyester-
fiber fabrics, and are therefore commonly used in “permanent” 
membrane structures. In addition, the PTFE coating provides a 
surface on which dirt does not collect easily, and in combination 
with the glass-fiber fabric it has a high degree of translucency.

In recent years, foils have also become common as structural 
tensile membranes. Foils are, unlike the anisotropic woven fabrics 
discussed above, materials that have the same strength and stiffness 
properties in all directions. The most important foil is the polymer 
ETFE (ethylene-tetra-fluoro-ethylene). Its tension strength, however, 
is far lower than what can be achieved in fabrics, meaning that it 
is more appropriately applied to much smaller spans. ETFE foil 
is mostly used for double-membraned air-inflated “pillows” or 
“cushions” that are attached in modular fashion to some sort of 
multicellular structural framework (e.g., Ill. 5.47), but it can also 
be a material option for mechanically pre-tensioned membranes 
if these are used for quite small spans. Since it has a very high 
translucency and an extremely high permeability to UV radiation, 
ETFE even presents distinct advantages over glass for enclosing 
greenhouses (e.g., see Section 13.1) and swimming pools. (e.g., 
Ill. 9.40.) It is also an almost fully recyclable material.

Illustration 5.47
Allianz Arena, Munich, Germany (2004).
Enclosure created by numerous air-inflated “pillows” made of layers of 
thin ETFE foil. These can be lit and colored for various effects and events.

Architect: Herzog & de Meuron. Structural engineer: Arup; Sailer Stephan and 
Partner; R+R Fuchs.

Figure 5.5
Diagram showing weaving 
of threads for manufacture 
of structural fabric; warp and 
weft directions, straight and 
undulating, respectively.
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5.9	 Plastics and Composites

Plastics

Polymers are large chain-like molecules that are based on carbon 
atoms, and are present in such substances as plastics, rubbers, 
and adhesives. The most important base material for all polymers 
is oil. We have already introduced various plastics that are used as 
fibers (polyester, aramid), coatings (PVC, PTFE), and foils (ETFE). 
There are two main groups of plastics; thermosetting plastics and 
thermoplastics. Thermosetting plastics (or thermosets) have a 

complex molecular structure that resists being reshaped by heating; 
once set, thermosetting plastics retain their shape. Among the more 
common thermosetting plastics are epoxy and polyester.24 While 
holding their shape under normal temperatures, thermoplastics, 
on the other hand, will deform under heat and pressure, and 
can thus be given new shapes multiple times. Thermoplastics 
are recyclable and regain their properties after cooling. They 
include materials like PVC, PTFE, ETFE, as well as acrylic glass 
and polycarbonate.

Transparent thermoplastics like acrylic glass (polymethyl-
methacrylate, PMMA) and polycarbonate (PC) are sometimes used 

Illustration 5.48
Kunsthaus Graz, Graz, Austria (2003).
Unusual form and coloration of art 
gallery building with acrylic glass roof 
contrasts with surrounding historical 
urban context.

Architect: Spacelab Cook-Fournier; 
Architektur Consult. Structural engineer: 
Bollinger + Grohmann.

Illustration 5.49
Kunsthaus Graz.
Curvature of acrylic glass also 
echoes that of the Baroque spires of 
Mariahilferkircke.
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as substitutes for glass.25 Acrylic glass is also known as Perspex and 
Plexiglass. It has the best optical properties of all the polymers, 
and its weight density is only about half that of glass. Corrugated 
sheets find interesting applications as cladding material and light 
transmission varies according to color. (e.g., Ill. 5.48, 5.49.) PMMA 
is permanently weather and UV resistant, which means that dyed 
elements hold their color even outdoors. Acrylic glass presents the 
advantage over glass of having roughly two to three times its tension 
strength; another advantage is that, unlike glass, thermoplastics 
experience both elastic and plastic deformation when subjected 
to stresses, i.e., they are not brittle. These materials are much less 
stiff, however, with an elastic modulus only about one-twentieth 
that of glass, which means that where deformations are a critical 
issue, much larger structural thicknesses are needed.

Polycarbonate has particularly good strength to resist impact 
loads, better than PMMA and far better in this respect than float 
glass of the same thickness. While being permanently weather 
resistant, PC discolors if left untreated; for outdoor uses, therefore, 
polycarbonate sheets are co-extruded with UV protection layers 
on both sides. Polycarbonate has a weight density that is close to 
that of acrylic glass, but the material is less transparent.

Plastics in general are durable and degrade very slowly; moreover, 
both PMMA and PC are 100 percent recyclable. On the other hand, 
burning plastics may release toxic fumes, and the manufacturing 
of plastics can create undesirable chemical pollutants.

Composites

Composites consist of two or more different material components 
which are joined to give a combination of properties that cannot 
be attained by the original materials independently. Although this 
strategy will be seen to have broad relevance in structures, in the 
context of this section we will restrict the discussion of composites 
to being about fiber-reinforced plastics. (e.g., Ill. 5.50.)

Fiber-reinforced plastics come in different forms, but obviously 
always involve fibers, which to a large extent define the mechanical 
properties of the composite, as well as a so-called matrix which 
surrounds the fibers to protect them and fix them in position. The 
matrix is commonly a thermosetting plastic like polyester or epoxy, 
with the latter being the more expensive of the two. Depending 
on how the fibers are distributed in the composite, fiber-reinforced 

plastics may be isotropic (having the same properties in all directions) 
or anisotropic; this is up to the choice of the designer according to 
how the finished component is required to act structurally.

The two reinforcing fiber materials of greatest interest in the 
context of composite materials are glass and carbon. Carbon fibers 
are used when very high stiffness and strength are needed, in 

Illustration 5.50
Chanel Mobile Art Container (2008).
Cladding provided by 400 uniquely shaped panels made of 
fiber-reinforced plastic composite.

Architect: Zaha Hadid Architects. Structural engineer: Arup. 
Manufactured by Stage One.
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combination with low weight. Carbon often acts as reinforcement 
in an epoxy matrix, and finds application in elements where the 
stiffness-to-weight ratio is seen as crucial. Carbon fiber-reinforced 
plastics (CFRP), however, are rarely used in architecture. Glass fibers, 
on the other hand, are much cheaper and also have significant 
stiffness and strength properties. Glass fiber-reinforced plastics 
(GFRP) – otherwise known as fiberglass – commonly employ polyester 
as a matrix, where the glass fibers may be introduced into the matrix 
in a number of ways and with different orientations as needed or 
deemed desirable.

Among the particular characteristics of such composites are 
their low weight, high strength-to-weight ratio, and exceptional 
corrosion and weather resistance. Since two materials are being 
merged, fiber-reinforced plastics actually come into being only 
once the combination of materials actually acquires its final form; 
this means that design can, if desired, have a great influence on 
establishing material properties such as strength and stiffness. 

5.10	The Case of Chairs  
– Exploiting Material Properties 

Several architects that we consider to be pioneers of modern 
architecture shared a common obsession: universality. Their driving 
force was the dream of shaping humankind’s environment, whether 
from their great visionary city plans, individual building designs, 
or down to the smallest objects of everyday function. In the last 
100 years the evolution of the chair, in particular, has in many ways 
signaled the development of groundbreaking ideas in design and 
new material applications.

The steel tube chair can be considered as important a step in 
design development as was the introduction of the free plan and 
the glass curtain wall in modern architecture. Several architects 
of the period tried their hand at this kind of chair. Marcel Breuer 
(1902–1981), a teacher at the Bauhaus school in Weimar in the 
1920s, used to bicycle to school; he saw that the steel pipe of the 
handle bars also could be used in furniture design. (Ill. 5.51.) This 
was the first steel tube chair not intended for use in the kitchen 
or the dentist’s waiting room, but rather for the living room. His 
Wassily chair from 1925 combines the light, springy strength of 

the metal tube structure with the taut leather straps of the seat, its 
back, and armrests. The whole chair ensemble is complex in form 
and construction, but beautifully subtle in its elegance.

The Barcelona Pavilion was Germany’s and architect Mies van 
der Rohe’s (1886–1969) contribution to the World’s Fair in 1929. 
Placed on a terrace of travertine marble, the pavilion consists of a 
horizontal roof surface supported by eight free-standing cruciform 
steel columns. Mies had also carefully placed within the pavilion 
a number of his now-famous Barcelona chairs that were specially 
designed for this purpose. The structural concept consists of two 
pairs of intersecting, chromed flat steel bars (that could be seen 
to be modified pieces of the pavilion’s cruciform columns) joined 

Illustration 5.51
Wassily chair (1925).
The very first chair made from steel pipes combines a springy 
metal frame strength with leather straps for the back, seat, and 
armrests.

Designer: Marcel Breuer.
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by three horizontal flat bars at the top, middle, and front of the 
chair. (Ill. 5.52.) A number of broad leather straps support the 
back and the seat of the chair, which are padded cushions made 
of natural-colored leather. The curvature of the chromed pieces, 
the elegant cushion work, and the beautiful proportions have all 
combined to make the chair a timeless classic.

Aluminum was the preferred material of the Swiss designer Hans 
Coray (1906–1991) when designing the Landi chair for the Swiss 
National Fair in 1939. This chair, forerunner of the modern aluminum 
chair that gained such widespread use, is an early example designed 
for industrial mass production. (Ill. 5.53.) Distinctive features are 
a pair of chair legs that are bent over to form the armrests. The 

seat and back are formed as a single piece – a curved aluminum 
shell surface manufactured using a high-pressure shape-forming 
technique. The chair, including its perforated shell, weighs less 
than 3kg (6.6lb), is impervious to virtually any kind of weather, can 
be stacked up and is maintenance free. Its “good form” in silver 
anodized aluminum has won many admirers and is represented in 
design museums worldwide.

We do not know who built the first Windsor chair. Its simple 
form and light structure has nevertheless certainly fascinated many: 
Siegfried Giedion mentions it in “Space, Time and Architecture” 
and makes comparisons of it to the development of the “balloon 
frame” for house construction. In 1949, the Danish designer Hans 

Illustration 5.52
Barcelona chair (1929).
Bent, intersecting, chromed, flat steel bars support and provide 
“springiness” for padded leather cushioned chair that was 
famously displayed at 1929 World’s Fair in Barcelona.

Designer: Ludwig Mies van der Rohe.

Illustration 5.53
Landi chair (1939).
Early example of industrial furniture design made entirely 
from aluminum.

Designer: Hans Coray.



Chapter 5: Materials

156

J. Wegner (1914–2007) presented his interpretation of this classic 
design as “The Peacock Chair.” (Ill. 5.54) With its high arched back 
and fine detailing, the chair stands as a landmark in Danish furniture 
design. The corners of the seat expose a rounded dovetail joint 
of critical importance; the chair leg is pushed up into a hole in the 
seat and then locked into place by means of a hardwood wedge 
that is pounded down into the leg from the top. This fine little 
construction detail is beautifully expressed by an ash circle and 
a teak diagonal; moreover, the wedge guarantees a solid bond 
between leg and seat. (Ill. 5.55.) For lightweight and frequently 
moved furniture such as wooden chairs, much of the challenge 
lies in solving the connection between leg and seat. While Alvar 
Aalto “bent around” the corners in his famous chairs from the 

1930s (see Ill. 10.59), Wegner took on the problem head-on and 
thereby demonstrated his mastery at finding solutions for traditional 
joint details.

US designers Ray and Charles Eames (1912–1988 and 1907–
1978, respectively) were always interested in the potential of new 
materials, and they saw the possibility with plastic to be able to 
form an organic seat shell that conforms to the body’s shape. 
(Ill. 5.56.) Based on molding techniques developed during World 
War II, their DAR chair seat shell is made of glass-fiber reinforced 
polyester that is connected to a metal-rod base with rubber shock 
mounts. First presented at the Museum of Modern Art in 1948, 
this chair has been in mass production ever since and has found a 
wide application in contemporary projects.

Illustration 5.54
Peacock chair (1949).
A landmark in Danish furniture design. Produced in ash, birch, 
or oak.

Designer: Hans J. Wegner.

Illustration 5.55
Peacock chair connection detail.
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The English architect and yachtsman Richard Horden has been 
interested in transferring the elegance of sailboat construction 
and the beauty of modern aircraft design into architecture, always 
with the aim of light prefabricated buildings and components. His 
“graphite chair,” introduced in 1989, is inspired by the lightweight 
quality of the modern carbon-fiber tennis racket. The intention is 
to achieve a high design folding chair for use in home, office, or 
café; i.e., something that is especially light and compact. The chair 
belongs to a series of products titled “aerospace group” because 
the early prototypes were developed with engineers from Britain’s 
Concorde and Rolls-Royce aerospace factories. The café chairs are 
produced with a silver frame and a seat and back made of vinyl 
fabric. (Ill. 5.57.)

Illustration 5.56
DAR chair (1948).
Seat made of molded fiber-glass reinforced polyester is carried 
on contrasting thin metal rod base.

Designer: Ray and Charles Eames.

Illustration 5.57
Graphite chair (1989).
Chair is especially lightweight and folds into a flat, compact 
shape.

Designer: Richard Horden.
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6
c h a p t e rThe Hanger and 

the Tie

6.1	 Jazz at Lincoln Center – A Hanging Glass Wall
6.2	 Floating Space
6.3	 The Vertical Hanger
6.4	 Inclining the Hanger – The Stayed System
6.5	 Ypsilon – An Asymmetrical Cable-Stayed Footbridge
6.6	 Ties and Guys
6.7	 A Tale of Tension in Two Towers 
6.8	 Tension Elements and Connections

Illustration 6.1
La Pyramide du Grand Louvre, Paris, 
France (1989).
Signature detail for the connection of 
multiple tension elements used to help 
support the iconic glass structure. (See also 
Section 4.3.)

Architect: I.M. Pei. Structural engineer: 
Nicolet Chartrand Knoll Ltd. and Rice Francis 
Ritchie (RFR).
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6.1	 Jazz at Lincoln Center  
– A Hanging Glass Wall

At the southwest corner of Central Park, where the famously regular 
Manhattan grid of streets meets the diagonal Broadway Avenue at 
the landmark statue of Columbus Circle, the Time Warner Center 
creates one of the city’s largest mixed-use development projects 
with 251 000m2 (2 700 000ft2) of space divided among retail, hotel, 
office, cultural, and residential uses. Rather than having this be 
one overpowering building, however, architect Skidmore, Owings 
& Merrill took cues from the urban context and broke down the 
massing into two 230m (750ft) towers that bracket 59th Street, thus 
allowing a very strong visual axis to be extended westward. At the 
podium-level connecting the towers, this idea is further reinforced 
by means of a glass-walled atrium of street-matching width that 
provides access to retail stores and to what is the complex’s visual 
and acoustic focal point: the Allen Room performance space for 
Jazz at Lincoln Center. Lifted 25m (82ft) up into the air and with a 
full height glass wall as a backstage, the auditorium simultaneously 
makes a spectacle to be seen from the outside and provides the 
audience with unparalleled views of the south end of Central Park 
where it meets the busy streets of Midtown. (Ill. 6.2, 6.3.) It is on 
the remarkable transparency of this glass wall as made possible by 
the minimal dimensions of its tensioned-cable support structure 
that we will focus our attention here.

The history of glass walls and of architectural interest in 
bringing light and exterior space into buildings or, conversely, of 
extending inside spaces to the outside is filled with varied and 

creative inspiration, from the intricate stained glass windows of 
medieval Gothic cathedrals to the pure fluidity of space found in 
both Mies van der Rohe’s Barcelona Pavilion and Philip Johnson’s 
Glass House in New Canaan, Connecticut. If there has been a 
common theme to this story over time, however, it has been to 
make use of contemporary technological developments in order 
to try and minimize as much as possible the intervening structure 
that is needed to support the very thin and fragile sheets of glass 
that are manufactured to maximize transparency.

At the Time Warner Center, the 46m (150ft) high and 25m (82ft) 
wide glass wall designed by James Carpenter Associates together 
with Schlaich Bergermann und Partner is supported on a two-way 
pre-tensioned cable net that is connected around the four sides 
of its perimeter. (Ill. 6.4.) (We will discuss more fully the behavior 
of cable nets in Chapter 11.) The gravity loads of the wall consist 
mostly of the dead weight of the glass, which is actually made of 
two layers of 11.5mm (0.450in) thick heat-strengthened glass sheets 
laminated together for safety reasons.1 However, rather than the 
gravity loads being transferred straight down to the ground as one is 
accustomed to with conventional walls, here they are carried up by 
means of the vertical steel cables and transferred to the top of the 
transverse and inclined truss that spans across the top of the glass 
wall. These 28mm (1.1in) diameter cables, made of cold-drawn steel 
wires that have been helically twisted together into what are called 
“strands,” are also attached at their bottom end at the basement 
level. A second set of cables connects horizontally across the width 
of the glass wall and is connected to the structure at the two sides 
of the opening. Any lateral (i.e., out-of-plane) deflections of the 

Illustration 6.2
Time Warner Center and the Allen 
Room of Jazz at Lincoln Center, 
New York City, NY, USA (2003).
View through hanging glass wall 
and double cable support systems 
on to Central Park South and 
Midtown.

Architect: Skidmore, Owings & Merrill; 
for glass wall, James Carpenter 
Design Associates. Structural 
engineer: WSP Cantor Seinuk; for 
glass wall, Schlaich Bergermann und 
Partner.
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Illustration 6.4
Time Warner Center.
Axon drawing illustrating relationship of dual glass 
walls suspended from inclined truss: outer glass is 
supported by cable net, inner by vertical hangers only.

Illustration 6.3
Time Warner Center.
Glass wall is suspended from truss above 
performance space; exterior cable net is also 
anchored at sides and bottom edges.



Chapter 6: The Hanger and the Tie

162

wall that are caused by wind are resisted by the strong tendency 
of both the horizontal and vertical sets of cables, which are highly 
pre-tensioned upon installation, to return to their initial straight 
alignments. Typical deflection limits for such a cable net are in 
the range of L/40 or L/50, both to protect the glass from damage 
and to minimize the occupants’ discomfort due to perception of 
motion: in this particular case, provision has been made for the 
glass to be able to deflect laterally up to 550mm (22in), which is 
quite significant but nevertheless is within the permissible range. 
Such flexibility obviously also depends upon the careful detailing 
of the connectors at the intersection points of the cable grid to 
which the glass panels are attached: stainless steel nodal clamps 
here accommodate the lateral deflections of the cable net by 
allowing up to 10º of relative rotation between the glass plate 
and the fastener.

This is not the end of the story at Time Warner Center, however, 
for there is also a second, inner glass wall that encloses the east end 
of the auditorium facing 59th Street. One function of this additional 
wall is quite obvious: it provides the necessary acoustic isolation 
for the jazz room from the unwanted sounds in the public spaces 
below while maintaining the virtually complete transparency needed 
for the Allen Room’s audience to have direct views of Central Park 
and the Manhattan skyline. More subtly, this second glass wall has 
been inclined so as to distinguish the auditorium volume within 
the overall atrium space and at night to capture the reflections 
from the street traffic’s headlights and tail lights moving silently 
up and down the backdrop of the performance space. For the 
inner glass wall, only inclined vertical cables have been provided 
to carry the glass gravity loads; in contrast to the outer wall, here 
there are no wind pressures to worry about as it is a completely 
interior environment and the horizontal cables of the net are not 
needed. The tops of these cables are anchored to the lower chord 
of the same (inclined) truss that is used by the outer wall cables, 
while their lower ends are connected to springs attached to the 
jazz room’s floor beams in order to allow for the changing vertical 
deflections of the floor produced by audience live loads.

Jazz in New York City thus can be seen to have come full circle, 
from its roots hidden away in the cellars of the speakeasies of the 
early 1900s to nearly a century later being put out on full display and 
engaging one of the most dynamic views of the city; in achieving 
this transformation, the straight tension element can be said to 
have been instrumental.

6.2	F loating Space

Although much of architecture is about connection to and 
engagement with the ground, in this chapter we begin our study 
of the fundamentals of structural element behavior by examining 
the tension member, which is frequently associated with quite the 
opposite physical condition; i.e., spaces and occupiable surfaces 
that seemingly hover and float in mid-air and that seek in some 
way to defy our everyday experience of being earthbound by 
gravity. This perceptual condition is quite often the result of the 
remarkable thinness – and, therefore, the tendency to disappear 
and be invisible – of the simplest and most efficient of structural 
elements: the tension rod.

Historically, the reasons to elevate space perhaps began by 
mostly being strategic: e.g., in order to gain an elevated position 
from which to view an enemy. Certainly, the elevated vantage points 
of medieval defensive towers embody this purpose although their 
supporting masonry structures typically exemplify the “grounded,” 
massive, and compression architecture of the period. Later, military 
hot-air balloons were devised that attended to some of the same 
strategic objectives but did so in a dramatically different physical 
manner: by relying on the lightness and thinness of tension elements 
hanging a basket for human occupancy – and thereby producing 
an obvious and literal disengagement of the occupied space from 
the ground. (e.g., Ill. 6.5.)

Leaping ahead yet again in time, a contemporary structure 
that carries forward the observation balloon’s spatial attributes 
and fundamental reliance on key members in tension is London’s 
Millennium Wheel. (Ill. 6.6.) Enclosed oval pods carry visitors high 
above the south bank of the Thames, affording spectacular and 
unprecedented views of the city center. And although at first glance 
the structure resembles a traditional Ferris wheel, the so-called 
London Eye relies on a set of highly tensioned steel members 
connecting the circumferential trussed rim to the central axle. 
The dimensions of these rods are so small that when seen from 
any distance they tend to disappear, causing the disconcerting 
and sensational impression of the disengagement of the rim from 
the rest of the supporting structure. The advantage of this thin-
element system is that it both reduces to a minimum any visual 
obstruction of the London cityscape, while also heightening the 
sense of awe and disquiet that one often associates with being 
lifted high up in the air.
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Illustration 6.5
Blanchard and Jeffries crossing the Channel 
in January 1785.

Illustration 6.6
Millennium Wheel, London, UK (2000).
Tension rods provide only means of support for outer trussed ring.

Architect: Marks Barfield Architects. Structural engineer: Jane Wernick, 
then at Arup.

Illustration 6.7
“Linear Construction in Space No. 2” (1949). Plastic nylon,  
30 × 20 × 20in. 

Artist: Naum Gabo (American, born in Russia; 1890–1977). Gift of Florene 
May Schoenborn, 1971.879, The Art Institute of Chicago.
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The Millennium Wheel system is certainly unique from 
many points of view, but there are plenty of other structures 
in which an impression of “floating” is even more directly and 
conventionally provided by vertical and slanted tension hangers. 
The Dymaxion House by Buckminster Fuller (Ill. 6.8) and the 
Casa per Tutti project by Massimiliano and Doriana Fuksas 
(Ill. 6.9) are but two of many examples of inhabitable building 
projects to which have been applied the structural and spatial 
strategy of tension hangers and seemingly “levitating” space.

Illustration 6.8
Dymaxion House project (1929, revised in 1945).
Prototype for efficient kit-of-parts housing unit, with 
perimeter of roof hung from top of central stainless 
steel mast by sloped tension rods.

Architect: Buckminster Fuller.

Illustration 6.9
Deep Purple, Milan, Italy (2008).
Architects’ model for Casa per Tutti Triennale 
proposal for emergency housing unit. 
Corners of floors suspended from top of 
central steel pole.

Architect: Massimiliano + Doriana Fuksas.
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6.3	 The Vertical Hanger

Without doubt the most obvious of structural elements in terms 
of fundamental load-carrying mechanism and behavior is the 
vertical hanger, and there are plenty of familiar examples in 
everyday life – from children’s swings to chandeliers to construction 
cranes – that help us visualize and instinctively recognize the 
distinguishing characteristics of the typical hanger. (Ill. 6.10.) 
The basic situation for the vertical tension member in each of 
these common instances has the following generic qualities: (a) 
a significant weight or load of some type is being carried at the 
bottom, (b) a typically remarkably thin, long vertical element is 
connected to this load in some fashion, and (c) a support structure 
of one type or another is located at the top end to which the 
hanger is anchored.

Free body diagrams for the different segments of this system 
(Fig. 6.1) lead to the obvious conditions of vertical equilibrium: i.e., 

the downward gravity weight, W, of whatever is being hung must be 
balanced by an equal and opposite upward force provided by the 
hanger, or T = W. The hanger is in uniform tension (of magnitude 
T = W) from one end to the other, stretched between the weight 
being hung and the support structure above. The downward pull 
of the hanger is balanced at the top by an equal and opposite 
upward support reaction, R, also necessarily of the same magnitude 
as the total load, W, being carried. We are making the simplifying 
assumption here that the weight of the hanger is calculated 
beforehand and included in the total load W being supported; 
although for preliminary estimating purposes the relatively small 
physical dimensions of typical hangers are such that one will not be 
far off the mark to consider the weight of hangers to be relatively 
negligible in magnitude when compared to that of the typical 
loads being supported.

Illustration 6.10
Vertical hanger supports PH 4/3 
pendant lamp from the Targetti/Louis 
Poulsen corporation. 

Design: Poul Henningsen.
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Figure 6.1
Equilibrium diagrams 
for bottom, middle, and 
top segments of vertical 
hanger.

Illustration 6.11
Microcompact unit (2005).
Vertical tension hanger plays key role in this rendering of the intended 
delivery of a prefabricated 2.6m (8.5ft) cube dwelling into remote locations.

Architect: Richard Horden of Horden Cherry Lee Architects. Consultants: Dipl. Ing. 
A. Uehlein Drees and Sommer GmbH.
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The tension force, T, in the hanger itself results in the stretching 
of the material from which it is composed, and it is not difficult to 
envision the consequent set of tensile stresses, σt, acting over this 
member’s cross-section. (Fig. 6.2.) 

The typically long, thin proportions of the hanger insure that 
these stresses are uniform over the entire cross-sectional area, 
A, resulting in the following very simple equation of equilibrium:

T = σt × A

This equation is the basis for designing all hangers, indeed all 
purely tensile structural elements, and as such is worth spending 
a few more moments discussing.

If a certain material whose ultimate tension stress capacity is 
known and cross-sectional dimensions are established for a hanger, 
the present form of the equation will easily define the maximum 
load that this hanger/tension element can carry:

Tmax = σt (ultimate) × A

Alternatively, in a preliminary design phase where decisions 
about member sizes and materials are having to be made for a given 
load that must be carried, this equation can also be reorganized 
and then applied to determine the hanger dimensions that are 
needed for a particular selection of material; i.e.,

Arequired = T/σt (ultimate)

It is to be noted that the result of this equation for the cross-
sectional area required will be the same anywhere along the length 
of the hanger; i.e., no matter whether it is 3m (10ft) or 10m (33ft) 
long (at least as long as we once again quite reasonably ignore or 
make an allowance for the relatively small variations caused by the 
hanger’s own self-weight). This means that a tension member is a 
highly efficient way in which to carry load, since each and every 
bit of material over its entire cross-section and over all sections 
from one end of the member to the other is equally stressed; in 
other words, there is no underutilized material. We will see in the 

next chapter that this is not at all the case when we come to other 
types of very common load-carrying elements – such as beams.

Beyond meeting the fundamental structural requirement, at 
a more conceptual level the basic tension member equilibrium 
equation also establishes the potentially remarkable visual impact of 
using a material such as steel that has a very high tensile capacity; 
i.e., cross-sectional dimensions can purposefully be made very small, 
which can in turn make hangers almost disappear when they are 
seen from any distance. And as we saw in the preceding sections, it 
is this very basic and fundamental consequence of equilibrium and 
material capacity that is fully exploited by architects to “float” roofs 
or inhabitable spaces for myriad practical reasons and conceptual 
or visual effects. We will now look at one such example located 
in France where the choice of a minimal hanger system is clearly 
and integrally connected to the building’s design concept and 
fundamental raison d’être.

Chaix Morel and Associates’ design for an archeology museum 
consists of a building that is built directly above the ruins of the 
ancient Roman city of St.-Romain-en-Gal, not far south of Lyon in 
central France. (Ill. 6.12.) In order to minimize, as much as possible, 
the new building’s intrusion into the actual ruins, an unconventional 
approach to the design and supporting structure was required, and 
this resulted in the floors of the building being hung from its roof.

The roof structural system consists of a series of deep steel 
beams that span transversely across the width of the museum; 
these in turn are supported by four rows of columns along the 
building’s length. From each of the roof beams the main museum 
floor and the mezzanine walkways are hung by means of a series 
of vertical steel rods. Clearly, bringing gravity loads down to the 
ground on a standard grid of more closely spaced columns would 
not have been acceptable in terms of preserving the ruins, whereas 
hanging the floors from the long-spanning roof beams enables 
the building to “float” over these with significantly less disruption. 
(Ill. 6.13, 6.14.)

In order to get an idea of the size of one of the main hangers, let 
us assume that some work has previously been done along the lines 
of what we have covered in the preceding chapters; i.e., structure 
and finish material details are sufficiently known to estimate dead 

T

σt
    A = T

Figure 6.2
Uniform tension stresses acting over 
hanger’s cross-sectional area balance 
total tension force.
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Illustration 6.12
Musée Gallo-Romain de St.-Romain-en-Gal, Vienne, France (1996). 
Museum building next to and above ongoing excavations of Roman ruins. 

Architect: Chaix Morel et associés. Structural engineer: Arcora.

Illustration 6.13
Musée Gallo-Romain.
Section drawing showing 
basic strategy of hanging 
museum’s main floor and 
mezzanine levels from 
the large transverse steel 
beams located at roof 
level.

Illustration 6.14
Musée Gallo-Romain.
Multiple vertical hangers 
are evident that support the 
museum floor area as well as its 
mezzanine walkways. Loads are 
carried up the underside of the 
transverse roof beams, hidden in 
this view above the hung ceiling.



168

loads, and the occupancy live loads for the museum’s main and 
mezzanine floors have been established. The tributary floor areas 
supported by a hanger can also be determined. With loads and 
tributary areas thus known, the load needing to be carried by a 
hanger is easily determined; for example, it may be calculated that 
a load of 380kN (85.5kips) needs to be carried up in a hanger to the 
underside of the transverse beam. Assuming that the steel of the 
hanger cannot be permitted to exceed a stress level of 320N/mm2 
(48kips/in2), its required cross-sectional area can be established:

Arequired = T/σt (ultimate)

Arequired = (380 000N)/(320N/mm2)
Arequired = 1188mm2

Steel manufacturers’ tables of section properties for various 
structural shapes might then lead one to select perhaps a 20mm x 
75mm (¾in x 3in) flat bar, which has a cross-sectional area of 1500mm2 
(2.25in2) – which is safely larger than that which has been found to 
be needed, but is nonetheless quite a small member size given 
the load that needs to be carried. It should be noted that in actual 

building practice some safety factors are added that increase the 
load and reduce the stress capacity in the calculation. There can be 
no question that such a minimalist result for the hanger dimensions 
is very much in keeping with the architects’ design intent to create 
a very open and flexible museum space and, moreover, one that 
perceptually and physically hovers above the preexisting ruins. 

Even more explicitly expressed is the vertical hanger rod system 
used to carry and “float” the floors of the former Central Bank 
of Ireland building in Dublin, where the number of rods can be 
seen to increase up the sides of the building as the loads of each 
successive floor are carried to the roof level. (Ill. 6.15.) At that point, 
angled tension members anchor the hanger system to the top of 
a central, upwardly projecting concrete core. Aside from being 
so visually expressive, this hanger system was used as part of an 
unusual construction approach: after the full extent of the central 
core was built each floor level was erected on the ground and then 
successively lifted up in to place, with the building therefore quite 
exceptionally taking shape from top to bottom.

Illustration 6.15
Former Central Bank of Ireland building, 
Dublin, Ireland (1979). 
The number of external vertical hangers 
increases up the height of the building as 
each successive floor level is carried. 

Architect: Stevenson, Gibney & Associates. 
Structural engineer: Arup.
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6.4	I nclining the Hanger  
– The Stayed System

As we have already seen in Sections 6.1 and 6.2, tension hangers are 
not always purely vertical but often are inclined for either pragmatic 
or conceptual design reasons. The term “stayed” is typically applied 
to such structures – inspired, no doubt, from their association with 
the similarly angled ropes and mast-stabilizing cords found in the 
rigging of historical sailing vessels. (e.g., Ill. 6.16.)

While such an inclined condition does not change the basic 
behavior of a tension member, it does present a subtly different 
overall equilibrium-of-forces situation that warrants attention.2 
Consider, for example, the spectacularly triangular balconies 
of the apartments of the VM Husene buildings in Copenhagen 
designed by PLOT Arkitekter. (Ill. 6.17.) Support is provided to 
each balcony by a couple of inclined tension rods that are anchored 
back to the building. These tension rods are very small in cross-
sectional dimension, thereby simultaneously minimizing the potential 
for overall visual clutter in the appearance of the building and 
diminishing any obstruction to the views of the surrounding park 
that they otherwise might present. At the specific point where a 
sloped hanger connects with the horizontal floor, we can draw a 
simple free body diagram of the forces that are acting. (Fig. 6.3.) 

Illustration 6.17
VM Husene building, Copenhagen, Denmark (2005).
Ends of triangular balconies are supported by angled tension 
rods anchored back into building structure.

Architect: Julien de Smedt and Bjarke Ingalls of PLOT Arkitekter. 
Structural Engineer: Moe & Brødsgaard A/S.

Figure 6.3
Equilibrium-of-forces diagram corresponding 
to end of VM Husene balcony.

Illustration 6.16
Masts of the Danish schooner Havet of 
Helsingør are stayed by means of angled 
ropes in tension.
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Two things immediately stand out: (a) the downward gravity 
force W at this point that is caused by the dead and live loads on 
the balcony must be balanced by the upward vertical component 
of the tension force in the inclined hanger, and (b) the fact that the 
hanger is sloped means that it necessarily will also have a horizontal 
component which will be pulling inward on the connection point. 
Obviously, this is a force that also must be balanced, this time by 
an axial compression force in the horizontal structure of the balcony 
being supported – something that we do not have to consider or 
deal with if the hanger is vertical.

From our review in Chapter 4 of vector forces and their 
components, the first of these observations leads to the requirement 
that the force T in an inclined hanger is going to need to be larger 
than the vertical gravity force W that is being carried. The sloped 

member will, as a result, have to be larger in cross-section than it 
would need to be if it were vertical. This effect will accentuate itself 
the more inclined the hanging member is, although because of the 
efficiency of typical steel tension members such changes will tend 
not to have a very strong visual impact. The second observation, 
that there is a compression force C in the horizontal member of 
a stayed system, has the consequence that the structure that is 
supported by angled tension rods must be designed not only as a 
typical horizontally spanning beam structure but now in addition as 
a simultaneous compressive strut. This is an inevitable consequence 
that is common to all floors and roofs and bridge decks that use 
the inclined hanger/stayed configuration. And as we will see in 
the succeeding chapters, since the size of structural members 
needed both for beams and for resisting compression forces is 

Illustration 6.18
Conn Viewing Platform, Flims, Switzerland (2006).
Platform projects forward into open space of valley, held up 
and back by angled tension elements. 

Architect: Corinna Menn. Structural engineer: Prof. Dr. Christian 
Menn and Bänziger Partner AG.

Illustration 6.19
Conn Viewing Platform.
Angled tension rods support the ends of the platform and 
others anchor the structure down against uplift, all the 
while minimizing visual obstruction. The platform acts as 
equilibrating compression strut, and is notably thicker. (The 
platform also supports vertical gravity loads and its thickness 
is also due to that fact.) 
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considerably larger than that necessary for carrying tension, it is 
typical for the horizontal elements of a stayed structural system to 
be significantly greater in cross-sectional dimensions than is the 
inclined hanger. (Ill. 6.18, 6.19.)

At the top of a sloped tension member there is also a need 
for equilibrium, and a similar equilibrium force analysis for that 
point will result in the conclusion that (a) the outward pull of 
the tension rod produced by the horizontal component of that 
member’s force will have to somehow be resisted (often by an 
anchoring backstay), and (b) the downward vertical component 
of the tension force in the hanger will need to be balanced by 
an upward vertical (compressive) force from the support structure 
(frequently a vertical, or near-vertical, mast). The consequence 
of all of these observations is that the classical configuration of 

the stayed-mast system is that of two intersecting compression 
members – one vertical, the other horizontal, or approximately so – 
having a certain thickness of form in order to prevent their buckling 
(as we will discuss in Chapter 8) and quite thin tension elements 
connecting the ends of this cruciform shape. (Fig. 6.4.) Such 
relative differences in the proportioning of members in bridge or 
roof structures is typically quite evident, and should be anticipated 
by the architect even at the most preliminary stages of design. 
Two examples that illustrate clearly these fundamental relative 
proportions are the configuration for the supporting elements of 
the basic module of the cable-stayed roof system of the Darling 
Harbour Exhibition Centre (Ill. 6.20) and the multistory floor support 
module of the High Tech classic HongKong Shanghai Banking 
Corporation Headquarters building. (Ill. 6.21, 6.22.)

Illustration 6.20
Darling Harbour Exhibition Centre, Sydney, Australia (1988).
Relative proportions differentiate parts of stayed system in 
tension (thin) and compression (thick).

Architect: Phillip Cox and Partners. Structural engineer: Arup. 
Cornell model: Bryant Lu (1994).
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Figure 6.4
“Classic” arrangement of tension and 
compression forces in members of stayed 
system.
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Illustration 6.21
HongKong Shanghai Banking Corporation 
(HSBC) Headquarters, Hong Kong, China (1985).
Iconic view of elevation reflects multilevel 
modular tension hanger structural system.

Architect: Foster + Partner. Structural engineer: 
Arup.

Illustration 6.22
HSBC Headquarters.
Relative proportions differentiate parts of system in tension 
(thin; i.e., central vertical hanger, angled tension members, 
and external vertical anchoring tie-downs) vs. compression 
(thick; i.e., horizontal balancing struts where tension members 
change direction, and built-up vertical masts).
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In order to reinforce and elaborate upon these concepts in 
slightly more depth, we will examine a stayed bridge in Drammen, 
Norway, in the next section. Before doing so, however, it bears 
emphasis that we are discussing in this chapter only straight-line 
tension elements with loads applied along their axis and not those 
with the curved suspension-cable profile typical of cables that are 
supporting transverse loads; we will encounter the latter in due 
course in Chapter 11.

6.5	 Ypsilon – An Asymmetrical Cable-Stayed 
Footbridge

The waterway of the Drammenselva River was used for many 
years to float logs to the numerous saw- and paper-mills of the 
Norwegian town of Drammen; in fact, this was the basis for the 
region’s settlement. Today, however, with the traditional timber 
industry gone, cultural institutions, offices, and residential buildings 
face the river while new parks and promenades are being developed 
alongside it in order to attract people to the area once again.

Crossing the broad river that previously divided the town, a 
new footbridge has been built that links the network of pedestrian 
paths on the two banks. (Ill. 6.23.) Y-shaped in plan, the Ypsilon 
cable-stayed bridge was designed by the architect Arne Eggen 
in collaboration with the structural engineer Knut Gjerding-Smith. 
The structure has a main span of 90m (295ft), while the two shorter 
arms of the bridge each span half that distance. By dividing the 
bridge into two as it reaches toward the north bank (which at this 
location is characterized by a very small bay) the designers added 
extra length and also elevation to the walkway; in doing so, they 
addressed two important elements contained in the project brief 
– allowing the required clearance for boats to pass beneath the 
structure and providing the gentle slope needed to insure wheelchair 
accessibility for the pathway.

The compression pylon for this cable-stayed system is made of 
a pair of “cigar-shaped” masts (i.e., they are thicker at mid-height 
than at their ends – a refinement of form that will be discussed in 
Chapter 8) whose varying cross-sectional dimensions are achieved 
in this case by welding together a series of differently truncated 
steel cones. The two 47m (154ft) high masts sit atop a concrete 
base that momentarily splits the river channel into two. The masts 
are hinged at the foundation and connected together at the top 

Illustration 6.23
Ypsilon Footbridge, Drammen, Norway (2008).
Asymmetrical cable-stayed system, including alternate pathways at north end.

Architect: Arne Eggen. Structural engineer: Knut Gjerding-Smith.
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with two horizontal cables. The main span is made up of two parallel 
steel tubes that are supported by eight pairs of stay cables attached 
on either side of the walkway. The structure of each side span, 
on the other hand, consists of a single steel tube that is carried 
by four cables and that has a deck cantilevering sideways from 
it. (The torsional response that this latter eccentrically supported 
walkway produces in causing the tube to twist will be discussed 
in Chapter 7. (See Ill. 7.27.)) The stay cables themselves have a 

diameter of 45mm (1.77in) and have a capacity of about 2200kN 
(495kips). The overall configuration and the specific details of all 
of these components of the bridge serve to emphasize both the 
local landscape form of the bay and the equilibrium of forces that 
are at play within the structure.

In its cross-river elevation, the Ypsilon Footbridge has a form 
that is asymmetrical about the compression mast; i.e., it has a main 
span on one side of the mast and a shorter back-span on the other. 
This is a configuration that has been adopted many times during 
the past half century in order to avoid having a pier located in the 
middle of a river channel, and visually it presents a compellingly 
dynamic appearance with one side of the bridge seeming to reach 
out toward the opposite bank. This asymmetric form, however, also 
has a fundamental static equilibrium problem that must be dealt 
with, and it is to this end that we now turn our attention.

The basic module of structural elements for a stayed bridge 
consists of the following: a cable that runs from its main-span 
beam connection up to the mast, which point is in turn connected 
by means of a backstay cable to the side-span beam; the vertical 
and horizontal components of the tensile forces in the two cables 
can thus be seen to be neatly balanced both top and bottom by 
the compression forces in the mast and the deck. If the main and 
side spans have the same length, there can be an equal number 
of cables and spacing in the two spans and the deck compressive 
forces would then naturally balance each other at the mast. (Fig. 
6.5a.) However, with one span shorter than the other there is a 
strong imbalance to the system that is produced by dead load 
considerations alone, to say nothing of the variations caused by 
live loading. In order to deal with this problem, it is typical to have 
several of the outermost stays from the main span anchored directly 
back to the side span’s abutment (the bridge end’s connection to 
the ground); this also means that the unbalanced compression 
force from the main span will now have to be transmitted all the 
way through the side-span structure to the abutment. (Fig. 6.5b.)

The Ypsilon Footbridge takes a similar approach to solving this 
equilibrium problem, except that the balancing of the forces from 
the main span is shared between the two angled side spans and 
their abutments. This plan configuration has the added benefit of 
also providing significant stiffness and stability to the bridge for 
resisting lateral loads such as wind. The two concrete abutments 
on the north riverbank (Ill. 6.24) thus have several functions to fulfill: 
they act as anchors for the main span’s four outer stay cables, they 
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Figure 6.5
Symmetrical (a) and asymmetrical (b) stayed 
system configurations; force balance and 
imbalance, respectively, results in different 
end support conditions.
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transmit the compressive and torsional forces from the bridge’s 
structure to the ground, and, from a conceptual design perspective, 
they can be seen as key transition elements between the bridge 
and the riverbank where the man-made structure meets the natural 
ground. Their inclined geometries are defined by the bridge’s 
stay cables, and with one abutment on each side of the small bay 
these structures become triangular concrete bastions for the local 

precinct; moreover, the direction and pattern of their concrete 
formwork also follows the cable angles, further visually reinforcing 
the tension forces at work.

Like a huge harp with pointed masts and made of white-painted 
steel, the Ypsilon Footbridge provides new opportunities for viewing 
and experiencing the river and its landscape and it is playing a 
central role in Drammen’s ongoing urban renewal.

Illustration 6.24
Ypsilon Footbridge.
Detail of cable anchorage and angled geometry of bridge abutment.
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6.6	 Ties and Guys

The notion of using tension in order to hold together things that 
naturally want to fall apart is not a new idea nor is it divorced 
from our everyday experience. We use and observe this principle 
all the time: in the elastic rubber bands stretched around a set of 
documents, for example, and also with the tightened cords or wires 
that stabilize either a camping tent or one of today’s omnipresent 
cell-phone network transmission towers.

In an architectural context, one can also find clear examples of 
tension “ties” that in a similar essential fashion link together a set 

of discrete structural components that could not otherwise hope 
to stand up nor carry the applied loads. Shigeru Ban, for example, 
relied on numerous tension rods to hold together the many individual 
components of one of his early examples of innovative cardboard 
cylinder structures. (Ill. 6.25, 6.26.) 

It needs to be recognized that the tension elements on which 
this structure relies have been put into a state of tension before the 
inescapable gravity and lateral loads are considered to be applied 
to the overall structure; i.e., they have been pre-stressed. What 
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Figure 6.6
Self-equilibrating condition for basic component of Shigeru 
Ban’s Library of a Poet structure: tension in central rod 
balanced by compression in surrounding cylinder.

Illustration 6.25
Library of a Poet, Zushi, Kanagawa, Japan (1991).
View of glass-enclosed library addition reveals overall frame structure 
composed of multiple short cardboard tube segments. 

Architect: Shigeru Ban Architects. Structural engineer: Gengo Matsui (Hoshino 
Architect and Engineer).

Illustration 6.26
Library of a Poet.
Wood block connection detail, transition element between 
compression cardboard tubes and the tensioned steel rods 
threaded inside them as well as anchorage for the diagonal 
bracing rods. 
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would otherwise be an impossibly loose-fitting set of cardboard 
tube cylinders is stabilized and held together by means of the 
tightening of the nuts at the ends of the steel tie rods that are 
threaded inside the tubes. (Fig. 6.6.) The face of such a nut bears 
against a steel washer or plate that bears in turn upon the wooden 
block that forms the junction point, and these finally push upon 
the ends of the cardboard cylinder. Exactly the opposite happens 
in the reverse direction at the other end of the tube member, thus 
tightening the otherwise loose-fitting collection of elements. The 

tension rod is thus being pulled apart between its endpoints while 
the cylinder is subject to an equal but opposite shortening and 
compression force. 

This same fundamental strategy was rendered even more visibly 
obvious for the walls of Peter Zumthor’s temporary Swiss Pavilion 
structure for the Hanover World’s Fair, where stretched springs 
anchored the external vertical tie rods located on either side of 
otherwise loose stacks of lumber. (Ill. 6.27.)

Illustration 6.27
Swiss Pavilion, Hanover, Germany (2000).
External vertical tension rods anchor together otherwise loosely stacked pieces of 
lumber; use of springs at top allows for tension to be maintained as wood dries 
and shrinks.

Architect: Peter Zumthor. Structural engineer: Conzett, Bronzini, Gartmann AG.
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Also, without getting too far ahead of ourselves, it is relevant 
to recognize that tension ties are often found linking together the 
base supports of arches, a structural form that we will examine 
more closely in Chapter 12. At this point, though, we can apply our 
common-knowledge understanding of arches working in compression 
to carry load and the fact that the outwardly angled sides of the arch 
will inevitably cause outward forces to be present where the arch 
meets the ground. As we will see, there are several ways of dealing 
with this thrust of the arch, but one viable alternative relevant to 
the current discussion is to balance the outward thrust from one leg 
of the arch with that of the other by means of a tension tie across 
the base of the arch. (Fig. 6.7.) In a vaulted structure made from a 
series of side-by-side arches, a set of tension ties may be seen that 
link the two sides (Ill. 6.28, 6.29, see also Ill. 12.32, 12.33), although 
such ties may not always be clearly obvious if they occur within 
the level of a connecting floor slab. And developing this strategy 
even farther, we will see in Chapter 13 that domes rely for their 
stability on hooping rings of tension around their base. But that 
is for later; for now, let us get back to straight tension elements.

With the inclined tension rods or guy cables3 that are used to 
stabilize structures against wind or other lateral forces we once 
again encounter a strategy of pre-stressing, in which members 

Illustration 6.28
Broadgate Exchange House, London, UK (1990).
Multistory office building is supported by arches that span over 
underground railway tracks, with horizontal tension tie anchoring the 
opposing outward thrusts of the inclined arch legs. Also, whereas 
below the arch all loads are carried up to this curved compressive 
structure by means of vertical tension hangers, above the arch loads 
are carried down to it on vertical columns.

Architect: Skidmore, Owings & Merrill (SOM). Structural engineer: SOM. 
Cornell model by Jennifer Miller.

Illustration 6.29
Broadgate Exchange House.
Detail of arch base support showing horizontal tension tie 
that counters arch’s outward thrust.

T

Figure 6.7
Self-equilibrating system: tension tie links 
opposing outward compressive thrusts at 
arch base.
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are put in a high state of tension before any anticipated external 
loads are ever applied. (Fig. 6.8.) This should not be surprising 
when we remind ourselves of our common experience of erecting 
a camping tent and the immediate need to stretch and tighten 
the angled tent-to-ground elastic cords – not only to stabilize the 
kit-of-parts structure but also in anticipation of the effects of the 
first windstorm. Sufficiently pre-stressing such tension members in 
different directions around the structure will insure that any lateral 
side-sway will be immediately resisted and countered – i.e., there 
will be no “slack” or sag in the guying cables that will need to be 
taken up before a taut cable can act to resist the lateral displacement.

How such a guyed system works can be described a little more 
precisely. A lateral force on the structure being supported inevitably 
causes it to try to displace sideways in the direction of loading. The 
geometry of the situation will tend to cause a lengthening and, 
therefore, the development of a tension force in the guy that leans 
in the direction of lateral movement and a shortening, and thus a 
compression force, in that which is inclined against it. But we know 
from our own intuitive experience that a very long and thin rod 
will not be able to carry any significant load in compression before 
failing by buckling out of alignment (more on this in Chapter 8). 
If in anticipation of just such a failure we sufficiently pre-tension 

all of the lateral stabilizing guy wires, we can strategically avoid 
this situation. The guy on the windward side simply has its tension 
force increased – something that can efficiently be designed for 
with minimal increase in cross-sectional area – while the guy on the 
leeward side, if it has been pre-tensioned sufficiently to offset the 
compressive force that is anticipated, will remain in a net condition 
of pure tension even with the lateral displacement of the structure 
taking place. Thus, both windward and leeward stabilizing guys all 
around the structure will continue to be in tension regardless of their 
orientation. And from a visual perspective, the inherently very thin 
dimensions of these guying members mean that such a stabilizing 
system will virtually disappear when seen from any distance, allowing 
quite tall structures to seemingly and spectacularly stand on end.

6.7	A  Tale of Tension in Two Towers

Towers, with their very presence set against the skyline, affect and 
fascinate us – whether they are towers of Italian medieval towns 
demonstrating the power of ruling families or today’s high-voltage 
electricity masts marching through a natural landscape. Minimizing 
the structure and refining the detailing along with dealing with the 
reality of side-sway due to wind gusts and turbulence presents 
opportunities for the cooperation of architects and engineers and 
occasionally this effort can result in elegant landmarks.

The Festival of Britain at the London South Bank was held to 
celebrate the centenary of the 1851 exhibition that had featured 
Joseph Paxton’s revolutionary Crystal Palace. The intentions 100 
years later were similarly to stimulate good design, advertise British 
products, and attract foreign orders and tourists. The festival should 
also be seen in the light of the optimism of the years after World War 
II; among the many projects designed for the festival, a competition 
for “a vertical feature” was enthusiastically received and generated 
157 entries for a design brief that suggested an abstract approach 
and a demonstration of the originality and inventiveness of British 
designers.

The winning “Skylon” project by architects Philip Powell (1921–
2003) and Hidalgo Moya (1920–1994) with engineer Felix Samuely 
(1902–1959) was a cigar-shaped structure some 90m (300ft) tall that 
was supported at the bottom by a system of tension hangers and 
guys. (Ill. 6.30.) The vertical support was provided by three twin 
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Figure 6.8
Effect of lateral deflection on inclined guys: windward 
member lengthens, increasing tension force; opposite 
for those on leeward side.
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Illustration 6.31
Torre de Collserola, Barcelona, Spain (1991).
While being almost invisible, “guy” cables efficiently anchor the tower 
against lateral side-sway.

Architect: Foster + Partners. Structural engineer: Arup and Ingeniería CAST.

Illustration 6.30
Skylon, London, UK (1951).
Tension elements supported lower end of “flying column” and 
provided lateral stability to overall structure.

Architect: Philip Powell and Hidalgo Moya. Engineer: Felix Samuely. 
AHO model by Nicolaj Zamecznik and Tarjei Torgersen.
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cables that formed a cradle to lift the structure 15m (49.2ft) off the 
ground; these cables passed over the top of three outwardly slanted 
pylons spaced 120⁰ apart in plan, and then ran to their anchor 
points in the ground. Pre-stressed guy cables also extended from 
the top of the three pylons to a point about two-thirds of the way 
up the levitated tower structure in order to give it lateral stability. 
The Skylon was made of lattice steel segments and was lit from the 
inside; at night (and even during the day from a certain distance) 
the structure seemed to float freely in the air with no visible means 
of support.4 Such a central “flying column” supported only by 
cables can also be labeled as a tensegrity system – which we will 
more fully discuss in Chapter 9.

Preparing for the Summer Olympic Games in 1992, Barcelona 
launched an extensive rebuilding program in order to signal the 
city’s importance within the newly united Europe. Concerned that in 
doing so the hill behind Barcelona would not bristle with a multitude 
of telecommunication towers, city planners sought instead to have 
a single elegant structure that all companies could share. Architect 
Norman Foster + Partners together with engineers at Arup won the 
competition with their design for the Torre de Collserola, a tower 
288m (944ft) tall with a spectacular viewing platform 135m (443ft) 
above the ground. (Ill. 6.31.) Unlike the Skylon, the central part 
of this tower consists of a concrete core that reaches all the way 
down to the ground, and so it can quite conventionally deal with 
all gravity loads. In order to keep the core’s profile as slender as 
possible on the very windy hilltop, however, the structure is laterally 
supported by eight pre-stressed guys that splay from the corners 
of the bottom of the tower’s triangular antenna pod to multiple 
anchorages in the rock of the hillside. The Torre de Collserola is 
an iconic structure that is on full display from the city far below, 
but from that distance the thin guys vanish completely from view; 
indeed, it is telling in this regard that the official branding icon for 
this structure omits the presence of these key structural elements 
altogether.

6.8	 Tension Elements and Connections

Several materials can be used for tension elements, although by 
no means all. The differing material properties that we examined 
in the preceding chapter play a critical role in establishing which 
can be employed for this purpose and which cannot. Steel, with 
its equally high capacity to sustain either tension or compression 
stresses, is excellent in this regard and is commonly used. Wood 
also is naturally capable of resisting both types of loading when 
applied parallel to the grain, even if only to a much lower stress 
level than steel and so should be used in situations where tension 
stresses are comparatively modest. Among other materials that 
work well in tension: natural and synthetic fibers that historically 
have been used for ropes in boat rigging and cords for hoisting 
loads and staying unstable structures, and that are found in the 
contemporary fabrics and tensile membranes to be discussed in 
Chapter 11.

It should be noted, however, that some common construction 
materials such as brick and stone and concrete are essentially useless 
in tension, and it is best to ignore them for this purpose. The only 
way to address tension stresses in structures made of these materials 
is to have them incorporate a second material, typically steel in 
the form of reinforcing bars, that has no problem handling tension. 
(Such a strategic combining of materials in structural elements will 
be especially relevant to bear in mind when we come to discussing 
the behavior of reinforced and pre-stressed concrete beams in the 
next chapter, in Section 7.8.) 

Timber tension elements are typically made of standard-
dimension sawn lumber or manufactured wood products. As we 
have discussed earlier in this chapter, a state of pure tension 
in a structural member is not a difficult condition to design 
for: a simple algebraic equation relates the force to be carried 
and the tensile material’s stress capacity to the cross-sectional 
area that is required. Moreover, the typically flat sides of wood 
components ensure that their connections to other members 
can be fairly easily accomplished; for example, by means of 
steel bolts passing through pre-drilled holes, although care must 
be taken to ensure that the full tension force can be carried by 
the reduced cross-sectional area of the element at the bolt-
hole locations. Steel plates or washers are typically needed to 
prevent crushing of the wood fibers as bolts are tightened. An 
example of timber tension hangers can be seen being used to 
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support the “hanging” rooms and glass façade of Terje Moe’s 
“Kube Hus.” (Ill. 6.32, 6.33.) 

 For the much more common tension elements made of steel, 
two basic types are used: rolled sections and cables. Essentially 
any rolled section will work as long as the cross-sectional area 
is sufficient to safely match the design load and the shape can 
be conveniently connected at the ends. The second criterion 
tends to favor the use of flat plate sections or flat-sided structural 
angles, compact rolled sections, or hollow tubes and these are 
commonly used for hangers and the tension components of truss 

Illustration 6.32
Kube Hus, Bygdøy, Oslo, Norway (1977).
One-family house with two upper-level rooms and a glass 
façade “wall” that are hung from roof beams. 

Architect: Terje Moe. AHO model by Ida Gjerde, Jenny Rognli 
Mohn, Sindre Fredriksen, Jonas Løland.

Illustration 6.33
Kube Hus.
Relatively small dimensions of timber tension hangers 
ensure the spatial openness of the main living space on 
the ground floor level.
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members, for example. Welding at the ends of such members can 
enable a direct transmission of tension forces to the rest of a steel 
structural system. However, if bolted or pinned connections are 
in some way necessary or desirable, the ends must be enlarged 
in order to account for the fact that at the bolt-hole section only 
the net area of the member (i.e., its total area minus that of the 
bolt-holes) is available to carry the tension force. (Fig. 6.9, e.g., 
see Ill. 6.29.) In certain cases, the full length of the member may 
be enlarged to what is needed at the bolt-holes so as to have 
consistent dimensions from one end of the member to the other, 

but this relinquishes at least some of the high degree of efficiency 
of a tension structural element.

Round steel rods are also commonly used as tension elements, 
especially since this minimizes their cross-sectional dimensions and, 
thus, their visual presence. It is also the form which from everyday 
experience is the most expressive of a material’s being in tension; 
e.g., a very malleable material such as putty or chewing gum, when 
stretched, will take this basic cross-sectional shape. And from the 
opposite perspective, most people have experienced that a thin 
rod of any significant length is essentially unable to resist being 
bent or compressed (because of negligible flexural stiffness and 
the buckling phenomenon, respectively, which will be discussed 
in more detail in Chapters 7 and 8.) The high strength of steel in 
tension also means that round rods are usually of remarkably small 
diameter. But such minimal cross-sectional dimensions can cause 
their own set of problems: e.g., sloped or horizontal tension rods 
may noticeably sag in an unsightly manner due to their own self-
weight and stays and hangers may display unwelcome tendencies 
to vibrate when wind blows over them. A common rule of thumb 
to prevent such problems, regardless of loading demand, is for a 
rod to have a diameter of at least 1/500 of its length – so that a 6m 
(20ft) tension rod, for example, would need to be at least 12mm 
(1/2in) in diameter. In other situations, especially long horizontal 
tension ties may need intermittent vertical support along their 
length to prevent excessive sagging, while excessive vibrations in 
tension elements can be countered by means of attaching small 
dampers to them. (e.g., see Ill. 6.37.) 

The simplest of end connections for a round steel rod is for it 
to be welded along a short segment of its length, but this may 
not be the most aesthetically pleasing solution. Earlier in this 
chapter, we have seen with the Library of a Poet project an example 
of an alternative and conceptually clear end-connection detail 
for a steel tension rod; i.e., its “enlargement,” in that particular 
case by means of a nut screwed on to the end of a threaded 
rod, that transfers the tension force in the member by bearing in 
compression against an opposing structure of some sort, such as 
perhaps a steel plate or wood block. (e.g., see Ill. 6.26.) A more 
detailed examination of the load transfer mechanism at the end 
of a threaded-rod tension hanger used to support an elevated 
walkway in the BMW Welt in Munich is illustrated in Ill. 6.34 and 
Fig. 6.10. In basic mechanical functioning, these are no different 
conceptually from the strategy employed when one is mending 
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Figure 6.9
Member cross-sectional area 
reduced by hole for bolt or pin.
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Figure 6.10
Transfer of forces mechanism at end of 
threaded steel rod: tension in rod balanced 
by plates bearing in compression against one 
another, then countered by shear in welds 
along anchoring plates.

Illustration 6.34
BMW Welt, Munich, Germany (2007).
Typical tension rod connection detail, including threaded nut 
bearing against load-transferring steel plates.

Architect: Coop Himmelb(l)au. Structural engineer: Bollinger + 
Grohmann and Schmitt, Strumpf, Frühauf + Partner.
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Illustration 6.35
Turnbuckle with opposite direction threading at its 
ends allows for tightening of tension rods.
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clothes; i.e., the tying of a knot at the end of a thread prevents it 
from being pulled through the fabric, and the thread can thereby 
be stretched and tightened. 

Depending on the situation and the level of adjustment necessary, 
both ends of a tension rod may be adjustable in this fashion or, 
perhaps, one end is simply anchored against “pull-through” while 
the other has the threaded end needed for putting the member 
into tension. A third option is by means of a turnbuckle located 
somewhere along the length of the member. (e.g., Ill. 6.35.) This 
type of connector works by having opposite direction threading on 
the ends of the two rod segments being connected; the twisting 
of the turnbuckle thereby allows the two segments to be pulled 
together and the rod thus straightened by being put into a certain 

amount of pre-tensioning before any external loads are applied. 
Aside from steel rolled section members, cables are also 

commonly used as tension elements, typically when there are high 
load requirements such as for supporting bridges and suspending 
long-span roof structures, but they also can exist at a much smaller 
scale where a particularly “light” aesthetic effect is desired. Generally 
speaking, cables are made up of many wires of high-strength steel 
that are helically wound together – analogously to the way natural 
and synthetic fiber strings and ropes are made. (e.g., Ill. 6.36.) Each 
thin steel wire is produced by drawing a rolled steel rod through a 
succession of tapered holes of diminishing diameter in dies made 
from an especially hard material such as tungsten carbide, in the 
end reducing the original cross-section by as much as 90 percent 

Illustration 6.36
Brooklyn Bridge, New York, NY, USA (1883).
Detail of cables of this famous bridge clearly shows that they are made up of steel wires 
helically wound together.

Designer and structural engineer: John A. Roebling, Washington Roebling, Emily Warren Roebling.
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Zinc Plug

Bearing Plate

Figure 6.11
Member cross-sectional area 
reduced by hole for bolt or pin.

and resulting in a wire that may be ten times as long as the original 
rod was. Such wires are then helically wound around a core wire – 
usually six wires are wound around the core to form what is called a 
strand, and a number of strands (usually six) can be helically wound 
around a core strand to form a rope. Even larger cables can in turn 
be formed by winding together several ropes, and specialized in-situ 
cable-laying techniques have been developed for the especially 
large suspension cables needed for long-span bridges. 

One problem with cables in comparison to rods is that their end 
connections can be somewhat more difficult to accomplish, such 
that a wide range of specialized attachments have been developed 
for these. The basic principles of tension anchorage that we have 
previously described remain the same but the detailed resolution 
must be adjusted since the steel wires of cables cannot be welded, 
threaded, or bolted. The “enlargement” needed to secure the 
end of a cable is instead typically made by means of a socket-type 
anchorage attachment in which the many wires of the rope or 
strand have been splayed apart within a conical void in a cast steel 
connector before molten zinc is poured into the spaces between 
the wires, which upon hardening creates a solid three-dimensional 
cone-shaped “plug.” (Fig. 6.11.) The socket can then be used to 
transfer the tension force to the supporting structure in the same 
way as before, such as by having it bear against an opposing steel 
plate of some sort. (e.g., Ill. 6.37.)

There are yet other pros and cons to consider when comparing 
solid tension rods and wire cables: for example, since cables will often 
be used in exterior conditions (e.g., for bridges, stadia roofs, etc.), 
protecting them from corrosion is a common concern, in particular 
because of their being made up of many wires, a situation that lends 
itself well to the danger of water infiltration and internal rusting that 
may be especially hard to detect. Typically, such protection is done 
by means of subjecting the steel cable to a zinc coating/galvanizing 
process and/or by having a synthetic sheathing surrounding the 
cable, such as a nylon or PVC tubular covering. In contrast, a solid 
steel rod only presents a single outer exterior surface to the elements 
– and as long as regular painting is done it doesn’t present the 
same potential problem. Rods are also cheaper than cables, and 
so tend to be used for smaller tension elements whose forces can 
be easily accommodated.

Another issue that cables have to contend with in comparison 
to rods is a direct result of their being made up of many wires; i.e., 
they tend to be fairly “stretchy” and have a relatively low modulus 
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Illustration 6.37
Millennium Wheel, London, UK (2000).
Anchorages for tensioned cables illustrate the basic principal of enlarging their ends so as to have 
these bear against a steel plate that is part of a custom-designed load-transfer connection. Small 
attachments along cables are dampers used to minimize vibrations. (See also Ill. 6.6.)

Architect: Marks Barfield Architects. Structural engineer: Jane Wernick of Arup.
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Illustration 6.38
Renault Distribution Centre, Swindon, UK (1980).
Expressive/iconic tension connection details.

Architect: Foster + Partners. Structural engineer: Arup.
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of elasticity. Because cable wires are not straight but rather are 
wound together in helical fashion this gives them some geometric 
“slack,” and when a significant load is applied that uses the full 
strength of the cable the strain can be 3–4 times what it would be 
if a solid steel rod were used. 

Finally, there is a particular design aspect to remark upon that is 
common to both round steel rods and cables: their inherently difficult 
shape to grip or attach to means that connection details in tension 
structures are typically somewhat more substantial and considerably 
more geometrically complex than the members themselves. In fact, 
these joints are often of such visual interest and complexity that 
they are frequently highlighted in the design of tensile structures. 
In this sense, then, it can perhaps be said that tension members 
have a very conflicted role to play in architectural design: i.e., on 
the one hand they are associated with minimalism (in the sense of 
using as little material as possible) but on the other they often have 
very expressive and even flamboyant form – to the point where 
these members have effectively become iconic symbols for the 
whole of the buildings that they serve. (e.g., Ill. 6.38.)
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7.1	 Nordic Pavilion and Jewish Museum – Contrasting Beam Patterns
7.2	 Beam Origins
7.3	 Equilibrium from Internal Actions
7.4	 Fallingwater – Cantilevering Terraces
7.5	 Visualizing Beam Actions – Shear and Moment Diagrams
7.6	 Form Follows Diagram, Or Not …
7.7	 Deformations and Internal Stresses
7.8	 The Trouble with Beams, and Shape or Material Responses
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7.10	 Two-Way Action and Beam Grids
7.11	 From Lingotto to Sendaï – Beam Articulations
7.12	 The Slab – Beams Stretched Thin

Illustration 7.1
Temple of Poseidon, Sounion, Greece (fifth century bc). 
A beam of classical proportions spans the short 
distance between adjacent columns.
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7.1	 Nordic Pavilion and Jewish Museum  
– Contrasting Beam Patterns

Venice’s Nordic Pavilion

The Nordic Pavilion in Venice by the Norwegian architect Sverre Fehn 
(1924–2009) is essentially an art gallery consisting of one room. The 
space measures about 470m2 (5059ft2) and has no interior vertical 
supports. On two adjacent sides there are concrete walls closing 
off a more or less square plan, while the other two edges permit 
an almost invisible transition between interior and exterior space, 
achieved by means of sliding floor-to-ceiling glazing. (Ill. 7.2.) This 
visual openness brings the surrounding park into the building; the 

only element indicating the boundary between inside and out is 
the limit of the stone tile floor.

“Building a museum for the visual arts,” Fehn said, “is the story 
of the struggle with light.” One of the basic ideas of the Nordic 
Pavilion’s roof structure design is to protect the art on display from 
direct sunlight. This is done by devising a roof structure made up 
of two orthogonal layers of closely spaced thin concrete beams 
that create an interior atmosphere of diffused light, recalling the 
light of “the shadowless world of the Nordic countries.” (Ill. 7.3.) 
The art works are thus exhibited in a lighting environment intended 
to resemble that of the countries in which they were made. To 
maintain as much of the intensity of light as possible the concrete 
is cast in a mixture of white cement, white sand, and crushed white 

Illustration 7.2
The Nordic Pavilion, Venice, Italy (1962).
Pavilion extends park space inside, with glass walls on two sides and preexisting trees 
left in place and piercing through roof structure. This side elevation view shows ends of 
one of two sets of orthogonal concrete beams placed one on top of the other.

Architect: Sverre Fehn. Structural engineer: Arne Neegård.
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marble. The beams follow a structural spacing module of 523mm 
(20.6in) – of ancient Egyptian origin, according to Fehn – while 
their height and thickness are 1000 by 60mm (39.4 by 2.7in). These 
dimensions relate exactly to the height of the sun at the Venetian 
summer solstice (64 degrees from the horizontal) so as to ensure 
the blocking out of any direct sunlight. The span of the bottom 
layer beams is about 18m (59ft), not counting the more than 4m 
(13.1ft) of cantilevering overhang. In between the beams of the 
upper layer translucent gutters of glass-fiber reinforced plastic 
sheets are hung to keep out the rain while fully admitting light.

This two-way orthogonal beam system, so devised to control 
interior light, also works very well to accommodate preexisting 
trees within the Pavilion, an important feature in helping the 

interior space being perceived as an extension of the only park in 
Venice. The trees actually penetrate through openings in the roof 
that dramatically interrupt certain beam spans, something made 
possible only by means of the two-way sharing of load characteristic 
of beam grids, as will be discussed in Section 7.10. The Nordic 
Pavilion demonstrates with great clarity the value of considering 
structural systems not merely as mechanical assemblages but also as 
architectural compositions that affect natural light and perceptions 
of space.

Illustration 7.3
The Nordic Pavilion.
Column-free interior space, with two-layered beam grid evident in the ceiling.
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Berlin’s Jewish Museum Glass Courtyard

The Jewish Museum in Berlin by architect Daniel Libeskind, as 
completed in 1999, still needed a multifunctional space that could 
provide additional room for receptions, lectures, and concerts. The 
addition, also designed by Libeskind, is located in the courtyard 
of the historical building that is part of this museum complex, the 
former Baroque Kammergericht built in 1735 and now serving 

as an entrance to the contemporary museum. (Ill. 7.4.) The fully 
glazed addition offers an unobstructed view to the garden and 
can be used throughout the year while still preserving the sense 
of the original courtyard space: sliding doors in the glazed façade 
can be opened to transform the enclosure into a covered outdoor 
terrace.

The addition to Libeskind’s original zinc-clad and zigzagging 
museum appears at first glance from the outside to be a relatively 

Illustration 7.4
Glass Courtyard, Jewish Museum, 
Berlin, Germany (2007).
Aerial view shows relationship 
of glass courtyard to 
enveloping U-shaped Baroque 
Kammergericht, to sharply angled 
plan of Libeskind’s museum 
building, and to gardens.

Architect: Daniel Libeskind. 
Structural engineer: GSE Ingenieur-
Gesellschaft mbH.

Illustration 7.5
Glass Courtyard, Jewish Museum.
Irregular and skewed beam 
grid picks up on geometry of 
museum. Columns also branch 
out in multiple directions and 
unconventional forms, reducing 
beam grid spans and potential 
stress concentrations.
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simple fully glazed cubic volume. Upon closer examination, however, 
it quickly becomes evident that things are anything but ordinary: the 
roof structure consists of a completely irregular grid of intersecting 
steel beams that is carried by four free-standing bundles of columns. 
(Ill. 7.5.) Each of these vertical supports consists of three column 
elements that branch out in multiple directions to meet the roof 
beams above; the columns have rectangular hollow cross-sections 
made from steel plates welded together, with one column in each 
bundle filled with concrete so as to be able to carry the full load 
of the roof in case of fire. The design concept was inspired by 
the Sukkah, the Hebrew word for a hut made of branches used 
for gatherings during the ceremonial Sukkot; here the bent and 
twisted structural elements can be seen to be like the tree trunks 
and branches of the traditional hut.

The structure as a whole displays a wonderful spatial quality that 
can be seen at once to be linked to traditional heritage and to the 
sharp-angled geometry of Libeskind’s adjacent museum building. 
But while the spatial sequences of the museum building represent 
a closed structure with an atmosphere depicting the darker side of 
European history, in contrast the Glass Courtyard addition is full of 
light and the structure casts a lively and ever-changing pattern of 
shadows on the yellow-ochre walls of the surrounding Kammergericht 
building. For the invitation to the opening ceremony of the new 
space, the museum chose an appropriate title: “Wohin mit dem 
rechten Winkel?” which roughly translates to “What has happened 
to the right angle?”

7.2	 Beam Origins

The classic example of a beam in a historical building context is 
a horizontal stone resting on two vertical columns. This simple 
structural configuration would have allowed people to pass or look 
through an obstructing or enclosing masonry wall. Moreover, if this 
basic form is made three-dimensional it leads to the primordial 
inhabitable space – four columns and a roof – and thus represents 
perhaps the beginnings of architecture. Beyond such practical 
purpose, however, a beam with two supports can also serve universal 
existential needs and it is both these aspects that characterize two 
structures of monumental historical character at the Valley Temple 
in Egypt and at Stonehenge in England.

Serving as part of a processional portal to the mysteries of 
the Pyramid and Great Sphinx tomb complex at Giza, Pharaoh 
Chefren’s Valley Temple includes the well-preserved remains of 
a ceremonial hall built up of 16 monolithic pink granite pillars, 
each weighing roughly 100tons (220kips) or more. Spanning short 
distances between these pillars are horizontal stone blocks of the 
same material, themselves every bit as massive and heavy as the 
vertical elements. (Ill. 7.6.) In keeping with the Egyptians’ preference 

Illustration 7.6
Valley Temple of Chefren, Giza, Egypt (Fourth Dynasty, 2723–2563 bc).
Openings between lines of columns are spanned by pink granite beams 
of relatively short length and large depth.
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for clear geometric forms, this temple is composed of a set of simple 
building blocks that are carefully balanced and very precisely cut 
and polished.

Stonehenge is also a cult building site that symbolizes power 
and endurance and was built at roughly the same time as the Valley 
Temple, although it is also generally understood to have been 
constructed in several phases over a period of many centuries. 
The complex originally comprised several concentric circles of 
rock formations, the alignments and orientations of which make it 
reasonable to conclude that the site was likely used for worshiping 
the sun and for making astronomical calculations that predicted 

the changing of the farming seasons; i.e., the complex likely 
functioned at least partly as some kind of celestial calendar. What 
we see today (Ill. 7.7) represents Stonehenge in ruin since many 
of the great stones have fallen or have been used by intervening 
generations for nearby home construction or road repair. From 
what remains, however, we can still imagine what Stonehenge 
once looked like. For example, the evidence suggests that an 
outer ring of 30 carefully shaped and massive upright stones 
were capped with horizontal lintel beams linked end to end into 
a continuous circle of stone propped high above the ground. 
(Today the most complete section of this circle consists of only 

Illustration 7.7
Stonehenge, Salisbury, England, UK (approximately 2500 bc).
Three great “trilithons”; mystical power as defined by massive proportions of stone 
beams and columns.



Chapter 7: The Beam and the Slab

197

three beams that are still in place.) Also, the grandest and most 
impressive part of the whole arrangement, the sanctum, was an 
open-ended oval incorporating three great “trilithons” (derived 
from Greek and meaning “three stones”): two massive uprights 
capped by a horizontal beam spanning element. The bottom ends 
of these 40ton (88kip) upright stones, which extend 6.5m (21ft) into 
the air, are partially buried in order to give them lateral stability. 
All the stones are quite roughly carved and portray much of the 
natural character of their constituent material; i.e., a particular 
type of sandstone called sarsen, in which grains of sand are bound 
together by silica.

Over the course of time, there have obviously been many other 
structures, both large and small, mundane and monumental, that 
have incorporated similarly massive stone beams. As heralded as 
such monuments are in our cultural history, however, today from a 
structural perspective they display an almost absurd massiveness; 
i.e., their stone beams’ dimensions seem grossly over-scaled 
when taking into account the relatively short distances that they 
span. (e.g., Ill. 7.8.) As we will see shortly, these no-longer-familiar 
proportions clearly express some of the underlying problems with 
beam structures, problems that are only accentuated when made 
of stone. 

Illustration 7.8
Temple of Aphaia, Aegina Island, Greece (c.500 BC).
Stone beam segments able to span only short distances between column supports; 
relative proportion of beam depth to spanning distance is quite large by standards of 
contemporary construction materials and methods.
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7.3	E quilibrium from Internal Actions

The Simply Supported Beam

Perhaps it is not unreasonable to argue that a beam was the first 
load-bearing structural element exploited by humans: somewhere 
in a prehistoric forest a tree that had fallen across a raging stream 
would have made it possible to cross the water without getting 
washed away – thus likely becoming, quite by accident, the world’s 
first beam bridge.

9 kN9 kN9 kN

Figure 7.1
Load applied perpendicular to beams’ spanning 
direction axis; resulting deflected profiles.

Figure 7.2
Beam loading diagram and end support reactions for 
situation similar to sculpture display at Parma’s Galleria 
Nazionale shown in Ill. 7.9.

Illustration 7.9
Galleria Nazionale, Palazzo della Pilotta, Parma, Italy (1583; renovation: 1986).
Steel beam supports classical sculptures as part of museum renovation.

Architect (of renovation): Guido Canali.
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In contemplating the possibility of such origins, one is also able 
to recognize that the primary task of a beam is to bear loads that 
are applied perpendicularly to its longitudinal axis and spanning 
direction. As is commonly experienced with this type of load 
condition, whether it is from the stacking of one’s shelves with 
reams of books or venturing out on to a diving board in preparation 
for a swim, the beam reacts by deflecting in the direction of the 
transversely applied load; i.e., the initially straight longitudinal axis 
of the beam in the unloaded condition is no longer so when load 
is applied.1 (Fig. 7.1.) But despite our everyday experience with 
this characteristic transverse-deflection behavior of the beam, it is 
only through a detailed equilibrium consideration of this seemingly 
simple response that we can arrive at a fundamental understanding 
of how beams work.

This objective is perhaps most clearly accomplished by means of 
a numerical example. Consider as an arbitrarily chosen representative 
condition a beam that is simply supported at its two ends and has 
three concentrated point loads as well as a uniformly distributed 
load applied to it. (Fig. 7.2.) It may help to visualize a real-life 
condition that would be quite similar to this situation, such as by 
considering the sculpture-supporting beam at the National Gallery 
in Parma. (Ill. 7.9.)

We know from Chapter 3 how to determine such applied loads; 
e.g., the weight of sculptures can be converted into equivalent 
point loads, and a beam’s self-weight can be represented by a 
uniformly distributed load. We also know from Chapter 4 how 
to use equilibrium considerations that are applied to the overall 
beam structure in order to determine the magnitude and direction 
of the support reactions at the two ends of the beam. For the 
symmetrical example under consideration here, if each of the three 
point loads is taken to be 9kN and the uniformly distributed load 
is determined to be 2kN/m, then the support reactions at each 
end of the 4m span are:

RL = RR = [(3 × 9kN) + (4 m × 2kN/m)]/2
RL = RR = 17.5kN

But this equilibrium analysis so far only tells us what is 
happening at the external supports and will not be of direct 
help in establishing the size and shape that is necessary for 
the beam that is carrying the load to the ends. In order to be 
able to accomplish the latter, we need to find out what is going 

on internally in the beam, and this will be done by once again 
applying the fundamental principles and equations of equilibrium. 
In this instance, however, we will consider the equilibrium of only 
a portion of the beam structure rather than the whole. That we 
can selectively apply equilibrium principles equally well to parts 
of the structure as well as to its entirety is understandable when 
we consider what the equilibrium conditions actually imply in a 
physical sense; i.e., just as the beam as a whole is not going to 
be displacing vertically under load nor rotating in space (recalling 
that these are the actual physical meanings of the equilibrium 
equations ΣFy = 0 and of ΣM = 0), these same truths obviously 
must also be valid for any segment or portion of the beam, as 
these certainly will not be displacing nor rotating any more than 
is the beam of which they are a part.

For example, if we want to find out what is happening in the 
beam just described at a distance of 1.5m from the left-hand 
support, we can make a purely imaginary and conceptual “cut” 
through the beam at that location and then draw the free body 
diagram of the geometry, the externally applied forces, and the 
support reactions that are acting on the beam on either side of 
this “cut.” (Fig. 7.3.)

Summing, for instance, the vertical forces seen to be acting on 
the left-hand segment of the beam, where forces acting upwards are 
taken as to be positive and forces acting downwards as negative, 
leads to:

Figure 7.3
Free body diagram for left-hand portion of beam when 
imaginary cut is made 1.5m from left-hand support.
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ΣFY = 17.5kN – 9kN – (2kN/m × 1.5m)
ΣFY = 5.5kN

which is a sum that is clearly not equal to zero, but indicates an 
unbalanced (positive) force resultant that acts upwards. Yet we 
know that for vertical equilibrium to be present in this part of the 
beam in order for it not to be translating vertically, the sum of the 
forces acting on this beam segment must be equal to zero. The 
only way for this to be true is if there is present at the location 
of the imaginary cut an equal but opposite-direction transverse 
force (V, acting downwards) that will in fact make the summation 
equal to zero; i.e.,

ΣFY = 0
17.5kN – 9kN – (2kN/m × 1.5m) – V = 0
V = 5.5kN

This necessary balancing transverse force V is known as the 
shear force in the beam, and it is an internal force that is developed 
within the beam itself. As is obvious by considering what would 
result from making such imaginary “cuts” through the beam at 
other locations along its length, the magnitude and direction of the 
balancing internal shear force will necessarily vary; this is something 
that we will be discussing again shortly.

A beam’s other equilibrium requirement has to do with moment 
summations and recognizing that there must be rotational equilibrium 
for any beam segment. Summing moments about the “cut” for 
the external forces acting on the free body in Fig. 7.3 produces 
the following equation (recalling from Chapter 4 that clockwise 
moments are taken to be positive, while counterclockwise moments 
are assigned a negative value):

ΣM = (17.5kN) (1.5m) – (9kN) (0.5m) – [(2kN/m) (1.5m)] [(1.5m)/2] 
ΣM = (26.25kNm) – (4.5kNm) – (2.25kNm) 
ΣM = 19.5kNm

which is, once again, not summing to zero as we know it must 
in order for equilibrium to be present. Clearly what we are 
establishing this time is that there must also be present at the 
“cut” an internal moment, termed a bending moment and labeled 
M, that is going to have to be equal in magnitude and opposite 
in direction (i.e., counterclockwise, with a negative value) to the 

net sum of moments produced by the external forces acting on 
the beam segment; i.e.,

ΣM = 0
(19.5kNm) – M = 0 
M = 19.5kNm

As for the shear force, the magnitude of the bending moment 
that is needed for equilibrium is going to depend on the location 
of the “cut” that is considered; these varying results along the 
length of the beam will shortly be plotted in order to better be 
visualized.

It is also worthwhile pointing out before going any further 
that both the internal shear force V and bending moment M 
that are found to be necessary at a particular location along 
the length of the beam are exactly what are needed in order to 
have equilibrium there; i.e., their magnitudes are exactly equal 
to the external net vertical force and external net moment of 
forces acting on the beam at that location, and their directions 
necessarily opposite to them. 

The Cantilever

Although behaviorally an integral part of the beam family of 
structures, the cantilever is afforded special status by its support 
condition, profile, and nomenclature. Here we are talking about a 
beam that projects outward into the air, fixed against any deflection 
and rotation at its root but dramatically unsupported and unrestrained 
at its free end. Common examples of this situation abound in 
everyday life: e.g., both vertical tree trunks and their horizontal 
branches, diving boards, wings on an airplane fuselage, etc. And 
in the context of buildings, the cantilever, like the “regular” beam, 
has its own long history of development in terms both of scientific 
understanding and design approaches that have been applied to 
canopies, balconies, vertical towers, etc. (e.g., Ill. 7.10.)

Although fundamentally different in support condition from that 
of the typical beam, the cantilever is nonetheless still carrying load 
applied transversely to its longitudinal axis and the same beam-
like bending behavior will result from it. We can apply the same 
equilibrium analysis process to cantilevers in order to predict shear 
force and bending moment magnitudes and their variations along 
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the length of the member. Consider, for example, a cantilever beam 
to which we assume a uniformly distributed load is applied. (Fig. 7.4.) 

Based on the corresponding free body diagram and equilibrium 
considerations, the following equations establishing the shear and 
bending moment can be written (in terms of the distance x from 
the end of the cantilever):

ΣFY = 0
V – wx = 0
V = wx

and
ΣM = 0
(wx) (x/2) – M = 0
M = wx2/2 

Here, the total load represented by the uniformly distributed 
load on the beam segment is (wx), and the moment that results 
from it is found by imagining all of that load to be acting as a 
point load at its center, which is in the middle of the length of the 
distributed load; hence, the moment arm is (x/2). 

The variations in V and M defined by these equations are, 
like those of the simple beam, quite amenable to being plotted 
in diagrams and this will be addressed in the following section. 
Variable depth beam and cantilever profiles can then be devised 
corresponding to these plots; e.g., as is evident for the cantilever 
canopy shown in Ill. 7.11. Before getting into this more deeply, 
however, it is worthwhile noting for future reference that the direction 
of the internal bending moment M in a cantilever is opposite to 
that in a corresponding simply supported beam. We also saw that 

Illustration 7.10
“Galileo’s problem.”
Seventeenth-century scientist’s experiment investigating cantilevered 
wooden beam behavior: correctly established that structural 
demand increases with square of projecting length; somewhat 
incorrectly predicted stress distribution over depth of beam.

Drawing from: Due Nuove Scienze 1638.

Figure 7.4
Cantilever beam subject to uniformly distributed load; 
free body diagram for beam segment to right of an 
imaginary cut at a distance “x” from the end.
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in Chapter 2. This clearly is related to the opposite curvature of 
these two structures under the same transverse load; i.e., under 
gravity loading the simple beam is concave upward, whereas the 
cantilever is convex, as we saw previously in Fig. 7.1. We also 
intuitively understand from common experience that the top part 
of a gravity-loaded horizontal cantilever is stretched in tension while 
the bottom is compressed – just the opposite of what we anticipate 
takes place in a simply supported beam. For now, though, it is 
enough to have made these general observations; we will come 
back to them more specifically in Section 7.7 in the context of 
precisely determining the sets of stresses that are associated with 
the behavior of beams.

7.4	F allingwater – Cantilevering Terraces

Certainly among the most architecturally well known of cantilevered 
structures ever built is Fallingwater, one of Frank Lloyd Wright’s 
(1867–1959) most famous and admired works. (Ill. 7.12.) It was 
completed in 1937 as a weekend house for Edgar J. Kaufmann and 
is located not far from Pittsburgh, Pennsylvania, on a natural site 
that is characterized by deciduous forest, wild rhododendrons, and 
rapids. Built on a sandstone embankment, the house was designed 
as a series of projecting terraces that directly overhang the water 
and its falls. The architect described the house as

an extension of the cliff beside a mountain stream, making 
living space over and above the stream upon several terraces 
upon which a man who loved the place sincerely, one who 
loved and liked to listen to the waterfall, might well live.2

Illustration 7.11
Yūrakuchō Subway Station Canopy, Tokyo, Japan (1996).
Overlapping glass plates gradually increase in depth toward cantilevered canopy’s base support; 
this is associated with the variation of the internal bending moments and shear forces along the 
length of the cantilevered structure. 

Architect: Rafael Viñoly Architects. Structural engineer: Dewhurst Macfarlane and Partners. Cornell 
model by Maki Kawasaki.
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For Wright, the principle of cantilevering was a very personal 
solution, as natural as a branch that grows from the trunk of a tree 
or an outstretched arm: used with insight and ingenuity, this type 
of structure had many possibilities – it could make column-free 
spaces and create independently shaped and sized floor plates 
one on top of another. Fallingwater’s main terrace is made of 
reinforced concrete and it was at that time a highly advanced 
structure with a cantilever of about 5m (16.4ft). The concept was 
based on the interaction between the beams in the deck and 
the upwardly folded concrete edges. Donald Hoffman’s book 
Frank Lloyd Wright’s Fallingwater and its History furnishes a good 
insight into the difficult and at times dramatic planning stages 
and building process for this house. Several times, the daring and 
visionary Kaufmann expressed serious doubt about the ability of 
the cantilevers to properly carry the load and he had his engineer 
independently check Wright’s dimensions; furthermore, he had 

him measure the bending deflection of the terraces at regular 
intervals as long as he lived.

Evidently, Kaufmann intuitively knew something about cantilevers. 
By 1985 the projecting structure was noticeably sagging by up 
to 175mm (7in) and the concrete parapets were cracking badly, 
requiring temporary shoring to be installed that completely 
undermined the floating essence of the building. To rectify the 
problem, structural engineers Robert Silman Associates devised 
a clever post-tensioning cable system (more on the logic of this 
method later in this chapter in Section 7.8) that was threaded 
unobtrusively into the cantilevering floor system.3 The house thus 
once more stands as originally designed and remains as one of 
the major works of twentieth-century architecture.

Illustration 7.12
Fallingwater, Mill Run, Pennsylvania, USA (1937; restoration 2002).
Cantilevered concrete floors strengthened by upturned concrete edge beams that simultaneously 
form railings. System now further stiffened by hidden post-tensioned cables.

Architect: Frank Lloyd Wright. Structural engineer: Metzger-Richardson. Restoration structural engineer: 
Robert Silman Associates.
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7.5	 Visualizing Beam Actions  
– Shear and Moment Diagrams

In the earlier Section 7.3 we have established that beams must 
have at each and every cross-section along their length both 
an internal shear force V and a bending moment M in order to 
counterbalance the net effects of the external loading at that 
location. It was also discussed that, in general, the magnitude of 
these quantities that needs balancing changes from one location 
to another along the length of a beam. As will be demonstrated 
presently, it is conventional to graphically represent the variation of 
these quantities in what are called shear force and bending moment 
diagrams. The advantage of this method of visual presentation 
goes beyond mere convenience and mathematical convention, 
however; we will see eventually that it also has a far-reaching 
impact in suggesting to the designer the potential for the shaping 
of beam structures.

First let us consider a simply supported beam with a concentrated 
point load P applied midway along a span of length L. (Fig. 7.5.) 
The symmetry of the condition means that the upward support 

reactions at each end are equal to P/2. To find the shear force and 
bending moment at an arbitrary section located at a distance x 
from the left-hand end, a free body diagram for the cut portion of 
the beam can be drawn in a manner that will be appropriate for 
0 ≤ × ≤ L/2. (Fig. 7.5a.)

If we now write the ΣFY = 0 and ΣMcut = 0 equations for the 
translational and rotational equilibrium of this beam segment, 
we will have:

ΣFY = 0
P/2 – V = 0
V = P/2

and
ΣMcut = 0
(P/2) (x) – M = 0
M = (P/2) (x)

Substituting different values of x into these expressions yields 
the magnitude of the shear force and bending moment at those 
respective locations, as have been given in Figure 7.6.

Figure 7.5
Simply supported beam with concentrated load P 
at center. (a) and (b): free body diagrams for beam 
segments cut to the left and the right side of P, 
respectively.

Figure 7.6
Relative magnitudes of shear force, V, and 
bending moment, M, in beam at different 
distances, x, from left-hand end.
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Similarly, for the part of the beam beyond the midpoint (i.e., 
where L/2 ≤ × ≤ L), a different free body diagram must be drawn 
(Fig. 7.5b) and the following expressions that are developed from 
it for shear force and bending moment enable the completion of 
the remainder of the table in Figure 7.6:

ΣFY = 0
P/2 – P – V = 0
V = –P/2

and
ΣMcut = 0
(P/2) (x) – (P) (x – L/2) – M = 0
M = PL/2 – Px/2

The results can then be plotted graphically along the length of 
the beam in what are known as shear force and bending moment 
diagrams. Before fully being able to do so, however, sign conventions 
need to be established for this purpose.

•	 Bending moment diagram sign convention:
The bending moment is drawn on the tension side of the beam.

•	 Shear force diagram sign convention:
If the balancing shear forces would tend to rotate the beam 
segment in a clockwise direction, the shear is termed positive; 
the contrary is called a negative shear condition. (Fig. 7.7.)

From the V and M diagrams incorporating these sign 
conventions for the point-loaded simply supported beam (Fig. 
7.8), the following patterns that are specific to this load condition 
can be observed:

•	 The magnitude of the shear force in the beam is a constant V = 
P/2 from one end of the beam to the other, although this action 
changes direction at mid-span.

•	 The magnitude of the bending moment in the beam varies 
linearly from zero at either end to a maximum value of PL/4 
at mid-span.

Figure 7.7
Sign convention for shear force, V, in terms of 
tendencies to effectively cause clockwise vs. 
counterclockwise rotation.

Figure 7.8
Shear force and bending moment diagrams 
for simply supported beam subject to 
concentrated load at mid-span.
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A similar analysis can be applied to perhaps the most common 
situation of a simply supported beam with uniformly distributed load 
w applied to it. (Fig. 7.9.) In this case a single free body diagram 
that is drawn in terms of a variable distance x will suffice and the 
following expressions for shear force and bending moment emerge:

FY = 0
wL/2 – wx – V = 0
V = w (L/2 – x)

and
Mcut = 0
(wL/2) (x) – (w x) (x/2) – M = 0
M = w [(Lx – x2)/2]

Once again, the results of these equations can be plotted. 
(Fig. 7.10.) For this load condition, some of the key patterns and 
observations that emerge are that:

•	 the magnitude of the shear force in the beam varies linearly from 
a maximum at one end to an equal but opposite maximum at 
the other end, with zero magnitude at mid-span;

•	 the magnitude of the bending moment in the beam varies 
parabolically from zero at one end to a maximum of wL2/8 at 
mid-span and back to zero again at the opposite end.

Likewise for the cantilever with a point load P at its free end, 
or for the cantilever with uniformly distributed load w the results 
for shear and moment at different locations along the beam can 
be determined and plotted. (Fig. 7.11.) The clear patterns that 
emerge in these cases are that:

•	 for the point load condition, the magnitude of the shear force 
remains constant throughout at V = P, while the magnitude of 
the bending moment increases linearly from zero at the free 
end to M = PL at the support;

•	 for the uniformly distributed load condition, the magnitude of 
the shear force increases linearly from zero at the free end to 
a maximum of V = wL at the support, while the magnitude of 
the bending moment increases parabolically from zero at the 
free end to M = wL2/2 at the support.

Figure 7.9
Simply supported beam with uniformly distributed load; 
free body diagram for segment to left of imaginary cut 
at distance “x” from left end.

Figure 7.10
Shear force and bending moment diagrams for simply 
supported beam subject to uniformly distributed load.
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We have thus considered four of the simplest (yet also among the 
most common) of beam support and load case situations – and have 
used these to illustrate the graphic means that is typically employed 
to present the variations in magnitude and direction of shear forces 
and bending moments along the lengths of beams. More complex 
situations can readily be dealt with in exactly the same manner by 
carefully considering the equilibrium of appropriate segments of 
beams, and more intricate V and M diagrams will inevitably result. 
By plotting these quantities in this graphical manner, however, 
the variations and maximum values of the internal beam actions 
become easily legible, and this is something that will prove to be 
of critical value for the sizing and shaping of beams, as we shall 
see in the following sections.

7.6	F orm Follows Diagram, Or Not …

The types of algebraic formulas derived in the preceding section 
for calculating bending moments and shear forces will prove very 
useful when it comes to selecting the beam sizes and cross-sectional 
shapes that are necessary to carry loads, but for now let us focus 
on how the overall shapes of the V and M diagrams provide an 
opportunity for informing the design of beams in terms of their 
elevational profile.

We have seen in each of the load conditions that we have looked 
at so far that the bending moment in a beam varies more quickly 
along the span than does the shear force; e.g., for a uniformly 
distributed load the bending moment changes with the square of 
the distance x from the end whereas the shear force varies linearly, 
while for a concentrated load the bending moment changes linearly 
and the shear force remains constant along the entire length 
of the beam. What this implies generally is that with increasing 
span there is a dramatically greater increase of bending moment 
than there is of shear force. Consequently, if structural efficiency 
is required, or if simply structural expression is desired, it is the 
bending moment diagram that is typically reflected in a beam’s 
physical form and, most noticeably, in the variation of its vertical 
dimension (beam depth).

One example of this can be seen in the support beams for the 
enclosed glass pedestrian bridge designed by Dirk Jan Postel in 
Rotterdam to link the otherwise separated second-floor offices of a 

Figure 7.11
Shear force and bending moment diagrams for 
cantilever beams subject to (a) concentrated load at free 
end, (b) uniformly distributed load along entire length.
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single architecture studio. (Ill. 7.13, 7.14.) This bridge is unusual in 
that all of its structural framing and enclosure system utilizes structural 
glass technology – not only the floor plate, the side walls, and the 
ceiling, but also the two laminated glass support beams carrying 
the bridge’s dead and live loads. Moreover, the support beams’ 
dramatically curved bottom-edge profile can quite obviously be 
understood to be influenced by the parabolically shaped bending 
moment diagram for such a uniformly loaded simple span.

A second example of this relationship between beam depth and 
bending moment diagram, this time for a cantilever, can be seen 
in the roof canopy that the architect Zaha Hadid designed for the 
Tondonia Winery in Spain. (Ill. 7.15.) Since the vertical dead and 
live loads on the roof canopy results in what can be approximated 
to be a uniformly distributed load on each of the cantilevering 
ribs, these will have, as we saw in the previous section, internal 
bending moments that increase toward their “root.” The resulting 
shape of the bending moment diagram is generally reflected by 
the variation in the depth of the roof’s structural steel ribs. The 
cantilever aspect is highlighted even further in this project by 
having the roof structure supported on one side by vertical ribs 
that are themselves cantilevered from the ground. This overall 
cantilever-upon-cantilever configuration serves not only to shelter 
the flask-shaped wine shop and tasting room but also to highlight 
and provide a visual backdrop for the distinctive pavilion within a 
very tight and eclectic agglomeration of buildings.

