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Introduction

It was 2001. I joined a team using J2EE version 1.3 to build a distributed gift card 

processor. The point of sale system was written in Microsoft Visual C++ 6.0. We were 

just learning about this new thing called SOAP, the Simple Object Access Protocol. The 

running joke was that it was too ill defined to be called a protocol, that it was not about 

accessing objects, and it was anything but simple. But it did hold some promise for 

making a C++ client talk to a Java server.

We all added three new books to our libraries. The first was on implementing a SOAP 

client in C++. The second was on JAXP, the Java API for XML Processing. And the third 

detailed the operation and limitations of TCP/IP. Armed with these tools, we began to 

build.

At first, the challenge was just to get the two platforms to talk to each other. When we 

finally settled on a subset of SOAP that both sides could handle, we thought we were over 

the hump. Little did we know that on the other side lay mountains.

There were reliability problems with the network. We set up a lab that continually 

ran transactions every night. We would check the card balances in the morning to find 

that some machines would have the wrong total. That led to a day of digging through 

logs, setting up the next test run, and then leaving it going until morning.

Over time, we evolved a message exchange protocol (over SOAP) based on 

confirmations and acknowledgments. One side sent a message. The next morning, we 

found messages missing. So next, the recipient confirmed that the message arrived. The 

next morning, we found duplicates. And so the sender acknowledged the confirmation. 

Fewer missing messages, but still not perfect.

It took many failed releases and many years of busy holiday seasons to work through 

all of the problems. We learned about the Two Generals’ Problem (TGP) and realized 

why our message exchange protocol was flawed. Then we learned about eventual 

consistency and designed a working solution. This solution required that there be 

some uncertainty about how much money was left on a gift card. We tried to have that 

conversation with the product owner. Bankers get eventual consistency of money. Our 

product owner was not a banker.
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The lessons we learned from gift cards were learned the hard way. “Guaranteed 

delivery” does not mean what you think it means. You need to first move data, then 

process it. Remote procedure calls (RPCs) aren’t procedure calls. There is no line of 

code in a client–server system before which the transaction rolls back and after which it 

commits. I didn’t want to learn those lessons over and over again.

And so I started putting those lessons together and defining a system that I called 

Historical Modeling. It was based on the idea that historical facts cannot be modified 

or destroyed. It relied upon the predecessor/successor relationships among facts. And 

it identified facts based only on their content, not on their location. I filled a notebook 

with examples of historical models. Eventually, I gained an intuitive feel for which kinds 

of solutions could be modeled historically and which could not. That’s when I knew that 

I had to share it. Hopefully I could save someone else the pain of learning these lessons 

the hard way.

Since then, I have had countless conversations about immutable architectures. I 

broke the topic down into digestible chunks for conference and user group talks. I have 

created two open source frameworks—Correspondence and Jinaga. Yet none of that has 

truly empowered others to begin practicing immutability themselves. It can’t just be 

adopted in pieces. Taking on only a subset of the ideas leaves gaps that can only be filled 

with the rest of the system.

Which lead to the book that you are now holding. This is a complete treatment of 

the system, the patterns, and the techniques. It anticipates the problems that Historical 

Modeling creates and provides the solutions that enable a cohesive implementation. 

Most importantly, it presents the mathematical foundation that makes the technique 

work.

If you have read this far into the introduction, you have probably faced some of these 

same problems. You might even have come up with similar solutions. This leaves only a 

few more questions you probably have about this book. Who should read it? What will I 

get out of it? How is it organized? And how do I go about reading it?

Glad you asked.

�Who Should Read It
This book is intended primarily for three audiences: decision makers, system builders, 

and tool crafters. You are a decision maker if you identify the problems for which you 

want to create solutions. Your title might be CTO, product owner, or business systems 

Introduction



xxiii

analyst. There are some problems that you can outsource, some that you can buy 

solutions for, and some that define your core business value. You need to find just the 

right team to build solutions to problems of this third kind. To find them, you need to be 

able to talk to them. And once you’ve brought them on board, you need to understand 

what they are doing. If your core business problem looks like the kind of thing that can 

be solved with an immutable architecture, this book will help you build that team and 

have those conversations.

Or perhaps you are a system builder. You are a member of the team brought in to 

deliver value against a core business domain. Your title might be developer, QA engineer, 

or user experience designer. You know how to solve problems. But it would be great 

to have some ready-made solutions to the most common problems of distributed 

computing. You want to know that all of the edge cases are accounted for. You desire 

a common language to talk about solutions with the people who are helping you 

build them. If your software development challenges require constructing eventually 

consistent distributed systems, then this book will give you those tools.

Finally, you—like me—might be a tool crafter. You are a force multiplier. The things 

that you build empower others to build solutions more quickly, more predictably, and 

more effectively. You might be a solutions architect or an open source maintainer. If you 

have a team, you want them focused on delivering business value while you take care 

of the plumbing. If you serve the community, you want consumers to be able to quickly 

learn and apply your framework to build robust systems. In either case, this book lays out 

the mathematics, algorithms, and patterns that assure the correctness of your solutions.

�What You Will Get Out of It
I have a secret. This is a math book. Don’t tell anybody who hasn’t read this far into the 

introduction.

Mathematics is the greatest invention of humankind. It is surprising in its ability to 

describe the natural world. It is astonishingly applicable to a broad range of problems. 

And it is the only way that we can be sure of anything.

The way that we normally learn that we have gotten something right is to test it. We’ll 

put our solution in one situation and see if we get the expected result. Then we’ll try 

another scenario and see what it does. If we are really good, then we can imagine a few 

unexpected conditions and test for those. But the unexpected is really hard to anticipate.
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Testing is all about gathering empirical evidence. It only gives you confidence that 

the system behaves as expected in certain cases. It does not give you any assurance that 

you haven’t missed something.

Knowing requires mathematical deduction. If something is proven mathematically, 

then you can be sure that it will be true no matter what test case you try. Pythagoras is 

true for any right triangle. Euclid holds up for all figures on the plane. If your reasoning is 

sound, you can be sure that you haven’t missed any edge cases.

It’s not that mathematical truths are universal. It’s that they come with known 

limitations. Division only works for nonzero divisors. Pythagoras only holds on the 

plane. The rules of deduction tell us how to carry those boundaries through to the 

solution, so that we know precisely where that solution applies and where it doesn’t.

This book applies mathematical rigor to the problem of distributed computing. 

It is not the first to do so, but it does provide a complete and practical solution. If you 

follow the deductive reasoning over the problem and carry the limitations of distributed 

systems through your calculations, you will end up with an understanding of the 

boundaries of the solution. This book is your guide through that process.

�How It Is Organized
The book is roughly divided into three parts, analogous to the three primary audiences. 

Decision makers need only read the first part, which includes the first three chapters. In 

this part, you first learn why immutability is so important. Then you explore the space of 

alternatives, eventually landing on Historical Modeling. Finally, you learn how to read a 

Historical Model so that you can communicate more effectively with your team. You can 

stop reading when we get into some deep math.

System builders will want to continue on to the second part. This includes Chapters 

4 through 8. We get neck deep in the mathematical foundations of immutability, 

causality, and conflict-free replicated data types (CRDTs). Then we see how to apply this 

mathematical reasoning to analyzing systems, building state machines, and enforcing 

security rules. These are the tools that you will need to build robust distributed systems. 

We round out this section with a catalog of basic patterns to get you started building 

historical models.

My people, the tool crafters, will want to read right through to the end. In the third 

part, we take apart the components of a computer system and discover how to use 

them in an immutable architecture. We will update the user interface using query 
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inverters. We will store immutable records in a relational database. And we will exchange 

immutable messages securely and reliably over different kinds of networks. In the end, 

we pull it all together and describe an ecosystem made up of collaborative applications 

generating emergent behavior from shared specifications. It’s something truly beautiful 

and inspiring, and I hope you follow me to the end.

�How to Read It
Now that you know this is a math book, you might have some reservations about how 

you are going to read it. Perhaps you struggled through algebra or dropped out of 

calculus. You might think that math is not for you.

It is my belief that math is for everyone. And it is my goal with this book to prove 

it. Mathematics is nothing more than applying logical reasoning over symbolic 

representations of abstract concepts. Programming, on the other hand, is applying 

logical operations to a symbolic language describing generic rules. In other words, they 

are the same thing. If you are a programmer, then you are an applied mathematician.

One problem with mathematics is the jargon. In order to efficiently communicate 

with each other, mathematicians have to come up with words to represent ideas. 

Unfortunately, natural language is limited, and all of the good words are taken. And 

so mathematicians either make up new words or use terms that almost mean the right 

thing. In this book, we will be talking about the properties of a join semilattice. But I will 

try not to use those words if I can avoid them. And if I can’t avoid them, I will clearly 

define them.

Another problem with mathematics is how it is written. Math papers have a 

predictable form. They start with an abstract. Then they fully define the problem. What 

follows is section after section of lemmas and propositions building an argument. Every 

statement is justified by the statements before, until finally, like an M. Night Shyamalan 

plot twist, one final assertion puts the whole argument into perspective and the result 

emerges.

While I really enjoy a good math paper, I don’t read them the way that they are 

written. I skim the first few paragraphs for the motivation behind the problem. I scan the 

headings for the outline of the argument. I want to know why each statement is proven 

and how it will contribute to the whole. I want to know how the story is going to play out 

before I invest the time in understanding it.
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I wrote this book the way that I read a math paper. In each section, you will 

understand the motivation behind a certain result. Then you will see a sketch of the 

basic reasoning. There will be no mystery why each of the steps is there. Then the section 

will justify each of those steps with the rigor they require.

I fully anticipate that this will impact the way you read the book. If you are after 

results, you can read just a paragraph or two past the section header. If you want to know 

why or how, then continue a bit further to understand the argument. And if you need to 

be convinced, then finish out the whole section. The important thing is that you can stop 

reading whenever it gets too deep and skip to the next section. You won’t miss anything 

important to you.

If you have read this section without skipping anything, then I am truly pleased to 

have you. You are one of my people. With your help, we can build the software that the 

world needs. We will make it reliable, efficient, and correct. And it will give our users the 

autonomy they need to do their jobs with creativity and confidence, knowing that we 

have provided the mathematical rigor.

Introduction



PART I

Definition



3
© Michael L. Perry 2020 
M. L. Perry, The Art of Immutable Architecture, https://doi.org/10.1007/978-1-4842-5955-9_1

CHAPTER 1

Why Immutable 
Architecture
Distributed systems are hard.

Most of us have used a website to buy a product. You might have seen a purchase 

page that contains a warning do not click submit twice! Maybe you’ve used a site that 

simply disables the buy button after you click it. The authors of that site have run up 

against one of the hard problems of distributed systems and did not know how to solve 

it. They abdicated the responsibility of preventing duplicate charges to the consumer.

Maybe you’ve used a mobile application on a train. The train enters a tunnel just as 

you save some data. The mobile app spins for a few seconds before you realize that you 

are in a race. Will the train leave the tunnel before the app gives up? Will the app correct 

itself once the connection is reestablished? Or will you lose your data and have to enter it 

again?

If you are involved in the creation of distributed systems, you are expected to find, 

fix, and prevent these kinds of bugs. If you are in QA, it is your job to imagine all of the 

possible scenarios and then replicate them in the lab. If you are in development, you 

need to code for all of the various exceptions and race conditions. And if you are in 

architecture, you are responsible for cutting the Gordian Knot of possible failures and 

mitigations. This is the fragile process by which we build the systems that run our society.

�The Immutability Solution
Distributed systems are hard to write, test, and maintain. They are unreliable, 

unpredictable, and insecure. The process by which we build them is certain to miss 

defects that will adversely affect our users. But it is not your fault. As long as we depend 

upon individuals to find, fix, and mitigate these problems, defects will be missed.

https://doi.org/10.1007/978-1-4842-5955-9_1#DOI
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This book explores a different process for building distributed systems. Rather than 

connecting programs together and testing away the defects, this approach starts with 

a fundamental representation of the business problem that spans machines. And this 

fundamental representation is immutable.

On its face, immutability is a simple concept. Write down some data, and ensure 

that it never changes. It can never be modified, updated, or deleted. It is indelible. 

Immutability solves the problem of distributed systems for one simple reason: every 

copy of an immutable object is just as good as any other copy. As long as things never 

change, keeping distant copies in sync is a trivial problem.

�The Problems with Immutability
Unfortunately, immutability is counter to how computers actually work. A machine has a 

limited amount of memory. Machines work by modifying the contents memory locations 

over time to update their internal state. So the first problem of modeling immutable data 

on a computer is how to represent it in fixed mutable memory.

The second problem is that when we look out at the world of problems that we want 

to solve, we see change. People change their names, addresses, and phone numbers. 

Bank account balances go up and down. Property changes hands and ownership is 

transferred. How then are we to model a changing problem space with unchanging data?

Our initial instinct is to model the mutable world within the mutable space of the 

computer. This is the solution that has led us to build programs and databases based on 

mutation. Programs have assignment statements; databases have UPDATE statements. 

When we connect those programs and databases together to create distributed systems, 

crazy unpredictable behaviors emerge. And we are left with the unending task of testing 

until all of those anomalies are gone.

�Begin a New Journey
What this book seeks to do is instead to model the business domain as one large 

immutable data structure. It would be impossible for a single machine or database to 

house that entire structure. Nor would that be desirable. And so the book also seeks 

to demonstrate how to implement subsets of that data structure within individual 
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databases, programs, and machines. These components communicate through  

well-crafted protocols that honor the idiosyncrasies of distributed systems to evolve that 

immutable data structure over time.

This solution is not new. Throughout this book, we will revisit research from the past 

in the form of math and computer science papers. Every claim is justified. None of the 

findings are original. I hope only to assemble this knowledge into a single consumable 

package that initiates your journey toward more reliable, resilient, and secure distributed 

systems. Let’s begin that journey by understanding the problem of distributed 

computing.

�The Fallacies of Distributed Computing
Between 1991 and 1997, engineers at Sun Microsystems collected a list of mistakes that 

programmers commonly make when writing software for networked computers. Bill 

Joy, Dave Lyon, Peter Deutsch, and James Gosling cataloged eight assumptions that 

developers commonly hold about distributed computing. These assumptions, while 

obviously incorrect when stated explicitly, nevertheless inform many of the decisions 

that the Sun engineers found in systems of the day.

The fallacies are these:

•	 The network is reliable.

•	 Latency is zero.

•	 Bandwidth is infinite.

•	 The network is secure.

•	 Topology doesn’t change.

•	 There is one administrator.

•	 Transport cost is zero.

•	 The network is homogeneous.

Although it has been years since that list was written, many of these assumptions 

continue to be common. I can recall on several occasions being surprised that a program 

that worked flawlessly on localhost failed quickly when deployed to a test environment. 

The program contained hidden assumptions that the network was reliable, that latency 

was zero, and that the topology doesn’t change. Here are examples of just these three.

Chapter 1  Why Immutable Architecture
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�The Network Is Not Reliable
One way in which these fallacies appear in modern systems is when a remote API is 

presented as if it were a function call. Several platform services have promoted this 

abstraction, including remote procedure calls, .NET Remoting, Distributed COM, SOAP, 

and SignalR. When a remote invocation is made to look like a local function call, it is easy 

for a developer to forget that the network is not reliable.

Any time you call a function, you can rest assured that execution will continue with 

its first line. And if the function makes it to the return statement, you can feel pretty 

confident that the next line to run will be the one following the function call. Remote 

procedure calls, however, make no such claims. They can fail on invocation or on return. 

The calling code will be unable to tell which.

An abstraction that hides the fact of a network hop does a disservice to its 

consumers. In an effort to make things easier and more familiar, it pretends that an 

inconvenient truth can be ignored. Such abstractions make it easier for developers to 

believe the fallacy that the network is somehow reliable.

�Latency Is Not Zero
Modern web applications have moved away from the client proxy in favor of more explicit 

REST APIs. These APIs avoid the mistake of presenting the remote machine as if it were 

a library of functions that could be invoked reliably. They instead present the world 

as a web of interconnected resources, each responding to a small set of HTTP verbs. 

Unfortunately, this style of programming makes it easy to forget that latency is not zero.

Some of the HTTP verbs are guaranteed to be idempotent. If the client duplicates the 

request, the server promises not to duplicate the effect. There is no way for the protocol 

to enforce that guarantee, but server-side applications typically uphold the contract. 

Examples of HTTP verbs that are idempotent are PUT and PATCH. An HTTP verb that is 

not guaranteed to be idempotent is POST.

On the Web, HTTP POST is often used to submit a form. When a web application 

responds quickly, the lack of idempotency guarantee makes little difference. But as 

latency increases, the user starts to wonder if they actually clicked the submit button. 

And if that button triggered a purchase, they have to wonder if they will be charged twice 

if they try again. An end user has no good recourse during an extended latency after 

clicking a Buy button. Nor does a client-side application developer have a good response 

to a timeout on POST.
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There is no correct use of an API that features non-idempotent network requests. 

Because latency is not zero, there will always be a time during which the client is unsure 

if the server has received the request. As latency exceeds the time that the client is willing 

to wait, they must make a choice: either abort the attempt or retry. If the client aborts, 

then they don’t know whether the request has been processed. And if they retry, then the 

effect might be duplicated.

The POST verb is indeed part of the HTTP specification. And that specification makes 

no guarantee as to its idempotency. But any API that includes a non-idempotent POST 

is making the incorrect assumption that latency is zero. It forces the client to make an 

impossible choice when that assumption proves false.

�Topology Doesn’t Change
Most database management systems include a concept that leads developers to assume 

that topology doesn’t change. These databases make it easy to set the identity of a record 

to an auto-incremented ID. Every time a record is inserted, the database generates the 

next number in the sequence. This number is used from then on to identify the record.

An auto-incremented ID requires that topology remain constant throughout a 

multistep process. Imagine a web application that inserts a user’s form data into a 

database and then redirects them to a page representing that new data. To accomplish 

this with an auto-incremented ID, the browser must wait for the request to go all the 

way to the database and the response to come all the way back before it can learn the 

URL of the next page. The application assumes that the topology will not change in the 

meantime.

This may seem on the surface to be a valid assumption. It will usually be true. 

Changes to server topology are rare, and network requests are usually fast (latency is 

zero). However, for a heavily trafficked web application, there will never be a moment 

during which no requests are in flight. The assumption that topology does not change 

will be violated for some requests.

Topology may change during a system upgrade. It will certainly change during 

a disaster failover. And it will change again when reverting back after the disaster is 

resolved. When topology changes, the database that a request ends up on will not be the 

same as the one that generated the source page. That database will instead be a replica of 

the original. If the replica is just a little behind the original, then the change in topology 

will be noticeable. And it will be behind because, again, latency is not zero.
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The use of auto-incremented IDs is ubiquitous. They are the default choice for most 

application database models. And yet their use belies an assumption that the topology 

will not change.

�Changing Assumptions
The fallacies of distributed computing are easy assumptions to make. We make them 

because our tools, specifications, and training have led us to do so. The non-idempotent 

POST verb is a valid part of the HTTP specification. Auto-incrementing IDs are a valuable 

feature of most database management systems. Almost every tutorial on application 

development will teach a beginner to use these capabilities. The fact that by doing so 

they are making an incorrect assumption does not even occur to them.

The tools that we use and the patterns that we follow today all evolved from a time 

during which assumptions of high reliability, zero latency, and topological consistency 

were not fallacies. In-process procedure calls are perfectly reliable. Sequential program 

statements have very low, very predictable latency characteristics. And sequential 

counters in a for loop will never return to the top of the function to find the code’s 

topology had changed. It’s when we evolve these abstractions into RPCs, network 

requests, and auto-incremented IDs that problems arise. When we apply the languages 

and patterns of the past to the problems of modern distributed systems, it is no wonder 

that programmers will make incorrect assumptions.

All of the fallacies of distributed computing stem from one simple truth: distributed 

systems are built using tools designed to run in a single thread on a single computer. 

Developers imagine a fast, isolated, unchanging, sequential execution environment and 

then treat the idiosyncrasies of distributed systems as edge cases. A duplicate transaction 

due to a network timeout is not a bug. An ID collision caused by a database failover is 

not a defect. These are realities of distributed systems that we cannot code around or test 

away. They demand a new set of tools, patterns, and assumptions.
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�Immutability Changes Everything
In 2015, Pat Helland wrote Immutability Changes Everything,1 an analysis of several 

computing solutions based on immutability. It demonstrates that immutability solves 

many problems in several layers of computational abstraction. At one end of the 

spectrum, low-level storage systems use copy-on-write semantics to mitigate against 

media wear. At the other end, applications accrete read-only facts and derive current 

state. This paper claims no new ideas, but only serves to point out the common thread of 

immutability in all of these solutions.

In the past, computers were slow, expensive, and limited machines that could only 

operate on small sets of data. Today, they are fast, cheap, and capable workhorses that 

store an embarrassment of data richness. Where application developers of the past had 

to optimize data storage by overwriting information when it was no longer needed, today 

we can afford to save everything. There is no economic need to update or destroy bits.

At the same time, computers of today are much more connected than they were 

in the past. Rather than co-locating a workload with the data on which it operates, we 

have moved to a world of microservices and mobile devices that share data far and 

wide. Many machines share the computational and storage burden of work that used 

to be performed by one. As a result, coordination has become more expensive, even as 

computing has become cheap.

And so while in the past it was expensive to keep immutable copies of data, 

current architectural constraints require that we do. Not only is data cheaper than it 

used to be, but making immutable copies actually enables the kinds of solutions that 

scale to multiple machines. When two machines share mutable data, they need to 

coordinate as that data changes. They may need to block one another to ensure that 

only one can change the data at any given time. But when that data cannot change, 

then no coordination or blocking is required. Cost reduction enables immutability, and 

immutability enables modern architecture.

�Shared Mutable State
Many of the hard problems in computing are problems that we have created for 

ourselves. Take, for example, the problem of shared mutable state in a multi-threaded 

1�Helland, Pat. (2015). “Immutability Changes Everything.” http://cidrdb.org/cidr2015/
Papers/CIDR15_Paper16.pdf
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system. One thread writes source data into a shared memory location, and another 

thread performs calculations on it. These two threads must be carefully coordinated to 

ensure that one does not write to shared memory before the other is finished reading 

from it. If the first overwrites the data while the second is still calculating, the results 

would be complete nonsense. We typically solve this sort of problem with a lock, limiting 

the ability for the program to scale.

But there is a solution that does not impair scalability. Instead of a lock, we could 

use immutable data structures. Rather than overwriting memory with the next data set, 

the first thread would simply allocate new memory. When it is finished building the data 

structure, the first thread passes a pointer to the second. From that point on, no thread 

can modify the contents of that memory. It remains completely immutable.

On the surface, it appears that we have improved scalability at the cost of memory 

efficiency. Rather than modifying just one small part of a data structure, it would seem 

that we have to make an entire copy with every operation. If that were true, it would 

be hard to justify the trade-off, even with the decreased cost of storage. Fortunately, 

however, that is not a trade-off we have to make.

�Structural Sharing
The fact that we intend for data structures to be immutable opens a new possibility. As 

we build new data structures, we can reuse existing pieces of old data structures. There 

is no need to copy those pieces, because we have already established that they will not 

change. We simply create new data elements to represent the ones that have “changed” 

and let them point to the ones that haven’t.

This is a technique called structural sharing. It’s a common optimization for 

immutable data structures that is enabled by immutable data structures. Take, for 

example, the binary tree shown in Figure 1-1. Each node in the tree contains a piece of 

data, in this case a number. It also contains two pointers, one to a number that is less 

than this node and one to a number that is greater. Finding a specific number in this data 

structure is fast, because you walk down a path asking “less than or greater than” at  

each stop.
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To insert a new number into the binary tree, you first need to locate the place that it 

belongs. Walking down to where it should be, you will discover either that it is less than 

a number that has no left path or greater than a number with no right path. Once there, 

your desire will be to “change” that node to add a new path. However, changing a node 

is not allowed: they are all part of an immutable data structure. So instead, you create a 

new node.

This new node should be to the left or right path of a parent, and so you will want to 

“change” that node as well. But again, changing the parent is not allowed. And so you 

create a new parent that points to the new child.

Continuing up the tree, you will eventually reach the root, as shown in Figure 1-2. No 

matter where you insert a new number, you will always end up creating a new root node. 

This new root node is effectively the new version of the tree. It represents the shape of 

the tree after the insertion. The previous root node still exists, and the nodes to which it 

points have not been modified. Any threads running in parallel searching that version 

of the tree can happily continue to do so. They will be unaffected by the new tree that 

shares most of its structure with the old one.

Figure 1-1.  A binary tree of numbers
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This optimization would not be possible if threads could modify these data 

structures. By sharing structure, these two versions of the tree become sensitive to 

modifications. It’s only because we have agreed not to modify the nodes that we can get 

away with this deep sharing of structure. Immutability enables structural sharing, and 

structural sharing optimizes immutability.

�The Two Generals’ Problem
Nowhere in computing is immutability more valuable than in sharing data among 

machines. But before we can truly understand why, we must first understand the scope 

of the problem. And there is no better way to do that than with the parable of the two 

generals.2

Imagine a besieged city. Within its walls, the defenses are insurmountable. A direct 

attack is almost certain to fail. Outside of the city are two armies, which have succeeded 

in cutting off its supply lines. The generals of these armies lie in wait, watching the city 

slowly weaken under the blockade.

At some point, the city’s defenses will be weak enough to attack. The generals of 

these two armies—one in the East and one in the West—are constantly observing the 

situation through their network of scouts, spies, and messengers. They determine each 

2�Akkoyunlu, E. A.; Ekanadham, K.; Huber, R. V. “Some constraints and tradeoffs in the design of 
network communications.” ACM SIGOPS Operating Systems Review. November 1975.

Figure 1-2.  After inserting 22, the new version of the binary tree shares most of its 
structure with the previous version
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day whether the city is sufficiently weak. When the time comes, they will prepare an 

attack for the following day. This situation appears in Figure 1-3.

An attack from one army would not be sufficient. The attack would be repelled and 

the attacking army destroyed. The remaining army would not be able to maintain the 

blockade, and so it would be routed soon thereafter. Only a coordinated attack from both 

East and West will win the city.

Now imagine that you are the general of the West army. Your partner to the East is 

separated from you by enemy territory. You cannot communicate directly. You can only 

send messengers through hostile terrain with no guarantee of success. Any message 

could be lost, their carrier killed or captured. The two of you must devise a method of 

reliable communication built from unreliable components.

If you in the West determine that the city is weak enough, and that the time for attack 

has come, you will begin preparing your army. You will also send a messenger to the East 

to inform the other general that you will attack in the morning. If the messenger arrives 

safely, then the East general can begin preparations and join you in the attack. With your 

combined efforts, the attack is likely to succeed.

But if the messenger is killed or captured, the message will not arrive. If that 

happens, your army will set out in the morning to mount a lone attack against the city. 

Your army will be destroyed, and the siege will be lost. As Figure 1-4 shows, you are 

unsure of how to proceed. And so you must have assurance before the morning comes 

that the message has been received.

Figure 1-3.  Two armies encamped outside of a besieged city
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�A Prearranged Protocol
Let’s try to devise a protocol that will give us some assurance that the message was 

received. Suppose you ask the East general to send a messenger in response confirming 

that your message was received. Now if you receive the confirmation before morning, 

you can confidently launch your attack. You know that the East general has received 

the message and will join you on the battlefield. If, on the other hand, you do not 

receive confirmation, then you will call off the attack, not knowing whether the original 

messenger made it through. As the general of the West army, you can be sure that you 

will not attack unless you know that the East general has received your message.

But while this protocol gives the West general those assurances, it fails to do so for 

the East general. Imagine now that you are on the East, and you have received a message 

informing you that the West will attack in the morning. You have plenty of time to begin 

preparations for your army. And, as per the protocol, you respond with confirmation. 

If the confirmation message reaches the West general, then the attack will proceed as 

planned.

But if that message is lost, then the West general will not attack. Remember, he is 

waiting for confirmation to know that you received his message. If you attack in the 

morning without knowing that the West general has received your confirmation, then 

your army could be defeated. And so you are left in uncertainty, as in Figure 1-5.

Figure 1-4.  The West general does not know whether they can attack
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�Reducing the Uncertainty
This protocol is not sufficient. You try different strategies to improve upon it. The first 

strategy is to simply send more messengers. Instead of relying upon one messenger, 

you send two. The probability of two messages both being lost is certainly less than the 

probability of one being lost. But that probability is not zero. And so you try again.

You can send three messengers, four messengers. Choose any number you wish. As 

you increase the number, the probability of total message loss gets closer and closer to 

zero. But it never quite reaches it. You can never choose a number of messengers high 

enough to assure you that the message will be received.

And so you change your approach. You send messengers out at a constant rate 

until the response is received. From the West, when you decide to attack, you send 

messengers with the attack message once every ten minutes. When you receive the 

first confirmed message from the East, you stop sending messages. As for the general 

on the East, he will reply with a confirmed message every time that an attack message is 

received. As long as he receives a steady stream of attack messages, he will respond at 

the same rate with confirmations. And once that stream stops, he can assume that the 

confirmation has been received.

Or can he? Can the lack of messages be taken as a signal? Is it possible that six 

messengers an hour continue to flow from the West, but all are captured? The general 

on the East has no way of ruling that out. And so he still runs the risk of attacking in the 

morning with no support from the West.

Figure 1-5.  The East general is uncertain
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�An Additional Message
As the East general, therefore, you make an additional demand of the protocol. In 

addition to an attack message from the West, and a confirmed message from the East, 

you require that the West respond with acknowledged. If you, on the East, receive 

acknowledged before the morning, then you know that confirmed was received in the 

West. You may therefore attack with confidence, knowing that the West general has 

received confirmation and will therefore join you. But if you receive no acknowledgment, 

then you must abstain.

While this new message provides new assurances to the East general, it again 

confounds the situation on the West. When the West general sends out an acknowledged 

message, he has no way of knowing whether it was received. If it was, then the East 

general will attack. If it wasn’t, then the East general will abstain. And so, as Figure 1-6 

illustrates, he has no assurance that his attack in the morning will be supported.

The addition of one message has only moved the uncertainty to the other side of 

the conversation. It didn’t actually solve the problem. We still have not yet discovered 

a protocol that will ensure that both armies either attack or abstain, when those two 

generals can only communicate via unreliable messages.

And indeed, we never will.

Figure 1-6.  The West general is again not sure if the East will attack
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�Proof of Impossibility
The Two Generals’ Problem, as Jim Gray named it in 19783, has no solution. There is no 

finite protocol that can give both generals mutual assurance of an agreement. I’m not 

simply saying that no one has found a solution. I’m saying that no solution can exist.

E. A. Akkoyunlu, who published the original problem and the impossibility proof 

in 19754, named this mutual assurance complete status. He described interprocess 

communication protocols that negotiate transactions between participants. A protocol 

would ideally provide status to those participants regarding the outcome of every 

transaction. Akkoyunlu proved that a distributed system cannot achieve complete status 

in a finite number of messages.

His proof does not require that we exhaust all possible solutions. It leaves no room 

for clever tricks that we hadn’t thought of. Instead, it is based on contradiction. Let 

anyone come up with a protocol and bring it to Akkoyunlu claiming that it provides 

complete status. Without even knowing how that protocol works, he shows that it does 

not uphold that claim.

Suppose that you present a protocol that you claim provides complete status to two 

generals after a finite exchange of messages. At the end of this exchange, both generals 

will know that the other is going to attack. If the generals follow this protocol and it 

happens that no messages are lost, then there is a minimum number of messages that 

must have been exchanged to reach this point. We will call that number N. The number 

N is particular to the protocol.

Since N is the smallest number of messages that must be exchanged to reach 

complete status, we know that fewer would be insufficient. In particular, we have not 

reached complete status after N-1 messages. One of the generals must still be at the point 

where he is not sure whether the other is going to attack.

Since N-1 messages would be insufficient, the Nth message is important. Without it, 

the protocol would not work. And yet, the message is not guaranteed to arrive. The sender 

of the Nth message does not know whether it will be received. Therefore, the sender of the 

Nth message does not have complete status and will not receive complete status as there 

are no further messages in the protocol. This situation appears in Figure 1-7.

3�Gray, Jim. (1978). “Notes on Data Base Operating Systems.” Chapter 3. Operating Systems, an 
Advanced Course. Springer-Verlag, London, UK.

4�Akkoyunlu, E. A.; Ekanadham, K.; Huber, R. V. (1975). “Some constraints and tradeoffs in the 
design of network communications.” Published in SOSP 1975. DOI:10.1145/800213.806523.
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This contradicts your claim that the protocol provides complete status within a finite 

number of messages. Therefore, we can conclude that no such protocol exists.

�Relaxing Constraints
The Two Generals’ Problem (TGP) is an analog for many of the problems we try to solve 

in distributed systems. Using only unreliable networks to pass messages between nodes, 

we must construct systems that nevertheless reach agreement with a high degree of 

certainty. The impossibility is the TGP would seem to tell us that this is a fool’s errand. 

Fortunately, however, the problems that we solve in distributed systems are a little bit 

easier than this fictional analog.

Consider an ATM. A bank customer uses a terminal to withdraw cash from their 

account. This common everyday transaction appears to be a TGP-made real. On the 

West, you have an ATM terminal with the ability to dispense cash. On the East, you have 

a bank’s central computer, which records the flow of money into and out of customer 

accounts. In between, the hostile territory of digital communications threatens to 

interrupt the delivery of messages.

Figure 1-7.  The sender of the final message does not have complete status
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Our desire is to ensure that the transaction either succeeds or fails. If it succeeds, the 

cash is dispensed and the customer’s account is debited. If it fails, no cash is dispensed 

and no debit appears in the account. We wish to avoid an outcome which has success 

on one side and failure on the other. Customers would be very upset if their accounts 

were debited but no cash was forthcoming, and banks would lose money if their ATMs 

dispensed cash without a corresponding debit.

�Redefining the Problem
The impossibility result of TGP tells us that this cannot be accomplished. And yet, 

millions of ATM transactions are processed every day.5 Clearly something is out of 

alignment. What we have failed to recognize in the ATM example is that the constraints 

on the system are more relaxed than they appear at first. Let’s take a closer look at 

the reason that the full TGP is impossible. From there, we can see how to relax the 

constraints and create a viable protocol.

The problem as originally stated has two strict constraints:

	 1.	 A general will not attack unless he has assurance that the other 

general will also attack.

	 2.	 The attack will come in the morning.

By the first constraint, the behavior of each general is based on what he knows  

about the behavior of the other general. As long as one general is in a state of 

uncertainty, both remain uncertain. There is no message that can simultaneously 

change both of their minds.

By the second constraint, there is a deadline. When that deadline arrives, they must 

achieve consensus. Any messages already en route at that time must have no effect on 

the final outcome. There will be no further messages to resolve any lingering uncertainty.

If we relax this pair of constraints, we can formulate a problem that has a valid 

solution. We can indeed find a protocol that exchanges complete status, as long as we 

allow one party to act in uncertainty and remove the deadline. Doing so destroys the 

narrative of the Two Generals’ Problem, but it fits the ATM example. Indeed, we will 

find that this relaxed version fits many business problems that we solve with distributed 

systems.

5�The 2013 Federal Reserve Payments Study reported 5.8 billion ATM withdrawals in 2012.
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�Decide and Act
We will first relax the constraint that a general will only attack if he is certain that his 

peer will as well. The West general decides that the time is right and prepares to attack 

regardless of what happens in the East. What is foolish behavior for a general could be a 

valid compromise for an ATM. When a customer withdraws money from their account 

through an ATM, one side or the other must act without full knowledge that the other 

will follow suit. Either the ATM must dispense the cash, or the central bank computer 

must record the debit. Consider the consequences and corrective steps of each decision, 

should it turn out to be one-sided.

Suppose that the bank records the debit, but the ATM terminal fails to dispense the 

cash. In that scenario, the customer leaves the terminal with no cash, but the central 

bank believes that they have their money. The consequence is that the customer is 

unsatisfied when they discover the problem, and their trust in the bank is eroded. The 

corrective action is to reverse the debit once the problem is discovered.

Now suppose that the ATM dispenses the cash, but the central bank fails to 

record the debit. In this scenario, the customer has left happy, and the ATM retries 

the communication until it is successful. In the meantime, it might be possible for the 

customer to withdraw money from another ATM, since the bank is unaware that their 

balance has been depleted. If so, the corrective action is to charge the customer an 

overdraft fee.

Clearly, one of these scenarios is better for both the bank and the customer. It 

protects trust, puts the power in the customer’s hands, and gives the bank an additional 

revenue stream. And so in this situation, the designer of the distributed system 

determines that the ATM will dispense cash even while it is uncertain whether the 

central bank will record the debit.

�Accept the Truth
The designer can only confidently make this decision if they relax the second constraint: 

that there is a deadline. Assume that the ATM has dispensed cash, but then experiences 

technical difficulties while communicating this fact to the central bank. It may take some 

time for a technician to repair the ATM terminal, thus reestablishing the communication 

channel. When the terminal shares with the bank that the cash was dispensed, the bank 

must honor this truth. It cannot reject the transaction based on the passage of time or 

the customer’s current account balance.
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The damage to the ATM may be so severe that the digital record of the transaction 

cannot be recovered. It may have experienced a full unrecoverable hard drive crash. 

In this case, additional forensics could be employed: count the cash remaining in the 

machine and determine whether the last transaction completed. If the ATM, including 

all of its cash, is totally destroyed, then even this method might not be available. But of 

course, in that case the bank has lost more than a single transaction. Accepting the truth 

means accepting some risk.

�A Valid Protocol
Given these relaxed constraints, we can now devise a protocol that eventually achieves 

complete status. One side (the ATM in this case) reaches a point where it can confidently 

make a decision. It acts (dispenses cash) and then continues the protocol until it knows 

that the other side is aware of the decision. It continues to do so no matter how much 

time has passed, or what conflicting circumstances have intervened.

To reach the point of decision, the ATM communicates with the central bank. It 

verifies that the account holder has sufficient funds to dispense the requested cash. It 

also checks its local storage of bills to ensure that it will be able to complete its side of 

the transaction. In this process, the bank may place a temporary hold on the customer’s 

funds. But this hold only reduces the likelihood of an overdraft; it cannot prevent it. The 

ATM for its part will put a temporary hold on its repository of bills: only one customer at 

a time may use the machine. If both of these checks pass, then the ATM dispenses the 

cash. It makes the final decision.

After it makes the decision, the ATM enters a second phase. In this phase, the 

decision has happened; the cash has been dispensed. The goal of this phase is simply to 

communicate this fact with the central bank. There is no time limit on the second phase, 

and the truth cannot be retracted.

This kind of protocol is what Jim Gray referred to in 1978 as a Two Phase Commit 

(2PC). In the first phase—commonly known as the voting phase—the coordinator 

receives from each participant confirmation that it can commit to the requested 

transaction. In the second phase—the commit phase—the coordinator informs 

each participant of its decision. In the preceding example, the ATM plays the role of 

coordinator and one participant. It is the sole decision maker, once it has gathered 

enough information to responsibly make that decision.
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�Examples of Immutable Architectures
The benefits of immutability have not gone unnoticed by distributed systems designers. 

Some of the most successful distributed systems in use today are built upon this concept. 

They derive capabilities from immutability that would be difficult to achieve otherwise. 

Three examples are Git, blockchain, and Docker.

Git is a distributed version control system popular among open source and corporate 

development teams alike. It offers the benefit of autonomy to each individual developer. 

A developer can make changes, switch among parallel lines of history, and resolve 

conflicts all within an isolated replica of the repository. When developers connect their 

replicas—whether directly to one another or to a shared central repository—they only 

trade information. No locking or consensus occurs during that exchange, keeping the 

interaction short.

Blockchain is an umbrella term for a collection of related architectures. The 

first blockchain was Bitcoin, a distributed currency based entirely on cryptographic 

algorithms. Most blockchains retain the economic aspects of a currency, but some layer 

additional features onto the core data structure. The prominent feature of a blockchain is 

a shared immutable ledger, providing assurance of the veracity of a singular, transparent 

history.

Docker is a technology for executing software within containers, as if the entire 

operating system and all dependencies were encased within a single isolated execution 

environment. It is an evolution beyond physical machines that truly ran isolated 

workloads and virtual machines that simulated that environment for the purposes of 

portability and scale. Docker achieves efficiencies that virtual machines lacked by a 

clever use of structural sharing and immutable disk images. This led the way to further 

advancement in orchestration such as Kubernetes clusters and mesh computing.

All of these examples use the benefits of immutability to enable their core defining 

capabilities. Interestingly enough, they all also happen to be open systems. Most likely 

that is simply a consequence of open software being readily available to analyze and 

uphold as architectural examples. There is no reason to believe that immutability would 

not be just as valuable to a closed system as it is to an open one. Let’s analyze each one in 

a little more detail to see how immutability serves its goals.
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�Git
Git strives to give each developer autonomy by providing all of the necessary information 

in a replica of a repository. The repository is composed of individual changes to source 

code known as commits. Commits are immutable, and contain references to related 

commits. The whole of the repository is an ever-growing history of commits accreted 

over the life of the project.

A commit is a set of changes made to a project by a single developer at a single point 

in time. The identity of a commit is derived entirely from its contents: the names of the 

files affected, the changes made to those files, the name of the developer, and the reason 

and time of the change. Those contents are hashed, and the resulting hash code is 

henceforth used to identify the commit. This results in an immutable graph of commits 

like the one in Figure 1-8. Every developer who clones the repository will compute the 

same hash for each commit, thus making those identities deterministic and consistent.

The current state of the source code can be constructed from the commits without 

reconnecting to the remote host, thus granting each node autonomy. The developer 

works disconnected from the server to construct a new set of commits on their own. 

While they work, they are not connecting to the remote host to lock files or check for the 

most recent changes. They are working in complete isolation; no round trip to the server 

is required.

When a conflict occurs, as it often does in source code, the developer finds within 

their local repository all of the information necessary to resolve it. They have the identity 

of the collaborators (possibly even themselves) involved in the conflict. They know 

exactly the context of the change—what the code looked like at the time it was modified. 

Figure 1-8.  A history of commits in a Git repository
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And they even have from the commit comments some clue as to the intent of each 

programmer.

Based on all of this information, the developer can resolve the conflict themselves. 

They don’t need to involve the server. In fact, because of the nature of Git branches, they 

can choose to let the conflict stand as long as they please. There is no immediate need to 

for the conflict to be resolved before work can continue. But when a resolution is made, 

it is recorded as another commit. That commit becomes part of the history so that all 

parties involved can see that the conflict has been resolved and understand the effect of 

this resolution.

This mode of working is only possible because every commit is immutable. Every 

developer who has the same commit knows that their copy is just as good as any other. 

No other developer can modify the contents or the identity of a commit; all they can do 

is create new ones.

�Blockchain
Blockchains store information as singular units (transactions, contracts, digital assets) 

aggregated into blocks. A block is simply a collection of these units surrounded by an 

envelope of metadata. Each blockchain defines its own block data structure, but they all 

share some common fields.

•	 A random number called a nonce

•	 A reference to the previous block

•	 A hash of the block’s contents (including the nonce and the 

reference)

As a result, the current block is just the most recent collection of transactional units. 

It points back to the previous block, which points back again forming a chain. This chain, 

as depicted in Figure 1-9, represents the entire history of transactions since inception.
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The immutability of a block is a consequence of the hash that is its identity. If the 

contents of a block were to change, the new hash would be different. Cryptographically 

strong hash functions are used so that it would be difficult to modify a block in such a 

way as to leave the hash undisturbed. And when I say “difficult” here, I use the term in 

the way that cryptographers use it. We are not allowed to say “impossible.”

Because a block’s hash (and hence its identity) includes the hash of its predecessor, 

any change to a block will ripple through all subsequent blocks and produce a new 

alternate history. Such tampering would be easily detected. Every node sees the same 

copy of every block. This is both the enabling characteristic and the most valuable 

feature of a blockchain. On the one hand, this enables immediate detection of 

tampering, and on the other hand it provides the benefit of a shared public  

auditable ledger.

Blockchains have a dark side, which many analysts (myself included) believe will be 

their undoing. In order to ensure that all nodes agree upon the same history of blocks, 

most blockchains feature a proof of work. This is an algorithm that is slow to run, yet fast 

to verify. For example, the blockchain could demand that the first several bits of a block’s 

hash be 0. Because nodes have to waste CPU cycles computing proof of work, the rate of 

blocks added to the chain is held constant. The cost of falsifying history—both in terms 

of electricity and computing hardware—is greater than the value that could be derived. 

Unfortunately, this means that the cost of legitimate use of the blockchain is also very 

high relative to its value.

While proof of work may turn out to be the Achilles heel of blockchains, the benefit 

that it derives from immutability is solid. Only by ensuring that every participant has 

the same indelible copy of the ledger can this system provide the benefits of shared 

auditable history.

Figure 1-9.  Each block in the chain contains a hash and a reference to the 
previous block

Chapter 1  Why Immutable Architecture



26

�Docker
Docker goes beyond the capabilities of virtual machines because it organizes images 

in layers. A layer is an immutable portion of a file system with a reference to the layer 

below. An image is really nothing more than a reference to the topmost layer. For this 

reason, the other layers are also referred to as intermediate images.

For Docker to execute a workload, it creates a container. A container is a running 

instance of an execution environment, complete with its own simulated file system. 

When a container starts up, Docker allocates to it a special writable layer, which in turn 

points to the topmost layer of the image. This layer is initially empty.

At runtime, when a container reads from the disk, Docker will forward that read 

operation to the writable layer. As this layer is initially empty, the read request will fall 

through to the topmost layer of the image. If the requested data is in that layer, then it 

will be returned. Otherwise, it will move down to the layer below.

When a Docker container writes to the disk, it only modifies the writable layer. This 

layer is special, in that it is not shared among any of the other Docker containers and 

it is not persisted beyond the lifetime of its container. Any information written to that 

layer is lost when the container is deleted. Even if the container “overwrote” parts of the 

operating system, the lower layer containing that source data is unaffected.

The identity of a layer is a hash, similar to the identity of a Git commit or a 

blockchain block. The difference, however, is that it is a hash not of the contents but of 

the command that created it (including any source files in the case of an ADD or COPY 

command). The resulting structure is shown in Figure 1-10. To build an image, Docker 

starts with the base image: a name used in a registry to identify the hash of an existing 

layer. Starting from this base layer, Docker then scans the commands one by one and 

computes the hash of the resulting intermediate image. If that image is already in the 

repository, then it is retrieved rather than being reconstructed.

Figure 1-10.  Each Docker image is created by applying a command to the 
previous image

Chapter 1  Why Immutable Architecture



27

Immutable layers allow a single Docker host to run several containers from the same 

or related images without duplicating the entire operating system for each one. Virtual 

machines cannot share images because those images are mutable. If one machine 

modifies an image, that change would become visible to the other VMs. But Docker can 

get away with sharing layers because those layers will not be modified. It’s the structural 

sharing of layers that allows Docker to support orchestrators and meshes, coordinating 

several interconnected running containers all formed from a shared repository of 

images.

Each of these systems has harnessed the power of immutability to provide their 

own distinct advantages. Just as Pat Helland pointed out in “Immutability Changes 

Everything,” this one idea is a recurring theme appearing at several layers of the 

technology stack and across many problem domains. As you learn to model business 

problems based on immutability, you will start to enjoy the advantages of a reliable audit 

history, just like blockchain. And as you learn to implement immutable data structures 

within your mobile apps and microservices, you will benefit from the same autonomy 

found in Git. Let the journey begin.
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CHAPTER 2

Forms of Immutable 
Architecture
There are consequences to designing a system using only immutable records. Some of 

them are the advantages that we’ve already explored: reliable communications, reduced 

blocking, increased autonomy, and improved auditability. Other consequences are less 

desirable. Many of them simply require a shift in thinking, while others demand entirely 

new solutions. As you adopt immutability into your application design, you will need to 

recognize how the architecture must change in response.

The trade-offs requiring shift to immutability have led to the emergence of different 

architectural styles. In this chapter, we will examine three of those styles: Event Sourcing 

(ES), Asynchronous Model View Update, and Historical Modeling. All three share the 

idea that state evolves from historical records. Where they diverge is in the ordering of 

those records. The first two styles assume that records can be viewed in sequence. They 

expect to be able to enumerate records in order. The third arises from the idea that 

historical records may be partially ordered. It does not allow enumeration. Instead, it 

trades that capability away to achieve some valuable results.

After this chapter, the remainder of the book will focus on the third style: Historical 

Modeling. But it will be important to put that choice into context. Each architectural 

decision is a trade-off among competing values. Let’s explore all three architectures to 

get a better understanding of what those trade-offs will be. We’ll begin with the concepts 

that they all have in common.

�Deriving State from History
The art of immutable architecture is finding a balance. On the one hand, there is the 

recognition that immutable data structures offer significant advantages in parallel and 

https://doi.org/10.1007/978-1-4842-5955-9_2#DOI
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distributed computing. On the other hand, there is the recognition that the world that 

our systems model is full of mutation. Each of the architectures we will study finds this 

balance in their own way.

Here, it helps to give things distinct and meaningful names. We will call the things 

that change objects, and the things that do not change records. These choices are 

not arbitrary. They are based on concepts that humans have invented to organize 

information both with and without computers.

�Historical Records
Let’s go back in time to a world before computers. How was business transacted in 

this world? Rather than updating the current state of the world in a large database, 

information was recorded and shared in the form of documents.

Suppose a customer places an order for ten widgets. This decision is captured as a 

purchase order. The purchase order references the two parties: the buyer and the seller. 

It also references the product—widgets—by the catalog number assigned by the seller. 

The result would be a document similar to the one shown in Figure 2-1.

�Building Upon the Past

The purchase order is a historical record. It is an immutable document that records a 

decision as it was at a certain point in time. It makes reference to two parties: the buyer 

and the seller. Neither party can change the purchase order itself. They can only amend 

this document with another one.

Figure 2-1.  A purchase order records the intent of a customer to purchase products 
from a vendor
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The buyer and the seller are distinct legal entities. These entities were created with 

their own set of immutable records: documents that were filed with their respective 

regulating bodies as articles of incorporation. These documents were created well in 

advance of the purchase order.

The purchase order refers to a few other decisions that came before. For example, 

it refers to a catalog number. This is the result of a decision to publish the widget in a 

catalog of available products with a listed price. The catalog, once published, is not 

changed. It is only amended by publishing subsequent catalogs with ever-evolving lists 

products and prices.

�Evolution of Understanding

Future documents will in turn refer back to this purchase order. Once the seller receives 

a copy of this document, they will create an invoice—a new document that requests 

payment. The buyer will write a document in response, a check that requests that the 

bank transfer funds to the seller. The seller will create a packing slip, which documents 

the items to be included within a shipment. The carrier will issue a bill of lading to the 

buyer, documenting delivery of the goods.

Historical records evolve our collective understanding over time. Each one is in itself 

immutable. But our view of the world changes as more documents are published.

�Mutable Objects
The invention of the computer has greatly scaled up our capacity for handling 

transactions. But it has also subtly changed the way in which we think about what is true. 

Before computers, we each had to carry a bank book to calculate our account balance. 

Now, we can see it immediately on our cell phones. It used to be understood that the 

idea of “balance” was a derived one and differed based on one’s knowledge of which 

checks had been cashed. Now, at least intuitively, “balance” has become an intrinsic 

property of an “account” object.

Like functional, modular, and structured programming before it, object orientation 

was one of the great advancements in software modeling. It originated from the 

observation that software systems exist to model the real world. It sought to first 

understand the behavior of the objects being modeled and then provide patterns and 

templates for implementation.
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At its core, object-oriented programming assumes that at least some objects are 

mutable. It leaves room for immutable objects, but mainly describes the behavior and 

evolution of mutable objects. This assumption appears most notably in the concept of 

identity.

�Identity

Of the fundamental elements of object orientation that James Rumbaugh defined 

in 1991, the three we frequently talk about are encapsulation, inheritance, and 

polymorphism. The one that we fail to mention is identity. Rumbaugh defines identity 

as a distinguishing property independent of identifying attribute. In object-oriented 

modeling, even if two objects have the same properties, they are different objects. Acting 

on one will not affect the other.

[T]wo objects are distinct even if all their attribute values (such as 

name and size) are identical.1

When we translate that idea to object-oriented languages such as Java or C++, the 

concept of identity is mapped to a location in memory. An object becomes a block of 

memory allocated to store its current state. The identity of the object is the address of 

that memory. That is why sharing the identity of an object in C++ is achieved by “passing 

a pointer.”

Memory addresses obey the rules of object-oriented identity. They represent 

uniqueness absent any identifying attribute. At any point in time, the state of two objects 

might be exactly the same. The chunks of memory at those two addresses might be 

byte-for-byte equal. But changing the memory at one location will have no effect on 

the memory at the other. A consumer of one object will perceive no change in behavior 

based on a modification of the other.

As we move further away from a single thread in a lone process on an isolated 

machine, this implementation decision starts to show its faults. Moving from one thread 

to many, we must introduce locking to protect the integrity of the data structure against 

simultaneous mutation. Moving from one process to many, we must map the shared 

object into independent memory spaces. And going beyond the boundaries of a single 

1�James Rumbaugh, et al. Object-Oriented Modeling and Design. 1991 Prentice-Hall, Inc.  
ISBN 0-13-629841-9.
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machine, the concept of a pointer loses all meaning. Other forms of identity need to be 

introduced to compensate.

�Evolution of State

Rumbaugh’s definition of identity solves a problem for objects that can change state 

over time. But if we introduce the concept of immutability, it becomes less valuable. 

The reason for an object to have intrinsic identity is so that it can provide consistent, 

meaningful behavior as it changes over time. If I take a bite out of one apple, another 

remains whole. It would be a very strange world indeed if a bite appeared in your apple, 

or if I returned later to find mine completely restored.

Rumbaugh’s identity is a recognition that objects in the real world change state in 

response to stimulus. They remember that state. Their observable behavior is based on 

their current state. For those changes in behavior to make sense in any model of the real 

world, objects in the model have to have intrinsic identity.

�Projections
Our goal now is to use immutable records to model mutable objects. The records 

clearly are not the objects themselves. That would be insufficient, as records would not 

allow for the mutability that objects expect to have. Instead, the records must in some 

way represent changes to the objects. The immutable records are the mutations of the 

objects.

To achieve this goal, we will treat immutable records as observed state. They 

represent things that we actually saw and recorded. Objects, on the other hand, are 

derived state. They represent our interpretation of those observations and can change as 

new observations are made.

�Two Kinds of State

Imagine a spreadsheet. In each cell, you can enter one of two things. Either you can enter 

a value, or you can enter a formula. A value represents some basic measurement, an 

observation of the system you are modeling. A formula, on the other hand, derives a new 

value from those observations. Formulas represent derived state.

As a mathematician, my favorite analog of this idea is a function. We will often write 

y as a function of x, thereby producing a plot. You can draw a vertical line anywhere on 
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that plot and you will hit only one point. The same cannot necessarily be said for any 

horizontal line. We say that x represents the independent variable and y the dependent 

variable. You get to choose x, but y is calculated by the function. Independent variables 

are observed, and dependent variables are derived.

In software, we have other names for this phenomenon. Derived state is sometimes 

referred to as a projection of the observed state. A pure function takes a value as an input 

and produces an output with no side effects. The output is deterministic, depending only 

upon the input. Where the input is observed state, the output is derived from that input. 

It is a projection of that observed state.

Derived state also appears in software as a view model. While a model is an object 

that generally supports the problem domain, a view model maps more specifically to 

a view. It projects the model for the purpose of display on the view. In data-binding 

frameworks, changes made to the view model appear directly on the view.

�Projecting Objects

No matter what you call it—formulas, dependent variables, projections, or view 

models—derived state is a deterministic transformation of observed state. It adds no 

information to the system; it only presents the information that’s already there in a 

different way. In mathematics, we say that it adds no new degrees of freedom to the 

system. In software, you might say that the view model is backed by the model. The 

important point is that the user gets to change observed state directly. They can only see 

the results indirectly projected onto the derived state.

In an immutable architecture, the historical records are observed state. The user gets 

to create new records directly through their actions. Those records capture decisions that 

the user has made.

The objects, on the other hand, are merely projections. They are ephemeral. The 

user does not get to set the state of an object. They can only see those objects change as 

a result of new historical records. Every one of these architectures has their own way of 

calculating that projection.
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�Event Sourcing
Historical records are the observed state of an immutable architecture. They represent 

past decisions. You could call these past decisions “events” and demand that they are the 

sole source of truth. That is the origin of the term event sourcing (ES).

While the term “event sourcing” could arguably be applied to any architecture that 

reconstructs state from a history of immutable records, the practice is a bit more specific. 

As Martin Fowler described it in 2009

The fundamental idea of Event Sourcing is that of ensuring every 

change to the state of an application is captured in an event 

object, and that these event objects are themselves stored in the 

sequence they were applied for the same lifetime as the application 

state itself.2

The emphasis on “sequence they were applied” is mine. The idea of a sequence does 

not necessarily follow from the requirements of immutable historical records. But it is a 

reasonable assumption, and one shared by all implementations of ES that I have seen. I 

therefore consider sequence a defining characteristic of event sourcing.

�Generating Events
In an event-sourced application, the user interacts (through a UI and possibly an API) 

with a domain model. The domain model does not respond immediately to the request. 

Instead, it validates the request and generates an event. The event is an immutable 

record of the user’s intent. It is named and interpreted as a past-tense statement, as in 

“this thing happened”: OrderSubmitted, PlayerRegistered, and ResidentMoved, for 

example. The naming convention reflects the truth that an event, once generated, cannot 

be ignored. Its effect might just be different from what the user intended.

By interacting with the domain model, the user experiences the application as if it 

followed a traditional object-oriented paradigm. They get the impression that objects 

have properties that change over time and that their actions directly cause that change. 

The application hides the fact that the object model is both a generator and a projection 

of a sequence of events.

2�Martin Fowler. https://martinfowler.com/eaaDev/EventSourcing.html
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The advantages that ES provides over a traditional object model begin with the same 

ones that we’ve already identified for all immutable architectures: increased scalability 

and auditability. In addition, they boast the ability to rebuild objects entirely from the 

stream of events. When a defect is fixed or a feature is added, the application can discard 

any cached versions of the domain model and reconstruct them using the new code. 

It also allows an event-sourced application to go back in time and replay only part of 

a sequence, seeing an object as it appeared in the past. This provides the user of the 

application with a powerful ability to perform temporal analysis.

Practitioners will often pair event sourcing with both Command Query 

Responsibility Segregation (CQRS) and Domain-Driven Design (DDD). This pairing 

is not a requirement for ES, nor are the implementations all in agreement how it is 

achieved. Some choose to pair just CQRS with ES, or just DDD with ES. This architectural 

decision affects how an application projects immutable records into mutable objects.

�CQRS
Command Query Responsibility Segregation extends the object-oriented principle of 

Command Query Separation (CQS). Bertrand Meyer defines commands and queries as 

kinds of methods. He distinguishes them as follows:

A command serves to modify objects, a query to return 

information about objects.3

Where CQS draws a line between methods, CQRS extends that line to segregate 

objects. In obedience of the single responsibility principle,4 some objects are responsible 

for issuing commands and others for issuing queries.

In CQRS, commands are responsible for changing the state of the system. These are 

distinct from queries, which request information about current state. Commands and 

queries follow separate paths and often interact with different architectural components. 

Commands are often asynchronous, while queries are usually synchronous. In many 

implementations, they operate against different data stores.

3�Bertrand Meyer. Object Oriented Software Construction, Second Edition. Prentice Hall. 1997. 
ISBN: 0-13-429155-4.

4�Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices. Prentice Hall. 
2003. ISBN 978-0135974445.
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When paired with ES, commands are further distinguished from events. Whereas a 

command is expressed as an imperative statement, an event is a past-tense statement. 

The command SubmitOrder results in the event OrderSubmitted. The command 

instructs the system of record to perform the user’s intent. The event, on the other 

hand, is produced by the system of record and must be honored. The system of record 

is responsible for first validating and authorizing the command. It may choose to fail or 

ignore the message.

When the command is sent asynchronously, this further removes the user from 

the effect of their actions. Applications using the CQRS/ES architectural style with 

asynchronous commands will often expose an eventually consistent interaction to the 

user, making it clear to the user that their request will be processed at a later time.

�DDD
When object-oriented programming was first introduced, it held the promise that 

objects in software could model objects in the world. As it was adopted into enterprise 

software development, objects started to model the world less and the computer more. 

Eric Evans refocused object-oriented analysis and design onto the problem domain with 

his 2004 book Domain-Driven Design.5

While the book offers advice on many phases of the software development process, 

we will focus only on the technical aspects. In particular, we will focus on the ontology 

and relationship of different kinds of objects.

DDD recognizes two kinds of objects: entities and value types. An entity is an object 

that has identity. As we have already seen, object-oriented identity affords the object 

the ability to change over time. In contrast, a value type has no identity and is therefore 

immutable.

A Customer, for example, would be an entity, since it has identity and can change 

over time. A customer might have a mutable property ShippingAddress, the data type of 

which would be Address. An address in turn would have several different properties, like 

Street, City, Country, and others. But the shipping address is managed as a single unit, 

not as separate properties on Customer. The Address data type is a value type and has no 

identity of its own.

5�Eric Evans. Domain Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley Professional. 2004. ISBN: 0-321-12521-5.
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Entities in DDD are organized within hierarchies called aggregates. An aggregate is a 

parent–child relationship. At the top of this hierarchy is the aggregate root. For example, 

an Assembly in one domain might be an aggregate containing many Parts. Several 

Assemblys are collected under one aggregate root called Product. The aggregate appears 

in Figure 2-2.

As a rule, entities are not addressed outside of their aggregate root. Within the 

domain that we described previously, it would make little sense to talk about a Part 

without first identifying its Product. The Product is the aggregate root and therefore the 

entry point for all external references.

Event Sourcing replays past events in order to rebuild objects in the model. But that 

doesn’t mean that the system reconstructs the entire object model on every query. That 

would not be an efficient way to handle a query of a single object. Most of the events in a 

model’s history will have no effect on that object. So instead, event sourced applications 

break that history into independent streams. Each stream affects only a subset of the 

domain model. When ES is combined with DDD, that subset is the aggregate root.

A query in a DDD/ES application will identify an aggregate root. The application 

loads the stream of events for that given identity. The stream contains all events that 

affected the root or any other entity within the aggregate. Individual entities are not 

reconstructed from their own history; they arise from the history of their root entity.

Figure 2-2.  An aggregate root owns its child entities
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�Taking a Functional View
So far we have been concentrating on object-oriented analysis to describe the effect 

of events. But there is an equally valid interpretation using the ideas of functional 

programming. Consider a function that computes the state of a system after applying  

an event:

f(staten, event) → staten+1

By “state of the system,” we could be talking about a single object, an aggregate root, 

or even the entire object model. Practically speaking, you will want to choose a smaller 

boundary. But analytically, the outcome is the same.

The advantage of modeling system state using this function is that state—like 

events—becomes immutable. The function is a pure function: it does not cause side 

effects. More specifically, it does not change the state of its inputs. The function does not 

modify the incoming state; it returns a new state derived from the incoming state.

In functional programming, it is not uncommon to define higher-order functions. 

These are functions that take functions as parameters. One such function is left-fold 

(sometimes abbreviated as foldl). Foldl takes a binary operation—a function taking two 

parameters—and applies that operation over every element of a list.

For example, given the binary operation +, the starting point 0, and a list of numbers, 

foldl will compute the sum.

foldl(+, 0, [3, 17, 2]) = 22

You can think about event sourcing in these functional terms. The binary operation 

is the function described previously, which takes the current state and returns the state 

after an event is applied. The starting point is the initial state of the system. And the 

list is the sequence of events. Greg Young uses functional constructs to describe event 

sourcing:

When we talk about Event Sourcing, current state is a left-fold of 

previous behaviors.6

6�Greg Young. http://codebetter.com/gregyoung/2013/02/13/projections-1-the-theory/
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�Commutative and Idempotent Events
We will find that the commutative and idempotent properties are useful in distributed 

systems. The commutative property allows us to apply an operation out of order and 

get the same result. The idempotent property allows us to repeat the operation without 

further effect. Since event sourcing is based on a sequence of operations, it is sensitive to 

both order and duplication. It is up to the application developer to ensure that order is 

preserved and duplicates are prevented.

The + operator is commutative: a+b = b+a. But in general, binary operations don’t 

have to commute. Unless you are very careful in your selection of f, foldl will be sensitive 

to the order of items in the list. Event sourcing, therefore, is non-commutative by default. 

If a system is to respond consistently with respect to out-of-order events, then it is 

incumbent upon the developer to prove that the event-application function commutes 

when necessary. To be more precise, if the event-application function satisfies the 

following equation, then the events commute:

f(f(x, e1), e2) = f(f(x, e2), e1)

Just as not all binary operators commute, not all are idempotent. The + operator 

is one such example: a+a ≠ a (except in the special case that a = 0). And so a left-fold 

over a sequence containing duplicate numbers will inflate the result. If your distributed 

system allows duplicate events into the stream, then it is up to you to prove the following 

equation:

f(f(x, e), e) = f(x, e)

You can handle order and duplication in front of the event stream or behind it. Either 

prevent out-of-order and duplicate events from entering the stream, or carefully choose 

your event-application function.

�Asynchronous Model View Update
The Elm programming language takes the functional view of a history of events quite 

literally. This language compiles to JavaScript and runs in the browser. It generates 

HTML from a source model. A pure function produces successive versions of the model 

as it handles messages. The pattern on which Elm is based is called Model View Update.

Inspired by Elm, Facebook created a suite of tools that extend this pattern to the 

server. The first of those tools was React, a front-end library for JavaScript that projects 
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a model into HTML. The next was Flux, a unidirectional data flow application design 

pattern. This defined the way that Facebook designed web and mobile apps. Redux 

was an implementation of Flux developed outside of Facebook by Dan Abramov. Dan 

was subsequently brought into Facebook to continue work on Redux, React, and the 

architecture in general. Finally, there is the back-end architecture, only parts of which 

are currently open sourced, upon which Facebook develops their APIs.

�The Update Loop
When React and Redux are used together, they form a loop. This loop is the core engine 

of the Model View Update pattern. React transforms the model into the view, and Redux 

dispatches actions to update the model.

The model is simply a data structure. As an application developer, you define the 

data structure that you need. Since React targets single-page web applications, the 

model is typically the collection of state that a single user is viewing and manipulating 

within a page.

The view is what the user sees; in React it is HTML. A function called render 

transforms the model into the view. This function runs first after the model is loaded 

and then every time a new version of the model is produced. The results of subsequent 

executions are compared to determine what has actually changed and to update the 

Document Object Model (DOM). The developer does not have to be concerned with 

change tracking.

render(model) → view

Finally, update is a function that computes the next version of the model. This is a 

pure function, so it does not modify the model. Instead, it produces a model as it would 

look after an action is applied.

update(modeln, action) → modeln+1

A Model View Update application begins with loading a model. It then enters a tight 

loop in which user interaction generates an action. The update function handles the 

action producing a new version of the model. The render function turns that new model 

into a new view. The framework compares the two versions of the view to determine 

what to change in the browser. The user is presented with the updated user interface, 

and the loop continues as shown in Figure 2-3.
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Being a pure function, update does not modify the model. It produces a new version 

of the model, which is then rendered to produce a new version of the view. So it is more 

accurate to depict this loop not as a cycle, but as a spiral as in Figure 2-4.

This image makes it more clear that there are no circular dependencies. Each 

iteration produces a new set of objects. The old objects are still available to support 

optimizations, such as minimizing DOM manipulation.

Figure 2-4.  Each iteration produces a new version of the model

Figure 2-3.  The model-view-update loop found in React and Redux
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�Unidirectional Data Flow
Flux and Redux were developed as a reaction to problems found in the Model View 

Controller (MVC) pattern. In MVC, a controller responds to changes in the model by 

updating the views. It also responds to user input in the view by updating the model. The 

controller coordinates data flow in two directions: both in from the user and outward 

from the application.

Bidirectional data flow is very simple to start with. With just a handful of controllers, 

following the thread of execution from view to model and back again is not difficult. 

But as more controllers are added, the number of paths increases super-linearly, as 

illustrated in Figure 2-5. It is difficult to know whether a new feature is going to produce a 

new edge case that causes cascading updates or circular dependencies.

With unidirectional data flow, on the other hand, there is no chance of cascading 

updates. An action produces an update to state, which produces an update to the 

view. The view cannot respond to one action by producing another action. There is no 

possibility of cycles or runaway updates.

Unidirectional data flow also supports better unit testing. Start with a given state. 

When an action is handled, then the handler produces a new expected state. Initializing 

the state, applying the action, and verifying the resulting state are all easy to automate. 

The operations that are hard to automate—verifying that the view is correctly rendered 

and that user interaction is properly interpreted—are marginalized. Rendering a view is 

Figure 2-5.  Several controllers coordinating with one another to update their 
models
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simply a function on the model, and user input only produces an action. Unidirectional 

data flow minimizes the manual testing surface area.