Illustration 7.13
Glass bridge for Kraaijvanger Urbis, Rotterdam, the Netherlands (1994).
Curved floor beam profile mimics its bending moment diagram. 

Architect: Dirk Jan Postel/Kraaijvanger Urbis. Structural engineer: ABT/Rob Nijsse.

Illustration 7.14
Glass bridge for Kraaijvanger Urbis.
Exploded axon drawing of walkway components.
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It is immediately surprising once one becomes cognizant 
of this potential link between the shape of bending moment 
diagrams and beam depths to find the extent of reproduction of 
this relationship in the built world. Very many long span beams 
in stadia roofs and bridges regularly exploit this form-making 
potential (see also Ill.1.15), but it can also be found in smaller 
scale projects; e.g., the varying depths of the glass plates for the 
sheltering canopy of Yu- rakucho-  Subway Station seen in Illustration 
7.11 can be reexamined in this context. This is a topic that we 
will see has very broad application, and we will come back to it 
once again in the context of both trusses and arches in Chapters 
9 and 12, respectively.

But as compelling as these examples are, we will end this 
section by completely undermining the suggested design direction 
presented here so far. For there should be no misconception 
that all beams must follow the shape of their bending moment 
diagrams; indeed, the typical condition is anything but like 
this. In fact, it is quite normal for practical and economical and 
sometimes aesthetic reasons as well for beams in buildings to 
retain the same depth and geometric profile over their entire 
length. Manufacturing techniques for rolled steel members ensure 
that these are constant in section along their length, and milling 
practices do the same for sawn lumber. Clearly, however, the 
structural demands indicated by the shear and bending moment 
diagrams are not going to go away and these must still be 

attended to. In the case of constant section beams, only the 
maximum value of the bending moment and shear force acting 
on the member is deemed critical, wherever this occurs – and 
the member is sized only for that largest value. This means that 
everywhere else along the length of the beam an oversized 
section is being provided! This very common situation begins 
to explain why typical beams are, from the point of view of 
material usage, extremely inefficient structures – and there is 
more to come on this score as we shall see in the next section.

Clearly in the case of constant-depth beams there is at work 
another design agenda rather than the one of pure structural 
efficiency. More often than not it will simply be a matter of pure 
economics – it is far cheaper to mass produce members of constant 
sectional profile rather than to custom manufacture each and every 
member according to the specific demands placed on it. But it 
may also be a matter that sometimes a certain design aesthetic is 
desired, such as that which we saw earlier at Sverre Fehn’s Nordic 
Pavilion (see Ill. 7.2) or as is also evident with the roof beams of 
the Kunsthal in Rotterdam. (Ill. 7.16.)

Another design approach provides the opportunity for a 
variation on this theme of constant-depth beams as can be seen 
at the Madrid–Barajas Airport developed by the partnership of 
architects Richard Rogers and Antonio Lamela. Here the series 
of steel beams still have roughly constant depth, but, instead of 
being straight, their elevational profile undulates strongly up and 

Illustration 7.15
Tondonia Winery, Haro, Spain (2006).
Horizontal projecting steel ribs of cantilevered canopy increase in depth 
toward support, following cantilever beam’s bending moment diagram. 
(See also Ill. 5.31.)

Architect: Zaha Hadid Architects. Structural engineer: Jane Wernick Associates.

Illustration 7.16
Kunsthal, Rotterdam, the Netherlands (1992).
Roof beam with constant depth in spite of variations in bending moment 
demand.

Architect: Office for Metropolitan Architecture (OMA). Structural engineer: 
Arup.
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down several times across the full width of the terminal building. 
(Ill. 7.17.) Despite the very different look, however, in such cases 
the statics of the problem with respect to vertical gravity loading 
do not change significantly from that of a perfectly horizontal 
beam, and the shear force and bending moment demands and 
diagrams will be essentially the same. (Fig. 7.12.)

7.7	D eformations and Internal Stresses

In order to further understand basic beam behavior, to help make 
sense of the various beam cross-sectional shapes that exist as 
well as to develop the structural theory that will eventually enable 
beam sizes to be determined, we need to extend our discussion 
of internal shear forces and bending moments to defining the sets 
of internal beam stresses that produce these actions.

We will begin by considering a beam with a compact, rectangular 
cross-section and that has a concentrated point load at mid-span 
that induces downward deflection in the beam. (Fig. 7.13.) From 
common experience, we know that in such a condition the beam 
material will experience tension stresses caused by stretching 
along the bottom while at the top the material will shorten and 
be in compression. A simple experiment with a piece of foam or 
rubber will reconfirm this statement, with the flexible material 
being useful for the model in order to exaggerate the necessarily 

Figure 7.12
Simply supported beams with different elevational geometry – 
one straight, the other curved – but subject to identical loading 
have common bending moment diagram.

Illustration 7.17
Madrid–Barajas Airport, Madrid, Spain (2006).
Continuously undulating roof beams of near constant depth.

Architects: Richard Rogers Partnership and Estudio Lamela. 
Structural engineers: Anthony Hunt Associates, OTEP 
Internacional, TPS.
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much smaller deformations that take place in a real load-carrying 
beam in a building.

To reinforce and expand upon what has just been described, 
imagine that we were to draw evenly spaced parallel vertical lines on 
the outside of the piece of foam or flexible rubber in the unloaded 
condition. When such a “beam” is loaded, the shortening of its 
top side and elongation along the bottom that we anticipate is 
immediately evident from the rotation of the lines. (Fig. 7.14.) 
Moreover, the experiment reveals that the distance between the 
originally parallel lines is linearly smaller and larger in proportion 
to the distance from the mid-depth of the beam, the level – called 
the neutral axis – at which the distance between the lines that were 
drawn remains equal to what it was originally.4 Described another 
way, this experiment reveals that the originally vertical lines – which 
conceptually represent cross-sectional planes cut through the three-
dimensional beam – remain straight even in the loaded condition, 
although they do rotate so as to remain perpendicular to the top 
and bottom of the deflected beam.

If this description of fundamental beam behavior and deformation 
may seem relatively simple, it is worth noting, perhaps gratifyingly, 
that historically it has not come easily. Leonardo da Vinci (1452–1519) 
hypothesized about beam behavior (among other things …) (Ill. 
17.18) and as we saw in Section 7.3 Galileo Galilei (1564–1642) 
worked on the problem to the point that he presented the first 
(erroneous) formal analytical theory on the subject in 1638.5 Over the 
next 200 years a series of French mathematician/scientists modified 
Galileo’s hypothesis, culminating in 1826 with Claude Louis Marie 
Henri Navier (1785–1836) publishing what is widely credited today 
as being the correct solution for the bending behavior of beams.6 

neutral axis

max. stretching

max. shortening

Figure 7.13
Deformation along the span of a beam with transverse loading. 
The beam responds by being shortened and stretched, in its 
top and bottom halves, respectively.

Figure 7.14
Lines drawn on flexible foam beam (representing arbitrary 
sections through the beam) rotate when beam is loaded, but 
still remain straight; this corresponds to a linear distribution of 
deformation tendencies over depth of beam.

Illustration 7.18
Leonardo da Vinci’s diagrams of relative deflections for various beam spans.
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Navier based his theories on the assumption just described that 
originally “planar sections in a beam will remain planar” in the 
deflected condition under loading, a statement that has since 
been proven experimentally to be valid. Today’s building code 
specifications concerning beam behavior are still fundamentally 
based on this hypothesis developed nearly 200 years ago.

Bending Stresses

By applying Hooke’s Law (which, it will be recalled from Section 
5.2, relates strain – and thus deformation – to stress for elastic 
materials), the linearly varying shortenings and elongations over 
the beam depth that we have just described can be associated with 
a corresponding straight-line variation of compression to tension 
bending stresses, typically designated by the Greek letter σ (sigma). 
(Fig. 7.15.) In three dimensions, this state of stress in the beam 
can be visualized as triangular wedges of compression and tension 
stresses acting over the upper and lower halves of a beam’s cross-
section. (Fig. 7.16.)

The effects of this stress distribution acting on, for example, 
the rectangular cross-section of a wood beam having width b and 
depth d can now be studied. The stresses on the compression 
and tension sides of the beam acting over their respective 

cross-sectional area halves effectively produce an equal but 
oppositely directed compression force in the upper part of the 
beam and a tension force in the lower section; i.e., an oppositely 
directed pair of forces separated by a distance “a” (together these 
are known as a force couple) is established within the depth of 
the beam. (Fig.7.17.)

This force pair produces a moment about the neutral axis level 
whose magnitude is defined by

M = (C × a/2) + (T × a/2)

Since C = T, we can also write

M = C x a = T x a

It is this internal moment in the beam that is resisting whatever 
external moment imbalance exists at that location from the applied 
forces and support reactions (Fig. 7.18). Clearly, with such a small 
lever arm “a” limited to something less than the beam’s depth, in 
order for this moment to be significant it will be required that the 
magnitudes of the C and T forces in the beam (and, therefore, of the 
bending stresses that produce them) be quite large. This conclusion 
begins to suggest the fundamental problem with the way in which 
beams carry load – but there will be more on this topic later.

b

d

Figure 7.15
Strain and stress diagrams over beam depth, 
related by means of Hooke’s Law for elastic 
materials.

Figure 7.16
Corresponding triangular wedges of 
compression and tension stresses in 3-D view 
of beam.
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Getting back to our rectangular beam example, the magnitude 
of the forces C and T in the beam will be equal to the volume of 
the stress triangles acting over their respective beam halves; i.e.,

C = T = [1/2] [σmax × b × d/2] = σmax × b × d/4

For a triangular stress distribution the distance a between 
forces C and T is equal to (2/3)d. (Fig. 7.17.) With the appropriate 
substitutions, therefore, the bending moment produced can be 
rewritten as:

M = (σmaxbd/4) (d/3) + (σmaxbd/4) (d/3)
M = σmax (bd2/6)
M = σmax × S

The result of this derivation indicates that the internal bending 
moment in a beam is directly proportional to the magnitude of 
the maximum stress produced by bending – an observation that 
will shortly be shown to have a direct bearing on the methods 
used for the sizing and selection of beam sections. Moreover, it 
can be seen that the constant of proportionality between bending 
moment and maximum bending stress is dependent only on the 
dimensions of the cross-section; this constant is called the section 
modulus S having units mm3 (in3). For the rectangular cross-section 

that we have been examining, for example, S is equal to bd2/6, 
a quantity that can easily be calculated algebraically or obtained 
from standard manufacturers’ tables.

This same equation can be rearranged into what is called the 
bending or flexure formula:

σmax = M/S	 (7.1)

that clearly establishes the maximum bending stress in a beam as 
being solely dependent on M, the external moment at a section 
(itself a function of loading and the geometry of structural framing), 
and on S, a quantity established by the beam’s cross-sectional 
geometry.7 Such an equation tends to lead to the conclusion 
that the design of beams is a purely scientific matter, but this 
ignores the architectural design choices that are implied by it. As 
we have seen, moments are a function of loads and of the choice 
of structural system in terms of materials, spanning distances, 
spacing, orientation, and support conditions – all of which are 
well within the control of the designer. Moreover, the choice of 
beam cross-sectional dimensions and shapes are also completely 
a matter of a designer’s intentions – to be established not only 
by material capacity but also in terms of visual effect. The types 
of decisions that led to the selection of very different beams for 
the Nordic Pavilion and the Jewish Museum’s courtyard roof seen 

Figure 7.17
Compression (C) and tension (T) forces, statically equivalent 
to stresses in corresponding top and bottom halves of beam, 
produce an internal resisting couple, which is defined as a 
bending moment caused by two equal but opposite forces 
located a certain distance apart from each other.

Figure 7.18
Internal bending moment produced by C and T 
must balance the sum of moments produced by 
external forces and reactions.
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at the beginning of this chapter obviously have to do with many 
things besides a mechanical and unimaginative application of the 
flexure formula. It will be good to bear this in mind as we proceed 
a bit further with the algebraic development.

The formula as presented so far defines the maximum bending 
stress occurring at the top and bottom of a beam. Because of the 
linear variation of these stresses over the depth of a beam, however, 
it is also relatively simple to establish what will be the magnitude 
of the stress σy at any distance y above or below the neutral axis. 
(Fig. 7.19.) By similar triangle geometry, it can be seen that

σmax/(d/2) = σy/y
σmax = σy [(d/2)/y]

Now equating the two expressions for σmax results in:

M/S = σy[(d/2)/y]
σy= My/S(d/2)
σy= My/I

which establishes that the magnitude of the stress at any level of a 
beam is a function of a modified cross-sectional constant, I, that is 
called the cross-section’s moment of inertia and is equal to S(d/2) 
and thus has units mm4 (in4).

Since σmax= M/S and S = I/(d/2), an alternate form for the bending 
formula for maximum stress in the beam in terms of moment of 
inertia is, therefore,

σmax = (M × c)/I	 (6.2)
σmax = (M × d/2)/I

in which c is the beam’s half-depth; i.e., c = d/2.
For the rectangular cross-section, where as we have previously 

seen S = bd2/6,

Irect = S (d/2)
Irect = (bd2/6) (d/2)
Irect = bd3/12

A more detailed derivation than is appropriate for this text 
allows the moment of inertia to be defined more generally for any 
cross-sectional shape by the integral equation

I = ∫y2dA

where y is the distance from the neutral axis for an elemental bit 
of cross-sectional area dA.8 Both the general formula for I and that 
more specifically for the simple rectangular section clearly establish 
that the distance of beam cross-sectional material from the neutral 
axis is critical to just how much it can contribute to developing the 
internal resisting moment; i.e., the farther beam material is located 
from the beam’s neutral axis the more effective it is in helping the 
beam carry load, and exponentially so. This will shortly be seen 
to have important implications when we consider making cross-
sectional shapes more efficient than simple rectangular ones are.

For now, however, it is sufficient to remind ourselves of the 
essential of what has just been established: the necessity of 
equilibrium between external and internal moments allows us to 
predict the maximum bending stresses that loading imposes on 
beam material. And, generally speaking, if we are to avoid failure of 
that material, we must obviously ensure that such bending stresses 
are less than those the material is deemed capable of carrying; i.e.,

σmax ≤ σultimate

Shear Stresses

We shall now investigate how shear force, the other internal action 
that we found necessary in order to provide equilibrium in beams, 
produces a second set of stresses acting over a beam cross-section. 
The condition of shear can be thought of as a tendency for one 
portion of a beam to try to “slide” transversely past the rest of it 
as a result of the imbalance of external forces. To prevent this from 
occurring, it has been established that an internal shear force must 
be present, and this can be thought of as being produced by some 
distribution of shear stresses designated by the Greek letter τ (tau) 
acting over and in the plane of a beam’s cross-section. (Fig. 7.20.) 
This can alternatively very loosely be likened to a set of “friction” 
stresses acting over the plane of the cross-section that is preventing 
one part of the beam from sliding transversely past the other.

Based on the same “plane sections’ remaining plane” behavior 
we have previously discussed, it can be derived that shear stress 
magnitudes are not uniform but rather vary parabolically over a 
cross-section’s depth; i.e., τ has its greatest magnitude at the neutral 

Figure 7.19
Similar triangles relate stress magnitudes at 
different levels of beam.

Figure 7.20
Notional set of shear stresses acting over the 
depth of a beam’s cross-section.
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axis level and is equal to zero at the top and bottom edges of the 
beam. (Fig. 7.21.)

This is obviously a very different stress distribution pattern than 
that which describes bending stresses, and one must be cognizant 
of this difference in sizing and shaping a beam. For bending, the 
highest demand on the structural material was found to be at the 
top and bottom of the beam, with zero demand at the neutral axis, 
whereas for shear it is quite the opposite, with the largest demand 
at the level of the neutral axis and zero demand at the top and 
bottom. And since the locations along the length of the beam 
that have maximum bending moment and maximum shear force 
are typically not one and the same, this will lead to quite different 
locations of critical demand. (Fig. 7.22.)

For rectangular beam cross-sections made out of a single 
material, such as standard-sized timber having width b and depth 
d, there exists the following relationship between shear force V 
and maximum shear stress, τmax:

τmax = (3/2)V/bd

For the flanged shape that is common to many steel beams, 
however, where the width of the top and bottom flanges bf is 
much larger than that of the central web tw, the shear stresses end 
up being so much greater in the web than in the flanges that the 
common approximation for such beams is to ignore any contribution 
from the flanges; i.e.,

τmax = V/(tw × d)

In either case, whether for standard timber or steel shapes, the 
maximum shear stress must notionally be kept to within the material’s 
shear capacity in order for the beam to be safely designed; i.e.,

τmax ≤ τultimate

But transverse stresses acting in the plane of the cross-section 
are not the end of the story when it comes to shearing response, 
as is suggested by imagining the following experiment: lay two 
planks on top of each other and let them span freely between 
two supports. With a drill, bore holes through both of the planks, 
not too far from the supports. Insert a pencil into the hole and 
then have a colleague sit on the planks. The pencil will likely 

snap in two as the planks slide horizontally past one another, 
demonstrating the presence of a second set of shearing forces 
in beams that are supplemental to the transverse shear forces 
previously considered.

The presence of such so-called complementary shear stresses 
can be further confirmed by considering the equilibrium of a very 
small element imagined to be cut out of a cantilevered beam. 
There will be acting on the imaginary cut face of such an element 
a transverse shear stress that balances the net external vertical 
load at that point. To maintain vertical equilibrium of the small 
element, there is also a transverse shear stress at the other face of 
the element, acting in the opposite direction. But together these 
transverse stresses create a force pair that left to its own devices 
would rotate the element. To counterbalance this rotation, an equal 
but opposite force pair must be found: this is provided by shear 
stresses that are acting at the top and bottom of the element; i.e., in 
the direction of the length of the beam. (Fig. 7.23.) In the plank–beam 
example of the previous paragraph, it was these complementary 
shear stresses that were the ones trying to break the pencil in two. 
By the necessity of equilibrium, the magnitude and distribution 
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Figure 7.21
Parabolic distribution of relative shear stress 
magnitudes over beam depth.

Figure 7.22
Locations of maximum bending and shear 
stresses in a simply supported beam subject to 
uniformly distributed loading.

Figure 7.23
Equilibrium study for a small 
element within a beam: 
(a) only vertical balance 
established, (b) vertical and 
rotational balance established 
by addition of complementary 
shear stresses. This shows that 
not only vertical shear stresses 
exist in a beam, but also 
horizontal shear stresses. 
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of the complementary set of shear stresses must be identical to 
that which we have established for transverse shear. Perhaps the 
most tangible illustration of the presence of complementary shear 
stresses in beams is provided by the mode of failure sometimes 
observed at the ends of overloaded timber members; i.e., by 
horizontal splitting at mid-depth of the beam at the supports. 
The location and direction of this failure confirms the location 
of maximum shear stress in a simply supported beam, as well as 
wood’s relatively weaker shear stress capacity in the direction of 
the wood fiber grain rather than transverse to it.

Shear resistance is conceptually somewhat more complicated for 
reinforced concrete beams, where the limited capacity of concrete 
subject to shearing action is typically supplemented by a series of 
steel reinforcing bar hoops, called stirrups, that are placed in cross-
sections every so often along a beam’s length. As shear force demand 
would suggest, stirrups typically become more closely spaced the 
closer one gets to a support. But if carefully considered according 
to our discussion so far, this approach would at first seem to be a 
rather puzzling strategy: if anything, the addition of transverse bars 
would only seem to help the shear capacity of the beam at the 
cross-sections where stirrups are being located, and to do nothing 
between them. The detailed consideration and explanation of this 
apparent shortcoming is beyond the objectives of the present 
book, but generally involves conceptualizing shear being carried 
in a reinforced concrete beam by means of the development of a 
zigzagging truss mechanism within the depth of the beam, with 
short diagonal compression struts forming in the concrete that are 
balanced by tension in the transverse stirrups.9

Beam Deflections

To this point we have described material strength constraints for 
a beam; i.e., whether the bending and shear stresses that are 
produced when transverse loads act on a structural member are 
within material capacities. But in designing beams we must also be 
equally concerned with their deflections under load. For example, 
a roof beam that sags too much may not appear safe when seen 
from below, or it may be the cause of cracking of ceiling finishes 
or, more seriously, of water ponding on the roof leading to an 
increased and dangerous load condition. Such psychological and 
practical considerations have led to building codes adopting criteria 

to limit the vertical deflections Δ of beams; e.g., among other limits 
that have to be checked, building codes typically state something 
along the lines of

Δmax ≤ L/(200 to 400)

which is simply limiting transverse beam deflections to some small 
fraction of their spanning distance L.

We commonly say that a beam with only a small downward 
deflection is stiffer than a second beam of equal length that has 
larger downward deformation caused by the same load. The amount 
of beam deflection can reasonably be expected and rigorously 
shown to be inversely dependent on the cross-sectional property of 
moment of inertia, I, that we have just linked to a beam’s bending 
behavior, as well as on the beam’s material stiffness, or modulus 
of elasticity, E. Generally speaking then, when we talk about beam 
deflection stiffness we are referring to the inverse relationship:

Δ = constant/EI

But beam stiffness also depends on length: in the case where 
E and I are equal for two beams but their length varies, we expect 
from common experience that the shortest one will be stiffer under 
loading.

When examined more closely, the rate of variation of stiffness 
according to these different factors is not the same. Consider, for 
example, the equations for maximum deflection for several different 
beam support and loading conditions in Figure 7.24. As can be seen, 
in each one of these cases Δmax is linearly proportional to load (P or 
w), inversely linearly proportional to material and cross-sectional 
stiffnesses (E and I, respectively), but exponentially proportional 
to spanning distance L. Rather emphatically, the relation between 
Δmax and L is to the third or fourth power rather than one to one. 
For example, doubling the length of a simply supported beam 
with uniformly distributed load will cause it to deflect vertically 
16 times as much.

In a beam, therefore, there will be not only bending and shear 
stresses that must be designed for, but also deflections that must 
be checked to ensure that such a structural member is adequately 
designed. In some cases, and especially if long-spanning distances 
become of central interest, the deflection criterion will often be 
the limiting beam-sizing factor. (e.g., Ill. 7.19, 7.20.)
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Figure 7.24
Beam deflection formulae for different loading and support conditions. 
Note that under similar conditions, a beam with two fixed ends 
deflects significantly less (i.e., only 1/5 as much) compared to a simply 
supported beam. Also, cantilevers deflect much more than do beams 
supported at both ends. 

Illustration 7.20
UniFor Headquarters Building.
For Mangiarotti’s so-called U70 constructive system, long-spanning, 
precast concrete beams span side by side in one direction into precast 
concrete beams that are in turn carried on precast columns – all of which 
are configured and integrated with one another into a whole structural 
system of remarkable qualities. 

Illustration 7.19
UniFor Headquarters Building, Turate, Italy (1982).
Long span roof beams are prone to significant deflection, but pre-
stressing of concrete greatly reduces the problem. Compare the beam 
span-to-depth proportions here to those of historical stones seen in 
Section 7.2.

Architect: Studio Mangiarotti. Structural engineer: Vintani Alberto.
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7.8	 The Trouble with Beams, and Shape or 
Material Responses

We have so far established a basic understanding of beam 
behavior and of the factors that control their design, yet this same 
understanding also contributes to furthering an earlier observation: 
that this structural behavior represents a very inefficient utilization of 
material for carrying load. We have already discussed how bending 
moments and shear forces vary over the length of beams, and 
yet how we often only size them for the peak values on these 

diagrams. Compounding this “inefficiency problem” is the linearly 
varying-from-top-to-bottom bending stress distribution diagram 
that we described in the previous section; i.e., at all levels of a 
beam section except at the very top and bottom the material will 
be under-stressed, and at the levels of the beam near the neutral 
axis the material will be especially lightly challenged. 

Despite these shortcomings, beams have obviously been and 
continue to be one of the two most common structural elements (the 
other being the column) so clearly ways to at least partly offset these 
inefficiencies have long been sought. Historically, this “trouble” with 
beams was surely understood from first-hand experience; e.g., the 

Illustration 7.21
Decade of evolution of the cast iron beam from the Industrial Revolution. Metal significantly 
reduces sectional dimensions of the earlier timber beam, but various iron sections shown are 
almost uniform in width, with only small projections at bottom mostly there to support the 
transverse brick arch spans between adjacent beams; also, more material on the tension side of 
the beams helps compensate for the low tension strength of cast iron.

Drawing from Newcomen Society Transactions, vol. 30, after Johnson and Skempton, ca. 1950.
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difference in stiffness and load-carrying capability between a wood 
plank spanning between two supports when laid flat horizontally 
versus standing vertically on its narrow edge is something that 
could readily be observed and experienced. This understanding 
is also evident in the orientation of the stone beam segments of 
the Temple of Aphaia (seen earlier in Ill. 7.8) and the essentially 
vertical-plate shape of cast iron beams developed during the early 
years of the Industrial Revolution. (Ill. 7.21.) 

In order to try and counteract some of the inefficiency of beams, 
we can conceptually think of removing material from the middle 
region of a rectangular beam’s cross-section and moving it to the 
upper and lower parts of the section (Fig. 7.25) where it can be 
more highly stressed in bending and, therefore, be put to better 
use; i.e., the effective distance between the force pair C and T will 
get significantly larger (referring back to Fig. 7.17 and Fig. 7.18) 
which leads to a substantially larger internal resisting moment. 
In this way the “flanged” beam is able to develop much greater 
load-carrying capability for the same amount of material used, 
and this is the logic behind the frequent use of such beam shapes 
in everyday construction, such as with the ever-so-common steel 
I-beam (e.g., Ill. 7.22, see also Ill. 5.29), for instance, or similarly 
shaped manufactured timber beam sections can thus also be 
properly understood.

The way in which this modified cross-sectional shape makes the 
beam more effective is, of course, through the effect of a section’s 
moment of inertia I = ∫y2dA or its associated section modulus S 

Illustration 7.22
“Les Constructeurs” (1950).
I-beam shapes are evident in this painting of construction workers in 
action erecting a building’s steel frame, with material moved to top and 
bottom flanges of the beam cross-sections. Although the circular holes 
evident in one of the beams are not very commonplace, the fact that 
these are depicted at mid-depth of the beam corresponds to the low 
level of bending stresses there. (See also Ill. 7.23.) 

Artist: Fernand Léger (1881–1955).

Illustration 7.23
Mechanized cutting of typical rolled steel members. Low levels of shear 
stress may allow cut halves to be reconfigured and welded together to 
produce circular holes in web of so-called “castellated” beams.

Figure 7.25
Conceptual moving of cross-sectional area away from 
neutral axis of rectangular beam results in an “I-beam” 
configuration, corresponding to rolled steel, precast 
concrete, and built-up timber sections shapes.



Chapter 7: The Beam and the Slab

220

and their use in the previously established flexure formula σmax = 
(Md/2)/I or σmax = M/S. The beneficial effect of the exponential 
factor contained in the definition of I or S for different shapes 
reinforces what has just been discussed; e.g., doubling the depth 
of a rectangular beam will multiply by a factor of eight the moment 
of inertia, and so dramatically reduce the maximum bending stress 
that has to be designed for in the beam. Adding flanges that project 
sideways from the top and bottom of a beam section applies the 
same logic, placing a substantial amount of material as far away 
from the beam neutral axis as possible. The consequence of this 
effect is to reduce necessary beam weights and to make stiffer 

beam cross-sections, thereby permitting significantly longer spans 
to be achieved or else much more load to be carried. In one way or 
another, a very effective means has been found to respond to the 
fundamental shortcoming of the beam’s load-carrying mechanism. 
(e.g., Ill. 7.24, see also Ill. 7.16.)

The strategy of moving material away from the neutral axis in 
order to increase the effective moment of inertia can also be seen 
to have been applied in at least two specialized beam types: the 
box beam and the truss. Long spans and heavy loads on bridge 
structures frequently result in the use of box-beam sections, whereby, 
as the name implies, the middle of the beam section is hollowed out. 

Illustration 7.24
Hemeroscopium House, Madrid, Spain (2008).
Stacked set of especially large precast, pre-stressed concrete beams establish identity and define spaces of 
house. Various cross-sectional shapes express the strategy of moving material away from neutral axis, whether 
flanged (seen end-on at right side and transversely across top) or U-shaped (seen end-on, conveniently 
shaped for a lap-pool) or inverted-U-shaped (running transversely across the middle of the image). 

Architect Ensamble Studio. Technical architect: Javier Cuesta. 
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(Fig. 7.26.) This strategy can also be found in certain long-spanning 
building structures, such as at the Brazilian Museum of Sculpture 
designed by Paulo Mendes da Rocha (Ill. 7.25, 7.26), and in the vertical 
cantilevered walls surrounding many buildings’ elevator cores. (See 
Section 10.4.) The sectional shape in these cases is clearly all about 
placing as much material as possible away from mid-depth so as to 
increase the bending moment capacity of the section. The top and 
bottom flanges of the beam must obviously remain connected to 
each other, however, in order for the shear force still to be carried 
and this is done in the box beam by means of vertical or sloped side 
walls that act as the “web” elements of this large cellular section.

Illustration 7.25
Brazilian Museum of Sculpture, São Paulo, Brazil (1988).
Deep, wide concrete beam spans across, unifies, and shelters exterior 
exhibition space. Multilevel “ground” actually roofs over sunken museum 
interior spaces. This beam is in fact of hollow cross-section – see Ill. 7.26. 

Architect Paulo Mendes da Rocha. Structural engineer: Escritório Técnico Júlio 
Kassoy and Mário Franco Engenhieros.

Figure 7.26
Moment of inertia formulae for some different 
cross-sectional shapes.

Illustration 7.26
Brazilian Museum of Sculpture.
Section through overriding beam reveals hollow, cellular 
configuration to maximize moment of inertia.
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It should also be mentioned in passing that the hollow cross-
sectional shape is particularly adept at resisting one of the primary 
structural actions that we encountered in Chapters 2 and 4, but that 
we haven’t yet seen many examples of: namely, torsion. Torsion in 
a beam may be as a result of eccentric loads being applied to a 
beam section that causes it to want to twist about its longitudinal 
axis (e.g., Fig. 7.27), or perhaps the loads are symmetrical but the 
beam itself curves in plan in three-dimensional space.

The standard I-shape of the steel beam is particularly weak in 
resisting such torsion: the countering internal torsional moment 
necessary for equilibrium (i.e., ΣT = 0; therefore ΣTexternal = ΣTinternal) 
must be provided by the twisting of the flanges and web individually 
about each of their own longitudinal centroidal axes. Shear stresses 
can be envisioned that effectively circulate around the cross-section 
to create the resisting torques; these stresses will act in opposing 
directions across each of the relatively narrow thicknesses of the 
web and flanges. (Fig. 7.28a.) Needless to say, such stresses have 
rather small effective lever arms to work with and the result is that 
torsional stresses in any I-shaped beam easily become quite large 
and the torsional capacity of the member is quickly reached.

In contrast, hollow box-beam sections resist torsion by having 
the whole sectional shape rotate about a single common central 
axis. The shear stresses associated with this behavior are almost 
constant in magnitude through the thickness of the cell walls, but 
more importantly these circulate in a single direction around the 

T

T

Figure 7.27
Example of torsion loads applied to a beam: one-sided 
cantilevering projections with loads P at their ends tend 
to cause twisting along supporting beam axis. An I-beam 
or H-beam as shown here has little torsional stiffness and 
will be expected to twist significantly.

Figure 7.28
Torsional resistance mechanisms for (a) I-shape and (b) hollow-
cell beam sections.
In (a) beam resists torsion by producing only linearly varying 
shear stresses acting across plate thicknesses, whereas in (b) 
a much larger torsional resistance is produced by additional 
uniform shear stresses that circulate about the cell and act 
about its center. A closed cross-section is therefore much 
better to resist torsion than an open cross-section.
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whole of the hollow cell. (Fig. 7.28b.) Such stresses thus have a 
much larger lever arm to work with than in the I-shape, and the 
result is a sectional type that is particularly appropriate for resisting 
torsional loads on beams. Small or large torques are regularly 
handled by the use of round, square, rectangular, and trapezoidal 
hollow-section structural members. An example of this can be 
seen in the circular steel tube that is supporting from one side the 
walkway of the Ypsilon Footbridge (Ill. 7.27) in Drammen, Norway, 
a structure that was more fully described in Section 6.5.

As has been mentioned, a second example of extrapolating from 
the beneficial principle of moving material away from a beam’s neutral 
axis can be found in the seemingly very different structural form of 
the truss. Given the frequent presence of trusses in structures, we 
will spend considerable time in Chapter 9 looking at this structural 
type in much more detail. But one way of introducing them in the 
current context is to think of a truss as starting out as a beam with 
large top and bottom flanges but in which a series of triangular 
holes have been cut out of the web. (Fig. 7.29.) Conceptually 
this can be thought of as similar to moving material away from a 
beam’s neutral axis, even if in the case of the truss the resulting 
visual effect is quite different and distinctive. The truss pushes this 
strategy to an extreme, whereby almost nothing is left of the web – 
only a diagonal member to carry shear – and the section is able to 
resist relatively large bending moments due to the relatively large 
distance (almost the full sectional depth) between the tension and 

compression force couple in the top and bottom chords. Whether 
this concept is applied to small-scale members in order to maximize 
their openness and transparency or to heroic mega-structures that 
span enormous distances, we can see that the basic strategy for 
why a truss is shaped the way it is is fundamentally linked to the 
beam behavior mechanism for carrying load.

Finally, in concluding this section entitled the “trouble with 
beams,” we must address a somewhat different problem: that 
posed by the fact that not all materials have the same capacity 
to carry load and, in particular, that some materials behave quite 
differently whether they are subject to tension or compression. Most 
notably among these are stone and concrete, both of which have 

Figure 7.29
Beam with triangular holes cut out of it can be 
conceived of as prototypical truss.

Illustration 7.27
Ypsilon Footbridge, Drammen, 
Norway (2008).
Section of asymmetrical bridge 
deck at north end; single 
round tubular beam needed 
to resist torsion caused by 
eccentric walkway loads and 
stay-cable anchorage. See also 
Section 6.5 for other images 
of bridge.

Architect: Arne Eggen Arkitekter. 
Structural engineer: Knut 
Gjerding-Smith.
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essentially negligible capacity to resist tension stresses (Chapter 
5). This widely known fact ominously undermines what we have 
established so far as the basis for describing how beams work; 
i.e., that stresses vary linearly from the top to the bottom of a 
beam and that this results in counterbalancing triangular stress 
wedges that together create the resisting moment needed for 
equilibrium. When a stone beam is subject to very light loading, 
exactly this behavior occurs and loads can be carried in “pure” 
flexure as we have discussed so far. But a critical change occurs 
when the tension stresses at the bottom of the beam reach the 
level of stone’s relatively small tensile capacity. At that point the 
stone cracks and an abrupt failure of the beam structure will occur. 
Given stone’s very significant self-weight to begin with, the spans 

that are possible in stone therefore typically remain very small. 
Even so, stone beams must be of disproportionately large depth 
(in order to compensate for their weakness in tension by generating 
a large enough moment of inertia so as to produce very small 
bending stresses) – all of which brings us back to a convincing 
explanation for the beam dimensions that we saw at Stonehenge, 
the Valley Temple of Chefren, and the Temple of Aphaia in Section 
7.2 near the start of this chapter and, more broadly and without 
overstatement, to an understanding of the fundamental proportions 
of beam elements in classical architecture.

Dealing with this critical weakness of stone and similar materials 
in tension (and thus in bending) has been resolved over time by 
strategically reinforcing them with another material – usually a metal 

Illustration 7.28
Metal clamps and bars have long 
surreptitiously held together stone 
structures – in this case that of the Louvre 
Museum in Paris, France, designed by the 
architect Claude Perrault around 1670.

Drawing by Jean Rondelet (1743–1829), 
French architect, constructor, and theorist; 
Traité théorique et pratique de l’art de bâtir, 
pl. 150.

Illustration 7.29
Louvre Museum detail.
Corresponding exterior view of stonework, 
whose surfaces are delicately carved and 
decorated. 
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such as iron and later steel – that is well capable of carrying tensile 
stress. In fact, it is quite remarkable to realize just how extensively 
metal reinforcing has been used surreptitiously in what we have 
often presumed to be purely stone structures. (e.g., Ill. 7.28, 7.29.)

This discussion quickly leads us to examine just how the modern 
reinforced concrete beam works to carry load. To start with, and 
for very light loads, it functions like any other beam as previously 
described. But almost immediately, and for any significant applied 
load, cracks will develop in the lower part of the beam where tension 
needs to be present in order to develop the resisting couple – and 
those cracks will tend to open up. Effectively preventing them 
from doing so, however, are steel reinforcing bars placed near 
the bottom of the concrete section (or near the top in a cantilever 
beam because of the reversal of internal moment direction). (e.g., 
Ill. 7.30.) The stress diagram for the reinforced concrete beam, 
therefore, looks different from what we have seen so far. There are 
still compression stresses in the compression portion of the beam 
but now these are balanced by much higher magnitude tension 
stresses that are confined to acting only over the cross-sectional 
area of the steel reinforcing bars; no stresses, on the other hand, will 
be present in the cracked, tension part of the concrete. (Fig. 7.30.) 
By multiplying the stresses that exist in the compressive concrete 
and the tensile steel by the sectional areas corresponding to these 
parts, the situation can be seen to thereby be converted back into 
the expected force couple needed to produce the essential internal 
resisting bending moment.

Illustration 7.30
BIM drawing showing typical 
placement of steel reinforcing bars in 
reinforced concrete beam.

Drawing source: www.buildinghow.com 

C
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σ

Figure 7.30
Typical relationship between strains and stresses in reinforced concrete 
beams, as produced by differing material properties in tension (upper 
right quadrant of σ–ε graph) and compression (lower left). Steel is well 
able to resist both tension and compression, whereas concrete resists 
only compression stresses. 

https://www.buildinghow.com
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So concrete on its own, like stone and masonry before it, is 
virtually useless as a contemporary material for beams, but by 
combining it with steel the composite material of reinforced 
concrete can be made to be highly effective in resisting flexure, 
as its omnipresence in building structures around the world today 
would suggest. And unlike typical steel and timber sections that 
more likely than not will have the same section from one end of the 
beam to the other based on maximum moment demand occurring 
within the span, the number and size of steel bars in a reinforced 
concrete beam can be varied along the member length according 
to varying bending moment demand, and this is regularly done as 
standard building practice. The result produces a beam structure 
that more efficiently varies in strength along its length – even 
though this attribute will not typically be visible to the naked eye 
as the reinforcing bars will have been cast within the subsequently 
hardened concrete.

Having considered all this, and as commonly used as is this 
type of reinforced concrete beam in construction, it is important 
to recognize that we have not completely resolved “the problem” 
of this beam type. For although we have ingeniously taken care 
of the need for tension capacity with reinforcing, we are left with 
a situation where much of the concrete of the beam (i.e., the part 
that is not in compression) is effectively useless for helping to carry 

the load and is instead simply dead weight having to be brought 
along for the ride. This is certainly not a terribly efficient state of 
affairs, and it leaves the reinforced concrete beam vulnerable to 
being limited to spanning relatively short distances.

We have previously encountered the general technique by 
which this problem can be resolved: i.e., by pre-stressing, or pre-
loading, a structure in anticipation of actual loading so that the 
final condition is advantaged. (See Section 6.6 for how this concept 
was introduced for maintaining cables in tension.) In the case of 
the concrete beam the basic problem is to find a way to keep the 
whole of the beam material in compression rather than allowing it 
to crack because of tension – and the classic solution is to pre-stress 
the entire beam into a state of sufficient axial pre-compression 
so that no part will ever go into tension when bending stresses 
inevitably develop.

Although there are many different ways and sequences of 
construction to achieve this objective, in fundamental concept they 
are all alike. Before transverse loads are applied to the concrete 
beam structure, there is a pre-stressing steel rod or cable that is 
stretched tightly and anchored at the two ends of the beam. The 
anchorages push inward on the beam ends but in opposite directions, 
thus putting the beam into a column-like state of compression 
along its longitudinal axis. Then, when transverse loads are applied 

Figure 7.31
States of stress in representative pre-stressed 
concrete beam.
Top: uniform compression in concrete due 
to centered pre-stressing strand anchored 
at ends. Middle: tension-to-compression 
variation due to transverse loads only. 
Bottom: combination of both.
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to the beam and bending stresses develop, rather than working 
off a state of zero stress as in the case of the conventional beam, 
these stresses are instead added to and subtracted from the initial 
state of pre-compression axial stress. (Fig. 7.31, e.g., Ill. 7.31, 
7.32) If this has all been anticipated correctly the end result will 
be one where the net state of stress will still be one that varies 
from top to bottom of the section but now these stresses will all 
be compressive – meaning that the usual tension reinforcing for 
bending is conceptually no longer essential.

A further refinement to this basic strategy occurs if the pre-
stressing strand is placed in the lower part of the beam, as now 
the beam can be pre-stressed into both pre-compression and 
into upward pre-bending (otherwise known as camber) that is 
opposite to what is anticipated to be going to happen from 
the subsequent downward transverse loading of the beam. This 
strategy is employed repeatedly in concrete structures in order 
to carry especially heavy loads, or to span long distances, or to 
reduce the depth of the concrete beam that is needed, or all 
of these together, as the case may warrant and according to 
design intentions. And as a further refinement still, placing a 
pre-stressing strand in a curved line in response to the varying 
bending moment diagram along the length of the beam further 
increases the effectiveness of the pre-stress.

Illustration 7.31
Richards Medical Research Laboratories, Philadelphia, PA, USA (1961).
Stressing of post-tensioning strands threaded through precast concrete beams. 

Architect: Louis Kahn. Structural engineer: August Komendant.

Illustration 7.32
Richards Medical Research Laboratories.
Open spaces and double-cantilevered corners at each floor level that 
are made possible by the long span pre-stressed beams, as revealed in 
photo taken during construction before building was enclosed. 
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Illustration 7.33
Museum of Anthropology, University of British Columbia, 
Vancouver, BC, Canada (1976).
Each inverted-U-shaped precast concrete beam spans 
over two columns, creating portals of varying widths and 
heights. Central span of each beam runs continuously 
into its two cantilevered ends. 

Architect: Arthur Erickson. Structural engineer: Bogue Babicki 
Associates Ltd.

Illustration 7.34
UBC Museum of Anthropology.
Progressively taller portal frames open up views to surrounding 
landscape, extending spatial sense of main gallery space outward. 
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7.9	 The Virtues of Continuity

Until this point we have mostly been talking about beams that 
are either simply supported at their two ends or else cantilevered 
from one of them. Now we shall look at the behavior of a beam 
that combines these aspects by spanning between two supports 
but that also has overhanging ends; i.e., a beam that runs in a 
continuous fashion over its supporting structural elements, as do 
those of the great portals of the Museum of Anthropology at the 
University of British Columbia (Ill. 7.33, 7.34) designed by Arthur 
Erickson (1924–2009).

When a uniformly distributed load is applied to a continuous 
beam we can anticipate its deformations. (Fig. 7.32.) Assuming 
that it is long enough we expect the middle section between the 
supports to sag downward, with the usual tension stresses developing 
along the bottom side and compression stresses at the top. The 
overhanging ends, however, will also tend to deflect downward in 
the way that cantilevers do, with tension developing along the top 
side and compression on the bottom. We have until now considered 
the behaviors of such beam segments independently of each other, 
but here the critical difference is that they are connected as one 
continuous structural element – so whereas the ends of a simply 
supported beam are completely free to rotate into the span, such 
rotation now is countered by the opposing tendency for the beam 
to rotate oppositely into the cantilevering ends.

One of the obvious beneficial effects of this situation is the 
tendency to significantly reduce the maximum downward deflection 
of a simply supported beam, as the reduction and even elimination 
of any rotation at the supports will necessarily “lift up” the original 
sagging tendency in the span. The exact amount by which it does 
so will be dependent on the loads’ location and magnitude as well 
as on the relative lengths of the different segments of the beam. 
In fact, taken to an extreme, if the load is especially large on the 
overhanging ends and the lengths of these ends are quite significant 
in relation to that of the middle span, the beam can even be lifted 
up in the middle so that it has tension along its top side over the 
whole length of the beam.

But the latter case is certainly highly atypical and is mentioned 
only to make a point; let us go back instead to look a little more 
comprehensively at the behavior of a more typically proportioned 

continuous beam having a uniformly distributed load w applied 
to it. For example, the dimensions and the loads acting on such a 
beam and the balancing upward reactions at the two supports can 
be calculated by what are now familiar methods. We can also then 
determine the shear forces and bending moments at various key 
points along the beam using exactly the same equilibrium techniques 
that we have described in Sections 7.5 and 7.7 in order to draw the 
corresponding V and M diagrams that reflect the variations of these 
quantities along the length of the continuous beam. (Fig. 7.33.)

Some important observations ensue from this process, mostly 
with respect to the beam’s bending moment diagram: moments 
associated with tension at the top of the beam develop as expected 
at the two ends in the cantilevered segments, but these continue 
in the beam past the support and into the central span; moments 
that produce tension at the bottom develop in the middle of the 
span, but the portion of the beam with such moments is shorter 
than the full span between supports. In fact, the total mid-span 
moment needing to be designed for in order to meet overall statics 
requirements for the span, M = wL2/8, can be seen in the continuous 
beam to be shared by the numerically smaller opposite direction 
moment peaks in the beam at the supports and at mid-span. The 
conclusion that emerges from this last observation is that beams 
that have some continuity over their supports can be designed 

Figure 7.32
Deflected shape of single-span continuous beam 
with projecting ends; “inward” rotation tendency 
in central span is countered by opposing rotations 
in cantilevering segments.

Figure 7.33
Shear force and bending moment diagrams for single-span 
continuous beam subject to uniform loading. Peak values of 
bending moment in the continuous beam are reduced from 
the simple span condition without end projections; i.e., less 
than wL2/8.
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for smaller moments than would be necessary if the span were of 
the simply supported type and that, therefore, such beams can 
span longer distances, carry greater loads or, conversely, the beam 
depth can be reduced to less than would otherwise be necessary. 
A particular case of interest here is where the peak moments over 
the supports have the same magnitude as the moment at mid-
span, making a beam of constant depth as efficient as possible. 
Calculations show that this will happen if a beam with a uniformly 
distributed load on it has a ratio of side-span length to main-span 
length of about 1:3:1. 

Extending the benefits of this strategy further still, we will now 
look at a beam that spans continuously over three or more supports, 
such as is the case for the floor and roof edge beams at Mies van 
der Rohe’s Farnsworth House. (Ill. 7.35.) 

Notwithstanding the exceptional qualities of the Farnsworth 
House, having beams run continuously over supports is in fact not 
an atypical situation: in fact, for ease and economy of construction 
alone it is not unusual to let a beam run over several supporting 
columns without cutting and splicing it. A continuous beam of many 
equal spans supporting a uniformly distributed load will deflect in 
an undulating up-and-down fashion. (Fig. 7.34.) Once again, we 
can anticipate and observe a sagging profile occurring between 
the supports whereas over these the beam will have an oppositely 
“hogging” profile owing to the fact that the load to one side of 
a support will be working against that on the other. As a result 
of the symmetry of the situation in this case of equal spans, the 
beam will be effectively prevented from rotating one way or the 
other right over each interior support – which we should recognize 

Illustration 7.35
Farnsworth House, Plano, IL, USA (1951).
Multi-span continuous floor and roof beams supported by regularly spaced columns.

Architect: Ludwig Mies van der Rohe. Collaborating architects: Myron Goldsmith, William 
Dunlap, Gane Summers.
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as effectively mimicking fixed-end support conditions. Thus, the 
majority of the interior spans of such a continuous beam can, from 
the point of view of statical equivalency, be considered as a series 
of beams with fixed ends.10 A comparison between the responses 
of beams with both ends fixed versus one with simple supports 
shows that the greatest bending moment needing to be designed 
for will be 50 percent larger in the simple beam and the deflection 
deformation five times as much. (Fig. 7.35.) The advantages of 
making beams continuous thus quickly become quite obvious.11

But all is not necessarily advantageous with continuous 
construction. Consider once again the condition of a simply 
supported beam, but this time one having a column support 
at one end that is set on an unstable foundation. If this end at 
some point in the life of the building sinks because of the settling 
of the ground, the beam will be able to rotate because of the 
simple support conditions and easily reposition itself in a new 
state of equilibrium. (Fig. 7.36a.) Nothing will have changed in 
terms of the bending demand on and behavior of the beam as it 
will now be slightly sloped but otherwise undeformed as a result 
of the ground settlement. If the same thing happens to a multi-
span continuous beam, however, the effectively fixed nature of 
the connections will cause the beam to have to bend in order to 
assume its new elevation at the settled support. (Fig. 7.36b.) This 
bending will cause additional internal moments to be introduced 
into the beam that will be supplemental to those resulting from 
the original gravitational dead and live loads. Determining just 
how large these supplemental moments are, however, is not a 
simple matter as the continuous beam is statically indeterminate 
– a category of structure that can be described as involving more 
unknown quantities to be solved for than there are equations of 
equilibrium available to do it. We would also need to account for 
the beam’s deflection in order to calculate the forces and moments, 
and this is a very laborious process. Fortunately, today we can rely 
on computer structural analysis programs to quickly and accurately 
predict the behavior of such structures; unfortunately, this relative 

Figure 7.34
Multi-span continuous beam; general form of deflected 
shape, shear force, and bending moment diagrams.

Figure 7.36
Effects of differential support settlement: (a) ends of simply 
supported beam rotate freely, allowing beam to be inclined without 
having to flex, (b) for fixed-ended beam, opposite is true.

Figure 7.35
Comparison of maximum deflection and bending moment responses 
for simply supported vs. fixed-ended beams. (See also Fig. 7.24.)
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easing of the calculation difficulty does not diminish the negative 
effects of foundation settlement in producing additional stresses 
in a continuous structure.

To conclude this section, we will look briefly at a particularly 
ingenious solution to this problem of the statical indeterminacy 
of continuous beams that was developed well before computers 
were available. This technique was especially devised to reap the 
benefits of continuous beam construction for multi-pier bridges 
while anticipating the negative effects caused by the frequent 
settling of such supports. This double objective was the basis for a 
very particular type of continuous beam developed by the German 
engineer Heinrich Gerber (1832–1912); the eponymous Gerber 
beams are created by introducing hinges in alternating spans of a 
continuous beam structure. (Fig. 7.37.) 

Gerber beams can thus be understood and treated as follows: 
they are statically determinate beams with cantilevering side spans 
(such as we examined at the start of this section) that are connected 

by simply supported beam segments spanning between the adjacent 
cantilevered ends, thus placing upon these ends only vertical loads 
(for evident reasons, these are often termed “suspended” spans). 
The most famous illustration of these basic Gerber beam principles, 
applied to the trusses of the mega-scale Firth of Forth Bridge, is 
surely that of three human structural “actors,” in which the tension 
and compression forces acting on/in their various body parts can 
easily be intuited. (Ill. 7.36.) Many years later, the advantages 
of this clever strategy remain relevant, whether applied to the 
appropriately named “gerberettes” and long-spanning trusses 
of the Pompidou Center (see Ill. 9.20) or to the clever reuse of a 
large timber beam for the renovation of the home of one of the 
present authors. (Ill. 7.37.)

Figure 7.37
Multi-span Gerber beam configuration alternates double-cantilever segments with 
simple spans that are said to be “suspended” between ends of cantilevers.

Illustration 7.36
Forth Railway Bridge, near 
Edinburgh, Scotland, UK 
(1890). 
Famous example of Gerber 
beam construction – and 
expression of structural 
actions by human analogy.

Designers: Sir Benjamin Baker 
and Allan Stewart.
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Illustration 7.37
Eggen House, Oslo, Norway (1985).
Gerber construction ensures zero bending moment at point 
where reused timber beam is spliced together; also reduces 
magnitude of maximum moment to be designed for when 
UDL is applied to whole length of beam. Deflection diagram 
(top), bending moment diagram (bottom).

Architect: Arne Eggen Arkitekter.

7.10	 Two-Way Action and Beam Grids

Other than in the introductory section, the beams that we have 
been concerned with thus far in this chapter have been structural 
elements that carry loads in one direction from one point of support 
to another. A parallel series of such one-way beams, spaced apart at 
regular intervals, is often used to support a floor or roof, and these 
beams are in turn typically supported by transverse structures of 
some sort, whether larger beams (often termed girders) or trusses 
or lines of closely spaced columns or even solid walls. (Fig. 7.38a.) 
There is a clear hierarchy of structural elements in such a system: 
loads can be considered to be carried by the floor surface in the 
short direction between parallel beams, which then in turn carry 
the loads to their own supporting structures which, if these are 
also beams or trusses, span in one-way fashion between their 
own supporting elements, etc. In order to make the most of this 
system to support a rectangular-in-plan surface area, the parallel 
series of beams will typically be oriented to span in the shortest 
direction between lines of support since, as we have seen, beams’ 
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load-bearing capacity is inversely proportional to the square of the 
span. Visually, such an arrangement of beams naturally lends a 
certain directional orientation to the space directly below it. (e.g., 
Ill. 7.38, see also Ill. 7.19, 7.20.)

Quite a different arrangement of beams is sometimes used (and 
contrasting visual effects obtained) when spanning over a space 
that is nearly square, where support is provided equally around the 
perimeter or in the four corners. In this situation, it may be found 
that two sets of parallel beams are used, one running transversely 
to and intersecting with the other, thus forming what is typically 
called a regular beam grid.12 (Fig. 7.38b.) The basic notion here 
is that the load to be carried is shared simultaneously by the 
two sets of beams, producing what is logically termed a two-way 
structure, and thus essentially putting only half the demand on 
each individual beam as would be the case if it were a one-way 
system. A beam grid having a two-way structure also could be 
considered for more distinctly rectangular spaces by accounting 
for the differences in bending stiffness in the two directions, but 
the span difference should not be too large for this configuration 
to be effective; a span length ratio of 1:1.5 is typically considered 
to be the maximum. The obvious advantage of using a beam grid 

is to enable greater load-bearing capacity and/or to have smaller 
deflections for a set maximum beam depth or, conversely, to 
have a shallower set of beams than would otherwise be possible. 
Visually, the effect of the beam grid is to render the space non-
directional, as can be observed for the classically orthogonal steel 
beam grid roof of the Neue Nationalgallerie in Berlin by Mies van 
der Rohe (Ill. 7.39) or the reinforced concrete equivalent of the 
long-spanning roof of the Faculty of Architecture and Urbanism 
Building in São Paulo. (Ill. 7.40.)

While the general beneficial effect of sharing load between 
intersecting sets of beams in a grid is clear, other aspects of their 
interaction are not so obvious without a bit more discussion. 
Consider, for example, a load that is applied to an intersection 
point of the grid. Because of the interconnectedness of all the 
members, the gridded surface will deform into an overall upwardly 
curved “dished” shape, resulting in the vertical deflection and 
bending of many beams of the structure, not just the two that 
intersect directly under the load. (Fig. 7.39a.) A beam grid is thus 
many times redundant and statically indeterminate, while loads are 
carried with great efficiency because of this sharing of responsibility. 
Furthermore, if all the beam connections are rigid, the surface 

Figure 7.38
Differing structural arrangements and visual patterns for (a) one-way beam system, (b) two-way beam grid.

two-way beam grid system

one-way beam system

Illustration 7.38
Casa El Mirador, Valle de Bravo, Mexico (2013).
One-way spanning system of parallel wooden 
beams, supported at their ends by much higher 
capacity flanged steel beams. The one-way 
system gives a certain texture, rustic character, 
and sense of orientation to the space of this 
horse stable – one that is unusually situated 
directly above the owner’s residence. (See also 
Ill. 10.9.)

Architect: CC Arquitectos. Structural engineer: 
Miguel Campero, Jorge Soto, Pedro de la Fuente. 

two-way beam grid systemone-way beam system
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Illustration 7.39
Neue Nationalgallerie, Berlin, Germany (1968).
Mies van der Rohe built several famous projects in which the two-way grid of beams is the point of 
departure for elegant roof structures over long spans.

Architect: Ludwig Mies van der Rohe. Structural engineer: Ingenieurbüro Prof. Dr.-Ing. H. Dienst und G. Richter.

Illustration 7.40
Faculty of Architecture and Urbanism Building, University of São Paulo, São Paulo, Brazil (1968).
Disparate parts of architecture school are gathered around a large interior column-free space that is 
covered by a two-way concrete beam grid, unifying the sense of space while also admitting natural 
light through the grid openings. (See also Ill. 5.20.)

Architect: João Batista Vilanova Artigas and Carlos Cascadi. Structural engineer: Escritorio Figueiredo Ferraz.



Chapter 7: The Beam and the Slab

236

Illustration 7.41
Telcel Theater, Mexico City, Mexico (2012). 
Distinctive two-way grid of angled steel plate beams 
acts as an urban marker for the location of a completely 
underground theater; also acts as a sun-shading canopy for 
the entrance. 

Architect: Ensamble Studio. Structural engineer: Colinas de Buen.

Illustration 7.42
Telcel Theater. 
Section drawing showing relationship of beam grid to the underground theater. 

Figure 7.39
Deformation depictions for two-way beam grid 
under single point load suggest (a) sharing of 
load among several beams in both directions, (b) 
simultaneous bending and torsional response of all 
beam segments of system. This shows the response 
if all beam connections are rigid, when torsion also 
becomes involved, which will increase the stiffness 
of the grid compared to a grid having hinged beam 
connections, thereby resulting in less deformation 
and/or larger capacity for load bearing. 
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deformation will cause virtually all of the beams to be subject 
both to bending action caused by their vertical defl ection and to 
torsional behavior due to their simultaneously having to twist about 
their individual longitudinal axes. (Fig. 7.39b.) If these beams are 
box-like and have hollow cross-sections, they will have substantial 
torsional stiffness themselves, and this will even further contribute 
to the sharing-of-load-carrying mechanisms and the high-degree 
of statical indeterminacy of the beam grid and, therefore, to its 
relatively remarkable load-carrying and spanning capabilities. 
Finally, whether the vertically supported edges of the grid are 
prevented from rotating or twisting (perhaps by having the grid 
run continuously or cantilever over the supports) or should instead 
be considered hinged will add yet another layer to the whole 
complexity of beam grid behavior – while also providing yet more 
opportunity for magnifying its structural advantages.

Of course, all this is to say nothing about the possibility of varying 
the beam grid itself; i.e., the grid need not be orthogonal, as we shall 
see shortly, nor do the beams themselves need to be of the typical 
variety. It stands to reason that a grid composed of intersecting 
box beams would be extremely stiff, for example, because of the 
high degree of both bending and torsional stiffness; of course, 
connecting such intersecting hollow box-beam grid members is 
not an easy task, and so is rarely done. Another example of atypical 
beams in a grid are the variously angled steel plates of the elevated 
canopy for the underground Telcel Theater in Mexico City, which 
not only serves as a distinctive place marker within a visually busy 
urban environment, but also as an effective sun-shading device 

for covering of the entrance to the otherwise unable-to-be-seen 
cultural spaces. (Ill. 7.41, 7.42.) 

Another distinctive beam grid made of thin steel plates was 
the temporary Serpentine Pavilion of 2002 designed by architect 
Toyo Ito. (Ill. 7.43.) Unlike for the preceding example, however, the 
plates were all oriented vertically in this case. But instead it was the 
plan geometry of the grid that was highly irregular (or seemingly 
so, as there was indeed a graphic logic to the development of 
the geometry). Here the vertical steel plate segments (with little 
torsional stiffness) intersect to form seemingly arbitrary triangular 
and trapezoidal shapes of various sizes, and these are either glazed 
or made solid by covering panels, resulting in a lively exterior 
appearance and interior lighting experience, with the gridded 
structure acting almost as large-scale foliage to cover the café 
in the park. Of course, notable as well here is that the beam grid 
does not stop at the building perimeter but rather folds down to 
become all four sidewalls of the structure, thus providing structural 
continuity for the roof grid all around its edges, to say nothing 
of the visual uniqueness and formal unity that is simultaneously 
achieved by this means. 

And in one fi nal example of the richness of possible beam grid 
variations, we will briefl y examine another Serpentine Pavilion, this 
one built in 2005 and designed by the architects Álvaro Siza and 
Eduardo Souto de Mora together with the engineer Cecil Balmond 
of Arup. (Ill. 7.44.) The architects’ conceptual sketches formed the 
basis for a project that ended up highlighting the form-making 
possibilities of contemporary computing and robotic manufacturing 

illustration 7.43
Serpentine Gallery Pavilion, London, UK (2002). Irregular, skewed, 
multi-directional beam grid made of steel plates, with resulting 
triangular and trapezoidal shapes intermittently covered, glazed, or left 
open. At edges, system folds over in continuous fashion into similar 
side “walls.”

Architect: Toyo Ito Associates. Structural engineer: Arup.

illustration 7.44
Serpentine Gallery Pavilion, London, UK (2005). 
Remarkable interior space created by irregularly curved two-way grid of 
short plywood elements.

Architect: Álvaro Siza and Eduardo Souto de Mora. Structural engineer: Cecil 
Balmond of Arup.



Chapter 7: The Beam and the Slab

238

technologies. Covering some 400m2 (4306ft2), the roof surface was 
free of interior columns and shaped into an undulating, alignment-
offset grid of plywood beams. Actually, upon closer examination 
it can be seen that the entire structure was built up from 427 
relatively short and thin beam segments, each one having a different 
length and inclination and linked to the adjacent pieces using 
mortice-and-tenon connections. The ever-changing geometry of the 
500mm (20in) deep, 39mm (1.5in) thick spruce plywood segments 
was digitally defined by Arup into a format that could directly be 
communicated to the manufacturer, the German construction firm 
Finnforest Mark. Using robotic technology, all of these differently 
shaped elements could thereby be produced with precision within 
a rather remarkable two-week turn-around period. The pavilion 
was clad with 248 translucent polycarbonate panels, each one 
of which incorporated a solar-powered fixture. The requirements 
and the simple open-space program for this Serpentine Pavilion 
proved to be well suited to beam-grid experimentation in combining 
contemporary architectural design with innovations in structural 
analysis and material fabrication techniques.

7.11	From Lingotto to Sendaï  
– Beam Articulations

Returning to Torino in 1915 after a few trips to the United States, the 
FIAT car company director decided to construct a new American-style 
factory in the city’s Lingotto area in which the entire car-building 
process would take place in a single 507m (1663ft) long structure. 
(Ill. 7.45.) The building was designed so that the materials and parts 
were brought in at the ground floor level and the cars were then 
put together on giant assembly lines that went up through the five 
floors. Two spiral ramps at the north and south ends of the workshops 
led to a test track for the cars on the roof. Old photographs of cars 
racing around on the banked turns of the roof-top track helped to 
make the Lingotto factory an icon of industrial modernism; indeed, 
the structure was hailed by Le Corbusier (1887–1965) in his 1920 
manifesto “Vers une Architecture” as a benchmark of modern 
building technology. The project was designed by the engineer 
Giacomo Mattè-Trucco (1869–1934) in close collaboration with 
the founder of FIAT, Giovanni Agnelli, and it was among the first 
buildings in Italy to introduce reinforced concrete. The design 

Illustration 7.45
FIAT Lingotto Factory, Turin, Italy (1926).
Rural historical setting contrasts sharply with present urban situation. Monumental scale of overall 
building is nonetheless apparent, as is basic structural grid module of concrete columns and beams.

Building designer and structural engineer: Giacomo Mattè-Trucco. Image from “il Lingotto Storia e Guida” 
by Umberto Allemandi.
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of the ramps, however, is credited to the architect and engineer 
Vittorio Bonadè Bottino (1889–1979). Although car production at 
the facility ceased in 1982, Renzo Piano and other architects have 
since then given new life to the Lingotto Factory by reinventing it 
as a contemporary civic building having multiple program elements, 
including a gallery, concert hall, theater, convention center, and hotel.

The plan layout of the original building was based on a regular 
6m by 6m (20ft by 20ft) grid module and essentially consisted of 
two longitudinal 24m (79ft) thick bar buildings separated by a series 
of open courtyards. Most of the building was built as a “pure,” 
straightforward (and very long) rectilinear structural frame with 
columns, beams, and slabs made out of cast-in-place reinforced 
concrete. (Ill. 7.46.) With a combination of large ceiling heights and 
almost-all-glazed façades, daylight entered freely into the assembly 
halls from the four long building faces, and the work spaces proved 
to possess considerable architectonic qualities and potential, as 
their current reincarnations to serve other purposes attests. 

The south ramp in particular, despite being completely encased in 
the overall rectangular structure, is, of its own right, also considered 
to be a masterpiece in revealing the remarkable potential of 
reinforced concrete as a relatively “moldable” material. (Ill. 7.47.) 
The upwardly ascending ramp revolves around the perimeter of an 
open well of semicircular shape in plan and a system of concrete ribs 
that support the ramp radiate out from a central column toward the 
outer perimeter beam; the arrangement creates quite a remarkable 
and memorable space.

The structure of the spiraling ramp at the Lingotto factory 
building anticipates the achievements of the Italian engineer 
Pier Luigi Nervi (1891–1979) some 30 years later. Nervi, one of 
the last century’s great designers, was a practical visionary who 
could both design and do the calculations for his own structures. 
And as he sometimes found no one capable of building what he 
had designed he formed his own contracting firm, bidding on his 
very own designs and executing them according to his particular 
methods. In this way, Nervi introduced a new kind of prefabrication 
system based on using a series of precast concrete units in the 
shape of inverted pans as formwork, then nesting reinforcing bars 
within the voids created by these and finally pouring concrete 
over the whole ensemble to make the system act as a unit. By thus 
eliminating traditional wooden forms, the restrictions that straight 
planks had previously placed on the shaping of reinforced concrete 
structures were removed. Nervi further refined his methods in a 

Illustration 7.46
FIAT Lingotto Factory.
Ceiling of renovated interior space displays regular, rectangular 
geometry of typical reinforced concrete slab and beam floor system.

Illustration 7.47
FIAT Lingotto Factory.
South car ramp exhibits radial floor beam system, accenting curve 
and contrasting with rest of building.

Architect and structural engineer for ramp: Vittorio Bonadè Bottino.
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variety of projects in the 1950s and 1960s, and an interesting 
example in the current context of beam systems is a portion of 
the Palace of Labour that he designed and built in Turin in 1961. 
Based on a column module of 5m by 5m (16ft by 16ft), a system 
of beam ribs was created for the floor that follows the isostatic 
lines of stress for a two-way concrete slab, resulting in a beautifully 
organic pattern that mimics a scientific analysis of its structural 
behavior.13 (Ill. 7.48.)

An unusual variation on this beam grid theme was accomplished in 
2001 for the Sendaï Mediateque by architect Toyo Ito and structural 
engineer Mutsuro Sasaki. In this case a flat floor-framing system 
needed to be devised in order to span the exceptional 20m (66ft) 
distances between 13 sets of lattice tube-columns (see Section 8.6, 
Ill. 8.20e). With such long spans and the large gravity and seismic 
live loads being dictated by the building’s program and location, a 
reinforced concrete slab system would have become much too thick 
and heavy; instead, the solution was to go to a unique sandwich 
steel plate system. (Ill. 7.49.) Starting with an orthogonal two-way 
steel beam grid of 1m (3.3ft) spacing in both directions having 
400mm (16in) depth, this grid gets modified in the zones around 
the tube-columns in accordance with the changing lines of stress 
that are produced near the vertical supports; the whole of this 
vertical plate system is then covered and connected both top and 
bottom to flat steel plates in order to give the system the large 
bending moment resistance that is needed. Moreover, the top plate 
is covered with a 70mm (2.8in) concrete slab layer that is made to 

work compositely with the steel below by means of the provision 
of shear stud connectors (this technique will be further discussed 
in the next section, see Fig. 7.44.) The overall simplicity of Ito’s 
architectural vision of thin flat plates spanning freely between waving 
sets of bundled columns has thus been achieved, but not without 
the close collaboration of the exceptional engineer Sasaki and his 
innovative combination of several of the beam grid load-carrying 
strategies that we have encountered in this chapter.

7.12	 The Slab – Beams Stretched Thin

The slab is perhaps the most ubiquitous and yet under-appreciated 
of all structural elements. Beams, columns, and walls are universally 
recognized as essential building blocks, yet slabs are also present 
in virtually all of our buildings as they form the floors upon which 
we walk and the ceilings or roofs just above our heads. As such, 
they clearly both carry load and have tremendous space-making 
architectural impact; how they do this is what we next turn our 
attention to. It should be understood that by use of the term “slab” 
we refer to and will mainly consider its most common form in 
building structures: i.e., that which is made of reinforced concrete. 
However, the same fundamental principles also apply to slab-
like surfaces made of other materials that may be used to make 
floors and roofs, such as tongue-and-groove sawn wood planks or 

Illustration 7.48
Palace of Labour, Turin, Italy (1961).
Concrete slab’s stiffening ribs follow “natural” looking, curving lines of 
isostatic stress conditions.

Designer and structural engineer: Pier Luigi Nervi.

Illustration 7.49
Sendaï Mediatheque, Miyagi Prefecture, Japan (2001).
Orthogonal organization of two-way grid of steel beams cedes to modified, 
triangulated pattern in vicinity of supporting “column tubes.” Whole floor 
system is connected top and bottom to horizontal steel cover plates to provide 
huge flexural capacity for long, heavily loaded spans. (See also Ill. 8.20e.)

Architect: Toyo Ito Associates. Structural engineer: Sasaki Structural Consultants.
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manufactured products like plywood, pressed-wood sheets, and 
solid-wood panels, or even steel or glass plates.

Perhaps the quintessential illustration of the slab in architecture 
is the drawing by Le Corbusier of his idea-project “Dom-Ino,” (Ill. 
7.50) in which the floor and roof slabs can be seen to rest directly 
on columns without any beam intermediaries, thus establishing his 
structural concept for the rational building of housing, a vision that 
very much influenced the development of concrete as a favored 
load-bearing material during the Modern architectural period 
and beyond, to say nothing of its role in advancing the case of 
undifferentiated, non-directional space. The technology to make 
this in reinforced concrete, however, was not available at that time. 
But to understand just how such seemingly “simple” structural slabs 
can work to carry loads first requires some conceptual development.

To begin with, it can be said that the fundamental behavior of 
the slab is closely linked to that of the beam. Here, once again, 
we have a structural element in the slab that has loading applied 
transversely to its length and that under such loading will deform 
in analogous fashion to the way beams do, sagging downward 
between vertical supports and curving in the opposite direction when 
it runs continuously over these or when it cantilevers outward from 
a supporting structure. In fact, a one-way slab spanning between 
two beams or walls or other transverse support elements can be 
likened to a series of one-way beams of relatively small depth that are 
placed alongside each other. (Fig. 7.40.) The same internal actions, 
therefore, that we have become so familiar with in beams – namely, 

bending moments and shear forces and their corresponding sets 
of stresses – will also be the means by which loads are carried in 
slabs. And so, in the reinforced concrete slab we will find that steel 
reinforcing bars need to be aligned in the spanning direction in 
order to deal with bending behavior – and that these are to be 
placed both near the bottom or top of the slab section according 
to location along the span. (Fig. 7.41.)

Of course, if the beam has been previously described as an 
inefficient means of carrying load because of its (a) relatively small 
moment arm that is available for producing the internal bending 
moments needed for equilibrium and (b) typically constant 
dimensions despite large variations of shear and moment demand 
from one end of the element to the other, these conditions are 
also present and even further accentuated in the slab. The very 
small depth/thicknesses of slabs that make them so attractive in 
reducing wasted vertical space in multistory buildings, for example, 
will also be the cause of their being subject to large bending 
stresses, shear stresses, and deflections that can quickly challenge 
material capacities and building code limits even under normal 
loading conditions. And simply increasing a slab’s thickness in 
order to enhance its bearing capacity results in disproportionately 
large increases in dead load that can quickly “eat up” much of any 
resultant increase in strength.14 

Clear-spanning distances for slabs, therefore, are typically quite 
limited and this can severely impact the often competing architectural 
desire to maximize the spacing of supporting columns and walls in 

Illustration 7.50
Maison Dom-Ino (1914).
Example of flat plate system; reinforced concrete slab spans directly 
to supporting columns without any underlying beams.

Architect: Le Corbusier. Structural engineer: Max du Bois.

Figure 7.40
One-way slab depicted as series of adjacent 
beams of limited depth.

Figure 7.41
Section through slab spanning continuously between and 
over two adjacent beams; placement of reinforcing bars 
near bottom of section at mid-span, near top above beam 
“supports”, with zones of overlap.
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a building. At the same time and notwithstanding such structural 
drawbacks, however, the slab does have much to offer for other 
reasons, including the ability to simultaneously provide a necessary 
walking surface or roofing enclosure as well as to uniquely define 
and project architectural space – as is powerfully demonstrated 
by the cantilevering slabs of a remarkable multifamily house in 
Zurich designed by Christian Kerez. (Ill. 7.51.) It should be noted 
that in multistory buildings a flat slab of concrete can also have 
tremendous economic and logistical advantage by providing a 
smooth finished ceiling, and that this approach makes it easy to 
mount piping and wiring and air-handling ductwork without the 
trouble and labor of having to make holes in the right places within 
a grid of underlying beams.

Given the slab’s spanning-distance shortcomings, though, various 
strengthening techniques that we have previously described for the 
beam can be especially important to reconsider once again in this 
context. For example, making a slab run continuously over supports 
into adjacent spans is greatly advantageous in reducing its bending 
moments and deflections, and for the slab this is a strategy that 
certainly also makes perfect sense from an ease-of-construction 
point of view. Also, the same benefits that we saw for countering 
the effects of loads on beams by means of pre-stressing can be 
applied to slabs by running tightly stretched tendons through 
the surface that are anchored at its outside edges. Yet another 
approach that we have seen before and that is frequently used 

to advantage for slabs is to have them configured and working 
in the two-directional load-sharing manner (Fig. 7.42, e.g., Ill. 
7.52) that we previously discussed in the context of beam grids. 
As long as a slab area is roughly square and that similar support 
conditions are provided around its perimeter, approximately half 
of the load will be carried in each orthogonal direction, leading 
to the designation of such a system as a two-way slab and to the 
requirement for having orthogonal sets of reinforcing bars carefully 
placed at the appropriate levels and locations within this thin 
slab’s depth. (Fig. 7.43.) We have already established the clear 
benefits of using any of these techniques with the beam and the 
same are even more true for the slab: i.e., larger loads can be 
carried, spans can be greater, and deflections can be significantly 
reduced. Moreover, these techniques can be combined for even 
greater structural benefit.

Yet another approach to enabling longer spans for slabs is to 
have them work in strategic combination with underlying sets 
of beams. In this case, rather than having a slab simply resting 
on top of a supporting beam framework and the two working 
independently of each other in some sort of preordained structural 
hierarchy (according to which, let’s say, the loads are carried first 
by the slab to the beams and then independently by the beams 
to their supporting columns or walls), the two components of slab 
and beams are instead expressly connected together such that 
they can work together in unison. When a concrete slab is to be 

Illustration 7.51
“House with One Wall”; 
Mehrfamilienhaus Forsterstrasse, 
Zurich, Switzerland (2003). 
Continuous concrete slabs and walls 
define merged interior and exterior 
space.

Architect: Christian Kerez. Structural 
engineer: Aerni + Aerni Ingenieure AG 
and Dr. Josef Schwartz Consulting AG.
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structurally combined with underlying steel beams, for example, 
the interconnection between the two is typically made mechanically 
with what are called shear studs – i.e., short steel bar projections 
that are welded to the top flanges of the steel beam before they are 
subsequently embedded into the poured concrete slab – in order 
to produce what in the end is called a composite beam. (Fig. 7.44.) 
A substantial width of the concrete slab (typically much more than 
the width of the top flange of the steel beam) is thereby engaged 
and can be considered to function as a very large compression 
flange at the top of the composite beam section in places where 
the overall system sags downward, thereby dramatically increasing 
the system’s effective moment of inertia, decreasing maximum 
bending stresses, and in turn increasing the system’s overall load-
carrying capabilities.15

In the case of combining a concrete slab with a concrete beam, 
the two will typically be shaped by common formwork, have an 
integrated set of reinforcing bars, and be poured as a unit, thereby 
inherently ensuring composite behavior. The benefits derived from 
such an individual composite concrete beam construction can in turn 
be multiplied many times over by having a slab integrally connected 
to a grid of closely spaced beams in what is known as a concrete 
waffle-slab (see Fig. 7.38b), which clearly derives its name from its 
underside appearance. Such a structural configuration is typically 
used where there are especially heavy transverse loads needing 
to be carried, such as for library book stack areas or gallery spaces 

Figure 7.42
Two-way slab system: similar support conditions around 
roughly square perimeter.

Figure 7.44
“Classic” composite beam section, composed of steel beam 
topped by concrete slab, connected by means of shear studs.

middle strip

column strip

middle strip

Illustration 7.52
“From Fracture to Form” (1996).
Glass fracture pattern from the impact of a cannonball allows for a 
visualization of the multi-directional load-sharing behavior of edge-
supported slabs.

From an experiment at AHO by Arne P. Eggen and Nils E. Forsén. 
Photographer: Jiri Havran.

Figure 7.43
Representative drawing of typical design code provisions for “column 
strips” and “middle strips” used to distribute bending moments 
for the design of slabs. Corresponding sets of reinforcing bars will 
be distributed within these bands of slab, strategically placed in 
layers near the top or bottom of the slab. Shown here for spanning 
in one direction; a two-way slab will have similar strips of slab to be 
considered in the orthogonal direction. All this, of course, remains 
invisible to the eye in the end in the hardened concrete slab.
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in art museums, or for supporting a ground level public plaza as 
well as perhaps backfilled earthwork above an underground space. 
(e.g., Ill. 7.53, 7.54.) 

Finally, while the discussion so far concerning the slab’s structural 
behavior has been, in one way or another, mostly about its bending 
capacity, the simultaneous effects of shear forces cannot be ignored. 
Perhaps the easiest way to envision the basic problem of shear 
in the context of the slab is to consider a portion of it supported 
directly on a column, such as in the Maison Dom-Ino, for example 
(see earlier Ill. 7.50). For the sake of argument, this can be informally 
thought of as akin to having a thin sheet of cardboard needing to 
be carried on a thin dowel-like pencil; it is clear from experience 
that if one pushes enough on the surface it will not take long for 
the pencil to push through it, representing a shear failure of the 
cardboard material. (For obvious reasons, an analogous failure in a 
real-life structural slab is known as a punching shear failure, whereby 
the column “punches” through the slab, with ensuing catastrophic 
results from the “pancaking” of slabs one on top of another.) 

Fortunately, concrete slabs do not typically present such a 
dramatic shear problem; i.e., there may be enough slab thickness 
and effective perimeter distance around a support (and, thereby, 
enough effective cross-sectional area available) to safely carry the 
shear force within the relatively low levels of shear stress that are 
permissible for concrete. There are loading conditions, however, in 
which as one progressively moves closer and closer to a support a 

Illustration 7.53
Le Grand Louvre, Paris, France (1989).
Two-directional waffle-slab system is used for carrying heavy loading of public 
courtyard plaza above it; on underside, coffering provides visual pattern and scale.

Architect: I.M. Pei of Pei Cobb Freed. 

Illustration 7.54
Le Grand Louvre.
Close-up detail of waffle slab with incorporated lighting.
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shear problem may indeed present itself in a slab, since concrete 
is not a material that has an especially high strength in this regard 
(certainly in contrast to steel, which does).16 The usual means by 
which this problem is addressed is to increase the slab thickness 
in the vicinity of the support and create what is called a drop 
panel, looking somewhat like a traditional column capital and thus 
sometimes being referred to that way instead. (Fig. 7.45.) 

To conclude this section about the structural slab, we will briefly 
consider Miami Beach’s 1111 Lincoln Road parking/multi-use structure 
(Ill. 7.55), a building which is perhaps the best embodiment yet of 
the possibilities suggested by Le Corbusier’s Maison Dom-Ino that 
we started things out with. At 1111, not only are the beam-less 
two-way slabs of necessity doing all the work of carrying the loads 
of its occupants (cars and people alike, in ever-changing fashion) 
as well as that of its own self-weight, but these slabs are also put 
on full display since there is no enclosure to this building. Slabs are 
all there is to be seen of the structure here – or almost so, as there 
are indeed also many distinctive columns holding the six concrete 
slabs apart, but considering the logic of form and structural behavior 
of these elements is the topic of the next chapter. For now, we 
will let the matter of the beam and the slab rest, although, as will 
be seen throughout the remainder of this book, the fundamental 
structural behavior lessons for the beam are quite powerful and 
will be seen to have repercussions with other structural elements 
and systems as well. 

Figure 7.45
(a) “Flat plate” system of uniform depth throughout, (b) “flat 
slab” system (still no beam projections below slab, but with 
“drop panels” in area’s slab-to-column connections).

Illustration 7.55
1111 Lincoln Road, Miami Beach, FL, USA (2010). 
Flat plate slabs define varying floor level heights and vertically subdivide 
the large open structure.

Architect: Herzog & de Meuron. Structural engineer: Optimus Structural Design.
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Illustration 8.1
Temple of Aphaia, Aegina Island, 
Greece (c.500 bc). 
Columns and more, built out of 
gray limestone throughout.
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8.1	 Maison Carrée et Carré d’Art  
– Columns in Dialogue

The city of Nîmes in southern France is host to two cultural buildings 
that face one another across a square, but that are separated in time 
by almost 2000 years. (Ill. 8.2.) The older of the two is one of the 
best preserved temples of the whole of the Roman Empire, aptly 
named in French the Maison Carrée according to the shape of its 
rectangular plan and cubic proportions. This building’s remarkable 
preservation is due to the fact that it was rededicated as a Christian 
church during the fourth century, thus escaping the widespread 
demolition of temples that followed the adoption of Christianity 
as the state religion of Roman society. Later, the building served 
various purposes before finally being turned into a museum in 1823.

Raised on a podium nearly 3m (10ft) above the level of the 
adjacent square, the Maison Carrée would have dominated the 
forum of its then-Roman city. Its plan measures 26.4 by 13.5m (87 
by 44ft) and is divided into two distinct parts: the cella, with its walls 
and engaged columns, and the deep portico that takes up almost 
a third of the building’s total length. Three rows of six Corinthian 
columns each carry the portico with architrave and pediment above. 
These free-standing columns, made of solid limestone cylindrical 
segments, are a particularly forceful feature of the classical Greek and 
Roman architectural styles, and convey an impression of strength, 
solidity, balance, and lasting endurance. For the cella portion of 
the building, on the other hand, the regular rhythm of the portico’s 

columns continues, but here perimeter columns are integrated 
into the enclosing walls, with the one element strengthening the 
other. The Maison Carrée is a perfect example of classical, Vitruvian 
architecture, and it has served as direct inspiration for such well-
known buildings of the neoclassical period as the Madeleine Church 
in Paris and the Virginia State Capitol in the United States.

Also now occupying a prominent location on the public square is 
a thoroughly modern building that establishes a powerful dialogue 
between old and new. The architects’ office of Foster + Partners 
was commissioned to design a library and art gallery on the site 
facing the Maison Carrée, an extraordinarily difficult task, and one 
in which the presence of the classical building became a strong 
influence on the design of the newcomer. The so-called Carré d’Art, 
finished in 1993, finds a perfect balance between adaptation and 
contrast: it is also a building having a roughly rectangular footprint 
and an enclosed volume (this time clad in steel and glass) as well 
as a prominent portico. Orthogonally oriented with respect to the 
front of the Maison Carrée, the modern portico is created by a 
distinctive row of five free-standing slender steel columns that carry 
a shading canopy both over the building’s main entrance as well 
as its wonderful elevated exterior café. In contrast to the historic 
stone columns across the square, these contemporary vertical 
supports have relatively little mass and cross-sectional dimension; 
nonetheless, they are clearly picking up on the same architectural 
language, if in a very different dialect.

Illustration 8.2
The Maison Carrée (about 16 bc) and the Carré d’Art, Nîmes, France (1993).
Porticos and columns from different eras complement and contrast with each other.

Architect of the latter: Foster + Partners. Structural engineer: Arup.
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8.2	C ompression Elements  
– How They Work

The mechanical function of compression elements is to keep physical 
bodies apart that want to come together. The existence of such 
elements is, of course, a necessity for the creation of architectural 
spaces, the clearest examples of which are the columns and walls 
keeping floor structures in position and “up in the air” so that we 
can occupy interior space. What all compressive structural elements 
have in common is their ability to resist shortening; their stiffness 
and strength must be sufficient to transmit the forces associated with 
any deformation tendency for things being pushed together, and 
we will see that the way that they accomplish this varies according 
to their shape and dimensions as well as the mechanical properties 
of the materials of which they are made.

The theory which will be presented in this chapter applies to 
all compressive elements; i.e., to struts, columns, and walls alike, 
as long as their dominant load condition is one of compression 
applied at an element’s ends and acting along its longitudinal axis. 
For an introductory discussion of the topic (and as long as axial 
compressive loads predominate), the orientation of such elements 
in space is not considered critical, and their fundamental structural 
behavior will be taken to be the same regardless of whether the 
compression element is vertical, inclined, or even horizontal. It 
is convenient, however, to begin our treatment of this topic by 
considering the behavior of vertical columns, inasmuch as this not 
only covers the main and quintessential category of compression 
elements, but it also reflects what historically triggered an interest 
in how such elements work to carry load.

We will start with the observation that when it comes to 
supporting loads (and eventually to failing from overload), columns 
behave differently according to their height-to-width ratio. As long 
as a column is quite short relative to its smallest cross-sectional 
dimension, it will carry load until the compressive strength of the 
material is reached. The ultimate load-carrying capacity in this 

case depends on the material’s strength and the total amount of 
material in the cross-section, but not on the column’s length. Failure 
in this situation will typically be characterized by the crushing of the 
material. A familiar example of this failure mode is what is likely to 
happen if you press a very soft and unsharpened graphite pencil 
too firmly against a writing surface.

Let’s look more precisely at the behavior of a short column subject 
to an axial loading P (Newton, pounds) and having cross-sectional 
area A (mm2, in2). When the load is applied to the cross-section, 
uniform compressive stresses σc develop. If we steadily increase 
the load, the column will eventually fail when the compressive 
stress exceeds the material’s ultimate stress σu, where the index 
u is short for “ultimate,” as we acknowledged in Chapter 5.1 The 
load-carrying capacity Pc of the short column is, therefore:

Pc= σuA

and the compressive stress up to failure is

σc = P/A ≤ σu

This formula also suggests that in this situation the actual shape 
of the column cross-section is of little structural importance; i.e., we 
are free to design whatever form we like for such a short column 
without influencing the magnitude of the stresses, as long as we 
maintain the same sectional area A.

What happens, though, if the load P is not centered axially but 
instead has a resultant which acts outside the member’s central 
axis? (Fig. 8.1.) In such a case a bending moment will inevitably 
result which will produce bending stresses in the column. We can 
think of this load case as being the equivalent of having a couple 
(moment) M applied to the column in addition to a concentric 
load P. If the eccentricity of the load is e (mm, in), the bending 
moment developed is M = Pe (Nm, ft-lb). As was explained in the 
previous chapter (Section 7.7), the bending stresses produced in the 

Figure 8.1
Short column with concentrically 
placed point load (left), and with 
point load acting eccentrically 
(right) and the corresponding stress 
distributions.
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cross-section are σb = M/S = Pe/S, where S is the section modulus 
(mm3, in3) and these will interact with the uniformly distributed 
compressive stresses from the centered load, increasing axial stresses 
on one side of the column and decreasing them on the other; i.e.,

σc + σb =P/A ± Pe/S ≤ σu

In this equation, the + sign is valid on the side of the column 
where the bending stresses add to the uniform compressive stresses, 
and the – sign is valid where they subtract from it. From this, it can 
be extrapolated that the decrease of compressive stresses on one 
side of such a column may reach a point where tensile stresses 
occur; for a rectangular cross-section this can be shown to be if 
the resultant load P is applied at a distance exceeding one-sixth of 
the column’s width on either side of the central axis. (Fig. 8.2.) As 
a result, designing in a manner that the force resultant was always 
kept in a “core” confined to the middle-third part of the rectangular 
cross-section was of great importance historically when stone and 
brick masonry were the favored building materials – as neither of 
these has significant tensile strength. Setting this particular issue 
aside, however, it can be generally stated that short columns usually 
fail by overstressing the material to the point that crushing occurs 
(or yielding, if made of steel). 

In very long columns, however, things are different: when a load 
is applied to its ends, a column will maintain its straight alignment 
as long as the load is kept below a certain limit. But increasing the 

load beyond that point will result in the column deflecting sideways 
quite suddenly; moreover, this happens uncontrollably and without 
warning. (Ill. 8.3.) We call this phenomenon buckling and say that 
the column buckles. At the point just before it bows sideways, the 
column has obviously reached a different maximum load-carrying 
capacity from that which applies to short columns. The particular 
magnitude of load at which buckling occurs is called the critical 
load or the buckling load for that column. If we further increase the 
load on the deformed column it will finally truly break (or bow out 
very strongly), and so we consider its effective point of failure to 
be the load level at which it first buckled sideways. This buckling 
phenomenon can easily be tested with a simple plastic ruler or thin 
wooden stick: as either’s thickness is very small compared to its 
length, applying a load at its end with one’s finger will invariably 
cause it to fail by buckling rather than by crushing of the material.

Buckling is in reality a stability problem. If a long column is ideally 
(but unrealistically) straight and the load is applied at its central 
axis, the buckling load may actually be exceeded without anything 
happening unless some small disturbances occur. This condition is 
a type of equilibrium, but it is a highly unstable one. The smallest 
sideways push will cause the column to deflect sideways without 
having the slightest hope of controlling or reversing its deflection. But 
real columns are not perfectly straight and the load is most likely not 
applied absolutely concentrically. Generally, therefore, columns will 
tend to deflect sideways when loaded because of a small bending 
moment’s developing due to the axial load’s eccentricities – but as 

Figure 8.2
The so-called middle-third rule that applies to rectangular 
cross-sections gets a slightly different expression for circular 
columns: here the “core” cross-section is within the inner 
quarter of the column’s diameter, as applied to the column 
of the Aphaia temple at Aegina, Greece.

e d
8=

Illustration 8.3
Drawing of Charlie Chaplin and his slender 
bamboo cane.
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long as the load is below the buckling load the column’s stiffness is 
able to counteract and control that sideways deflection. If we push 
the column sideways in this state, the bending will increase but the 
column will return to its former position once the horizontal load is 
removed. (Fig.8.3a.) The column is in a state of stable equilibrium.2 
Once the load exceeds the critical load, however, the situation 
becomes unstable and excessive lateral deflection, also known as 
buckling failure, can be expected to occur. (Fig. 8.3b.)

Within this context, some interesting questions arise. What 
parameters determine the buckling load of columns? And what 
architectural consequences do these parameters have? We have 
already established that quite short and very long columns behave 
fundamentally differently, and we can therefore expect those two 
extreme cases to have quite contrasting design implications. We 
have also mentioned that stiffness, which is related partly to an 
element’s geometric proportions I (moment of inertia), L (length), 
and partly to its material properties E (modulus of elasticity), plays 
an important role in establishing how long columns behave. All 
of these observations will have consequences in answering our 
questions about column form and design, but before going farther 
down this avenue in Section 8.4 we will pause briefly to look more 
closely at the rich and varied detailing often found at the top of a 
column and at beam-to-column intersections; these are, after all, 
where the compressive forces of such interest and consequence 
are being applied to the column.

8.3	E xploring the Capital

The design of the transition point between column and beam, 
otherwise known as the capital, has always attracted attention. And 
while particular material properties and technical innovations may 
impose limits or create new possibilities in the design of capitals, 
the basic situation remains the same: structure changes direction in 
going from column to beam, and perhaps the material changes as 
well. Also, the reaction force at the end of a beam needed to hold 
it up must be balanced by an equal and opposite force on to the 
shaft of the column, and all of this balancing act must take place 
through the intermediary of the capital. A capital is thus a transition 
element, and different periods in history have presented us with their 
interpretation of this loaded theme, as the examples below illustrate.

Standing with one’s back to the rock outcropping called the 
Areopagus, one can look up at the western front of the Acropolis. 
“There is just one entrance to the Acropolis. No others can be 
found because the embankment is so steep and all around there is 
a tremendous wall,” wrote the Roman traveler and author Pausanias 
in the second century ad. Then, as now, a ramp leads up to the 
Propylaeum that forms the entrance into the Acropolis. From this 
threshold one can turn right and catch a glimpse, between the 
Propylaeum’s Doric columns, of the little Temple of Nike standing 
obliquely on top of a protruding bastion. (Ill. 8.4.) The temple, 
which is dedicated to Athena and identified with the goddess of 
victory, Nike, was built in 453 bc. The walls of this temple’s cell 

Figure 8.3
(a) Stable and (b) unstable equilibrium.

a) b)

Illustration 8.4
Temple of Nike at Acropolis, Athens, Greece (453 bc). 
View between the Propylaeum’s columns.

Architect: Kallikrates.
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structure are pulled back to free its corner columns. These Ionic 
marble columns, which stand proudly over the modern city of 
Athens, have all of this structural element’s essential and highly 
developed components; as such, they have stood as an eternal 
paradigm, both positive and negative, for all of the world’s column 
builders ever since they were first erected.

At the lower end, the temple’s columns have an articulated base 
that mediates the transition between the stylobate (foundation) and 
the column. The column’s shaft consists of several circular stone 
sections stacked on top of each other, each with vertical fluting 
around the perimeter that allows light and shadow to enhance an 
impression of height. The sides of the column are not quite straight 
in elevation, however, instead forming a slightly convex, bulging 
curve between base and top. The difference between the straight 
line and the curved one is called entasis, of which much has been 
made over the centuries, but which is measured in this case by just 
a few millimeters. While entasis prevents the undesirable optical 
illusion of the column looking concave over its height, and thus 
contributes to suggesting this structural element’s power and bearing 
capacity in resisting compressive force, in reality the column only 
gains minimal additional load-carrying capability from such thickening 
at mid-height. (We will come back to this topic in Section 8.6.)

At the top of the column, a capital is formed to accept and 
transfer the load from the beam above into the shaft of the column 
below. (Ill. 8.5.)

As an expressive measure of compression, the volute piece 
of the Ionic capital between the beam and the shaft of the 

column, with its elastically taut stream of lines, reflects the play 
of forces inside the block – the seemingly springy resistance 
of the stone’s innards here lies open to our eyes.3

The Temple of Aphaia, on the island of Aegina, also dates 
from the fifth century bc. It is all made of gray limestone, and the 
temple’s columns and beams have a rough appearance and texture, 
quite different from the finely sanded marble of the Acropolis. The 
circularly shaped Doric capital here can be described as growing 
out from the shaft of the column, while the horizontal so-called 
necklace band captures and concludes the column’s vertical fluting. 
(Ill. 8.6.) The square, flat abacus lies between the rounded echinus 
and the architrave (which in Latin means “beginning of beam”), 
its width gladly accepting the load from the beam above. All the 
stones are very precisely fitted to each other and thoughtfully put 
together, each piece having a clear role in the transfer of forces. The 
Doric capital is certainly a beautiful and most expressive gathering 
of stones.

Jumping forward in time by more than two thousand years, 
building materials have clearly changed, as have architectural styles 
– but evidently not without the one influencing the other, as a quick 
survey of a few column capitals from the past century makes clear. 

At the same time as the famous skyscraper experiments in steel 
framing were taking place with a group of architects now known 
as the “First Chicago School” in the 1880s, buildings were also 
being built in that city that were instead constructed with exterior 
brick walls and interior wooden columns and beams. In Chicago’s 
version of this then-common construction system, the columns ran 

Illustration 8.5
Temple of Nike at Acropolis, Athens, Greece (453 bc). 
Detail of Ionic capital at top of this temple’s column. 

Architect: Kallikrates.

Illustration 8.6
The Temple of Aphaia, Aegina, Greece (fifth century bc). 
The Doric capital transfers the weight of the entablature to 
the column shaft. 
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continuously up through all the floors of the building and an iron 
capital (or perhaps a two-sided bracket is a better descriptor) was 
threaded down the column until a certain point, forming the support 
for beams on either side. (Ill. 8.7.) By means of this effective load-
transferring system, the time-consuming detailed work for wood 
beam-to-column connections could be avoided and, moreover, 
the iron brackets could be mass produced. The building industry’s 
demand for quick and effective fittings resulted in simple and 
robust solutions.

At the beginning of the twentieth century, Paris built its Metro 
system with Line 2 running above ground and over the boulevards, 
designed as a bridge system of iron trusses with riveted component 
elements and joints. At their ends, these trusses rest on ornately 
molded, reversed-Ionic capitals sitting at the top of Doric columns. 
(Ill. 8.8.) Here the French freely dipped into history’s well, cleverly 
adapting the retrieved lessons with an elegant resolution of the 
technical difficulties of material and fabrication tolerances and of 
the transfer of forces by means of cast iron.

In the mid-twentieth-century design for an exhibition hall for 
machines in Monza, Italy, the architect Angelo Mangiarotti (1921–
2012) displayed the design potential of prefabricated concrete 
elements. This type of program often requires just one large space, 
and the conditions were ideal for developing a simple and well-
refined structural system: the number of elements present here is 
very few, only the column, the beam, and the roof deck. (Ill. 8.9.) 
The capital is integrated into the column and is of hammerhead 
form; angled tongue-and-groove interlocking joints ensure a rigid 
connection to the system of precast beam elements.

Illustration 8.7
Grace Episcopal Church, Chicago, USA (late 1800s). 
An Arts and Crafts building having red brick exterior walls and an 
interior timber structure. Sketch shows iron brackets embracing the 
columns and carrying the ends of the main beams.