�Immutable App Architecture
Model View Update as practiced by React and Redux is only half of the picture. The other 

half happens on the server. While Redux has the luxury of operating on an in-memory 

store, when a mobile application communicates with its host server, the current state of 

the model is not always available. Lee Byron presented Facebook’s solution at Render 

2016.7 He called it “Immutable App Architecture.” But since that name is similar to the 

general term “immutable architecture” as I’ve been using it, I will call the pattern he 

presented Asynchronous Model View Update.

The pattern begins just as before with a render function projecting a model into 

a view. Also as before, the user’s interactions with the view produce actions. At this 

point, however, the pattern diverges. On the client, actions are pushed to a queue. On 

the server, actions are applied to the true state. The update function combines the last 

known true state with all of the actions still in the queue. The resulting loop is shown in 

Figure 2-6.

7�Lee Byron. Immutable User Interfaces. Render 2016. https://vimeo.com/166790294

Figure 2-6.  Asynchronous Model View Update
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The next iteration of the model is not based on the previous iteration. Instead, the 

client goes back to the last state fetched from the server. If a new state is received from 

the server asynchronously, then it becomes the new true state. Any actions that are 

represented within that state are removed from the queue. The state is known to be true; 

the queue contains actions that optimistically might become true.

The advantage of this architecture for Facebook was that they could more easily 

reason about new features. To add a feature, a developer needed only to add new actions 

and propagate them out toward the view. If those actions had an impact on other views, 

they would simply add the desired effect to the update function. The mobile application 

could work quickly, even while on a slow network. The effect of a user’s interaction 

would be immediately visible, without waiting on a round trip to the server.

The Asynchronous Model View Update architecture optimistically interprets a series 

of actions. User actions are validated on-device with the expectation that most of them 

will succeed on the server. It is assumed that no other actions will intervene and that the 

result of executing the actions on the server will be the same as on the client. When this 

optimistic assumption is found to be false, the architecture simply discards the locally 

computed state and takes the server’s version.

�Historical Modeling
The immutable architectures that we just examined both make a distinction between 

immutable historical records and a mutable object model. They also assume that 

historical events occurred within a fully ordered sequence. But neither of these 

assumptions necessarily follow from the idea of using immutable records as the source 

of truth. If we model a system as a collection of related historical facts, we find that we 

can dispense with the mutable object model altogether and that facts don’t necessarily 

have to occur in a sequence.

Let’s begin with a slight change in terminology. Instead of referring to historical 

records as events or actions, let us call them facts. The reason for the name change is 

that facts obey a set of rules that do not necessarily apply to events in Event Sourcing, or 

actions in Asynchronous Model View Update. In particular, facts are partially ordered.
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�Partial Order
The term “partial order” comes from mathematics, and is distinguished from the term 

“full order.” Start with a set of objects, be they numbers, words, science papers, data 

structures, what have you. Define a comparison operation that tells you whether one 

object comes before another. We will typically use the less than symbol (<) to represent 

this operation. If for any pair of objects in the set, we can use < to put one before the 

other, then the set is fully ordered. If we can only do that for some of the pairs, then the 

set is partially ordered.

As an example, consider the set of counting numbers and the familiar definition 

of <. 1<3 and 3<17. In fact, for any pair of distinct counting numbers, you can use this 

operator to put one before the other. When a and b are different, either a<b or b<a. The 

set is fully ordered under the < operator.

But now let’s change the definition of < and see what happens. Instead of the 

familiar “less than,” let’s say that a<b if a is a proper factor of b. That is to say, if a and 

b are distinct and dividing b by a leaves no remainder, then a<b. Now we can compare 

pairs of numbers and see what happens. 3<15 because 3 is a proper factor of 15. But we 

cannot say that 3<8 nor that 8<3. Neither one is a factor of the other. And so the counting 

numbers are partially ordered under the operation of proper factor.

Whether we are talking about a total order or a partial order, the comparison operator 

that we choose must have a couple of useful properties. First, it must be transitive.

a<b and b<c ⇒ a<c

It must also be non-reflexive. That is to say that an object does no “come before” itself.

a≮a

Finally, the comparison operation must be unidirectional. That means that an object 

cannot come both before and after another one. More formally, this is written as follows:

a<b ⇒ b≮a

All of these properties hold for a comparison operator that imposes either a partial 

order or a total order. The thing that distinguishes them is whether for any given pair one 

must come before the other. In a total order, if two distinct objects are not ordered one 

way, they must be ordered the other way:

a≮b ⇒ b<a (for a and b distinct)

This is not the case for a partial order. A partial order will allow both a≮b and b≮a.
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This does not only apply to numbers. English words are totally ordered 

alphabetically, as illustrated in a dictionary. They are partially ordered under the 

contains operator, as in “catalog” contains “cat”. Total and partial orders can be found for 

many sets. This includes the set of historical records, or facts.

�Predecessors
The way in which Historical Modeling puts facts into a partial order is to identify 

predecessors. For each fact, a historical model makes explicit which other facts must have 

come before. These aren’t simply the list of all other facts that have occurred earlier in 

time: that would put facts into a sequence—a total order. Instead, predecessors are facts 

that must have happened before in order to make the current fact make sense.

If we return to our purchase order example, we can see a few predecessors in 

evidence. A purchase order is a document of the decision by a buyer to purchase items 

from a seller. The example purchase order from earlier in the chapter appears again in 

Figure 2-7.

The purchase order is a fact. It is a historical record that documents a decision. It is 

immutable: neither party can change the purchase order itself. They can only amend this 

document with another one.

The purchase order fact refers to a few other facts that came before. It refers to the 

buyer and the seller as distinct legal entities. These entities were created with their own 

set of historical facts—documents that were filed with their respective regulating bodies as 

articles of incorporation. These facts were created well in advance of the purchase order.

Figure 2-7.  A purchase order from a buyer to a seller
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The purchase order fact also refers to product. This is a historical fact that the widget 

was published in a catalog of available products with a listed price. The catalog, once 

published, is not changed. It is only amended by publishing subsequent catalogs adding 

and removing products and changing their prices. The relationship of the purchase 

order to all of its predecessors is shown in Figure 2-8.

In this model, there is no predecessor relationship between purchase orders. It does 

not record that one purchase order was submitted earlier in time than another one. 

Predecessors are not simply facts that occurred earlier in time; they are prerequisites: 

things that must have been true for this fact to make sense.

�Successors
It is useful to talk about the opposite direction of the predecessor relationship. A fact that 

refers to another one is its successor. Successors help us to evolve our understanding of a 

system over time. We cannot change a historical fact, but we can create successors.

Figure 2-8.  Buyer, seller, and product are all predecessors of purchase order
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Let’s continue the story of the buyer and the seller. The seller receives a copy of the 

purchase order and then sends the buyer an invoice. The invoice is another historical 

fact. The predecessor of this fact is the purchase order. The successor of the purchase 

order is the invoice, as shown in Figure 2-9.

The presence of a successor does not change the predecessor. Issuing an invoice 

does not alter the historical record that is the purchase order. However, the successor 

changes our interpretation of the predecessor. When we see the invoice, we now know 

that the state of the purchase order has changed. We know that it has been invoiced, and 

it would be incorrect to issue a second one.

It is important to recognize that there is no mechanism within a historical model 

to prevent the creation of additional successors. The model itself must allow for 

multiple invoices to the same purchase order. If we carefully control who can create 

those invoices, and on what machine, then we can avoid this situation in any practical 

scenario. But the model itself has no ability to lock the purchase order, or to prefer one 

invoice over another.

A fact does not know about its successors. New successors are added over time. To 

fully understand the state of a fact, we must query the historical model to discover if new 

Figure 2-9.  Invoice is the successor of a purchase order
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successors have been created. Current state is not a projection of historical facts into 

mutable objects; it is simply the collection of known successors.

�Immutable Graphs
Like an event, a historical fact is immutable. But unlike an event, a fact refers to its 

predecessors. Taken together, these properties have interesting consequences.

The predecessors to which a fact refers to are themselves immutable facts. Those 

facts can in turn have predecessors. This produces a structure known as a directed 

graph. Each vertex in this structure is a fact, and each edge is a predecessor relationship. 

This relationship has a direction: it points from the successor to the predecessor. We’ve 

seen examples of these graphs presented earlier as they relate to purchase orders and 

invoices. Another example appears in Figure 2-10.

Since a fact refers to its predecessors, and the fact is immutable, it follows that 

a predecessor cannot be added to an existing fact. That predecessor relationship is 

part of the fact, and the fact cannot be modified. And so while it is possible to add 

successors to a fact, it is not possible to add predecessors. This is in keeping with our 

use of the predecessor relationship to define what comes before in the partial order. All 

predecessors must be known facts, recorded before the new one.

From any given fact, we can trace the graph along the predecessor paths. We will 

select a subgraph that includes the starting fact, all of its predecessors, and all of their 

Figure 2-10.  A fact refers to its predecessors, which in turn refers to still more 
predecessors
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predecessors recursively. This process produces the transitive closure of the starting 

fact. If we compute the transitive closure of the reaction, we end up with the subgraph 

in Figure 2-11.

To build the transitive closure, we started from one immutable fact and followed 

arrows only in a direction that cannot change. The subgraph is therefore immutable. For 

any given fact, the transitive closure will always be the same. Adding new successors to 

any of the facts in the graph will not change it. Those successors would never get added 

to the transitive closure.

Conversely, the transitive closure identifies the starting fact. There is no other fact 

for which the transitive closure would produce this same set. In a historical model, this 

is the only way to identify a fact. They do not have globally unique identifiers (GUIDs) 

or sequence numbers outside of this structure. The contents of the facts in the transitive 

closure are all you’ve got to tell one fact apart from another.

�Collaboration
Machines within a distributed system can communicate by exchanging graphs of 

historical facts. As they do, they must be sure to send the transitive closure of each fact. 

They have to know that the recipient is aware of all of the predecessors at every step.

Figure 2-11.  The transitive closure of a fact contains every fact's predecessors
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When a machine records a new piece of information—a decision that a user has 

made or the outcome of some business process—it does so by creating a new fact. It 

cannot create that fact based on predecessors of which it is not yet aware. It must either 

create those predecessors first, or have learned about them from its peers.

The predecessor relationship between facts captures the communication structure 

between machines. A successor from one machine can be seen as a response to its 

predecessor generated on another. When you observe the predecessor/successor 

relationship, you have evidence that the two machines communicated to make that 

happen. Conversely, when two facts are not related, then the two facts might have been 

created concurrently. This is the partial order of historical facts at play within distributed 

systems. The ambiguity of the ordering between unrelated facts leaves machines less 

constrained and, as we will see, better able to act autonomously.

�Acyclic Graphs
The immutability of facts constrains them to know their predecessors at the time of 

creation. But there are two more constraints that we have to put on the system. First, we 

have to be able to construct the graph one fact at a time. And second, we cannot allow a 

fact to refer to itself as a predecessor. We must disallow both simultaneous creation and 

self-reference, lest we introduce cycles.

Every graph starts empty. It contains no facts. The first fact added to the graph 

therefore can have no predecessors. There is no existing knowledge upon which to build. 

The first fact is a root. A graph containing only one root has no cycles, because there are 

no edges.

Let time pass, and let more facts be added to the graph. Assume that the graph still 

contains no cycles. As I add a new fact to the graph, that fact may refer to any of the 

existing facts as predecessors. However, those existing facts may not refer to this new fact 

as a predecessor. I cannot change their predecessor relationships, and this new fact did 

not yet exist. I therefore cannot introduce a cycle by adding a single fact.

If we were to allow self-reference, then we could introduce a trivial cycle. And if we 

were to allow simultaneous insertion, then we might introduce two facts that have each 

other as predecessors. Since neither of these operations is allowed, the resulting graph 

of facts must not contain cycles. In mathematics, this kind of structure is known as a 

directed acyclic graph, and has many interesting properties. As we get deeper into the 

analytical and implementation details of historical modeling, we will take full advantage 

of the acyclic nature of the graph.
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�Timeliness
In a system based on the exchange of historical facts, not all parties will know about all 

facts at the same time. This is one of the greatest strengths of historical modeling, but 

also one of its important limitations. It is impossible to reject a fact based on the time at 

which you learn of it. The reason is that other parties will have learned about it earlier 

and would therefore have come to a different conclusion about the fact. For every party 

in the system to eventually reach the same conclusion, that conclusion cannot be based 

on timeliness.

This causes significant problems in systems that do not recognize this limitation. 

Several legal documents, such as tax forms, checks, and invoices, have explicit due 

dates or expiration dates. If the form is received after the required date, then it will 

not be honored. The sender must go to great lengths to prove that the document was 

written and transmitted on time, or suffer the consequences of a failed transaction. 

In such situations, the sender believes one thing—that they met the deadline—while 

the recipient believes something else. Only by arbitration of a central authority can 

these situations be resolved.

To design a system that does not rely upon a central authority, we must respect that 

documents will be received late. In a truly historical model, a fact is not rejected based 

on the time at which it was received. At best, we can record the fact that a fine was levied 

or an opportunity was lost due to the failure of information to arrive at a certain place by 

a certain time. But we cannot prove that the information did not exist somewhere else 

at that time. And when the fact arrives later, we must decide how we are to react to it. All 

parties must honor the existence of the facts, no matter when they learned about them, 

and draw the same conclusion. Perhaps that conclusion is that the sender still owes a 

fine. But timeliness alone did not determine that outcome.

Such are the rules of a historical model. They follow logically from the desire to 

capture the full history of a system with several parties, separated by time and space, 

exchanging historical facts. Those facts must be immutable. Two facts having the same 

transitive closure are indeed the same fact. We cannot guarantee—and therefore cannot 

rely upon—there being only one successor for any given fact. And we cannot change our 

interpretation of history based on the timeliness of our knowledge of it.
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�Limitations of Historical Modeling
For the remainder of the book, we will focus our attention on Historical Modeling. 

The other forms of immutable architecture are documented elsewhere, but Historical 

Modeling requires a bit more study. This choice, as we will see, offers many advantages: 

autonomy, scalability, and conflict resolution to name a few. But it is not without its 

limitations. We have already mentioned a few, but let us now explore them in better 

detail.

With the power of historical modeling comes some constraints. These constraints 

make it inappropriate to apply historical modeling to certain types of systems. In these 

situations, it is best to model all or part of the system statically—that is, using a method 

that captures current state—and integrate where appropriate. Fortunately, good 

integration strategies are available.

We will often find that we can pair a historical model with a static model. A static 

model, as the name implies, is based upon state. The model is mutable, centralized, and 

can enforce serialized access. Relational databases are good static models, as they have a 

long track record of supporting efficient locking.

�No Central Authority
A historical model allows for decisions to be made with autonomy. Each decision is 

recorded in the local history and eventually shared with the rest of the system. As a 

result, the system cannot reject facts based on age or current state.

Decisions that were made in the past are approved locally, with only the information 

available at the time. No remote part of the system needs to be consulted. That decision 

cannot be rejected post facto.

This makes historical modeling inappropriate for parts of a system that require a 

central authority. For example, a conference room reservation system will need to know 

with certainty whether a room was available at a certain time. When a reservation is 

approved, the approver needs to know that no other reservation for the same room at the 

same time has been approved. That decision must be made by a central authority.

A historical model may be applied around the edges of a central authority, so long as 

that central authority itself is using a static model. The historical model can capture the 

fact that a request has been made. This occurs at the point of request, such as at a user’s 

workstation or a device mounted by the door, and these facts find their way to a central 

authority. The historical model can also capture the fact that a request was approved. 
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This occurs at the central authority and moves out to the devices at the edge. But a 

historical model alone cannot say for certain whether a room is available at any given 

time. That would require that the model know that a reservation has not been approved, 

which is impossible given a subset of history.

To solve the problem, the system should include a central authority with a static 

model. The historical model records the reservation requests and approvals, but the 

static model determines availability. The central authority need not be a single machine; 

it could be a cluster of machines. As long as the members of this cluster have access to 

the same static model, they can act with singular authority. The shared static model 

needs a locking mechanism to help this cluster coordinate their actions. Relational 

databases support transactions, which answer this need well.

The central authority will then record the approval or rejection of the request as a 

successive fact. This fact will find its way back to the client from which the request came. 

The historical model provides all of the benefits previously mentioned: a complete 

history of the request, an eventually consistent view of current state, and a mergeable 

communication mechanism. The one component that is better modeled statically is the 

one that requires central authority: room availability.

�No Real-Time Clock
A time-sensitive request must be fulfilled within a specified period of time. If it is not, 

the request is invalid. Such requests are common in real-time systems such as factory 

automation. A request for a door to open or a robotic arm to move must be fulfilled 

within a narrow span of time. If the message does not arrive in time, then the request 

must be rejected.

Facts in a historical model, however, are honored no matter what the time frame. The 

decision is made at the time that the fact is recorded and cannot be rejected thereafter. 

It may take an indeterminate period of time to transmit the fact. The recipient is simply 

informed of something that has already happened in history.

While it might be appropriate to model the input or output of a real-time factory 

automation system historically, the software that runs the factory itself should use a 

real-time model. These models are specifically designed to provide time-sensitive fail-

safe behavior. If a message fails to arrive at the right time, the system defaults to safe 

operation. And once the message does arrive, late as it is, the system ignores it so as not 

to cause any damage.
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�No Uniqueness Constraints
In a historical model, any query for successors of a fact might return multiple results. It 

is not possible to constrain a query to return only one result. The consequence of this is 

that a domain that requires at most one result cannot effectively be modeled historically.

For example, a login that requires a unique user name should be supported by a static 

model. A historical model would be unable to enforce the uniqueness of a user name.

At best, a historical model might include a fact containing only the user name. 

Because a fact is uniquely identified by its value, there is logically only one fact with this 

exact user name. However, the fact could contain nothing that could differ from one user 

to the next. If it contained information in addition to the user name, then two or more 

facts could again exist with the same name. They would no longer be unique.

To correlate a distinct user name with a user, therefore, would require a successor 

fact. Identifying the user for a given user name would require a query for the successors 

of the user name fact. Such a query cannot be guaranteed to return at most one fact. The 

possibility always exists for it to return more.

To model a system that requires uniqueness constraints, you must use a static model. 

The model can be consulted to determine if the desired value is already in use. The 

indexing and transactional features of a relational database once more come into play.

That static model must also be centrally located. A replica of a static model cannot 

enforce uniqueness. An insertion into one copy would need to block in order to consult 

the others. Only if that unique value is not reserved in a quorum (usually a simple 

majority) of replicas can it be accepted. A consensus algorithm such as Paxos can be 

employed to reach a quorum.

If uniqueness is required, such as registering for a user name, a historical model 

could be used for registration requests, as well as for acceptance or rejection responses. 

The requests can be recorded as facts by clients at the edge of the system. These facts 

will make their way to a central authority that has access to a static model. The static 

model enforces uniqueness constraints. That central authority will decide whether to 

approve or reject the request based on the static model and then record that decision as 

a successor fact.

The response will find its way back to the client from which the request came; only 

then will the client know whether the requested user name is unique. They will query 

for successors to the request fact—the acceptance or rejection. Once they have one 

successor, they will know the answer to the uniqueness question. However, there is no 
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guarantee in the historical model itself that the request will have no further successors. 

That assurance comes only from the trust that a central authority is making the decision, 

with the help of a static model that can enforce uniqueness.

�No Aggregation
After a certain amount of activity, a system might be expected to provide an aggregate 

or summary of that period’s activity. For example, a financial ledger could be closed at 

the end of a day, a month, or a quarter. The system would then produce a summary that 

records the total of that period’s transactions. From that point forward, no additional 

transactions would be allowed into that period.

A historical model cannot guarantee that all facts within a given period have been 

seen. The system responsible for generating the aggregate might not have all of the 

period’s records at the required time. If it receives a fact after computing and recording 

the summary, then it is not permitted—by the rules of historical modeling—to reject it. 

The decision was made elsewhere, and the fact of that decision was merely shared.

Three strategies exist for dealing with aggregation of historical facts: central ledgers, 

map-reduce, and blockchains. A central ledger is by far the simplest of the three. A 

central ledger uses a static model to tally which facts have been included in which 

period. For example, it determines which financial transactions are part of which date 

of business or quarterly summary. It makes that decision within the tally as the facts 

arrive, regardless of when they occurred in history. The tally is a static model. The central 

authority uses this static model to guarantee that a transaction is not double counted, in 

other words, included in more than one period.

Map-reduce decentralizes the static model. No longer does a single static model 

have to contain all of the financial transactions that occur within a date of business. 

Instead, the transactions are distributed among several static models, called shards. To 

compute an aggregate for a date or a quarter, a coordinator sends a request to each of 

these shards. The shards each compute their own aggregate and then share that result 

with the coordinator. The coordinator combines all of the aggregates into one final 

answer. This works because no transaction is ever duplicated between shards. If it were, 

that duplication would lead to over-counting in the final result.

A blockchain is more complex, but avoids the need for a central authority. At many 

points within the system, individual facts are gathered into candidate blocks. The hash of 

each block is computed and tested for some arbitrary condition (e.g., a certain number 
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of leading zeros). This arbitrary condition is a proof of work that ensures that satisfactory 

blocks are found at a desired frequency. Each candidate block contains the hash of its 

predecessor, and no fact may appear in more than one block in a chain. Nodes within 

the system will honor the longest chain of satisfactory blocks.

When designing a system that requires aggregates over history, add a static  

model—whether singular or sharded—to the historical one. Model individual 

transactions historically. At a central authority, collect a list of ongoing historical 

facts into the static model. At regular intervals, close the tally of facts and compute a 

summary—either as an aggregate function or via map-reduce. This preserves the logical 

and technical benefits of historical modeling, while also allowing for aggregation.
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CHAPTER 3

How to Read a  
Historical Model
Throughout the rest of this book, we will be exploring many examples of historical 

models. To do so, we will need a language for describing them. This language will 

be part visual and part textual. The visual aspect of this language will aide in overall 

understanding, while the textual part will provide specificity.

The goal of the modeling languages, whether visual or textual, is to achieve a shared 

understanding about the decisions we are collectively making and the consequences 

of those decisions. Business analysts, product owners, and information architects will 

uncover the language and rules of the domain. Developers and system architects will 

describe the consequences of various decisions. And user experience designers will map 

the model to task-driven interfaces.

Throughout the process, the team is communicating using a common language. 

That language needs to be as free as it can be from jargon and implementation details. 

It should not talk about databases, APIs, services, or repositories. Instead it should focus 

on the entities and actions of the problem domain.

And yet, the language should also be precise. There should be no room for ambiguity 

in the system’s requirements. When the developers implement a solution according to 

the specification, there should be no confusion as to how a correct program will behave. 

Indeed, the specification should even be sufficient to generate some of the code.

Starting from the baseline of immutable architecture, we can define just such a 

specification language. It carries with it enough constraints to ensure that a correct 

implementation will have desirable characteristics, like performance, scalability, 

security, and autonomy. And since one of those constraints is immutability, reasoning 

about the model will be possible.
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The modeling language that we will describe—Historical Modeling—has two 

graphical components and one textual component. We will begin with the first of the 

graphical components: the fact type graph.

�Fact Type Graphs
Within the visual language, we will create two kinds of graphs. One will represent the 

types of facts, and the other instances. Fact type graphs will be the more common of the 

two, so let’s describe them first.

In a fact type graph, the type of a fact is represented as a labeled ellipse, as in 

Figure 3-1.

An arrow between two fact types indicates a predecessor/successor relationship. The 

type at the head of the arrow is a predecessor of the one at the tail. Figure 3-2 shows an 

example.

Figure 3-1.  A single fact type

Figure 3-2.  Arrows point up toward predecessors
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In any predecessor/successor relationship, a predecessor can have zero or more 

successors. There is no way in a historical model to limit the number of successors to any 

given fact. Even though the graph shows only one order line, it implies that a product can 

have many order lines.

The predecessor side of the relationship, however, can be constrained. In the 

preceding graph, an order line is associated to exactly one product. With additional 

notation, we can indicate other cardinalities. In Figure 3-3, we indicate zero or one 

predecessors with a question mark.

Figure 3-3.  A question mark indicates an optional predecessor

In this graph, an invoice line may or may not refer to an order line. The reference 

is optional. Some invoice lines are charges for specific products ordered and would 

therefore have an order line. Others are fees or discounts unrelated to a specific order 

line. These would have no predecessor.

The third cardinality that can be depicted on a fact type graph is zero or more (a.k.a. 

many) predecessors. To indicate this relationship, we use an asterisk as in Figure 3-4.
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This graph says that an order refers to zero or more order lines. Because the tail of 

the arrow always allows for multiples, this is a many-to-many relationship.

There is more than cardinality at play in this graph. It also represents the order in 

which facts can be created and the degree to which changes can be applied. The arrow in 

Figure 3-4 allows multiple order lines as predecessors. The arrow in Figure 3-5 is reversed 

and has no asterisk. Yet it still allows multiple order lines, only now as successors.

In Figure 3-5, the direction of the predecessor/successor relationship between order 

and order line is reversed. The successor end of an arrow always allows zero or more 

facts, and so both graphs indicate many order lines to an order. The distinction, however, 

is related to immutability. In Figure 3-4, the many order lines are predecessors of the 

order. They were known at the creation of the order. New order lines cannot be added to 

the order after the fact. Existing order lines cannot be removed after the order is created. 

Figure 3-5.  Successor relationships always allow multiples, so this model still 
allows multiple order lines

Figure 3-4.  An asterisk indicates multiple predecessors
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The collection of order lines is immutable. When we wish to call out this immutability, 

we will often say that the successor captures its predecessors, as in “An order captures 

many order lines.”

In this domain, we want to lock down the order lines in an order, and so we will 

choose to make order line the predecessor (as in Figure 3-4). However, we will introduce 

the concept of a cart, to which a customer may indeed add order lines. It is important to 

choose the model based on the direction of the predecessor/successor relationships, not 

just based on cardinality.

For some patterns that we will study shortly, it makes sense for a fact to refer to other 

facts of its own type. We indicate this as a loop, as in Figure 3-6.

Figure 3-6.  A loop indicates that the previous prices are predecessors

A price refers to not only a product as a predecessor, but also zero or more prices 

that came before. This indicates that a price replaces previous values. Even though this 

relationship introduces a cycle into the fact type graph, it does not allow cycles of fact 

instances. A given instance of a price cannot refer to itself as a predecessor. It can only 

refer to a previous price, the one that it is replacing.

There must have been a first price for the product. That fact instance would have 

no price predecessors. That is why we cannot represent this as a one-and-only-one 

relationship. Loops within a fact type graph will necessarily include an arrow that is 

either optional (zero or one) or—more commonly—many (zero or more). Because these 

references are the only way to model properties that change over time, we will often refer 

to them as “mutable,” as in “A product has a mutable price.”

Putting it all together, a complete model for an ordering domain appears in Figure 3-7.
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A product in a catalog has a mutable price. An order line in a cart captures a specific 

price for a product. An order captures a set of order lines. Order lines can be added to a 

cart, but the order is closed. An invoice line may or may not refer to an order line, and an 

invoice captures a set of invoice lines.

The fact type diagram expresses both the cardinality and the causality of the domain. 

Reading through it reveals a narrative of how a system came to be in a particular state 

and exposes the constraints on how that system can and cannot change.

�A Chess Game
When I first started thinking about Historical Modeling, I drew a few models to convince 

myself that it would be a useful way to analyze software. The first model that I drew was 

of a single chess game. Chess is a game between two players. The players are chosen 

before the game begins. Players are therefore predecessors of the game, as shown in 

Figure 3-8.

Figure 3-7.  A fact type graph showing various decisions for cardinality
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This immediately revealed that I needed a way to talk about different predecessors 

of the same type. At first, I thought about perhaps allowing an array of players and 

using the index to indicate the order of play. As I got into further models, I realized that 

predecessors had to be sets, not arrays, which invalidated that idea. Furthermore, the 

game supports precisely two players. An array would allow invalid games of 0, 1, or 3+ 

players to be represented. The natural conclusion was that predecessor relationships 

should support labels, as in Figure 3-9.

Figure 3-8.  A chess game has two players

Figure 3-9.  The players in a chess game have labels

When no disambiguation is required, the labels can be omitted. The label always 

describes the predecessor, not the successor.

�Important Attributes
In chess literature, the place at which a game is played is often used in the title. It represents 

an important attribute of the model. My first instinct was to record this attribute in the game 

fact. It would then be possible to display that information as part of the title of the game.
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Upon further reflection, however, it becomes clear that that would not be quite right. 

Several games will be played at the same place. If the place is simply a field of the game, 

then the model does not faithfully represent that truth. The name of a place is not the 

place itself. And there is no way of finding all games played in a particular location.

The solution, as shown in Figure 3-10, is to represent place as a fact. The place is a 

predecessor of the game; the place existed before the game was played, and the game 

knows about that location. A game cannot be moved to a different place. The place is 

immutable and part of the game’s identity.

With this change, the model accurately represents the importance of place. It is a fact 

in its own right. It stands apart from any game, but it also provides a way to find a set of 

games. If an important attribute is hidden away as a field in another fact, then we have 

no way of talking about such a query. But if the important attribute is represented as a 

separate fact, then we can reason about it appropriately.

�A Chain of Facts
The next part of the game that I needed to model was the moves. Considering that a 

predecessor is a thing that happened before, I decided to represent move order using 

predecessor relationships. The result was the diagram in Figure 3-11.

Figure 3-10.  Place is important enough to be extracted from game and become its 
own fact
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The question mark indicates that previous move is optional; the first move would 

have none. The predecessor captures only the immediately previous move, as previous 

allows optional predecessors, not many predecessors. The entire history of the game can 

be found in the chain of predecessors.

While the model requires that only one move precede another one, it does not 

require that only one move follow another. The structure of the model does not prevent a 

player from cheating by playing two possible moves.

The structure also does not prevent a move from following a move from a different 

game. There is no constraint that the prior move belongs to the same game. This will 

have to be expressed in a validation rule.

After analyzing this model, I was not particularly happy with the prior relationship. I 

realized that later moves in the game would be identified by a long list of previous moves. 

It seemed wasteful. I couldn’t quite quantify the issue, because I hadn’t yet determined 

how to implement this model. But I decided that a move could simply contain a move 

number as well as the squares affected. Starting at zero, white would play the even moves 

and black the odd moves. This flattened the model into the one in Figure 3-12.

Figure 3-11.  A move refers to the previous move as its predecessor
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The model no longer represents the structure of the game. It does not record the 

idea of one move following another. But then again, given the inability to disallow forks, 

the structure wasn’t providing much value. Furthermore, removing the prior reference 

eliminated the possibility of moves crossing games. Modeling is a trade-off between the 

rigor of the type system and the brute force of validation. Validation of sequential move 

order makes for a simpler model.

�Endgame
The last part of the chess game to model was the outcome. Was it a win for white (1-0), a 

win for black (0-1), or a draw (½-½)? The simplest solution is to create an outcome fact 

and record that value as a field, as shown in Figure 3-13.

Figure 3-12.  A move refers to the previous move as its predecessor
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I found two problems with this simple solution. First, it offered no help when 

searching for games that a certain player has won. This might be an important query, 

so the model should support it. And second, it allowed for moves to continue past the 

outcome. The outcome should lock the moves into place.

To solve the first problem, I decided to separate the Outcome fact into two different 

types: Win and Draw. A Win refers to one of the two players. The Draw—to help with the 

query—refers to both. This changes the model to the one in Figure 3-14.

Figure 3-13.  A new fact records the outcome of the game
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The model again requires validation to enforce that the winner must be one of the 

players from the game. But on the plus side, it is much easier to query for all wins and 

draws by a player. This could help with things like computing score.

To solve the second problem, I took advantage of the fact that predecessor 

relationships were immutable. If an outcome records all moves of the game as 

predecessors, then those moves are locked down when the game concludes, as  

Figure 3-15 illustrates. Sure, future Move facts could be recorded, but they would not have 

contributed to the outcome.

Figure 3-14.  A game concludes with a win for one player, or a draw for both
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As this example shows, the act of modeling a problem historically exposes several 

decisions that might otherwise be deferred as implementation details. The correct option 

is not always clear. But the choice has important downstream effects. One path might lead 

to a simpler model, but a difficult query. Another might constrain the system to render 

invalid inputs unrepresentable, only to put too much of the burden on the type system. 

Take the time to draw out several alternatives and analyze each on its own merits.

�Fact Instance Graphs
So far, the graphs we’ve drawn refer to fact types. The visual language of Historical 

Modeling also includes a kind of graph that represents fact instances. We will use this 

kind of graph less frequently. The goal of a fact instance graph is to illustrate a specific 

example of the state of a system at a certain point in time and at a certain node. It 

includes more details about the fact instances observed, but typically contains only a 

small number of facts.

Figure 3-15.  A win or a draw locks in a set of moves
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Fact instances are distinguished from fact types by drawing them without a border. 

Instead, the body of the fact forms a rectangle of text, with a separator between the type 

and the contents, as in Figure 3-16.

Predecessor/successor relationships are drawn with arrows as in the type diagram, 

but an instance diagram does not indicate cardinality. No relationships include the 

asterisk or question mark indicators. Figure 3-17 illustrates a relationship between a 

catalog and one of its products.

When a predecessor reference is “optional” or “many,” it allows zero predecessors. 

An instance with no predecessors in this role is drawn in an instance diagram as 

a terminating line. If the role is optional (?), then the terminator represents a null 

reference. If the role is many (*) as in this example, then the terminator represents an 

empty set.

Terminators are helpful to illustrate the changes in a mutable property. The root 

instance, or initial value, of a mutable property will have no predecessor. Subsequent 

instances will form a chain from the root, as in Figure 3-18.

Figure 3-17.  A product points to its predecessor catalog

Figure 3-16.  A catalog fact instance is shown with all of its values
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Recall that the fact type diagram depicted only one price node. A small loop 

indicated that a price had zero or more prior prices. Now in the fact instance diagram, 

we see what that loop really means. It doesn’t indicate that the model allows cycles. It 

means only that instances of a given type can refer to other instances of the same type. 

The loop has turned into a chain.

A fact instance diagram does not admit cycles. A fact never refers to itself as a 

predecessor. Nor can facts refer to predecessors that in turn refer to the original, directly 

or indirectly.

Since all instances of the price refer to a common predecessor Product, a shorthand 

can be used to group the common relationships. A box is drawn around all members 

of the group, as in Figure 3-19. The predecessor reference common to all members of 

the group is shown as a line from this box. If a successor referred to all members of the 

group, it would be represented as an inward arrow.

Figure 3-19.  A box indicates that all instances share a common predecessor

Figure 3-18.  The first price has no prior price
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Whereas fact type diagrams are general descriptions of a model, fact instance 

diagrams show specific examples. Instance diagrams help to illustrate the consequences 

of different modeling decisions. They offer a form of debugging prior to a model having 

been implemented. Let’s walk through a specific example and show how it helps us 

reason through design decisions.

�The Immortal Game
Previously, we imagined what any chess game might look like. Now, we will draw a 

specific instance of a chess game using that model. Before the game begins, we have two 

players: Anderssen and Kieseritzky. They meet in London. As Figure 3-20 shows, the 

game is a fact that joins those two players at that place at a certain point in time.

It’s important that we included the createdAt field within the Game. This represents 

the moment, from the perspective of the client, that the fact was created. In this example, 

we are using the exact moment that the game began in London. (The time of day in this 

example is fictional, as records to this level of accuracy do not exist.)

If we had modeled a Game without a createdAt field, then any game between 

Anderssen as white and Kieseritzky as black played in London would be the same 

game. A fact is uniquely identified by its type, the values of its fields, and the set of its 

predecessors. This model makes the reasonable assumption that two players will not 

simultaneously start two different games.

It is also important that createdAt represents the moment at which the fact became 

a fact, not the moment at which it became known to any particular computer. Of course, 

at the time there were no computers in London to capture the fact. Nevertheless, it 

existed. In modern systems, this creation time is often captured as a timestamp on the 

Figure 3-20.  A game between Anderssen and Kieseritzky in London in 1851
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client machine. After that, however, other machines that learn of this fact must honor 

that timestamp, no matter how much time has passed.

�Collecting Moves
Now that the fact of the game is recorded, the players begin making moves. We can 

capture these moves as facts referring to the Game. Figure 3-21 shows the game after the 

first three moves.

In a previous iteration of the model, we considered representing the relationship 

between a move and its previous move as a predecessor. This had the advantage of 

being accurate: a move is the predecessor of the one that follows. But it had the more 

significant disadvantage of creating long chains. Had we chosen this model, the game 

after three moves would look like Figure 3-22.

Figure 3-21.  Moves are captured as successors of the game fact
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As the game progresses, the chain would get longer. Understanding that the 20th 

move is the 20th move requires traversing this entire chain. Even identifying the 20th 

move means talking about the entire history, as predecessors are part of identity.

Because of the practical drawbacks of recording moves as a chain, we decided to 

model the system as having individual moves, each with an index. And so, we abandon 

Figure 3-22 and go back to Figure 3-21. That leaves us with the chore of validating those 

indexes to ensure that we have no gaps and no duplicates. We can simply add this to 

the validation that would already have to occur to defend against illegal moves such as 

moving into check. The model can only go so far to make invalid state unrepresentable.

As we collect more and more moves within the game, representing them as 

individual facts on the diagram becomes tedious. So instead, we group them together. 

The group has a common predecessor: the Game. Within the box, we can simply draw the 

set of moves as a table, as shown in Figure 3-23.

Figure 3-22.  In an alternate model, moves are represented as predecessors of one 
another

Chapter 3  How to Read a Historical Model 



77

The grouping does not change the fact that each move is a separate record. The order 

of moves within the grouping does not imply any relationship between the facts. This is 

simply a convenience to constrain the size of the illustration.

�A Brilliant Win
In the game that we are modeling, Anderssen sacrificed material brilliantly to secure 

a win for white. We will represent that win in Figure 3-24 with a fact that captures the 

game, the winner, and the set of moves as predecessors.

Figure 3-23.  Moves are grouped together under their common predecessor
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The Win fact has no fields. It needs no additional information. It says all that it needs to 

say with the predecessors it gathers together. We draw the predecessor set of moves as an 

arrow pointing toward the entire group. Every Move in the group is a predecessor of the Win.

As this example shows, fact instance graphs are quite different from fact type graphs. 

They represent individual instances of facts, complete with their type and fields. They 

show predecessor/successor relationships between facts rather than the roles between 

types. Whereas a fact type graph allows cycles between types, an instance graph does not 

permit cycles among instances. A cycle in the fact type graph unrolls into a chain in the 

fact instance graph.

Figure 3-24.  A win captures several predecessors, including all moves of the game
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Fact type graphs and fact instance graphs are used for different purposes. A fact type 

graph makes general statements about all possible models of given fact types. We use 

them to reason through the rules of a domain. A fact instance graph, on the other hand, 

illustrates a specific example data set. We use them to try various scenarios and debug a 

model before implementation.

Because fact type graphs better describe the general rules of a domain, we will rely 

more heavily upon them than on fact instance graphs. Fact instance graphs are often 

too specific to make general statements. In the remainder of this book, they will be used 

sparingly and only to illustrate specific patterns.

�The Factual Modeling Language
While the visual language of Historical Modeling is useful for understanding the 

relationships within a model, it is not sufficient for rigorous reasoning. It cannot specify 

a model to such a degree that assertions can be proved, or code generated. To satisfy this 

need, we use the Factual Modeling Language, or Factual.

Using the Factual Modeling Language, we can write precise specifications. It describes 

all the data that is part of the model, the ways in which those data elements relate, and the 

rules by which we can query it. It even describes the rules by which data is secured and 

validated. This precise specification language allows us to reason about the requirements 

of a system and determine far in advance what we will be able to implement.

�Declaring Fact Types
Types of facts are declared in Factual using the type keyword. The body of the type, 

enclosed in brackets, includes a list of fields and predecessors. Fields are declared in a 

style reminiscent of Pascal and related programming languages: a field name is followed 

by a colon and a type. Fields have native data types, such as string, int, and bool.

fact Catalog {

  referenceNumber: string

}
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Predecessors are similarly declared. The primary difference is that a predecessor 

refers to another fact type. Predecessors can appear before, after, or interspersed with 

fields.

fact Product {

  catalog: Catalog

  sku: string

}

Cardinality indicators modify predecessor declarations. Singular predecessors have 

no modifier (as shown earlier). Optional predecessors are declared with the question 

mark modifier, and multiple predecessors are declared with an asterisk.

fact InvoiceLine {

  orderLine: OrderLine?

  total: decimal

  description: string

}

fact Invoice {

  lines: InvoiceLine*

  subtotal: decimal

  tax: decimal

}

A predecessor can refer to a type that has not yet been declared. It can even refer 

to the type in which it is declared. Such self-referential predecessors, as we discussed 

previously, are frequently used to refer to previous versions of mutable properties. 

Remember, while this introduces a cycle in the type graph, it does not permit cycles 

within the instance graph:

fact Price {

  product: Product

  value: decimal

  prior: Price*

}
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The fact declaration syntax is designed to be familiar to developers. It is also simple 

enough to be a communication mechanism between developers and non-developers. It 

contains no behavior, no access modifiers, nothing that could be confused for code. And 

yet, it is precise and expressive enough to describe the fundamentals of a model.

Consider each fact as a decision that a person or another actor is making. The fact 

captures the details of that decision. It also shows which decisions came before in the 

form of predecessors. By stepping through the creation of facts, analysts tell the story of 

how a system evolves to solve business problems.

�Querying the Model
As powerful as it is to declare the types of facts in a system, it is also useful to answer 

questions based on those facts. The Factual Modeling Language includes syntax for 

querying a model to find its current state. Queries are declared using the query keyword 

and given a descriptive name. All queries begin from the perspective of a given fact, 

which is given as the parameter to the query.

query productsInCatalog(c: Catalog) {

  match p: Product where p.catalog = c

}

The body of the query includes the match keyword. This introduces a clause that 

matches other facts related to the starting point. Give the alias and type of the fact to 

match and then a where clause. Following where, equate predecessors of each side.

The preceding query finds all products within a given catalog. When overlaid on the 

fact type diagram, the query can be thought of as traversing the predecessor relationship 

in the opposite direction. Figure 3-25 shows this as a dotted line.

Figure 3-25.  A query finds all successors of the predecessor
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Since it follows the successor relationship, the aforementioned query can return 

multiple results. I’ve labeled the dotted line with an asterisk to illustrate this point. Most 

queries will include successor paths and therefore return multiple results.

�Jumping Levels
The where clause is not limited to following a single predecessor reference. By chaining 

additional predecessor references, a query can reach further down the successor graph. 

For example, a line on an order captures a specific price of a product. In the model that 

we defined earlier, the product is a predecessor of the price. The order line therefore 

can only reach the product indirectly through the price fact. To find all order lines for a 

particular product, we traverse those two relationships in the opposite direction.

query orderLinesForProduct(p: Product) {

  match ol: OrderLine where ol.price.product = p

}

Since the relationship between OrderLine and Product is indirect, the query follows 

the intermediate predecessor. Starting at a Product, we match all OrderLines where the 

price’s product is the starting point. Let’s overlay the query onto the fact type diagram, as 

shown in Figure 3-26, to see how this jumps levels.

Figure 3-26.  A query matches successors two levels down
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Figure 3-27.  A query matches predecessors of intermediate successors

�Joining Matches
In addition to going deeper into the graph, we can also bounce back out. By appending 

additional matches, the query can turn and traverse up the graph along a different 

branch. Use the then keyword in place of match to indicate the join. We can use this, for 

example, to find all of the carts containing a given product.

query cartsContainingProduct(p: Product) {

  match ol: OrderLine where ol.price.product = p

  then c: Cart where c = ol.cart

}

The first match finds all of the order lines that indirectly reference the given product. 

The second match finds the cart containing that order line. It does so by simply following 

the predecessor reference. The full query, jumping down to order lines and then back up 

to carts, appears in Figure 3-27.

The match going down to successors can return many results. I’ve illustrated it with 

a cardinality indicator (*). But the match going up to its predecessor will return only one 

cart for an order line. That arrow has no cardinality indicator. Overall, the query will 

return multiple results, since it includes a successor match.

The query syntax we have just described is sufficient for traversing down any number 

of successors, up any number of predecessors, and bouncing off of facts to explore 

different directions. This covers the entire graph of connected facts. If one fact is in some 
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way related to another, then a query could be written to find a set that includes one fact, 

starting from the other.

�Existential Quantifiers
Often, we find it necessary to limit the number of facts matching a query. Rather than 

listing all related facts, we want to instead focus on a subset that is in a certain state. 

The state of a fact is not intrinsic to the thing itself; facts are immutable after all. Rather, 

the state of a fact is determined by the presence or absence of successors. We therefore 

constrain queries using existential quantifiers.

An existential quantifier takes the form of a such that not exists clause. The 

clause includes an alias, type, and where clause just like a match. However, rather than 

returning all matching facts, this clause disqualifies a match if any exist.

query linesRemainingInCart(c: Cart) {

  match ol: OrderLine where ol.cart = c

    such that not exists o: Order where o.orderLines = ol

}

The preceding query finds all of the lines in a cart that are not yet part of an order. It 

shows only the unordered lines, which might be useful for updating the user interface 

or generating a new order. When an Order is created referring to the order line, it is 

removed from the query results. The query, complete with the not exists clause (-∃), 

appears in Figure 3-28.

Figure 3-28.  A query matches successors for which a second-level successor does 
not exist
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Figure 3-29.  A predicate that tests for the presence of a successor

An existential quantifier might be useful in other queries. If so, you can declare them 

independently using the predicate keyword. For example, it would be equivalent to 

name the preceding predicate as orderLineIsOrdered.

predicate orderLineIsOrdered(ol: OrderLine) {

  exists o: Order where o.orderLines = ol

}

The predicate refers only to the existential quantifier overlaid on the diagram in 

Figure 3-29.

The predicate is false for an order line so long as no successor order has been 

created. Once the order is created, the predicate becomes true. We can now refer to that 

predicate by name in a query.

query linesRemainingInCart(c: Cart) {

  match ol: OrderLine where ol.cart = c

    such that not orderLineIsOrdered(ol)

}

The query has the same effect as the original. The predicate has simply been 

extracted and named so that it can be reused.
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�Current Value
When used in this way, existential quantifiers help us determine the state of a fact within 

a workflow. Used slightly differently, they also help us determine the current value of a 

mutable property. A current Price of a Product is one that hasn’t been superseded by a 

next Price.

query currentPriceOfProduct(pr: Product) {

  match p: Price where p.product = pr

    such that not exists next: Price where next.prior = p

}

I do not say the current price of a product. Indeed, I cannot guarantee that this query 

will return only one Price. While I would like to believe that a product has only one 

current price, the model does not allow me to constrain it to be singular. I must write this 

query as a multitude of current prices. This is generally true of all successor queries; the 

cardinality of results is always zero or more. As Figure 3-30 shows, the query includes a 

successor join (indicated with an asterisk).

A mutable property has zero or more current values. When only one value is 

returned, then there have been no concurrent edits. But when more than one value is 

returned, they are the candidate values. We will examine mutable properties in greater 

detail.

Figure 3-30.  A current price of a product is one for which no successor exists
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�Authorization Rules
An important aspect of the model is who is authorized to perform which actions. Since a 

fact maps to a decision that a person has made, facts are the perfect proxy for the actions 

that a user can perform. We therefore model authorization rules as queries starting from 

the authorized fact.

Suppose, for example, that a user created a cart. We could capture the user’s identity 

as a prerequisite.

fact Cart {

  createdBy: User

  createdAt: timestamp

}

Adding an order line to a cart can then be expressed as an authorization rule. 

Only the creator of the cart is allowed to add the order line. This is expressed using the 

authorize keyword.

authorize ol: OrderLine {

  match u: User where ol.cart.createdBy = u

}

The body of the authorization rule is exactly like the body of a query that returns a 

collection of users. If the user who initiated the action is in the query results, then that 

user is authorized to perform the action. We will discuss authorization in more detail in 

Chapter 7.

We will be using both the visual and the textual language of Historical Modeling 

throughout the remainder of this book. The visual language will be the primary tool 

for understanding a model. We will lean most heavily upon the type graph. The textual 

language, on the other hand, will be employed to specify a model to a useful degree of 

detail. This form will help us to reason through and prove assertions about a system’s 

behavior.

As you apply Historical Modeling in your work, you will find yourself starting with 

the visual language. It is quite useful for initially planning a model and demonstrating 

the relationships among facts. However, you will quickly move to the textual language for 

implementation. The tools that you will use convert the textual language into both code 

and graphs. The code will form the basis of your system implementation, and the graphs 
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will document the model visually. The Factual Modeling Language will be your tool for 

building working models and sharing them with others.

�A Chess Application
Now that we’ve analyzed the chess game model, and constructed an example game, let’s see 

what it would look like as a Factual specification. The goal of this specification is to provide 

sufficient detail for writing application requirements and generating an implementation. We 

can begin by writing out the fact types that we’ve already defined visually.

fact Player {

  name: string

}

fact Place {

  name: string

}

fact Game {

  white: Player

  black: Player

  place: Place

  createdAt: timestamp

}

fact Move {

  game: Game

  index: int

  from: int

  to: int

}

fact Win {

  game: Game

  player: Player

  moves: Move*

}
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fact Draw {

  game: Game

  players: Player*

  moves: Move*

}

Developers among you can probably already see how to generate data types, APIs, 

and database tables. Hold on; we will get to that. The most important thing, however, 

is that business analysts among you can also understand this model. All of the words, 

except the primitive types and the keyword fact, are in the language of the domain 

model. You might be left with a question like “How is a square represented as an 

integer?”, but other implementation-specific questions are not raised by this domain-

focused model.

�Use Cases
Given just the descriptions of the facts, the team can already begin discussing use cases. 

What are the actions that a user of the system can take? Each fact is a use case.

The Player fact, for example, is generated when a new player registers in the 

system. The only field in Player is name, which means that a player is uniquely 

identified by name alone. It also means that a player cannot change their name. If these 

consequences are not acceptable, now is the time to change the model.

The Game fact tells of another use case: starting a game. In order to start a game, we 

need two players in a place. This sparks conversations about whether one of the players 

starts the game, or perhaps an organizer of the tournament at a particular place. What 

are the rules for determining who plays white? All of these decisions have to be made 

prior to recording the Game fact.

The model also reveals that we need a use case describing how a player makes a 

Move. It should include validation rules, like the white player makes the even indexed 

moves and the black player makes the odd indexed moves. Other validation rules 

cover what to do with duplicate indexes or gaps. Perhaps we also need to add some 

authorization rules, such as a move can only be made by a player of the game.

authorize m: Move {

  m.game.white

}
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authorize m: Move {

  m.game.black

}

Walking through these use cases with the model in hand, we can evaluate the 

consequences of our choices. When necessary, we can make changes to the model to 

give us the desired capabilities. All of this can be done before we implement the first user 

story. We will discuss this in more detail in Chapter 5.

�User Interface
Once we are satisfied that we have captured the right facts, we can begin mapping them 

to the user interface. This is where the Factual Modeling Language pairs nicely with 

information architecture, site maps, layouts, and wireframes. Factual expresses two 

dimensions of that design: what actions the user can take and what the user can see.

�Actions

First, consider the actions that the user can take in terms of historical facts. You could 

determine that you need to provide create, update, and delete actions and therefore 

design a CRUD model. This is supported by the structural patterns that we will discuss in 

Chapter 8. More likely, however, you will find that you need a task-driven user interface. 

The user gathers together just enough information to perform a task. This task is then 

captured as a fact.

In the chess application, we may decide that the Place fact is best supported by a 

CRUD interface. A tournament administrator needs the ability to create, update, and 

delete places. To support this kind of interface, we will need to expand on the model. The 

name field, for example, would need to become a mutable property. And a new fact needs 

to be introduced to represent place deletion.

Other parts of the user interface will need to be a bit more task driven. Starting a 

Game would be an entire task involving both players and the Place. Making a Move is the 

primary task of the gameplay interface. With each action that a user can perform, record 

the fact that will be created in response.
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�Views

The second dimension of the user interface design that can be expressed in Factual is 

what the user can see. Think about a user asking questions of the model and how the 

user interface will answer those questions. Then, tie areas of the wireframes to queries in 

the Factual Modeling Language.

Consider what the player sees when they first log into the system. At that point, we 

have a Player fact. We can display a list of games that are currently in progress.

query gamesInProgress(p: Player) {

  match g: Game where g.white = p or g.black = p

    such that not exists w: Win where w.game = g

    and not exists d: Draw where d.game = g

}

In the corner, we can display the player’s score. A win is worth one point, and a draw 

is worth half a point. This is computed from the following queries:

query wins(p: Player) {

  match w: Win where w.player = p

}

query draws(p: Player) {

  match d: Draw where d.player = p

}

Indicate on the wireframe that the score to display is 1*wins(p).count + 

0.5*draws(p).count. This provides enough precision to completely specify the desired 

behavior. It also implies that when a Win or a Draw is recorded, this score needs to be 

updated.

The Factual Modeling Language provides enough detail to express these 

requirements. By reasoning from this language, business analysts, developers, and 

designers alike can determine the consequences of their decisions. When they change a 

decision to get better results, they can see how that change will affect other parts of the 

system.

Each of the forms of expression described here has a place. We usually start at a 

whiteboard making rapid changes to a model using fact type graphs. This captures 

the important objects and user actions and shows how they are related. Then we will 

Chapter 3  How to Read a Historical Model 



92

write out some examples using fact instance graphs. This helps validate the model as 

we explore specific scenarios. Then finally, we take the time to express in the Factual 

Modeling Language the specific structure, queries, and authorization rules of the system. 

This ensures that we have completely analyzed and documented and can implement the 

system precisely.

All of these artifacts support team communication. Whether graphical or textual, the 

forms in which a model is expressed are designed to be produced and consumed by all 

members of a team. They are intended to focus exclusively on the problem domain, not 

on any particular implementation details. And yet, because these artifacts obey the laws 

of immutable architecture, they will lead to a sound implementation.

Let us now focus on those implementation details. The kinds of systems that we 

design using immutable architecture will tend to be distributed systems. Let’s explore 

the nature of distributed systems and see why immutable architectures such as what 

we’ve described here work so well in that context.
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CHAPTER 4

Location Independence
In the not too distant past, most programs ran on a single computer. After the 

proliferation of JavaScript in the web browser, apps on mobile phones, and microservices 

in the cloud, most programs that we write today run across many computers. Whereas 

distributed systems used to be a specialty, today they are the default. We need to update 

other defaults to meet that demand.

One of the defaults that we need to update is the assumption that data has a 

location. Some systems try to treat remote objects as if they are local. DCOM uses 

object identifiers to make a proxy look like a local instance of a remote object. Remote 

procedure calls (RPCs) try to hide the reality of network communication behind an 

interface that looks like a normal function. The problems with these systems have been 

well covered elsewhere, so I will not rehash them here.

The assumptions of locality that I want to examine are a bit more subtle. Even when 

we replace RPCs with messages, and object identifiers with URLs, it is easy to assume 

that data has a location. We make that assumption whenever we identify a “source of 

truth” or a “system of record.” We rely upon location whenever a single node generates 

unique identifiers. Our default mode of programming what happens at a machine leaks 

into the behaviors that we program into the system as a whole.

So many of the behaviors that we’ve come to expect from our systems depend upon 

location. We expect items to be sequentially ordered. We expect the system to reject 

duplicate names. We expect that when the user updates a property of an object, it will 

have the value that they just assigned. Indeed, the expectation that properties to even 

have single values is a location-dependent assumption.

A system that depends upon location will misbehave when that location becomes 

unavailable. If we strive instead for location independence, we will construct systems 

that are more responsive, resilient, and reliable. They can act autonomously without 

communicating with remote nodes. They can tolerate network failures without 

introducing defects. And the decisions that a user makes in isolation will be honored 

when other nodes and users learn of that decision.
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�Modeling with Immutability
At its core, the assumption of location is all about mutability. A variable is a place that 

stores a value. Programs use the variable to address that location and read its value. 

After the variable is updated, we expect the program to read the new value the next 

time it looks. Scale this up to the level of the distributed system, and you have location 

dependence. A system depends upon data being in a location specifically because that 

data is allowed to change.

If we search instead for a model of computing that is based on immutability, then 

dependence upon location fades away. If an object cannot change, then every copy of it 

is just as good. There is no need to know where the object is stored, where it was created, 

or which subsystem is the source of truth.

Of course, we need to model domains that change over time. So, the concepts of time 

and change need to be re-examined in the light of immutability.

�Synchronization
It’s not uncommon to talk about managing data in distributed systems as a 

synchronization problem. But even this term comes from a place of putting data in a 

location. Synchronization is the task of changing data in two or more places at more 

or less the same time. When the data in two locations differs, those locations are out of 

sync. A location-dependent system will seek to synchronize them.

When data no longer has location, concurrent changes are allowed to happen. A 

temporary disagreement between two nodes is not a synchronization problem to be 

solved, but an opportunity for them to converge over time. A location-independent 

system uses a different definition of time so that it can describe concurrency. It relaxes 

its assumptions so that changes are no longer linear. This helps the system to ensure that 

concurrent changes don’t cause conflicts.

A location-independent system is not concerned with synchronization, but with 

causality. It seeks to understand which events caused which other events. Where 

synchronization describes the agreement of data structures stored in different locations, 

causality describes the history of the data itself, no matter where it is stored. Causality is 

a weaker constraint than synchronization, but one that is much easier to achieve.
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�Exploring Contracts
In this chapter, we will take a tour of some important contracts that a distributed system 

can uphold. These will include some simple and obvious ones like “I expect to read 

what I just wrote.” We will also see some very elusive and powerful ones like “All nodes 

eventually converge to the same state.” We will see what it takes in general to uphold one 

of these contracts. Along the way, we will make trade-offs to give up some guarantees in 

order to gain others.

What we will find is that the contract that we think we want—the one equivalent to 

the assumption that data has a location—is not achievable in many situations. Instead 

the contract that we trade this off for will be one that permits access to data independent 

of location. If we recognize when we’ve made the assumption that data is stored in a 

location, we can choose instead to expect a different contract.

�Identity
The first task in the quest for location independence is to separate the identity of an 

object from where it is stored. When location is part of identity, objects have a certain 

affinity for machines at that location. To achieve the best results, users should be able to 

identify objects just as easily from any location, without the need to communicate.

�Auto-incremented IDs
Whenever a relational database is involved, you are likely to find auto-incremented 

IDs. Most database management systems include a mechanism for generating them 

on INSERT. The most common way to identify an object is to use the number that was 

generated when it was inserted into a table.

The auto-incremented ID is a great way to produce unique primary keys. They 

are monotonically increasing, which makes them ideal for clustered indexes. You will 

never split a page when inserting a new record with an increasing primary key. They are 

perfect foreign keys, much more compact than any other column that the referenced 

table might have. And they do not change. Most database management systems take 

precautions to discourage or prevent updates of auto-incremented columns. That helps 

preserve their uniqueness and utility as references.
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So, it would seem that an auto-incremented ID would be the ideal identifier for an 

object in a system backed by a relational database. But while these IDs are perfect for 

representing identity within a database, they are poor choices for extending identity 

beyond the database. The convenience of doing so has made them the default choice for 

identity but has caused many problems downstream.

The core of the issue is that an auto-incremented ID is generated at a certain 

location. It only has meaning within a single database. While it’s true that that single 

database may be clustered and spread across several machines, it is still logically a single 

location. It is accessible by a single connection string and may easily become unavailable 

to remote clients.

�Environment Dependence

If you have ever promoted software from a development environment, to testing, to 

staging, and then to production, you are well aware that the IDs generated in each 

environment do not translate to the others. The object that gets ID 1337 in test will 

not be the same as object 1337 in production. This can be mildly annoying when you 

back up the testing database to restore to development in order to replicate a bug. 

After the restore, all IDs refer to the same objects in each environment. But as you start 

working with one system or the other, the IDs start to diverge. That means you cannot 

easily import incrementally more data from testing without dropping the development 

database.

It becomes more than mildly annoying when moving data between staging and 

production. A common practice is to back up production data and restore it in a staging 

environment. Then you can update the staging environment to the latest version of 

software, applying any necessary database updates simultaneously. After a quick smoke 

test, you are assured that the deployment was successful. It would be desirable at that 

point to just swap the staging environment into production, but that won’t work unless 

production was taken down during this process. If it was still up, then most likely new 

data have been inserted into the production database, receiving new auto-incremented 

IDs. These IDs are meaningless in the staging database.

Auto-incrementing IDs cross the threshold from annoyance to impediment when 

we try to implement a warm standby disaster recovery solution. The goal is to have a 

replica of production data in a geographically isolated datacenter to mitigate against a 
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localized outage. Before the outage occurs, records stored in the production database 

are shipped to the remote database with as low a latency as reasonable. Latency needs to 

be low in order to ensure a minimum of data loss in the event of a failure. When a failure 

occurs, the application should “fail over” to the remote replica. Before the failover, the 

production database is responsible for generating IDs. After the failover, the remote 

database becomes responsible.

Just as the latency of the data transfer should be low, the time required for the 

failover should also be low. Unfortunately, latency cannot be zero, and the cut over can 

never be instantaneous. It is difficult to get the timing just right of importing all of the 

production data before turning on ID generation. Reducing latency, especially between 

geographically dispersed locations, becomes more expensive the closer we get to zero. 

Losing data during a failover can be even more costly. And the longer we wait for the 

data to arrive, the longer we have to postpone generating new IDs.

I have been on many long, costly projects to set up disaster recovery. Some of them 

have even been successful. After a few false starts, we managed to get the system to fail 

over reliably. But “failing back” is a much bigger challenge. After resolving the original 

production issue, we had to run the entire process in the opposite direction. I’ve never 

seen this done without taking the system offline for an extended period of time. It would 

be much easier to do if we didn’t put the extra burden of generating location-specific IDs 

onto the database.

�Parent–Child Insertion

The awkwardness of using an auto-incremented ID as identity becomes apparent when 

dealing with parent–child relationships. The parent record has a primary key. The child 

records each have a foreign key. The database enforces referential integrity of foreign 

keys, so the parent record must be inserted before the children. Child insertion cannot 

begin until the parent insertion has completed and produced the auto-incremented ID.

We don’t often think about the database and the application as being two separate 

locations, but that is in fact what they are. The application produces INSERT instructions 

and transmits them to the database for execution. Under normal circumstances, the 

application could produce multiple INSERT statements and ask the database to execute 

them in a batch. But with a parent–child relationship, the application must wait until the 

parent insertion completes before it can learn its primary key. Only then can it generate 

the batch of child insertions.
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Object relational mappers (ORM) perform, among other things, the task of inserting 

parent–child relationships. From the outside, it looks as if we can build a graph of objects 

and then execute a single command to save the changes. But within the ORM, that single 

operation is spread over several batches of INSERT commands, sent to the database in 

just the right order.

ORMs hide this behavior from applications as well as they can, but it does leak 

through the abstraction. When an object exposes the primary key as a property—

so that it can use that as an external identity—that primary key is initially zero or a 

negative number. After the command to save the objects to the database, that primary 

key becomes positive. The primary key of an object is not supposed to change, but the 

necessity of going to a different location to generate an auto-incremented ID forces the 

ORM to violate that invariant.

When an application is close to its database, we can attempt to hide the truth of 

auto-incremented IDs within ORMs. But as a node gets further away from its central 

database, the dependence upon location becomes harder to conceal.

�Remote Creation

Consider a mobile application. It has its own local database to store a copy of the user’s 

data for quick access, even when the device is on a slow network. Let’s further assume 

for simplicity that this local data has a similar schema as the central database.

When the device fetches data from the central application, it stores the objects 

with the provided IDs. From then on, it can present that data quickly by performing 

local queries against its own copy. The user can even make changes. Those updates 

are applied first to the local copy and then stored in a queue to be sent to the central 

application.

Everything is working well for queries and updates. But the problem arises when 

we try to insert new objects. The local database cannot use an auto-incremented ID 

to create new records. If it did, it would often generate an ID that the central database 

has already used for a different object. So, if the auto-incremented ID was used as the 

identity of the object, the application would have to make a round trip to the central 

database in order to get a correct ID.

For this reason, the simple solution is often not the one used in mobile applications. 

They will instead choose a local database that does not rely so heavily upon foreign keys. 

This at least allows the mobile client to create entire structures of objects before knowing 

their identity. That postpones the problem of location-specific identity far enough for 
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most applications, but it is not a complete solution. A complete solution would remove 

the location-specific component—such as the auto-incremented ID—from the identity 

entirely.

�URLs
Web applications that follow the REST architectural style tend to use Hypertext as the 

Engine of Application State (HATEOAS). Every operation that the application performs is 

a request against a resource. With each request, the application transitions to a different 

state. When hypertext is used as the engine of that state, the identities of available 

resources are returned as references within each response.

Identity in the REST architectural style is defined by a Uniform Resource Identifier 

(URI). This is a hierarchical identity so that the generator can ensure that new URIs are 

unique. A common practice is to use the domain name of the generator as the first level 

of that hierarchy. A domain name identifies a small collection of nodes that are often 

closely located.

For an application to select and issue the next command, and so transform into the 

next state, it needs some way to send the command to the correct host. For this reason, 

the URIs used in HATEOAS are often not just identifiers, they are Uniform Resource 

Locators (URLs). A URL has the same hierarchical structure as a URI, but now it has an 

additional constraint. A URL must be addressable. It must carry enough information for 

an application to send a command to the host that will execute it.

URLs carry the domain name, not just as an identity namespace but also so that a 

client can resolve the domain name to an IP address. That IP address must be capable of 

routing the subsequent command to a host that will execute it. So, the domain name is 

closely tied to the location of the resource.

When URLs are used as the identity of resources, it can be very difficult to move a 

resource from one location to another. Either that new location must be addressable using 

the same domain name, or the identity of the resource must change. Ideally, identity 

would never change. It should be immutable. But on the Web, the identity of a resource 

changes every time the server responds with a 301 or 308 permanent redirect. The client 

is expected to update its reference to that resource and use the newly provided identity 

from then on. Unfortunately, the old identity must remain addressable to serve those 

301 or 308 responses, as there is no way to know when all clients have updated their 

references. Clients must contact the remote server to learn the canonical form of the URL.
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�Location-Independent Identity
We’ve examined just a couple of ways that the identity of objects in an application 

are often coupled to their location. When identity is based on an auto-incremented 

ID, that ID only has meaning in a specific location and can only be generated there. 

When identity is based on URLs, the location of the node that responds to subsequent 

commands is given right in the identifier. When identity is dependent upon location, 

objects show a certain affinity for their location of origin. Applications start to have 

trouble using those objects when their locations become unavailable.

The ultimate solution to each of these problems is to identify objects without respect 

to location. A location-independent identity has three useful properties:

•	 It can be generated from any node.

•	 It is immutable.

•	 It can be compared.

Generating a unique identity from any node solves the problem of latency during 

remote inserts. Whether it is a geographically remote disaster recovery datacenter, or a 

mobile device on a slow network, a node that is capable of generating its own identities 

can work much faster. Immutable identities solve the problem of keeping old domains 

addressable indefinitely. And comparison between identities allows clients to know 

when they are talking about the same object. If they had to contact the origin location 

to learn the canonical form of the identity before comparison, they could not complete 

their transaction in isolation.

With a little extra thought, we can come up with identities that meet these three 

conditions. Such identities are not location specific and support continued operation of 

isolated nodes. The following are just a few examples.

�Natural Keys

Probably the best example of a location-independent identity—and the one that should 

be the default in any application design—is the natural key. Examine the domain that 

you are modeling in your application. Does it already have an attribute that uniquely 

identifies concepts in that domain? Is that attribute immutable? If so, consider using that 

as a natural key within the model.

If you are building a scheduling application and need to identify rooms, look to see 

if the rooms are already numbered. Those numbers are good candidates for natural keys 
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within your system. Room numbers may change over time, but a scheduling app already 

takes time into account. A new room number means a new room, but past events already 

took place in the old room. The application doesn’t care that the old room was in the 

same physical space.

Applications that manage articles, stories, or questions will often assign them tags.  

A good natural key is the canonical name of the tag in a primary language (e.g., English). 

The name can be canonicalized by converting all letters to lower case, dropping 

punctuation marks, and replacing spaces with hyphens to make them more URL 

friendly. A mapping will be necessary to convert the tag fermats-last-theorem to the full 

phrase “Fermat’s Last Theorem,” or to provide translations into other languages. But the 

natural key is easier to generate on any machine than a synthetic ID would be.

Some natural keys are primary keys generated by an external system. If you are 

integrating with the US tax system, you will probably identify people and companies by 

their tax ID. If you receive an invoice from a vendor, a good natural key for that object 

would be the vendor-provided invoice number. There is usually no good reason to 

generate a new identity when the system on the other end of an integration has already 

provided one.

�GUIDs

When a natural key is not available, we have mechanisms for generating IDs that do not 

collide across machines. These are universally unique identifiers (UUIDs). Or if, like 

me, you came to them via Microsoft COM, globally unique identifiers (GUIDs). Whether 

you call it a UUID or a GUID, it is a 128-bit number represented in hexadecimal in a 

hyphenated format that is recognizable to most developers.

Originally, GUIDs were generated using the MAC address of the originating machine 

and a timestamp. Then, as GUID generation became more frequent, the timestamp was 

replaced with a counter. Finally, it was recognized that random GUIDs were probably 

just as good.

GUIDs are intended to be globally unique, but collisions have been known to occur. 

While some systems use a GUID to represent every row in a database, my practice has 

been a bit more reserved. I generate a GUID only for the most rarely created objects at 

the highest level and then only if natural keys are not practical.
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�Timestamps

One of the easiest ways to identify an object that a user has created is to use the time at 

which the user created it. This works well at human scales, especially when there is only 

one human involved. The granularity of timestamps should be less than a second to 

ensure that even the fastest of human-generated actions gets a unique value. Millisecond 

granularity is reasonable and often achievable.

While it is tempting to compare timestamps to determine which event happened 

before another, this should be avoided. Timestamps are only increasing within a 

single machine. And even then, the clock of the machine may be adjusted forward or 

backward. Adjustments such as daylight saving and crossing time zones are not the 

concern; timestamps should always be captured in UTC. But small corrections to fix 

clock drift should be allowed.

Timestamp alone is not sufficient to identify objects in a system with a large number 

of users. They should only be used in combination with other forms of identity.

�Tuples

Using just one identity, like a timestamp, is often not enough to avoid collisions. But 

bring different forms of identity together, and the combination is stronger than any of 

its parts. A tuple is an ordered list of values, where each member has its own type and 

meaning.

Tuples are often written as a parenthesized list: (that-conference, day-2, 10:00, 136). 

But it is just as valid to write a tuple as a path: /that-conference/day-2/1000/136. This 

gives them a hierarchical feel that makes them suitable for use in URLs. (Yes, URLs can 

be used in an application, just not as identities of objects.) The hierarchy implies that the 

object has just one owner, which is identified by the tuple having one fewer element. In 

the preceding example, the session held in room 136 is owned by the 10:00 time slot on 

day 2.

The transparent nature of tuples makes them susceptible to human interpretation. 

This is both a benefit and a drawback. While it is often useful to be able to see the 

implied relationships between objects just by their identities, this can sometimes cause 

confusion. In some cases, a strict hierarchy does not exist, yet the tuple implies one by its 

choice of values and order. And in other cases, the values in the tuple represent mutable 

concepts. We can choose either to change these values, and thus change the identity of 

an object, or to keep the old values and risk confusion.
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�Hashes

To avoid the confusion caused by a transparent data structure like a tuple, we can 

instead choose an opaque structure like a hash. A hash function takes a tuple as an input 

and produces a value. The function is deterministic: the same tuple will always produce 

the same hash. But ideally, the function should also be unpredictable: it should be hard 

to find a tuple that produces a given hash.

Hashes have additional benefits over their source tuples. Where a tuple contains 

elements of variable length, like strings, hashes are always the same size. Furthermore, 

while tuples tend to chunk data together, hashes tend to spread it apart. And while tuples 

can be easily reverse engineered, hashes are one way. This makes them better suited to 

problems that require a degree of security.

Many systems that use hashes for identity choose to do so for one of these reasons. 

Blockchains use hashes to identify transactions so that the contents cannot be easily 

altered. Changing one element of a transaction—such as the sender, recipient, or 

amount—will alter the hash. And finding a different transaction that produces the same 

hash is an intractable problem.

Git uses hashes to identify commits. It does so not for their security. Instead, since 

Git is based on the file system, having an identifier of constant size helps them fit into file 

names and data structures. The tuple that it starts with includes the name and email of 

the author (natural keys), the differences between the two versions, and a timestamp (to 

the second). That source tuple is of variable length and can be quite large for significant 

differences. The resulting hash, however, is 256 bits, or 64 hexadecimal digits.

�Public Keys

In keeping with the security theme, public keys are excellent ways to identify principals 

such as individuals or corporations. Public keys are often used to digitally sign messages, 

proving their authenticity. Only someone with access to the private key could produce 

the signature.

A certificate is a fully vetted identifier for a principal, often including their name, 

physical location or legal jurisdiction, and identity of the vetting party. Certificates form 

their own kind of hierarchy, as the identity of the party who signed the certificate is 

provided as a public key.

Blockchain systems use a public key as the only means of identifying a party. Each 

transaction records the sender and recipient by their public keys. To pay someone in 
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Bitcoin, you need only know their public key. That is sufficient to identify them uniquely 

to any node within the distributed network.

�Random Numbers

When other forms of identity are not available, an application can always fall back 

on random numbers. Public keys are really nothing more than two random numbers 

that have been verified to be prime and then multiplied. And modern GUIDs are often 

generated completely at random, rather than using MAC address or timestamp. So it is a 

valid choice to simply use random numbers directly, as long as they are big enough and 

random enough.

Like timestamps, random numbers should never be used as the only form of identity. 

They should be combined with other identifiers to create a tuple. Since the random 

number is not fit for human interpretation, producing a hash of that tuple is often the 

next step. In cryptography, a random number added to a tuple prior to hashing is called 

a “nonce,” a number used once. In this case, we are using the nonce to distinguish an 

object from others that share the same tuple values.

When choosing a random number generator, it is best to stick with a 

cryptographically strong algorithm. Algorithms used to generate public keys, shared 

secrets, and nonces are specifically selected to produce unpredictable results. While you 

will most likely not be relying upon these random number generators for securing data, 

you will be using their output as part of an object’s identity. Having two nodes use the 

same predictable random number generator means that the chance of a collision is high.

Choose the most appropriate mechanism for generating unique identities for 

objects. Whatever method you choose, avoid anything that would tie the identity of 

an object to the location that generated it. Instead, choose a generator that meets the 

following criteria:

•	 Any node should be equally capable of generating identities without 

consulting a central database.

•	 Identity must be immutable.

•	 Peers should be able to compare identities to know when they are 

talking about the same object.

Identity is the first step to location independence. The next step is to ensure 

consistent behavior without respect to location.
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�Causality
As we begin to reason about the behavior of a distributed system, we are going to try to 

construct a chain of events. Our goal is to predict what will happen at some distant node 

sometime in the future. The way to get to that prediction is to analyze the effect that local 

actions may cause.

Causality itself is a hard concept to measure. You can say that tipping one domino 

caused the next one to fall. But would the second one have fallen on its own? We would 

like to say for certain that it would not. However, as anyone who has built a large domino 

chain knows, that is a hard claim to assert.

The causes of many events in a distributed system can be just as complex and 

inscrutable as a chain of dominoes. And yet we still desire some predictability from 

the system. And so, we have to find a reasonable stand-in for causality that is easier to 

measure and useful for making predictions.

While we cannot always say with certainty that one event caused another, we can say 

for certain that the cause happened before the effect. As this book is being written, time 

travel is still impossible. Perhaps “happened before” is enough. Maybe it is sufficient to 

use the order of events as a stand-in for causality. Let’s apply this notion of causality to 

steps in a program and compare this with our intuition.

�Putting Steps in Order
We often think about a program as a sequence of steps. The steps happen in order as the 

program executes. It is easy to look at two steps executing in the same program, such as 

the one in Figure 4-1, and say that one happened before another.

Figure 4-1.  Steps in a process
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Using the order of steps as a stand-in for causality leads us to say that one step in a 

program causes the next. In some sense, this is true. A program executes sequentially, so 

it’s reasonable to say that executing one step will cause the computer to then execute the 

next one. Even if the two steps operate on different objects and do not depend upon one 

another, they are at least temporally coupled. The program would not get to the second 

step without having executed the first.

You may be thinking that a goto statement that jumps to the second step violates 

this notion of causality. The program executes the second step without having executed 

the first. However, in this situation we would observe that the goto happened before the 

second step. It is not the order in which the steps appear in code that is interesting to us. 

It is the order in which they occur at runtime. And so it was the goto that caused the step 

to occur. This agrees with our intuition about a statement that causes execution to jump 

to another. “Happened before” is looking like a good measure of causality.

When we try to generalize steps in a single program to multi-threaded or multi-

process systems, things get a little trickier. We cannot say quite so clearly which of two 

steps executing in different processes happened before the other. The processes can be 

running on parallel threads or even on different machines. There is no single clock that 

can help us to put those steps in order.

We can, however, observe that two processes running independently do not cause 

any behavioral changes in one another. They are not causally connected. As long as they 

don’t communicate, nothing that happens in one can influence the other.

When they do communicate, causality is clearly asserted. If one process sends a 

message, and another process receives it, then we know that the send step happened 

before the receive step. And in a very real sense, the sending of a message caused its 

receipt. With this fact in hand, we can start to causally order steps that have occurred in 

different processes. This is precisely how Leslie Lamport defined the order of events in 

his 1978 paper on distributed systems.1

�The Transitive Property
The relationship that one step happened before another has another useful property: 

it is transitive. That is, if one step happened before a second, and the second happened 

before a third, then we know that the first happened before the third. This is easy to 

1�Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. 
Communications of the ACM, 21(7):558–565, July 1978.
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see when all of the steps are in the same process. Those steps are in sequence. But the 

transitive property holds just as well when we cross process boundaries.

Take, for example, a web browser. The user commands the browser to navigate to a 

given URL. The browser has just executed two steps: input a URL from the user and send 

a request to the web server. Since these steps happened in the same process, we know 

that one happened before the other: “input URL” happened before “send request.”

Now let’s look at what happens in the web server. When it receives the request, it will 

load the requested file from the hard drive. The receipt of the request and the loading 

of the file are two steps within the same process. We can therefore say that the receipt 

happened before the load.

Since these two processes are talking to each other by passing messages, we can 

also put some of the steps across processes in order. We can say for certain that the send 

of the request happened before its receipt, even though they happened in different 

processes. As Figure 4-2 illustrates, the transitive property allows us to then chain these 

events together. We can say for certain that the user input happened before the file load.

Because we are using “happened before” as a stand-in for causality, what we are 

really asserting here is that the user input caused the file to be loaded. This fits well 

with our intuition. We can imagine that the user intended for the web server to load the 

file, and so this causal chain of events served to realize the user’s intent. We might also 

assume that the web server probably would not have loaded that particular file, had the 

user not entered the URL. But intent and might-have-been are difficult to reason about. 

“Happened before,” however, is very clear.

We can clearly state when we know one step happened before another. We can also 

clearly state when we have no idea.

Figure 4-2.  Order of steps in two processes
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�Concurrency
While it was possible in our previous example to say for certain that user input happened 

before loading a file, it will not always be the case. Some steps happening in different 

processes will not be so easily put in order, even using the transitive property.

Take, for example, the step where the web server opens a socket. As Figure 4-3 

demonstrates, “open socket” happens before “receive request” and is executed in the 

same process. And as we saw in the previous analysis, “input URL” also happened 

before “receive request.” But the transitive property does not allow us to say which of 

“open socket” and “input URL” happened before the other. They both happened before 

“receive request,” but that doesn’t imply anything about their relative order. Lamport 

called two steps that cannot be put in order concurrent.

This definition of concurrent is a bit different than others that you might have heard. 

Concurrent operations in a multi-threaded system might be running in parallel. You 

have the sense that if two events are concurrent, then they happen at the same time.

By Lamport’s definition of concurrent, we don’t know whether two steps indeed 

happened at the same time. They could have been separated by a large span of actual 

time on a physical clock. It could be, for example, that the web server opened the socket 

hours before the user input the URL. In fact, that is quite likely. But what could be and 

what is likely do not hold sway in this conversation. It is precisely the fact that we cannot 

know that makes these two events concurrent.

In a very real sense, concurrency is what makes distributed systems so difficult to 

think about. If there were no concurrent steps, we could put all of the steps in order. 

If every step can be ordered relative to every other step, then we would end up with a 

totally ordered sequence. It would be much easier to think about that kind of system, 

because it always behaves as if the whole network is running on a single machine.

Figure 4-3.  No causal connection between “open socket” and “input URL”

Chapter 4  Location Independence



111

While a totally ordered system would be easier to think about, it would not have the 

properties that we desire in a distributed system. It would not scale as we added more 

hardware, since totally ordered steps cannot be run in parallel. It cannot autonomously 

serve clients in different locations, because the steps the program takes to serve one 

client would need to be put in order with others in real time. And it would not allow for 

disconnected operation, since the steps running on the disconnected computer would 

be out of sequence with the rest of the network. And so, concurrency is both the hero 

and the villain of this story.

�Partial Order
If you were to compare any two steps running in the same process, you could tell which 

of the two came first. Those steps are totally ordered. They happen in sequence.

If, however, you compare two steps running in different processes, you might be able 

to tell which came first. If one preceded the sending of a message, the receipt of which 

preceded the second, then the transitive property tells us that the first happened before 

the second. But if that is not the case—if the two steps are concurrent—then you cannot 

tell which came first. Because sometimes you can tell and sometimes you can’t, the 

execution of steps in a multi-process system is said to be partially ordered.

Since we are using “happened before” as a stand-in for causality, we can say that 

causality itself is partially ordered. Some things are causally related: we can clearly say 

which is the cause and which is the effect. The user input of a URL into a browser caused 

the web server to load a file. But some things are not causally related. The web server 

opening a socket did not cause the user to input a URL, nor did the input of the URL 

cause the web server to open a socket.

Partial order imposes fewer constraints on a system than does total order. It 

frees up some steps to happen in parallel. It permits devices to act autonomously 

while disconnected. It gives nodes the ability to act independently without constant 

synchronization. Recognizing that causality is partially ordered gives us a powerful tool 

for analyzing distributed systems. We can better understand their capabilities as well as 

their limitations. And we can make better choices about trade-offs between the two.
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�The CAP Theorem
Probably the most famous mathematical idea in all of distributed systems is the CAP 

Theorem. It was postulated by Eric Brewer at the 2000 Symposium on the Principles of 

Distributed Computing.2 Formally proven by Seth Gilbert and Nancy Lynch in 2002,3 the 

CAP Theorem relates the ideas of consistency, availability, and partition tolerance. It is 

often quoted as saying you can only have two of the three.

Consistency means different things in different contexts. Unfortunately, as it usually 

appears, it doesn’t have a very useful definition. For example, if you’re familiar with 

relational databases, then you probably first heard of consistency as it relates to the ACID 

properties of a transaction: atomic, consistent, isolated, and durable. Atomic is easily 

defined as all or nothing. Isolated simply means that concurrent transactions don’t affect 

one another. And durable means that the change persisted.

But consistent in this context is not so easy to define. The working definition is that 

a consistent transaction is one that does not violate any invariants. It “commits only 

legal results.”4 The trouble is that the invariants that define a legal result come from two 

sources: the database management system and the application. Database management 

system invariants include guarantees like “primary keys are unique” and “foreign keys 

reference rows that exist.” Application-defined invariants, when they exist at all, are 

defined in terms of the problem domain, such as “all balances are zero or positive.” If 

we were talking only about the well-defined guarantees generally adopted by database 

management systems, we might have some chance of proving some generally applicable 

theorems. But with all of the choices that an application can make in determining its 

own domain-specific invariants, we find it very difficult to write a meaningful proof. 

Therefore, we will use a more precise definition.

�Defining CAP
The definition of consistency that the CAP Theorem uses is specifically related to nodes 

in a distributed system. It says that if I ask two different nodes for a value, they will give 

2�E. Brewer, “Towards Robust Distributed Systems,” Proc. 19th Ann. ACM Symposium on the 
Principles of Distributed Computing (PODC 00), ACM, 2000, pp. 7-10.

3�Seth Gilbert and Nancy Lynch, “Brewer’s conjecture and the feasibility of consistent, available, 
partition-tolerant web services,” ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51–59.

4�Haerder, T; Reuter, A. December 1983. “Principles of Transaction-Oriented Database Recovery.” 
Computing Surveys. 15 (4): 287–317.
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me the same answer, as illustrated in Figure 4-4. If the nodes are consistent, then their 

answers will agree. If the answers disagree, then the nodes are not consistent.

That’s very different from the definition used in ACID. In fact, you could argue that 

it’s closer to atomic than to consistent. Either both of the nodes have the latest version of 

a value, or neither does. But where atomic—and indeed each of the ACID guarantees—is 

about changes to a single database, consistent in CAP is about nodes in a distributed 

system.

Continuing on, the A in CAP is for availability. A node is available if it responds in a 

reasonable amount of time to any request, as shown in Figure 4-5. This leaves one to ask: 

“What is a reasonable amount of time?” The answer to that is “About the time it takes to 

heal a network partition.”

Figure 4-4.  Consistency

Figure 4-5.  Availability
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So, what is a network partition? That’s the P in CAP: partition tolerance. A network 

partition is a condition that prevents messages from flowing in a network, indicated 

in Figure 4-6. Partitions are only temporary, however. After some period of time, the 

connection will be restored. But in the meantime, partition tolerance promises that the 

system will continue to function.

Armed with these definitions, we can finally state the assertion of Brewer’s 

conjecture. No distributed system, no matter what algorithm it uses, can simultaneously 

guarantee consistency, availability, and partition tolerance at any given interval. 

If during that interval the network is partitioned, then the system will either be 

inconsistent or unavailable.

This is one of those delightful theorems that challenge you to find an algorithm 

that works, like Gödel asking you to write a formula that determines whether another 

expression is true, or Turing imploring you to write a program that determines whether 

another program terminates, or two generals commanding you to find a reliable way for 

them to communicate. The proof doesn’t have to guess what you might come up with. It 

can simply demonstrate, by pain of logic, that whatever you’ve dreamed up will not be 

equal to the task.

�Proving the CAP Theorem
Imagine that you have a system made up of different computers, which we’ll call nodes. 

Each node has its own internal state. That state, however, is invisible to us. The only 

thing we can do as an outside observer is to send messages to the nodes and see how 

they respond.

The message that we will send to the nodes will be read and update. If we send a 

node a read, it will send us back a value. If we send it an update, it will presumably write 

down the value and then respond with confirmation. I say presumably, because we can’t 

really see its internal state.

Figure 4-6.  Partition tolerance
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The only way we can observe a node is by sending it messages. And the messages 

have the following contract: if I update a node in isolation, and then after it confirms, 

send it a read, it will return the value that I just updated, as in Figure 4-7. The node is 

acting as if it is saving the state for us to later retrieve.

Be careful here. We can’t really tell what these nodes are doing. Their internal 

operation is left unconstrained. That is important for the proof to be general. If 

we dictated that they truly were storing internal state, that would limit the kinds of 

algorithms we could make assertions about.

Similarly, the messages read and update do not constrain our choice in the algorithm 

either. We do not have to devise a way to send reads and updates to achieve consistency. 

In fact, these two messages might not even be used by the algorithm. They only exist as a 

way of setting up a test.

�Test an Algorithm

And so, this is the challenge. I ask you to provide an algorithm. You can devise any 

algorithm you like. You choose the steps. You choose the data structures. I will load this 

algorithm into two nodes. They communicate with one another by passing messages 

between them. You choose what messages they will use.

Then, I’ll run a test. I will begin by observing that the nodes are initially consistent. 

I can tell that they are consistent by sending read messages to each and observing that 

they return the same answer.

Next, I’ll send one of them an update and wait for it to respond with confirmation. 

Since it confirmed, I can test the contract by sending that same node a read. If it is 

Figure 4-7.  Update and read
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behaving properly, it will return that value I just sent it. In about half of the tests, I’ll 

perform this check. I’ll reject your algorithm if it ever fails to uphold the contract.

In the other half of the tests, I’m going to turn to its neighbor to perform the read, as 

in Figure 4-8. If I get the same value that I just updated, then the system is demonstrating 

consistency. If both the update and the read return within a certain interval of time, then 

the system is demonstrating availability. To be completely fair, I will even let you tell me 

what the interval should be.

Figure 4-8.  Test the algorithm

But that’s where I play my trick. During the test, I will create a network partition. 

The two nodes will not be able to communicate with one another during this interval. 

The partition will last just a little bit longer than the duration you defined. While 

communication will eventually be restored, it will not be fast enough for the algorithm to 

exhibit availability and still be consistent.

And so, the algorithm is going to have to choose one of three behaviors, illustrated in 

Figure 4-9.

	 1.	 The first node might block during update until it can 

communicate the value and then confirm the result. If so, then 

update takes longer than the specified interval, and so the system 

is not available.

	 2.	 The second node might block during read until it can retrieve the 

value from the first. If so, then read takes longer than the specified 

interval, and so again the system is not available.
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	 3.	 The system might decide to return before the interval has expired. 

If so, there was no way that the value I updated will be able to 

propagate to the second node to be read. The second node 

cannot return the same value as the first, and so the system is not 

consistent.

During this interval of network Partition, the system cannot be both consistent and 

available. And so, it seems that we are doomed to choose.

�Eventual Consistency
If we cannot expect different nodes within a distributed system to have the same state, 

then what can we hope to achieve? How can we get any work done if we get a different 

answer from every node that we ask?

Figure 4-9.  Three possible behaviors when the network is partitioned
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Consistency at any given instant may be out of our reach, but all hope is not lost. 

We can achieve consistency if we wait long enough. Eventually, nodes will come into 

agreement with one another. This is a concept referred to as eventual consistency.5

While it might be desirable to demand consistency at any given instant, it might not be 

practical. If we loosen our constraints, we find that we can achieve a much more palatable 

trade-off. Instead of insisting upon consistency at every given instant, perhaps we can 

tolerate a lesser degree of agreement. The conversation needs to get a bit more nuanced.

�Kinds of Consistency
Marc Shapiro, a researcher at the French National Institute for Computer Science and 

Control Science (Inria), and Nuno Preguiça, associate professor at Faculdade de Ciências 

e Tecnologia da Universidade (FCT), sought to understand consistency trade-offs at 

a formal level. They had each designed special-purpose solutions to achieve eventual 

consistency, including Treedoc, a replicated data structure for collaborative text editing.6 

Each one of these projects required its own formal proof. They wanted a more  

general result.

Based on their prior results, Shapiro and Preguiça, together with their colleagues, 

identified three different kinds of consistency.7 The distinctions among them lead to the 

general result that they sought. They redefined the kind of consistency used in the CAP 

Theorem as strong consistency. That is the guarantee that all nodes will report being 

in the same state at any given time. They used the term eventual consistency, on the 

other hand, to mean that nodes will eventually reach the same state, as long as they can 

continue to talk to one another. This may require some additional consensus algorithm, 

such as conflict resolution.

The reliance upon consensus algorithms introduces more than a small degree 

of overhead. The nodes might need to elect a master to make the final decision, 

5�Terry, D. B.; Theimer, M. M.; Petersen, K.; Demers, A. J.; Spreitzer, M. J.; Hauser, C. H. (1995). 
“Managing update conflicts in Bayou, a weakly connected replicated storage system.” 
Proceedings of the fifteenth ACM symposium on Operating systems principles - SOSP ‘95. p. 172.

6�Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, Mihai Leția. A commutative replicated 
data type for cooperative editing. 29th IEEE International Conference on Distributed 
Computing Systems (ICDCS 2009), Jun 2009, Montreal, Québec, Canada. pp.395-403, ff10.1109/
ICDCS.2009.20ff. ffinria00445975.

7�Shapiro, Marc; Preguiça, Nuno; Baquero, Carlos; Zawirski, Marek. Conflict-free Replicated Data 
Types. Institut National de Recherche en Informatique et en Automatique, No 7687, 2011.
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introducing a bottleneck. Or they might run a complicated and chatty algorithm like 

Paxos to determine by majority decision what the final state shall be. For these reasons, 

Shapiro and Preguiça decided to distinguish a third kind of consistency. Strong 
eventual consistency promises that all nodes reach the same state the moment they all 

receive the same updates. The nodes do not need to talk among themselves to reach a 

consensus and resolve conflicts.

The CAP Theorem showed us that strong consistency is incompatible with 

availability. Allowing for consensus algorithm means that the eventual consistency may 

incur some undesirable overhead. And so, we, like Shapiro and Preguiça, will focus our 

attention on strong eventual consistency (SEC).

�Strong Eventual Consistency in a Relay-Based System
With SEC as our stated goal, let’s construct a useful example. Let’s build a distributed 

system based on relaying messages and see what properties it must have to satisfy SEC.

This distributed system is made up of nodes connected in some kind of network. The 

network is connected, which is to say that, unless the network is partitioned (which will 

occur from time to time), there is a path from any node to any other node. These paths 

don’t have to be direct; they may go through any number of intermediate nodes.

Some nodes receive new information from outside of the network. When they do, 

they formulate a message that they themselves process and then send along the network 

to neighboring nodes. When a neighbor receives the message, it processes it and relays 

to its neighbors. Each node is running some kind of algorithm to determine when to 

forward a message and to whom. That algorithm guarantees that eventually, every node 

will receive every message.

It’s important to observe that we are explicitly not requiring that every node receive 

each message exactly once. Nor are we requiring that every node receive the messages 

in the same order. Whatever forwarding algorithm we come up with only has to ensure 

eventual delivery.

Now let’s consider the internal state of a node within the distributed system. As the 

node processes a message, it transitions from one state to another. The message can be 

viewed as a function, taking the starting state as an input and producing the resulting 

state as the output. The system is strongly eventually consistent (SEC) if, after seeing all 

of the messages, all nodes arrive at the same state. We can determine what properties 

those functions must have in order to achieve SEC.
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First, every node’s response to each message must be idempotent. If a node sees 

the same message twice in a row, then it must end up in the same state as if it had seen 

it only once. And second, every node’s response to each pair of messages must be 

commutative. If the node sees two messages in one order, it must end up in the same 

state as if it had seen them in the opposite order.

Taken together, idempotence and commutativity are sufficient to prove SEC. So 

long, that is, as every node eventually sees every message at least once. This result is 

only valid for the kind of relay-based distributed system that we defined. It assumes that 

messages are forwarded exactly as they are, not filtered, altered, or summarized. We will 

find a more general result in the next section, but for now, let’s examine this relay-based 

system.

�Idempotence and Commutativity
Mathias Verraes joked on Twitter (Figure 4-10):

Like all good jokes, this one is absolutely true. It is hard to guarantee that a message 

is delivered exactly once—not lost and not duplicated. It is even harder to guarantee that 

messages will arrive in the order in which they were sent.

Figure 4-10.  https://twitter.com/mathiasverraes/status/632260618 
599403520
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Network protocols have been invented to specifically try to address these two hard 

problems. AMQP, for example, is a messaging protocol that can be configured to deliver 

a range of guarantees. It can be used as a best-effort transport, in which the message 

is guaranteed to be received no more than once. It can also be tuned up to reliable 

delivery, which guarantees that a message will be received at least once, but possibly 

more than once and possibly out of order. With a bit more overhead, it can perform anti-

duplication, which attempts to guarantee exactly once delivery. And with a herculean 

amount of effort, it can serialize messages in a channel, guaranteeing that they will 

be delivered in the same order they are sent, though you wouldn’t be happy with the 

performance.

Authors of infrastructure components that rely upon AMQP, such as RabbitMQ, often 

advise that a consumer be written to tolerate duplicate messages.8 The cost of running a 

message queue with anti-duplication or serialized channels can be prohibitive. Instead, they 

recommend that you make your downstream nodes tolerate messages that arrive multiple 

times, or out of order. That’s precisely what idempotence and commutativity mean.

A downstream node that tolerates duplicate messages is idempotent. It will remain in 

its current state upon seeing the duplicate message. A classic example of an idempotent 

node is an HTTP server receiving a PUT message. The message carries the desired state 

of the resource given by the URI. If it receives the PUT message a second time, the HTTP 

server simply sets the desired state again, as demonstrated in Figure 4-11. The end result 

is the same as if the HTTP server had received only one PUT message.

A downstream node that tolerates out-of-order messages is said to be commutative. 

This comes from the mathematical commutative property, which says that an operator 

has the same result no matter which way its operands are given. The commutative 

property of addition says that a+b = b+a. Multiplication is also commutative, but 

8�“[C]onsumer applications will need to perform deduplication or handle incoming messages 
in an idempotent manner.” RabbitMQ Reliability Guide. https://www.rabbitmq.com/
reliability.html

Figure 4-11.  Idempotent put
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subtraction and division are not. In a similar sense, a node is commutative with respect 

to two messages if it ends up in the same state no matter which message it sees first.

�Deriving Strong Eventual Consistency
A node might be idempotent with respect to a set of messages, but not commutative. For 

example, an HTTP server receiving two different PUT requests for the same resource will 

behave differently based on the order. The resource will end up in the state described by 

the last message it sees. Change the order of the messages, and you change the final state 

of the resource, as in Figure 4-12.

Strong eventual consistency requires both idempotence and commutativity. Let’s go 

back to our working definition of strong eventual consistency to see why this is the case.

A relay-based distributed system is SEC if all nodes, upon seeing the same set of 

messages at least once in any order, reach the same state. Of course, they must all start in 

the same state. If the set of messages was empty, the problem would not be interesting: 

all nodes would still be in the start state. And if the set contained only one message, 

eventual consistency would only rely upon idempotence. Nodes that receive duplicate 

copies of that one message will remain in the same state.

And so, we only need to carefully consider the case in which the set contains more 

than one message. Let’s consider how this might play out. If every node received each 

message exactly once, then we could argue based on commutativity alone that they 

would all reach the same state. Or, if every node received each message in order, but 

some were doubled or tripled, then we could argue based only on idempotence. It’s 

Figure 4-12.  Non-commutative PUT
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the fact that things can get jumbled up that causes us to have to stop and consider the 

possibilities.

Take, for example, a pair of PUT requests to an HTTP server. As we noted previously, 

PUT is idempotent, but it is not commutative. So, if an HTTP server sees the same PUT 

message duplicated immediately, it will not change state. However, if there were some 

intervening messages in between the duplicates, then we have a problem. If a second 

PUT was received between the first one and its duplicate, as in Figure 4-13, then the 

HTTP server would overwrite its change when the duplicate arrives. In order to behave 

in an eventually consistent manner, the node would have to ignore the duplicate 

altogether.

And so for a given set of messages { m1, m2, m3, … }, the scenario that we have 

to carefully consider is if m1 is duplicated after having received some number of 

intervening messages. We would like to say that

m1+m2+m3+m1 =

m1+m2+m3

As it turns out, we can indeed prove this for an idempotent and commutative set of 

operations. First, we observe that the duplicated message (m1) is commutative with the 

message that was received just before it (m3 in this example). We can therefore swap 

their places without changing the state of the node. And so

m1+m2+m3+m1 =

m1+m2+m1+m3

We just swapped the m1 and m3 at the end. This moves the duplication of the 

message one step earlier in the sequence.

Figure 4-13.  Intervening PUT
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But now, we observe that we can use the commutative property again, this time with 

m2. That is to say

m1+m2+m1 =

m1+m1+m2

And so, the duplication moves one more step earlier. We can keep doing this until we 

have moved the duplicated message right up next to the original. At this point, we simply 

employ the idempotent property of the duplicated message to assert that receiving it 

twice is just as good as receiving it once. In other words

m1+m1 =

m1

And so, we have shown that, because the node is both idempotent and commutative 

with respect to the set of messages, it will reach the same state after seeing one of the 

messages duplicated, no matter how many other messages have intervened:

m1+m2+m3+m1 =

m1+m2+m3

And this generalizes to any number of messages. This reduces the problem back 

down to receiving some set of messages in any order, but with no duplicates. We only 

need to rely upon commutativity to ensure that any such sequence will yield the same 

result.

And that is why our PUT example does not exhibit strong eventual consistency. 

While it is idempotent, it is not commutative. Both properties are required to achieve 

SEC in a relay-based distributed system.

�The Contact Management System
A friend and I created a contact management system, back in the days when personal 

digital assistants (PDAs) connected to your workstation via RS-232 serial port. At the 

time, the state of the art was Microsoft’s ActiveSync. We thought we could build a better 

product.

The solution we came up with was a message store-and-forward system where the 

nodes (workstations and PDAs) processed messages in an idempotent and commutative 

fashion. The messages included things like “add contact,” “update contact,” and “delete 
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contact.” Contacts were uniquely identified by GUID, which made add operations 

trivially idempotent and mutually commutative.

Delete operations took a little more work in order to commute with adds. If the 

delete is processed first and the add second, the result should be the same as if they were 

handled in the usual order. That is to say, delete followed by add should result in the 

contact being absent. We accomplished this by keeping a list of all contact GUIDs that 

had been deleted, even if the contact itself was not present at the time. And then, when 

the add was processed, if its GUID was in the list (what is commonly referred to as a 

tombstone, shown in Figure 4-14), then the contact was not added.

Update operations were the hardest to get right. As with HTTP PUT, the trivial 

implementation of update is idempotent but not commutative. To solve this problem, 

we assigned each update message a GUID as well. Each node kept track of the GUID of 

the most recent update that set a contact’s properties. It would also keep a list of update 

GUIDs that it saw in the past. When the user changed a contact, it would add the current 

GUID to the list of past GUIDs and then generate a new current GUID. It included both 

the current GUID and the list of past GUIDs with the update message.

When a node received an update, it would first check whether that update’s current 

GUID was already in its own list of past updates. If so, it would ignore the update. If not, 

it would perform the opposite check: was its current GUID in the message’s list of past 

GUIDs? If this second check passed, it would accept the update, taking the entire list of 

past updates.

Figure 4-14.  Tombstones
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As long as one of these two checks pass, then updates commute with one another. 

When received out of order, the future update will deliver the GUID of the past update. 

The past update would subsequently be ignored.

If both checks fail, however, there is more work to do. In this scenario, a concurrent 

update is detected. The user had modified the same contact on two different nodes while 

they were disconnected. Our response to this was to merge the two sets of properties. 

Where a field, such as phone number, was the same, we kept that value. Where they were 

different, we just concatenated them. That meant each of the fields allowed for multiple 

values. Fortunately, it’s already understood that a contact can have multiple phone 

numbers. Figure 4-15 shows examples of these three scenarios.

In addition to merging the properties, the node would also merge the GUIDs. The list 

of past GUIDs was the union of the current and incoming lists. And the current GUID? 

That’s where our data structure was a little more complicated than what I first described. 

The current GUID was also a list. Usually it contained only one element. But after a 

merge, it contained two (or even more if additional concurrent updates were detected).

This merge is commutative (ignoring concatenation order, which we were happy 

to do). Each side of the concurrent update would perform the merge upon seeing the 

other’s message. They would both get the same list of past GUIDs, and they would both 

get the same list of current GUIDs. When the user subsequently edited this merged 

Figure 4-15.  Compare past and current GUIDs
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contact, both of the current GUIDs would be added to the past list. And so both sides 

would happily replace its automated merge with the user’s manual one.

�Replaying History
This solution worked pretty well. It was strongly eventually consistent (though we didn’t 

know that term at the time). We proudly showed prospective buyers that we could 

disconnect a PDA, make changes, and then sync it back up. After all of the messages 

flowed back and forth, all clients had the same list of contacts in the same state.

During the synchronization process, however, things looked a little sketchy. If a large 

number of changes had happened on one side, all of those edits would replay before our 

eyes on the other. Given the speed of networks at the time, you could easily read the list 

of names as they were added, modified, and subsequently deleted while history replayed 

on the device.

Adding a new device to this system revealed the full extent of the issue. Since it was 

based entirely on processing messages exactly as they had been originally sent, the 

entire history of messages was persisted in a central repository. We referred to this as 

the transaction pipeline. When a new device was introduced to the transaction pipeline 

for the first time, as in Figure 4-16, it would pull down and process every one of those 

messages. That means that it would see all of the past edits. It would even see contacts 

that had long since been deleted. As history grew, the time required to add a new device 

grew proportionally.

My friend and I never sold an installation of this contact management system. In 

the end, it proved to be just as clunky as the Microsoft product that we were competing 

against. Perhaps we could have found a way to prune history, or to download snapshots. 

Figure 4-16.  A new device is introduced to the transaction pipeline
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But if we had known about conflict-free replicated data types, they would have offered a 

better solution.

�Conflict-Free Replicated Data Types (CRDTs)
We achieved a useful result for a distributed system based on processing and forwarding 

messages. If every node sees every message, and nodes forward the messages unaltered, 

then two properties are sufficient to achieve strong eventual consistency (SEC):

•	 Idempotence (ignore duplicates)

•	 Commutativity (don’t depend upon order)

Prove these properties about the way nodes process messages, and you already 

have a very reliable system. I have built many systems using exactly this technique. 

It pairs well with infrastructure components such as Amazon SQS, Rabbit MQ, and 

MSMQ that ensure broadcast and delivery of messages. It requires only a minimum set 

of guarantees from those components, helping them to work at scale without becoming 

over-constrained.

But this isn’t the most general result. We can optimize our distributed system further 

if we allow nodes to modify messages. Instead of requiring that a node forwards exactly 

the same messages it received, we can allow the node to summarize its knowledge and 

send fewer messages. This is the strategy employed by conflict-free replicated data types 

(CRDTs).

�State-Based CRDTs
Shapiro, Preguiça, and colleagues described two general solutions to the strong eventual 

consistency problem: state-based CRDTs and operation-based CRDTs. Operation-

based CRDTs require a delivery protocol that ensures once-and-only-once delivery and 

preserves causal order. We would prefer to find a solution that does not place so high a 

constraint on infrastructure components. Fortunately, state-based CRDTs have no such 

restriction. State-based and operation-based CRDTs can each emulate one another and 

are therefore equivalent. For these reasons, we can put aside operation-based CRDTs for 

this discussion and focus entirely on the state-based variety.

A conflict-free replicated data type is a data structure that exists not at one location, 

like a typical abstract data type; it exists in multiple locations. Each node in a distributed 
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system has its own replica of the CRDT. Operating on a replica of a CRDT closely meets 

our requirements for location independence. Each replica can serve queries in isolation, 

without communicating with other replicas. And each replica can process commands 

that immediately alter its state. The effects of these commands will be shared with other 

replicas in an eventually consistent manner. All replicas will converge to the same state 

when all updates have been delivered.

The key is to understand what it means for an update to be delivered.

�Partially Ordered State

Each replica of a state-based CRDT has internal state. As an application designer, you 

get to choose the form of that internal state. It is based on the problem you are trying to 

solve. But that state has to satisfy a few conditions.

•	 It must support a “happened before” (causality) relationship that 

defines a partial order.

•	 All updates must increase the state in that partial order (the previous 

version “happened before”).

•	 It must support a merge operation that takes two states and produces 

a new one that is greater than both of them (both previous versions 

“happened before” the merged version).

To be useful, the “happened before” relationship should help us detect concurrent 

updates. We want to avoid creating a total order and instead capture the partial order 

inherent in causality.

Unlike our relay-based distributed system, updates do not have to be idempotent or 

commutative. That’s because updates will be executed only on a single replica. Within 

a single process, we can easily control how many times and in what order updates are 

applied. A CRDT does not rely upon message relay like the system we just analyzed.

Shapiro, Preguiça, and colleagues proved that these three conditions are sufficient to 

guarantee SEC. All replicas will converge to the same state after all updates are delivered. 

So, what does it mean for an update to be delivered to a replica?
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�Causal History

When we examine the state of a replica within a single process, we will find only two 

operations that cause it to change: updates and merges. An update occurs when that 

node executes some command from outside the network. Perhaps the node is running 

a client application and responding to user input. A merge occurs when another node 

shares the state of its replica. This happens on the receive operation of a network 

communication.

Recalling Leslie Lamport’s definition of causality, we can say that the state of a 

replica after an update is caused by the update; the update is in its causal history. 

Lamport also showed us that the send operation of a network communication causes the 

receive. And so, the updates that occurred on the origin node before the send, illustrated 

in Figure 4-17, are in the causal history of the merged state.

Following this logic, the causal history of a replica includes

	 1.	 All updates that have occurred previously in that node

	 2.	 All updates in the causal histories of the states that were merged 

from other nodes.

Remember, the updates themselves are not shared between nodes. Only the 

resulting states. The necessary conditions imposed by partially ordering the states 

ensures that they have just enough information about the updates that were performed 

on them.

And so now we can finally answer the question. What does it mean for an  

update to be delivered to a replica? It means that that update is in the causal history of its 

current state.

Figure 4-17.  Both updates are in the causal history of s2
2
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�Vector Clocks
That’s a lot to process. Let’s make it a bit more concrete. How could we have 

implemented the contact management system as a CRDT? For simplicity, we will 

look only at the update contact case, which changed the properties of a contact. We’ll 

represent each contact as a CRDT, where each workstation, PDA, and server node have 

its own replica.

Let’s start by defining the state. Each contact is going to have a set of properties, like 

name, phone number, and email address. We will store those in the state.

By our first condition, the state needs to support a “happened before” operator to 

give us causality. Clearly just looking at the properties of a contact, we cannot tell which 

of two versions came first. For that, we will need to keep some sort of version number. 

A simple monotonically increasing version number would satisfy our first and second 

conditions. We will be able to see which version came first, and we will increase the 

version number with each update.

Unfortunately, a simple version number does not help us to identify concurrent 

updates. It does not capture the true partial order of causality. So instead, we will keep a 

separate version number for each node. This is a data structure known as a vector clock.9 

Figure 4-18 shows an example.

To compare two vector clocks, we compare each node’s version number. If all of the 

version numbers in the first vector clock are less than or equal to the second, then the 

first one “happened before” the second. This is a partial order, because it’s possible for 

9�Friedmann Mattern. Virtual time and global states of distributed systems. In Int. W. on Parallel 
and Distributed Algorithms, pages 215–226. Elsevier Science Publishers B.V. (North-Holland), 
1989.

Figure 4-18.  A vector clock as part of the contact CRDT
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one node’s version to be lower in one, while another node’s version is lower in the other. 

When this happens, the two clocks are not causally related.

When a node updates a contact, it increments its own version number in the vector 

clock, as demonstrated in Figure 4-19. This ensures that the new version has a greater 

version, as required by the second condition. State moves forward in causal time with 

every update.

When a node merges state from a remote node, as in Figure 4-20, it takes the 

maximum of each of the version numbers. This ensures that the new vector clock is 

greater than each of the two original vector clocks. Strictly speaking, if one vector already 

“happened before” the other, then the merge will just give us the greater of the two. In 

this case, it is not greater than, but equal to the later version. What this operation is really 

doing is computing the least upper bound of the two vectors. That is more precisely what 

is required by the SEC conditions.

Figure 4-19.  Node 2 updates the email of a contact and bumps its own version 
number
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We can see that vector clocks satisfy the necessary conditions for SEC. Since we 

put a vector clock into the state of our CRDT, we have a way to compare two versions to 

see which one happened before. Incrementing one version number when we update 

produces a vector clock that is greater than the previous one, so updates increase the 

state. Merging two vector clocks produces a set of numbers that are all greater than or 

equal to the previous two vector clocks, and so merge produces a state greater than the 

source states.

Most importantly, vector clocks capture the causal history of the replica. During a 

merge, we can detect concurrent updates. If all version numbers in the vector clock of 

one of the two states are greater than or equal to the other one, then that state represents 

the more recent version. The values of the contact’s properties will simply be copied 

from the greater of the two. But if neither vector clock “happened before” the other, then 

a concurrent update has occurred. That tells us that we need to merge the contact’s 

properties.

A vector clock is a tool for building state-based CRDTs. It gives us a way to define a 

partial order between states that supports update and merge operations. When used 

properly, replicas that include a vector clock will converge to the same value, once all 

updates appear in their causal history.

If my friend and I had built the contact management systems using vector clocks, 

then introducing a new device to the system would be a simple download. It would 

get only the current state of each contact and the vector clock representing the causal 

Figure 4-20.  Merging two contacts takes the maxima of all version numbers
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history of that state. When a user makes a change on this new device, it would simply 

add itself to the vector clock at version 1 and share its new value.

�A History of Facts
Vector clocks are not the only conflict-free replicated data type. Any data structure that 

is partially ordered, increases on update, and computes the least upper bound on merge 

can be used as a CRDT. Researchers have already defined many such data structures for 

use in different situations.10 With a little work, you can design the CRDT that is exactly 

right for you.

There is one data structure that is applicable in a surprisingly large number of 

circumstances. It has a well-defined partial order. It increases on updates. And it comes 

equipped with a valid merge operation.

I’m talking, of course, about the humble set.

�Sets
A set is a collection of items that has a couple of interesting properties:

	 1.	 It contains no duplicates.

	 2.	 It is unordered.

The first property means that an element is either in the set or it is not. The set does 

not remember how many times we tried to add an element. The second property tells us 

that no element comes before or after any other element. The set doesn’t remember the 

order in which we added the elements.

It’s interesting to observe that set insertion satisfies the two conditions necessary for 

SEC in a relay-based system. Because of the first property, set insertion is idempotent. If 

we try to insert an element that is already in the set, it remains unchanged. And because 

of the second property, set insertion is commutative. Inserting elements in the opposite 

order yields the same set. These two properties mean that set insertion behaves well in 

the face of duplicated or out-of-order messages.

10�Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski. A comprehensive study of 
Convergent and Commutative Replicated Data Types. [Research Report] RR-7506, Inria – Centre 
Paris-Rocquencourt; INRIA. 2011, pp.50. ffinria-00555588f.
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Idempotence and commutativity are not required for using a set as an operation-

based CRDT. The properties that are required for CRDTs are partial order, increasing 

updates, and a merge that computes the least upper bound. As long as we do not allow 

elements to be removed from a set, we can easily achieve all three.

�Partial Order

Sets are partially ordered under the subset relationship. One set is a subset of another 

if it only contains elements that can be found in the other one. If we use subset as 

“happened before,” then we have defined a partial order.

Take, for example, the set { , ‍‍, }. It is a subset of { , ‍‍, , }. Every element in 

the first is also in the second.

Now consider a third set { ‍, , }. It is also a subset of the second. But neither the 

first nor the third is a subset of the other. The first set contains an element not found in 

the third ( ), and the third contains an element not found in the first ( ). Therefore, 

they are not related under the subset relationship.

The fact that some sets can be compared while others cannot is what makes this a 

partial order. We can use that partial order to represent causality. A subset “happened 

before” a superset.

�Update

The only update operation that we will allow on a set is an insert. If you try to insert an 

element that the set already contains, then the set is unchanged. But if the element was 

not already in the set, then the new set has everything that was in the old set plus one 

additional item. So set insertion, when it modifies the set, increases its value within the 

partial order.

If you think about the set as containing all of the knowledge of a replica, you can see 

how set insertion increases that knowledge. The replica still knows everything that it 

knew before. But after the update, it now knows a little bit more.

This also illustrates how a set can represent the causal history of a replica. Recall that 

the causal history of a replica includes all of the updates that have occurred in its past. 

By enumerating the elements of a set, you can clearly see all of the insertions that have 

occurred over time.
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�Merge

A valid merge operation in a CRDT will compute the least upper bound of the two values. 

The least upper bound of two sets under the subset partial order will be the set that 

contains every element from both sides. It will be a superset of each one. To compute the 

least upper bound, we simply have to take the set union.

Consider again the two sets { , ‍, } and { ‍‍, , }. Neither is a subset of the 

other. But we can compute the smallest set that is a superset of both of them. That will be 

the set union: { , ‍‍, , }.

This follows our intuition about a merge, as well as the conditions required for SEC. 

If one node merges all of a remote node’s knowledge into its own, then it ends up with 

the union of the two. Knowledge grows as a result of that merge.

Thinking of this as the combination of two causal histories also makes intuitive 

sense. The causal history after a merge includes all of the updates that occurred both 

locally and remotely.

�Historical Records
Let’s formalize this intuition about a set representing the causal history of a replica. 

Instead of looking at sets of transportation emoji, let the elements in the set be actual 

historical records.

When a user performs an action at a node, we capture that action as a historical 

record. We make note of what they were trying to do, what they were trying to do it 

to, and what options or parameters they chose while doing it. The record is simply a 

structure that collects all of this information. It captures all of the pertinent data that was 

part of the user’s decision.

When we put these historical records into a set to form a causal history, we will 

notice four things:

	 1.	 We need to distinguish between similar records.

	 2.	 We cannot remove a record once it is inserted into the set.

	 3.	 We cannot change a record that is already part of the set.

	 4.	 Some of the records are related to one another.

These four observations give rise to the rules of historical models.
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�Distinguishing Between Records

Revisiting the contact management system, we can identify the first action that a user 

might perform at a node. They will want to create a new contact. When a new contact is 

created, it doesn’t have any properties. Those can be changed later.

The causal history that a user creates will look something like this:

{ ContactCreation }

When they try to create a second contact, however, they run into a problem. The 

record ContactCreation already exists in the set. It cannot be inserted again.

To insert more records of contact creation into the causal history, we need to 

distinguish among them. This is where a location-dependent system would use an auto-

incrementing identifier. It would produce a causal history that looks like this:

{ ContactCreation(1), ContactCreation(2) }

The problem with this strategy becomes apparent when we merge one node’s 

causal history with that of another. Merge is accomplished with a set union. If they 

were both generating identifiers using an auto-incrementing counter, then they would 

produce the same identifier for different contacts. The set union would merge different 

contacts into one.

So instead, the node will choose a location-independent identifier. A natural key 

would be best, but in this case we don’t have an immutable natural identifier in the 

problem domain. We aren’t asking contacts for their date of birth, government ID 

number, and DNA sample. We will just have to be satisfied with a GUID.

{ ContactCreation(74aac247-a86a-4af8-9db4-cf1387f8a1fb),

ContactCreation(5853e3fe-059a-4180-af0a-f969260be882) }

And so we have discovered that a historical record is uniquely identified only by 

its content. It has no other identifier. This is to ensure that causal histories merge in a 

location-independent manner.
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�Removing a Record

The next action that a user of the contact management system wants to perform is 

deleting a contact. The most natural way to represent a deletion is to remove the creation 

of the contact from causal history. Removing the second contact (5853…) from the set 

would bring us down to this:

{ ContactCreation(74aac247-a86a-4af8-9db4-cf1387f8a1fb) }

But this strategy won’t work. It violates the second condition of a state-based CRDT. 

Update operations may only increase the state of a replica within the partial order. 

Removing an element from a set creates a subset, not a superset. This takes the state 

backward in causal time.

It becomes apparent that we’ve made a mistake when we share state with other 

nodes. Suppose the user creates a contact, and then their device shares its state with 

another node. That contact creation is now part of the other node’s replica.

Now suppose that the user removes that contact, and the node incorrectly represents 

that by removing it from the set. When the remote node at some point in the future 

shares its state with the user’s node, the replica sets will be merged. The contact that they 

had deleted will suddenly reappear. Just search for “deleted contact reappears” in your 

favorite search engine to see just how common this bug is.

Instead of removing a historical record from the causal history, we have to instead 

create a new historical record. That new record represents the deletion of a contact.

{ ContactCreation(74aac247-a86a-4af8-9db4-cf1387f8a1fb),

ContactCreation(5853e3fe-059a-4180-af0a-f969260be882),

ContactDeletion(5853e3fe-059a-4180-af0a-f969260be882) }

We have restored the condition that updates increase state within the partial order. 

This new set is a superset of the prior one. And merging state with other nodes will never 

cause the contact to reappear.

We have just discovered that a historical record cannot be deleted. A record can 

represent the deletion of an entity. But it cannot be removed from causal history.
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�Changing a Record

The next action that a user might want to perform at a node will be setting the properties 

of a contact. When they do, we’ll record a historical record of their actions. It includes 

which contact they are modifying and the values they set for those properties. The 

resulting causal history looks something like this:

{ ContactCreation(74aa…),

ContactModification(74aa…, “Bob”, “555-1212”) }

On the second edit, the naive solution will be to modify the record within the set:

{ ContactCreation(74aa…),

ContactModification(74aa…, “Robert”, “555-1212”) }

We can already see why that doesn’t work. The new set is not a superset of the 

original one. This violates the second condition: updates must increase state in the 

partial order. We have, in fact, created a new set that is not causally related to the old one.

To fix this problem, we can partially order the modification records. One way to do 

this is to add a vector clock:

{ ContactCreation(74aa…),

ContactModification(74aa…, [node1: 1], “Bob”, “555-1212”),

ContactModification(74aa…, [node1: 2], “Robert”, “555-1212”) }

We have discovered that once a record is part of history, it cannot be modified. We 

can add a new record that represents a modification to an entity, but the old records must 

remain.

Since we already have a complete set of the historical records, the vector clock is 

a bit redundant. Remember, vector clocks help us to turn a simple data structure into 

a CRDT. It captures the partial order of causality. But now that we are working with a 

set of simple data structures, we can rely upon the set to capture causality. We have the 

opportunity to optimize a bit.
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�Records Are Causally Related

Looking carefully at the set of historical records reveals several relationships. The 

most obvious one is that the ContactModification records contain the GUID of the 

ContactCreation record. As Figure 4-21 shows, we can represent this relationship directly 

by drawing an arrow from the modification to the creation.

This graph is still a set. Every vertex of the graph is a historical record in the set. All we 

have done is replaced the implied relationships of common GUIDs with explicit arrows.

The second observation we can make is that the vector clocks are actually references 

to one another. The clock [node1: 2] represents an update that occurred on node 1 

bringing its version from 1 to 2. It refers to the previous clock [node1: 1] by inference. 

As Figure 4-22 shows, we can replace the vector clocks with arrows.

Figure 4-22.  Vector clocks are replaced with explicit arrows

Figure 4-21.  Contact creation precedes contact modification
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Changing the vector clocks to arrows preserves the partial order between 

modifications. It is still easy for us to compare two ContactModification records to see 

which one came before the other. If we can trace a path from one to the other along the 

arrows in the correct direction, then the record at the head of the last arrow “happened 

before” the record at the tail of the first one.

The graph captures the partial order of causality.

This is true in general, not just for the modifications. ContactCreation happened 

before ContactModification. The user must have created a contact before setting its 

properties. If the contact wasn’t created on the local node, then it must have been 

created remotely and merged into the set. By Lamport’s causality, even that remote 

creation happened before the local modification.

�Benefits of Explicit Causality

We have captured the causal relationships between historical records as arrows 

in a directed graph. Doing so is more than just an optimization. It also enforces 

preconditions of the user’s actions. A user cannot modify the properties of a contact 

that hasn’t been created. Nor can they delete one that doesn’t exist. When the causal 

relationships between records were only implied by a shared GUID, the data structure 

did nothing to help us ensure that these preconditions were met. But now that it 

explicitly captures the arrows, these preconditions are enforced by the existence of the 

record at the head.

Another benefit is that we have just traded away less important information for 

more important information. The vector clock included the names of the nodes at 

which modifications were made. It needed this information only so that a node knew 

which version number to increment on update. After that, the names of the nodes are 

unimportant. The arrows discard the names of the nodes in favor of explicit references 

to prior versions. It doesn’t matter whether that prior version was produced on the same 

node, or arrived as the result of a merge.

In exchange for discarding unimportant information, the explicit arrows provide us 

with much more important information. They tell us how an entity has changed over 

time. This is useful in computing a better merge.

Suppose that after the contact is created and initialized, it is shared with a remote 

node. Against that replica, another user makes a different modification. After the local 

user receives the merge, they see the graph in Figure 4-23.
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The partial order among modifications shows us that the two leaves of the graph are 

not causally related. Neither one happened before the other. We therefore need to merge 

the two sets of properties to display to the user.

The concatenation-based merge that we did before would produce a contact with 

two names and two phone numbers. If all we had were two data structures and two 

vector clocks, this is the best we could hope to achieve. But having the graph gives us a 

third data point. We can see the nearest common ancestor of the two leaves.

Comparing the left branch with the nearest common ancestor, we can see that 

the local user changed only the name. And comparing the right branch reveals that 

the remote user changed only the phone number. This allows us to perform the much 

more reasonable merge of displaying the most recent name and the most recent phone 

number.

name: “Robert”

phone: “867-5309”

This three-way merge happens only on display. The set (or graph) of historical 

records is not modified in any way. Furthermore, all nodes perform this three-way merge 

in exactly the same way. They all have the same graph, so they will all compute the same 

result. So even when the history captures causally unrelated records, it does not result in 

a conflict. Every node converges to the same value.

Figure 4-23.  A graph after merging concurrent modifications
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With this final observation, we have discovered that historical records are related 

to one another explicitly. This relationship captures the partial order of causality. The 

record at the head of the arrow happened before the one at the tail.

�Historical Facts
Because these records are no longer simple flat data structures, I hesitate to call them 

records anymore. Nor do I like referring to them as historical events, as that evokes Event 

Sourcing. Event Sourcing captures a totally ordered sequence of historical events, but 

does not capture explicitly the relationships between historical events. And so I refer to 

these elements of the causal set as historical facts.

The arrows point toward the predecessor of a historical fact. The earlier fact preceded 

the latter one. The latter, I call the successor. Arrows are only inserted into the graph with 

the successor, never afterward. This enforces preconditions, preserves the partial order 

of the causal relationship, and has the extra benefit of preventing cycles. The contents of 

a fact combined with its set of predecessor arrows are all that distinguish it from other 

facts. Because facts have no extrinsic identity, nodes can refer to facts in a location-

independent manner. The entire causal set is what I call the historical model.

A historical model is a state-based CRDT that captures the causality among 

historical facts as a directed acyclic graph. The arrows of the graph impose a partial 

order that shows which facts happened before which other facts. Facts in the graph can 

be referenced, queried, and used with no dependence upon the location of the node.

The graph supports two operations: insert and merge. Inserting a new historical 

fact moves the graph forward along the causal timeline, because the resulting graph is 

a superset of the original. Merging two historical models computes their least upper 

bound and therefore helps remote replicas achieve strong eventual consistency.

�Conclusion
We have identified the properties that a distributed system must have in order to be 

location independent. They must exhibit location independence both in identity and in 

behavior.

A location-independent identity does not imply any affinity of an object upon 

its location of origin. Any node should be able to generate and compare a unique 
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immutable identity for a new object without communicating with other nodes. This 

reduces latency and increases autonomy of isolated nodes within a distributed system.

Location-independent behavior permits a node to query and transact with replicas 

of objects in isolation. These replicas achieve strong eventual consistency when all 

replicas converge to the same state once all updates are delivered. This can either 

be achieved by means of an idempotent and commutative relay system or by a more 

sophisticated conflict-free replicated data type.

From these constraints, we derived a set of rules that help us to define systems that 

operate in a location-independent fashion. I call this set of rules Historical Modeling. 

The reasoning laid out in this chapter demonstrates that a historical model satisfies the 

requirements for strong eventual consistency.

But before we code up a historical model, we should understand exactly what they 

tell us about the systems we intend to build. Let’s explore these rules first as a means of 

analyzing a problem. Among other things, the rules quickly reveal when we make the 

assumption that data has a location. This analysis will uncover potential problems long 

before they have a chance to cause issues in production.
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CHAPTER 5

Analysis
Immutable architecture ensures that we build a system within constraints that 

computers can easily meet. When we start from the assumption of immutability, we have 

confidence that the resulting system will have desirable characteristics. What remains 

now is to understand how to analyze a problem domain within those constraints.  

We must discover the elements of a problem and express them as immutable units.

The primary goal of analysis is to communicate a shared understanding between the 

development team and the product owner. The analyst extracts the essence of the problem 

domain and documents that understanding in a way that the product owner can verify. For 

this to be effective, the analysis needs to be understandable without training or jargon.

The secondary goal is to capture the expected behavior so that it can be correctly 

implemented and tested. For this, the analysis needs to be documented and presented 

to developers and testers. Artifacts need to be precise enough that an incorrect 

implementation will fail these tests. They should guide and constrain development and 

answer questions that arise during implementation.

The means of communication therefore needs to satisfy several audiences 

simultaneously. It needs to be easily understood by experts in any business domain, not 

just technical domains. It also needs to be precise enough to generate meaningful tests. 

And it needs to represent ideas that can actually be implemented. Our challenge now is 

to define a language that solves all of these problems at once.

Requirements and analysis documents are typically written in prose. Unfortunately, 

natural human languages are poor choices when precision and unambiguous 

communication are the goals. Prose contains assumptions that the author fails to 

articulate and that readers fail to recognize. It contains jargon that conveys meaning 

for some, but confusion for others. And human languages do not compile; they are 

not constrained to describe only solutions that can be implemented, nor can they be 

executed to test a given solution.

https://doi.org/10.1007/978-1-4842-5955-9_5#DOI
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The artifacts of our design will therefore not be written in English or any other 

natural language. They will be written in the precise language of mathematics. Yet, 

to rid the artifacts of jargon that would require a mathematical education, they will 

be constrained to very simple concepts. The language of analysis maps precisely 

onto the language of Historical Modeling. It produces a set of statements that can be 

unambiguously verified. It also can only describe systems that can be implemented 

within the constraints of distributed systems.

�Use Cases
In 1992, Ivar Jacobson published the first guide for “use case analysis.” Object-Oriented 

Software Engineering: A Use Case Driven Approach1 (OOSE) described a system for 

documenting software behavior. It breaks that behavior down into goal-directed units 

called “use cases.” In each use case, an actor is using the system to accomplish a goal. 

While Jacobson originally developed use cases as part of a process called Objectory 

(Object Factory), he later joined forces with Grady Booch and James Rumbaugh to bring 

use case modeling and analysis to the Unified Modeling Language (UML).

While the majority of OOSE focuses on the detailed textual language for describing 

use cases, the book also introduces a high-level graphical language called use case 

diagrams. The purpose of a use case diagram is to illustrate the relationships among 

several use cases and the actors who initiate them. Use cases can be related to one 

another in several ways. A larger use case can include several smaller ones if the smaller 

use cases are performed in the process of achieving the larger result. A parent use case 

can generalize more specific use cases to collect their common attributes and steps. And 

a more detailed use case can extend a less detailed one by providing additional steps that 

occur under certain conditions.

In practice, use case diagrams have found much less utility than their more detailed 

textual counterparts. In many of the requirements diagrams that I have read, a use case 

diagram is included mostly as a table of contents, if it is drawn at all. Martin Fowler has 

even expressed that “these diagrams are of little value,”2 focusing instead on the far more 

detailed textual form of the use case.

1�Ivar Jacobson. Object Oriented Software Engineering: A Use Case Driven Approach Revised 
Printing edition. 1992. Addison-Wesley.

2�https://martinfowler.com/bliki/UseCase.html
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But given the problems with capturing behavior in prose, perhaps more focus should 

be given to the graphical language. If we solve some of the issues with the graphical 

language, then it could become a precise, unambiguous, and easily understood artifact. 

Inspired by Jacobson’s original work, we can define a diagram that addresses the same 

need, but in a way that provides a more valuable foundation for system analysis. We 

can accomplish this by unifying the size of an activity and the relationships between 

activities.

�From Use Case to Decision
The first problem that we can solve is that use cases can be expressed in several different 

sizes. To resolve this problem, we can change the nature of the diagram to reduce the 

size of each activity to an atomic unit. Traditionally, a use case is centered around a 

single goal. Achieving that goal requires multiple steps. Diagramming multistep use 

cases increases redundancy, inconsistency, and complexity.

Redundancy increases because use cases can share steps. A use case containing 

several steps might be interrupted, or branch into multiple scenarios. Examples of 

interruption include authorization failure, low inventory, or a need for approval. If the 

steps are interrupted, the use case lists the recovery steps as alternatives to the primary 

successful flow. A use case scenario is less severe than a full interruption. It is triggered 

by some condition that requires additional steps. If the steps are simple, they can be 

listed within the single use case. If they are complex, then perhaps they would be best 

broken out into an extension use case. Either way, a use case can easily balloon into an 

overlapping collection of flows.

Inconsistency arises within the size and scope of use cases. Multistep use cases are 

not of uniform size. Two people analyzing the same problem might come up with wildly 

varying granularities of use cases. Even a single individual breaking down a problem 

might choose small use cases for activities they know to great detail and large use cases 

for things they do not yet fully understand. The very structure of a use case diagram 

reveals that the size is not always uniform: some use cases include others. The smaller 

use case’s steps appear as part of the larger one.

Complexity is a consequence of having many interrelated steps within a single use 

case. Development teams often find use cases too large and complex to estimate and 

complete in a single iteration. Use cases are often broken down into user stories for this 

reason. A user story is much closer to a single atomic decision that a user makes and the 
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system responds to. There is often a prerequisite state that the system must already be in 

for the user story to make sense. That state would be achieved by executing earlier user 

stories, which had already been completed during earlier iterations of development. 

This level of granularity allows a team to plan, track, and execute their work. A product 

backlog will contain user stories, but not use cases.

By insisting that an activity be an atomic unit, we approach a more uniform unit 

of size. Each bubble represents not an entire use case, but a single atomic decision. 

Figure 5-1 shows a single use case on the left. On the right, it lists the individual decisions 

that the user made in order to accomplish the goal stated in the use case.

Breaking down use cases into atomic decisions adds value to the resulting diagram. 

The edge cases and recovery scenarios can be more explicitly depicted and understood. 

Each resulting activity is similarly sized; they are all one atomic decision. The team can see 

more clearly how to plan their work to accomplish the goals depicted within the diagram.

�From Extension to Succession
The second problem with the use case diagram is that several different relationships can 

be drawn between use cases. Use cases can extend, include, or generalize one another. 

Understanding the distinction among these three relationships requires additional 

training. It introduces jargon about the use case diagramming process that is not an 

important part of the domain that it is modeling.

Figure 5-1.  A use case is broken down into multiple atomic decisions
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When use cases are broken down to the level of atomic decisions, however, 

the picture becomes a bit simpler. Decisions have only one relationship: they only 

precede one another. A decision that must be completed before another can begin is a 

prerequisite. The succession of decisions from prerequisite to subsequent tells a story of 

how an actor accomplishes a goal.

The prerequisite relationship is a strict one. When an analyst draws a line from one 

decision to its prerequisite, they claim that the prerequisite must be completed before 

the subsequent activity can begin. If that is not strictly the case, then the relationship 

should not exist.

Consider, for example, the typical set of activities that happen when a customer 

enters a restaurant. First, the customer requests a table, giving the size of their party. The 

host finds them a table, possibly asking them to wait, and then seats them. Once seated, 

a server takes their order. Given that typical sequence of events, you might draw each 

activity as the prerequisite of the next, as in Figure 5-2.

But is this really the correct depiction? Are there situations in which a server can take 

a party’s order without them being seated? What about a to-go order, a catering order, or 

a customer at the bar? Seating a party is not truly a prerequisite to taking their order. It is 

only an activity that usually comes earlier and only in some scenarios. A more accurate 

analysis of this problem would be the one shown in Figure 5-3.

Figure 5-2.  A sequence of activities in a restaurant system
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In addition to being strict, the prerequisite relationship carries information forward. 

A prerequisite provides information to subsequent activities. There is no need to 

duplicate the information from a prior activity into a later one. If a subsequent decision 

does not rely upon the information in the prerequisite decision, then perhaps that 

relationship should not exist.

In the earlier example, the request for a table includes the size of the party. That 

provides information that constrains the task of seating the party. The very relationship 

between Seat Party and Request Table indicates that we know the number of people 

to seat. An example instance diagram appears in Figure 5-4.

The Take Order activity did not require knowing where the customer was seated. As 

long as a server can communicate with a customer—even if it’s over the phone or at the 

bar—they can complete the Take Order activity. This is another indicator that tells us 

that seating the party is not a prerequisite.

When use cases are large, it makes sense to have multiple complex types of 

relationships between them. A large use case can include smaller ones, and a common 

Figure 5-3.  Taking a party’s order is not predicated upon seating them

Figure 5-4.  Seat party has available to it the party size from request table. 
Take order does not need that information
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use case can generalize specific ones. But when activities are expressed in their most 

atomic level, only one relationship is important. A diagram that depicts the succession 

of activities in the form of prerequisites illustrates the possible paths to achieving a goal. 

Each activity maps to a fact in the historical model, and the prerequisite relationship 

maps to predecessors. This kind of diagram can be much more than an introduction to a 

requirements document. It can be the starting point for some truly powerful analysis.

�Data
We’ve broken down a system’s use cases into atomic decisions. Each decision cannot 

be broken down any further. It is made by one person, has no internal conditions, and 

cannot be interrupted. The relationships between those decisions are only prerequisite 

relationships. Now we can start looking more closely at the data carried with each 

decision.

We’ve seen how the data from prerequisite decisions is available to subsequent 

decisions. That data is available because of the prerequisite relationship. This allows 

us to analyze how information accumulates as we chain more decisions together into a 

deeper path of succession. We can further analyze that information content to discover 

identifiers, cardinalities, and mutation.

�Identifiers
Hidden within many data structures are values that identify people, objects, or other 

entities. When you find an identifier hidden within some data, consider extracting it to a 

separate fact. Replace the field with a predecessor relationship pointing toward that fact.