Illustration 8.8
Bridge for Metro Line 2, Paris, France (1910). 
Cast iron capital.

Illustration 8.9
Exhibition Hall, Monza, Italy (1965).
Interlocking joint with beam supported on the hammerhead capital of 
the column, all made of prefabricated concrete elements. 

Architect: Angelo Mangiarotti.
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The so-called “mushroom column” is concrete architecture’s 
unique extrapolation on the form of the capital: the top of such a 
column dramatically enlarges into a conical shape in order to support 
a thin floor slab above. (Ill. 8.10.) The Civic Hall in Eslöv, Sweden, 
completed in 1957 by the architect Hans Asplund (1921–1994) has 
drawn renewed attention due to a careful restoration project. Here, 
two distinct building volumes – one barrel-vaulted and wedge-
shaped (in plan) for a row of auditoria and the other a four-story 
administration block – emerge from a thick, occupiable horizontal 
plinth level covering the rest of the site and housing a main hall/
vestibule, a restaurant, and other public facilities. The roof slab for 
this area is supported by a grid of circular columns spaced apart 5 
× 5m (16 × 16ft). Each column is dramatically topped by a capital 

in the shape of a flattened cone, which has a height of only 0.3m 
(1ft) and an upper diameter of 2m (6.5ft) – thus giving this space 
much of its unique character. The generously rounded forms are 
repeated elsewhere in the building, including in the matching 
circular skylights and a courtyard that is elliptical in plan.

At the other end of the column capital spectrum from the Eslöv 
Civic Hall’s extended supporting projections, is the situation to be 
found in Berlin with a couple of buildings whose columns seemingly 
don’t have any capitals whatsoever. When Berlin was made the 
capital of a reunited Germany in 1991, a new parliament was located 
at Spreebogen, where the Spree River makes a bend in the city. 
Associated with this, a band of federal buildings, fronted by the 
Bundeskanzleramt, was designed by the architects Axel Schultes 

Illustration 8.10
Eslöv Civic Hall, Eslöv, Sweden (1957).
Main hall with mushroom columns.

Architect: Hans Asplund.
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and Charlotte Frank and completed in 2001. The far western end 
of this office wing terminates with a covered space supported by a 
“forest” of free-standing circular concrete columns. Unexpectedly, 
where these columns meet the roof we are confronted by what can 
perhaps be best described as non-capitals; i.e., there are seemingly 
holes at the column tops that are open to the sky (Ill. 8.11), which 
reprises the memorable detail used by the practice in its earlier 
design for the sublime central gathering court at the Treptow 
Crematorium. (Ill. 8.12.) The necessary connections between the 
top of the columns and the roof structure are, in fact, still being 
made (or else the roof would not hold up!) but the connections are 
achieved by means of relatively thin horizontal cross beams and 
side bracketing attachments, with the remaining opening in the 

roof covered by an acrylic dome that lets light shine through. Rather 
quickly at the Bundekanzleramt, nature has further contributed 
to this unusual experience as Virginia creeper has climbed all the 
way up the 18m (59ft) tall columns and spread out underneath 
the ceiling; accented by the daylight from above, a potentially 
heavy-looking monumental structure has thus been given a touch 
of romantic lightness and elegance. 

Illustration 8.11
Bundeskanzleramt, Berlin, Germany (2001). 
Where the column is expected to connect 
with the slab above, a hole to the sky lets the 
daylight in. The non-capital is, however, made 
possible by thin horizontal crossing brackets.

Architect: Schultes Frank Architekten. Structural 
engineer: GSE Gmbh; Enseleit und Partner.

Illustration 8.12
Treptow Crematorium, Berlin, Germany (1998).
Central gathering vestibule with contemplative 
space for up to 1000 people is made 
memorable by the 29 monumental columns 
with seemingly only light for capitals at their 
tops. 

Architect: Schultes Frank Architekten. Structural 
engineer: GSE Saar Enseleit und Partner Berlin 
IDL Berlin.
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8.4	L eonard Euler and the Slender Column

The mathematical problem of describing and predicting how long, 
thin columns fail by buckling and at what load they will do so was 
solved by the Swiss mathematician Leonard Euler (1707–1783) and 
his work was published in two installments in 1744 and 1757. Euler’s 
theory is still valid in its original form and it is perhaps the oldest 
in structural mechanics that remains in daily use today.

Bending stiffness is the crucial aspect of the column that prevents 
its excessive sideways deflection and the associated buckling failure, 
as we discussed in a general, descriptive manner in Section 8.2. We 
may think of such stiffness as being influenced by three parameters 
in a compressive element: its cross-sectional shape and dimensions, 
the elastic properties of its constituent material, and its length. The 
larger the cross-section and the stiffer the material, the more the 
element is able to resist its tendency to buckle, and hence the larger 
will be the load that it can carry before failing. We also understand 
that the greater the length of a compressive element, the less stiff 
it is (think, for example, of the behavior of different lengths of the 
plastic ruler or thin wood stick that we have mentioned before). 
Thus, while the first two parameters are proportional to the element’s 
overall stiffness, the length is inversely so. Hence,

stiffness ∝ EI/L

where E = the material’s modulus of elasticity, with units of N/mm2 
(psi), I = the moment of inertia of the cross-section – thus indicating 
both its dimension and shape – in units of mm4 (in4), and L = the 
element length in mm (ft).4

Euler showed that the critical buckling load (Pcr.) of a long, 
thin, and ideally elastic column that has pinned ends is given by 
the formula

Pcr. = π2EI/L2 	 (8.1)

where π is the numerical constant 3.1416.5 (Fig. 8.4.) This equation 
is called the Euler buckling formula. We should note that as a 
consequence of the particular form of this equation (which has 
column length to the second power in the denominator), long and 
thin columns will be quite likely to fail by buckling out of alignment. 
On the other hand, material strength (as we have discussed earlier in 
Section 8.2) is not very likely to be of much importance in determining 

such elements’ load-carrying capabilities. Indeed, according to 
Euler’s theory, the load at which a column buckles depends on 
material stiffness, rather than strength. According to his equation, 
a long column’s load-carrying capability can be improved by either 
choosing a material with a higher elastic modulus E, increasing its 
cross-sectional dimensions (and thereby affecting I), or by making 
it shorter. In an architectural context, it should be reinforced that 
all of these choices are obviously also design choices that directly 
affect the selection of column size, form, and proportions.

Up to this point, we have generally been discussing short and 
long columns without stating what this means precisely. How short 
is a short column and how long is a long one? To begin to be more 
specific, we should instead refer to squat or stocky columns and 
to slender columns, because what actually matters is not absolute 
length, but instead is the comparison of length to cross-sectional 
dimensions. Such a notion of relative slenderness obviously involves 
a ratio in some form, but it is not quite as straightforward as it may 
seem at first. If all columns were of the same cross-sectional shape, 
then we could compute the length-to-width ratio directly as a 
measure of a column’s slenderness. But since columns come in many 
different cross-sectional configurations, such as round hollow tubes, 
square and rectangular solids, H-shapes, etc., their width alone is 
hardly a precise measure of their cross-sectional stiffness. This is 
why Euler needed to use the cross-sectional geometric property of 
moment of inertia I, which we encountered previously in Chapter 
7 on beams, and which precisely deals with these differences of 
geometric shape and dimension. Furthermore, we can relate the two 

Figure 8.4
The deflection of an ideal elastic 
column with pinned ends, carrying 
a compressive load.
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cross-sectional values of moment of inertia I and area A by means 
of another quantity called the cross-section’s radius of gyration r 
(mm, in) according to

r = √I/A

where r = radius of gyration of the cross-section in mm (in), I = 
moment of inertia, and A = area.6

With this radius of gyration quantity defined, we are now able to 
present a formula that measures slenderness; i.e., one that accounts 
not only for the column’s width or thickness, but also for the way 
that the material is distributed over the cross-section. Hence, all 
columns can be ascribed a slenderness ratio that compares the 
column length to the radius of gyration:

λ = L/r

where λ = slenderness ratio (Greek letter “lambda”), which is 
non-dimensional. (Fig. 8.5.) To give a sense of what such slender 
columns look like in reality, we can observe the examples of the 
circular concrete columns around the perimeter of the Brasilia 
National Stadium (Ill. 8.13) or of the steel corner column for the 

50

Illustration 8.13
Mané Garrincha National Stadium, Basilia, Brazil (2013).
“Forest” of slender, circular concrete columns surrounds 
the perimeter of this stadium and supports a suspended 
trussed roof structure covering the playing field. 

Architect: gmp Architecten (von Gerkan, Marg und Partner) 
and Castro Mello Arquitetos. Structural engineer: Schlaich 
Bergermann und Partner.

Figure 8.5
Visualizing column slenderness 
ratios. Physical length (L) of the 
columns being represented is 
5000mm. 
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Illustration 8.14
French Pavilion, Expo ’92, Seville, 
Spain (1992). 
Slender columns are located at 
the four corners of a large roof 
plane covering the pavilion’s open 
public square. 

Architect: Francois Seigneur; Viguier 
and Jodry. 

Illustration 8.15
French Pavilion, Expo ’92. 
Circular steel column tapers 
at its connection to the roof, 
accentuating the latter’s “floating 
plane” qualities. 
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French Pavilion at the Expo in Seville in 1992 (Ill. 8.14, 8.15.)
We may at this point go back and write the Euler buckling load, 

equation 8.1, in a different way, this time involving the slenderness 
ratio of a column. Since λ2 = L2A/I, we can find that

Pcr. = π2EA/λ2 	 (8.2)

The buckling load of an ideal elastic column is, therefore, inversely 
proportional to the square of the slenderness ratio, which in everyday 
language means that the more slender the column, the (dramatically) 
less is its ability to support load.

It is useful to take this formula’s development a little bit further 
and to write the Euler equation in yet a different form, this time in 
a way that introduces the concept of the so-called Euler buckling 
stress. If we divide the buckling load by the area of the cross-
section, we will have

σcr.= Pcr./A = π2E/λ2 = π2E/(L/r)2 	 (8.3)

where σcr. = Euler or critical buckling stress in N/mm2 (psi). This is 
the average stress on the cross-section at the very moment when 
the load reaches the critical buckling stage. As seems perfectly 
reasonable, the higher the slenderness ratio the lower will be 
the stress level at which the column buckles. Not so predictably, 
this reduction in column capacity will be proportional to the 
second power of the slenderness ratio, suggesting that there is 
a strong (structural) price to be paid for slenderness in columns 
(even though there may be other design reasons to be willing 
to pay for it).

This revised form of the Euler expression is very helpful in that 
it enables us to draw a graph depicting the relationship between 
the critical stress and the slenderness ratio. (Fig. 8.6.) The critical 
stress of columns, however, follows Euler’s expression only when 
the columns are quite slender. For small slenderness ratios, the 
stress at which a column fails by crushing or yielding of the material 
will be less than Euler’s expression indicates the column could be 
capable of; if this is the case, clearly material strength will establish 
the maximum load that the column can carry, regardless of its small 
slenderness. Figure 8.6 also reveals that between the clear-cut cases 
at either end of the slenderness range there is an intermediate or 
transition region where the capacity of a column to carry load is 

influenced by both the ultimate stress of the material (σu) and the 
buckling mechanism.

How a column changes from behaving as an “ideal” short column 
to a slender one will differ from one material to another, and this 
is something also influenced by the shape of the column’s cross-
section. Because of the complications of the transition zone, no 
precise information about this shift can be offered here.7 It is both 
possible and instructive, however, to give some sense of the relative 
magnitudes of the slenderness ratios at the ends of the spectrum. 
For steel columns, for example, slenderness ratios below 20 may 
be thought of as being truly short, whereas those above 100 will 
indicate a slender column where Euler buckling can be expected 
to occur. Between 20 and 100 we will find steel columns to be of 
intermediate slenderness and that are influenced by both modes 
of failure.

To now give these relative numbers some context, we will 
consider the example of a tubular steel column whose cross-section 
has diameter d = 114.3mm and wall thickness t = 3.6mm. A list 
of standard steel cross-sectional properties can tell us that this 
column has an area A = 1250mm2 and a moment of inertia I = 1.92 
x 106mm4. Therefore, r = √I/A = 39.2mm. For this case, we will 
take the ultimate stress and the modulus of elasticity of the steel 
to be σu = 400N/mm2 and E = 210 000N/mm2, respectively. If in 
case (a) the column length is La = 500mm and in case (b) the length 
is Lb = 5000mm, we find that their slenderness ratios are λa = La/r 
= 12.7 and λb = Lb/r = 127, respectively. According to the criteria 

Figure 8.6
Diagram depicting the relationship of buckling stress 
to slenderness ratio. Also shown is the maximum stress 
level based on the material capacity. So-called short, 
intermediate, and slender column ranges are indicated.



Chapter 8: The Column and the Wall

260

given above, therefore, column (a) is definitely a short column while 
column (b) is a slender one. Their respective load capacities will be 
P= σuA = 500 000N and Pb = π2EA/λb

2 = 160 000N. We can choose 
to express the ratio of the maximum loads that the columns can 
carry as ß = Pb/Pa = 0.32; i.e., we have found that the slenderness 
of column (b) has reduced the column’s capacity to carry load to 
only about one-third of what its constituent material is capable of 
as a short column – which is obviously quite a significant reduction.8 

Until this point, we have been considering the (very substantial) 
effects of slenderness for columns as though these structural 
elements exist only in two-dimensional space; but we also need 
to realize that the buckling of columns needs to be considered as 
a spatial problem. (Fig. 8.7.) What this is alluding to is the fact that 
a column in a real building may buckle in any direction in three-
dimensional space. If a symmetrical-in-plan column is unbraced 
(that is, it is free to deflect sideways over its entire height) in any 
direction, then it will be just as likely to buckle with respect to one 
of its two orthogonal cross-sectional axes as the other. A tubular 
or square column that is pin-ended at both ends may thus just as 
easily buckle in one direction as in the other, which is effectively 
the condition that we have looked at so far. A rectangular cross-
section or an H-profile, however, has different stiffness properties 
in the orthogonal directions and it will first buckle in its “weakest” 
direction (i.e., the direction with the highest slenderness ratio), 
thereby establishing the column’s critical buckling load. When 
evaluating column capacities, therefore, we must obviously be 
careful to compute the Euler formula for the slenderness ratio 
related to the column axis having the lowest moment of inertia 
and radius of gyration.

But there is yet another factor to consider in establishing column 
buckling capacities. So far, we have been discussing slender columns 
with two pinned ends that allow both column extremities to rotate 
freely when the column tends to deflect sideways over the rest 
of its height. (e.g., Ill. 8.16.) This is both the simplest case to be 
considered as well as the worst, since it allows the column to 
potentially deflect sideways into its buckled shape without being 
restrained, bowing out along its entire length into the shape of a 
so-called sine curve. If we are able to restrain one or both ends from 

rotation (e.g., Ill. 8.17 and see Ill. 8.13), however, the ability of the 
column to deflect sideways will obviously be significantly reduced 
from this and the associated load at which the column buckles will 
correspondingly increase. In the restrained-end condition, only a 
portion of the column’s length can in fact be seen to deflect in 
just the same way as our pin-ended “reference” column did, and 
this is generally known as the column’s effective length Le. This is 
the length of the column that establishes the buckling load for 
the column as a whole; obviously, with this length being less than 
the column’s real length, the buckling load becomes larger, which 
is what we would expect from providing end restraint. We can, 
therefore, adapt the Euler formula to be applicable to all kinds of 
columns having different end conditions (Fig. 8.8.) if we use in it 
the effective length Le instead of the real physical length L; i.e., 

Pcr. = π2EI/Le
2 

As can be seen, for the column with one fixed end we will have 
an effective length of 0.7L and the Euler buckling load becomes:

Pcr. = π2EI/Le
2 = π2EI/(0.7L)2 = π2EI/0.49L2 = 2π2EI/L2

From this expression we can observe that having one end 
fixed will effectively double (200 percent) the critical buckling load 
compared to a column with two pinned ends – which, when one 
thinks about it, is quite a substantial benefit: 100 percent more 
capacity is being provided to exactly the same column by fixing 
one end against rotation. For a column having both ends fixed we 
will find that the effective length Le is 0.5L and the corresponding 
critical buckling load will be Pcr. = 4π2EI/L2, which is four times (400 
percent) the capacity of a pin-ended column of the same length. 
At the other extreme, for a column which has one end fixed and 
the other completely free to translate (move laterally) and rotate, 
similar to the condition of a flag pole, the effective length is actually 
2L and the critical load is 0.25π2EI/L2. With no support at the top, 
therefore, the column will only be able to carry a mere quarter (25 
percent) of the critical load of our reference column of the same 
size, shape, and length.

Figure 8.7
The buckling phenomenon as a spatial problem: in an unsymmetrical condition, we 
should take care to relate the slenderness ratio to the column’s weakest axis. 
In practice, we will frequently find that columns are braced by walls or other 
building elements in the direction in which they are the least stiff. Typical cases for 
this are where the columns form part of external walls. To support the wind loading 
acting on the façade, the columns are most often asymmetrical, having their 
strongest direction oriented toward the wind load. Because external columns are 
commonly braced in the plane parallel to the external wall, their potential buckling 
caused by the vertical load can only take place in the direction of their strongest 
axis, resulting in a buckling load that is larger than would be possible otherwise. 
Moreover, columns in multistory buildings are commonly supported horizontally 
by floor structures at every story, effectively establishing the laterally unsupported 
column length as that of the story height.
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Figure 8.8
The effect of different 
column end conditions on 
the critical load.

Illustration 8.16
École d’Architecture de Lyon, Lyon, France (1987). 
Example of a pinned-end column base. Rectangular wooden column 
is attached to a molded cast steel connector that tapers to a minimal 
dimension and a steel pin/dowel that allows for free rotation.  
(See also Ill. 10.11, 10.12.)

Architect: Jourda et Perraudin. Structural engineer: Rice Francis Ritchie.

Illustration 8.17
Schiphol Airport Plaza, Amsterdam, Netherlands (1995). 
Example of a fixed-end column base. Tubular steel columns are welded 
to larger diameter steel baseplate, which is then bolted all around to the 
base support, preventing any rotation from occurring.

Architect: Benthem Crouwel Architekten. 
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We may conclude from these examples that any attempt to 
restrain a slender column from moving laterally or from rotating at its 
ends will very favorably influence its critical buckling load capacity. 
We can consider the four cases that we have discussed here as 
general guides for the analysis of all columns. As columns in actual 
buildings may only be partially restrained, it may be necessary in 
reality to interpolate mathematically between the effective lengths 
of the example cases given here.

8.5	 Mikado9 – A Multitude of Columns

To extend this discussion about slender columns just a bit further, 
we will briefly consider here the case of buildings that have been 
designed and built using very many such elements – it fact, in some 
cases there may seem to be a veritable forest of thin columns, 
something that has become a noticeable trend over that past 
decade or so.

Obviously if one wants to lift a roof or occupiable volume up 
into the air and have it visually and/or conceptually disengaged 
from the ground, given our discussion about the various factors that 
affect column buckling there are different ways to go about meeting 
this objective. One would be to simply have a few, hefty columns 
(with long-spanning systems in between), whereas another would 
be to have more columns but that are of smaller cross-sectional 
dimensions by comparison. The latter approach has been taken 
to an extreme in the two projects that we will briefly look at here, 
one in the Netherlands and the other in Spain.

As in a forest, however, we see that at least in these two cases 
not all of these “trees” stand straight; some are tilted, creating a 
more “playful” sensation, or perhaps one that is more “natural” 
than having all purely vertical columns. (This need not always be 
so – for example, see the Koga Café in Ill. 10.14, 10.15.) Aesthetics 
aside, however, there are also some structural pros and cons to 
such tilting of columns: e.g., gravity loads that are being carried 
result in larger forces in the sloping columns that support them, and 
so there is a material price to be paid; also, sloping columns can 
contribute to the lateral stabilization of the building that they are 
supporting, a beneficial effect of “crooked” columns that may not 
seem so intuitively obvious at first. (These topics are further discussed 
in the following section as well as in Chapter 10 in Section 10.5.) 

Dutch Pins

A scheme that can perhaps be described as a box sitting on a 
pincushion was the winning design concept of the architect Micha de 
Haas in a competition for the Aluminum Center of the Netherlands. 
(Ill. 8.18.) The Center, located near Utrecht, provides space for the 
meetings and conferences of people involved with the aluminum 
industry while also conveying information to the public at large about 
the wide range of creative possibilities for that material. Consistent 
with its purpose, the building is mainly built of aluminum and it 
represents an unusual degree of collaboration between industry 
and design, with some components being developed specifically 
for the project while others were specified from a catalog.

Contrary to the common contemporary focus on long span 
structures, in this project the architect explores the design 
implications of the opposite: very short spans resulting in a forest 
of aluminum columns. These number 368 in all and they have 
diameters that vary from 90 to 210mm (3.5 to 8.25in). While this 
may seem like many columns, it is a relatively modest number 
in comparison to earlier versions of the scheme in which up to 
1200 were considered. Moving up into the building among these 
many columns (which are effectively multiplied in number by their 
reflections in the water at their base) makes for a distinctly vibrant 
and memorable experience.

Spanish Sticks

This project was one of the last works of the late Spanish architect 
Enrique Miralles (1949–2001). Situated high up in the rolling hills 
surrounding the Galician city of Vigo, the campus buildings were 
planned in connection with a huge landscaping and reforestation 
project; the elevated single-story constructions follow the slope of 
the terrain and serve to transform the site into a built landscape.

A long series of small auditoria are supported by a multitude 
of columns: at the front of the buildings, concrete columns are 
cast in inverted V-shapes while farther back clusters of tubular 
steel columns reach up to support the building. (Ill. 8.19.) From a 
purely mechanical point of view, the use of many slender columns 
requires more material than having only a few, thicker columns. 
This is because each slender column has to be sufficiently thick to 
prevent its buckling, whereas thicker columns that carry larger loads 
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Illustration 8.18
Aluminum Center, Houten, the Netherlands (2001).
Intended to show the versatility of aluminum, the building is supported on a “forest” 
of slender aluminum columns.

Architect: Micha de Haas. 

Illustration 8.19
Vigo University Campus, Vigo, 
Spain (2002).
A series of auditoria is carried by 
a multitude of columns.

Architect: EMBT Miralles Tagliabue. 
Structural engineer: Malvar-OHL; 
Josep Massachs.
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are less slender a priori and hence tend to make more effective use 
of their material. Nevertheless, this odd and fascinating column 
forest is an essential element in the overall architectural language 
of the project, just as are the unique arrangement of buildings, 
their rugged material finishing, and the details of stair railings 
and sunshades. As a whole these are evidence of the creativity 
of a remarkable architect. Moreover, there is a tremendous view 
from the grounds of the campus through this man-made forest of 
columns out toward the open Galician landscape.

8.6	 The Shape of Compressive Elements

Even if we may instinctively identify columns as being the essence 
of structures in compression, in fact structural elements that are 
subject to this type of loading condition are much more pervasive. 
For example, one must also include in this category struts, certain 
members of trusses, selected diagonal members of lateral bracing 
systems, arch segments, etc.; i.e., the list quickly begins to get quite 
long. And even beams, which will always have one of their flanges 
in compression as a result of their fundamental bending behavior, 
must be considered to have parts that are a member of the club. 
The chapters that follow this one and that deal with such things 
as trusses and shear walls and arches will make clear that in fact 
all slender compression members may risk failure by buckling – no 
matter what they are called. So although we will mostly restrict the 
discussion for now to being about how to strategically shape the 
more familiar and traditional column compression element, we 
must always keep in mind that the lessons learned here are equally 
applicable in many other contexts.

As we have seen and suggested in the preceding sections, 
there are certain design strategies for avoiding an overall stability 
failure, also known as the global buckling failure, of a slender, 
unbraced column. These techniques engage form in two respects: 
(i) by means of their cross-sectional shape and (ii) according to their 
elevational profile. If we go back to considering the most basic of 
slender columns with two pinned ends, we may ask what shape 
of its cross-section will offer the largest stiffness and result in the 
column having the highest load-bearing capacity.

Looking at prismatic columns, that is, at columns having the 
same geometry at every cross-section along their length, we can 
start by comparing simple solid columns of circular, square, and 
triangular shapes. Based on the Euler formula, Pcr = π2EI/L2, if we 
consider the material stiffness E and the length L to be the same 
for all three columns, then the ratio of their critical buckling loads 
will necessarily be the same as the ratio of their cross-sectional 
moments of inertia I. It is possible to calculate this ratio if we 
take as a precondition that they all are to have exactly the same 
cross-sectional area A. Contrary to what we may have expected, 
theoretical values show that the column with a triangular cross-
section offers about 20 percent higher critical load capacity than 
the circular column, while the latter is almost identical to the one 
with the square cross-section. (Fig. 8.9.) It is clear that some of the 
most common shapes of columns in architecture are chosen for 
reasons other than extreme material efficiency.

When dealing with buckling, which is a stability problem that 
ultimately involves a column’s bending, and with the Euler formula 
incorporating the associated cross-sectional property of moment 
of inertia I, it is clearly going to be beneficial in terms of a column’s 
load capacity to distribute its material as far away as possible 
from the central axis, thereby increasing I. This means that hollow 
columns make better use of their material than do ones with solid 
cross-sections (assuming that they have the same cross-sectional 
area), quite simply because the moment of inertia will be larger 
for the hollow columns, and therefore the slenderness ratio will 
be less for the same amount of material. To demonstrate this, we 
can look at two cross-sections having equal areas: A1 from a 60 x 
60mm solid, and A2 shaped as a 100 x 100mm hollow with a wall 
thickness of t = 10mm. Both cross-sectional areas are A1 = A2 = 
3600 mm2. Their moments of inertia, however, can be determined 
to be I1 = (1/12)(60)4mm4 = 1 080 000mm4 and I2 = (1/12)(1004 – 
804)mm4 = 4 920 000 mm4, respectively. This yields a ratio for the 
columns’ critical loads of Pcr,2/Pcr,1 = I2/I1 = 4.92/1.08 = 4.5. In other 
words, the slender hollow column with exactly the same mass and 
weight can theoretically carry 4.5 times as much as the slender solid 
column before buckling. Clearly there is very distinct advantage to 
this cross-section-shaping strategy of moving material away from 
the central axis, and this is a lesson that is regularly applied to 
compression elements in various ways. (e.g., Ill. 8.20.)

Figure 8.9
A comparison of solid square, 
circular, and triangular compressive 
elements having the same cross-
sectional area. Their relative load-
bearing capacity (critical load) 
is given and these show that, 
theoretically, among these three 
variations a triangular cross-section 
makes the best use of the material 
with an increased capacity of 20 
percent compared to the circular 
column.
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Illustration 8.20
Strategies for increasing the critical load of slender columns.
(a) Maison Louis Carré (1959).
Central concrete column with four timber stiffeners at its sides. (See Ill. 
8.21 for detail.)

Architect: Alvar Aalto.

(b) National Opera and Ballet, Oslo, Norway (2008). 
Concrete columns with a marked thickening at mid-height.

Architect: Snøhetta. Structural engineer: Reinertsen Engineering ANS.

(c) Neue Nationalgalerie, Berlin, Germany (1968).
Flanged-section rolled steel column with two additional transverse 
T-sections welded to its web – yielding a cruciform-shaped flanged 
section. (See Ill. 8.25 for detail.) 

Architect: Mies van der Rohe.

(d) The Renault Distribution Center, Swindon, UK (1983).
Central steel column with tension-rod-supported lateral bracing at 
mid-height. (See also Ill. 6.38.)

Architect: Foster + Partners. Structural engineer: Arup.

(e) Sendaï Mediatheque, Sendaï, Japan (2001). 
Large tubular columns made of many smaller steel tubes; i.e., the 
hollow column at a larger scale. (See also Ill. 7.49.)

Architect Toyo Ito. Structural engineer: Mutsuro Sasaki.

a)

d) e)

b) c)
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Moving on to considering the effect of column elevational shape 
or profile, it must be acknowledged that a recurring, if occasional, 
design strategy for the column over the course of architectural history 
is making columns that thicken (or get “fatter”) between their ends. 
(e.g., Ill. 8.20b.) This is certainly a well-known feature, called entasis, 
of the columns of ancient Greek temples. (See previous Ill. 8.4.) 
More recently, the architect/engineer Santiago Calatrava and many 
others have used it extensively and expressively, with the column 
element’s profile becoming quite obviously “cigar” or “lens” shaped. 
Certainly if buckling occurs, such a profile does indeed provide a 
stiffer cross-section over that portion of the compression element 
that experiences the largest sideways deflection. The operative 
principle here, once again, would seem to be to distribute the 
material of the column in such a way that it is of the most benefit, 
this time by moving it away from the ends of the column toward 
its mid-height. While this may sound like quite an advantageous 
strategy, however, in reality relatively subtly varying the dimensions 
of a column’s cross-section in this particular manner offers only a 
modest improvement for resisting buckling. In the end, then, even if 
there is some structural merit to it, this particular shaping of column 
form may have more to do with optics after all; perhaps its bulging 
profile is so strongly suggestive of the internal compression forces 
that designers find visual reasons for using it. 

The case of very slender columns having individualized bracing 
systems would seem to be of related interest here given the likeness 
of visual profile. But unlike the preceding case of a “simple” fattening 

at the middle, a column that is laterally supported at mid-height 
by a system of struts with pre-stressed rods or wires connected 
to their ends actually proves to be very materially efficient and 
a highly effective way to improve a column’s capacity. (e.g. Ill. 
8.20d.) In this case, the additional material that provides the extra 
stability works by means of pure axial tension forces, which we 
know to be highly efficient in terms of material use and stiffness. 
Furthermore, if such lateral bracing results in a reduction of the 
central column’s effective length to one half of the original, then 
we have seen earlier in this chapter that the necessary geometric 
stiffness, or moment of inertia I, of the column cross-section can 
be reduced to one-quarter of what it otherwise would need to be. 
The obvious consequence will be a much smaller cross-section 
and significant weight reduction for this built-up column system. 
It must be noted, however, that the added weight of struts and 
tensile rods will partially offset this material saving; also, the cost of 
the manufacturing and construction of this kits-of-parts column will 
not be insignificant. Nevertheless, individually braced columns of 
this sort are wonderfully expressive and light, and they have been 
used frequently over the past few decades.

Finally in this context of overall column-shaping strategies, it 
can be observed with interest and curiosity that as we saw in the 
preceding section there is a recent tendency in certain projects to 
employ tilted or inclined columns. (e.g., Ill. 8.22.) We may wonder 
whether additional forces are produced by not letting vertical loads 
be supported by vertical structural elements, and, beyond that, 

Illustration 8.21
Maison Louis Carré (1959).
Drawing of overall shape and cross-section of timber-stiffened column. (See also Ill. 8.20a.)

Architect: Alvar Aalto
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whether there are any negative effects of this inclination on the 
column’s load-carrying capacity. Since a vertical load sets up an 
axial compressive force in the column having the same angle of 
inclination as the column itself, horizontal forces will be necessary 
at both ends of the tilted column in order to maintain equilibrium. 
Such lateral forces must be countered by the building’s bracing 
system and by the capacity of the foundations to withstand horizontal 
forces. Moreover, as was stated in Section 8.5, the inclination of the 
column will cause the axial force in the column to be larger than 
that of the vertical force being carried (recall components of forces 
from Chapter 4). And beyond that still, the weight of the column 
will no longer follow the column axis, but will instead produce 
some bending moments in it. Although the latter are typically not 
very large, they will nevertheless cause bending stresses in the 
column that will be additive to its usual set of compressive stresses; 
in principle, this effect will reduce tilted columns’ load-bearing 
capacity. But all is not bad: one advantage of tilted columns is their 
potential to contribute to the lateral stability of the whole building 
in resisting wind or earthquake lateral loads; this is a topic that will 
be taken up again in Chapter 10 (see Section 10.5.) Moreover, the 
examples that we just saw in the previous section of the Aluminum 
Centre and at the Vigo University Campus also clearly illustrate this 
tilted-column strategy at work.

Before concluding this section, we need to consider that 
buckling can occur in the smaller parts of larger overall structures, 
a phenomenon that is called local buckling. Such buckling is typically 

addressed by one of two strategies: either designing the local 
compression part of the structure to have sufficient thickness to 
greatly reduce its local slenderness ratio, or else supplying it with 
some form of local lateral bracing.

For example, the portion of a beam that is in compression due 
to bending stresses is liable to having a sideways buckling failure, 
also known as the so-called lateral-torsional mode of buckling or 
warping of the beam. (See Fig. 8.10.) To counter this effect, the 
compression flange in a beam is often effectively braced laterally by 
being regularly connected to something like a secondary, transverse 
joist system, or to timber floor sheathing, or to a metal sheeting/
concrete slab system, etc. – any of which may serve to arrest the 
tendency toward sideways displacement for that part of the beam 
that is in compression. It should be noted that the same buckling 
problem and its remedying strategies also apply to the compression 
parts of trusses which, as we will see in the next chapter, act quite 
like beams do in many respects (see Fig. 9.17).

If, for some reason, the plane of such a potentially stabilizing 
surface is not well positioned with respect to the primary beams, the 
compression part of the latter may be unbraced, and an alternative 
strategy will need to be employed. At Crown Hall at IIT in Chicago by 
the architect Mies van der Rohe, for example, the top compression 
flange is made wider in steps along the span, with the widest at 
mid-span, which helps to reduce the (local) slenderness ratio of the 
flange with regard to sideways instability. (This project is illustrated 
and further discussed in Chapter 10; see Ill. 10.44, 10.45.) Also to 

Illustration 8.22
Peckham Library, London, UK (2000).
When columns are tilted, horizontal forces will occur at both ends which need to be 
counteracted by the building’s bracing system as well as the foundations. Also, gravity 
produces some small bending moments in the column which must be considered. On the 
other hand, there is a potential lateral stability benefit from tilted columns.

Architect: Will Alsop. Structural engineer: Adams Kara Taylor.

a)

b)

Figure 8.10
Potential lateral-torsional buckling failure 
caused by compression bending stresses 
produced as a beam flexes to carry transverse 
loading.

a)

b)
b)

a)
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be noted through this example: with large steel plate girders we 
will also commonly find local stiffeners every so often along the 
beam web whose function it is to prevent the relatively thin sheet of 
steel from buckling locally as it transfers large compressive forces.

We will conclude this section by examining more closely one last 
example of local buckling: that which can happen in the unbraced 
slender parts of columns themselves, especially if the column has a 
cruciform shape or is designed with other thin, protruding flanges. 
(Fig. 8.11.) Historically, the cruciform column was born in the era of 
the wrought iron- and steel-engineered structures of the nineteenth 
century, but it has reappeared periodically in architectural projects 
made of steel, reinforced concrete, and wood alike. Because of the 
column side-protrusions characteristic of this shape, special care 
must be taken to reduce the risk of these thin extensions buckling 
locally, perhaps by making them thicker in order to reduce their local 
slenderness. In larger cross-sections with heavy loads, supplemental 
stiffeners in the form of transverse plates at the tips of the flanges 
may be a wise choice in order to avoid local buckling problems. 

8.7	 The Masters’ Cruciform Columns

Columns of cruciform cross-section were highly regarded by some 
of the pioneers of Modern architecture, not least for their suitability 
for expressing a freedom of floor plan and spatial organization; 
i.e., with a cruciform column it can be said that the column remains 
neutral in its orientation, with no accenting of one direction over 
the other. The thin and sharp edges of such a column made of 
steel were particularly admired and explored.

The cruciform columns of Mies van der Rohe’s (1886–1969) 
Barcelona Pavilion, built in 1929, are made of four equal steel 
angle-sections placed back to back, with the whole ensemble 
covered by highly polished sheet steel. (Ill. 8.23.) The columns’ shiny 
exterior surface is in keeping with the pavilion’s other materials: 
polished honey-yellow onyx, green Tinos marble, and the many 
reflecting glass surfaces. An observant visitor to the carefully rebuilt 
pavilion (1986) will notice one change from the original, however: 
the chromed sheet steel of 1929 has been changed to polished 
stainless steel.

A year later, Mies designed the Tugendhat House in Brno in then 
Czechoslovakia. Here, just as he did in Barcelona, Mies demonstrates 

his ideas about the free plan and clarity of construction: the house 
is especially known for its open and sober lounge enclosed with 
three glass façades. (See Ill. 2.9b.) As in the Barcelona Pavilion, 
the flat roof is carried by cruciform steel columns; here, however, 
the polished sheathing is more rounded. (Ill. 8.24.) Perhaps this 
reflects the curved forms found elsewhere in the house, such as 
that of the glass wall that surrounds the staircase from the entrance 
terrace and the semicircular screen wall in the lounge.

Mies’ Neue Nationalgalerie in Berlin (1968) is defined by one 
large open space surrounded by glass walls. Here it is covered 
by a square roof made up of a beam-grid structure of welded 
steel plates. (See Ill. 7.39.) This “floating” roof is carried by eight 
cross-shaped columns that are placed along the perimeter, two 
on each side, leaving the corners column-free. By this time the 
chromium-clad supports from Barcelona and Tugendhat have been 
replaced by four welded T-sections shaped into a modified cruciform 
configuration. (Ill. 8.25.) As opposed to the earlier simpler versions 
with flat extensions, the T-shape here provides transverse local 
bracing to the protruding flanges in order to increase the columns’ 
stiffness and load-bearing capacity; this is a much heavier roof, after 
all. Cantilevered from the concrete base, the columns are supplied 

Figure 8.11
Columns with cruciform cross-sections.

Illustration 8.23
German Pavilion, International Exhibition, 
Barcelona, Spain (1929).
Cruciform, chromium-clad steel column.

Architect: Ludwig Mies van der Rohe.
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with hinged column heads; a keen eye will also notice that the 
column is slightly tapered on its way up to the roof.

Le Corbusier’s (1887–1965) material of choice was concrete, 
with its rich plastic potential for expression. However, in his very 
last work, the Centre Le Corbusier in Zurich (1967), which was 
inaugurated after his death, he used steel as a building material. 
A steel-plate canopy covers a light pavilion that is based on cubic 
volume units measuring 226 x 226 x 226cm (7.5 x 7.5 x 7.5ft) and 
constructed of steel elements with cruciform cross-sections. (Ill. 8.26.) 
In contrast to Mies’ free-standing columns, Le Corbusier’s cruciform 
sections are employed both vertically and horizontally to create a 
three-dimensional orthogonal open grid that defines the pavilion’s 
volume and frames the façade elements of glass and enameled 
steel panels. There is no sheathing of the cruciform elements here; 
instead they remain completely “honest” and visible, as are the 
bolts that hold together their four equal steel angle components.

Illustration 8.24
Tugendhat House, Brno, Czech Republic (1930).
Cruciform, chromium-clad steel column.

Architect: Ludwig Mies van der Rohe.

Illustration 8.25
Neue Nationalgalerie, Berlin, Germany (1968).
Cruciform column with flanged ends providing stiffening 
against local buckling – as well as increasing the column’s 
moment of inertia to counter overall buckling of the column 
from top to bottom. (See also Ill. 8.20c.)

Architect: Ludwig Mies van der Rohe.

Illustration 8.26
Centre Le Corbusier, Zurich, Switzerland (1967). 
Contrary to the free-standing columns of Mies’ projects, Le 
Corbusier’s columns here are in line with the pavilion’s façade.

Architect: Le Corbusier.
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8.8	 The Wall

We may think of the wall as an extrapolation of the column that we 
have been looking at so far in this chapter; that is, by extending the 
latter’s cross-section along one axis in space, an essentially linear 
structural element effectively becomes a planar one. Moreover, 
given their typical vertical orientation and support at the foundation 
level, structural walls usually serve an essential gravity load-carrying 
function in a building, with the resulting compression stresses 
anticipated to be present throughout, increasing in magnitude 
toward their base as dead and live loads accumulate. Such walls 
are known as gravity load-bearing walls (or simply as bearing walls 
for short) and both material capacity and buckling concerns will 
typically need to be addressed, just as they were for columns.

Because of their planar aspect, however, it must be pointed out 
that in addition to carrying gravity loads walls may also be called 
upon to resist other types of loading. For example, a wall offers great 
capacity in the direction of its plane for resisting lateral loads on a 
building, and when it functions in this manner it becomes known 
as a shear wall. Shear walls act as stabilizing elements in many 
buildings of all scales; these were introduced in Chapter 2 and will 
be discussed more extensively in Chapter 10. Another possibility, 
especially if a wall is located along the exterior face of a building 
and/or is situated below ground level and holds back the earth, is 
that it may be subjected to lateral loads that are perpendicular to 
the wall surface, such as may be caused by wind or earth pressures; 
in the latter case, these are given the specific name of retaining 
walls. The structural behavior of these particular types of walls will 
also be discussed, but in the subsections that follow.

Gravity Load-bearing Walls

The wall, when taken as a planar compression element supporting 
vertical loads, will in many respects behave similarly to the column. 
Just as for the column, therefore, we will need to distinguish between 
structural elements whose proportions are short and stocky, in 
which case material capacity governs, versus those that are tall and 
thin, for which buckling may also become of significant concern. 

The compressive material capacity of walls is an obvious 
constraint. In principle, for relatively short, thick walls it is a simple 
matter of dividing the load needing to be carried per linear meter 
or foot of wall by the material capacity in order to establish the 
corresponding required wall area and thus its required thickness; i.e.: 

Areq’d = P / σu 

and 
treq’d = Areq’d / unit length

Frequently used structural materials historically such as stone, 
brick, rammed earth, and timber (these are still commonly used 
today in various contexts) have a relatively limited capacity in 
compression compared to other higher strength materials and 
this led/leads to rather thick walls in such buildings being needed 
simply to carry dead loads – including, typically, quite high self-
weights – as well as any roof and occupancy live loads, as the case 
may be. (e.g., Ill. 8.27.) 

A further spatial consequence of using low-capacity materials 
is that load-bearing wall thicknesses can increase rather quickly 
as gravity loads accumulate – as is quite dramatically evidenced 

Illustration 8.27
Catalina House, Tucson, AZ, USA 
(1998).
Load-bearing walls for this house 
are made of rammed earth. 
Tapering of exterior wall thickness 
is evident at large window 
opening at right. Elsewhere, 
substantial thickness of wall allows 
for strategic recesses to be made, 
and surface texture is provided 
by means of the formwork used 
and by its sequential layering 
construction method.

Architect: Rick Joy Architects. 
Structural engineer: Southwest 
Structural Engineers, Inc.
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in the late-1800s Monadnoch Building where the full-perimeter 
brick walls of this 16-story structure start at 300mm (1ft) thick at the 
top but progressively thicken to 2m (6ft) at the base. (Ill. 8.28.) By 
contrast, certain contemporary high-strength wall materials such 
as reinforced concrete (having material compressive strength that 
is perhaps 10 to 20 times or more that of masonry) allows wall 
extents and thicknesses to be greatly reduced while still maintaining 
stresses within acceptable limits. We saw this, for example, in the 
walls of the Bregenz Kunsthal in Chapter 2 (Ill. 2.5, 2.6) and will 

discuss this topic once again in Chapter 10, when shear walls are 
considered more fully.

But aside from a load-bearing wall’s material capacity and 
consequent length and thickness, since it is a compressive structure 
we also need to be concerned with the potential for failure caused 
by buckling, just as we saw for the column. In the case of a wall, 
however, the weak direction in this respect will obviously be in the 
direction perpendicular to the wall surface, since in its own plane 
it can be considered to be fully braced against buckling. In fact, 

Illustration 8.28
Monadnoch Building, Chicago, IL, USA (1892).
Masonry wall thicknesses increase dramatically over the height of this 16-story 
building in order to cope with increasing compression loads. Wall thickness at top 
is 300mm (1ft), at base is 2m (6ft).

Architect: Burnham & Root.
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it is quite common to conceptualize the behavior of a long planar 
wall as that of a series of side-by-side columns having rectangular 
cross-section of unit length (1m or 1ft) and whose width is the wall 
thickness. (Fig. 8.12.) Calculating the critical buckling load for such 
a representative “column” segment, in just the same way as we did 
for the column, will tell us what the wall’s load-bearing capacity is 
per unit length. Then, just as for the isolated column element, it 
will be a matter of comparing the wall’s capacity as established by 
material constraints to that derived from buckling considerations 
in order to determine which one controls. 

In all this, we have been assuming that the wall is sufficiently long 
in plan that its only transverse lateral support is considered to be 
provided at its top and bottom; i.e., at the foundation and/or floor 
levels, as the case may be. Other relative proportions and lateral 
support conditions may arise, however: for example, if we have a 
situation where the wall is braced by transverse vertical walls and 
it is supported horizontally at the foundation level (Fig. 8.13, e.g., 
Ill. 8.29), the deflected shape of the wall will look very different and 
buckling failure will occur at a higher load level according to the 
length-to-height ratio of the wall. And yet another approach that has 
a similar effect of strengthening a thin wall surface against buckling 
is to fold or curve the surface out of its plane (e.g., Ill. 8.30), which 
at a conceptual level we can liken to what we did with the column 
by moving material away from its central axis, thereby increasing 
its moment of inertia and thus its buckling capacity according to 
the Euler formula. The detailed theory for the buckling of such wall 
panels, however, is well beyond the scope of this book. 

Finally, if we examine an external load-bearing wall in a multistory 
building, we may find in certain cases that we are in fact dealing 
with a wall that supports both vertical loads and wind-induced 
horizontal wind loads. (Fig. 8.14., e.g. Ill. 8.31.) It is likely that such 
a wall will be propped sideways by the floor slabs and the wall 
will then span vertically as a surface panel between them, with 
the horizontal wind loads producing bending moments M in the 
wall, and corresponding sets of bending stresses σb developing 
within it in the vertical direction. The theory for this is the same 
as for beams and slabs, discussed in Chapter 7. If this wall also 
supports a vertical load P, however, the associated compressive 
stresses σc will be additive to the bending stresses, and there will 
be further demand on the wall material. One way of considering 
such a combined loading case is to recognize that the wall needs 
to be restricted in either carrying vertical loads P, or horizontal 

a)

b)

Figure 8.12
“Column-like” unit length of gravity load-bearing wall that can 
be used to assess wall capacity. This segment can be treated 
as fully braced in the plane of the wall. 

Figure 8.13
Gravity load-bearing wall that is braced against out-of-plane 
buckling by (a) end transverse walls or (b) intermittent buttresses. 
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Illustration 8.29
The House of Spiritual Retreat, 
near Seville, Spain (designed 
about 1979, built 2005). 
Two large, white-stuccoed 
concrete walls mutually brace 
one another. Open stairs lead 
to a “mirador”, or lookout, over 
the Andalucian landscape. Living 
spaces are underground, opening 
onto a recessed terrace at the 
base of the walls.

Architect: Emilio Ambasz and 
Associates.

Illustration 8.30
Atlántida Church, Atlántida, Uruguay (1952).
Curved walls provide much increased lateral stiffness, as well as increased buckling 
resistance for vertical loads. (See also Ill. 13.41, 13.42.)

Architect and structural engineer: Eladio Dieste.
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loads, or both together. Thus, if a wall of this type is exposed to 
large horizontal loads, its vertical load-bearing capacity will be 
greatly diminished, and vice versa. Taken together, the capacity 
of the wall can be considered as

M/Mu + P/Pcr. ≤ 1

where Mu = bending moment capacity of the wall’s cross-section 
and Pcr. is the critical load of the wall as a compression element, 
both taken separately as if not being influenced by the other. 
Moreover, the sideways deflection caused by the horizontal load 
is highly detrimental to a slender wall’s buckling behavior, with 
a consequent reduction of its capacity to support vertical loads. 
(Again, the theory for this is well beyond the scope of this book.) 

It should also be mentioned that this type of external gravity 
load-bearing wall, while certainly not completely relegated to the 
past (as can be seen with the example of the Zollverein School in 
Ill. 8.31), was in fact much more common previously than it is today 
(e.g., Monadnoch Building, Ill. 8.28). Exterior wall construction on 
many contemporary multistory buildings work essentially only as a 
“curtain” that resists the lateral wind pressures as an independent 
vertical panelized system spanning from one floor level to the next, 
which then transfer these loads to lateral-load resisting subsystems 
that are often located elsewhere in the building (see Chapters 2 and 
10), while gravity loads are typically channeled vertically through 
an open structural system framework consisting of columns and 
beams (e.g., see Ill. 3.17).

Figure 8.14
Wall with both vertical and horizontal loads. 
Resulting stress distributions shown.

Illustration 8.31
Zollverein School of Management and Design, Essen, Germany (2006). 
Load-bearing concrete façade walls with openings.

Architect: SANAA. Structural engineer: Bollinger + Grohmann.
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Retaining Walls

A special case of walls having lateral loads acting perpendicular to 
their surface is the condition of retaining walls. We may sort such 
walls into two groups according to the way in which they work to 
resist horizontal loads; i.e., whether they act as massive gravity walls 
or else thinner cantilevering flexural walls. What retaining walls 
generally have in common is their ability to support loads without 
being propped against displacement at the top. Such walls are 
free-standing, and their prime function is to hold back the pressure 
of earth, rocks, or, perhaps, water. Accumulations of these natural 
substances will cause a horizontal pressure to be exerted on the 
retaining wall having increasing intensity from top to bottom, as 
was discussed in Chapter 3. (Section 3.7.) 

V
t

W
h

H
h1

Figure 8.15
Retaining wall as gravity wall. The weight of the 
wall prevents overturning and sideways sliding.

The gravity wall resists the effect of the horizontal pressure by 
means of its own self-weight, which needs to be large enough to 
prevent the wall’s overturning or sliding sideways. (Fig. 8.15.) The 
latter calls for an adequate friction at the base of the wall in order to 
stop it from being pushed sideways; alternatively, such a mechanism 
can be assisted by some sort of mechanical anchoring system. If 
the weight W acts along the centerline of a wall having thickness 
t, and the resultant of the horizontal load is H, then overturning 
along an axis at the front of the base of the wall is prevented if

Wt/2 ≥ κHh1

where h1 = the distance from the resultant load H to the wall’s base, 
and κ (Greek letter “kappa”) is a suitable safety factor, frequently 

Illustration 8.32
Norris Dam, near Knoxville, TN, USA (1936).
Section drawing indicates some of the remarkable dimensions of  
this gravity-type concrete dam: 81m (265ft tall), 64m (208ft) thick  
at the base and 567m (1860ft) across in width – resulting in 765 000m3  
(1 000 000yd3) of concrete.10 
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set at 1.5. The idea here is to make sure that the stabilizing moment 
produced by the weight of the wall (Wt/2), which prevents the wall 
from turning over, is signifi cantly larger than the moment which may 
cause such an overturning (Hh1). In practice, gravity wall thicknesses 
t are typically 0.5–0.6h, where h is the total unsupported height 
of the gravity wall; this obviously results in a wall of quite some 
thickness if it has a height of any signifi cance.

Instead of relying on self-weight, a retaining wall may be strong 
enough to cantilever in bending fashion from the foundation (Fig. 
8.16), in which case the necessary wall thicknesses will be dramatically 
reduced from its gravity wall equivalent. Reinforced concrete is a 
typical material for this situation, as are sheet pile walls made of 
steel. This wall’s behavior is fundamentally one of bending, and 
accordingly the wall thickness may be proportioned to be thickest at 
the base, thinning out toward the top. (Fig. 8.17.) The cantilevered 
retaining wall relies on a foundation capable of establishing a 
resisting couple (moment) at its base, either by resting on rock 
and anchored to it, or by being supported by piles having the 
ability to resist tension and compression as well as horizontal shear 
forces. If the resultant horizontal load H from the earth pressure 
acts at a distance h1 from the base, the requirement for rotational 
equilibrium will give the resultant of the counteracting compression 
and tension reaction forces R at the foundation as

Re = Hh1, or
R = Hh1/e

where e = the distance between the reaction forces R. This means 
that the wider the footing, the less the vertical force R needs to be 
in order to be accommodated by the foundation. 

A project that encapsulates well both the ethos and rationale 
of various types of retaining walls is the Waterline Museum at Fort 
Vechten. (Ill. 8.33.) Here, a museum that is dedicated to the way 
water was used in the defense of the Netherlands between 1588 
and 1940 consists of multiple parts, including that of a historic fort 
that was an integral part of the Waterline defense system, having its 
own impressive stone wall fortifi cations and surrounding moat, and 
then, within that larger context, a recent building addition dedicated 
to literally putting on display a working miniaturized model of the 
Waterline system. This display is located below ground, and fully 
surrounded by its own set of concrete gravity-load-bearing walls 
and cantilevering retaining walls. (Ill. 8.34.)

a)

b)

figure 8.16
Retaining wall defl ects as a vertical cantilever 
due to lateral loading.

figure 8.17
Vertically cantilevered retaining walls, and 
bending moment resolution at their base. Wall 
foundation on rock (a) and on piles (b).
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illustration 8.33
Waterline Museum on Fort bij Vechten, Bunnik, Netherlands (2015). 
Retaining walls establish both the elevated levels of the terrain for a historic fort 
along the Dutch Waterline defense infrastructure, and enable a contemporary 
museum to be “carved out” from this ground. 

Architect: Studio Anne Holtrop. 

illustration 8.34
Waterline Museum. 
A perimeter retaining wall establishes the museum’s sunken courtyard 
that puts on display a working model of this defense system. 
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8.9	U rban Ramps and Retaining Walls 

Walkway at Castelldefels 

High on a 60m (130ft) hilltop overlooking the Catalonian town 
of Castelldefels and the Mediterranean Sea beyond is a fortified 
sixteenth-century stronghold, built around a tenth-century church 
and upon the ruins of earlier Iberian and Roman villas. A relatively 
recently built 1km-long (0.6mi) pedestrian access ramp zigzags its 
way up from the urban center to the castle, following the irregular 
topography with each bend of the pathway and responding in 
subtle ways to the natural landscape of the hillside. (Ill. 8.35.)

Contrasting with such delicate site responsiveness is the 
distinctive main visual feature of this walkway: the upright Cor-
Ten steel plates that fold back and forth in origami-like fashion 
alongside the whole length of the outside edge of the pathway. 
These plates are actually the left-in-place outside surface of the 
formwork used to build a network of reinforced concrete retaining 
walls that hold in place the rocks and earthwork necessary to create 
the smooth, wide walking surfaces of the ramp. The corrugated 
steelwork is made visually prominent by extending this “formwork” 
vertically above the level of the walkway so as to also serve as its 
safety railing. The back-and-forth folding of the plates, of course, 
not only provides the steel wall surface with significant flexural 
bending stiffness such that it can cantilever vertically – despite being 
quite thin – but it also echoes the visual crenellation patterns of the 
castle high above. The strength of the retaining wall structures is 
deliberately emphasized here rather than being hidden away – as 
it could easily have been. 

Olympic Sculpture Park in Seattle

Zigzagging its way down the slope from the center of Seattle to 
that city’s long-neglected urban waterfront is the Olympic Sculpture 
Park, a major brownfields land reclamation project that is now at 
once a generous urban recreational park and an outdoor annex for 
the Seattle Art Museum used to display some of its larger sculpture 
pieces in a spectacular outdoor environment. The 3.6ha (9 acre) 
park is located on what had been for many years an oil company’s 
industrial site, until urban renewal efforts in the 1990s caused its 
soils and anything remaining of the site’s natural landscape to 

Illustration 8.35
Castelldefels ramp (near Barcelona), Catalonia, Spain (1993).
Folded Cor-Ten steel plates form the outside edge of a 1km-long 
public walkway that zigzags up a hillside, connecting town center 
to a historic fortified stronghold located high above. These plates 
are actually the left-in-place outside surface of formwork used to 
pour the concrete retaining walls that hold the earthwork for the 
ramp in place. 

Architect: José Antonio Martínez Lapeña and Elías Torres Architects. 
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be stripped clean. This soil was then replaced with more than  
200 000m3 (260 000yd3) of clean landfill in order to create a large-
scale park in the city, with native plants used to recreate four distinct 
and functioning natural ecosystems. This project, however, is about 
much more than typical land reclamation. All along, there has been 
the simultaneous objective to create a park that would double as an 
outdoor venue for the display of large sculpture artwork set in the 

context of the magnificent views of Puget Sound and of the snow-
capped mountains of the Olympic Peninsula beyond. And all of the 
new earth fill material that was brought to the site provided its own 
opportunity for being sculpted: architect Weiss/Manfredi’s design 
for the park features a 670m (2200ft) continuous pathway angling 
back and forth down the richly contoured site with the earth being 
held in place by an extensive system of retaining walls. (Ill. 8.36.)

Illustration 8.36
Olympic Sculpture Park, Seattle, WA (2007).
Continuous pathway angles back and forth down the sloping site toward the waterfront. 
Earth is held in place by means of series of inclined retaining walls that are also a strong 
visual feature of the sculpted landscape.

Architect: Weiss/Manfredi Architects. Structural engineer: Magnusson Klemencic Associates.
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These walls, that in many ways create the visual identity of 
the park, are also of considerable interest from the point of 
view of their construction. Unexpectedly, they are made up of 
two parallel parts: one that is completely visible, consisting of 
a series of 3.6m (12ft) long overlapping, back-sloping, precast 
concrete panels that in places are up to 9.1m (30ft) high, and 
a second part that is hidden behind the first but that is actually 
doing all the hard work of holding the tons of soil of the molded 
landscape in position. (Ill. 8.37.) The workhorse part of the wall 
is constructed using mechanically stabilized earth (MSE); that is, 
it is composed of alternating layers of compacted soil 450mm 
(18in) thick and sheets of geotextile fabric that stretch back to 
a distance of about 80 percent of the wall’s height. This thick 
band of MSE is faced at the outside edge by a wall made of steel 

wire baskets filled with rocks and gravel. This outer surface is 
then in turn protected from the elements by the layer of vertical 
precast concrete panels, the two being connected only top and 
bottom by slotted connections but otherwise separated slightly 
in order to allow for their relative movement in moderate-size 
earthquakes. Also, the movement allowance in the connections 
and the overlapping of the exterior precast panels accounts for 
differential settlement of the ground occurring without causing 
significant and unsightly cracking of the long walls. Aside from 
these inherent benefits of built-in flexibility, the dual retaining 
wall system was also determined to be considerably cheaper to 
build at the scale of this project than would have been the case 
of a conventional cast-in-place reinforced concrete wall system 
with subsequent earth backfilling.

Illustration 8.37
Olympic Sculpture Park.
Drawing of angled retaining wall construction details. Overlapping precast concrete 
panels are the visible part of these walls, but the layers of mechanically stabilized earth 
(MSE) hidden behind these are really what are doing the earth-retaining work; this is faced 
at its outside edge by blocks of wire baskets filled with rocks and gravel.
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A new topography has been creatively molded at the Olympic 
Sculpture Park, and its irregular contours have been seen to be 
held in place by making the earth that is so much a part of this 
project actually do the work of holding it all together. Moreover, 
the repetitive aspect of the exterior precast panels can also be 
seen as a sculptural response in their own right, framing views 
and providing modulated backdrops for the contemplation of the 
works of art. Alexander Calder’s Red Eagle has certainly found an 
appropriate place to land and survey the landscape. 
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9.1	 USAF Hanger and BMW World – The Space Frame Evolves
9.2	 Spanning Truss History
9.3	 Triangulation and Internal Stability 
9.4	 Roof Systems from East and West
9.5	 How Trusses Work 
9.6	 Joint Adventures
9.7	 How Trusses Look
9.8	 Two Trussed Roofs in Berlin and Bern 
9.9	 Space Frames – 3-D Truss Action

9.10	 Tensegrity – When Columns Fly

Illustration 9.1
Hangar for Oslo Airport, Fornebu, Norway (built during World War II, 1941).
The roof structure was built using flat trusses that span 30m (120ft) that are 
made of large wood timbers. The truss joints were detailed with steel plates 
connecting single and double members. Over the hangar doors, the wooden 
trusses are carried by a transverse steel truss that rests on concrete columns.
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9.1	U SAF Hanger and BMW World  
– The Space Frame Evolves

Konrad Wachsmann (1901–1980) contributed greatly to the 
development of industrial building processes, both as an educator 
and an instigator of research projects. His career parallels that of 
other great architectural personalities, such as Walter Gropius and 
Mies van der Rohe: Wachsmann was born in Germany and migrated 
to the United States in the late 1930s.

A research project for the US Air Force led to perhaps his most 
significant work, the development of a structural system that 
could be used for large hangars. (Ill. 9.2.) In contrast to Pier Luigi 
Nervi’s famous concrete hangar at Orvieto, Wachsmann’s choice 
of material for such structures was steel. The aim of his research 
work, undertaken at the Chicago Institute of Design in the latter 
part of the 1950s, was to develop a building system for long spans 
and cantilevers that was based on the use of standard construction 
elements whose dimensions varied minimally. His choice of structural 
form to accomplish this objective was that of a space frame system 
composed of an accumulation of basic tetrahedron-shaped units. 

These are open pyramidal forms having four equilateral triangular 
sides and structural members that connect the three joints of the 
geometric form.

Because triangles are stable structural forms, there is no need for 
the joints to be rigid – they can all be of the simpler and cheaper 
pinned variety. While the potential of the space frame was at that 
time already becoming known through Alexander Graham Bell’s 
experiments (see Ill. 9.34), it was Wachsmann who first used the 
system extensively in an architectural setting. The logistical problem 
that he faced in applying the space frame system to the scale of 
building structures, though, was in finding an effective connection 
joint that was relatively simple and cheap – obviously a critical factor 
given the number of joints in such a system. The solution that he 
devised was to use a spherical joint made of chromium steel that 
could connect up to 20 steel tube members coming in at different 
angles; a simple wedge principle was used to hold the ends of 
these members in place.

Wachsmann’s huge space frame proposal rested on a number 
of stable polygons constructed using the same basic principles as 
that of the roof structure. At the time, such projects carried with 

Illustration 9.2
Project for a hangar for the US Air Force (1951).
Model of the space frame structure made of steel.

Architect: Konrad Wachsmann.
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them the message that this new type of architecture offered the 
possibility of having a free, dynamic, sheltered space of almost 
limitless dimensions and lightness. This kind of structure is, of 
course, particularly well suited to occupancy functions that require 
big, open spaces such as airport hangers, exhibition halls, etc. Also, 
in terms of design potential, the nature of the space frame is based 
on an uncompromising geometric ordering principle, with clear 
rules for the addition of secondary building elements such as roof 
covering, façades, and other installations; only the most capable 
of architects understand and master that game.

Almost 50 years later, different architects and engineers were 
faced with a similar challenge: that of designing a structure that 
could cover the exceptionally large roof area of 120 by 200m (394 by 
656ft) for an “experience” and distribution center in Munich for the 
automobile manufacturer BMW. Further challenging the designers – 
architects Coop-Himmelb(l)au with structural engineers Bollinger + 
Grohmann – was the fact that the building site is quite close to that 
city’s famously innovative and iconic Olympic Stadium, which has 
its own celebrated and unique roof form and structural system. (Ill. 
11.38). For BMW World, the roof structure is an equally striking, if 

different, visual feature, one that the designers conceptualized as a 
“cloud” with a softly curved and undulating shape, especially on its 
underside. (Ill. 9.3, 9.4.) The top of the roof is slightly bulging upward 
in the middle, like a cushion, and is fitted with solar panels. Both 
upper and lower layers of the roof system consist of 5 by 5m (16.7 by 
16.7ft) grids of structural members, and these layers are connected 
by means of numerous diagonal bars that together form an overall 
space frame structure whose height varies continuously between 2 
and 12m (6 and 36ft). The supports for this huge roof system are a 
large double-cone structure at one end of the building and a number 
of concrete columns and stair and elevator cores elsewhere.

Part of the original idea for having an undulating roof structure 
was to make the space between the upper and lower structural 
grids available for functions related to administration offices and 
lounge spaces. The story of how the very particular shape was then 
conceived is interesting: letting those types of functions represent 
certain imaginary gravitational forces, these were applied to the 
structure by help of a computer program that produced a virtual 
deformation and, thereby, suggested the space needed in between 
the layers. The resulting structure is certainly visually arresting as well 

Illustration 9.4
BMW Welt, Munich. 
Exterior view of undulating roof form.

Illustration 9.3
BMW Welt, Munich, Germany (2006).
Section shows undulating truss forms; triangulation can easily adapt to 
overall structural form that varies.

Architect Coop-Himmelb(l)au. Structural engineer: Bollinger + Grohmann.
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as being relatively light and consistently efficient: it is constructed 
from steel tubes having only 324mm (12in) diameter for both the 
upper and lower layers’ members and 244mm (10in) diameter for 
the diagonals. While the lineage from Wachsmann’s early spatial 
ambitions and construction strategies to this contemporary built 
reality is clear, BMW World’s designers have also demonstrated 
that trusses and space frames of the twenty-first century do not 
necessarily have to follow the regular, straight-line design geometry 
of the twentieth.

9.2	 Spanning Truss History

Trusses have a long and distinguished history; indeed, as a structural 
type they can be traced all the way back to antiquity. In very simple 
forms, trusses were quite commonly used for pitched roofs, and the 
Romans also employed trusses extensively in bridge construction 
(e.g., Ill. 9.5); indeed, both of these would have been seen at the time 
as structures that were part of the vernacular tradition. During the 
Renaissance, a more conscious attitude to trusses’ particular way of 
carrying load and to their potential applications gradually developed, 
not least of which is represented by the theoretical and practical 
works of the Italian architect Andrea Palladio (1508–1580). It was, 
however, not until engineering became an established profession in 
the first half of the nineteenth century that the potential of trusses 
was systematically explored (and exposed), although for the most 
part by bridge builders. Longer spans and heavier loads incited 

by the rapidly expanding railway transportation system called for 
efficient and reliable structures. The development of the truss, 
therefore, primarily took place in civil engineering structures; in 
architecture, both spans and loads were usually smaller and did not 
encourage the formal development of trusses to the same degree. 
Besides, tradition, style, and custom weighed more heavily on 
architectural practice than on that of engineering, partly explaining 
why truss forms in general were slow to be admitted into “high-
end” architecture. A relatively early example of a systematic use of 
trusses as both load-bearing structure and expressive architectural 
element, however, can be found in the Crystal Palace built for the 
World’s Fair of 1851, where both wrought and cast iron trussed 
beams were used in a large-scale building, albeit a temporary 
one. (Ill. 9.6.)

But just what, exactly, is this thing we call a truss? We may begin 
to answer this question by saying that at its most basic a truss is a 
structure that is made up of linear elements arranged into triangular 
configurations. (e.g., Fig. 9.1.) Since a triangle is a stable structural 
form overall – that is, the triangle will not significantly be deformed 
when external forces are applied to it in any direction within its plane 
– then such an arrangement provides a highly effective geometric 
framework to build upon. More specifically, and as we will discuss 
in considerably more detail shortly, this triangular arrangement of 
structural elements is very efficient at being able to resist large 
overall deformations.

More generally, we can say that a truss is made up of an 
arrangement of many such triangular configurations connected 
together side by side. These may be found in the form of the 

Illustration 9.5
Trajan’s Column, Rome,  
Italy (113 AD).
Relief detail shows braced form 
of wooden frames used for 
railings of pontoon bridge having 
closely spaced boat supports. 
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supporting structure for a simple pitched roof, or else in the place 
of a long-spanning horizontal beam, or stabilizing a wind-loaded 
building by means of a diagonally braced frame, or even adopting 
the overall form of a strategically curved arch, etc. Although these 
examples are seemingly of very disparate form and function, what 
they all have in common is that their dimensions and relative 
proportions are such that it is possible to create a light, open 
structural subsystem called a truss out of many linear structural 
elements connected together into stable triangular configurations. 

In terms of materials, we can say that before metals such 
as iron and later steel became so commonly used for trussed 
structures, wood was the main material used for this structural 
form, as we just saw in the relief depictions of Roman bridges on 
Trajan’s Column. Given that individual truss members experience 
either axial tension or compression forces (more on this shortly), 
and since wood performs quite well in either of these stress 
conditions (see Chapter 5, Section 5.2), it makes sense that this 
would have been the material of choice for early trusses; certainly 
stone would have been out of the question given its fundamental 
weakness in tension. Historically, then, this would likely have 
left the designing and assembling of truss connection details 
as perhaps the greatest challenge to building these types of 
structures (something that is still of major consequence from both a 
functional and visual perspective – but more about that later in this 
chapter in Section 9.6.) During the nineteenth century, advances 
in material production led to the pronounced development of 
trusses made of cast iron and, especially, wrought iron, with the 
latter’s more ductile material behavior being favored for the 

Illustration 9.6
Crystal Palace, London, UK (1851).
The shorter trusses of 7.2m (24ft) span were made of cast iron, 
while the longest spans (21.6m or 72ft) were executed in the 
more bending-resistant material of wrought iron.

Designer: Joseph Paxton. Structural engineer: Fox and Henderson.

Figure 9.1
Early roof trusses; simple triangle, 
King Post, and scissors.
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tension members of a truss, with cast iron eventually mainly 
restricted to its compression members. 

A period of intense truss development brought on largely by the 
rapid expansion of the railway infrastructure network led to innovative 
trussed bridge forms that were often named after their inventors. 
(Fig. 9.2.) An early example of this was the so-called lattice truss (a), 
also known as the Town truss (1820), in which diagonals of alternating 
directions form a tight web of members (these are named after Ithiel 
Town, 1784–1844). “Le Pont de l’Europe”, as can be seen in the 
painting in Illustration 9.7, is a classic example of just this form of 
truss. In 1830 the so-called Long truss (b) with vertical members was 
introduced, in which the resulting rectangles were cross-braced by 
diagonals in both directions (Stephen Long, 1784–1864). A similar 
truss was proposed by William Howe (1803–1852) in 1838, later 
modified into the so-called Howe truss (c) in which the rectangles 
are braced with single diagonals acting in compression. Notably, 
the truss forms proposed by Long and Howe were both anticipated 
by Palladio in the sixteenth century, but apparently without a full 
knowledge of how they performed structurally. In 1844 the Pratt 
truss (d) was proposed (Thomas Pratt, 1812–1875); this version 
is an exact reversal of the Howe truss in which the diagonals are 
oriented in the opposite direction with the result that, as we shall 
see later, tension forces occur in the diagonals and compression 
forces are in the vertical members, instead of the reverse in the 
Howe. Finally, the so-called Warren truss (e) of 1846, named after 
James Warren (1808–1908), features diagonals that have alternating 
directions. We shall look more closely into the structural behavior 
of some of these various truss forms in Section 9.5.

a)

b)

c)

d)

e)

Figure 9.2
From the top: (a) lattice trussed beam, or Town truss; (b) truss 
as proposed by Long; (c) the Howe truss; (d) the Pratt truss; 
and (e) the Warren truss.

Illustration 9.7
“Le Pont de l’Europe,” Paris, France 
(1876). 
Painting of historic bridge in which 
lattice-form iron trusses are evident.

Painting by Gustave Caillebotte.
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9.3	 Triangulation and Internal Stability

Since trusses are constructed from a series of stable triangles, 
we will first look in more detail at the geometric and structural 
properties of this shape. Contrary to the case of the quadrilateral, 
which may easily change shape from a square or rectangle into a 
parallelogram when the angles between intersecting sides are left 
free to change, triangles are locked into one shape the moment 
all three sides are linked together. (Fig. 9.3.) This is a splendid 
geometric property that has great potential for structural design, 
since one very basic condition for load-bearing structures is their 
ability to form stable frameworks.

Ideally (but also typically), the individual component members of 
a truss are linear and the forces in them are either purely compressive 
or purely tensile. And since axial force members are able to exploit 
a material to its full capacity over the whole of a member’s cross-
section – although admittedly sometimes less so in compression than 
in tension because of the danger of buckling, as we saw in Chapter 
8 – by making structures from an assemblage of linear elements in 
triangular configurations we will thereby be promoting a strategy 
of load-bearing efficiency. Generally, we know that members in 
pure tension and compression will be thinner and more materially 
efficient than is the case for elements that primarily employ bending 
behavior to carry load (such as do beams). As we will see, all of 
this points toward trusses having the qualities of being relatively 
light and open structures that minimize physical and visual weight. 
(e.g., Ill. 9.8, 9.9.)

A precondition to having pure axial forces in all truss members 
is that they must in principle be free to rotate relative to one 
another about their connection points: this requires the simplest 
of connections and is a concept that is attempted to be mimicked 
in reality. Historically, such connections were made by literal hinges 

Figure 9.3
Pin-connected rectangle vs. pin-connected triangle. 
When loads are acting, the rectangle will form a collapse 
mechanism, whereas the triangle will be stable and 
essentially retain the same overall shape.

Illustration 9.8
The trussed arrangement of a vulture’s wing bone provides large 
stiffness with little material, reducing weight as much as possible.

After D’Arcy Thompson.

Illustration 9.9
Joso High Bridge over Snake River, between Franklin and Walla 
Walla counties, WA, USA, (1914).
The similarities and differences between a truss and a beam with 
no openings in its steel-plate web are evident: both here have to 
carry the same transverse train loading, but the truss is able to use 
its strategic triangulated configuration of its component parts in 
order to span a much greater distance between supports.
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between members made with the help of a steel pin, hence the 
name of a pin-joint or pinned connection, or simply a hinge. We 
should note that axial forces in members that are connected at a 
pin-joint are all considered to be acting directly through the same 
point (i.e., the center of the pin), and thus there is no lever arm for 
moments to be created at the connection (recall the discussion of 
this topic in Chapter 4, Section 4.4); pinned connections, therefore, 
are always considered to be free of any such bending moments. 

A second precondition for having a truss in which no bending 
moments are present in the individual members is that all external 
loads must be applied and all supports must be provided at the 
connection points, the pin-joints. (e.g., Fig. 9.4.) If they are not, 
and loads were instead applied transversely along the length 
of the members, then each of these would have to respond by 
bending between connection points, thereby resulting in a much 
less materially efficient structure. Strictly speaking, of course, for 
a truss structure to be completely free of bending moments we 
would have to ignore the dead weight of each member (i.e., gravity, 
in reality, acts all along the lengths of all members of a truss). But, 
fortunately, the effect of axial forces in truss members produced 
from loads that are acting at the pin-joints is typically far greater 
than whatever effect the weights of the individual members may 
have on them, and so it is usually not too far off the mark to idealize 
things this way. As a general approach, then, we will ignore the 
local bending effects due to truss members’ self-weight, and this 
can typically be considered to be sufficiently accurate as long as 
the dead weight of the total structure is included in the overall 
applied load calculations.

Having established these fundamental characteristics of the 
quintessential truss – i.e., triangular configurations of component 
members that are pin-jointed together and subjected only to axial 
forces, and with loads that are applied and reactions provided only 
at joint locations – we are now in a position to look more closely 
at their behavior. First, however, a few words about nomenclature. 
For a truss that is oriented horizontally, the structural members 
that run along the length at the top and bottom are called truss 
chords, whereas the members connecting these are termed diagonal 
and vertical members or, more generally, can be called interstitial 
members.

The first step in the design and analysis of a truss is to determine 
whether the proposed structure is truly a stable arrangement of 
members. If it is entirely composed of triangular shapes – as is often 

and even typically the case – then, as we have discussed, we can rely 
on this geometry to be completely sufficient to provide the truss’ 
internal stability of form. There are also cases that exist in which 
there are more members in a truss than are strictly required for its 
stability, perhaps with “extra” diagonals and overlapping triangular 
arrangements of members (this is called a statically indeterminate 
truss structure), but we will not consider those situations at this 
introductory level. 

Generally, a careful visual inspection of a truss is usually adequate 
to establish the nature of the forces in its various members; i.e., 
whether compression or tension is likely to occur in these, or whether 
in fact a member has no force in it at all for a particular loading 
condition. For example, we can examine the Leonhardt House 
(1956) on Long Island designed by the architect Philip Johnson 
(1906–2005). (Ill. 9.10.) Its open glass box hovers over the site and 
the open landscape below and it is supported by columns located 
along two axes that are transverse to the orientation of this main 
living space. In between these lines of support, the box spans freely 
by means of two simple, full-height steel trusses along the outer 
glass walls, while beyond the outer column supports these trusses 
cantilever toward the open view. Vertical loads act on each truss as 
a result of the roof and floor dead weights as well as the occupancy 
live load on the floor and potential snow loads on the roof.

Whichever loads are acting on this structure at any one time, 
these will inevitably lead to the overall truss form being very slightly 
deformed overall, and it is the anticipation of this response that 
allows us to be able to predict whether the various members of the 
truss are acting in tension or compression. To help visualize what 
is happening, it may be helpful to temporarily think of the truss as 
though it were a horizontal beam and to imagine how this by-now 
familiar structure (from Chapter 7) would behave and deflect under 
transverse loading. First, for example, let us imagine that we have 
a vertical live load acting at a point midway between the supports 
and that this load is sufficiently large so that it dwarfs any dead load 
effects on the structure. (Fig. 9.5a.) The result is obviously going to 
be a tendency for the imagined analogous beam to sag downward 
between the supports, and from an overall perspective the truss also 
will deform and behave in a similar fashion. Since the form of the 
trussed structure consists of (diagonally braced) rectangles, however, 
these will themselves have to deform in order to accommodate 
the truss’ overall sagging at mid-span. The vertical member at the 
center of the truss will obviously be pushed downward with respect 
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Figure 9.4
Simple truss with pin-joints and loads acting at connection 
points, resulting in members having pure axial forces, either 
tension (T) or compression (C). The structural members that 
establish the height of the truss are called chords; in the 
present case the lower and upper chords, respectively. The 
members connecting the chords are termed diagonal and 
vertical members or, generally, interstitial members.
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Figure 9.5
(a) The truss of the Leonhardt 
House with a load acting 
at mid-span. Mimicking a 
beam’s response, the truss’ 
anticipated deformation leads 
to being able to predict the 
types of forces acting in its 
members. T is tension and C is 
compression.
(b) The truss of the Leonhardt 
House with a load acting at 
the tip of the cantilevered part 
of the truss, the deformed 
shape of its analogous beam, 
and the predicted truss 
member forces.a) b)

Illustration 9.10
Leonhardt House, Lloyd’s Harbor, Long Island, NY, USA (1956).

Architect: Philip Johnson.
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to the level of the supports, meaning that both rectangular panels 
of the truss’ middle span will be deformed into parallelograms that 
effectively make their diagonals stretch. Elongation of these diagonal 
members tells us that tension forces are at work in them. At the 
same time, the two vertical members of the truss directly over the 
column supports will be pulled slightly inward by the tension in 
the diagonals, resulting in a shortening of the upper chord. Such 
shortening will, of course, correspond to compression forces being 
present in these members.

As a second example, a large load is considered to be acting on 
its own at the tip of the cantilevered end of the truss. (Fig. 9.5b.) 
Such a load will make that portion of the analogous, imaginary beam 
deflect downward. Thus the outer rectangular panel of the truss 
will sag down at its end and it will deform in such a way that the 
diagonal becomes longer, corresponding to a tension force acting in 
it. Moreover, by further analogy to the analogous beam’s downward 
bending behavior, the bottom part of the cantilevered truss can be 
expected to be pushed in toward the support. A compression force 
can, therefore, be predicted to act in the bottom chord member 
of the truss at this location. With a little more difficulty, we may 
also anticipate that for the cantilevered part of the truss to bend 
downward, the vertical member at the support will have to rotate 
slightly out in the direction of the cantilever which, in turn, will 
leave the diagonal to the left of the support with no other option 
than to stretch according to the imposed displacement at its end.

Obviously, taking dead loads into account will make such a visual 
analysis process more complicated, but in principle it will follow 
along the same lines. By always trying to imagine what type of local 
deformation (shortening or elongation) will take place in the truss 
members, one can make a fairly reliable prediction of the type of 
force that can be expected in them (i.e., once again, whether they 
will be in compression or tension). Such a visual inspection method 
can be described as a qualitative study of structural behavior, and it 
can be very useful both for the preliminary design of structures as 
well as for checking whether a numerical result obtained in some 
other more sophisticated manner corresponds to what one would 
expect to happen.

One final thing to note from this brief study of the Leonhardt House 
trusses: our intuitive analyses for both of these load conditions have 
suggested that the diagonals of its trusses have been strategically 
oriented to work as tension elements for key load conditions, which 
means that they could be (indeed, they were) designed as relatively 
thin structural members compared to what they would have been 
had they been oriented differently, working in compression and 
therefore subject to the possibility of buckling failure. The thin 
tension diagonal works wonderfully, of course, when the site and the 
views through the glass walls are so spectacular – something that 
is surely no design accident. The implications about such strategic 
orientation of truss diagonals, whatever the design intentions, go 
far beyond this one example. (e.g., Ill. 9.11.)

Illustration 9.11
Institute of Contemporary Art, Boston, MA, USA (2006). 
Cantilevering trusses support the top-floor volume that projects the main art gallery spaces 
toward the waters of Boston harbor. A glass wall at the end of the cantilever allows for 
unimpeded views of the water. Because of their orientation, the truss diagonals can be 
anticipated to be acting in tension within the cantilever, which helps to minimize these 
members’ cross-sectional dimensions.

Architect: Diller Scofidio + Renfro. Structural engineer: Arup.
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9.4	R oof Systems from East and West

St. Domenico Church

Wooden roof trusses, such as those that span the twelfth-century 
nave of St. Domenico in Siena, exemplify a structural form that 
historically was widely used in Europe, and that was incorporated 
into the simplest of barns and the largest of basilicas alike. One 
common aspect of these two types of buildings, of course, is that 
they function much better with a large-span roof, thus minimizing 
any columnar obstructions of their interior space. Another is their 
typically linear overall plan configuration, with the resultant doubly 
pitched roof a virtual requirement given the need to shed rain 
and snow. This naturally leads to the typical triangular section for 
their roof structure, which, in turn, conveniently conforms to the 
basic stable shape so characteristic of the truss. (e.g., Ill. 9.12.) 
Even so, there were limits to what could be done in the Middle 
Ages: because of the substantial span of the St. Domenico truss, 
for example, the made-of-one-piece upper timber chords end up 
determining the width of the nave while its collar beam, the lower 
chord, needed to be spliced together at the middle with double 
fishplates.1 Given such practical limitations at the time, if the addition 
of side aisles to a central nave was deemed desirable it would 
typically be accomplished by means of a second, parallel, trussed 
shed roof that would have stood independently of the main one.

It should be pointed out that in spite of its distinctively triangular 
arrangement of components, the St. Domenico roof structure is no 
“ideal” truss, at least in the sense of the things that we have been 
talking about in the previous section. Because of the continuous 
attachment of the roof to the top member of the truss, the weight of 
the roof surface is transmitted all along the length of these inclined 
members, thereby violating the ideal of loads being applied only at 
truss connections. In this case, then, the top chord truss members are 
subject not only to compressive axial forces but also to significant 
bending moments, a situation that results in their needing to have 
larger dimensions than would otherwise be necessary.

Chongfu Monastery

At about the same time, roof forms in Asia were developed in 
accordance with other design principles; in early Chinese buildings, 
it seems, the static potential of wood truss structures was either 
unknown or not employed very extensively. Instead, steep roof 
slopes were constructed by having a series of increasingly shorter 
beams resting one on top of another in an alternating, orthogonal 
arrangement. (e.g., Ill. 9.13.) The width of the span of the system 
was thus determined by the load-bearing capacity of the longest 
beam at the bottom. If the space’s width needed to be increased, 
an extra row of columns (and stack of beams) had to be erected.

Illustration 9.12
St. Domenico Church, Siena, Italy (1125).
Roof structure as an example of the Western European structural philosophy of using 
rigid triangles in the form of trusses.
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It is evident that the roof was accorded significant attention 
in Chinese architecture; to wit, the numerous sloping roof forms 
characteristic of Chinese pagodas and temple complexes. Here 
it is the variation and nuances of bracketing (beam-to-beam and 
beam-to-column connections), of beam stacking patterns, and of 
the design of the beams themselves that created the basis for the 
rich traditions of such sloping roof forms.

When we compare the typical Eastern and Western roof systems, 
we cannot help but be struck by the lack of similarity between their 
structural approaches in spite of their nearly identical exterior profile 
and functional requirements; the two approaches can be seen to 
bear witness to different cultural and building philosophies. In the 
Eastern building tradition, the roof structures are designed without 
strict concern for efficiency or quantity of materials, but rather for 
the beauty of a particular structural order. Beams gradually become 
shorter and shorter the higher up they are in the system, and they 
carry correspondingly less and less load; the overall sloped form of 
the roof takes its shape from this series of gradually shortening spans. 
In Europe, a different tradition called for stable triangles that were 
combined into one large triangle. Triangles make for a lightweight 
and efficient structure, one that may even be seen as a bit boring 
in its precision. The individual members accept their portion of the 
load, none of them receiving significantly more or less than the 
other; in short, they distribute the work evenly among themselves. 
This European tradition has been documented since the late Roman 
Empire, and it is possible that it began in Greek antiquity; in either 
case, we can playfully say that the Western roof truss represents a 
sort of structural democratic ideal through a fairly even distribution 

of loads and responsibility. Continuing perhaps more dangerously 
along these lines, the Eastern architectural tradition can be seen to 
contrast with this approach by expressing structural layering: the 
bottom beam must carry all the other beams, while the next one is 
responsible for one less layer, and so on up to the top; in this way 
the beams use one another in a structural hierarchy that ignores 
cooperation. If the European truss system can metaphorically be 
called democratic, then the historical Eastern roof structure can 
be described as feudal!

The Nomadic Museum

Perhaps as a fitting coda to this briefly developed theme of 
Eastern vs. Western pitched roof structures is a the system used 
for a prefabricated photo gallery building that was designed to be 
mounted, dismantled, and (partly) transported to other sites around 
the globe. For the Japanese architect Shigeru Ban, this project also 
posed the additional challenge of applying his favored theme of using 
cheap and recyclable materials but here on a monumental scale.

The Nomadic Museum was first located in 2005 in New York 
City’s Meatpacking District, stretching out along Pier 54 located 
on the Hudson River; its second installation occurred at a Santa 
Monica pier in California. The New York version’s layout consisted 
of two parallel “building” units running some 200m (656ft), each 
of which was composed of 152 used shipping containers that were 
stacked four units high, and all still having their owners’ corporate 
logos and the scratches and bruises from heavy shipping use. The 

Illustration 9.13
Chongfu Monastery, Shuozhoa, China (from the Jin period 1125–1234).
Typical Chinese roof structure of stacked beams.
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containers were attached to each other at their corners so as to 
form a strong checkerboard pattern of solids and voids. To create 
the needed enclosure, the voids between the containers were 
filled with a sloping tensile PVC membrane, which was also used 
to create the doubly pitched roof for the temporary building. The 
exhibition hall had similarities in plan organization to that of a simple 
basilica: between the massive exterior container walls were two 
rows of paper-tube columns defining a central nave, the floor of 
which was covered with reused wooden boards. In the side aisles 
between the column lines and container walls was the exhibition 
space for hanging the large-scale photos of the artist Gregory 
Colbert; these spaces were further distinguished and defined by 
changing the ground cover to that of a simple layer of gravel.

One of the fascinating aspects of Ban’s work over the years has 
been his use of recycled paper tubes for structure which, perhaps 
counterintuitively, prove to have the strength necessary for supporting 
a roof or for performing as members of a truss; and this despite 
their being cheap, low weight, low-tech structural elements that 
are easily replaceable. Ban refers to cardboard as “evolved wood,” 
which helps to convey the notion that these materials can have 
similar qualities, and that one is the source for the other (see Section 
5.6). In this project, the cardboard-tube columns were 750mm (30in) 
in diameter and 10m (34ft) high, and these supported at their top 
triangular roof trusses made of a strategic combination of smaller 
paper tubes with post-tensioned steel rods threaded through them 
(for a similar basic system module, see Section 6.6). The central 
triangle of tubes over each pair of columns worked wonderfully 
to give the roof its overall height and sloped profile as well as to 
provide it with the necessary stability to be able to resist gravity 
loads and lateral wind forces. (Ill. 9.14.)

Aside from these elements’ structural and space-defining 
functions, the kit-of-parts construction method for the Nomadic 
Museum’s container wall and its tube-and-tension-rod roof truss 
structural system lent itself extraordinarily well to being quickly 
disassembled, packed up, and then sent on to the next destination (as 
could be the project’s boardwalk and lighting and other equipment). 
A few of the containers in the side walls could be used to ship these 
elements to the next site, while the remainder that were needed 
to fully reconstruct the walls could be rented at the exhibition’s 
next port of call. Ban’s sustainable design approach for the use and 
reuse of building elements, both found and manufactured from 
recyclable materials, couldn’t be any clearer.

Illustration 9.14
Nomadic Museum, New York City, USA (2005).
View of central space of temporary gallery building with long 
rows of cardboard tube columns and the roof’s central triangular 
arrangement of smaller tubes – at once giving the pitched roof 
its overall form but also establishing its stability and load-carrying 
capability.

Architect: Shigeru Ban. Structural engineer: Buro Happold.



Chapter 9: The Truss and the Space Frame

296

9.5	H ow Trusses Work

Following our qualitative studies of the truss’ inherent geometric 
stability and of visualization techniques for anticipating which of its 
members are likely to be subject to compression and tension forces, 
a more analytical study involving a few calculations will provide a way 
to develop a more complete understanding of the workings of this 
structural form. This is important for two reasons: first, it can confirm 
our initial predictions about the nature (tension or compression) of 
the axial forces in the various members of a truss and, second, a 
numerical analysis of forces will be useful for determining the shape 
and size of individual members as well as establishing a logic for 
the overall form of the truss itself. For pedagogical reasons, we 
will show how such calculations can be carried out by traditional 
hand methods, which have proven to be helpful in conveying a 
deeper understanding of just how trusses function. The reality, 
though, is that calculating all truss member forces by hand for the 
various load conditions that exist can be a rather cumbersome and 
time-consuming affair, and so in contemporary practice this task 
is generally left to being handled by computer structural analysis 
software programs.

Historically, two methods have typically been applied to 
calculating forces in statically determinate trusses. The first of 
these conveniently uses the fact that the various members of a 
truss are aligned to be coincident through its many pin-joints, and 
considers the equilibrium of each of these connections in turn; for 
obvious reasons, this strategy is known as the method of joints. We 
have described truss member forces as being either compressive 
or tensile, and these will necessarily cause reaction forces that act 
on individual truss joints in the form of pushing or pulling forces, 
respectively. At a truss joint where these multiple vector forces 
meet we know that we must have equilibrium or else the joint will 
translate or rotate, which we obviously know not to be the case. 
In Chapter 4 Statics we discussed the conditions necessary for 
having equilibrium of any generalized set of intersecting forces, 
and we will apply these same principles here in the context of 
truss joints.

In order to study in detail the requirements for equilibrium 
of a joint in a truss and, thereby, show how we can find member 
forces from this, we will illustrate the use of the method of joints 
by considering the specific example of a portion of one of the roof 
trusses of the Mont-Cenis Training Academy in Herne, Germany. 

(Ill. 9.15.) Here, a glass-and-solar-cell-clad big box of an enclosure 
system is created by long-spanning wooden roof and side-wall 
trusses, thereby creating a large and spatially open interior volume. 
Within this overall exterior building envelope, a number of smaller 
buildings have been inserted – in a “houses-within-a-house” manner 
– thereby creating an interior, campus-like atmosphere uniting the 
training academy facilities, associated housing units, commercial 
spaces, various municipal offices, and public spaces. The section 
drawing through a portion of this building features two wooden 
trusses: one that is horizontal and carrying the roof’s gravity dead 
and live loads to its tall column supports and the other one vertical 
and bearing the glass façade against sideways wind pressures and 
suctions. (Ill. 9.16.) Our limited focus of attention here will be on 
the short cantilevering portion of the roof truss, to the left of the 
column support in the drawing. (The vertical truss is not considered 
to be providing any support at the outer end of the roof truss 
which can, therefore, be taken to be a freely deflecting cantilever 
structure to the left of the column support.)

Let us now imagine that a vertical point load P acts on the 
outermost joint j1 of the cantilevered part of the roof structure, as 
shown in the analytical line diagram of Figure 9.6. This load sets 
up a force in the diagonal member and a force in the horizontal 
member intersecting at that joint; anticipating the deformations 
that will take place under the load allows us to confidently predict 
that the diagonal member is in compression C1 and the horizontal 
member is in tension T1. Studying the equilibrium of force vectors 
C1 and T1 and load P graphically confirms that the forces are 
indeed compressive and tensile, respectively. The vectors point 
in toward the joint (pushing) and out from the joint (pulling), 
corresponding to compression and tension in the members. 
Since equilibrium is a necessary requirement, the two member 
forces and the load P together make up a closed triangle of 
force vectors, ending up with there being no net resultant force 
acting on the joint. (It will be recalled from Chapter 4, Sections 
4.3, 4.5, that from a graphical perspective intersecting forces are 
in equilibrium when the force vectors form a closed polygon.) 
This requirement provides graphical information for both the 
direction and the magnitude of the various forces involved. By 
repeatedly applying the method of joints in this graphical manner 
we could, if we wished, consider the equilibrium of all the joints 
of this truss and find the forces in all of its members, and this 
was quite a common approach historically.
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Illustration 9.15
Mont-Cenis Training Academy, Herne, Germany (1999).
View of exterior, showing roof structure supported by a series of 
transverse wood trusses. 

Architect: Jourda architectes & Perraudin architectes & HHS 
Planer+Architekten AG. Structural engineer: Arup GmbH; Schlaich 
Bergermann und Partner.

Illustration 9.16
Mont-Cenis Training Academy.
Section drawing showing end of roof truss and one of its column 
supports, as well as a trussed mullion bracing the façade against 
wind loads.

Figure 9.6
The method of joints applied to one end of the Mont-Cenis 
Academy truss: force diagrams can be used to graphically 
analyze the equilibrium of joints. The forces acting on the 
joint j1 are what are being shown.
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If, instead of doing this graphically, we wish to calculate the 
member forces mathematically, it can also be recalled from Chapter 
4 that the requirements for equilibrium offer a set of equations 
that involve, and that will therefore allow for the solution of, the 
unknown member forces. Since at a joint we are considering the 
equilibrium of forces that all pass through a common point, rotational 
equilibrium is not involved and we thus have at our disposal only 
the two equations that establish translational equilibrium, namely 
ΣFx = 0 and ΣFy = 0. These equations imply, of course, that if the sum 
of all forces acting horizontally on the joint and of all forces acting 
vertically on it are equal to zero, then we can be assured that the 
joint is in equilibrium and at rest. Solving with these equations for the 
unknown member forces will allow us to establish their magnitudes 
and directions. See Section 6.4 for a more detailed presentation 
of this process - even though there it was done in the context of 
a joint that was part of an inclined hanger system, the application 
of the method here is just the same; i.e., the analytical method of 
joints does not care whether we are dealing with forces in hangers 
or in trusses, as abstracted force vectors are all handled the same 
way when it comes to mathematical calculations. 

It should be noted, however, that when using the method of 
joints for analyzing a truss, because we have only two equations 
of equilibrium available at each one of its joints, we must begin 
the whole process at a location where there are no more than two 
unknown member forces – which often will be at an end support 
point or at the tip of a cantilever. The rather tedious aspect of the 
method of joints when it is applied to overall trusses, therefore, 
is that it is typically necessary to go through the equilibrium 
calculations for many joints before eventually getting to the one 
that may be of primary and immediate interest to the designer; 
i.e., in most cases there is no way to jump into the middle of a 
truss and directly solve for the member forces at that location 
without having first gone through the analysis of many other joints 
beforehand. This prospect can certainly help to explain the reason 

for the development of an alternative method for determining 
truss member forces.

This second technique, called the method of sections, is in many 
cases a more effective and efficient approach to the problem of 
finding the member forces in a truss which are thought to be of 
critical concern.2 According to this technique, we need to consider 
the conditions for equilibrium of a portion of the truss (i.e., not 
just of a joint), identified by imagining a line cutting through the 
structure’s 2-D line-diagram representation and that thus divides 
the truss into two sub-assemblies. (Fig. 9.7.) Of course, any portion 
of the truss must be in equilibrium just as much as the whole 
of it is. According to the conceptual abstraction of this method, 
the member forces that pass through the imaginary cut line are 
notionally considered to be “external” forces, provisionally acting 
on the selected portion of the truss. That sub-assembly must of 
course be held in equilibrium by the sum of all forces acting on 
it (including any and all support reactions, external loads, and 
cut-member forces). Since we must ensure that any portion of the 
planar truss is prevented both from translating and rotating and 
since we have three equations of equilibrium at our disposal to 
do so, we will be able to calculate directly the magnitudes and 
directions of up to three unknown member forces anywhere in the 
truss. All of these statements will be made clearer by means of the 
example that follows.

If we wish to calculate the three forces in members C2, C3, and 
T3 of the Mont-Cenis Academy truss, we can make an imaginary 
cut through the truss that passes through these members and 
then establish a set of three equilibrium equations for the chosen 
sub-assembly. For one equation, for example, we can see that the 
member force C3 has a vertical component that has to balance the 
vertical load P. Hence, ΣFy = 0 yields

C3y – P = 0, or
C3y = P

Figure 9.7
The method of sections offers a way of finding selected 
member forces without having to calculate member forces 
progressively through the truss, one joint at a time. A so-called 
“free body” diagram is shown of a sub-assembly of the truss. 
Applying the three equilibrium equations that apply to a planar 
structure will enable the three unknown member forces to be 
determined.
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In writing this equation, we have taken as a sign convention 
that positive vertical forces are directed upward (+y) and we will 
do likewise for horizontal forces acting to the right (+x).

From trigonometry we know that

C3 = C3y/sinα = P/sinα

where α is the angle between the force vector and a horizontal  
line.