Continuing our analysis of the restaurant system, we can see an identifier in the form 

of the table number. We decide to elevate this concept to its own fact, moving the table 

number into it to serve as its identity. When we replace the identifier in the Seat Party 

activity with a predecessor relationship, we end up with the diagram in Figure 5-5.
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Elevating an identifier to a fact creates a new point of interest in the application. This 

accomplishes two things. It first allows us to observe all of the successors of this new fact. 

We can identify, for example, which parties were seated at a table over time. But perhaps 

more importantly, it gives us an anchor to say more things about the identified entity. 

In this case, we now have a place to say which server is assigned to a table. This helps us 

to understand who is responsible for attending to the party, as well as to balance future 

seating so that all servers have a roughly equal workload. The result appears in Figure 5-6.

As you elevate identifiers to facts, you will find that the model contains a mixture of 

activities and entities. The activities came from use cases, broken down into their atomic 

decisions. The entities are identified people, objects, places, or concepts that those 

decisions are about. Nevertheless, the diagram contains only one kind of relationship: 

predecessor. This is either a prerequisite decision—one that must have come before—or 

an entity involved in that decision.

�Cardinality
Continuing our analysis of a set of decisions, we can identify parts that have zero, one, 

or many replicas. These indicate points of cardinality that need to be addressed in the 

model. A part that allows only zero or one replica becomes an optional (?) predecessor. 

Figure 5-6.  A server is assigned to a table

Figure 5-5.  Table number is elevated to its own fact
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A part that allows any number could either become a multiple (*) predecessor, or a 

successor. The difference between the two has to do with whether new parts can be 

added after the fact.

The Take Order fact in the previous example calls out for multiplicity. We originally 

modeled it as a single unit having three fields, as shown in Figure 5-7.

In this example, it made sense to label each of those fields as drink, main course, 

and side. This particular order was made up of those three parts. But in general, we 

don’t need to enforce that every order has exactly those three things. Some orders will 

have appetizers. Some will have desserts. Some might have two sides. While a typical 

order might follow a pattern or template, there is no value to restricting the items in the 

order to specific categories.

Furthermore, the order is presumably for the entire party. We are likely to have 

multiple drinks, multiple main courses, and so on. Different people might even order 

appetizers as main courses. At this point in the analysis, it is important to ask whether 

these distinctions are relevant for the solution you are modeling. Is it important to know 

which person ordered the steak, or will the server simply ask when they reach the table? 

Is it important to model when to deliver the salad, or will the server keep track of each 

course on their own?

The decisions you make while analyzing the cardinality of the model determine the 

relationships you will emphasize. These will reflect the values of your product owner. 

One valid restaurant model would allow the flexibility of adding items to an order at any 

time. A different, but equally valid model would lock an order down so that it can be 

controlled at each part of the preparation, delivery, and payment. If the product owner 

values flexibility over control, then you would come up with a model such as the one in 

Figure 5-8 that allows successors to be added at any time.

Figure 5-7.  An example take order fact having three fields
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A fact can always have multiple successors. We do not indicate that cardinality on the 

diagram, as it is implied. An example of facts in that structure appears in Figure 5-9.

The decision to model items as successors emphasizes the fact that new items can 

be added to an order at any time. If the product owner makes a different set of decisions, 

then you might choose a different model. For example, in a fast food restaurant, the 

order is taken in its entirety, prepared, and then delivered. Modifications cannot be 

made along the way. That may cause you to instead make the Order Items predecessors 

of Take Order as in Figure 5-10.

Figure 5-9.  Multiple items represented as successors to the order

Figure 5-8.  Take order allows multiple order items to be added as successors
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Since Order Item is a predecessor, we do indicate the cardinality. Order items 

cannot be added after the fact. The asterisk (*) indicates that multiple order items are 

present when the order is captured. An example set of facts matching this model appears 

in Figure 5-11.

Simply saying that an order has many items is not quite enough to capture the 

nuances of the process. Knowing whether items can be added afterward is an important 

part of the model. These reflect the values of the product owner and translate into 

capabilities of the product. Capturing them in the model is an important first step toward 

analyzing the consequences of those decisions.

�Mutation
The objects that we have analyzed and captured in the model have so far come from 

three different sources. Some were decisions made by an actor on the way to achieving a 

goal. Others were identifiable entities about which those decisions were made. And still 

Figure 5-10.  Multiple order items are predecessors of take order

Figure 5-11.  A strict organization of items as predecessors, which cannot be 
changed
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others were smaller parts of those decisions and entities that appeared from analysis of 

cardinality. In every case, these objects are immutable. The past decision, identity, or 

part will not change.

This does not always match our intuition. When we look at the state of a system, we 

imagine that it is changing over time. We see that state as mutable. But what we have 

modeled so far is a succession of decisions that have caused the apparent evolution of state 

change. The model represents those past decisions; it does not represent the state itself.

At some point, we will just need to capture a mutable property. We might, for 

example, just want to record a person’s phone number. We are not interested in the 

various decisions that lead to them having a service contract with a phone company. 

Those decisions would be important in a different domain, but they do not contribute 

to the domain that we are trying to model. We just want to know how to call someone on 

the phone.

Modeling mutable state should be considered a last resort. If you can imagine 

a property being the consequence of a set of business decisions, then model those 

decisions. The total of a restaurant check, for example, is a consequence of the items 

ordered, the taxes and gratuities applied, and any discounts that the restaurant might 

be offering. Properties such as check total should not be represented as mutable state. 

Only use this pattern for values that are not an outcome of the business process being 

modeled.

For example, the name of an item in the menu might be modeled as a mutable 

property. We are not concerned with the business process that leads to that particular 

name. We simply want to document the fact that the name can be changed. We do so by 

writing the property as a fact separate from the entity that it describes. This property has 

a predecessor reference back to itself called prior and has multiplicity (*). The pattern is 

illustrated in Figure 5-12.
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Some mutable properties tend to change as an entire unit. A mailing address, for 

example, has several components, like street number, city, and postal code. Favor 

capturing these composite values as a single mutable property, rather than as individual 

properties, as in Figure 5-13. This prevents the model from becoming unreasonably 

detailed, while documenting an important grouping concept within the data.

The traditional analysis practice of defining a data dictionary makes no distinction 

between process properties and mutable properties. A data dictionary is more 

concerned with listing the various properties that can be attached to entities, no matter 

how they arise. But to truly analyze a system, we need to understand the processes that 

Figure 5-12.  The name of a menu item is a mutable property

Figure 5-13.  An address is a single mutable property, even though it has many 
components
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brought about those values. When possible, those processes should be modeled as 

successive decisions within the problem domain. But sometimes, a mutable property is 

just a mutable property.

�Views
After modeling the decisions, entities, and properties of a domain, we have a good 

understanding of its basic structure. The model so far captures how a process evolves 

over time. Each decision builds upon those of the past in a latticework of increasing 

knowledge.

In order to make a decision, a user of the system needs to have access to that 

knowledge. The job of the system is twofold: provide that information and capture 

the resulting decision. That new decision becomes a new fact and contributes to the 

information that users will receive in the future. The views that a system presents to its 

users can therefore be expressed as a function of their past decisions. One of our jobs as 

an analyst is to describe that function.

�Finding a Place to Start
To pull data out of a historical model, we need to identify a starting point. We cannot 

simply query the entire model as a whole. Fortunately, we usually have a few good 

candidates.

Most applications require a user to log in. As soon as they do, we have a starting 

point: the user themselves. Once in the application, they will navigate from page to 

page. As they do, they will change their starting place. The application will provide them 

information based on that point in the model. From there, they can continue to navigate 

or make a decision that will be captured in the model.

Let’s continue building our restaurant model to see how the user can be the initial 

starting place. A server will log into the system at the start of their shift. From there, 

they will see all of the tables to which they are assigned. By logging in, the server has 

identified the starting point of the model, which is outlined in Figure 5-14.
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Even when an application does not require the user to log in, it usually has a clearly 

defined starting place. This is typically a top-level entity that defines the scope of the 

application. For example, if the restaurant guest has a device at their table for ordering 

drinks or appetizers, they will typically not need to log in first. The starting point of the 

information that they can search is the menu. From here, they can navigate through 

menu items, as shown in Figure 5-15.

Once we have identified a starting place, we can describe the information that will 

be presented to the user. We will use wireframes and queries to do so. These will in turn 

lead to refinements of the model in an iterative inward spiral of analysis.

�Annotated Wireframes
Wireframes are a powerful tool for communicating the information that will be presented 

to the user. They are applicable to any system that displays information on a screen. They 

are effective for web, mobile, and desktop applications alike. And they become even 

more powerful when annotated to show precisely what information to display.

Figure 5-15.  A guest starts with the menu to search through menu items

Figure 5-14.  A server logs into the system to see their table assignments
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Every wireframe will have a starting point. The starting point is clearly indicated and 

puts the remainder of the annotations into context. The elements within the wireframe 

are then annotated to document the information that they present. These annotations 

take the form of a query from the starting point. For example, a wireframe of the server’s 

home page is shown in Figure 5-16.

As the user navigates from one page to the next, they select a new starting point. 

Navigation appears as a line leaving the wireframe and carries with it the new starting 

point for that destination. Sometimes it is the same (as in the navigation to Clock Out), 

and sometimes it drills into a narrower context (as in View Table).

Annotations need not be represented directly on the wireframe the way that they 

are depicted in Figure 5-16. They could be shown as footnotes to keep the wireframe 

simpler, or to allow space for sample text. The important idea, though, is that the 

annotations be precise. The Factual query language conveys just the right precision to 

ensure that behavior is unambiguous and assumptions are made explicit.

�Removal from Lists
Historical facts cannot be deleted. Views are projections of historical facts. Yet any view 

that simply grows unbounded will soon become useless. The specification for a view 

needs a way for items to be removed from lists. This operation is accomplished with a 

not exists clause.

Figure 5-16.  A wireframe of the server’s home page includes annotations on 
various elements
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Consider the host making the decision to seat a party. What information do they 

need to make that decision? They need to know the tables available, the parties waiting, 

and the capacities and sizes of each. With this information at hand, they can perform 

a few tasks. They can enter a request for a table, seat a party, or indicate that a waiting 

party has walked out. That information might be displayed in a view such as the one 

wireframed in Figure 5-17.

The “Request Table” button takes the host to a form where they can capture the 

details of an arriving party. It initiates a navigation. The “Seat Party” and “Walk Out” 

buttons, on the other hand, immediately create new facts. They record the decisions 

related to the selected table and table request. These decisions will influence the 

information displayed on the view.

But exactly how will these facts influence the view? What are the events that lead to 

a table becoming available? What makes it no longer available? These answers become 

clear when we define the queries referenced in the wireframe: tablesAvailable and 

partiesWaiting. Let’s start with the first.

Consider the list of tables that are available for seating. We aren’t simply adding to 

and removing from a list; there’s a business process taking place. When the restaurant 

Figure 5-17.  A host sees the tables available and parties waiting and can take 
appropriate actions
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opens, all tables are available. One is removed from the list when a party is seated. It is 

added again when the table is bussed. We can model this process with a single query:

query tablesAvailable(r: Restaurant) {

  match t: Table where t.restaurant = r

    such that not exists s: SeatParty where s.table = t

      such that not exists b: BusTable where b.seatParty = s

}

This query says a lot in a very small statement. It says that seating a party removes 

the table from the available list. It also says that bussing the table puts it back. It makes 

clear that we need to have a relationship between a table and a restaurant, so that we 

have a starting point for the query. And it tells us that we need a relationship between 

Bus Table and Seat Party. The revised model is shown in Figure 5-18.

Figure 5-18.  New relationships suggested by the need to show tables 
available
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Following similar logic, we can analyze what adds and removes parties waiting for 

a table. A party is added to the list when they request a table. They are removed when 

they are seated. The party is also removed when they walk out. This leads us to define the 

view of parties waiting with the following query:

query partiesWaiting(r: Restaurant) {

  match rt: RequestTable where rt.restaurant = r

    such that not exists s: SeatParty where s.requestTable = rt

    and not exists w: WalkOut where w.requestTable = rt

}

These additional facts and relationships further refine our model. We can now see 

that Request Table must be within the scope of a Restaurant. We can also see how Walk 

Out is related to Request Table. The more complete picture appears in Figure 5-19.

Figure 5-19.  A request for a table happens within the scope of a restaurant and 
can be aborted with a walkout
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Taking these two queries together, we can find implied requirements. We can see, for 

example, that two parties should not be seated at the same table at the same time. This 

can be inferred from the fact that a table will be selected from the list tablesAvailable, 

which does not contain any tables with a current Seat Party. More subtilely, the queries 

reveal that seating a party removes both the party and the table. This is apparent because 

Seat Party appears in the not exists clause of each query.

Other systems of analysis would require us to consider these activities in terms of 

cause and effect. Requesting a table causes the party to be added to the list. Seating a 

party removes the party and the table. We end up defining a state machine describing 

how events change the state of aggregates. It is easy to forget to update the view state in 

response to an event, thus leading to incomplete specifications and bugs.

The precise nature of the Factual query language reveals assumptions about how 

state evolves with the introduction of new facts. Had the requirements for these views 

been expressed in prose, it would be easy to overlook these assumptions. A product 

owner familiar with the process of running a restaurant might not even see the 

assumptions that they are making. Of course two parties can’t be seated at the same 

table. Why wouldn’t you remove both the party and the table upon assignment?

A less precise form of specification would require the analyst to discover these 

unstated assumptions and raise the questions. If the analyst misses them, then the 

developers might run into edge cases. And if developers miss them, then testers might 

file a defect. If we demand precision, then our analysis will uncover assumptions, make 

behaviors explicit, and avoid waste.

�Collaboration
As the model continues to evolve, we will want to take note of which actors are 

responsible for which decisions. Labeling the model with the actors gives us a clear 

picture of how the system will ultimately be used as a collaborative tool. People will work 

together through the system. It will be their means of communication.

In a use case diagram, actors are drawn external to the system as stick figures. Arrows 

indicate which use cases particular actors are responsible for undertaking. While this 

is an accurate depiction—actors are outside of the system—it obfuscates points of 

collaboration within the model. It is much clearer to draw lines of responsibility within 

the model itself.
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�Regions
In my own work as an analyst, I have used several tools to indicate which actor is 

responsible for which decision. On a whiteboard or using sticky notes, I might assign 

each actor a color. In a notebook, I might jot a small annotation at the top of each fact. 

But the most versatile method, and the one that we will use here, is to divide the model 

into regions.

A region is an area of real estate within the model having clearly demarcated 

boundaries. All of the facts in a region are decisions for which a single actor is 

responsible. It is common practice in process modeling systems to use swimlanes to 

organize regions of responsibility. While regions in a historical model do not have to be 

swimlanes, the practice carries over quite naturally for those that are accustomed to it. 

When used, swimlanes are typically oriented vertically, because time progresses down 

the page.

Let’s switch to a different model to illustrate this concept more clearly. Imagine 

a system that helps conference organizers to select speakers and then schedule their 

sessions for attendees. In this system, there are several actors, each making different 

decisions. The organizer is primarily responsible for putting on the conference and 

selecting the presentations. The speaker proposes presentations for the conference. 

And the attendee chooses which sessions to attend, rating them afterward. Figure 5-20 

illustrates each of these three actors as a separate regions.
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The organizer and speaker regions are roughly vertical swimlanes containing the 

decisions for which they are responsible. The process begins with the organizer creating 

the Conference and the speaker creating the Abstract. The organizer puts out a Call 

for Speakers, and speakers submit Proposals. If the proposal is accepted, then the 

organizer schedules the talk. The attendee only comes in at the tail end of the process to 

Attend and Rate sessions. Rather than show the attendee’s actions in a vertically distinct 

swimlane, Figure 5-20 depicts them in a small region. This choice still conveys the 

important information: who is responsible for each decision. It also makes it clear when 

a line crosses a responsibility boundary.

Figure 5-20.  Conference organizers, speakers, and attendees all have different 
responsibilities within a single model
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�Crossing Boundaries
Once the regions of responsibility are clearly arranged, an important feature of the model 

emerges. It takes the form of an edge crossing the boundary from one region to another. 

A decision that depends upon one outside of the decision maker’s control is an important 

point of collaboration. It indicates that one actor made a decision and then published it 

so that another actor can respond. These points in the model are referred to as pivots.

When a pivot appears in the model, we know that the information provided by one 

actor needs to be made visible to others. We have two examples in Figure 5-20: sending 

out a call for speakers and publishing a schedule. The conference organizer is responsible 

for both of these decisions. In the first, the organizer advertises the speaker call on mailing 

lists, social media, websites, and through their professional network. In the second, the 

organizer deploys the schedule to their website and mobile app and hands out printed 

pages. The audience for each publication is indicated by the tail of the arrow: the call for 

speakers is targeted toward speakers, while the schedule is intended for the attendees.

In a computer system, pivots often appear as interfaces between interdependent 

subsystems. This is especially true if the actors on each side of the pivot are members of 

different organizations. In this scenario, it is not uncommon for a pivot to be expressed 

as an API. The receiving actor—the one at the tail of the arrow—makes an API available 

to business partners so that they can publish facts such as the one at the head of the 

arrow. This would be the case if a conference organizer used an API for a CFP (call-for-

papers) website or social media platform to publish the call for speakers.

Even when actors are members of the same organization, pivots will often manifest 

as connections between subsystems. If actors are in different departments, for example, 

it is not uncommon for their systems to collaborate through message passing. In these 

scenarios, the fact at the head of the arrow will take the form of a message published to a 

topic or queue. This might also be accomplished with an internal API, a shared database 

connection, or a batch file. As an analyst, it is important to understand the connections 

that already exist and the opportunities available to interface with legacy systems.

Consumer-facing pivot points are also important features of a model. However, they 

often take very different forms within a deployed application. A public pivot point like 

the attendee’s arrow into schedule can simply appear as information on a web page. The 

information may be searchable, or it might be listed in its entirety. Usually, a page refresh 

is required to update the view, but for some pivot points, the website or mobile app may 

choose to provide notifications. Annotate the model with these requirements so that the 

development team can choose the correct implementation of the pivot.
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�Conversations
In some models, several pivots appear between two actors. Usually, the pivots will swap 

directions and form a chain of facts traveling back and forth between the two. These 

represent conversations happening between two actors through the system. One actor 

publishes some information, another actor responds to it, and the original actor builds 

upon that response. These conversations usually provide the greatest value of the system 

and are therefore the most important features to analyze.

The model in Figure 5-20 contains one example of a conversation. After the 

conference organizer publishes a Call for Speakers, the speaker responds with 

a Proposal. The organizer then responds with Accept or Reject. This represents a 

back-and-forth collaboration between the organizer and each speaker. The organizer 

is presumably having these conversations with many speakers simultaneously. Each 

conversation carries with it the entire context: which call for speakers, which proposal, 

and whether it was accepted or rejected.

�Publishing Facts

Conversations indicate that a multistep process must occur between two actors. Each 

actor is made aware of the decisions made on the opposite side of that conversation. 

This is even true of the last decision—the one for which there is no further response. In 

the preceding example, either Accept or Reject is the final decision in this conversation. 

Yet even though the speaker has no response in this model, they are made aware of the 

decision. Such will usually be the case with any conversation. Nevertheless, the model 

does not make that explicit. Use an annotated view or some other form of Factual query 

to make this assumption explicit.

Whereas the first pivot in the conversation is published to a wide audience, 

subsequent messages are directed to specific actors. The Call for Speakers is 

published on social media, but the subsequent acceptance or rejection takes place via 

direct message or email. This narrowing of scope can be inferred from the structure of 

the diagram. The Speaker is an indirect predecessor (an ancestor) of the Proposal. This 

relationship indicates that the speaker is particularly interested in responses to that 

proposal. That interest implies that the system needs some form of direct notification 

targeting a speaker. We will formalize this concept and explore the mechanisms to 

implement it in Chapter 12.
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�Integrating Subsystems

When the actors on opposite sides of a conversation are using different subsystems, each 

subsystem will usually need to carry a copy of the entire conversation. Whether they are in 

different organizations, or simply in different departments, their respective applications 

or microservices will store their own version of all of the data exchanged. The model 

shows what information this might include: follow the arrows up from the facts involved 

in the conversation. All of the facts in this upward cone—called the transitive closure—are 

likely to be duplicated to some degree between the systems. Figure 5-21 illustrates how 

this set can be found. If you discover that any information outside of the transitive closure 

is shared between the systems, then you have cause for concern. This information may 

change and will require other conversations if it is to be kept in sync.

On each side of the conversation, consideration must be given to data ownership 

and security. There may be requirements governing the movement of data outside 

of a country’s jurisdiction. Regulations and standards such as Europe’s General Data 

Protection Regulation (GDPR), the United States’ Health Insurance Portability and 

Accountability Act (HIPAA), the Payment Card Industry Data Security Standard (PCI-

DSS), or California Consumer Privacy Act (CCPA) will determine how data is controlled, 

stored, secured, and accessed. These guidelines may even include policies under which 

data must be destroyed. While destroying data is typically not allowed within a historical 

model, exceptions must be made to accommodate these requirements. Fortunately, the 

model helps identify the set of all records that must be expunged: it is the cone extending 

Figure 5-21.  The transitive closure includes all predecessors and their 
predecessors. It does not include successors
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down from the entity to be erased or forgotten, as depicted in Figure 5-22. When this 

cone crosses from one region into another, then the system requires policies to ensure 

that partners are in compliance.

Pivot points are important features of a model to analyze. They are opportunities for 

the application to interact with external systems. While the job of the analyst is not to 

design that integration point, it is important to understand where they are and how they 

will manifest. Different forms of interfaces will constrain the system in different ways. 

Some will provide real-time notification, while others will require scheduled polling or 

the occasional refresh. As an analyst, call out the locations of pivots, and gather as much 

information about their constraints and requirements as you can assemble.

�Valid Orderings
In building the model, we have assembled a graph of related decisions. Each arrow indicates 

that two decisions must be made in a certain order: the predecessor always occurs before the 

successor. But equally telling are the pairs of decisions between which there are no arrows. 

These are the places where order is fluid. Two facts may have a common ancestor, but as 

long as there is no path from one to the other, those two facts can occur in either order.

Look back at the model for seating and table assignment at a restaurant (Figure 5-23). 

The two facts Seat Party and Assignment have a common ancestor: Table. And yet, there 

is no way to walk in the direction of the arrows from one to the other. This indicates that 

Figure 5-22.  The records to be deleted from a historical model include all 
successors and their successors
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a party can be seated at a table before or after that table is assigned to a server. The order 

of these two decisions is not constrained.

Each of these two valid orderings—the party is seated before the table is assigned, 

or the table is assigned before the party is seated—implies a different requirement. First, 

because parties might already be seated when a server receives their table assignments, 

they should be told which tables are already occupied. And second, because parties 

might be seated afterward, a server should be notified when a party is seated at one of 

their tables. Either order is valid, but they evoke different behaviors from the system.

�Eliminating Race Conditions
In this simple example, we have only two valid orderings. But in a more realistic system, 

the number of orderings can grow significantly. Finding and accounting for all possible 

permutations of events can be a daunting task. An analyst might find that the job gets 

cumulatively more difficult as each new requirement is added. What starts as a simple 

list of a few possibilities eventually explodes into a labyrinth of edge cases, each one 

being revisited and expanded with every new feature.

It is important for an analyst to understand how a system behaves under different 

valid orderings of events. Describing each of the permutations will help testers identify 

scenarios that must be examined. Explaining the possible behaviors will help developers 

code for edge cases. And most importantly, comparing the outcomes of different valid 

orderings will help uncover race conditions. A race condition arises when the final state 

of a system depends upon the order in which events occurred. To avoid race conditions, 

the analyst must demonstrate that all valid orderings converge to the same state.

Fortunately, the Factual queries with which we annotate our views provide the proof 

that we need. When we express the behavior of the system using a Factual query, rather 

than a series of cause and effect, we are guaranteed that the state converges to the same 

set of results no matter which valid ordering occurred.

Figure 5-23.  No arrow or chain of arrows leads from seat party to assignment, or 
vice versa
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Furthermore, those queries also provide a mechanism for enumerating all valid 

orderings. They reveal the events that could possibly affect the information presented to 

a user. Moreover, they show us how to respond to each of those events. They indicate how 

to use facts that have come before to update the view or notify the user. From a single 

specification, we can derive the correct behavior for any possible ordering of events.

�Responding to Different Valid Orderings
Let’s revisit the view that shows the server their table assignments. Earlier, we only 

identified each assigned table. But now, let’s augment the view to also display the size of 

any party seated at that table. The modified annotation appears in Figure 5-24.

Concatenating the two annotations gives us a query for all of the parties assigned to 

a server. Let’s write that as a Factual query so we can better understand how this view 

behaves.

query partiesAssignedToServer(s: Server) {

  match a: Assignment where a.server = s

  then sp: SeatParty where sp.table = a.table

    such that not exists b: BusTable where b.seatParty = sp

}

Figure 5-24.  The annotated server home view now shows the total party size at 
each table
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When read directly, the query gives instructions on how to populate the view. First, 

find all assignments for the server. Then for each assignment, find all parties seated at 

the table. This interpretation of the query gives us the initial behavior of the system. It 

executes the query when the view is loaded to find all seated parties.

Now let’s examine the query to see how we should respond to changes. Because the 

results of the query are displayed to the server, we want to notify the server when the 

results change. Let’s look at the structure of the query to determine which events can 

cause that change.

The query is composed of three clauses: one based on Assignment, a second based 

on SeatParty, and a third based on BusTable. This is a clue that any of these three events 

can lead to a notification. We can split the query along these seams to determine which 

servers to notify of these events.

The first clause tells us that the view will change when there is a new Assignment. 

When the manager assigns a table to a server, the query will be affected for that server. 

The server will need to be notified. The assignment tells us exactly which server to notify. 

Any parties already seated at the assigned table will appear in this view as a result. More 

formally, we can write the following Factual queries to give us the server to notify and the 

parties that were added:

query serversToNotify(a: Assignment) {

  match a.server

}

query partiesAdded(a: Assignment) {

  match sp: SeatParty where sp.table = a.table

    such that not exists b: BusTable where b.seatParty = sp

}

This pair of queries describes the behavior of the system when an Assignment occurs 

after a SeatParty. Using the second query, we find all existing parties still seated at the 

newly assigned table. If the result is not empty—meaning that the table is occupied—

then the first query tells us which server to notify.

But there is another valid ordering that the partiesAssignedToServer query tells us 

about. The second clause of the query implies that the view will change when there is a 

new SeatParty. Upon seating a party, we have to notify the server assigned to that table. 

We can find the server by inverting the query. For completeness sake, the query giving 

the party added is listed as well.
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query serversToNotify(sp: SeatParty) {

  match a: Assignment where a.table = sp.table

  then a.server

}

query partiesAdded(sp: SeatParty) {

  match sp

}

Notice that the second query simply returns the new SeatParty fact. It has no 

additional clauses. In particular, it does not mention the BusTable fact, which would 

ordinarily remove it from the results. The reason for this is that this query describes how 

the system responds when a new SeatParty fact is created. At the moment of creation, 

there can be no BusTable fact: there has not been time for any successors to be created. 

The formal justification for this decision is given in Chapter 9.

Using the inverted query, we can determine the behavior of the system when 

Assignment happens before SeatParty. Given the fact that a party is being seated, we 

find all assignments for that table. Each assignment gives us a server. We notify each 

server that they have a new party: the one that was just seated.

The third clause—the creation of the BusTable fact—does not lead to the addition of 

parties. It leads to removal of parties from the server’s attention. If our goal was updating 

the view, we would need to include that scenario in our analysis. But as we are currently 

concerned with notification, we can make the decision only to notify servers of parties 

added, not removed. We will therefore skip the third scenario.

At first, you may need to convince yourself that this pair of behaviors gives all of the 

servers that need to be notified for each event, as well as all parties that the server needs 

to learn about. They cover all valid orderings of the events and let nothing fall through 

the cracks. You might want to reason through several different scenarios to determine 

why this is true.

Later, however, you will learn that inverting a query is a mechanical process. It can 

be done for any query, and it always produces a complete and correct result. You will 

learn how to perform this process in Chapter 9. The important takeaway for now is that 

analyzing a system from the perspective of Factual queries will reveal all of the valid 

orders of events. It describes exactly how the system should behave in each of those 

permutations. And it always converges to the same outcome.
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�Consequences
You have iterated over your model several times, and each pass has refined the facts a 

little bit more than the last. You have a clear picture of how the use cases break down 

into individual decisions. You know how those decisions relate to one another. You 

have identified the actors responsible for each decision. From that, you have identified 

pivots and conversations within the model that support points of collaboration. You’ve 

expressed the information that those actors see in terms of queries and from those 

identified which events lead to notifications and updates.

Now you can answer some very real questions about the capabilities of your 

model. From the design decisions that have led to this point, you can derive the 

constraints under which the resulting application will perform. You can determine 

the consequences of your modeling decisions. This will help you decide if these 

consequences are satisfactory and, if not, show you what compromise you need to make 

before you build the system.

The consequences of historical modeling are not arbitrary constraints. They limit our 

capabilities to only those things that can be easily done in a distributed system. If there is 

something that the model does not allow, then that is because implementing that feature 

in a distributed system would be prohibitive. It would cause blocking, loss of autonomy, 

or reduced scalability. Consider carefully whether you need that feature. If you do, you 

will need to implement it with a static model. You should be aware of the compromise 

that you are making when you do so. Let’s examine three of these constraints in detail: 

indexes, number of results, and order of results.

�Indexes
The first constraint that you will need to consider will be how the historical model can 

be indexed. This will affect uniqueness, navigation, and searching. For uniqueness 

constraints, consider that you cannot enforce that only one fact in a distributed 

system has a given value for one of its fields, unless that is the only field that it has. For 

navigation, consider that you cannot query for facts based on only one of its fields. 

The best you can do is to reconstruct a fact given all of its fields and then query for 

successors. Searching, on the other hand, is an activity best done outside of a historical 

model; determine what should be searchable and annotate how the information will be 

sourced.
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�Uniqueness Constraints

Uniqueness constraints are often quite desirable and yet difficult to implement in a 

distributed system. In an accounts receivable system, for example, you may wish to 

impose a uniqueness constraint on invoice number. If you have identified the invoice 

fact to have extra fields in addition to the invoice number, then you will not be able to 

enforce this constraint in a distributed system. You will need to collect all invoices into 

the same place and only then verify that no two have the same number. Please see the 

Outbox pattern in Chapter 8 for ways to implement this concept.

In a historical model, the entire collection of fields—including predecessors—

uniquely identifies a fact. Let’s use this premise to model an invoice with a uniqueness 

constraint. Invoice numbers are not universally unique; they are only unique within the 

scope of a single vendor. And so our Invoice fact would also have a Vendor predecessor. 

The combination of Vendor and invoice number is sufficient to identify an invoice. It 

must also therefore be sufficient to construct an Invoice fact, as illustrated in Figure 5-25.

And so to model an invoice that has a unique invoice number, you would need to 

ensure that the invoice number was the only field in the fact, aside from the Vendor 

predecessor. The fact could have no additional fields, such as shippingAddress or a 

Customer predecessor. Adding these fields would weaken the constraint on the invoice 

number and allow invoices with different addresses or for different customers to have 

the same number.

Invoice numbers are an example of a generated unique identifier. Not only must the 

uniqueness of the identifier be enforced, but a new invoice must also be given a new 

invoice number. Even if the unique identifier is isolated, as in Figure 5-25, generation 

must still occur in a single place. Make a note in your model that a certain field is 

generated, and define the rules by which it will be unique.

Figure 5-25.  An invoice that has a unique invoice number per vendor cannot 
have any other fields
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�Navigation

Next, let’s examine the effect of indexes on navigation. As we saw previously, facts are 

the starting point for queries in a view. As the user navigates from one view to the next, 

they select a new fact as the starting point of the next view. We cannot query from a field; 

only from a fact. If we want to start from a field, then we must be able to construct the 

corresponding fact. In other words, such starting points must be the only fields in their 

corresponding fact.

We observed this first when we extracted table number from the Seat Party fact to 

create the Table fact. Because of this choice, the table number can now be used as an 

indexed field. It isn’t the field that the system indexes, but rather the entire Table fact. 

Servers can navigate the data model as they select one table or another to drill into more 

detailed views.

Breaking out an indexed field into its own fact is the only way to initiate a historical 

query from a field. A SQL WHERE clause, on the other hand, can specify a field name, 

even if the target table contains more fields. But SQL executes on a single database, or 

database cluster. In other words, it executes at a given location. Even a distributed query 

using a map-reduce mechanism like Hadoop scales only to a given cluster. Both SQL and 

NoSQL queries alike are outside of the more constrained historical query. Make a note 

in the model if this kind of query is required, so that the development team can integrate 

accordingly.

�Searching

And finally, let us examine how indexing affects searching. Searching differs from other 

indexed query activities in that it allows much more flexibility. A search can match 

against part of a field, as in a prefix, substring, or SOUNDEX search. Searches can 

also include composition, such as Boolean operators or conditionals. Search engines 

typically have complex and expressive query languages.

Searching is an inherently location-dependent activity. All of the records that you 

search need to be in the same location. That single “location” may indeed be a cluster of 

distributed nodes, but we consider it a single location for a number of reasons. First, the 

nodes tend to be homogeneous: each one was created specifically to be a member of the 

cluster and therefore tends to run the same operating system, search engine, and data 

store. Second, the nodes tend to be co-located. They are rarely geographically dispersed 

and almost never operated by different organizations. And third, the number of nodes 
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tends to be well-known or constrained. The distributed search algorithm needs to have a 

good idea when all of the nodes have reported in so that it can aggregate and present the 

results.

Static data stores are best suited for search. Good examples include Elasticsearch or 

other Lucene variants. These data stores are optimized for indexing complex records or 

documents using a multitude of different kinds of indexes. Some indexes are designed 

for numerical data, allowing range filtering and sorting. Other indexes are optimized for 

filtering chunks of text for substring operations. To use these systems effectively, a team 

must understand how documents are to be fed into the search engine and the various 

ways in which they will be indexed. This is where analysis can provide a great deal of 

value.

Write a query that determines which facts are eligible to search. No user will execute 

that query and view all of the results; there will simply be too many. Instead, a service 

will use that query to subscribe to facts that need to be indexed. It will transform the 

facts into searchable records and add them to the data store. This service can then run 

continuously, looking for additions, modifications, and deletions of documents that 

must be applied. The mechanism for identifying those events is detailed in Chapter 9. 

Document the source query, each of its inverses, and the mapping from those facts into a 

searchable document.

�Expected Number of Results
The second constraint that a historical model imposes upon our system is the number 

of results that we can expect from any given query. In a SQL query, it is feasible to write 

a WHERE clause that you know will match at most one record. This occurs when the filter 

is based on a unique index or primary key. The database management system enforces 

these constraints and implicitly applies the assumption of a single result to the query. 

Developers will often carry this assumption into their code and ignore any subsequent 

rows that the query might return. Occasionally, they will take the extra precaution of 

logging or raising an exception when more than one result is returned. But they will 

almost never adjust their code to allow for more results.

A historical query, however, cannot restrict the number of expected results. The 

reason is the same as the analysis we just performed previously: the lack of uniqueness 

constraints. Since uniqueness cannot be scalably verified in a distributed system, 

historical models offer no such guarantee. This forces you to consider what should 
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happen if a query returns multiple results when you only expect one. Should the data be 

aggregated? Should the multiple results be listed? Should the view highlight more than 

one result as an issue to be resolved?

Sometimes a combination of factors makes it extremely unlikely that a query will 

return more than one result. We have seen a good example of this in the restaurant 

system. Recall that the host view removed a table from the list when a party was seated. 

This was accomplished by sourcing that list from the following query:

query tablesAvailable(r: Restaurant) {

  match t: Table where t.restaurant = r

    such that not exists s: SeatParty where s.table = t

      such that not exists b: BusTable where b.seatParty = s

}

Because this query is one of the sources for the command that creates SeatParty, 

this view will not construct two SeatParty facts with the same Table—at least not until 

the first seating has been bussed. This would therefore lead us to conclude that the query 

for parties seated at a given table would return at most one result.

query partiesAtTable(t: Table) {

  match s: SeatParty where s.table = t

    such that not exists b: BusTable where b.seatParty = sp

}

The model, however, makes no such guarantee. Our confidence in this constraint is 

based only upon the behavior of a single view. Consider other possibilities that would 

circumvent that view. Is it possible that another subsystem could assign parties? Could 

two different hosts have the view open at the same time? If we allow such flexibility, 

then it is possible that two seatings for the same table might occur. In the server view, we 

opted to allow for multiple results by summing the party sizes (note the Σ). Other valid 

choices might have been to list the parties, or alert the server of a potential problem. No 

matter what your choice, you must acknowledge that every query can return multiple 

results.

There is one exception, however. A query that is based entirely on predecessors 

is constrained by the cardinality of those predecessors. In other words, a query that 

matches on a singular predecessor will always return one result. If that predecessor is 

optional, then it could return no results. But unless that predecessor has a cardinality 
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of many (*), then it will return no more than one. We’ve seen an example of such a query 

when determining which server to notify of a new table assignment.

query serverToNotify(a: Assignment) {

  match a.server

}

This query will always return exactly one server. Queries like this often arise as a 

result of query inversion. They rarely occur directly in views. The reason is simple: these 

queries cannot change. The facts upon which they are based are immutable. No new fact 

will cause this existing fact to have a different predecessor.

�No Implicit Order
The final constraint on distributed systems—as exposed by the historical model—is 

that query results are not ordered. Even when two nodes have reached consensus and 

return the same set of facts from a query, they could return those facts in very different 

orders. We would like to believe that the order in which facts appear is the order in which 

they were created. But in a distributed system, there is always the possibility that two 

decisions were made concurrently, each without knowledge of the other. When this 

happens, the nodes on which those decisions were first captured will certainly disagree 

to the order in which they were made.

Implicitly, the results of queries are sets, not lists. Sets have no order, only 

membership. There is nothing that can be inferred from the order of the results, only 

from the presence or absence of facts. Software, however, is full of lists. Iterating over a 

collection in order is a common feature of most languages. We cannot even present an 

unordered set to the user; it will always appear as a list. If we iterate over the results of 

a query, then we will find that they are in some order. We just have to be careful not to 

depend upon which order.

One goal of a distributed system is to have different nodes reach a consistent state. 

When we build a system based on the principles of Historical Modeling, we can use 

CRDTs (conflict-free replicated data types) to prove that we will reach consistency, 

as shown in Chapter 4. The data type that we chose was the set, not the list. Had we 

chosen to use lists, the math would not have worked out. As it is, we have proven that 

our sets will converge. The final step is to prove that the projections of those sets—the 

information that we display to the user—will converge as well.
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�Aggregates

The projections that we present will be one of two kinds: aggregates or iterations. 

Let’s examine aggregates first. An aggregate is simply a value computed from an 

ordered collection. The sum of a list of numbers is an aggregate. Maximum, product, 

and standard deviation are also aggregate functions that can be computed over a 

list of numbers. One important feature of all of these aggregate functions is that they 

are commutative. The sum is the same no matter the order of the numbers you add. 

The same can be said for maximum, product, and standard deviation. Commutative 

aggregates are useful because they ignore the order of the list.

Other kinds of aggregates are not commutative. One example that appears frequently 

is string concatenation. Given a list of strings, it is common to append them to one 

another, separated by commas. While this aggregate is useful, it is not commutative; the 

result of string concatenation depends upon the order of those strings. As a result, two 

nodes may compute different results. Before using this kind of aggregate, you should first 

ensure that the facts are in a deterministic order.

�Iterations

This brings us to the second kind of projection that we need to consider: the iteration. 

Iterations appear on the user interface as lists. They also appear as non-commutative 

aggregates such as string concatenation. An iteration makes it apparent to the user 

when there is more than one result and implies a certain order to those results. Since the 

results don’t have an implicit order, an iteration needs to impose one.

Find some feature of each fact that can determine an order. For example, you might 

order Table entities by their table number. Before presenting the results to the user, 

order by that field. As long as every node orders results in the same way, the iteration (or 

non-commutative aggregate) will appear to be consistent.

You might find that you want to put facts in order according to a mutable property. 

Being mutable, these fields are not members of the facts themselves. They are members 

of successor facts, which might not be present at every node at the same time. When this 

is the case, be sure to document a further query that returns these property facts. Express 

the order of the main results in terms of a projection of the secondary results. As you do 

so, remember that the secondary query can also return multiple results, and so it too 

needs a commutative aggregate or deterministic ordering.
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�Creation Order

Finally, there is one way to deterministically order events in a historical model by 

creation time: record the creation time as a field. This is certainly the simplest and 

most direct way to impose a deterministic order on results. However, this has two 

consequences. First, it requires that the clocks on the source nodes be synchronized. To 

the extent that the clocks are out of sync, new facts might be inserted before older ones. 

Second, and more importantly, this forces the creation time into the identity of the fact. 

Two facts that are created at different times, but would otherwise have the same field 

values, will now be considered as discrete facts. Sometimes this is desired behavior; 

other times it is not. Only include the creation time in a fact if you need an extra 

identifier, as discussed in the Identity section in Chapter 4.

The choices you make while analyzing a problem will have consequences upon 

the final implementation. Some things that are easy to say are not easy to implement. 

Even thinking about the problem in terms of a small set of nodes or collaborators is not 

sufficient to expose all of these assumptions. Distributed systems impose their own 

unique set of constraints.

The rules of Historical Modeling are deliberately restrictive so that the consequences 

of these choices become clear. Rather than allowing uniqueness or search on any field, 

historical models can only be indexed on the fact itself. Rather than being able to restrict 

the number of possible results, historical queries always allow multiples. And rather 

than implying an order, historical results require that projections either be commutative 

or explicit. Augment your analysis with the extra information necessary to clarify your 

assumptions, so that the team understands any compromises they might have to make 

before they write a single line of code.
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CHAPTER 6

State Transitions
Among the most powerful tools available to a software developer is the finite state 

machine. This mechanism—sometimes illustrated as a state transition diagram—

describes a multistep process. The machine moves from one state to the next as it 

encounters input. Each unit of input determines which arc of the graph the state 

machine follows. That arc decides how the input is processed and what state the 

machine finds itself in to receive the next unit.

This tool is a natural choice for solving problems such as parsing computer 

languages and input files. The specification for the JSON data interchange format,1 for 

example, is described in terms of state machines. The language is broken down into 

discrete structures, each defined by a state transition diagram. When the parser expects 

to see a particular structure, it enters into the states depicted in the graph. For example, 

the diagram for parsing an object can be drawn as Figure 6-1.

The diagram as it appears in the specification is drawn a bit differently, but here we 

name each of the states and label the edges with the input that causes that transition. 

This is a common way of drawing state transition diagrams. A machine’s state is mutable: 

it changes as the machine consumes input.

1�The JSON Data Interchange Syntax. Standard ECMA-404. ECMA International. Second Edition, 
December 2017.

Figure 6-1.  State machine for parsing a JSON object, as described in 
ECMA-404

https://doi.org/10.1007/978-1-4842-5955-9_6#DOI
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Given the expressive power of state machines, it is no surprise that many people 

have applied them to distributed systems. Chris Patterson, creator of the distributed 

systems framework MassTransit, recommends using state machines for managing 

sagas.2 Johnathan Oliver, industry-recognized expert on distributed systems, observes 

that “Process is best implemented using a state machine.”3 These and other leaders in 

this space have demonstrated how to use state machines to manage business processes, 

break up long-running transactions, and protect against message duplication and 

ordering.

My experience, however, has shown that state machines are a poor choice for both 

understanding and implementing business processes in a distributed system. State 

machines are good for implementing parsers, but not distributed business processes. 

All of the input to a parser comes from a single source: a block of memory or a character 

stream. Input to a business process, on the other hand, arrives from many sources. It 

often represents business decisions made by different people with different views of the 

system. Parsing happens all in one place, so knowing the state of the parser is easy. But 

business processes happen in many locations simultaneously, making it difficult to know 

the single state of the system.

Let’s explore some of the challenges that you can expect to face while applying state 

machines to distributed systems. We will first try to solve those problems using the tools 

readily at hand. But eventually we will find that the problem directs us toward a different 

solution. We’ll discover how representing state transitions as immutable facts solves both 

analytical and technical problems in distributed systems. And then we will see how to 

rebuild both our understanding and our implementation on top of those new techniques.

�Many Properties
When working on a supply chain management system, I ran into the first of the problems 

with state transition at scale. We were using an enterprise resource planning (ERP) 

solution to build the application. Like many ERP systems, the one we were using was 

extremely customizable. It allowed application developers to define their own entities, 

properties, and operations. It also allowed them to define a state machine.

2�Chis Patterson, State Machine for Managing Sagas. Los Techies. 2009. https://lostechies.com/
chrispatterson/2009/01/17/state-machine-for-managing-sagas/

3�Sagas with Event Sourcing. https://blog.jonathanoliver.com/cqrs-sagas-with-event- 
sourcing-part-i-of-ii/

Chapter 6  State Transitions

https://lostechies.com/chrispatterson/2009/01/17/state-machine-for-managing-sagas/
https://lostechies.com/chrispatterson/2009/01/17/state-machine-for-managing-sagas/
https://blog.jonathanoliver.com/cqrs-sagas-with-event-sourcing-part-i-of-ii/
https://blog.jonathanoliver.com/cqrs-sagas-with-event-sourcing-part-i-of-ii/


185

Within the ERP system, a developer would identify the states that an entity would 

transition through as it progressed along a business process. They would define which 

state transitions were permitted and which were forbidden. Each transition was an arrow 

between two states and represented a step in the process. Developers would attach 

actions to those steps in order to customize the process.

For simple state machines, this model was manageable. But as the system became 

more complex, we found ourselves multiplying new features by the number of existing 

states. It became apparent to us that the state of an entity represented more than one 

property. Sometimes those properties interacted, and other times they did not.

�Shipping and Billing
To demonstrate the problem, let’s examine a somewhat simpler example. Suppose we 

have built a system that accepts orders for products in a warehouse. Once the order 

is placed, the shipping department picks the product and ships it to the customer. 

Meanwhile, the billing department invoices the customer and receives payment. We 

want to allow these two operations to happen independently. Since we are using an ERP 

system that defines a state machine per entity, we design a graph of states that combines 

the two ideas, like the one in Figure 6-2.

Figure 6-2.  States of an order: billing moves to the left, and shipping moves down
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This state machine allows shipping and billing to operate orthogonally. As the 

shipping department picks and ships orders, the state moves down the page. And as the 

billing department invoices and receives payment, the state moves across. Eventually, 

like a cab driver making their way through Manhattan, the state reaches the lower right.

�Introducing Back-Orders
After the system has been in operation for a while, the company realizes that they are 

turning away business when they run out of stock. To remedy this situation, they expand 

their operations to include back-orders. When a product is out of stock, rather than 

pick it, the shipping department orders it from their supplier. They can either receive it 

themselves and then ship it to the customer, or they can ask the supplier to drop-ship it 

directly to its destination. The modified state transition diagram appears in Figure 6-3.

Adding the back-order feature required us to add three states to the diagram. While 

the product is back-ordered, the order can still be invoiced and paid. We therefore need 

to combine the back-ordered state with both the invoiced and paid states. Because this 

new feature has no interaction with the existing billing feature, the new transitions have 

exactly the same actions associated with them. There is no difference between drop-

shipping an order before or after it has been paid.

Figure 6-3.  Out-of-stock products are back-ordered. Back-ordering does not 
interact with billing
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As we add features to this model, we will find that we multiply the number of new 

states by the number of existing states in independent features. There were three states in 

the billing process, so one new state became three. The more independent processes are 

at work within a single state machine, the larger this combinatorial explosion becomes.

�Cancellations and Returns
After a bit more time, the company decides that it is not properly accounting for 

cancellations and returns. A cancellation occurs before the order is shipped and may 

involve a refund. A return, on the other hand, occurs after the order has shipped and 

requires restocking. The new state transition diagram is in Figure 6-4.

A cancellation is handled almost entirely by the billing department. Because the 

product has not yet been shipped, there is little work for the shipping department to do. 

They simply have to recognize that an order has transitioned and that the ship operation 

is no longer allowed. There is no arrow from the Canceled state labeled ship.

A return, on the other hand, is handled by the shipping department. The item has 

already been shipped, and so they need to restock it upon receipt. Only the transition 

from Shipped and Paid to Returned involves the billing department. In that situation, 

they must issue a refund.

Figure 6-4.  Cancellations happen before shipping; returns happen afterward
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When adding features that interact with existing states, we can often avoid a 

combinatorial explosion. However, we pay the price in terms of complexity. We must 

now examine every existing state to determine the correct course of action should that 

new operation occur at that time. Some of those transitions will require compensating 

actions, while others will not.

�Parallel State Machines
An application developer faced with this issue might reach for the nearest solution 

at hand. This solution is not the best, but it is the most readily available. With a small 

refactoring, a single co-mingled state can be broken into two or more parallel states. In 

this particular example, the simple fix for the problem is shown in Figure 6-5.

Instead of a single state, the order entity has two. The logistics state keeps track of the 

process as seen by the shipping department. The financial state captures the process of 

the billing department. Insofar as those processes can progress independently, these two 

state machines run in parallel.

When those processes interact, however, an operation needs to be sensitive to both 

states at the same time. If an order is returned, we expect the logistics state to start from 

Shipped. The operation will transition it to Returned. However, it must also consider 

whether the financial state is Paid. If so, it must issue a refund. In any case, it must move 

the financial state to Canceled so that the customer is not charged.

Figure 6-5.  The logistics and financial states of the order entity are separated
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Parallel state machines relieve the combinatorial explosion that occurs when one 

state models independent processes. They also make the complexity a little easier to 

express, because edge cases don’t need to be considered for every distinct combination. 

They are near to hand for an application developer using mutation to build a system. But 

they are not the ideal solution; they still leave several problems unsolved. One of those 

problems has to do with aggregates—entities with many children.

�Many Children
After solving the problem of an entity having many properties, we are still left with 

the problem of an entity having many children. On the one hand, each child might 

individually have its own state. But, on the other, the state of the parent might depend 

upon the state of the children. This leads to an interaction among state machines even as 

they are created and destroyed dynamically.

The parent state machine tracks an overall process. At a certain point, the process 

branches. Each child entity must individually progress through a child process in 

parallel. Only after all children have finished do we allow the parent to proceed. After the 

main process has advanced, adding a child might arrest progress and move the parent 

state backward. Deleting that child should again push the parent state forward.

Describing all of these interactions as state transitions becomes incrementally more 

tricky, as each new scenario spins a growing web of edge cases. Our first inclination is to 

create a mechanical solution: “When in this state and this happens, do that and move to 

that state.” Such logic quickly becomes difficult to reason through. The web of edge cases 

becomes a hiding place for defects. We cut this Gordian Knot by representing state not as 

a mechanical set of transitions, but as a declarative function.

�Software Issue Tracking
One of my clients uses a popular issue tracking solution for managing bug fixes, features, 

user stories, and other changes to their software. Like an ERP system, this program lets 

users customize their workflow by defining states and transitions. By default, a bug 

might start in Triage, transition through In Progress and In Test, and finally end up 

in Done. My client, however, has modified this workflow. They are required to ensure that 

all changes have been reviewed for regulatory compliance. They have therefore inserted 

Awaiting Review before the change is In Test. The modified state transition diagram of 

a defect appears in Figure 6-6.
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Features go through a similar workflow. Every software change is motivated by a 

feature or a bug fix. Because of this, my client can be confident that every change that 

makes it to production has gone through the review step. This solves the problem that 

was originally before them: ensuring compliance. However, it creates others.

Every software change is a commit in the version control system. It may take several 

commits to fix a bug. It is common for developers to separate refactoring changes from 

fixing changes to make the intent more clear. And yet, the entire bug is reviewed as a 

single unit. Because this state transition diagram is implemented in a commercial issue 

tracking tool, my client is constrained in how they can break down the entities. The tool 

does not allow them to represent the state of a commit as it relates to an issue. And so, 

they capture the review at the Bug entity and not the Commit entity.

�Child State
To solve this problem without modifying the issue tracking system, my client employs 

other third-party tools. One of them is a change review system that allows developers 

to comment on individual lines of each commit. Within this tool, developers and 

reviewers have a conversation over the code to discuss motivation, recommendations, 

and possible corrections. At the end of this process, the reviewer changes the state of the 

commit. The state transition diagram applied at the commit level appears in Figure 6-7.

Combining these two tools requires discipline. A developer moves the issue tracking 

tool to Awaiting Review and then invites reviewers to join the conversation in the 

Figure 6-7.  The state transition diagram of a commit, as implemented in a 
separate tool

Figure 6-6.  The state transition diagram for a software defect, modified to ensure 
changes are reviewed
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change review system. Reviewers move the commits through their individual workflows, 

requesting additional commits to resolve any issues that come up. Only after all commits 

in the branch are in Accepted is the code merged and the defect moved to In Test.

�Composite State Transition Diagrams
Assuming that we could combine these two tools to suit our needs, a developer might 

choose to merge the two state transition diagrams. A bug would move through the 

parent state machine, and each commit would move through the child state machine. 

The composite state transition diagram appears in Figure 6-8.

To implement this diagram mechanically, we need to consider how the state of the 

parent interacts with the state of the children. If the parent is Awaiting Review and 

a child becomes Accepted, check whether all other children are also Accepted; if so, 

transition the parent to In Test. If a Rejected child is removed from the branch, see if it 

was the last one; if all others are Accepted, move the parent forward. And if a parent is In 

Test or Done and a new child is added, move the parent back to Awaiting Review.

Does that mechanism account for all possible scenarios? It is difficult to tell. The 

burden of proof is on the developer implementing the solution. Verifying all of those edge 

cases is up to the tester. And as we add more states, the number of edge cases grows.

�A Declarative Function of States
Rather than a mechanical solution, we can define a declarative one. Declarative 

solutions lend themselves to proof much more easily than mechanical solutions. It 

is easy to look at a declarative statement and see whether all possible conditions are 

listed. The function computes the overall workflow based on the states of the individual 

components.

Figure 6-8.  A composite state transition diagram allows the parent to progress 
only after all children have reached a terminal state
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We can describe the workflow of a bug as a function of the parent and child states. 

For this we will invoke a universal quantifier. That’s just a fancy phrase meaning “for 

all.” The parent states Triage and In Progress map directly to the workflow. But the 

difference between Awaiting Review and In Test depends upon the child states.  

A bug is in test if, for all commits in the branch, the commit is in Accepted. Otherwise,  

it is awaiting review.

This logic can be written declaratively as in the following pseudo code:

workflow (bug) =

  if bug.state = Triage

    then Triage

  else if bug.state = InProgress

    then InProgress

  else if not for all commit in bug.branch, commit.state = Accepted

    then AwaitingReview

  else if bug.state = InTest

    then InTest

  else Done

The check for all commits being Accepted stops the workflow from progressing 

beyond Awaiting Review. It doesn’t matter if the parent state has moved on; any child 

that is not completed will hold the workflow back. This declarative description means 

that we don’t have to write a machine that handles every edge case. If a new commit is 

added while the bug is in test, the universal quantifier causes this Boolean expression 

to return to awaiting review. And if a commit is removed from the branch, the universal 

quantifier reevaluates and allows the workflow to progress. Without a declarative 

expression, a developer would have to code for those edge cases and prove that all 

possible scenarios have been explored.

The declarative function finds the edge cases caused by interactions between parent 

and child states. Writing the function in terms of states is a short step from managing 

state transitions through mutation. However, it still is not the ideal solution. Now that we 

have a couple of examples at our disposal, and have explored a few candidate solutions, 

we can now dive into the more difficult issue of conditional validation. This will finally 

lead us to abandon solutions based on mutability.
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�Conditional Validation
As entities move through a process, they don’t just change state. They also accumulate 

data. As we transition an entity from one state to the next, we will want to record that 

new data. We ideally perform both operations within a single transaction so that the 

presence of data is consistent with the current state.

Depending upon the state of the entity, data fields might be null, or they might 

require a value. The validation of the data fields is conditional upon the state of the 

entity. The type systems of our database and programming language tools typically do 

not capture such conditional validation. So we find ourselves weakening the declared 

types in order to compensate.

We’ve examined two examples: order fulfillment and software change tracking. In 

each of these examples, we found solutions to state transition issues as they arose. But 

we haven’t analyzed the other fields of the entities. Let’s take a look at those fields and 

see if we have any conditional validation.

�Nullability Based on State
In the order fulfillment example, we want to record information about the order and 

each item that it contains. For the order, we record the customer, shipping address, and 

billing address. For each item, we capture the SKU, current price, and quantity. When we 

ship the item, we will also want to include the tracking number. Where does this belong?

At first, it might seem that the tracking number should be part of the order, as shown 

in Figure 6-9. When the order is placed, we don’t yet have a tracking number, so we 

allow this field to be null. It is only filled in when the order is shipped. And so a shipped 

order will have a non-null tracking number. Setting the state to Shipped and filling in the 

tracking number would happen in a single transaction.
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But perhaps the logistics state should be part of the item, as in Figure 6-10. Each item 

can be back-ordered, picked, shipped, and returned individually. If so, it makes sense to 

put the tracking number on the item instead of the order. Again, when an item is added 

to an order, it doesn’t have a tracking number. And so this field is null until the item is 

shipped.

Whether we put the tracking number on the order or on the item, we face conditional 

validation. The tracking number must be null if the logistics state is Ordered, 

Backordered, or Picked. It must not be null if the logistics state is Shipped or Returned. 

Once we have passed a certain point in the workflow, the tracking number is expected to 

be present. Validation of this field is conditional upon the state of the entity.

Figure 6-10.  Tracking number is a nullable field in item, where we have moved 
logistics state

Figure 6-9.  Tracking number is a nullable field in order, which also holds  
logistics state
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�Cycles in State Transition
Let’s look at another customization that my client made to the software change tracking 

system. The system allows users to add custom fields to bugs and features. My customer 

added a field to keep track of the tester who verified the change. When the bug or feature 

is first created, this field is null. Once it has been tested, the tester fills in their own name 

and moves it to Done. Filling in the field and changing the state are both done in the same 

transaction.

This new field completes the picture. From the commit, we had a permanent record 

of who made the change. From the review system, we know who reviewed each commit. 

And now this new field tells us who tested the fix. But the field also creates a problem.

There’s an arrow in the state transition diagram that we haven’t drawn yet. A tester 

can evaluate a change and find that it is defective. If so, they fill in their name and move 

it back to Triage. This backward arrow creates a cycle, as shown in Figure 6-11.

This cycle means that we cannot write the same kind of conditional validation that 

we saw earlier. We cannot say with certainty that if a bug is in Triage or In Progress, 

the Tester field is null. It will be null on the first time through, but not if the bug was 

previously failed. Worse yet, what happens if a different tester verifies the bug the second 

time? Which name ends up in the field?

�Collect Data During Transitions
Conditional validation forced us to declare fields as nullable when they actually record 

required data. Once the state has progressed beyond a certain point, we want to ensure 

that that data is captured. We never want to allow tracking number to be null once an 

order has shipped. Nor do we want to allow tester to be null once the bug has been 

Figure 6-11.  Failing a test moves the bug back to the beginning of the 
workflow
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tested. To change these fields so that they don’t allow nulls, we need to remove them 

from their entities and place them in a new object. This object will be created only when 

the entity transitions to the target state.

For example, when an order is shipped, we can create a Shipment object, shown in 

Figure 6-12. The tracking number is not a field of the order, nor is it a field of the item. 

Instead, it is a field of the Shipment. This object records which items were shipped and 

collects other data generated at that time, such as the tracking number.

With this model, we can enforce that the tracking number is not null. Before the 

order is shipped, no Shipment object exists. But afterward, the object is created, and the 

tracking number has to be filled in.

Consider the bug tracker example. What object we can move the Tester field into? 

When a tester fails a bug fix, they can create a Fail object. This object could capture not 

only the tester but also the description of the test failure, expected result, and perhaps 

screenshots, logs, and other supporting materials. Conversely, when a tester passes a 

bug fix, they can create a Pass object. This object captures the tester and any additional 

notes. These two objects are shown in Figure 6-13.

Figure 6-12.  An order has multiple shipments, each with a non-nullable tracking 
number
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This model creates two new objects. Each object has a Tester field which cannot be 

null. We no longer have conditional validation; before the bug is tested, these objects 

don’t even exist. In addition, we have solved the problem with state cycles. Each time a 

bug is tested, we create a new object. Each one can have a different Tester, and previous 

values are never overwritten.

�Immutable State Transitions
By introducing new objects, we have solved the problem of conditional nullability. 

Before an entity moves beyond a certain state, the additional object does not exist. 

Afterward, the object contains non-nullable fields. We no longer need to store the field 

within the entity. This means that we don’t need to compromise the field declaration to 

allow the weaker type.

We have also solved the problem of cycles. Each time an entity transitions through 

an iteration, it accumulates more data. Each pass is recorded in a separate object. Prior 

passes are not overwritten.

In either case, the new object is immutable. Each of these objects represents a 

historical fact. There is no reason to go back in time and change these facts. We’ve 

replaced mutation with object creation. Perhaps now we can use these immutable 

objects to eliminate even the mutable field recording the state itself.

Figure 6-13.  A bug has many fail objects and zero or one pass object. These objects 
record the tester

Chapter 6  State Transitions



198

�The Question Behind State
The problems of many properties, many entities, and conditional validation have led us 

to a place where we record information about a state transition in an immutable object. 

Our models currently have one or more mutable state fields on each entity, in addition to 

the immutable historical records. The application both changes state and adds historical 

detail in a single transaction, ensuring that the two are consistent. This leads one to 

wonder: is one of these redundant?

�Translating a State Machine to a Historical Model
Let’s go through each of the examples we’ve explored so far and construct a historical 

model of the state transitions. If we can compute the state of each entity from these 

historical facts, then we can be assured that the mutable state field is redundant. With 

that assurance, we can eliminate the redundant fields from data storage. To store 

something that could be computed from something else is to invite defects. When 

redundant fields exist, it is possible to store an inconsistent set of values. Eliminating the 

redundant field eliminates this class of defects.

Once we have a way of computing the current state, we can ask a larger question: 

what is the reason for determining the state of an entity in the first place? By examining 

what state is actually used for, we can map those questions down to the historical facts. 

This analysis will reveal that in many domains, we do not need to know the state of an 

entity at all. We can answer the questions behind state directly from the historical facts.

�Order Fulfillment

In the order fulfillment system, we tracked the financial state of an order and the logistics 

state of an item through a pair of parallel state machines. Let’s model each of these 

state machines as a history of facts, starting with the financial state. The documents 

that affect financial state appear in Figure 6-14. I’ve associated each document with its 

predecessors to represent causality.
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The financial state of an order can then be written as a function of these documents. 

We will use existential quantifiers or statements of the form “there exists.” If there exists 

an invoice for the order, then the order has been invoiced. If there exists a payment for 

that invoice, then the order has been paid.

financial state (order) =

  if there exists Cancellation

    then Canceled

  else if there exists Invoice then

    if there exists Payment then

      if there exists Refund then

        Canceled

      else Paid

    else Invoiced

  else Ordered

Figure 6-14.  Historical facts representing the documents that the billing 
department manages
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Adding a new document to history affects the financial state of the order. We don’t 

need any handlers to receive the documents and update the state. There is no machine 

for processing messages. The state is simply a declarative function on the existence of 

documents.

The logistics state is a little more complicated. We captured the tracking number in 

an immutable Shipment object to indicate that multiple items were shipped for a given 

order. The fact type diagram in Figure 6-15 retains that relationship between a shipment, 

its order, and the shipped items, while also accounting for other activities that affect 

logistics state.

When the shipping department picks items from the warehouse, they produce a 

packing slip. The existence of a packing slip therefore indicates that those items have 

been picked. That package will later be shipped, at which time it receives a tracking 

number.

Meanwhile, out-of-stock items will be back-ordered. A set of back-ordered items can 

be drop-shipped or received. If received, the warehouse will create a new packing slip, 

resulting in a shipment.

Figure 6-15.  Historical facts representing actions of the shipping department
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Items can be returned from either a drop shipment or a warehouse shipment. The 

entire shipment need not be returned, so the return has to specify which items were 

included. The history of facts tells the story. The following function determines the 

current state of an item based on the existence of those facts:

logistics state (item) =

  if there exists PackingSlip

    if there exists Shipment

      if there exists Return

        then Returned

      else Shipped

    else Picked

  else if there exists Backorder

    if there exists Receipt

      then Received

    else if there exists DropShipment

      if there exists Return

        then Returned

      else DropShipped

    else BackOrdered

  else Ordered

These two histories live side by side in the order fulfillment system. The billing 

department is concerned primarily with the financial documents, while the shipping 

department deals with the logistics events. They intersect only in reconciling payments 

with shipments and refunds with returns. With one additional query, we can identify 

orders that are out of balance and need to be corrected. We will write that query a little 

later. Meanwhile, let’s design a historical model for the software change tracking system.

�Software Change Tracking

Taking another look at the software change tracking system, we can identify the state 

transitions that take place with respect to a bug or a commit. We’ve identified two such 

transitions already: Pass and Fail. The other transitions appear as arrows in the state 

transition diagram. In Figure 6-16, we label those arrows so that we can see the full set.
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Pivoting from a state transition diagram into a fact type graph, each of these 

transitions becomes a fact. We associate the facts with the entities that they affect. We 

also associate each fact with the state transition that preceded it. This ensures that we 

cannot take a state transition too early. The resulting fact type graph appears in  

Figure 6-17.

Figure 6-17.  A graph of facts representing the state transitions of a software 
change tracking system

Figure 6-16.  Transitions in the software change tracking system are labeled with 
the actions that trigger them
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The transition Begin Test is performed on the bug, and so its predecessor is the last 

action performed on that bug: Begin Work. However, it relies upon all of the commits 

pushed as a result of that work being accepted. It therefore also has a predecessor 

collection of Accept facts. From this graph of historical facts, we can determine the state 

of an individual commit, or of the bug as a whole. Let’s start with a function that gives the 

state of a commit. We express this function in terms of the Push Commit fact, as we don’t 

need to consider commits that haven’t been pushed.

state (pushCommit) =

  if exists BeginReview

    if exists Reject

      then Rejected

    else if exists Accept

      then Accepted

    else InReview

  else Open

This function expresses a subtle but important design decision: rejection vetoes 

acceptance. It tests for a Reject fact before it tests for an Accept fact. If somehow both 

exist, the commit is rejected.

Now that we have this function, we can use it to express the state of the bug. The bug’s 

state is based not only on the existence of bug-related actions but also the state of all 

commits. For that reason, this function combines both existential and universal quantifiers.

state (bug) =

  if there exists BeginWork

    if there exists PushCommit

      if for all pushCommit in branch, state(pushCommit) = Accepted

      and there exists BeginTest

        if there exists Fail

          then Triage

        else if there exists Pass

          then Done

        else InTest

      else AwaitingReview

    else InProgress

  else Triage
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Once again, failure vetoes passage. Furthermore, the bug requires both that all 

commits are accepted and that we explicitly begin testing. If either of these checks fails, 

it remains awaiting review. We don’t have to code for the combination of these events to 

advance the state of the bug. The declarative nature of a state function takes care of that 

for us.

�Reasons for Computing State
This exercise demonstrates that we can determine the state of an entity based on the 

existence of historical facts. Given this, we should drop the mutable state field from the 

entity records. Doing so eliminates the possibility that we fail to update it correctly while 

inserting a new historical fact.

Having dropped the mutable state field, we can now consider why we had it in the 

first place. Under what circumstances are we going to call these new declarative state 

functions? What is the question that we were using state to answer?

�Handling the Next Action

State machine–based patterns show us one of the reasons that we want to know the state 

of an entity: to understand how to respond to the next action. A message handler usually 

follows a predictable series of steps:

•	 Look up the entity (by correlation ID or some other property of the 

message).

•	 Determine the state of the entity.

•	 Validate the message.

•	 Operate on the entity.

•	 Update the state.

The state determines how to perform the subsequent operations. We could run the 

declarative function to determine the current state and then from that state determine 

the strategy for handling a message. Or we could skip a step and simply determine the 

strategy directly from history. In many domains, deciding how to respond to an action is 

much simpler than determining state.

For example, in the order fulfillment system, the strategy for responding to a 

cancellation request depends upon the financial state of the order. If the order is Paid, 
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then we issue a refund. If not, then we simply cancel the order. Determining the state of 

the order is somewhat complicated, as we saw earlier. And yet determining whether an 

order is paid is much simpler:

paid (order) =

  there exists Invoice

    such that there exists Payment

      such that there does not exist Refund

Furthermore, the work of determining whether an order is paid is exactly the work 

required to find the payments that need to be refunded. And so we can boil it down to a 

single Factual query:

query nonRefundedPayments(o: Order) {

  match p: Payment where p.invoice.order = o

    such that not exists r: Refund where r.payment = p

}

When we receive a request to cancel an order, we run this query. If it finds any 

payments that have not yet been refunded, we issue refunds for them. Doing so has the 

side effect of transitioning the order to the Canceled state if we were so inclined as to 

run it. But if we can determine how to handle the next action without running the state 

function, why run it?

�Finding Work Items

In addition to determining how to handle the next action for an entity, states are often 

used to find all entities requiring a next action. Rather than looking up the state for a 

given entity, systems will query for all entities that are in a given state. One common 

reason for running such a query is to present the results to the user as a list of work items.

For example, a software change tracking system will commonly display issues in 

swimlanes. Each column represents a state. When a user is looking for work that needs 

to be done, they will scan the issues in a given state and select one to pull forward. A 

developer would look in the Triage swimlane for bugs that are ready to be worked on. 

Going through all of the bugs and running the state function would be a slow way to 

provide this user interface. Fortunately, a Factual query gives us those results directly 

from history.
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query bugsInTriage(s: Sprint) {

  match b: Bug where b.sprint = s

    such that not exists bw: BeginWork where bw.bug = b

}

For the sake of this query, we put all of the bugs in a sprint. This gives us a starting 

point for the query. We first look for all bugs in the sprint and then limit them to only 

those for which work has not yet begun. In other words, we only want the work items 

that will accept our next action. The developer can choose any one of them and create a 

new Begin Work fact, thus removing it from the swimlane.

That was a pretty simple example. What about something more complicated? A 

tester, for example, might be looking for all of the bugs that are In Test so that they can 

select one to verify. A bug is only in test if no commits have been reviewed and rejected.

query bugsInTest(s: Sprint) {

  match bw: BeginWork where bw.bug.sprint = s

    such that not exists r: Reject

      where r.beginReview.pushCommit.beginWork = bw

  then bt: BeginTest where bt.beginWork = bw

    such that not exists p: Pass where p.beginTest = bt

    and not exists f: Fail where f.beginTest = bt

}

The last clause filters the list based on the next action. We are only concerned with 

bugs that have not passed or failed. Queries for work items always include a not exists 

clause based on the next action. Once we perform the next action, the query will no 

longer return the result. This updates the user interface and removes the work item from 

the user’s list.

�Executing Compensating Transactions

One final reason for knowing the state of an entity is to determine if there are any 

compensating transactions that need to be applied. This is one of the features for 

which the Saga Pattern4 was originally invented. Most database management systems 

provide a mechanism for executing several operations in one atomic transaction. These 

4�Hector Garcia-Molina, Kenneth Salem. Sagas. Department of Computer Science, Princeton 
University. 1987.
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transactions are intended to be short-lived. Holding a transaction open for an extended 

period of time can block other operations, seriously impacting the scalability of your 

solution. The Saga Pattern associates compensating transactions with intermediate 

steps, so that they can be rolled back should a problem arise. Compensating transactions 

allow you to commit the intermediate database transactions and yet still handle long-

running activities.

Another way to think about compensating transactions is to consider whether a 

state is desirable or not. Ordinarily, database transactions would prevent a system 

from entering undesirable states, as the transaction can be rolled back. In a Saga, 

however, database transactions are committed more frequently to improve scalability. 

It is possible for a sequence of smaller database transactions to leave the system in an 

undesirable state. A compensating transaction is a corrective action that can be taken if 

the system is left in such a state.

One example from the order fulfillment system has to do with reconciling returns 

with refunds. It is undesirable for the financial state of an order to be Paid while the 

logistics state of its items is Returned. We can arrive at this state in a couple of ways: 

we can receive payment for items that have been returned, or we can receive a return 

for items that are already paid for. A state machine–based implementation of the Saga 

Pattern would look for each of these situations in a separate handler. The payment 

handler would look for items in the Returned state, and the returns handler would look 

for orders in the Paid state. But doing so duplicates logic that could simply be expressed 

in one place. The following Factual query identifies items that are both paid and 

returned:

query itemsRequiringRefunds(s: Seller) {

  match i: Item where i.order.seller = s

    such that there exists p: Payment where p.invoice.order = i.order

      such that not exists rf: Refund

        where rf.payment = p and rf.items = i

    and there exists r: Return where r.item = i

}

A service runs this query to determine which items need to be refunded. If it returns 

any items, then it processes those refunds. After doing so, adding a Refund fact removes 

the item from the preceding query. The service did not need to determine the state of 

items and their orders to find the entities that required compensating transactions. It ran 

that query directly against the history and then acted upon the results.
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In most domains, I have found that querying history directly produced exactly the 

information I needed without determining state. To determine whether a button should 

be enabled, just query that its action does not yet exist. To distribute a queue to worker 

nodes, query for items not yet worked. Historical queries are more direct and less error 

prone than managing state machines. And it is not just for analytical reasons; they have a 

significant technical advantage as well.

�Single Source of Truth
We’ve identified an alternative to state machine–based solutions for business problems. 

First, we modeled transitions not as changes to the mutable state of an entity, but instead 

as immutable records. And then, we wrote declarative functions that query the existence 

and absence of such records. These functions answer two questions: what is the next 

action for a given entity and what entities can accept a given action. Answering these 

questions directly from history turned out to be simpler than keeping track of states. 

As an additional benefit, we will find that it also solves some of technical problems that 

arise in distributed systems.

In order to process requests, a state machine needs to do two things. First, it needs 

to know with certainty the state of an entity. And second, it needs to determine whether 

the request is valid when the entity is in that state. As a consequence, clients have less 

autonomy. They must rely upon a privileged set of nodes to process requests on their 

behalf. Clients must consult the single source of truth to know what has happened as a 

result of their actions.

�Orchestrators
Many state machine–based distributed systems employ message-driven architectures. In 

such a system, each step in the process is associated with a command message. A node 

called an orchestrator receives each message and executes the appropriate transaction. 

The orchestrator loads the current state from the entity identified by the correlation ID of 

the command. It determines which transaction to apply based on the state of the entity. 

The transaction modifies the entity, and the state machine determines the next state.
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�Consistent State

When we studied the CAP Theorem in Chapter 4, we defined consistency as the 

property that two nodes in a distributed system will report an entity as being in the same 

state. For an orchestrator to know the state of an entity, it must achieve consistency 

with other orchestrators in the system. This cannot be relaxed. Eventual consistency 

is not sufficient, because the state machine must process the command and provide 

a definitive result. To achieve consistency, orchestrators will often share a common 

database.

The orchestrator must be able to obtain a lock against an entity in order to determine 

how to process a command. For this reason, it is not uncommon to send all commands 

to a central set of orchestrators. This body of orchestrators and the database in which 

they maintain entity state becomes the single source of truth. It is the sole authority on 

the state of those entities.

�Central Validation

A state machine determines which operations are valid based on the state of an entity. 

Payment can only be applied if the order is in the Invoiced state. A bug can only be 

failed if it is in the In Test state. In a distributed system, the users who initiate these 

operations are not co-located with the state machines. They are using clients.

A client issues commands for an orchestrator to process. Because the orchestrators 

must be consistent with one another, the CAP Theorem tells us that they must become 

unavailable in the face of a network partition. To overcome this, commands are often 

queued. An orchestrator will process the command at some later time, once the network 

partition has been healed.

Since the outcome of the command depends upon the state of the entity, the client 

cannot predict exactly what will happen. Clients lie outside of the single source of truth. 

They must wait for the command to reach the orchestrator and then for the result to 

make its way back to the client. And by the time the results make it back, the user has 

moved on.

By relying upon a consistent state to validate operations, the state machine–based 

solution has sacrificed autonomy. A client cannot predict the outcome of a request on its 

own. It cannot determine whether the request will succeed or fail, as other requests of 

which it is unaware may have moved the entity into a different state. Instead, clients must 

rely upon a single source of truth, push commands to a queue, and await the results.
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�Convergent Histories
Instead of relying upon a centralized static model as the single source of truth, we can 

allow each client to represent its own truth. The truth is whatever the user has done, 

it is not the responsibility of an orchestrator to validate the user’s actions. It is the 

responsibility of the system to understand what has happened and to combine those 

histories into a cohesive story.

�Define Immutable Records

To begin, we model each user action as an immutable record. This record captures the 

information that was produced at that time. Each record refers to previous actions as 

predecessors. These aren’t simply a list of all events that occurred in the past; these 

previous actions are specifically the ones that lead to the new action. The predecessors 

represent the information that the user had while making this decision.

For example, a Shipment fact captures the tracking number. This information is 

produced when the user takes action. Furthermore, a Payment refers to a predecessor 

Invoice, but is not related to any Shipments that might have already happened. The 

invoice is causally related to the payment, but the shipment is not.

�Query for the Next Action

Once the immutable records are modeled, write a query for each kind of action. Query 

for all of the records that would be predecessors of that action. Add a clause including 

only those for which the action does not exist. This query tells you if this is the next 

action for an entity.

For example, for a Commit, query for Begin Review without a subsequent Reject 

or Accept. If that query returns one or more records, then the commit is still in review. 

Accept or reject is the next action. Furthermore, the list of records returned by the query 

are predecessors of the Accept or Reject records that will be created.

Write another query that begins higher up the chain. Instead of starting at a Commit, 

start with the Sprint. This query will list all entities for which a particular next action is 

required. This provides a set of work items to present to the user.
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�Capture Actions Locally

When the user takes an action, add the record to the local history immediately. Creating 

the record will influence the results of the queries. The user will immediately see the 

entity removed from one set of work items and added to the next. They will observe that 

the new next action of the entity has advanced. This gives them immediate feedback that 

their actions have been honored.

The user is making their decision based on the information that they have available. 

The system should not pause to check the current state, or take a remote lock to ensure 

that the user’s action is consistent. It should not push the record to a queue and wait 

for an orchestrator to process it later. Commit the action to history at the client, and let 

parallel histories converge.

�Define Compensating Actions

Finally, identify undesirable states that might arise due to convergent histories. 

Such states can arise because we’ve given clients the autonomy to act based on 

the information that they currently have available. Write a query to find entities in 

undesirable states, and then design processes to perform compensating transactions.

It’s possible that an order will have both a Refund and an unreturned Shipment. 

Create a query looking for orders in this state. Present the results to a representative, 

prompting them to call the customer asking them to either return the product or pay 

another invoice. It is up to the analyst to identify appropriate compensations for such 

situations and not the responsibility of a state machine to try to prevent them.

Users are the source of truth. They are distributed across the system. They do 

not participate in a consistent, orchestrated state machine. They do not care about 

the current state of an entity. They just need to know what has happened and how to 

interpret those parallel histories. They need the assurance that their actions will be 

honored and will become part of that convergent history.
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CHAPTER 7

Security
A common approach to application security is role-based access control (RBAC). Under 

this system, an administrator assigns individuals to roles and then authorizes those roles 

to perform certain actions within the system. As we adopt immutable architectures, 

RBAC becomes more challenging. Requiring an administrator to assign roles and 

permissions reduces the autonomy of individual users. Consulting a single source of 

truth for those roles and permissions reduces the autonomy of client nodes. The access 

control model begins to work against the advantages that we fought so hard to achieve.

RBAC is typically applied at the organization level. A team of administrators define 

the roles and operations within an organization. They manage a set of resources, 

upon which the operations are performed. That organization is the single beneficiary 

of the system. In a multi-tenant environment, however, the division of roles and 

responsibilities becomes much more complex. The myriad of tenants may not agree on a 

single body of administrators to manage access to their resources. Instead, they will seek 

to maintain autonomy over their own assets. This will lead them away from a centralized 

form of access control and toward more distributed trust models.

Our desire for autonomy drives us toward a decentralized model of access control. 

The expansion of distributed systems across multiple tenants removes the organizational 

structures that we might have otherwise depended upon. And so we look elsewhere 

for a solution. Instead of a role-based access model, we find inspiration in public key 

infrastructure (PKI) and delegation of authority. With these tools, we can build a system 

of security on top of a model of immutable facts.

https://doi.org/10.1007/978-1-4842-5955-9_7#DOI
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�Proof of Authorship
A historical record represents a decision that a person made within a distributed system. 

Before we can determine whether to trust that particular decision, we have to have some 

assurance of the identity of the person who made it. We seek proof of the authorship of 

a fact. Modern digital systems rely upon public key infrastructure (PKI) to provide that 

proof. PKI is based on the existence of a trapdoor function: a mathematical function that 

is easy to compute in one direction, but difficult to invert.

�Key Pairs
Suppose that I have a pair of functions. Each function is the inverse of the other; if 

the outcome of one function is fed into the other, the original input will emerge. For 

example, the functions x+3 and x-3 are such a pair. Adding three and then subtracting 

three gives you back the original value. You could think of many more examples and 

probably come up with several different ways of generating new pairs.

If I gave you one of these functions—say x+3—you would probably be able to tell 

me what its inverse is. Computing the inverse of such a simple function is not difficult. 

But what if I gave you a function like x37 mod 1829? It might take you a bit to work out 

what the inverse is. A computer given the right algorithm could find it quickly enough: 

the inverse is x823 mod 1829, as demonstrated in Figure 7-1. But if I make these numbers 

significantly larger, then even the most powerful digital computer will have a hard time 

finding the inverse.

Figure 7-1.  Some functions that are inverses of one another can be used in 
asymmetric cryptography
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Functions of this form are examples of trapdoor functions. These were generated 

with a protocol known as RSA, named after its inventors Rivest, Shamir, and Adleman.1 

It is really easy for you to compute the modular exponent. It is really difficult for you to 

compute its inverse (known as the discrete logarithm). It’s only because I generated this 

pair at the same time that I’m able to find the inverse myself.

If you look closely at these functions, you can see that they have an upper bound. 

The function x37 mod 1829 only has an inverse if x < 1829. This is a consequence of 

the pigeonhole principle. The modulus 1829 limits the number of possible results the 

function can return; it determines how many pigeon holes you have. If you try to put 

more pigeons into the function, there will be at least two sharing the same pigeon hole. 

This function is deliberately constructed to ensure that every input has a distinct output, 

which is necessary to make sure it has an inverse within the same domain.

RSA gives us a protocol to generate a function and its inverse at the same time. If 

I give one of the functions to you, you will have a hard time finding the inverse; it’s a 

trapdoor function. We’ll call the one that I share the public key. The function that I keep 

is the private key. I can use this pair of inverse functions to prove authorship.

�Digest
If you run a hash function over a stream of data, you’ll produce a digest. The digest will 

have a fixed size, determined by the hash function you choose. It’s important to choose 

a hash much smaller than the limit of public/private key pair. Pad this digest with some 

random data and feed it into the private key function. The result is the signature.

If someone knew your public key, they could verify your signature. All they would 

need to do is run your signature through your public key function to get back your 

padded digest, as shown in Figure 7-2. They could then compute the digest of the 

message themselves and see if it matches with yours. If so, then they have confidence 

that the message came from you. This works because it would be very difficult to invert 

your public key to find your private key. Without your private key, they could not 

produce a signature that would contain the correct digest.

1�R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems. Communications of the ACM. February 1978.
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If you wanted consumers of an immutable record to know that it came from you, 

you could produce a digest. The procedure must be repeatable to ensure that everyone 

produces the same digest. We must therefore choose a canonical form for immutable 

records. One procedure that I like to use is as follows:

•	 Serialize the record in JSON.

•	 Include the record’s type as a field.

•	 Replace predecessors with objects having only a ref field, the value 

of which is the digest of the predecessor.

•	 Sort collections of predecessors by their digest and eliminate 

duplicates.

•	 Sort fields alphabetically.

•	 Remove extraneous whitespace.

•	 Encode the text using UTF-8.

•	 Compute the SHA-256 hash of the stream.

As an example, a forum post might be serialized as follows before whitespace is 

removed:

{

  "author": {

    �"ref": "MSHFIB0X5Jkup0Yu7ZZuIKJHVtow3vtAK/7f4GYmKVqdcKMcVg9AURmgU9RQA 

tJwQjaYguJSJZzlwFctOTqrCw=="

  },

Figure 7-2.  Running the digest of a document through the private key produces a 
digital signature
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  "forum": {

    �"ref": "PQu2HVVqExA0r1kO9lK+rWHzui5Ysd07+g5VkgnNRsJqPnpsy5rzjSfIpnd79 

aea8jjoPe+YIiouOz3xcJvQUQ=="

  },

  "text": "Posted my first forum message.",

  "type": "ForumPost"

}

After removing whitespace, applying UTF-8 encoding, and taking SHA-256 hash, 

you can produce a signature using your private key. Any consumer of this record would 

compute the same digest. If they had your public key, they could verify your signature. 

Insofar as only someone with your private key could produce a valid signature, they can 

be assured that the message was from you.

The immutable record itself does not contain a signature. It could not, because the 

signature is produced from the digest of the contents of the record. Instead, the signature 

is carried in an envelope. As one node communicates a collection of immutable records 

to another, it provides with each a list of public keys and signatures.

�Authorization
Having proved that you have authored a fact, you might next seek to establish that you 

are permitted to do so. How might you assert your claim of authorization in a distributed 

system? If we could appeal to some central authority, then perhaps it could validate 

your claim. But to retain autonomy, we would like to avoid such an authority. We must 

therefore establish a means of authorization that the recipient can verify on their own.

To begin, we will define a means of exchanging public keys. When a node interacts 

with an agent, it should be able to verify claims of authorship. Then, the recipient 

will consult a set of rules to determine which agents are authorized to produce which 

records. These rules are based entirely upon related records.
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�Principal Facts
The easiest way to exchange public keys is to make them part of the historical model 

itself. Every agent that is capable of producing facts is a principal. Users are principals; 

autonomous services are principals; authorized entities are principals. Every principal 

creates a historical fact that represents themselves.

The principal fact contains as a field the user’s public key. It typically contains 

no additional fields. Because the identity of the immutable record is derived from its 

contents, the identity of the principal is its public key. For example, a user of forum 

software would be represented by the fact in Figure 7-3.

A principal fact needs no signature. A signature would not prove anything useful. 

The principal fact contains no additional claims, so the signer would only be reasserting 

that this is their public key.

�Authorization Query
When a node receives a fact, the new fact is considered contested. The permission of the 

author to create that fact remains in doubt. The node must verify that the author has 

authority to create the contested fact. To do so, it will run an authorization query. This 

query determines which principal facts are authorized to create the contested fact. If the 

envelope of that fact contains a signature from an authorized principal, then the fact is 

permitted. Only permitted facts are stored, used in subsequent queries, and forwarded to 

other nodes.

For example, the forum post that we recently observed is an example of the following 

kind of fact:

fact ForumPost {

  forum: Forum

  author: User

  text: string

}

Figure 7-3.  A principal fact has a public key
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To verify that the post is signed by the author, each recipient will run the following 

authorization rule:

authorize p: ForumPost {

  match u: User where p.author = u

}

Overlaid on top of the fact graph, the authorization query appears in Figure 7-4.

This rule instructs the recipient to find the principal fact that is the author of the 

post. It uses the publicKey from that principal fact. If the envelope contains a valid 

signature from that public key, then the post is authorized. If not, then the recipient 

immediately rejects the fact.

When used as described previously, authorization rules can prevent others from 

forging messages. If your public key becomes well-known, then a would-be forger might 

attempt to create a new forum post with your principal as the author predecessor. 

However, without being in possession of your private key, they would be unable to create 

a matching signature. The forger would have to settle for generating a new public/private 

key pair. Such messages would be authorized, but their author would be a different 

principal. No recipient would be fooled into believing that the forum post was from you.

Figure 7-4.  A forum post with the authorization query that determines which user 
can create it
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�Initial Authorization
While the preceding authorization rule prevents forgery, it still permits any principal to 

post to the forum. In other domains, it is desirable to constrain behaviors to a restricted 

set of principals. Without relying upon a centralized authority to administer these 

restrictions, we will turn to the model itself to seed the initial authorization.

Suppose that instead of an open forum, we want to model a personal blog. Only the 

creator of the blog is permitted to post. The blog can be described with the following fact:

fact Blog {

  creator: User

  identifier: guid

}

An authorization rule verifies that the blog is indeed authored by its creator:

authorize b: Blog {

  match u: User where b.creator = u

}

Now we can define a blog post with the following fact:

fact BlogPost {

  blog: Blog

  author: User

  postedAt: datetime

}

For this domain, we are leaving mutable properties such as the title, text, and tags as 

separate facts. Only the date and time distinguish one blog post from others by the same 

author in the same blog.

But the most important thing is that now we can write an authorization rule that 

allows only the creator of the blog to post to it.

authorize p: BlogPost {

  match u: User

    where p.author = u

    and p.blog.creator = u

}
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The authorization rule for a blog post traverses the fact graph as shown in Figure 7-5.

This query will only return the author principal if they are also the blog’s creator. If 

someone tries to create a fact claiming to be from an author other than the creator of the 

blog, then this query will return no results. Seeing no principals authorized to sign the 

fact, the recipient will reject it outright. Creating a blog provides the initial authorization 

list, without the need for any party to consult with a centralized administrator.

�Grant of Authority
The authorization queries that we’ve written thus far return only the creators of the root 

entity. This is an ideal starting point for a decentralized system; if you made it, you alone 

control it. It cleanly dispenses with the need for a body of administrators to define roles 

and permissions, or to grant access to certain resources.

But this is only a starting point. For most domains, authorization cannot remain 

solely with the creator of an entity. The creator must be able to transfer authority to 

another party. Such transfers can either be limited or indefinite. If a transfer is limited, it 

is constrained in scope to one single occurrence. But if it is indefinite, then authorization 

persists.

Figure 7-5.  A blog post can be authored only by the blog's creator
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�Limited Authority
A creator can grant another principal authorization for a single instance of an entity. To 

do so, the creator identifies the authorized principal as a predecessor to the new entity. 

An authorization rule grants this principal permission to create successors.

This is best seen with an example. Suppose that the creator of a blog would like to 

invite a guest to post on the site. They create the guest post for the selected user.

fact GuestPost {

  blog: Blog

  guest: User

  createdAt: datetime

}

Only the blog creator can add a guest post. Clients use the following authorization 

rule to enforce this constraint:

authorize gp: GuestPost {

  match u: User where gp.blog.creator = u

}

Guests are then authorized to set the title, write the text, and other subsequent 

operations. For example, to set the title, the guest issues the following kind of fact:

fact GuestPostTitle {

  post: GuestPost

  title: string

  prior: GuestPostTitle[]

}

The following rule authorizes the guest to issue these successors:

authorize t: GuestPostTitle {

  match u: User where t.post.guest = u

}
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The diagram of the authorization rule in this graph appears in Figure 7-6.

The guest does not have authorization to create additional posts. Their permission is 

limited to the single child that has been created on their behalf.

�Indefinite Authorization
When the creator of an entity wishes to share authority indefinitely with others, they can 

create a fact documenting that decision. The grant must be signed by the initial creator. 

It identifies the entity for which authorization is granted. And it names the principal with 

which authority will be shared. Then, recipients must be instructed to honor additional 

authorization rules.

Suppose, for example, that the creator of a blog wishes to invite others to post as 

well. They don’t just want to give them a fixed number of guest posts. They want to share 

authorization indefinitely. To do so, the blog creator issues a grant.

Figure 7-6.  Only the guest can set the title of the guest post
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fact BlogGrant {

  blog: Blog

  subject: User

  createdAt: datetime

}

Only the blog creator can issue such a grant. To enforce this, we write an 

authorization rule requiring that the grant come from the blog’s creator:

authorize bg: BlogGrant {

  match u: User where bg.blog.creator = u

}

Once the grant is issued, the subject should be authorized to post. We write a rule 

stating such.

authorize p: BlogPost {

  match bg: BlogGrant

    where bg.blog = p.blog

  then u: User

    where p.author = u

    and bg.subject = u

}

This authorization rule zigzags through the fact graph as shown in Figure 7-7.
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It’s important to recognize that this authorization rule is in addition to the previous 

authorization rule for BlogPost. A client honoring both of these rules will allow the 

creator to post and allow all subjects granted authority to post. A client does not have just 

one authorization rule per type. Instead, the set union of all authorization rules defines 

the set of principals that will be validated. If the envelope contains a signature from any 

member of that set, then the fact is authorized.

�Transitive Authorization
The authorization rule mentioned earlier permits the subject of a BlogGrant to post on 

another’s blog. It does not, however, put them on equal footing with the blog’s creator. 

It does not permit them to then extend that authorization to others by issuing further 

grants. If doing so would be a desirable feature of the domain, then clients will need to 

be given one more rule.

authorize next: BlogGrant {

  match bg: BlogGrant

    where bg.blog = next.blog

Figure 7-7.  Every subject of a grant is authorized to create a new blog post
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  then u: User

    where bg.subject = u

}

Just as with all authorization rules, this one is combined with others for the same 

contested fact. A different rule authorizes the blog’s creator to issue grants. This one 

adds to it—via set union—authority for subjects to extend those grants to others. The 

recursive nature of this definition implies that grants can be extended to any number of 

generations.

�Revocation
All of the approvals and grants documented earlier include a creation date. This is 

not mere audit detail. This is a design decision that allows for revocation. A one-time 

approval or an indefinite grant can be revoked by a subsequent fact. Authorization rules 

simply need to include a such that not exists clause to make it so.

If a blog creator wishes to revoke a prior grant, then they can issue a fact of the 

following form:

fact BlogGrantRevoke {

  grant: BlogGrant

}

The creator is authorized to issue these revocations for their own blog. The 

authorization rule enforcing that is as follows:

authorize r: BlogGrantRevoke {

  match u: User where r.grant.blog.creator = u

}

If other grantees are similarly empowered, then the following rule is added:

authorize r: BlogGrantRevoke {

  match bg: BlogGrant

    where bg.blog = r.grant.blog

  then u: User

    where bg.subject = u

}
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Figure 7-8.  The authorization rule checks for the existence of a blog grant 
revoke

We can now add a such that not exists clause to the rule so that this fact revokes 

a previous authorization.

authorize p: BlogPost {

  match bg: BlogGrant where bg.blog = p.blog

    such that not exists r: BlogGrantRevoke where r.grant = bg

  then u: User

    where p.author = u

    and bg.subject = u

}

Adding the such that not exists clause to the authorization rule results in the 

diagram shown in Figure 7-8.
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And this is where it becomes important to add a distinguishing field such as 

createdAt to the grant. Without it, authorization could only be granted to a subject 

once. Once revoked, there would be no way to create a new grant. It would be 

indistinguishable from the revoked grant.

�Authorization Upon Receipt
Authorization rules are evaluated immediately upon receipt of a fact. They are not tested 

later to determine retroactively whether a fact should have been authorized. There are 

two important reasons for this: preservation and performance.

If authorization rules were evaluated retroactively, then revoking access would 

invalidate all prior actions that the party had performed. In most domains, this is not 

the desired outcome. An employee who is terminated should have their access revoked. 

Yet all of the work that they did for the company up to that point should be preserved. If 

the authorization rules were run for those work items after their termination, then those 

facts would be invalid.

The other consideration is performance. Retroactive evaluation is a recursive, time-

consuming operation. If we wanted to use the authorization rules to validate facts every 

time they are used, we would have to apply them to all facts touched in a query. But to 

validate a fact, we must run its authorization rules. Those rules are themselves queries. 

Tracing these queries back to the facts that they touch, their authorization rules, and 

the queries for those rules leads to an explosion of validation up the historical graph. 

This process is not guaranteed to terminate, and even when it does, it is incredibly time 

consuming.

While evaluation upon receipt addresses these two important issues, it also causes 

a problem with respect to eventual consistency. One node may determine that a fact 

is valid, while another decides that it is invalid. This happens when one has received 

a revocation fact and the other has not. There is no causal relationship between the 

revocation and the contested fact. Neither is the predecessor of the other, so either one 

may occur first. Once this happens, no further messaging will bring these two nodes 

back into agreement.

Given the danger of inconsistency, revocation should be used with extreme caution. 

Provide the capability in the models that you design, but caution users to exercise that 

capability only sparingly. Build in some other mechanism to revoke privileges across 

the system. For example, control access to the private key for employees. When they are 
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terminated, simply destroy the private key, rather than revoking grants of authorization. 

Or build a clock into the model. Periodically renew grants during the next period. If a 

principal leaves the group, simply neglect to renew their grant, rather than revoking past 

grants.

�Confidentiality
The security considerations we’ve talked about so far have dealt with the ability to write 

data into the system. We now turn our attention to the ability to read data from the 

system. As with writes, we want to control reads without yielding to a centralized group 

of administrators. We will be conducting business over an evolving network topology 

that may include partner nodes outside of our direct control. And so we once again turn 

to PKI for inspiration on implementing trust without a central trusted authority.

The desire for autonomy is not one-sided. On the one hand, we want personal 

control for ourselves and our devices. We want to be assured that we can act without 

the need to connect to a central system of record. When working with partners in 

a distributed system, we should expect that they will want the same autonomy for 

themselves. We allowed them that autonomy by applying a trust but verify policy: 

we validated records for ourselves against an agreed-upon set of authorization rules. 

But granting them autonomy also gives them some degree of access to our sensitive 

information. We must now consider how to keep messages private in such an 

environment.

�Untrusted Nodes
Confidentiality, as I’m using it here, means having reasonable assurance that the 

information that you wish to convey to a specific party will not be intercepted by others. 

The challenge in a distributed system is that the intended recipient might not be in 

direct communication. Messages might need to be stored on a third-party node that 

has greater uptime and accessibility than either of the parties’ devices. Mail is stored 

on mail servers, not transmitted directly from sender to recipient. Direct messages are 

posted to shared channels. Records intended for one party can be found on untrusted 

intermediaries.
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If we assume that we can trust our third-party providers implicitly, then we might be 

satisfied with simply encrypting data in transit. We might use a secure protocol like TLS 

to upload a private message to a social media provider, knowing full well that it will be 

decrypted on the server. It might even be stored in plaintext, to be reencrypted when the 

recipient initiates their own TLS connection to the same server. But if we do not want to 

assume that we can trust our intermediaries implicitly, then transport-layer encryption 

alone is not sufficient.

�Asymmetric Encryption
As we saw in Proof of Authorship, public and private keys are nothing more than 

inverse functions. Put a number into one, and it produces an answer; put that answer 

into the other, and you get back the original number. We proved authorship by applying 

the private key first. We can send private messages by inverting the process.

If we wanted to send a number to a recipient, we can run it through their public 

key. The result can be stored on an untrusted node with little fear. Any party not in 

possession of the private key will have a very hard time inverting the function to find the 

original value. This is the basis for achieving confidentiality in a distributed system with 

third-party nodes. But before we can apply this protocol, we have to contend with the 

size limit.

�Asymmetric Size Limit

If you recall, the functions that we produced using the RSA protocol only had inverses 

within a certain range. The function x37 mod 1829—which we used as our public key—can 

only produce outputs in the domain 0-1828. The pigeonhole principle prevented us from 

accepting any inputs that would cause us to double up on an output. And so this public 

key can only be used with 1829 distinct inputs; it only supports 10-bit messages. Real 

RSA key pairs are much larger: 2048 or 4096 bits in common usage. Nevertheless, there 

is a size limit. This was why we signed the hash and not the original message. And for the 

same reason, we cannot encrypt the original message using the recipient’s public key.

Instead we will apply a symmetric cypher to the message. Symmetric keys don’t have 

the same size limitation as asymmetric key pairs. They can be used to encrypt a message 

of arbitrary length. However, the same key is used both to encrypt and to decrypt the 

message. We must therefore keep the symmetric key private. That is what we pass 

through the recipient’s public key.
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�Encrypt the Symmetric Key

And so the strategy that we use to ensure confidentiality in a distributed system is 

to encrypt the contents of immutable records before transmission. The sender first 

generates a random number to be used as the symmetric key. Effective symmetric keys 

can be significantly smaller than the size limit of a similarly effective public key. We can 

therefore pad and encrypt this symmetric key using the recipient’s public key and store 

the result in the beginning of the immutable record. We can then encrypt the contents 

of the message using the symmetric key and store that encrypted blob at the tail of 

the record. The recipient can reverse the process, using their private key to reveal the 

symmetric key and extract it from the random padding. It can then decrypt the tail of the 

record to uncover the body of the message, as shown in Figure 7-9.

Figure 7-9.  The sender encrypts the symmetric key using the recipient’s public key

Third parties in the middle of this exchange will not be able to easily decrypt the 

record without the recipient’s private key. We’ve succeeded in ensuring confidentiality 

when untrusted nodes lie between the participants. More than encrypting during 

transport—which exposes message contents to intermediaries—we’ve encrypted prior 

to transport. Even if the third-party node takes no additional precautions, we have 

protected the message at rest.
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�Encrypting Historical Facts
The protocol described previously is a popular mechanism for exchanging private 

messages over untrusted media. It is the core procedure in the OpenPGP protocol2 used 

for private email exchange. It is commonly applied to messages stored on distributed 

file systems like IPFS, the InterPlanetary File System. In those and other scenarios, 

the protocol has a limit: it protects only the contents of the message, not the metadata 

surrounding the message. While an interceptor won’t be able to read the contents of a 

OpenPGP email, they would be able to identify both the sender and the recipient. This 

is simply the consequence of the third party needing to know how to route messages. 

When this protocol is used within a historical model, the same limitation applies.

In a historical model, only the body of a confidential fact is encrypted. The type 

and—more importantly—the predecessors of that fact are not. The reason is that third-

party nodes must be able to execute queries and return private facts. If the predecessors 

were encrypted, then the third-party node would not be able to determine which facts 

were the successors sought in the query.

For a similar reason, the identity of a confidential fact is based on the hash of its 

encrypted representation, not the original body. If other facts are subsequently recorded 

using the private fact as a predecessor, the intermediate parties need to understand that 

relationship. They need to be able to produce the hash of the record without decrypting it.

�Limit the Distribution of Confidential Facts
Because the types and predecessor relationships are freely visible to intermediate 

parties, we still have to be careful with whom we share encrypted confidential messages. 

We can avoid shared distributed ledgers like blockchains that rely upon public scrutiny 

of metadata in order to function. We can limit the peers with which we directly share 

encrypted facts to only those that we can trust just enough not to infer meaning from 

the predecessor/successor relationships. We can even spread our trust among several 

intermediates so that no one of them has a complete picture of our interactions with 

other parties.

To prevent confidential facts from spreading further than they need to, these 

intermediaries must be given a set of rules by which they are permitted to release this 

information. Unlike the authorization rules previously discussed, we cannot execute 

2�J. Callas, et al, IETF Network Working Group Request for Comments 4880. November 2007.
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these rules ourselves. We have to trust that the intermediaries that we choose to work 

with are enforcing them with each request. The rules tell them who is permitted to 

receive certain facts.

�Distribution Rules

Whereas an authorization rule told us who was permitted to issue a fact, a distribution 

rule tells who is permitted to execute a query. We begin by defining the queries 

permitted. These can be expressed using the Factual query language, as we’ve already 

shown throughout the book. Give every server node a list of allowed Factual queries. Any 

client issuing a query not on this list is immediately rejected.

The next step is to identify the permitted starting points for those queries. Each 

Factual query has one starting point. It typically matches successors of that starting fact 

and then perhaps zigzags through the graph from there. The distribution rule expresses 

the set of principals who are permitted to start a query from that point. And just like with 

an authorization rule, this is done using a query.

Suppose that we have written the following query for private messages sent to an 

individual:

query privateMessagesToRecipient(r: User) {

  match m: PrivateMessage where m.recipient = r

}

A sufficiently restrictive server node will not accept any queries until they have been 

provisioned to do so. It will not accept any query for PrivateMessage facts until it is 

given the preceding query and the following distribution rule:

distribute privateMessagesToRecipient for r: User {

  match r

}

This distribution rule is as simple as possible, but it demonstrates the important 

points. It identifies a query, in this case the one defined just earlier. It starts with the 

same fact as the query that it controls. From that starting point, it matches the principals 

who are permitted to execute the query. This particular distribution rule allows only the 

recipient themselves to query for private messages.

Each query has a distinct canonical form. The server can use this as well as the 

type of the starting fact to look up the associated distribution rules. If the server node 
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receives a query that does not match one that it has been provisioned to distribute, it will 

reject the query. If the client cannot prove that they are acting on behalf of at least one 

principle matching the distribution rule, then the server will reject the query. If these 

two checks pass, then the server executes the query and returns the results. The server 

may not be able to interpret the contents of the resulting facts, but it has done what it can 

to limit distribution to only those that should be able to do so.

�Evidence

Proving that a client is acting on behalf of a principal is not a trivial matter. How it is 

accomplished depends upon whether the query is coming from a client or another 

server. If the user is logged into the client, they will have an authorization token to share 

with the server. The token must have been issued by a security token service (STS) that 

both the client and the server trust. The client provided their credentials to the STS, and 

the STS signed the token. In this scenario, the server that the client is using directly will 

often be acting as a keystore as well. It will store the user’s private key so that the user can 

log in from any device. This server must be completely under the user’s control.

While client–server communication can be authorized by a token, server-to-server 

communication cannot. A server initiates a connection to another server without user 

intervention. There is no user to supply credentials to an STS and generate a token. 

Furthermore, the two servers may not have an STS in common that they both trust. A 

security token would not provide satisfactory evidence that the query is on behalf of a 

given user.

To provide satisfactory evidence, the querying server must use the private key of the 

principal initiating the query. Given that this server is also likely to be the keystore, this 

process can be done without user intervention. The protocol begins with the querying 

server invoking a query from a certain starting point and identifying the principal’s 

public key. If the target server determines that the identified principal is permitted to 

execute the query, it responds with a randomly generated challenge. The querying server 

answers the challenge in a way that proves that it is in possession of the private key. The 

trick is that it must not simply execute the private key and give back the answer. To do so 

would be to allow the server to use a message digest as a challenge, and thus generate a 

valid signature, or to execute a man-in-the-middle attack and produce a valid challenge 

response. Instead, a zero-knowledge proof protocol must be employed. Such a protocol 

proves that the querying server has the private key, but does not allow the target server 

Chapter 7  Security



235

to gain any knowledge about it. David Chaum and his colleagues3 give several protocols 

for proving that the querying server knows the discrete logarithm (inverse of an RSA key) 

of a given value without revealing that value.

�Attacks and Countermeasures
None of these precautions, however, protect us from third parties that maliciously, 

negligently, or through legal compulsion share our information with others. For that 

we may need to take additional precautions, based on the sensitivity of the metadata. 

Additional measures include the following:

•	 Periodically changing key pairs to mask a party’s identity.

•	 Mix one-time tokens with random users in key exchanges.

•	 Generate a new key pair—and thus a new principal fact—for each 

interaction.

•	 Store identity mapping tables offline, or on a privately managed 

server.

•	 Generate a hum of meaningless facts between unrelated 

predecessors to hide the signal in the noise.

Such countermeasures are not necessary for every domain. But when the 

relationships among facts are valuable, and intermediate parties cannot be fully trusted, 

then additional care is warranted.

One more attack vector must be considered when storing encrypted facts on 

untrusted intermediate nodes. Data at rest is susceptible to offline attacks. Online 

services will throttle or block failed attempts to access data to prevent brute-force 

attacks. But when the attacker has the encrypted data in their possession, they can run 

as many attempts as their computing power will allow. Such an attack against modern 

cryptography algorithms will be expensive. But a determined attacker with a valuable 

enough payload might be willing and—eventually—able to discover the symmetric key.

There are several things that we could do to make their job easier. For example, the 

more that a symmetric key is reused, the more samples an attacker has to work with.  

3�Chaum, David; Evertse, Jan-Hendrik; van de Graaf, Jeroen (1987). An Improved Protocol for 
Demonstrating Possession of Discrete Logarithms and Some Generalizations. Advances in 
Cryptology – EuroCrypt ‘87: Proceedings. Lecture Notes in Computer Science.
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And the longer the encrypted message, the more likely they are to discover an exploitable 

pattern. And so, to protect information from offline attacks, do exactly the opposite:

•	 Use a strong random number generator to produce symmetric keys.

•	 Use each symmetric key only once.

•	 Keep messages as short as possible.

•	 Pad messages with a large amount of random data.

•	 Generate additional meaningless facts to hide the valuable ones.

Even with all of these precautions in place, you must assume that the crypto systems 

that we use today will eventually become obsolete. This has been found true of the 

algorithms of the past, and we have no reason to believe that the future won’t reveal 

weaknesses in today’s technology. In fact, it’s reasonable to believe that quantum 

computing will someday render all of today’s asymmetric algorithms ineffective. Perhaps 

all that a determined attacker needs to do is wait.

My only advice to mitigate this problem is to ensure that the value of your 

information degrades over time. If you are exchanging payment information, make sure 

that those instruments expire before the encryption is broken. If you are collaborating on 

a secret plan, make sure that you execute before it’s too late. If you have something that 

you want to keep secret forever, don’t encrypt it and give it to a third party.

�Secrecy
Employing PKI, distribution rules, and countermeasures, we have gained a level of 

confidentiality. We can now send a message to a specific recipient through untrusted 

nodes and have some assurance that the contents will remain private for some time. This 

form of confidentiality works well when communicating with one person. Many of our 

collaborations, however, involve groups. We will now generalize these techniques so that 

the group can communicate secretly.

We’ll begin by defining a shared workspace in which the collaborators interact. 

This might take the form of a project containing work items, plans, and resources. Or 

it might be a department such as accounting, where payroll, accounts payable, and 

assets are all stored. Our goal is to control access within this workspace. We’ve already 

demonstrated the use of authorization rules to grant authority to create new facts in 
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a workspace. Now we extend our strategy of confidentiality to keep those facts secret, 

visible only to those invited to the workspace.

�Shared Symmetric Key
To keep the data within the workspace secret, we will create a shared symmetric key. 

Anyone in possession of this key will be able to decrypt the contents of the facts within 

the workspace. We must therefore have a protocol for exchanging that symmetric key 

with other members of the workspace within the historical model. We must do this 

without revealing it to untrusted third parties that store and forward the facts.

A workspace in a historical model takes the form of a fact. It has only one 

predecessor, the creator, and only one field, its identity. When a user initially creates the 

workspace, they generate a random symmetric key. This symmetric key is not stored in 

the workspace fact. Instead, it is shared with each participant individually.

To share the symmetric key with other participants, the creator sends invitations. An 

invitation is a successor to the workspace fact naming the recipient as a predecessor. Its 

only field is the shared symmetric key. The workspace creator sends the first invitation to 

themselves. The symmetric key is packed in random padding and encrypted using their 

own public key. Now the shared key is stored in the model in such a way that only the 

creator can decrypt it. They can send invitations to other collaborators immediately, or 

as they join the team.

�A Secret Discussion Channel

To demonstrate this protocol, let’s consider a secret channel to which collaborators 

can post messages. The channel itself is nothing more than a fact having an identifier. 

Invitations are successor facts sent to collaborators. The model appears in Figure 7-10.
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The model is expressed in Factual as follows:

fact User {

  publicKey: string

}

fact SecretChannel {

  creator: User

  identifier: guid

}

fact Invitation {

  secretChannel: SecretChannel

  collaborator: User

  sharedKey: string

}

fact Message {

  secretChannel: SecretChannel

  body: string

}

Figure 7-10.  A secret channel to which collaborators are invited
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�Creating a Secret Channel

Alice wants to set up a secret channel so that she can talk with Bob and Charley. She 

begins by generating the globally unique identifier for the channel as well as a random 

symmetric key. With these, she creates the SecretChannel fact and three Invitation 

facts. One of the invitations is to herself. The resulting facts are illustrated in Figure 7-11.

Even though the preceding diagram shows the plaintext contents of the Invitation 

facts, each one is encrypted using the public key of the associated collaborator. Each 

collaborator can individually decrypt their own invitation. Doing so reveals a shared 

symmetric key.

�Team Distribution Rules

Even though the contents of the messages are encrypted using the shared symmetric 

key, it is still wise to limit the distribution of those facts. Assuming that the intermediate 

third-party nodes that we choose to use are well behaved, they will follow the rules that 

we define for distribution. Here is the query for secret messages and the corresponding 

distribution rule:

query messagesInSecretChannel(sc: SecretChannel) {

  match m: Message where m.secretChannel = sc

}

distribute messagesInSecretChannel for sc: SecretChannel {

  match i: Invitation where i.secretChannel = sc

  then u: User where i.collaborator = u

}

Figure 7-11.  Alice has created a private channel and invited both Bob and Charley

Chapter 7  Security



240

This distribution rule permits the server to respond to queries from collaborators 

who have an invitation to that secret channel. Queries from other users will be denied, so 

that they will not be able to perform offline cryptanalysis on the messages to discover the 

shared symmetric key.

Compare the distribution rule to the corresponding authorization rule:

authorize m: Message {

  match i: Invitation where i.secretChannel = m.secretChannel

  then u: User where i.collaborator = u

}

This rule authorizes every collaborator to post messages within the secret channel. 

It uses the same Invitation as the distribution rule. However, this need not be the case. 

We could define a different type of invitation called a ReadOnlyInvitation. By defining 

a distribution rule based on these types of invitations—but not defining a similar 

authorization rule—we can give some users read-only access to the messages.

�Limit the Scope of a Shared Key
Just as we want to limit the distribution of encrypted facts, we want to limit the number of 

facts that are encrypted using the same symmetric key. Reusing a symmetric key provides 

a would-be attacker with more examples of ciphertext to analyze. When sending a fact 

to a single recipient, we were able to generate a distinct symmetric key for each message 

(commonly called a session key). Unfortunately, that same mechanism will not work 

for workspaces with large numbers of collaborators. The session key would need to be 

encrypted with the public keys of each collaborator in turn. Some of those collaborators 

may not have even joined the team at the time that the encrypted fact was created.

And so we must resort to reusing the shared symmetric key for all secret facts 

within the workspace. And in so doing, we run up against the problem of revocation 

once again. We want to be sure that we protect the ongoing work of the remaining 

collaborators after a former collaborator leaves the team. We can easily enough define an 

InvitationRevoke fact as a successor to an Invitation. With a such that not exists 

clause in the distribution rule, intermediate nodes will no longer distribute protected 

facts to the former collaborator. But that individual still has access to the shared 

symmetric key. If they were able to coerce the intermediate node to give up its cache of 

encrypted facts, they would have the tools to decrypt them.
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�Cohorts

One way to resolve the revocation problem is to move all of the remaining collaborators 

to a new shared key and issue them new invitations. The former collaborator would not 

have access to this new key. So while they could continue to decrypt the information 

they saw while a member of the project, they would not have access to any new 

information.

Moving collaborators to a new shared key is an inconvenience, but one that can be 

managed. All of the facts that they created before the move would be encrypted with 

the old shared key. The collaborators will want to create new facts using the new key, 

but still have the ability to reference old facts as predecessors. Work must continue 

uninterrupted.

To model this solution, we insert a level of indirection. Between the workspace and 

the subsequent work, we inject a cohort. This fact represents the group of collaborators 

that all shared a symmetric key at the same time. All subsequent facts in the workspace 

are associated with a cohort, which tells us which symmetric key it was encrypted with. 

Modifying the secret channel model in Figure 7-10, the cohort fits in as illustrated in 

Figure 7-12.

Figure 7-12.  Collaborators are invited to join a cohort
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�Periods

Another solution to the revocation problem is to identify a clock within the domain. Use 

the clock as a cohort, as demonstrated previously. Each period of time gets its own shared 

symmetric key. All remaining collaborators receive new invitations at the beginning of 

each new period. Former collaborators fall away. While this leaves the window of attack 

open until the beginning of the next period, it has the advantage of being closely tied to the 

domain. A restaurant might define a period to be a single date of business. A school might 

define it to be a single semester. And such domains often align the boundaries of cohort 

membership with the clock. The Period pattern is covered in more detail in Chapter 8.

We’ve assembled a suite of tools that can help us control access to a historical model 

without relying upon an administrative body. Starting with the foundation of PKI, 

we’ve used public/private key pairs to identify principals, such as users or autonomous 

systems. Using the private key to sign a digest, we can prove authorship of each fact. 

Each node can then run authorization rules for itself to determine whether it believes 

that the author was authorized to perform the requisite action. And using the public key 

to encrypt a symmetric key, we can keep facts confidential whether intended for one 

individual or for a team. All of the information needed to enforce these rules lives within 

the model itself. This gives each node autonomy to operate securely in a collaborative 

environment, without needing to rely upon the availability of a trusted third party.
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CHAPTER 8

Patterns
You now have a set of tools with which you can build systems that are naturally resilient 

and reliable. You might even have a good idea how to apply these tools to solve the 

business problems that your customers face. But there might be some gaps.

In this chapter, we will take a systematic look at how to apply the rules of historical 

modeling to solving real-world problems. Starting from common issues, we will derive 

historical solutions. Then using the analytical tools we’ve developed in the previous 

chapters, we will examine the consequences of those decisions. The result will be a 

catalog of patterns that we can reference as we construct new models. This catalog will 

not be comprehensive, but it will provide a good foundation for exploring new solutions 

to problems you will face in the future.

�Structural Patterns
A large portion of the software that we write for business customers falls under the 

category of forms over data, sometimes known as CRUD. This is the kind of software 

that presents the user with the ability to create, read, update, and delete entities. It is not 

glamorous work, but it needs to get done.

Relational models and hypermedia models seem to be conceived with CRUD 

applications in mind. Databases map these four operations to the four primary 

commands: INSERT, SELECT, UPDATE, and DELETE. Hypermedia applications using POST, 

GET, PUT, and DELETE seem to reflect the basic operations of CRUD.

But the implementation of CRUD operations in a historical model is not so clear and 

direct. The most obvious point of dissonance is that a historical model does not allow 

for updates or deletes. The user wants to perform these operations, but the underlying 

model does not permit them. And so, we have to find a way to simulate these operations.

Where relational and hypermedia modeling provide direct analog to CRUD 

operations, historical models require a bit more consideration. To reconcile the 
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differences between the needs of CRUD and the capabilities of Historical Modeling, let’s 

walk through the CRUD concepts one by one. We will construct patterns that allow us to 

simulate each of them within the strict rules of immutability.

�Entity

Motivation  Represent the creation of an entity.

In a forms-over-data application, a user needs the capability of creating new things. 

Usually, they will click a button and be presented with a form. Once they fill it out and 

click another button, the system creates an entity and gives it identity.

The identity of a row in a relational database is sometimes generated by an auto-

incrementing ID. This strategy is not appropriate for a historical model, as doing so 

would rely upon a location-dependent identifier. Different nodes might generate the 

same ID for different entities. A location-independent identifier is required.

Another point of difference is the initialization of a new entity. Relational databases 

have INSERT statements, which set all of the columns of a new row to their default or 

provided values. But in a historical model, it makes less sense for the construction of 

an entity to initialize its properties. Some future operation will want to modify those 

properties. The historical fact itself is immutable, so using it to store the initial version 

of a set of mutable properties is awkward. Doing so would make the initial version 

something different from the future updates. It would also make those initial values part 

of the identity of the entity, even after they have been subsequently changed.

The Entity pattern focuses on constructing a location-independent identity and 

avoids initializing mutable properties.

�Structure

An entity is a historical fact that contains only identifying information. It contains 

a natural key, GUID, timestamp, or some combination of those and other location-

independent identifiers.

fact Entity {

  identifier1: type

  identifier2: type

}
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Issuing this kind of fact is equivalent to creating the entity. It represents both the 

identity and the creation of the entity itself.

�Example

A product can be represented by a fact that simply captures the SKU (stock keeping unit):

fact Product {

  sku: string

}

The description, price, quantity on hand, back-order status, and other properties 

of the product are not stored within the fact. These properties are mutable. The fact is 

immutable. It represents the identity of the product and the fact that it was created.

�Consequences

An entity must use location-independent identity. It cannot use auto-incremented IDs, 

URLs, or any other location-dependent identifier.

An entity does not contain mutable properties. Any mutable properties that should 

be associated with the entity are applied with a subsequent fact.

If two nodes create entities with the same identifiers, then they are the same entity. 

The nodes may not be aware of each other at the time of creation, but any nodes who 

learn of the two entities will assume that they are the same.

If auditing information—such as the creator, location, or time of creation—is added 

to the entity, then that becomes part of its identity. Choosing to make that information 

part of the identity is one way of circumventing the previous consequence—that two 

entities with the same identifiers are the same entity. Do this only if it is important to the 

model. Otherwise, keep auditing information outside of the facts themselves.

�Related Patterns

An entity that includes the identity of its parent follows the Ownership pattern.

While the entity’s fact cannot be deleted, the Delete pattern simulates the removal of 

an entity.

Mutable properties are not included within the entity’s fact. Instead, they are 

attached using the Mutable Property pattern.
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�Ownership

Motivation  Represent a strict hierarchy among entities.

It is not uncommon for a model to have a strict hierarchy. In Domain-Driven Design,1 

this structure is referred to as an aggregate. In a relational model, this is a special kind 

of one-to-many relationship where each child has only one parent, sometimes with a 

cascade delete constraint. This kind of strict ownership is often called a parent–child 

relationship.

Identifiers often reflect the strict ownership of an entity. In REST, resource identifiers 

have a path structure that reveal which ones are contained within others. In file systems, 

each folder exists strictly within one parent folder. The path to the folder includes the 

identity of the parent.

In a historical model, it is not strictly necessary to identify one predecessor as the 

owner of a successor. Yet, this is often a relationship that occurs in the problem domain. 

We will therefore typically represent that special relationship via convention.

The Ownership pattern documents a strict parent–child relationship between a 

successor and one of its predecessors.

�Structure

The parent of an entity is represented as a predecessor of its identifying fact, as in 

Figure 8-1.

1�Eric Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA ©2003. ISBN:0321125215.

Figure 8-1.  Each child belongs to only one parent
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The parent predecessor is listed first within the child fact’s fields. It precedes even 

the child entity’s identifiers. While this convention does not make the parent behave 

differently than any other predecessor, it is a low-cost way of documenting the desired 

owner relationship.

fact Child {

  parent: Parent

  identifier: type

}

The child fact is sometimes given a name that includes the name of the parent fact. 

This is not a strict convention and may be violated when the relationship is obvious or 

names get too long.

fact Owner {

  identifier: type

}

fact OwnerItem {

  owner: Owner

  itemIdentifier: type

}

Queries for child entities often start from their parent. Given a parent, the query 

returns all children.

query childrenOfParent(p: Parent) {

  match c: Child where c.parent = p

}

However, there are occasionally circumstances wherein a query references a child by 

some other relationship than the parent. When this happens, the query should include 

the condition that the parent entity has not been deleted.

query childrenRelatedTo(r: Relation) {

  match c: Child where c = r.relatedChild

    such that not exists d: ParentDeleted where d.parent = c.parent

}
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Authorization rules are often expressed along ownership boundaries. To give 

someone the ability to create child entities, we assign elevated permissions on the 

parent. These authorization rules must be explicitly defined, as ownership itself is not an 

implicit part of a historical model.

authorize c: Child {

  match a: Authorization where a.object = c.parent.creator

    such that not exists r: Revocation where r.authorization = a

  then u: User where u = a.subject

}

�Example

An order belongs strictly to the company to which it is placed. Each order also has a 

distinguishing attribute—a GUID—to separate it from other orders for the same company.

fact Order {

  company: Company

  orderGuid: guid

}

This fact does not use the conventional name CompanyOrder. The owner prefix in this 

case simply lengthens the name with no real value. It can be assumed that many of the 

entities in this system are owned by the company.

An order will contain line items. By convention, we give this child fact a composite 

name, which includes the name of the parent.

fact OrderLine {

  order: Order

  createdAt: datetime

}

This fact does follow the naming convention, as otherwise it could not be assumed 

that a Line belongs to an Order. Perhaps the system also models Invoices with their 

associated InvoiceLines.

Both Order and OrderLine follow the convention of listing the owner first among the 

fields, even before identifiers of the child entities.
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The createdAt time distinguishes among order lines within the same order. Timestamps 

are not sufficient identifiers on their own, but combined with other identifiers—such as the 

parent entity in this case—they can be effective. It is expected that order lines will be added 

by a single user from a single node and that the number of order lines will be very small.

Also note that createdAt is a timestamp captured from the actual creation of the 

order line. It is the clock time of the workstation that the user was using. This is not the 

time at which a web server or some other downstream node learned of the order line. It 

is the time that the user physically clicked the button in the browser or client app.

The resulting model appears in Figure 8-2.

Figure 8-2.  An order line belongs to one order, which in turn belongs to one company

�Consequences

The identity of the parent is part of the identity of the child. Because prerequisites are 

immutable, children cannot be moved to another parent. Ownership is non-transferable.

The parent must exist before the child can be created. Ownership does not apply to a 

collection of individual entities that are later grouped after they are constructed.

The Ownership pattern encourages multi-tenancy. The identity of a root owner 

tends to become part of the identities of most other entities. To do otherwise opens 

the possibility of contamination from neighboring nodes under the control of other 

organizations, especially if they tend to generate overlapping identifiers.
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�Related Patterns

If ownership needs to be transferred, consider the Membership pattern instead.

The Ownership pattern is a special case of the Entity pattern, where the entity’s 

identifiers include the identity of an owner.

�Delete

Motivation  Represent the deletion of an entity.

Historical facts are immutable; they can be neither modified nor destroyed. But deletion 

is a regular part of business applications. Deletion, therefore, is simulated by the 

addition of a new fact.

It is a common practice in a relational database to include a deleted column on 

a table. This is a Boolean flag that is set when the row is intended to be removed. All 

queries include a WHERE clause that excludes deleted rows. This is a pattern known as soft 

deletion.

The Delete pattern of historical facts, however, is a little different. Setting a flag is 

a modification. A historical model does not permit modification. Therefore deletion 

cannot be simulated by setting a flag. It must be represented as the creation of a new fact.

�Structure

A deletion fact takes the entity that it deletes as a predecessor. By convention, the name 

of the deletion fact is Deletion appended to the name of the entity.

fact Entity {

  identifier: type

}

fact EntityDeletion {

  entity: Entity

}

Any query for that predecessor must include a not exists clause that excludes 

entities that have been deleted. For example, if the preceding entity had an owner, then 

the query for children would be expressed as follows:
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query entitiesInOwner(o: Owner) {

  match e: Entity where e.owner = o

    such that not exists ed: EntityDeletion where ed.entity = e

}

�Example

In a previous example, order lines were added to an order. If the application allowed a 

user to remove lines from an order, it would represent those as OrderLineDeletions, as 

in Figure 8-3.

Figure 8-3.  An order line has been deleted from an order

The query for lines in an order should exclude all deleted lines:

query linesInOrder(o: Order) {

  match ol: OrderLine where ol.order = o

    such that not exists old: OrderLineDeletion where old.orderLine = ol

}
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�Consequences

If the deletion fact has no identifiers to distinguish it from other deletions of the same 

entity, then the entity can only be deleted once. To allow future restoring of the entity, 

add a distinguishing identifier. A timestamp will be sufficient in most cases.

�Related Patterns

If deletion should be reversible, consider using the Restore pattern.

�Restore

Motivation  Reverse a prior deletion.

Almost every application that permits deletion employs one of two methods to mitigate 

accidental deletion. The more common is confirmation. But some will offer a way to 

restore a deleted entity.

Restoration may begin in a recycle bin that lists all of the deleted entities. Or it may 

only be available immediately after deletion in the form of undo.

�Structure

A restoration fact references a prior deletion. By convention, it appends the word 

Restoration to the name of the entity. The deletion has an extra identifier, usually a 

timestamp. The restoration has no extra identifiers.

fact Entity {

  identifier: type

}

fact EntityDeletion {

  entity: Entity

  deletedAt: timestamp

}
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fact EntityRestoration {

  deletion: EntityDeletion

}

Any query for the entity includes a not exists clause on Deletions, which in turn 

has a not exists clause on Restorations. If the preceding Entity had an owner, the 

query for child entities would appear as follows:

query entitiesInOwner(o: Owner) {

  match e: Entity where e.owner = o

    such that not exists ed: EntityDeletion where ed.entity = e

      such that not exists er: EntityRestore where er.deletion = ed

}

If the user is offered a recycle bin from which to restore entities, it displays the results 

of a query where a Deletion exists. Notice that this is exactly the same as the previous 

query except that the not has been dropped from exists ed: EntityDeletion.

query entitiesInRecycleBin(o: Owner) {

  match e: Entity where e.owner = o

    such that exists ed: EntityDeletion where ed.entity = e

      such that not exists er: EntityRestore where er.deletion = ed

}

The symmetry of these queries makes the deletion and restoration activities atomic. 

Creating a Deletion both adds the entity to the recycle bin and removes it from the 

application. Later creating a Restoration both removes the entity from the recycle bin 

and reintegrates it into the application.

�Example

In a previous example, we saw a model that supported deletion of lines from an 

order. To support restoration of deleted lines back to the order, we would add an 

OrderLineRestoration fact to the model, as in Figure 8-4.
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In the Delete example, the OrderLineDeletion did not require any additional 

identifier. However, to support Restoration, OrderLineDeletion now has a timestamp 

field.

�Consequences

If the Deletion fact does not have an additional identifier—like a timestamp—then the 

entity can only be deleted and restored once. Thereafter, it would not be possible to 

delete the entity again. The second deletion would not be distinct from the first, which 

had been restored. This is almost certainly not the desired behavior. Therefore, the 

timestamp is effectively a requirement.

Figure 8-4.  An order line previously deleted from an order has been restored
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�Related Patterns

Restore is an extension of the Delete pattern.

If the entity can be reconstructed under a new identity with no loss of fidelity, then 

consider using the simpler Delete pattern. This is often preferable when the entity has no 

mutable properties and does not participate in workflow. But if properties, workflow, or 

any other successors are possible, then the Restore pattern is more appropriate.

�Membership

Motivation A dd entities to groups that can be reorganized over time.

Whereas strict ownership prevents entities from moving from one parent to another, 

some business applications do require this kind of flexibility. An employee can be 

added to one department and then transferred to a different one later in their career. A 

project may be part of one portfolio upon initiation, but then reorganized into a different 

one later. These grouping relationships are not strict ownership, but a more flexible 

membership.

�Structure

The relationship between the member and the group is represented as a fact having 

both the member and group as predecessors. The membership fact has an additional 

identifier—usually a timestamp—that allows a member to be removed and re-added to a 

group over time.

By convention, the member is listed first among the membership fields, before the 

group. Both appear before the differentiating identifier.

fact Group {

  identifier: type

}

fact Member {

  identifier: type

}
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fact Membership {

  member: Member

  group: Group

  createdAt: timestamp

}

Whereas with Ownership, the parent is a predecessor of the child, in Membership, 

the group and member are not causally related. As Figure 8-5 illustrates, they have a 

common successor in the membership.

Figure 8-5.  Membership is a successor of both the group and the member

To find all of the members of a group, query through the membership:

query membersOfGroup(g: Group) {

  match ms: Membership where ms.group = g

    such that not exists msd: MembershipDeletion where msd.membership = ms

  then m: Member where m = ms.member

}

�Example

Employees can be reassigned to different departments over time. Representing the 

assignment as a distinct fact—rather than a direct predecessor relationship between 

department and employee—allows the employee to be reassigned without changing 

their identity. Figure 8-6 depicts this relationship.
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When querying for employees in a department, be sure to include only assignments 

that have not been deleted:

query employeesOfDepartment(d: Department) {

  match a: Assignment where a.department = d

    such that not exists ad: AssignmentDeletion where ad.assignment = a

  then e: Employee where e = a.employee

}

�Consequences

The model cannot enforce the business rule that an entity belong to only one group. 

There is no mechanism that prevents two membership facts from having the same 

entity predecessor. In a relational model, a uniqueness constraint could enforce that 

requirement. But a uniqueness constraint on one node does not prevent an insertion on 

another. A uniqueness constraint cannot be enforced in an eventually consistent manner 

across multiple nodes.

Creation and addition to a group are not an atomic process. In the Ownership pattern, 

the parent is created before the entity. In Membership, however, membership is created 

after the entity. If the only queries that reach the entity are through membership, then 

this has little consequence. However, if there is another query that reaches the entity, it 

may be observable as an orphan for an indeterminate period of time. If the application 

developer wishes to hide orphans, they should add an exists clause to the query.

Figure 8-6.  An employee is assigned to a department and subsequently removed
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For example, if Employee defined previously included a Company owner 

predecessor, then the following query would include employees not assigned to a 

department:

query allEmployeesOfCompany(c: Company) {

  match e: employee where e.company = c

}

To exclude unassigned employees from the results, the developer adds an exists 

clause requiring that an Assignment has been made and not subsequently deleted:

query allEmployeesOfCompany(c: Company) {

  match e: employee where e.company = c

    such that exists a: Assignment where a.employee = e

      such that not exists ad: AssignmentDeletion where ad.assignment = a

}

�Related Patterns

If the model requires that the entity be a member of only one group, and that group 

cannot change, then consider using the Ownership pattern instead.

If the model requires that membership in one group be replaced with membership 

in another group, then consider applying the Entity Reference pattern. Model 

membership the group as a reference to the group fact, superseding prior references 

for the same entity. While this will not prevent concurrent changes, it will at least make 

removal from one group and addition to another an atomic operation.

�Mutable Property

Motivation  Represent values that change.

Historical facts are immutable. They do not change. Yet users expect to be able to change 

properties. The Mutable Property pattern represents changes to properties over time 

using only immutable facts.

It is desirable in a distributed system for nodes to be able to act in isolation. A user 

should have the autonomy to change a property without requiring a connection to any 
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other node. The user might be on a mobile phone that is temporarily disconnected 

from the server. Or it might simply have a slow network connection, and the latency of 

performing a connected update would be undesirable.

With capability of autonomous change comes the possibility of conflicts. The 

disconnected user might change the same property as someone who is connected. Or 

two users on a slow connection might change the same property at more or less the same 

time. When each of their changes propagates to the other, the conflict will be detected. 

The system needs to include the capacity for resolving those conflicts.

�Structure

A mutable property is represented as a fact having the entity as a predecessor and 

the value as a field. To keep track of changes over time, it records prior versions in a 

predecessor set.

By convention, the name of the fact appends the property name to the entity name. 

The set of prior versions is conventionally called prior. This set is empty for the initial 

value.

fact Entity {

  identifier: type

}

fact EntityProperty {

  entity: Entity

  value: type

  prior: EntityProperty*

}

As a user changes the property, the prior set captures only the most recent version. 

Under ordinary circumstances, this forms a linear chain of property facts, as Figure 8-7 

demonstrates.
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If two users (or one user on two devices) change a property concurrently, the graph 

will fork. The result will be a tree like the one in Figure 8-8 with more than one leaf.

Figure 8-7.  In a chain of versions, each points back to its immediate 
predecessor

Figure 8-8.  Concurrent changes result in multiple leaves
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When a node computes a tree with multiple leaves, it recognizes a concurrent 

change. In this situation, the application will typically present all leaves as candidate 

values. Each leaf represents a value that was concurrently set for the property and has 

not been superseded. The user can select among the candidate values and resolve the 

dispute.

Alternatively, an application can compute a resolution on its own. This is usually 

accomplished via a simple function over the leaves, such as a maximum. In rare 

situations, however, the application developer may choose to base the resolution on the 

nearest common ancestor of all leaves. One example is a source control system like Git 

that computes a three-way merge. Such a complex function is not appropriate for most 

applications.

In any case, the node determines what to present, but it does not generate any new 

facts. Facts are only generated as a result of a user’s decision. When the user changes a 

property from a concurrent state, the system includes all of the leaves of the tree in the 

new fact’s prior set. This results in a graph like Figure 8-9 that again has a single leaf.

Figure 8-9.  Concurrent changes result in multiple leaves
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To compute the set of leaves, a node simply runs a query with a not exists clause 

on the prior set:

query valuesOfProperty(e: Entity) {

  match p: EntityProperty where p.entity = e

    such that not exists n: EntityProperty where n.prior = p

}

If the query returns one fact, then that fact represents the most recent version. If it 

returns many facts, then they represent the leaves and can be used as candidate values.

A property does not have to have a single value field. It is not uncommon for 

multiple values to change as a unit. In Domain-Driven Design, this situation arises when 

a property uses a value type. In these situations, all of the components of the value type 

appear as fields in a single property fact.

�Example

An order in our example company has a billing address. This is a set of fields that change 

as a unit. It makes no sense to change, for example, the state without also changing the 

city and street. The fields of a billing address are therefore treated as a single atomic fact.

fact OrderBillingAddress {

  order: Order

  street: string

  city: string

  state: string

  zipCode: string

  prior: OrderBillingAddress*

}

The current billing address of an order is given by the following query:

query billingAddressOfOrder(o: Order) {

  match ba: OrderBillingAddress where ba.order = o

    such that not exists n: OrderBillingAddress where n.prior = ba

}
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If the query returns one fact, then that represents the most recent billing address. If, 

however, it returns multiple billing addresses, then concurrent changes have occurred 

and the facts represent the candidate billing addresses. The application presents all 

candidates to the user so that they can research and resolve the issue.

An order will also include a shipping address. This is represented as a separate fact 

from the billing address, even though it has mostly the same fields.

fact OrderShippingAddress {

  order: Order

  street: string

  city: string

  state: string

  zipCode: string

  prior: OrderShippingAddress*

}

A similar query gets the latest shipping address. While it is unusual to change only 

one part of an address at any given time, it is not uncommon to change only the shipping 

address or only the billing address. That is why the application developer chose to make 

them separate facts.