Next, we can make sure that no rotation takes place about joint 
j3 (the choice of this point is arbitrary; in principle, it could just as 
well be any other); the requirement for this to be true is that ΣM 
= 0 about that point. Since neither force T3 nor force C3 have a 
moment arm with respect to joint j3, the moment equation will only 
comprise load P and force C2:

+C2d – Pa = 0
C2 = Pa/d

where a = load P’s moment arm (equal to the length of the horizontal 
member between P and joint j3) and d = the structural depth of 
the truss.

Finally, a third equation expresses the requirement for horizontal 
equilibrium, ΣFx = 0:

+T3 – C2 – C3x = 0
T3 = C2 + C3x = C2 + C3cosα
T3 = Pa/d + Pcosα/sinα = Pa/d + P/tanα

We should note that in order to write the above equations, we 
have had to make assumptions about the directions of the unknown 
forces that represent the effect of the cut members, and these 
assumptions have direct implications on whether these members 
are considered to be in tension or compression. Fortunately, if we 

make an incorrect assumption our error will be indicated by the 
force magnitudes coming out as negative in the end; a negative 
sign accompanying the calculated magnitude of a member force 
simply means that the direction of the force in the cut member is 
opposite to the one that we initially assumed.

All three unknown member forces that we set out to find in 
this example have now been established in terms of the truss’ 
dimensions and of the load P, both of which we would typically 
be in a position to determine in a specific situation. It is also 
important to note in passing that these equations are indicating 
that the magnitudes of the forces in the members of the truss 
depend not only on the external loads that are being carried but 
also on the geometry of the truss itself; this is a topic that we will 
come back to in Section 9.7.

Before that, though, we can conveniently use the method of 
sections to study various force patterns in common trusses. For 
example, we can examine the so-called Pratt truss shown in Figure 
9.8. Vertical equilibrium of the symmetrical truss will require two 
vertical support reactions of magnitude 3.5P. 

Section 1-1 isolates the left part of the truss shown in Figure 9.9. 
Rotational equilibrium (ΣM = 0) about joint 1 of this sub-assembly 
requires that

+3.5P(2a) – P(2a) – Pa – T1d = 0

Since neither of the unknown forces in the top chord or in the 
diagonal member F1, nor the load P acting on the joint have any 
moment arms about joint 1, these forces do not need to appear 
in the writing of this equation. The only unknown force, therefore, 
is the tension force in the bottom chord, T1; solving for it yields

T1d = 7Pa – 2Pa – Pa = 4Pa
T1 = 4Pa/d

Figure 9.9
Free-body diagram of sub-assembly cut at 
section 1-1, showing loads and cut-member 
forces as “external forces.”

Figure 9.8
A simply supported Pratt truss with a total of 7P vertical point loads.
Since this structure’s proportions and transverse loading render it beam-like, 
we anticipate that the top chord will be in compression and the bottom 
chord in tension. The diagonals change direction at the centerline; all 
are thus acting in tension while the vertical members act in compression. 
Sections 1-1 and 2-2 define two sub-assemblies that can be analyzed for 
equilibrium, seeking out the member forces by the method of sections.



Chapter 9: The Truss and the Space Frame

300

A similar analysis of the small sub-assembly to the left of section 
2-2 (Fig. 9.10) leads to

+3.5P(a) – Pa – T2d = 0
T2d = 3.5Pa – Pa = 2.5Pa
T2 = 2.5Pa/d

Note that if we initially had let T1 and T2 point the other way and 
thereby initially assume that they are compression forces acting on 
the sub-assembly, those forces would have come out as negative 
at the end of solving these equations. This result would indicate 
that such an initial assumption for their direction would have been 
incorrect, and that they are truly tension forces – as our earlier 
qualitative methods for predicting which truss members are in 
tension or compression would lead us to expect.

Now, comparing the relative magnitudes of T1 and T2 shows that 
the tension in the bottom chord decreases toward the supports for 
this simply supported truss. The same applies to the compression 
force in the top chord. It will be recalled from Chapter 7 that this 
pattern reflects the one that we have observed for bending moment 
diagram variations for simply supported beams (and of the directly 
associated tension and compression stresses in the lower and 
upper parts of beam cross-sections, respectively); this is a general 
characteristic for trusses, or what we can see now could logically 
be called “trussed beams.” Furthermore, looking at the algebraic 
expressions for the tension forces T1 and T2 above, we can observe 

that the larger the truss depth d becomes, the smaller the axial 
forces in the chords will be. Therefore, increasing the height of a 
truss for a given load condition means that the forces in the top 
and bottom chords will decrease; this is generally true for trusses 
of all kinds, and is analogous to what we saw in Chapter 7 that 
bending stresses are reduced if we move material away from a 
beam’s neutral axis.

Shifting our attention now to the diagonal members, we can 
look at the requirement for vertical equilibrium (ΣFy = 0) of the 
sub-assembly to the left of section 1-1 in Figure 9.9:

3.5P – P – P – P – F1y = 0
F1y = 0.5P

where F1y is the vertical component of force F1 in the diagonal 
member. Letting F1 point out from the free-body diagram defines 
this as a tension force. Since the calculation resulted in a positive 
force (+0.5P), our assumption about the nature of the diagonal 
force was correct. From this simple study of equilibrium we can 
conclude that under gravity loading the diagonals in Pratt trusses 
act in tension. Conversely, the vertical members can be shown to 
be all in compression.

As a result of the second imaginary cut (see Fig. 9.10), vertical 
equilibrium of the corresponding sub-assembly to the left of section 
2-2 yields

Figure 9.10
Free-body diagram of sub-assembly cut at section 2-2, 
showing loads and cut-member forces as “external forces.”
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3.5P – P – P – F2y = 0
F2y = 1.5P

Since F2 is closer to the support than F1, and F2y > F1y, we observe 
that the forces in the diagonal members of the truss increase toward 
the supports. This observation is generally applicable for all interstitial 
(both diagonal and vertical) members, and recalls the pattern that 
we observed for the variation of shear force in solid beams.

Looking once again at some of the various truss configurations that 
we saw in Section 9.2, we can now make a number of observations 
and rationalize some of the visual patterns that we see there. For 
example, a symmetrical Pratt truss is visually quite distinctive in 
having its diagonal members change direction at mid-span (Fig. 
9.11a); by applying the results of the preceding analysis to both ends 
of the truss it can be confirmed that such an arrangement results in 
all of the diagonals being in tension and all of the vertical members 
being in compression, as long as the loads act vertically downward. 
As we saw with such trusses at the Leonhardt House (see Ill. 9.10), 
this implies that the tension diagonal members can be designed 
to be quite thin, thus minimizing any potential obstruction of view. 
With the so-called Howe truss (Fig. 9.11b), on the other hand, the 
diagonals are all sloped in the opposite direction to the way they 
are in the Pratt, with the consequence that all the diagonals will be 
in compression (and thicker, therefore) for exactly the same load 
case, and the vertical members will be tension. Finally, the Warren 
truss’ zigzagging diagonals (Fig. 9.11c, e.g., Ill. 9.17) can be shown 

to alternate tension and compression forces from one diagonal to 
the next, reversing the pattern at mid-span.

Before we leave these diagrams showing the truss member forces 
that can be anticipated based on the equilibrium considerations 
that we have just been discussing, we have a bit of a curious feature 
to consider: close scrutiny of the Pratt and Howe trusses shown in 
Figure 9.11 reveals that even for the very common case of downward 
vertical loads a few of the members of such trusses are, in fact, not 
supporting any loads whatsoever, i.e., they are neither in tension 
nor in compression. In general, such so-called zero force members 
meet other truss members at right angles, with no other members 
connecting in to the joint at any other angle that could balance a 
push or pull from the perpendicular member. In spite of this, and 
what would seem to be an opportunity to get rid of “useless” 
parts of the truss, we should keep in mind that this situation might 
change completely under a different load condition. For example, 
if a load were to act up from below and directly on the vertical 
member at the mid-span of the Howe truss (perhaps from wind 
uplift, for example), this member would then be subjected to a 
compression force instead of being a zero force member.3 Moreover, 
a load hanging from below the truss at mid-span would result in a 
tension force acting in that same vertical member.
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Figure 9.11
Diagrams of (a) Pratt, (b) Howe, and (c) Warren trusses (having 
parallel top and bottom chords) showing compression C and 
tension T in the members due to downward loads at each of 
the top joints. Note that a few members carry no forces in 
these load conditions.

Illustration 9.17
Hopkins House, Hampstead, UK (1976).
Interior view of the house, with Warren-truss-like configuration of 
open-web steel joists left in full sight. Diagonals’ constantly changing 
orientation will cause them to alternately be in tension and compression. 
Relative openness of these trusses allows light to penetrate deep into 
the living space, and prevents the visual interruption that solid beam 
webs would cause. 

Architect: Michael Hopkins & Partners. Structural engineer: Anthony Hunt 
Associates.
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9.6	 Joint Adventures

So far in this chapter, we have obviously based quite a lot of our 
understanding about how a truss works on the so-called pin-joint 
– but what do such connections actually look like? We have taken 
for granted the assumption that truss members are connected by 
joints that allow all connected members to rotate independently 
of each other, and this is a necessary concept to prevent bending 
moments from being created in the connections and which thus 
allows all members of a truss to be subjected to pure axial forces, 
either compressive or tensile. 

It is relatively easy to imagine trusses made from a number 
of members that are all ideally pin-connected, where the joints 
behave like true hinges. Historical truss bridges are well known for 
having members connected in this fashion. This is rarely practical or 
desirable for most trusses today, however, partly for economical and 
maintenance reasons, and the chords, in particular, are frequently 
made from one continuous element. The interstitial diagonal and 
vertical members in trusses are commonly connected to the upper 
and lower chords by the help of steel plates and bolts or, in the 
case of metal trusses, by means of direct welding, and the resulting 
connections may, therefore, be quite far removed from being able 
to behave like true pin-joints. 

In reality, then, joints often have a certain rigidity which may 
enable some local bending moments to develop in the vicinity of 
the joint, producing stresses that will be additional to the stresses 
from the axial forces – and the joints will indeed have to be designed 
for these additional stresses. However, to prevent having bending 
moments further out along the length of the members of a truss, 
and so that these can be as slender and efficient as possible, we 
typically try and have their extended centerlines intersect, thus 
identifying a theoretical point in each connection about which the 
member centerline axes have no eccentricity. And if any external 
loads are also applied through such points, then these will have 
no moment arm that could potentially produce bending moments 
in the members – so this is clearly how truss members should be 

Illustration 9.18
Four joints in plane trusses of different materials.
(a) Concrete joint at Lloyd’s building, London, UK (1986).
Some eccentricity at joint since centerlines of all members do not meet  
at a single point.

Architect: Richard Rogers Partnership. Structural engineer: Arup.

(b) Joint in Cor-Ten steel in Wills Factory, Bristol, UK (1974).
Gusset plate allows for multiple members to be connected together; 
centerlines all intersect.

Architect: YRM with SOM. Structural engineer: Felix Samuely.

(c) Joint in laminated wood truss, Haakon’s Hall, Lillehammer, Norway (1993).
Cuts through wood are visible where three steel plates are hidden that are 
used to connect the members; member centerlines all intersect. 

Architect: Østgaard. Structural engineer: Reinertsen Engineering. 

(d) A hybrid joint combining steel and reinforced concrete in the  
Educatorium, University of Utrecht, the Netherlands (1997). 

Architect: OMA. Structural engineer: ABT.

a)

b)

c)

d)
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aligned if possible and also where trusses should be loaded and 
supported.

Trusses made from different materials like steel, timber, concrete, 
or aluminum or even combinations of materials may have a certain 
superficial likeness in overall form, but their connections often 
offer design problems and opportunities in which each material 
appears with a uniqueness of form and technical resolution. The 
detailed design of truss joint connections often expresses just what 
a material is really capable of. (e.g., Ill. 9.18.)

9.7	H ow Trusses Look

Overall Shape Variations

Horizontal trusses that span simply between two supports commonly 
have overall shapes that fit into one of four main types: parallel 
chord trusses, pitched trusses (which can also be inverted), bowstring 
trusses (convex upward or downward), and lenticular trusses which 
are lens shaped and also informally called “fish-belly” trusses. (Fig. 
9.12a–d.) Likewise, horizontally cantilevering trusses are often 
shaped either with parallel top and bottom chords or else with 
diminishing profile depth the further one gets from the support. 
(Fig. 9.12e–f.) 

The general strategy for those simply supported truss forms 
having larger structural depths at mid-span than toward the supports 
(or, conversely for the cantilever, of larger depth toward the support) 
is to provide increased resistance to overall external moment where 
this is needed most. Here we need to think in terms of maintaining 
overall equilibrium at each section cut through a truss, while recalling 
our analogous discussion in Chapter 7 about the variation in the 
magnitude of bending moments over the length of a beam. 

Starting with the parallel chord truss and highlighting its way 
of resisting external moments will clarify just what we are taking 
about: such a truss counters external moments by means of couples 
formed by the forces in their upper and lower chords. (Fig. 9.13.) In 
order to be able to maintain rotational equilibrium we will need to 
have that Mext = Mint = Cd = Td, where C is the compression force 
in the upper chord, T is the tension force in the lower chord, and 
d is the truss depth. Since the moment produced by the external 
loads Mext is largest at the mid-span of a simply supported structure 

Figure 9.12
Some overall shapes of trusses that act like beams.

Figure 9.13
Parallel chord truss with external moment resisted by a couple formed by 
the forces in upper and lower chords. Variation of the moment diagram 
leads to a similar change of chord forces along the length of the truss. C2 
is larger than C1, T2 is larger than T1, while C1 = T1 and C2 = T2.

a)

b)

c)

d)

f)

e)
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to which symmetrically distributed loads are applied (e.g., recall 
the shape of the bending moment diagram for such beams), the 
compression and tension forces in the truss’ chords will also need 
to be largest at that location (since C = T = M/d). 

If we next consider the effect upon this of increasing the overall 
depth of the truss at mid-span, it is evident that for the same loading 
the axial forces in the truss chords will be able to be smaller than 
they were before, while still producing the required balancing 
moment. Toward the supports, the external moments become 
smaller, and so if we correspondingly shape the truss depth to 
follow this variation we end up with something that we recognize 
as the familiar bowstring truss configuration, whose structural 
depth gradually lessens toward the ends. (Fig. 9.14.) Of course, 
the consequence of such a shaping of the truss is that the chord 
forces along the entire length of the truss become more uniform 
in magnitude.4 Therefore, in shaped trusses of this kind we may be 
able to use members having the same cross-sectional dimensions 
for all the chord members, thereby contributing to construction 
efficiency through a simplification of member specifications and the 
ensuing manufacturing logistics. Conversely, of course, for trusses 
with parallel chords the repeated use of the same cross-section 
necessarily implies a certain loss of material efficiency since it is 
only used to full capacity near the mid-span. 

Illustrating these contrasting truss-shaping strategies, the constant 
truss depths of, for example, the Joso High Bridge and the Mont-
Cenis Academy trusses (see Ill. 9.9 and 9.16, respectively) can 
be compared to the truss depth variations of the Berlin Olympic 
Stadium and Bern Tram Depot that we will examine more closely 
in the next section, which closely follow these structures’ overall 
bending moment diagrams. (See Ill. 9.28 and Ill. 9.31.)

Member Size and Shape Variations 

Moving on from this discussion of variations to the overall or global 
form of the truss, we will next elaborate on the sometimes significant 
differences between a truss’ individual component members. What 
can be deduced about the design and necessary size and shape of 
individual truss members? It is not difficult to imagine that there may 
need to be distinction between members that are in tension and 
those in compression; i.e., since slender compression members are 
apt to buckle, they will generally be expected to have larger cross-
sectional dimensions than the tension members. Such a difference 
of member sizes and shapes is often quite obvious to recognize in 
the top and bottom chords of trusses that are used for very large 
spans. (e.g., Ill. 9.19, 9.20.) This will not always be the case, however, 
especially for smaller trusses, because the demands for efficient 
production and manufacturing may argue against the individual 
design and specification of each member in such a truss. Besides, 
a designer may wish to maintain a unity of member proportions 
throughout, notwithstanding any material savings.5

But beyond such fairly obvious distinguishing between top and 
bottom chord compression and tension forces, there is plenty of 
opportunity in the truss to further vary member sizes and shapes, 
if perhaps more subtly. As we know, the external bending moment 
that needs to be balanced varies along the span of a truss and so 
too, then, will the magnitude of the chord forces – which means 
that the top and bottom chord members sizes can be varied from 
one end of a truss to the other. As we have also established, overall 
shear demands vary in a truss from one end of a span to the 
other, even if differently from the way external bending moments 
change – and so this can lead to its own independent logic for the 

1x

2x

Figure 9.14
Illustration of the horizontal component, constant along the length, of 
chord forces in a bowstring truss with a parabolic lower chord designed to 
follow the variation of the moment diagram. C1 = C2 = T1x = T2x.
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Illustration 9.19
Royal Albert Bridge, between Plymouth and Saltash, England, UK (1859). 
The heavy train loads that this bridge was designed to carry led to its having an overall 
lenticular shape as well as dramatic differences in the cross-sectional shape of its 
compression vs. tension chords.

Designer and structural engineer: Isambard Kingdom Brunel. 

Illustration 9.20
Centre Georges Pompidou, Paris, 
France (1976). 
The Warren-type trusses that 
typically clear-span nearly the full 
width of this multistory museum 
building demonstrate differences 
between the dimensions of 
compression (top) and tension 
(bottom) chord members, with the 
former having a larger diameter to 
prevent buckling. Moreover, the 
tension members are solid bars 
while the compression members are 
circular hollow profiles which more 
efficiently provide resistance to 
buckling tendencies.

Architect: Renzo Piano and Richard 
Rogers. Structural engineer: Arup.
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sizing and shaping and density of interstitial members. All of these 
possible variations are summarized diagrammatically for a simply 
supported truss in Figures 9.15 and 9.16. For example, the Xstrata 
Treetop Walkway’s steel trusses illustrate the need for increasing 
shear capacity toward the supports by making explicit its gradually 
steeper and shorter diagonal truss members. (Ill. 9.21.)

There are also situations in which truss member forces can change 
from one load condition to another, with members in compression 
to begin with and then in tension, or vice versa. In this case, the 
member will obviously have to be designed for the condition that 
puts the most demand on the member, which almost inevitably 
will be when it is in the compression condition. We will recall from 
Chapter 8 that it is advantageous to design compression members 
to have symmetrical cross-sections about both cross-sectional axes 
so as to prevent their buckling, and that hollow sections fit this bill 

Figure 9.15
Diagram showing how the magnitudes of the forces change along the 
truss length. Forces in the chords are larger at mid-span than closer to 
the supports, while the interstitial members experience larger forces the 
closer they get to the supports. This reflects the analogous situation for 
bending moments and shear forces in beams that are simply supported.

Figure 9.16
Parallel chord truss.
Illustration of possible variation of member sizes 
according to the variation of member axial forces. Chords 
may actually become smaller toward the supports as 
the overall moment demand decreases, while interstitial 
members may become larger, following the increase of 
shear force.

Illustration 9.21
Xstrata Treetop Walkway, Kew Gardens, London, UK (2008). 
This walkway runs 200m (656ft) among the trees at Kew and is raised 
18m (59ft) above the ground, enabling a unique vista of the garden 
from the treetops. A continuous truss bridge supported on pylons, the 
structure features a variation of the density of the structural members: 
as the trusses approach the supports, the density of diagonal members 
increases in response to the increase of shear forces. The spacing 
of the diagonals is dictated by the so-called Fibonacci sequence, a 
mathematical relationship between numbers in a series often associated 
with nature’s forms.6 This principle is used both for the vertical trusses 
which form the balustrade, and the walkway deck structure which forms 
horizontal trusses resisting wind.

Architect: Marks Barfield Architects. Structural engineer: Jane Wernick 
Associates.
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exceptionally well; this type of member is, therefore, often found 
in trusses. Moreover, since the slenderness ratio of a compression 
element also depends on the member’s length, it is generally a 
good strategy to keep the compression members of a truss as 
short as possible, thereby increasing a truss’ structural efficiency 
by using less material. As for the truss members that do in fact 
remain in tension under all load conditions, these may be designed 
as solid bars just as effectively as any other cross-sectional shape, 
thereby having a much thinner appearance than their compression 
counterparts. 

Lateral Bracing and 3-D Truss Variations

We must also consider the effect on truss member shapes and 
sizes caused by the typical need to provide lateral bracing to the 

compression chord of a truss, which will be at the top for a simply 
supported condition subject to gravity loading.7 This is analogous 
to our discussion in Chapter 8 about beams’ tendency to be subject 
to lateral-torsional buckling or warping for the part of these that are 
subjected to compression stresses. Considering the typically long 
lengths of trusses, the chances are good that their compression 
chord will be likely to buckle laterally if measures are not taken 
to prevent it from doing so. (Fig. 9.17.) When secondary roof or 
floor elements rest on and are connected directly to this upper 
chord, lateral bracing of this member is typically easily provided 
by means of the large in-plane stiffness of the roof or floor plate. 
In some cases, however, trusses support roofs that are attached 
to their bottom edge, effectively leaving the upper compression 
chord unbraced laterally. (e.g., Ill. 9.22.) One way of accounting 
for this is to design a trusses’ compression chord members to have 
an asymmetrical cross-section; i.e., having them be wider in the 

Figure 9.17
Possible buckled shape of a truss failing by 
local buckling of its compression chord.

Illustration 9.22
Project for a theater, Mannheim, Germany (1953).
Model showing exposed steel trusses spanning the entire space of the proposed 
theater. When the truss structure is above the plane of the roof, there is no bracing of its 
compression chord, which then needs to be designed in size and shape to be adequate 
to prevent local sideway buckling.

Architect: Ludwig Mies van der Rohe. AHO model by Niels Marius Askim and Lars Lantto.
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lateral direction than in their vertical, in-the-truss-plane dimension, 
thereby reducing their lateral slenderness ratio and increasing their 
buckling capacity. For example, the side-by-side double-hollow-
tube top chord for the Pompidou Centre’s gallery-spanning trusses 
illustrates this approach quite well. (See Ill. 9.20.) 

Further along this same line of thinking, a natural development is 
to use three-dimensional trusses, or space trusses, that can through 
their cross-sectional geometry provide far more lateral stiffness 
than can the individual elements of a planar truss. (Fig. 9.18., 
e.g., Ill. 9.23.) The 3-D truss commonly has a triangular overall 
cross-section, with either one tension chord and two compression 
chords spaced apart but connected intermittently in order to reduce 
these members’ lateral unsupported length or else two tension 
chords and one compression chord with the latter laterally braced 

by the slanting of the two sets of interstitial members. Also, a 
square or rectangular overall cross-sectional configuration can 
obviously be made to work, since in this case the bracing can be 
provided to both the top and bottom chords – often by means of 
transverse horizontal trusses connecting between the main load-
carrying trusses – effectively creating a 3-D trussed tube structure. 
An example of this configuration can be seen with the Høse Bridge 
in southwestern Norway designed by the architects Sami Rintala 
and Dagur Eggertsson and the structural engineering office of Dr. 
Techn. Kristoffer Apeland, whereby top and bottom transverse 
trusses serve not only to laterally brace the compression chords 
of the main side trusses but also to create the roof and walkway 
of this uniquely trussed bridge. (Ill. 9.24, 9.25.)

Figure 9.18
Three-dimensional trusses, or space trusses, have 
good stiffness in the lateral direction, as well as 
significant torsional stiffness.

Illustration 9.23
Fuhlsbüttel Airport terminal 
building, Hamburg, Germany 
(1993). 
Three-dimensional space trusses 
with triangular cross-sections 
support the long span roof.

Architect: von Gehrkan, Marg und 
Partner. Structural engineer: ARGE 
Kockjoy-Schwarz + Dr. Weber.
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Illustration 9.24
Høse Bridge, Sand, Suldal, Norway (2013).
Truss diagonals’ orientations vary; steel side plates in the middle of the bridge reorient 
the view, acoustic environment, sense of space downward toward the water. 

Architect: Rintala Eggertsson Architects. Structural engineer: Dr. Techn. Kristoffer Apeland AS.

Illustration 9.25
Høse Bridge. 
Horizontal, transverse trusses combine 
with vertical side trusses to form an 
overall trussed tube, providing bracing 
to the chords of the vertical side trusses 
as well as a system for resisting lateral 
wind loads. At mid-span, floor becomes 
open steel grating. 
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Truss Grid Variations

Yet another strategy for avoiding the buckling of compression 
chords is to combine multiple trusses together into the design 
of a planar-truss grid or even a 3-D truss grid system. Planar truss 
grids, in which a set of two-dimensional trusses intersect with 
each other in a two-way or even a three-way arrangement, will 
significantly reduce the unsupported length of any of the planar 
trusses’ compression chords, thereby improving their resistance 
to buckling. Two-way rectangular grids are commonly established 
parallel to the support boundaries or perhaps diagonal to them. 
(Fig. 9.19a.) Aside from reducing buckling tendencies, such grid 
systems present the additional structural advantage of sharing 
applied transverse loads among a number of trusses, with the 
same improved load-carrying benefit that we saw with beam grids 
in Chapter 7 in Section 7.10.8

The 3-D or space-truss grid is an improvement on this combined 
system yet again. (Fig. 9.19b.) Because of their overall hollow, tube-
like cross-section, individual space trusses have considerable torsional 
stiffness. This causes a grid of such trusses, where intersecting 3-D 
trusses are connected to each other top and bottom, to be become 
especially stiff. The reason again goes back to our discussion in 
Chapter 7 about beam grids since, as we saw there, the vertical 
deflection of a beam (or of a truss, as is the case here) running in 
one direction results in both the vertical deflection and the twisting 
of the intersecting beams (or trusses); moreover, the 3-D truss is well 
equipped to resist both of these types of deformation, resulting in a 
very stiff system. Such a grid of 3-D trusses is, therefore, capable of 
carrying larger forces, or spanning greater distances or, conversely, 
of deflecting much less than plane truss grids. In a unique vertical 
extrapolation of such advantages, and especially of the ability of 
interesting alignments of 3-D trussed tubes to resist bending and 
twisting behavior simultaneously, the Nanjing Sifang Art Museum’s 
rising, folded, 3-D tube truss configuration stands out as especially 
noteworthy. (Ill. 9.26.) 

a)

b)

1
2

Figure 9.19
Truss grids of (a) plane trusses and  
(b) space trusses and their deformations.
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9.8	 Two Trussed Roofs in Berlin and Bern

Because of the relatively efficient use of material in trusses, this 
structural subsystem has frequently been used to span long distances 
or else to carry exceptionally heavy loads or both at the same, 
such as for train or roadway bridges or for athletic stadium or 
industrial shed roofs, etc. In all of these cases, the very large flexural 
demands being imposed by the applied transverse loads tend 
to favor giving the trusses maximum depth where the bending 
moments are largest, and then reducing this dimension as the 
moment demand goes down – i.e., such trusses become very clear 
and distinctive expressions of these structures’ overall bending 
moment diagrams. In this section, we will look at two examples of 
such expressive truss forms. 

Olympic Stadium in Berlin 

The Olympic Stadium in Berlin, which was designed by architect 
Werner March (1894–1976) in 1936, was carefully modernized in 
2004 by architects von Gerkan, Marg und Partner; as a result, it 
combines the facilities and features of a modern arena with the 
substance of a historical building. The wide oval of the stadium, 
then as now, is broken at the Marathon Gate at the west end, 
leaving an unobstructed view toward the distant bell-tower of the 
city’s original Olympic facilities. The exterior appearance of the 
stadium is almost the same as when it opened in 1936; only the 
edge of its new slim roof minimally reveals the changes that have 
taken place inside.

Within the stadium, the new roof’s filigree steel construction 

Illustration 9.26
Nanjing Sifang Art Museum, Nanjing, China (2010). 
Three-dimensional space truss with rectangular cross-section rises and folds into a unique continuous 
walkway configuration for this art museum. Hollow trussed form is well suited to resisting significant bending 
and twisting behavior that results from the cantilevering corners of this museum/walkway. 

Architect: Stephen Holl Architects. Structural engineer: Guy Nordenson & Associates. Cornell model by Kenneth 
Chow and Stefan Krawitz.
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Illustration 9.27
The Olympic Stadium, Berlin, Germany (1936/2004).
Overall view of the stadium interior. 

Architect: von Gerkan, Marg und Partner. Structural engineer: Krebs und Kiefer; Schlaich Bergermann und Partner.

Illustration 9.28
Berlin Olympic Stadium.
Section drawing showing trussed, 
cantilevered roof over grandstand. The radial 
truss ribs’ depth follows the profile of these 
structures’ overall bending moment diagram; 
i.e., deepest at the cantilever support and 
tapering strongly toward the free end.
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and translucent cladding intentionally contrasts with the heavy 
gray sandstone bulk of the historical stadium. Following the 
original plan of the stadium, the new roof that protects the tiered 
seating has been left open at the Marathon Gate. This break in 
continuity precluded the use of an inner tension ring that would 
have been necessary for the suspension roof systems that are 
so often found covering many modern stadia (see Chapter 11). 
Instead, the roof is carried by 76 radial trusses that dramatically 
cantilever into the stadium interior, the whole arrangement having 
been likened to the skeleton of an airplane wing. (Ill. 9.27, 9.28.) 
Each truss projects inward toward the playing surface a remarkable 
distance of almost 50m (160ft) and has a total length of 68m 
(220ft). The truss depth clearly follows the profile of the bending 
moment diagram for such a cantilevering condition: both are 
maximum directly in line with the column support and taper to 
almost nothing at the free end above the playing surface and 
at the “back”/outside end where the truss is anchored down. 
Of course, this tapering of the truss depth lends itself well to 
opening up the views and to orienting the overall sense of space 
toward the playing surface from the vantage point of the seating 
situated below the roof. 

To counterbalance the effects of their tremendously large 
projections toward the interior of the stadium, the cantilever 
trusses are supported on a circumferential space truss (having 
triangular cross-section and whose depth is integrated with that 
of the cantilevering trusses) and by having their outer ends tied 
down. The space truss is supported by 20 so-called structural “tree” 
columns spaced around the building; each of these 250–350mm 
(10–14in) diameter cylindrical steel “trunks” have four cast steel 
“branches” that reach out spatially to carry the truss. The vertical 
tie-downs are anchored to the original stadium columns as well as 
to a reinforced concrete ring that adds the necessary counterweight 
for the equilibrium of this daring roof structure.

Most of the roof’s upper surface consists of a membrane made 
of Teflon-coated translucent fiberglass textile with transparent 
panels underneath that allow a certain amount of light to reach 
the stadium seating, while still permitting a view from below of 
the roof’s trussed structure. Toward the center of the stadium, the 
roofing becomes a single layer of glass panels that can clearly be 
seen to be supported by the ends of the radial trusses. All of the 
conduits and other infrastructure needed for the sound systems 
and lighting of modern-day shows and events have also been 

integrated into the roof, thereby rendering obsolete the need for 
the typical towering (and design-conflicting) masts found in many 
other such large stadia.

Tram Depot in Bern

The Neue Tramdepot Bern was designed as a close collaboration 
between architects and structural engineers for a tram parking 
and maintenance facility located on the outskirts of that city, both 
to address current needs but also expressly anticipating a two-
phase expansion in the coming years as the urban transportation 
network expands. The initial building fits into a relatively tightly 
constrained site, and has two long side-by-side spaces for tram 
parking and for their maintenance/washing that run along the 
200m (650ft) stem of the L-shaped building as well as an interior 
turn-around set of tracks located within the enlarged foot portion 
of the L. (Ill. 9.29.) 

Twenty-six transverse trusses span across the parking and 
maintenance spaces of the first phase of this industrial shed, supported 
on columns situated along the outside edges of the building as well 
as along a central row of columns. (Ill. 9.30.) The truss depth clearly 
follows the overall bending moment diagram for such a “continuous-
beam-like” condition; i.e., deepest over the central supports and 
tapering toward the outside edges. (Ill. 9.31a.) For the second phase, 
the parking space for the trams is dramatically increased by extending 
each of the transverse trusses outward to a repositioned set of exterior 
column supports. This has clearly been anticipated, however, and 
it is not a matter of tearing down the existing structure but rather 
“clipping” onto the end of each existing truss a significant truss 
extension segment. (Ill. 9.31b.) For the third phase, only the “foot” 
portion of the L-shaped building is enlarged, but this time even more 
dramatically by adding more tram parking within an extension that is 
perpendicular to the existing lines of parking. The truss extensions 
for this addition still work off of the existing alignments of the original 
trusses, resulting in exceptional spans of 90m (300ft). (Ill. 9.31c.) The 
bending moment diagram for this condition will result in its having 
a second peak of almost equal value to the first, but this time near 
mid-span of this extension segment. The at-first seemingly bizarre 
profile of the roof truss then makes perfect sense, with one peak 
located over the interior column support point and the other near 
the middle of the elongated span.
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The perimeter envelope for this unheated, “utilitarian” tram 
shed largely consists of translucent white glass that allows the 
movement and activities taking place within to be sensed but 
not directly seen during the daytime and for the building volume 
to become a glowing lantern at night. The openness of the roof 
trusses also allows natural daylight to bathe the interior space, 
thereby minimizing energy demands. (Ill. 9.32.) Furthering such an 
environmentally friendly design approach, the roof also is partly 
covered by bands of solar cells and it collects rainwater that is 
stored for washing the trams. Finally to be noted here is the angled 
orientation of the lines of columns supporting the roof – these 
are inclined both along the main axis of the building but also in 
the transverse direction as well – so as to provide lateral stability 
for the building in every direction, a topic that will be discussed 
much more extensively in the next chapter. The Neue Tramdepot 
Bern is a building that integrates well not only its trussed structural 
system into its overall architectural expression and programmatic 
function, but other design concerns as well – and all this over the 
course of many years and several planned expansion phases. This 
is a building, then, that takes to heart the timeless lessons about 
design forethought. 

Illustration 9.30
Neue Tramdepot Bern.
Twenty-six transverse trusses span across the 
parking and maintenance spaces of the first 
phase of the project.

Illustration 9.29
Neue Tramdepot Bern, Switzerland (2011).
Plan of L-shaped building and site in initial configuration, showing long tram parking and 
maintenance spaces as well as enclosed turn-around at one end. 

Architect and structural engineer: Penzel Valier AG.
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Illustration 9.31
Neue Tramdepot Bern.
a) Section drawings for the original L-shaped building; b) & c) section drawings and 
corresponding bending moment diagrams for the two anticipated expansion phases.

Illustration 9.32
Neue Tramdepot Bern.
Interior view of space, with natural daylight penetrating through relatively open trusses.

a)

b) c)
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9.9	 Space Frames – 3-D Truss Action 

Truss-like surface and spatial structures are called space frames. 
Just like planar (2-D) trusses, such structures are lightweight and 
constructed from interlocking struts forming stable geometric 
patterns that have long been recognized as being able to carry 
transverse loads very efficiently. Indeed, in spite of its name, with 
its avant-garde “Space Age” connotations, what is effectively space 
frame construction has been with us for quite a long time in the 
sense of its spatial form of structural framing. Sophisticated church 
tower timber structures of the Middle Ages (see Ill. 4.25) and the 
nineteenth-century wrought iron structures of the Eiffel Tower in 
Paris (1889; Ill. 9.33, 10.32) as well as the Firth of Forth Railway 
Bridge near Edinburgh (1890; Ill. 7.36) are all iconic examples of 
different forms of spatial truss construction. But the invention of 
the “conventional” space frame as we have come to know it today 

is generally credited to the Scottish-American inventor Alexander 
Graham Bell (1847–1922).9 Around 1900, Bell worked with light 
and efficient spatial structures for passenger-carrying kites and 
observation towers. (Ill. 9.34.) In the 1920s, the American Richard 
Buckminster Fuller (1895–1983) made his own entrance on to 
the scene of space frame development, one in which he would 
have a long-lasting legacy (e.g., see Section 13.1 for his famous 
geodesic “Bucky Dome” in Montréal). And eventually, it would 
indeed turn out that the space frame’s more literal association 
with the Space Age is something not completely without merit, 
as satellites and space stations and proposed experimental space 
colony structures have been designed and built over the past half 
century using this system’s fundamental principles, which we will 
review presently.

Illustration 9.33
“La Tour Rouge” (1911).
Eiffel Tower exhibits well the three-dimensional spatial 
form possibilities of a trussed structural system.

Painting by Robert Delaunay. 

Illustration 9.34
Early space frame “experiment” (about 1900).

Inventor: Alexander Graham Bell.
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Space frames are made from axial structural members organized 
in spatial, stable, so-called polyhedral units that can be seen as 
open building blocks. (Fig. 9.20.) The connections between these 
axial members or bars are considered to be hinged, often by means 
of highly specialized and patented joint systems. (Ill. 9.35.) And, 
similarly to plane trusses, the loads that are applied to space frames 
and the supports that are provided are expected to act directly 
at the joints. 

Typical space frames are given sufficient structural depth so 
that they can form an open, multi-member and double-layered 
“thickened” planar surface that can be considered to have 
considerable stiffness with respect to transverse loading (e.g., 
Ill. 9.36) – and thereby not needing to rely on strategic curvature 
or folding to obtain such stiffness, although these strategies can 

also be used to provide space frames with even greater structural 
capacity. But even the most common and basic form of a flat space 
frame can span freely over considerable distances while maintaining 
an air of remarkable lightness. In terms of its overall structural 
behavior, such space frames can be thought of as analogous to 
a two-way concrete slab, and some of the lessons learned for 
that structure in Chapter 7, Section 7.12, can be reapplied here: 
e.g., in order to take advantage of the multi-directional spanning 
and load-sharing potential of space frames we should provide 
supports that are distributed fairly uniformly in each direction, 
and in such a way that the difference between the span lengths 
is not too great. 

A space frame typically consists of top and bottom surface grids 
that are mutually connected to each other by means of diagonal 

Illustration 9.35
Typical steel joint for space frames by MERO.

Illustration 9.36
Space frame study by students 
at the Technical University, 
NTH, Trondheim, Norway 
(1963).
The structure is based on a 
series of tetrahedrons, and 
the 20 by 20mm (0.75 by 
0.75in) members were sawn 
from wooden drawing boards. 
Co-author Arne Eggen proudly 
acts as a point load.

Figure 9.20
Some close-packing polyhedra; the tetrahedron, 
the octahedron, and the cube. When the cube’s 
squares are braced by diagonals, all three 
polyhedrons are stable figures.
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members, the whole system thereby forming a three-dimensional 
network of struts or bars. The geometry can also be interpreted 
as that of a close packing of diverse polyhedra, which are spatial 
figures composed of at least four faces (called polygons) intersecting 
along their edges. (Fig. 9.21.) The “edges” in this case are formed 
by the structural members, and those in turn intersect at the corners 
(vertices) in structural joints. The so-called regular polyhedra are 
known as the five Platonic solids.10 Of those, the tetrahedron, which 
is a pyramid of four equilateral triangles, the octahedron, which may 
be seen as two pyramids with a square base joined along the base 
with the finished figure having eight faces of equilateral triangles, and 
the self-evident cube, all fill space by themselves or by combining 
with each other. While both the tetrahedron and the octahedron 
are stable, the cube needs to be braced by diagonals in order to 
be stable as a spatial figure. If a space frame is composed entirely 
of closely packed and stable polyhedral “building blocks,” then 

the space frame as a whole is surely an internally stable structural 
system.11

A form that has been of particular interest is the space frame 
having equilateral triangular grids in both top and bottom layers, 
with the upper layer offset with respect to the bottom one in such 
a way that the corners (vertices) of the triangles in one layer are 
vertically projected into the center of gravity of the triangles in 
the other layer (this is called an oblique translation). This is in fact 
one of the stiffest space frames that can be configured. It consists 
of closely packed octahedra and tetrahedra, and has the distinct 
advantage of being able to be constructed from members of only 
one length. A common variation is also the space frame with square 
grids in both layers, where the squares are offset half a square in 
both directions. (Fig. 9.22.) To achieve different visual patterns, a 
large number of other possible variations exist that nonetheless 
observe in each case the requirements for stability. (e.g., Ill. 9.37.)

Figure 9.21
Space frame with equilateral triangles on one layer 
offset from equilateral triangles on the other. It is 
made from one member length only, and achieves a 
particularly high stiffness by having three intersecting 
trusses (that are inclined and continuous) distributing 
loads in three directions. Plan and section. To ease 
the spatial reading of the diagram, different line 
symbols are used; full lines are “level 1,” which 
means they depict members closest to the point of 
observation; dotted lines are “level 3,” meaning they 
represent structural members farthest from the point 
of observation, finally dashed lines are “level 2” that 
connect members of levels 1 and 3.

Figure 9.22
Space frame with squares on offset squares. The close-
packing polyhedra are the tetrahedron and the half-
octahedron, and only one member length is employed. 
For key to the line symbols, see Figure 9.21.
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Illustration 9.37
Jacob K. Javits Convention Center, New York City, NY, USA (1986).
Looking up the space frame side wall toward the space frame roof: “conventional” forms 
and materials – but the results are exceptional in scale and visual patterns.

Architect: Pei Kobb Freed & Partners. Structural engineer: Thornton Tomasetti.
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Because of the pattern of more or less equally sized members 
throughout, space frames are particularly well adapted to carrying 
uniformly distributed loads. Large point loads, on the other hand, 
will unduly stress a limited number of members. Similarly, then, the 
quite common situation of supporting space frames on a limited 
number of pillars or columns is far from ideal from a structural point 
of view. The image of a floating open structure anchored to the 
ground on only a few thin columns may look too nice for its own 
good; however, it is a scheme that has frequently been used in 
spite of its easily anticipated problems. A support configuration 
that better addresses the situation has compression struts that splay 
out from the tops of columns in order to connect to several joints 
of the space frame, thus allowing the total load to be distributed 
among a larger number of its members. (Fig. 9.23, Ill. 9.38.)

In space frames, then, regular spatial polyhedral shapes are 
quite common; these can be seen as advantageous from the point 
of view of repetition and standardized fabrication of members 
but they are not necessarily the most desirable or even the most 
materially efficient configuration in all cases. Providing inspiration 
for such relative freedom of space frame form is the work of the 
Venezuelan artist Gego, whose 1976 “Trunk no. 5” wire sculpture, 
for example, can be considered well ahead of its time. (Ill. 9.39.) 
As digital design and manufacturing technologies are increasingly 
handling complex geometries in a more efficient manner, future 
architecture projects will probably incorporate space frames of more 
variety and visual interest, as well as of higher structural efficiency, 
than has mostly been the case to date.12 (e.g. Ill. 9.40.) 

Figure 9.23
Supporting space frames on columns attached to only 
one joint will result in particularly high axial stresses 
in the few members connecting at this joint, while a 
distribution of the forces among several support points 
is more favorable.

Illustration 9.38
“The Alhambra” (2013).
Sculpture in aluminum and stainless steel by Mark Hagan. Multiple points of support 
avoid overloading individual elements of the space frame.
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Illustration 9.39
“Trunk no. 5” (1976).
Sculpture in stainless steel by Gego. 
Trained as an architect in Germany and spending a lifetime as an artist 
in Venezuela, Gego (born Gertrud Goldschmidt (1912–1994)) made her 
re-entry into the European art scene through an important exhibition 
named “Defying Structures” in Barcelona and Porto in 2006. She moved 
from the works of the drawn line on paper to real space. In space the line 
has a physical body, and to relate it to other lines it requires connecting 
support points, and articulations. Many of Gego’s works done in metal 
wire demonstrate a freedom of form within a structural order based on 
rigid triangles.

Illustration 9.40
Beijing National Aquatics Center, The 
Watercube, Beijing, China (2008).
Essentially forming a huge cubic 
volume measuring 177 x 177 x 31m 
(580 x 580 x 102ft), this building’s 
light and seemingly irregular 
structural framing system is inspired 
by research into the configuration of 
water bubbles; conceptually packed 
“bubbles” become geometric 12-sided 
and 14-sided polyhedra,13 the flat sides 
of which are pentagons and hexagons. 
These shapes are then created from 
steel tube members that form a 
unique space frame structure that runs 
through the thickness of the 3.6m (12ft) 
walls and the 7.5m (25ft) roof of the 
building.

Architects: PTW Architects. Structural 
engineering: Arup.
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9.10	 Tensegrity – When Columns Fly

While not being explicitly a true truss in the sense that we 
have discussed that structural form so far in this chapter, the 
so-called tensegrity structure nonetheless also consists of a spatial 
arrangement of multiple axially loaded tension and compression 
members that, considered as a whole, has the effective structural 
depth to be able to counter transverse loading. These elements 
are here configured in a very particular way, however: the 
lightweight and airy system’s tension members are continuous 
while its compression members are isolated from one another – 
thereby seeming to “fly.” (Fig. 9.24.) The tension elements of the 
system are usually made of thin steel wires and cables whereas 
the compression elements are typically thicker rods, perhaps 

made of metal (preferably aluminum due to that material’s relative 
light weight, but steel can also be used), or else wood struts or 
even glass tubes have been used on occasion. High precision 
is needed for the manufacturing and assembly of a tensegrity 
structure, and their equilibrium relies on the whole system being 
highly pre-stressed.

The word tensegrity is a contraction of “tensile integrity,” as 
coined by Buckminster Fuller (1895–1983). These structures have 
three almost simultaneous origins in the works of Fuller, Kenneth 
Snelson (1927–2016), and Georges Emmerich (1925–1996), all of 
whom explored different aspects of tensegrity-like phenomena 
around 1950. Snelson, who was a student of Fuller’s, in particular 
pioneered dramatic sculptural works that applied the use of the 
tensegrity principle. He considered himself an artist and several 

Figure 9.24
The simplest tensegrity structure.
Three compression members 
of equal length are symmetric 
to one another. Each end is 
connected to three tension 
cables and defines in this 
particular case the corners 
of equilateral triangles. The 
triangles at the top and bottom 
are twisted with respect to 
each other.

Illustration 9.41
“The Needle Tower” (1968). Kröller-Müller Museum, The Hague, the Netherlands.
Tensegrity sculpture by Kenneth Snelson. Aluminum and stainless steel, 30 x 6 x 6m (98 x 20 x 20ft). 
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of his works are displayed in museums and sculpture gardens. 
His Needle Tower from 1968, for example, is made of aluminum 
tubes that are amazingly held together in perfect balance by a 
single continuous stainless steel wire. (Ill. 9.41.) As previously 
mentioned, one of the fascinating qualities of tensegrity structures 
is that they seem to float in the air. The reason for this perception 
is the fact that the compression elements do not touch each other 
but are, in the words of Buckminster Fuller, like “small islands 
in a sea of tension.” Tensegrity sculptures such as Snelson’s not 
only explore these structural principles but also work visually in 
relation to them as well as in contrast with the natural landscape.

Despite the visual and conceptual attraction of the form, 
however, an obvious difficulty arises when it comes to employing 
tensegrity principles in building projects that have significant 

weight needing to be carried and that need to provide the 
typical stable building surfaces of floor slabs, façade cladding, 
etc. From a conventional building performance point of view, 
tensegrity structures tend to be quite flexible and finding ways 
to counter that reality is likely to mean that some of the initial 
attraction and mysteriousness of “free-floating” structures may 
end up being substantially diminished. But such challenges 
notwithstanding, tensegrity has found its place in architecture 
when the design loads are not too large and/or when relatively 
significant deflections can be accommodated. For example, 
the “floating” aluminum pyramidal forms used to support the 
original cable net enclosures for the Snowdon Aviary at the 
London Zoo established what is perhaps tensegrity’s truest 
“flying” form. (Ill. 9.42.)

Illustration 9.42
The Snowdon Aviary, London Zoo, London, UK (1963).
Among the most widely recognized of tensegrity structures. Key support for aviary’s enclosing cable net is 
provided by four pyramidal aluminum compression “masts,” each of which is perceived to be “floating” in the 
air, completely supported by angled tension cables. 

Architect: Cedric Price (1934–2003) and Lord Snowdon (1930–2017). Structural engineer: Frank Newby (1926–2001).
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illustration 9.43
Kurilpa Bridge, Brisbane, Australia (2009).
Hybrid cable-stayed/tensegrity structure – the mast-stabilizing horizontal spars conform to tensegrity principles; 
i.e., compression struts that at fi rst glance seemingly “fl oat” in the air, but that in reality are supported by 
angled tension cables at both ends. 

Architect: Cox Rayner Architects. Structural engineer: Arup. Cornell model by Bennett Adamson and Thomas Rushton.
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More recently, the floating-compression-member system has 
once again proven to be inspiring and challenging to architects and 
engineers alike. For example, a small tensegrity pedestrian bridge 
was designed for the National Building Museum in Washington, DC, 
that, if built, would have connected high-level galleries on either 
side of the museum’s main hall. This project was developed by 
Wilkinson Eyre Architects in collaboration with structural engineer 
Cecil Balmond. The structure, whose underlying geometry was 
based on a series of tetrahedral elements, was also conceived of 
as an exhibited object that would have actively demonstrated its 
structural behavior. The bridge, as designed, was to be constructed 
from a network of glass tubes acting as the compressive elements, 
all connected by cables; moreover, a system of LED (light-emitting 
diode) lights built into the glass tubes would be activated according 
to variations of their member forces caused by the museum visitors 
walking along the bridge.

A second contemporary example is a hybrid version of a tensegrity 
bridge that was designed for and built in Brisbane, Australia. In this 
case, the structural system consists of a “conventional” cable-stayed 
mast system for the support of the bridge’s pedestrian walkway 
and cycling path, but these thin, pinned-base masts are given 
lateral stability by means of transverse, “floating” struts and small 
pyramidal forms angled this way and that, supported at their ends 
only by means of tension cables. (Ill. 9.43.) The overall impression 
of this hybrid stayed/tensegrity system is one of playfulness and 
yet also one of clear efficiency of material use, in which tension and 
compression elements are brought together spatially to produce 
an overall “trussed” structure of rather remarkable qualities. 



http://taylorandfrancis.com
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10.9	 The Vierendeel – Adapting the Rigid Frame

Illustration 10.1
Storhamarlåven, Hedmark Museum, Hamar, Norway 
(rebuilt 1974).
The simple frame structure supports the column 
above and distributes its load to both sides of the 
auditorium door opening, thereby both preventing 
the passage from being blocked and highlighting the 
doors’ design.

Architect: Sverre Fehn. Structural engineer: Terje Orlien.
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10.1	Greenwich Academy  
– Framing Light and Space

In the wooded, hilly setting of the Greenwich Academy in Greenwich, 
Connecticut, USA is a building with a typical high school program that 
has been rendered remarkable through the close design collaboration 
of the architect Richard Duffy of Skidmore Owings and Merrill and 
the space and light artist James Turrell. Completed in 2002, the 
4200m2 (45 000ft2) Upper School and Library Building provides a 
rapidly growing school campus with the usual mix of new classrooms, 
computer and art facilities, science laboratories, and a library and 
reading room. But as it is located on a topographically complex site 
and hard against several previously existing buildings, gardens, and 
playing fields, perhaps the new structure’s most important function is 

to act as a connector, linking all of these disparate pieces together, 
and it is on this connective aspect that we will focus our attention. 

An understanding of the site is essential for this project: over 
the building’s footprint the terrain slopes rather steeply from an 
upper level garden and traditional building entrance down to a 
lower terrace about 7m (23ft) below that has multiple playing fields 
merging with the natural, wooded landscape. The new building, 
rather than being built at the top or bottom of this hill is instead 
built into it, resulting in a two-story structure whose rooftop meets 
the ground surface of the upper level. The landscape is then made 
to flow through the large new building in several ways: the entire 
flat rooftop is landscaped to act as an extension of the gardens, 
the two-story-high glass walls around the perimeter at the lower 
level allow the interior and exterior spaces to read as one, several 

Illustration 10.2
Greenwich Academy Upper School, Greenwich, CT, USA (2002).
View of landscaped roof of new building, showing courtyard that cuts into the two-story building mass, as well 
as four glass-covered pavilions that extend upward above the roof level. Glass roofs of these volumes can be 
seen to distinctively slope and twist along their length.

Architect: Skidmore, Owings & Merrill (SOM). Structural engineer: DiBlasi Associates.
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exterior courtyards are integrated within the overall scheme, and, 
most relevant to our concern here, there are four distinctive glass-
covered pavilions that have been called “chambers” or “crystals” 
that project up through the green roof and give the building its 
most distinctive feature. (Ill. 10.2.)

The program for the building is organized into four subject 
areas: math/science, computer-art/ceramics, languages/humanities, 
and library/reading room, and each of these zones is centered and 
given identity by one of the glass pavilions. With a height of 9–12m 
(30–40ft), all the glass volumes project well above the planted roof 
and thereby draw plenty of light into the two-story-thick building. 
They distinguish themselves individually, however, by being oriented 
in plan at right angles to each other and by having roof planes of 
different heights that are both sloping and warping independently. 
The overall effect when seen from the upper entrance level, however, 
is to observe a new type of unified crystalline landscape for the 
school that is integrated into the natural one.

The structural system that supports the glass enclosures consists of 
a series of glue-laminated timber frames that have been prominently 
featured as part of the design. (Ill. 10.3.) The color and warmth of 
the wood frames provide a striking visual contrast to the enveloping 
transparent glass and the sky seen through it, and they also suggest 
a relationship to the trees of the surrounding forests, albeit one 
that has gone through a manufacturing process: the columns and 
beams of the frames are made of several 50mm (2in) thick layers 
of fir that have been pressed and glued together in a factory. The 
connections between the timber frames’ columns and beams are 
also emphasized in the design: right-angled steel plates cover the 
joints on both sides, and several bolts hold the pieces together 
securely. (Ill. 10.4.) We will see in this chapter that this type of 
connection is one which provides essential stiffness and rigidity 
to the frame, allowing it to withstand gravity as well as the lateral 
forces that wind will produce (in this case by acting on the pavilion 

Illustration 10.3
Greenwich Academy Upper School.
Glass pavilions project above the 
landscaped rooftop – at once creating 
access points from the upper level of 
the sloping site and drawing daylight 
deep into the two-story building, but 
also creating night-time light chambers 
for the work of artist James Turrell.

Illustration 10.4
Greenwich Academy Upper School.
Glue-laminated timber frames provide structural support for gravity and 
lateral loads while allowing maximum light penetration and pedestrian 
through-circulation. Steel plates establishing rigid connections at the 
corners of the frames are distinctively featured.



Chapter 10: The Frame and the Shear Wall

330

projections above the roof.) But this type of frame, typically called 
a rigid frame specifically because of the special characteristics of 
its connections, has other design purposes as well: in contrast to 
other lateral-load-resisting systems that we will encounter in this 
chapter, it allows for free and easy through-passage – an essential 
aspect here with the pavilions acting as part of the connective 
circulation path through the school. Moreover, with only two side 
columns and a beam at the top, the rigid frame also is recognized 
as being particularly useful from an architectural design perspective 
in order to visually orient and frame views and space without any 
intervening structure, important features in suggesting directions 
of movement and eventual destination points. But there is yet a 
further visual aspect of the Greenwich Academy’s rigid frames that 
makes them truly unique.

The artist James Turrell is well known for his space and light 
installations, including for the yet-to-be-completed Roden Crater 
in Arizona where a natural volcanic cinder cone is being turned 
into a massive naked-eye observatory for the sky and heavens. The 
Greenwich Academy’s Upper School Turrell Lighting Installation 
is much smaller in scale but directly relevant to our discussion of 
frames: light-emitting diodes (LEDs) have been embedded into each 
of the timber frames of the glass pavilions, which at this point can 
perhaps best be called “light chambers” for reasons that will shortly 
become obvious. The lights give life to the building at night – but 
certainly not in the usual manner. A programmable electronic control 
board has been used by Turrell to adjust the mix and intensity of 
the red, blue, and yellow LEDs of the frames into every hue and 
color imaginable. Sometimes the lights only trace the outline of 
these structures, but because the glass of the pavilions has been 
etched to contain and refract light, at other times the light turns 
the planar surfaces into glowing volumes. Furthermore, all this can 
be dynamically choreographed, with the colors merging with each 
other and seemingly made to jump from one volume to another, 
figuratively linking one academic discipline area to another. Turrell 
has turned this into a dazzling light and space show; for us here, 
though, this project compellingly expresses the potential achieved 
by the linkage of art and light and architecture and space – all 
through the medium of the rigid frame.

10.2	A Triad of Stabilizing Subsystems 

Structural systems exist to carry loads, which in an architectural 
context result mainly from the need and desire to inhabit interior 
spaces of various shapes, sizes, and functions. As we have seen in 
the preceding chapters and as we will continue to explore in those 
that follow, these systems’ overall forms vary based not only on 
load-carrying function but also on aesthetic preferences, cultural 
influences, visual effects, circulation considerations, construction 
costs, material performances and availability, sustainability 
objectives, lighting and acoustic effects, thermal comfort, and 
myriad other concerns or attributes that may be brought to 
bear. Regardless of these other influences, however, a structure’s 
mechanical role and function is obviously to carry vertical gravity 
loads, typically stemming from the lifting aloft of a roof or floor 
surface that covers and spans across an occupiable space. But 
as we saw in Chapter 3, buildings are also regularly subjected to 
other types of loading in addition to gravity, such as the lateral 
forces produced by wind, earthquakes, contained earth or water, 
etc. Such sideways forces tend to cause a lateral instability in 
a built structure that must also be resisted if the building is to 
remain standing and functional. As was briefly discussed earlier 
in Section 2.5, three broad categories of structural subsystems 
have been devised in order to counter such potential instability 
caused by lateral loads on buildings – namely, shear walls, braced 
frames, and rigid frames (Fig. 10.1) – and it is the objective of 
the remainder of this chapter to describe in more detail their 
respective fundamental structural behaviors and pros and cons 
in relation to other architectural design objectives.

The Shear Wall

The first of these lateral load subsystems to be considered is the 
shear wall, which at its simplest is a thickened planar surface to 
which sideways forces are applied. The key distinction to other 
lateral-load-resisting wall types that we have discussed earlier in 
Chapter 8 (e.g., retaining walls) is that in the case of the shear wall 
it is understood to be primarily used for lateral load resistance in 
the direction of its plane, rather than transversely to it. Although 
historical as well as contemporary masonry walls made of brick or 
stone or concrete block quickly come to mind, in fact shear walls 
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can also be made of other materials including reinforced concrete, 
timber, or steel. (e.g., Ill. 10.5, 10.6.)

Irrespective of the material, however, at its most basic as a 
lateral-load-resisting subsystem one can imagine a planar shear 
wall to be supported vertically and horizontally at ground level 
and to have applied to it horizontal, in-plane loads. In response, 
the wall will tend to displace and flex sideways in its plane in the 
direction of the loading. We can imagine various ways in which 
this wall could fail as a result of over-loading: two would certainly 

Figure 10.1
Stabilizing subsystems (from top); shear wall, 
braced frame, and rigid frame.

Illustration 10.5
Torre Cube, Guadalajara, Mexico (2005).
Trio of tall, thin, reinforced concrete shear walls resist lateral loads, carry 
gravity loads from the wood-clad cantilevering volumes of residential 
space, and act as service/elevator cores. 

Architect: Estudio Carme Piños. Structural engineer: Luis Bozzo.

Illustration 10.6
Torre Cube.
Plan drawing shows curved aspect of these load-carrying shear walls that 
also act to establish and shape space, direct views, and are an essential 
part of the building’s design aesthetic.
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be for the wall to slide sideways or else overturn about its base, 
but if such clearly unacceptable support failures are prevented 
then the adequacy of the wall ends up being a matter of ensuring 
that the material of which it is made does not fail due to having 
its capacity exceeded. A shear wall, then, can fundamentally be 
seen to behave like a cantilever beam, albeit a vertical one. Like all 
cantilever beams subject to transverse loads (see Chapter 7), shear 
walls will have both internal shear forces and bending moments that 
must be dealt with by their associated shear and bending stresses. 
The relative significance of each of these will depend mostly upon 
the height-to-length proportions of the wall (to be clear, by length 
here we mean the plan dimension of the wall parallel to its plane); 
i.e., the more “squat” the wall the more shear will govern its design, 
while the taller and slenderer it is the more bending action will be 
determinant of its capacity. There will be more discussion of these 
topics later in this chapter in Section 10.4.

The Braced Frame

The second type of lateral-load-resisting subsystem is the braced 
frame, which fundamentally is a two-columns-and-a-beam assembly 
of elements used to carry gravity loads and create space but that 
is also provided with one or more additional diagonal members 
that help to prevent the frame structure from wracking sideways 
too much when lateral loads are applied to it. We are already 
somewhat familiar with the braced frame’s fundamental behavior 
from our discussion of the truss in Chapter 9 since, in essence, a 
braced frame is nothing other than a vertical cantilevering truss 
going by a different name. Of course, using the braced frame 
as a lateral-load-stabilizing subsystem is an effective way of not 
having the major visual obstruction of the typical shear wall while 
maintaining a comparably high degree of lateral stiffness. Aside 
from the common single- and double-diagonal (or X-) braced frames 
(e.g., Ill. 10.7, 10.8), several variations of form can be identified 
that belong to this subsystem category: V-bracing configurations, 

Illustration 10.7
Makoko Floating School, Lagos, Nigeria (2013).1

Timber braced frame creates spatial and visual openness for multiple communal 
activities to occur and be visible on different floor levels, while also minimizing dead 
loads for the floating “foundation raft” of 64 plastic barrels. 

Architect: NLÉ / Kunlé Adeyemi with various structural and naval consultants.



Chapter 10: The Frame and the Shear Wall

333

lattices that are created by diagonal and horizontal members in a 
triangular grid (also called diagrids), inclined columns that can act 
as both vertical-load-carrying and lateral-stability-giving bracing 
elements simultaneously, and even angled buttresses and guy 
cables placed on the exterior of frames can all be understood to be 
variants of this type of lateral-load-resisting system. We will return 
to some of these alternative forms in Section 10.5. 

Forces in braced frames may be predicted and calculated 
according to the same principles and analytical methods that were 
set forth for trusses in Chapter 9, so we do not need to repeat 
those again in this chapter. Also, the same general conclusion 
about braced frames can be reached as it was for trusses: namely, 
that this is a structural form that resolves what is, from an overall 
perspective, bending-type behavior into a set of highly efficient 
axial tension and compression forces in its linear elements that are 
strategically spaced apart. The implications of this in terms of the 
visual transparency of the braced frame as a lateral-load-resisting 
system could not be any clearer compared to the shear wall.

The Rigid Frame

Third among the basic lateral-load-resisting subsystems is the 
so-called rigid frame, whose form and behavior we haven’t yet 
considered in detail in this book and which will be, therefore, the 
subject of more substantial treatment and analytical focus later in 
this chapter. For now, however, the rigid frame can be characterized 
as simply an assembly of columns and beams that are connected 
together by means of rigid joints – and thus, its name. The rigid 
frame represents a structural assembly that offers not only support 
for gravity loads but also quite good lateral stability, all the while 
providing an almost complete visual and circulation openness; 
i.e., the system is free of the obstructing solid plane of the shear 
wall or the interfering diagonal member of the braced frame. As 
we will see in Section 10.6, stability of the rigid frame is achieved 
instead by providing an adequate number of rigid joints located 
at the connections between its columns and beams, and/or at the 
column bases. 

Illustration 10.8
Makoko Floating School.
Drawing clearly highlights bracing used to stabilize overall timber framework.
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In contrast to the hinged/pinned connections of braced frames, 
rigid joints are bending-resistant connections that do not allow 
relative rotation to occur between the members they are connecting; 
in other words, the angle between these members does not change 
even if the connection as a whole rotates. Such rigid joints cause the 
columns and beams of the frame to bend when loads are applied to 
it (Fig. 10.2); i.e., when a rigid frame deflects sideways in response 
to lateral loading, the bending stiffness of both the column and 
beam elements contribute significantly to giving the frame its lateral 
stability – in contrast to being provided only by the axial stiffness 
of these elements and especially of the diagonal in the case of the 
braced frame. Given what we know from preceding chapters about 
the relative difference in stiffness and load-carrying efficiency of 
structural members that are subject to bending versus axial stresses, 
it should be easy to anticipate that for similarly sized elements the 
rigid frame is, therefore, quite a bit more flexible than is a braced 
frame – notwithstanding its name. Or, conversely, the column and 
beam elements of a rigid frame typically need to be considerably 
“beefed up” from the dimensions that they would have as part of 
a corresponding braced frame if the lateral stiffnesses of the two 
subsystems are to be roughly equal to each other. We will consider 
more closely the implications of these observations later in this 
chapter; they are quite far-reaching in terms of establishing rigid 
frames’ overall forms, connection details, and material selections 
– all in support of various design intentions. (e.g., Ill. 10.9.)

10.3	French Frames 

Palais de Bois

Auguste Perret (1873–1954) remained an architecte-ingénieur 
throughout his career and was a pioneer said to be “sans pareil” 
in exploring the architectonic potential of reinforced concrete. He 
was also a father figure in his famous studio that attracted many 
young talented designers; both Walter Gropius (1883–1969) and 
Ludwig Mies van der Rohe (1886–1969) worked for Perret and also 
Le Corbusier worked there as an apprentice for a short period of 
time. Perret’s mastery, however, was by no means limited to the 
exploration of reinforced concrete. His aptly named Palais de Bois, 
a temporary gallery space built in the Bois de Boulogne for the 

Figure 10.2
Rigid joints prevent relative rotation between the 
connected members. This means that the elements 
themselves must bend when the frame deflects 
sideways. The stiffness of the structural elements 
thus provides stability, although in a flexible way.

Illustration 10.9
Casa El Mirador, Valle de Bravo, Mexico (2013). 
Rigid frame structure created by bending-resistant 
flanged steel columns and beams that are welded 
together at their connections. (See also Ill. 7.38.) 

Architect: CC Arquitectos. Structural engineer: Miguel 
Campero, Jorge Soto, Pedro de la Fuente. 
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1924 Salon des Tuileries in Paris, demonstrates that he was equally 
comfortable in handling wood. (Ill. 10.10.) As it happened at that 
time, the Western world showed a great deal of interest in Asian 
art and design, and in Perret’s Palais de Bois one can recognize 
an architecture that drew its inspiration from traditional Japanese 
wood construction.

This was a building with a 300m (984ft) long space that was 
created by a regularly repeating timber framed structure along its 
length; the typical section of the gallery resembled that of a basilica, 
with a high nave providing clerestory lighting from above. The 
structure consisted of a very simple, clear and exposed system made 
of sawn timber of standard dimensions straight from the lumber mill, 
so that when the building was taken down these elements were able 
to be reused elsewhere. Organized in a clearly hierarchic fashion, 
the post-and-beam form of the structure consisted of two single 
columns carrying double beams; resting on the beams were rafters 

and purlins covered by boards. The frame-like structural system was 
important for opening up the interior space of the Palais de Bois, 
but on its own the building would not have been stable. Judging 
by photographs, it seems that the stabilizing function was provided 
instead by solid walls that filled in selected gaps in the side aisles 
between the frame’s columns. So, while the celebrated frame of 
this building was certainly essential in shaping its overall form and 
defining the quality of its interior space, it was supplemented in 
doing so by the lateral in-plane stiffness of a number of walls; i.e., 
one structural system cannot be seen as complete here without the 
other. Likely without appreciating such subtleties, however, it was 
said that while the Parisian public of the 1920s very much enjoyed 
the atmosphere of the gallery, with its open space and particular 
material quality, they also found the structure “un peu primitif.” 

Illustration 10.10
Le Palais de Bois, Porte-Maillot, 
Paris, France (1924).

Architect: Auguste Perret.
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École d’Architecture de Lyon 

The building for the Architecture School in Lyon is the result of a 
design competition won by architects Françoise-Hélène Jourda 
(1955–2015) and Gilles Perraudin. The building plan follows a 
symmetrical classical order with an internal two-story-high street 
which is flanked on both sides by a long line of classrooms and 
studios and which leads in the direction of the auditoria and faculty 
offices at the end of the building. The various spaces and functions 

are regulated by a strict modular layout, but there is also a certain 
life and vitality to the system. As would befit a building having the 
pedagogical program and mission of an architecture school, there 
are many highly distinctive spatial qualities and material uses and 
details to be found here. The lower, “learning” level of the building, 
where classrooms and review spaces are located, are cast out of 
heavy concrete into forms such as domes and solid walls, while 
the upper, “doing” level of the studio spaces is characterized by 
an open, light, laminated-wood structural system, with its exterior 

Illustration 10.11
The School of Architecture, Lyon, France (1987). 
Section drawing highlights the differences between the upper and lower levels, with 
massive concrete arches and domes at ground level vs. timber and steel linear components 
connected together into a structural framework above.

Architect: Jourda & Perraudin. Structural engineer: Rice Francis Ritchie.

Illustration 10.12
The School of Architecture in Lyon. 
Studio space features diagonally braced glue-laminated timber frames.
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walls completely glazed. (Ill. 10.11.) According to the architects, 
there is in this dual system a reference to a famous father-and-son 
duo from Greek mythology: the ground floor represents the artisan, 
Daidalos, and it is the place where the young students learn the 
basic crafts; the upstairs world is that of Icarus, where upper level 
students practice the art of flying.

We shall focus here on the structure of the upper level. As we 
have already mentioned, it is noticeably thinner and lighter than 
that below. Looking along the length of the studio space, a regular 
structural rhythm is clearly established by the transverse wooden 
frames that are spaced at equal intervals. (Ill. 10.12.) The glue-
laminated timber columns and beams that make up these frames 
each have identical cross-sections of 200 × 200mm (8 × 8in), and 
they are connected at their corners by means of cast steel hinge 
joints. Such frames, with hinges at their four corners, would not be 
stable structures on their own, let alone when dealing with lateral 
loading acting on the building. The necessary sideways stiffness is 
provided by the distinctive inverted-V diagonal bracing within the 
frames of these studio spaces. Triangular geometry results from the 
presence of such bracing and, as we know from studying trusses in 
Chapter 9, this provides the necessary stability for a laterally loaded 
pin-jointed frame not to collapse. The basic image of a braced frame 
reads clearly throughout the architecture studio space: a beam 
on two posts with diagonal bracing, forming a remarkable space. 

The highly visible and articulated series of metal joints that are 
used for the wooden members’ connections throughout this building 
(see Ill. 8.16 for close-up detail) were designed in collaboration with 
the structural engineer Peter Rice (1935–1992), who had used cast 
steel technology when he worked on the giant “gerberettes” of the 
Centre Georges Pompidou in Paris. (See Ill. 9.20.) Not to be confused 
with elements that are made from the structurally brittle material 
of cast iron, cast steel components have become a distinctive part 
of our contemporary architectural toolbox due to this material’s 
malleability and its high strength. And just as cast iron did in the 
nineteenth century, cast steel today offers wonderful opportunities 
for designing and shaping intricate structural components, and 
especially for resolving complex connection geometries. In the 
present building, both the hinged joints at the top and bottom of 
the columns as well as the expressively designed connections to 
the diagonal members are all convincing proof of this. 

10.4	Shear Walls – Basic Behavior  
and Form Variations

There is a tendency to associate walls in structures to something that 
belongs to the past, which is not surprising given the predominance 
of walled structures in historical buildings around the world – whether 
it be the Inca ruins that still astound with their mortarless and 
intricately fitted stone walls or else the many examples of Roman 
and Renaissance builders’ ingenuity with their multilayered walls 
of brick or stone, which they multiplied and organized in plan and 
opened up in elevation into exceptional structures incorporating 
arches, vaults, and domes for arcades, aqueducts, arenas, cathedrals, 
and more. But walls do not just belong to historical structures; in 
fact, the majority of buildings constructed around the world today 
continue to be supported by walled systems, whether made of 
rammed earth, fired mud bricks, stone blocks, concrete masonry 
units, sheathed timber-stud construction, structurally insulated 
panels (SIPs), solid wood panels, reinforced concrete, pre-cast and 
post-tensioned concrete panels, or stiffened steel plates. In short, 
walls are most definitely not passé. 

Low Shear Walls 

In the case of low, long walls subject to in-plane loading (Fig. 
10.3), it is clear that their plan-view geometry provides a very 
large section modulus that will correspondingly greatly diminish 
any bending stresses resulting from bending moments in the wall 
when it acts as a vertical cantilever (recall from Chapter 7 that 
σ = M/S, and the implications of that when S is very large). As 
a consequence, therefore, in such relatively common situations 
historically but also that are still the case today in most low-rise 
masonry and light timber-framed buildings, shear behavior is 
quite often the critical action in terms of challenging such a wall 
material’s maximum capacity with respect to lateral loading. Hence, 
it becomes understandable why the name shear wall was adopted 
as the generic name for this lateral load subsystem (instead of, 
say, “bending moment wall”).

Although the detailed methods for correctly accounting for shear 
behavior in walls are beyond the introductory scope of this book, 
we can nevertheless approach this topic at a conceptual level here 
in order to develop a basic appreciation for the relative capacities 

H

V
Figure 10.3
Lateral load applied to shear wall having relatively 
long, low proportions. Shear response of wall 
dominates over that of bending. 
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of shear walls that are subjected to horizontal forces in their plane. 
Obviously, if the stresses in the wall that result from such a shear 
force reach a level at which they exceed the shear strength of the 
wall material, then this will fail. As an general indication of when 
this might happen, the mean shear stress τ in a rectangular wall 
cross-section subjected to the shear force V = H can be calculated 
and compared to the material’s strength in shear, τu; i.e., 

τ = V/A ≤ τu

where A = the area of the cross-section of the wall as seen in plan 
view. Without doing so here, this approximation can be used for 
very rough, back-of-the-envelope type calculations for the thick, 
long masonry walls that characterize so many historical structures. 
(Ill. 10.13.) The perhaps somewhat unexpected conclusion from 
this is that one finds that most of the lengths and thicknesses of 
such walls were actually quite necessary given the low shear stress 
capacity of their masonry construction materials and the relatively 
large magnitude of the lateral wind forces acting on what could 
sometimes be quite large building façades. Moreover, accounting 
for the significant self-weight of thick masonry walls, plus some 
quite reasonable allowances for typical floor and roof dead weights 
and occupancy live loads, leads to the realization that the vertical 
compression stresses due to gravity loads alone come close to 
matching typical maximum material capacities for masonry walls. Seen 

in light of both of these statements, it can thus be concluded that 
the length, thickness, and solidity of masonry walls is not particularly 
wasteful – contrary to what one might expect for historical structures 
but also not so far from the mark for many modern masonry block 
and timber shear wall structures. That is, perhaps contrary to a lay 
person’s instinctive sense that such long lengths of walls in buildings 
are the result of our predecessors’ scientific ignorance and/or the 
wasteful bad habits of current low-tech construction conventions, 
there is in fact good structural capacity rationale for such dimensions.

The even more generally applicable lesson for the building 
designer is that material choice/selection/availability can have 
very significant consequences for shear walls, not “only” for the 
required dimensions of structural elements but also, and perhaps 
just as importantly, for their resulting spatial implications as well. In 
the case of masonry and sheathed stud-wall timber construction, 
for example, these materials’ relatively low shear stress capacities 
inevitably lead to the structural need for long extents of such walls 
that, in turn, tend to substantially enclose and subdivide space; 
one does not come without the other and we should not expect 
otherwise – at least without changing structural subsystems or the 
material of which they are made.

The reinforced concrete shear walls of the Bregenz Kunsthall 
seen in Chapter 2, Section 2.1, suggest in starkly contrasting 
fashion just what is possible with a higher strength material like 
concrete compared to masonry construction. The three distinct, 

Illustration 10.13
Sant Pere de Rodes, Port de la Selva, Catalonia, Spain (originally built c.900, renovation 1994).
Orthogonal arrangement of masonry walls for this Benedictine monastery reflect such walls’ 
typical long, low, thick proportions; shear stresses from lateral loading are likely to be limiting 
rather than bending stresses. 

Architect (for renovation): J. Antonio Martínez Lapeña and Elías Torres Tur.
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orthogonally oriented shear walls of Bregenz have greatly reduced 
length compared to the preceding examples of the Sant Pere de 
Rodes monastery (see Ill. 10.13) or of the Palladian Villa Foscari (see 
Ill. 2.9a). Since there are no columns in the Bregenz Kusthaus, all 
the gravity loads of the building’s multiple floor levels and of its art 
gallery live load occupancy allowance must be carried by these three 
walls, just as must all lateral loads on the building also be resisted 
by them, something that is only able to be accomplished because 
of the greatly increased material capacity of reinforced concrete 
compared to masonry. (See Chapter 5, Table 5.1.) Moreover, from 
a spatial perspective, these reinforced concrete walls’ substantially 
reduced lengths allow, for example, for the sides of each floor plate 
of the Kunsthaus to remain relatively open so that indirect, diffuse, 
natural lighting can illuminate the galleries through the distinctive 
glass-paneled sides of the building as well as its cleverly designed 
hanging glass ceilings. (See Ill. 2.4, 2.6.) 

To carry this material/spatial progression of walls to an extreme, 
we will now consider the Park Café in Koga, Japan, designed by 
SANAA. (Ill. 10.14, 10.15.) In this case four very thin steel plate 
shear walls provide lateral stability for the partially glazed/enclosed 
pavilion (two walls are aligned in each orthogonal direction; recall 
from Chapter 2 that a minimum of three such walls are necessary 

Illustration 10.14
Park Café, Koga, Ibaraki, Japan (1998).
Drawing highlights four thin steel plate shear walls (two each 
in orthogonal directions) that provide lateral stability for entire 
café; columns only carry gravity loads.

Architect: SANAA. Structural engineer: Sasaki Structural Consultants.

Illustration 10.15
Koga Park Café.
Very close spacing allows columns to be exceptionally thin, enabling surrounding park 
landscape to seemingly run right through the building/pavilion. Reinforcing this visual 
concept, mirror-finished stainless steel cladding covers the structural steel plate shear walls.
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for equilibrium, as long as they are not all parallel nor meet at a 
common point of intersection), whereas the 100 small, irregularly 
spaced steel columns carry the roof’s gravity loads.2 Very close 
spacing allows these columns to be exceptionally thin tubes, thus 
enabling the surrounding park landscape to seemingly run right 
through the building without significant visual obstruction – despite 
there being so many columns and that shear walls are in fact also 
present and doing the work of resisting the lateral loads. Mirror-like 
polished stainless steel cladding on both faces of the thin steel 
plate shear walls reinforces this visual concept. 

The general lesson of this short progression of examples should 
be clear: by going from a material such as low-capacity masonry 
to, first, reinforced concrete and then on to high-capacity steel, 
one can drastically alter the length and thickness of shear walls 
that are needed to provide lateral stability to buildings, and in 
so doing completely upend the sense of their physical and visual 
presence within the space that these walls support – i.e., one can 
go from a condition of almost complete heaviness/interiority to one 
of spectacular lightness/openness. The implications of the choice 
of different materials in architecture could not be more obvious.

Tall Shear Walls

For shear walls of significant height and/or slenderness, it is likely 
that bending behavior will limit their lateral-load-resisting capacity 
rather than that due to shear.3 (Fig. 10.4a.) For example, the relatively 
large height-to-length proportions of the reinforced concrete walls 
of the Torre Cube seen earlier in this chapter (see Ill. 10.5) clearly 
demonstrate such relative dimensional proportion differences 
compared to those of lower, longer masonry walls. 

In addition to behaving as tall, narrow, flexural cantilevers and 
thus developing relatively large vertically oriented bending stresses, 
such shear walls are typically also used to carry gravity loads, which 
will lead to its own set of axial compression stresses that must 
be superimposed on the former. (Fig. 10.4b.) The total stresses 
that are directed vertically in the wall resulting from a moment M 
produced by lateral loading in combination with a gravity load P 
is thus given by:

σ = M/S ± P/A ≤ σu

Figure 10.4
(a) Lateral load applied to shear wall having 
relatively narrow, tall proportions. Bending 
response of wall dominates. (b) Lateral and gravity 
loads acting simultaneously on wall lead to linearly 
varying bending stresses from the former needing 
to be superimposed on uniform magnitude 
compression stresses due to the latter. 
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where S = the section modulus of the cross-section of the wall, A 
= the area of the same cross-section, and σu the material strength, 
or the lowest value of either its tension or compression strength. 
The + sign applies to the compression side of the cross-section, 
where gravity axial stresses are adding to the bending stresses, 
while the – sign indicates that gravity reduces the resulting stresses 
on the tension side. 

Effectively, then, gravity loads can be considered as a form of 
pre-stressing of the shear wall before bending stresses act on it, 
thus effectively reducing the risk of its overturning. If there isn’t 
enough pre-compression from gravity loading, one end of the wall 
may indeed go into tension, which means that the wall material 
must be able to withstand tensile stresses and at the base it will 
have to be anchored down to the ground. (This can be especially 
true for relatively light shear walls made of solid wood panels 
that are connected together to act in unison as an overall vertical 
cantilever (e.g., Ill. 10.16, 10.17), although even heavier concrete 
shear walls may need to be anchored down when these become 
exceptionally tall and slender.) 

At the other end of the wall, given the large compression 
stresses likely produced by the combined state of loading, but 
also given a wall’s inherent planar quality and relative thinness 
transverse to its plane, either the material may fail by exceeding its 

compressive capacity or else the local buckling failure mechanism 
that we encountered in Chapter 8 for compression elements may 
arise. If this is the case, the problem can be addressed by having 
enlargements or end walls running at 90º to the shear wall plane 
that effectively can act as stiffeners (Fig. 10.5); at the same time, 
such projections at the wall ends can also cause the wall to have a 
huge I-shaped cross-section when seen in plan view – something 
that will further increase its overall bending capacity because of 

Figure 10.5
Large compression stresses 
caused by combining effects 
of lateral loads and gravity 
loads may cause local buckling 
at the compression end of 
the shear wall, a risk that is 
diminished if transverse end 
walls are provided, which is 
effectively also providing the 
cantilevering shear wall with 
an advantageously flanged, 
H-profile section.
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Illustration 10.16
Svartlamoen Student Housing, Trondheim, Norway (2005).
Building that was one of the earliest to use solid wood panels as vertical 
shear walls, but also for virtually all other structural components as well.

Architect: Brendeland & Kristoffersen. Structural engineer: Interconsult ASA, 
Reinertsen Engineering AS.

Illustration 10.17
Svartlamoen Student Housing.
Solid wood panels used throughout for walls and floors create unified, 
relatively enclosed quality of space.
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an increased section modulus and the benefi cial implications of 
that derived from the fl exure formula. The plan confi gurations 
for shear walls in buildings of medium to tall height often take 
advantage of this benefi t. 

In fact, it is common for such orthogonal assemblies of walls to be 
gathered together in a building into what is called a structural core, 
an arrangement which not only serves to help stabilize planar wall 
surfaces against buckling and increases the section moduli of the 
walls in each direction but also is convenient for surrounding elevator 

shafts and emergency egress staircases and to run plumbing and 
other building services up and down the height of a building. (e.g., 
Ill. 10.18, 10.19) Such cores of intersecting walls often effectively 
form vertical tubes, which we know from Chapter 2 Statics also makes 
for a highly effi cient way to resist any tendency of the building to 
twist (in plan), so clearly there can be multiple advantages to such 
shear wall assemblies.

Left unsaid so far, but implied by our previous discussion of the 
typically low stress limits of masonry or wood shear walls, is that 
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illustration 10.18
Metropolitan Tower and Carnegie Hall Tower, New York City, NY, USA 
(1987, 1991).
Adjacent tall buildings have exceptional slenderness ratios. (See also Ill. 
3.28.) 

Architect: Schuman Claman Lichtenstein & Efron (SCLE) Architects and César 
Pelli Associates, respectively. Structural engineer: Rosenwasser/Grossman 
Consulting Engineers (for both); one of the present co-authors, Mark Cruvellier, 
worked extensively on their structural modeling, analysis and design.

illustration 10.19
Metropolitan Tower and Carnegie Hall Tower.
Plans for buildings show basic shear wall confi gurations. For Metropolitan 
Tower, concrete walls reach out from core toward long diagonal façade, 
effectively running from one side of the building to the other so as 
to maximize its moment of inertia; furthering this objective, the wall 
ends are also somewhat enlarged. For Carnegie Hall Tower, the overall 
confi guration of the shear wall is that of a double perimeter tube, whose 
thick perimeter walls of high-strength reinforced concrete are perforated 
to create multiple windows with spectacular views. 
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much taller shear walls such as are presently being considered 
must be made of materials having significantly larger maximum 
stress capacity. Reinforced concrete made with various aggregates, 
water-to-cement ratios, and strengthening additives can be used to 
meet the requirement for increased compression capacity, and the 
incorporation of reinforcing bars gives the material tensile capacity 
as well, which may be necessary to prevent failure due to uplift as 
buildings get taller and more and more slender.

In the end, whether for low buildings or tall, whether limited by 
stresses that result from shear or bending behavior, whether made 
of stone or wood or reinforced concrete or steel, it can be stated 
that shear walls can be considered to be a remarkably effective 
and common subsystem for resisting lateral forces in buildings. 

10.5	Braced Frames – Basic Behavior  
and Form Variations

We will now move away from considering walled building systems 
and their (often) inherently enclosed/enclosing nature to looking 
at their “opposite”: open three-dimensional structural assemblies 
made up of columns and beams – termed here frameworks or simply 
frames. (e.g., Ill. 10.20.) Such constructions are typically not stable 
unless specific measures are taken to ensure their structural and 
geometric integrity, and this is what we will look at for the remainder 
of this chapter, first for frames that are braced by diagonal members 
and then those made “rigid” without such bracing.

We begin by considering the fundamental problem; that is, the 
lack of stability of column-and-beam frames that are made up of 
many discrete structural elements that are assumed to have hinged 
connections throughout (which will be the case unless very specific 
counter-measures are taken). One can just imagine trying to build 
this way and we all intuitively know that the resulting framework, 
equivalent to the proverbial house of cards (or, perhaps as a better 
analogy, of matchsticks), would not stand up on its own for very 
long. And yet, frameworks exist quite commonly – at least once 
properly stabilized. 

Hinged or “pinned” joints either can literally be designed as 
such or else are to be assumed at connections where no deliberate 
care has been taken to provide rotational integrity from the end 

of one structural element to the next, such that effectively free 
rotation between elements is able to occur. The literal notion of a 
“pinned connection” dates back to the nineteenth century when 
true rotational hinges were made by providing element ends with 
holes through which wrought iron or steel cylindrical rods, otherwise 
called “pins,” were inserted. Today, while much rarer, we may still 
see examples of such truly hinged joints in frames – sometimes 
to ensure a particular structural response (or non-response) in 
the elements being connected, sometimes for expressive design 

Illustration 10.20
Vilharigues Tower, Vouzela, Portugal (original: c.1300; intervention: 2013). 
Contrasting gravity and lateral-load-resisting structural systems; i.e., 
thickness and solidity of granite block wall of historical medieval 
fortification tower ruin vs. glazed, steel-rod braced frame for a 
contemporary intervention intended to maximize outward views to the 
surrounding landscape.

Architect for intervention: Renato Rebelo. 
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aesthetic reasons, and sometimes both at the same time, as we 
saw earlier at the Architecture School in Lyon (see Ill. 8.16). More 
commonly, however, hinged joints and support connections are much 
more mundane-looking and do not visually live up to their name 
– even while being carefully designed so that signifi cant bending 
moments are not able to be transmitted between the connecting 
members. An example of this is the connection commonly used 
at the ends of steel beams, in which just a few connecting bolts 
are located close to the beam web’s mid-depth while the upper 
and lower fl anges remain physically unattached to the column to 
which the beam is being connected. Or, as we saw with trusses in 
Section 9.6, at the scale of an overall truss’ dimensions, a hinge 
connection may effectively be assumed simply when the centerlines 
of members are deliberately made to align through a common point.

Regardless of the detail resolution, however, such a framework 
of vertical columns and horizontal beams with hinged connections 
everywhere does not constitute a stable structure. But even so, 
assuming for the time being that such stability can and will be 
provided, a certain amount of structural integrity is nonetheless 
ensured as hinges do enable the transfer of axial forces and shear 
forces from one element to the next; the hinged connections of 
a frame must, therefore, be designed to allow such forces to be 
transmitted. What is still needing to be established, however, is just 
how one can prevent such an inherently unstable overall framework 
from collapsing upon itself.

Which brings us back to describing the second basic strategy 
for resisting lateral loads on buildings, namely, that of strategically 
introducing diagonal bracing elements within an assembly of columns 
and beams. At its simplest, this takes the form of a single member 
running diagonally across a column-and-beam framed opening, 
from bottom left corner to upper right, or upper left to lower right, 
and we will review the workings of this basic confi guration shortly. 
We will also briefl y discuss the various forms of the braced frame, 
including X-bracing, V-bracing, diagrids, inclined columns, etc. 
(Fig. 10.6), and the structural response of each of these in turn. 

Single diagonal Brace

The structural response to lateral loading of this most basic bracing 
confi guration consisting of a single diagonal element within a four-
sided frame (Fig. 10.6a) was described earlier as being analogous 

figure 10.6
Different variants of the braced frame: (a) single-diagonal, (b) 
X-bracing, (c) external diagonal bracing, (d) inverted-V-bracing, (e) 
V-bracing, (f) diagrid bracing, and (g) inclined columns. All frames 
are designed as closed rectangles with hinged connections and 
supported on one pinned connection and one roller connection. 
This means that all frames are statically determinate externally. 
If both supports are pinned connections the lower horizontal 
member can be omitted, but the braced frame becomes statically 
indeterminate externally.

b)

c)

a)

f)

g)

d)

e)
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to that of a one-panel segment of a truss (see Section 9.3). A 
diagonal brace is able to stabilize a pin-jointed frame and a lateral/
transverse load on it can be countered by means of an axial tension or 
compression force within the diagonal – one or the other depending 
on the loading direction and whether the diagonal tends to be 
elongated or compressed in response to it. (Fig. 10.7.) Equilibrium 
considerations for the pin-jointed frame will dictate that its columns 
and beams will also be subject to axial tension or compression forces 
whose magnitudes can be calculated (recall the Method of Joints 
and Method of Sections that were demonstrated for the analysis of 
forces in trusses in Chapter 9, Section 9.5). Lateral forces on such 
a frame, then, are able to be resolved into “pure” axial forces in 
all of its various members, where the word “pure” is used here in 
the sense that this is the frame members’ only structural response; 
i.e., individually, they are not subject to any bending behavior. 

Unlike for a horizontally spanning truss subjected to always-
downward gravity loading, however, the reversibility of lateral loads 
produced by wind or earthquakes acting on such a frame means that 
the dimensions of a single diagonal brace will necessarily always 
be established by its having to work as a compression element – 
since buckling considerations then come into play, whereas these 
don’t when the member works in tension. This inevitably leads to 
having a single diagonal brace which is larger and thus which is 
more visually “present”/intrusive than the absolute minimum it could 
be if it were always working in tension. (e.g., Ill. 10.21, 10.22). This 
observation is among the reasons for us to next consider using an 
X-bracing form instead. 

figure 10.7
Diagrams of deformation and member force response for a single 
braced panel, with lateral load fi rst applied from left to right and 
then from right to left.

T

C

b)

a)

illustration 10.21
Casa Kiké, Cahuita, Costa Rica (2007).
Expressive single diagonal wood bracing members stabilize rectangular 
frame panels along sides of this writer’s house/pavilion. Diagonals are 
integrated into bookshelves, and visual pattern is extended into diagonal 
bracing beams for the roof.

Architect: Gianni Botsford Architects. Structural engineer: Tall Engineers.

illustration 10.22
Highline 23, New York City, NY, USA (2009).
Multistory diagonals are emphasized as part of a braced 
frame system for resisting lateral loading on narrow building 
site. System provides a distinguishing feature while also 
allowing for views of the elevated urban parkway. 

Architect: Neil M. Dinari Architects. Structural engineer: 
Desimone Consulting Engineers.
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X-bracing, V-bracing

Certain arrangements of thin tension rods or cables can be used in 
lieu of the single-diagonal compression member in order to make 
a braced frame even more visually light and spatially open. The 
most common form of this is in an X-braced configuration, thus 
sometimes referred to as cross-bracing (see previous Fig. 10.6b). 
Because of the typically reversible nature of lateral loading, with 
this type of arrangement one of the thin diagonal bracing rods 
will always be inactive due to its lack of compression stiffness; 
i.e., the diagonal member that happens to be leaning toward 
the direction of short-duration horizontal loading will temporarily 
buckle and not contribute to either the panel’s strength nor to 
its stiffness. When the load direction is reversed, the opposite 
happens. The advantage of such a configuration is that it allows 
each of the two diagonals to be sized for the tension-only condition 
and since this will be established by material capacity alone, the 
common use of high-strength steel for cross-bracing will inevitably 

result in minimal cross-sectional dimensions, such that it may 
sometimes even barely be visible from a distance. The trade-off, 
of course, is that this minimum condition needs to be present 
twice; i.e., each diagonal of the X-brace must be designed so as 
to be able to resist the full lateral loading acting on the frame. 
(e.g., Ill. 10.23, 10.24.)

It should be noted that an X-braced system need not necessarily 
be of the “tension-member-only” type. In the end, minimal 
dimensions and material efficiency may not be the only design 
criterion that needs to be paid attention to; for example, there may 
be aesthetic or conceptual reasons that may favor a heavier but 
symmetrical X-bracing system that is celebrated and made visible 
over its minimal tension rod cross-bracing alternative or the inevitably 
directional and asymmetrical aspect of a single diagonal brace.

Yet a further variation of the X-bracing configuration, although 
one which works essentially the same way, is to have two oppositely 
inclined diagonal members but not have them be within the frame 
being stabilized; e.g., the two bracing elements can be placed on 

House R128, Stuttgart
Frame node

Illustration 10.23
R128 House, Stuttgart, Germany (2000).
Steel X-bracing minimizes amount of material needed for 
resisting lateral loads on this exposed site, thus opening 
up the completely glazed house space to maximum views.

Building designer and structural engineer: Werner Sobek.

Illustration 10.24
R128 House.
Connection detail that also highlights strategic cross-
sectional shapes of different steel elements; i.e., hollow 
tube for column in compression, flanged section for 
beams in bending, and thin flat bars for diagonal 
tension elements. Also of note: all element centerlines 
are carefully aligned to intersect at a common point.
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the outside of the frame, one on each side of it. (see Fig. 10.6c). 
This configuration, of course, has the advantage of liberating the 
interior frame for through-circulation or completely open views. 
A potential consequence is that the bracing may now be much 
more visible on the outside of the building enclosure, which may 
be an advantage or disadvantage depending on one’s point of 
view. Examples of this approach can be recognized in structures as 
disparate as guy-cable-stabilized transmission towers and Gothic 
cathedrals with their flying buttresses. The Steilneset Memorial 
designed by architect Peter Zumthor together with artist Louise 
Bourgeois can also be considered as a compelling contemporary 
example of this particular arrangement. (Ill. 10.25.) 

Alternatively, a building designer might wish to have a braced 
frame provided by a so-called “V-brace” or “inverted-V-brace” (see 
Fig. 10.6d,e) – also known as a “chevron” configuration – which 
divides the beam and column rectangular panel opening into three 
triangles (an example of this was seen in the studio spaces of the 
École d’Architecture de Lyon (see Ill. 10.11, 10.12)). If such a frame 

is proportioned appropriately, this arrangement of bracing elements 
may allow for through-passage circulation in the middle, something 
that the X-bracing system is unlikely to be able to provide within 
a typical story height. 

Finally, from considering the stabilization of a single two-
dimensional frame one can apply the same basic principles and 
form options to a three-dimensional multi-bay, multistory framework 
with diagonals strategically placed within the structural system. Given 
the inherent efficiency of the bracing elements, it is certainly not 
necessary from a structural perspective to provide diagonal members 
in each and every bay of the frame on every level, although in some 
instances this approach will indeed be taken, perhaps for uniformity 
of aesthetic reasons. More often, however, the diagonals will be 
much more selectively and strategically distributed throughout 
the overall system, as we saw at the R128 House (see Ill. 10.23) 
and as is evident in a model of the structural system for the Fogo 
Island Inn. (Ill. 10.26.) 

Illustration 10.25
Steilneset Memorial, Vardø, Norway (2011).
Lateral wind loads from any direction on this very exposed site at 
the edge of the Barents Sea are withstood by means of inclined 
wooden struts on both sides of the central frame, thus allowing for 
uninterrupted circulation down the long, fabric-enclosed interior space 
of this memorial. Put on display within this are the stories and artifacts 
associated with 91 people who were accused of witchcraft, tried, and 
then burned roughly 400 years ago. 

Architect: Peter Zumthor Architect and (artist) Louise Bourgeois. Structural 
engineer: Finn-Erik Nilsen/Oslo Metropolitan University. Cornell model by 
Jackie Krosnokutskaya and Kevin Alexander. 

Illustration 10.26
Fogo Island Inn, Newfoundland, Canada (2013).
Organized as an X in plan, building volumes of two and 
four stories intersect and partly share the same footprint; 
building must be stabilized by appropriately positioned 
and oriented cross-bracing within the framework. 
Notably, this bracing does not occupy every bay of the 
structure, as the floors effectively transfer the lateral 
loads to where these can be resisted.