While concurrent changes to billing address will result in multiple leaves, concurrent 

changes between billing address on one side and shipping address on the other will not. 

The system will simply present the most recent billing address beside the most recent 

shipping address. This reflects the intent of the application developer, as expressed by 

the decision that shipping and billing address have no causal relationship between them.

�Consequences

Nodes observing the Mutable Property pattern can act autonomously. They can record 

a new value for a property without first connecting with any other node to prevent 

concurrent changes.

Said another way, concurrent changes cannot be prevented. There is no mechanism 

within a historical model that would ensure that only one change can be made at any 

given time. Properties can neither be locked nor serialized.

Nodes will recognize that concurrent changes have occurred post facto. All nodes 

will eventually receive the same graph, compute the same leaves, and therefore come to 

the same conclusion. Concurrent changes do not result in conflict.
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When a user attempts to modify a property, the application should first verify 

whether the value has actually been changed. The application might, for example, 

display a dialog box with “OK” and “Cancel” buttons. The user might click “OK” even if 

they made no change. If the application created a new fact without checking whether the 

value had changed, it would create an unnecessarily complicated history.

The mutable property fact should not contain any auditing information. This 

allows two different users to change a property to the same value without introducing a 

concurrent update. If the fact contained, for example, the user or timestamp, then two 

concurrent changes to the same value would appear as distinct facts. The result would 

be an unnecessary merge between similar changes.

The response to multiple leaves must be based only on the information in the facts 

themselves. It must not be based, for example, on the order in which the facts arrived at 

the node. The result is a function that is commutative and deterministic; it computes the 

same result at every node regardless of message order. That is why the results of queries 

are unordered sets and not ordered lists.

If a node computes a resolution to a concurrent change, it must do so only on 

read. It must not attempt to create a new fact to resolve the concurrent changes. To 

do so would be to introduce the possibility of a never-ending storm of concurrent 

resolutions. Consensus algorithms such as Paxos are carefully constructed to avoid these 

resolution storms, but without such careful consideration, storms can easily arise. At 

any rate, strong eventual consistency demands convergence without consensus. This is 

achievable if all nodes run the same deterministic function on read.

The Mutable Property pattern cannot guarantee that a property has a single value. 

The query will always result in a set. Applications must be written to expect that that 

set might have multiple values. While it is sometimes tempting to introduce a location-

specific rule to prevent concurrent updates—only one user is allowed to change a 

property, or only one node can be used to make that change—such rules are ultimately 

difficult to enforce and impose undesirable constraints on the system.

A query for the current value of a property could return an empty set. This represents 

the situation in which the property has not been initialized. On remote nodes, this could 

also indicate that the entity has been transmitted, but its initial properties have not 

yet arrived. Creation of an entity is not atomic with initialization of its properties. If an 

application developer intends to present only entities that have been initialized, they 

could add an exists clause based on the property fact.
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�Related Patterns

If the mutable property represents a relationship with another entity, the pattern 

becomes an Entity Reference.

�Entity Reference

Motivation  Represent a mutable relationship between entities.

Where Ownership and Membership are strict grouping constructs, some relationships 

between entities are simple references. These references don’t imply any kind of 

belonging or grouping, but rather just an association.

An entity reference is a property that points to another entity. In Domain-Driven 

Design, the referenced entity is typically an aggregate root, possibly in a different 

bounded context. In an object-oriented language, the entity reference is a pointer to 

another object. And in a relational database, it’s a foreign key. The reference is typically 

mutable and often will be initialized to NULL.

A relational database will use foreign keys to represent Ownership, Membership, 

and Entity Reference. To distinguish among them, first, look to the cardinality. A many-

to-many relationship typically denotes Membership. A one-to-many relationship that 

has a cascade delete constraint represents Ownership. A less constrained one-to-many 

relationship—especially one that allows NULL—is probably an Entity Reference.

�Structure

The structure of an entity reference looks very similar to a Mutable Property. It is a fact 

having the primary entity and referenced entity as predecessors. The referenced entity is 

often nullable. Just as a mutable property does, the fact keeps the set of prior versions of 

the entity reference.

fact EntityReference {

  entity: Entity

  referencedEntity: ReferencedEntity?

  prior: EntityReference*

}
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The distinction between the primary and referenced entity is an important one. The 

primary entity is the one with the reference property. Creating a new EntityReference 

fact changes the value of that property for the primary entity. The prior set will include 

other EntityReference facts that refer to the same primary entity.

Querying for the current value of an entity reference begins with the primary entity. 

Like a property query in the Mutable Property pattern, it matches references that have 

not been superseded. The query includes one additional clause that follows the entity 

reference.

query referencedEntity(e: Entity) {

  match er: EntityReference where er.entity = e

    such that not exists n: EntityReference where n.prior = er

  then re: ReferencedEntity where re = er.referencedEntity

}

Unlike Mutable Properties, entity references permit queries in the opposite direction. 

To query from a referenced entity back to all entities that reference it, include the not 

exists clause on prior. This prevents the query from returning entities with references 

that have been superseded.

query entitiesReferencing(re: ReferencedEntity) {

  match er: EntityReference where er.referencedEntity = re

    such that not exists n: EntityReference where n.prior = er

  then e: Entity where e = er.entity

}

�Example

An order line references the product that was purchased. This relationship is optional: 

some order lines represent fees, discounts, or services not listed in the catalog. The 

OrderLine therefore has a reference to the Product entity.

fact OrderLineProduct {

  orderLine: OrderLine

  product: Product?

  prior: OrderLineProduct*

}
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This creates the relationship demonstrated in Figure 8-10.

Figure 8-10.  Two versions of an order line, each referencing a different product

A query for the product referenced by an order line begins like any other mutable 

property query. But then it contains an extra clause to get the referenced Product.

query productForOrderLine(ol: OrderLine) {

  match olp: OrderLineProduct where olp.orderLine = ol

    such that not exists n: OrderLineProduct where n.prior = olp

  then p: Product where p = olp.product

}

Traversing the graph from the opposite direction, we can query for orders that 

purchase a given product. This query includes the same not exists clause.

query ordersContainingProduct(p: Product) {

  match olp: OrderLineProduct where olp.product = p

    such that not exists n: OrderLineProduct where n.prior = olp

  then o: Order where o = olp.orderLine.order

}

This similarity between the two queries makes them behave atomically. When an 

order line is changed to reference a different product, both of the queries are affected. 

The first query will no longer return the previously referenced product, and the second 

query will no longer return the order.
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�Consequences

Just as with the Mutable Property pattern, an Entity Reference cannot guarantee that only 

one entity is referenced. The query for the current reference returns a set. An application 

must respond appropriately to a set larger than 1. This represents a concurrent update of 

entity references.

The results of the query could also be the empty set. This could occur—just as in 

Mutable Property—when the reference has not yet been initialized. But it could also 

occur when the reference has been set to NULL.

�Related Patterns

This is a variant of the Mutable Property pattern in which the value of the property is a 

reference to another entity.

This is sometimes used as an alternative to the Membership pattern to indicate that 

an entity should be a member of only one group. While it cannot enforce that rule, it at 

least makes the transfer from one group to another an atomic operation.

�Workflow Patterns
While CRUD operations make up an important part of business application 

development, they do not tell the entire story. The next set of business operations to 

consider are concerned with taking entities through a workflow. Workflow is typically the 

realm of business process modeling, state transition diagrams, and flow charts. It is the 

study of collaborative steps that move work from inception to completion.

Tracking the flow of work through a system that allows mutation is an exercise in 

frustration. If each step of the process has the potential to change the work item, then 

reasoning about the behavior of the system requires careful analysis of all possible 

permutations. Allowing for parallel execution, mutability often leads to race conditions.

But within an immutable architecture, workflow is a much simpler process. It begins 

with capturing the work to be performed in an immutable object. Any further changes 

to the source object are ignored. Then, we set up a query to identify which work items 

are ready for any given process. Finally, we capture the outcome of that process in an 

immutable way that atomically moves the work item along to the next step.
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Adding workflow to an application turns it from an anemic forms-over-data model 

into a system that can assist with communication among collaborators. Not every 

subdomain of an application needs workflow, but the most central bounded contexts 

that provide the most business value often do.

�Transaction

Motivation  Capture a known state of an entity to perform an atomic unit of work.

The structural patterns that we just explored allow an entity to change over time. The 

changes are captured as immutable facts, but the accrual of new facts as the user interacts 

with the system simulates changes to an entity. At some point, the user will decide to take 

some action. Any further changes to the entity after that point should not affect that action.

Users might be adding items to a shopping cart. They can remove items, replace 

them, and restore them back to the cart. They can change the quantity, product, 

shipping options, delivery address, and any other property. The structural patterns in the 

previous section allow those operations.

But then when the user submits the order, the items and all of their properties should 

be locked down. No additional items can be added, and no properties can be modified. 

Processing may begin at any time, and a change to an order in flight would be disruptive 

to business.

The Transaction pattern takes advantage of immutability for business processing. 

It records the information about a request for work in such a way that it cannot be 

modified after work begins.

�Structure

A Transaction identifies as a predecessor an entity that it is acting upon. Whereas 

that entity was originally a starting point for children, mutable properties, and other 

successors, the transaction now seeks to lock it down. It does so by inverting the 

predecessor/successor relationship.

Where Ownership placed the parent as a predecessor of its children, Transaction 

makes children predecessors of parents. Successors can be added over time, but 

predecessors are immutable. Recording children as predecessors prevents further 

creation or deletion.
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The transaction also identifies the specific versions of Mutable Properties. These 

become direct or indirect predecessors of the transaction. Again, the relationship 

is inverted so that any further modifications to those properties do not affect the 

transaction.

A TransactionItem as described as follows is a child of a Transaction. 

The Transaction has a set of TransactionItem predecessors. Furthermore, a 

TransactionItem captures one specific version of a mutable property.

fact TransactionItem {

  itemContext: ChildEntity

  property: ChildProperty

}

fact Transaction {

  transactionContext: ParentEntity

  items: TransactionItem*

}

The transaction and all of its items are captured at a single machine. This is typically 

the workstation that the decision maker is using. When a user decides to issue a 

transaction, the system captures the state of the objects as they are known to that user at 

that time. Creating a transaction does not require the machine to communicate with any 

other node, as all of the information required is local.

�Example

When a customer submits an order, they lock down its current state. They cannot make 

further changes to the order. They can only request a subsequent return and new orders.

We start from the order structure currently in place, using patterns like Entity, Delete, 

and Mutable Property. Then we create a parallel model—demonstrated in Figure 8-11—that 

inverts the predecessor/successor relationships. Items in the order become predecessors so 

that new items cannot be added.
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Any lines that have been deleted are not included in the OrderSubmission. Other 

lines might be subsequently deleted, or deleted lines later restored. Neither change will 

affect the OrderSubmissionLines that have been captured.

All of the arrows point out of the OrderSubmission. All of the information required 

to process the order can be found by traversing the graph in one direction. Given an 

OrderSubmission, any node will compute exactly the same order. This locks in the items, 

products, and quantities.

�Consequences

Once a transaction is recorded, subsequent changes to the entities or properties will 

have no effect. All of the information in the transaction is recorded in predecessor 

relationships. Predecessors are immutable, so the transaction is locked down.

All nodes receiving the transaction see it in exactly the same state. The identity of a 

fact includes the identities of its predecessors. Any difference in predecessors such as 

transaction items or property versions would necessarily result in different facts.

A transaction is processed atomically. Items may arrive at a node ahead of their 

transaction. But processing begins with a query for a transaction, not an item. Items will 

remain dormant until the subsequent transaction arrives, at which time all items will 

take effect simultaneously.

Figure 8-11.  An order submission inverts the model to lock in predecessors
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All necessary information must be in the transitive closure of the transaction. 

Starting at the transaction fact, follow all predecessors. From those facts, recursively 

follow their predecessors. The transitive closure is the set of all facts thus visited.

�Related Patterns

The Transaction pattern inverts the predecessor/successor relationship found in the 

Ownerhship and Mutable Property patterns.

A transaction is often placed in a Queue or an Outbox, and is usually associated with 

a Period.

�Queue

Motivation  Manage work to be processed manually.

Work that a person needs to handle is often presented in a list. The user interface shows 

the user a set of work items that requires their attention. The user selects a work item 

and navigates to part of the application where they can handle it.

The user might get interrupted. So the work remains on the queue until they actually 

complete it. If another user observes the queue, they will be able to see the same work 

item.

The Queue pattern presents a set of work items that are ready for manual processing. 

It ensures that a work item is removed from the queue when it is completed.

�Structure

A queue is nothing more than a query that returns facts representing work to be done. 

The query starts from some root-level entity—for example, an Owner—and matches 

children for which an action has not been performed.

query workToDo(o: Owner) {

  match wi: WorkItem where wi.owner = o

    such that not exists a: Action where a.workItem = wi

}
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In the process of performing the requested work, the user will create an Action fact. 

The action records the outcome of the work.

Because the action appears in the not exists clause, the work item is removed from 

the query once the action has been performed. Recording the action and removing work 

from the queue occur in a single atomic operation.

�Example

Once an order is submitted to our hypothetical company, the shipping department picks 

product to fulfill a submitted order and prints a packing slip. The logistics department, 

meanwhile, calls for a delivery truck. Each of these is a manual process. The relationship 

among order submissions, delivery, and packing slips is captured in the model depicted 

in Figure 8-12.

Figure 8-12.  An order submission triggers both the request for delivery and the 
packing slip

The shipping manager knows what orders to pick based on a query. The query looks 

for order submissions that do not yet have a packing slip.

query ordersToPick(c: Company) {

  match o: OrderSubmission where o.company = c

    such that not exists ps: PackingSlip where ps.orderSubmission = o

}

Once the order is picked, the shipping manager prints a packing slip. The act of 

doing so removes the order from this queue.
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Meanwhile, the logistics team runs another query to find orders that do not yet have 

a delivery request:

query ordersToShip(c: Company) {

  match o: OrderSubmission where o.company = c

    such that not exists rd: RequestForDelivery where rd.orderSubmission = o

}

They call for a truck and then enter the RequestForDelivery into the system. Once 

they do so, the order no longer appears in the query. It has been removed from the 

queue.

We have deliberately chosen not to have a predecessor/successor relationship 

between RequestForDelivery and PackingSlip. The delivery request can be made 

before the product is picked. Or, based on volume, the warehouse might find themselves 

backlogged and choose to delay the request for delivery.

When the shipping manager predicts that the warehouse is about to be backlogged, 

they notify logistics to switch to a different query. Now they wait for orders to have been 

picked before requesting delivery.

query pickedOrdersToShip(c: Company) {

  match o: OrderSubmission where o.company = c

    such that exists ps: PackingSlip where ps.orderSubmission = o

    and not exists rd: RequestForDelivery where rd.orderSubmission = o

}

The creation of a PackingSlip atomically moves the work from the shipping 

manager’s queue into the logistics queue. The subsequent creation of the 

RequestForDelivery removes it from the logistics queue.

The packing slip is not a hard prerequisite. It is not a predecessor of the request 

for delivery. But by switching from one queue to another, the company can adjust its 

business process to better respond to circumstances.

�Consequences

The action performed on a work item is used in the not exist clause of the queue. As 

a result, recording the action and removing the work item from the queue is a single 

atomic operation.
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Unlike a FIFO (first in first out) queue, the queue query does not impose an order 

on the work items. The results of a query are a set, not a list. If order is important, place a 

timestamp on the work item fact. Use that timestamp to order the set for presentation to 

the user.

�Related Patterns

If work is to be performed automatically instead of manually, then the Outbox pattern is 

more appropriate.

Work items in a queue are often Transactions.

Work items are often grouped by unit of time. This recognizes a natural period that 

the business already recognizes. Application of the Period pattern has the extra benefit of 

preventing the queue query from slowing down as history accrues.

�Period

Motivation  Bound the accrual of facts with discrete time slices.

The time required to query a historical model is governed by the number of successors 

that the starting point or intermediate fact has. If we start each query from the root of the 

graph, those queries would get slower over time. Starting further down the graph at a fact 

that has a bounded number of successors will keep performance constant as we accrue 

more facts.

Any feature of the system that limits the number of successors is a good candidate for 

subdividing the graph. The one that is most readily available is time. The Period pattern 

subdivides the historical graph by discrete units of time. While the total number of facts 

is expected to grow, the number per unit period will remain somewhat more bounded.

In addition to the performance benefits, associating facts with a period often 

captures an important business concept. Accountants tend to close their books on daily, 

monthly, and quarterly periods. They do this not just to limit the size of a ledger but also 

to give themselves reporting boundaries. The Period pattern seeks to do the same with 

application data.
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�Structure

A period is a fact that has one Owner predecessor to give it context and one discrete time 

value. The time is measured in coarse units; it is not a continuous timestamp.

fact Period {

  owner: Owner

  time: discreteTime

}

Typical choices for the discrete time unit are calendar or business day, month, 

quarter, or year. For high-throughput systems, units may go down to the hour, but rarely 

smaller.

Work items include a period as a predecessor. Queries for work start at the period.

query workToDo(p: Period) {

  match wi: WorkItem where wi.period = p

    such that not exists a: Action where a.workItem = wi

}

Results from two or more queries are unioned together to produce an overlapping 

query. The overlap is chosen to allow plenty of time for remote nodes to connect and 

share their work items and for those work items to be processed before the period rolls off.

The period has no additional fields, so that the owner and discrete unit of time 

produce a unique fact. All nodes creating work items produce the same fact. And each 

query for work items creates the starting point in the same way.

Periods are sometimes captured hierarchically. The largest period—say a year—falls 

directly under the owner. The next period down—for example, a quarter—has the larger 

period as a predecessor. Periods organized in this way must share a boundary; month 

and week cannot be organized in a hierarchy. This is usually done for reporting rather 

than performance reasons.

�Example

In the previous example, we added order submissions directly to the company. As time 

passes, the system searches more orders within the company to find the ones that have 

not yet been picked or shipped. We can make things easier on the system and record an 

important dimension of the model at the same time.
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The DateOfBusiness fact has one predecessor and one field:

fact DateOfBusiness {

  company: Company

  businessDate: date

}

We insert a DateOfBusiness between Company and OrderSubmission, as shown in 

Figure 8-13. This fact captures the date on which the order was submitted.

Figure 8-13.  An intermediate fact groups orders submitted to a company by date 
of business

Date of business is not strictly determined by the computer clock. An order may 

be counted toward the next date of business if it is placed after hours, or if it occurs 

on a weekend or holiday. In fact, the company may even choose a policy wherein 

orders placed after 3:00 are associated with the next date of business. The period is an 

operational construct, not a physical one.

Not all nodes need to advance to the next period at exactly the same time. There is 

no need to rigorously synchronize the clocks across the workstations on which users 

are submitting orders. If one workstation starts submitting orders into the next date of 

business while another workstation remains on the current one, then those orders are 

simply counted in different periods. This will not cause any problems as long as there is 

no causal relationship between the order submissions. And the fact that the developer 

chose not to make one OrderSubmission the predecessor of the other indicates that 

there should be no causal relationship.
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To determine the orders to pick for any given date of business, we find those that do 

not yet have a packing slip:

query ordersToPick(dob: DateOfBusiness) {

  match o: OrderSubmission where o.dateOfBusiness = dob

    such that not exists ps: PackingSlip where ps.order = o

}

We run this query for two dates of business—the previous one and the current one—

and union the sets. Any given order submission occurs in only one date of business, as 

indicated by the singularity of its predecessor, so this practice does not risk duplication. 

But the overlap does prevent us from missing orders. As long as the period is significantly 

longer than the SLA, we will have received and processed a day’s orders before we roll 

the query forward too far.

�Consequences

A work item should have only one associated period. If a unit of work is broken into 

smaller units, and those each have their own period, then it would be possible to split 

the work between two periods. Think of a train moving across a switch at the same time 

that the switch is thrown. If the cars are not connected, then there is no problem. But if 

they are attached to one another, this could cause some unintended consequences.

Two or more periods should be queried for work items. The overlap provides a buffer 

of time for work items to arrive and be processed. If upstream nodes can be offline, 

the number and duration of overlapping periods must be chosen to allow them to 

reconnect. As long as the expected time to receive and process work items is significantly 

shorter than the duration of overlapping periods, then work will not typically be lost.

There is no mechanism in the model to guarantee, however, that work won’t be 

delayed beyond the oldest period queried. The processing system should be flexible 

enough to be manually reset to pick up lagging work items. A query from the Owner one 

predecessor higher than the period can encompass all periods. While this query would 

be slower, it would look back in time for any missed work items. A business decision can 

then be made to determine the best corrective action.
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�Related Patterns

Periods are often used as the starting point for queries in the Queue or Outbox pattern. 

An unbounded queue gradually becomes a performance problem. But a queue bounded 

by the expected number of work items per period is much easier to manage.

The work items within a period are often Transactions.

�Outbox

Motivation S end work to an external system that does not follow immutable 
architecture principles.

Distributed systems are heterogeneous. Components designed with differing 

architectural constraints will need to interact with one another. We will find ourselves 

sending requests from an immutable system into a location-dependent system.

At the boundary between immutable and location dependent, we have an API. The 

immutable system runs a service that calls the API whenever a fact appears in a Queue. 

It then records the results of that API call in a new fact that removes the work from the 

queue.

A single instance of a service would be easy to implement, but it would ensure 

neither high availability nor high throughput. For those properties, we need redundancy. 

And that’s where implementing a service gets difficult.

When sending work to a location-dependent API, it is often beneficial to limit the 

number of duplicate requests. If the system is not idempotent, it might incorrectly 

duplicate the work. If so, we would like to ensure—as nearly as we can—that requests are 

sent exactly once. But even if the downstream system is idempotent, multiplying every 

request by the number of parallel services is unnecessarily wasteful.

The Outbox pattern provides a mechanism by which parallel services avoid sending 

duplicate work requests to third-party systems. It cannot prevent duplication altogether, 

but it can take steps to reduce them.

Note that there is no corresponding Inbox pattern. When information is received 

from an external system, it is simply turned into a fact. No special conversion pattern is 

necessary in this direction.
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�Structure

The Outbox pattern integrates with location-dependent services by becoming location-

dependent itself. Unlike the other patterns presented here, this one is not implemented 

entirely within the rules of immutable architecture. Instead, it uses a location-specific 

journal to keep track of successful API calls.

Journaling

The journal records the result of API requests made to the remote system. The index 

into the journal is the hash of the work item fact that triggered the API call. The journal 

contains all pertinent data received from the API. It only records successful API calls.

When everything works correctly, the service performs the following actions in order:

	 1.	 Receive a work item fact from a queue query.

	 2.	 Call the API.

	 3.	 Store the results of the API call in the journal.

	 4.	 Create a fact with the results of the API call.

The fact created in step 4 also has the effect of removing the work item from the 

queue. The next time the service runs the query, the work item fact will not be present. 

This is the “happy path.”

When things don’t work correctly, the service may fail partway and find itself 

repeating these steps. The journal is intended to reduce the probability that the API will 

be called more than once. It does so by providing a way to skip the API call in step 2 in 

some failure scenarios.

After a service receives a fact (step 1), it checks the journal for a matching row. The 

journal is indexed by the hash of the work item fact. If a matching fact is found, then a 

previous or parallel invocation of the service had completed step 3. The service reads all 

of the information about the result of the API call and proceeds to step 4 to create the fact.

After the service makes the API call and receives a successful result, it attempts 

to insert that information into the journal. The journal, however, has a uniqueness 

constraint on the work item fact hash. The insert will therefore fail if a parallel service 

inserted its results first. When this happens, the service has just detected a duplicate call 

to the API. It aborts and lets the parallel invocation finish the job. The full flow of the 

journaling algorithm appears in Figure 8-14.
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Random Processing Delays

Journaling reduces the chances of duplicate successful API calls, but it does not prevent 

them. One of the ways in which duplication can still occur is for two nodes to run the 

service on the same work item in parallel. We can take additional steps to make parallel 

execution less likely.

The simplest way to reduce the likelihood of parallel execution is to introduce a 

random processing delay. Consider a service that uses polling to query the queue for 

work items. It wakes up at regular intervals and runs its query. If it finds some work 

items, it processes one of them and runs the query again. It does not process all of them, 

because doing so adds time during which a different service could wake up and run the 

same query. It simply selects one work item at random and leaves the rest in the queue.

We can configure all of the nodes to wake up the service on the same schedule. 

Perhaps we simply create a cron job that runs once a minute. But, to reduce the 

likelihood of parallel execution, we wait a random number of seconds before running 

the query.

Figure 8-14.  Journaling reduces the likelihood of duplicate API calls
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This is a very simple technique. Combined with the journal and a relatively fast 

downstream API, it can be quite effective. But it is only appropriate for low-throughput 

interfaces. It introduces unnecessary latency and limits the frequency with which work 

items can be processed.

Rendezvous Hashing

When low latency and high throughput are required, a more sophisticated mechanism 

can be employed. Rendezvous Hashing2 is a technique for uniquely allocating objects 

to nodes. It is often used in distributed caches. We will adapt it to instead allocate work 

item facts to services. A similar algorithm—Consistent Hashing3—can be adapted just as 

well.

To begin with, each service instance generates a random number when it starts up. It 

registers its number with the other services. The service registry could be implemented 

with a gossip protocol, a distributed hash, or even the same database that is used to keep 

the journal. The only requirement is that the other services become aware of this new 

member shortly after the service comes online.

Once it has registered, a service subscribes to new work items entering the queue. 

Unlike the random processing delay solution, services do not poll. They are notified 

via webhooks, broadcast, or a publish–subscribe message queue as soon as work is 

available. Which mechanism they use depends upon your chosen communication 

infrastructure.

When a service receives a work item, it computes the hash. But before it checks the 

journal, it pairs the fact hash with each of the random numbers of all of the registered 

services, including itself. It computes the hash of each pair, producing a weight. The 

service with the highest weight is the one that should process the work item. If that 

winner is the service itself, then the service checks the journal and processes the work 

item. The algorithm is depicted in Figure 8-15.

2�Thaler, David; Chinya Ravishankar. “A Name-Based Mapping Scheme for Rendezvous.” 
University of Michigan Technical Report CSE-TR-316-96.

3�Karger, D.; Lehman, E.; Leighton, T.; Panigrahy, R.; Levine, M.; Lewin, D. (1997). Consistent 
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World 
Wide Web. Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing. 
ACM Press New York, NY, USA. pp. 654–663.
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All services will compute the same weights for a work item. They will therefore all 

select the same winner. Only that winner will process the work item, resulting in less 

chance of parallel execution.

Service Failure

Unfortunately, nodes fail. When a service stops responding, its work items will remain in 

the queue longer than expected. Fortunately, the other services can detect this.

Since all services compute the weights for all work items, each service can see where 

it falls in the rank. If a service determines that it is the second-place winner, then it keeps 

track of the work item. If it sees it again after a timeout, then it assumes that the first-

place winner has failed. It processes the work item and removes the failed node from the 

registry.

If a service that has not failed finds itself removed from the registry, it just creates a 

new random number and comes back in. The timeout should be high enough to make 

this scenario unlikely, but low enough that failures don’t go undetected for too long.

Failure detection can be generalized beyond the second-place winner. Third-, 

fourth-, and higher-place winners can set longer timeouts on the work items. This will 

mitigate against a simultaneous failure of multiple services, as such would be caused by 

an infrastructure or network outage.

Figure 8-15.  A node computes weights for one work item to determine the 
winning service
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�Example

We are integrating our example company with a third-party accounts receivable system. 

When an order is submitted, we send it off to be invoiced. Our first step is to define a 

Queue of orders to invoice.

query ordersToInvoice(dob: DateOfBusiness) {

  match o: OrderSubmission where o.dateOfBusiness = dob

    such that not exists i: Invoice where i.orderSubmission = o

}

With that in place, we create a service that subscribes to this queue. As a service 

starts up, it generates a random number and inserts a record into a shared Redis 

cache. When a new OrderSubmission is created, the node that created it broadcasts a 

notification. The service subscribes to that notification to learn about new work items.

Upon notification, the service runs the query to find work items. It pairs the hash of 

each work item with the random number of each service in the Redis cache. It hashes 

this pair to compute the weight of that work item for that service. All of the work items for 

which the service itself has the highest weight continue to the next step.

The service checks a shared SQL database for a journal entry by that work item’s 

hash. Finding none, it makes the API call and inserts the resulting invoice number 

into the journal. After that insert succeeds, it creates an Invoice record containing the 

returned invoice number.

If the service had found an existing journal entry, it would have instead loaded the 

invoice number and created the Invoice fact without calling the API. And if the insertion 

failed because of a uniqueness constraint violation, it would abort the processing of that 

work item after alerting the operations team of a likely duplication. Figure 8-16 shows 

the pair of artifacts that make up the outbox.
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�Consequences

There is no guaranteed mechanism to prevent duplicate calls to a third-party API. Even 

with this pattern in place, duplication will occasionally happen. Downstream services 

should be coded to be idempotent.

Upon service startup, a delay in notifying other services leaves open a window in 

which both could believe themselves to be the first-place winner. To mitigate against 

parallel processing in this scenario, delay processing by the new service until enough 

time has passed for all other services to finish processing any work items in flight.

The fact generated from the results of the API call must not contain any information 

not captured in the journal. If it contains, for example, auditing information such as 

the timestamp or IP address when and where it was recorded, then the fact would be 

different from other facts representing the same API call. The model would contain 

duplicate data even when the journal prevented duplicate API calls.

�Related Patterns

For manual processes, present a Queue to the user using a simple query.

The work items in the outbox are typically Transactions.

The query for the outbox usually begins at a Period. Overlap periods by significantly 

greater than the downstream SLA to prevent loss of work items.

Figure 8-16.  Services share a distributed cache and persistent table to support the 
Outbox pattern
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�Designing from Constraints
The patterns presented here are a starting point for building applications using only 

immutable historical facts. They emulate—as closely as they can—the behaviors that 

people have come to expect from business applications. And they do so using only the 

capabilities of immutable distributed data.

Where these patterns diverge from expected behavior, they reveal constraints about 

the medium in which they are rendered. A Mutable Property cannot have a single 

value. And we cannot enforce that an entity have Membership in only one group. Those 

truths reveal that the application is distributed across several nodes, each of which has 

autonomy to capture concurrent changes. Also, we cannot say for sure when a Period 

is closed. We can only assume that enough time has passed to allow distant nodes to 

connect and share their work items.

We cannot give the users of our applications exactly what they have come to expect 

from centralized systems. The rules of immutable architecture prohibit it. The reason 

is simple; those promises cannot be kept in a strong eventually consistent manner. 

Architectures that nonetheless provide these behaviors must compromise some aspect 

of their distributed nature in order to do so.

An application built according to these patterns acknowledges the constraints 

imposed by distributed nodes. It starts from those constraints and builds toward 

expected behavior, never promising more than what can be reasonably delivered.

These patterns are more than guidance on how to build a distributed application; 

they are a means of communication. They make it possible for application designers 

to talk to stakeholders about constraints without first teaching them about strong 

eventual consistency and the CAP Theorem. They permit us to speak in generalities 

without reasoning through specific scenarios in which distributed nodes might cause us 

problems. They frame a conversation about application design that helps all participants 

set expectations and keep them.
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CHAPTER 9

Query Inverses
Mathias Verraes’ joke about two hard problems in distributed systems is based on a 

saying by Phil Karlton formerly of Netscape. He quipped “There are only two hard things 

in Computer Science: cache invalidation and naming things.”

I am notoriously bad at naming things (as you have no doubt discovered in earlier 

chapters). However, I have a rock solid solution to cache invalidation. Query inverses 

determine not only which caches should be invalidated but also precisely how they 

should be updated.

When we think of caching, we often think of improving performance or scalability. 

But the most important cache is the one that the user is looking at. User interfaces are 

caches of query results stored temporarily in view models and browser DOMs. When 

that cache is invalidated, the user expects their view to automatically update. Failure to 

update the UI leads to a frustrating user experience. The browser’s F5 button and “pull to 

refresh” are interface metaphors that admit defeat.

On the face of it, you would expect caching of immutable data to be easy. If data 

doesn’t change, the cache is always up-to-date. The point of the cache, however, is not 

to store a copy of the immutable facts. It’s to store a copy of query results. It is query 

results—not raw facts—that appear on a user interface. And so we must find a strategy 

for determining when a query’s results have been affected.

The results of a query change as new facts are introduced. For each new fact, we 

must answer two questions:

	 1.	 Which caches or UI components are invalidated?

	 2.	 What results should be added to or removed from those caches 

and components?

Query inversion answers one—and sometimes both—of those questions. The views 

that are affected can always be found by traversing the query from the introduced fact 

backward. The results to add or remove can usually be given by the tail of the query from 

https://doi.org/10.1007/978-1-4842-5955-9_9#DOI
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the introduced fact forward. And even when the inverse does not answer the second 

question, then we simply need to rerun the query to bring the view up-to-date.

�Mechanizing the Problem
Determining what to update when certain events take place is the bread and butter of 

application development. We do it intuitively all the time. Whether responding to user-

input events, API commands, or messages in a queue, a developer decides what state 

is out-of-date. It might be a view model that needs to raise property changed events or 

an array of results that needs to be flushed and reconstructed. Developers make those 

decisions.

Intuition, however, fails in two important ways. First, it is easy to miss dependent 

state that needs to be updated. And second, update logic needs to be revisited as 

requirements are added. For the first problem, we simply test until we think we’ve found 

all of the reasons for a view to change. And for the second problem, we analyze each 

new feature for how they interact with existing behaviors. We add these as acceptance 

criteria, modify all affected areas of code, and test for regressions. Because of this, new 

changes take longer to make and have a greater chance of introducing bugs.

A better solution is to remove cache invalidation and UI update decisions from 

developer’s hands. If the system could decide which caches to rebuild and which user 

interface components to update all on its own, then that logic would not clutter the code. 

The decisions can be made mechanically without the risk of human error. And they can 

be updated automatically as the system grows, keeping each new feature as quick and 

safe to add as the first one.

The good news is that the system already has enough information to make cache 

invalidation decisions. Every cache and user interface component is initially populated 

with a query. That query describes a path through the system’s data that yield the results 

to store or render. By processing the query when it is first executed, the system can 

determine what new facts will affect the results in the future. All we need to do is invert 

the query and begin watching for those new facts.

Let’s begin by finding a formal vocabulary for describing queries. This will help us 

not only to execute them but to mechanically invert them.
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�The Anatomy of a Query
A query written in the Factual Modeling Language describes the types and relationships 

among facts. It gives the conditions under which certain facts should be included. A 

Factual query is a declarative statement of the results that we seek. This description 

needs to be translated into something actionable.

A query that we studied in Chapter 5 identified the lines in a cart, excluding those 

that had been ordered:

query linesRemainingInCart(c: Cart) {

  match ol: OrderLine where ol.cart = c

    such that not exists o: Order where o.orderLines = ol

}

We overlaid that query on the fact type graph as shown in Figure 9-1.

Figure 9-1.  The query visualized as a path over the fact graph

The dotted arrows indicate the path along which the instance graph will be 

traversed. It describes how we will execute the query. We can formalize that process as 

a pipeline. This will be used not only for executing queries but also for computing their 

inverses.
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�A Sequence of Steps
A query is a sequence of steps. Each step moves from one fact type to another along an 

edge. The edge is the predecessor/successor relationship between the two facts. Each 

edge has a role: the name given to the predecessor within the successor’s type definition. 

So we can define a step between facts of type A and B as going up to the predecessor or 

down to the successor along an edge with a given role.

The first step in our example query finds order lines where ol.cart = c. This 

implies a successor step. Given a cart, this step finds all successor order lines in the role 

“cart”. We can draw this step as shown in Figure 9-2.

A query is a path from one fact type A to another fact type Z. We will build a pipeline 

of components, each one taking a set of input facts and producing a set of output facts. 

The initial set contains only one fact: the starting point of the query.

�Filter by Existential Condition
Some components within the pipeline will not be steps at all. They will not move up to a 

predecessor or down to a successor along an edge. Instead, they will filter the incoming 

set. Filters are given as a Boolean expression of existential conditions. Each condition’s 

quantifier is either exists or not exists. The body of the condition is another query, which 

starts at the fact type where the filter is applied.

In the example query, we filter out all order lines that are not a part of an order. 

We accomplish this with an existential condition based on the subquery where 

o.orderLines = ol. It keeps only those order lines where there does not exist a 

successor order in the role “orderLines”. And so we add a filter component that feeds 

Figure 9-2.  The first step in the pipeline takes a set of carts to a set of order lines
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each fact into a subordinate pipeline. It keeps only those facts for which the subordinate 

pipeline yields no results. This component is shown in Figure 9-3.

Joining these two halves into a complete pipeline, as shown in Figure 9-4, gives us a 

mechanism for computing the query. But it does more. It formalizes the steps that we’ve 

so far illustrated with dotted lines overlaid atop fact type diagrams.

Figure 9-3.  The second step filters order lines based on a subquery

Figure 9-4.  A pipeline composed of three operations

These are the components that we will manipulate to compute the inverse of the 

query. And it starts by computing the affected set. To understand how to do that, let’s 

return to our familiar zigzag paths.
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�The Affected Set
The first question that a query inverse answers is which caches and views are affected 

by a new fact. It identifies those caches and views by the starting point from which the 

query was first executed.

Every query has a starting point. Any particular cache or user interface component 

holds the results of a query for a specific starting fact. Different users will be running the 

same queries, but each will start at a different fact. Hence their caches will be different. 

As they navigate through the user interface, they will render components by running 

queries. While many of these components will run the same query, each one will start 

from a different fact. The starting point of a query determines which user interface 

component to update, or which cache to invalidate.

In Chapter 5, we showed an example of a view displaying the table assignments 

for a server at a restaurant. The wireframe appears again for reference in Figure 9-5. 

Each server will log into the system and bring up the same page. They will see different 

results because the user interface component uses a query starting from a different fact. 

When a new Assignment fact is introduced, the system computes the affected Server to 

determine which view to update.

Figure 9-5.  The user interface component showing assigned tables starts at the 
server fact
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�Computing the Affected Set
When the table list view first loads, it runs the query shown in the wireframe. That 

query determines which tables to show in the list. But that query also provides all of the 

information needed to compute the affected set of any subsequent Assignment. That is 

the role of the inverse.

The original query, when overlaid on top of the restaurant graph, is shown in 

Figure 9-6. It is a path from the starting Server to the successor Assignment.

The inverse is simply the opposite step, back up from the Assignment to the Server. 

When a new Assignment is introduced, this query tells us which server’s view to update. 

This matches your intuition and is exactly the same logic you would use if responding to 

a table assignment event. But as this simple example demonstrates, the process can be 

automated. The inverse query appears in Figure 9-7.

Figure 9-6.  The query for a server's table assignments is a single step to its 
successor

Figure 9-7.  The inverse query simply follows the same step in the opposite 
direction
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�Inverting Longer Queries
The preceding example is extremely simple. It demonstrates the process of query 

inversion, but does not reveal any of the nuance. When we start to examine longer 

queries, we find that we have a few more considerations.

A query with only a single step can only be affected by one kind of introduced fact. 

It has only one inverse. But a query with multiple steps can be affected if any of them is 

introduced. Longer queries have more inverses. So the process of query inversion is not 

simply reversing the chain of steps. It is producing all reversed chains that point back to 

the starting point.

Consider this more complicated scenario. We render a view that displays all parties 

that a server needs to take care of. Specifically, this view selects all assignments for 

the server, then for each table, selects the party that was seated. This multistep query 

appears in Figure 9-8.

Figure 9-8.  A query of four steps yields all parties seated at a table assigned to a 
server

Figure 9-9.  When a SeatParty fact is introduced, all servers assigned to the table 
are affected

There are several facts that could affect this view. We need to produce an inverse 

for each step along the way. For example, when a new SeatParty fact is introduced, the 

query in Figure 9-9 determines which server’s views are affected.
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Each of the inverses is a query from a different fact type back to a Server. All 

told, this query has four inverses. They start at each of the types Assignment, Table, 

SeatParty, and Party. They get progressively longer as they all terminate at the server.

�Unsatisfiable Inverses
A query inverse is executed when a new fact is introduced. This could be the result 

of a user action. Or it could be that the new fact arrived from some other device. In 

either case, the fact that was introduced was not present before and is therefore not 

represented in the query results. That is, after all, the very reason that we are updating 

the view.

Knowing that the new fact has just arrived at this node tells us something quite 

useful. It assures us that the fact currently has no successors.

For a fact to have successors, it must have been introduced before the successors 

were. A user can only take actions that reference existing facts. And for a peer device to 

share a fact with this node, it must have first shared all of its predecessors. Said more 

formally, facts are introduced in topological order.

Because the fact that was just introduced does not yet have any successors in the 

system, we can be assured that any queries that start with a successor step will yield no 

results. In particular, any of the inverses that begin by stepping down to a successor will 

necessarily yield an empty affected set. Such inverses are unsatisfiable. They will never 

find a view that needs to be updated. They can therefore be ignored.

An example of an unsatisfiable inverse appears in Figure 9-10. When a new Table 

fact is introduced, we can be assured that it has not yet been assigned to a server. We can 

therefore assume that no server’s view will be affected by that new table. We will ignore 

this inverse as it will have no effect.

Figure 9-10.  When a new table is introduced, the query for affected servers begins 
with a successor step
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Considering this optimization visually, observe the original query as a zigzagging 

path through the graph. It has hills and valleys as it goes up to successors and down to 

predecessors. This optimization tells us that we only need to consider inverses that start 

in valleys. If an inverse starts on a hill, then the first step of the inverse query is down to 

a successor. Of the four inverses that we computed from the original query, only two are 

satisfiable: the ones starting from the Assignment and from the SeatParty.

�Walking Backward
Let us now express the original query as a pipeline. The pipeline starts with a set of 

Servers (containing only the starting fact). It ends with a set of Partys. Along the way, 

it takes four steps, alternately toward successors and predecessors. The full pipeline 

appears in Figure 9-11.

Figure 9-11.  A pipeline from a set of servers to a set of parties that they take  
care of

Figure 9-12.  The four inverses of the original query have the opposite steps

To compute the inverses of this query, we take each subset of the pipeline starting 

from the Server. We will reverse each of the steps in that pipeline. Reversing a step 

simply exchanges Successor for Predecessor and vice versa. This operation produces 

the four pipelines shown in Figure 9-12.
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Only two of these inverses are satisfiable. Those are the ones that begin with a 

Predecessor step. We can ignore the other two. The complete set of satisfiable inverses 

appears in Figure 9-13.

Figure 9-13.  Only two of the inverses are satisfiable

To render the party list, we execute the original pipeline starting from the Server. 

Then, whenever a new SeatParty fact is introduced, we execute the first inverse 

pipeline in Figure 9-13 to find the affected views. And, whenever a new Assignment fact 

is introduced, we execute the second inverse pipeline. There are no other events that 

could affect the view. This mechanical process finds all ways in which the view could be 

affected.

�Proof of Completeness
The claim that there are no other events that could affect the view needs to be defended. 

It is by no means obvious. Let’s take a moment to do so before we proceed.

To begin, we need to define what we mean by “event.” An event could be something 

that the user themselves has done on this node, or it could be information that arrived 

from some other node. If it happened on this node, it could either be a transient action 

such as navigation or a permanent action such as saving a new fact. Transient actions 

will lead to new starting points for queries and will therefore replace old views with 

new ones. Permanent actions are always analyzed as introductions of new facts. Our 

analytical tool of Historical Modeling allows no other permanent actions, such as 

modifications or deletions.

So every event that could affect an existing view would therefore be the introduction 

of a fact. This might be one that the user introduced themselves or one that arrived from 

a peer node. In either case, if we were to rerun the query of an affected view, that new 

fact would have some potential effect on the results.
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Our assertion of completeness is equivalent to saying that the inverses find all 

starting points that could be affected by the introduced fact. To convince ourselves that 

this is true, we examine the sets of facts that appear along the pipeline. If a fact appears 

in one of those sets, then it potentially has an effect on the pipeline’s results. If it does 

not, then it could not have an effect.

Observe that the reverse of a predecessor or successor step yields a superset of the 

original starting set. If we start from one set of facts and find all successors in a given role, 

we are picking out all edges by role and predecessor. Going in the opposite direction, 

we are picking from among the same edges, but now by role and successor. The edges 

that produced a result in the original step will be among those included in the reverse 

step. And so the reverse of a predecessor or successor step will yield all starting facts that 

could possibly contain a given destination fact.

So far this proof only considers predecessor and successor steps. We will complete 

the proof by considering filters after we examine existential conditions.

�New Results
Knowing which view to update is a great start. Once we know that a view is affected, 

we can just run its query again from its starting point to find the new state. But we can 

often do better. Sometimes, the query inverse tells us exactly what new results should be 

added to the view.

We analyzed the query for parties that a server waits upon. The two inverses that we 

discovered reverse only part of the original query. Starting from an introduced fact, those 

parts lead us back to the affected set. The remainder of the query, however, leads us 

forward to the new results. There is no need for us to run a potentially expensive query. 

Since we already know the introduced fact, we only need to run part of the query to find 

the new results. The remainder of each inverted query appears in Figure 9-14.

Figure 9-14.  The remainder of the query (shown after the dot) gives the new 
results to add to the affected view
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To execute these inverses, start with an introduced fact. Execute the reverse pipeline 

to find the affected set. Then execute the forward pipeline to find the new results.

When a party is seated, for example, a new SeatParty fact is introduced. Query for 

all servers assigned to the table at which the party was seated. To each of their views, add 

the party. And when a new table assignment is introduced, follow the pipeline backward 

to the affected server. Update that server’s view with all parties currently seated at that 

table.

Your intuition may have led you to write exactly this code. You might have realized 

that you don’t need to rerun the whole query to update the view. But following a 

mechanical process to automatically produce the optimal algorithm, you now have 

confidence that no edge cases were missed and no new features will break this code.

�Forward Optimization
As before, we know that the introduced fact has no successors. Just as we used this 

observation to remove unsatisfiable inverses, we can also identify unsatisfiable results. 

If the forward query begins with a successor join, then the entire inverse can be 

eliminated. We might be able to find some affected views, but we know that this new fact 

will introduce no new results.

Take the abstract example in Figure 9-15. We want to render a view starting at fact A 

that displays information about facts E. The query zigzags through the graph, jumping 

from predecessor to successor and successor to predecessor.

Figure 9-15.  Some queries might take several successor steps in a row
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Computing the inverse at every point along the path, we find that the reverse 

pipeline from C starts with a predecessor step. It might at first appear satisfiable. 

However, observe that the forward pipeline from C to D begins with a successor step. This 

inverse is therefore not satisfiable. Only the inverse starting at D yields new results for an 

affected view. Inverses always start from the valleys of the fact type graph.

�Existential Conditions
So far we’ve examined simple queries. They are a sequence of steps, each toward a 

predecessor or successor. However, most queries used to populate a user interface 

or seed a cache are more complex. They are composed not just of predecessor and 

successor steps but also of exists and not exists conditions. Let’s add these operators to 

our basic inverses and see how they evolve.

The easier of the two kinds of existential condition is exists. We’ll leave not exists 

aside for now. This kind of condition filters facts to only those for which a subsequent 

query yields results. Let us recall an example from Chapter 8.

query pickedOrders(c: Company) {

  match o: OrderSubmission where o.company = c

    such that exists ps: PackingSlip where ps.orderSubmission = o

}

To begin the process, we convert this Factual query into a pipeline. The clause 

where o.company = c implies a successor step. Starting at Company, it seeks successor 

OrderSubmissions in the “company” role. The such that clause begins a subquery. The 

subquery tests for the existence of a PackingSlip using another successor step: where 

ps.orderSubmission = o. Chaining these operations together gives us the pipeline in 

Figure 9-16.

Figure 9-16.  A pipeline having an exists condition
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Once we have this pipeline, we can execute the query. The set of OrderSubmissions 

leaving the filter component will be a subset of those entering. Each of the order 

submissions is fed into the successor step, and only those that produce a result are kept. 

Consider, then, what happens to the results when a new PackingSlip is introduced. 

If it brings the number of subquery results from 0 to 1, then it causes its parent 

OrderSubmission to appear in the results.

�Recursive Inversion
To break this pipeline down so that it can be inverted mechanically, it is best to apply 

recursion. Once we reach the exists condition, we can push the upper portion of 

the pipeline onto a stack. This focuses our attention on just the lower portion of the 

pipeline—the subquery.

Figure 9-17.  The entry point of a subquery is the type on which the filter operates

We know how to invert this query: a PackingSlip affects its predecessor 

OrderSubmission as shown in Figure 9-18. The new result is the packing slip itself. Since 

the affected pipeline does not start with a successor step (it starts with a predecessor of 

role “orderSubmission”), we know the affected set is satisfiable. And since the remaining 

pipeline does not start with a successor step (it is simply the null pipeline), we know that 

the new results are also satisfiable. And so the PackingSlip affects the OrderSubmission 

by introducing a new result.

Figure 9-18.  The inverse of the subquery adds the introduced packing slip to the 
affected order submission
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Popping the stack and returning to the upper portion, we reason that introducing 

a PackingSlip causes the introduction of an OrderSubmission. We arrive at this 

conclusion based on the exists quantifier. An order submission without a subsequent 

packing slip would be filtered out. So introducing the packing slip adds it into the 

pipeline.

We can pop the stack and continue analyzing the pipeline as if it was the 

OrderSubmission that was introduced instead of the PackingSlip. We could, that is, 

except for one small caveat. Since the OrderSubmission was already known to this 

node, it might possibly have other successors. We therefore cannot apply the valley 

optimization that we used previously. We must retain the inverse even if the existential 

condition does not appear in the valley of the graph. The valley optimization only applies 

to the innermost subquery.

The inverse of this query, therefore, appears in Figure 9-19. We start by walking back 

from the introduced packing slip to its affected order submission. The members of that 

set will now satisfy the condition in the parent query. From here, the affected set of the 

whole query is the reversed pipeline from that condition. And the new results are the 

remaining forward pipeline.

Figure 9-19.  The inverse starts with the inverse of the subquery and continues as if 
the affected fact was introduced

�Tail Conditions
In the preceding example, we don’t care about the packing slip that was added to the 

subquery results. All we cared about was the fact that results were added. The inverse 

of the subquery shown in Figure 9-18 shows the added pipeline after the dot. But we 

dropped that detail as unimportant in Figure 9-19.

In general, however, that detail matters. The subquery tells us which filter condition 

might be affected by the introduced fact. It does not, however, guarantee us that the 

condition is indeed true. To have this guarantee, we need to know that the introduced 
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fact resulted in some actual additions. This is why we will in general want to execute the 

tail of the subquery. The affected filter condition is only guaranteed to be true if the tail 

yields some results.

Let’s add a few more steps to the original query to illustrate what happens. Suppose 

that we want to know not just that we have a packing slip but also that we have the 

shipping address of the recipient. The revised query pipeline now looks like the one in 

Figure 9-20.

As before, we process this pipeline recursively. The subquery has two inverses: one 

starting at the PackingSlip and one starting at the ShippingAddress. We will concern 

ourselves only with the first. That subquery inverse has a nontrivial tail pipeline, as 

shown in Figure 9-21.

Figure 9-20.  The revised pipeline has two extra steps in the subquery

Figure 9-21.  The inverse of the subquery retains the two new steps in its tail

When we encounter this inverse, we know that it only adds results to the subquery 

when the tail pipeline produces output. Only then will it make the exists condition true. 

To filter the order submissions for which this condition has become true, we will turn 

the tail pipeline into a filter, as demonstrated in Figure 9-22.

Figure 9-22.  The tail of the subquery becomes a condition of a filter
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In general, we must always include the tail of an exists subquery inverse as a filter 

condition. In some cases, that filter condition turns out to be a tautology. It will always 

be satisfied, as in the example featuring a trivial tail pipeline. When the condition is a 

tautology, the filter can be optimized away.

�Removing Results
The exists clause was the simpler of the two existential quantifiers. It only has the effect 

of introducing new results. The other clause—not exists—allows a new possibility. 

This clause can remove results. The consequences are far more significant than simply 

negating a condition.

Not exists clauses are more common in practice than exists clauses. The reason is 

simple: only a not exists clause can remove results from views. Without them, views 

would grow unbounded and quickly become unusable. Let’s go back to Chapter 3 to one 

of the first queries that we examined.

query gamesInProgress(p: Player) {

  match g: Game where g.player = p

    such that not exists w: Win where w.game = g

}

The pipeline for this query has a now-familiar structure, shown in Figure 9-23. The 

last time we saw this structure, the filter used the exists quantifier. Now it uses the not 

exists quantifier. Executing this pipeline is just as before, except that the condition is 

negated. The filter preserves only Game facts where the subquery returns no results.

Figure 9-23.  A not exists clause filters based on a subquery
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The biggest difference is in the inverse. Introducing a Win causes the Game to be 

removed from the filtered set. This bubbles up to the outer query and implies that the game 

is removed from the overall results. As Figure 9-24 illustrates, we must keep track of the 

effect of each subquery. We need to indicate whether it adds or removes the affected fact.

�When Removal Isn’t Removal
An inverse that removes results is significantly different from an inverse that adds them. 

It’s not just a matter of reversing a sign. The difference is in what we can guarantee. We 

cannot always know that the result that the inverse wants us to remove should truly be 

removed. It is much more difficult to prove a negative.

When a result is added to an affected query, we can guarantee that the new result 

would actually be returned were we to run the query again. We would like to make a 

similar claim about removed results. We would like to assert that removed results would 

not be returned from the query. Unfortunately, this is not always possible.

Suppose that the query did not look for games in progress, but rather for their 

opponents. The Factual query in that scenario would be this:

query opponentsInGamesInProgress(p: Player) {

  match g: Game where g.player = p

    such that not exists w: Win where w.game = g

  then o: Player where g.player = o

}

The pipeline for this query looks like the previous one, with one additional step. After 

filtering the games, it takes a predecessor step toward the player, as shown in Figure 9-25. 

Figure 9-24.  The inverse of a not exists clause causes the removal of results in the 
outer pipeline
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In this particular case, that will include the starting player, too, but that’s not the issue 

that concerns us. We can easily filter out the starting player to render a meaningful view.

The issue that concerns us is that the inverse has an nontrivial “remove” pipeline. 

It takes a step that the inverse of the previous query did not. We can see that additional 

predecessor step in Figure 9-26.

Figure 9-25.  A pipeline for finding current opponents takes an additional 
predecessor step to the player

Figure 9-26.  The inverse removes the player of the removed game

This additional step would have us remove the opponent of a game that just ended. 
When the Win is introduced, the Game cascades down and removes the opponent from 
the affected view. However, it is possible that another game with this same opponent is 
in progress. There is more than one way to traverse the graph to get to this opponent. 
Removing one of these paths does not guarantee that no other paths exist.

The previous query was safe. We could guarantee that any game will be removed 
from the cache when a successive win was introduced. No matter how we traversed 
the graph, the filter was applied to the game itself. But if the pipeline extends beyond 
the filter, then we can no longer make that guarantee. If the remove set is a nontrivial 
pipeline, then we have to check all possible paths.

In situations like this, a removal cannot guarantee that the removed result is not still 
a valid result by some other path. As a consequence, we must run the original query 
again. The affected set tells us which caches to invalidate. But the remove set does not 

tell us which results to remove. At best, it gives us a set of candidates that we can check.
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�Nested Subqueries
As we process nested subqueries, we will need to keep track of whether they add or 

remove results. It is not uncommon for a not exists subquery to have a not exist subquery 

of its own. When this occurs, introducing a fact to the innermost subquery will add a 

result to the view. Each recursive descent into a not exists subquery flips the direction of 

the effect.

A typical example of a nested subquery using not exists clause is the Restore pattern 

found in Chapter 8. Under this pattern, introduction of an EntityDeletion fact removes 

an entity from query results, and a subsequent introduction of an EntityRestore fact 

reinstates it.

query entitiesInOwner(o: Owner) {

  match e: Entity where e.owner = o

    such that not exists ed: EntityDeletion where ed.entity = e

      such that not exists er: EntityRestore where er.deletion = ed

}

The query becomes a pipeline with nested filter steps, as shown in Figure 9-27. Both 

of these steps apply a NotExists quantifier.

Figure 9-27.  The restore pattern yields a pipeline with nested not exists filters

To find the inverses of this query, we traverse the pipeline recursively. After 

descending two levels, we invert the innermost query. This tells us that introducing an 

EntityRestore fact affects the predecessor EntityDeletion. It has the effect of removing 

that EntityDeletion. This is an effect that we can guarantee, since we have inverted a 

not exists clause and can prove that the successor exists.
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Popping the stack, we then determine the effect of removing the EntityDeletion. 

The inverse tells us the affected set of Entity facts. Removing the entity deletion 

would ideally have the effect of adding the entity. However, this is not an effect we can 

guarantee.

There might have been another entity deletion. Sure, we can prove that we removed 

one of them. But we have not yet proven that we’ve removed all of them. And so, before 

we identify the added entities, we rerun the original filter condition. The full inverse is 

shown in Figure 9-28.

In general, we can guarantee the effect of an inverse based on adding a fact. The 

innermost subquery is always of this form, as it captures the introduction of a new fact. 

But any inverse based on removing a fact cannot be guaranteed. There may be other 

paths through the graph that keep the condition as it is. Therefore, we must always 

append a filter testing the original condition to the inverse.

�Tautological Conditions
In the previous examples of inverses, I left off an important detail. The inverse must 

preserve the existential condition of the original query. I left it off both for clarity and 

because I chose examples in which it didn’t matter. In each of the previous examples, the 

existential condition is guaranteed to be true under the circumstances in which it was 

applied. A logical predicate that is always true is called a tautology. When we recognize 

tautologies within inverses, we can optimize them away.

Figure 9-28.  In inverse of two nested not exists clauses is a pipeline that causes the 
addition of facts
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The first example of an existential condition that we examined was the query for 

picked orders. This example was incomplete. The full query from Chapter 8 included 

an additional clause looking for a RequestForDelivery. This clause eliminated drop-

shipped orders.

query pickedOrdersToShip(c: Company) {

  match o: OrderSubmission where o.company = c

    such that exists ps: PackingSlip where ps.orderSubmission = o

    and not exists rd: RequestForDelivery where rd.orderSubmission = o

}

While a human analyst understands the motivation of the query, a mechanical query 

inverter does not. Rather than relying upon our intuition about drop-shipped orders, 

let’s invert this query mechanically. This time, we will preserve the conditions within the 

inverse and look for tautologies. We begin by constructing the pipeline from the original 

query, as shown in Figure 9-29.

This pipeline has several inverses, which a mechanical inverter would produce by 

recursively walking each of the steps in each subquery. As before, we will focus on only 

one inverse: the one that describes the response to introducing a PackingSlip. This 

time, however, we will preserve the filter within the inverse. The full inverse pipeline 

appears in Figure 9-30.

Figure 9-29.  A query with a compound condition defines a pipeline with two 
subqueries
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At this point, we can optimize the pipeline. We know that the pipeline begins 

with the introduction of a packing slip. The order submissions that cascade down 

into the second line have a successor packing slip. We therefore know that the first 

existential query must be satisfied. There certainly exists a successor packing slip in the 

“orderSubmission” role. This was precisely the packing slip that initiated the process. We 

can therefore eliminate this condition from the filter, as shown in Figure 9-31.

Figure 9-30.  The inverse pipeline retains the existential conditions of the original 
query

Figure 9-31.  We can eliminate tautological conditions from a filter

The pipeline gives us no knowledge about the remaining condition. We must still, 

therefore, verify it before we add the resulting order submission. The first time that 

we examined this inverse, the RequestForDelivery clause was not in the pipeline. We 

therefore ended up with a filter having only a tautological condition. We optimized away 

the filter, as it would have no effect.
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The resulting inverse implies a procedure. When a packing slip is introduced, add 

the order submission to the cached results, but only if it is not drop-shipped. As a human 

analyst, one might ask “why would we create a packing slip for a drop-shipped order?” 

Doing so would be absurd. This observation might lead a human designer to eliminate 

this check. But a mechanical inverter has no such bias. It will produce code that is 

logically correct even if it makes no business sense. And as a result, it will work correctly 

in nonsensical edge cases where a solution based upon intuition would fail.

In general, we will find two scenarios by which a condition is a tautology. First, 

we will have exists clauses seeking facts that were just introduced. And second, we 

will have not exists clauses seeking successors of newly introduced facts. The one 

we just examined is an example of the first. The second is an extension of the valley 

optimization. We eliminated inverses that began outside of a valley. Those inverses 

began with successor steps, either in their affected set or their new results. By the same 

token, we can consider any not exists clauses at the very head of the inverse beginning 

with a successor step to be a tautology.

When we reverse the not on the two general cases mentioned earlier, we find a 

different optimization. The opposite of a tautological predicate is an unsatisfiable 

predicate. It is possible that an inverse will contain a not exists clause seeking introduced 

facts. Given that the inverse fires only when those facts are introduced, we know these 

conditions to be false. It is also possible that an inverse will contain an exists clause 

for successors of introduced facts. Again, since these facts were newly introduced, 

these conditions must be false. Unsatisfiable conditions within an or statement can be 

eliminated; those within an and statement make the whole statement unsatisfiable. 

A mechanical query inverter will optimize away these statements as well and even 

optimize away the entire inverse if the filter condition is deemed unsatisfiable.

�Proof of Completeness Continued
Now that we have a better understanding of the effect of filters on the query inverse, 

we can finish the proof of completeness. We’ve already shown that an inverse made up 

only of successor and predecessor steps does not exclude any possible affected starting 

points. We will now show the same for inverses containing filters.

A predecessor or successor step has the property that the inverse produces a 

superset of the original starting set. We relied on this to show that all starting points that 

would include the introduced fact would be in this superset. Filter components do not 
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have this property. A filter in either direction yields a subset of the starting set. For filters, 

we must consider whether we are adding or removing a fact.

If we are adding a fact—such as for the innermost subquery responding to the 

introduced fact—then we can assert that the added fact would only have an effect on 

the query if it passed through the filter in the original pipeline. If it was filtered out, 

then it would have no downstream effect. Therefore, applying the filter in the opposite 

direction, even though it produces a subset, produces precisely the subset that would 

truly be affected.

If we are removing a fact, on the other hand, this logic does not hold. We are seeking 

an affected set of starting points whose pipelines used to contain the removed fact, but 

no longer do. Therefore, a filter would exclude precisely the starting points that would 

be affected by the removed fact. Reversing the filter does not solve the problem. The 

affected set could be filtered for more than one reason, and any of the remaining filters 

might incorrectly exclude it.

The solution, then, is to remove any filters from the affected set of remove inverses. 

The only filter that these inverses should have is the one at the end that verifies that the 

filter condition is indeed false for these affected starting points. Any other filter would 

reduce the affected set and potentially miss effects.

�Potential vs. Actual Change
When reasoning through the effect of existential conditions, we made an assumption. 

We assumed that the effect of a subquery inverse would always be to change the 

filter condition from false to true and thus add the result or from true to false and 

thus remove it. Now that all of the complexity of subquery inverses, tautologies, and 

unsatisfiable predicates are on the table, we can acknowledge that that assumption is 

not in fact true. Once we do so, we can then see what simple extra step we need to take to 

defend against those cases where it is false.

We first introduced the assumption while examining the exists clause. There, we said 

that if the introduced fact brings the number of subquery results from 0 to 1, then the 

condition becomes true, and new results are added. We then proceeded to find inverses 

of the subquery, which we can safely assert will increase the number of subquery results. 

However, we had no evidence that they brought the number of results from 0 to 1. If the 

subquery already had results, then this new one would have no appreciable effect. The 

filter condition is already satisfied.
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By continuing as if the new fact brought the number of subquery results from 0 to 

1, we made the assumption that the new results it adds were not already results of the 

original query. Because this assumption is false, we might find ourselves adding results 

to a cache or view that are already present. And so, the consequence of making this 

assumption for an exists clause is duplication.

�Removing Absent Results
A similar assumption arose unstated while we examined the not exists clause. Here, we 

proceeded to evaluate inverses of the condition under the assumption that any new 

fact would bring the number of results from 0 to 1. When viewed through the not exists 

clause, this would change the filter condition from true to false and therefore remove 

results. But if the subquery already had results, one more would not make the filter 

condition any more false. The effect of running an inverse in these circumstances would 

be to attempt to remove a result that was not in the cache.

There is an easy solution to this problem, and a hard one. Let me first describe 

the hard one, as it is interesting, but ultimately pointless. Because the graph of facts 

is immutable, introducing a new fact does not destroy information. We still have 

the capability of seeing the graph as it was before the fact was introduced. We could 

therefore compute the filter condition as it was just before the introduction of the fact 

that triggered the inverse.

If we run the filter condition—whether an exists or not exists clause—while ignoring 

the new fact, we can see if it used to be false. If so, we know that the introduction of the 

new fact was precisely what made it true. We would know that the subquery set changed 

from 0 to 1, and therefore the effect is real.

This solution is interesting because it is a specific example of a powerful analysis 

technique. It demonstrates that we can answer hypothetical “what if” questions by 

running queries while ignoring subsets of the directed acyclic graph. These questions 

can provide insights as to how the system appears on different nodes. They give us a 

powerful “time travel debugging” capability popularized by frameworks like Elm and 

Redux. But alas, for solving the problems of cache duplication and removing absent 

results, there is a much simpler solution.
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�Caches Are Sets
The results of a Factual query are always sets. They do not impose an order, and they 

do not permit duplicates. Therefore, any cache or view seeded by a query will have at 

its core a set. It might further apply an order on top of that set or project the set through 

some aggregate function, but what it started with was an unordered set of distinct facts.

As long as a cache or view retains the set of facts, it can easily protect against the 

assumption that every potential change is an actual change. If an inverse reports that an 

introduced fact adds a set of results, the cache simply performs the set union. It ignores 

any results that are already in the set. It only adds the ones that are truly new. Similarly, 

to process an inverse that removes results, the cache performs a set difference. It only 

removes results that were actually in the set to begin with.

It is tempting when creating a view to simply keep track of the projected DOM, 

XAML, or other visual elements. And if users of a cache are only interested in a mutable 

projection of some facts, not the raw immutable results themselves, then it stands to 

reason that the mutable projection is all that the cache needs to store. However, the 

simplest solution to the cache invalidation problem is to keep the set that leads to the 

projection. In response to a query inverse, perform a set union or difference. And then 

project the part that has changed.

�Query Inversion in Practice
As you’ve just witnessed, query inversion is a complicated business. There are several 

edge cases, scenarios, and optimizations to consider. Fortunately, the process can be 

automated. Developers need not compute the inverse of a query by hand.

The mechanical process of query inversion is guaranteed to produce an affected 

set that identifies all possible invalid caches. Furthermore, it often produces an add or 

remove set that describes exactly what set union or difference to compute. But even 

when the inverse is too complex to produce such exact instructions, running the query 

again will produce the correct results.

I have produced a couple of implementations of the query inversion algorithm in the 

past. The first was for an open source project called Correspondence. The second was for 

a more recent open source project called Jinaga. Both of these projects derived inverses 

from the developer’s original queries to determine which views to update as new facts 

are introduced. Their behavior was surprising to me, even knowing the math behind 
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them. And I found that my confidence and productivity were greatly improved by having 

a query inverter working on my behalf.

Following publication of this book, I will maintain an open source reference 

implementation of the query inversion algorithm. With the help of readers, I may 

find edge cases and optimizations that I missed in this chapter. Those improvements 

will become part of the reference implementation. Any projects wishing to use query 

inversion can learn from that implementation and compare results as a form of 

automated testing. You may find a link to that reference implementation at the book’s 

website on Apress, at at immutablearchitecture.com.
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CHAPTER 10

SQL Databases
Immutable models are all about constraints. An application must not modify data. It is 

disallowed from deleting or overwriting information. These constraints are the axioms 

upon which the mathematical structure of immutable architecture is built. Ensuring that 

these constraints are met is the responsibility of every layer of the application stack, right 

down to the data storage system.

An immutable model can be backed by any kind of data store. One of the most 

powerful, flexible, and popular forms of storage engine is the relational database. 

Translating the constraints of the immutable model into a relational database takes 

discipline. We must avoid some of the capabilities that relational databases permit. 

To begin with, we must prohibit the use of UPDATE and DELETE. These two operations 

are part of the Data Manipulation Language (DML). Only the nondestructive DML 

command—INSERT—may be used in an immutable data store.

Limiting DML is a good start, but there is more we must do to store an immutable 

model in a relational database. We’ve defined queries against an immutable model 

according to certain constraints. They must start at a known fact. They can only traverse 

the graph along predecessor/successor relationships. And they allow only existential 

conditions; data cannot be filtered by value. These constraints restrict our use of Data 

Query Language (DQL). DQL includes the ever powerful and composable SELECT, 

WHERE, and JOIN keywords. When storing an immutable model in a relational database, 

however, we must restrict ourselves to a subset of patterns.