Architect: Saunders Architecture. Structural engineer: DBA 
Consulting Engineers. Cornell model by Natalie Hemlick 
and Vinayak Portonovo.
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Diagrids

Another subgroup of the braced frame, diagrids have proven to be 
an efficient structural form that is quite attractive to architects. (e.g., 
Ill. 10.27, 10.28.) The name diagrid is, of course, an abbreviation 
of “diagonal grids,” which points to its use of many diagonal 
structural elements that are arranged in triangular or lozenge-
shaped patterns (see Fig. 10.6f) and that together share the load-
carrying and stabilizing functions of the X-bracing elements that we 
have just discussed. Diagrids are often (but not always) made out 
of steel so as to minimize the dimensions and visual obstruction 
of the bracing elements; on the other hand, the sharply angled 
geometry at which the many diagonal members meet will typically 
call for careful attention to be paid to connection detailing and 
the construction process. On the other hand, a diagrid has the 
advantage of being able to simultaneously provide resistance both 
to gravity loads and lateral loads; because of this, the system can 
be used to advantage in tall buildings where material savings can 
become substantial in comparison to a conventional rigid or braced 
frame system. (e.g., Ill. 10.29.) Deliberately irregular diagrids can 
also be made to work, such as for the Tod’s Omotesando Building 
(Ill. 10.30), although the members of such a structure will inevitably 
be heavier than they otherwise might be. 

Illustration 10.28
Chocolaterie Menier.
Detail of windows and medallion of tiles depicting the 
cocoa plant as well as highlighting the many intersection 
points of the diagrid bracing.

Illustration 10.27
Chocolaterie Menier, Noisiel-sur-Marne, France (original 
construction 1872, renovated 1996).
Elevation and section of the structural system. A 
wrought iron diagrid (without being helped by the 
brick infill) provides the necessary bracing along one 
direction, while in the building’s cross-section curved 
struts contribute to rigid connections between beams 
and columns, thus establishing rigid frames for stability 
(see Section 10.6). 

Architect: Jules Saulnier. Structural engineer: Logre and 
Sèraphin.



Chapter 10: The Frame and the Shear Wall

349

Illustration 10.29
Hearst Tower, New York City, NY, USA (2004). 
A perimeter diagrid is used for a new tower structure 
rising up from its 1928 base.

Architect: Foster + Partners. Structural engineer: Cantor 
Seinuk Structural Engineers.

Illustration 10.30
Tod’s Omotesando Building, Tokyo, Japan (2004).
Criss-crossing structural “branches” of concrete: stability 
can also be achieved by means of a structural configuration 
where diagonals are more randomly designed and distributed, 
perhaps not forming closed triangles at all, in which case both 
axial forces and bending moments will result.

Architect: Toyo Ito & Associates. Structural engineer: OAK Inc.
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Inclined Columns

Still within the broad category of braced frames, we next consider 
the case of the inclined gravity load-bearing column which, because 
of its sloped aspect, inherently contributes to the overall lateral load 
resistance of a building in which it is placed. In order to understand 
how this is possible, we will imagine the situation of a building 
that is raised up in the air on several columns (see Fig. 10.6g). This 
building volume is to be considered a stiff box; i.e., it is a space that 
is braced within itself according to its own stabilizing structure. This 
means that the building volume has the ability to transfer forces 
vertically and horizontally to the columns that are supporting it, and 
also that as a volume it will not deform significantly no matter how 
loads are applied to it. While it is clear that the support columns 
beneath this building volume can be used to carry the gravity 
loads down to the ground, how can we expect them to provide 
lateral bracing between the level of the raised building and the 
ground without introducing any shear walls, conventionally braced 
frames, or rigid frames?

If we are studying, for the time being, the stability of the building 
as a planar problem, it is obvious that three parallel columns that 
are hinged top and bottom will not offer any stability; i.e., the three 
columns will quite simply rotate over sideways when any lateral load 
is applied at the top. (Fig. 10.8a). If, as we have seen, we arrange 
two of the columns to form an inverted-V with its vertex connected 
to the underside of the building volume, this will in principle provide 
the necessary stiffness to hinder lateral movement since a stable 
triangular form has been created. To prevent the building from 
rotating about the vertex of the inverted-V column pair, however, 
at least one more column is needed which does not intersect with 
the other two. (Fig. 10.8b)

Experimenting a bit further with alternate column configurations, 
we can determine that it is actually not necessary to arrange the 
columns according to triangular geometry. For example, we can 
separate the two columns of the V or inverted-V while still letting 
one column lean to the left and the other lean to the right and 
keeping the third one in an upright position (Fig. 10.8c). If properly 
detailed, this arrangement is fully capable of providing the required 
lateral stability to the columnar support system. In order to explain 
this conclusion, it is necessary to go back to the fact that the box/
building (having its own internal stiffening system) is unable to 
deform significantly. If the building were to move uncontrollably 

sideways, one of the tilted columns would rotate in a way that its 
top would move downward while the other inclined column top 
would move upward; i.e., the building volume would also tend 
to rotate as a whole. But this rotation is not possible because of 
the presence of the third column (unless the latter were to first 
fail by buckling or by excessive tension stress depending on the 
wind direction, but of course that clearly would not be allowed 

Figure 10.8
Resisting lateral loads by tilted, or inclined, columns. (a) If all columns 
are parallel (or intersect), no bracing effect is possible. (b) pair of 
columns in V- or inverted-V-configuration provide lateral stability, but 
a third column is needed to prevent rotation of elevated building 
volume. (c) V- or inverted-V-configuration is “opened” up. 

a)

c)

b)
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to happen). The only way for the box/building to react to lateral 
loads, therefore, is for it to try and rotate/displace as a rigid box – 
but the geometry of the inclined column arrangement will prevent 
that as well, thereby “locking” the building in its original position. 
Perhaps somewhat perplexingly, it can be reasoned that stability 
can also be established for the situation where two columns tilt the 
same way but have different angles to the horizontal plane, while a 
third column has a different inclination yet again or else is vertical.

So at least three columns are required to prevent lateral 
movement in this plane, as well as rotation, while more columns 
will obviously mean increased stiffness and stability. The basic rules 
for their alignments is that the columns should not all intersect, nor 
be parallel. Overall stability of a three-dimensional building may 
indeed call for inclined columns in yet other directions. (e.g., Ill. 
10.31.) Despite this seeming freedom of arrangement, however, 
we should be aware of the fact that providing lateral stability by 
means of inclining the columns means introducing more compression 
forces into certain columns than are necessary to carry only the 
vertical loads, the result of which will be thicker columns than were 
originally needed. Lateral stiffness does not come for free.

To conclude this discussion about the range of braced frame 
configurations and their implications, it can be observed somewhat 
paradoxically that this lateral-load-resisting subsystem is at once 
physically minimalistic (in the sense that members are efficiently 
designed for axial loads alone, and so can be of the smallest possible 
cross-sectional dimension) and yet it is a subsystem which is also 
highly visually expressive. Its selection for being included in the 
design of an overall building structural system, therefore, clearly 
needs to be carefully considered and thought through. Of course, 
there are certain well-known examples for which this has successfully 
been done; e.g., the Eiffel Tower, which from an overall perspective 
is nothing but a braced frame that has been both elegantly and 
strategically shaped to be like the bending moment diagram that 
is needed to resist the lateral loads acting on it. (Ill.10.32.)

Illustration 10.31
Sharp Center for Design, Ontario College of Art and Design, 
Toronto, Canada (2004).
Inclined columns lift a two-story volume of space above a 
preexisting building; they not only carry gravity loads but 
also effectively provide bracing for its lateral stability in all 
directions.

Architect: Will Alsop of Alsop Architects. Structural engineer: 
Carruthers & Wallace Ltd.

Illustration 10.32
Eiffel Tower, Paris, France (1889).
Silhouette against sunrise highlights truss/braced frame qualities of tower 
structure, with distinct axial elements spaced apart, and overall form 
mimicking that of bending moment diagram for vertical cantilever.

Designer and structural engineer: Gustave Eiffel.
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10.6	Rigid Frames – Basic Behavior 

We now come to the third of the three general types of lateral-load-
resisting subsystems: rigid frames. For the two alternatives that we 
have looked at so far in this chapter, namely shear walls and braced 
frames, we had studied corresponding structural behaviors and 
their implications in previous chapters – i.e., flexural cantilevers and 
trusses, respectively – and so we could apply that knowledge directly, 
even if in a different context, and move on from there. But that is 
not possible for the rigid frame. In Chapter 2 and Section 10.2 we 
generally described the defining and essential characteristics of this 
system, namely, that there are rigid connections (otherwise known 
as fixed, or moment-resistant or, for short, moment connections) 
between columns and beams, and that the consequence of this 
condition is that it is primarily the bending response of both the 
columns and beams of the frame that gives this system its stiffness, 
or certainly that contributes to it in a very significant way. There is no 
directly corresponding structural behavior that we have studied in 
detail in this book so far, and so we need to take a closer analytical 
look at the underpinnings of these statements in order to better 
understand just how the rigid frame behaves in response to loading 
and thereby be able to appreciate and apply its design possibilities 
in various situations. 

Rigid Connections

In order to be able to establish flexural continuity between members, 
what we are calling rigid connections need to be present in this 
type of frame. But just what is meant by “continuity” in this context 
of beam-to-column connections? 

This condition can, for example, be observed by looking at a 
macabre gallows structure, in which the simple form consists of a 
single upright supporting a horizontally projecting element from 
which a rope is hung. (Fig. 10.9.) Clearly, the horizontal portion 
of the structure cannot simply rest on the column, for in that case 
even the smallest vertical load (even its own self-weight) would 
cause the beam to rotate and fall against the column. To prevent 
this from happening, a strut is provided that connects the two 
elements, keeping the beam from rotating about its support point. 
It is much the same with a large branch jutting out sideways from 
the trunk of a tree (Ill. 10.33): for the branch to be able to carry 
load, its connection to the tree trunk must be such that a rotation 
at the base of the branch will be matched by an equal rotation of 
the trunk at that location, something that will happen in the case 
of the tree because of the internal overlapping of a multitude of 
long wood fiber cells in the natural “construction” of this joint.

In building construction, the analogous moment connections 
between beams and columns are a matter of careful detailing 
according to the material that is being used. Some examples are 
shown in the bottom row of Figure 10.10 for steel, concrete, and 
wood. Corresponding examples of pinned connections using the 

Illustration 10.33
Branch firmly fixed to the tree trunk, assuring flexural continuity 
between the two elements. The gradual thickening of the 
cantilevering branch as it approaches the trunk reflects the bending 
moment diagram, and this happens “naturally.”

Figure 10.9
Gallows, displaying continuity between post 
and beam provided by the inclined strut 
which is attached to both elements.
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same materials are shown in the top row of this figure in order to 
contrast the differences in behavior and the physical resolution 
of the details, which are in some cases quite subtle and in others 
highly different. We have already seen several examples of such 
rigid connections earlier in this book, and we will consider a few 
more cases now so as to better understand such joints’ specific 
detailing and ways of working to transmit forces and moments.

A way to stabilize a frame in timber construction that was quite 
common historically was to insert a short diagonal strut between 
the column and the beam member a small distance out from where 
they meet, similarly to the gallows structure just discussed. (e.g., 
see Ill. 5.1, see also Ill. 10.58.) This strut forms a stable triangular 
shape in the corner of the frame, effectively locking together the 
alignments of the ends of the two members in such a way that a 
rotation of one will be transmitted to the other. This strategy of 
the so-called knee-brace in the corners of the timber frame is still 
employed at times today (e.g., see Ill. 10.51), although a less-visible 
and more common technique whereby all necessary force and 
moment transmissions take place roughly within the dimensions 
of the joint is also possible using specially detailed bolted-through 
steel connection plates whose inherent in-plane material stiffness 
effectively “splices” the two wood components together. This can 
be clearly seen at the Greenwich Academy Upper School (Ill. 10.4) as 
well as at the corner of the timber frame located on the auditorium 
stage of the Hedmark Museum. (Ill. 10.34, see also Ill. 10.1.) 

Figure 10.10
Diagram depicting the statical conditions for pinned and rigid 
beam/column connections, and schematic solutions in steel, 
RC, and wood.

Derived from Illustration 9.23 of Structures, 6th ed.; original 
permission courtesy of Daniel Schodek.

Illustration 10.34
Storhamarlåven, Hedmark Museum, Hamar, Norway (1974). 
Rigid connections in wood frame by help of inserted triangular steel 
plates and bolts.

Architect: Sverre Fehn. Structural engineer: Terje Orlien.
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For steel rigid frames, full rigidity in the connection is typically 
achieved by specifically detailed bolted or welded connections. 
Explicit care must be taken to design the joint so that it is able 
to resist and transmit all axial forces, shear forces, and bending 
moments from the end of one structural element to the other. The 
strategy for how to accomplish this is to make sure that both of 
the outer parts of the cross-sections of the connected elements 
are firmly attached together, and for steel sections this typically 
means that the flanges of the columns and beams are directly 
connected to each other. This type of connection will allow a force 
couple to develop within the connection, which means that both 
compression and tension forces in the flanges can be transmitted 

and that they have a certain distance between them that provides 
the necessary lever arm to produce bending moment. Connecting 
steel sections along their web will also provide for the necessary 
transmission of shear forces. The corners of the frames at the Casa 
El Mirador seen earlier (Ill. 10.9) and that used for lifting open the 
glass front wall for the adaptive reuse renovation project at the 
242 State Street Art Gallery (Ill. 10.35, 10.36) are clear examples 
of this type of steel rigid connection.

For reinforced concrete rigid frames, establishing continuity 
through the joint can relatively easily be done by ensuring that 
longitudinal reinforcing bars at the top and bottom of beams and 
vertical bars at the corners of columns are allowed to run through 

Illustration 10.35
Art Gallery, 242 State Street, Los 
Altos, CA, USA (2014).
Steel rigid frame used for the 
mechanical opening of the front 
of a renovated art gallery space; 
also acts as its iconic “signpost.” 

Architect: Olson Kundig. 

Illustration 10.36
242 State Street Art Gallery.
Flanges and webs of column and 
beam elements are all welded 
together, enabling full transfer of 
bending moments, shear forces, 
and axial forces. 
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the connection, or else are properly anchored into it. (e.g., Ill. 10.37, 
10.38.) In that sense, as long as it is properly detailed, reinforced 
concrete construction is inherently of the rigid frame type; i.e., by 
building in reinforced concrete one almost “automatically” obtains 
this type of lateral-force-resisting subsystem without too much 
additional effort or significant expense or visual consequence. A 
contrasting situation made of similar material helps to make this 
point: a frame composed of precast concrete elements, with its 
kit-of-parts assembly, does not provide for the same rigidity through 
its discontinuous connections – unless the assembly is ultimately 
post-tensioned together.

Equilibrium Basics 

Moment connections between the columns and beams of a rigid 
frame inevitably lead to its members being subject to flexural 
deformations when such a structure is loaded, with the result that 
bending moments and shear forces typically occur everywhere 
throughout the frame in both its constituent columns and beams 
(in addition to axial forces, typically). We will see, for example, 
that a single vertical point load acting on the beam element of a 
frame will produce bending moments in the beam as well as in the 
columns, and that a lateral load acting at the top of a frame will 
result in bending moments in the columns as well as in the beam. 

Illustration 10.38
Nida House.
Reinforcing bars embedded within the concrete enable moment 
continuity between the beam and column elements, but are 
hidden from view in the end.

Illustration 10.37
Nida House, Navidad, Chile (2015).
Reinforced concrete rigid frame is at the essence of this house design. 
Increasing width of floor plates with height above ground leads to 
columns being offset in plan from a strict conventional layout.

Architect: Pezo von Ellrichshausen. Structural engineer: Luis Mendieta. 
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But this is getting ahead of ourselves; in order to understand how 
all this happens, we fi rst need to go back to equilibrium basics.

We begin with what we can recognize as a proto-typical rigid 
frame consisting of two columns supported at their bases at the 
ground and with a beam connecting them across the top. Clearly 
a situation that would have hinges at all four corners of the frame 
results in a structure that is not stable. (Fig. 10.11.) 

But the frame can in fact be made to stand on its own if it has 
a certain minimum number of its connection points that are made 
rigid/moment-resistant. A relatively simple case to consider is one 
whereby the columns of the frame are fi xed at their bases but 
both beam-to-column connections are hinged. (Fig. 10.12.) Here 
the fi xed-base columns are the only means of providing lateral 

stability to the frame and these must act as two independent 
vertical cantilevers, each resisting half of the total lateral loading. 
Of course, one can take this a step further and still have stability 
with only one of the columns being fi xed at its base. (We have 
already studied the details of the structural behavior of cantilevers 
in Chapter 7 – as well as earlier in this chapter in the context 
of vertical shear walls – and so we can simply apply here what 
we have learned before.) In either of these fi xed-base-column 
situations, everything as far as lateral stability is concerned depends 
on the bending stiffness of the cantilevering column(s), with no 
benefi t whatsoever derived from the confi guration of the rest 
of the structure. Shear and bending moment diagrams for the 
columns can be established from simple statics and, accordingly, 
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figure 10.11
A frame with four pinned connections is unstable.

figure 10.12
Frame with columns having fi xed bases but with pinned beam-to-column connections – 
and corresponding bending moment, shear force, and axial force diagrams. The frame 
can similarly be stabilized with only one column having a fi xed base, but structural 
demand on this column from the lateral load will then be twice as large.
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a tapering profi le for the columns would make sense, i.e., widest 
at the base and diminishing progressively toward the top. (A tree 
trunk profi le comes to mind, for example, something that is clearly 
not a natural accident.) But a constant-width column is, of course, 
also possible, as long as it is sized for the maximum forces and 
bending moments at the base.

Now let us go to the condition in which the two base supports 
as well as the two beam-to-column connections are of the fi xed/
rigid variety. (Fig. 10.13a.) We know from our study of statics and 
overall equilibrium in Chapter 4 that this structure has three unknown 
reactions at each column base: horizontal and vertical force reactions 
and a moment. There are thus six unknown support reactions 
for the frame structure as a whole but only three equations of 
equilibrium with which to solve for them, and so we have a structure 
which is three times indeterminate. There are well-established 
special methods to determine these unknowns (by hand and also 
by means of the computer), but we will present here only one 
method of rigid frame analysis – one that directly uses basic statics 
and equilibrium considerations – since such an approach helps to 
visualize fundamental concepts about the interconnected workings 
of the rigid frame system.

We will proceed by considering yet another special case of the 
rigid frame, one for which we provide a certain strategic number 
of “moment releases” since, as we have already seen, a frame 
can still be stable even if some of its connections are pinned while 
others are rigid. In fact, the maximum number of hinges in order 
for this to be the case is three, and since a planar three-hinged 
frame is statically determinate (the original six unknowns we were 
just confronting gets reduced to three by means of the moment 
releases at the hinges), we know that for such a structure we can 
relatively simply calculate its support reactions and internal forces 
and moments by typical hand methods using the relevant three 
equations for equilibrium. The three hinges may be located at 
the two column bases plus one at mid-span of the beam, for 
example; the two remaining connections in the frame must be 
rigid in order for the structure to remain standing up. (Fig. 10.13d.) 
Such a particular confi guration of the frame is named a portal 
frame. If fewer than these three hinges are provided the structure 
is statically indeterminate – which is still possible, of course, and 
is quite common in real-life construction – but the method of 
analyzing such a structure becomes more complex than that which 
will be presented here. 

b)

a)

c)

d)

figure 10.13
Frames with different numbers of hinges and, 
thus, different degrees of indeterminacy. (a) no 
hinges, three degrees; (b) two hinges, one degree; 
(c) and (d) three hinges, zero degree or statically 
determinate. 
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Analysis of Forces and Moments

We will now analyze closely the three-hinged portal frame having 
pinned supports at the column bases and a hinge at mid-span of 
the beam and which is acted upon by a lateral load P acting at the 
top of the frame from left to right.4 (Fig. 10.14.) A study of how 
the frame can be anticipated to deform under load – this can be 
reassuringly recreated using a flexible physical model – is revealing: 
the beam/column connection to the left tends to open up, but is 
restrained from doing so by the continuity of the connection. This 
results in bending (and, therefore, bending moments) in both the 
column and the beam, with tension stresses on the inside of both 
elements in the vicinity of the corner. At the same time, according to 
the anticipated deformed-shape diagram, the right-hand connection 
experiences the opposite: here, the joint angle tries to close and 
the bending moments produce tension stresses on the outside. 
Also, the sideways deformation of the columns clearly indicates the 
direction of the necessary horizontal forces at the supports, acting 
on the columns’ lower ends. Those can be seen to also represent 
the shear forces in the columns.

In order to calculate the magnitude of the moments and the 
forces within the frame itself, we start by finding the base support 
reactions. Applying the equilibrium equation which expresses the 
rotational equilibrium of the frame as a whole about support B, 
ΣMB = 0, yields

+ Ph – Ay L = 0
Ay = Ph/L

where h = the height of the frame, L = the span, and a direction 
is assumed for Ay, which is the vertical support force acting on the 
column. We guessed that it would be a downward force and we 
were right: the treatment of the equilibrium equation resulted in a 
positive value for the axial end force, which means that the direction 
of Ay is downward as anticipated and the column is subjected to 
tension. In accordance with Newton’s third law the vertical force 
from the column acting on the base connection at support A has an 
upward direction, indicating that the foundation must be prevented 
from uplift.

To maintain vertical equilibrium of the frame, By must be of equal 
magnitude to Ay but acting in the opposite direction:

By = Ph/L

To find the horizontal support reactions it is convenient to demand 
rotational equilibrium of the left half of the frame about the mid-
span hinge C, ΣMC = 0. (Fig. 10.15.) Ax is assumed to be directed 
to the left, and therefore produces a positive moment about point 
C (clockwise rotation). This yields:

+Axh – (Ay) × (L/2) = 0
+Axh – (Ph/L) × (L/2) = 0
+Axh = Ph/2
Ax = P/2

Requiring horizontal equilibrium of external loads and forces 
for the frame as a whole, ΣFx = 0, means that

Ax

Ay

h

Cy

Cx

P

Figure 10.14
Three-hinge frame with lateral load P at the top. 
Resulting deformations and reaction forces.

Figure 10.15
Free-body diagram of the left 
half of the frame.



Chapter 10: The Frame and the Shear Wall

359

+P – Ax – Bx = 0
+P – P/2 – Bx = 0
Bx = P/2

All external reactions are now found. Since no other loads act 
transversely along the columns, a check of horizontal equilibrium at 
any cross-section in these will show that the shear force V remains 
constant at V = P/2 throughout their height. Since the tendency of 
both horizontal reactions that produce shear forces in the columns 
is to rotate the elements they act on clockwise, the shear forces 
in both columns are defined as positive. A check of the vertical 
equilibrium of the columns will reveal that the left column has a 
constant axial tension force N which is N = Ay = Ph/L, while the right 
column has an axial compression force of the same magnitude.

What about the forces in the beam? A study of the free-body 
diagram of the left half of the frame (see Fig. 10.15) makes us 
anticipate a horizontal force Cx and a vertical force Cy at the hinge 
C. Requiring horizontal equilibrium of this half leads to

+P – Ax – Cx = 0
+P – P/2 – Cx = 0
Cx = P/2

The direction of the force is such that it produces an axial 
compression force in the beam. A check of internal horizontal 
equilibrium of this portion of the beam satisfies us that the 
compression force is constant along its length. At the same time, 
the oppositely directed reaction force to Cx produces compression 
force of the same magnitude in the other half of the beam.

Now for the beam’s shear force: vertical equilibrium of one half 
of the frame yields

+Cy – Ay = 0
Cy = Ay = Ph/L

with Cy having an upward direction. If we study a cross-section 
somewhere along the length of the left half of the beam, we will 
find that equilibrium demands that there is an internal shear force 
V of constant magnitude throughout the length of this portion. 
(Fig. 10.16.) It is always directed downward, tending to rotate the 
element in question counterclockwise; the shear force is, therefore, 
assigned to be negative. Again, the reaction force to Cy acts in the 
opposite direction on the other half of the beam and also tends to 
rotate this part counterclockwise, resulting in a negative sign also 
for the shear force in this part of the beam.

At this point, only the bending moments remain to be determined. 
Demanding rotational equilibrium of the left column about the 
beam/column joint (Fig. 10.17) gives us the equation

–MJ + Ax × h = 0
–MJ + P/2 × h = 0
MJ = Ph/2

where MJ = the internal bending moment in the column at the 
joint. This moment increases linearly from zero at the pinned base 
support, and it produces tension on the inside of the column. Since 
rigid frames are characterized by continuity at the joints, we can 
conclude that a bending moment of the same magnitude is acting 

Figure 10.16
Free-body diagram of a portion of the beam. 
Shear force shown.

Figure 10.17
Free-body diagram of the left column. 
Bending moment shown.



Chapter 10: The Frame and the Shear Wall

360

at the corresponding end of the beam, and that this becomes zero 
at the mid-beam hinge. (Fig. 10.18.) To check on this assumption 
we require rotational equilibrium of the relevant portion of the 
beam about the joint, and find that

+MJ – Cy × L/2 = 0
+MJ – Ph/L × L/2 = 0
MJ = Ph/2

which is what we had previously predicted would be needed 
to balance the moment in the column. The bending moment 
in the beam produces tension force on the underside of the 
beam in this left-hand half of the frame. Finally, a similar check 
of the right column and the portion of the beam to the right will 
reveal bending moments of the same magnitude, but in this 
case producing tension on the outside of the column and on the 
upper face of the beam.

From the results of these calculations, we are now able to draw 
the bending moment, shear force, and axial force diagrams for 
this three-hinged portal frame. These are presented across the 
top row of the table in Figure 10.20. We could also determine 
bending moments, shear forces, and axial forces in this frame when 
supporting a uniformly distributed load (UDL) along the beam; 
this is done in much the same manner, always applying the three 
equilibrium equations in different situations. If both the lateral point 
load and the gravity UDL act at the same time on the frame, the 
resulting moments and forces will be obtained by simply adding 
together their respective diagrams according to the principle of 
superposition.

In the case of frames having two fixed supports (and no hinges) 
the frame is strictly speaking statically indeterminate with six unknown 
reactions, as we’ve previously described. A simplified way of dealing 
with this situation is to recognize the anticipated deformation 
resulting from such a frame being subjected to loading.5 If a lateral 
load P acts on this frame, the columns will deform in such a way that 

their curvature will be reversed at mid-height (whereas they were 
only singly curved from bottom to top in the preceding case), while 
the beam will also reverse its deformation curvature at mid-span 
(which is the same as before). (Fig. 10.19.) The points at which the 
member curvatures are reversed are called points of inflection; these 
are also, therefore, the locations where the direction of the bending 
moments change. As a result, at these locations tension changes 
to compression or vice versa on the internal and external faces of 
the members. At the very place where the change takes place, the 
bending moment must be zero, and we can thus assume effective 
hinges at these locations. This conveniently means that we can make 
the assumption that the frame is effectively statically determinate, 
since three additional equilibrium equations are created (ΣM = 0 
about each of the effective hinges) that together with the three 
basic equilibrium equations (ΣM = 0, ΣFx = 0, ΣFy = 0) applied to 
the frame as a whole makes a total of six equations, which would 
enable us to solve for the six unknown reactions. 

We could obviously carry on in this way as well as by other 
methods of analysis for rigid frames having various combinations 
of hinge points as well as for frames without any hinges at all, 
and the table in Figure 10.20 summarizes the results of this in the 
form of corresponding bending moment, shear force, and axial 
force diagrams. 

MJ

Cy

Cx

Figure 10.18
Free-body diagram of the left half of the beam. 
Bending moment shown.

Figure 10.19
The rigid frame with two fixed supports. 
Anticipated deformation suggests that this behaves as if having three 
hinges – located at mid-heights and mid-span of columns and beam, 
respectively. The associated bending moment, shear, and axial force 
diagrams for the top portion of the frame are therefore similar to 
diagrams applying to true three-hinge portal frames with hinges at 
the same locations.

facing page

Figure 10.20
A number of portal frames and rigid frames with lateral load 
and gravity load applied, and with their corresponding bending 
moment, shear force, and axial force diagrams. 
Note the comparison of the stiffness of the different frames, given 
by a relative number for sideways deflection. These numbers apply 
for frames where height h equals span L, and where all elements 
have the same cross-sectional properties and material properties. 
(c = compression; t = tension)
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The relative differences in the lateral deflections of the various 
rigid frames given in Figure 10.20 should also be noted: for example, 
the frame with only one rigid connection deflects considerably more 
than do either of the pin-supported frames having two rigid joints; 
almost three times as much, in fact. Also to be noticed: the amount 
of deformation is exactly the same for the first and third frame 
configurations in Figure 10.20, suggesting that despite seeming 
differences these two frames are effectively the same for this load 
condition. In the two-hinged frame (the third frame configuration), 
there is zero bending moment in the beam at its mid-point, reflecting 
a so-called inflection point where moments shift direction and sign. 
Again, this means that this inflection point effectively acts as a hinge 
and that this two-hinged frame behaves in a similar fashion to its 
three-hinged counterpart (the first frame configuration) – for this 
load condition, at least. One more observation about the lateral 
deflections: the rigid frame having two fixed supports deflects 
considerably less, merely one-fifth, in fact, of the amount of the 
two previously mentioned frames; i.e., the fixed support frame 
is obviously a considerably stiffer configuration with respect to 
lateral sidesway.

10.7	R igid Frames – Form Variations

As we have seen for all other basic structural elements or subsystems, 
there are many ways in which to vary the formal expression of rigid 
frames in order to suit various loading and spanning requirements, 
but also according to myriad possible design intentions – whether 
these be conceptual, spatial, visual, etc. In the next few pages we 
will briefly address some of these possibilities, which can either be 
exploited or not as the case may be and as suited to design intentions.

Bending Moment Variations

The consequences of the force and moment diagrams in terms of 
what they can tell us about the potential shaping of rigid frames are 
quite powerful, especially concerning the latter – i.e., the moment 
diagrams – just as was the case for beams as we saw in Chapter 
7. For example, for an efficient use of materials the dimensions 
of a rigid frame’s columns and beams may, to a certain extent, at 
least, reflect the variations of the bending moment diagram, while 
their capacities also need to be checked for the shear and axial 
forces. (e.g., Ill. 10.39, 10.40, 10.41). The rigid frames’ moment 

Illustration 10.39
Multipurpose Hall, Alvaschagn, Switzerland (1991).
Series of timber frames resist gravity and lateral loads, but also provide 
necessary openness for use of multipurpose space. Rigidity of top 
corner connection between beam and column elements is evident, 
while tapering of column suggests a pin connection at the base.

Architect: Bearth & Deplazes. Structural engineer: Conzett, Bronzini, 
Gartmann AG.

Illustration 10.40
Multipurpose Hall.
Stiffened timber plates overlap at the corners of the frames, ensuring the 
necessary rigid connection between beam and column elements.
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Illustration 10.41
Unité d’Habitation, Marseille, France 
(1952).
Series of concrete rigid frames literally 
lift the base of the apartment block up 
off the ground. Columns of the frame 
vary in width, maximum at beam-column 
connection where bending moment is 
greatest, and minimum at their base, 
approximating a hinged condition there 
and also furthering the visual effect of the 
building’s disengagement from the ground. 
Hidden pairs of concrete beams of large 
constant depth complete the transverse 
rigid frames.

Architect: Le Corbusier. Structural engineer: 
Vladimir Bodiansky.

Illustration 10.42
Buchholtz Sports Hall, Uster, 
Switzerland (1998).
Single-story, single-bay steel rigid 
frames are repeated every so often 
along linear axis to give one large 
occupiable space for playing/
watching sporting events.

Architect: Camenzind Evolution. 
Structural engineer: Geilinger 
Stahlbau. 

Illustration 10.43
Buchholtz Sports Hall.
Variations in the width of the column and 
depth of the beam reflect the bending 
moment diagrams, with maximum at the 
beam–column connection and minimum 
at the hinge locations at the column 
base and part-way along the beam span. 
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connections are in most cases quite heavily stressed as a result of 
large bending moments in the corners of the frames. This suggests 
the possibility of having larger structural dimensions for the frame 
at these locations, a configuration that we can readily observe 
in some rigid frames. (e.g., Ill. 10.42, 10.43.) That being said, it 
should also be pointed out that it is not usually possible for the 
form of a frame to truly follow a single bending moment diagram, 
as there will certainly be multiple load conditions to which a frame 
will be subjected over time, and these will result in ever-changing 
combinations of diagrams and stress conditions. Clearly, member 
dimensions cannot constantly be changing from one minute to the 
next, so the shape of the frame may instead reflect the bending 
moment diagram for the dominant load condition, presuming that 
other load conditions are also checked and found not to produce 
even larger bending moments at any cross-section along the frame. 

There may, on the other hand, be aesthetic design or conceptual 
or even practical reasons for the member dimensions of a frame to 
be uniform, in which case the cross-section that is needed wherever 
there is maximum combined-force-and-moment demand is kept 
throughout, even though this is conceptually “wasteful” in terms of 
purely efficient usage of material. (e.g., see Ill. 10.9, Ill. 10.37, and 
Ill. 10.38, although in the latter case there will in fact be variations 
in the number and size of the hidden reinforcing bars within the 
constant dimensions of the concrete frames’ columns and beams.) 

Such differing approaches to the shaping (or non-shaping) of 
rigid frame members in relation to bending moment diagrams 
brings to mind a similar discussion that we had in Chapter 7 when 

we considered the design possibilities for the profiles of beams, 
which serves here to further emphasize the relative importance of 
flexure for this particular type of lateral-load-resisting subsystem. 

Beam/Column Stiffness Variations

Rigid frames depend, as we have seen, on both column and beam 
elements contributing to the overall load-resisting mechanism, and it 
therefore becomes relevant to discuss the importance of the relative 
magnitudes of beam-to-column stiffnesses. In the most general 
cases, we have seen that these frames are statically indeterminate 
and the magnitude of the internal forces and moments is then 
dependent on the relative proportions of their members; i.e., stiffer 
members will do “more work,” which in this case effectively means 
that they will “attract” larger bending moments. For example, in 
Figure 10.21 we examine the case of a pin-supported rigid frame: 
in case (a) the frame has a very large and stiff beam interacting 
with thin, flexible columns. When a uniformly distributed gravity 
load acts on the beam it will deflect substantially, as the flexible 
columns will not be able to offer significant restraint to the ends 
of the beam. The beam will experience bending moments which 
will be virtually the same as those of a simply supported beam, 
with large moments at mid-span. (e.g., Ill. 10.44, 10.45.) In case 
(b) the proportions of beam-to-column relative stiffness are more 
balanced. The columns’ bending resistance will provide partial 
restraint to the ends of the beam, and the elements will share 

a)

b)

c)

Figure 10.21
The importance of relative beam-to-column flexural stiffnesses for statically indeterminate rigid 
frames: i.e., stiffer members “attract” larger bending moments. If the relative stiffnesses change 
between beam and columns, then so does the bending moment distribution in the frame.
(a) represents the case of strong beam + weak column, (b) balanced beam-to-column stiffnesses, (c) 
weak beam + strong columns.
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Illustration 10.44
Crown Hall, Illinois Institute of Technology, Chicago, IL, USA (1952).
Erecting of the main structure. In spite of the great difference between the depth of the beam and 
column, the bending moments in the two elements at this rigid connection must always be the 
same for equilibrium of the joint. Clearly the aesthetics of having a constant depth beam across the 
full width of the building came into play in this design, as well as the desire to have these beams’ 
presence noticed from ground level.

Architect: Ludwig Mies van der Rohe. Structural engineer: Frank J. Kornacker.

Illustration 10.45
IIT’s Crown Hall.
Series of parallel frames’ deep plate-girder beams are left exposed above the roof and 
span clear over the building’s architecture studio space. These beams have also served as a 
distinguishing aspect for this iconic building.
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between them the moments needed to carry the load. In the 
third case (c), the beam is quite flexible whereas the columns are 
disproportionately stiff, offering almost full restraint to the ends of 
the beam. The result is that the bending moment in the beam is 
significantly reduced at mid-span while the moments at the beam 
ends are quite large, resembling the condition of a beam that is 
fully fixed at both ends.

Trussed Frame Variations 

Within this general discussion about potential variations of the 
rigid frame, we can also consider different kinds of structural 
elements and how these can be used for the column and beam 
components. Because both of these elements need to be designed 
to be able to resist bending moments (as well as shear forces 
and axial forces) an effective member type to consider aside 
from that having a strategically oriented rectangular or I-shaped 
sectional profile is the truss, since these even more efficiently 
distribute materials so as to maximize the moment of inertia of 
the member and, therefore, increase its bending capacity, as we 

saw in Chapter 9. (e.g., Ill. 10.46, Ill. 10.47, 10.48.) Trussed frames 
are, therefore, quite advantageous, although the problem of 
designing the corresponding rigid “beam-to-column” connection 
while maintaining an ordered and pleasing look, given the many 
lines of intersecting truss members, has challenged and fascinated 
many architects over the years.

Aesthetic complications aside, providing effectively fixed 
conditions at the corner connections of trussed rigid frames can 
be achieved relatively simply. In terms of overall dimensions, trusses 
have significant depth, and so connections that are effectively rigid 
can be achieved by connecting the outer chords of the intersecting 
“column” and “beam” trussed elements. It is sufficient in such cases 
that each local connection is simply able to transmit axial forces; 
as with the truss itself, the spatial quality of the overall connection 
will allow couples of axial forces that are at some distance from 
each other to produce the required bending moment that needs 
to be transmitted, while shear will typically be carried by diagonal 
members within the connection. Given this rationale, then, what 
may at first seem to be a somewhat surprising use of trusses for 
both the beam and column elements of a rigid frame becomes 
quite logical – indeed, highly strategic.

Illustration 10.46
Picture Window House, Shizuoka, Japan (2001).
Overall rigid frame is created by the combination of trussed vertical end supports and the long-
span truss contained within the enclosed living space of this house. Together these create a 
framed “picture window” terrace from which to enjoy the views and breezes of the Pacific Ocean.

Architect: Shigeru Ban Architects.
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Illustration 10.47
Picture Window House.
Axon drawing highlights house’s trussed rigid frame structural system; 
diagonal bracing changes orientation at mid-span in order to be in 
tension for predominant gravity load condition.

Illustration 10.48
Beijing National Stadium (The Bird’s Nest), Beijing, China (2008). 
Intersecting ribs of trussed steel frames regularly structure a three-dimensional ring 
around the perimeter of this stadium. Note the variation of the in-plane depth of 
each individual trussed frame, reflecting changing bending moment demands; e.g., 
maximum at the top corner and tapering to a minimum at the base. Alignments of 
secondary supporting elements between these ribs is much more haphazard, giving the 
whole its “ bird’s nest” character; not shown here, but obvious in the finished stadium. 

Architect: Herzog & de Meuron. Structural engineer: Arup.
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Slab Frame Variations

One can also go to the other end of the spectrum of such visual 
expressiveness and structural efficiency, however. Indeed, it may 
seem completely unexpected that rigid frames are possible – 
moreover, quite common – in reinforced concrete buildings in which 
no beams are even seen to be present; i.e., where only slabs span 
the space between columns in what is called the flat plate condition 
that we discussed previously in Section 7.12. But as we saw there, 
significant widths (or “strips”) of these slabs – much wider than 
the columns – can effectively act as “beam” elements by having 
relatively heavy sets of reinforcing bars distributed across them in 

order to deal with the bending moments and so compensate for 
the lack of depth of this critical element in the frame. These sets 
of reinforcing bars are strategically placed toward the top and 
bottom of the slab thickness according to the anticipated flexural 
deformations of a rigid frame that are produced in response to 
gravity and lateral loading. What is more, this is typically done in 
both orthogonal directions within a slab depth in order to have 
not only gravity but also lateral-load-resistance capability in any 
direction. Much strategic forethought is thus hidden away within 
the depth of a seemingly “banal” reinforced concrete flat slab. 
(e.g., Ill. 10.49, 10.50.) 

Illustration 10.49
Maryhill Overlook, Goldendale, WA, USA (1998).
Post-tensioned concrete slab is repeatedly folded into concrete walls, thereby creating multiple 
rigid frames and unexpectedly unifying its “column” and “beam” component elements. 

Architect: Allied Works Architecture. Structural engineer: Architectural Concrete Associates.

Illustration 10.50
Maryhill Overlook.
Secondary alignments of cuts and 
folds create viewing axes and 
benches in this structure/sculpture 
located on a high bluff overlooking 
the Columbia River; its overall 
alignment points to a flat-topped 
stone promontory across the 
gorge.
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Trapezoidal Frame Variations

Aside from changing the configuration of the beam and column 
components that make up a rigid frame – whether, as we have 
seen, according to bending moment diagram variations or deciding 
whether to use beams or trusses or slabs – there are yet further 
possibilities for changing the “look” of a rigid frame. For example, 
we may be used to thinking about rigid frames as orthogonal 
arrangements of straight, vertical columns and flat, horizontal beams, 

Figure 10.22
Variants of rigid frame forms, which are not 
necessarily rectangular and symmetrical.

Illustration 10.51
FLAMME-Iga Complex, Iga, Japan (2006).
Rigid frames may also be given a trapezoidal form. One 
consequence of designing tilted columns to achieve 
a trapezoidally shaped frame is that its lateral stiffness 
increases. Compared to a similar frame with vertical 
columns, the trapezoidal frame deflects less laterally.

Architect: Ryuichi Sasaki + Junpei Kiz + Tetsuo Kobori/
Phiframe. Structural engineer: Rhythm Design.
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but this need not be the case. Beam and column elements may 
indeed meet at various angles, but as long as the resulting trapezoidal 
configuration makes up a rigid entity as we have discussed it so 
far, we can consider such a structure to be a rigid frame and treat 
it as such. (Fig. 10.22, e.g., Ill. 10.51 and Ill. 10.52.) 

Curved Frame Variations

Indeed, the geometry of a frame may even follow a curved line 
without the typical kinks that we commonly associate with the 
connections between columns and beams and this can still be 
described as behaving overall in a rigid frame fashion. (e.g., Ill. 10.53, 
10.54.) At some point, it may seem that the threshold between 
a curved structural element such as an arch (Chapter 12) and a 
curved frame becomes ambiguous, but in the end the distinction 
is a question of how the structure supports the loads. For example, 

Illustration 10.52
Equestrian Center, Valle de Bravo, Mexico (2012).
Two-hinged, trussed timber rigid frame with pitched roof. 

Architect: CC Arquitectos. 

Illustration 10.53
“AURA-S” (2008) in Villa Foscari (“La 
Malcontenta”), near Venice, Italy.
This installation takes the “harmonic 
proportions” developed by Palladio – and 
employed in the design of Villa Foscari 
– and manifests them as wave forms 
representing musical intervals.

Sculptural installation by Zaha Hadid and Patrik 
Schumacher.
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contrary to what we will find with the arch, structural frames carry 
symmetrical gravity loads primarily by bending and shear action of 
their members, whereas this is accomplished largely by means of 
axial compression in arches, at least for those that can comfortably 
answer to that name. Yet, asymmetrical gravity loads and lateral 
loads will still produce significant bending moments and shear 
forces in both frames and arches, so that this load condition will not 
necessarily help us make the distinction between these structural 
types. Nonetheless, a distinction remains; the question of naming 
things correctly here is not so much about geometric form as it is 
about primary structural behavior.

Illustration 10.54
Water Pavilion, Neeltje Jans Island, Netherlands (1997).
Set of curved steel moment-resistant frames define constantly 
changing external form and interior space of this pavilion, which 
puts on display various water technologies.

Architect: NOX/Lars Spuybruk. Structural engineer: 
Ingenieursbureau Zonneveld. Model: Nathan C. Friedman.
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Multi-bay, Multistory, Mega-scale Frame Variations

Finally, although we have mostly focused here on single-bay, single-
story frames, it should be borne in mind that the rigid frame can 
in fact be and often is multiplied and configured to work in many 
different ways – including as multistory, multi-bay three-dimensional 
systems. (e.g., Ill. 10.55, 10.56.) In all such cases, each rigid frame 
sub-unit fundamentally deforms and behaves according to the same 
basic principles that we have just established, and the corresponding 
element-shaping and rigid-connection-detailing lessons can be 
applied. 

Moreover, the same structural behavior principles and possible 
form variations that we have seen so far for a single rigid frame 
unit of typical story-height and column-spacing dimensions can be 
extended into a corresponding mega-scale subsystem unit, i.e., 
that overall is many stories tall and that spans an exceptionally 
long distance. (e.g., Ill. 10.57; also, see Ill. 1.6.6)

Illustration 10.55
Willis Tower (formerly Sears Tower), Chicago, IL, USA (1973).
Multi-bay, multistory steel rigid frame configuration is evident 
in photo taken during construction.

Architect: Bruce Graham of Skidmore, Owings and Merrill (SOM). 
Structural engineer: Fazlur Khan of SOM.
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Illustration 10.56
Jian Wai SOHO, Beijing, China (2004).
Consistent expression of rigid frames visually unifies this complex of 20 housing 
towers with lower levels of commercial facilities, public spaces, pedestrian 
bridges, etc. Overall design strategy is one of a unifying 3-D rigid frame matrix 
grid that is both strategically extruded in places and carved out in others. 

Architect: Riken Yamamoto & Field Shop. Structural engineer: Plus One Structural 
Des. & Eng. 

Illustration 10.57
Hotel Arts, Barcelona, Catalonia, Spain (1994). 
Trussed mega-scale rigid frame configuration is clear.

Architect: Bruce Graham of Skidmore, Owings and Merrill 
(SOM). Structural engineer: SOM.
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10.8	Nordic Moments, Nordic Spaces 

Historical Trestle Frames 

In rural western Norway, houses have long been constructed using 
a technique called trestle framing. (Ill. 10.58.) Traditional and well 
known in other countries as well, a trestle frame consists of two 
posts connected by a transverse beam with short diagonal struts in 
the corners. This rigid frame configuration has been seen earlier in 
this chapter and the way it works was discussed. (See Fig. 10.10.)

Such a structural system is spatially flexible in the sense that a 
building can be extended in a modular fashion by adding trestles 
in the longitudinal direction or by adding aisles on either side of 
the original frames. Another advantage is that the system can easily 
and clearly fit onto sloping and uneven terrain, since the stability 
of the structure for lateral loading is largely being addressed at the 
constant level of the beam (vs. a braced frame in the same condition, 
where each diagonal will have its own angle of inclination). The 
posts can simply vary in length to the level of the constant beam 

datum, while their bases rest on solid flat stones sticking up from 
the ground in order to prevent moisture damage.

The trestle frame structure was frequently used in Norway for 
simple and airy buildings having no need for insulation, such as 
storehouses, barns, or boat shelters. Since the walls in trestle 
buildings have no load-bearing function, their sole mission is to 
provide some protection from the elements; indeed, in some cases it 
can even be an advantage to have the wind blowing freely through 
the building in order to dry corn or hay, all the while keeping the 
rain out. Materials for this type of structure are all found in the 
local surroundings, representing a historical lesson in the use of 
natural resources. Pinewood is used for the structure and cladding 
and sometimes naturally bent timber is used for diagonal struts; 
either slate or peat is selected for the roof, depending on the local 
climate and traditions. The anonymous character of the trestle frame 
building hides what is in reality a well-conceived and well-developed 
structure, both from the point of view of an overall building system 
as well as its careful and thoughtful detailing.

Illustration 10.58
Trestle framed building.

Model by architecture students at AHO.
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Aalto’s Curving Frames

In the 1930s Alvar Aalto (1898–1976) experimented with the 
sculptural possibilities of wood. Wood is, of course, a material 
that is universally used and has a long history; it is also ideal for 
small structures such as furniture, in which joints were traditionally 
either glued or doweled. Aalto’s experiments with the material 
led, over time, to novel practical solutions and applications, such 
as form-pressed veneers and curving laminated wood structures. 
These experiments laid the groundwork for Aalto’s classic series 
of curving wood furniture.

As has been established, the rigid frame in its simplest form is 
a beam connected to two columns where the joint between the 
beam and the column forms a rigid connection. With this in mind, 
at a much smaller scale the base of a chair can also be considered 
for using the same structural configuration with the connection 
between seat and chair leg effectively forming the corner of a rigid 
frame. (Ill. 10.59.) If the connections between the seat and legs of 
the chair are not rigid enough, when someone sits down on the 

chair the legs will have a tendency to slide apart. The basis for most 
of Aalto’s furniture is this stable frame form; in the design of the 
actual frame corners lies evidence of Aalto’s innovative genius, from 
simple bent-wood chair legs to the fan-shaped versions where the 
leg is composed of glued wedge-formed laminates. In one clean 
blow, the traditional corner connection solutions were replaced 
with a new unifying concept. 

Over time, Aalto’s work with furniture began to influence his 
larger-scale building designs. Two projects, in particular, can be 
cited in this connection: the auditorium of the Technical University 
in Otaniemi outside Helsinki, completed in 1966 (Ill. 10.60), and 
the Riola Church in Italy in 1968. The curving concrete frames 
incorporated in both of these projects constitute a synthesis of 
form and structure, very much in keeping with his earlier furniture 
experiments in bent-wood frames.

Illustration 10.59
Three variations of laminated leg for chairs designed in the 1930s.
Designer: Alvar Aalto.

Illustration 10.60
Otaniemi Technical University, Otaniemi, Finland (1966). 
Series of concrete rigid frames of non-conventional form 
envelops the space of the auditorium.

Architect: Alvar Aalto. Structural engineer: Magnus Malmberg.
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Stegastein Overlook 

In recent years, small but nonetheless significant architectural 
installations built along Norwegian tourist routes have gained wide 
attention. These installations all have similar functions as lookout 
points, rest areas, and sometimes simply benches. Consistently 
embodying a strong design concept and having a high quality of 
construction, they enhance the experience of the place. 

“Nature first and architecture second” was the guiding principle 
for architects Todd Saunders and Tommie Wilhelmsen when they 
began the design for a lookout point at Aurland, which is a place 
having a magnificent view over the fjord landscape on the west 
coast of Norway. In order not to interfere with the overwhelming 
landscape by inserting too many elements, a simple yet strong form 
in the shape of a tilted wooden V has been chosen that conserves 
and complements the natural context. (Ill. 10.61, 10.62.) Shooting out 
from the shoulder of the road, the structure is an elevated platform 
that emphasizes a strong horizontal datum, bringing people out 
into the open air of the vast space above the fjord. At the end of 
the platform, the dizzying feeling of being in the middle of open 
space is especially strongly felt; this feeling is heightened by the 
clear glass railing at the end of the walkway.

The distinctive frame form of the lookout, however, with its 
deep laminated wood beams that turn a sharp corner at the end, 

Illustration 10.61
Stegastein Overlook, Aurland, Norway (2006).
Platform provides a viewpoint over the Aurland Fjord. 

Architect: Todd Saunders and Tommie Wilhelmsen. 
Structural engineer: Node Engineers.

Illustration 10.62
Stegastein Overlook.
Section drawing shows continuity of hollow-box-section steel 
frame and two points of hinged support. Upper support 
is connected to anchorage into rock though a foundation 
transfer structure located under a roadway. Also shown is 
extent of wood glulam covering sides of steel frames. 
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is not quite what it appears to be. For this project, Node Engineers 
developed a structure based on two parallel two-hinged steel 
frames that are manufactured by welding together segments having 
hollow-box cross-sections. The bent corner is indeed rigid, as its 
form suggests, while the two ends of each frame where it meets the 
ground are hinged supports that can rotate relative to the concrete 
foundations. Under the walkway, a transverse steel truss connects 
the two frames in order to assist them in resisting the lateral wind 
loads as a cantilevered braced frame structure. This steel truss is 
hidden by wooden crossbeams that support a deck made of solid 
wood; the two-hinged steel frames are also hidden from view, clad 
as they are by the deep laminated-wood side coverings. These 
wooden facing elements also become the parapets for the edges of 
the walkway, which continue together with top handrails right over 
the bend at the end, notionally leading one on down into the void.

At the Stegastein Overlook, the visually strong yet also open 
quality of a rigid frame is featured; this choice of structural system 
allowed its designers to create the desired interaction and relationship 
between structure and nature. At this stop along the road, one can 
walk out into the thin air among the treetops, experiencing nature 
and the space of the larger landscape.

Vennesla Library and Cultural Centre

Finally, a striking multiple-frame-rib building can be found in the 
southern Norwegian community of Vennesla, where architects Helen 
& Hard designed a municipal library that also serves as an inviting 
public gathering space and as a circulation connector between the 
town’s main square and a community learning center. The building 
bends in plan in response to being wedged between irregularly 
placed adjacent buildings, and its folded roof geometry takes 
cues from the surroundings as well. Any such sharp angles on the 
outside, however, are smoothed out in the interior by the curves of 
its 27 closely spaced wooden glulam ribs that give this building its 
distinctive identity. (Ill. 10.63). Each rib serves multiple functions, 
being at once the structure that carries gravity and lateral loads 
as well as defines the opening of the building’s extruded space, 
but beyond that these are uniquely shaped to integrate bookcases 
and informal seating as well as wide bands of lighting and hidden 
air-handling ductwork. CNC-milled plywood boards give the ribs 
a unified visual appearance (although in fact for each apparent 
paired-set of ribs only one is load-carrying and structural) and the 
varying geometry of their profiles can easily be accommodated 

Illustration 10.63
Vennesla Library and Cultural Center, Vennesla, Norway (2011).
Multiple glue-laminated wooden rib frames, each of slightly different profile, give the interior of this building 
its distinctive visual identity. CNC-milled plywood board coverings give the ribs a unified visual appearance. 

Architect: Helen & Hard Architects. Structural engineer: Rambøll.
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by using digitally controlled pre-fabrication technology, such that 
the interior effectively reads as one smoothly transitioning volume 
of space and enveloping form, morphing from a larger opening 
at the more public end of the building to a lower, narrower one 
at the other.

Looking a little more closely at the structural details of each of 
these ribs is instructive. Although the finishing is made to look as 
though these are made of one piece, the ribs are in fact composed 
of multiple glue-laminated segments of about 220mm x 1200mm 
(8.5in x 47in) cross-sectional dimensions (these dimensions vary 
slightly) that are connected together in various strategic ways as 
shown in Illustration 10.64a and b. The vertical column segments 
at the sides run down through the floor of the main space to the 
basement level and have a fixed connection at the foundation 
achieved by means of a bolted steel connector plate that runs 
across the width of the section. (We should note, in passing, that 
the orientation of this column segment is such that its moment 
of inertia is maximized in the plane of the frame/rib.) In contrast, 
the top of the column segment is effectively pin-connected to the 
end of the beam portion of the rib by means of a narrow, vertical, 
channel-shaped steel connector that is located at the neutral axis 
of the column (this is hidden between the structural rib and its 
non-loadbearing “twin” profile), thus ensuring the transmission 
of shear and axial forces between the two structural members but 
not of bending moment. Elsewhere across the span, the glulam 
beam segments are moment-connected to one another, with full-
depth steel connector plates ensuring the flexural continuity of the 
member. So, effectively, what we have in each of these seemingly 
continuous wooden ribs is a hidden post-and-beam frame that 
has been detailed to mask any visual disruptions to the desired 
smoothness of its final aesthetic. On the one hand, the frame is 
everything in this building, creating its extruded space and being 
highlighted in its repeated form, yet on the other the idiosyncratic 
construction details of the rigid frames that make this possible are 
hidden from view.

 

Illustration 10.64
Vennesla Library and Cultural Center.
facing page – (a) Architect’s section detail drawing, includes showing 
the extension of the rib to a lower level, where a fixed connection is 
shown at its base. 
this page – (b) Structural engineer’s drawing showing details of rib 
construction, including connection details for its multiple parts.

b)



Chapter 10: The Frame and the Shear Wall

380

10.9	The Vierendeel  
– Adapting the Rigid Frame 

To conclude this chapter, we will briefly look at a very particular 
arrangement of multiple rigid frame panels that are connected 
together side by side into an overall structural form that is sometimes 
used to carry gravity loads and span over an expanse of space (or to 
cantilever from the ground and resist lateral forces). (Fig. 10.23.) This 
combination of structural elements should remind us of the open, 
composite-member structures that we discussed in the previous 
chapter, i.e., trusses, albeit with a key difference: in this instance, 
there are no diagonal members across the individual panels of 
the system, which should suggest that rigid frame behavior must 
somehow be coming into play in order to stabilize this structural 
configuration.	

Planar structures constructed from a number of (usually, but not 
necessarily) orthogonally connected members that interact with 
each other according to rigid frame principles are called Vierendeel 
frames/beams or Vierendeel trusses (although misleadingly so with 
regard to the latter in terms of their primary structural behavior 
and detailing, as we shall see shortly) or else they can simply be 
called Vierendeels, thus avoiding all the naming confusion. They 
are given this nomenclature because of the Belgian engineer and 
professor Arthur Vierendeel (1852–1940), who invented the visually 
distinctive system and used it in the design of a series of bridges. 
(e.g., Ill. 10.65, 10.66.)

Figure 10.23
Drawing of basic configurations of Vierendeel structure: 
(a) spanning between supports and (b) cantilevering 
vertically from the ground.

Illustration 10.65
A “classic” rigid joint connection between steel beam and column 
elements used for the Schooten Bridge, proudly displayed here by Belgian 
Professor Henri Dustin (1882–1935), Director of the Laboratory for Testing 
of Materials at the Université Libre de Bruxelles. (Photo taken in 1934.)

Illustration 10.66
Waterhoek Bridge, Avelgem, Belgium (1902).
The first Vierendeel-type bridge built from steel.

a)

b)

a)

b)
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A Vierendeel structure depends in a fundamental manner on 
the bending and shear stiffnesses of its individual members, and 
on the rigid joints that connect them together; i.e., it is explicitly 
rigid frame behavior that is providing this system’s stability. Contrary 
to conventional trusses that have diagonal members and pinned 
connections and which, therefore, carry loads by means of (only) 
axial member forces, structures that are connected in a Vierendeel 
configuration rely heavily on bending moments and shear forces 
in its members (as well as axial forces.) Applying what we know 
from previous chapters about relative load-carrying-mechanism 
efficiencies, a Vierendeel is thus much less efficient than a 
correspondingly sized conventional truss, but it can on the other 
hand have distinct advantages in certain situations where diagonal 
structural members would interfere with the desired circulation, 
through-views or, perhaps, with favored design aesthetics. (e.g., 
Ill. 10.67, 10.68.) 

We will now take a closer look at how this system works. 
(Fig. 10.24). Just as in any beam-like structure spanning between 
supports, transverse loads acting on a Vierendeel produce overall 
shear forces and bending moments that need to be balanced 
at every cross-section. The overall bending moments in the 
structure are able to be resisted by force couples consisting 
of axial compression and tension forces in the top and bottom 
chords, just as in a typical truss. For resisting the overall shear 
force, however, things must clearly be different: whereas in a 

Illustration 10.67
Bridge Pavilion, Valle de Calamuchita, Cordoba, Argentina (2014).
Vierendeel structure means that there are no diagonals to obstruct the 
views from this small bridge/pavilion. 

Architect: Alarciaferrer Arquitectos. Structural engineer: German Serboraria.

Illustration 10.68
Bridge Pavilion.
Drawing highlights two built-up steel Vierendeels used to 
support living space above water channel, spanning across 
from one concrete retaining wall to another. X-bracing at the 
two ends stabilizes frame structure in short direction. 
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conventional truss this was done by means of an axial force in 
the diagonal member, in the Vierendeel there is no such member 
present. Instead, the overall shear in the structure must be carried 
instead by “local” shear forces in the upper and lower chord 
members being summed up together. 

Beyond this, we can learn more about the workings of the 
Vierendeel structure by examining its deflected shape under 
load. (Fig. 10.24e). It can be seen that because of the rigid 
connections each individual element of the structure has to deform 
into reverse curvature, creating inflection points halfway along 
them. Since such points effectively act as hinges, we can observe 
that shear forces and bending moments tend to be produced 
in each of the members of a Vierendeel in a similar fashion to 
those we described for a rigid frame with fixed supports: i.e., 
overall shear forces through the structure cause “local” shear 
forces and bending moments in all of the individual members 
of the structure as it deforms.

Such forces and moments in the members can be estimated 
from an analytical model in which two three-hinged portal frames, 
mirrored toe-to-toe against each other, represent the structural 
system for each rectangle. (Again, Fig. 10.24e). The shape and 
magnitude of the bending moment and shear force diagrams for 
each structural unit of the Vierendeel can thus be found using 
the logic that we have studied earlier. For a simply supported 
Vierendeel, the tendency is that local bending moments and 
shear forces in the individual members are highest toward the 
overall structure’s ends (since overall shear forces are largest 
there), and axial forces in the upper and lower chords are highest 
toward its middle (since overall bending moments have maximum 
magnitude there). 

Logical and efficient shapes for Vierendeel structures can be 
derived from the observation of force and moment distributions, 
as are suggested in Figures 10.24f and 10.24g and as can be seen 
in the Vierendeel structures spanning over the machine showroom 
of the Trumpf Smart Factory Chicago (Ill. 10.69, 10.70). But it is also 
not at all unusual that for visual consistency’s sake the maximum 
member dimensions that are required anywhere in such a structure 
are used throughout, even though such an approach can obviously 
be somewhat more wasteful of material for large loads and spans. 
One way of maintaining visual consistency while also still having 
a relatively efficient overall structure, however, is to keep the 
more visually obvious outer member dimensions constant while 

Figure 10.24
(a) A Vierendeel beam with rigid joints between horizontal and 
vertical structural elements. (b) Bending moment diagram for 
this load configuration. (c) Shear force diagram for this load 
configuration. (d) Identifying the rectangle experiencing the 
largest shear force, close to the support. (e) Deformation of 
the rectangle, with inflection points. (f) Panel shape that would 
correspond to “local” bending moments in each element caused 
by deformed shape. (g) Vierendeel configuration showing (in 
exaggerated fashion) relative structural element dimensions 
corresponding to maximum “local” bending moments and shear 
forces in each member.
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Illustration 10.69
Trumpf Smart Factory Chicago, Chicago, IL, USA (2017).
Shaping of component steel plates that are used to build up the Vierendeels reflects the 
vertical members’ bending moment diagram; i.e., large bending moments at the top and 
bottom connections, with minimal bending moment at mid-height. 

Architect: Barkow Leibinger. Structural engineer: Knippers Helbig Advanced Engineering.

Illustration 10.70
Trumpf Smart Factory Chicago.
Vierendeel structure spans over factory machine/display room, leaving ground floor clear of any obstructions.
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Illustration 10.70
Milstein Hall, College of Architecture, Art, and Planning, Cornell University, Ithaca, NY, USA (2011).
Cantilevered studio space enabled by modified version of floor-to-ceiling Vierendeel system. To right of 
the dome, vertical column elements connect rigidly to beams at top and bottom of the open studio space, 
creating a “classic” Vierendeel configuration; to its left, verticals gradually become more and more inclined, 
approaching the configuration and stiffness (and obstruction-to-through-passage) of a conventional truss.

Architect: The Office for Metropolitan Architecture (OMA). Structural engineer: Robert Silman Associates.

Illustration 10.71
Cornell University’s Milstein Hall.
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varying their sectional thicknesses; for example, a Vierendeel can 
be constructed of square hollow steel tubes of consistent outside 
dimensions but in which the tube wall thicknesses vary. Of course, 
such an approach can also be effectively hidden within a concrete 
Vierendeel by strategically varying the number and size of reinforcing 
bars according to the anticipated response. 

To summarize this discussion, then: Vierendeel structures do 
indeed have some overall resemblance to conventional trusses 
in the sense that both can be considered to be large beams with 
holes cut out of them, in one case square or rectangular holes and 
in the other triangular ones. But that distinction actually makes all 
the difference in the way that they behave to carry load and thus 
are detailed and their members shaped. As a final observation, 
and as has been explored recently at the architecture school at 
Cornell University, structures need not necessarily be “purely” one 
thing or the other. Here, a full-story-height rectangular Vierendeel 
system that allows through circulation in a certain portion of the 
studio area “morphs” into something that is more of a conventional 
truss configuration with diagonal members toward the end of the 
cantilevered part, where additional stiffness is required against 
deflection. (Ill. 10.71, 10.72.)



http://taylorandfrancis.com
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11.1	 Portuguese Tension 
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11.3	 Cable Shapes and Cable Forces
11.4 	 Stabilizing and Supporting Suspension Cables
11.5 	 Distinctive Small-Scale Systems
11.6	 Cable Nets – A Grid of Cables
11.7 	 Frei Otto – The Master of Cable Nets
11.8	 Fabric Membranes – A Tight Weave of Fibers 
11.9	 Pneumatic Structures

11.10		 Ephemeral Interventions

Illustration 11.1
Lord’s Cricket Ground, London, UK (1991).
Fabric roof protecting the spectators’ 
upper deck.

Architect: Hopkins Architects. Structural 
engineer: Arup.
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11.1	Portuguese Tension

The Expo in Lisbon in 1998 included a very significant work of 
architecture that relied in an essential fashion on the unique shape 
and load-carrying capabilities of the suspension cable: Alvaro Siza 
Vieira’s Portuguese National Pavilion. (Ill. 11.2.) Largely defined by 
a hanging roof that is shallowly draped between two porticos, this 
covered space served as a public plaza for official Expo ceremonies 
and as a covered entrance to the interior of the pavilion proper. 
Seen from the vantage point of this plaza, with the hanging roof 
above and its curved shadow traced out on the ground, the framed 
view of the adjacent river estuary and its endless maritime activity is 
indeed an extraordinary sight to see. And by spanning 70m (230ft) 
with such minimal thickness, this suspended concrete structure is, of 
course, spectacular in its own right. With the concrete seemingly in 
tension, but in fact not – rather, it is the cables that pass through the 
concrete surface that are the tension elements here – this concrete 
“flying carpet” reveals new and unexpected ideas for how to resolve 
the design essentials of such a “simple” structural system.

Working in collaboration with the structural engineer Cecil 
Balmond of Arup, Siza ruled out a fabric membrane for the 
suspended roof at least partly because of such a system’s need 

Illustration 11.2
Portuguese National Pavilion, Expo ’98, Lisbon, Portugal (1998). 
Suspended roof structure is made of highly tensioned steel cables 
encased in a thin concrete surface. End walls provide vertical and 
horizontal support reactions.

Architect: Alvaro Siza Vieira. Structural engineer: Arup.

Illustration 11.3
Portuguese National Pavilion. 
Detail showing exposed steel cables near support. Also, 
cables being anchored into horizontal beam running 
across tops of walls as well as alignment of series of shear 
walls that counter the tension forces in the cables.

Architect: Alvaro Siza Vieira. Structural engineer: Arup.
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for a secondary stiffening structure (there will be more on this topic 
in Section 11.4) – a feature that would have added unwanted visual 
depth to the roof’s thin profile. Instead, a curved concrete slab 
was selected due to its inherent self-weight, which makes it fully 
capable of stabilizing the roof against any uplift tendencies caused 
by the wind. The 200mm (8in) thick concrete roof surface is carried 
by a series of suspension cables that are tightly stretched above 
the plaza and anchored into two deep concrete-walled porticos 
that bracket the open space. In order to resist the considerable 
inward pull of the tension forces of the roof’s cables, the support 
porticos incorporate a number of parallel shear walls that are 
aligned with the direction of the cables. It is to be noted that the 
roof’s concrete surface stops short of the supporting structures 
at both ends, thereby creating gaps of blue sky right where one 
expects to find the roof connected to its supports. These gaps 
in the surface, however, do allow short lengths of the stainless 
steel-covered suspension cables to be exposed for all to see, 
thereby revealing and celebrating how the roof system is primarily 
working. (Ill. 11.3.) But this detail, together with that of hidden 
oiled sheathings within the concrete surface through which the 
tensioned cables pass, actually allows the concrete roof to move 
independently of its supports, something that is quite necessary 

because of the significant effects of temperature fluctuations and 
seismic activity in this region.

Moving next to the northern Portuguese city of Braga, we can 
find two famous outdoor venues that attract very different crowds 
of worshipers. One of these, situated on a green hillside and thus 
able to be seen from afar, is the famous Baroque eighteenth-century 
Escadaria de Bom Jesus; during religious festivities the faithful can 
be seen meandering up a monumental processional staircase to 
the pilgrimage church.

A little north of the city, in a former granite quarry, is a very 
different kind of attraction: Braga Stadium, a modern gathering 
venue for this era’s equally fervent worshipers – football fans. (Ill. 
11.4.) The 30 000 seat arena was designed by architect Eduardo 
Souto de Moura and structural engineers AFA Associados for the 
2004 European soccer championship. Two grandstands rise steeply 
on the long sides of the playing field while the ends (typically 
curved and therefore often referred to as “curvas”) remain open 
– one end facing a rocky hillside, the other offering a view of 
the distant landscape. Souto de Moura opposed the traditional 
arena arrangement with seating at the “curvas” as he considered 
that watching the game from behind the goals was a rather poor 
experience. By avoiding such construction, the architect also created 

Illustration 11.4
Braga Stadium, Braga, Portugal (2004).
Suspension structure spanning between and covering the two grandstands.  
(See also Ill. 11.12, 11.13.)

Architect: Eduardo Souto de Moura. Structural engineer: AFA Associados.
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an uncommonly open football arena, one in which the surrounding 
landscape is visible from every seat.

To protect the spectators from the sun and the rain, a unique 
two-part roof structure has been built that is very clearly supported 
by a series of suspension cables stretched between the tops of 
the two grandstands. As in Lisbon, concrete slabs guarantee that a 
certain weight will always be acting on the suspension roof structure, 
thus preventing it from fluttering with the wind (as well as partially 
shielding the spectators from the elements, of course). In this case, 
the slabs are cast on corrugated metal decking that sits on top 
of the suspension cables, but this is done only over the seating 
areas, thereby leaving the cables completely exposed to view over 
the playing field. Souto de Moura at first proposed that this roof 
would also be a continuous concrete slab like the one that Siza 
had designed in Lisbon, but after a visit to Peru to visit the Incas’ 
rope bridges he opted instead for a structural form inspired by an 
associated cultural artifact with its own set of cables/fibers: a large 
loom with two unfinished pieces of cloth on each side.

Along the east side of the stadium a series of outwardly angled 
concrete walls rise up to a staggering height of 47m (154ft). (See 
section drawing through stadium, Ill. 11.12.) Of course, the inclination 
of these walls reacts strategically against the heavy inward pull 
of the roof’s tension cables while also conveniently suiting the 
necessary slope of the tiered seating. Dramatically exposed between 
these vertical planar walls are cantilevered sets of stairs for the 
processions of spectators to climb up to their seats – echoing the 
sight of worshipers on the monumental staircase at the Escadaria 
de Bom Jesus. On the west side of Braga Stadium, a very different 
spatial condition exists: the grandstand structure is set against the 
excavated rock of the hillside, thus creating impressive internal 
spaces between the underside of the concrete seating structure 
and the dynamited granite rock face.

Finally, it is to be noted that the drainage of a suspended roof 
surface such as this one offers its own set of interesting design 
challenges and opportunities. Because of the two-part configuration 
of the roof at the Braga Stadium, Souto de Moura faced the prospect 
of rainwater draining straight onto the playing field, which would 
clearly have been unacceptable. Instead, gutters are located along 
the inside edges of the roof surfaces, which are slightly tilted toward 
one end of the stadium. The rainwater thus drains off the roof at two 
points into spectacularly projecting concrete troughs, from which 
it is then led down the hillside in a sinuous open canal.

11.2	Hanging by a Rope

Much can be learned from relaxing in a hammock (Ill. 11.5); in 
fact, perhaps Donald Duck’s favorite resting spot is not all about 
having fun after all, at least for those of us who are interested in 
structures. First of all, we must acknowledge that in order to support 
a hammock we need to have two trees or similarly stiff vertical 
structures at its ends. The trees need to be fairly large so that our 
weight in the hammock does not make these supports bend inward 
too much, which could make our hanging bed sag excessively and 
possibly touch the ground. Second, we know from experience that 
a hammock is a suspension structure made of canvas or rope, and 
that its consequent lack of stiffness is a challenge when we try to 
climb into it: the hammock quite simply changes form when we 
try to wriggle or ease our way into our favorite relaxing position. 
When we initially sit in it, the hammock stretches out to form two 
fairly straight lines from our body up toward the supports. Having 

Illustration 11.5
The hammock; a simple suspension structure. Different load 
configurations influence the shape of the suspension structure.
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mastered the climbing-in operation, however, we notice that the 
hammock gradually changes form from that of a V to a shallow U 
when we lie down. Indeed, when our body mass is fairly evenly 
distributed along the length of the hammock, it changes into a 
softly curved upwardly concave shape that is fairly comfortable 
for resting and even for sleeping in. But alas, if we roll over in 
our sleep and pull our knees up (assuming that we do not fall 
out), we will once again change the hammock’s shape and have 
to accommodate to a different resting position. Also, if someone 
comes along and gives us a push, the hammock will swing freely. 
This endless adaptability of the hammock might be seen as an 
advantage for a temporary sleeping structure (ask any mariner!), 
but the lack of stability needs to be taken seriously if the same 
structural principle is to be employed in the context of buildings, 
which we are primarily concerned with here. We will come back to 
this issue of the stability of hanging structures in Section 11.4. But 
before completely leaving this descriptive study of a hammock’s 
characteristics and behavior, we should duly note and emphasize 
one of its undisputed advantages: its weight or, rather, its lack 
thereof. A hammock is able to support persons of all shapes and 
body weights, and it can do so while being extremely light itself. 
The fundamental reason for this is that a hammock works all by 
means of tension forces and, as we have already seen in Chapter 
6, tension is a highly efficient way of carrying load. Note that the 
basic difference between the tension structures being considered 
here and those of Chapter 6 is that in the latter case loads were 
being applied axially, i.e., along the axis of the tension element, 
whereas this chapter is all about cables and other hanging structural 
elements that work in tension when loads are applied transversely 
to their longitudinal axis.

Applying the observations of this informal discussion about 
our experiences in a hammock to an analogous suspension cable 
system, we can make the following general statements that will 
apply to such structures:

•	 A hanging rope, cable, or chain needs supports at its ends that 
are fairly stiff; i.e., that do not displace too much into the span.

•	 A cable structure on its own has no bending stiffness in and of 
itself and it will consequently be shaped in accordance with the 
location and magnitude of the loads that it supports.

•	 A suspension cable will change its profile if the loads that are 
applied to it change location.

•	 The cable’s lack of rigidity will in most cases have to be dealt 
with so as to ensure that the structure does not move excessively.

•	 A hanging cable structure is also fundamentally unstable in the 
sideways direction.

•	 Hanging cable structures work primarily in tension, and so they 
are quite light.

Historically, these basic characteristics of suspension cable 
structures can be found to have been recognized and applied in 
such (nearly) primordial structures as tents and vernacular rope 
bridges. (e.g., Ill. 11.6, 11.7.) For example, the Coliseum in Rome 
(finished ad 80) is thought to have offered spectators shading from 
the intense sun by means of a retractable rope and fabric roof. 
And in sailing ships a highly efficient array of ropes and fabrics is 
formed with a single purpose in mind: to efficiently catch the wind 
and create forward movement. As efficient as such a system is for 
harnessing energy, however, it must be recognized that its geometry 
is completely unstable; i.e., when wind forces blow against the 

Illustration 11.6
Traditional nomadic tent of the Berbers, Morocco.

Illustration 11.7
Incan rope bridge, Andes Mountains (nineteenth century).
Suspension cable profile is evident, and its “lively” nature can be sensed. 
Dead weight anchorage seen at left. 

Engraving by Rodolfo Cronau.
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sails they bulge out into taut, curved shapes but when the wind 
stops the sails go slack. This is rather obviously not a situation 
that we want to duplicate in building structures, but we shall see 
eventually that by pre-tensioning such sail-like fabric surfaces into 
very particular curved geometries we can make such spectacular 
forms stiff and stable enough that they can, in fact, be incorporated 
into the realm of architecture (Sections 11.6 and 11.8). Trusses and 
other strategies have also been used to stabilize suspension cable 
structures for bridges and buildings alike. (Ill. 11.8.) But now we 
are getting far ahead of ourselves; we first need to go back and 
look in detail at how suspension cables work, and what it takes to 
make them applicable in the context of architecture.

11.3	Cable Shapes and Cable Forces

As was discussed in relation to the familiar example of a hammock 
in the preceding section, a hanging suspension cable is by nature 
flexible and it will adjust its shape when the distribution of loads 
applied to it changes. When supporting a single point load, for 
example, a cable takes on a V-shape where the bottom of the “V” 
is the point where the load is located and the “V” is obviously 
symmetrical if the load acts at mid-span. (Fig. 11.1.) The vertical 
distance between the lowest point of the cable and the level of 
the supports is called the sag, f. If this point load is moved toward 
one of the supports, the cable will adjust its profile by forming a 
skewed V, and the sag will be reduced.1 We will later see that this 
change in profile also entails increased cable forces. If we put a 

few more point loads on the cable, its shape becomes polygonal; 
i.e., the cable forms straight lines between the loads, and there is 
a change of slope wherever a point load acts. (Fig. 11.2a.) In all of 
this, we assume that the cable weight is quite small compared to 
the magnitude of the loads; if it is not, the cable will also tend to 
curve slightly between the locations of the point loads.

Imagine that we now increase the number of point loads even 
further. The number of direction changes along the cable will keep 
increasing and the straight lines between the point loads will become 
shorter and shorter. (e.g., Ill. 11.9.) As the load condition approaches 
what we have previously defined as a distributed load the cable 
tends to become continuously curved rather than polygonal. For 

Illustration 11.8
Fall Creek Suspension Bridge, Cornell University campus, Ithaca, NY, USA (1961).
Suspension cables drape across a steep-sided gorge, with intermittent vertical hangers supporting 
a spectacular pedestrian walkway. Stability of the cable profile is provided by deck-level stiffening 
trusses forming the railings; the structure is nonetheless still quite “active” and footfall vibrations 
are distinctly felt.

Structural engineers: Professors S.C. Hollister and William McGuire.

Figure 11.1
Cable with point load. Straight cable lines are formed.
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Illustration 11.9
Buckingham Palace Ticket Office, London, UK (1995).
Vertical hangers supporting a fabric membrane roof canopy apply four point loads to the 
primary suspension cable between its mast supports, causing it to adopt a polygonal profile. 
The membrane structure that is stretched between the hangers and a system of struts and ties 
protects the wood-clad ticket booth.

Architect: Hopkins Architects. Structural engineer: Architen Landrell. Cornell model by Tiffany Lin.

Figure 11.2
Funicular lines for a cable subjected to 
(a) two point loads, (b) load uniformly 
distributed along the span, shaping 
the cable in the form of a parabola, (c) 
load uniformly distributed along the 
curve, shaping the cable in the form of 
a catenary, and (d) radial load, shaping 
the cable in the form of a circle. Funicular 
lines suggest a structural geometry by 
which a particular loading distribution will 
cause pure axial forces in the structure.
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a uniformly distributed load (UDL) the shape of the cable in fact 
becomes that of a parabola. (Fig 11.2b., e.g., Ill. 11.10.) If the 
load is distributed in another fashion, i.e., not evenly distributed 
across the span but, instead, evenly along the length of the cable, 
then the shape turns into what we call a catenary.2 (Fig. 11.2c.) 
This particular load configuration is typically associated with the 
cable’s self-weight, and a catenary profile is formed when a cable 
or a chain hangs freely. A radially applied set of loads will cause 
the cable to assume a semicircular shape. (Fig. 11.2d.)

What is common in each of these cases is that despite the 
different shapes the cables carry the loads by tension forces alone, 
and that they do so out of necessity. Cables, ropes, and chains 
have no other way of behaving structurally because they all lack 
the geometric properties that would enable them to act as either 
bending or compression elements. Structures such as these that 

respond to a particular load situation by setting up pure axial forces 
within its elements (whether in tension or compression) are referred 
to as funicular structures.3,4

Since the internal forces in a cable structure are always purely 
tensile, and these forces are necessarily always directed along the 
line of the cable, we can as a result relatively simply observe the 
obligatory relationship between a cable’s sag and the magnitude 
of its tension force. Consider, for example, the force polygon of the 
tension force at the very end of a cable next to its support. (Fig. 
11.3.) Since vertical equilibrium of the overall system demands that 
the vertical component of the support reaction is a constant (no 
matter what the sag of the cable is), the total tension force in the 
cable must vary according to the angle at which the cable meets 
the horizontal at the support. The larger the sag, therefore, the 
smaller is the horizontal force component necessary to close the 

Illustration 11.10
Clifton Suspension Bridge, Bristol, UK (1864).
Within the main span, the “cables” made of chain-like segments connected together have a mostly parabolic 
profile due to the uniformly distributed load imposed by many closely spaced vertical hangers supporting the deck, 
although the substantial self-weight of the chains can also cause a certain tendency toward a catenary profile as well. 

Structural engineer: William Henry Barlow and John Hawkshaw, based on an earlier design by Isambard Kingdom Brunel.
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force polygon and the smaller will be the total tension force in the 
cable. Conversely, less sag corresponds to the need for a larger 
horizontal support reaction and to a larger tension force in the cable.

Since a cable with less sag means that it will be subject to 
larger forces (Fig. 11.4), there is a consequent need for this to 
be a thicker cable, which, in turn, means that it will weigh more 
for that reason. On the other hand, a cable with more sag and, 
therefore, smaller forces is by definition a longer cable and thus 
will also weigh more for a different reason. Hence, for efficiency 
of form, we seek a compromise between the relative proportions 
of sag to span; for cable roofs the ratio between them is typically 
in the range of

1/15 < f/L < 1/10

where f = sag and L = span. For bridges we might expect a 
relatively larger sag with ratios in the range of 1/12 to 1/8. If f/L is 
significantly larger than 1/8 the situation may require unreasonably 
high support structures. On the other hand, a very small ratio 
between sag and span may lead to a condition where the cable 
forces may become very large and perhaps enough to result 
in significant elastic deformations of the cable. An optimum 
relationship between these geometrical dimensions is typically 
sought, therefore, within the range that has just been suggested. 
An example can bring this to life: if we consider the Golden Gate 
Bridge in San Francisco (Ill. 11.11), the main span is 1280m (4200ft) 
and the cable sag is about 152m (500ft), which translates into a 
sag-to-span ratio of 1/8.4.

Beyond these general observations about how the relative 
magnitudes of suspension cable forces vary according to the amount 

Illustration 11.11
Golden Gate Bridge, San Francisco, CA, USA (1937).
Relative span-to-sag proportions are evident, as is the parabolic cable profile caused by evenly spaced hangers. 

Architect: Irving Morrow. Structural engineer: Joseph Strauss and Charles Ellis.

Figure 11.3
The influence of sag/inclination of cable on support reactions: 
when cables carry vertical loads, a decreased sag means larger 
horizontal force reaction, and hence the total tension force 
increases. The vertical force reaction stays the same.

Figure 11.4
Diagram of force polygons depicting the variation of the magnitude 
of the tension force with respect to the variation of cable sag/cable 
inclination: i.e., the less the sag, the larger the force.
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of sag, we are also in a position of being able to determine precisely 
the magnitudes and distributions of tension forces in suspension 
cable structures. For example, a cable supporting a point load P 
at mid-span may be analyzed according to the same equilibrium 
principles described in Chapter 4 and applied in Chapters 7 and 9 
in the context of beams and trusses, respectively. Demanding that 
we have equilibrium of vertical forces at the lowest point where the 
load P is located will allow the magnitude of the tension force in 
the cable to be established, and we can thus verify the observation 
made above that a cable forming a smaller angle with the load 
(corresponding to a larger sag) will be subject to a smaller tension 
force. (See Fig. 11.4.) In the case of a single point load the tension 
force will obviously be constant along the entire length of the cable.

If we wish to consider a cable supporting a UDL, however, the 
picture is a bit more complicated. We will be content here with 
looking at a cable where the two supports are positioned at the 
same elevation, with the cable spanning the length L and having 
a sag f when subjected to the distributed load w. (Fig. 11.5.) The 
tension force in the cable at the point of maximum sag (at mid-span) 
is called T. For there to be equilibrium, the support reactions must 
have exactly the same direction as the cable tangents at the two 
points of support, and these are seen to be composed of horizontal 
and vertical force components, H and V, respectively.

Horizontal equilibrium of a free-body diagram depicting one-
half of the cable shows that:

H = T

Demanding vertical equilibrium of this part of the cable structure 
results in:

V = wL/2

Since the tension force T at the lowest point in the cable acts 
horizontally, it will not be part of the equation for vertical equilibrium 

given above. Furthermore, equilibrium of moments about the 
support gives:

(wL/2)(L/4) – (T)(f ) = 0
T = wL2/8f

Since H = T, the magnitude of the horizontal component at the 
support is also given by this equation. One way of interpreting 
this result is to observe that the moment wL2/8 produced by the 
distributed load w across the span L is resisted by the couple 
comprising forces T and H having a moment arm f (i.e., T × f = 
wL2/8). This is analogous to a simply supported straight beam, of 
course, with the difference being that the moment arm in that case 
is established within the limited beam depth and thus results in the 
need for considerably larger material expenditure.

Having calculated both V and H, the support reaction R, which 
is equal (but oppositely directed) to the cable tension force at that 
point, is given by:

R2 = H2 + V2

R2 = (wL2/8f )2 + (wL/2)2

Since no horizontal loads act on the cable, the horizontal force 
component H is constant throughout the length of the cable, and 
is always in equilibrium with the horizontal force reaction at the 
supports. At the lowest point of the cable (which is at mid-span 
for a symmetrical case), this horizontal force is the sole cable 
force component and thus is the total tension force in the cable 
at that point. In other words, this is the minimum value of the 
cable’s tension force anywhere along its length. Elsewhere, there 
is always a vertical force component which varies along the length 
and has its largest value at the supports where the cable slope is 
largest. We may therefore conclude that the total tension force 
in the cable is also largest at the supports, and is given by the 
equation above.5

Figure 11.5
Free-body diagram of one-half of cable 
subjected to a uniformly distributed load w.



Chapter 11: The Cable and the Membrane

397

Recalling the situation of Braga Stadium that we discussed in 
Section 11.1 and whose section drawing is shown in Illustration 
11.12, we are now in a position to do an approximate calculation 
of some of the main cable forces in that structure in order to see 
what kind of stress levels these must cope with. (While doing so, 
however, it must be understood that the control of the dynamic 
effects of wind is also vital for the stability and safety of such a roof, 
but that the theoretical foundations for being able to incorporate 
such an analysis of structural behavior are beyond the scope of 
this book.)

The suspension cables at the Braga Stadium are arranged in 
pairs that are spaced 3.75m apart (12ft) and that are anchored in 
slabs at each end that act as horizontal beams between the tops 
of the vertical wall/pier supports. As was previously mentioned, 
a unique aspect of this stadium’s cable structure is that it only 
supports loads in the areas covering the stands. So the suspension 
cables in this case are in fact not subjected to a distributed load 
along their whole length, but instead have loads acting only along 
the parts of the span closest to the two supports. In addition to 
the weight of the concrete slabs, there are also point loads acting 
on the cables that are produced by the transverse steel trusses at 
the outer end of the covered roof areas. These trusses both act 
as stiffening beams for the roof system and provide a convenient 
place to mount floodlights and loudspeakers to animate the events 
below as well as to carry a drainage trough to divert the rainfall 
run-off water.

For our purposes here, it will be enough to consider only the 
situation where dead loads from the roof are acting on the suspension 
system, and we will ignore the weight of the cables themselves. 
Given these simplifying assumptions, the cables in the open portion 
between the covered roofs can be considered to carry essentially 
no transverse load at all, resulting in their shape being able to be 
approximated as a straight, horizontal line. This part of the span 
measures 88.4m (290ft), leaving the length “a” of the two covered 
roof parts as 57.3m (188ft) each, for a total span of 203m (666ft). 

The thickness of the concrete slab elements is estimated to be 
0.245m (9.66in) and the weight density of reinforced concrete is 
taken as 25kN/m3 (157lb/ft3).

The weight w per unit of length for a roof strip width corresponding 
to the cable-pair spacing of 3.75m (12ft) is thus:

w = 25kN/m3 × 0.245m × 3.75m = 9.88kN/m

The weight of the supported part of the truss per cable pair is 
estimated to be:

P = 7.2kN

And the cable sag at the outer end of the covered roof is 
approximated as:

f = 10.1m

We can now find the cable force H at that outer end point 
(which, again, is considered to be horizontal because no loads 
are assumed to be acting on the cable outside the covered roof 
area) by requiring equilibrium of moments about the left support.

(w × a × a/2) + (P × a) – (H × f) = 0
(w × 57.3m × 57.3m/2) + (P × 57.3m) – (H × 10.1m) = 0
(H × 10.1m) = (9.88kN/m × 57.3m × 57.3m/2) + (7.2kN × 57.3m)
(H × 10.1m) = 16632.1kNm
H = 1646.7kN

At the supports, the horizontal component H will join forces 
with the vertical component V, which is

V = (w × a) + P
V = (w × 57.3m) + P = (9.88kN/m × 57.3m) + 7.2kN = 573.3kN

Illustration 11.12
Braga Stadium, Braga, Portugal (2004). 
Section drawing.

Architect: Eduardo Souto de Moura. Structural engineer: AFA Associados.
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The total tension force in the cable at the supports, therefore, 
will be

T2 = V2 + H2 = 573.32 + 1646.72

T = 1743.7kN

This tension force is shared between two cables, however, and 
if we assume that the net area of the cables corresponds to cable 
diameters of d = 84mm (3.33in), this condition will result in a tension 
stress acting within each cable of:

σ = T/A = T/(2 × 3.14 d2/4) = 1 743 700 N/(2 × 5539mm2) = 
157N/mm2 (22 771lb/sq.in)

This stress that we have calculated is in fact quite low for 
a steel cable, about one-tenth of the strength that we might 
expect for steel wires, reflecting the fact that we have included 
in our calculations only a limited part of the total loads that may 
be acting on this roof. For a more accurate calculation of the 

cable stresses, the effects of wind would need to be taken into 
account, as would the dead weight of the cables. We should 
also note that we have not considered any safety factors against 
failure, which we would be expected to do according to structural 
design practices in all countries. Nevertheless, even from the 
limited investigation that we have just carried out we can safely 
conclude that suspension cable systems are remarkably efficient 
and effective structures for spanning long distances with a minimum 
amount of material; moreover, they can be quite spectacular in 
doing so. (e.g., Ill. 11.13.)

 

Illustration 11.13
Braga Stadium.
“Inside” the space of the stadium; drama of cable system made evident.
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11.4	Stabilizing and Supporting Suspension 
Cables

Cable Stabilization Techniques

As we have described with reference to the hammock, suspension 
structures have no bending stiffness per se and they are, therefore, 
potentially vulnerable to loads which change magnitude and 
distribution over shorter or longer periods of time; e.g., snow loads 
on a roof exemplify a type of gravity load which does just that by 
being moved about by the wind. In addition to being aware of the 
effect of asymmetrical and changing live loads, it is important to 
note that the dynamic response of such a structure to wind may also 
be critical in establishing what is structurally necessary to stabilize a 
cable roof structure. Wind loads change continuously and may easily 
set such a hanging roof in motion by creating a suction force on the 
roof’s top side whose magnitude may exceed the system’s typically 
low dead weight. This condition will cause the roof to bulge upward, 
thus changing its shape dramatically. This new roof profile will, in 
turn, respond to the wind load differently and the shape is likely 
to change yet again, establishing a cyclical process that sets the 
roof into a large-scale fluttering behavior. And beyond needing to 
stabilize such obviously undesirable large-scale geometric changes, 
it is crucial that the natural vibration frequencies of a hanging 
structure be designed to be quite different from the frequencies 
of any likely wind gusts, as this condition can cause a so-called 
resonance behavior that can rather quickly result in excessive and 
violent vibrations of its own.6 The collapse in 1940 of the Tacoma 
Narrows Bridge in Washington State in the USA is a well-known 
structural accident resulting from just this very effect, and its widely 
available video footage is quite convincing in portraying the ever-
increasing torsional oscillations of its bridge deck before eventually 
failing catastrophically. A more recent example of the problems 
that a structure’s dynamic response may cause was observed on 
opening day for the Millennium Bridge in London (Ill. 5.3), which 
led to its short-term closure and retrofitting; since that time the 
bridge has operated without further problems.

While the Tacoma Narrows failure may be an extreme example 
that is convenient to illustrate a point, it remains that its lesson is 
clear: measures need to be taken to prevent suspension structures 
from moving and vibrating excessively. Fortunately, there are some 
relatively simple ways of accomplishing this objective. The options 

Figure 11.6
Principles for stabilizing suspended cable systems. In (a) by adding 
weight, (b) by connecting to or forming rigid structural elements, 
or by having a dual-cable system with counter-curvature cables, (c) 
below the main cable, (d) above it, or (e) overlapping with the main 
cable (i.e., partly above and partly below).
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Illustration 11.15
Marquette Plaza; formerly, Federal Reserve Bank Building, Minneapolis, MN, USA (1973).
Upper level stiffening truss is used to stabilize the profile of the suspension cables that support the floors of this 
building. Vertical support for the cables is provided by the two end concrete core walls; stiffening truss also acts as 
horizontal compression strut, keeping the tops of the walls from deflecting inward. 

Architect: Gunnar Birkerts. Structural engineer: Leslie E. Robertson & Associates.

Illustration 11.14
The Royal Albert Dock Regatta Centre, London, UK (1999).
Suspended steel sheet roof with stiffness provided by bending-stiff 
T-profiles, with the stem of the T facing upward.

Architect: Ian Ritchie. Structural engineer: Arup.
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that are available each affect overall structural form and visual 
expression in its own way, however, and so these will have significant 
design implications when considered in the context of architecture.

One fundamental way to stabilize and stiffen suspension 
structures that we are already familiar with from the preceding 
examples in this chapter is simply to add weight to the system, 
thus countering any uplift tendencies produced by the wind or 
asymmetrical live loading. (Fig. 11.6a.) The added dead load 
must be supported directly by, or suspended from, the cable 
system; as we have seen, such supplemental weight can come 
from secondary structural elements that bridge the gaps between 
parallel suspension cables (e.g., the slabs in the case of both of 
the Portuguese structures discussed in Section 11.1) and/or it 
can come from additional ballast that is placed on top of the 
roof surface (as will be seen to be the case for the Hohenems 
garage example discussed in Section 11.5). The dead weight of 
the roof also acts to pre-tension the cables, thereby improving 
their response in terms of the natural periods of vibration of the 
roof. This additional benefit aside, however, the primary approach 
here is to simply add dead weight to the system, which may seem 
to be a counterintuitive strategy to use with a structural system 
that is meant to exploit material efficiency.

A second important stabilizing strategy for a suspended roof 
is to connect it to rigid structural elements that can act as curved 
beams or slabs, providing both bending stiffness and sometimes also 
weight to the cable structure. (Fig. 11.6b.) In the case of the Lisbon 
pavilion, the stiffness of the continuous concrete “flying carpet” 
will resist the surface’s flexing and hence it is able to make a certain 
contribution toward the suspension system’s overall stability. For the 
roof of the Royal Albert Dock Regatta Centre, a suspended sheet 
steel roof is given transverse stiffness by bending-stiff T-shaped steel 
rib projections. (Ill. 11.14.) In suspension bridges, the necessary 

stiffness for the cable system is commonly provided by trussed 
edge beams or by the bridge deck structure (e.g., see the Cornell 
University pedestrian bridge and the Golden Gate Bridge, shown 
previously in Ill. 11.8 and Ill. 11.11, respectively), and this can also 
be found in buildings on occasion, such as in the former Federal 
Reserve Bank Building in Minneapolis, seen under construction 
in Illustration 11.15. What is happening in such cases is that any 
potential cable movements are restricted by the cables being 
tied to bending-stiff elements, forcing the cables to follow these 
elements’ much more limited flexibility. A secondary benefit of the 
bending stiffness of such elements is that it enables a distribution 
of point loads to a longer segment of the cable structure, the result 
of which will be reduced local cable deformations.

A third general alternative for stabilizing suspension cable 
systems involves the use of two cables and is thus referred to as a 
dual-cable system; one of these cables is the primary load-carrying 
suspension cable, while the second is an inverted stabilizing cable 
which is intermittently connected along its length to the primary 
one. (Fig. 11.6c; e.g., such opposite curvature cables are clearly 
made evident in the model of the suspended roof system for the 
Lawrence Convention Center in Pittsburgh (Ill. 11.16), and in the 
glass wall stabilizing system for Fingal County Municipal Hall in 
Dublin that will be discussed in the next section – see Ill. 11.26.) 
Any tendency to displace under loading by of one of the cables 
in such a system will immediately be countered by the curvature 
of its opposing counterpart. The two cables are often arranged in 
the same vertical plane (although other arrangements are certainly 
possible, as will be discussed shortly) but they are typically made to 
have different curvatures so as to have different natural frequencies 
one from the other. This difference in curvature also means that the 
tension forces in the two cables will be different, as per our earlier 
discussion about the effects of different cable sags.

Illustration 11.16
David L. Lawrence Convention 
Center, Pittsburgh, PA, USA 
(renovated 2003).
Curved profile of suspension 
cables supporting the light roof 
trusses is stabilized by counter-
curvature cables below; the two 
sets of cables have noticeably 
different curvatures and are 
connected to each other by 
means of vertical tension ties. 
Cable anchorages are also 
evident and produce overall self-
balancing system. Pittsburgh’s 
numerous adjacent suspension 
bridges provided inspiration for 
this system.

Architect: Rafael Viñoly Architects. 
Structural engineer: Dewhurst 
Macfarlane and Partners. 
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Illustration 11.17
American Museum of Natural 
History/Rose Center for Earth and 
Space, New York City, NY, USA 
(2000).
Multiple “cable beams” brace 
large glass surface against wind 
loads. The glass is of a type with 
greatly reduced iron content for 
increased clarity (in this context, 
iron is a “polluting” impurity 
which commonly gives glass its 
greenish color).

Architect: Polshek Partnership 
Architects. Structural engineer: 
Weidlinger Associates.

Illustration 11.18
Madison Square Garden, New York City, NY, USA (1968).
Aerial view of radial suspension system under construction. Outer compression ring is evident for anchoring 
suspension cables, as is inner tension ring. Central mast was temporary and used for construction. 

Architect: Charles Luckman Associates. Structural engineer: Severud Associates.
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There are two obvious arrangement options for this dual-cable 
system: one is to have the suspension cable placed directly above 
the inverted secondary cable, with the two being connected by 
a number of tension ties – the overall system then has opposite 
curvature top and bottom. (Fig. 11.6c.) We can also arrange the 
two opposing cables in such a way that the system becomes 
lens-shaped; the lower cable in this convex system is the primary 
suspension one while the upper cable provides stiffness to the 
system. (Fig. 11.6d.) This second arrangement results in the need 
for the cable-connecting elements to be compression struts in order 
to keep the cables apart. A third variation is to have the opposing 
curvature cables intersect with each other, resulting in some of the 
connecting members needing to be in tension while the others 
are in compression. (Fig. 11.6e.) However the cables are arranged, 
the system as a whole is typically highly pre-stressed, and as such 
the complete dual-cable system can start taking on the somewhat 
unexpected flexural load-carrying characteristics of a beam or a 
truss (i.e., the notional “compression” chord of such a structural 

type is never allowed to actually go into compression because the 
system is so highly pre-stressed in tension) and at that point these 
dual-cable systems are sometimes referred to as cable trusses or 
cable beams. (e.g., Ill. 11.17.) Because of their filigree quality, such 
strategies are often employed as the stabilizing structural elements 
for structural glass walls.

More three-dimensional spatial variations of these stabilizing 
options also exist whereby inverted cables are offset at halfway 
intervals between a series of parallel suspension cables (i.e., they 
are not in the same vertical plane); down the length of such a 
system there will hence be cables having alternating upward and 
downward curvatures, creating a series of ridges and valleys in the 
resulting surface. And the suspension cable system also can be 
configured to be arranged radially if the building plan is circular, as 
in the system used for the famous roof of Madison Square Garden 
in New York City and, at a much smaller scale, for the showcase 
glass ceiling in the Sandra Day O’Connor Courthouse in Phoenix, 
Arizona. (Ill. 11.18 and Ill. 11.19, 11.20, respectively.)

Illustration 11.19
Main courtroom, Sandra Day O’Connor Courthouse, Phoenix, AZ, USA (2000).
At bottom, axon drawing of half of courtroom volume; ceiling’s radial cables are anchored 
around the outer perimeter on a cylindrical steel rigid frame. At top, the cable structure and 
the glass ceiling profile drawn independently of each other; glass panels above the central 
courtroom space are directly attached to the draped suspension cables, but around the 
enveloping circulation zone they are horizontal and hung by short vertical hangers.

Architect: Richard Meier & Partners (for the courthouse building), James Carpenter Design 
Associates Inc. (for the glass ceiling). Structural engineer: Arup.

Illustration 11.20
Sandra Day O’Connor Courthouse main courtroom.
Lens-shaped glass ceiling over main courtroom displays radial arrangement of suspension 
cables, anchored near the center by a small tension ring. Weight of glass panes helps to 
stabilize this structure, which is completely housed within a much larger building atrium.
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Cable End Supports and Anchorages

As for the requirements at the end supports of suspension cables, 
it is clear that the rather substantial inward pull of the cable(s) must 
be countered, and that this will be an additional imposition on the 
support beyond the usual vertical reaction forces needed to resist 
gravity loads; both of these force reactions must, therefore, be met 
by the support structures. We can differentiate between two typical 
ways in which suspension cable support structures accomplish this 
task: one involves resisting the inward pull by significant bending 
action, with the support effectively being made to function as a 
vertical shear wall, while the other works by an effective combination 
of axial compression and tension forces in guyed, or back-stayed, 
masts as discrete and spaced-apart structural elements – all of which 
recalls the basic functioning of shear walls and braced frames that 
we have previously considered in Chapter 10. (Fig. 11.7.) 

In the first case, steel or reinforced concrete piers are typically 
aligned with the spanning direction, and these receive the pulling 
forces directly from the cables or, perhaps more commonly, indirectly 
via a transverse distribution beam or truss that anchors a number 
of cables and spans horizontally between the tops of the piers. As 
we have seen in the case of both the Lisbon Pavilion and the Braga 
Stadium (Section 11.1), and as can also be found in the Dulles Airport 
Terminal structure (Ill. 11.21, 11.22), such piers cantilever vertically 
from the foundations and necessarily have to be of substantial 
structural dimension. At all levels of the support pier bending 
moments, lateral (shear) forces and axial forces are all present, and 

the bending moments are especially large, typically increase from 
top to bottom of the wall, putting their greatest demand on it at 
the foundation level. If possible, two opposing outwardly leaning 
piers of this type at opposite ends of the structure can not only help 
to reduce the imposed bending moments by having some of the 
cables’ inward pull resisted by the walls also acting as an inclined 
compression strut, but also the bases of these may be connected 
to each other underground by compression struts or slabs, thereby 
letting the inwardly pushing lateral forces be balanced and freeing 
the foundation from having to distribute these forces to the ground. 
The equivalent to this latter self-balancing system in the case of a 
radial arrangement is to anchor the cable tension forces by means 
of a compression ring(s) around the outer perimeter and an inner 
tension ring (e.g., these can be seen in the photo of the construction 
of Madison Square Garden roof (see Ill. 11.18) as well as with the 
cylindrical steel frame and central tension ring used to anchor the 
Sandra Day O’Connor courtroom ceiling system (see Ill. 11.19)).

It should be recognized, however, that the bending mechanism 
of the preceding piers is inherently inefficient as a load-resisting 
mechanism, and by trying to anchor large tension forces high up in 
the air at the tops of the piers this “problem” is only heightened. 
A much more materially efficient support structure is one that uses 
the guyed, or back-stayed mast. (See Fig. 11.7b.) By this system 
a mast or column receives the cables’ vertical reaction forces in 
compression as any vertical support must, but in addition the inward 
pull of the suspension cable is countered by an opposing tension 
in tie-back cables or guys. A consequence of this anchoring system 

a)

b) Figure 11.7
End support of cable structures.
(a) Cantilevered piers acting in bending, and (b) guyed, or back-
stayed, masts. The latter principle results in axial forces only, with 
compression and tension in the mast and guy, respectively.
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Illustration 11.21
Washington Dulles International Airport, terminal 
building, VA, USA (1962/extended 2009).
Suspension cables support a concrete roof having 
catenary curvature due to its primary loading from the 
roof’s self-weight. Supports at each end are outwardly 
inclined to work in compression to help resist the 
inward pull of the cables. Their tapering profile 
indicates that they also work as vertical cantilevers in 
bending. 

Architect: Eero Saarinen/SOM. Structural engineer: 
Ammann and Whitney/SOM.

Illustration 11.22
Washington Dulles International Airport, terminal building.
Cable-to-support connection detail as seen during construction 
of terminal building expansion. Closely spaced steel cables 
connected to inclined longitudinal concrete beam, which is in 
turn supported by the series of inclined masts. 
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is that the vertical force in the mast will be increased since it must 
also bear the vertical force component of the tie-back cable, but 
dealing with this is still likely to leave this end support system 
a much lighter and more open affair than is the (comparatively 
inefficient) bending-reliant behavior of the pier/shear wall system. 
(e.g., this condition can be observed in the Buckingham Palace 
Ticket Office (see Ill. 11.9), the Clifton and Golden Gate Bridges (see 
Ill. 11.10 and Ill. 11.11), the Lawrence Convention Center (see Ill. 
11.16), as well as in the analogous mast-and-backstay(s) condition 
of the cable-stayed Ypsilon Footbridge (see Ill. 6.23.)) As a slight 
variation on this approach, the supports for the suspension cable 
roof of the Messehalle 26 in Hanover employs diagonal bracing 
subsystems to balance the resultant horizontal forces at the cable 
supports. (Ill. 11.23.) 

The “lighter” guyed-mast system does not come without its 
own structural “price,” however: the tie-back cables’ foundations 
have to be able to withstand both lateral forces as well as uplift, 
which makes the foundation work for the project significantly more 
complex than it otherwise might be. (Fig. 11.8.) Typical solutions 
for anchoring tension forces in the ground include: (a) mobilizing 
gravity to counter uplift by following the ballast principle; i.e., by 
placing a large weight in the ground sufficient to counteract any 
uplift force. The lateral inward pull of the anchoring cable may then 
be resisted by passive earth compressive forces against the side 
of foundation. (b) resisting uplift and horizontal forces by the use 
of friction piles or some kind of wedge principle in softer ground; 
and (c) using steel anchor bolts that can be fastened in holes drilled 
into solid rock and that are then filled with cement, in which case 
the bedrock is expected to resist both uplift and lateral forces.

Illustration 11.23
Messehalle 26, Hanover, Germany (1996). 
Section drawing for three-bay suspended roof structure. Braced frame structures 
provide lateral support for unbalanced horizontal forces from cables at mast-top 
anchorages. Inclined ties help to prevent vibration in cables.

Architect: Herzog and Partners. Structural engineer: Schlaich Bergermann und Partners.

a)

b)

c)

a)

b)

c)
Figure 11.8
Tensile force anchoring systems: 
(a) gravity counterweight, (b) 
friction piles, and (c) rock anchors.
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11.5	Distinctive Small-Scale Systems 

We have already seen several examples of the various techniques that 
can be used to stabilize suspended structures; here we will look at 
two more buildings that are both distinguished by their comparatively 
small scale and unusual applications of common materials. These two 
cases are strongly distinguished from one another, however, by their 
different stabilizing systems’ main axis of orientation/operation: i.e., 
vertical in the first instance but horizontal in the second. Then again, 
the two are united by both addressing the various program needs of 
local governments, thus helping to make the case that suspension 
structures can have their place in more familiar and modest settings, 
and that they need not be limited to the conventionally “heroic” 
situations of long span bridges and stadia roofs. 

Hohenems’ Weighted-Down Wood Panel Suspension 
Canopy

The western Austrian province of Vorarlberg is an important locus 
for research on the sustainability of building practices, including 
the possibilities of modern wood construction; in this vein, teams of 
architects, engineers, and manufacturers have been collaborating 
in recent years to produce innovative design work that is built using 
prefabricated timber components. Indeed, while it may seem that a 
municipal storage facility would not be the first place that one thinks 
of going in search of such architectural innovation, the hanging 
timber roof over the exterior public works yard in Hohenems by 
architect Reinhard Drexel and structural engineers Merz, Kaufmann 
und Partner makes this particular building a noteworthy exception 
to the rule. (Ill. 11.24, 11.25.)

Illustration 11.24
Municipal garage, Hohenems, Austria (2000).
Distinctive suspended wood panel roof above exterior municipal garage’s work space. 

Architect: Reinhard Drexel. Structural engineer: Merz, Kaufmann und Partner.

Illustration 11.25
Hohenems municipal garage.
Section and perspective drawings. Anchorage for 
suspension system is concrete rigid frame on one 
side vs. braced frame at the other.
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At this facility, a dramatically curved, suspended roof drapes 
over the open and column-free central space, allowing the various 
municipal vehicles their necessary freedom to move about. The 
roof is supported by buildings along two edges of this very wide 
hanging span: along one side it is connected by means of a steel 
anchoring truss to the rigid-framed structure of an administration 
building, while along the opposite edge the roof is anchored by 
the facility’s long, open storage house and its exposed series of 
braced frames. (Ill. 11.25.) These two adjacent building structures 
thus not only have to support themselves but also must act as the 
necessary abutments for both the vertical and the horizontal forces 
that are produced by the suspension roof system.

In the case of such a thin structural system, the roof must 
necessarily carry the inevitable gravity loads primarily by means 
of tension, and the overall hanging geometry of the roof ’s profile 
consequently closely follows that traced by a hanging chain or, as 
it is often referred to by its Latin equivalent, a catenary line. But it 
is the details of this particular suspended roof system that make it 
truly unique: rather than the more typical steel suspension cables 
that are often used in this situation, in this case the main tension-
carrying elements are a series of 18m x 1.8m (59ft x 6ft) curved 
timber panels that are built from a layer of 39mm (1.5in) thick 
plywood sheets. To counteract the strong possibility that such a 
lightweight structure would tend to be lifted up by the wind, the 
top sides of these panels are supplied with a built-up grid of two 
24mm (1in) thick timber ribs in order to hold in place a layer of 
gravel ballast. The roof ’s top surface is made using OSB plates 
(oriented strand boards) in which the rectangular wood strands 
are aligned to provide maximum tensile strength in the hanging 
direction; these plates also serve as an underlay for two layers of 
waterproof bituminous sheeting.

Beyond its unique and unexpected material composition, 
however, this suspended roof and the open space below it have 
some other remarkable architectural qualities: rather impressively, 
in spite of a span of close to 20m (66ft), the structure connecting 
the two sides of the public works yard is only a total of 110mm 
(4.33in) thick, far exceeding the typical span-to-depth ratios of more 
conventional roofing systems. Also, an unexpected natural light 
washes over the underside of the roof surface, greatly reducing the 
need for artificial lighting in the work area; this effect is made possible 
by the roof surface curving upward toward its supports but then 
stopping just short of these. For example, a skylight-covered open 

steel truss anchors the roof next to the administration building, thus 
allowing natural light to bounce off the underside of the roof and 
light the workspace. Finally, with the two other sides of the public 
works yard completely open, the distinctive profile and surprising 
material composition of this hanging roof canopy are highlighted 
and appropriately celebrated; this is indeed a fine space for a city’s 
municipal trucks and tractors to operate in.

Swords’ Cable-Stabilized Hanging Glass Façade 

In the case of Fingal County Hall, located in the town of Swords 
just north of Dublin, Ireland, the local government sought to have 
a building built that would be an open expression of administrative 
transparency, provide services to the community, and be a pleasant 
and energy-conscious working environment for a staff of about 
450 people. A design competition was held in the late 1990s that 
was won by Bucholz McEvoy Architects with a building design that 
also manages to integrate itself within a challenging urban site: it 
is located at the intersection of multiple street axes, across from 
the historic Swords Castle, and a small crescent-shaped park with 
an existing grove of tall Holm oak trees as well as a 150-year-old 
Himalayan cedar that had to be respected. 

In the end, the centerpiece of the design is a curved 5-story-
high public foyer/atrium, whose 32m (105ft) long, 18m (59ft) high 
exterior façade wall is all made of suspended, transparent glass 
panels. (Ill. 11.26.) Because of its location this strategic gesture 
at once connects the interior space with the trees just outside, 
with the Norman castle across the street, and with the views along 
extended street axes. And from the outside, of course, this huge 
glass wall makes the functions of the local government directly 
visible, whether by day or night. Reinforcing the point about local 
government transparency and accessibility, the atrium space contains 
service counters, meeting rooms, and open circulation stairways 
and balconies; i.e., the atrium itself defines and becomes the 
zone of overlap between public and private functions, the latter of 
which are largely contained in three narrow, parallel Office Wings 
that project back and away from this curved band of common 
atrium space.

We will focus here on the structural support for this huge glass 
“window” wall. In order to minimize the dimensions of any and all 
supporting structure, this is almost completely done by means of 
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Illustration 11.26
Fingal County Hall, Swords (near Dublin), Ireland (2000).
Interior of foyer space showing counter-curvature cable system stabilizing hanging glass wall.

Architect: Bucholz McEvoy Architects. Structural engineer: Arup (building), RFR (glass wall).
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tension. To begin with, we can consider gravity loads: the thin glass 
panels of this wall are all hanging vertically, each panel physically 
connected to the one immediately above it by specialized multi-
pronged bolted connectors, with each of these vertical bands of 
connected glass panels then hung at the top from an outwardly 
projecting, vertically curved flanged steel beam located at the 
roof level. There is a long series of such cantilevering beams, as 
can be seen in Illustration 11.26. The glass of each panel, then, is 
working in tension, carrying the glass’s self-weight from bottom 
to top, with the top-most panel therefore having to carry the most 
tension load. This requires, of course, that the tensile material 
capacity of the glass is not exceeded, but that is certainly possible 
as glass is quite strong in tension. Such glass panels need to be 
specially produced for this purpose, however, given glass’s normally 
brittle failure tendencies; the connections/connectors also require 
specialized technology to ensure the proper and smooth transfer 
of forces from one panel to the next. But all this is able to be done 
today with the right specialized expertise, and this hanging system 
is well able to account for the glass wall’s gravity loads, which are 
carried up and away from the base of the glass wall – contrary 
to “normal” gravity load paths – but then, that is a good thing 
as thin glass panels do not lend themselves very well to carrying 
significant compressive loads. 

But there remains an inherent lateral instability with such a long 
“hanging curtain” glass wall, with inward wind pressures (or outward 
wind suctions, depending on the wind direction) tending to cause 
the “curtain” to displace rather significantly. As can be seen in 
Illustrations 11.26 and 11.27, such displacements are being prevented 
over the height of this wall by means of a series of intermittently 
spaced, horizontal pairs of intersecting counter-curvature stabilization 
cables, which take just the form that we saw diagrammed in Figure 
11.6e. The glass wall surface can be seen to be laterally connected 
to these stabilizing cable-pairs by means of a multitude of short 
timber-tipped spars/struts. Of course, the opposing curvature of 
these sets of cables allows the system to work equally well whether 
the wind pressure is tending to cause the wall to move inward or 
suction is pulling it outward, or even both at the same time over such 
a large expanse of façade. Moreover, because these pre-stressed 
cables are all made to be working in tension, the dimensions of 
the hanging glass wall’s stabilizing system have been minimized, 
which maximizes the visual transparency that is such a key aspect 
of the design intensions for this project. At the same time, their 
sweeping gestures within the atrium space can be considered to 
be putting on their own performance for all to see. 

Illustration 11.27
Fingal County Hall.
Plan drawing highlights counter-curvature of cable system used 
to stabilize entry’s hanging glass wall.
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11.6	Cable Nets – A Grid of Cables 

While the suspension structures and the stability principles discussed 
in this chapter so far have essentially been for two-dimensional 
in-plane systems that can, where necessary or desirable, be 
“extruded” or “spun” in space to form overall three-dimensional 
structural systems for buildings, there are other ways of designing 
and constructing tensile structures. Evidence for this can easily be 
found in the woods and in unused corners of attics or basements, 
where a wonderful cable-like structure can be observed in the form 
of the spider’s web. (e.g., Ill. 11.28.) This ingenious product of nature 
provides an interesting inspiration for human-made structures, one in 
which the efficiency of tension is fully exploited in a spatial manner. 
Here is the enticing suggestion that there is a way for cables alone 
to form an integrated, three-dimensional structural system; i.e., not 
only are thin tension “cables” carrying all loads and stabilizing the 
system, but these are also creating the suggestion of a surface as 
well – and in architecture surfaces are typically needed for roofing, 
for enclosure, and for walking on. In the spider’s web, then, we find 
a three-dimensional tensile structure in which support and surface 
are integrated as one in a remarkably elegant manner, and that 
seems full of possibility.

Alas, a spider’s web is not a stiff structure, but instead moves in 
the smallest of winds. To see how we might accomplish something 
like a natural web in the context of real building structures where 
major deflections are not permitted, we begin by briefly going 
back to a single suspended cable held up at both ends, but one 
which is now connected to a second cable oriented at 90⁰ to the 
first. (Fig. 11.9.) Pulling downward at both ends of the transverse 
cable puts the suspended cable into the shape of a V; moreover, 
the tensioning of the downward cable will ensure that the system 
of two cables will be stabilized, one locked into the other. The 

same can be done with a series of suspended cables spanning in 
one direction. If we connect these to a second set of perpendicular 
cables having opposite downward curvature, the first set will form 
into a concave shape while the second set of cables will form into a 
convex shape (Fig. 11.10.) As with the single cable pair, these two 
cable sets will mutually provide each other with stiffness and stability. 
In order to do so, however, the cables need to be pre-stressed (i.e., 
slack, loose cables will do nothing for this system) and the system 
must have double curvature of the anticlastic type just described. 
In other words, the curvatures in the two main directions must be 
opposite to each other (the seat of a saddle is perhaps the most 
familiar analogous form that comes to mind to help visualize this 
shape).7 For reasons that are self-evident from the pattern of the 
grid of interconnected tensioned cables thus established, we call 
such a system a cable net structure.

Illustration 11.28
Spider’s web, a natural cable net.

Figure 11.9
Two orthogonally directed cables provide mutual stability.

Figure 11.10
The 3-D cable structure: the cable net. Since tensile structures 
basically respond to external loads by trying to adjust their 
geometry, it is necessary that 3-D shapes are double-curved and 
pre-stressed so that the surface geometry becomes stiff. Two sets of 
cables form an anticlastic, or saddle-shaped, surface.
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Generally speaking, the way in which a cable net structure is 
given the very specific three-dimensional geometry that it requires 
to both carry loads and be stable is as follows: its anticlastic surface 
geometry is created by providing alternating high points (e.g., at 
mast tops) and low points (e.g., at ground supports) for the net to 
be anchored to. Many variations of the overall anticlastic surface 
geometry are possible with cable nets, including shapes having 
very prominent high points, or those having more subtly rounded 
forms. Cable nets may be differently shaped in plan to accommodate 
various program layouts; in some cases perhaps a single cable net 
can be used to cover an entire space or in others several nets can 
be strategically “cut and pasted” together to form a composite 
surface geometry. There is in reality no limit to the shape variations 

that are possible as long as the basic requirement of anticlastic 
surface geometry is observed everywhere. (e.g. Ill. 11.29.)

Along the edges of the cable net between the various mast 
tops and ground anchorages we usually find another, larger set of 
cables, called edge cables, on to which the orthogonal cables of 
the net are fastened. The edge cables are typically curved to resist 
the series of tension forces coming from the cable net; much less 
frequently, very particularly curved bending-type elements may 
be used instead as the edge supports. (e.g., Ill. 11.30, 11.31 and 
Ill. 11.32, 11.33.)

Beyond the overall surface geometry, the detailed resolution 
of the individual components of a cable net structure is also an 
important aspect of their design. Given their visual prominence 

Illustration 11.29
German Pavilion, Expo ’67, Montreal, Canada (1967).
Multiple high points at tops of masts and low point anchorages enabled the unique 
double-curvature shape of the cable net surface that covered the full extent of the 
terraced landscape of the pavilion.

Architect: Atelier Frei Otto and Rolf Gutbrod. Structural engineer: Leonhardt und Andrä.
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Illustration 11.30
Lee Valley VeloPark (Olympic Velodrome), London, UK (2011).
Curved truss provides cable net anchorage all around the roof perimeter; elevation of truss undulates so 
as to generate the double curvature of the cable net needed for stability.

Architect: Hopkins Architects. Structural engineer (for cable net): Schlaich Bergermann und Partner. Cornell 
model by Karl Pops and Alex Stojkovic.

Illustration 11.31
Lee Valley VeloPark.
Constantly varying height needed for support of large doubly curved cable net roof 
gives building its distinctive elevational profile. 



414

illustration 11.32
Yoyogi Olympic Stadium, Tokyo, Japan (1964). 
Two halves of the suspension roof system of main swimming/diving stadium are 
vertically supported along the main centerline by two large 333mm (13in) suspension 
cables. At their lower, outer edges, the inward pull of the suspension roof halves is 
anchored by concrete arches lying down almost fl at to the ground – but not quite fl at, 
in order to still allow light to be admitted into the stadium from the sides. At right, an 
analogous but different, spiraling form is created for the smaller gymnasium facility; 
here the main suspension cable curves back upon itself around a central mast. 

Architect: Kenzo Tange. Structural engineer: Kawaguchi & Engineers. 

illustration 11.33
Yoyogi Olympic Stadium.

AHO model by Elise Christie and Pål Biørnstad.
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and importance in establishing the surface geometry, the masts 
themselves often become distinctive elements in the design of 
such structures. Also, the anchorages are often at ground level 
and so must be thoughtfully considered. The connections between 
intersecting cables are repeated perhaps hundreds of times in a 
single net and these can become distinctive design components 
in their own right. (e.g., Ill. 11.34.) And, finally, the openings in 
the grid of a cable net are usually “filled” in some way in order to 
provide the occupants below with some form of shelter – whether 
this is by means of a fabric mesh as for the shading canopies of 
the 1992 World’s Fair in Seville (Ill. 11.35, 11.36) or, as will be seen 
in Section 11.7 to follow, by means of acrylic glass panels used 
in Günther Behnisch and Frei Otto’s Munich Olympic Stadium, 
which remains after almost 40 years one of the most compelling 
examples of what is possible both structurally and spatially using 
the cable net.

Illustration 11.34
Kempinski Hotel Airport Munich, Munich, Germany (1994). 
Detail of hanging glass façade supported by steel wire cable 
net. Glass panes are clamped with plates of cast, stainless 
steel through which wire cables are threaded.

Architect: Murphy/Jahn Architectural Group. Structural engineer: 
Schlaich Bergermann und Partner.

Illustration 11.35
Cable net canopy, Expo ’92, Seville, Spain (1992). 
Doubly curved cable net, with sun-shading pieces of fabric 
inserted into the grid openings. Conical fabric covered 
structures are passive wind towers that draw hot air upward 
by applying the Venturi principle for wind blowing across 
the opening at the top.

Illustration 11.36
Cable net canopy, Expo ’92.
Detail of cable net with sun-shading pieces of fabric inserted 
into the grid openings.
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11.7	Frei Otto – The Master of Cable Nets

During a period of time when most architects were occupied with 
building with such solid materials as concrete and brick, a man in 
Berlin spoke of membranes and designed transparent structures; 
he was trying to understand the structural laws of nature and 
make use of them for his constructions. As early as 1954, Frei 
Otto (1925–2015) caused a stir in the architecture world with his 
theoretical work on suspended roofs.8 He produced innovative 
ideas throughout his life and is well established as one of the 
great architects, engineers, and visionaries of the last century. As 
head of the Institute of Lightweight Structures at the University of 
Stuttgart, he spent a lifetime researching and initiating lightweight 
structures, thereby minimizing the use of energy and materials and 
building in harmony with nature.

In the early 1960s the Bremen Port Authority asked Frei Otto 
to study the possibility of roofing over the vast Neustadt harbor 
basin, one of the busiest ports in Germany. It was hoped that this 
would allow the loading and unloading of ships to be carried out 

more quickly and make the work independent of the weather. 
The roof design that Frei Otto presented measured some 1500m 
by 380m (4920ft by 1250ft) and it was supported by 19 masts. 
(Ill. 11.37.) Its structure consisted of an upper, irregular, and very 
wide suspended cable net, which, in turn, served as a support for 
a lower, finer net with a regular mesh of 400mm (16in) spacing. The 
cable net formed a huge vaulted space over not only the storage 
area but also the navigable channel, and the quays and railway 
sidings. The roof covering proper was to consist of transparent 
PVC panels with bituminous weatherproof coating. At the time the 
project was presented, however, waterproof containers became 
more commonly used, and this was at least part of the reason that 
the Bremen plans went unrealized.

Certainly Frei Otto’s best known project is the unique roof for 
the main stadium of the 1972 Summer Olympics in Munich. The 
winning design, done in collaboration with architects Behnisch 
& Partner, was based on an ambitious concept to continue and 
strengthen the landscape. (Ill. 11.38.) The project called upon 
some of the most notable designers of the period: aside from the 

Illustration 11.37
Project for a tensile membrane structure covering the port of Bremen, Germany (1963).

Architect: Frei Otto. Model study by students at AHO.
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Illustration 11.38
Olympic Stadium, Munich, Germany (1972).
Overall form of an exceptional cable net canopy for stadium 
seating with acrylic glass covering. Multiple high and low 
point anchorages to the masts and the ground in alternating 
fashion produce the multiple doubly curved geometries 
needed for cable net stability throughout. Across the front 
edge, a set of larger cables anchors the cable net without 
interfering with spectator views. 

Architect: Frei Otto with Günther Behnisch. Structural engineer: 
Leonhardt & Andrä.

Illustration 11.39
Munich Olympic Stadium.
Cable net with acrylic glass covering as seen from underneath. 
Fine grid is the cable net structure; darker, larger squares are 
the sealant between adjacent acrylic panels. 
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architects Frei Otto and Günther Behnisch, the structural engineers 
Jörg Schlaich, Rudolf Bergermann, Fritz Leonhardt, and Heinz Isler 
were all involved.

A cable net structure was chosen to realize the architects’ vision. 
Tulle, a thin, netted fabric usually found in women’s stockings, 
was used for model shape-finding studies; however, here for the 
first time computer-aided calculations were applied to determine 
the exact shape of the tensile membrane. A form of structure 
consisting of nearly regular saddle-shaped surfaces framed by edge 
cables came close to the preferred design. The cables needed to 
hold the cable net in position are connected low to the ground 
at many anchorage points as well as to mid-air anchorages hung 

from the tops of a series of tall masts; in order not to disturb the 
open sightlines of the public, the masts are situated behind the 
grandstands. (Ill. 11.39.) The cable net’s regular 750mm (29.5in) 
square mesh is covered with acrylic glass plates on flexible rubber 
supports. Light, transparent roofs such as this that are both open 
and yet still give sufficient protection for the spectators thus cover 
and connect various arenas of Munich’s Olympic Park, making the 
sports facilities at once an extension of the natural landscape and 
into a collective meeting place for all nations.

Illustration 11.40
Munich Olympic Stadium.
Detail of cable fittings.
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11.8	Fabric Membranes  
– A Tight Weave of Fibers 

The cables of cable nets are spaced apart which, as we’ve seen, often 
results in the need to fill the “voids” with other surface materials. 
But very similar structural forms can also be made from fabrics, 
thereby creating a continuous surface that works simultaneously to 
carry load, provide stability, as well as to create enclosure. (e.g., Ill. 
11.41.) In fact, we may think of a fabric membrane as a cable net 
in which the net has gradually become denser and denser while 
the cables have become thinner and thinner, resulting in a very 
tight weave of thin fibers running in orthogonal directions. Fabric 
membranes can then be understood to need to follow exactly 
the same double-curvature shape requirements that we have just 
described for cable nets. (Fig. 11.11.) In fact, structural fabrics (textiles 
and foils, see Section 5.8) along with cable nets together form what 
are typically called structural tensile membranes, which can be 
characterized as thin surface structures that are primarily carrying 
loads and being stabilized through tension stresses developed within 
an anticlastically curved surface. The overall structural behavior of 
cable nets and fabric membranes is indeed quite similar, and we 
can discuss forms and forces relating to tensile membranes in ways 
that apply to both variants.9

Illustration 11.41
Temporary exhibition fabric tent (2014) in front of Institut du Monde Arabe, Paris, France.
As for the cable net forms, a stable fabric membrane surface must be doubly curved everywhere 
– here by mast-created high points and low point anchorages to the ground. In keeping with 
traditional Bedouin tents as were seen in Ill. 11.6, for this temporary exhibition installation 
natural camel and goat wool fibers were used to make the tensioned membrane, as opposed to 
contemporary structural fabric materials. 

Architect: Oulalou + Choi Architectures (formerly KILO). 

Figure 11.11
Two common examples of fabric membranes having anticlastic shapes.
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In order to develop a better understanding of just what takes 
place within a fabric membrane and how such a structure works to 
carry load, we need to discuss the theoretical basis for an equation 
that reliably is able to predict its behavior. To begin this process, 
consider the equilibrium of a small elemental piece of a membrane 
surface – since it is part of that surface, the elemental piece will 
itself be of anticlastic curved shape. (Fig. 11.12.) When this element 
is acted upon by a uniformly distributed load p (kN/m2, psi) over 
its surface, reactive forces are set up within the membrane. The 
free-body diagram of the element shown is cut along the principal 
curvatures of the surface so that only axial membrane forces Nx and 
Ny will be set up to resist the load (i.e., there will be no tangential 
shear forces along the edges of the element). Because the element 
is considered to be very small, we can think of its curvatures as 
being essentially constant along the element edge; i.e., we can 
consider the surface element to be effectively spherical in each 
of the two opposing principal directions. Furthermore, both of 
the curvatures are assumed to be quite small, although they are 
permitted to be different in magnitude one from the other; i.e., 
1/Rx and 1/Ry, where R is the radius of curvature.

We are now in a position to consider the equilibrium of the forces 
acting on this element in the vertical direction, thus expressing 
the essential relationship between the axial membrane forces Nx 
and Ny acting along the element edges of unit length, and the 
externally applied load p; i.e., the vertical components of the axial 
forces need to balance the external resultant load in order for the 
element not to move up or down and in order to have equilibrium, 
just as we have considered to be the case all along in this book. 
Without going through it here, it can be derived without too much 
difficulty10 that the following algebraic interrelationship necessarily 
must exist between the transverse load and the membrane forces 
and its surface geometry: 

p = Nx/Rx + Ny/Ry	 (11.1)

This formulation of the equilibrium equation for a tensile 
membrane is an important result that will be seen to have general 
application to these types of surfaces, and for that reason it is called 
the membrane equation; as such, it bears some discussion of its 
implications. For one thing, the equation states mathematically that 
the axial forces per unit length in the two principal directions of a 
membrane are each proportional to their respective curvature radii. 

Figure 11.12
The geometry of the doubly curved membrane element. Free-
body diagrams showing transverse load p and internal axial force 
reactions Nx and Ny.
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For a given applied load p, therefore, an increase of radius (i.e., 
less surface curvature) will result in a proportional increase of the 
axial forces in the membrane. Taking this to an extreme suggests 
that large flat areas must particularly be avoided in a membrane 
since as R approaches infinity so must N, which will clearly cause 
material strength capacities to be exceeded. On the other hand, 
if the curvatures of a membrane increase, the forces decrease in 
the same ratio. From the material behavior studies presented in 
Chapter 5 (Section 5.2) we generally know that a decrease of internal 
forces means reduced deformations; hence, we can conclude that 
an increase of curvatures leads to stiffer tensile membranes. (e.g., 
Ill. 11.42, Ill. 11.43.)

Illustration 11.42
COP 22 Village, Marrakesh, 
Morrocco (2016).
Shading fabric canopy exhibits strong 
membrane curvatures everywhere, 
giving the surface stability against 
excessive deformations. 

Architect: Oulalou + Choi Architectures. 

Illustration 11.43
Our Dynamic Earth, Edinburgh, Scotland, UK (1999).
Steel mast-supported membrane stretched between curved 
ribs. Membrane can be seen to be doubly curved everywhere, 
but curvatures are modest, thereby increasing the magnitude of 
membrane forces and of the fabric strength required.

Architect: Michael Hopkins and Partners. Structural engineer: Arup.
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In order to begin to develop a sense for just what this membrane 
equation implies in practical terms with regard to material capacities, 
we will begin by considering the very particular case in which the 
surface curvatures are made equal to each other (Rx = – Ry = R). 
The membrane equation states that the axial forces (Nx = Ny = N) 
will then be the same in the two directions, or:

p = 2N/R
N = pR/2	 (11.2)

We can consider the implications of this simple equation in 
terms of a very familiar example: a spherical rubber balloon (Fig. 
11.13) having a radius R = 100mm (4in) and an internal air pressure 
p which is only 10 percent higher than a typical air pressure of about 
1000hPa (which is 0.1MPa or 0.1N/mm2) (14.5psi). The resulting 
tension forces in both directions from equation 11.2 will be, therefore, 
N = pR/2 = (0.11N/mm2 × 100mm)/2 = 5.5N/mm (31.4lbs/in). The 
tension stress in a rubber balloon whose thickness is t = 0.2mm 
(8/1000in) will thus amount to σ = (5.5N/mm)/0.2mm = 27.5N/mm2 
(3990psi), which is about the same magnitude as the tensile strength 
of rubber – and so this means that in this case the balloon is about 
to burst! It obviously doesn’t take much extra internal pressure, 
therefore, to cause a balloon material’s capacity to be exceeded. 
We will return once again to such so-called pneumatic membranes 
next in this chapter in Section 11.9, but first we need to spend a bit 
more time considering the implications of the general membrane 
equation (i.e., 11.1) to see what this can tell us about the much 
more common situation in an architectural context of having a thin 
membrane that has anticlastic surface geometry. 

In fact, the general membrane equation 

p = Nx/Rx + Ny/Ry	 (11.1)

actually has quite far-reaching consequences, for, as we will see 
eventually in Chapter 13, this very same formula can be applied to 
more than just tensile membrane surfaces. This is because nothing 
that was done in developing this equation from basic equilibrium 
principles was specific to the condition of a tension membrane; 

i.e., for its development (which, once again, can be found in this 
chapter’s endnote 10) we are simply dealing with the equilibrium 
of forces and the doubly curved geometry of a surface element, 
but not with whether the forces in the membrane are in tension 
or compression. As a result, equation 11.1 can be applied to any 
membrane surface, whether it has compressive or tensile forces 
acting in it, or both. 

Now, we can establish in the most general terms that doubly 
curved membrane shapes belong to one of three categories: in 
two of these cases the two main axes of the surface may both be 
curved in the same direction – resulting in either convex/convex 
or concave/concave surfaces (both are termed as having synclastic 
curvature, Fig. 11.14a,b) – and in the third case the two axes may 
be oppositely curved rendering the surface concave/convex (which 
is called an anticlastic surface, Fig. 11.14c). Thinking in terms of an 
applied gravity loading p acting on the surfaces of these various 

Figure 11.13
Section through an inflated spherical balloon.  
The internal air pressure sets the membrane in tension.

Figure 11.14
Variants of a double-curved surface. Surfaces (a) and 
(b) are synclastic with the two main axes curved in 
the same direction, while (c) is an anticlastic surface 
where the axes are oppositely curved.

T

a)

b)

c)
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categories of membrane, this would tend to cause compression/
compression, tension/tension, or tension/compression membrane 
forces in the three different cases, respectively.

Since we have established earlier in this section that in order for 
a tensile membrane to have surface stability it must have anticlastic 
geometry (unless it is pressurized, as was the balloon that we just 
considered and as we will look at more extensively in the next 
section), then tensile membrane surfaces must be associated with 
the latter of these three member force categories; i.e., tension/
compression. But this conclusion is still somewhat perplexing since 
it implies that transverse gravity loading will require that there is 
compression in one of the two principal directions of the tensile 
membrane, which we know to be an impossible condition (i.e., we 
know very well from experience that this thin flexible surface has 
zero capacity against buckling). The essential realization at this 
point, therefore, is that in order for a tensile membrane to work 

by means of tension in both directions there is clearly a need for 
it to be pre-stressed. Moreover, the pre-tensioning of a tensile 
membrane must always be large enough to prevent it from ever 
going into compression under loading and thus becoming slack; 
i.e., the pre-tensioning forces in the convex direction (the direction 
of “compressive” forces), which will inevitably be reduced under the 
external loading of the surface, must never be allowed to reach zero.

In light of these conclusions, we will next study the configuration 
and behavior of a relatively simple saddle-shaped fabric membrane 
of shallow profile covering a square plan. The specific example 
that we will look at is the Music Pavilion that was designed by 
Frei Otto and built for the Federal Garden Exhibition in Kassel, 
Germany, in 1955 – which, to put things into context, was quite 
early in terms of the history of development of structural fabric 
membranes. (Ill. 11.44.) This tensile membrane had a so-called 
four-point configuration with two high points at the mast-tops and 

Illustration 11.44
Music Pavilion at the Federal Garden Exhibition, Kassel, Germany (1955). 
Original drawing for this early four-point tensile membrane structure of 1mm (0.04in) thickness 
cotton fabric spanning 18m (59ft).

Architect and structural engineer: Frei Otto with Peter Strohmeyer.
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two low-point supports at ground level anchorages, and with its 
geometry describing an anticlastic surface of hyperbolic-paraboloid 
shape (this specific geometry will be discussed in Section 13.7 in 
the context of rigid shells, but for now it will be enough to say 
that sections cut through this surface in the principal directions 
will both be parabolas).

Before proceeding with this example, we should note that 
a precise description and calculation of the forces in a tensile 
membrane is actually a more complicated matter than we have 
let on so far, however: i.e., deformations are substantial, and the 
membrane forces are actually dependent on the final shape of 
the surface after deformation and on its orientation in space. In 
other words, the structure is non-linear (i.e., the more the structure 
deflects, the larger are the forces, which further increases the 
deflections, and so on) and its precise and detailed analysis is 
well beyond the scope of this book. For approximation purposes, 
however, we can nevertheless define the surface geometry from 
that corresponding to an initial state of uniform surface tension 
and study the resulting behavior of the membrane, all this with 
the sole intention of developing a fundamental understanding of 
a tensile membrane’s main design constraints.

The radii of the two curvatures that should be used for the 
calculations with the membrane equation 11.1 are, strictly speaking, 
the radii right at the apex points (i.e., at the top of the “arching” 
direction, and the bottom of the “suspended” direction), but for 
an approximate calculation for a shallow membrane such as the 
one being considered here it is enough to consider these radii as 
being constant throughout the two principal curvatures (i.e., even 
though the profile is really parabolic). In an initial state where there 
is no transverse load and only pre-stressing acts (i.e., p = 0), the 
membrane equation 11.1 tells us that

Tx/Rx + Ty/Ry = 0

where the axial forces are tensile and given the symbol T. We 
further will restrict this analysis to the special case with the two 
curvatures being identical, but opposite to each another, i.e., Rx 
= –Ry = R. This yields

Tx/R + Ty/–R = 0
Tx – Ty = 0, or
Tx = Ty = T0

Therefore, when no external transverse loads act on the surface, 
the membrane must be in a state of uniform tension T0. Such a 
pre-stressing may be relatively easily applied to a membrane of 
the Kassel pavilion-type by means of a simultaneous and uniform 
tightening of all four edge cables.

When an external load w acts on the membrane, however, 
this will induce additional tension force Ts in the “suspended” 
membrane direction and a reduction Ta of the tension force in the 
“arched” direction. The magnitude of these tension forces can be 
found by help of the membrane equation, but it is more convenient 
to directly consider the load to be shared equally between narrow 
strips of the membrane running in the two directions. Recalling 
that the horizontal force reaction at the support for a cable to 
be H = wL2/8f (as was found in Section 11.3) and considering 
the difference between the magnitude of the horizontal force 
reaction H and the tension membrane force T that we are looking 
for here to be quite small since this is a very shallow membrane, 
we can approximate that the tension force in the membrane per 
unit length is

Ts = Ta = (w/2)(L2/8f) = wL2/16f

since, as previously mentioned, we consider half of the external 
load (w/2) to be supported in each direction.

When both the external loading and the necessary pre-stressing 
act at the same time, then, we find the total tension forces in the 
two principal directions in the membrane to be

Ts Total = T0 + wL2/16f ≤ material capacity
Ta Total = T0 – wL2/16f ≥ 0

For the tension force in the arched direction to be positive at 
all times, which is the same as saying that the membrane must be 
prevented from going slack, an approximate minimum magnitude 
of the pre-stress can be considered to be:

T0 min = wL2/16f

which means that the pre-stressing forces in a membrane of this 
type (again, for approximation purposes here only) must be at least 
as large as the tensile forces (Ts and Ta) generated in each direction 
by the external loads. If they are exactly equal (not considering 
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safety factors) we find, moreover, that the maximum membrane 
force per unit width TT (in the suspended direction) to be

TT = T0 + wL2/16f = wL2/16f + wL2/16f
TT = wL2/8f

whereas the membrane forces in the other direction come close 
to zero, but should never really reach that point.

So what does this analytical development and its conclusions 
really mean physically? It is evident that in order to make these 
structures work we need to pre-stress the tension membrane 
to a considerable degree. Moreover, what we have seen and is 
generally true is that at least one-half of the potential load-carrying 
capacity of a tensile membrane is typically “spent” on dealing 
with the pre-stressing that is required to make it function. Also, 
the design of the arched direction of the membrane will need to 
consider the forces produced by the pre-stressing (determined 
here to be of the same magnitude as the forces produced by 
one-half of the full gravity loading, wL2/16f) plus that due to 
maximum wind suction which causes uplift and thus increases 
the tension in that direction.

In the case of a membrane having the same geometry as 
that of the Federal Garden Exhibition’s Music Pavilion, we can 
use this analysis in order to establish what the approximate 
maximum membrane force per unit width would be under typical 
loading. If the (wind and gravity) transverse load is taken to be  

w = 0.3kN/m2 (6.3lbs/ft2), the span L = 18m (59ft) and the sag f = 
3.0m (10ft), we will have

TT = wL2/8f = [0.3kN/m2 (18m)2]/[8 (3.0m)] = 4.1kN/m =  
4.1N/mm (23.4lbs/in)

We should put this result into context. Today, structural fabrics 
are made of glass fibers (and polyester fibers); a strip of typical 
glass fiber fabric, for example, has a tensile strength somewhere in 
the order of 16N/mm (91lbs/in), which is well above the maximum 
membrane force per unit length that we just calculated. It should 
be acknowledged that the range of tensile strengths for different 
fabric materials is great and that there is commonly a difference 
between the strengths of the fabric in the warp and weft directions 
(see Section 5.8); nonetheless, these preliminary calculations are 
good enough to give the general sense that such a tensile membrane 
system is more than capable of carrying the anticipated loads, 
which is really all that we were interested in demonstrating here. 
The actual Federal Garden Exhibition’s Music Pavilion membrane 
was made of cotton, a fabric which today is considered too weak 
to be of interest for membrane structures. But the relatively small 
magnitude of the maximum tension stress that we just calculated 
suggests that even such a cotton membrane would have been 
adequate to carry the applied loads reasonably safely; of course, the 
pavilion’s successful operation during the 1955 exhibition provides 
irrefutable confirmation of this. (Ill. 11.45.)

Illustration 11.45
Kassel Music Pavilion.
Photo of fabric membrane pavilion.
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To summarize this discussion of the structural behavior of shallow, 
anticlastic tensile membranes, then, the following general principles 
can be stated:

•	 The membrane must be pre-stressed, commonly by tightening 
its edge cables.

•	 Under gravity loading, the suspended and the arched directions 
of the membrane are considered to share the load equally.

•	 When gravity loads act, the tension in the suspended portion 
of the membrane increases from the initial pre-stress, while the 
tension in the arched portion decreases. The latter must never 
be allowed to go slack.

•	 The maximum membrane forces are found in the suspended 
direction of the membrane (assuming that wind suction is less 
than gravity loading), and are a sum of the pre-stressing forces 
and the forces produced by gravity loads.

Finally, we need to consider what it takes to create the necessary 
doubly curved shape of fabric structures and how some of their 
particular design detailing can be attended to. As we have seen 
in the preceding example and as has been previously discussed, 
fabric membranes are typically supported and given their shape by 
their connection to the tops of masts and to low point anchorages 
as well as to cables at the edges of the membrane. Care should 
be taken to avoid a direct connection between the fabric and a 
narrow point of support, however, because of the concentration 
of membrane forces that would result; i.e., fabrics may easily be 
punctured unless the transition of forces to them takes place over 
a large enough portion of the membrane. As a result, it is typically 
necessary to provide rings, cable hoops or loops, or other elements 
at mast tops that have the capacity to distribute the forces over an 
adequate membrane length. (Fig. 11.15, e.g., Ill. 11.46.) 

As for the edge cables needed to anchor the sides of a tensile 
membrane, we are in a position of being able to predict their 
magnitude and, just as importantly for our purposes here, see 
what shape these elements must have. If we consider an initial 
situation with pre-tensioning as the sole load on the system, both 
primary directions of the membrane are subject to tension forces 
T0 per unit length. This typical pre-stressing of the membrane will 
be supported by edge cables which will adjust their shape into 
circular segments because of the imposed loading pattern; i.e., the 
loads acting on the edge cables are the force reactions from the 

Figure 11.15
Commonly used detailing of fabric membrane supports 
observes the need for distributing the concentrated 
force to a larger membrane length, thus reducing 
stresses in the fabric at this point.
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membrane in the two perpendicular directions and the resultant 
distributed load will be radial to the circular edge cables with a 
magnitude of T0 per unit length.11 (Fig. 11.16.) Since circular cables 
are funicular structures for radial loads, it can be established that 
the equilibrium between the loads and the tension forces S0 in the 
edge cables can be expressed as

S0 = T0 × r

where r = the curvature radius of the edge cables.
If the radius r of the edge cable decreases, thereby introducing 

more curvature, the tension forces S0 in the edge cable will also 
decrease. Once again, in tension structures such as the ones we are 
considering, the curvatures should be made to be significant in order 
to reduce forces and thus the required structural dimensions; the 
result will be an efficiency of material and a visually more delicate 
structure. It should be noted that when external loads act on 
the membrane in addition to the pre-stressing that we have just 
considered, the shape of the edge cables will tend to approach 
parabolas rather than circles. Regardless, the edges of a tensile 
membrane are typically distinctively curved inward; this is yet another 
of the many curved surface geometry characteristics that distinguish 
such structures from the traditional rule of the straight line.

Figure 11.16
Geometry and load on membrane edge cables.

Illustration 11.46
Rocca di Frassinello vineyard, Tuscany, Italy (2007). 
Connection of fabric membrane to high point cable support is achieved by 
specialized steel “cap” that distributes the concentrated tension force into a tension 
stress level that the membrane is able to accommodate.

Architect: Renzo Piano Building Workshop. Structural engineer: Favero & Milan.
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11.9	Pneumatic Structures

The word “pneumatic” refers to devices or structures that in some 
way operate by help of air pressure. The common balloon is perhaps 
the quintessential example of such a “structure” that takes its form 
and volume from internal air pressure, and one that we investigated 
briefly in the previous section in order to get somewhat familiar with 
the membrane equation and to see by just how much the rubber 
membrane is stressed in normal conditions of inflation. For the 
balloon, an internal air pressure which is higher than the external 
atmospheric pressure pre-stresses and stabilizes the extremely light 
rubber membrane so that its roughly spherical shape is maintained 
while being able to be subjected to moderate external loads. We 
are well aware, however, that there are certain problems associated 
with the stability of balloons: they typically leak their internal air 
pressure and deflate over time, and concentrated loads (point 
loads) tend to deflect the rubber membrane excessively and may 
rather easily puncture it.

Air pressure likewise offers unique and innovative shape-making 
potential for structures in the context of architecture, and certainly 
one of their most striking qualities is their remarkable lightness 
and transportability. Just after World War II a breakthrough was 
made in applying these advantages to inhabitable shelters in the 
form of several dome-shaped inflated membranes housing radar 
antennae; i.e., the so-called radomes. Built in various climates 
for military purposes, these structures paved the way for the 
application of air-supported membranes to the broader world of 
architecture in the decades that followed; e.g., the 1970 Osaka 
World’s Fair is perhaps the best known for some of its innovative 
and highly distinctive inflated structures, such as the United States 
and Fuji Film pavilions. It must be acknowledged, however, that 

since then the forms of pneumatic structures have been slow 
to be accepted into mainstream architecture for buildings of 
major and lasting significance, with the roofs for large sports 
stadia and temporary exhibition structures largely seeming to 
be their accepted place. Nevertheless, as we shall see shortly, 
interesting innovations and experiments continue to take place 
with pneumatic membranes.

It is common to classify pneumatic structures according to two 
main types; these are:

•	 Air-supported structures that consist of a single membrane 
enclosing a building space. The stability of the membrane 
depends on a (slight) air pressure differential between the outdoor 
(atmospheric) pressure and the indoor pressure, the latter being 
higher than the former. The most common building types that 
use this principle are sports stadia and small to medium-sized 
temporary buildings for various purposes. Because of their 
lightweight nature, and the fact that air is effectively providing 
the support for the surface, quite large spans can be achieved. 
(e.g., Ill. 11.47.)

•	 Air-inflated structures that make use of inflated structural 
elements that are individually created by pressurized air. With 
this approach the air pressure of the occupied space remains 
atmospheric. Air-inflated structures form structural elements 
like beams, slabs, arches, and vaults and carry external loads 
in a more traditional manner than do air-supported structures. 
However, this type of system calls for much higher air pressures 
in the structural elements than that which is necessary for air-
supported structures. (e.g., Ill. 11.48.)

Hybrid structures also exist that apply and combine the 
techniques and advantages of both principles.

Illustration 11.47
BC Place Stadium, Vancouver, Canada 
(1983).
Air-supported membrane roof bulges 
upward; sheltered over 60 000 spectators 
for the opening and closing ceremonies of 
World’s Fair (1986) and Winter Olympics 
(2010).

Architect: PBK Architects. Structural engineer: 
Geiger Berger Associates (roof), PBK 
Engineering (building).
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Obviously, a common aspect of both these types of inflated 
structures is that their internal air pressures must be large enough to 
keep the membrane in tension throughout when external and dead 
loads act; i.e., if the membrane were to try and enter into a state 
of compression, this would inevitably result in wrinkles and folds 
forming in the very thin fabric and a loss of load-carrying capability. 
To predict whether a membrane experiences net external pressure 
over its entire surface or both pressure and suction forces in various 
places due to wind blowing over it is not an easy and straightforward 

issue, and is something typically best left to sophisticated wind 
tunnel studies. What we can do here, however, is to look at and 
compare the necessary air pressures for the uniform loading of 
representative examples of each of the two pneumatic structure 
types, with the objective of developing an understanding of their 
fundamental similarities and differences.

We will first look at an air-supported, cylindrical membrane. (Fig. 
11.17.) In accordance with the membrane equation (11.1), the air-
pressure difference between the internal and external conditions pnet 

Illustration 11.48
“Tubaloon,” Kongsberg, Norway (2006).
Main stage for Kongsberg Jazz Festival. A doubly curved tension membrane is stretched between 
the edges of this hybrid structure. Hidden, curved galvanized steel tubes strengthen air-inflated PVC 
membrane tubes along the edges. These elements are mutually supportive: while the steel tubes brace 
the inflated membrane tubes, they are simultaneously being braced against buckling by the membrane. 

Architect: Snøhetta. Structural engineer: Airlight SA.
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is related to membrane tension per unit length in both directions, 
T1 and T2, and their respective radii according to

pnet = T1/R1 + T2/R2

This cylindrical geometrical shape has orthogonal radii R1 and 
R2 = ∞, and so the last part of the equation approaches zero. This 
means that

pnet = T1/R1, or
T1 = pnetR1

When the membrane is also subjected to an external load w 
per unit area of the surface, additional surface forces are obviously 
produced. Such additional loads push down and tend to compress 
the pre-tensioned membrane. Assuming that we control these 
additional loads in such a way that the inflated membrane always 
retains its original, convex shape produced by the internal air 
pressure, we can determine the effective compressive forces 
produced in the membrane by once again using the membrane 
equation. Their magnitude per unit length will be

C = wR1

For stability of form it is obviously critical that the membrane 
always retains its tension, which means that the unit tension force 
T1 must always be larger than, or equal to, the force C tending to 
create compression. This means that

pnetR1 ≥ wR1 , or
pnet ≥ w

Thus, according to this calculation (that, once again, greatly 
simplifies reality), the necessary pressure for an air-supported 
membrane must be at least of equal magnitude to that of the external 

distributed load per unit area. If, as an example, the membrane is 
to support a significant external snow load w of 2.5kN/m2 (52.5lbs/
ft2), the necessary pre-tensioning air-pressure differential (ignoring 
typically small membrane dead weight) is of equal magnitude, namely 
0.0025N/mm2 (0.36psi), a mere fraction of normal atmospheric 
pressure at sea level of 0.1N/mm2 (14.7psi).12 The pressure necessary 
to keep an air-supported membrane stable is, thus, surprisingly low. 
For these membranes a differential pressure between inside and 
outside of about 0.001–0.0025N/mm2 (0.15–0.36psi) is considered 
normal. Air-supported structures are thus mostly of the dome or vault 
type with a convex shape resulting from a larger than atmospheric 
air pressure in the interior. (e.g., Ill. 11.49.) Maintaining this pressure 
differential, however, is critical and can present its own challenges: 
air-supported structures typically need to be furnished with two sets 
of doors in order to create an airlock; even so, some air leakage 
is to be expected and a continuous operation of fans in order to 
maintain pressure is necessary. In regions that are prone to the 
occasional very heavy snowfall, this will typically have to manually 
be removed from the roof, a not-so-insignificant amount of exercise.

We will next consider the basic requirements of an air-inflated 
structure. Let us imagine that we are spanning a distance L using 
a series of tightly packed, side-by-side inflated cylindrical beams 
of radius r. (Fig. 11.18.) These “beams” are necessarily closed at 
both ends in order to maintain their internal air pressure. When 
air pressure pi is applied, a resultant force acts on the circular end 
of the beam of magnitude

N = pi πr2

This force causes tension stresses σt in the membrane parallel 
to the length of the inflated structural element. Since the force is 
distributed over the entire circumference, and by designating the 
membrane thickness as t, we find that

σt = pi πr2/2πrt = pi r/2t

net

Figure 11.17
Air-supported cylindrical membrane.
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If the inflated cylindrical beam is assumed to support its 
proportionate share “q” of an external load w per unit area, we 
can say that q = w × 2r since 2r equals the beam’s width. Applying 
what we learned in Chapter 7 about the bending behavior of 
beams, the maximum bending moment along the length of this 
simple-span inflated beam is, therefore

M = qL2/8 = wrL2/4

Since for a thin-walled tube the section modulus S = πr2t, the 
maximum compressive (and tensile) bending stresses caused by 
the external load are thus given by

σc = M/S
σc = (wrL2/4)/(πr2t) = (wL2)/(4πrt)

Now, if the external load is not to cause the membrane to wrinkle 
in the upper parts of the beam, the pre-tensioning stresses σt must 
always remain larger than the compression stresses caused by the 
external load. This means that

Figure 11.18
Air-inflated tubes for a roof structure.

Illustration 11.49
United States Pavilion, Expo ’70, Osaka, Japan (1970).
Air-supported membrane can result in a remarkable span of column-free space.

Architect: Davis-Brody. Structural engineer: David Geiger.

T
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σt ≥ σc, or
pi r/2t ≥ (wL2)/(4πrt)
pi ≥ (wL2)/(2πr2)

As a specific example, let us also assume that the beam height 
to span ratio is h/L = 2r/L = 1/10. This yields L = 20r. If we substitute 
this ratio into the equation above, the necessary air pressure in 
this particular case yields

pi ≥ 64 w

The simplifications that we implicitly made in arriving at this 
result prevent us from directly comparing it with that for the air-
supported membrane (where pnet simply needed to be ≥ w), but 
we can certainly observe that in the present case of an air-inflated 
structure the pressure differential of 64 times the distributed load 
is substantially larger than that for an air-supported structure. If, 
as we considered before, the gravity snow load acting on the 

inflated membrane is w = 2.5kN/m2 (52.5lbs/ft2), the necessary 
internal air pressure becomes pi ≥ 64×0.0025N/mm2 = 0.16N/
mm2 (23.2psi) or a pressure differential of 1.6 times atmospheric 
pressure – certainly quite a difference from the small fraction 
of standard atmospheric pressure that was needed for the air-
supported membrane. Moreover, above and beyond the much 
higher required internal air pressures that must be provided, the 
resulting membrane tension forces will be substantially larger in 
an air-inflated membrane, requiring a thicker/stronger membrane 
material. (e.g., Ill. 11.50.)

Despite such clear differences between the air pressures necessary 
to stabilize the two basic types of pneumatic structures, as a whole 
these structural forms do share many common attributes when it 
comes to their being used in the context of buildings. The typical 
advantages of air-supported structures are a lower initial cost than for 
conventional buildings, and a potential lowering of operating costs 
due to their relative simplicity of design. They are easy and quick 
to assemble or to dismantle and relocate, and offer unobstructed 

Illustration 11.50
Fuji Group Pavilion, Expo ’70, Osaka, Japan (1970).
Series of horseshoe-shaped inflated membrane tubes tethered together stood out 
for its original form and structural system.

Designer and structural engineer: Kawaguchi & Engineers.
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open interior space since there is no need for columns. Also among 
the design decisions to be made is the particular challenge of how 
or whether to make the inherent lightness of a pneumatic structure 
visible, which partly may depend upon the chosen membrane 
material; these are commonly vinyl-coated (PVC) polyester or PTFE-
coated glass-fiber fabrics (see Chapter 5), each having their own 
particular mechanical and light-transmission properties.

Among pneumatic membranes’ disadvantages is the risk of 
collapse if air pressure is lost or if the fabric is compromised in some 
way; although a collapse is fortunately a typically slow process, 
with ample time available to evacuate the space and/or to supply 
emergency power to maintain the original pressure differential. 
Pneumatic membrane structures’ shape and remarkable lightness 
typically turn wind loads into a major challenge; in combination with 
the permanent uplift forces resulting from the internal pressurization, 
membranes must as a result be carefully secured to the ground by 
heavy weights or by means of tension anchors. Furthermore, with 
regard to indoor climate control it needs to be acknowledged that, 

even with a second, inner membrane lining, pneumatic structures 
cannot attain the insulation values of hard-walled structures. Hence, 
increased heating/cooling costs must be expected in such structures 
and this can also be considered to be a disadvantage from an overall 
environmental sustainability perspective. Finally, tensile membranes 
are known to deteriorate more quickly than conventional building 
materials do, and they need to be replaced at regular multi-year 
intervals. Accounting for all these short- and long-term pros and 
cons of the pneumatic structure is certainly not a straightforward 
matter; how much any one of these issues factors into a decision 
to use this structural strategy will vary from case to case.

It should be mentioned before closing this chapter that new and 
innovative applications for air-inflated membranes continue to be 
developed for building components. For example, the Tensairity® 
system that was illustrated at the Montreux Parking Garage uses 
an inflated membrane in combination with steel top and bottom 
chords for highly effective and distinctive long-span beams. (Ill. 
11.51, 11.52, 11.53.) Also, translucent foils (ETFE), sometimes 

Illustration 11.51
Montreux Parking Garage, Montreux, Switzerland (2005). 
There are ways to exploit the benefits of air-inflated structures, increasing their versatility while 
dramatically reducing the necessary air pressure. Here, a hybrid beam structure is designed in which steel 
profiles acting as chords interact with an inflated membrane to create highly effective long-span beams. 
So-called Tensairity® beams of glass-fiber membranes span 28m (90ft) across a parking space.

Architect: Lüscher Architekten. Structural engineer: Mauro Pedretti.
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combined with artificial lighting, offer new and intriguing possibilities 
for architectural expression as smaller scale “bubble” or “pillow” 
cladding elements in such buildings as the Allianz Arena (Ill. 5.47), 
the Beijing Water Cube (Ill. 9.40), and the Eden Project (Section 13.1). 
All things considered, the unique qualities offered by pneumatic 
structures for exploiting stiffness, lightness, material efficiency, 
translucency, and color make it reasonable to believe that these 
structures will become more common in the architecture of the 
near and sustainable future.

11.10	E phemeral Interventions

Fehn in Osaka

While pneumatic structures remain on the relative margins of 
engaging with architecture, there are a few tantalizing exceptions 
to this statement that suggest that it need not necessarily be so. 
The World’s Fair in Osaka in 1970 provided an early hint of some 
of the experiments with this relationship, and we have already 
seen an example of that with the very long span air-supported 
roof of the United States Pavilion, which was a first for its kind. 
(See Ill. 11.49.) Another inflated pavilion from that Expo also has 
often been remarked upon, this one built for the Fuji Group, and 
it consisted of several upstanding horseshoe-shaped air-inflated 

tubes lashed together side by side and that were strikingly colored 
in several shades of Pop-Culture orange. (See Ill. 11.50.) Both 
of these designs clearly belong to an early experimental period 
for inflated structures technology, whether in terms of spanning 
potential or formal resolution. But there was yet another pneumatic 
structure designed for this same Osaka Expo that, even though it 
was never built and so has remained relatively obscure over the 
years, in hindsight can clearly be seen to be far ahead of its time in 
terms of the type’s architectural formal development and conceptual 
underpinning. This was the 1969 design proposal for an intervention 
that would have been located within the Scandinavian Pavilion that 
had already been designed at that point and was eventually built for 
the 1970 Expo; this proposed pneumatic structure’s design, however, 
came from a most unexpected source: Sverre Fehn (1924–2009), 
the renowned master architect of Nordic Modernism whose palette 
of materials typically consisted of concrete, wood, and masonry – 
hardly materials that could be used for an inflated structure. And 
yet, Fehn’s design concept for this project drove him to adapt from 
his familiar construction materials and methods. 

For Osaka, he proposed a delicate pneumatic structure that 
would be completely contained within the steel and glass of the 
single-story horizontal space (2000m2 (21 500ft2), and 8.5m (28ft) 
high} of the Scandinavian Pavilion designed by the Danish architect 
Bent Severin (1925–2012); indeed this was clearly intended to 
be a “house-within-a-house” scenario, with the interior container 
designed as a formal counterpoint to the outer one. (Ill. 11.54, 11.55.) 

Illustration 11.52
Montreux Parking Garage.
View from below canopy; series of air-inflated membrane beams span 
across space; doubly curved fabric membrane spans between them.

Illustration 11.53
Montreux Parking Garage.
Section drawing of air-inflated beam with top and bottom 
steel chords in the form of two RHS steel sections.
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Illustration 11.55
Scandinavian Pavilion proposal, Expo ’70.
Section drawings relate scale of intervention to that of pavilion proper. Drawings also convey 
the changing shape of inflated membranes, as the top chamber inflates, it presses down on 
the lower one, causing it to bulge upward and outward at the sides, and vice versa. 

Illustration 11.54
Scandinavian Pavilion proposal for Expo ’70 in Osaka, Japan (unbuilt; designed 1969).
Model of double inflated membrane intervention that was proposed to be contained within and 
constrained by floor and ceiling of the pavilion itself that was designed by Bent Severin.

Architect: Sverre Fehn. 
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Fehn’s design called for an interacting two-balloon system, with 
one air chamber laying on top of the other and the two squeezed 
together between the hard, flat surfaces of the floor and ceiling of 
Severin’s pavilion. The lower inflated volume was designed to be 
occupied by up to 100 people at a time. The upper air chamber’s 
internal pressure and, therefore, its volume could be modulated, 
thereby affecting the shape of the lower one, since these were 
co-dependent in their “boxed-in” situation. 

Ahead of his time, Fehn was concerned with people being able 
to breathe clean air within an ever-more-polluted environment that 
was being brought on by industrial development; the air inside 
these two bubbles was thus conceived of as a sanctuary of clean 
air within the ever-more-polluted condition of industrial Osaka. 
Moreover, the intervention was designed as a responsive form of 
an artificial breathing lung; i.e., when the pressure in the upper 
air chamber was mechanically varied this made the pressure and 
shape of the lower chamber bulge out and contract accordingly. 

Reinforcing the point none-too-subtly, Fehn proposed projecting 
images of Scandinavian nature onto the inside surfaces of the 
“breathing,” inflated, occupiable structure, which would have made 
for a decidedly powerful statement relative to the overtly optimistic 
and futuristic “Progress and Harmony for Mankind” theme that had 
been set forth for Expo ’70. 

Ode to Osaka 

As a coda to Fehn’s 1969 design proposal for the Scandinavian 
Pavilion, in 2015 the Norwegian practice of Manthay Kula Architects 
designed and built a temporary installation called the Ode to Osaka 
Pavilion at the Norwegian National Museum of Architecture in Oslo. 
(Ill. 11.56, 11.57.) It is important to point out that in spite of obvious 
visual similarities, this more recent intervention was conceived of, 
designed, and built independently as an interpretation (not as a 

Illustration 11.56
Ode to Osaka Pavilion, Norwegian Architecture Museum, Oslo, Norway (2015).
Interior space of lower inflated membrane chamber. 

Architect: Manthay Kula Architects. 



Chapter 11: The Cable and the Membrane

437

reproduction) of Sverre Fehn’s conceptual design for Expo ’70, 
even as it was clearly and purposefully derivative from that earlier 
project. At the same time, however, the Ode to Osaka intervention 
had the unique and powerful additional resonance of being situated 
within the confines of a 2008 pavilion at the museum that had been 
designed by none other than Fehn himself. 

So in this installation we had a Sverre Fehn-inspired inflatable 
form and space that had been especially designed by Manthay 
Kula to be in active dialogue with the hard architecture of the 
concrete and wood and glass of a Fehn-designed form and space. 
The delicate and finely crafted translucent white fabric form of the 
inflated structure was designed in relation to the four concrete 
columns that structure and strongly define this preexisting space, 
and the pair of inflated balloon chambers, one located on top of 
the other as intended at Osaka, here were pressed against the 
floor and ceiling space-defining boundaries of Fehn’s pavilion. 
Moreover, the air pressure in the upper chamber was modulated 

mechanically as it was to have been at Osaka, with the lower one 
bulging and contracting accordingly; i.e., the structure audibly and 
visually “breathed.” Unlike at Osaka, however, where images and 
information were to have been projected on to the inside surface 
of the fabric, in Oslo these were left white. The homage in this case 
was to the space itself, to the experience of that empty space – and 
to the master architect that was Sverre Fehn. 

Hirshhorn Bubble

The other unbuilt pneumatic project that we will examine here 
is the 2009 design proposal for an extension to and/or insertion 
into the Hirshhorn Museum in Washington, DC, by architects Diller 
Scofidio + Renfro (DS+R). In this case, an inflatable translucent fabric 
“bubble” was to have been inserted within the central courtyard 
of the 4-story-tall cylindrical-ring-shaped 1974 Modernist building 

Illustration 11.57
Ode to Osaka Pavilion.
Section drawing through inflated double-air-chamber installation, set within the context and 
confines of Sverre Fehn’s concrete and glass pavilion addition to the museum. Historical 
museum building seen at right. 
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designed by Gordon Bunshaft of SOM that is located directly on 
the Mall. (Ill. 11.58, 11.59, 11.60.) The “Bubble” was conceived 
of as being a seasonal structure that would have been deployed 
on an annual basis for a month or two at a time (which would have 
taken about a week of staging time and half an hour to inflate), 
and it was to contain space at the ground level for a temporary 
stage and semicircular seating for up to 800 people for various 
special events like symposia, lectures, and debates as well as for 
performances and informal exhibitions, including film and image 
projections onto the fabric membrane.

As can be seen, the inflated air chamber would have run right 
up the height of the cylindrical void, although not quite touching 
the encircling concrete ring of gallery spaces, and it then bulged 
out at the top in a skewed form that would have been in interesting 
dialogue with the many historical domes of the Mall. At the base, 
a small off-shoot from the central chamber squeezed between the 
ground and the underside of the pilotis-elevated concrete ring of 
the existing building and then pushed outward from the bottom 
side of the Hirshhorn, giving the impression that the substantial 
weight of the drum was pressing down on the easily deformable 
balloon structure.

Unlike for Sverre Fehn’s completely interior proposal for Osaka, 
in this case the wind would have very much been able to act on 
the inflated form, especially on that part protruding out from the 
top, and caused it to substantially move and deform, and so some 
movement of the inflated structure had to be permitted and yet 
not so much that it would touch the preexisting structure; steel 

cables were therefore to tether the balloon to attachments on a 
roof level truss. Also, the bubble had to be anchored down so 
as not to “float away” in the wind, and this was to be done by 
means of other steel cables anchoring it to a large tube of water 
around the base of the structure, acting as a very necessary (yet 
temporary) counterweight/bench. Given the evident multiple design 
criteria, extensive trial testing needed to be carried out to find a 
suitable material that would satisfy the need for this membrane 
to be sufficiently flexible, durable, foldable, and translucent and 
luminous enough, and these trials concluded with the selection 
of a modified (PVC-) polyvinyl-chloride-coated polyester fabric. 

Design similarities and differences notwithstanding, in all three 
of the cases examined in this section there is a compelling and 
tantalizing contemporary sustainability theme being addressed: 
i.e., demonstrating the possibilities of inflatable structures to be 
thoughtfully and creatively designed as insertions into and in relation 
to preexisting buildings. Sizable floor area and volume expansions 
to/into preexisting buildings become possible at a fraction of the 
“normal” cost and material expenditures for corresponding space, 
simply by using existing construction and building frameworks to 
support extremely lightweight additions/insertions. Moreover, these 
examples also demonstrate just how such inflatable projects need 
not be, as is commonly assumed, mindless technology-driven forms 
but that in the right hands they can have their place as part of a 
thoughtful, conceptual design process. The design of inhabitable 
spaces “in context” thereby takes on a whole new set of possibilities. 

Illustration 11.58
Proposal for Hirshhorn Museum expansion, Washington, DC, USA (designed 2009). 
Rendered overview, with proposed inflated dome at lower right seen in context of 
other domes on the Mall. 

Architect: Diller Scofidio + Renfro (DS+R). 



439

Illustration 11.59
Proposal for Hirshhorn Museum expansion. 
Rendering of proposal, with inflated chamber emerging from the top and side of the 
elevated concrete cylinder of the existing 1974 Bunshaft/SOM-designed museum building. 

Illustration 11.60
Proposal for Hirshhorn Museum expansion.
Section drawing of proposed intervention, showing relationship to 
levels of preexisting cylindrical building. 



http://taylorandfrancis.com


441

12
c h a p t e rThe Arch and 

the Vault

12.1	 Padre Pio Church – The Stone Arch Revisited
12.2		 Arch Form as Historical Indicator
12.3		 La Cathédrale du Mans – An Arch Form Evolves
12.4		 Understanding Arch Behavior
12.5		 To Hinge or Not To Hinge?
12.6		 Compression Forces and Bending Moments in Arches
12.7		 The Foundations of the Arch
12.8		 Santa Caterina Market – A Roof Takes Flight 
12.9		 The Vault and Light

Illustration 12.1
Chartres Cathedral, Chartres, France 
(1260).
Gothic arches of the nave’s side wall and 
cross-vaulted ceiling stretch vertical space, 
enhancing lightness of structure and 
dwarfing human congregants.
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12.1	Padre Pio Church  
– The Stone Arch Revisited

Padre Pio (1887–1968) was the mystical Capuchin monk who became 
so famous for his bleeding stigmata and healing powers that he 
achieved sainthood in relatively short order in 2002. The southern 
Italian town of San Giovanni Rotondo was his home and is his last 
resting place. As sainthood in modern Italy is a serious affair and can 
attract hundreds of thousands of faithful, the architect Renzo Piano 
was commissioned to design the Padre Pio Pilgrimage Church in 
order to meet the spiritual and practical demands of such modern 
mass veneration. (Ill. 12.2.)

Pilgrims following the processional route walk along the wall 
of a narrow city street and suddenly arrive at a large open space. 
To the left are views overlooking the rolling green scenery of the 
Puglian landscape and the far-off coast of the Adriatic Sea. Straight 
ahead is a stone-paved piazza that slopes gently down toward the 
front of the church; the stone paving then continues on into the 
church, integrating the exterior and interior spaces and giving the 
whole a feeling of an open house. Overall the plan arrangement 
follows that of a spiral, subtly drawing people deeper toward the 
focus of the interior space. (Ill. 12.3.) But it is really the structural 
form of this church which is the most distinctive and the reason 

for our own pilgrimage to it, consisting of an overlapping array of 
stone arches radiating out from the central altar where the remains 
of Padre Pio now lie.

Even though mastering the art of designing arches made of 
stone has very long traditions in Europe, the use of this material for 
this purpose is somewhat unexpected for us today. One relevant 
point of comparison for the structure of the church in San Rotondo 
might be to the flying buttressed Gothic cathedrals: as did the 
master builders for those structures in their time, Padre Pio Church’s 
designers have also used some of the most advanced building 
techniques available to them. Each arch at Padre Pio is composed 
of up to 50 different segments of stone that were quarried from 
the local pale Apricena marble, but in this case each stone was 
precisely designed and cut using digital technology instead of by 
age-old methods. In this way, the stones of the arches could be 
made to bear in compression exceptionally evenly against one 
another and they could be independently sized and shaped with 
little additional cost. Moreover, the subtle variations of the digital 
stone-cutting process allowed the shapes of the arches to follow 
those of tilted parabolas, and a great variety of spans was also made 
possible for this most traditional of building materials and structural 
forms – with some reaching a staggering 50m (160ft). (Ill. 12.4.) 
Once in place, the stone segments of each arch are pre-stressed 

Illustration 12.2
Padre Pio Church, San Giovanni Rotondo, Italy (2004).
Overlapping arches made of several large stone segments form distinctive aspect of church; segmented 
roof is propped off these by steel struts; stone paving integrates interior and exterior spaces.

Architect: Renzo Piano Building Workshop. Structural engineer: Arup and Favero and Milan Ingegneria S.r.l.
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Illustration 12.4
Padre Pio Church.
Arched stone ribs vary in height and span. Thin V-configured steel struts serve to 
raise the timber-lined roof above arches and side wall.

Illustration 12.3
Padre Pio Church. 
Overall spiral arrangement 
of arches focuses space and 
funnels circulation toward 
central altar.

Cornell model by Eric Vollmer.
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together and stabilized against the effects of earthquake motions 
by means of internal stainless steel cables.

By using stone for both the arches and the floors, the church 
is given a consistent spatial unity and there is direct reference 
made to local building traditions; other natural and long-lasting 
materials used in the project are laminated larch timber for the 
roof beams and pre-oxidized copper for the roof itself, whose 
overlapping segments are “floated” on pairs of steel struts that 
project upward from the arches, allowing rays of daylight to enter 
deep into the interior space. Early work on the Padre Pio Church 
was one of the last of several uniquely creative collaborations 
between the architect Renzo Piano and the structural engineer 
Peter Rice (1935–1992) and it reflects Rice’s previous experience 
and contemporary experimentation with that most traditional of 
building materials and structural types: the stone arch.1 (We will 
briefly encounter one of these earlier “experiments” a bit later in 
this chapter (see Ill. 12.19).) 

12.2	Arch Form as Historical Indicator

The arch represents one of the most widely known and basic forms 
of structure and it has a long and distinguished history. The particular 
details of the arch shape, on the other hand, have developed 
differently according to cultural context and as an understanding 
of its behavior under loading evolved over the ages.

The origins of the arch are lost in the ancient cultures along 
the Nile, Tigris, and Euphrates rivers, centuries before recorded 
time. However, in the granaries of Luxor in Egypt one can find 
long arch-vaulted storehouses built of clay brick that have endured 
some 3400 years. (Ill. 12.5.) The Egyptian architect Hassan Fathy 
(1899–1989) studied such ancient building techniques in order 
to apply them to contemporary social housing; after visiting the 
granaries he wrote in understated fashion: “It seemed like a fairly 
durable substance.”2

Illustration 12.5
Granaries of Ramesseum, Luxor, Egypt (approximately 1400 bc). 
Rubble fill above sides of clay brick vaults helps stabilize form; presages the favored 
Roman technique.
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A remarkable historical landmark of the arch form, the Taq-I 
Kisra, stands in the forgotten city of Ctesiphon north of Baghdad. 
(Ill. 12.6.) Viewed from a distance the outstanding curved shape 
of the massive brick structure looms over the desert; it consists of 
a huge arch rising some 40m (131ft) above the ground, 27m (89ft) 
wide at its base, reputedly the widest single span of unreinforced 
clay brick in the world. Besides its overwhelming scale and structural 
accomplishment, however, this structure possesses another distinctive 
visual quality: the almost-parabolic curve gives it an air of uplift 
and lightness which is very different from the more “grounded” 
semicircular arch profile later adopted by and forever associated 
with the Romans.

Examples of this latter arch form abound, of course, when walking 
around the Italian capital. For example, along the Via Sacra from 
the Campidoglio to the Forum, one passes through the Triumphal 
Arch of Emperor Septimius Severus. (Ill. 12.7.) This monument was 
erected in the second century by the soldier-emperor to celebrate 
one of his greatest victories and the typical semicircular arch form 
frames the view of some of the most important historical sites in 
Rome. Not far from this are many other examples of the period, 
including the arch-dominated forms of the Foro di Augusto, the 
Coliseum, and the Tiber-spanning arches of the Ponte Fabricio 
and Ponte Cestio. Further afield, the Pont du Gard aqueduct 
near Nîmes ensured the provision of water to that city in (now) 
southern France and is but one of innumerable examples of how 
the Romans took advantage of the intrinsic potential of the arch 
to achieve truly remarkable structures throughout their expansive 
empire. (Ill. 12.8.)

The pointed arch, on the other hand, was both introduced 
and extensively developed by the Gothic master builders during 
the Middle Ages. In a series of French cathedrals beginning with 

Illustration 12.6
Taq-I Kisra, Ctesiphon, Iraq 
(600–300 bc).
Near-parabolic profile of huge 
clay-brick arch is precursor of 
things to come hundreds of 
years later.

Illustration 12.7
The Triumphal Arch of Emperor Septimius Severus, Rome, Italy (146–211).
Semicircular arch form was much favored by Roman designers, here 
decorated for celebratory purposes in the Roman Forum.
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Chartres (see Ill. 12.1), and including shortly thereafter Reims, 
Amiens, Beauvais, and others, the Gothic arch evolved and was 
taken to perceived perfection of form. The characteristic elongated 
profile of this arch, and the accompanying development of the 
flying buttress system to support tall cathedral walls was, of course, 
particularly well suited to their designers’ desire for verticality and 
lightness of space. This topic of the evolution of the profile of the 
arch over time and within a single cathedral is the focus of the 
following section.

The distinctive form of the arch in Islamic architecture is also 
clear in our minds: it curves outward at first from the base but then 
curls back in on itself with its closure and we can find offspring of 
this arch form in the Moorish palaces in Spain and Venice. (Ill. 12.9.) 

Illustration 12.8
Pont du Gard, near Nîmes, France (first century).
Multi-layered series of stone arches sitting atop of one another combined to help supply 
Roman cities with water; lead-plate-lined channel ran along the top for this purpose.

Illustration 12.9
Pena Palace, Sintra, Portugal (1847). 
Openings in garden wall display classic profile of Islamic 
arches, with lower part curving back inward from the vertical 
alignment of the base of a semicircular arch form.
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Beginning during the Middle Ages and continuing through the 
Renaissance and on to this day, arches composed of circle segments 
and later of parabolas and ellipses or combinations of several of 
these basic geometrical curves have been built. (Ill. 12.10.) As we 
will see shortly, the parabola-shaped arch in particular can be taken 
as a manifestation of the advancement in scientific understanding 
of how arches work (though it is perhaps ironic, if not accidental, 
that an arch very close to this shape was built at Taq-I Kisra roughly 
two millennia earlier (see Ill. 12.6)). 

Bracketing the ages, certainly the most striking contemporary 
example of a similar form is to be found in St. Louis’ Gateway 
Arch, monument to the opening up of the western American 
continent. (Ill. 12.11.) In its incredible scale and construction out 
of metal plates, this structure also serves as a convenient reminder 
of the important developments in the production of iron and steel 
that took place during the Industrial Revolution and that have so 
significantly affected arches as well as all other types of structural 
forms for the past 150 years. When paralleled by the need for the 
large open spaces of train sheds and industrial buildings in the 
mid- to late-nineteenth century, this innovation in material led to 
the building of remarkable spaces created by long series of arched 
ribs all covered by glass – a system and combination representing 
both physically and metaphorically the deep transformations then 
taking place in society.

Illustration 12.10
Florence, Italy.
Varying bridge profiles across the Arno River including, at center, the 
segmental arches of Ponte Vecchio (1345).

Illustration 12.11
Gateway Arch, St. Louis, MO, USA (1965).
Overall profile is approximately that of inverted catenary 
(shape of hanging chain suspended at two ends). Resistance 
to transverse wind is provided by vertical cantilever action 
of the wide and hollow steel tube form of the arch legs; 
this also allows for an internal elevator up to an observation 
platform at apex.

Architect: Eero Saarinen. Structural engineer: Severud, Elstad, 
Krueger, and Associates.
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12.3	La Cathédrale du Mans  
– An Arch Form Evolves

While the exterior of an early Christian church was typically a 
continuous, enclosing wall envelope and that of the Romanesque 
church often a stronghold fortification, the wall of the Gothic church 
became relatively thin and transparent. As admirer and engineer 
Pier Luigi Nervi (1891–1979) would put it hundreds of years later: 
“The Gothic builders were the first real forerunners of modern 
technology, eliminating the heavy masses of masonry used by the 
Romans and replacing them with equilibrium of forces created by 
the interplay of thrust and counterthrust of slender ribs.”3

Like many cathedrals, that at Le Mans (begun in 1056) was 
developed and built over a period of a couple of hundred years; 
nonetheless, there is evident in its finished form a never-ending 
desire to achieve the original ambition and conceptual idea of the 
project. The church is also telling in its as-built details of the story 
of evolving architectural styles during that two-century period: 
the cathedral has a distinctive longitudinal Romanesque quality, 
with five groined vaults along the nave, each with slightly pointed 
arches covering a square. (Ill. 12.12.) This nave, with its simplified 
harmony and fine proportions, is considered to be one of the most 
beautiful Roman interiors in transition: despite the subtle peak 
in their form, the arch profile here is still strongly based on the 
tradition of rounded arches. While covering square floor areas, what 
can perhaps be considered to be the most important architectural 
innovation that the pointed arch and the groined vault introduce is 
not yet fully exploited; namely, the possibility that this form opens 
up for covering not merely square bays but also rectangular ones. 
Since the height of a vault made with pointed arches is no longer 
directly bound by the size of the arch span (which is the case for a 
semicircular arch where the height is half the span), plans and vertical 
spaces can be made more flexible and irregular. The thirteenth 
century then saw the construction of the apse of the cathedral with 
its 13 side chapels fanning out in plan, and here the vaults are built 
with a distinctly pointed Gothic profile (Ill. 12.13.) On the outside 
of the cathedral, one can observe the drama of three-story-high 
arched flying buttresses counterbalancing the outward thrusts of 
the interior vaults around the apse, and the plan drawing of the 
cathedral makes these differences quite evident. (Ill. 12.14.)

Illustration 12.12
Cathédrale St.-Julien du Mans, Le Mans, France (1254).
Rounded, Romanesque-style arches of nave.
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Illustration 12.13
Cathédrale St.-Julien du Mans.
Pointed, Gothic-style arches of apse. The difference in the arch profiles is 
especially apparent along the sides of the nave in this and the preceding 
image, as well as in the outline of the stained-glass windows at the far 
ends of these views.

Illustration 12.14
Cathédrale St.-Julien du Mans.
Plan drawing, where difference between the two parts of the nave and 
apse portions of the cathedral is clearly evident; the structural bays of 
the nave with rounded arches are squares while the bays of the apse 
with pointed arches are rectangles.
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12.4	Understanding Arch Behavior

Common for all types of arches is the elevated position of the center 
of the structural form compared to the level of the supports on 
either side. Also, as we will see shortly, these support conditions are 
very particular such as to ensure that the load is primarily borne by 
compression forces in the arch, which depends on the supports being 
held in place both vertically and horizontally, with no movements 
allowed. These two physical characteristics of overall profile and 
of load-carrying mechanism have helped to give the arch a very 
long and distinguished history in architecture; i.e., the compressive 
stress strength of traditional materials such as stones and bricks is 
extremely well suited to primary compressive arch action and the 
vaulted form is particularly appropriate to enlarging and heightening 
interior space while allowing for the development of unique and 
expressive architectural styles.

In order to better understand the fundamental logic of the arch 
and how it carries load, it is helpful to briefly revisit once again the 
behavior of the simple cable that we discussed in the preceding 
chapter. As we suggested then, if we hold a rope with two hands 

and hang a weight at the rope’s midpoint the rope will take on 
an overall “V” configuration so as to be in pure axial tension. 
(Fig. 12.1a.) Moreover, we have established that in addition to the 
downward pull that we feel in our hands as we hold up the ends 
of the rope, we will also experience forces tending to pull our 
hands inward toward each other. In order to maintain equilibrium, 
therefore, we know that we must react against these tendencies by 
pulling both upward and outward with our hands. If we were to now 
conceptually “freeze” the rope in order make it stiff (or substitute it 
with a material such as wood or stone, for example) and then invert 
the resulting form, the load at the apex would now be borne by 
pure compression in the “legs” of the inverted-V arched structure. 
(Fig. 12.1b.) As before, our hands must still hold up the ends since 
gravity does not change direction, but now the compression within 
the structure will press outward at the supports and we must react 
by pushing inward in order to have equilibrium. As an aside, it is 
worth confirming what we instinctively already know: that it is not 
possible for an arch to be made of thin rope; in compression, a 

Illustration 12.15
Leonardo da Vinci’s sketches of arch support 
conditions and horizontal reactions.

T

C

T

C

Figure 12.1
Straight lines of point-loaded cable structure and 
corresponding inverted arch form.
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rope will buckle out of alignment before any load can be carried. 
Therefore, we understand intuitively that an arch profile needs 
to be thicker than that of an equivalent cable structure, and our 
experience of arches in the form of stone blocks and large, curved 
timber glue-laminated members indeed confirms this.

We can go further with this reversal-of-form analogy. If we again 
take the rope and this time subject it to vertical load that is uniformly 
distributed along the horizontal span between the supports, we 
will recall from the previous chapter that it will take the shape of a 
parabola so as to be able to bear the load in tension throughout. 
(Fig. 12.2a.) When this configuration is inverted into a parabolically 
shaped arch, the structure can analogously be understood to bear 
the uniformly distributed loading by means of “pure” compression 
force along the axis of the arch.4 (Fig. 12.2b.) Close approximations 
to such loading conditions and to the associated overall parabolic 
form can indeed be found in the work of a wide range of architects; 
notably in some of the structural-action-expressive projects of 
Santiago Calatrava. (e.g., Ill. 12.16.)

Beyond the preceding two relatively simple rope-to-arch 
inversions, it can correctly be extrapolated that for every loading 
condition, no matter how simple or complex, there is a very particular 
arch geometry for which there will be “pure” compression stresses 
throughout the structure. Such a shape, whatever it may be, whether 
an inverted V or a parabola or something else entirely – is labeled 
as the ideal or funicular configuration of the arch for the associated 
load condition. It is of historical interest to note in this context 
that in the era before the advent of computer structural modeling 
some very complex three-dimensional arch forms were created 
using just this cable-to-arch-reversal process, of which surely the 
best known are the phenomenal hanging models used by the 
Catalan architect Antoni Gaudí (1852–1926) to design the Colonia 
Güell chapel near Barcelona. (Ill. 12.17, 12.18.) Other, more recent 
examples of essentially funicular forms can also be recognized for 
the very particular and predominant loading conditions of the arches 
of the Pavilion of the Future (Ill. 12.19) and the Campo Volantín 
Footbridge. (Ill. 12.20.) 

Illustration 12.16
L’Umbracle, City of the Arts and Sciences, Valencia, Spain (2002).
Catenary (nearly parabolic) profile of light steel arch ribs corresponds to 
uniform-along-the-arch loading condition produced by self-weight of ribs 
and cross bars, resulting in “pure” compression forces along the arch.

Architect and structural engineer: Santiago Calatrava.
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Figure 12.2
Parabolic cable profile for load that is uniform along 
horizontal span and corresponding inverted arch form.
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Illustration 12.18
Colonia Güell Chapel. 
Unusually angled arch forms established from hanging chain model so 
as to favor their being in “pure” compression and minimizing bending as 
much as possible.

Illustration 12.17
Model for Colonia Güell Chapel, near Barcelona, Spain (1915). 
Antoni Gaudí’s hanging chain model. 
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Illustration 12.19
Pavilion of the Future, Seville, Spain (1992).
Vertical hanger loads are converted into radial set of tension rods; semicircular arch form corresponds to the funicular 
profile for this load distribution. Example of one of Peter Rice’s “experiments” in resurrecting stone arch technology, 
and a precursor to the stone arches of the Padre Pio Church discussed in Section 12.1.

Architect: Martorell Bohigas Mackay. Structural engineer: Peter Rice.

Illustration 12.20
Campo Volantín Footbridge, Bilbao, Spain (1997).
Inclined cable hangers supporting pedestrian walkway connect mostly toward the middle of the 
arch, resulting in near-parabolic funicular form; the sides of the arch are straight, however, where 
no load-carrying cables connect to it. 

Architect and structural engineer: Santiago Calatrava.
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But as compelling as the structural logic and “purity” of such 
forms may be, there is a problem with limiting our understanding 
of the arch to such unique conditions. If an arch could only work in 
the load-specific funicular configurations that we have so far been 
discussing, the infinite variability of loading caused by live loads 
(whether due to occupancy or wind, for example) would imply that 
the structure would forever need to be readjusting its shape in 
order to always ensure compression stresses throughout – clearly 
something that could not happen, without causing severe physical 
and emotional distress in an inhabited building! Evidently, our 
understanding of arch behavior cannot yet be considered complete.

As previously noted, an arch requires substantial cross-sectional 
dimension because of its buckling tendency as a compression 
structure; the consequence of this physical thickness is that the arch 
also inherently has a structural capacity to offer some resistance 
to the tendency to change shape as loading conditions vary. Such 
resistance to deformations transverse to the curved centerline of 
the arch (i.e., against bulging outward or bowing inward from the 
original profile) is provided by the arch’s flexural stiffness and thus by 
bending stresses being established throughout the arch – something 
that may at first seem quite unexpected, for now we are talking 
about an arch that is not only carrying loads in compression but 
that is also working in beam-like fashion where bending moments 
are produced. (Fig. 12.3.) Where the arch tends to bulge outward, 
bending action’s tension stresses will develop on the outside face 
of the arch and compression on the inside, with a linear variation 
of magnitudes from one side to the other across the arch thickness, 
and vice versa where the arch tends to bow inward.

From this discussion, it can correctly be inferred that the general 
condition for arches to carry load is by means of some combination 
of both axial compression stresses and bending stresses. As was 
implied earlier as an extrapolation from cable behavior, the funicular 
profile is the (no-bending) exceptional case rather than the general 
rule governing arch behavior. There is, as a result of this typically 
combined load-carrying mechanism, the potential for significant 
variation in the shaping of the arch, and rather than seeing a certain 
arch profile as being the only one capable of working for a particular 
loading distribution, we can instead consider that a wide range 
of arch shapes are in fact possible for that purpose depending on 
which materials are being used. And coming back to our original 
concern, the converse must also be true: i.e., any particular arch 
profile that is subjected to variation of load over time will be able 

T

C

T

C

Figure 12.3
Stress condition variations according to structural form: (a) axial 
but no bending stresses for parabolic arch supporting uniformly 
distributed load, (b) bending but no axial stresses for simply 
supported horizontal beam, (c) both axial and bending stresses 
for semicircular arch subject to uniform load over horizontal span.
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to handle these changes by adjusting not its shape, but rather its 
load-carrying mechanism to new combinations of compression and 
bending stresses so as to always maintain equilibrium, at least as 
long as material capacities are not exceeded.

These statements lead us to an interesting reconsideration of 
the most famous of arch profiles: i.e., that of the Roman masonry 
semicircle. Given our preceding discussion, such a profile is now 
known to clearly not be “ideally” shaped for the common condition 
of loads that are uniformly distributed along a horizontal span, 
nor would its masonry material seemingly be well suited to the 
tension stresses that would result from any significant bending 
action in the arch. Yet the Romans adopted this shape almost to 
the exclusion of all others and did so with such structural success 
that many examples remain standing 2000 years later. Clearly, they 
had to have developed an effective means of dealing with the 
inner workings of their preferred arch form. Indeed, upon closer 
examination, we find that the Romans typically took to filling in 
the areas over the curved ends of their semicircular arches with 
rubble and concrete, thereby changing the loading pattern and 

stabilizing the arch so as reduce potential deformations and be 
better able to deal with bending behavior. (e.g., Ill. 12.7 and Ill. 
12.8.)5 Indeed, the loose stone fill material weighing down the 
vaulted structures of Egyptian master builders is evidence that this 
basic arch-stabilizing principle had been understood well before 
the Romans adopted it with such success. (Ill. 12.5.)

Such techniques would obviously have been much more critical 
historically when masonry building construction prevailed, partly 
because the dead load of those structures was so dominant over live 
load magnitudes but mostly because of the weakness of masonry 
materials to withstand any net tension stresses that could result 
from significant bending action in an arch. Today, of course, material 
capacities are much greater and often include considerable tensile 
capability, thereby giving the arch designer much more freedom in 
choosing geometric profiles, as is evident in the elliptical thin steel 
ribs of the Brin metro station in Genoa that curve back inward upon 
themselves near their base or with the multiple undulations of the 
Zentrum Paul Klee. (Ill. 12.21, 12.22.) Nonetheless, it is telling that 
the cross-section of each arch rib in these two examples is shaped 

Illustration 12.21
Brin Station, Genoa, Italy (1994). 
Elliptical arch ribs curve back upon themselves, requiring material that can withstand significant 
bending without failing. 

Architect: Renzo Piano Building Workshop. Structural engineer: D. and L. Mascia. Cornell model by 
Jacob Werner.
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Illustration 12.22
Zentrum Paul Klee, Bern, 
Switzerland (2005). 
(top) Multiple, continuous, 
undulating arch ribs are 
subject to much bending; 
(bottom) each arch rib is in 
cross-section a deep steel 
plate box-girder, a form 
well suited to this purpose.

Architect: Renzo Piano 
Building Workshop. Structural 
engineer: Arup.
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in the form of a flanged “I”-shape, which we know from Chapter 
7 is strategic for resisting bending action; obviously, some of the 
previous lessons learned about how structures work and can be 
strategically shaped can be reapplied in different circumstances. 

It nevertheless remains an inescapable truth that the closer an 
arch’s profile is to the funicular shape for a particular load condition 
the more compression stresses will do the work of carrying the load 
and the less will bending behavior have to be called upon. And 
since from our discussion about beams we know just how inefficient 
bending action is as a means of carrying load, we can conclude 
that despite the freedom of form that is technically possible today 
there is distinct material efficiency advantage for an arch to follow 
as closely as possible the funicular curve for the predominant load 
condition. This will be an especially important strategy, obviously, 
for arches that carry very heavy loads or that we otherwise seek to 
make as slim and slender as possible.