To work best with this subset of DQL, we will also constrain our use of the Data 

Definition Language (DDL). DDL statements CREATE TABLE, INDEX, and other objects. We 

will discover the subset of DDL that works best to define a schema for immutable records.

With all of these constraints, it would seem that we are losing the power and 

flexibility of relational databases. But in truth, we are gaining much more in exchange. 

The subset to which we limit ourselves will produce an extremely efficient data access 

layer. And where efficiency can be improved, we will find repeatable patterns of 
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optimization. The steps we follow to produce DDL, DML, and DQL will be extremely 

mechanical. It will be so predictable that we will even be able to automate some or all of 

our SQL code generation. Taken to the extreme, we will even find a way to move a data 

model fluidly from one store to another, deploy new code without evolving the database 

schema, and even tackle nonlinear data versioning.

To begin, we will learn how to write DDL to define a relational schema that stores an 

immutable model. The subset that we will use is carefully chosen to meet the constraints 

of immutable architecture. Designing to those constraints may at first appear to take 

capabilities away. But as we will see, it truly gives us capabilities that we could never 

have had before.

�Identity
When we first introduced historical records as application data, we learned that a record 

is uniquely identified by the values of its fields and the identity of its predecessors. 

While this is a useful definition of identity for proving theorems about idempotence 

and convergence of histories, it is not very useful for database design. If every row were 

identified by the sum of its columns, then a foreign key would be a full copy of the parent 

table. This would not be at all practical.

A relational database requires that we identify historical records using some form 

of surrogate key. The most natural choice for most relational database systems is an 

auto-incremented ID. They provide the most optimal storage efficiency and query 

performance. They do, however, have the disadvantage of being location specific, as 

discussed at length in Chapter 4. We will therefore outline a mechanism for using auto-

incremented IDs for their internal advantages, but map them to content-based IDs to 

overcome the disadvantages.

�Content-Addressed Storage
Conceptually, the content of a historical record is its identity. Practically, however, 

we need a stand-in for the content. The solution is to derive an identifier from the 

content using a hash function. This practice is known as content-addressed storage. 

This approach only works for content that does not change. And so it is an appropriate 

mechanism for identifying immutable records.
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At first glance, this seems like an oxymoron. To load a record, you must know its 

address. Yet to find its address, you must first know its contents. It seems like you could 

never get started. In practice, however, it is not difficult at all to find a starting point.  

If someone is writing a record, then they know its contents. But if someone is reading a 

record, then they are given its hash. The starting point simply changes based on whether 

you are reading or writing.

Consider a blockchain on which a transaction needs to refer to a digital document. 

Space on the blockchain itself is far too expensive, which prohibits us from storing the 

document within the transaction. Instead, we store the hash. The actual document will 

be stored in a much less expensive distributed database, such as the InterPlanetary File 

System (IPFS).1

The author of the document has the original contents and can therefore compute the 

hash. Since the document is immutable, this hash will never change and can therefore 

be a reasonable surrogate for the document’s identity. A reader of the transaction, on 

the other hand, does not have the original document. They cannot compute the hash to 

determine the identity. That’s OK, however, because they can read the identity from the 

transaction.

Looking up a document in the distributed file system is a matter of fetching an 

object by its hash. Once retrieved, the reader can verify the identity of the document 

by computing its hash. Insofar as they can trust that it would be difficult to construct a 

fraudulent document with the same hash, they can trust that this immutable document 

has not been tampered with.

�Advantages

In addition to the tamper-resistant nature of using a document’s hash as its identity,  

we have several other benefits. Some of these were already covered in Chapter 4. Others 

will be new. Let’s take some time, now that we have an understanding of how to model a 

system using immutable records, to evaluate these advantages.

As noted with the example of a document in a distributed file system, the 

writer computes the hash prior to storing the record. This implies that even before 

communicating with another node, the author of the record knows its identity. There 

is no need for the node to communicate with some external service before learning the 

1� https://ipfs.io 
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identity. This gives it the autonomy to continue working, even creating other related 

records and referring to that identity, before it needs to connect to a peer.

There is also the advantage that every node will compute the same identity for the 

same record. This provides a natural de-duplication benefit. Imagine if your photos 

were identified by the hash of their contents, rather than the folder that they occupy 

and the filename that the camera gave them. If that were the case, then you could never 

accidentally create duplicate photos by re-importing from digital media or sharing back 

and forth with friends. The same advantage exists in business applications. Preventing 

duplicates provides idempotence and avoids doubling the effect of a transaction.

Finally, consider the problem of merging data from disparate nodes. If the identifier 

of those records was based on anything other than their contents, then two things could 

go wrong. First, it would be possible for two records with the same contents to have 

different identifiers, each allocated by a different node. And second, two distinct records 

could coincidentally share a common identifier. Both of these problems make it difficult 

to determine where the data structures intersect and where they diverge.

When using content-addressed storage, every node computes identity in exactly the 

same way. If two records share an ID, they are the same record. And if they are the same 

record, they have the same ID. When any other mechanism is used, then IDs have to be 

re-mapped as data moves from one identifier space to another.

�Hash Collisions

When a hash is used as a stand-in for the contents of a record, one important concern 

must be addressed: hash collisions. The identity of a record is unique. Its identifier must 

be similarly distinct from the identifiers of other records. If the contents of two different 

records produced the same identifier, then references to one would be confused for 

references to the other. Given the pigeonhole principle, we know for certain that 

collisions are possible for any record larger than the hash size. The question, then, is 

whether any of those other records producing the same hash will ever arise in practice.

One possibility is that a nefarious actor will deliberately construct such a record, 

which would allow them to forge signatures and replace documents. To combat this, we 

rely only upon cryptographically strong hashes, which are designed and continuously 

tested to prevent such activity. Cryptographers have constructed ever sophisticated 

hashing algorithms with ever-increasing hash sizes in an arms race against these attacks.

Another possibility is that a collision will happen by mere chance. In a data set with 

n records, there are n(n-1)/2 ways to pair them. We must allow a hash to have enough 
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possible values to limit the probability that any one of these pairs has the same hash. 

Simplifying a bit, the number of pairs is almost n2/2, so the number of possible hashes 

h must be sufficiently larger than that. The probability of a collision is very closely 

approximated by the following equation:

p e n h= - -1
2 2/

Using this approximation, we can determine the risk of a collision. Let the number of 

bits in n be s and the number of bits in h be b. This lets us compute the number of bits in 

the odds of a collision. The probability of a collision p = 1 / 2q, where q is given by

q = b - 2s + 1

See the sidebar for the derivation of this formula. For example, if we have a data set 

with a billion records, and we use a SHA-1 hash, we can compute the probability of a 

collision anywhere within the data set as follows:

1 billion records ≈ 230

hash size = 160 bits

Probability of collision ≈ 1 in 2160-2·30+1 = 1 in 2101

So with a SHA-1 hash, the probability of a collision anywhere in a 1 billion record 

data set is about 1 in 1030. If we improve the hash to SHA-2 with 256 bits, the probability 

plummets to 1 in 1059. For any realistic data set, this risk is vanishingly small.

PROBABILITY OF A HASH COLLISION

Starting with the approximation of the probability of a hash collision, we can simplify

	 p e
n

h= -
-

1
2

2
	

	 1
2 2- = -p e n h/

	

	 ln 1 22-( ) = -p n h/ 	

Given that we are only considering scenarios in which the probability is close to zero, we can 

apply the small value approximation that ln(1 + x) = x:

p = n2/2h
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Replacing the quantities with their power-of-two definitions, we get

2-q = (2s)2/2·2b

2-q = 22s/2b + 1

2-q = 22s - b - 1

-q = 2s - b - 1

q = b - 2s + 1

This formula tells us that for every doubling of the data set, we need to increase the hash size 

by 2 bits in order to maintain the same low collision probability.

�Avoid Hashes As Primary Keys

Hashes are fantastic identifiers. However, they are poor primary keys. The most obvious 

reason is size. Most modern computer systems have a natural word size of 64 bits. 

Relational database management systems take advantage of that word size for their 

native types and data structures. Hashes, on the other hand, are typically 160, 256, or 512 

bits, depending upon the algorithm chosen. Larger identifiers can be noticeably slower 

and more cumbersome to manage.

Large primary keys can lead to bloated logs, as log entries must use the entire key 

to refer to rows. This impacts not only storage but also performance. Committing a 

transaction involves writing the log stream. Replication requires shipping it to other 

machines. Both of these operations take time.

Large identifiers will also bloat indexes. Scanning an index with larger identifiers 

means loading more pages to find the data that you want. Rebuilding indexes takes 

longer. And query operations cannot take place at the machine’s native word boundary. 

The result is slower overall query performance.

Finally, most relational database systems will use the primary key as a clustered 

index. This means that the physical storage of the records will be sequenced according to 

this key. The most optimal way to allocate space for the next record is to append it to the 

block. The least optimal way is to insert it randomly somewhere in the middle. Hashes 

appear random. Using a hash as a clustered index will cause fragmentation and frequent 

page splitting.
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�Table Structure
We can apply this knowledge to constrain the Data Definition Language to produce 

well-behaved immutable models. To get the advantages of content-addressed storage 

while retaining the efficiency of auto-incremented IDs, we will store both. The auto-

incremented ID will be the primary key of the table. It’s value, however, will never leave 

the database. To the outside world, it will appear as if each record is identified only by its 

hash. We will impose a uniqueness constraint on the hash so that we have the necessary 

duplication protection.

Since a hash is larger than the word size of the computer, most database engines 

do not map them to native data types. Instead, they are typically stored in binary or text 

columns. If stored as text, they are base-64 encoded. This makes them easier to view 

as a human operator, but increases the storage requirements by ⅓rd. In the following 

examples, we will use the text option, as that is more portable. But please consider 

whether binary would be better for your application.

Let’s recall one of the very first historical facts that we documented. This was a 

Catalog fact having nothing other than a natural key to distinguish it from other catalogs. 

We will convert this into a SQL table.

fact Catalog {

  referenceNumber: string

}

The table for a fact will contain the primary key, the hash, and a column for each 

immutable field. This example has only one field, so the resulting table has just three 

columns. This is how the table would be defined in PostgreSQL.

CREATE TABLE catalog (

  catalog_id SERIAL PRIMARY KEY,

  catalog_hash VARCHAR(88) NOT NULL UNIQUE,

  reference_number VARCHAR(50) NOT NULL

);

The reason for choosing 88 characters is that this application uses a 512-bit SHA-2 

hash. When encoded in base-64, a 512-bit number takes 88 ASCII characters. To find this 

value for any hash size, divide the number of bits by 24, round up, and then multiply by 4.
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It is tempting to define a uniqueness constraint covering the fields of the table. 

We know that the values of those fields identify the fact, and so no other fact can have 

those distinct values. In the preceding example, we might want to define a uniqueness 

constraint on the reference number. While this would work for this specific example, 

it breaks down in practice. We will see this more clearly when examining predecessors 

with cardinality many. In all cases, the uniqueness constraint on the hash is serving the 

same purpose. We will therefore rely upon that constraint alone.

To compute the hash of a record, find a canonical form. I prefer to use JSON with the 

fields sorted alphabetically and all whitespace removed. Compute the hash of the UTF-8 

encoded string representation.

$ echo -n '{"reference_number":"AX247"}' | \

> openssl dgst -sha512 -binary | \

> base64

8rC0hVD...ifdw==

This table structure permits insertion without the need to wait for the primary key 

to be generated. The caller already knows the hash of the record, and that is all that is 

required to uniquely identify the row. When the catalog_id is needed later, it can be 

retrieved by catalog_hash.

If the application attempts to insert a duplicate record, the uniqueness constraint 

will prevent it. There is no reason to treat this as an error. The application has simply 

confirmed that the record had been stored. Most relational database engines will allow 

you to ignore a uniqueness constraint violation. In PostgreSQL, for example, use the 

clause ON CONFLICT DO NOTHING.

INSERT INTO catalog

  (catalog_hash, reference_number)

  VALUES ('8rC0hVD...ifdw==', 'AX247')

  ON CONFLICT DO NOTHING;

�Relationships
When we translate predecessor relationships into relational tables, they become foreign 

keys. To gain the space and performance advantages of integers, the foreign key will 

reference the auto-incremented ID of the predecessor, not the hash. This keeps our 

indexes small and fast. But these foreign keys do not leave the database.
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Predecessor relationships come in three cardinalities: one, optional (0 or 1), and 

many (0 or more). If the relationship allows exactly one predecessor, then we represent it 

directly as a foreign key in the fact table. For example, we can translate a product residing 

in a catalog into a table. The Factual definition of the product is as follows:

fact Product {

  catalog: Catalog

  sku: string

}

The resulting table has an auto-incremented ID, a hash, the fields, and foreign 

keys for predecessors. Be sure to create an index on the foreign key, as most relational 

database systems will not do this automatically.

CREATE TABLE product (

  product_id SERIAL PRIMARY KEY,

  product_hash VARCHAR(88) NOT NULL UNIQUE,

  catalog_id INT NOT NULL REFERENCES catalog,

  sku VARCHAR(50) NOT NULL

);

CREATE INDEX product_catalog

  ON product (catalog_id);

�Inserting Successors
Now with the schema defined, we can determine how to best structure our Data 

Modification Language. When inserting successor rows, the caller does not know the ID 

of the predecessor. That’s because the ID never left the database. This was an important 

design decision to protect location independence. As a consequence, we need the 

database to look up the predecessor ID whenever it performs an insert.

We will look up the ID of the predecessor using the hash of the predecessor. 

Performing a lookup within an INSERT statement requires the INSERT ... SELECT 

syntax. The calling application computes the hashes of the predecessor and successor 

fact. The query looks up the predecessor ID by hash and inserts the successor hash 

directly.
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INSERT INTO product

  (product_hash, catalog_id, sku)

  SELECT 'fK02Oge...5GFw==', catalog_id, 'PK47'

    FROM catalog

    WHERE catalog_hash = '8rC0hVD...ifdw=='

  ON CONFLICT DO NOTHING;

To compute the hash of a successor from a canonical form, the hash of the 

predecessor must be used. In the canonical JSON that I prefer, the predecessor is 

represented by an object having a ref field. The value of that field is the hash of the 

predecessor. Predecessors are sorted alphabetically among the rest of the fields.

$ echo -n '{"catalog":{"ref":"8rC0hVD...ifdw=="},"sku":"PK47"}' | \

> openssl dgst -sha512 -binary | \

> base64

fK02Oge...5GFw==

�Optional Predecessors
An optional relationship allows zero or one predecessor. In the canonical JSON form, 

the zero case is represented by a null value for the predecessor field. And in a relational 

table, the foreign key column allows NULLs. Foreign keys that can be null are cause 

for concern in relational database design. The sorts of queries that we will perform, 

however, tend to avoid these concerns.

In some relational database systems, an index on a nullable column will skip rows 

in which the column is null. As a result, queries for NULL values will perform a full table 

scan. Fortunately, the forms of queries that we will build will join on non-null values. 

The indexes on predecessor foreign keys—even the nullable ones—will always be used 

in these kinds of queries.

�Many Predecessors
Storing the foreign key directly in the fact table is appropriate for cardinalities one or 

optional. It does not work for cardinality many. Relationships with many predecessors 

require an associative table. By convention, I call these associative tables predecessor 

tables. The reason is that they conceptually hold the predecessor references of a given 

fact. They borrow their name from the fact that declares them.
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To see an example, let’s look at the price of a product. This property could change 

over time. Each individual price change is recorded as a Price fact. Following the 

Mutable Property pattern, this fact has many prior predecessors.

fact Price {

  product: Product

  value: decimal

  prior: Price*

}

The price table is constructed from this fact using the patterns already discussed. 

The table has an ID and a hash. It also has a column for each of the fields and one or 

optional predecessors. It does not, however, have any columns for many predecessors.

CREATE TABLE price (

  price_id SERIAL PRIMARY KEY,

  price_hash VARCHAR(88) NOT NULL UNIQUE,

  product_id INT NOT NULL REFERENCES product,

  value DECIMAL(10, 2) NOT NULL

);

CREATE INDEX price_product

  ON price (product_id);

The many relationship is represented with an associative table. The name of the 

table is derived from the successor—the fact that defines the relationship. The table 

contains only the foreign keys of the predecessor and successor rows, neither of which 

can be null. The pair of foreign keys is unique, encoding the truism that predecessor 

collections are sets, not lists; they cannot contain the same predecessor for the any given 

successor. Both of the foreign keys are independently indexed.

CREATE TABLE price_predecessor (

  price_id INT NOT NULL REFERENCES price,

  prior_price_id INT NOT NULL REFERENCES price,

  UNIQUE (price_id, prior_price_id)

);
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CREATE INDEX price_predecessor_price

  ON price_predecessor (price_id);

CREATE INDEX price_predecessor_prior_price

  ON price_predecessor (prior_price_id);

And now it should be a bit more clear why we do not add uniqueness constraints 

on the fields of a fact. If we defined such constraints on a table that had an associated 

predecessor table, then the predecessors would not be included in the unique index. In 

this case, had we defined a uniqueness constraint on the fields, it would be impossible 

to insert two prices with the same product ID and value, even if they had different prior 

sets. This is precisely what happens when a price returns to its former value.

The predecessors of a fact are part of its identity. But the predecessor references 

are stored in a different table. Uniqueness constraints cannot cross table boundaries. 

Therefore, we leave off uniqueness of the fields altogether. The uniqueness constraint on 

the hash solves the problem perfectly well.

�Canonical Hash of a Set

The hash of a fact having many predecessors is based on all of the hashes of those 

predecessors. The canonical form that I recommend represents many predecessors as 

a JSON array. If there are no predecessors, the array is empty rather than null. If there 

happens to be one predecessor, the array contains one reference object. Reference 

objects are sorted alphanumerically by base-64 encoded hash so that there is only one 

canonical representation of the set. For example, the first price of a product would be 

identified by the hash of the following JSON document with whitespace removed:

{

  "prior": [],

  "product": {

    "ref": "fK02Oge...5GFw=="

  },

  "value": 256.98

}
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The subsequent price would get the hash of the JSON document with one prior 

reference:

{

  "prior": [

    {

      "ref": "ZlUYAZV...ZQZA=="

    }

  ],

  "product": {

    "ref": "fK02Oge...5GFw=="

  },

  "value": 220.98

}

�Inserting Many Predecessors

A fact with an empty predecessor set can be inserted exactly as we’ve done before.  

This row represents a complete fact with no related rows in the predecessor table.

INSERT INTO price

  (price_hash, product_id, value)

  SELECT 'ZlUYAZV...ZQZA==', product_id, 256.98

    FROM product

    WHERE product_hash='fK02Oge...5GFw=='

  ON CONFLICT DO NOTHING;

When inserting a fact with one or more predecessors in the set, however, the DML 

needs to be extended. Rows are inserted into predecessor tables at the same time as the 

successor. Inserts are performed within a database transaction to avoid the possibility of 

using a partially written fact in a query.

BEGIN TRANSACTION;

INSERT INTO price

  (price_hash, product_id, value)

  SELECT 'DRFoFgF...BNpw==', product_id, 220.98

    FROM product
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    WHERE product_hash='fK02Oge...5GFw=='

  ON CONFLICT DO NOTHING;

INSERT INTO price_predecessor

  (price_id, prior_price_id)

  SELECT successor.price_id, predecessor.price_id

    FROM price as successor, price as predecessor

    WHERE successor.price_hash = 'DRFoFgF...BNpw=='

      AND predecessor.price_hash IN ('ZlUYAZV...ZQZA==')

  ON CONFLICT DO NOTHING;

COMMIT TRANSACTION;

By using the IN clause in the predecessor insert statement, we can list the hashes of 

all predecessors that we want to insert. The database will produce all of the primary keys 

in a single statement.

In this particular example, the predecessor and successor tables are the same type. 

For that reason, the insert statement needed to create aliases to disambiguate the 

predecessor and successor rows. This will not always be necessary, but you may wish to 

always use these aliases for the sake of consistency.

�Queries
We’ve converted fact specifications into constrained statements in the Data Definition 

Language and Data Manipulation Language. We will now convert pipelines into Data 

Query Language. When generating a query, you will find it much easier to start from a 

pipeline than from the Factual query definition. Half of the work has already been done. 

We just turn each step of the pipeline into a join and each filter into a subquery.

Every query has a starting point. We express the starting point by its hash. The ID 

never left the database, so we cannot start a query from an ID. The initial shape of the 

query selects FROM the starting type and lists the hash in the WHERE clause.

SELECT reference_number

FROM catalog

WHERE catalog_hash='8rC0hVD...ifdw==';
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The initial query is almost never used in its basic form. Any application that can 

provide the hash probably already has the fields. Instead, we start from that initial query 

and add steps. Each step becomes a SQL join.

�Joins
Every step in a pipeline follows a role up to a predecessor or down to a successor. The 

role has cardinality one, optional, or many. A step following a role with one or optional 

cardinality becomes a simple foreign key join. If it is a step up to the predecessor, then 

the foreign key is in the current table. If it is down to the successor—as in the following 

query—then the foreign key is in the remote table:

SELECT product_hash, sku

FROM catalog

JOIN product ON catalog.catalog_id = product.catalog_id

WHERE catalog_hash='8rC0hVD...ifdw==';

For steps following a many predecessor role, we need to join through the predecessor 

table. We will see an example of that when we dive down to the subquery.

�Correlated Subqueries
When we process a filter in the pipeline, we translate that into a subquery. In particular, 

it becomes a correlated subquery, as it depends upon the values of the current row.  

A filter will either use the quantifier exists or not exists. These translate directly into SQL 

EXISTS and NOT EXISTS clauses.

Suppose we want to select the current price for a product. The pipeline for this query 

appears in Figure 10-1.

Figure 10-1.  The pipeline for the current price of a product filters prices based on 
a subquery
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We start with the product. Define a WHERE clause based on its hash. We will then walk 

down to the successor prices for that product.

SELECT price_hash, value

FROM product

JOIN price ON price.product_id = product.product_id

WHERE product_hash = 'fK02Oge...5GFw==';

At this point, the pipeline sends us into a filter. The subquery starts at a price.  

It steps to a successor price using the prior role. This becomes a join using the price_

predecessor table.

SELECT price_hash, value

FROM product

JOIN price ON price.product_id = product.product_id

WHERE product_hash = 'fK02Oge...5GFw=='

  AND NOT EXISTS (

    SELECT 1

    FROM price_predecessor

    WHERE price_predecessor.prior_price_id = price.price_id

  );

This query will skip the prices that have been replaced. It will only return the current 

prices. The filter in the pipeline becomes a correlated subquery containing all of the 

steps of the subordinate pipeline.

�Derived Tables
When computing an inverse, we visit subqueries recursively. The innermost subquery 

becomes the starting point of the inverted pipeline. We cascade the results of that 

pipeline into another one. One example appears in Figure 10-2.
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To represent a cascading set in a SQL query, embed the origin pipeline as a 

subquery. Unlike filters, however, these are not correlated subqueries, they are derived 

tables. Whereas correlated subqueries appear in the WHERE clause, derived tables appear 

in the FROM clause. A SQL statement to implement the pipeline in Figure 10-2 would 

select the order submission as a derived table as follows:

SELECT company_hash, order_submission_hash

FROM (

  SELECT company_id, order_submission_hash

  FROM packing_slip p

  JOIN order_submission os

    ON p.order_submission_id = os.order_submission_id

  WHERE packing_slip_hash = 'xxxxx...yyyy=='

) AS sub

JOIN company

  ON sub.company_id = company.company_id

In this example, the subquery refers to the initial pipeline: packing slip to order 

submission. It contains the hash of the starting point. The subquery returns the foreign 

keys and hashes that will be used in the outer query. To the left of the dot, the pipeline 

computes the affected set. In this case, it takes a step to the predecessor company. This 

translates into the company join. To the right of the dot, the pipeline computes the new 

results. In this example, the order submission itself is added to the view. And so the 

subquery needs to return enough information to materialize those objects.

Figure 10-2.  The set produced by the topmost pipeline feeds into the next pipeline 
down
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�Selecting Results
All of the queries that we’ve studied so far select a few columns from the result table.  

In general, you might also need a little more information. To materialize the results into 

objects that your application can use, you may find that you need to bring information in 

from predecessors. For that, you will need additional joins.

All joins derived from steps will be inner joins. That is, the query will only include 

results for which both sides of the relationship exist. Outer joins—or specifically 

left joins—will only be used to load the predecessors of the resulting fact. If those 

predecessors have cardinality of optional or many, then a left join is necessary to ensure 

that results are complete.

In the example that we just explored, the hashes alone are not enough to materialize 

the new results. In addition, we need to include information about the products ordered. 

This information is available in predecessor tables. To reach that information, we will 

perform a left outer join.

SELECT company_hash, order_submission_hash, order_line_product_hash

FROM (

  SELECT company_id, order_submission_hash, order_submission_id

  FROM packing_slip p

  JOIN order_submission os

    ON p.order_submission_id = os.order_submission_id

  WHERE packing_slip_hash = 'xxxxx...yyyy=='

) AS sub

JOIN company

  ON sub.company_id = company.company_id

LEFT JOIN order_submission_predecessor

  �ON sub.order_submission_id = order_submission_predecessor.order_

submission_id

LEFT JOIN order_submission_line

  ON order_submission_predecessor.order_submission_line_id =

    order_submission_line.order_submission_line_id

In this example, the predecessors have a many cardinality. For this reason, we have 

represented that relationship with a predecessor table. It is possible that a result might 

have no predecessors. If this were the case and we used an inner join, the result would 
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be excluded. But by using the left outer join, we ensure that the result appears even if it 

has no predecessors.

�Optimization
From the examples earlier, you should have an appreciation for the richness and 

complexity of DQL that a pipeline could produce. But you might have some concerns 

with the less-than-ideal constructs that they sometimes generate. In the previous 

examples, we translated directly from pipelines to SQL. Now we will optimize that SQL to 

implement the same pipeline, but in a more efficient way.

When we translated an inverted query into a derived table, we ended up creating 

SQL that was unnecessarily nested. It included a derived table that was subsequently 

joined to other tables. Instead of using a derived table, we could simply combine the 

subquery joins with the main query joins. Not all inverses will produce derived tables 

that could be optimized away, but the simplest ones usually will. Rewriting the SQL 

produces code that is easier to understand and maintain.

SELECT c.hash

FROM (

  SELECT b_id

  FROM a

  JOIN b ON b.a_id = a.a_id

  WHERE a.hash = 'a_hash'

) AS sub

JOIN c ON c.b_id = sub.b_id

SELECT c.hash

FROM a

JOIN b ON b.a_id = a.a_id

JOIN c ON c.b_id = b.b_id

WHERE a.hash = 'a_hash'

While this form of optimization makes for better code, a query engine will produce 

exactly the same plan for either SQL statement. If you are writing this code by hand, then 

it makes sense to optimize it. But you might find it more productive to simply let a code 

generator produce DQL from a pipeline. In that case, let the code generator produce the 
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code that is easiest to generate, not the code that is easiest to understand. The runtime 

performance will be exactly the same.

�Spurious Joins
One problem that is a little more difficult for a query engine to optimize away is a join 

that is not needed. These spurious joins will often arise when the pipeline steps to a 

predecessor and then immediately down to a different successor. For example, to find the 

name of a student enrolled in a class, we might use the pipeline shown in Figure 10-3.

A direct translation of this pipeline to SQL would produce a query with two joins:

SELECT name

FROM registration

JOIN student

  ON registration.student_id = student.student_id

JOIN student_name

  ON student.student_id = student_name.student_id

WHERE registration_hash = 'xxxxx...yyyy=='

Careful inspection, however, reveals that the join to the student table yields no 

additional information. The student ID is already known. We can therefore optimize 

away the intermediate join.

SELECT name

FROM registration

JOIN student_name

  ON registration.student_id = student_name.student_id

WHERE registration_hash = 'xxxxx...yyyy=='

Figure 10-3.  Finding the name of a registered student involves stepping up to the 
student and then down to the name
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Joining directly from one sibling to the next without going through the parent is 

possible because we don’t need any additional information. If some field of the parent 

is required, however, then this optimization is not available to us. A SQL generator could 

look for this pattern and produce the optimized query. Such an optimization would 

produce a more efficient query plan.

�Covering Indexes
As you analyze the query plans produced by these kinds of queries, they will be 

dominated by index seeks and index scans. An index seek is the most efficient way that 

a database engine can implement a join. For each key in the input set, the engine seeks 

to a specific place in an index to find the corresponding key in the output set. An index 

scan is similar, but used for joins that return many related rows—successor joins or many 

predecessor joins. We can take advantage of these fast query operations because we have 

created indexes for all foreign keys.

At the end of the query plan, however, you will usually find a clustered index lookup. 

The query has produced a set of primary keys through the various index seek and index 

scan operations. It is now using those primary keys to look up rows in the table to extract 

the values in the SELECT clause. This last operation might take a significant portion of the 

query time.

To speed up queries that select additional columns, it is sometimes wise to include 

those selected columns in a covering index. When creating an index based on a foreign 

key, you can include data columns. The values in those columns will be copied into the 

index so that they are readily available.

CREATE INDEX price_product

  ON price (product_id)

  INCLUDE (value);

While this could improve the performance of heavily used queries, covering indexes 

incur a cost. Since the index includes additional data, it will consume more space. 

Inserts will take slightly longer, and index operation will take a little extra time. It will be 

less time than the index seek followed by the clustered index lookup, but the difference 

in performance should not be ignored. Covering indexes should be used sparingly and 

only after profiling your queries.
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�Where Not Exists
The most significant performance concern arises from existential conditions. Many of 

the queries that we produce in real-world applications will include a WHERE NOT EXISTS 

clause. The clause arises most often from the Delete, Mutable Property, and Queue 

patterns. It results in an anti join. This is an index scan that only returns input rows for 

which no output row is produced. In and of itself, this is not a slow operation, especially 

because it can use a foreign key index. The issue arises when it is performed over a large 

input set, even when it produces a small output set.

The index scan will be performed for every input row. Performance is not related to 

the number of output rows. This means that performance problems can hide in queries 

that seem small. Based on the way the pattern is used, we can estimate how many keys 

will be scanned vs. how many results will be produced. You could define the percentage 

of waste to be ratio of excluded inputs to the total number of inputs. For performance to 

be roughly correlated with value, we would like waste to be bounded, and reasonably 

low.

�Mutable Properties

If the WHERE NOT EXISTS clause occurs in a query for the current value of a mutable 

property, then the input set will include all historical values. The output set will contain 

only those versions that have not been superseded. The waste, therefore, would be 

the ratio of superseded versions to total versions. For a mutable property that changes 

frequently, waste would be high. But if the property changes relatively infrequently, 

waste is low.

For this reason, the Mutable Property pattern should only be applied to slowly 

changing properties. Things that change often over the lifetime of an entity produce 

significant waste. Slowly changing properties are things like a person’s name or a 

company’s address. Frequently changing properties are things like status or progress. 

Workflow patterns are often better alternatives for frequently changing properties.

�Deletion

Another place in which WHERE NOT EXISTS often appears is a query that excludes deleted 

entities. The input set will include all entities that have ever existed. The output set 

will contain only those that still exist. The waste is the ratio of deleted entities over all 

entities. When most entities are deleted, waste is high.
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Think back to the last CRUD application that you built. There was probably one 

large table that included the primary entity that the app worked with. Perhaps it was 

a customer table, which you queried frequently to produce a large list of current 

customers. Since customers come and go, more and more customers were deleted over 

time, compared to a relatively stable number of current customers.

If you used an actual DELETE statement, then you kept waste bounded. But if you 

used a soft delete, then waste grew over time. With a soft delete, you set a field to 

simulate a deletion and then selected only those rows where the flag is not set. The soft 

delete preserved data, but it came with a performance cost.

A deletion in a historical model is similar to a soft delete in a CRUD model. It 

preserves data, but incurs the same performance costs. Fortunately, we have a couple of 

options for regaining that performance.

The first option to consider is to add a clock to the model. Please see the Period 

pattern in Chapter 8. A clock is a starting point for a query that slowly advances over 

time. Some models have natural periods, like dates of business in a retail system or 

semesters in an academic domain. In others, the clock is a bit more artificial. In either 

case, a query based on a small number of periods limits the amount of waste due to 

deletions. Only survivors move from one period to the next.

If no reasonable clock can be found, then a more drastic solution might be called 

for. Measure your performance and calculate the actual percentage of waste. If you find 

that most entities are deleted, and that that is affecting query performance over time, 

then consider a managed index. This solution is most applicable to queues, so we will 

examine it from that context.

�Queues

The Queue pattern, as documented in Chapter 8, includes a successor fact that records 

the outcome of taking action upon a work item. The queue is fed by a query that selects 

work items for which no outcome exists. These translate into pipeline filters, which 

eventually become WHERE NOT EXISTS clauses in SQL. The input set to the anti join is 

the set of all work items. The output set contains only the work items not yet processed. 

Since every work item will eventually be processed, this query approaches 100% waste.

When relying upon an anti join, we are taking away the SQL engine’s most valuable 

tool: direct addressability. The items in the queue are not directly addressable. Instead, 

the index stores specifically those items that are not in the queue. The engine has to scan 
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that index for every work item to see which ones are not excluded. It would be much 

faster if we could convince the SQL engine to directly index those that were included.

To so convince the engine, we need to provide it something that it can directly index 

and address. Something that represents the absence of a successor. One option is to re-

examine the soft delete flag.

A soft delete as implemented in a CRUD system is an UPDATE that takes the place 

of a DELETE. Instead of completely destroying the record, the application updates it to 

set a flag. Such a flag can be indexed to provide direct access to those records that have 

not been marked deleted. When relatively few of the rows are marked, the index is not 

selective. Most query engines will avoid a nonselective index because a table scan would 

turn out to be faster. But if most of the rows are marked—as in work items processed 

from a queue—then the index becomes quite selective. The query engine can use the 

index to directly address the relatively small number of unprocessed work items.

Even when it is selective, an index on a flag has a space disadvantage. All rows are 

indexed, even the ones for which the flag is set. The index will never be used to find the 

flagged work items, because the query specifically looks for the non-flagged ones. We 

could save some space if we excluded completed work items from the index altogether.

Some database management systems include a partial index feature. If this feature is 

available, you can create an index that has a condition. Specify that condition to include 

only unprocessed work items in the index, and that index will be used to directly address 

those items.

CREATE INDEX work_item_unprocessed

  ON work_item (queue_id)

  WHERE processed = FALSE;

But even if your database management system does not support this feature, you can 

simulate it. Create a table that you will use as an index yourself. Insert rows into this table 

to indicate that the flag is not set, and delete them to indicate that it is set.

CREATE TABLE work_item_unprocessed (

  queue_id INT NOT NULL,

  work_item_id INT NOT NULL UNIQUE

)

CREATE INDEX work_item_unprocessed_queue

  ON work_item_processed (queue_id);
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Whether you add a mutable flag and define a partial index, or you add a table to store 

unprocessed work items, you will have to manage the index yourself. For this reason, I call 

this technique a managed index. I recommend using triggers for index management. While 

the index could be managed by the application, it exists to address a database performance 

concern. The solution should therefore be entirely specified within the database.

To use the index table approach, create two triggers. The first inserts into the index 

table when a new work item is created. The second deletes from the index table when 

the outcome is created. For example, the following pair of triggers manages an index 

table for a queue:

CREATE FUNCTION insert_work_item_unprocessed() RETURNS TRIGGER AS $$

  BEGIN

    INSERT INTO work_item_unprocessed

      (queue_id, work_item_id)

      VALUES (NEW.queue_id, NEW.work_item_id);

    RETURN NULL;

  END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER work_item_created AFTER INSERT ON work_item

  FOR EACH ROW

  EXECUTE FUNCTION insert_work_item_unprocessed();

INSERT INTO work_item

  (queue_id, description)

  VALUES (47, 'Do some work');

CREATE FUNCTION delete_work_item_unprocessed() RETURNS TRIGGER AS $$

  BEGIN

    DELETE FROM work_item_unprocessed

      WHERE work_item_id = NEW.work_item_id;

    RETURN NULL;

  END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER work_item_outcome_created AFTER INSERT ON work_item_outcome

  FOR EACH ROW

  EXECUTE FUNCTION delete_work_item_unprocessed();
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Join through the index table instead of using the WHERE NOT EXISTS clause.  

The query optimizer will use the table to directly address items remaining in the queue. 

It will not need to perform a scan over all historical work items in order to perform an 

anti join. The results will be much faster, especially for work items where 100% of them 

are eventually excluded from the query.

�Integration
Not all of an application’s features will be served out of an immutable database. Some 

queries do not lend themselves to traversing predecessor and successor relationships 

from a single starting point. Some table structures are better denormalized. When a 

mutable, state-based structure is more appropriate, use that structure. Integrate between 

the immutable database and the mutable one.

In separating mutable from immutable data, be sure to keep the data structures 

isolated from one another. Do not mix the two table structures. Do not include foreign 

keys from one model within the other. And avoid any form of cross-joining between the 

two models. Even though it may make sense to use the same relational database engine 

for the two models, do not combine them into the same database. They have distinct 

purposes and patterns of use.

�Legacy Application Integration
When introducing immutable architecture to an organization, you will not have an 

opportunity to rewrite all of your systems in this style. Nor should you seek such an 

opportunity. It would introduce a great deal of risk with rewards that would be realized 

far too late. Instead, let legacy applications continue to exist having static, mutable data 

models. Find the best integration points to work with those legacy applications with 

minimal risk and rework.

Some legacy applications might have been written with event-driven architectures 

in mind. If so, leverage those integration points as places where historical facts are 

produced and advertised. More likely, however, a legacy application will simply be 

a collection of stateless behaviors on top of a mutable data model. It will not throw 

off events that could be turned into facts. There will not be an easy way to modify the 

application source code to create those integration points.

Chapter 10  SQL Databases



345

In these cases, I suggest using the database as a point of integration. This is not 

to say that two applications should share a common database: that practice leads to 

tight coupling and rapid stagnation. Instead, use the tools inherent in the database to 

extract facts from state changes. These tools include scanners, triggers, and change data 

capture.

�Scanners

The most direct way to extract facts from data is to scan for them. A scanner is a 

handwritten query that projects the current state of an application into the set of facts 

that gave rise to that state.

To design a useful scanner, you must understand which parts of the model might 

change and which parts are immutable. Relational database engines don’t have many 

tools to enforce or document immutability, but they have a few. One such tool is the 

uniqueness constraint.

When a table is given a uniqueness constraint, the designer is documenting the fact 

that the included columns form a natural key for the row. Those columns represent an 

identity independent of the auto-incremented surrogate key. Even though the database 

engine does not strictly prohibit an application from changing these columns, doing so is 

strongly discouraged. If a database designer has gone through the trouble of declaring a 

uniqueness constraint, you can be fairly confident that the columns are immutable.

Begin by producing a series of queries that select out the immutable data from the 

source system. You should be able to project these results directly into facts. If those 

facts already exist in the target immutable model, then no harm done; they will not be 

duplicated. Just project these results and insert the corresponding facts.

Next, you will be left with the mutable data. Projecting these will require a bit of 

history. To help keep track of its work, the scanner should keep a scratch pad of the 

mutable values that it last saw per entity. When it finds different values, it can use this 

scratch pad to find the prior versions and make those facts predecessors of the new 

facts. The specific details of the scratch pad depend heavily upon your application and 

chosen technology stack. Suffice to say that it should contain enough information to fully 

reconstruct the historical tree of prior versions.

It is common practice for a static database to be designed with auditing columns. 

These record the date on which the row was inserted and the date of the most recent 

update. A scanner can take advantage of these auditing columns to restrict the amount of 

work that it must do. Keep a bookmark in the scanner’s scratch pad, separate from either 
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the source database or the target immutable model. Include a WHERE clause that limits 

the scanner to rows that have been inserted or updated after the bookmark. Update this 

bookmark only after you are confident that the new facts have been persisted.

When migrating from any legacy database into an immutable data store, the 

scanner is always the first tool to build. You can construct the scanner layer by layer, 

first scanning for high-level facts having no predecessors and then building scanners 

for successors lower down in the graph. As you build the successive layers, continuously 

deploy the scanner to production. Scanning is not done just once. It will be done many 

times over the life of the project. Do not make the mistake of treating this like a one-and-

done data migration. Invest the time in making the process repeatable.

�Triggers

Triggers are perhaps the most contentious tool in the data modeler’s toolkit. Perhaps they 

were overused in the past, leading several application developers to shy away from them 

and even warn others away. But for extracting information from a database, database tools 

are the most appropriate, especially if our aim is to minimize changes to legacy code.

We already used triggers to optimize queries for work items that had not yet been 

processed. We can also use them to infer facts from data modification operations. The 

original intent may be locked away in application code that we dare not modify, but the 

effect of that intent can be readily observed. Some well-crafted triggers can translate 

an INSERT into a new entity, an UPDATE into a mutable property, and a DELETE into a 

tombstone. They can insert these new facts into a set of staging tables to be processed 

through the same channels as user actions.

Triggers of this kind cannot take the place of scanners. They will have been put into 

place after the static data model has been in operation for some time. A trigger cannot go 

back in time and fire on all of the inserts, updates, and deletes of the past. A scanner is 

still required to bring in all of the legacy data.

Triggers, if implemented, will need to work in conjunction with scanners. At some 

point, you may choose to turn off the scanner while simultaneously enabling the triggers. 

Do this only if you have sufficient confidence that the triggers will catch all possible 

changes. If you use bulk inserts, for example, triggers may not fire. Alternatively, you may 

choose to implement triggers using the scanner. Write the scanner as a series of stored 

procedures. Then the trigger simply fires the scanner whenever it detects information 

being modified. This gives us the best of both worlds: a scanner running on a timer to 

collect bulk data changes and triggers running in real time to provide lower latency.
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�Change Data Capture

The patterns described previously can be implemented in any database management 

system. Some systems, however, provide more support. SQL server, for example, 

provides specific features that can be leveraged to extract changes from a database.  

The most powerful of these is change data capture.

When configuring change data capture, an administrator defines source tables. 

When DML operations against any of these source tables enter the transaction log, the 

capture process is notified asynchronously. The process inserts a record of each change 

into a corresponding change table. An application process can periodically pull records 

from the change tables and convert them into historical facts.

Change data capture has the advantage of using the transaction log to 

asynchronously identify changes. Triggers, on the other hand, fire synchronously with 

the DML command. This means that they have the potential to block or even break 

the legacy application. Change data capture is built into the database management 

system, whereas triggers need to be coded by hand. On the other hand, triggers could 

be customized to handle more complex scenarios. The choice between the two is by no 

means clear.

We have explored several alternatives for extracting facts from a static database. 

Legacy application integration must of course work in both directions. For getting 

information into a legacy application, please see the Outbox pattern in Chapter 8 or use 

the techniques described for reporting databases in the following section.

�Reporting Databases
Executing reports directly from an immutable database can be challenging. The queries 

that compute the current state of an entity tend to work well for singular starting points. 

They are not well suited to aggregation, as is often required in reports. They are also not 

well equipped to group by mutable properties, as is common in reporting scenarios. For 

effective reporting, an immutable data model should be projected into a denormalized 

reporting model.

To build an effective reporting database from an immutable model, decide which 

facts will be reflected in the static database. Not all immutable records need to be 

reported against. Perhaps you can even subdivide the reports into categories and 

produce separate projections of the data for each. Top-level predecessors are fed into all 

of the reporting projections, but successors might only influence a few.
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Once identified, write a job that will call a procedure for each fact in a historical 

table. This might be a scheduled database job, an application cron job, or even driven by 

a trigger. The choice depends upon your tolerance for latency and the degree to which 

you feel the application should be involved. This job runs completely within the scope of 

the immutable data store. The procedures that it calls, however, run within the reporting 

database.

Those procedures should in fact be stored procedures. They take as parameters all 

of the fields of the fact that they are processing. The procedure transforms an entity fact 

into an INSERT statement, a tombstone fact into a DELETE, and any mutable property or 

workflow fact into an UPDATE. The stored procedure then returns the ID of the row that it 

just affected. This helps the job to keep track of predecessors.

As the job calls procedures to handle facts, it keeps a map. It maps the hash of each 

fact to the ID that the handling procedure returned. Then, when it calls a procedure for a 

successor fact, it passes the mapped ID in place of the predecessor. This gives the stored 

procedure all of the information it needs to set up foreign keys.

The work of transforming facts into database changes is done completely within 

stored procedures. This keeps the information about the reporting database schema 

localized to the database. The individuals in charge of producing and optimizing reports 

will find this choice of tool to be near at hand. This solution provides the proximity, 

convenience, and autonomy required to produce the best reporting solution.

�Application-Agnostic Stores
Throughout this chapter, we’ve done a lot of hand coding to turn a Factual model 

into a relational database. We’ve converted fact types into tables, predecessors into 

associations, and pipelines into queries. Understanding this process was helpful, but in 

the end, it did not require any creativity. It turned out to be quite mechanical. If we fully 

embrace automation, we can generate code, simplify database deployments, and avoid 

many of the headaches of versioning.

An immutable data store imposes a significant set of constraints. One of them 

is of course that rows cannot be updated or deleted. But in deriving the structure of 

an immutable database from pipelines and inverses, we’ve picked up a few other 

constraints. The WHERE clause chooses the first row by hash. All JOINs are by predecessor 

or successor foreign keys. Outer joins are only used for the final predecessors. Far from 

being a burden, these constraints help us to write efficient and correct queries.
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In particular, these constraints do not permit us to query the database by any of 

the data fields. We cannot find all products under a certain price, or all shipments over 

a certain weight. These queries cannot be efficiently written against an immutable 

database and should instead be executed against a static projection, like a reporting 

database. Under such constraints, one might begin to wonder why we should store price 

weight in columns at all.

Databases that support ad hoc queries—such as reporting databases—benefit from 

the ability to define an application-specific schema. If a report needs to filter or group 

by a field, then that field needs a column. But pipelines prohibit us from running ad hoc 

queries. The only reason for having data columns is to be able to store and retrieve fields. 

If that purpose can be served in another way, then all tables start to approach the same 

shape.

�A Generic Fact Table
Most relational database engines have an efficient way to store collections of named 

values. In PostgreSQL, for example, a JSON object can be stored in its binary form to 

save the overhead of quoting and escaping strings. This is primarily done to allow the 

database engine to index fields of a JSON object, but we need not use it in that way. We 

can simply store and retrieve entire objects. And even if your chosen database engine 

does not have a binary JSON type, you can easily store JSON objects as strings.

Once you begin storing fields in JSON columns rather than individual columns, 

the differences between application-specific tables start to disappear. They all have an 

auto-incrementing surrogate key. They all have the hash of their corresponding fact. The 

last remaining reason for having different tables is to distinguish among facts of different 

types.

Even the type can be generalized. We can uniquely identify a fact type by its name 

and store that in a type table to give it a surrogate key. Then, we can store the fact 

ID, type ID, fact hash, and JSON fields in a fact table. With this application-agnostic 

structure, we’ve retained all of the important information.

CREATE TABLE type (

  type_id SERIAL PRIMARY KEY,

  name VARCHAR(50) NOT NULL UNIQUE

);

Chapter 10  SQL Databases



350

CREATE TABLE fact (

  fact_id SERIAL PRIMARY KEY,

  type_id INT NOT NULL REFERENCES type,

  fact_hash VARCHAR(88) NOT NULL,

  fields JSONB NOT NULL,

  UNIQUE (fact_hash, type_id)

);

The unique index combines the hash with the type. If it did not, two facts with the 

same fields but a different type will collide.

�Predecessor Relationships
With all facts stored in the same table, all predecessor relationships can be grouped 

together as well. In an application-specific immutable database, singular predecessors 

are represented as foreign keys in the successor table. Only the multiple predecessors 

were extracted to associative tables. But in an application-agnostic data store, we will 

extract all predecessor relationships.

Just as every fact has a type, every predecessor relationship has a role. A role is the 

named relationship defined within a fact type. For example, in the Product fact type, the 

catalog is a role.

fact Product {

  catalog: Catalog

  sku: string

}

Every role is declared by one type and targets another. The catalog role is declared 

by Product and targets Catalog. It takes both the declaring type and the name to 

uniquely identify a role. We capture that in a table to give a role a surrogate key.

CREATE TABLE role (

  role_id SERIAL PRIMARY KEY,

  declaring_type_id INT NOT NULL REFERENCES type,

  target_type_id INT NOT NULL REFERENCES type,

  name VARCHAR(50) NOT NULL,

  UNIQUE (declaring_type_id, name)

);
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The role ID allows us to define a table for each predecessor relationship. Here, I’ll 

name this table edge to indicate that this is an edge in a directed acyclic graph. The edge 

joins one successor to one predecessor within a role. All three columns together form a 

unique key.

CREATE TABLE edge (

  predecessor_id INT NOT NULL,

  successor_id INT NOT NULL,

  role_id INT NOT NULL,

  UNIQUE (successor_id, role_id, predecessor_id)

);

CREATE INDEX edge_predecessor

  ON edge (predecessor_id, role_id);

The unique index defined earlier doubles as a way to get from successor to 

predecessor. Using the prefix of the index, a query could join from a known successor 

ID and role to find a predecessor. That index, however, would be useless in the other 

direction. And so we’ve defined a second index starting at the predecessor ID when 

joining down the graph.

With these four tables—type, fact, role, and edge—we can store any immutable 

data model. Using the same techniques we studied in previous sections, we can generate 

DQL directly from pipelines against this application-agnostic data store. Moreover, 

query generation could be automated. You wouldn’t want to write very many of these 

queries by hand, but a machine can do it with ease. The open source library Jinaga is just 

one example of a system that parses specifications into pipelines, computes inverses, 

and generates SQL queries on behalf of an application.

The benefits of application-agnostic data stores begin with code generation, but 

they go much further. It is much easier to deploy a single database schema that does not 

change as you add features to an application. Many applications can share space within 

the same data store, reducing the overall cost of operations. It is easier to move data from 

one store to another if you can be assured that they have the same schema. But most 

significantly, application-agnostic data stores solve the versioning problem.
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�Versioning
There is a hidden immutability constraint built into any application-specific database. As 

an application evolves, it is inevitable that the schema will evolve with it. Immutability 

demands that a fact does not change. As we’ve stated many times already, this means no 

UPDATEs and no DELETEs. But this also means no ALTER TABLEs. It isn’t just the values that 

can’t change; it’s also the shape.

When extending an immutable data structure, it is best to define entirely new fact 

types. You should avoid adding fields or predecessors to an existing fact type. The reason 

is simple: existing facts do not have those fields or predecessors. To add them would 

be to modify an immutable fact. Any modification changes the fact’s identity. All of the 

mathematical and analytical structures that we’ve carefully assembled throughout this 

book crumble on the shifting sands of changing identities.

Fortunately, most extensions that you might want to make over the lifetime of an 

application take the form of new successors. You might want to add a new property to an 

entity. That’s fine: mutable properties are modeled as successor facts. You might need 

to add another step to a workflow. Piece of cake! Each step is a successor fact. Adding 

a new successor to an existing model is not a breaking change. It’s precisely the kind of 

extension that immutable models absorb well.

But sometimes you find that you really do need to change the shape of a fact type. 

You might find that a top-level fact needs to be nested under a previously invisible 

owner. Or you might have thought that one field was sufficient to uniquely identify an 

entity, only to later discover that it takes two. In these cases, you truly do intend to extend 

the identity of a fact by adding predecessors or fields. How can you do that without 

modifying existing facts?

The answer is versioning. Existing facts retain the shape with which they were first 

defined. When we rehydrate those facts from the data store, we don’t want to set the new 

predecessors to null or define defaults for the new fields. We still want to load those old 

facts using the old schema. That is the only way to preserve their identity.

�Avoid Sequential Version Numbers

It is common practice to assign sequential version numbers to types. You see this in 

APIs, which often retain old versions of endpoints so that they don’t break old versions 

of clients. One version of an endpoint takes and returns old versions of data structures, 

Chapter 10  SQL Databases



353

while a newer version of the same endpoint takes and returns new data structures. It 

is even common practice to use the sequential version number within the URL of the 

endpoint.

In an immutable data structure, however, sequence numbers are to be avoided. Just 

as with auto-incremented identifiers, a sequence number is location specific. It implies 

that all versions originated from the same place. With a primary key in a database, 

that place was the database server. With a sequential version number, that place is a 

developer.

At first glance, it seems reasonable to assume that every version of a fact type will 

originate from the same developer. It seems sensible that they will emerge one at a 

time in a predictable order. But the truth is that developers work in teams. They do not 

necessarily finish work in the same order that they started it. They might not even deploy 

work in the same order that they finish it. The order in which a version appears might be 

different from the order in which the number is assigned.

Fortunately, the versioning problem can be solved in exactly the same way as the 

identity problem. A version of a fact type is defined by its shape. The distinct set of fields 

and predecessors defined by that type is the version of the type. And the version can be 

represented by a hash.

�Structural Versioning

Following an algorithm similar to computing the hash of a fact, we first define a 

canonical form of a fact type. Begin with the type name. Sort the fields and predecessors 

alphabetically by name and include a description of their type. For fields, it would be 

their native type, while for predecessors, it would be their cardinality and the name of 

the target type. Serialize the canonical form, and compute the hash.

$ echo -n 'Price{prior:Price*;product:Product;value:decimal}' | \

> openssl dgst -sha512 -binary | \

> base64

8/HZgkV...lZMw==
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The version is stored with each fact. To optimize storage, you can insert a new 

version table in between fact and type.

CREATE TABLE version (

  version_id SERIAL PRIMARY KEY,

  type_id INT NOT NULL REFERENCES type,

  version_hash VARCHAR(88) NOT NULL UNIQUE

);

CREATE TABLE fact (

  fact_id SERIAL PRIMARY KEY,

  version_id INT NOT NULL REFERENCES version,

  fact_hash VARCHAR(88) NOT NULL UNIQUE,

  fields JSONB NOT NULL

);

A fact was created with a specific version of the type. It needs to be rehydrated with 

that same version. Build each of the versions into the application, so that it can load the 

fact into the appropriate data structure. If the application encounters a version hash 

that it does not recognize, then it simply ignores the fact and its successors. It must have 

been created with a later version of the application, and so that entire subset of the graph 

represents data that it could not correctly interpret.

Roles should not use specific versions of facts. The predecessor/successor 

relationships between facts that we use within a query will persist from version to 

version. New versions should be able to participate in those relationships right alongside 

old versions. If we included the version ID in the role, then new versions of successors 

could only be related to new versions of predecessors. Once we begin pulling on that 

thread, the tapestry of application continuity quickly unravels.

The name of the type is semantic; its version is structural. Structural versioning 

preserves the identity of existing facts as an application evolves. It allows newer software 

to load data written by older versions, but protects older software from the corruption 

of misinterpreting new data. Versioning is a much more difficult problem when the 

database knows the schema of each fact type. Only with an application-agnostic data 

store can the versioning problem be completely solved.
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CHAPTER 11

Communication
Many of the architectural choices that we make constrain the way in which messages are 

delivered and the way in which they are processed. Two common examples of message 

delivery are REST APIs and service busses. Which one you choose often dictates how 

messages are processed. In a REST API, a message is sent as a synchronous HTTP 

request. The server processes the request and sends back the response. In a service bus, 

a message is sent asynchronously by pushing it to a queue or publishing it to a topic. 

The recipient processes the message as it pulls it from the queue and publishes the 

result, if any, for downstream consumption. Patterns for communication and processing 

are tightly bound.

Immutable architectures give us a way to separate those two concepts. We can 

make choices about communication based on how close the sender is to the recipient, 

whether they are controlled by the same organization or whether they are more or less 

permanently connected. On the other hand, we can make choices about processing 

based on how a conversation is intended to progress and whether the initiator expects 

a response. We can choose how to exchange facts between nodes irrespective of our 

choice of how those nodes process the messages.

The models that we have analyzed and constructed define what the nodes are talking 

about. They do not define how those nodes will talk. To maximize autonomy, each 

node will have just the subset of the model that it requires to serve its users and make 

its decisions. They all participate in an information exchange to share subsets with one 

another. To make the most appropriate communication choices, we need to understand 

those subsets, the needs of each node, and the constraints of different communication 

protocols.
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�Delivery Guarantees
As the parable of the Two Generals taught us, a node cannot know whether the message 

it just sent will be received. It has no guarantee based solely on the sending of the 

message. Instead, it only learns about successful delivery when it receives a subsequent 

message from the remote node. Knowledge is delayed. Guarantees can only be fulfilled 

by retrying until that knowledge arrives.

Fortunately, we can build more reliable delivery guarantees on top of less reliable 

protocols. This is evident in the OSI model of networking, shown in Figure 11-1, which 

subdivides the stack into seven layers. The model describes many quality-of-service 

factors, not just delivery. To focus just on delivery guarantees, we only need to examine 

three layers: network, transport, and application.

Figure 11-1.  The OSI model of network communication divides protocols into 
seven layers of abstraction

At the network layer, no communication protocol offers a delivery guarantee. The 

network is concerned with addressing, routing, and error correction, but not with 

delivery. It is not responsible for establishing long-lived connections between nodes, 

retrying failed packets, or even reporting on success or failure.
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At the next level up, the transport layer takes on the responsibility of reporting 

successful delivery back to the sender. It provides confirmation, but not necessarily 

disconfirmation. It is often not possible to prove that a message was not received. But 

ultimately, the transport layer must give up at some point. It cannot make a guarantee 

before sending a message that it will keep trying until the message is received.

It is only at the application layer that protocols begin to offer such guarantees. If a 

message is given to a durable protocol, then it will do everything that it can to ensure that 

the message makes it to the intended recipient. It will keep trying to send the message 

until it knows that it was received. It will resume after a power failure. Some protocols 

even make additional promises about the order, uniqueness, and latency of delivery. The 

more a durable protocol promises, the more expensive it will be. We will therefore accept 

the weakest promise that we can tolerate.

�Best Effort
The term “best effort” is an unfortunate moniker. While it would seem to imply that there 

is no greater effort that could be applied to solving the problem of delivery, it in fact 

means the opposite. A best-effort service will not try to resend a message upon failure.  

In fact, it will not even report on the success or failure of delivery. It is the quality-of-

service (QOS) equivalent of a shrug.

All protocols at some point are built on best-effort layers. In most modern 

applications, this usually means the Internet Protocol (IP). Some protocols extend that 

limited quality of service up to the application layer. These include User Datagram 

Protocol (UDP) and IP multicast. When latency is more important than delivery, these 

are appropriate choices. They can be used alongside more durable protocols to provide 

services such as presence, streaming, and health monitoring.

To build on top of a best-effort protocol, the recipient must provide feedback upon 

receipt. This gives the sender confirmation that the message has been delivered.

�Confirmation
At the transport layer of the OSI model, some protocols rely upon confirmation that a 

packet has been received. This is often done to throttle communications, holding some 

packets back until earlier packets have been confirmed. But in many cases, this is also 

used to establish a duplex connection between the two nodes. The most prominent 

example is the Transmission Control Protocol (TCP), which is built on top of IP.

Chapter 11  Communication



358

When a duplex—or two-way—connection has been established, each node knows 

that it can successfully route packets to the other. That connection offers a tunnel 

through which messages can be sent and received. Peers can rely upon the fact that if 

bytes are received, they arrive in order and with a very low probability of error. As long as 

the connection remains open and has not timed out, the TCP protocol will retry packets 

until they have been confirmed. No application intervention is required.

Many application protocols rely upon duplex connections to provide delivery 

confirmation to their consumers. The examples are too numerous to examine, but 

certainly the best known and most widely used is the Hypertext Transfer Protocol 

(HTTP). Despite “hypertext” in the name, this protocol has become the de facto standard 

of all sorts of information exchange on the Web, not only HTML but also SOAP, JSON, 

and gRPC. HTTP upholds delivery guarantees by constraining how nodes may change 

state upon receipt of various messages.

�Safe Methods

The HTTP specification speaks of two properties of methods: safety and idempotence. 

The first category of methods that we will examine are those that have the property of 

safety. A safe method does not change the state of the server upon receipt. Verbs like GET 

and OPTIONS are safe.

Upon receiving a safe request, a server may retrieve information, but it may not alter 

its state in any observable way. Caching a response, while technically a state change, is 

not directly observable to a client. Caches are therefore allowed for servers processing 

safe methods.

As a client, you can feel confident in sending a safe request that you will not trigger 

any unwanted state changes. You can retry a GET on a different connection if you did not 

receive a response. The server should theoretically respond in the same way, assuming 

that no state changes occurred in the interim. Of course, there is no way for the client 

or the protocol to enforce this convention. It is entirely up to the server to refrain from 

changing state in response to a safe method.
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�Idempotent Methods

The second property of methods that HTTP defines is idempotence. This promises 

that the state of the server will change only upon the first receipt of a distinct message, 

not a subsequent receipt. All safe methods are by default idempotent; the server will 

not change state on even the first receipt, let alone the second one. And so the second 

category that we examine are idempotent, but not safe.

As we’ve learned in Chapter 4, idempotence is an important property of a message 

handler. It allows peers to retry messages without fear of changing state. If the first 

message was indeed received, then the second receipt will not change state further. In 

HTTP, PUT, PATCH, and DELETE are examples of idempotent verbs.

While idempotence is required for reliable message delivery, the reason for these 

verbs being labeled idempotent is not to permit retries and recover from duplication. It is 

simply based on the semantics of updating, patching, or deleting a resource. An update 

sets the state of a resource to a known quantity. A patch sets only some of the properties, 

but still to known quantities. Logically, one would anticipate that upon duplication, the 

resource is already in the desired state. Updating or patching the resource would have no 

effect. A similar argument applies for deleting an already-deleted resource.

Unfortunately, this line of reasoning only considers duplicates without intervening 

changes. If the resource changes between the original update and the duplicate, then 

the duplicate will reset the state of the resource back to a previous state. An eventually 

consistent handling of the message would ignore the duplicate, rather than applying it.

Consider the example in Figure 11-2. The first client issues a PUT request to update 

the value of a resource to “Bob”. That command takes effect, but the connection is 

interrupted before the response gets back. Meanwhile, a second client issues a PUT 

request to update the value of the same resource to “Robert”. That client sees their 

response. The first client makes a new connection and retries the message. If the server 

changes the value back to “Bob”, as the HTTP protocol would suggest, then it is not 

ignoring the duplicate message.
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The HTTP server is behaving in an idempotent manner. And yet, the system is not 

eventually consistent. The problem is that idempotence is not sufficient. As we showed 

in Chapter 4, a protocol must also be commutative to ensure eventual consistency. If the 

server in Figure 11-2 had responded in the same way regardless of message order, then 

the outcome would have been better. Suppose that it treated “Bob” followed by “Robert” 

the same way as “Robert” followed by “Bob”, for example, by allowing the resource 

to be in a superposition of the two candidate values. Then, the subsequent receipt of 

the duplicate message would simply be ignored. Recall the diagram from Chapter 4, 

repeated in Figure 11-3, illustrating this solution.

Figure 11-2.  A server responding to a duplicate request after a different request 
has intervened
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The HTTP guarantee of idempotence is only semantic. The kinds of actions that 

idempotent verbs represent tend to bring a resource to a known state, even after the 

second application. But they offer no protection against message duplication. HTTP 

offers no guarantees of commutativity.

�Non-idempotent Methods

The third category to consider are the methods that are neither safe nor idempotent. 

These methods offer no guarantees. They may change state upon every receipt. The POST 

verb is an example of this kind.

The semantics of POST make it likely that a change will in fact occur. In response to 

this request, a server creates a new resource and returns its identity in a 201 Created 

response. Presumably, the identity of the resource was not already known to the client 

before the request. If it was, the response would not need to include the URL. We can 

reasonably assume that in most implementations of POST, the identity was generated on 

the server.

When the identity is generated on the server, then there is little a client can do 

to prevent duplication. If the connection is lost before it receives the 201 Created 

response, the client has no recourse but to try again or report the error to the user (who 

is likely to try again). A second try will likely result in the creation of a second resource. 

HTTP makes no guarantee that the server will do any different.

Figure 11-3.  A data structure that allows a resource to have multiple 
simultaneous versions is both idempotent and commutative
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�Retry Within a Connection

Whatever the state-change guarantee of the HTTP method, the transport layer can only 

provide confirmation within the scope of a connection. Connections are relatively short-

lived and reside entirely in memory. They represent a single-threaded communication 

channel between two peers.

Applications built on connection-oriented protocols need not retry messages on the 

same connection. TCP guarantees byte order, which implies that the retry would not be 

received until after the original message. But if the connection fails, then all bets are off. 

The sender has no knowledge of whether unconfirmed messages were received or not.

A connection can use delivery confirmation to guarantee that a message has been 

received. It cannot guarantee that a message will be received at some point in the future. 

Confirmation is a necessary, but not sufficient condition for durability. While HTTP only 

forwards the connection semantics from the transport layer, other application-layer 

protocols add durability.

�Durable Protocols
When the user of an application initiates a command, they would like to have some 

confidence that the effect of their command will last. The protocols described in the 

previous section will simply force them to wait until a remote peer confirms receipt of 

their message. But doing so robs the user of some autonomy. They can no longer make 

a decision and issue a command without involving the remote peer. To have the greatest 

autonomy, they should be able to work in isolation. And so they demand more from their 

protocol.

A durable protocol is one that guarantees that a message will eventually be delivered. 

Delivery confirmation is necessary, but not sufficient. Durable protocols need to 

continue to retry until such confirmation is received, even over long periods of time or 

power outages. Durable protocols therefore require durable storage at the sending side, 

which can only be provided at the application layer of the OSI model. Two of the most 

common forms of durable message storage are queues and topics. Popular examples of 

these forms are Advanced Message Queueing Protocol (AMQP) and Apache Kafka.
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�Queues

AMQP is a standard application-layer protocol for exchanging messages in queues. It 

is implemented by such queueing systems as RabbitMQ, Apache ActiveMQ, and Azure 

Service Bus. AMQP is a configurable protocol, offering several levels of service. Some 

of those service levels provide at least once delivery or the guarantee that the sender 

will keep trying until a message is received. This promise survives beyond a single 

connection or session. It even survives power outages.

To provide this guarantee, AMQP implementations store messages on the client 

side. When a user publishes a message to an AMQP provider, it stores the message 

immediately, before contacting any remote peers. At that point, the application can be 

assured that the message will be delivered. The engine begins the background process 

of creating a connection, transmitting messages, and receiving confirmations. Once 

a message is confirmed, it can be removed from client storage. Until then, it must be 

preserved.

�Topics

Where AMQP defines queues, Kafka defines topics. A topic is a persistent stream of 

records. Unlike a queue, records in a topic are not removed when they are consumed. This 

allows a Kafka topic to support multiple subscribers, each of which receives all messages.

In addition to multiple subscribers, message retention allows topics to provide 

a stronger delivery guarantee. Since all past messages are still in storage, a topic can 

determine whether a message is a duplicate. It can ignore the duplicate, preventing it 

from being sent to the subscribers. This level of guarantee is referred to as exactly once 

delivery.

Duplicate detection only lasts as long as the messages are persisted. Not all 

topic implementations store messages indefinitely. Kafka topics, for example, have a 

configurable retention period that defaults to 7 days. If a duplicate message arrives after 

the retention period expires, then it will be sent to subscribers.

For immutable architectures, at least once delivery is sufficient. Such applications 

are based on data structures that persist historical facts indefinitely. If a duplicate is 

received, it will be detected, as the fact is already in storage. And since records are 

identified by their content-based address, collisions are prevented at the storage level. 

Even though a durable protocol might offer exactly once delivery guarantees, enabling 

that configuration might prove to be as expensive as it is unnecessary.
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�Message Processing
In addition to delivery guarantees, we must also consider the timing of message 

processing when evaluating communication protocols. Synchronous protocols require 

that the message be processed immediately upon receipt, as the peer is actively waiting on 

the result. Asynchronous protocols allow the recipient to process the message later. These 

protocols tend to offer greater autonomy, as remote nodes are not waiting on one another.

An application based on immutable architecture tends to value autonomy over most 

other factors. Each node has precisely the subset of information that it needs to support 

the decisions that it and its users will need to make. Therefore, asynchronous protocols 

tend to be preferred.

�Most Protocols Are Asynchronous
This choice between synchronous and asynchronous message processing is not 

completely isolated from the choice of delivery guarantee. A protocol offering only 

best-effort delivery is not going to inform the client node about the success or failure of 

the message. It is certainly not going to wait for the server to process the request. These 

protocols therefore only support asynchronous message processing.

On the other extreme, protocols that offer durability guarantees will make 

that promise immediately upon storing the message on the client side. The actual 

communication with the server might take place shortly thereafter or might be deferred 

for a long period of time. The protocol has no way of signaling back to the client 

application that the message has been delivered. Such protocols therefore typically 

do not require that the remote peer process the request immediately and tend to be 

asynchronous in nature. Immutable architectures favor these kinds of protocols.