We will examine more closely the topic of combined compression 
and bending action in the arch in the context of material stresses in 
Section 12.6; for now, however, it is enough to observe that great 
freedom of arch shape is made possible by it.

12.5	To Hinge or Not To Hinge?

As a means of further developing an understanding of basic arch 
behavior, it is convenient to next consider another very particular 
type of arch: the widely known and historically popular three-
hinged arch. As its name implies, this type of arch has three points 
along its profile where the structure can rotate without restraint; 
i.e., the arch is in some way articulated so as to be purposefully 
free from any bending action at those locations. Often, although 
not necessarily, these hinge locations are placed at the two base 
support points as well as at the apex of the arch (Fig. 12.4); aside 
from the unique detailing that is needed in order to allow for free 
rotations to occur, these strategic locations may also be part of 
the reason that hinge points have often been richly decorated or 
otherwise emphasized in arch structures. (e.g., Ill.12.23–12.26.)

Illustration 12.23
Abattoirs de la Mouche, Lyon, France (1913).
Hinge detail at base of arch that expresses ability of structure to 
rotate freely at that point; dimension of trussed arch rib tapers to 
minimum possible.

Designer and structural engineer: Tony Garnier.

Illustration 12.24
Abattoirs de la Mouche.
Hinge detail at apex of the arch that expresses ability of structure to 
rotate freely; trussed form of arch elsewhere expresses its ability to resist 
bending as well as compression. 

Figure 12.4
Symmetrical three-hinged arch configuration, with 
hinges at top and at two base supports.
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Illustration 12.25
Brentwood Skytrain Station, 
Vancouver, BC, Canada 
(2002).
Hinge detail at base of arch 
expresses ability of structure 
to rotate freely; flanged 
steel profile and rectangular 
glulam segments of arch 
provide both bending 
and compression capacity 
elsewhere in the arch.

Architect: Busby + Associates 
Architects (now part of 
Perkins+Will). Structural 
engineer: Fast & Epp Partners.

Illustration 12.26
Nature Boardwalk Pavilion, 
Lincoln Zoo South Pond, 
Chicago, IL, USA (2010).
Hinge detail that expresses 
ability of structure to 
rotate freely; orientation of 
rectangular section of the 
arch corresponds to arch’s 
being able to withstand 
bending and compression in 
its plane. 

Architect: Jeanne Gang 
Architects. Structural Engineer: 
Magnusson Klemencic 
Associates. 
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Our choice of examining this particular arch form is not 
coincidental. In fact, its popularity over the past 150 years has 
had much to do with the fact that by introducing three hinges 
the arch “magically” becomes statically determinate. Of course, 
there is a rational explanation behind this strategy. If the two base 
support points of a continuous planar arch are at first considered 
to be fixed, then there will be three possible reactions at each 
support (i.e., vertical and horizontal forces and a moment reaction), 
which would lead to a total of six unknown reactions needing to be 
determined – not something that is easily done by hand methods 
when there are only three equations of equilibrium available to 
solve for these. If both of these supports are hinged, however, then 
we are down to only four unknown reactions. And if we provide 
a further physical release by introducing a hinge at the top of the 
arch, then we have another equation of equilibrium available to 
us at that point (ΣM = 0), which means that we now have a total of 

four equations that are available to solve the four unknown force 
reactions at the supports. Once that is done, all of its forces and 
stresses can be completely and precisely determined by hand 
calculation methods, certainly an important consideration before 
the advent of computers, but also an attribute that we will use to 
advantage here in the pages that follow. Today, more complex 
forms and more sophisticated methods of structural analysis permit 
structurally indeterminate two-hinged or even continuous (hinge-
less) arches to routinely be used to aesthetic and structural benefit 
(i.e., greater stiffness and, therefore, less distortion under load). 
One very clear example of just such a fixed support condition can 
be seen at the base of the arched entrance for the Canary Wharf 
Underground Station in London. (Ill. 12.27.)

This is not to say, however, that statically determinate three-
hinged arches are for the past: when Sir Nicholas Grimshaw 
designed the Waterloo Train Station in 1993, he clearly chose 

Illustration 12.27
Canary Wharf Underground Station, London, UK (1999).
Example of fixed support at base of steel arch; rotation is prevented, and arch rib thickens to 
match large moment reaction from support. Arch rib dimension diminishes up to apex, where a 
cylindrical rod provides a hinge connection between the left and right halves of the structure.  
(See also Ill. 12.49.)

Architect: Foster + Partners. Structural engineer: Arup.
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to reference the typical arch forms of the past century’s train 
sheds with a clearly articulated three-hinged arch profile that 
greets passengers upon arrival in London. (See Ill. 12.31.) The 
three-hinged arch form also has the attribute of being relatively 
structurally forgiving in the sense that, for example, the vertical 
settlement of one support will not occasion supplemental stresses 
in the arch segments, an especially important consideration for 
long-span roof structures or bridges where the ground conditions 
might very well vary from one arch support to the other. In the end, 
therefore, the decision today on whether or not to include hinges 
in an arch ends up being some carefully considered combination 
of technical necessity/advantage and aesthetic/conceptual design 
objectives. For our purpose at this point, however, there are some 
important lessons that can be gleaned from analyzing in detail 
the workings of the three-hinged arch that also can be applied 
more generally to other arch structures, and it is to this task that 
we now turn our attention.

We begin by considering a symmetrical three-hinged arch of 
height h and total span L that carries a uniform load w. (Fig. 12.5.) 
At each of the two hinged base supports, there is the possibility of 
both vertical and horizontal reaction forces. The symmetry of the 
situation leads to the obvious fact that the vertical support reaction 
at each end of the arch will be half the total applied load; i.e.,

VR = VL = (wL)/2

It is to be noted in passing that the arch’s vertical reactions do 
not depend on the height of the arch (except for the contribution 
of some extra self-weight resulting from a higher arch).

The horizontal reactions are somewhat less easily determined, 
but this can be done by dividing the symmetrical arch into two 
identical half structures. At the location of the hinges we know that 

there cannot be any bending moment since we allow the adjacent 
arch elements to rotate freely at that point, and the symmetry of 
the loading situation dictates that there will be no relative vertical 
displacement or vertical shearing of the left half of the arch relative 
to the right, or vice versa. The resulting half-arch free-body diagram 
(Fig 12.6) must necessarily satisfy all the conditions of statical 
equilibrium, including that

ΣM = 0 (taken about any point in the structure)

If we choose to take ΣM = 0 about the top hinge point for the 
half structure since, again, there cannot be any bending moment in 
the hinge and also remembering that this must be true if the part 
of the structure that we are considering is not to rotate in space, 
the result is the following equation:

(H) (h) – (wL/2) (L/2) + (wL/2) (L/4) = 0

which when simplified and rearranged leads to

H = (wL/8) (L/h)

Contemplating this result, it is clear that the magnitude of the 
horizontal reaction needed to support an arch is dependent not 
only on the magnitude of the vertical load, but it is also inversely 
proportional to the height-to-span ratio, h/L; i.e., for the same 
loading, a relatively “flat” arch will thrust outward much more strongly 
and its base supports will need to be correspondingly bigger to 
resist this force than will be the case for an arch which is relatively 
“tall.” The physical options and architectural implications of this 
observation with regard to support conditions will be discussed 
in Section 12.7.

Figure 12.5
Pinned arch supports provide vertical and 
horizontal force reactions.

Figure 12.6
Free-body diagram for right-hand half of 
arch when “cut” at apex.
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12.6	Compression Forces and Bending 
Moments in Arches

The basic principle of arch load-carrying behavior has already been 
described but it is worth repeating for emphasis: the arch carries 
load by means of both internal axial compression forces and bending 
moments. Methods of computing the varying magnitudes of these 
two distinct structural actions can quickly get quite involved, but a 
limited investigation here will prove beneficial to gaining a better 
understanding of arch behavior in general.

In the previous section, it was shown that the base support 
reactions for a three-hinged arch of height h and span L that is 
subject to uniformly distributed vertical loading w, as shown in 
Fig 12.7a, are:

V = (wL)/2 and H = (wL2)/(8h)
 
Applying Pythagoras’ most famous theorem, the effective reaction 

R whose magnitude and direction must necessarily be equal and 
opposite to the net axial compression force C in the arch at the 
support is, therefore,

R = Csupp. = √[(wL/2)2 + (wL2/8h)2]

Furthermore, reexamination of the horizontal equilibrium equation 
for the half arch that we looked at previously leads to the observation 
that the compressive force at the top of the arch must be equal 
in magnitude to the horizontal support reaction (Fig. 12.7b); i.e.,

ΣFx = 0
Ctop – H = 0
Ctop = (wL2)/(8h)

Figure 12.7
(a) Three-hinged arch subject to uniform loading, base support 
reactions, (b) free-body diagram for right-hand half of structure when 
cut at apex hinge, where there is compression force but no bending 
moment, (c) free-body diagram for lower segment of arch when cut at 
arbitrary location, where generally there is bending moment M as well 
as compression force C.
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When the load on the arch is symmetrical, as it is here, Ctop is a 
horizontal force; i.e., there is no vertical force component at that point 
since the (vertical) external load on the half arch exactly balances 
the vertical reaction force at the support. From these results, it 
can be extrapolated that the magnitude of the axial compressive 
force C in the arch is a minimum at its apex and increases to a 
maximum at its base. Moreover, as do the horizontal reactions, the 
magnitudes of the compression forces in arches also depend on 
the relative height-to-width proportions of the arch; i.e., the flatter 
the arch, the larger the compressive axial forces that must be dealt 
with throughout the structure. This axial force will everywhere be 
directed along the arch profile centerline.

Let us now consider what is happening with regard to bending 
action in the arch. With a three-hinged arch configuration, we 
ensure that at the hinge points there will be zero bending moment. 
But this is not necessarily so elsewhere along the arch; in fact, 
generally speaking it will not be the case. In order to determine 
the bending moment M in the arch at any generalized point 
having coordinates (x,y) we must consider the equilibrium of the 
free-body diagram of the structure on either side of an imaginary 
cut through the arch at that location. (Fig. 12.7c.) For there to be 
rotational equilibrium of this free body, the sum of the internal 
and external bending moments taken about the cut must be 
equal to zero; i.e.,

ΣM = 0
M + w [L/2 – x] [(L/2 – x)/2] – [(wL/2) (L/2 – x)] + [(wL2/8h)(h – y)] = 0

which, upon simplification and solving for M yields:

M = (wL2/8h) (y) – (w/2) (x)2	 (12.1)

This equation defines the bending moment in an arch according 
to the particular geometric relationship between the x and y 
coordinates for the arch profile being considered; i.e., whether it 
is parabolic, semicircular, etc.

We will first consider what we will soon see to be the special case 
of a parabolic arch. (Fig. 12.8.) The general form of the mathematical 
equation that defines a parabola, with respect to an x–y coordinate 
system that originates at the top of the arch is:

y = ax2

Knowing that the arch passes through the point having 
coordinates (L/2, h) means, therefore, that

h = a (L/2)2

a = 4h/L2

So that the equation which defines the arch’s profile is

y = (4h/L2) x2

For the parabolic arch form, therefore, equation (12.1) becomes:

M = [wL2/8h] [(4h/L2)(x2)] – [w/2] [x2]

which can be simplified to

M = [w/2] [x2] – [w/2] [x2]

Figure 12.8
Parabolic arch form and equation.
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Since the two terms on the right are found to be equal to each 
other, we can now see that for a parabolic arch subject to uniform 
vertical loading there will be no bending moment anywhere in 
the arch – i.e., we have a funicular form. This is irrespective of the 
arch height and span. Of course, things can get somewhat more 
complicated than this with the real-life variability of loading, but 
it is an important lesson nonetheless for the efficient shaping of 
arched structures, particularly those in which gravity dead loads 
predominate. (e.g., Ill. 12.28.)

If, on the other hand, an arch carrying a uniformly distributed 
vertical load is anything other than parabola-shaped, it can be 
inferred and shown that it will experience bending. This will be 
demonstrated for a semicircular arch (Fig. 12.9), whose profile’s 
mathematical equation relative to a coordinate system that originates 
at the apex of the arch shape is

y = h - √(h2 – x2)
Figure 12.9
Semicircular arch form and equation.

Illustration 12.28
Santa Justa Train Station, Seville, Spain (1991).
Parabolic arch profile subject to uniform load: funicular form minimizes bending action and arch rib thickness.

Architect: Cruz y Ortiz Arquitectos. Structural engineer: INECO.
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Figure 12.10
Relative magnitude of bending moment in semicircular arch 
corresponds to deviation of arch centerline from parabolic 
funicular profile for UDL condition.

Illustration 12.29
Sports Hall, École d’Ingénieurs ESIEE, Marne-la-Vallée, France (1987).
Semicircular arch profile subject to uniform load: rib thickness needs to account for bending as 
well as compression.

Architect: Dominique Perrault Architecte (DPA). Structural engineer: B.E.F.S. S.A.
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Substituting for y into equation (12.1), we find that

M = [wL2/8h] [h – √(h2 – x2)] – [w/2] [x2]

In this case, the two terms on the right-hand side are generally 
not equal to each other, and the bending moment is therefore not 
equal to zero everywhere as it was for the parabola. Using the arch 
profile as a baseline, the variation of bending moments calculated 
in this manner at various points along the arch can be presented 
graphically. In fact, it can be demonstrated that the magnitude of 
the bending moment at any point is proportional to the magnitude 
of the deviation of the arch profile from the parabolic funicular 
compression line for this load condition. (Fig. 12.10., e.g. Ill. 12.29.) 
Other arch shapes besides the semicircle can also be analyzed in 
an analogous fashion, and we will find that the bending moment 
will again vary in magnitude along the arch profile. In fact, such 
will be the case for any non-parabolic arch form to which uniform 
loading is applied, or conversely, for any parabolic arch form to 
which non-uniform loading is applied.

To conclude this section, let us reexamine all this from a slightly 
different point of view: i.e., in terms of the combined states of 
stress in the arch. For example, for a parabola-shaped arch that has 
uniformly distributed load applied along the length of the span the 
arch’s funicular line of compression runs along the arch centerline; 
i.e., at each cross-section of the arch, the compression forces will 
be centered at mid-thickness of the arch material and everywhere 
the magnitude of the stresses will be uniform across the thickness. 
If we now change the profile of the arch but we do not modify 
the loading distribution the position of the funicular compression 
line will no longer be at the centerline of the structural form. The 
stresses in the arch will then generally involve a superposition of 
tensile-to-compressive bending stresses in addition to the uniform 
compressive stresses typically associated with arch action. (Fig. 
12.11.) Whether we in fact still have net compression stresses all over 
a cross-section will obviously depend upon the relative magnitudes 
of these superimposed sets of stresses.6 If the bending stresses 
become large enough, net tension over a portion of a cross-section 
may result, with the potential for consequent problems if the arch 
material is not up to the task.

As a general summary, then, we have seen that arches will 
experience combined axial compression and bending moment 
sets of stresses. Two examples that reflect well this fundamental 
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Figure 12.11
Superposition of axial compressive stress and bending 
stresses; different relative magnitudes of these may or may 
not result in net tension stresses at various locations along 
the arch and across its depth/thickness.
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Illustration 12.30
Salginatobel Bridge, near Schiers, Switzerland (1930). 
Vertical walls of three-hinged concrete arch vary in dimension according to bending moment demand.

Designer and structural engineer: Robert Maillart.
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dual behavior by emphasizing the strong form-making influence 
of variations in flexural demand are Robert Maillart’s (1872–1940) 
reinforced concrete Salginatobel Bridge (Ill. 12.30), and Nicholas 
Grimshaw’s steel-trussed Waterloo Train Station. (Ill. 12.31.) In both 
cases, the arches are true three-hinged arches, and they can clearly 
be seen to thicken quite substantially where bending moments are 
largest and to have impressively minimal dimensions at the hinge 
points, bringing to mind the opportunity for variations in beam 
and truss depths that we saw in Chapters 7 and 9, respectively. 
For the case of the Waterloo Station it is also to be noted that the 
hinge is not at the top of the arch, nor is the arch symmetrical, 
suggesting the possibility of shaping arch profiles according to 
other design concerns – in this case the desire to emphasize the 
height of the left glazed side of the arched space that opens up 

toward the adjacent urban context as opposed to that of the right 
lower, almost solidly clad side that is next to a much less attractive 
expanse of commuter railway tracks.

A very different strategy for dealing with the same characteristic 
bending response of arches is also clearly illustrated on the façades 
of the Broadgate Exchange House (Ill. 12.32, 12.33), where diagonal 
members are used to stabilize relatively thin steel arches of constant 
dimension instead of having them be substantially thickened as in 
the two preceding examples. Beyond this, however, with the bases 
of the Broadgate’s outwardly thrusting arches lifted so clearly up off 
the ground on to pedestals that are visibly linked to each other by 
means of horizontal tension ties, the next section’s primary topic 
of discussion – that of arch supports and foundations – is also 
conveniently introduced.

Illustration 12.31
Waterloo Train Station. London, UK (1993).
Trussed arch ribs of roof vary in depth/thickness, from a minimum at three hinge points to maximum values 
halfway between. The truss ribs are triangulated in the third dimension so as to be able to resist buckling.

Architect: Nicholas Grimshaw and Partners. Structural engineer: Anthony Hunt Associates.
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Illustration 12.33
Broadgate Exchange House.
Four arches support the 
multiple floors of the 
building, two on the outside 
faces, two internally. 

Cornell model by Jennifer 
Miller.

Illustration 12.32
Broadgate Exchange House, 
London, UK (1990). 
Relatively thin arches 
support multistory building; 
arch profile is stabilized by 
diagonal members. Outward 
thrusts at base supports 
negated through horizontal 
tension tie. (See Ill. 6.29.) 

Architect: Skidmore, Owings 
& Merrill (SOM). Structural 
engineer: SOM. 
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12.7	The Foundations of the Arch

The way in which a building meets the ground can lead to its 
architectonic and structural clarification. In contrast to more 
conventional vertical load-carrying systems such as columns and 
walls, arches with their sweeping curving profiles and outwardly 
thrusting compression forces have a much more dynamic quality 
about them, with the consequent potential for distinctive visual 
expression at the supports. Resolving the play of forces at the 
transition between the arch and its foundation is therefore an 
important aspect in the design of such structures: we shall now 
look at a few ways in which the arch “lands.” 

Where competent ground conditions can be found, such as 
rock, the arch’s outward and downward push is allowed to bear 
almost directly against it (Fig. 12.12a); this has frequently been the 
way in which bridges across steep valleys have been built, such 
as that just seen with the Salginatobel Bridge. (See Ill. 12.30.) An 
alternative “grounded” strategy can be found in the abutments for 
the bridge at East 45th Street in New York City, not far from Grand 
Central Station. (Ill. 12.34.) Here the load-bearing arches are built 
in steel while the foundations use the rather incredible massiveness 
of granite-clad concrete blocks to transfer the thrust of the arches 
into the ground. The load transfer point is given special design 
attention with an angled surface that meets the compression of 
the arch. In this design there is a clear articulation and transition in 
terms of material, mass, and geometry of what is being supported 
and what is doing the supporting, with the angle of inclination of 
the receiving support accentuating the arch’s outward thrust into 
the massive block. Such a thin-metal-arch-to-massive-foundation 
resolution has many variations, and its basic configuration was 
sketched by da Vinci hundreds of years ago. (See Ill. 12.15, lower 
drawing.) A more recent example of this approach can be seen in 
the low slung arches of Marc Mimram’s Passerelle Léopold Sédar-
Senghor in Paris where the required resistance to very strong lateral 
thrusts is resolved by massive concrete abutments measuring up 

Figure 12.12
Alternate end support conditions to resolve outward thrust of 
arch: (a) foundation/ground able to counter directly by balancing 
inward compression force, (b) tie rod counters by means of tension 
needing to be anchored at opposite support.

Illustration 12.34
East 45th St. overpass, New York City, NY, USA.
Massive stone-clad block meets and counters 
outward-thrusting steel arch.
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Illustration 12.35
Passerelle Léopold Sédar-
Senghor (formerly the 
Passerelle Solférino), Paris, 
France (1999).
Open Vierendeel-form arch 
rib of footbridge’s lower 
pathway pushes hard into 
massive concrete foundation 
blocks embedded in the 
walled banks of the Seine.

Architect and structural 
engineer: Marc Mimram.

Illustration 12.36
Passerelle Léopold Sédar-Senghor.
Section highlights the low profile of the arch, multiple pathways along and over the arch, 
and integration of bridge into urban context.
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to 15m x 15m x 18m (50ft x 50ft x 59ft) that weigh 9731 tons  
(21 450kips) and that are embedded into the banks of the Seine 
River.7 (Ill. 12.35, 12.36.)

Alternative strategies such as friction or end-bearing piles may 
be needed for the foundations of arch supports where ground 
conditions are very poor and unable to resist the arch’s outward 
thrust or the weight of such massive abutments. And when it is 
desired that the arch be elevated up off the ground and made 
to “float” on vertical piers, as was just seen at the Broadgate 
Exchange House (Ill. 12.32), a different method of addressing the 
arch’s horizontal support can involve the use of a tension tie so that 
the outward push at one end is visually and physically balanced 
against that at the other. (Fig. 12.12b.) In fact, this has been an 
approach that has been frequently used over time, whether to 
lighten the potential massiveness of supports on the open side of a 
transversely vaulted arcade, such as at the Ospedale degli Innocenti 
(Ill. 12.37) designed by Filippo Brunelleschi (1377–1446) or, as we 
shall see shortly, to seemingly “float” the undulating ceramic tile 
roof over the Barcelona food market structure designed by Enric 
Miralles/Benedetta Tagliabue (Section 12.8).

Along the length of an arcade, the series of arches that 
typically abut one another have the advantage of base thrusts 
that conveniently negate or balance one another, resulting in the 
need to carry only vertical forces at the intermediate supports 
and allowing the possibility for these to therefore be much more 
slender than might otherwise be expected to support an arch. 
(Fig. 12.13.) The same will obviously be true for the mid-river piers 
of the myriad multiple-arch bridges of the world, representing a 

Illustration 12.37
Ospedale degli Innocenti 
arcade, Florence, Italy (1424). 
Into-the-courtyard thrust of 
arcade’s transverse vaults 
countered by tension tie rods.

Architect: Filippo Brunelleschi.

Figure 12.13
The outward thrusts of adjacent arches along arcade 
negate one another, allowing for slender interior 
supports, whereas the unbalanced thrust of the exterior 
arch must be countered by the outermost support.
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distinct advantage in terms of reducing any obstruction to water 
flow (e.g., see Ill. 12.10). Only at the ends of such an arcade or 
series of arches will the last, unbalanced outward arch thrust need 
to be dealt with expressly by one means or another.

However an arch’s support is provided, we should once again 
emphasize that the reactions’ essential function is to establish 
the arch’s primary load-bearing mechanism of compression. If the 
tendency of the arch to push outward is not resisted in some way 
then the arch mechanism will not work, whether the structure has 
an arch-like form or not. Indeed, if it is not resisted, what we are 
essentially left with is a structure that has no choice other than to 
work as a beam (albeit a beam having a curved elevational profile) 
that carries load only by means of what we know to be the much-
less-efficient bending stress mechanism and, therefore, results 
in a structure having much larger cross-sectional dimensions. If 
the support conditions prevent outward movement, however, the 
converse becomes true: compressive arch action is developed 
that allows the possibility for carrying greater loads or spanning 
much longer distances – an attribute of the arch that has long been 
recognized and applied over the course of architectural history and 
that continues to be strategically used to this day.

12.8	Santa Caterina Market  
– A Roof Takes Flight

Like other European cities, Barcelona has several covered public 
food markets that each form an essential part of its neighborhoods’ 
quality of life, both in an economic and a social sense. The site of 
the Santa Caterina Market in the Gothic quarter of the city near the 
medieval cathedral has a rich architectural history dating back at 
least to the Roman necropolis unearthed during excavations for the 
new building. Framed on three sides by the preexisting arched walls 
of the previous market from the nineteenth century, the structure 
by architects Enric Miralles (1955–2000) and Benedetta Tagliabue 
was opened in 2005. It essentially consists of a “flying carpet” roof 
of brightly colored ceramic tiles that provides inspiring and lofty 
spaces for the varied daily activities of its users: 60 vendors’ stalls 
share the open floor space with cafés, a supermarket, community 
services, and an area that is reserved for exhibiting the historical 
artifacts that have been discovered on the site.

Architects sometimes refer to the roof as a building’s fifth 
elevation, and this is undoubtedly the case here where the ridges 
and valleys of the irregularly folded surface can be prominently 
seen from many elevated vantage points. (Ill. 12.38.) Drawing upon 
the Catalan tradition of glazed tile ornamentation used by such 
Barcelona architects as Antoni Gaudí (1852–1926) and Lluís Montaner 
(1850–1923), the undulating roof over the market of Santa Caterina 

Illustration 12.38
Santa Caterina Market, Barcelona, Spain (2005). 
Urban context of market; undulating roof covered by multi-colored ceramic tiles patterned on pixelated image 
of fruits and vegetables. At center, piercing through roof, are three great transverse steel-trussed arch ribs from 
which the middle part of roof is suspended.

Architect: Enric Miralles/Benedetta Tagliabue of EMBT. Structural engineer: Robert Brufau and José Maria Velasco (roof).
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is clad in 300 000 hexagonal tiles that form an abstract, pixelated 
pattern of market fruits and vegetables in 67 different colors; its 
inventive graphic and material design involved a combination of 
computer simulations and practical testing.

Under the tiles, three layers of pinewood planking help shape 
and stiffen the curved roof surfaces that are supported on a series 
of three-hinged glue-laminated timber arches. (Ill. 12.39.) These 
arches’ profiles change as a reflection of the varying height and 
width of the roof undulations, while their bases are supported 
on a set of horizontal tubular steel trusses that run the length of 
the building at the bottom of the roof’s “valleys.” The trusses are 
carried at the ends of the market on tree-like columns, but in the 
middle of the open market space they are suspended from above 
on vertical hangers coming down from three great transverse tied 
arches that dramatically pierce through the roof surface in places. 
(Ill. 12.40.) The structural system for the roof thus can be seen to 
have a richly interwoven and hierarchical complexity as each layer 
is laid perpendicular to the one supporting it but these also overlap 
and intersect spatially with one another. Adding further to the visual 
richness of this busy place, it is at times hard to distinguish between 
the rehabilitated parts of the preexisting market structure and the 
new construction; historical walls and timber roof trusses are cleverly 
incorporated into the perimeter service areas of the new design.

Illustration 12.39
Santa Caterina Market.
Varying profiles of three-hinged glulam timber arches 
create undulations of roof. Bottom end of arches 
carried by steel trusses that run length of market, 
supported at the ends by columns and at center by 
being hung from three large transverse arches. Ends of 
the latter are tied together by pairs of tie rods, seen in 
foreground of image.

Illustration 12.40
Santa Caterina Market.
Section through structure, highlighting the series of three-hinged glulam arches that create the 
varied, undulating roof form, as well as the trussed “great” arches that span from side to side of 
the market and whose base supports are connected by horizontal tension ties. 
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12.9	The Vault and Light

Until this point we have mostly discussed the shapes and structural 
behavior of arches in the two dimensions of their elevational profile, 
but we have not expressly considered what is needed for these in 
the third dimension of space. A single arch standing on its own will 
of course need to be able to resist all lateral forces that are applied 
transversely to it, essentially by means of two curved, vertically 
cantilevered structures that join together at the top of the arch. 
It is typical, therefore, to find that a single arch will need to have 
significant width/thickness and structural capacity perpendicular 
to its plane, as can readily be observed in the case of the Gateway 
Arch. (See Ill. 12.11.) 

But the more common situation in an architectural context is 
to have either a continuously curved surface with an arched cross-
section or a series of arched ribs placed one after another along 
a longitudinal axis, thus creating what is commonly referred to 
as a vault. The extension of the arch into the three-dimensional 
vault form has been tremendously important in the history of 
building. At its simplest, the space created runs continuously 
in an arched cross-sectional form from one end of a building to 
the other, thereby creating a room with a raised central ceiling 
and a strong directional orientation. (e.g., Ill. 12.41, 12.42.) This 
room is typically used for building projects that serve special 

Illustration 12.42
Boeotia Art Warehouse.
Section drawing reveals relative simplicity of reinforced concrete 
vaulted form. Also indicated is that there are two layers of steel 
reinforcing bars within the thickness of the concrete – one each 
close to the outer and inner surfaces – so as to be able to resist any 
transverse bending that may occur in addition to the more commonly 
expected compression stresses.

Illustration 12.41
Art Warehouse, Boeotia, 
Greece (2013).
Smooth, continuous 
reinforced concrete arched 
form establishes most 
basic vaulted structure and 
space for this art studio/
warehouse/gallery.

Architect: A31 Architecture. 
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functions; e.g., churches, train stations, markets, athletic facilities, 
and museums are only some of the building programs that are 
frequently associated with the vaulted form. The cross-sectional 
profile can put special emphasis on the central axis, while the vault’s 
length, with or without repetitive arched ribs, encourages linear 
programmatic functions and progressions; i.e., the basic part of 
cathedrals’ central naves and altars or of train stations’ platforms 
leading to head terminal buildings are spatial organizations that 
readily lend themselves to this form. Because of its embracing 
shape the vault can be considered to have an intrinsic communal 

quality and an ability to gather and shelter many people in an 
inwardly oriented, womb-like interior space. And the distinctively 
curved and bulging shape of the arched vault on the outside can 
also certainly offer the opportunity to highlight the presence of 
such structures and its contained programmatic functions. (e.g., 
Ill. 12.43.)

While in its cross-sectional form a vault can be understood 
to behave structurally as a set of independent arches that just 
happen to be located next to one another, it remains for us to 
consider how such a structure is stabilized in the direction of the 

Illustration 12.43
Kimmel Center for the Performing Arts, Philadelphia, PA, USA (2001).
Glazed vaulted form envelopes and unifies multiple smaller volumes and program elements; 
it is also a distinctive profile on skyline. 

Architect: Rafael Viñoly Architects. Structural engineer: Dewhurst Macfarlane and Partners in 
association with Goldreich Engineering, PC.
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vault’s longitudinal axis. Clearly there is structural advantage to 
be gained for this purpose by linking one transverse arch rib to 
another rather than having them all acting independently of one 
another. Frequently this interconnection is made by means of a 
relatively solid and continuous enclosing roof surface, as seen in 
the appropriately boat-like wood planking at the Sea Folk Museum 
(Ill. 12.44, 12.45), but it can also be provided by means of angled 
cross-bracing members running in the vault surface between the 
series of arch ribs. As we have discussed previously in other contexts, 
such a bracing system provides its own opportunity for additional 

visual expression, detailing, and for the admission of light into the 
space. At the Berlin Central Rail Station, for example, the series of 
transverse trussed arch ribs are stabilized by many thin diagonal 
bracing rods that not only transfer any longitudinal loading to 
the ground but also provide the desired high degree of visual 
transparency for the glazed vault surface. (Ill. 12.46.) As yet another 
example of the infinite number of possibilities, the stiffening of 
the glass vault of the Kimmel Center in downtown Philadelphia is 
accomplished by means of a folded Vierendeel steel framework 
(Ill. 12.43) that serves the double structural function of (a) giving 

Illustration 12.44
Sea Folk Museum, Toba, Japan (1992).
Glue-laminated arches mimic construction of ribs of the inverted 
hull of a wooden ship; stabilizing and partially enclosing solid 
surface made of wood planking is like that of its hull. Daylighting 
is carefully controlled, entering museum along ridgeline at top 
and alongside water’s edge at bottom.

Architect: Naito Architect and Associates. Structural engineer: 
Structural Design Group Co., Ltd.

Illustration 12.45
Sea Folk Museum.
Bracing between adjacent parallel arch ribs stabilizes the system 
that might otherwise tend to fall over against each other like a 
series of dominoes. 
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the vault’s transverse section its required bending stiffness (we will 
discuss the advantage of folding surfaces more fully in Section 
13.5) and (b) providing what is essentially a stiffening rigid frame 
grid for the vault’s longitudinal direction stability. All the while, 
this open structural framework also allows light to pass through 
relatively freely and makes the interior space an integral part of 
the surrounding urban environment.

It is by paying such simultaneous attention to structural necessity 
and detailing as well as to daylight or reflected artificial light that 
life is given to a vault. The variations in light tell us the time of day, 

which season it is, what the weather is like, and so forth. Whereas 
the light that enters a building through side openings in a façade 
quickly dissipates as it reaches deeper into the room, a long skylight 
along the ridge of a vault gives evenly dispersed light throughout 
the entire space. Moreover, such a visual opening gives us a direct 
view of the sky and a completely different interior light quality 
than that from lateral lighting, which is normally reflected from 
the surrounding buildings and landscape. From an architectural 
design perspective, therefore, it is important to understand that in 
order to have the same light intensity in a vaulted space we need 

Illustration 12.46
Berlin Central Rail Station, Berlin, Germany (2006).
Thin, criss-crossing, diagonal rod system stiffens gridded shell structure (see Section 13.8) 
between intermittent arch ribs, allowing light to flood the station interior.

Architect: von Gerkan, Marg, und Partner. Structural engineer: Schlaich Bergermann und Partner.
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far less glass area when using skylights than when depending on 
lateral lighting. The direction that the light is coming from is also 
decisive in determining how we experience people and objects 
and spaces, a theme that has many variations.

The souk is a traditional street market in the Middle East and 
North Africa. Many of these streets are covered with various forms 
of masonry groined vaults, such as at Baza-e Bozorg in Isfahan, 
Iran, where interior covered streets run continuously for kilometers 
from the famous Maidăn-e Naqsh-e Jahăn to the Friday mosque. 
(Ill. 12.47.) Light from the sky seeps gently in through rectangular 

openings at the top of the vaults, contributing to the staging of 
daily life in the souk well away from the intense heat and beating 
sun of the world outside. It is natural in such climatic conditions to 
have only a few openings at the top of the vault for the controlled 
admission of light, but also to be able to evacuate the hot air that 
builds up and rises within such a space of intense human activity. 
Provision must obviously be made for the main arching compression 
forces to find a way around these openings that break the continuity 
of the vault surface, but since these are typically quite short and 
small this is relatively easily accomplished.

Illustration 12.47
Isfahan market, Iran.
Part of extensive network of covered street markets; small, intermittent openings in masonry 
vaulting allow only a limited amount of light to set the atmosphere of the space.
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London’s great railway stations of the nineteenth century 
were, according to John Betjeman, “cathedrals of industrial 
architecture.”8 In a period that saw the huge expansion of the 
railway network in England, these stations represented the state 
of the art in technical innovation. Perhaps nowhere is this better 
demonstrated than at Isambard Kingdom Brunel’s (1806–1859) 
Paddington Station that opened in 1854. (Ill. 12.48.) The column 
and trussed arch structure is wonderfully developed with one 
grand central arched span and two lesser vaults on the sides; 
moreover, two transepts give an additional spatial feeling to the 

station. Longitudinal stability of the vaults is achieved by cross-
bracing the cast iron trussed arches. The glazed skylights are 
constructed as continuous ridges with the natural light washing 
over the many small members of the trussed arches, the train 
tracks, and the platforms, all contributing in an essential way to 
give the great hall its elegant yet industrious character. Today 
Paddington Station is as much alive as it ever was, and the relatively 
recent addition of a connection line to Heathrow Airport has 
given the station renewed relevance – something that would 
have no doubt delighted Brunel.

Illustration 12.48
Paddington Station, London, UK (1854).
Lighting is provided by continuous glazing in the upper portions of the ribbed vaults, following 
the direction of train movement and of passengers along the platforms, and accenting the 
innovations in structural forms and materials of the Industrial Revolution.

Designer and structural engineer: Isambard Kingdom Brunel.
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A century and a half later, but not so far away geographically, 
the Jubilee Line extension to the London Underground system 
comprises 11 stations by just as many architects, of which the Canary 
Wharf Station by Norman Foster + Partners is the largest. By using 
cut-and-cover techniques, the 310m (1017ft) long station is laid out 
underneath a landscaped park where only its glazed canopies are 
visible above ground so as to provide access to but also to suggest 
the presence of the hidden world below. (Ill. 12.49.) The entrance 
canopies, one at each end of the station, are constructed by means 
of tapering box-section arches made of steel. Tubular members tie 
the arches together and also act as purlins supporting stainless steel 
“spider” connectors for affixing the glass panels between the arch 
ribs. While glowing with light at night-time, by day these structures 

allow the natural light to be carried deep down into the station to 
the platform level; orientation, always a problem in underground 
stations, is thereby dramatically enhanced.

Finally, and further demonstrating the many possibilities for 
interplay between arched vaults of various forms and light, is the 
example provided by St. Henry’s Ecumenical Art Chapel in Turku, 
Finland. (Ill. 12.50.) Here, a series of tall, narrow, and sharply peaked 
glulam arches are stabilized in the longitudinal direction by solid 
timber planking on both sides, from top to bottom and along the 
full length of the vault – or, rather, almost so. For at the far end, at 
the altar, the siding stops just short, admitting a bright light that 
powerfully orients the space.

Illustration 12.49
Canary Wharf Underground Station, London, UK (1999).
Glass panels between arched ribs of entrance canopy at once draws daylight down into 
Underground station and people up to the ground surface; artificial lighting at night allows the 
distinctive form to announce the buried station’s presence. (See also Ill. 12.27.)

Architect: Foster + Partners. Structural engineer: Arup.
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Illustration 12.50
St. Henry’s Ecumenical Art Chapel, Turku, Finland (2005).
Glulam arch ribs carry gravity loads and have sufficient depth to stabilize the cross-section 
of the vault against deformation caused by wind loading on the sides of the chapel; in the 
longitudinal direction, wood planking effectively turns the two sides into shear walls. But these 
stop just short of far end of the space, allowing light to be admitted. 

Architect: Sanaksenaho Architects. Structural engineer: Kalevi Narmala.
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Illustration 13.1
Fiera Milano, Milan, Italy (2005). 
Grid shell “funnel,” part of the articulation of a kilometer-length glass canopy.

Architect: Massimiliano Fuksas Architetto. Structural engineer: Schlaich Bergermann 
und Partner together with Mero-TSK International.
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13.1	Geodesic Domes in the Landscape

In an abandoned china-clay pit in the midst of the green hills and 
valleys of Cornwall is the Eden Project, a complex of greenhouse 
structures designed by Nicholas Grimshaw and Partners that are 
used to showcase global biodiversity and humans’ dependence on 
plants. A winding path leads down from the visitor center on the 
edge of the site to reveal an amazing scene as one walks toward 
a series of overlapping, soap-bubble-like domes of various sizes 
that are elegantly nestled into the landscape. (Ill. 13.2.) The large, 
transparent domes each encapsulate a different climatic region of 
the earth and, in keeping with the project’s programmatic objectives, 
these were designed with ecological and sustainability issues in 
mind: i.e., the overall structural form of the steel geodesic domes 
is exceedingly light and efficient in terms of material usage, and 
the innovative foil bubble enclosure system carries that design 
objective to an even higher level.

The project easily reveals its fundamental geometry: the eight 
intersecting spherical domes are actually the top segments of several 
imaginary globes whose centers are located deep underground. 
The domes have diameters ranging from 18m (59ft) to 65m (213ft) 
in accordance with the various heights of the plants that are native 
to the different biomes being sheltered. (Ill. 13.3.) Structurally, each 
dome is of geodesic form, which generally can be defined as an 
overall curved surface that is made up of many small flat panels of 
triangular, pentagonal, hexagonal, or other polygonal shapes that 

are connected together, with each panel having a slightly different 
orientation than its neighbors so as to produce an overall rounded 
surface. The geodesic system is typically achieved by means of 
lightweight steel tubing defining the various polygonal shapes and 
that are connected together at their intersection points by means of 
patented cast steel spherical nodes. Because the number of nodes 
has a significant impact upon the cost of building such a structure, 
it is usual to try and use the largest possible polygon modules.

In order to give stability to such a lightweight and seemingly 
flimsy assembly, larger geodesic structures need to have an 
effective thickness to them, something typically accomplished by 
interconnecting inner and outer layers of elements. At the Eden 
Project an outer geodesic layer is formed by 625 hexagons and 
16 pentagons at the top of the spheres, whereas an inner layer is 
created by 190 large triangles. (Ill. 13.4.) The interconnection of 
these two layers is achieved by yet more steel tubing elements that 
join the many nodes of the two surfaces, thus creating multifaceted 
three-dimensional polygonal shapes within the dome thickness; in 
the present case, for example, icosahedrons of 20 plane faces can 
be identified. Such complex geometry can be readily modeled by 
computer software programs, with the resulting information also 
able to be communicated to automated production lines that can 
cut the myriad pieces to exacting specifications. The assembly 
of the structure is then “merely” done as a kit-of-parts on site, 
although the size of the temporary scaffolding needed to build 
the Eden Project domes set world records.

Illustration 13.2
The Eden Project, St. Bazey, Cornwall, England, UK (2001). 
Bubble-like domes nestled into landscape. Exterior surface covered by inflated EFTE pillows, whose relative 
transparency to UV rays promotes the growth of plants in one of the world’s largest greenhouses.

Architect: Nicholas Grimshaw and Partners. Structural engineer: Anthony Hunt and Associates with, for the domes, MERO (UK).
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Illustration 13.3
The Eden Project.
Plan arrangement of the project’s many domes; various sizes 
accommodate the plants of different bio-climatic regions of the world.

Illustration 13.4
The Eden Project.
Domes are composed of double-
layer surfaces for stability; the 
geometry of the outer layer is 
hexagonal, that of the inner layer is 
triangular.
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A further distinguishing feature of the Eden Project domes is 
that their cladding system is made of inflated foil pillows that fit into 
the hexagons of the outer geodesic layer. Each pillow consists of 
three layers of ETFE foil (ethylene-tetra-fluoro-ethylene, described 
in Section 5.8) that are placed on top of each other and then sealed 
together along the sides; the resulting two chambers are inflated 
with air. From a structural point of view, the opposite curvatures 
of the two faces of the pillows means that the inner layer can 
deal with the tendency to deform inward due to wind pressure or 
snow loads, while the outer layer is able to handle any tendency 
of the pillow to bulge outward due to wind suction. The layered 
air cushions also provide considerable thermal insulation to the 
interior environment, and this insulation can in fact be regulated by 
adjusting the air pressure in the pillows. The polymer ETFE material 
also has exceptional properties in the context of this project: i.e., 
it is more transparent than glass with regard to ultraviolet light 
penetration, which is obviously a necessary characteristic for proper 
plant growth. Finally, and perhaps most amazingly, the foil pillows 
weigh less than 1 percent of the dead weight of an equivalent 
area of insulating double-layer glass – thus contributing greatly 

to reducing of the overall amount of material needed for these 
domes’ steel-tube structural elements.

In a sense, then, a geodesic dome can be thought of as a sort 
of space-frame-like or latticed structure applied to the enclosure 
of a spherical space. It is an extremely lightweight system that is 
able to cover a very large space by means of the interplay of many 
small, short elements. Moreover, as we will see later in this chapter, 
the lightness and efficiency of domes in general as an overall 
system for carrying load means that very large spans and enclosed 
volumes of space can be achieved with support only needing to be 
provided around the base perimeter of the structure – i.e., without 
any interior and space-intervening columns. 

The development of the Eden Project can be directly linked 
to the pioneering work of the American engineer, designer, and 
philosopher Richard Buckminster (“Bucky”) Fuller and his vision 
of maximum enclosed volume within a minimum surface area. 
Fuller’s early geodesic dome designs of the 1940s aroused great 
interest at the time in schools of architecture around the world. The 
United States Pavilion built for the World’s Fair in Montréal in 1967 
remains today as perhaps the most compelling built example of the 

Illustration 13.5
United States Pavilion at Expo ’67, Montréal, QC, Canada (1967).
Perhaps the most famous of geodesic domes. Today the open steel framework lives 
on as the Montréal Biosphère, a museum dedicated to the environment. 

Architect: Buckminster Fuller. Structural engineer: Simpson Gumpertz and Heger Inc.
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tremendous spatial possibilities of this form of construction. (Ill. 13.5.) 
It is also interesting to note in the context of the cladding discussion 
above that this dome was originally covered with lightweight acrylic 
panels, but that these burned in a fire in 1976. Fortunately, the fire 
consumed the acrylic panels so quickly that it left intact the open 
steel latticework as an ongoing and compelling reminder of Fuller’s 
futuristic ambitions; today, it encapsulates a museum dedicated to 
the environment, and the so-called “Bucky-dome” continues to stand 
out on the Montréal skyline, with nightly lightshows highlighting 
and playing off of its iconic form. 

In self-serving fashion, one of Fuller’s typical leading questions 
was to ask of other projects: “How much does the building weigh?” 
and the answer in the case of the Eden Project is a remarkably 
minimal 667 metric tonnes (735 US tons). To give a measure of 
comparison, this is the equivalent of the weight of about seven of 
the Valley Temple stones at Chefren that we saw earlier in Section 
7.2; i.e., the number of pieces of granite needed to form just three 
of the closely spaced portals, each comprising two columns topped 
by a beam. The contrast in terms of the volume of space contained 
by equal weights of construction materials could hardly be greater.

13.2	Traditional Dome – Arch Action 
Revisited

In the preceding chapter we mentioned that a vault can be 
understood both spatially and in terms of its structural behavior 
as a series of separate arches placed side-by-side along a linear 
axis. In an analogous manner, a dome can be thought of as 
a spatial form that is created by an arch that is spun about a 
central vertical axis. This will lead to the characteristic domed 
shape that has long dominated urban skylines and whose lofty 
spaces we experience with awe and craned necks from within. 
(e.g., Ill. 13.6.)

A particular type of dome can in fact be built in a similar manner 
to the form we have just described, with a set of radial arch ribs 
connecting the top of the dome to its base. (Fig. 13.1.) In such a 
situation, loads are carried in a similar manner to the arch action 
that we became familiar with in the last chapter: i.e., the dome ribs 
carry loads in compression just as arches do, and these will resist 
any potential changes in shape by means of their flexural stiffness. 
As will be recalled, it is this combined compression-plus-bending 

Illustration 13.6
Hagia Sophia, Istanbul, Turkey (537).
Interior of domed and semi-domed space dwarfs human scale.

Architects: Isidorus and Anthemios.
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behavior that is fundamental to understanding how arches work 
and that, therefore, also describes how ribbed domes function. 

Two examples of such ribbed dome structures, linked through 
time both programmatically and symbolically, are those sitting 
atop the historic United States Capitol Building in Washington, 
DC (Ill. 13.7) and the relatively recent addition to the roof of the 
Reichstag parliament building in Berlin.1 (Ill. 13.8, 13.9) In the case 
of the Capitol Building dome, the rib structural depth and flexural 
stiffness is provided by means of cast iron trusswork, whereas for 
the Reichstag dome the bending capacity comes from triangularly 
shaped hollow tubes made of welded steel plates.

While still considering the workings of this relatively basic 
type of dome created by intersecting arched ribs, we can use the 
opportunity to make other observations about this structural form 
that will remain relevant for the other types of dome structures 
that we will encounter shortly. Especially noteworthy, in this 
regard, is the typical need for two horizontal rings linking all 
of the ribs, one at the top of the dome and another around its 
base. (Fig. 13.2.) At the top, the need to resolve what would 
otherwise be a hopeless congestion of structural materials as 
the arch ribs all try to intersect at a single, common point is 
typically resolved by a circular opening, termed an oculus (or 
“eye” to/from the sky, for obvious reasons). Compression in 
each of the arch ribs means that the ring forming the opening 
will be subject to symmetrical radial inward forces, causing it 
to be in uniform circumferential compression. Of course, aside 
from structural necessity the oculus also often serves other 
architectural functions, such as for the admission of light and 

Figure 13.1
Dome created by “thick” arch ribs having flexural 
(bending) stiffness, all intersecting at central vertical axis.

Illustration 13.7
Capitol Building, Washington, DC, USA (1866).
Section highlights single elongated, curving, cast iron structural 
rib, of which there are 36 around the perimeter; the famous 
outer dome profile and two inner domes are created by 
working off of this ribbed structure.

Architect: Thomas U. Walter. Engineer in charge of construction: 
Montgomery C. Meigs.
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Illustration 13.9
Reichstag dome.
Glazing between the steel 
ribs of the dome allows light 
to bounce off central mirror 
core to bring natural light into 
Bundestag debating chamber 
below. Spiral walkway brackets 
off ribs, also allowing for views 
of unified city.

Illustration 13.8
Reichstag, Berlin, Germany (1999).
Dome was built on top of historic building as a symbol for the reunification of Germany and 
open parliamentary government. 

Architect: Norman Foster + Partners. Structural engineer: Leonhardt Andrä und Partner.
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the evacuation of heated air that naturally rises into a domed 
space. For structural and visual and symbolic reasons, therefore, 
the oculus has been a feature of domes that has long attracted 
much design attention – the most famous example undoubtedly 
being the completely-open-to-the-sky aperture in the dome of 
the Pantheon in Rome. (see Ill. 13.19, 13.20; more about this 
structure follows in Section 13.4).

At the base of the dome, on the other hand, the outward 
thrusts resulting from the compression in all of the arched ribs 
also needs to be resolved. To do so, one option is to provide a 

base ring that will be subject to a set of outward radial horizontal 
forces that will as a result put it into a state of circumferential 
tension. (Fig. 13.2.) Such a tension ring can be thought of as 
the three-dimensional equivalent of the straight tie rod that we 
used to anchor the support points of a two-dimensional arch in 
Section 12.7. Examples of tension rings that have been used 
over the course of time have included iron chains for St. Peter’s 
Basilica in Rome, and sawn timber members linked together by 
means of carefully detailed metal dowels in Florence’s Duomo (Ill. 
13.10, 13.11); more recently, at the bases of contemporary domes, 

Figure 13.2
Compression and tension rings balance radial inward 
push and outward thrust at top and bottom of dome, 
respectively.

Illustration 13.10
Basilica di Santa Maria del Fiore, Florence, Italy (1436). 
Axon cut-away reveals the arch-like ribs of the dome 
that are joined at the top in an ocular compression ring, 
as well as the dome’s exterior and interior surfaces. The 
radial outward thrusts at the bottom of the dome are 
resisted by a tension ring – see detail, Ill. 13.11.

Architect: Filippo Brunelleschi. From Sanpaolesi, pl. VII.
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continuous steel hoops or post-tensioned wire strands encased 
within concrete base rings have achieved the same essential 
load-balancing objectives.

But just as for the arch, alternative methods exist to balance 
the outward thrusts at the base of a dome besides anchoring it 
by means of a tension ring. For example, the large, relatively flat 
dome of Hagia Sophia, whose base is lifted high up into the air 
in order to make possible the incredible interior space, can be 
seen to be anchored by thick buttressing walls all around that 
act as orthogonal sets of shear walls (Chapter 10) that resist the 

outward thrust at the base of the dome as well as carry the dome’s 
heavy gravity loads (Ill. 13.12), and a remarkably similar strategy 
is employed with a series of radial cross walls present through the 
thickness of the cylindrical drum at Rome’s Pantheon.2 Yet another 
alternative to resolving the radial outward thrusts is the provision 
of a series of inclined compressive buttresses angling inward to 
resist the outward push occurring at the base of a dome, as can 
be seen in another famous Roman dome: the Palazzetto dello 
Sport. (Ill. 13.13.)

Illustration 13.11
Basilica di Santa Maria del Fiore.
(left) Partial plan view of timber tension ring at base of dome.
(right) Detail of tension ring “chain,” composed of timber segments 
linked by sets of iron plates.

From Rondelet, pl. 189.

Illustration 13.12
Hagia Sophia, Istanbul, Turkey (537).
Heavy masonry walls buttress outward lateral thrusts of central 
dome in one direction, while a succession of relatively shallow dome 
segments and supporting columns and walls do the same in the 
other. Gradually increasing height of “piled-up” structures along 
sides allows for relatively shallow-angled transmission of thrusts from 
base of dome down to ground. (Also, Ill. 13.6.)

Architects: Isidorus and Anthemios.
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But at this point we need to go back to where we started with 
the dome, for while it was convenient to begin with familiar arch-
like radial ribs in terms of gaining a basic understanding of dome 
behavior, it is a fact that not all domes are built this way; indeed, 
many of the world’s most famous and structurally daring domes 
quite clearly are not. Such domes can be observed to have a more 
uniform thickness of material throughout their form, with no evidence 
whatsoever of thickened arching ribs. Just how this seemingly more 
monolithic form of construction functions needs some explanation.

To begin to visualize what is happening, we must examine the 
deformation tendencies of a hemispheric dome under uniform 
vertical loading (caused by its self-weight, for example). The top 
part of the dome, being relatively horizontal, will tend to be pushed 
inward relative to its original profile; the lower, more vertical parts of 

the dome, on the other hand, will bulge outward from the original 
shape (Fig. 13.3); analogously, such deformation tendencies can 
easily be observed by pushing downward on a tennis ball. The 
outward “ballooning” of the lower part implies an expansion of 
the material surface, and will necessarily result in tension stresses 
immediately being established in a circumferential hooping fashion 
around the lower part of the dome, while in the upper part the hoop 
forces will be compressive.3 The forces that follow the arched sections 
of the dome, called meridional forces, will always be compressive.

Since we know that the masonry of such historical domes is a 
material that is notoriously weak in tension, “failure” of a sort would 
have ensued immediately with a series of cracks running up from 
the base of the dome. (Fig. 13.4.) Such cracking can be observed 
in everyday life by trying to flatten out the spherically shaped peel 

Illustration 13.13
Palazzetto dello Sport, Rome, Italy (1957).
Exterior of concrete dome, with Y-shaped buttresses around perimeter to counter 
outward radial thrusts.

Architect: Annibale Vitellozzi. Structural engineer: Pier Luigi Nervi.
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of an orange, and in architecture this phenomenon has long been 
observed in masonry domes that have survived hundreds and even 
thousands of years.4 It is interesting to speculate that perhaps it 
was the observation of such a cracking pattern around the base 
of domes that might have led ancient builders to realize that they 
could without distress open up the base of domes with regularly 
spaced window openings, thereby phenomenally “lifting” domes 
up into the sky. (Ill. 13.14.)

In historic masonry domes of hemispheric shape, then, the hoop 
tension forces in the lower part of the dome were often resisted 
by iron chains. Given that, the reaction forces needed along their 
circular support only needed to be vertical, and the dome could be 
lifted upward on a vertical, cylindrical “drum.” If, on the other hand, 
a shallow dome of this type was used, where only the segmental 
upper part of the spherical dome remained (such as at Hagia Sophia, 
see Ill. 13.12) in which both meridional forces and hoop forces are 
compressive, this worked very well for domes made of masonry 
since this material has negligible tension strength. Anything comes 
at a cost, however: the support reaction forces that are needed for 
such shallow domes are steeply inclined, which means that there 
will be considerable horizontal force components still needing to be 
dealt with. In traditional masonry domes those forces typically have 
been resisted by buttresses or semi-domes around the perimeter. 
(In more modern shallow domes made of reinforced concrete this 
horizontal thrust at the support may be dealt with by a tie ring, 
perhaps made of post-tensioned concrete.) 

In terms of the load-carrying behavior of the masonry dome 
surface itself, the cracking pattern that we have described effectively 
means that these can be considered to be, in structural essence, 
nothing but a series of wedge-shaped arch ribs rotated about a 
central vertical axis. The load-carrying strategy for such wedge-
shaped ribs is no different from that for the more obvious ribs 
discussed earlier: i.e., they both carry load primarily in compression 

Illustration 13.14
St. Peter’s Basilica, Vatican City (1590).
Window openings around base of dome not only phenomenally “lift” 
it up into the air, but also may be a reflection of observations of radial 
cracking around base of such masonry structures.

Architect: Michelangelo (with the involvement of others before and after).

Figure 13.3
Deformation tendencies of dome due to vertical 
gravitational loads: top sinks inward, sides bulge 
outward.

Figure 13.4
Radial cracks tend to develop around lower half of 
hemispherical masonry dome due to circumferential 
tension stresses (also called hoop stresses) caused by 
tendency to bulge outward.
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but resist any changes in shape by arch-like bending action taken 
care of by their significant thickness. Indeed, the relative thickness 
of masonry domes (typical thickness-to-span ratios are roughly 
equivalent to those of conventional ribbed arches) can thus be 
understood and justified, and contrasted with the remarkable 
slenderness of modern shell domes that we will discuss next. 

Before moving on, however, it is noteworthy that, just as with 
the arch, this problematic reliance on bending behavior in historical 
masonry domes (problematic in the sense that it tends to lead to 
heavy, thick structures) has long been recognized, and clever means 
have been taken to reduce bending action as much as possible. 
For example, domes have sometimes been shaped to best suit the 
primary structural load condition, such as at St. Paul’s Cathedral 
in London where the large lantern load at the top is carried on an 
elongated masonry dome of conical shape (the three-dimensional 
equivalent of the funicular, compression-only profile of a point-loaded 
two-dimensional arch). (Ill. 13.15.) As we discussed in Chapter 5, 
Christopher Wren then “clipped” on to this primary load-bearing 
cone structure two “decorative” dome forms that were of a more 
visually familiar and acceptable shape: one on the outside that 
is supported off the cone by timber framing and another on the 
inside independently built up of masonry – the whole arrangement 
resulting in a visually misleading yet nevertheless ingenious and 
elegant three-layered system.

13.3	Shell Dome  
– Revolution in Structural Behavior

The thickness-to-span ratios of the domes that we have just discussed 
typically lie somewhere in the range of 1:50 to 1:100, whether 
these are of the explicitly radial-rib variety or else are domes that 
effectively become ribbed because of the vertical cracking of the 
surface that takes place as the base splays apart. Many modern 
and large-scale domes have been built, however, that are much 
thinner than this in proportion to the span, achieving remarkable 
ratios of up to 1:400 or 1:500; in other words, they are five to eight 
times as “slender” as the domes that we have considered until this 
point. Such proportions mimic and sometimes even go well beyond 
what can be found in nature in the smooth dome-like surfaces of 

Illustration 13.15
St. Paul’s Cathedral, London, UK (1711).
Section suggests funicular conical shape of structural masonry 
dome that carries large concentrated load of lantern at top 
as well as distributed load from timber framing that creates 
more “proper” outer dome shape to suit profile-on-the-skyline 
expectations. Third, internal, hemispherical dome also added 
inside to meet conventional aesthetic expectations for its painted 
surface. (See also Section 5.1.)

Architect: Christopher Wren.
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eggshells and seashells, although the chicken egg nonetheless 
presents some quite impressive proportions: it is only 20 percent 
as thick as would be expected based on our description in the last 
section about domes that work as arch segments and that must rely 
on through-the-thickness bending action for stability. How can this 
be? And what is going on to make such a difference in spanning 
proportions possible? There is certainly the strong suggestion that 
quite a different load-carrying mechanism must be at work in the 
eggshell and in modern shell-like domes as well.

Part of the answer lies in the material of which such shells are 
made: i.e., one that is able not only to withstand compressive 

stresses but that also has significant capacity to resist the hooping 
tensile stresses that tend to pull the surface apart and that in case 
of the masonry dome led to its vertical cracking. In shell dome 
structures such as at MIT’s Kresge Auditorium (Ill. 13.16, 13.17), for 
example, the concrete shells are reinforced with steel bars, giving 
the shell surfaces simultaneous compression and tension capability 
throughout and thereby preventing any possibility of having the 
surface split apart into the discrete arch-like segments we discussed 
previously. And in the American Air Museum in Cambridge, England 
(Ill. 13.18), the concrete shell is actually made up of almost 1000 
separate precast panels that are post-tensioned together, not only 

Illustration 13.17
Kresge Auditorium, MIT.
Thickened free edges of this thin shell provide local stability to the “cut” surface. 

Illustration 13.16
Kresge Auditorium, MIT, Boston, MA, USA (1954).
Relative thinness and remarkable spanning capabilities of modern concrete shell domes 
is evident in the section drawing. 

Architect: Eero Saarinen. Structural engineer: Ammann and Whitney.
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to hold together such an assembly of component parts into a single 
unified shell structure but also to ensure that no tension stresses 
ever develop anywhere within the shell surface. 

Material differences and advances aside, however, quite a 
different basic load-carrying mechanism must also be described 
in order to fully appreciate just how these relatively thin shell domes 
work. To do so, we will consider here the behavior of a spherical shell 
dome, which has overall geometrical similarity to the hemispherical 
masonry domes that we have just considered. 

Vertical gravity loads acting on such a structure will, as before, be 
primarily carried by compressive forces Nφ acting along meridional 
lines within the dome surface (i.e., oriented like the lines of longitude 
by which we position ourselves on the earth’s surface), but now any 
tendency for the dome to change shape by bulging outward or 
sagging inward under loading is able to be countered everywhere by 
hooping forces Nθ acting around the circumference of the dome along 
the equivalent of lines of latitude (to carry on with the same terrestrial 
analogy). These are shown in Fig 13.5. Where the dome tends to 
sag down in the upper region under gravity load, compressive 
hooping stresses will help prevent its collapsing inward by means 
of the surface’s curvature, while tensile hooping rings of stress in 
the lower, more vertical parts of the dome will similarly resist the 
form’s tendency to bulge outward. Stability of the domical form and 
resistance to changes of shape are therefore ensured by efficient 
uniform axial stresses acting through the thickness of the shell rather 
than by the much less efficient linearly-varying-through-the-thickness 
bending action that was characteristic of arch rib behavior, with 
the consequence that much thinner domed surfaces than we had 
previously considered possible can now be understood and their 
load-carrying behavior explained.

If carrying load on a curved surface by means of sets of axial 
forces acting within that surface sounds familiar, it should, for we 
have encountered this mechanism before when we considered 
purely tensile membranes in Chapter 11. Recall from there that 
the membrane equilibrium equation was defined as:

p = Nx/Rx + Ny/Ry	 (13.1)

where the magnitude of the transverse radial load p on the surface 
at a particular location is balanced by the sum of the ratios in the 
two orthogonal directions of the in-the-plane-of-the-surface axial 
force N to the radius of curvature R of the surface in that direction. 

Illustration 13.18
American Air Museum, Cambridge, England, UK (1997).
Roof shape is that of a small surface segment of a great torus centered deep 
underground. Span of 90m (295ft) – enough to house a B-52 Stratofortress bomber and 
display and suspend several other smaller planes as well – achieved by double-layer 
concrete shell made of 924 precast concrete panels post-tensioned together.

Architect: Foster + Partners. Structural engineer: Arup.

Figure 13.5
Meridional (N

Φ
) and circumferential (N

θ
) stresses (or hoop 

stresses) in shell dome; N
Ф
 is compressive throughout, 

N
θ
 is compressive in upper (shaded) “cap,” tensile in 

lower circumferential band.
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We will come back to this equation shortly and apply it to 
further describe and understand the behavior of shell surfaces. 
Before doing so, however, let us consider the case of a segment 
of a spherical shell-dome surface of uniform thickness t, leading to 
its having a weight per unit surface area w. (Fig. 13.6.) If the radius 
of the dome is labeled R and its height h, the total surface area A 
of the segment of the sphere is defined by basic geometry to be 
equal to 2πRh. The domed segment’s total weight W can, therefore, 
be calculated in terms of its spherical geometry, where the angle 
Φ/2 is measured between radial lines drawn to the azimuth and 
to the base of the dome: 

W = w × A
W = w × (2πRh)
W = w × (2πR [R – Rcos(Φ/2)]
W = w × (2πR [R{1 – cos(Φ/2)}])
W = 2wπR2 (1 – cos(Φ/2))	 (13.2)

In order to have vertical equilibrium, the sum of the vertical 
components of the meridional forces N

Φ
 acting all around the base 

of the dome, which has a circumference of 2πa, where a = Rsin(Φ/2), 
must necessarily balance this total weight; i.e.,

W = ΣN
Φ (vertical)

W = N
Φ
 sin(Φ/2) (2πa)

W = N
Φ
 sin(Φ/2) [2πR sin(Φ/2)]

Rearranging this in terms of the meridional force leads to

N
Φ
 = W/[2πR sin2(Φ/2)]	 (13.3)

which becomes, upon substitution for W from equation 13.2, and 
then using in succession the standard trigonometric identities 
cos2(Φ/2) + sin2(Φ/2) = 1 and [1 – cos2(Φ/2)] = [1 + cos(Φ/2)]  
[(1 – cos(Φ/2)]:

N
Φ
 = {w2πR2 [1 – cos(Φ/2)]}/[2πR sin2(Φ/2)]

N
Φ
 = wR [1 – cos (Φ/2)]/{[1 – cos2(Φ/2)]}

N
Φ
 = wR [1 – cos(Φ/2)]/{[1 + cos(Φ/2)] [1 – cos(Φ/2)]}

N
Φ
 = wR/[1 + cos(Φ/2)]	 (13.4)

It is self-evident that the meridional forces N
Φ
 defined by this 

equation must be compressive in the shell in order to balance the 
downward pull of gravity on the shell surface.

T

Figure 13.6
Equilibrium of shell dome surface 
elements: transverse-to-surface 
loads “pr” (including gravitational 
self-weight) balanced by sets of 
axial stresses in curved dome 
surface; equilibrium condition 
different in upper and side regions.

Figure 13.7
Surface and section geometry 
for dome segment.
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Now, in order to establish what are the circumferential forces N
θ
 

in the dome, let us go back to the membrane equation (13.1) and 
rewrite it in terms of both meridional and circumferential forces in 
the shell surface, N

Φ
 and N

θ
, respectively. The equation becomes

p = N
Φ
/R1 + N

θ
/R2

For the case of a spherical shell that supports a uniform surface 
gravity load, R1 = R2 = R since the radius is the same in all directions 
and p = w × cos(Φ/2) because gravity loads act vertically (w × 
cos(Φ/2) is the radial component of the surface’s gravity load at a 
level defined by the azimuth angle Φ/2).

Therefore,

w cos(Φ/2) = N
Φ
/R + N

θ
/R

and rearranging to solve for N
θ
 this becomes

N
θ
 = R [w cos(Φ/2)] – N

Φ

Substituting from equation 13.4 above for N
Φ
 results in the 

desired expression for the circumferential hoop stresses:

N
θ
 = R [w cos(Φ/2)] – w R/[1 + cos(Φ/2)]

N
θ
 = w R {cos(Φ/2) – {1/[1 + cos(Φ/2)]}}	 (13.5)

Finally, we can consider the implications of equations 13.4 and 
13.5 for the meridional and hoop stresses, respectively, within the 
range from Φ/2 = 0 (i.e., at the top of the hemisphere) to Φ/2 = 
90º (at the base of a full hemisphere) and come to the following 
observations, as represented in Fig. 13.8:

•	 N
Φ
 varies from wR/2 at the top of the dome and increases to 

wR at the base (i.e., it is never equal to zero).
•	 N

θ
 varies from +wR/2 at the top of the dome and changes 

to –wR at the base. Not only is there significant variation in 
the hooping force magnitude, therefore, but also change in 
direction: i.e., maximum compressive hoop forces occur at the 
top of the dome but diminish as one moves away from this 
level, eventually becoming tensile hoop forces that increase 
the further one goes down the hemisphere.

Figure 13.8
Variation of membrane forces, N

Ф
 and N

θ
, 

within dome; compressive meridional N
Ф
 

increases from top to bottom, hoop N
θ
 

goes from maximum compression at top 
to maximum tension at base of dome, with 
changeover from compression to tension at 
azimuth angle of 52⁰.
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Furthermore, by setting N
θ
 = 0, we can establish that it is at an 

angle of Φ/2 = 52º that the hoop stresses go from being compressive 
to tensile, which leads to the perhaps somewhat unexpected result 
that for a relatively flat hemispherical dome there will be no tensile 
hoop forces within the shell membrane to have to be contended 
with. Such a shell is, therefore, able to carry all loads by compression 
forces only. (In hindsight, we can now remark that the relative 
flatness of the Hagia Sophia dome that we saw in the previous 
section actually works remarkably well to minimize any potential 
tension stresses developing within its masonry structure.)

Beyond such generally applicable observations, it is further 
enlightening to consider the actual numerical values that these 
expressions yield for typical concrete dome construction dimensions. 
For example, let us consider a spherical dome that has a radius 
of 30m (96ft) and that is only 150mm (5.9in) thick. The weight of 
the concrete for this thickness is approximately 3.5kN/m2 (77lbs/
ft2) plus an allowance for various finishes so that we can take w 
= 3.75kN/m2 (82.7lbs/ft2). Let us also assume that a snow load of 
0.15kN/m2 (30lbs/ft2) must also be accounted for.

Based on the equations and observations made above, the 
maximum force in the shell can then be calculated to be

N(max)= wR
N(max) = (5.25kN/m2) (30m)
N(max) = 157.5kN per meter of the shell surface

which, when converted into an axial stress σ
Φ
 for the given shell 

thickness 150mm, is

σ = N/A(unit sectional area)

σ = 157 500 N/(1000mm × 150mm)
σ = 1.05N/mm2

It is to be noted that this result is a remarkably small compressive 
stress that is well within any standard concrete’s ability to handle 
(i.e., the ultimate compression stress for concrete is something in 
the realm of 30–50N/mm2 or more, which is at least 30 times the 
demand in this example). Moreover, at all other points in the shell 
the magnitude of the stress will be even less than this. It is only by 
working through these equations and seeing such a result that the 
amazing potential of shell surfaces can be truly appreciated; i.e., 
that such impressive spans can be achieved using relatively thin 

structural surfaces while still keeping stresses well within ultimate 
limits is certainly not intuitively obvious.

Of course, having realized this point we may desire more: the 
remarkably small stresses that we found in this example lead to 
the inevitable question of why not reduce shell thicknesses even 
farther? Part of the answer to this question is rooted in the need 
to address compressive structures’ old nemesis, buckling, which 
we have so far been conveniently neglecting here but which in 
reality cannot be ignored. We will recall from Chapter 8 that the 
standard way of dealing with buckling is to make a compressive 
element thicker. Also, there are practical limits to just how thin 
a concrete shell can be built and still have sufficient protective 
cover for the steel reinforcing bars or pre-stressing strands within 
the surface. Notwithstanding such practical limitations and even 
taking them into account, however, the fundamental lesson of 
this section is to recognize just how incredibly thin a shell surface 
can be when it uses surface curvature and membrane stresses 
to establish equilibrium compared to relying on the through-
the-thickness bending action that was discussed in the previous 
section. We will explore where else this all leads very shortly but, 
before doing so, let us first make a pilgrimage to two famous 
domes that span the ages – and while doing this observe their 
similarities and differences of form.

13.4	Due Duomi a Roma

When in Rome, one can have the good fortune of being able to 
sense the span of 2000 years of dome construction.

The Pantheon, built in the Campus Martius area in AD 126 for 
the Emperor Hadrian, remains today as likely the best preserved 
of all the buildings of antiquity; perhaps not coincidental in this 
regard is its original fortuitous dedication as a Roman temple to 
all gods. Once entered, leaving the surrounding noisy commercial 
atmosphere behind, the Pantheon has always impressed its visitors 
by suggesting that one is entering another world; “It resembles 
heaven,” Dio Cassius said.5 (Ill. 13.19, 13.20.)

As a building, the Pantheon can be broken down into two distinct 
parts: an entrance porch with 16 impressive Corinthian columns 
and its central feature, a huge domed rotunda. From the outside 
the impression of the building is one of great compactness; inside, 
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however, the space opens up dramatically with a dome that spans 
43m (141ft). The dome’s surface is part of perhaps the world’s 
most well-known imaginary sphere – one which can be completely 
inscribed inside the space, just touching the floor. The apparently 
massive walls around the perimeter of the dome (just hinted at in 
the previous section in terms of their dome-stabilizing structural 
function) are actually subdivided into vaults and niches that serve 
the religious and ceremonial program of the building – providing an 
interesting example of a structural system simultaneously meeting 
programmatic and statics-based equilibrium objectives. But other 
than the entrance doorway there are no openings in these side 
walls; the only other aperture to the outside world is up to the sky 
through the open oculus at the top of the dome that measures a 
full 9m (29.5ft) across and from which daylight is distributed into 
the interior space. In this oculus we have once again an inspired 

combination of an essential structural feature – in this case the 
compression ring at the top of a dome – also serving the not-so-
subtle dual purpose of an opening for divine contemplation.

The Pantheon’s dome is made of Roman concrete whose radially 
cracked, wedge-shaped-arch functioning has previously been 
described. And in keeping with the bending behavior that is an 
essential part of such a dome’s method of resisting deformation, its 
thickness is significant; moreover, the dome grows thicker around its 
base, extrapolating into three-dimensional form the Romans’ typical 
strategy for the stabilization of the sides of two-dimensional arches 
(Section 12.2). Roman master builders had learned to utilize the very 
weight and mass of building materials to maximum effectiveness, 
likely derived from their observations of the cantilevered (also 
called corbeled) vaults that had been built in many places in Italy 
before the Roman era in which the slimmest part of the vault is 

Illustration 13.19
Pantheon, Rome, Italy (ad 126).
Open oculus at dome apex connects interior to the heavens/
natural elements while also serving essential structural function at 
the point of major stress concentration.

Architect: Apollodorus of Damascus.

Illustration 13.20
“Interior of the Pantheon” (c.1734).
Eighteenth-century foreign tourists mingle with Romans in awe-
inspiring space.

Artist: Giovanni Paolo Panini (1692–1765). Samuel N. Kres Collection, 
National Gallery of Art, Washington, DC.
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at the top and the thickness grows toward the foundation.6 It is 
also reasonable to hypothesize that the ocular opening at the top 
perhaps had its origins in earlier domed spaces in which a series 
of radial cantilevers reached inward toward a common center that 
was purposefully left open in order to admit light and release rising 
hot air and smoke.

On the subject of how the Romans actually built the Pantheon’s 
incredible dome, there is unfortunately no documentation that 
remains. Viollet-le-Duc (1814–1879), among many others who 
have studied the problem, proposed that an elaborate timber 
centering scheme may have been used that consisted of a central 
tower supporting the inner ends of 28 radially arranged-in-plan 
and bow-shaped-in-section trussed ribs that spanned out to the 
surrounding masonry drum wall.7 These ribs would have in turn 
supported the formwork that was needed to carry the unhardened 

concrete as it was built up in circumferential bands and to create 
the dome’s coffered underside. And since hoisting the 28 trusses 
into position would likely have demanded an array of 28 cranes 
sitting on the top of the wall activated by ropes radiating out on to 
the surrounding terrain, we can postulate that the dome was built 
before the porch – just the beginning of a speculative excavation, so 
to speak, into the very rich realm of structural forensics associated 
with this structure.

Almost two millennia later, and somewhat to the north of the 
former Campus Martius area, preparations for the Summer Olympics 
of 1960 gave the brilliant building engineer and contractor Pier 
Luigi Nervi (1891–1979) the opportunity to try his own hand at 
another spectacular Roman dome, in his case by exploiting the 
structural efficiency and plastic richness of precast concrete for the 
Palazzetto dello Sport.8 (Ill. 13.21.)

Illustration 13.21
Palazzetto dello Sport, Rome, Italy (1957).
Angled props around the perimeter are yet another way to resist a dome’s outward thrusts, in 
a manner reminiscent of Gothic “flying buttresses.”

Architect: Annibale Vitellozzi. Structural engineer: Pier Luigi Nervi.
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Nervi’s design scheme for the Palazzetto demanded a clear 
span of some 70m (230ft) and, moreover, a roof that would read 
as visually independent from the top of the spectator seating that 
surrounds the athletic playing surface. Toward these objectives, he 
designed a relatively shallow segment-of-a-sphere dome that covers 
the entire building in one fell swoop and whose perimeter support 
is seemingly lifted up off the ground. In contrast with the Pantheon, 
where the perimeter walls effectively form a thick cylindrical drum 
up to the base of the dome, the Palazzetto’s sides are almost 
completely glazed. Receiving and countering the downward and 
outward thrust of the dome are 36 radially arranged, Y-shaped, 
vertically propped buttressing columns whose angle of inclination 
is based on radiating tangent lines coming off the dome surface. 
The openness of this flying-buttress-like supporting structure allows 
for the striking visual effect of a free-floating dome, with bright 
light entering from all around the structure and seemingly lifting 
the roof up into the air.

The Palazzetto dome itself was built using an innovative technique: 
in order to simplify construction and reduce the amount of temporary 
timber formwork necessary (acknowledging that, not coincidentally, 
Nervi was also the contractor for the project) prefabricated and 
permanent formwork panels were created by casting a relatively 
thin layer of fine aggregate concrete over the top and sides of 
triangular plastic molds placed with their open-side downward. 
These coffered precast concrete panels were then put into position 
as formwork in preparation for the casting of the dome surface, 

with their careful placement adjacent to each other creating open 
channels between the panel sides into which steel reinforcing bars 
could be placed. Finally, cast-in-place concrete was poured into 
these channels and over the top of all the coffers in order to make, 
when it was hardened, a highly efficient thin-ribbed dome made 
of a composite of both the precast and cast-in-place concrete.

The visual effect of this construction technique results in a 
fortuitous echoing of the Pantheon’s famously coffered inside surface. 
(Ill. 13.22.) And also like the Pantheon, the Palazzetto’s dome has a 
central oculus and skylight, here in the form of a glazed lantern. In 
yet a further mimicking of the past, a construction crane was placed 
in this central opening during construction in order to lift and place 
the precast concrete panels into position. Unfortunately this lantern 
has since been closed to light, presumably to avoid glare for some 
of the spectators as the sun shone through it, but the consequence 
has significantly reduced daylight in the interior of the space and it 
thereby perhaps lost some of its magic. (Surely it would verge on 
the sacrilegious to think about closing the Pantheon’s oculus …)

As we have noted, Pier Luigi Nervi, besides designing and doing 
the calculations for his structures, also owned the contracting firm 
that built his domes and other remarkable structures. Nervi was thus 
able to control their building process as well as detect and correct 
any irregularities during construction. And even while we admire 
the ingenuity and daring aspect of his œuvre, we become even 
more impressed by it when it is recognized that these projects were 
obtained in competitions that were governed by very strict constraints 

Illustration 13.22
Palazzetto dello Sport.
Ribbed interior of dome’s surface is in marked contrast to its smooth outer layer; it also traces 
innovative construction methodology. Base of dome surface clearly disengaged from ground, 
allowing light to phenomenally “float” the dome structure.
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of cost and time. In the context of construction efficiencies, Nervi 
had some interesting reflections on the reason for the geometrical 
shape of his domes: he noted that an elliptical dome would result 
in very complex calculations and construction difficulties compared 
to a circular one; moreover, a circular dome could be built by the 
repetition of only one precast form, whereas for an elliptical dome 
the geometry of an individual forming panel could only be used 
twice.9 As we will see shortly in Section 13.8, although some of 
these truths remain, much has also changed since these reflections 
were made in the 1950s and 1960s. Today digital techniques for 
the manufacturing of building elements can allow for very cost-
effective ways of incorporating even thousands of subtle differences 
into the many individual components that may go into making 
up a single surface for a project. And while on the one hand this 
newfound freedom is unquestionably exhilarating, the risk is that 
design and production can turn into anarchy of form; it still takes 
a steady hand, and perhaps an eye to the overall design sensitivity 
so evident in the domes of the Pantheon and the Palazzetto dello 
Sport, to maneuver in this environment.

13.5	Folded Plates and Cylindrical Shells  
– Beam Action Revisited

Having established the key principles that domed shells are able 
to carry significant loads by means of “in-plane” axial forces in 
tension and compression and by using to advantage their overall 
curved geometry, we can extend these same strategies to other 
rigid surfaces of non-spherical form. We begin by considering a 
special category of thin, stiff surfaces that are deliberately shaped 
so as to be able to carry load in an overall beam-like manner even 
though they are employing these same fundamental shell-behavior 
principles in order to do so.

One such structural form is the folded plate, in which a thin 
flat surface having relatively little inherent flexural stiffness of its 
own (think of a sheet of paper trying to span between two table 
tops, for example) can be significantly stiffened against large-scale 
transverse deformation by folding it back and forth into ridges 
and valleys aligned with the direction of the span. (Fig. 13.9a,b.) 
Simple experiments can easily be conducted with thin card stock to 

T
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Figure 13.9
Representation of stiffness and load-carrying variations 
produced by spanning with (a) flat sheet of card stock, (b) 
folded such surface, and (c) folded surface supplemented 
by transverse diaphragms; (d) depicts beam-like distribution 
of stresses acting in planes of folded surface.
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demonstrate the very significant increase in load-carrying capability 
produced by such folding of surfaces, and in everyday life we 
apply this understanding to everything from corrugated cardboard 
to the instinctive street-wise strategy used for eating a slice of 
hand-held pizza.

The basic mechanism for carrying loads by means of a folded 
plate surface is reminiscent of that which is used in conventional 
beams and slabs (Chapter 7), but now the tension and compression 
stresses developed in the direction of the span and that vary in 
characteristic beam-like linear fashion do so from bottom to top of 
the entire folded plate section (Ill. 13.9d), rather than simply through 
the thickness of the surface, as they did in a flat slab structure. This 
means that a small element of the surface of a folded plate can 
essentially be considered as subject to uniform axial stress through 
its thickness, and that the structure as a whole uses its geometry 
to advantage by developing a large moment of inertia based on 
its overall cross-section. We have seen previously with beams just 
how much was gained by maximizing the distance of structural 
material from a beam section’s overall neutral axis (Section 7.8) and 
the same principles apply here in the context of the folded plate. 

In describing this behavior, we are obviously assuming that the 
material of this folded surface is capable of carrying the tension 

and compression stresses equally well. Also being taken as a 
given is that the folds of the structure are made to hold their 
shape, typically something ensured by means of cross-walls or 
stiffening ribs or bulkheads across the folded plate section that 
are spaced intermittently along the length of the span. (Fig. 13.9c.) 
Form-stabilizing stiffness is also often provided by having the free 
outside edges of a folded surface strengthened by means of an 
edge beam of some sort, or perhaps by including a partial half-
fold of the surface. 

Whatever the specific details, the generally faceted texture 
and angularity of form of the folded plate surface typically gives 
it a unified yet also highly distinctive appearance that may be 
particularly well suited to certain programmatic objectives and 
aesthetic preferences. And while the folded plate drawn in Figure 
13.9 depicts a regular folding of the surface, in fact the basic 
principles can be applied to intentionally more irregularly folded 
surface geometries, such as that for the overriding concrete roof 
of the Finnish Embassy in New Delhi (Ill. 13.23), as well as for the 
origami-like folded surfaces made of solid wood panels for the 
temporary St-Loup Chapel. (Ill. 13.24, 13.25.)

Having arrived at an understanding of how folded plates develop 
stiffness and how these work to carry load, it also becomes possible 

Illustration 13.23
Finnish Embassy, New Delhi, India (1986).
Irregularly folded plate roof unifies the separate volumes of the ambassador’s residence, the 
chancery, staff apartments and a Finnish sauna. The linear arrangement of the folded plates 
recalls the Nordic landscape of glacier-carved parallel furrows and hills, and the eaves of the 
angled white roof resemble the snow sculptures formed in the winter ice around the Gulf of 
Finland. The 1963 competition jury, in recognizing the outstanding design qualities of this 
project, complimented its qualities of “aesthetic uniqueness against mere rational excellence.” 

Architect: Raili and Raima Pietilä. Structural engineer: Heimo Kakko & Co.
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Illustration 13.25
Temporary St-Loup 
Chapel.
The chapel profile rises 
from the entrance to the 
chancel, and the highly 
irregular folding patterns 
are used to address 
acoustic and lighting 
design objectives; 
the panels are all of 
different shape and were 
fabricated and milled in 
a factory, then precisely 
connected together by 
folded steel plates along 
the creases and simply 
cap screwed, producing 
quite an economical 
and quick method of 
construction that was 
nonetheless visually 
distinctive. 

Illustration 13.24
Temporary St-Loup 
Chapel, Deaconess 
Community of St-Loup, 
Pompaples VD, 
Switzerland (2008).
Built for short-term use 
during the renovation of 
this religious community’s 
main buildings, a small 
trapezoidal folded plate 
structure was constructed 
from many cross-
laminated timber panels, 
40mm (1.5in) thick for the 
walls and 60mm (2.25in) 
for the roof. 

Architect: localarchitecture 
and Danilo Mondada 
Architects. Structural 
engineer: IBOIS – Hani Buri 
/ Yves Weinand.
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to understand how such a folded structure can equally well be 
trussed in each of the planes of the folds rather than be made of 
a solid concrete slab or wood panel or steel plate. Just as a beam 
can be rendered more efficient for carrying load by strategically 
concentrating material into the chord and web members of a truss, 
so too can each panel of a folded plate also be trussed, with chord 
members along the lines of the ridges and valleys of the folded 
surface and diagonal and/or other linear elements connecting 
between these. Two well-known examples of such trussed “folded 
plate” structures are the delta-shaped roof of the US Air Force Cadet 
Chapel (Ill. 13.26) and the supporting structure for the landscaped 
walking surface/sculpted roof of the Yokohama Terminal cruise ship 
pier (Ill. 13.27), although in both cases the trussing is in fact not at 
all evident at first glance because of non-structural metal sheets 
that the folded surfaces hide for aesthetic reasons; i.e., efficiency of 
material use and lightness of structure are two things to consider in 

the design of structures, but visual clarity vs. cluttered appearance 
is quite another.

Other rigid surface shapes exhibiting a very similar beam-like 
response to carrying loads are the half- or partial-cylinder, the 
cycloid (whose particular profile is described in the context of the 
Kimbell Art Museum in the next section), or other curved shapes 
lying on their sides and spanning lengthwise some significant 
distance compared to the surface’s cross-sectional thickness. If 
such a curved surface’s material is assumed to have the ability to 
carry both compressive and tensile stresses, then it is possible to 
envision this type of structure functioning just as the folded plate 
does, i.e., with bending stresses developing in the surface in the 
direction of the span but that vary linearly from top to bottom of 
the overall, effective cross-section. (Fig. 13.10a.) To repeat ourselves 
once more for emphasis: for the folded plate or the cylindrical shell 
what we are really doing is using these forms’ overall sectional 

Illustration 13.26
Cadet Chapel, US Air Force Academy Chapel, Colorado Springs, CO, USA (1962).
Sharply folded aspect of chapel’s roof surface suggests airplane wing geometries of the era; 
while representative of the overall form of a folded plate surface, this structure is not, strictly 
speaking, that of a “pure,” solid-surface-version of this type but instead consists of a series of 
steel space frame tetrahedrons covered by aluminum panels.

Architect: Walter Netsch of Skidmore, Owings & Merrill (SOM). Structural engineer: SOM.
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Illustration 13.27
Yokohama Terminal, Yokohama, Japan (2002).
Origami-like folded surface made of perforated steel plates that mostly cover hidden trusses. 
Folds provide strength and stiffness needed to span the large internal space without columns 
while supporting heavy loads from the occupiable, landscaped rooftop terrace for which this 
project is perhaps most widely recognized.

Architect: Foreign Office Architects. Structural engineer: Arup.
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geometry to effectively create beams having a very large moment 
of inertia, thus enabling large spans to be accomplished, large 
loads to be carried, and/or for the structure to be much thinner 
than would typically seem possible.

As an aside at this point, we should be careful to distinguish 
between the structural behavior of a cylindrical shell and that of 
the semicircular vault seen in Chapter 12. Even though these two 
structures have similar overall geometry, in fact they are supported 
fundamentally differently, with the shell carried at its two ends 
compared to the vault that is supported all along its two longitudinal 
edges. (Fig. 13.10a,b.) In contrast to the in-the-direction-of-the-span, 
beam-like load-carrying mechanism that we have just described 
for the cylindrical shell, it will be recalled that the classical side-
supported vault works to carry load in transverse-section arch-like 
fashion, with compression stresses following the section’s arched 
profile and bending action, while also typically being present, in 
this case acting only across the thickness of the vault surface. As 
we have seen, this can lead to a significant need to thicken or 
otherwise strengthen such a vault surface against potentially large 
bending deformations and stresses. 

Finally, getting back to the folded plates, cylindrical shells, and 
other such shaped, rigid surfaces that work in an overall beam-
like fashion while utilizing basic shell structure principles, we can 
apply to these other lessons that we have previously learned about 
beams and other bending-action-dependent structures in earlier 
chapters. For example, just as cantilevered beams can be tapered 
in elevational profile according to bending moment demands, so 
too can this be done with the overall depth of folded plates and 
cylindrical shells, something that can easily be observed in the profile 
of the renowned canopy structure for the Madrid Hippodrome. (Ill. 
13.28, 13.29.) Also, the significant structural benefit that can be 
derived by continuing a beam some distance past its end supports, 
thereby reducing maximum bending moments and corresponding 
bending stresses that the beam needs to be designed for is a 
strategy often implemented, as can be seen at the Finnish Embassy 
roof in Ill. 13.23. Likewise, the lateral-load-resistance strategy of 
the rigid frame, which involves rigidly connecting the ends of its 
beam element to the top of its supporting columns, can also be 
exploited in interestingly spatial ways with folded plate and surface 
structures, as we have just seen with the St-Loup Chapel (see Ill. 
13.24, 13.25) and as will see in the next section for the UNESCO 
Headquarters Assembly Hall (see Ill. 13.30).
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Figure 13.10
Similar forms but different structural behaviors for 
(a) cylindrical shell and (b) arched vault in terms 
of locations of supports, spanning directions, and 
load-carrying mechanisms.
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Illustration 13.28
Hipódromo de la Zarzuela, Madrid, Spain (1936).
Multiply-curved concrete surface segments together create a shell form that gives the 
grandstand canopy the ability to cantilever out 12.8m (42ft); each half-segment of the shells 
has hyperbolic paraboloid geometry (see Section 13.7).

Architect: Carlos Amiches and Martín Domínguez. Structural engineer: Eduardo Torroja y Miret.

Illustration 13.29
Hipódromo de la Zarzuela.
The overall depth of the effective section from 
top to bottom of the curved surface can be seen 
to vary according to bending moment demand.
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13.6 Modern Classics Spanning Space 

To achieve large roof spans, folded plates made from post-tensioned 
reinforced concrete offer a variety of possibilities, and especially so 
when the folded surface’s cross-section is changed along the length 
of the span according to structural demand. An early example of this 
strategy can be found in the UNESCO Headquarters Assembly Hall 
in Paris, built in 1956 by the engineer Pier Luigi Nervi in collaboration 
with architects Marcel Breuer (1902–1981) and Bernard Zehrfuss 
(1911–1996).

The folded roof slab at UNESCO spans over the main auditorium 
in the long direction as well as over a second smaller space behind it. 
(Ill. 13.30–13.32) The roof is supported at its ends by correspondingly 
folded walls as well as on a line of vertical support near the middle 
of the building. From an overall structural-behavior point of view, 
the folded slab can be described as running continuously over the 

middle support and thus tending to be bent concave upward at 
that location while sagging downward over most of the distance 
between vertical supports. At the end of the span, the folds of the 
roof surface meet with the folds of the back-stage wall to create an 
effectively rigid connection between the two and thereby produce an 
overall rigid frame configuration (whose characteristics and attributes 
were discussed in Chapter 10); such a rigid connection also tends 
to produce concave-upward curvature for the folded roof surface 
near the end walls. Overall, then, based on an understanding of the 
deflected shape that we can expect of a rigid frame, the beam-like 
tension-to-compression bending stress distribution over the roof’s 
full folded section can be understood to produce compression 
stresses in the lower parts of the folds in the vicinity of the central 
vertical support as well as near the end walls, whereas compression 
stresses will be in the top parts of the folds in the middle of the 
spans where the roof tends to sag downward.

Illustration 13.30
UNESCO Headquarters Auditorium, Paris, France (1956). 
Auditorium space is established and given character by a folded plate ceiling that 
turns into the backstage wall.

Architect: Marcel Breuer and Bernard Zehrfuss. Structural engineer: Pier Luigi Nervi.
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Illustration 13.31
UNESCO Headquarters 
Auditorium.
Section drawing 
highlights undulating 
profile of stiffening 
slab between buckling-
prone compression 
zones of folded plates; 
also evident is overall 
rigid frame structure 
produced by effectively 
rigid connection 
between folded 
surfaces where roof 
meets wall. 

Illustration 13.32
UNESCO Headquarters 
Auditorium.
Drawings of 
anticipated deflected 
shape, bending 
moment diagram, 
steel reinforcement bar 
placement, and section 
cuts showing varying 
level of transverse 
stiffening slab.
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Now, we know from Chapter 8 that compression stresses can 
lead to buckling problems and that lateral bracing is sometimes 
used to counter this phenomenon; this problem is likely to be 
especially acute in a thin surface structure such as this one that will 
be all the more prone to buckling failure. Adapting the standard 
folded plate structural form to these stress variations and buckling 
concerns in the context of the exceptionally long span over the 
auditorium, Nervi added to the typical folded surface at UNESCO 
a secondary horizontal reinforced concrete slab element. Near the 
middle support, this is positioned in the lower part of the folds to 
stiffen the section against buckling tendencies there (see Ill. 13.32, 
detail B-B). Heading out into the middle of the span where the overall 
beam-like stresses in the folds gradually reverse direction, Nervi 
makes the initially flat slab element rise up continuously within the 
folded section profile in order to follow the compression stresses 
toward the top (detail A-A). Things reverse yet again in the vicinity 
of the end wall support, with the bracing slab dipping down to the 
bottom of the folds. In this way the underside of the anti-buckling 
stiffening element becomes a smoothly curved surface seeming 

to elegantly undulate through the depth of the folds of the roof 
surface. Viewed from above one can observe the “negative” form 
of this variation, with the folded plate’s valleys seeming to widen 
and narrow according to where the points of vertical support are 
provided. This is a subtle game that only a master can play.

Perhaps one of the clearest examples of the remarkable structural 
and architectural possibilities of the cylindrical-shell-as-beam strategy 
can be found at Louis I. Kahn’s (1901–1974) Kimbell Art Museum 
in Fort Worth, Texas. (Ill. 13.33.) Here the roof structure consists 
entirely of a series of parallel concrete shells, each having a cross-
sectional profile that is a so-called cycloid, a curve that is generated 
by a point on the circumference of a circle as it rolls along a straight 
line. The shells must make use of their full sectional depth in order 
to be able to act as a beam in spanning the 30m (100ft) distance 
between the rows of columns. Moreover, the relatively low level 
of the shells relative to the ground not only helps to accentuate 
the span when seen from the outside but they also clearly define 
the internal spaces of the galleries and the circulation within the 
museum – one is always conscious of the oriented space that the 

Illustration 13.33
Kimbell Art Museum, Fort Worth, TX, USA (1972).
End supports necessitate length-wise, beam-like spanning of distinctively shaped shell roof.

Architect: Louis I. Kahn. Structural engineer: August Komendant.
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shells create; indeed, one can’t help but feel that one is walking 
within the structure, rather than under it.

But there is a further subtlety of detail to these shells that is 
not only telling of how they work structurally but that also plays 
a key role in the quality of the internal space: daylight seeps in 
through a long slit cut in the top of the concrete shells all along 
their length. (Ill. 13.34.) Clearly with such a cut at the “keystone” 
location, this structure cannot be working as a series of arches that 
span transversely to bottom-edge beams that would in turn carry 
the loads to the supports at the ends; rather, the shells work as 
overall beam structures that span lengthwise from one column line 
to another, with overall beam-type compression and tension stresses 
acting within the concrete surface aligned in the long spanning 
direction. A few cross ribs of concrete do exist across the opening 
at the top of the curved form to ensure that there is connection 
between the two halves of the shell and to help prevent distortion, 
but not more than that. A couple of other discrete features are also 
used to help counter the flattening-out tendency of the curved 
shell surface: edge beams (which are simultaneously exploited for 

practical purposes such as utility services and water drainage) and 
the curved, thickened arch-like rib ends of the shells that work in 
bending to resist the opening up of the shell beam.

Light at the Kimbell Art Museum is carefully controlled with the 
help of a perforated, polished aluminum reflector running under 
the slit at the top of the shells. The reflector lets most of the light 
down into the room, while the remainder is reflected on the interior 
surface of the vault; in this way its surface is softly washed in daylight 
rather than being dark and uninviting. Kahn himself describes the 
choice of the vaulted shape of his roof in this way:

My mind is full of Roman greatness and the vault so etched 
itself in my mind that, though I cannot employ it, it’s there 
always ready. And the vault seems to be the best. And I 
realize that the light must come from a high point where 
the light is best in zenith. The vault, rising but not high, not 
in an august manner, but somehow appropriate to the size 
of the individual. And a feeling of being home and safe 
came to mind.10

Illustration 13.34
Kimbell Art Museum.
Shell form defines interior space, acts as light reflector.
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13.7	The Hypar Shell

Another particular structural shell shape that has enjoyed remarkable 
popularity over the past half century is that of the hyperbolic 
paraboloid, which describes a pure mathematically defined surface 
whose technical nomenclature is often abbreviated to the more 
informal and familiar abbreviation hypar. As was seen in Section 
11.8 in the context of tensile membranes, this shape can generally 
be described as one which has an anticlastic doubly curved surface; 
i.e., it has concave curvature in one direction while being convex 
at right angles to that. The hypar can perhaps most readily be 
recognized and brought to mind by thinking of the shape of the 
surface of a horse-riding saddle.11

From a mathematical perspective, the shape of the hypar can 
be described by starting with one planar parabola, for example one 
which is opening upward, and then translating along this curve an 
orthogonal parabola of opposite downward curvature. (Fig. 13.11.) 
Vertical section cuts taken in one orthogonal direction or another 
through the resulting surface will therefore always consist of parabolic 
curves. Horizontal sections, on the other hand, will always cut the 
doubly curved surface in two places along lines whose geometric 
functions are defined as matching hyperbolas. Given these very 
particular mathematical properties the naming of this surface as a 
hyperbolic paraboloid becomes evident, although initially there 

Figure 13.11
Mathematically precise geometry of doubly curved hyperbolic 
paraboloid surface; e.g., planes at X = 0 and Y = 0 cut surface along 
parabolas, plane at Z > 0 cuts surface along two hyperbolas.
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may not seem to be anything especially remarkable about being 
able to generate and define a surface in this way, and one may 
wonder about the reason for the form’s history of popularity in the 
world of architecture and building structures.

Another way of describing exactly this same shape, however, 
begins to hint at its remarkable qualities. Rather unexpectedly, one 
particularity of the doubly curved anticlastic hypar surface is that 
straight lines can be drawn on it. In fact, perhaps the simplest way 
of generating a hypar form experimentally is to take two parallel 
straight rods that are connected by a closely spaced set of strings 
and then tilt the rods in opposite directions; e.g., lowering the far 
end of the left rod while lifting the matching end of the right one. 
The strings tied to the two rods obviously have no capacity for 
bending, and so they must necessarily stay straight between the 
rotated rods. The overall surface suggested by the closely spaced 
strings, however, will quickly be recognized as one having anticlastic 
double curvature – in fact, they produce just the hypar surface that 
we have previously described mathematically.

But more importantly than noting this “curiosity” of geometry (at 
least from a building designer’s point of view), it will also quickly be 
recognized that this means that one can in fact create a complexly 
curved hypar surface using discrete straight-line elements. The First 
Nations House of Learning on the University of British Columbia 
campus, for example, has a roof of this distinctive doubly curved 
shape simply made using straight tree trunks. (Ill. 13.35.) Extending 
this potential further, if a compressive membrane shell of this shape 
is to be built of concrete, it can be completely formed by means 
of flat boards of wood and also reinforced with straight reinforcing 
bars rather than by trying to bend or twist either of these materials 
in some sort of awkward manner. Furthermore, this straight-line 
particularity of the hypar shell can also be advantageous in a 
shell surface that needs to be pre-stressed (we will discuss why 
momentarily), since the post-tensioning tendons running through 
the shell can be positioned so as to be perfectly straight and then 
tightened without having them cause supplemental and problematic 
bending stresses across the thin surface of the concrete shell.12

Illustration 13.35
First Nations House of Learning, University of British Columbia, Vancouver, BC, Canada (1993).
Double curvature of hypar-shaped roof shape created using straight tree trunks.

Architect: McFarland Marceau Architects Ltd. Structural engineer: Thorson and Thorson Ltd.
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Figure 13.12
Detail depicting membrane stresses acting on small element of hypar surface, with “hanging” 
tensile stresses in upwardly curved direction and “arching” compressive stresses in downwardly 
curved direction. Anchoring of both sets of stresses at edge of shell surface indicates need for 
additional balancing compression force along the edge in order to ensure equilibrium.

Illustration 13.36
Hypar Shell, Cornell University Arboretum, Ithaca, NY, USA (1975).
“Classic” form of doubly curved hyperbolic paraboloid concrete shell.

Cornell student project. Faculty advisor: Professor Donald Greenberg.
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Transverse gravity or lateral loads are carried in a thin-shell hypar 
by means of the in-plane sets of axial membrane stresses that we 
have encountered previously in our discussion of spherical shell 
domes – except that here, because of the opposite curvatures of 
the surface, we fundamentally establish equilibrium everywhere 
by having tension sets of membrane stresses in the “hanging” 
direction of the curved surface and compressive membrane stresses 
in the orthogonal “arching” direction. (Fig. 13.12.) This suggests 
an equal sharing of load-carrying responsibility between the two 
directions with the resultant structural efficiency benefits, but it also 
presumes that one is using a material for the shell surface that is 
as equally capable of carrying tensile stresses as it is compressive. 
If this is not the case, then the noted straight-line particularity of 
the hypar can be used to advantage by pre-stressing the shell 
surface into a sufficient state of pre-compression so that the tensile 
membrane stresses that result from loading will not be enough 
to overcome them, which is conceptually just the reverse of the 
strategy discussed in Section 11.8 of the need to pre-tension 
fabric membranes because they completely lack any compression 
capabilities. Calculating the magnitudes of the membrane stresses 
in a hypar shell surface in a precise manner is considered beyond 
the scope of the introductory treatment in this book but, as with 
the shell dome, one will generally find these to be remarkably 
small relative to a shell material’s capacity – leading to the similar 
conclusion that we came to before about the incredible advantage 
that is to be derived from equilibrium being established through 
surface curvature and the overall shaping of structure in three-
dimensional space. This, as we are seeing, is developing into the 
common theme of the second part of this chapter.

A further design aspect of note with regard to the use of the 
hypar shell is that the surface that is used does not necessarily 
need to be of the whole geometric saddle shape; one can “cut” 
out parts of this surface at will and still have the special geometric 
and behavioral characteristics of the hypar, although this possibility 
does have to be compensated for. Consider, for example, what 
might be identified as the most basic and prototypical of hypar shell 
surfaces: one which is supported at two low points in the “arching” 
direction and which reaches skyward with two high points in the 
orthogonal direction. (e.g., Ill. 13.36.) This surface will carry load 
by means of membrane stresses throughout as we have described, 
but in order to generate this load-carrying mechanism there will 
have to be an effective “anchoring” of the tension and compression 

Illustration 13.37
Shells, Oslo School of Architecture and Design, Oslo, Norway (2006).
Combination of three hyperbolic paraboloid shells, each measuring 
1.5m × 1.5m (5ft × 5ft) and 20mm (0.75in) thick, are suggestive of spatial 
possibilities at larger scale. Straight lines of formwork lining boards 
remain evident in finished form made of lightweight fiber-reinforced 
concrete.

AHO contributers: Eli Malene Haugen, Ragnhild Gødø, Tone Sandøy, Merethe 
Skjelvik, Silje Hustad Widing, Line Mari Haugland, Sara Brubæk Bua. Faculty 
advisor: Arne Eggen, one of the present co-authors.
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stresses along all of the free edges of the shell. Closer examination 
of the equilibrium of the edge-anchoring condition will establish 
that a balancing axial compression force will be necessary along 
the cut edge, increasing in magnitude toward the base support, 
and this is usually accommodated by a progressive thickening of 
the shell. It should be recognized that this provision of anchorage 
in order for membrane action to be developed in the hypar shell 
can be considered to be completely analogous to the function 
and need for anchoring cables along the edges of the tensile 
membranes that we discussed in Chapter 11. Finally, it is also of 
design interest to point out that one can take several such discrete 
pieces of hypar surfaces and effectively “cut and paste” them 
together, generating all kinds of unexpected surface geometries 
and potential occupiable spaces that are not so obviously a part 
of the hypar family. (e.g., Ill. 13.37, Ill. 13.38.)

Illustration 13.38
Restaurante Los Manantiales, Xochimilco, Mexico (1957).
Radial repetitions of hypar geometry unite into unique 
restaurant roof. Exceptional thinness of concrete surface 
stands out, even from a distance.

Architect: Fernando and Joaquin Alvarez Ordóñez. Structural 
engineer: Félix Candela.
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13.8	Beyond Surface and Geometric Purity

In hindsight, it can be recognized that concrete shells and 
compressive membranes had a certain period of popularity for use as 
large span roof structures in the 1950s and 1960s, perhaps because 
of their efficiency and the development of theories and methods 
for predicting their structural behavior, but also maybe because 
their curvilinear forms departed so radically from the orthogonal 
architectural regimen of the preceding years and designers found 
this release appealing and symbolic of a new era. These early shell 
forms represented a foray into the uncharted territory of the future, 
but then their primary raison d’être seems to have quickly been 
supplanted by the parallel advances taking place in the similarly 
shaped but much more easily fabricated tensile membranes of cable 
nets and fabric structures, so that there were not very many rigid 
shells built toward the end of the last century. Ironically, in a sense, 
and until very recently, their use perhaps came to be considered 
somewhat passé and the form of a bygone era. All the while, 
though, experimentation was quietly going on and the shell was 
biding its time. Exploration of shell forms was being conducted in 
the 1960s to 1980s by relatively few but nonetheless very talented 
designers. Switzerland’s Heinz Isler (1926–2009) was almost alone 
in his playful but altogether logical experiments of hanging fabrics 
into geometrically complex but structurally efficient tensile funicular 
surfaces, spraying or freezing these into rigid forms, and then 
inverting them into correspondingly thin concrete compressive 
shell forms, thus building up over the years an impressive repertoire 
of theaters, warehouses, service stations, etc.13 (e.g., Ill. 13.39, 
13.40.) And in Uruguay the engineer Eladio Dieste (1917–2000) 
experimented not only with the geometry of shell forms but also 
with an innovative and quite unexpected use of materials for such 
a structural type: traditional and standard-sized hollow clay bricks 

Illustration 13.39
Indoor Tennis Centre, Heimberg, Switzerland (1980).
Form developed using Isler’s experimental process for shell 
shape finding: hanging membranes solidified, inverted, and 
adapted to various program and site conditions.

Architect: J.A. Copeland. Structural engineer: Heinz Isler.

Illustration 13.40
Indoor Tennis Centre.
Shell geometry varies continuously; shell is remarkably thin 
at top, can be seen to thicken toward supports. Heinz Isler 
acts as scale figure. 
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Illustration 13.41
Church of Christ the Worker, Atlántida, Uruguay (1960).
The beginnings of Dieste’s œuvre of curving, long-span, thin shells made of clay bricks 
(post-tensioned together).

Designer and structural engineer: Eladio Dieste.

Illustration 13.42
Atlántida Church.
Interior of church.
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were pre-stressed together into remarkable and quite unexpected 
curvilinear shapes that seemingly soar miraculously above one’s 
head.14 (e.g., Ill. 13.41, 13.42; see also Ill. 5.38 and Ill. 8.30.)

As we discuss where shells are today, perhaps it should be 
pointed out in no uncertain terms that not all shells need to be 
made from a smooth, uniformly thick, and continuous concrete 
surface. We have already seen earlier in this chapter the beginnings 
of variations from this in the ribbed structural form of the dome 
of the Palazzetto dello Sport developed by Nervi, although in 
that case the continuous shell surface remained despite having 
been considerably thinned out. Embedded in that shell dome and 
its rib pattern, however, is the compelling suggestion of being 
able to go even further and open up the dome surface to the 
sky. As well, the relatively low magnitudes of stresses that have 
generally been shown to exist in a compressive membrane by 
means of extrapolation from the numerical example of Section 
13.3 also begins to suggest that tremendous possibilities exist 
for the literal opening up of the compressive membrane shell by 
concentrating membrane stresses into forces in relatively short, 
discrete, intersecting linear elements, whose overall arrangement 
forms a tight “mesh” or “grid,” thus leading us to what is today’s 
quite popular grid shell. We can liken this approach of opening up 
the solid shell surface while still having it retain its original overall 
structural behavioral characteristics to what we have described with 
other types of structures in previous chapters; e.g., trusses that 
can be thought of as beams with holes cut into them, or space 
frames’ two-way load action being likened to that of the efficient 
opening up of a solid plate or slab of structural material.15 The 
possibilities of form variation that today are achievable by the grid 
shell are extraordinary (e.g., Ill. 13.43), even if there is a careful 
rigor inherently involved in creating these so as to ensure that 
the forces acting on the structure are mainly carried by in-plane 
membrane action.

If dealing with in-plane membrane stresses by the means of a 
gridded mesh has loosely been justified above, it may still seem 
that the stability of such a surface is somewhat miraculous. As 
a means of briefly addressing this aspect, we will here consider 
the configuration of a basic grid shell: often it is composed of a 
rectangular mesh of thin bars of some sort, typically made of steel 
but alternatively, perhaps, of wood or another material. Depending 
upon the type of grid shell, one possibility for creating the desired 
curved shape would be to construct extensive formwork over which 

Illustration 13.43
Weald and Downland Gridshell, Singleton, West Sussex, 
England, UK (2002).
Layered oak laths used to create grid of doubly curved shell; 
rectangular panels stiffened in plane of surface by secondary 
lath layer that triangulates system. Material choice inspired by 
workshop space use for conservation and repair of historical 
timber-framed structures.

Architect: Edward Cullinan Architects. Structural engineer: Buro 
Happold.
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Illustration 13.44
DZ Bank, Berlin, Germany (2001).
Grid shell curvature varies greatly within confines of courtyard; intermittent sets of 
fanning tension rods attached to arched ribs help to maintain form.

Architect: Frank Gehry and Partners. Structural engineer: Schlaich Bergermann und Partner.
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this gridded surface is built. But an alternative and much more 
economical method of creating it can also be achieved by building 
the gridded mesh flat on the ground with loose-fitting connections 
and then lifting the whole assembly up into the air, or draping it 
over scaffolding that is later removed. The loose joints of the mesh 
allow the grid elements to rotate and twist freely in order to assume 
the desired geometry and then the whole surface is stiffened up, 
often by means of a series of tightened diagonal wires that create 
stable triangles within the rectangular mesh but also by other 
means, such as running longitudinal members over the gridded 
surface or by tightening all of the joints so as to produce frame-like 
rigidity in the plane of the shell. Depending on the situation, a thin 
grid shell surface may in addition need to be further stabilized, 
perhaps by intermittent sets of “fanning” tension rods that give 
the form stability every so often across the overall section of the 
shell surface. Such distinctive stiffening systems can be likened to 
being appropriately lighter and more transparent versions of the 
transverse plates or bulkhead ribs that we encountered in Section 
13.5 to help folded plates and cylindrical shells keep their shape. 
Frank Gehry and Jörg Schlaich’s collaboration on the incredibly fluid 
profile variations of the glass-covered grid shell for the courtyard of 
the DZ Bank in Berlin illustrates well the need for the use of such 
a supplemental stiffening system. (Ill. 13.44.)

But grid shells, while currently popular, are not the end of 
the story in terms of the evolution of compressive membranes. 

Simultaneously there is a limited yet remarkable resurgence of 
interest in the concrete shell itself – although today it is less likely 
to be of the pure geometry variety of previous years but instead of 
a noticeably different shape, such as is exemplified in the striking 
profiles of the white shell roof of Toyo Ito’s ‘Meiso no Mori’ Municipal 
Funeral Hall. (Ill. 13.45.) Relatively recent trends in architectural 
design stemming from the use of digital technology and parametric 
generation of “free-form” surfaces – with the ability of the designer 
to “loft” and manipulate and deform virtual surface geometries 
in ways that were not even close to being feasible before – mean 
that surfaces are once again coming into vogue, even if these 
are no longer describable using pure mathematical equations.16 
Undoubtedly this second life of the shell is also being sustained by 
parallel advances in computer structural analysis techniques and, 
perhaps even more so, by the application of computer technology 
to the construction industry, with the possibility of being able to 
use digital information and manufacturing technologies for either 
the shaping of molds for non-geometrically definable formwork or 
for the cutting and precision milling of the thousands of different 
individual pieces and segments needed for contemporary grid shell 
surfaces. New shell forms can thereby be designed, produced, and 
studied, signaling the beginning of a yet-to-be-written chapter on 
the ever-evolving relationship between structural behavior and 
architectural design.

Illustration 13.45
‘Meiso no Mori’ Municipal Funeral Hall, Kakamigahara, Japan (2007).
Irregular undulating shape of concrete shell roof informed by analytical studies of 
structural behavior; it also clearly alludes to the topography of the surrounding hills, while 
contrasting with orthogonal geometry of “grounded” walls below.

Architect: Toyo Ito and Associates. Structural engineer: Sasaki Structural Consultants.
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Illustration 13.46
Great Court, British Museum, London, UK (2000). 
Section and plan drawings.

Architect: Norman Foster + Partners. Structural engineer: Buro Happold.
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13.9	Four Exceptional Shell Forms

Great Court

One of the most remarked-upon buildings of the past quarter 
century is really not a complete building structure at all – or, at 
least, the part of it that is new is only a relatively small portion of 
the whole building. We refer here to the Queen Elizabeth II Great 
Court of the British Museum in London, and even more specifically 
to this institution’s courtyard roof, which was completed in the year 
2000 as a harbinger of things to come in the twenty-first century in 
terms of structure and architecture. (Ill. 13.46.) The objectives and 
successes that are associated with this canopy, designed by architect 
Norman Foster + Partners and structural engineer Buro Happold, 
have been discussed extensively elsewhere; briefly, however, these 
include resolving major congestion-of-circulation issues for the 
museum, creating Europe’s largest covered public square, and 

bringing to life a remarkable and remarkably “lost” and forgotten 
urban space right in the heart of the city.

We will spend but a few moments here to describe some of the 
specifics of the great gridded shell that makes all of these things 
possible. First, of course, one must appreciate the basic geometrical 
issue of trying to cover, in as minimal a surface membrane fashion 
as possible, a square interior courtyard that has a domed cylindrical 
drum located right in the middle of it. (Ill. 13.47.) The old rules 
of geometry and mathematical formulas just do not apply any 
longer – instead, in a Brave New World fashion, a form-generating 
computer program defined the surface while taking both structural 
and architectural design imperatives into account. The resulting 
surface shape has been likened to the top of a donut, except that 

Illustration 13.47
Great Court, British Museum.
Geometry of grid shell roof mediates between circle of the central Reading Room drum 
and rectangle of surrounding classical façades.
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in this case the donut has a square outside edge. The fact that this 
surface is bulging upward is plain to see and explain: obviously 
a surface as thin as this one would have no hope of working if it 
were simply horizontal because of the huge bending moments and 
stresses that would result. Instead, and in order to carry the roof 
loads in as much of a compressive-membrane manner as possible, 
the profile of the shell is generally curved about a rather tight 
radius in order to give the form sufficient steepness and curvature; 
the height of the now-encircled Reading Room dome provides 
ample reminder of the logic of this basic strategy for carrying load 
primarily in compression.17 This having being said, the sectional 
drawing of Ill. 13.46 demonstrates that we have, nonetheless, made 
significant progress over the past 150 years; i.e., the structure for 
the new shell roof is noticeably flatter and thinner than that of the 
historical dome.

The grid of the shell is triangulated by skewed sets of thin 
intersecting steel members that define both the structural elements 
and the attachment frames for the glass panels that create the 
enclosure for the light-filled courtyard: 1656 double-glazed panels 
are needed to cover the surface, and 1800 nodal connectors 
join the six steel members at every intersection point (there are 
6000 members in all). But mere numbers are by no means the 
end of the story here: the geometry necessary to create this 
shell surface is one which is flatter around the perimeter than 
it is toward the center near the Reading Room dome and it is 
flattest of all in the four outside corners of the surface. This means 
that each and every joint has to be precisely shaped to a slightly 
different geometry – something that only recent developments 
in digital manufacturing technology have made possible. Going 
even further, this ever-so-subtle variation of the shell’s surface 
curvature is also relevant in reminding ourselves of where this 
discussion and this chapter began. The flattest part of the Great 
Court roof shell around the perimeter requires loads to be carried 
and surface stability to be established by more bending action 
in the gridded shell surface than in the center, where it is more 
curved and where compressive membrane action is therefore more 
effective; the result is that the structural members of the grid shell 
are not uniform in dimension everywhere but rather they taper 
gradually from a minimum near the middle of the Great Court 
and increase in dimension toward the outside edges. And if this 
concern with bending sounds vaguely familiar, it should: recall 
that in historical ribbed and masonry domes we fundamentally 

relied on combined axial compression as well as bending action 
in order to have stability; here, in making “progress” toward 
shell surfaces of “freer form” than those of the geometric purity 
that we have been looking at in the latter part of the chapter, we 
have reverted back to relying on the combined actions of axial 
compression plus bending. There is nothing inherently wrong 
with that, of course, but if necessary we can console ourselves 
that there has indeed been considerable progress over time: the 
Great Court grid shell is considerably lighter – in every sense of 
the word – than is that of the Reading Room dome it encircles.

Fiera Milano

If the Great Court is said to be Europe’s largest covered courtyard, 
then the Fiera Milano is its largest trade fair complex, which is entirely 
appropriate as Milan has a long tradition of putting on display the 
state of the art in furniture and fashion design among many other 
things. A constructed exhibition fairground on the outskirts of the 
city of Milan, completed in 2005, covers more than two million 
square meters of space (21.5 million square feet) and is composed 
of more than a dozen different buildings of various shapes and 
sizes so as to be able to accommodate several major exhibitions 
and conventions simultaneously. This facility also served for the 
extended site of the World’s Fair held in Milan in 2015. In order to 
unify this immense and disparate complex, a long linear open-air 
circulation spine connects all the various exhibition halls, and this 
axis is distinctively covered by an undulating glass and steel canopy 
structure that gives the project its iconic identity. Extending over 
a length of no less than 1300m (4250ft) this pedestrian walkway’s 
glass and steel roof canopy is flat in certain places but in others 
undulates very distinctively to form curved surfaces. (Ill. 13.48.) This 
roof has been called an artificial/natural landscape (that mimics 
and frames the view of the Alps on the horizon), and its curving 
forms likened to dunes, hills, funnels, and even volcanoes that 
figuratively reach down to the ground and rise up to touch the sky; 
perhaps the unifying name of vela (sail) best describes its overall 
fluctuations of form.18

The initial design sketches for the roof by the architect 
Massimiliano Fuksas were made buildable through collaboration 
with the structural engineers Schlaich Bergermann und Partner 
and Mero-TSK International, the manufacturer of space frames 
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Illustration 13.48
Fiera Milano, Milan, Italy (2005).
Well over 1km long (approx. 0.75 
mile) roof canopy for exhibition 
and convention center’s outdoor 
circulation spine sweeps along 
in continuous fashion, in places 
wrapping over program volumes, 
at others dipping down to touch 
the ground. Flat, orthogonally 
gridded surface structure becomes 
triangular and faceted at locations 
of significant curvature.

Architect: Massimiliano Fuksas 
Architetto. Structural engineer: 
Schlaich Bergermann und 
Partner together with Mero-TSK 
International.
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that decades ago developed the famous patented spherical node 
connector for such structures (see Ill. 9.35). The Fiera Milano canopy 
is clearly no regularly defined geometrical surface: it is neither 
monotonously repetitive nor can it be described wholly by following 
pure mathematical equations; rather, it can generally be described 
as being of composite geometry, with some parts perfectly flat and 
horizontal and other portions that are free-form surfaces of either 
single or double curvature (and the latter of either synclastic or 
anticlastic form). The main task of the consultancy was to develop 
a lightweight structure for the surfaces, which effectively became 
about finding the necessary geometry for a gridded steel mesh 
that could create the desired forms and yet also support the dead 
weight of the glass panels and the live loads on this surface caused 
by such variables as snow, wind, seismic activity, and (especially 
because it is an extremely long and open-air structure) temperature 
changes. In the flat regions of the canopy, things are relatively simple: 
the grid is quadrilateral when seen in plan view, 2.7 x 2.25m (8.9 x 
7.4ft), and it carries the vertical loads in the good, old-fashioned 
two-way beam-grid manner (recall Section 7.10) with steel members 
having a bending-efficient T-shaped section. The covering glass 

panels match that of the steel grid and are attached by means of 
aluminum frames to the tops of the steel members. 

When this flat grid is significantly distorted out of plane into 
the funnel shapes, however, things become more complicated. (Ill. 
13.49.) In order to adopt the desired shape, the sides of four-sided 
panels would have to twist in space relative to each other, something 
the overriding flat glass sheets would simply not be able to do 
without becoming overstressed. The solution that was developed 
for these regions of the canopy was to change the rectangular grid 
to a triangular one, which allows each glass panel to be planar; 
i.e., the surface becomes a faceted one, although the panels are 
small enough that at the scale of this project it appears overall to 
be a smoothly curving surface. The strong curvature of the surface 
in these regions provides the perfect opportunity for the in-plane 
compressive membrane action that we have been discussing to take 
over the load-carrying responsibilities. And in conformance with 
the strategic shaping of what are now primarily axial compression 
elements, the steel mesh changes in these regions to become 
made of square hollow members (Section 8.6). Of course, there will 
inevitably be transition zones between the flat and curved parts of 

Illustration 13.49
Fiera Milano.
“Funnel” reaching down to ground; curvature allows structure to be self-supporting by 
means of in-plane-of-surface shell-like behavior.
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the canopy, both in terms of geometry and primary load-carrying 
methods, and in these areas the triangular and rectangular grids 
can be observed to overlap each other.

One final aspect of this project will be briefly discussed here: 
that of being able to manufacture the incredible kit of parts that is 
necessary to build such a free-form surface. There are roughly 42 000 
steel bar elements needed for this more than 1km (almost 1 mile) 
long gridded mesh, and 18 000 nodes are necessary to connect 
them all together. The frequent and irregular variation of geometry 
that we have described for this surface and the precision of form 
that is evident in the images suggest that the manufacturing of the 
elements and the connections cannot be done for such a project 
by conventional methods. Indeed, all of the bar elements and the 
nodes were defined by variable geometric data that was linked to 
state-of-the-art digital manufacturing techniques, including using 
milling machines with computer numerical control (CNC). The Fiera 
Milano can thus be seen to be a compelling example of the new 
possibilities that exist for compressive membranes in particular 
and, more generally, for a new basis of development for structure 
in terms of architecture.

Rolex Learning Center

The Rolex Learning Center is a large, single-story building that 
provides spaces for multiple university functions and student activities 
at the École Polytechnique Fédérale de Lausanne. In plan view, 
it is a rectangular building that measures 160m x 75m (525ft x 
245ft), but this is where typical descriptors about this building 
end, since both its external form and internal spaces are highly 
irregular. In distinctive fashion, two seemingly identical undulating 
white surfaces serve as the building’s floor and roof, spaced only 
3.3m (11ft) apart, with glass walls all around the perimeter and 
several large, rounded openings admitting light deep into this 
“sandwiched” layer of space. (Ill. 13.50.)

One’s typical perception and experience of occupied space is 
distorted here since there are almost no flat, horizontal areas within 
the mat building’s vast expanse. The undulations of the floor and 
roof surfaces produce more limited views and intimacies of space 
than one is used to encountering in such a building – especially 
one having no formal walls – and these aspects are constantly 
changing with the varying slopes of the surfaces and shapes of the 

Illustration 13.50
Rolex Learning Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (2009). 
Double layer of undulating surfaces establish the form and occupiable spaces as well as the 
structure of an unconventional academic building.

Architect: SANAA. Structural engineer: Bollinger + Grohmann.
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openings. A few, glass enclosed “pods” do have flat floors and 
these exist for more formal study/discussion/café or other service 
spaces, but generally the open space between the sloped surfaces 
produces a free-flowing space that encourages informal meetings 
and discussions and other social activities – in a similar way that 
a classic academic campus’ quadrangle does with its intersecting 
circulation footpaths and grass lawns for lounging, reading, talking, 
playing, etc. Moreover, in certain areas, the relatively steep slopes 
are playfully/practically negotiated by means of switchback pathways 
– a feature which is certainly in keeping with the surrounding alpine 
landscape. (e.g., Ill. 13.51.)

But looks are actually deceiving here, for in spite of their apparent 
visual similarity the floor and roof surfaces could not be more 
different in terms of structural configuration and behavior. The 
lower surface is a doubly curved 60cm (2ft) thick reinforced concrete 
shell, occasionally arching up into the air so as to draw people 
into/under the building. Such a free-form shell surface derives a 
good part of its stiffness and strength from its curved shape, and 
thus develops membrane-type axial stresses within it to carry the 
gravity loads. But universal access and other requirements had to 
be reconciled with structural optimization, and the shell form could 
not be shaped to be structurally “ideal/funicular” in profile, meaning 

Illustration 13.51
Rolex Learning Centre.
Thick concrete shell creates walkable surface “landscape.”
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that bending stresses are also present across the thickness of the 
shell surface in order to maintain equilibrium, leading to the need 
for a shell which is quite thick. Also, the lifting-up of the surface 
that gives it its wave-like undulations is accomplished by means 
of significant arching action within the shell surface, and because 
of the relative flatness of the arched profile the magnitude of the 
compression forces is quite large and the thickness of the shell is 
therefore further strengthened at these locations with reinforcing ribs 
that are 20cm (8in) thicker than the rest of the shell; the opposing 
outward thrusts are resolved where the shell meets the ground by 
means of horizontal pre-stressed cable tension ties. 

The roof, while appearing to be an identical shell, is instead – and 
surprisingly – built in “conventional” post-and-beam fashion, with 
the columns on a 9m x 9m (30ft x 30ft) grid, and the beams having 
typical one-way timber-and-steel beam sequential hierarchy. (Ill. 
13.52.) It may seem ironic that such a spatially innovative building 
makes extensive use of such a traditional structural system for 
its upper “shell” surface, but among the advantages is that the 
resulting roof has relatively little mass compared to a thick concrete 
slab, and so any seismic forces that would have to be countered 
will thus be greatly reduced. 

Illustration 13.52
Rolex Learning Centre.
The two surfaces are not identical, despite finished appearances. The lower surface is indeed a thick, free-
spanning reinforced concrete shell, but the roof “shell” is actually timber-and-steel-framed construction 
supported on many, relatively closely-spaced, slender steel columns.

Cornell model by Kao Onishi and Janice Rim.
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Illustration 13.53
Teshima Art Museum, Teshima Island, Kagawa Prefecture, Japan (2010).
View of the museum’s site and context, on a terrace overlooking the Seto Inland Sea. Exterior form 
of the shell structure fits “naturally” into the landscape but also stands out from it with its stark white 
concrete material.

Architect: Ryue Nishizawa with Rei Naito (artist collaborator). Structural engineer: Sasaki Structural Consultants. 
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Teshima Art Museum

Finally, to close things out, we will consider the “free-form” 
concrete shell of the Teshima Art Museum, an architecture and 
art and structural engineering design collaboration between the 
architect Ryue Nishizawa, the artist Rai Naito and the engineering 
office of Sasaki Structural Consultants. 

The building is on a spectacular site on Teshima Island overlooking 
the Seto Inland Sea, up a steep hillside from the water far below, 
although the more immediate surrounding context is at the edge 
of a gently sloping natural terrain of fields and woods and human-
made rice terraces. (Ill. 13.53.) The museum was built as part of a 
plan to revitalize the island’s economy, which was devastated in the 
1980s by an industrial waste scandal involving the illegal dumping 
on the island of toxic byproducts from manufacturing processes 
located elsewhere in Japan. To support the aging inhabitants that 
still remain on the island, but also to give the community new life, 
the rehabilitation plan includes a revival of traditional agricultural 
production as well as new initiatives to make this place a cultural 
travel destination – to wit: the building of the Teshima Art Museum. 

The approach to the structure is deliberately controlled along 
a narrow, winding, circumferential path leading through a small 
forest and having occasional glimpses of the spectacular views of 
the Inland Sea, before seemingly accidentally coming upon the 
low-slung “natural” form of the shell structure that is – quite literally 
as we shall see – the Teshima Art Museum. Here the curvature of 
the shell is most obviously not mathematically “pure”; instead, it 
variously but subtly swells or constricts here and there; Nishizawa 
described its overall form as having been inspired by that of a droplet 
of water lying on a flat surface.19 The combined yet conflicting 
effects on the shape of such a droplet when acted upon by gravity 
as well as other, more elusive natural forces – such as water surface 
tension, for example – can thus be brought to mind. But knowing 
of this design inspiration is not necessary to appreciate the final 
result: a powerful external form that is nonetheless perceived as 
being in harmony with the natural landforms of the site, effortlessly 
fitting into the landscape like just another hill or slope, even as it 
simultaneously stands out from nature with its starkly “alien” white 
concrete material composition. 

On the inside, the space is unexpectedly low and horizontally 
extended; i.e., the maximum height of the surface is only 4.5m (15ft) 
for a building whose plan dimensions are roughly 40m x 60m (130ft 

x 200ft). A concrete floor completely covers the ground, and from 
around its perimeter a 25cm (1ft) thick concrete shell rises up to 
cover the space with a smooth, continuous ceiling; i.e., the sense 
of flow of the interior space is uninterrupted by any columns or 
beam protrusions from under the shell surface. Two large elliptical 
openings are made in the shell to admit light and air and rain into 
the space. And that is all there is to it, or so it would seem – for 
as we have grown accustomed to by now, there is much more 
involved in producing such a “simple” building structure than at 
first meets the eye. 

First, we shall consider the thickness of this shell, which just 
on its own reveals quite a lot about the structural behavior taking 
place within it. By point of comparison, and as we have seen in 
Section 13.7, mathematically pure hyperbolic paraboloid shell 
structures were, as a result of their geometry, principally carrying 
the predominant self-weight dead loads by means of axial in-plane 
membrane stresses, and thus needed to be only about 4cm (1.5in) 
thick – as in the case of some of Félix Candela’s exceptional structures 
(e.g., Ill. 13.38). Clearly, at Teshima, a significant price is being paid 
for the “impure” form of the shell, since it has a thickness that is 
about eight times more than Candela’s norm for structures that 
span even greater distances; i.e., in order to ensure the equilibrium 
of the museum’s “free-form” shell, membrane stresses must in 
general be supplemented by significant bending stresses acting 
across the shell surface thickness, which necessitates its being 
significantly thicker.20 

Of course, creating formwork for pouring a “free-form” concrete 
shell is also not a simple matter. (Again, a comparison to the straight, 
wood board forms that could be used for Candela’s hypar shells 
is to be noted by point of comparison – see Section 13.7.) In the 
case of Teshima, after an overall shape had been agreed upon by 
the architect, artist, and structural engineer after multiple form 
iterations and corresponding computer structural analyses had been 
conducted, an artificial mound of earth was very precisely shaped 
using 3500 points of elevation in order to ensure that the stresses in 
the eventual real shell structure would match as closely as possible 
the structural response predicted during the design phase. A layer 
of grout was poured over the earth mound and a complex, dense 
network of reinforcing bars was then carefully put into place, after 
which a special white concrete with lime additive was poured in a 
single day so as to avoid any unsightly construction joints, with a 
final layer of plastic coating then applied to the surface to counter 
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water infiltration and the potential rusting of the reinforcing bars. The 
concrete was left to cure for five weeks, after which it had gained 
sufficient strength so that the earth formwork could be carefully 
excavated from within, eventually leaving a singular structural shell 
form to span the open museum space. 

The artist Rai Naito’s work typically focuses on the interactions of 
light, water, and air, and in support of this agenda Ryue Nishizawa 
designed a building which is about “just” that; indeed, nothing else 

is on display in this museum other than the interaction of “building” 
with nature. For example, for Naito’s inaugural installation entitled 
Matrix, small amounts of water trickle out here and there from 182 
tiny ducts in the floor slab at different times throughout the day – to 
then coalesce with other water droplets, growing slowly into small 
puddles and rivulets that run along the floor only to disappear down 
similarly unseen drain holes. Visitors are left alone to contemplate 
and experience this playful water dance. 

Illustration 13.54
Teshima Art Museum.
Contemplative interior space.
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Another installation consists of a single string suspended from 
two points at the edge of one of the openings in the shell roof. 
The string is so light, of course, that it is caught by the breezes, 
and renders visible the currents of air movement within the space 
that otherwise cannot be seen. (Ill. 13.54.) A much more subtle play 
or reference is also coyly being made by this string when there is 
no breeze at all and it is only subject to gravity loads. As we saw 
in Chapter 11, such a string, having uniform load along its length 
due to its self-weight, will necessarily adopt the pure mathematical 
shape of a catenary. We then saw in Chapter 12 that an arch could 
also be so configured in order to be in pure compression, and in 
this chapter that shell surfaces can be similarly shaped by extension 
(for example, in the work of Heinz Isler (Section 13.8) with his highly 
efficient shell structures derived from the hanging shapes of fabric 
membranes). Of course, as we have just seen, such funicular form 
is not the case with the Teshima Museum shell roof; to be able 
to appreciate such clever wit, however, one has to be able to 
understand and appreciate structural behavior and resultant form!

Installations aside, this building on its own highlights the interplay 
of light, water, and air together and as one with the birds, insects, 
sun, wind, snow, rain, and other elements of nature. Or one can 
focus only on the movement of the tree foliage by looking through 
one of the roof openings. At other times, the experience is all 
about observing the sky as a colored disk – one that transforms 
from blue to gray to white to black and other colors as well at 
sunrise and sunset. This museum at Teshima very deliberately fuses 
together the environment, art, and architecture – with all three 
working together as an entity. This building is about a singular 
structural-shell-created architectural space that envelopes/swallows 
one whole – and about how it enables the re-presentation of the 
natural elements and forces of nature that surround us all the time, 
but that we may not otherwise take the time to notice. Such can be 
the subtle-yet-forceful power of the structural basis of architecture. 
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Notes

Chapter 1 
Structuring Space

1	 Neuhart, M. and Neuhart, J., Eames House, Ernst & Sohn Verlag, 1994, 

p. 37.

2	 www.e-architect.co.uk/bordeaux/maison.

3	 From a conversation with one of the present authors (B.N.S.). in Vienna 

in September 1996.

4	 By “sub-optimization” we mean that the structure is not optimal with 

regard to the building’s overall shape, but given the particular architectural 

context, measures have been taken to make the structure more materially 

efficient by changing the structural pattern according to the magnitude 

and distribution of forces.

5	 CNC stands for computer numerically controlled processes.

6	 As an extension of this approach, one can find that structures in 

architecture have an aesthetic interest; i.e., one which is focused on our 

visual experiences. While every attempt is made throughout this work to 

articulate what we see when we view a structure, it is considered to be 

outside of the scope of this book to elaborate more specifically on this 

broad topic; for that purpose, the reader is referred to Sandaker, B.N., 

On Span and Space. Exploring Structures in Architecture, Routledge, 

2008.

Chapter 2
Introducing Structural Systems

1	 While not being uncommon to speak of a transport of loads and forces, 

no transportation is actually taking place. A more precise, but elaborate, 

description of a horizontal span structure would be to state that the loads 

act at certain points while being prevented by the structure from reaching 

the ground at the vertical projection of those points. The structure in this 

case supports the loads while spanning a certain horizontal distance, 

resulting in new loads acting on the vertical structural elements and on 

the foundations well to the side of where the initial loads act.

2	 By the notion of “surface elements” used here, we mean to identify a 

different concept than what in structural mechanics is commonly referred 

to as “surface structures.” The latter notion is used in connection with thin, 

shell structures that carry loads by means of surface stresses acting in-the-

plane-of-the-surface. (See Chapters 11 and 13). By “surface elements” 

in this context we mean to point out certain visual and spatial properties 

of a group of structural elements that form “planes” rather than “lines,” 

and where the load-carrying mechanism may vary from one case to the 

next.

3	 In Section 4.4 of Chapter 4 Statics we will define as moments those force 

actions which result in either rotation, flexing, or twisting of an element.

4	 Or else when one end is fixed while the other is twisted. It is the relative 

rotation which counts. In Section 4.4 we will realize that torsion is a 

particular type of moment.

5	 The downward deformation of the mezzanine at this end is actually a 

sum of the elongation of the hanger and the deformation of the roof 

beam at that point. The latter effect is not made explicit in the drawings.

Chapter 3
Loads

1	 One of the most compelling accounts of a building designer’s 

responsibilities and fears of catastrophic failure surely has to be the 

article written about structural engineer Bill LeMessurier and the Citicorp 

Center in New York City: Morgenstern, Joe, “The Fifty-Nine-Story Crisis,” 

New Yorker (May 29, 1995), pp. 45–53.

2	 This nomenclature is an obvious allusion to nature’s streams and rivers 

that gather the rainfall from a certain geographic area.

3	 Recall at the same time, however, that common examples of movable 

“point” loads, such as those caused by people and furniture on floors, 

have their unpredictability accounted for by the occupancy live load 

allowances for floor areas.

4	 These loads are “live” in the sense that they clearly can vary significantly 

over time.

5	 For example, a huge snowfall on March 18–19, 2003, in the mountains 

of Colorado, USA dumped almost 2.5m (7.25ft) of wet heavy snow in 

certain places, leading to the collapse of hundreds of roof structures.

6	 Why times the story height? Because typical building cladding and 

vertical window attachment systems usually span vertically from the 

edge of one floor to another, effectively converting lateral pressures 

into point loads applied at each floor level.

7	 This is the same fundamental mechanism, of course, that is used to 

make airplanes fly; i.e., by means of air flowing over a carefully shaped 

obstruction – namely the airplane wing.

8	 To carry the previous analogy of water flow a bit further, one will encounter 

a similar phenomenon with the variation of the speed of water in a river 

channel, with the water in the middle of the channel flowing fastest while 

that along the banks and bottom moves considerably more slowly.
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9	 The relatively rare matching of the period of vibration of a structure with 

the interval of wind gusting can have rather disastrous consequences – as 

is evidenced by the infamous video footage of the positive reinforcing 

of oscillations of the Tacoma Narrows Suspension Bridge in Washington 

State in 1940. The subject of suspension cable stability is further discussed 

in Chapter 11.

10	 Horizontal floor slabs, beam-framing systems, floor and ceiling finishes, 

and mechanical and service distribution systems are all located at the 

floor level, whereas between floors there is mostly empty (occupiable) 

space except for the vertical columns and walls.

11	 Only dead loads that are rigidly attached to a building structure need 

to be considered, as they are the only ones that are “dragged” along 

and become inertial mass. Live loads are unattached and should not be 

included in this total as they can remain stationary while the building 

moves relative to them – a phenomenon perhaps most clearly illustrated 

in video clips of bars during an earthquake when bottles and glasses 

are seemingly tossed about, whereas in reality it is the building that is 

moving back and forth with respect to what are, at least to begin with, 

stationary objects on tables and shelves.

12	 We can observe the effect of this reality in the devastating aftermath 

of earthquakes where traditional long, low, stiff, and massive masonry 

walls predominate – such as in the cases of Amarice and Port-au-Prince 

previously mentioned.

13	 This is much the same as the string on a musical instrument which will 

vibrate differently depending on its thickness and tightness and thereby 

produce different sounds.

Chapter 4
Statics

1	 Some have seen a certain symbolism in the fact that Newton was born in 

the same year that Galileo died. This is stretching history a bit, however. 

At the time, England still used the Julian calendar, which fixed Newton’s 

birth to December 25, 1642. According to the Gregorian calendar of 

the Venetians, applying to the date of Galileo’s death, Newton was born 

on January 4, 1643!

2	 Newton was primarily interested in heavenly bodies, while here we think 

of bodies as representing beams, columns, struts, or whatever structural 

elements we are studying.

3	 Slug is sometimes called pound mass.

4	 The abbreviation lb comes from the Latin word libra, meaning “scales, 

balances,” which also described a Roman unit similar to the pound.

5	 If the body was able to fall freely, the acceleration would be 9.81m/s2  

for all bodies, independent of their mass. This is the reality of the 

experiments Galileo is supposed to have conducted from the Leaning 

Tower of Pisa.

6	 Velocity is a vector, for example, while the accompanying scalar is quite 

simply called speed.

7	 Cartesian is named after the French philosopher and mathematician 

René Descartes (1596–1650) who invented the very convenient system 

of orienting points and lines in a mathematical space.

8	 Archimedes of Syracuse is credited as the first to use the lever principle 

when in about 250 bc he built stone-throwing catapults as weapons of 

defense against Roman invaders.

9	 André Gide (1869–1951), French author, in Journal 1889–1939, Vol. 1–3, 

Paris, 1948.

10	 Jean Prouvé (1901–1984) was a metals craftsman and much celebrated 

designer. Neither being an engineer nor an architect himself, he 

nonetheless played an important role in the development of certain 

aspects of modernism in architecture and design, working throughout 

his career with a number of well-known architects.

11	 In reality, the forces acting at the tip of the cantilevering beam to the 

right of the column are the sum of the (smaller) roof load and the tension 

force in the rod.

12	 A spatial system demands six independent support reactions to be in 

equilibrium, corresponding to three translatory equations (ΣFx = 0, ΣFy 

= 0, ΣFz = 0) and three rotational equations (ΣMx = 0, ΣMy = 0, ΣMz = 0).

Chapter 5
Materials

1	 The modulus derives its name from the British polymath Thomas Young 

(1773–1829).

2	 The element will also become thicker, but for a thin linear element like 

the one being discussed here, this will be of little significance.

3	 See B. Berge, The Ecology of Building Materials, Architectural Press, 

2000, p. 190.

4	 Ibid., p. 191. Numerical values for primary energy consumption can be 

found in B. Berge, op. cit. (2000). It is important to recognize that such 

figures are not like material properties that can be taken as material 

constants. Also, as technologies for production develop, the values 

may easily change.
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5	 For more extensive reading on this subject, the reader is referred to Bill 

Addis’ Building: 3000 Years of Design Engineering and Construction, 

Phaidon, 2007.

6	 Among the many books on the structural development of Gothic 

cathedrals, Robert Mark’s Experiments in Gothic Structure, MIT Press, 

1982, is particularly recommended.

7	 Erik Lundberg, The Visual Language of Architecture, translated from 

the Swedish Arkitekturens Formspråk, Nordisk Rotogravyr, 1949.

8	 Andrea Palladio, I Quattro Libri dell’Architettura, Appresso Dominico de’ 

Franceschi, 1570 (Modern English trans. R. Tavernor and R. Schofield, 

The Four Books of Architecture, MIT Press, 2002).

9	 Galileo Galilei, Due Nuovo Scienze, 1638 (English translation: Dialogues 

Concerning Two New Sciences, Dover Publications, 1954).

10	 Erik Reitzel, Fra Brud til Form, Polyteknisk forlag, 1979.

11	 The reader is referred to the following books for histories of the 

development of structural theories and behavior: Karl-Eugen Kurrer, The 

History of the Theory of Structures: From Arch Analysis to Computational 

Mechanics, Ernst & Son, 2008, and the classic Stephen P. Timoshenko, 

History of Strength of Materials, Dover Publications, 1983.

12	 An alloy is a homogeneous hybrid of two or more elements, at least 

one of which is a metal, and where the resulting material has metallic 

properties. The resulting metallic substance usually has different properties 

from those of its constituent components.

13	 The poor tension strength resulted in cast iron being used almost 

exclusively in structural elements subjected to compression, such as 

columns, arches, and arched vaults.

14	 “Coke” is a solid fuel made by heating coal without any air present – so 

that any volatile components are driven off.

15	 “Ferrous” comes from ferrum, the Latin word for iron. Ferrous metals 

are iron based, like steel, wrought iron, and cast iron.

16	 Galvanic corrosion is an electrochemical process in which one metal 

corrodes (the least noble, with reference to its position in a galvanic 

series) when in direct contact with a different type of metal and both 

metals are moistened by an electrolyte.

17	 See also V.B. Bell and P. Rand, Materials for Architectural Design, Laurence 

King Publishing, 2006; C. Lefteri, Wood: Materials for Inspirational Design, 

RotoVision, 2003.

18	 See Buro Happold, “Constructing a Prototype Cardboard Building: 

Design Guide,” September 2001 (comm.: design guide published by 

the company Buro Happold). A. Cripps, “Building Real Buildings with 

Cardboard,” Paper from the International Conference on Sustainable 

Building 2000, Maastricht, the Netherlands, 2000.

19	 Resulting in the so-called soda-lime glass, accounting for about 90 

percent of all glass that is made.

20	 Glass in which these impurities are removed can be produced. This type 

was used for the Glass Pyramid at the Louvre in Paris, by architect I.M. 

Pei, for example.

21	 The float glass method was invented in the 1950s by Sir Alastair Pilkington, 

a British engineer employed by the glass manufacturer Pilkington.

22	 In very small samples of glass that are without flaws and cracks (such 

as in glass fibers) a very high tensile strength can indeed be reached. 

Tiny surface cracks in glass sheets were identified and studied by the 

British scientist A.A.Griffith (1893–1963) around 1920.

23	 Somewhat confusingly, this same name is also used to refer to carbon 

filament thread as well as to felt or woven cloth made from carbon 

filaments.

24	 Polyester may also be of the thermoplastic type.

25	 For detailed information, see Frank Kaltenbach (ed.), Translucent Materials: 

Detail Praxis, Birkhäuser Edition Detail, 2004.

Chapter 6
The Hanger and the Tie

1	 The glass is of the low iron type because of its high degree of transparency, 

as was illustrated in Section 5.7.

2	 In making this statement, we are again ignoring the self-weight of 

the tension members themselves. For most situations this will be 

sufficiently accurate, and certainly so for preliminary design. If angled 

tension members are long enough, however, they will significantly sag 

under the transverse load of their own weight and then also deflect in 

a suspension-cable-like fashion as is described later in Chapter 11.

3	 The name “guy” is derived from the Old French verb “guier,” meaning 

“to guide,” and is defined as a rope or cable that is used to guide, 

stabilize, or secure something that would otherwise tend to change 

position or configuration.

4	 The Skylon was, however, not the first time this peculiar form of structure 

appeared. One of the competition entries for a Socialist Settlement in 

the new town of Magnitogorsk in Ural in the Soviet Union was submitted 

by a team of students led by Ivan Leonidov (1902–1959). In one of the 

fine white-line-on-black illustrations from the competition material, we 

notice a similar structure, although the needle here seems to be resting 

directly on the ground. Stalin’s Magnitogorsk was indeed realized during 

the 1930s, although without the innovation of Leonidov’s work.
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Chapter 7
The Beam and the Slab

1	 This is in contrast to a simple hanger or column, which will react to a 

load applied along its axis by lengthening or shortening, respectively, 

but whose main axis will keep its initial straight alignment.

2	 Hoffman, Donald, Frank Lloyd Wright’s Fallingwater and its History, 

Dover Publications, 1978, p. 18.

3	 Silman, Robert, “The Plan to Save Fallingwater,” Scientific American, 

Vol. 283, No. 3, 2000, pp. 88–95.

4	 For symmetrical sections such as the one we are looking at here the 

neutral axis lies at mid-depth of the beam; if the section geometry is 

asymmetrical the neutral axis will be at the level of the beam cross-

section’s centroid, or center of area.

5	 Galileo Galilei, Due Nuovo Scienze, 1638, op. cit.

6	 These individuals included Edme Marriotte (1620–1684) who corrected 

Galileo’s mistaken assumption of rotation of the cantilever beam about 

its bottom edge, and Antoine Parent (1666–1716) and Charles Augustin 

Coulomb (1736–1806), who are both acknowledged to have independently 

“solved” the bending behavior problem before Navier, even though 

the latter today receives most of the credit.

7	 Given that symmetry of form is not limited to the design of building 

façades, it is surely no accident that the form of this bending stress 

equation is so completely analogous to that of the axial stress formula 

σ = P/A.

8	 It is clear from this formula why the moment of inertia is also sometimes 

referred to as the second moment of area.

9	 The Swiss engineer Wilhelm Ritter in 1899 and the German engineer 

Emil Mörsch in 1902 are independently credited with developing this 

truss analogy. The interested reader is referred to any of several editions 

of MacGregor, James G., and Wight, James K., Reinforced Concrete: 

Mechanics and Design, 5th ed., Prentice Hall, 2008, for a detailed 

consideration of this topic.

10	 The exterior span will obviously not be quite as symmetrically restrained.

11	 It should be noted that in the case of reinforced concrete beams care 

will have to be taken to place the reinforcing bars at the appropriate 

top and bottom levels along the length of the continuous beam if it is 

to work as intended.

12	 A “nearly square” panel here is defined as having side lengths with a 

ratio of no more than 1.5:1.0.

13	 The idea of drawing isostatic lines of stress on a structure – that is, lines 

that represent conditions of uniform structural demand (in a similar 

sense that isobars represent lines of uniform barometric pressure 

on a weather map) – seems to be credited to the Italian engineer 

Aldo Arcangeli, who worked in Nervi’s office. In the case of a load-

carrying structural slab, these lines represent directions of maximum 

and minimum bending action, and zero torsional shear demand (in 

contrast to the combined bending/twisting behavior of the orthogonal 

beam grid discussed in Section 7.10). For an accessible introduction 

to what can be a rather obscure subject, the reader is referred to 

Salvadori, Mario, and Heller, Robert, Structure in Architecture: The 

Building of Buildings, 2nd ed., Prentice Hall, 1975, pp. 222–229, 

256–261, 272–273.

14	 This echoes our discussion in Section 5.3 on the dangers of simply 

scaling up member dimensions to suit a spanning distance.

15	 It should be noted that the benefits of composite action will typically not 

exist where the floor system reverses curvature as it runs continuously 

over supporting elements, since at these locations the concrete slab that 

is at the top of the section will be in tension, cracked, and ineffective 

in carrying load.

16	 Unlike with a reinforced concrete beam where this overload can be dealt 

with by means of the introduction of shear reinforcing in the form of 

stirrups, a slab does not typically have enough depth for a similar type 

of steel reinforcement bar to be effective.

Chapter 8
The Column and the WalL

1	 In practical structural design, a limitation is put on the stress level, 

reducing the stress by a so-called safety factor. Moreover, for some 

ductile materials, like steel, the yield stress rather than the ultimate 

stress is more relevant here.

2	 At the very point where things start to happen differently, that is, at 

the precise buckling load, we will find that we might push the column 

sideways and the column will come to rest in this new position and 

establish a state of equilibrium there. We call this neutral equilibrium.

3	 H.P. Lorange, “Sentrum og periferi,” Dreyers Forlag, B.A. Butensschøn 

A.s & Co., Oslo, 1973. Translated from Norwegian.

4	 The moment of inertia is also called the second moment of area.

5	 By an “ideal” elastic column we mean a column which is absolutely 

straight and loaded only up to the point where the material stops acting 

elastically; i.e., before entering the plastic state.

6	 The radius of gyration may be considered to be the distance between 
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the center of area (centroid) of a cross-section and the point at which all 

of the area may be conceived as being concentrated while still having 

the same moment of inertia as the original cross-section.

7	 For more precise information about this, one needs to consult European, 

American, or the respective national codes of practice for the design of 

structures of different materials.

8	 For columns influenced by both failing modes, we may for practical 

purposes write the load-bearing capacity as Pcr = βσuA, where β is a 

reduction factor dependent upon the slenderness ratio.

9	 A game better known in North America as Pick-Up Sticks.

10	 This was a Depression-era pilot project of the Tennessee Valley Authority 

(TVA) to control flooding and generate electricity and economic 

development – a dozen others were built throughout the Tennessee 

Valley following this model. These are also said to have influenced 

modern architecture: the Hungarian-born architect Ronald Wank gave 

the dam design a progressive, modern look – to the extent that Le 

Corbusier took an interest and visited the Norris Dam and other TVA 

projects in 1946.

Chapter 9
The Truss and the Space Frame

1	 The term fishplate is defined as a short metal plate that is used to splice 

two members together, usually attached by means of bolts. The term is 

commonly used, for example, in the context of railways for connecting 

together the ends of metal rail segments. The unusual name stems from 

the word “fish” that describes a wooden bar with a curved profile that 

is used to strengthen a ship’s mast. 

2	 The method of sections is associated with the German engineer August 

Ritter (1826–1908), and is also called the Ritter method.

3	 Also, if a truss should undergo large deformations, the angles between 

members might change substantially and members that were initially 

zero-force members could be activated, contributing to added “final 

stage” stiffness and strength before potential collapse.

4	 In reality, for trusses shaped to follow the external moment variation, 

we will find that the horizontal component of the force in a chord with 

parabolic shape is a constant and of equal magnitude to the force 

at mid-span in the straight chord. The vertical component increases 

as the slope of the curved chord increases toward the supports, 

resulting in a somewhat increased total force in that chord toward 

the supports.

5	 There may be the opportunity to subtly have things both ways: with 

hollow tube members, for example, the outside dimensions of members 

can be kept uniform while the wall thicknesses vary.

6	 The Italian mathematician Leonardo Fibonacci (about 1170–1250) came 

up with a sequence of numbers in which each number is the sum of the 

previous two numbers, starting with 0 and 1. Thus the sequence begins 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, etc. The higher up in the sequence, 

the closer two following numbers divided by each other will approach 

the so-called “golden ratio” (approximately 1:1.618 or 0.618:1).

7	 One must keep in mind that for a cantilevering truss the compression 

chord will be at the bottom instead.

8	 Of the two grid patterns, that with the diagonal grid arrangement provides 

more structural stiffness than does the rectangular one, especially at the 

corners where the span of the closest truss is reduced.

9	 Alexander Graham Bell is more famous for his patent on the telephone 

(1876). He was until recently considered its inventor, but, in 2001, the 

American Congress took that honor away from him and credited instead 

the Italian Antonio Meucci as the true inventor of the phone. However, 

the unit of decibel we commonly associate with acoustics, which in reality 

expresses the magnitude of a physical quantity relative to a certain 

reference level, is still bearing his name. The decibel is one-tenth of a 

Bel, which is an abbreviation for Bell.

10	 The Platonic solids are the tetrahedron, octahedron, and icosahedron, 

which are all composed of equilateral triangles (4, 8, and 20 respectively), 

the cube (composed of squares) and the dodecahedron (composed of 

pentagons).

11	 We should note that when the system of intersecting member forces is 

not planar but spatial, we will have forces acting in all three dimensions 

of space. The requirements for equilibrium of each of the structural joints 

then becomes ΣFx = 0, ΣFy = 0, and ΣFz = 0, where z represents the 

third axis. A graphical solution will now require a 3-D vector drawing, 

but otherwise we may approach the mathematical solution in the same 

way that we did in the planar examples.

12	 Of particular interest is the CNC technology that unites digital design 

and manufacturing. CNC is an abbreviation for computer numerically 

controlled processes. These refer to computer-driven machine tools 

used to fabricate components by, for example, selective removal of 

material.

13	 Twelve-sided polyhedral composed of only pentagons are called 

dodecahedra. Fourteen-sided polyhedral composed of pentagons and 

hexagons are called tetrakaidecahedra.
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Chapter 10
The Frame and the Shear Wall

1	 This structure collapsed in 2016. For a discussion of the causes, 

see NLÉ website for responses to FAQ: www.nleworks.com/case/

makoko-floating-school/

2	 The layout grid is actually regular, but certain columns are omitted in 

an irregular fashion.

3	 Nonetheless, such a wall in a tall building continues to be called a shear 

wall, even though it is clearly somewhat of a misnomer at that point.

4	 Note that frames must be either pin-supported or fixed at their bases 

and not supported on rollers as this would compromise their stability 

and prevent the columns from resisting overall shear.

5	 Today, of course, it is more than likely in practice that the computer 

will solve these problems for us! This doesn’t diminish, however, the 

instructive value of our considering the hand methods here.

6	 La Grande Arche perhaps should have more appropriately, if less poetically, 

been called “La Grande Charpente Rigide.”

Chapter 11
The Cable and the Membrane

1	 If the two support structures are located at different heights, the sag 

refers to the maximum vertical distance between the cable and an 

imaginary straight line between the two supports.

2	 The equation defining the shape of a catenary is more complex than 

that of the parabola. However, if the sag to span ratio of the catenary 

is small (≤ 1/10), the geometries of the two are practically the same.

3	 The word “funicular” comes from the Latin word for “rope,” namely 

funis; “catenary” is derived from catena, meaning “chain.”

4	 We can also mention in this context that all suspended cable shapes 

carrying loads by pure tension forces have their compressive counterparts 

in arches: if suspension structures are turned upside-down while 

substituting the cable with stiff structural elements, these will form 

arches acting in pure compression. We will discuss this further in the 

next chapter.

5	 Calculating cable forces within an inclined cable (where the supports 

are at different levels) is much more difficult since the location of the 

lowest cable point (where the internal tension force is horizontal) is not 

at mid-span.

6	 All structures have a natural vibration tendency when acted on by external 

loads, characterized by an oscillating motion that repeats itself after 

an interval of time, called a period. The number of occurrences of a 

repeating motion per unit time is called the frequency.

7	 A doubly curved surface where both are curving in the same way is 

called synclastic, obvious examples of this being the surface of a ball 

or a globe.

8	 His doctoral dissertation was submitted that year, entitled “The Suspended 

Roof. Form and Structure.”

9	 Tensile membranes are sometimes called soft shells because of the 

similarity of their geometry to the more solid shell forms that we will 

encounter in Chapter 13.

10	 Referring to Fig. 11.12, the total applied load P on the surface of the 

element is, therefore, given by

P = (p × A) = (p × a × b)

where A = surface area of the element with edge lengths a and b. 

Since both edges of the element are curved, their lengths depend on 

the radius of curvatures Rx and Ry as well as on their respective central 

angles Φx and Φy; i.e., since an arc length is the product of the angle 

(when measured in radians) times the radius, this means that we can 

express the lengths of the element sides as

a = Φx × Rx and b = Φy × Ry

The total resultant force acting on the element surface, therefore, becomes

P = (p × a × b) = p (Φx × Rx) (Φy × Ry)

To ensure vertical equilibrium, however, this applied load is counteracted 

by the sum of the vertical components of the axial membrane forces that 

are acting along the four element edges. Individually, these components 

are

NxV = Nx sin (Φx/2) and NyV = Ny sin (Φy/2)

Since there are two of both force components, however, and they act 

along the perimeters having lengths a = Φx × Rx and b = Φy × Ry, the 

equilibrium equation yields

p (Φx Rx) (Φy Ry) = 2 (Nx sin (Φx/2)) (Φy Ry) + 2 (Ny sin (Φy/2)) (Φx Rx)

Now, remembering that the curvatures are assumed to be quite small 

enables us to simplify things somewhat with good conscience by saying 

that sin (Ф/2) = Ф/2, where the angles are still measured in radians.* The 

equation now can be simplified to

p (Φx Rx) (Φy Ry) = 2 (Nx (Φx/2)) (Φy Ry) + 2 (Ny (Φy/2)) (Φx Rx)

p (Φx Rx) (Φy Ry) = (Nx Φx) (Φy Ry) + (Ny Φy) (Φx Rx)

Finally, dividing both sides of this equation first by Φy Φx, and then by 

Rx Ry yields, in turn,

p Rx Ry = Nx Ry + Ny Rx

p = Nx/Rx + Ny/Ry	 (Eq. 11.1)

http://www.nleworks.com
http://www.nleworks.com
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*An angle of 1 radian results in an arc with an equal length to the radius 

of the circle. An angle given in radians, then, expresses the ratio of the 

arc length to the radius. As an example, an angle of 90º will have an arc 

length of a quarter of the total length of the circle circumference which 

is 2πR, yielding πR/2. Hence, this angle written in radians becomes π/2.

11	 To justify that this is actually the case, remember that the perpendicular 

tension forces T0 per unit length supported by the circular edge cables will 

be projected on to the cables along smaller or larger lengths, resulting 

in force components of different magnitudes (less than T0) depending 

upon the position along the circle. Their resultant in the radial direction 

is T0, as proved by the help of a geometric analysis.

12	 If in the present case the membrane radius is fairly large, we may safely 

consider a gravity load here as acting radially to the surface. We are 

content with doing an approximate study, and the error will be very 

small.

Chapter 12
The Arch and the Vault

1	 See, for example, Rice, Peter, An Engineer Imagines, Ellipsis, 1994, pp. 

118–126, for a description of the development of the tall, free-standing 

granite arcade of the Pavilion of the Future that was built for Expo ’92 

in Seville, Spain, and which is illustrated in this book in Section 12.4.

2	 Fathy, Hassan, Architecture for the Poor, American University in Cairo 

Press, 1989, p. 8.

3	 Nervi, Pier Luigi, Aesthetics and Technology in Building, Harvard University 

Press, 1965, p. 5.

4	 The word “pure” here is used in the sense that these stresses will be 

uniform over any cross-section of the arch, even though the magnitude 

of these stresses will be different from one section to another.

5	 Besides, a funicular (no-bending) arch shape for this load condition 

could probably also be established within the total mass of the arch 

and in-filled area above.

6	 An interesting result of such an analysis was long used for predicting the 

stability of masonry arches: as long as the funicular line of compression 

falls within the inner third of the cross-sectional dimension, there 

will be net compressive stress everywhere over the cross-section. 

However, if the funicular line is outside this middle third, also called 

the kern, the arch will experience tension stresses over a portion of 

the section at that location and the arch will tend to open up and be 

liable to fail.

7	 This bridge is of other interest as well from a design point of view: not 

only is the arch supporting the principal cross-river walkway at street 

level, but also it affords multiple pathways and access to the lower banks 

of the Seine.

8	 Betjeman, John, London’s Historic Railway Stations, John Murray Publisher, 

1972, p. 2.

Chapter 13
The Dome and the Shell

1	 The dome built atop the Reichstag in 1999 is actually a long-delayed 

replacement structure for a dome that was part of the original building 

but that was destroyed by a suspicious fire in 1933. 

2	 See Lancaster, Lynne, Concrete Vaulted Construction in Imperial Rome, 

Cambridge University Press, 2005, p. 100.

3	 The hoop forces will change from compression to tension at an angle 

of 52⁰ from a vertical through its top.

4	 A 1764 drawing by Giambattista Piranesi of the rotunda of the third-

century Tempio della Tosse, for example, clearly shows vertical cracking 

developing intermittently around the lower portion of the dome.

5	 Norberg-Schulz, Christian, Meaning in Western Architecture, Studio 

Vista, Cassell Ltd., 1975, p. 50.

6	 Mainstone, Rowland, Developments in Structural Form, Architectural 

Press, 2001, pp. 116–117. Melaragno, Michele, An Introduction to Shell 

Structures: The Art and Science of Vaulting, Van Nostrand Reinhold, 

1991, p. 26.

7	 Taylor, Rabun, Roman Builders, Cambridge University Press, 2003, pp. 

195–197.

8	 This structure’s larger twin, the Palazzo de Sport, was also built by Nervi 

in the EUR sector of southern Rome.

9	 Nervi, Pier Luigi, Aesthetics and Technology in Building, Harvard University 

Press, 1965, p. 105.

10	 Extract from a speech made by Louis I. Kahn at the Kimbell Art Museum 

in 1973.

11	 The city of Calgary, Canada, celebrates its cowboy heritage by naming 

its hockey arena, built for the 1988 Olympics, the Saddledome because 

of its hyperbolic paraboloid concrete shell roof.

12	 If all of these reasons help to explain why hypars have been a popular 

shell form with designers, and if all of these advantages seem somewhat 

mystical and too good to be true, it is interesting to note that no less a 

figure than Antoni Gaudí is said to have likened the three straight lines 
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that can be used to describe the hypar surface (those of the two straight 

rods and of the string connecting them) as being akin to the Holy Trinity 

(Melaragno, Michele, An Introduction to Shell Structures: The Art and 

Science of Vaulting, Van Nostrand Reinhold, 1991, p. 10).

13	 Isler, Heinz, “Concrete Shells Derived from Experimental Shapes,” Shell 

and Spatial Structures, Structural Engineering International, Vol. 4, No. 

3, 1994, pp. 142–147.

14	 Anderson, Stan (ed.). Eladio Dieste: Innovation in Structural Art, Princeton 

Architectural Press, 2004.

15	 Precursors to today’s opening up of compressive shell surfaces also 

includes, of course, the geodesic domes developed by Buckminster 

Fuller that are still in use and being designed today, as was discussed 

in Section 13.1.

16	 See, for example, the range of examples presented on the topic of 

“The New Structuralism” in the July/August 2010 issue of Architectural 

Design.

17	 The radial compression resulting from the shell pushing inward all around 

the base of the Reading Room dome is self-equilibrated by a compression 

ring around that structure. This ring, and thus the whole interior part 

of the roof shell, is held up in the air by means of 20 concrete-filled 

steel tube columns that surround the cylindrical drum of the Reading 

Room; these have been masked by a stone cladding that encases the 

historical and unable-to-carry-more-load central structure. Around its 

square outside perimeter, the shell is carried on sliding bearings on top 

of a new concrete parapet; horizontal movement is thus permitted at the 

edge of the shell to insure that the perimeter walls are not distressed 

or overloaded – nor are their classic Georgian façades then needing to 

be strengthened and perhaps covered over.

18	 It is also interesting to note that aside from providing visual interest, the 

ground-touching funnels also serve the practical function of helping to 

limit the expansions and contractions along the length of the canopy 

caused by temperature variations.

19	 Benesse Art Site Naoshima; www.benesse-artsite.jp/en/art/

teshima-artmuseum

20	 Contemporary code regulations to ensure adequate reinforcement 

cover also partly account for this difference, but the basic lesson of 

form’s influence on shell structural behavior remains nonetheless.

http://benesse-artsite.jp
http://benesse-artsite.jp
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Aalto chairs 375
Abattoirs de la Mouche (former slaughterhouse), 

Lyon, France 457
Admiral Hotel, Copenhagen, Denmark 111
Akers Mechanical Workshop and Factory, Oslo, 

Norway 71
“The Alhambra” space frame sculpture by Mark 

Hagan 320
Allen Room of Jazz at Lincoln Center, Time 

Warner Center, New York City, USA 
160–161, 162

Allianz Arena, Munich, Germany 151, 434
Aluminum Center, Houten, The Netherlands 

262, 263, 267
Aluminum extruded profiles 142
Alvaschagn Multipurpose Hall, Switzerland 362
American Air Museum, Cambridge, UK 495, 

496
Apple Store Fifth Avenue details, New York City, 

USA 101, 149
AquaDom, Sea Life Centre, Berlin, Germany 69
Arles streetscape, France 19
Architecture School of (École d’Architecture de) 

Lyon, France 261, 336, 337, 344 
Architecture and Urbanism Building, University 

of São Paulo, Brazil 132, 234, 235
Atlántida Church, Uruguay 137, 273, 519, 520, 

521
“AURA-S”, sculpture by Zaha Hadid and Patrick 

Schumacher 370 
Austerlitz, Gare (train station), Paris, France 81

Bankside Power Station interior (present Tate 
Modern Turbine Hall), London, UK 
116	

Barcelona chair by Mies van der Rohe 154, 155
Barcelona Pavilion, International Exhibition 

1929, Barcelona, Spain 154, 268 (column 
detail)

Basilica di Santa Maria Del Fiore, Florence, Italy 
490–491  

Beauvais Cathedral, France 126
BC Place Stadium, Vancouver, BC, Canada 428
Bell, Alexander Graham, space frame kite 

experiment 284, 316
Beijing National Aquatics Center (The 

Watercube), Beijing, China 321, 434

Beijing National Stadium (The Bird’s Nest), 
Beijing, China 367

“Big Sail”, sculpture by Alexander Calder 94, 95
The Bird’s Nest (Beijing National Stadium), 

China 367
“Blanchard and Jeffries crossing the Channel” 

painting 163
Blur Building, Yverdon-les-Bains, Switzerland 9
BMW Welt (World), Munich, Germany 183, 184, 

285, 286
Boeotia Art Warehouse, Greece 474
Bordeaux House (Maison à Bordeaux), France 4
Braga Stadium, Braga, Portugal 389, 390, 

397–398, 404
Brazilian Museum of Sculpture, São Paulo, Brazil 

221
Bregenz Kunsthaus, Bregenz, Austria 21, 22–23, 

28, 42, 271, 338–339
Bremen harbor canopy project, Germany 416
Brentwood Skytrain Station detail, near 

Vancouver, BC, Canada 458
Brick country house project plan by Mies van 

der Rohe 27, 28
Bridge Pavilion, Valle de Calamuchita, Cordoba, 

Argentina 381
Brin Station, Genoa, Italy 455
Broadgate Exchange Building, London, UK 178, 

467, 468, 471
“The Broken Kilometer”, art installation by 

Walter De Maria 61 
Brooklyn Bridge, New York City, USA 185
Buchholtz Sports Hall, Uster, Switzerland 363
Buckingham Palace ticket office, London, 

England 393, 406
Bundeskanzleramt, Berlin, Germany 254, 255
Buvette de la Source Cachat, Évian, France 

96, 97

Cabaret Tabourettli, Bern, Switzerland 7
CaixaForum, Madrid, Spain 48–49
Campo Volatín Footbridge, Bilbao, Spain 451, 

453
Canary Wharf Underground Station, London, 

UK 459, 480
Capitol Building, Washington, DC, USA 488
Carnegie Hall Tower, New York City, USA 73, 

342

Carré d’Art, Nîmes, France 248
Casa da Música glass wall, Porto, Portugal  

149
Casa El Mirador, Valle de Bravo, Mexico 234, 

334, 354
Casa Kiké interior, Cahuita, Costa Rica 345
Casa per Tutti emergency housing proposal 

(Deep Purple), Milan, Italy 164
Cast iron beam design evolution 218, 219
Castelldefels ramp, near Barcelona, Catalonia, 

Spain 278
Catalina House interior, Tucson, AZ, USA 270
CCTV Tower, Beijing, China 12, 13
Central Bank of Ireland Building, Dublin, Ireland 

168
Central Rail Station, Berlin, Germany 476, 477
Centre Georges Pompidou (Pompidou Centre/

Beaubourg), Paris, France 232, 305, 
308, 337

Century Tower, Tokyo, Japan 79
chairs

Aalto chairs 375
Barcelona chair by Mies van der Rohe 154, 

155
DAR chair by Ray and Charles Eames 156, 

157
Graphite chair by Richard Horden 157
Landi chair by Hans Coray 155
Peacock chair by Hans Wegner 155, 156
Wassily chair by Marcel Breuer 154

Chanel Mobile Art Container, New York City, 
USA 153

Chartres Cathedral, France 441, 445–446
“Le Château des Pyrénées”, painting by René 

Magritte 85
Cheops Pyramid, Giza, Egypt 87, 88
Chiesa Mater Misericordiae, Baranzate, Milan, 

Italy 13, 14, 15
Chocolaterie Menier, Noisiel-sur-Marne, France 

348
Chongfu Monastery, Shouzhoa, China 293, 294
Clifton Suspension Bridge, Bristol, England 394
Colonia Güell Chapel, near Barcelona, Spain 

451, 452
Condeep platform, North Sea, near coast of 

Norway 91
Conn bei Flims Viewing Platform, Switzerland 

170
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“Les Constructeurs” painting by Fernand Léger 
219

“Construction Work”, painting by Tom 
Slaughter 25

COP 22 Village fabric canopy, Marrakesh, 
Morocco 421

Copenhagen Opera House, Denmark 11
Cornell University Suspension Bridge, Fall 

Creek, Ithaca, NY, USA 392, 401
Crematorium Baumschulenweg, Treptow, Berlin, 

Germany 255
Crown Hall, Illinois Institute of Technology, IL, 

USA 267, 365
Crystal Palace, London, UK 147, 179, 286, 287
Cube House, Ithaca, NY, USA 133

DAR chair by Ray and Charles Eames 156, 157
Darling Harbour Exhibition Centre, Sydney, 

Australia 171
da Vinci, Leonardo sketches 90, 91, 211, 450
Deep Purple emergency housing proposal, 

Milan, Italy 164
de Young Museum model, San Francisco, CA, 

USA 78
Dom-Ino, Maison (House) drawing 241, 244, 245
Dulles International Airport, Washington, DC, 

USA 404, 405
Dymaxion House project drawing 164
Dynamic Earth, Edinburgh, Scotland, UK 421
DZ Bank, Berlin, Germany 522, 523

Eames House (Case Study House No. 8), Pacific 
Palisades, CA, USA 3, 52, 67

East 45th Street Overpass, New York City, USA 
469

École d’Architecture de Lyon (architecture 
school), France 261, 336, 337, 344

École d’Ingénieurs ESIEE Sports Hall, Marne-la-
Vallée, France 464

Eden Project, St. Bazey, Cornwall, England 434, 
484–485, 486–487

Educatorium connection detail, University of 
Utrecht, The Netherlands 302

Eggen House, Oslo, Norway 232, 233
Eiffel Tower, Paris, France 316, 351
Equestrian Center, Valle de Bravo, Mexico 370
Elevator occupancy load tests 60

Eslöv Civic Hall, Sweden 254
Exchange Building, Broadgate, London, UK 

178, 467, 468, 471
Exhibition Hall, Monza, Italy 253
Experience Museum Project, Seattle, WA, USA 

8
Expo ‘67

German Pavilion, Montreal, Canada 412
US Pavilion Montreal, Canada 316, 486, 487

Expo ’70
Fuji Group Pavilion, Osaka, Japan 432
Scandinavian Pavilion intervention proposal, 

Osaka, Japan 434, 435, 436–437
US Pavilion Osaka, Japan 431

Expo ’92
cable net canopy, Seville, Spain 415 
French Pavilion, Seville, Spain 258
Pavilion of the Future, Seville, Spain 451, 

453
Expo ‘98 

Portuguese National Pavilion, Lisbon, 
Portugal 388, 389, 404

Expo 2000
Messehalle 26 section drawing, Hanover, 

Germany 406
Swiss Pavilion, Hanover, Germany 177

Faculty of Architecture and Urbanism Building, 
University of São Paulo, Brazil 132, 234, 
235

Fall Creek Suspension Bridge, Cornell 
University, Ithaca, NY, USA 392, 401

Fallingwater, Mill Run, PA, USA 202, 203
Farnsworth House, Plano, IL, USA 230
Federal Garden Exhibition 1955 Music Pavilion, 

Kassel, Germany 423, 424, 425
Federal Reserve Bank Building (now Marquette 

Plaza), Minneapolis, MN, USA 400, 401
Fiera Milano, Milan, Italy 483, 526, 527–528, 

529
Fingal County Hall, Swords, Ireland 401, 408, 

409–410
Finnish Embassy, New Delhi, India 504
Firminy Church concrete close-up, France 131
First Nations House of Learning roof, University 

of British Columbia, Vancouver, BC, 
Canada 515

Firth of Forth Railway Bridge, near Edinburgh, 
Scotland, UK 232, 316

FLAMME-Iga Complex, Iga, Japan 369, 370
Florence bridge profiles, Florence, Italy 447
Fogo Island Inn, Newfoundland, Canada 347
Fondazione Querini Stampalia bridge railing, 

Venice, Italy 125
French Pavilion (Expo 1992), Seville, Spain 258
“From Fracture to Form” slab stress pattern 

visualization experiment 243
Fuhlsbüttel Airport Terminal Building, Hamburg, 

Germany 308 
Fuji Group Pavilion (Expo ’70), Osaka, Japan 

432	
 

Galilei, Galileo sketches 128, 201
Galleria Nazionale sculptures installation, 

Palazzo della Pilotta, Parma, Italy 198, 
199

Galleria Vittorio Emanuele II, Milan, Italy 1
Gando Primary School Extension, Burkina Faso 

120–121
Gare d’Austerlitz (railway station), Paris, France 

81
Gare St-Lazare (railway station), Paris, France 

82–83
Gateway Arch, St. Louis, MO, USA 447, 474
Gaudi’s hanging chain model, Colonia Güell 

Chapel 451, 452
German Pavilion (Expo 1967), Montreal, 

Canada 412
Golden Gate Bridge, San Francisco, CA, USA 

395, 401
Gothenburg Law Court detail, Sweden 104
Grace Episcopal Church detail, Chicago, IL, 

USA 252, 253
Granaries of Ramesseum, Luxor, Egypt 444
Grande Arche de la Défence, Paris, France 5
Graphite chair by Richard Horden 157
Great Court, British Museum, London, UK 

524–525, 526
Greenwich Academy Upper School, CT, USA 

328–329, 330, 353
Gubbio façade, Italy 98, 99
Guggenheim Museum, Bilbao, Spain 25, 135
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Haakon’s Hall detail, Lillehammer, Norway 302
Hagia Sophia, Istanbul, Turkey 487, 491, 493
Hamburg Airport Terminal Building, Fuhlsbüttel, 

Hamburg, Germany 308
“Havet” of Helsingør schooner drawing 169
Hearst Tower, New York City, USA 349
Hedmark Museum, Hamar, Norway 144, 327, 

353
Heimberg Indoor Tennis Centre, Heimberg, 

Switzerland 519
Hemeroscopium House, Madrid, Spain 65, 220
Highline 23 Building, New York City, USA 59, 

345
Hipódromo de la Zarzuela, Madrid, Spain 508, 

509
Hirshhorn Museum expansion proposal, 

Washington DC, USA 437, 438–439
Hohenems Municipal Garage, Austria 407, 408
HongKong and Shanghai Banking Corporation 

(HSBC) Headquarters, Hong Kong, 
China 171, 172

Hopkins House interior, London, UK 301
Hotel Arts (formerly Villa Olympica), Barcelona, 

Spain 139, 373
House of Spiritual Retreat, Andalucia, Spain 273
“House with One Wall” (Mehrfamilienhaus 

Forsterstrasse) interior, Zurich, 
Switzerland 242

Hypar shell sculpture, Cornell University, Ithaca, 
NY, USA 516

Hypar shell sculpture, Oslo School of 
Architecture and Design (AHO), Oslo, 
Norway 517

Høse Bridge, Sand, Norway 308, 309

IAA Pavilion “Dynaform”, Frankfurt, Germany 15
ICD/ITKE Research Pavilion 2013–14, University 

of Stuttgart, Germany 16, 17
Imagination Headquarters fabric roof, London, 

UK 150
Inca rope bridge, engraving by Rodolfo Cronau 

391
Inca stone wall, Peru 134
Institut du Monde Arabe temporary exhibition 

tent, Paris, France 419
Institute of Contemporary Art, Boston, MA, 

USA 292

“Interior of the Pantheon” painting by Giovanni 
Paolo Panini 500

Isfahan Market interior, Iran 478

Jacob K. Javits Convention Center space frame, 
New York City, USA 319

Jazz at Lincoln Center’s Allen Room, New York 
City, USA 160–161, 162

Jewish Museum Glass Courtyard, Berlin, 
Germany 194, 195

Jian Wai SOHO, Beijing, China 372, 373
Joso High Bridge over Snake River, WA, USA 

289, 304

KAIT Pavilion (White Forest Pavilion), Atsugi, 
Japan 31

Kassel Music Pavilion (Federal Garden 
Exhibition 1955), Kassel, Germany 423, 
424, 425 

Kempinski Hotel Airport cable connection, 
Munich, Germany 415

Kimbell Art Museum, Fort Worth, TX, USA 506, 
512–513

Kimmel Center for the Performing Arts, 
Philadelphia, PA, USA 475, 476–477

Klee Zentrum (Center), Bern, Switzerland 455, 
456

Koga Café, Koga, Japan 262, 339, 340
Kraaijvanger Urbis glass bridge, Rotterdam, The 

Netherlands 207, 208
Kresge Auditorium, MIT, Cambridge, MA, USA 

495
Kube Hus, Bygdøy, Oslo, Norway 181, 182	

	
Kunsthal Rotterdam roof beam, The 

Netherlands 209
Kunsthaus Bregenz, Austria 21, 22–23, 28, 42, 

271, 338–339
Kunsthaus Graz, Austria 152
Kurilpa Bridge, Brisbane, Australia 324, 325

Lamp from Targetti/Louis Poulsen collection 
165

Landi chair by Hans Coray 155
Lawrence Convention Center, Pittsburgh, PA, 

USA 401, 406

Le Mans Cathedral, France 448–449
Lee Valley VeloPark (Olympic Velodrome), 

London, UK 413
“Levitated Mass” sculpture at LACMA by 

Michael Heizer 87
Le Corbusier Centre column detail, Zurich, 

Switzerland 269 
Leonhardt House, Long Island, NY, USA 290, 

291, 301
Library of a Poet, Zuchi, Kanagawa, Japan 176
Lincoln Park Nature Boardwalk Pavilion base 

detail, Chicago, IL, USA 458
1111 Lincoln Road, Miami Beach, FL, USA 245
“Linear Construction in Space No. 2”, sculpture 

by Naum Gabo 163
Lingotto FIAT Factory, Turin, Italy 238–239
Little Hilltop Wind Tower, Yamagushi Prefecture, 

Japan 74
“Little Janey Waney”, sculpture by Alexander 

Calder 94, 95
Lloyd’s of London Building connection detail, 

London, England 302
“Locus of Lines”, model of sculpture by Susumu 

Shingu 94
Lord’s Cricket Ground sketch of roof, London, 

UK 387
Louvre Museum detail of metal clamps in stone 

structure, Paris, France 224
Louvre Museum courtyard waffle slab, Paris, 

France 244
Louvre Pyramid, Paris, France 88, 89, 159

Machu Picchu stepped terraces, near Cuzco, 
Peru 68

Madison Square Garden roof construction, New 
York City, USA 402, 403–404

Madrid-Barajas Airport roof, Spain 209, 210
Maison à Bordeaux (Bordeaux House), France 4
Maison Carrée, Nîmes, France 248
Maison Dom-Ino (drawing of project) 241, 244, 

245
Maison Louis Carré column details, near Paris, 

France 265–266
Makoko Floating School, Lagos, Nigeria 

332–333
Los Manantiales Restaurant, Xochimilco, Mexico 

518
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Mané Garrincha National Stadium columns, 
Brasilia, Brazil 257

Mannheim Theater project model, Germany 
307

Marquette Plaza (formerly Federal Reserve 
Bank Building) under construction, 
Minneapolis, MN, USA 400, 401

Maryhill Overlook, Goldendale, WA, USA 368
Mehrfamilienhaus Forsterstrasse (House with 

One Wall) interior, Zurich, Switzerland 
242

“Meiso no Mori” Municipal Funeral Hall 
(formerly Saijo Crematorium), 
Kakamigahara, Japan 523 

Menil Collection Museum gallery interior, 
Houston, TX, USA 6

MERO space frame joint detail 317
Messehalle 26 (Expo 2000) section drawing, 

Hanover, Germany 406
Metla Building vestibule columns, Finnish 

Forest Research institute, Joensuu, 
Finland 108, 109

Metro Line 2 overpass, column capital detail, 
Paris, France 253

Metropolitan Tower, New York City, USA 73, 342
Microcompact Home unit being transported 

165
“Midday”, sculpture by Anthony Caro 139
Milas-Bodrum International Airport terminal 

building interior, Bodrum, Turkey 44
Millennium Bridge, London, UK 114–115, 116, 

399
Millennium Wheel, London, UK 162, 163, 187
Milstein Hall, Cornell University, Ithaca, NY, USA 

384, 385
Miyake Design Studio Gallery interior, 

Shibuya-Ku, Tokyo, Japan 146
Modern Art Glass Warehouse interior drawing, 

Thamesmead, UK 44, 45
Monadnoch Building section drawing, Chicago, 

IL, USA 271, 274
Mont-Cenis Training Academy, Herne, Germany 

296, 297, 304
Montreux Parking Garage canopy, Switzerland 

433–434
Multipurpose Hall frame details, Alvaschagn, 

Switzerland 362
Municipal Garage, Hohenems, Austria 407, 408

Musée Gallo-Romain de St-Romain-en-Gal, 
Vienne, France 166, 167, 168

Museum of Anthropology frames, University 
of British Columbia, Vancouver, BC, 
Canada 228, 229

Museum for Architectural Drawing, Berlin, 
Germany 42, 43

Music Pavilion (Federal Garden Exhibition 
1955), Kassel, Germany 423, 424, 425

Nanjing Sifang Art Museum, Nanjing, China 
310, 311

National Building Museum, Washington, DC, 
USA 325

National Opera and Ballet, Oslo, Norway 52, 
265

National Theatre Railway Station, Oslo, Norway 
56–57, 58, 68

Natural History Museum / Rose Center glass 
wall cable-beams, New York City, USA 
402

“The Needle Tower”, tensegrity sculpture by 
Kenneth Snelson 322, 323

Nes stave church, Hallingdal, Norway 105, 106
Neue Nationalgallerie, Berlin, Germany 234, 

235, 265, 268, 269
Neue Tramdepot, Bern, Switzerland 304, 313, 

314–315
The New Museum, New York City, USA 62
“New York Construction Workers Lunching on 

a Crossbeam”, photograph by Charles 
Ebbets 64

Nida House, Navidad, Chile 355
Nomadic Museum in New York City, USA 294, 

295
Nomadic tent, Morocco 391	
Nordic Pavilion, Venice, Italy 192–193
Norris Dam section drawing, near Knoxville, TN, 

USA 275
Northwest Corner Building, Columbia 

University, New York, NY USA 70
Notre-Dame Cathedral, Paris, France 129
NTNU Norwegian University of Science and 

Technology (formerly NTH) space frame 
study model, Trondheim, Norway 317

“Ode to Osaka” Pavilion, Norwegian 
Architecture Museum, Oslo, Norway 
436–437

Olympic Sculpture Park, Seattle, WA, USA 278, 
279–280, 281

Olympic Stadium 
Berlin, Germany 304, 311, 312, 313
Munich, Germany 285, 415, 416, 417–418
Tokyo (Yoyogi Olympic Centre), Japan 414

Oslo Airport Hanger, Fornebu, Norway 283
Ospedale degli Innocenti arcade, Florence, 

Italy 471
Otaniemi Technical University Auditorium, 

Finland 375

Paddington Station, London, UK 479
Padre Pio Church, San Giovanni Rotondo, Italy 

442–443, 444
Paintings, photos and other artworks (see also 

under “Sculptures”)
“Blanchard and Jeffries crossing the 

Channel” painting 163
“Le Château des Pyrénées”, painting by 

René Magritte 85 
“Les Constructeurs” painting by Fernand 

Léger 219
“Construction Work”, painting by Tom 

Slaughter 25
Inca rope bridge, engraving by Rodolfo 

Cronau 391
“Interior of the Pantheon” painting by 

Giovanni Paolo Panini 500
“New York Construction Workers Lunching 

on a Crossbeam”, photograph by 
Charles Ebbets 64

“Le Pont de l’Europe”, painting by Gustave 
Caillebotte 288

“La Tour Rouge”, painting by Robert 
Delaunay 316

Palace of Labour, Turin, Italy 240
Le Palais de Bois, Paris, France 334, 335
Palazzetto dello Sport, Rome, Italy 491, 492, 

501–502, 503, 521
Pantheon, Rome, Italy 130, 490, 499, 500
Park Café, Koga, Ibaraki, Japan 262, 339, 340
Passerelle Léopold Sédar-Senghor (formerly 

Solférino), Paris, France 469, 470, 471
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Paustian Furniture Showroom, Copenhagen, 
Denmark 105

Pavilion of the Future (Expo 1992), Seville, 
Spain 451, 453

Pavilion Suisse, Paris, France 20, 21, 22
Peacock chair by Hans Wegner 155, 156
Peckham Library inclined columns, London, 

UK 267
Pena Palace arches of courtyard wall, Sintra, 

Portugal 446
Picture Window House, Shizuoka, Japan 

366–367
Poli House, Coliumo Peninsula, Chile 50,  

51
Pompidou Centre (Centre Georges Pompidou/

Beaubourg), Paris, France 232, 305, 
308, 337

“Le Pont de l’Europe”, painting by Gustave 
Caillebotte 288

Pont du Gard, near Nîmes, France 130, 445, 
446

Ponti degli Alpini, Bassano della Grappa, 
Vicenza, Italy 127, 128

Portuguese National Pavilion (Expo 1998), 
Lisbon, Portugal 388, 389, 404

Poulsen pendant lamp 165
Pulpit Rock Mountain Lodge, Strand, Norway 

145
Pyramide du Grand Louvre, Paris, France 88, 

89, 159

Querini Stampalia Foundation bridge railing, 
Venice, Italy 125

R4 Building, Tokyo, Japan 32, 33, 34
R128 House, Stuttgart, Germany 346, 347
Reichstag, Berlin, Germany 488, 489
Reinforced concrete beam BIM drawing 225
Renault Distribution Centre, Swindon, UK 188, 

265
Richards Medical Research Laboratories, 

Philadelphia, PA, USA 227
Riding Hall, Flyinge, Sweden 83–84
Riola Parish Church, Riola, Italy, 375
Robie House, Chicago, IL, USA 137
Rocca di Frassinello vineyard canopy, Tuscany, 

Italy 427

Rolex Learning Centre, EPFL, Lausanne, 
Switzerland 529–531

Rolling Huts, Mazama, WA, USA 66
Roof-top Remodeling Falkestrasse, Vienna, 

Austria 10
Rose Center for Earth and Space / Natural 

History Museum glass wall cable-beams, 
New York City, USA 402

Royal Albert Bridge, between Plymouth and 
Saltash, UK 305

Royal Albert Dock Regatta Centre, London, UK 
400, 401

Royal Library’s “Black Diamond” extension 
concrete detail, Copenhagen, Denmark 
132

Saijo Crematorium (now “Meiso no Mori” 
Municipal Funeral Hall), Kakamigahara, 
Japan 523

Säynätsalo Town Hall, Finland 106, 107
St. Domenico Church, Siena, Italy 293
St. Henry’s Ecumenical Art Chapel, Turku, 

Finland 480, 481
St-Lazare, Gare (railway station), Paris, France 

82–83
St-Loup Temporary Chapel, Pompaples VD, 

Switzerland 504, 505, 508
30 St. Mary Axe, London, UK 55, 56, 61, 72	
St. Paul’s Cathedral, London, UK 112, 113–114, 

119, 494
St. Peter’s Basilica, Vatican City 490, 493
Salginatobel Bridge, Schiers, Switzerland 466, 

467, 469
Sandra Day O’Connor Courthouse, Phoenix, 

AZ, USA 403, 404
Sant Pere de Rodes, Port de la Selva, Spain 

338, 339
Santa Caterina Market, Barcelona, Spain 471, 

472–473
Santa Justa Train Station, Seville, Spain 463
Santa Maria del Fiore Basilica, Florence, Italy 

490–491
Scandinavian Pavilion (Expo ’70), intervention 

proposal, Osaka, Japan 434, 435, 
436–437

Schiphol Airport Plaza column base detail, 
Amsterdam, The Netherlands 261

Schooten Bridge connection detail 380

Sculptures
“The Alhambra” space frame sculpture by 

Mark Hagan 320
“AURA-S”, sculpture by Zaha Hadid and 

Patrick Schumacher 370 
“Big Sail”, sculpture by Alexander Calder 

94, 95
“The Broken Kilometer”, art installation by 

Walter De Maria 61 
“Levitated Mass” sculpture at LACMA by 

Michael Heizer 87
“Linear Construction in Space No. 2”, 

sculpture by Naum Gabo 163
“Little Janey Waney”, sculpture by 

Alexander Calder 94, 95
“Locus of Lines”, model of sculpture by 

Susumu Shingu 94
“Midday”, sculpture by Anthony Caro 139
“The Needle Tower”, tensegrity sculpture 

by Kenneth Snelson 322, 323
“Shaft”, sculpture by Richard Serra, Oslo, 

Norway 141
“Torqued Ellipses” sculpture by Richard 

Serra, Guggenheim Museum, Bilbao, 
Spain 25

“Trunk no. 5”, sculpture by Gego 320, 321
Sea Folk Museum, Toba, Japan 476
Sears Tower (now Willis Tower) under 

construction, Chicago, IL, USA 372
Seattle Public Library, WA, USA 58, 76
Sendaï Mediatheque, Miyagi, Japan 240, 265
Serpentine Gallery Pavilions 

2002 (Ito), London, UK 237
2005 (Siza and Souto de Mora), London, 

UK 237
SESC Pompéia, São Paulo, Brazil 53
Seville Expo 1992 cable net canopy, Seville, 

Spain 415
SGAE Central Office, Santiago de Compostella, 

Spain 134
“Shaft”, sculpture by Richard Serra, Oslo, 

Norway 141
Sharp Centre for Design (OCAD), Toronto, 

Canada 351
Shibaura Office Building, Tokyo, Japan 32, 34
Skylon for Festival of Britain 1951, London, UK 

179, 180, 181
Snowdon Aviary, London Zoo, London, UK 323
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Space frame kite experiment with Alexander 
Graham Bell 284, 316

Space frame study model, NTNU Norwegian 
University of Science and Technology 
(formerly NTH), Trondheim, Norway  
317

Spider’s web 411
242 State Street Art Gallery, Los Altos, CA, USA 

354
Steel beam mechanized cutting 219
Stegastein, Aurland, Norway 376, 377
Steilneset Memorial, Vardø, Norway 347
Stonehenge, Salisbury, UK 196, 224
Storhamarlåven, Hedmark Museum, Hamar, 

Norway 144, 327, 353
Stratford Regional Station baseplate detail, UK 

101
Stuttgart Airport Terminal cast steel joint, 

Germany 140
Svartlamoen Student Housing, Trondheim, 

Norway 341
Swimming Pool Facility project, Peblingesø, 

Copenhagen, Denmark 107, 108
Swiss Pavilion (Expo 2000), Hanover, Germany 

177

Tacoma Narrows Bridge, WA, USA 399
Taq-I Kisra, Iraq 445
Tate Modern 

Turbine Hall, London, UK 114–117, 140
Switch House, London, UK 118–119

Tautra Maria Convent roof support structure, 
Tautra Island, Norway 143

Telcel Theater, Mexico City, Mexico 236, 237
Temple of Aphaia, Aegina, Greece 197, 219, 

224, 247, 252
 (Valley) Temple of Chefren, Giza, Egypt 195, 

224, 487
Temple of Nike at the Acropolis, Athens, 

Greece 251–252
Temple of Poseidon, Sounion, Greece 191
Terje Moe’s House (Kube Hus), Bygdøy, Oslo, 

Norway 182	 	  
Teshima Art Museum, Teshima Island, Kagawa 

Prefecture, Japan 532, 533, 534, 535
Time Warner Center, New York, NY USA 148, 

160–161, 162

Tod’s Omotesando Building, Tokyo, Japan 348, 
349

Tondonia Winery, Haro, Spain 139, 208, 209
“Torqued Ellipses” sculpture by Richard Serra, 

Guggenheim Museum, Bilbao, Spain 25
Torre Cube, Guadalajara, Mexico 331, 340
Torre de Collserola, Barcelona, Catalonia, Spain 

180, 181
“La Tour Rouge”, painting by Robert Delaunay 

316
Trajan’s Column, Rome, Italy 286, 287
Tram Depot, Bern, Switzerland 304, 313, 

314–315
Treptow Crematorium, Baumschulenweg, 

Berlin, Germany 255  
Trestle frame for rural building, Norway 374
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