Only in the middle, where the client application receives a delivery confirmation, 

does it make sense to require synchronous message processing. The client application is 

actively waiting on a response. That response could well include the results of processing 

the message.

�HTTP Is Usually Synchronous
HTTP by default is a synchronous protocol. When a client sends a request, it waits for the 

server to make a response. That response is both a delivery confirmation and the results 

of the message processing. HTTP response codes include such information as whether 
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a resource was created (201 Created), whether the client was authorized to access 

that resource (403 Forbidden), or whether the processing resulted in a conflict (409 

Conflict). These responses imply at least some degree of synchronous processing.

HTTP does not, however, require that the server process the response immediately. 

Some HTTP response codes (most notably 202 Accepted) are intended to reflect that the 

processing will happen asynchronously. In this case, information about the outcome of 

the process is not included within the response. It only serves as delivery confirmation.

In the current application landscape, most traffic over the public Internet is based 

on HTTP. Asynchronous protocols are not quite as popular outside of the firewall. 

AMQP can be tunneled over TLS and is sometimes exposed on the Internet. But more 

frequently, it is kept secured within an organizations datacenter, or exposed on the 

boundary between organizations. Mobile applications favor HTTP over other protocols, 

and browser-based clients use HTTP almost exclusively. Perhaps in the future, using 

asynchronous protocols on the Internet will become more commonplace. But for now, 

attaching a public client to a server usually involves HTTP. But this does not mean 

that we have to use it synchronously. Even request/response protocols can be used 

asynchronously.

�Data Synchronization
The word “synchronization” is another unfortunate term when applied to data. 

Synchronization literally means to make two systems progress at the same time, or at 

least the same rate. Two people can synchronize their watches so that they both read the 

same time. But synchronizing data is specifically not about time. The goal is autonomy, 

not synchrony. What we seek when we synchronize data is consistency. If you ask two 

nodes the same question, they will give the same answer. They can do this because they 

have the same information, not because they are operating at the same time.

Nodes in an immutable architecture have a subset of data at their disposal. This 

allows the users and processes on that node to make decisions without consulting 

other nodes. The procedure that we refer to as data synchronization is just the process 

of exchanging immutable facts with peer nodes so that their data structures converge. 

Each node will have only the subset that it requires, but where those subsets overlap, the 

rules of conflict-free replicated data types (CRDT) guarantee that consistency has been 

reached when the procedure is complete.
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Building on top of immutable data structures, we can now decide independently 

which protocols to use in this procedure. What kind of delivery guarantees do we 

require? Should messages be processed synchronously or asynchronously? Are we 

restricted to common open protocols, or can we choose bespoke options with more 

desirable characteristics? Will peers be addressable, or will we have to wait for them to 

call us? Will nodes be permanently connected, or will they connect only occasionally?

To answer these questions, we will examine three main use cases. Each of these 

represents a different communication structure that is commonly found in immutable 

architectures. Each one requires a slightly different set of protocol choices.

For communication between servers within an organization, we will favor less 

ubiquitous but more asynchronous protocols such as AMQP and Kafka. This will help 

us to build an immutable microservices architecture. For communications between 

organizations, we will instead favor the more common REST APIs and webhooks, leading 

to lower infrastructure coupling. And for occasionally connected clients like mobile apps 

and progressive web apps (PWAs), we will use HTTP as an asynchronous protocol.

�Within an Organization
Data synchronization within an organization is a bit of a luxury. One group controls all of 

the servers, all of the data stores, and the entire network. We have the luxury of selecting 

our preferred tools, meaning that we can use AMQP or Kafka if we choose. We also have 

the luxury of a fast, always-available connection between microservices. We will not 

abuse this luxury by calling from one to the other on every request, but we can keep their 

data stores synchronized.

With this kind of luxury, it is easy to get complacent. Intraorganizational 

architectures will sometimes share databases between services. They will often relax 

security controls within the firewall. And they will ignore versioning concerns, since they 

could deploy both sides of a connection at the same time. Each of these compromises 

to architectural integrity comes at a cost to future flexibility. They increase the coupling 

between services for the sake of convenience. When deploying microservices within 

a single organization, you can take advantage of the luxuries that you have while still 

avoiding unnecessary coupling.

To understand exactly how we are going to synchronize data between microservices, 

we must first determine what they are. Then we can analyze the boundaries between 

them to decide the best means of integration. The outcome of the analysis from Chapter 5 

is your guide to where the boundaries should be drawn.
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�Pivots

When producing a historical model, we identified regions. These were areas of the model 

in which all of the facts originated from a particular actor. When a predecessor/successor 

relationship crosses a boundary between two regions, two actors are collaborating with 

one another. I call such a predecessor/successor relationship a pivot.

The diagram that we used to introduce regions is reproduced in Figure 11-4. I have 

highlighted the pivots.

Figure 11-4.  A model highlighting the pivots, where arrows cross region boundaries

During the analysis phase, a region represented the responsibilities of a single actor 

or set of actors. As we transition into implementation, we will construct a microservice 

for each audience. And so each region now represents a microservice. In this example, 

conference organizers have a microservice for collecting proposals and defining 
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schedules. Speakers have a microservice for viewing calls, submitting proposals, 

and learning about acceptance. Finally, attendees have a microservice for viewing a 

conference schedule, selecting sessions to attend, and submitting ratings. The pivots are 

points of integration among these microservices.

The microservice at the head of a pivot needs to publish the predecessor fact so that 

the microservice at the tail can subscribe to it. Let’s begin with the topmost predecessor 

in the causal chain, the call for speakers. This fact is in the organizer microservice.

�Multiple Subscribers

Pivots at the top of the causal chain tend to be places where facts are published for 

multiple subscribers. The publisher might not have one specific use case in mind, and 

future subscribers could be added at any time. But even when there is a known use case, 

as in this example, sending a message to a specific subscriber introduces unnecessary 

coupling. And so top-level pivots are good candidates for topics, such as those provided 

by Kafka.

The microservice at the head of the arrow publishes a message to a topic when the 

predecessor fact is created. This message includes all of the information contained in the 

fact and all of its predecessors. To compute the set of all facts included in the message, 

perform a transitive closure over the predecessors. Recursively visit the predecessor 

relationships until the entire set is gathered. The message should contain all of this 

information, and only this information.

Two problems arise when publishing a message that contains more than the 

transitive closure of the predecessors. The first is that message is not deterministic. If 

the message contains internal database IDs, the time of creation, or any other detail not 

already part of the facts, then running the process again produces a different message. 

The process could be repeated for any number of reasons: there was an infrastructure 

glitch, the fact was produced by two redundant instances, the user clicked the submit 

button twice, and so on. If any of these situations arise, we want the process of 

generating a message from a fact to be deterministic, so that the downstream consumer 

can practice idempotence and ignore the duplicate.

The second problem is that the message might contain information in successor 

facts. Successors can be created either before or after the message is published.  

If the message contains successor information, then subscribers will not learn of new 

successors created after the fact. In the example in Figure 11-4, the transitive closure of 

the call for speakers fact includes the conference. It does not include times or rooms.  
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If speakers needed to know (for some reason) the number of rooms at the conference, 

this information might or might not be available at the time of publication. If a room is 

added later, they will not learn about it.

There are some successors that you will want subscribers to learn about. For 

example, the conference date (not shown in Figure 11-4) will be an important part of 

knowing whether to submit a proposal. Given that that is likely to be a mutable property 

of a conference, it will be modeled as a successor. Analysts have two options for resolving 

this problem: they can turn the successor into a predecessor of the published fact, or they 

can publish the successor.

To turn the successor into a predecessor, apply the Transaction pattern described 

in Chapter 8. An example is shown in Figure 11-5. The published fact is a transaction 

that brings together all of the successors that are current at the time of publication. This 

brings those successors into the transitive closure. An organizer can change the date or 

location of the conference after publishing a call for speakers, but they now have a clear 

indication of the information that a speaker had when they proposed their sessions. 

They can use this information to publish a new call for speakers and contact the speakers 

who replied to the earlier one.

Figure 11-5.  A call for speakers is a transaction that captures the current date and 
location

To publish the successor, produce an additional topic. Subscribers to the pivot can 

also subscribe to this topic. They will correlate the messages between the two topics 

using their common predecessor, in this case the conference. If the conference date is 

changed after the call for speakers has been published, then the subscriber will see that 

change and update their data store.
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�Responses

Facts on the tail of a pivot represent responses to messages. Responses are directed back 

toward earlier microservices. It therefore makes sense to use queues instead of topics for 

these kinds of messages. The producer of the original message includes the name of a 

response queue. Subscribers post response messages to the given queue. This manages 

coupling between publisher and subscriber, because the queue name is provided 

dynamically. In Figure 11-4, the proposal fact is a response to the call for speakers. It is 

directed toward the organizer microservice. That microservice will therefore create and 

manage a queue specifically for accepting proposals.

The response message, like the original message, is composed from the transitive 

closure of the fact. In this case, that means that the proposal contains information about 

the abstract and the speaker. If successors are required (such as speaker name), then the 

response should follow the Transaction pattern, as shown in Figure 11-6. Notice also that 

the message contains the call for speakers. The original message is a predecessor and will 

therefore be part of the transitive closure. This gives the original microservice sufficient 

information to correlate the responses.

Figure 11-6.  A proposal gathers together all of the facts that will be necessary for 
the organizer to make a decision

Since the speaker microservice knows about the call for speakers topic, it is tempting 

to also have it know about the proposal queue. Doing so would seem not to increase 

coupling between the two services. But that would be a mistake. Only the organizer 
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microservice knows how it will respond to proposals. It might change the topology in a 

future release. It alone should be responsible for deciding where the response queue is 

located.

Pivots further down in the causal chain also represent responses.  

In Figure 11-4, the reject and accept facts are responses to the proposal. These kinds of 

responses should follow the same pattern. When the speaker microservice generates the 

proposal message, it includes the name of its own response queue.

�Notifications

Not all responses are direct successors of pivots. And not all two-way conversations 

between microservices appear as arrows crossing region boundaries in both directions. 

Sometimes the relationships are hidden a little deeper in the model.

Every conversation between microservices ends with a message that has no 

response. This message serves only as a notification. It informs the recipient of the 

outcome of a process. These appear as leaves in the model below pivots. The rate fact is 

an example in Figure 11-4.

When a conference attendee rates a session that they have attended, they are 

simply giving feedback to the organizer. They do not expect any response to that rating. 

There is therefore no further pivot below the rate fact indicating that the conversation 

continues. The rating is pushed to a queue that the organizer provides, just as any other 

response. The name of that queue will be included in the schedule message, as that is the 

predecessor of the nearest pivot.

�Between Organizations
When servers are not under our direct control, we lose a bit of the luxury that we might 

have had within a single organization. We can no longer choose from all available 

protocols to select the best possible fit. And we don’t have any governance over the way 

in which peer systems will be modeled. Partners might not even be using immutable 

architecture. We adapt by implementing additional constraints and transforming our 

services to be more familiar.

One of the constraints of crossing organization boundaries is that the 

communication protocols need to be supported by both sides. This usually means 

that asynchronous protocols like AMQP are replaced by synchronous protocols like 

HTTP. The timing of message processing is not the issue; it is simply adoption. The more 
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widely adopted protocols today tend to be those that support synchronous processing by 

default. A compromise can often be reached by using HTTP in an asynchronous manner.

�Async over HTTP

External organizations will often need to publish messages to your services. 

Semantically, these are commands, instructing your service to perform some kind of 

business function. In a historical model, these are simply predecessors of a pivot, created 

in a remote region of the model. If we were working entirely within the scope of a single 

organization, we might choose a topic or queue to publish these messages. But since 

we are providing an endpoint for a partner, we will instead use HTTP. We can design the 

endpoint with additional constraints, not part of the HTTP specification, to make it work 

well with immutable architectures.

According to the HTTP specification, POST is neither required to be safe nor 

idempotent. However, an endpoint provided to partner organizations will clearly benefit 

from idempotence. This does not rule out HTTP POST. It only means that we implement 

the server to uphold stronger guarantees than the specification requires.

First, we ensure that the body of the message contains enough information to 

generate a unique identity. When we receive this request, we will generate a fact. 

The contents of this new fact need to be completely determined by the contents of 

the message. We will not use the time of receipt, a server-generated ID, or any other 

nondeterministic data to produce this fact. This guarantees that if the partner repeats 

this request, they will generate the same fact. That is the first step to making POST 

idempotent.

Second, we generate the URL of the resource using only information from the 

new fact and computing the transitive closure of the new fact to find the graph of 

all predecessors. Pull fields from these predecessors, and assemble them into a 

path. Append that path to the host name of the exposed endpoint to compose the 

URL. Assuming that we have used all of the fields, this generates a one-to-one mapping 

between facts and URLs. When the partner makes a subsequent call to the endpoint, we 

will be able to pull the components out of the path and reconstruct the fact.

And third, respond to the POST immediately after the new fact is stored. Do not wait 

until the request is processed. Before storing the fact, you will have the opportunity to 

run the authorization rules to make sure the partner is authorized to make this request. 

But there is no need to wait until the request is processed. You can complete processing 

asynchronously.
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An endpoint implemented according to these constraints will be idempotent. Any 

subsequent POST of the same request will yield the existing fact. Because the service is 

using content-addressed storage, it will recognize that the fact already exists. It simply 

responds with the same URL as it had originally produced.

Such an endpoint is also durable. It does not respond until the fact is stored. A side 

effect of storing the fact might also be adding it to a topic or queue for further processing. 

The delivery confirmation of 201 Created indicates that this storage has occurred and 

has been committed. The sender may stop sending at that point; the message has been 

saved.

Finally, this endpoint is location independent. The URL does not contain any server-

generated IDs. If the request had been handled by a different server, it would have 

produced the same URL and the same fact. We are free to reorganize our infrastructure, 

fail over to a backup datacenter, or mirror requests to different geographical regions. 

None of these implementation details will be visible to our partners.

�Webhooks

If our infrastructure were completely within our control, we could just post responses 

to a queue. When working with partners, though, we sometimes don’t have the luxury 

of using queueing protocols. Yet we still want to pass the names of queues across 

organizational boundaries to reduce coupling between peer services.

The equivalent of a response queue in HTTP is a webhook. A webhook is an HTTP 

endpoint intended for use as a callback, a place to which to send responses. One service 

registers a webhook with another by providing an endpoint URL. The other service POSTs 

to this endpoint whenever there is new information to report about the topic.

A response in a historical model appears as the immediate or eventual successor of 

a pivot. We should generate webhooks based on the pivot’s predecessor. As described 

previously, compute the transitive closure of the predecessor and extract all fields of those 

facts. Construct a path and append it to a host name. That URL can now be used as a 

webhook. The service listening at that host can reconstruct the predecessor from the path.

Since the path contains all of the information necessary to reconstruct the 

predecessor, the body of the message does not need to include it. The body is all of the 

information necessary to create the successor fact except for the predecessor identified 

in the path. The service handling the webhook will follow all of the constraints of the 

command endpoint described earlier to ensure that responses are idempotent, durable, 

and location independent.
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�Emulating REST

In many integrations, an organization that has adopted immutable architecture will be 

integrating with one that has not. We might not have the luxury of defining the API so 

that it works well with immutability. We might have to adhere to an API that the partner 

has defined or provide one that is more familiar to them. In those situations, we can both 

consume and implement REST APIs from immutable services.

To consume a REST API from an immutable model, apply the Outbox pattern as 

described in Chapter 8. The Outbox pattern creates a bridge between a historical model 

and a third-party API. The caller maps facts that the partner needs to know about into 

API calls. They record a journal of the responses from those API calls indexed by the 

hash of the facts. While this pattern cannot turn a REST API into an idempotent, durable 

data exchange, it provides at least a little protection against infrastructure failures. The 

rest is up to the partner.

To produce a REST API with an immutable model, we apply the Structural patterns 

in Chapter 8 to map all of the incoming requests into semantically equivalent facts. A 

POST maps to an Entity fact and likely one or more Mutable Property facts. A PUT or PATCH 

maps to one or more Mutable Properties. A DELETE generates a Delete fact. Based on the 

semantics of the domain, other patterns could be brought into play.

Where possible, generate URLs as described previously using only information found 

in the transitive closure. Ideally, all of the information needed to generate the fact will 

be present in the request. That would produce a truly idempotent API. However, this will 

not always be possible. In particular, Mutable Property facts cannot be generated based 

only on the desired value of those properties. They need to know their predecessors, 

which is not something traditionally given in a REST API.

To find the predecessors of a Mutable Property, the service will need to run a query. 

Find all facts that have not been superseded.

query valuesOfProperty(e: Entity) {

  match p: EntityProperty where p.entity = e

    such that not exists n: EntityProperty where n.prior = p

}

If the query results in one fact, and the value of that fact matches the desired value 

in the PUT or PATCH, then ignore the request. The property already unambiguously has 

the desired value. But if the number of results is not 1, or the current value is different, 

then create a new property fact having these results as predecessors. This algorithm 
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allows the client to resolve conflicts by putting the desired value. Unfortunately, it does 

not capture what the client actually believed the original value to be and therefore record 

the real causal graph. Only a client participating in the immutable model and using an 

appropriately designed API could do that.

To GET a resource from a historical model, you will need to run several property 

queries. Generate the starting entity fact from the URL as described previously. Then run 

queries for all properties that you intend to return. If any of those queries returns more 

than one result, apply a conflict resolution function to determine the desired result. 

REST consumers are not used to properties having more than one value. Do not save the 

results of your conflict resolution. GETs are supposed to be safe.

A REST API produced from a historical model will compromise some of the benefits 

of immutability. It will only be as idempotent as a traditional REST implementation. It 

will not have the commutativity guarantees of an end-to-end immutable architecture. 

But it will be more familiar to partners who have not yet adopted these strategies.

�Occasionally Connected Clients
The third common scenario for integrating with an immutable architecture is to support 

offline mobile or web clients. Whereas most mobile apps and websites in use today must 

have a continuous connection to a back-end API, an offline client can interact with the 

user even when that connection is interrupted. They have their own storage, their own 

outbound message queue, and can participate in conflict detection and resolution. 

Native mobile applications have storage capabilities from the operating system; web 

clients can use advanced browser features, operating as progressive web apps (PWAs).

Mobile and web applications designed to be used in this way are typically offline first. 

All of the data presented to the user is loaded from local storage, not an API call. Every 

user action is stored locally and pushed to a queue, not sent to the server. Synchronizing 

local storage with server history takes place in the background. The user can see the 

progress of that activity, but they are not blocked by it.

Occasionally connected clients will greatly outnumber servers. They will come 

online with nothing more than a download or a bookmark from the user. They might 

be used for a long period of time, or they might be visited once and quickly abandoned. 

When a client leaves the ecosystem, the server will not receive any notification. It would 

therefore be wasteful for servers to keep track of meta-information on behalf of the 

clients. The protocol for synchronizing an occasionally connected client puts the storage 

burden entirely on the client.
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�Client-Side Queue

As the user interacts with the client application, it will generate facts. These facts will be 

stored in its local subset of the historical graph. They will also be added to an outgoing 

queue. The user is permitted to continue interacting with the application as soon as the 

fact is stored and the message is queued. They do not have to wait for it to be sent to the 

server.

Mobile applications can use a local SQLite, Core Data, or Realm database for both 

fact and queue storage. To design the fact storage, see all of the advice given in Chapter 10. 

The outgoing queue is simply a record of which facts have not yet been sent to the server. 

It could be as simple as a table of foreign keys into the fact storage.

Progressive web applications can use IndexedDB to store facts and queues. This 

browser feature is not as rich as a SQL database. Instead, it is simply a set of name/

value pair collections. Consider using one collection per type of fact. The keys of these 

collections are the hashes of the facts. In addition, the PWA has a collection for the 

outbound queue, indexed using a monotonically increasing key.

To send the outgoing messages to the server, the mobile application or PWA calls an 

HTTP endpoint. This is not a RESTful endpoint providing the usual semantics of POST, 

PUT, PATCH, and DELETE. That kind of endpoint compromises the value of an immutable 

architecture and is intended for use by clients that do not participate in the historical 

model. Instead, this is a more constrained endpoint to which messages can be POSTed 

in an idempotent and commutative way, as described for intraorganizational command 

transfer.

To reduce latency and make the most efficient use of the network, clients will batch 

several outbound facts into a single request. The contents of a POST will be a collection 

of facts of various types. My favorite way to encode a batch is as a JSON object in which 

the keys are base-64 encoded hashes. This makes it easy for the server to find incoming 

facts by their hash and helps to ensure that a fact is not unnecessarily duplicated within 

the same batch. The body of each fact contains the type, the fields, and the hashes of its 

predecessors.

Assuming that the predecessors were already known to the server before the upload 

began, it would have no trouble finding them by their hash and establishing the link in 

its own database. However, this assumption cannot be guaranteed in practice. A client 

might not be talking to the same server from one session to the next. Servers may be 

spread across different datacenters to gain redundancy or geographic proximity.  
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It is therefore wise to include the transitive closure over the predecessors of all outgoing 

facts. This is why it is important to eliminate unnecessary duplication within the batch.

When the server receives the batch, it must store each of the facts in turn. Storing 

a fact requires executing authorization queries and setting up foreign keys. For those 

reasons, the server must have already stored the predecessors. It therefore processes the 

incoming batch in topological order. It recursively visits all predecessors before handling 

each message. When it visits a fact, it first looks in a temporary data structure to see if it 

has already visited that fact. If not, it verifies the hash, then looks in its own database for 

that record. If it is present, it moves on. If not, it runs the authorization rules and saves 

the new fact.

When it is done, the server responds with a 200 OK message. After that, the client can 

delete all facts sent in the batch from its outbound queue. The client continues until the 

queue is empty.

�Client-Side Bookmark

Because clients outnumber servers, all of the meta-information is kept on the client. This 

includes the outbound queue that we just discussed. And it also includes information 

about inbound facts. Rather than keeping a per-client queue on the server, each client 

keeps its own bookmark.

A bookmark is a placeholder within a sequence of facts. It identifies the last fact that 

the client has received and stored. The client can ask for a batch of facts greater than a 

given bookmark, and the server will respond with both a collection of facts and a new 

bookmark. That new bookmark corresponds to the last fact in the batch.

Because we need to know which facts came after a given bookmark, these identifiers 

must be totally ordered. A total order is one that allows us to compare any two elements 

in the sequence. We can tell for sure whether one element is before or after another. 

In every other sense, however, facts are partially ordered. You know that a predecessor 

came before a predecessor, but you cannot compare two facts that are not causally 

related. Furthermore, facts are usually identified by their hash, which does not obey 

any kind of order. We therefore need a new method of identifying facts for use with a 

bookmark.

The identity of a fact within a sequence must be monotonically increasing. Later 

facts cannot be given identifiers less than or equal to earlier ones. If that were ever 

violated, then a client using a bookmark from an earlier fact would miss later facts on 

subsequent requests. Timestamps alone are not sufficient for this purpose, as two facts 
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could be stored at exactly the same time. An auto-incremented ID is the best choice. 

Even then, extra precautions must be taken to avoid reading a later ID before earlier IDs 

have been committed. One such precaution is to remove facts from the end of the batch 

until one is found that is old enough for concurrent writes to have settled. This implies 

that clients might not receive the absolute latest information until a subsequent read, but 

it mitigates against writes that happen out of order of ID allocation.

Imposing a total order on a partially ordered collection has a serious drawback. It 

means that bookmarks are location specific. If the mobile device or PWA were to connect 

to a different server on a subsequent fetch, the bookmark that it received from the last 

fetch would be meaningless. Different back-end nodes might have put the partially 

ordered facts into different total orders. For this reason, the client needs to keep a 

separate bookmark for each data store it contacts.

A datacenter having a load-balanced cluster of servers all sharing a common 

database is not a concern. No matter which server the client uses, the shared database 

generates the monotonically increasing IDs. The issue only arises when servers use 

different data stores. So bookmarks are really per database, not per server. Each database 

should generate its own unique identifier and use that to distinguish its bookmarks from 

those of other databases.

The client sends all of its bookmarks with the request. The server determines which 

bookmark is associated with the database it is using. If the client has no bookmark for 

that database, it starts at the beginning. The server then responds with a batch of facts, 

the database ID, and the new bookmark. The client stores all of those facts and updates 

its bookmark for that specific database. It repeats until the request yields no new facts.

In most network topologies, including a database ID is an overabundance of caution. 

The entire population of mobile clients can be served from a single database. As long as 

that remains true, then the clients will each have one bookmark that marches steadily 

forward. However, if the day ever comes that the database needs to fail over to a standby, 

then there is no guarantee that the order of insertions will be consistent between the two. 

Clients will find themselves redownloading the data set, but they will be able to detect 

and ignore duplicates. They will also be guaranteed not to miss any information as a 

result of data stored in different orders across different databases.
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�Choosing a Subset

A mobile or PWA client rarely needs to fetch the entire contents of the data model. 

These clients will have a single user, and that user will have access to only a subset of the 

data. Occasionally connected clients should fetch only the facts that their user needs. 

Based on an understanding of the model and how it will be used, we can divide facts 

into subsets. A particular user will have access to a small number of these subsets. The 

client will therefore need to keep track of separate bookmarks. It has one bookmark per 

database per subset.

A subset of a model can be defined by a single root fact. The subset includes all of 

the direct and indirect successors of that root. Imagine a cone extending down from the 

root and gathering together everything it touches, as illustrated in Figure 11-7. That is the 

subset of the model that the user needs to interact with that root.

Figure 11-7.  A subset of a model is the cone of direct and indirect successors of a 
given root

There are two kinds of facts that make for good subset roots: groups and periods. A 

group is a top-level fact participating in the Membership pattern defined in Chapter 8.  

A membership fact has two predecessors: a group and a user. It grants the user 

membership into the group and therefore access to its resources. Membership facts 

often determine authorization and distribution rules. A user need not see facts outside of 

the groups of which he is a member.

A period is a near top-level fact participating in the Period pattern. This fact breaks 

successors down across time. A natural clock within the problem domain moves forward 

and points to the current period. This might be a date of business at a restaurant or a 

semester at a school. New facts are added to the current period. So client apps can focus 

only on recent periods and ignore older ones.
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When a user interacts with an occasionally connected client, they only need the 

successors of the groups to which they belong and the most recent periods. But to 

understand a successor, they also need the transitive closure of its predecessors. For 

this reason, the subset that is actually downloaded to the device includes predecessors 

of those successors. The cone bounces back up the graph, forming a lattice structure as 

illustrated in Figure 11-8.

Figure 11-9.  A secret channel is a group to which collaborators are invited

Figure 11-8.  The facts downloaded to a device include the cone of successors of a 
root and all of their predecessors

Recall the example of the secret channel that we studied in Chapter 7. In this 

example, the creator of a secret channel sent an invitation to their collaborators. 

Members of the channel could then exchange messages with one another. The diagram 

is recreated in Figure 11-9.

Chapter 11  Communication



381

If we were to construct an occasionally connected mobile app or PWA for this model, 

SecretChannel would be an excellent choice of a fact that identifies a subset. If the user 

of the app is the creator or a collaborator in the channel, then they would expect all of 

the messages to be downloaded to their device. The group defines a subset of the graph 

containing the transitive closure of its successors.

This example illustrates one more root fact and one more rule of subsets. The user 

themselves should be the first root. This gives them a subset of all of the groups that 

they have created or been invited to join. That subset, however, should stop at the roots 

of other subsets. In Figure 11-10, for example, Alice both created a channel and was 

invited to Bob’s channel. The subset with Alice as the root includes her channel and the 

invitation, but does not include the messages in her channel. She specifically needs to 

pull those messages from that subset.

Figure 11-10.  The subset of facts under Alice includes her channel, but not the 
messages in her channel

The algorithm for identifying facts within a subset boils down to a recursive traversal 

of the graph. Start at the identified root. Recursively visit all successors of that fact. Add 

that successor and its transitive closure of predecessors to the subset. If the visited fact 

is not itself a root, continue with its successors. This will give the set of facts that an 

occasionally connected client needs to serve its user.

Each client keeps a different set of bookmarks for each root. When it fetches facts 

from the server, it identifies the root by hash. The server responds with a batch of facts 

that are in that subset. In the case of the model in Figure 11-10, the first root is the logged 

in user. That fetches the channels that they have created and the invitations that have 
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been sent to them. With that information, the client makes additional requests for each 

of those channels. This fetches the subset of messages that the user can see. And each 

channel has its own bookmark.

�Avoiding Redundant Downloads

With queues for uploading facts and bookmarks for downloading them, we are starting 

to construct an algorithm for background data synchronization in an occasionally 

connected app. But as we put the two together, a problem emerges. All of the facts that a 

client uploads will be appended to the total order on the server. They will be greater than 

the client’s bookmark. That means that they will be downloaded again to the client the 

next time it fetches. This is a waste of bandwidth.

We would like the client to fetch only the facts that it itself did not upload. We can 

get close to this behavior by simply performing the download first, then the upload. The 

client downloads facts greater than its current bookmark. It stops when the fetch returns 

no new facts. Then it uploads batches from its outgoing queue. It stops when the queue 

is empty.

At that point—ideally—the only facts greater than its bookmark would be the ones it 

just uploaded. So if we could update the bookmark without redownloading those facts, 

we would avoid the redundancy. The problem is that other facts may have been added 

in the meantime. Other clients might have uploaded their facts, or other processes might 

have created information that should be sent to the client. And so we cannot assume that 

we can update the bookmark without missing something that happened concurrently.

A good optimization is to send with the fetch request a list of hashes. These are the 

facts that the client just finished uploaded. The server will filter out these facts from 

the response. In the ideal scenario, no new facts have been added, and so the entire 

download batch is filtered. In this case, the server returns an empty collection and a 

new bookmark. The client updates their bookmark, and we have avoided redundant 

downloads.

If, on the other hand, new facts were added concurrently, then the server would 

return only those new facts. It would also return the latest bookmark, including the new 

and the filtered facts. Upon seeing that response, the client would store the concurrent 

facts and update its bookmark. We achieve the correct behavior and avoid the redundant 

downloads.
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This solution keeps all of the meta-information on the client. The client keeps track 

of the uploaded fact hashes in memory during the background sync operation. The 

server receives this information in the request and only uses it to filter that response. 

It does not store any per-client information in order to optimize network usage. And 

if something fails on the client, then it simply falls back to the correct, if suboptimal, 

redownloading of facts.
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CHAPTER 12

Generated Behaviors
From the beginning of the software industry, people have been responsible for writing 

programs. A large number of decisions go into every program written. People have to be 

vigilant not to introduce defective behavior as they make those complex interconnected 

decisions.

Over time, the level of detail implicit in those decisions has risen to higher and 

higher abstractions. Early software developers worked at the machine level. Modern 

software is increasingly written in higher-level languages. In the past few decades, 

managed runtimes have improved in performance and productivity to the point that it is 

becoming harder to justify writing code to the metal. Developers are making fewer and 

fewer detailed decisions. As we continue up the ladder of abstraction, we can use our 

new vantage point to look across to other islands.

Software is written in islands of behavior. The database is designed to store and 

query data for a specific application. The business logic operates on objects in memory. 

The user interface presents data and responds to user inputs. Network APIs handle 

security and communications. Modern application development is an exercise in 

bridging those gaps for every application. Between the database and the business logic, 

developers construct a data access layer either by hand or with an object relational 

mapper (ORM). Between the business logic and user interface, developers write view 

models. And between the business logic and network, they design custom controllers, 

actions, and proxies for bespoke APIs.

Immutable architecture gives us an opportunity to change that. Rather than custom 

islands of application behavior, we can construct a runtime of application-agnostic 

components. An immutable runtime will bridge the gaps with generated behaviors. We 

have already shown how a few of these generic components could work. A generic data 

store persists facts declared in the Factual Modeling Language and executes generated 

query pipelines. Those same pipelines are automatically inverted to inform the user 

interface when a new fact arrives from a network peer. Authorization rules determine 

which of those incoming facts can be trusted and stored.
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With each technical decision that we automate, we connect islands of the system that 

were once developed separately. Only a couple of gaps remain to be bridged. For one, 

we need to project the results of a query onto the user interface. And for another, a server 

must determine which facts to share with a peer. These two gaps can be closed with two 

final concepts: projections and interest. Once we close these gaps, we will transition 

from a purely human-driven development paradigm to one that supports higher-level 

reasoning. We will gain not only productivity and confidence but also a new degree of 

communication and collaboration.

�Projections
Queries in the Factual Modeling Language produce sets of facts. While these result sets 

are useful for a developer, they are not approachable in their raw form to a user. An 

immutable runtime needs to transform raw facts into objects that the user can more 

easily consume. To bridge the gap between query results and user interface, we define a 

projection.

A projection is a function that maps a group of fact sets into an object structure. The 

front-end framework can take it from there to produce the user interface. A functional 

framework such as React would express UI components as a function of the object structure. 

A data-binding framework such as XAML would use the object structure as a view model. In 

either case, the framework starts with a projection of the facts, not the facts themselves.

Projections raise the level of granularity. They aggregate several small disparate facts 

into a cohesive representation. A single query produces a set of facts, all of the same 

type. These might be all entities that should appear on a list or all possible values of a 

single property. The user interface, however, will need to combine several result sets. 

To produce a list, it will need not only the set of entities but also the candidate values of 

several of their properties.

�Defining Projections
Consider the example of a restaurant host viewing the set of available tables. Within 

that list, they will want to see the table number, the capacity, and the name of the server 

assigned to the table. To get the list of tables, the application will run the following query:
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query tablesAvailable(r: Restaurant) {

  match t: Table where t.restaurant = r

    such that not exists s: SeatParty where s.table = t

      such that not exists b: BusTable where b.seatParty = s

}

Once the application has the table entities, it will need to get the properties. Some 

of these properties are immutable and therefore directly available within the Table fact. 

For example, the table number and seating capacity are stored within the fact and do 

not change. But some properties will change over time and therefore will only be visible 

within successors. These will require additional queries. For example, to display the 

name of the server currently assigned to the table, they will need to run the following 

query for each entity:

query serverAssignedToTable(t: Table) {

  match a: Assignment where a.table = t

    such that not exists d: AddignmentDelete where d.assignment = a

  then s: Server where s = a.server

}

The application could perform the second query for each result returned from the 

first. Doing so would take longer than necessary. This kind of performance problem is 

commonly known as SELECT N+1. The application executes 1 query to find the entities 

and then makes N queries to find some property of each of those N entities.

It would be far more performant to combine those queries into a single pipeline. 

That is precisely what an immutable runtime would do with a projection. We can project 

the two previous queries into a single structure. Such a projection can be represented 

with the following pseudocode:

projection seatingView(r: Restaurant) {

  tables: for each t: Table in tablesAvailable(r) {

    tableNumber: t.tableNumber,

    capacity: t.capacity,

    server: for each s: Server in serverAssignedToTable(t) {

      name: s.name

    }

  }

}
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The exact expression is going to differ for each programming language. For example, 

in Jinaga—an immutable runtime for JavaScript—a projection looks like a JavaScript 

object literal where the fields are defined using functions. The important part about this 

pseudocode is that it declares an object structure based on a handful of queries. If this 

expression were evaluated imperatively, we would have a SELECT N+1 problem. But 

since this projection is expressed declaratively, we have the opportunity to produce a 

single combined pipeline.

�Projection Pipelines
Like a query, every projection has a starting point. The starting point of the preceding 

projection is a Restaurant. The projection then defines a set of fields (in this example, 

just the tables field). Some of these fields are simply functions of the starting point. And 

some of them, like the one shown earlier, are based on queries.

To execute a projection, a runtime builds a projection pipeline. This is an amalgam of 

all of the query pipelines that appear within the fields. It starts with the pipelines for each 

of the fields. The pipeline for the tablesAvailable query appears in Figure 12-1.

Figure 12-1.  The projection begins with the pipeline to find tables currently 
available in a restaurant

If we had more than one field, then we would graft each of the pipelines together 

at the same starting point. If two fields produced pipelines that followed the same first 

step, then their pipelines would be grafted after that common step. The pipelines share 

steps until the point that they diverge. An example of a combined pipeline appears in 

Figure 12-3. In this case, however, we just have the one pipeline, so we continue to the 

next phase.
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In the next phase, the runtime walks recursively down to fields defined on projected 

entities. In this example, the table entity has three fields: tableNumber, capacity, and 

server. For two of these fields, the expression simply pulls a value from the fact. For the 

third, however, it specifies a child query.

For each child query, the runtime joins the pipeline to the end of the parent pipeline. 

The pipeline in Figure 12-2, for example, finds the values of the server fields of all 

available tables.

Figure 12-2.  Join the server pipeline to the table pipeline to find all servers at once

Projection pipelines can get large and complex. If it were the responsibility of a 

human developer to maintain these pipelines and write the corresponding database 

queries, they could easily make a mistake. But this is a process that can be automated. 

Starting from the declarative projection, a framework grafts several pipelines into a 

single composite structure. It computes the inverse of this structure to understand 

exactly what component state or view model to update when a new fact arrives. It 

transforms this combined pipeline into a database query to be executed more efficiently 

against the data store. This avoids the SELECT N+1 problem, while producing an object 

model that readily supports the user interface.

�Interest
The final gap to close is the one between the business logic and the network. In 

Chapter 11, we manually decided how to share facts with peers. We found pivots within 

the model—predecessor/successor relationships that crossed regions. These became 

points of collaboration not only between users but also between nodes. Then we 

decided how to express that collaboration: queues, topics, REST APIs, webhooks, and 

others. Now we will examine a way to automate that decision and take it out of the hands 
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of the human software developer. We replace it with an algorithm for automatically 

determining what facts a node needs to know about. Peers using immutable runtimes 

will exchange information with peers to express interest in the facts that they want.

A node is interested in a fact if the existence of that fact changes the behavior of 

the node. The behavior of a node depends upon its projection pipelines and their 

starting points. If a fact influences the results of a projection from an expected starting 

point, then the node that presents that projection from that starting point is interested 

in that fact.

To express interest, a node shares its projection pipelines and starting points with 

its peers. They determine which facts to share based on that information. So which 

facts could influence the behavior of a pipeline? Certainly the starting point has a great 

influence. But of course, the target node already knows about that fact. There is no need 

to send it a fact that it already knows. Instead, the peer examines the projection pipeline 

to find other facts that could influence it.

Every step that the pipeline takes visits a new set of facts. If the step finds successors 

in a certain role of a certain type, then every one of those successors could influence the 

behavior of the pipeline. The node that uses that projection is interested in all of those 

successors.

To understand a fact, a node must also know about all of its predecessors. When a 

node expresses interest in a fact, it implicitly expresses interest in those predecessors. 

Those facts, of course, have predecessors of their own. The runtime computes the 

transitive closure of the interest set to find all of the required facts. A predecessor step 

within the projection pipeline adds no facts to the interest set that would not already be 

present.

When a pipeline includes a filter, that filter introduces a child pipeline. Any fact that 

influences the child pipeline influences the behavior of the filter. And so the runtime 

evaluates the child pipeline recursively. Beyond the filter, the pipeline continues. But 

only facts that pass the filter can influence the remainder of the pipeline. And so only 

facts that make it past the filter can further contribute to the interest set. This leads to 

some interesting and counterintuitive consequences. These are most obvious with 

respect to two common patterns, both described in Chapter 8: Delete and Period.

Chapter 12  Generated Behaviors



391

�Interest in Deleted Entities
The Delete pattern uses a fact to indicate that an entity has been deleted. When a 

node learns about that fact, it loses interest in all information about the entity—all 

information, that is, except for the fact that it has been deleted. That has to be preserved.

Consider the projection pipeline in Figure 12-3. It shows the pipeline necessary 

to display all items on a menu, including their name and price. The first filter in the 

pipeline excludes deleted menu items. When it eliminates a deleted item, the node loses 

interest in the name and price properties.

In order to execute that filter, the node needs to know about the menu items and 

their deletions. It remains permanently interested in those facts. After the filter are the 

steps that explore the properties of the menu item. Those steps will never see a deleted 

menu item. And so, even though a node is interested in the entity and its deletion, it is 

not interested in the properties of deleted entities.

This is a subtle and important optimization of the interest set. You might think that a 

node will not be interested in the deleted entities at all. Once an entity is excluded by the 

deletion filter, then it no longer appears on the user interface. If it does not appear, then 

why would a node be interested in it?

The reason for the continued interest becomes clearer as you consider how interest 

propagates through a network of nodes. Suppose a new node comes online and does not 

learn about deleted menu items. Then suppose that it communicates with a peer that 

has not yet learned that a particular menu item has been deleted. The peer will helpfully 

Figure 12-3.  A projection pipeline that gets the names and prices of all items on a 
menu
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tell the new node about the menu item, its names, and its prices. The new node will 

believe that this menu item exists and display it to its user. And so a node that does not 

retain interest in deletion facts will incorrectly display deleted entities.

You may have observed this behavior in some popular synchronization engines. For 

example, if you use Microsoft Active Directory, it is possible to observe lingering objects 

if a domain controller is disconnected beyond the tombstone lifetime.1 A tombstone 

in Active Directory is a record of an entity’s deletion. It is analogous to a Delete fact. 

Active Directory does not preserve tombstones indefinitely. Instead, it defines a 

lifetime of between 60 and 180 days, depending upon the operating system. If a node 

is disconnected for longer than that lifetime, or if the clocks have drifted significantly, 

then its peers may discard the tombstone. That causes the deleted entity to magically 

reappear.

The only truly fool-proof way of defending a node against deleted entities is for it 

to continue to be interested in the entity facts and their deletion facts. A node needs to 

learn about the tombstones no matter how old they are. This seems like a large set of 

data to retain, but in fact it prevents an even larger set of data from lingering. Sharing 

this complete list of tombstones prevents a node from becoming interested in all of the 

property changes and other actions associated with these entities.

Retaining interest in deleted entities has traditionally been one of the more 

controversial results of immutable architectures. I have had countless conversations with 

peers who attempt to solve the problem with rules about when a system can forget about 

entities. The results are always similar to the lingering-object issue that Active Directory 

faces. If you remain unconvinced, then perhaps the interaction between interest and 

the Period pattern will provide a more palatable solution. Periods are a way of imposing 

lifetimes on interest without falling into lingering-object defects.

�Interest in Past Periods
The Period pattern describes regularly occurring spans of time during which activities 

take place. The duration of a period is a time frame that makes sense for the application: 

a date of business, a calendar month, an academic semester, or a fiscal year. When an 

activity occurs at a particular node, that node believes the system to be in one single 

period. It records the activity as a successor of the period fact.

1�Information about Lingering Objects in a Windows Server Active Directory Forest. Microsoft 
Knowledge Base 910205.
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Each node determines its own interest set. Different nodes will express interest in 

different periods. Nodes closer to the edge of the network tend to operate only within 

recent periods. A point of sale terminal might only display data within the current date of 

business. It serves the needs of its users in the short term and leaves long-term history to 

reporting servers living closer to the center of the network.

To respect the bandwidth and storage limitations of smaller edge devices, we wish to 

limit their interest set to only the more recent periods. Nodes get to choose the starting 

points of their projection pipelines. If those pipelines start with the current period, then 

the node is no longer interested in the past.

The period clock advances for each individual edge node. Close to a time boundary, 

different nodes might believe the system to be in different periods. But this will not cause 

any problems sharing facts with more central nodes. Edge node clocks don’t need to agree 

so long as central nodes accept facts outside of what they believe to be the current period.

To apply this solution, a node starts its projections not from a top-level owner, but 

from a period defined within that owner. For example, the front-of-house terminal 

within a restaurant that the host uses would begin not from the Restaurant fact, but 

from a successor RestaurantDateOfBusiness. As its clock progresses, the front-of-house 

terminal loses interest in the previous date of business for the restaurant. Instead, it 

starts its projection pipelines from the new date of business. It communicates out to its 

peers the starting point of the pipeline as the date changes.

This strategy allows edge nodes to limit their storage requirements, while central 

nodes take on the storage burden. Different nodes get to decide their own interest set. 

Edge nodes express interest in recent periods by providing a pipeline that starts with 

a period. Central nodes express interest in deep history by starting from the periods’ 

predecessor.

�Sharing Interest
Each node is responsible for defining its own interest set. It does so by defining its own 

projection pipelines and starting points. For the node to receive the facts that it expresses 

interest in, it must share those projection pipelines and starting points with its peers.

An application-agnostic immutable architecture will include a network protocol 

for exchanging pipelines and starting points. Rather than requiring human developers 

to design a bespoke API for the application at hand, it will adapt its behavior as the 

application is developed. The behavior of network interaction is generated based on 

pipelines, starting points, and authorization and distribution rules.
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A node expresses interest over an application-agnostic network protocol by 

providing its projection pipelines and starting points. The peer then executes the 

pipeline to find facts that the node is interested in. Based on the permanence of the 

relationship with the node, it may decide to cache those facts and invert the pipeline in 

order to invalidate the cache. Or it may decide that the node is ephemeral, like a mobile 

device, and rely upon it to maintain bookmarks as described in Chapter 11.

The starting points for projection pipelines depend upon the purpose that the node 

serves. Personal devices such as mobile devices tend to start with the User fact of the 

individual who owns the device. All other projections are reachable via navigation from 

the results of the first. The node grafts all of those pipelines together in order to produce 

one single structure originating from the User fact. All groups to which that user gains 

membership, all entities that that user creates, and all decisions made by or for that user 

are all reachable from this one all-encompassing projection pipeline.

Nodes more central to the network tend to be shared by many users. These belong 

to organizations. The organization will be represented by a fact within a multi-tenant 

model. The projections that these kinds of nodes tend to run will produce organization-

wide reports, websites, and publicly facing APIs. Their projection pipelines will start 

from the organization fact.

Starting points will change slowly as shared nodes are reconfigured for different 

tenants, new users log in to personal devices, or the period clock advances. Projection 

pipelines will also change slowly, as new versions of software are installed on each 

device. An application-agnostic protocol allows each node to exchange information 

about these slow changes to update their peers about the sets of facts in which they are 

interested.

�Losing Interest
As time passes, nodes will lose interest in facts. When an entity is deleted, nodes will no 

longer be interested in their properties and relationships with other entities. As the clock 

advances, nodes lose interest in the day-to-day decisions that occurred within a period. 

Even though facts are immutable and cannot conceptually be deleted, it sometimes 

makes sense for a node to practically delete data.

Nodes at the edge of a network tend to be personal devices. These are relatively small 

machines with limited storage, bandwidth, and connections. To respect their limits, it is 

practical to avoid storing and transmitting facts that they have lost interest in.
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Through query inversion, a node can recognize when a new fact has removed other 

facts from its interest set. It can tell, for example, that a Delete fact has caused the filter of 

a pipeline to become false and therefore remove all of the properties of that entity from 

its interest set. An application-agnostic runtime could remove such facts from storage. 

Before this strategy is applied, however, a couple of caveats must be observed.

First, before the facts are removed, the edge node must have shared those facts with 

more permanent peers. If the user of a personal device has modified the property of an 

entity just as another user has deleted it, then the device might learn about the deletion 

before it has a chance to upload the property change. If the property change—which the 

device is no longer interested in—is deleted from storage, then no other node will ever 

learn of it. When the deleted entity is restored, or a historical report is run, the user’s 

decision will be lost.

The second caveat is that no other node can depend upon this device as a source of 

facts. Edge devices tend to connect to more central devices to receive new facts. The only 

facts that they upload are the ones that the user of the device created themselves. But if 

the personal device is also a server of an even more removed edge device, then its data 

store cannot be purged. A laptop to which a companion device is attached must retain 

the history of facts that its satellite might need, even if it itself has lost interest in them.

If query inversion proves to be too complex or cumbersome for an application-

agnostic runtime, a simpler strategy exists. The runtime could periodically swap one 

data store into the background and start filling up a new store. Projections are served 

out of both data stores, the background one providing stability of past data and the 

foreground one contributing freshness of new events. Over time, all of the facts that the 

node is interested in are copied to the foreground store, and all of the outgoing facts are 

drained from the background queue. A that point of quiescence, the background store 

can be purged with no loss of information or change of behavior.

Whatever the strategy, it is important to recognize the difference between the 

practicality of purging facts and the inductive rigor of retaining interest. A node must 

retain interest in deleted entities and their tombstones in order to correctly defend 

against lingering objects. As long as a node is interested in a fact, that fact cannot be 

purged. Only under the strictest of conditions can facts be removed from storage. This 

can only happen on edge nodes, only after durably sharing that fact with a more central 

node, and only when interest is truly lost.
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�Immutable Runtimes
With the introduction of projections and interest, the last of the gaps have been bridged. 

We can now generate the connections among business logic, user interface, and network 

communications. Generating behavior is not just about making things easier. With 

end-to-end behavior generation, we can ensure correctness of applications to a degree 

that would not otherwise be possible. This gives developers the freedom to explore 

different solution spaces without being locked into the first one that works. And it gives 

organizations the autonomy to innovate their business processes even while integrating 

with other organizations.

There are several ways to generate behavior. Generating behavior might mean 

generating code. Some code generators are used as templates or scaffolds. Once the code 

is generated, the developers own it. They are responsible for modifying and maintaining 

it. Other code generators are run as part of the build process. They produce files that are 

not intended for the developers to modify. They transpile one language to another so 

that a domain-specific language can be easily consumed by a general-purpose language.

Generating behavior might also mean altering behavior at runtime to match a 

specification. Managed runtimes alter their behavior in response to the programs that 

they execute. Garbage collection, reflection, and serialization are generated behaviors 

that emerge during runtime. No code generator or transpiler produces a program that 

performs these operations. The runtime provides these services as they are needed.

Let’s imagine an application development solution that uses all of these techniques 

to generate the behavior of a distributed system. It will make low-level implementation 

decisions on behalf of the developer to bridge the gaps among storage, business logic, 

user interface, security, and network communications. It will also bridge the gaps 

between applications running on different nodes, even those deployed at different times 

and authored by different organizations. For some aspects of behavior generation, it will 

rely upon code generation, allowing developers to write directly in the Factual Modeling 

Language and producing code in their preferred general-purpose language. For other 

aspects, it will use managed runtimes, permitting behavior to change without compiling 

or deploying new code. The goal is not rapid application development. It is correctness 

and autonomy.
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�Model Generation
Our aspirational application development process begins with a description of the 

problem domain. We will describe the entities, properties, activities, relationships, and 

decisions inherent within that domain. All of those concepts are modeled as historical 

facts. The tool we will use in that description is of course the Factual Modeling Language.

The first thing that the application runtime needs to do is translate fact declarations 

into data types in a general-purpose language. This is best accomplished with a code 

generator running continuously during the build process. The output of this code 

generator is native code so that it can be understood within the integrated development 

environment (IDE) and type checker. But it is not intended for developers to modify after 

generation.

The defining characteristic of facts is that they are immutable. A few general-

purpose programming languages support immutable data structures, but most default 

to mutability. The code generator should use appropriate language idioms to discourage 

modification of the objects representing facts. In languages that have strong protection 

semantics like Java and C#, this is almost entirely possible. But languages like JavaScript 

with weak or no protection, it is simply up to the developer not to mutate these 

generated data structures.

The generated code needs to preserve the structure of the facts. It should be able to 

compute the canonical hash of a fact from the properties of an object. It should help in 

determining when a fact already exists and when it is being created for the first time. It 

needs to understand the predecessor/successor relationships so that developers can 

express queries. Some of these behaviors can be written into the code, some can be 

extracted via reflection, and others require that the generated code preserve structural 

details at runtime.

�Query Execution
After the developer has specified just a few layers of the data model, they can begin 

writing queries. In the application development cycle, queries provide the first chance 

for a developer to test their hypotheses. They have expressed the structure of the 

entities and decisions in terms of facts with the belief that these facts will support 

the requirements of the finished software. If they can write a query that satisfies a 

requirement, then they have more confidence that the model is correct.
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It is vital that a developer have a way to iterate on a model and set of queries quickly, 

especially during the early phases of application development. A complete immutable 

runtime should include a playground in which developers can define facts, create 

instances, and then run queries. Think of this as the equivalent of a SQL design tool like 

MySQL Workbench, pgAdmin, or Microsoft SQL Server Management Studio (SSMS). It is 

an exploratory and diagnostic tool for the developer, not for the application.

For an application to execute a query requires an application runtime. The runtime 

framework translates a query expressed in Factual or in the native language into a 

pipeline. From there, the pipeline can be executed against any number of data stores, 

grafted into projection pipelines, or inverted. The pipeline is just a data structure internal 

to the immutable runtime that can be manipulated for several purposes.

In some incarnations of our aspirational application development system, a code 

generator turns Factual queries into a pipeline description stored within the code. It 

generates the function that is the entry point for executing this pipeline, providing the 

necessary type casts to ensure that the function takes the appropriate starting point and 

produces the appropriate fact set. In other incarnations, the runtime is able to convert 

a native language query—such as .NET Linq—into a pipeline. It is careful to validate 

that the query does not stray outside of the set of capabilities of the deliberately limited 

Factual query.

�Testing
As the application developer iterates over the model and queries, they will want to 

encode their expectations in repeatable tests. Automated testing has long been a 

cornerstone of agile application development, even becoming the driving force of 

application design in test-driven development (TDD). In the application development 

cycle envisioned here, testing plays a diminished role. Tests do not drive the design or 

even prove correctness. They simply check our work.

When humans are responsible for designing the ins and outs of software systems, 

they will inevitably make mistakes. These mistakes lead to defective behavior. We 

call them “bugs” and pretend that they are inevitable. But as we’ve seen several times 

throughout this book, it is possible to prove theorems about the behavior of software. If 

humans write the data access layer, business logic services, and view models for the user 

interface, then it is possible for them to introduce bugs. But if an immutable runtime is 

computing query inverses according to mathematically proven rules, then we can have 
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confidence that the UI will be updated correctly when state changes. There is little value 

in testing the generated behavior of the runtime. Tests should focus on validating the 

intent of the program, not just the implementation.

The developer writes tests in their preferred general-purpose language using the 

generated code and immutable runtime. The tests execute against an application-

agnostic data store that operates completely in memory. This will almost certainly be 

different from the persistent data store used in production. But the developer is not 

testing that different data stores correctly execute queries. They are testing that they have 

written the queries that match their intent.

�User Interaction
After the developer has iterated a few times over the model, queries, and tests, they 

reach a point where they have confidence that the system described meets the intended 

requirements. At this point, they can begin mapping that description to the user 

interface. The UI has evolved in parallel, as a series of wireframes. Now, it becomes 

augmented with Factual queries and mathematical formulas. When we have both a 

description of the intended UI and a declaration of a model and queries, we can finally 

start bringing the two together.

The developer declares a projection in their general-purpose language. Projections 

incorporate queries, which the code generator has converted into functions. The 

projection mixes these functions with the aggregation and calculation tools that the 

language itself provides. In Linq, for example, the generated function might return 

an IQueryable. This represents the query itself, not its results. The language features 

already built into Linq can compose IQueryable streams, map them through lambdas 

and other native features, and construct a complex object perfectly suited to support the 

user interface.

Based on the target UI platform, the immutable runtime provides additional support. 

In an Extensible Application Markup Language (XAML) application, the runtime 

implements the INotifyPropertyChanged event in order to translate from query 

inversion to data binding. In a React application, the runtime stores the projected data 

in component state and provides hooks for efficient access. No matter what front-end 

technology is chosen, the developer works at the level of declarative projection based on 

queries over immutable facts.
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Finally, the developer responds to input events. When a user clicks a button or 

modifies a field, the developer translates this action into a new fact. The runtime takes 

all of the necessary actions to bridge the gaps between the user interface and other parts 

of the system. It stores the fact using the application-agnostic data store. It queues the 

fact to be shared with more central nodes. It determines interest to push it out to peers. 

And it runs query inverses to determine which other parts of the user interface have 

been affected. The human developer is no longer on the hook for any of these technical 

decisions.

User interaction might not take the form of a UI that appears on a web page or 

mobile device. It might be an API consumed by non-immutable systems. These 

techniques still apply, just with some technical modifications. URLs map to starting 

points. Projections map query results onto data structures. Those data structures are 

then translated into JSON, XML, or some other transport format. And operations such 

as POST and PUT map to creation of new facts that represent creation and updates of 

entities. The biggest difference is that APIs tend to rely less upon real-time updates than 

user interfaces do. And so inverses play a lesser role, that of invalidating caches rather 

than pushing updates.

Developers may choose to implement another layer of tests at this stage. They have 

tested the queries and the model that went into the projections. Now they have an 

opportunity to test the projections themselves. They can express the intent that when 

a user presses a certain button, data should appear in a certain list. That intent can be 

tested against the projection—the view model or component state—rather than against 

the user interface itself. This gives developers a tool for validating interaction scenarios 

without taking a dependency upon more malleable user interface components. And 

these tests can still be run using an in-memory data store with no loss of confidence.

�Collaboration
The final phase of the aspirational application development cycle is to define the 

collaboration between users, between systems, and between nodes. The behaviors taken 

by one actor will have an impact on the behaviors observed by another actor. We express 

these points of collaboration in an immutable application using interest.

The application developer registers all of their projection pipelines with the runtime. 

This represents the intent that the application expresses interest in every fact necessary 

to update its interface. Developers might take this opportunity to optimize projections to 

Chapter 12  Generated Behaviors



401

produce better interest calculations or provide additional projections that support other 

features of the application. But the default position of registering the set of projections 

used in the UI should produce reasonable results.

Next, application developers trigger interest from certain starting points. For 

example, when the user logs in, they will inform the runtime that the set of projections 

starting from that user have become active. This will trigger the runtime to start pulling 

related facts so that the projections will be updated as they arrive. If an application 

includes navigation from one view to the next, the developer has some choices to make. 

They can graft subsequent screens’ projections onto the end of the primary screen’s 

projection, thus ensuring that the facts are already available before the user navigates. 

Or, they can wait until that navigation occurs, minimizing the bandwidth consumed 

until the user decides what to view. Either of these choices is easily expressed with a few 

function calls to the immutable runtime.

The runtime for its part shares these projection pipelines with its peers. As the 

application requests that pipelines be run for a given starting point, the runtime sends 

out that serialized starting point and the composed interest pipelines. Peers execute the 

pipelines to determine the facts in the interest set. They also run the transitive closure to 

find all predecessors of those facts. Finally, they use bookmarks to negotiate which facts 

the peer already knows about and which need to be shared. As they share facts, the peers 

update their bookmarks. All of this is accomplished with no additional guidance from 

the developer.

This is the most natural time for developers to introduce authorization and 

distribution rules. Immutable runtimes execute authorization rules upon receipt of a 

new fact to determine for themselves whether to trust and store it. The runtime executes 

distribution rules as it sends facts to filter out data that a peer does not have permission 

to see, even if it has expressed interest. These rules could have been expressed earlier in 

the cycle, but collaboration gives developers the perfect opportunity to validate them.

The few decisions that the developer did make—how to combine projections, when  

to navigate to new starting points, and authorization and distribution rules—deserve a 

new layer of tests. The developer writes a set of tests that show that when one user  

takes an action on one device, another user sees a certain effect on another. They 

demonstrate that protected data is not visible to a peer and that unauthorized activities  

will be rejected. These tests are written against projections, as those are the expressions  

that map most closely to the user’s actual experience. But they incorporate the 

behavior of the code that registers interest pipelines, starting points, and security rules.  
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During the test, the runtime uses not only an in-memory data store but also an in-

process communication simulator. It does not need to set up interconnected nodes 

or use unreliable infrastructure during the test. This simulator will not be used in 

the production application, but it enables testing of the important decisions that the 

developer makes during this phase. The correct behavior of the real communication 

system is governed by the mathematics of conflict-free replicated data types (CRDTs) 

and covered by the runtime vendor with its own suite of tests.

Developers iterate over these phases, building onto the model, writing new queries, 

constructing new projections, and enabling more complex collaborations. Through 

the entire process, the decisions that they make for the current phase are consistent 

with the ones that they made in the past. The tools enforce that consistency through 

code generation and type checking. Developers build up a working application over 

several iterations. At no point can the developer express one intent to the data access 

layer and a different intent to the networking subsystem. They cannot introduce bugs 

based on disagreement between islands of behavior. All behavior is generated—whether 

by transpiled code or interpretive runtime—from the expression of intent. This gives 

developers the confidence to explore new business solutions, and the autonomy to try 

new ideas.

�Immutable Organizations
As immutable architectures gain acceptance, they will begin as experiments within 

individual organizations. Application developers will try out the concepts, patterns, and 

techniques described in this book. They will adopt frameworks that provide immutable 

runtimes, such as the Correspondence and Jinaga open source projects that the author 

maintains. As they find success, immutability will find its way into other business units 

within the organization.

The spread will be gradual. As business units need to integrate with one another, 

they will be faced with the choice. Do we adopt an immutable collaboration between 

these services, or do we use a more traditional Simple Object Access Protocol 

(SOAP), Representational State Transfer (REST), or Enterprise Service Bus (ESB) style 

interaction? Business units who are slow to adopt immutability will find that they need to 

implement additional adapter layers and will not get the benefits of eventual consistency 

and conflict resolution. But those that buy into a new style of application development 

will soon discover its advantages in rapid and reliable exploration and experimentation.
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�Decision Substrate
Business units—not departments—will be the driving force of immutability adoption.  

A business unit includes all functions necessary for the generation of value within 

one step of the value stream. In order to operate effectively, the unit needs to 

innovate quickly to respond to changing demands. If they can capitalize on shifts 

in environmental forces, they can demonstrate value to the whole organization. If 

they cannot, then their functions may be outsourced. With these pressures at play, 

business units have found themselves in the past moving to cloud platforms while the 

organization’s IT department stayed behind with on-premises networks. These same 

pressures will drive them to adopt more exploratory and autonomous architectures.

Eventually, the backbone of the organization will be a shared distributed immutable 

data exchange. Business units will independently develop solutions on top of this 

substrate. Some will be valuable, and others will die away. But those that stick will 

become the source of reliable business data for other experiments. The immutable data 

structure that emerges will be the decision infrastructure upon which the organization 

builds its value stream.

Certainly in the short term, and very likely in the long term as well, immutable 

applications will run side by side with static applications. These will require integration 

points. Using the Outbox pattern, webhooks, and emulated mutability, developers of 

immutable applications will find ways to bridge those gaps. Over time, they will publish 

those integrations as reusable components for other immutable application developers. 

The integration points will become small immutable applications living on their own 

within the architecture, proxies for external services.

Organizations that evolve an immutable decision substrate will find themselves at 

an advantage over their static counterparts. They will have a reliable log of all business 

decisions that went into generating value within the company. They will exchange 

information securely and freely across business unit boundaries. And they will have 

the freedom to innovate on new solutions without the overhead of large enterprise 

hegemonies.

�Globally Distributed Systems
As powerful as immutable architecture can be within a single application or a single 

organization, the benefits multiply as immutable organizations integrate with one 

another. As they discover each other, they will pierce the veil of emulated mutation 
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and expose the immutable facts beneath. They will provide access to their data 

synchronization protocols so that the two organizations can intermingle their immutable 

models.

As immutability spreads organization to organization, security boundaries will 

remain firmly in place. The authorization and distribution rules will continue to control 

access to sensitive facts. Asymmetric keys will continue to identify individual actors, and 

their digital signatures and shared keys will continue to protect data at rest and through 

untrusted nodes. Security concerns will be enforced at the logical boundaries between 

regions, not just at physical network boundaries and with proprietary APIs.

Organizations will limit coupling between their models by keeping integration points 

high up in the causal chain. They will agree upon predecessors, and each create their 

own successor facts. They will evolve these models using structural versioning so that 

different partners can take their integrations in their own directions without central 

coordination.

As pairs of immutable organizations join into clusters, they will form networks of 

interconnected models shared among all participants. They will build upon common 

application-agnostic network and security protocols, and each maintain their own data 

stores. From these clusters will emerge a shared global distributed system, exchanging 

immutable records in a securely integrated history.

In years past, this kind of emergent global network would have seemed ridiculous. 

But we have already seen two successful examples. The Internet is not a centralized 

managed set of servers. It is a system of open standards, implemented by a myriad 

of vendors and operated by a loose consortium of cooperating organizations. And 

blockchains are not central databases that rely upon physical and network security 

to control access. They are shared public ledgers of immutable records executing on 

diverse nodes running competing implementations of an open standard.

Based on these examples, I have confidence that the global immutable network 

will emerge. It will not have the mutable mindset of REST APIs that bind them to 

location specificity. Nor will it have the inefficiencies of proof of work locking it into a 

linear history. Instead, it will apply the findings of decades of mathematical research to 

produce truly globally distributed systems that are location independent, convergent, 

secure, and autonomous.
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Revised query pipeline, 305
Revocation, 226, 228
Role-based access control (RBAC), 213

S
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Search engines, 177, 178
SeatParty fact, 150, 164, 296, 301
Secrecy

shared key
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periods, 242

shared symmetric key (see Shared 
symmetric key)

shared workspace, 236
SecretChannel, 239, 381
Security

confidentiality (see Confidentiality)
RBAC, 213

Security token service (STS), 234
SELECT clause, 339

SELECT N+1 problem, 389
Sequential version numbers, 352, 353
Server logs, 159
Session key, 240
Sets

historical facts, 143
historical records

causal history, 137
changing, 139
ContactCreation record, 140
ContactModification records,  

140, 141
explicit causality, benefits, 141–143
removing, 138
vector clocks, 140

idempotence and commutativity, 135
merge operation, 136
partially ordered, 135
properties, 134
update operation, 135

Shared key limit
cohorts, 241
periods, 242

Shared mutable state, 9
Shared symmetric key

secrete channel
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invitation facts, 239

team distribution rules, 239, 240
Shared workspace, 236
Sharing interest, 393, 394
ShippingAddress, 305
Simple Object Access Protocol  

(SOAP), 402
Soft deletion, 250
Software change tracking system, 201–203
Software issue tracking, 189, 190
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SOUNDEX search, 177
Spurious joins, 338, 339
SQL databases

identity (see Identity)
relationships (see Relationships)

State-based CRDTs, 128, 129
causal history, 130
partially ordered state, 129

State-based structure, 344
State machine–based distributed  

systems, 208
State machine–based patterns, 204
State machines, parsing JSON object, 183
State transitions

back-orders, 186, 187
cancellations and returns, 187, 188
child state, 190
composite state transition  

diagrams, 191
conditional validation (see Conditional 

validation)
cycles, 195
declarative function, 191, 192
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order fulfillment system, 198–201
software change tracking  

system, 201–203
parallel state machines, 188, 189
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shipping and billing, 185, 186
software issue tracking, 189, 190

Strong eventual consistency (SEC), 119
commutative property, 124
CRDTs, 128
idempotent and commutative, 124
intervening PUT, 123
non-commutative PUT, 122

PUT requests, 123
relay-based distributed system, 122
relay-based system, 119, 120

Strongly eventually consistent (SEC), 119
Structural patterns

delete
consequences, 252
structure, 250, 251

entity
consequences, 245
ownership, 245
structure, 244, 245

entity reference, 265–268
membership, 255–258
mutable property (see Mutable 

property pattern)
ownership (see Ownership pattern)
restore, 252–255

Structural sharing, 10–12
Structural versioning, 353, 354
SubmitOrder command, 37
Subscribers, 370
Subset, 379–382
Successors, 48, 49
Symmetric keys, 231, 240
Synchronization, 96
Synchronizing local storage, 375
Synchronous protocols, 364, 371

T
Table fact, 297
tablesAvailable query, 388
Table structure, 325, 326
Take Order activity, 150
Test-driven development (TDD), 398
Timestamps, 104
Tracking number, 193, 194
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TransactionItem, 270
Transaction pattern

consequences, 271, 272
structure, 269–271

Transient actions, 299
Transitive authorization, 225
Transitive property, 108, 109
Transmission control protocol (TCP), 357
Trapdoor functions, 215
Triggers, 346
Tuples, 104
Two Generals’ Problem (TGP), 12–14, 18
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prearranged protocol, 14, 15
proof of impossibility, 17, 18
uncertainty, reducing, 15

Two Phase Commit (2PC), 21
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Type checker, 397
Type checking, 397, 402

U
Unidirectional data flow, 43, 44
Unified modeling language (UML), 146
Uniform resource identifier (URI), 101
Uniform resource locators (URLs), 101
Uniqueness constraints, 176, 257
Universally unique identifiers (UUIDs), 103
Universal quantifiers, 192, 203
Unsatisfiable inverses, 297, 298
Untrusted nodes, 229, 230
Update operations, 125, 135, 138
Use cases
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User fact, 394
User datagram protocol (UDP), 357
User interaction, 399, 400
User interface components, 290, 294
User interfaces, 289, 386
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Valid orderings

annotated server home view, 172
assignment, 173
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race conditions, 171, 172
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Vector clocks, 131–134
Vendor predecessor, 176
Versioning

sequential version numbers, 352, 353
structural, 353, 354

Views
annotated wireframes, 159, 160
removal from lists, 160–164

W, X, Y
Walking backward, 298–300
Webhooks, 373
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deletion, 340, 341
index scan, 340
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outbox (see Outbox pattern)
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